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Abstract

When you’re using your mobile device, you can connect to several wireless
networks at the same time, such as 3G (HSPA) / 4G (LTE) and WiFi. These
links could be used at the same time to increase the download speed or
make streaming of video more reliable. These links introduce differences
in delay and TCP should fail if you simply try to aggregate them at
the network layer because this will also introduce network reordering in
relation to the difference in network delay.

There are several existing solutions out there that tries to fix this, but if
you simply use Linux and transparently send packets over two different
network links which has a large difference in network delay, you will
notice that the TCP connection can maintain a high throughput which
corresponds to the sum of possible throughput for both links. A patch from
August 2013 has made the situation even better, but how does it work?

In this thesis, we have investigated how Linux TCP is robust against
network reordering. We have also done extensive testing of Linux
TCP’s performance where we have transparently sent packets from a TCP
connection over two different network paths which differs in both latency
and delay.
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Chapter 1

Introduction

1.1 Background

A recent PhD thesis [25] from 2011 by Kaspar disclosed an unexpected
behavior in Linux TCP in the presence of heavy but regular packet
reordering. The situation occurs when the TCP sender transparently sends
packets over two different network links which has a large difference in
network delay. This would for example be a WiFi network and a 3G (HSPA)
network as shown in figure 1.1. By doing this, the TCP sender would send
packets in order and the TCP receiver would naturally receive them out of
order because of the difference in latency between the network links.

If the latency difference is high, the TCP receiver wouldn’t receive any
packets traversing the network path to the link with the highest latency
before a given amount of packets traversing the network path to the link
with the lowest latency resulting in duplicate acknowledgements sent to
the TCP sender which would trigger the fast retransmit / fast recovery
algorithm which would again send a dubious retransmission and slow
down sending speed. This is the expected behaviour of TCP since it now
thinks that a packet has been lost.

In Linux TCP however, it learns after an arbitrary time, which would
easily be half an hour or more in Kaspar ’s case, that these duplicate
acknowledgements is not caused by loss, and the sending speed suddenly
increases to the sum of the possible speed over both links.

The main goal for this thesis is to discover the true origin of the effect
and to see how the situation is with a newer version of the Linux kernel.

1.2 Problem Statement

To discover the true origin of the effect of how Linux TCP is robust against
network reordering, we needed to first recreate Kaspar’s testbed used
in [25] and investigate Linux TCP behavior to a higher extent.

To see how good the network layer aggregation is performing, we
needed to compared it against the most promising link aggregation
protocol out there, which is Multi Path TCP.
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Figure 1.1: An example of the available bandwidth we could potentially
utilize in today’s smartphones

We can than summarize this into three problems we wanted to solve in
this thesis as listed below:

1. Recreate the testbed Kaspar used in [25] and test this out on a newer
version of the Linux kernel.

2. Investigate how Linux TCP is robust against network reordering.

3. Compare the performance of our network layer aggregation against
MPTCP with different test cases where we experiment with the ratio
and order of bandwidth and delay to the aggregated paths.

1.3 Research Method

In this thesis we follow the design paradigm as described in [12] by Comer
et al. This entails the following:

1. Stating the requirements

2. Stating the specifications

3. Design and implement the system

4. Evaluate the system
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The system we are implementing and evaluating in this thesis is a
sender and a receiver side Linux Kernel modules that enables us to
transparently send data from a TCP connection over two network paths.

1.4 Main Contributions

• A sender side Linux Kernel module to filter out and diverge a subset
of the IP packets to a selected TCP connection.

• A receiver side Linux Kernel module to filter out and merge all IP
packets received at a selected address and port number to another
selected address and port number.

• A tool to analyze TCP sequence numbers to find out how much a
packet is displaced at the receiver.

• Various of BASH scripts to enable the receiver to communicate over
multiple network interfaces.

• Evaluation of network layer aggregation in regards to:

– How much network reordering is introduced by using network
layer aggregation

– How Linux TCP enables to make it self robust against network
reordering.

– How good it performs against MPTCP

1.5 Outline

The remaining part of this thesis is organized as follows:

• Chapter 2: Related Works

– In this chapter we have provided an overview of existing
solutions in regards to multi-path aggregation, and we have
also looked into some research on have to make TCP reordering
robust.

• Chapter 3: TCP

– In this chapter we have looked into the Transmission Control
Protocol standard: what it provides, different extensions and
bug-fixes and also how its implemented in Linux.

• Chapter 4: Robustness against network reordering in Linux TCP

– In this chapter we have looked into how Linux TCP is robust
against network reordering.

• Chapter 5: Network Emulation Testbed
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– In this chapter we have described how we designed and
implemented a similar testbed Kaspar used in [25] with some
minor modifications in regards to increasing the performance
and making our results more trustworthy. All the tools and
metrics we have used in this thesis is also mentioned here.

• Chapter 6: Results

– In this chapter we have summarized all our results in regards to
network reordering and performance measurements.

• Chapter 7: Conclusion

– In this chapter we have summarized our work.

• Chapter 8: Future Work

– In this chapter we have listed some future work.
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Chapter 2

Related Works

2.1 Multi-Path Aggregation

In this chapter we will go through some existing solutions related to
enabling multi-homed hosts to utilize all their available links structured
by the Internet Protocol Layer they operate on in section 2.1.1, 2.1.2 2.1.3
and 2.1.4.

2.1.1 Data Link Layer

Multi link Point-to-Point Protocol (MPPP)

MPPP is specified in RFC1990 [37] as a data-striping protocol where logical
links are created by bonding multiple physical links into a bundle. The
logical links may include various types of link technology. The binding of
links is completely transparent to higher layer protocols, they only use the
logical link, not knowing that their data is striped across multiple links.

MPPP uses the extensible negotiation option in Link Control Protocol
(LCP) as defined in RFC1661 [36] to indicate its peer that it is capable of
combining multiple links into a bundle.

Since MPPP is a point-to-point protocol, it has to originate and
terminate on the same pair of endpoints. Both endpoints must also support
MPPP, since each endpoint is responsible of splitting and recombining of
data.

2.1.2 Network Layer

Equal-Cost Multi-Path routing (ECMP)

Typical routing in the network layer is based on Open Shortest Path First
(OSPF) algorithms. They all lack the ability to balance the traffic if there
exist multiple paths to the same destination. That’s why ECMP was
developed.

In ECMP as described in RFC2991 [40] and analyzed in RFC2992 [21]
each router calculates multiple shortest paths to a destination. When
packets arrives, the router makes a hash value based on the packet header,
and uses this value to choose which path to forward the packet on.

7



The reason for hashing the header is to mitigate the reordering problem
when packets belonging to the same packet stream traverses different
routes. Hashing will mitigate this problem,so that all packets belonging
to the same packet stream will always take the same path. A drawback
here is that we can have a path that is congested by other sender/senders
and at the same time there are other paths to the same destination which is
not utilized. This makes the traffic unbalanced.

To solve this problem it was suggested by Xi, Liu, and Chao in [41]
that we can remotely control the path taken and redirect our traffic over
a different path. Just by probing the network by manipulating the port
numbers, we can learn more about the network and which path it is
traversing. We can then choose the best path from source to destination
from the knowledge we obtained.

This works since the hash values differs with different port numbers,
and the router may forward the stream on a different path. The probing
and manipulation of port numbers is proposed done in either the transport
layer or the application layer.

2.1.3 Transport Layer

Stream Control Transmission Protocol (SCTP)

Stream Control Transmission Protocol (SCTP) is specified in RFC2960 [39],
and is a protocol where we communicate over data-streams between two
endpoints as shown in figure 2.1. Each data-stream is identified with its
own identification number and each stream is sending and receiving SCTP
packets.

A SCTP packet as shown in figure 2.2 contains a common header and
multiple chunks. The common header as shown in figure 2.3 contains
a source port, destination port, verification tag and a checksum field.
The source and destination port number is used in conjunction with the
IP addresses to identify which endpoint/application this SCTP packet
belongs to. The verification tag is used for validation of sender. The
checksum is used for strengthening integrity of the transmission. Figure 2.4
shows us the field format of each chunk and table 2.1 shows us the different
chunk types.

If we want to utilize all the available links on a multi-homed host, we
simply send data over multiple streams, where each stream utilize different
pair of interfaces between the two endpoints.

To set-up a SCTP connection between two endpoints, we must first go
though an initialization procedure. In this procedure there is a four way
cookie handshake as shown in figure . On idle established connections, a
hart beat chunk is sent for maintaining the path manager.

Packet validation and path management handle every incoming SCTP
packet before they are handed over for further processing.

The path management is responsible to validate reachability between
the two endpoints. If a path goes down the path management must notify
the user.

8
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Figure 2.1: SCTP Overview
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Figure 2.2: SCTP packet Format
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Figure 2.3: SCTP Common Header Format
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Chunk Type Chunk Flag Chunk Length

Chunk Value
. . .

Figure 2.4: SCTP Chunk field Format
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ID Value Chunk Type
0 Payload Data (DATA)
1 Initiation (INIT)
2 Initiation Acknowledgement (INIT ACK)
3 Selective Acknowledgement (SACK)
4 Heartbeat Request (HEARTBEAT)
5 Heartbeat Acknowledgement (HEARTBEAT ACK)
6 Abort (ABORT)
7 Shutdown (SHUTDOWN)
8 Shutdown Acknowledgement (SHUTDOWN ACK)
9 Operation Error (ERROR)
10 State Cookie (COOKIE ECHO)
11 Cookie Acknowledgement (COOKIE ACK)
12 Reserved for Explicit Congestion Notification Echo (ECNE)
13 Reserved for Congestion Window Reduced (CWR)

Table 2.1: SCTP Chunk Types

When we want to send data from the application layer using SCTP, we
must use the returned identification number for the path we want to send
our data over. If we want to send our data over multiple paths to increase
the throughput, we simply stripe our data over multiple SCTP streams. If
we want a more resilient connection, we can use one stream as primary and
another as backup. For low latency we can send the same data across all
available SCTP streams and just use the one that is fastest.

Multi-Path Transmission Control Protocol (MPTCP)

In RFC6182 [16] and RFC6824 [17] MPTCP is specified as an extension
to regular/single-path TCP that supports multiple paths between two
endpoints see figure 2.5.

MPTCP partition it’s data-stream over multiple regular/single-path
TCP sub-flows. Each sub-flow has its own sequence number and
congestion control. The reason for partition it’s data over regular TCP is
that it is then supported at any middle-boxes such as NAT’s, proxies, and
firewalls. This was a problem with SCTP.

To acknowledge a successfully transmitted segment on a sub-flow, a
connection-level ACK is transmitted over the path with the lowest Round
Trip Time (RTT).

If a path then fails under transmission of a segment, the segment can
then be sent over a different sub-flow. When sender has no more data to
send, it signals the receiver with a DATA FIN package. When the MPTCP
receiver has successfully received all the data a DATA ACK package is sent
to the MPTCP sender. The DATA FIN and DATA ACK is very similar
to TCP FIN and TCP FIN/ACK, the difference is that it happens on the
connection level.

When initializing a MPTCP connection, it first starts off with a

10
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Figure 2.5: MPTCP architectural overview. A1, A2, B1, and B2 are
addresses on both end-hosts

single sub-flow where you signal the other endpoint that you want to
communicate over MPTCP. Then it is doing a three-way handshake like
its done with regular TCP. The difference here is that the SYN, SYN/ACK
and ACK segment in the handshake also carries a MP CAPABLE option. At
first it just verifies whether or not the other endpoint supports MPTCP. In
the MP CAPABLE option there is a key generated by the sender. This key is
used when adding or removing sub-flows after connection is established.
The MPTCP receiver then generate its own key and sends that back with
the senders key in the SYN ACK segment with the MP CAPABLE option
if it is capable of supporting MPTCP. If not it falls back to regular TCP.
When the sender receive the SYN ACK package, it will send back an ACK
segment to verify that the establishment is complete. When adding sub-
flows after the establishment, a regular TCP is sent with the option MP
JOIN. This is also a three way handshake like in regular TCP. If the MPTCP
sender is adding a new sub-flow it must first hash the MPTCP receivers
key we got earlier and put that in as a token in the MP JOIN option. With
the token the MPTCP receiver knows which MPTCP connection the new
sub-flow can be added to. The adding and removing of sub-flows is also
called the path management of MPTCP.

2.1.4 Application Layer

Overlay Network

As explained by Han and Jahanian in [19] an overlay network is a virtual
network built on top of another network. When construction an overlay
network we deploy a set of overlay nodes above the existing IP routing
infrastructure. The overlay nodes then builds a routing table between each
other. This forms the overlay network. The virtual path between two
overlay nodes can consist of multiple physical links if the nodes are multi-
homed. By probing the path taken between to overlay nodes, we can find
out if we have overlapping paths between host A and B. If we then want to
have a primary - backup model between these two host, we can make sure
that the primary path and the backup path are disjoint. This is also useful

11



if we want to stripe data over multiple paths and not congest a node that is
common in all the paths.

P2P with network coding

A Peer to Peer network is a decentralized network in which all participating
nodes act as both producer and consumer. The P2P network then forms an
Overlay Network as discussed in 2.1.4.

When we are transmitting a file in a P2P network, we usually divide the
file up in smaller blocks and gossip these blocks to a subset of the overlay
network. When a node receives a block it is doing the same thing as the
sender, namely forwarding the block to a random subset of the overlay
network. The drawback here is that a node can receive the same block
multiple times and this can be very inefficient. To optimize this we can use
network coding as done by Chiu et al. in [11].

With network coding, we code the incoming block with an already
received block and send that new coded block to a random subset of the
overlay network. If A possess block b1 and the coded block b1+b2 we can
solve for b2 using the received block b1 and the coded block b1+b2 with
Gaussian elimination.

If the file is large it can be useful to divide the file up in generations and
divide each generation up in blocks.

We can then only solve a block from a coded block within the same
generation. If we are not doing this for a large file there will be to many
coded blocks.

2.2 Improvements to TCP in relation to network re-
ordering

Since TCP performs poorly on paths that reorder packets, there is done
much research on ways to fix it. We have looked into two proposals to
address this issue.

2.2.1 Reorder Robust TCP (RR-TCP)

The RR-TCP algorithm as its proposed in [42] by Zhang et al. It is
an algorithm that aims to improve TCP’s robustness against network
reordering by extending the sender to detect and recover from false fast
retransmissions with the use of D-SACK information, and to protectively
prevent false fast retransmissions by adaptively varying dupthresh. Their
algorithm also limits the growth of the dupthresh to avoid unnecessary
timeouts.

2.2.2 TCP-NCR

The TCP-NCR algorithm as specified in RFC4653 [6] aims to improve the
robustness of TCP against Non-Congestion Events, hence the name.

12



The algorithm makes changes to the dupthresh variable to fast retrans-
mit / fast recovery algorithm, so that it noe depends on the current flight
size. The algorithm also decouples the initial congestion control decisions
from retransmission decisions which in some cases delays congestion con-
trol changes relative to TCP’s current behavior. The algorithm also pro-
vides two alternatives for extended limited transmit as listed below:

• Careful limited transmit reduces the send rate at approximately
the current TCP reduces its send rate. But at the same time, it
withholds a retransmission and a final congestion determination for
approximately one RTT.

• Aggressive limited transmit maintains the sending rate in the face
of duplicate ACKs until TCP concludes that the segment is lost,
and needs to be retransmitted. TCP-NCR will here delay the
retransmission by one RTT compared to TCP’s current behavior.

Upon termination of the limited transmit when an ACK advances the
cumulative ACK point and before loss recovery is triggered. This signals
the sender that the series of duplicate ACKs was in fact due to network
reordering and TCP-NCR now resets the congestion windows and slow
start threshold.

13
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Chapter 3

TCP

3.1 Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) specification is described in
RFC793 [32]. There is also many more RFCs which adds extensions and
bug-fixes, so we are using RFC4614 [13] which is a TCP road map to find
the correct RFC to study.

Because TCP is located in the transport layer in the Internet Protocol
Stack, it provides data transmission from a process on a source machine
to a process on a destination machine. There is mainly two protocols in
the transport layer, a connectionless protocol and a connection-oriented
one. TCP is a connection-oriented protocol, where as the User Datagram
Protocol (UDP) is a connectionless protocol. They both complement each
other.

Since TCP is connection-oriented, each connection has three phases:
establishment, data transfer and release. TCP uses a TCP header format
shown in figure 3.1 to exchange protocol data. We will now study TCP in
detail by studying each of these phases.

Fist we will look at the establishment phase in section 3.1.1 and then
the release phase in section 3.1.2. In the transfer phase, TCP provides three
additional services: Reliable transmission, flow control and congestion
control. So we will first look at how TCP can provide a reliable end-
to-end byte stream over an unreliable internetwork in section 3.1.3, the
flow control protocol for avoiding the source to send more data then the
destination can handle in section 3.1.4 and the congestion control protocols
for achieving high performance and avoid congestion collapse in section
3.1.5.

3.1.1 Connection Establishment

To allow many processes within a host to use TCP simultaneously, TCP
uses a set of addresses or port numbers within each host. Concentrated
with the network and host addresses from the IP layer, this forms a
socket. A pair of sockets uniquely identifies a connection. When we
are establishing a connection we are pairing the socket at each host. To
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Figure 3.1: TCP Header Format

reconstruct the byte-segments in the same order as they were sent out,
TCP uses a sequence number to identify each byte of data. Within
the connection establishment, the hosts needs to exchange the sequence
number that the data stream will start from. This sequence number is
randomly chosen by the host (client process) actively connecting to the
passively waiting host (server process).

The server process and client process can also exchange some optional
information during the connection establishment. This options can be:
maximum segment size (MSS), window scale, if the host is allowing
selective acknowledgement and a time-stamp. This is of course an optional
specification. If for example the MSS is not specified it defaults to 536-byte
payload.

To exchange this information between the server process and client
process, TCP uses a three-way handshake shown in figure 3.2. First
the client process sends a synchronize segment (SYN). Within this SYN
segment, the client process must set the sequence number field to a
randomly chosen value. It must mark the SYN bit and add any options
field and add the option field size to the data offset field. The client process
must also set the receiving port number in the destination field and a source
port number in the source field.

When the server receives the SYN segment, it first checks if there is
any process listening on that particular destination port number. If not,
the server will reply with a segment where the RST bit set to reject the
connection and set the destination port to the received source port and
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Figure 3.2: TCP three way handshake for initial synchronization

the source port to the received destination port. If there is some process
listening on that port, the process is given the incoming segment. The
server process can then choose to either reject or accept the connection. If
the server process accept the connection, it must send back a synchronize
acknowledgement segment (SYN-ACK) to the client process. In this SYN-
ACK segment, the server process must set the sequence number field to
another random value that it can use if it needs to send any data to the
client process. This makes the connection full-duplex since data can be
sent in both directions. Both the SYN and ACK bit must be marked, the
acknowledgement field must be set to one more then the sequence number
received from the client process SYN segment, it can add any optional fields
and set the optional filed size in the data offset field.

When the client receives the SYN-ACK segment from the server
process, it must send back an acknowledgement segment (ACK) to
the server process. In this ACK segment the client must set the
sequence number field to the received acknowledgement value, the
acknowledgement field must be set to one more then the received sequence
number value and only the ACK bit must be set. When the server process
receive the ACK segment the connection is considered established at both
ends.

3.1.2 Connection Termination

When we are releasing a TCP connection, which is a full duplex connection
as described in section 3.1.1, we need to release each simplex connection
independently. This makes it also possible to have a half open TCP
connection, where just one of the simplex connections is closed.

To release a connection, lets say host A wants to release a connection
to host B. A must send a segment with the FIN bit set, this means that A
has no more data to transmit to B. When B has acknowledged that segment
the connection is terminated in that direction. The data can still continue
to flow in the other direction. When both directions is terminated, the
connection is released.

As you can see in figure 3.3, we normally need to send four segments
to release a connection, one FIN and one ACK for each direction. There
is a way to do this in just three segments where we piggyback the second
FIN segment to the first ACK segment as shown in figure 3.4. The latter is
considered the most common method.
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Figure 3.3: TCP four way handshake for connection release

Host A Host B
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Figure 3.4: TCP three way handshake for connection release

3.1.3 Reliable Transmission

For TCP to provide a reliable end-to-end byte stream over an unreliable
internetwork, it must recover from damaged, lost, duplicated or out of
ordered segments.

To recover from damaged segments, the TCP sender adds a checksum
to each segment. The TCP receiver also makes a checksum of the segment
received and compare it with the received checksum. If they don’t match,
the segment is discarded.

To recover from lost segments, the TCP sender must retransmit any lost
segment. This is achieved by adding a time-out interval at the TCP sender.
If a positive acknowledgement segment is not received within this interval,
the segment is retransmitted.

The TCP receiver uses the sequence numbers to discard any duplicate
segments and to correctly order the segments that may be received out of
order.

3.1.4 Flow Control

Because TCP is using a sliding window protocol, it needs to enable the
TCP receiver to control the amount of data sent by the TCP sender. This is
achieved by making the TCP receiver advertise its acceptable window size
to the TCP sender. This is done at every ACK segment sent by the TCP
receiver. The acceptable window size is its acceptable sequence number
after the last segment successfully received. This will indicate how many
bytes the TCP sender can have in flight. In flight is transmitted bytes that
is not acknowledged.
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3.1.5 Congestion Control

The congestion control algorithms for TCP is an extension to TCP as
specified in RFC793 [32]. TCP congestion control was first specified in
RFC2581 [3], updated in RFC3390 [1] and obsoleted by RFC5681 [2]. These
algorithms makes TCP dynamically adjust its sliding window size so that
it doesn’t cause congestion in the network.

RFC5681 [2] specifies four intertwined congestion control protocols:
Slow-start, congestion avoidance, fast retransmit and fast recovery.

Slow-start and congestion avoidance adds two additional state values
to the TCP protocol, namely congestion window (cwnd) and slow start
threshold (ssthresh). The cwnd state value is the sender-side limit on the
amount bytes the sender can have in flight. The ssthresh state value is used
to determine if Slow-start or Congestion avoidance algorithm is used to
control the data transmission.

Fast retransmit and fast recovery algorithms is used to quickly detect
and repair loss by retransmitting the lost packet before the retransmission
time-out.

These four algorithms is discussed in more detail below.

Slow-start

To determine the available capacity in the network, TCP must slowly probe
the network at the beginning of the transmission or after loss is detected by
the retransmission time-out. The slow-start algorithm uses TCP ACKs as
a clock to probe new packets into the network. This is a self balancing
clock since the TCP receiver can’t generate TCP ACKs faster then packets
received. During slow-start the TCP senders cwnd is increased by at most
the senders maximum segment size (SMSS) every clock cycle as shown in
equation 3.1. This will double the TCP senders cwnd every round-trip-
time (RTT). It will continue to do so in this way until it reaches/exceeds
the ssthresh or when congestion is observed. The initial value of ssthresh
is set arbitrarily high and it is reduced in response to congestion as shown
in equation 3.2 where FlightSize is the amount of outstanding data in the
network.

cwnd = cwnd + SMSS (3.1)

ssthresh = max(FlightSize/2, 2× SMSS) (3.2)

Congestion Avoidance

During congestion avoidance the TCP senders cwnd is increased by at most
SMSS every RTT as shown in equation 3.3.

cwnd = cwnd + ((SMSS× SMSS)/cwnd) (3.3)
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Fast Retransmit

The fast retransmit is used to detect and repair loss based on the incoming
duplicate ACKs. It uses the arrival of three duplicate ACKs as an indication
that the TCP segment has been lost. It should then perform an early
retransmission (before the retransmission timer-out) and then let fast
recovery govern the transmission of new data until a non-duplicate ACK
has arrived. The reason for not let slow-start govern the transmission is
that the duplicate ACKs does not only indicate that a segment has been lost,
it may also indicate that the segment has been reordered due to different
routes with different delay in the network.

Fast Recovery

When TCP sender is entering fast recovery it must first set the ssthresh with
equation 3.2 which is the same equation used in slow-start. TCP sender
then reduces its cwnd to ssthresh plus three times the SMSS to artificially
inflate the cwnd with the number of segments buffered by the receiver as
shown in equation 3.4. For each additional duplicate ACK the cwnd is
increased by SMSS shown in equation 3.1.

cwnd = ssthresh + (3× SMSS) (3.4)

3.1.6 Selective Acknowledgement (SACK)

TCP as specified in RFC793 [32] only provides a cumulative acknowledge-
ment mechanism, and this may preform poorly when multiple packets are
lost or reordered in the network within a flight window. The selective ac-
knowledgement (SACK) mechanism provides improvements to this sce-
nario.

SACK is specified in RFC2018 [28] and the extension that enables TCP
to handle duplicate SACK (DSACK) is specified in RFC2883 [15].

SACK enables TCP receiver to inform TCP sender with all segments
that has been received successfully. This will prevent unnecessary
retransmits of segments which have already been received. In this way,
TCP sender only needs to retransmit the segments that has actually been
lost. Also when multiple packets are lost, and we are only using the
cumulative acknowledgement mechanism, TCP will generally lose the
ACK-based clock resulting in reduced overall throughput.

The SACK extension to TCP uses two TCP-options. First option is
the SACK-permitted which may be sent in the TCP SYN segment to
signal the counterpart that SACK option can be used once the connection
is established. This will ensure that SACK is permitted in one of the
flow directions, the data flowing in the reverse direction can be treated
independently. The other option is the SACK-option itself, which may
be sent over an established connection once permission has been given by
SACK-permitted.

When a TCP receiver is sending a duplicate ACK in response to
a lost or reordered packet in the network, a SACK option should be
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included if previously permitted. The SACK-option contains up to four
32 bit sequence number (three if time-stamp option is included, as it
usually is), whereas the first sequence number is telling the sender which
segment that was actually received. The next sequence numbers is a
history of previously SACKed segments that is still not ACKed by the
cumulative acknowledgement mechanism. This will ensure that non-
continues segments buffered by the receiver is reported in at lest three
successive SACK options. This will make it more robust to lost ACKs.

When the TCP sender receives an ACK including a SACK option, the
TCP sender will turn on the SACKed bits for segments that have been
selectively acknowledged. The TCP sender will then skip these segments
during any later retransmission. After a retransmission time-out, the TCP
sender should turn off all of the SACKed bits, since the time-out may
indicate that the TCP receiver has reneged. The TCP sender must also
retransmit the segment at the left edge of the window after a retransmission
time-out, whether or not that segment has been SACKed.

To enable the TCP receiver to accurately report the reception of
duplicate segments, the TCP receiver can include a duplicate-SACK
(DSACK) in the ACK segment sent to the TCP sender. If TCP sender
doesn’t understand DSACKs, the TCP sender will simply discard the
DSACK block and continue to process the other SACK blocks as it normally
would. Because of this, the use of DSACK doesn’t require a separate
negotiation between the TCP sender and receiver. When DSACK is used,
the first block of the SACK option should be the DSACK block. For
the TCP sender to check if the first DSACK block of an ACK segment
is acknowledging a duplicate segment, it should compare the first SACK
block to the cumulative ACK in the same ACK segment. If the SACK
space is less then the cumulative ACK, it is an indication that the segment
identified by the first SACK block has been received more than once by
the TCP receiver. If the SACK space is greater then the cumulative ACK,
then the TCP sender compares the first SACK space with the second SACK
space if there is one. If they are equal, the first SACK block is reporting a
duplicate segment over the cumulative ACK.

3.1.7 Forward Acknowledgement (FACK)

The forward acknowledgement algorithm (FACK) as described by Mathis
and Mahdavi in [27] is an algorithm that improves the TCP congestion
control during recovery by keeping an accurate estimate of the amount
of data outstanding in the network. With this accurate estimate FACK
attempts to preserve TCP’s self-clock and reduce the overall burstiness.
FACK uses the additional information obtained by the TCP SACK option
(see 3.1.6) to measure the outstanding data in the network. Opposed to
TCP Reno and TCP Reno + SACK which both attempts to estimate this by
assuming that each duplicate ACK received represents one segment that
has left the network.

The FACK algorithm adds two new TCP state variables: snd. f ack and
retrans_data. The snd. f ack is updated to reflect the forward-most segment
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held by the TCP receiver (hence the name forward acknowledgement).
By forward-most we mean the correctly received segment with the
highest sequence number. The retrans_data is the quantity of outstanding
retransmitted segments in the network.

In non-recovery states, the snd. f ack variable is updated with the use
of the cumulative ACK sent by the TCP receiver. The snd. f ack will then
be the same as the snd.una variable (Send unacknowledged) which is the
first unacknowledged segment sent by the TCP sender. During recovery
the TCP sender continue to update snd.una variable with the use of the
cumulative ACK from the TCP receiver, but it utilizes the information
contained in the TCP SACK options to update the snd. f ack variable.

In [27] awnd is defined to be the TCP senders estimate of the actual
quantity of data outstanding in the network. In a non-recovery state the
computation of awnd is shown in equation 3.5. If we are in recovery,
retransmitted segments must also be included in the computation of awnd
as shown in equation 3.6. Using this estimate of outstanding data, the
FACK algorithm can regulate the amount of outstanding data in the
network to be within one MSS of the current cwnd.

awnd = snd.nxt− snd.sack (3.5)

awnd = snd.nxt− snd.sack + retrans_data (3.6)

FACK derives its robustness from the simplicity of updating its state
variables. If TCP sender is retransmitting old data, the retrans_data
variable is increased. If TCP sender is sending new data, TCP sender
advances the snd.nxt variable. If the TCP sender receives an ACK from
the TCP receiver it will either decrease retrans_data or advance snd. f ack. If
the TCP sender receives an ACK which advances snd. f ack beyond snd.nxt
and we have a unaccounted retransmitted segment, the TCP sender knows
that the segment which has been retransmitted has been lost.

3.1.8 TCP Timers

TCP uses timers to detect inactivity on remote nodes. When the local node
is waiting for a response or action from the remote node, TCP will set a time
out where to recover in case the response or action is not received. There
are seven different timers in TCP in total, and we will briefly described
their usage in this section:

Connection Establishment Timer

This timer is set when transmitting the initial SYN segment. If no response
is received before the timer runs out, the connection is aborted.

Retransmission timer

This timer is set when transmitting a segment. If no acknowledgement is
received for that segment before the timer runs out, TCP will retransmit the
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segment and enter loss recovery. To calculate the Retransmission TimeOut
(RTO) described in RFC6298 [31], TCP uses the Round Trip Time (RTT)
measurement which is measured with the use of a TCP timestamp option
described in RFC7323 [7]. Due to the variation of the RTT measurements,
RTT measurements are not used directly to calculate RTO, instead the TCP
sender maintains two new state variables: Smoothed Round Trip Time
(SRTT) and Round Trip Time Variation (RTTVAR). SRTT is an estimation
of RTT and RTTVAR is the variance of RTT. Initially RTO is set to 3
seconds, or more then 1 second. When the first RTT measurement arrives,
SRTT is set to this value and RTTVAR to be half this measured value. For
subsequence RTT measurements RTTVAR, SRTT and RTO is calculated
as follows in equation 3.7, 3.8 and 3.9 and exclusively in that order. In
equation 3.9 G is the clock granularity of seconds and K is the constant
value of 4.

RTTVAR =
3
4
× RTTVAR +

1
4
× |SRTT − RTT| (3.7)

SRTT =
7
8
× SRTT +

1
8
× RTT (3.8)

RTO = SRTT + max(G, K× RTTVAR) (3.9)

RFC6298 [31] states that TCP must use Kern’s algorithm [24] for taking
RTT samples. This means that we can’t take samples from retransmitted
and reordered segments. However it also says that this is not true if we
are using the TCP timestamp option [7], since it removes the uncertainty of
which segment that triggered the acknowledgement.

RFC6298 [31] also states that if the timer runs out and we need to
retransmit a segment, we must also do a exponential timer back-off. A
maximum value of 60 seconds may be used to provide a upper bound to
the doubling operation: RTO = (RTO× 2 < 60sec)RTO× 2 : 60sec.

Delayed ACK Timer

Delayed ACKs makes it possible for the TCP receiver to bundle together
ACKs back to the TCP sender to fill up the segments to MSS with ACKs.
The TCP receiver can also piggyback ACKs if data is also flowing from TCP
receiver to TCP sender. Delayed ACKs will reduce the amount of segments
sent from the TCP receiver to the TCP sender, but it will also introduce
additional delay. Therefore the TCP sender needs to have a delayed ACK
timer which adds additional duration to the retransmission timer, the delay
must not exceed 500ms as specified in RFC1122 [8].

Persist Timer

This timer is set when the remote node is advertising a window size of
zero. If the timer times out, the local TCP needs to probe the remote node
to check if the window size is still zero; if it is, the persist timer is restarted.
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Keep-alive Timer

With the keep-alive timer, the TCP sender can set a threshold to the
amount of time with inactivity it would allow before it determines that the
connection has expired. If set set by the user that the connection is going to
remain open, a special segment is sent when the timer runs out to keep it
open.

FIN WAIT 2 Timer

This timer is set when TCP is in the FIN-WAIT-2 state where both endpoints
is waiting for a FIN segment. If a FIN segments is not received before the
timer runs out, the connection is dropped.

TIME WAIT Timer

This timer is set when TCP enters the TIME-WAIT state, and it will expire
after twice the Maximum Segment Lifetime (MSL). When the timer runs
out, the connection is released and state variables deleted. The reason for
this timer is to occupy the connection pair so that no late segments can be
received if the connection pair is reused after the connection is released.

3.1.9 Forward Retransmission TimeOut (F-RTO)

F-RTO as specified in RFC5682 [35], is an algorithm for detecting spurious
retransmission timeouts. The F-RTO algorithm only affect TCP sender
during RTO. It uses timestamps and/or D-SACKs to detect spurious
retransmissions.

When the retrasmission timer expires it first retransmits the unacknowl-
edged segment followed by a new unsent segments if there is more data to
send. It then monitors the next incoming ACK to detect if the retransmis-
sion was spurious.

If so, RFC5682 [35] doen’t specify actions to be taken in this situation,
but there is a dicussion in which a TCP sender should not countinue
retransmitting segment based on the timeout which is proved spurious.
It should revert back to the previous phase before the timeout.

If not, normal RTO should be applid. This sets the cwnd to 3 * MSS and
countiue with slow-start.

3.1.10 Different Flavours Of TCP Congestion Control

There is a lot of different flavours of TCP congestion control out there.
Some of which are loss based, in the meaning that they relay on loss
detection for estimating the congestion in the network. TCP Reno [38], TCP
NewReno [20] and TCP CUBIC [18] are all loss based congestion control
mechanism which we are going to cover later in this section. There are also
other congestion control such as TCP Westwood [10] which relay end-to-
end bandwidth estimation when setting cwnd and ssthresh after congestion
is detected, and TCP Vegas [9] which is a delayed based congestion control
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mechanism. The latter mechanisms and all the other congestion control
mechanisms which is not already mentioned will not be covered.

TCP Reno

TCP Reno is the first congestion control mechanism which incorporates all
the algorithms discussed in section 3.1.5 and first specified in RFC2001 [38].
It derives its name from the operating system that the algorithm first
appeared, namely 4.3BSD Reno release.

TCP NewReno

TCP NewReno as specified in RFC6582 [20] is an improvement to TCP
Reno’s fast recovery algorithm and it derives its name from TCP Reno
because of this. The improvement resides in the fact that TCP Reno in
the absence of the SACK option performs poorly when multiple segments
are lost within the same flight window, and will often result in a time-out.
However TCP NewReno’s improvement is its ability to respond to what
we call a partial acknowledgement. In cases where a segment or multiple
segments has been lost within the same flight window, the first information
available to the TCP sender is the ACK received from the segment that has
been retransmitted during fast retransmit. If there is only one segment that
has been lost and there isn’t any reordering, this ACK will acknowledge all
segments transmitted before fast retransmit was entered. However, if there
are multiple segments lost this ACK will only acknowledge the segments
up to the next hole in the sequence space of the current flight window. The
latter is called a partial acknowledgement.

If TCP NewReno receives a partial acknowledgement during fast
recovery, the first unacknowledged segment is retransmitted and the cwnd
is deflated with the amount of new data acknowledged by the cumulative
ACK field. If the partial ACK acknowledges at least one SMSS of new
data, it will artificially inflate the cwnd with SMSS to reflect the additional
segment that has left the network. To attempt to end fast recovery with
ssthresh amount of data in flight, a segment is sent if permitted by the new
value of cwnd to partly deflate the window. The retransmission timer is
also restarted when the first partial ACK arrives.

TCP CUBIC

TCP CUBIC was first presented by Ha, Rhee, and Xu in [18] and is a
congestion control mechanism which aims to improve the TCP-friendliness
and RTT-fairness. It does this by changing the window growth function to
a cubic function of time since the last congestion event, which makes it RTT
independent and therefore allows more fairness between flows.

• TCP-friendliness: as defined by Floyd and Fall in [14], a flow is TCP-
friendly if its arrival rate does not exceed the arrival of a conferment
TCP connection in the same circumstances.
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• RTT-fairness: as defined by Miras, Bateman, and Bhatti in [29],
evaluates the fairness of TCP flows which shares the same bottleneck
but traverse network paths with different RTT.

3.2 Linux TCP

The part of the Linux kernel which implements the TCP/IP stack is called
the TCP engine. The main part of the TCP engine code is located in various
files listed below with a brief description their content. In we will talk
about how packets are stored in the TCP engine and in how the TCP output
engine work.

• tcp.c
This file contains code for the TCP connection procedures and an
entry point for data coming from user space.

• tcp_output.c
This file contains code for handling outgoing packets.

• tcp_input.c
This file contains code for handling incoming packets, and to handle
events triggered by ACKs.

• tcp_cong.c
This file contains a pluggable TCP congestion control, allowing it to
switch between congestion control algorithms. It also contains the
code for TCP NewReno congestion control.

• tcp_<*>.c
<*> is replaced with: bic, cubic, highspeed, htcp, hybla, illinois,
scalable, vegas, veno, westwood or yeah. These files contains
alternative congestion control algorithms.

3.2.1 The Socket Buffer (SKB)

The socket buffer (SKB) defined as struct sk_buff is the most fundamen-
tal data structure in Linux networking code. All packets sent or received is
handled using this data structure.

SKB contains a next, prev and list pointer as well as all the necessary
information to build the packets.

next and prev pointer is used to implement the list handling. list
points to the head of the list the SKB is in, which is of type SKB head
structure.

SKB head defined as struct sk_buff_head is not contained any
information to build a packet, since its purpose is to contain only list
information. next and prev is members of SKB head like in SKB, but it
also contains a qlen variable which is the amount of SKBs in the list, and a
lock variable which is used to ensure mutual exclusion.
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3.2.2 TCP Output Engine

The TCP output engine is responsible to store outgoing data for each TCP
socket in SKBs which forms a doubly linked list called TCP output queue.

As we can see in figure 3.5 TCP socket has two members used in
TCP output engine: sk_write_queue and sk_send_head. All pending
outgoing SKBs is stored in sk_write_queue which is of type SKB header.
sk_send_head points to the next SKB in the sk_write_queue not sent.
When an ACK arrives from the receiver and more send window space
becomes available, we walk sk_write_queue from sk_send_head towards
sk_write_queue head. When sk_send_head points to NULL, it means that
all SKBs in sk_write_queue has been sent once. Note that retransmitting
SKBs isn’t handled here.

TCP socket

sk_send_headsk_write_queue

SKB SKB

SKB

Head Tail

Figure 3.5: TCP output queue

In figure 3.6 we can see the call
graph of TCP output engine where all
paths lead to tcp_transmit_skb(), hand-
ing over the SKB to the network layer.
tcp_sendmsg and tcp_sendpage() gather
up data from user space or the page
cache into SKB packets which is then
stacked onto sk_write_queue. They
then invoke either tcp_write_xmit() or
tcp_push_one() to try to output the data.

When an ACK arrives, the TCP input
engine calls tcp_data_send_check() to see
if we have any data left in sk_write_queue.
If so, tcp_write_xmit() is invoked to try
to output the data.

When TCP is going to retransmit
data in response to either RTO or fast
retransmit, tcp_retransmit_skb is in-
voked which passes the SKB to tcp_transmit_skb.

When the receivers sends back an ACK packet covering the sequence
space of one or more SKBs in sk_write_queue, this allows TCP to unlink
and free the SKBs in the sk_write_queue using kfree_skb().

3.2.3 TCP Input Engine

The TCP input engine is responsible to store and process inbound data for
each TCP socket before it is delivered to user space in the order it was sent
out by TCP sender. In figure 3.7 we can see the call graph of TCP input
engine where all paths either lead to data delivered to user space, an ACK
back to TCP sender or both. All the main function in the TCP input engine
is briefly described in the following list:

• tcp_v4_rcv() retrieves a TCP socket from the TCP socket hash table
with the address and port number from the SKB received from
network layer as key. The incoming SKB is discarded if it fails the
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Figure 3.6: TCP output engine

following: retrieve the TCP socket, Time-To-Live (TTL) test, policy
filter, socket filter, CRC check in time wait processing or if it fails
to add a SKB to the backlog queue. If the TCP socket state is in
TIME_WAIT time wait processing is performed. If the TCP socket is
owned by the user, it first tries to add the SKB to prequeue. If this
fails, the SKB is handed over to tcp_v4_do_rcv(). If the TCP socket
is not owned by the user, it tries to add the SKB to the backlog queue.

• tcp_v4_do_rcv() checks the TCP socket state and handing the SKB
over to either tcp_v4_established() if the TCP socket state is in
ESTABLISHED or tcp_rcv_state_process() for all other states.

• tcp_rcv_established() is divided into two processing paths: fast
and slow path. Slow path processes the incoming packets as defined
in RFC793 [32] whereas fast path is a TCP optimization which skips
unnecessary packet handling when deep packet inspection is not
needed. By default fast path is disabled, before fast path can be
enabled, four criteria listed below must be met:

1. The out of order queue must be empty.

2. Receive window cannot be zero.

3. Memory must be available

4. An urgent pointer has not been received.
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Even after the fast path has been enabled, TCP segments must be
verified before they are accepted to be treated in fast path. If a TCP
segment does not pass verification, it is processed in the slow path.

To verify the TCP segments, a technique known as header prediction
is used. Header prediction compares certain bits in the incoming
TCP segment header, to ensure that there is no spacial condition
requiring additional processing. The header flags is compared
against prediction flags (pred_flags), header seq against rcv_nxt,
header ack_seq against snd_nxt. So to disable fast path, TCP only
needs to zero out the pred_flags causing header prediction to always
fail.

Fast path first tries to deliver the data segments received directly to
user space, if this fails the SKB is handed over to tcp_queue_rcv()
before scheduling an ACK for the received data, processing the
received ACK and finally check if the is data to be sent by calling
tcp_data_snd_check().

Slow path first validates the incoming segment by calling
tcp_validate_incoming(), which checks the following: PAWS (de-
fined in RFC1323 [22]), sequence number, RST bit and SYN bit.
checking of RST bit and SYN bit applies improvements defined
in RFC5961 [34]. If the validation is passed, the received ACK
and urgent pointer is processed before handing the SKB over to
tcp_data_queue().

If somehow the TCP header has an incorrect size or validation of the
TCP segment fails in slow path, the TCP segment is discarded.

Both fast and slow path makes RTT measurements with and without
time stamp option and storing of recent time stamps used by PAWS
when TCP segments are in sequence.

• tcp_rcv_state_process() implements all the receiving procedures
defined in RFC793 [32] for all states except ESTABLISHED which is
implemented in tcp_rcv_established() and TIME_WAIT which is
implemented in tcp_v4_rcv().

• tcp_queue_rcv() first tries to merge the incoming SKB with the
previous SKB. This will reduce the overall memory use and queue
length. If the merge was successful, the function will return back that
the SKB was eaten, otherwise the SKB is added to the receive queue.

• tcp_data_queue() first checks if the incoming TCP segment has any
data to be processed. If not, the SKB is dropped. Then the ECN flag
is processed before checking if the TCP segment is in sequence.

If the TCP segment is in sequence, it first checks if there is more
space in the receive window. If not, an immediate ACK is scheduled
and the SKB is dropped. Otherwise, it first tries to deliver the TCP
segment data to user space. If this fails, it tries to add the SKB to the
receive queue after it has called tcp_try_rmem_schedule() to check
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if more memory has to be allocated to the socket memory pool before
queuing the SKB. If this fails, it tries to squeeze out some memory
by pruning the receive and out of order queue. If this also fails, the
SKB is dropped. Otherwise, if the data segment has been delivered
to user space or the SKB has been queued, an ACK is scheduled for
the received data. Next the FIN flag is checked, if set the socket
state is moved to TCP_CLOSE_WAIT, delayed ACK is disabled, all the
SKBs in the out of order queue is then dropped and SACK is reset
if enabled. Next it checks if the out of order queue is empty, if not
tcp_ofo_queue() is called, which checks if there is data in the out of
order queue which can be added to the receive queue, a DSACK is
generated in cases where new segments cover partially of fully any
segment in the out of order queue. It then checks if the out of order
queue is empty again. If it is empty all the gaps in the queue has
been filled and this results in an immediate ACK. Since RCV.NXT now
advances, some SACKs are now eaten by calling tcp_sack_remove().
It then checks if fast path is now possible and setting the prediction
flag if so.

If the TCP segment is out of sequence, it first checks if the incoming
TCP segment is a retransmission by checking if the end sequence
is less then what we expect to receive. In this case, it generates a
DSACK by calling tcp_dsack_set, scheduling an immediate ACK
and dropping the SKB. Otherwise, it checks if the TCP segment
is a zero window probe which will result in an immediate ACK
before dropping the SKB. It will then enter quick ACK mode, which
disables delayed ACK. Next it checks if this is a partial segment
which generates a DSACK for the overlapping segment. It also checks
if there is no more space in the receive window, resulting in an
immediate ACK and dropping the SKB. Otherwise, it will try to add
the SKB to the out of order queue after tcp_try_rmem_schedule()
is called. If tcp_try_rmem_schedule() fails, the SKB is dropped.
Otherwise, header prediction is disabled and the SKB is merged or
added to the out of order queue. If this is the very first segment going
into the out of order queue, SACK is also initialized with the first
SACK block. If not, it needs to find the proper position in the queue
depending on the sequence space of the incoming segment. Then it
needs to either expand the existing SACK block or create a new one. It
is only possible to expand the existing one if the following conditions
are met:

1. The new segment is in sequence with the last segment in the out
of order queue.

2. The number of SACKs must be greater than zero.

3. The last segment in the out of order queue must be the latest one
to arrive.

If any of the above condition are FALSE, a new SACK block is created.
If the new segment partly overlaps or is completely covered by some
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Figure 3.7: TCP input engine

of the segments in the out of order queue, a DSACK is created.

When the user tries to read data from the TCP socket, it calls
tcp_recvmsg. This will process the queues in the following order:

1. receive queue

2. prequeue will be waited.

3. backlog queue is copied to receive queue when the process is ready
to release the socket.

This will ensure that the data is copied to user space in the same order
as it was sent out.
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Chapter 4

Robustness Against Network
Reordering In Linux TCP

The fast retransmit and fast recovery algorithms makes TCP perform
poorly when there is a significant amount of reordering in the network.
The reason for this is that fast retransmit will mark segments as lost after
three successive dupACKs. If we then have segments with a reordering
length longer three segments, TCP will misinterpret out-of-order segments
as loss. This will result in a false fast retransmit, and repeated false fast
retransmit will limit the senders snd_cwnd which will result in a severely
degraded overall throughput.

In Linux TCP however, there is two mechanisms to address this
problem, a proactive and recovery mechanism for false fast retransmit.

In section 4.1 we will look into how Linux TCP protectively prevents
false fast retransmit, in section 4.2 we will look into how Linux TCP
recovers from false fast retransmit and in section 4.3 we will look into how
Linux TCP responded to SACKs during a test where we aggregated two
links with different delays.

4.1 Proactively Prevent False Fast Retransmit

Linux TCP is preventing false fast retransmits proactively by introducing
three new state variables shown in table 4.1.

To adaptively adjust its duplicate ACK threshold (dupthresh) to fast
retransmit when network reordering is detected, Linux TCP has replaced
the dupthresh variable which was the static number 3 to fast retransmit
with the reordering variable.

The reordering variable is a heuristic of the maximum reordering
length detected. It grows from tcp_reordering to tcp_max_reordering.
Both tcp_reordering and tcp_max_reordering can be adjusted with the
sysctl tool, but their default values is 3 and 300.

To detect network reordering, Linux TCP uses either the SACK-option
if permitted or emulate SACKs for SACK-less connections.

When emulating SACKs, Linux TCP can only guess the reordering
length based on dupACKs expected compared to dupACKs received. If it
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Variable Description
reordering Maximum reordering length heuristics
tcp_reordering The min value of reordering. The default

value is 3. It can be changed with sysctl
tcp_max_reordering The maximum value that reordering can grow

to. The default value is 300. It can be changed
with sysctl

sacked_out The amount of SACKed segments not cumula-
tively ACKed

fackets_out The amount of segments between forward
most SACKed and the highest cumulatively
ACKed segment

retrans_out The amount of segments retransmitted and not
acknowledged

Table 4.1: Variables used in Linux TCP to make it reordering robust

received more dupACKs than expected, it counts this as reordering. With
SACKs, Linux TCP can accurately calculate the reordering length based on
the amount of segments between the forward most SACKed segment and
the lowest SACKed or ACKed segment.

In section 4.1.1 we will explain how Linux TCP sender detects and
calculates the reordering length and in section 4.1.2 we go into some issues
related to the increased dupthreah and the FACK algorithm when we have
network reordering.

4.1.1 Reordering Length

On SACK-less connections, Linux TCP sender can only estimate the
reordering length based on dupACKs expected compared to dupACKs
received. If it receives more dupACKs than expected, it counts this as
reordering. The reordering length is than updated with the amount of
outstanding packets + packets newly acknowledged.

On SACK permitted connections, Linux TCP sender find the re-
ordering length based on the amount of segments between the for-
ward most SACKed and the lowest SACKed or ACKed segment.
As shown in figure 4.1, the reordering length is updated both from
tcp_sacktag_write_queue and tcp_clean_rtx_queue.

• tcp_sacktag_write_queue is where SACKs is processed. From
this function, the reordering length is updated with the amount
of segments between the forward most SACKed and the lowest
SACKed segment.

• tcp_clean_rtx_queue is where the retransmission queue is cleaned
after we have received an ACK. From this function, the reordering
length is updated with the amount of segments between the forward
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Figure 4.1: Simplified call-graph for updating reordering length in Linux
TCP sender for SACK permitted connections.

most SACKed, and the first cleaned segment not SACKed (first
previous hole).

4.1.2 Known Issues

When we have an increased dupthresh variable, it makes the TCP sender
respond more slowly to packet loss. Thats why Linux TCP resets
reordering variable back to tcp_reordering during a RTO, since the
reordering length may have been overestimated at this point.

When it comes to the FACK algorithm, the algorithm only works if there
isn’t any network reordering. For that reason, Linux TCP disables FACK
when reordering is detected: reordering > tcp_reordering.
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4.2 Recover From False Fast Retransmit

To recover from false fast retransmit, Linux TCP uses DSACK as a
mechanism to detect spurious retransmission during fast retransmit. If
a spurious retransmission is proven, TCP tries to undo the congetion
reduction by reverting back to the old snd_cwnd logged before entering fast
retransmit.

4.3 An Example Of How Linux TCP Updates Its
Reordering Length Heuristics

To enable us to see how Linux TCP updates its reordering length heuristics
in practice, we needed to look into how the TCP sender processed SACKs
received.

To achieve this, we needed to run an experiment on a practical testbed
as explained later in chapter 5, where we have introduced network
reordering caused by aggregating traffic over two network paths from one
TCP connection in a round-robin fashion. The two paths differs in network
delay with a magnitude of 10 which will cause packets to naturally be
reordered since half of them are delayed with this magnitude.

Table 4.2 shows us which segments are marked ACKed or SACKed
and also retransmitted in the TCP senders retransmission queue. Table 4.3
shows us some important state variable related to how TCP sender updates
its reordering length heuristics after each ACK segment is received.

As we can see in table 4.2 from ACK segment 1 to 5, we are receiving
dupACKs with SACK as expected. But as shown in table 4.3, the reordering
length isn’t updating from the default value of 3 until we are getting a
cumulative ACK in segment 6, which gives us reordering length of 8.

So why isn’t the reordering length updated when the TCP sender
receives segment 3-5? At segment 3 the reordering length could have
been updated to 4 and at segment 4 the reordering length could have been
updated to 5.

The reason behind this behavior is that the TCP sender had seg-
ments retransmitted and not accounted for while receiving ACK seg-
ment: 2, 3, 4, 5 and 6. This caused it to not update its reordering
length in tcp_sacktag_write_queue. We will walk through the source
code related to reordering for tcp_sacktag_write_queue in section sub-
sec:tcpsacktagwritequeue

In tcp_clean_rtx_queue it didn’t update its reordering length for ACK
segment 1-5 since it doesn’t clean any segments after receiving these
ACK segments. After ACK segment 6 however, tcp_clean_rtx_queue is
cleaning one segment of the retransmission queue causing it to update its
reordering length to 8. We will walk through the source code related to
reordering for tcp_clean_rtx_queue in section 4.3.2.
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Seg # ACK SACK Segments
1 1 3-4 1 2 3 4 5 6 7 8 9 10 11 12
2 1 3-5 1 2 3 4 5 6 7 8 9 10 11 12
3 1 7-8, 3-5 1 2 3 4 5 6 7 8 9 10 11 12
4 1 7-9, 3-5 1 2 3 4 5 6 7 8 9 10 11 12
5 1 7-9, 3-5 1 2 3 4 5 6 7 8 9 10 11 12
6 2 7-9, 3-5 1 2 3 4 5 6 7 8 9 10 11 12
7 5 7-9 1 2 3 4 5 6 7 8 9 10 11 12
8 6 7-9 1 2 3 4 5 6 7 8 9 10 11 12
9 9 1 2 3 4 5 6 7 8 9 10 11 12
10 9 11-12 1 2 3 4 5 6 7 8 9 10 11 12
11 9 11-13 1 2 3 4 5 6 7 8 9 10 11 12
12 9 2-3, 11-13 1 2 3 4 5 6 7 8 9 10 11 12
13 10 11-13 1 2 3 4 5 6 7 8 9 10 11 12
14 13 1 2 3 4 5 6 7 8 9 10 11 12

Table 4.2: Marking of retransmission queue in Linux TCP sender, where
green is segments cumulatively ACKed, gray is segments SACKed and red
is segments marked retransmitted.

Seg # sacked_out fackets_out retrans_out reordering
1 1 3 0 3
2 2 4 1 3
3 3 7 2 3
4 4 8 2 3
5 4 8 2 3
6 4 7 1 8
7 2 4 0 8
8 2 3 0 8
9 0 0 0 8
10 1 3 0 8
11 2 4 0 8
12 2 4 0 8
13 2 3 0 8
14 0 0 0 8

Table 4.3: State variables in Linux TCP sender
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4.3.1 tcp_sacktag_write_queue

Looking at the source code for tcp_sacktag_write_queue in listing 4.1, we
can see that the state.reord variable is initially set to packets out at line 4.

The state.reord variable represents the lowest newly SACKed seg-
ment not retransmitted or newly DSACKed segment previously SACKed
if ever retransmitted.

Looking at line 6, we can see that state.reord needs to be less
than the packet count for the forward most SACKed segment and we
cannot be in loss state or the undo maker has to be set before the
tcp_update_reordering is called at line 8. As input for the reordering
length metric to tcp_update_reordering, we can see that the packet count
for the forward most SACKed segment minus the packet count for the
lowest SACKed segment (tp->fackets_out - state.reord) is used.

Listing 4.1: Linux kernel v4.0 source code

1 static int tcp_sacktag_write_queue(struct sock *sk , const
struct sk_buff *ack_skb , u32 prior_snd_una , long *

sack_rtt_us)
2 {
3 ....
4 state.reord = tp->packets_out;
5 ....
6 if ((state.reord < tp->fackets_out) && (( inet_csk(sk)->

icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
7 tcp_update_reordering(sk, tp ->fackets_out

- state.reord , 0);
8 ....
9 return state.flag;

10 }

To find the packet count for the lowest newly SACKed or DSACKed
segment, we need to look at the source code for tcp_sacktag_one. As
shown in figure 4.2, tcp_sacktag_one is called from different helper
functions used by tcp_sacktag_write_queue.

As shown in listing 4.2 at line 8 and 19, we can see that state->reord
is set to min(fack_count, state->reord) where fack_count is the packet
count where the SACKed or DSACKed segment is in the retransmission
queue.

As we can see from line 5-8, line 8 is only executed when we have
received a DSACK for a segment previously been marked retransmitted
and also marked SACKed.

If we then look at line 10-19, line 19 is only executed when the segment
is not previously been SACKed and not ever retransmitted. The start
sequence must also be before the forward most SACKed segment’s start
sequence.

38



Listing 4.2: Linux kernel v4.0 source code

1 static u8 tcp_sacktag_one(struct sock *sk,struct
tcp_sacktag_state *state , u8 sacked , u32 start_seq ,
u32 end_seq , int dup_sack , int pcount , const struct
skb_mstamp *xmit_time)

2 {
3 ....
4 /* Account D-SACK for retransmitted packet. */
5 if (dup_sack && (sacked & TCPCB_RETRANS)) {
6 ....
7 if (sacked & TCPCB_SACKED_ACKED)
8 state ->reord = min(fack_count , state ->

reord);
9 }

10 if (!( sacked & TCPCB_SACKED_ACKED)) {
11 if (sacked & TCPCB_SACKED_RETRANS) {
12 ....
13 } else {
14 if (!( sacked & TCPCB_RETRANS)) {
15 /* New sack for not retransmitted frame ,
16 * which was in hole. It is reordering.
17 */
18 if (before(start_seq ,tcp_highest_sack_seq

(tp)))
19 state ->reord =min(fack_count ,

state ->reord);
20 ....
21 }
22 ....
23 }
24 ....
25 }
26 ....
27 return sacked;
28 }
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Figure 4.2: Call-graph to tcp_sacktag_one
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4.3.2 tcp_clean_rtx_queue

Looking at the source code for tcp_clean_rtx_queue in listing 4.3, we can
see that the reord variable is initially set to packets out at line 5 and packets
ACKed is also set to zero at line 7 since we haven’t cleaned any segments
of the retransmission queue yet. We than enter the while loop at line 9. The
while loop is iterating through the retransmission queue and will break at
line 17 or 18 if we have no more segments to be cleaned or it will break at
line 38 if we partially cleaned a segment.

If the segment in the retransmission queue has not been marked
retransmitted and also not marked SACKed, the reord variable is set to
min(pkts_acked, reord) at line 32. pkts_acked is then incremented at line
37 with the packet count which was cleaned.

After we have exited the while loop, tcp_update_reordering is
called at line 48 if reord is less than the packet count for the forward
most SACKed segment prior to entering tcp_clean_rtx_queue and the
reordering metric passed as an argument to this function in set to the packet
count for the forward most SACKed segment minus reord.

When segment 6 was received in the previous experiment we talked
about in section 4.3, the reord variable was set to zero in the first iteration
of the while loop since pkts_acked was zero and incremented later at line
37. This resulted in a reordering length of 8 since tp->fackets_out is decre-
mented later at line 51. Also the retransmission flag was removed prior to
entering tcp_clean_rtx_queue from the function tcp_mark_lost_retrans
which is called from tcp_sacktag_write_queue which was called since
segment 6 included some SACKs.

Listing 4.3: Linux kernel v4.0 source code

1 static int tcp_clean_rtx_queue(struct sock *sk, int
prior_fackets , u32 prior_snd_una , long sack_rtt_us)

2 {
3 ....
4 u32 prior_sacked = tp ->sacked_out;
5 u32 reord = tp ->packets_out;
6 bool fully_acked = true;
7 ....
8 u32 pkts_acked = 0;
9 ....

10 while ((skb = tcp_write_queue_head(sk)) && skb !=
tcp_send_head(sk)) {

11 ....
12 u32 acked_pcount;
13 tcp_ack_tstamp(sk , skb , prior_snd_una);
14
15 /* Determine how many packets and what bytes were

acked , tso and else */
16 if (after(scb ->end_seq , tp->snd_una)) {
17 if (tcp_skb_pcount(skb) == 1 || !after(tp

->snd_una , scb ->seq)) break;
18 acked_pcount = tcp_tso_acked(sk, skb);
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19 if (! acked_pcount) break;
20 fully_acked = false;
21 } else {
22 /* Speedup tcp_unlink_write_queue () and

next loop */
23 prefetchw(skb ->next);
24 acked_pcount = tcp_skb_pcount(skb);
25 }
26
27 if (unlikely(sacked & TCPCB_RETRANS)) {
28 ....
29 } else {
30 ....
31 if (!( sacked & TCPCB_SACKED_ACKED)) {
32 reord = min(pkts_acked , reord);
33 ....
34 }
35 }
36 ....
37 pkts_acked += acked_pcount;
38 ....
39 if (! fully_acked) break;
40 ....
41 }
42 ....
43 if (tcp_is_reno(tp)) {
44 tcp_remove_reno_sacks(sk, pkts_acked);
45 } else {
46 ....
47 /* Non -retransmitted hole got filled? That’s

reordering */
48 if (reord < prior_fackets) tcp_update_reordering(

sk, tp ->fackets_out - reord , 0);
49 ....
50 }
51 tp ->fackets_out -= min(pkts_acked , tp->fackets_out);
52 ....
53 return flag;
54 }

42



Part II

Testbed Design and Set-up

43





Chapter 5

Network Emulation Testbed

To reconstruct the network emulation testbed used by Kaspar in [25], we
needed to set up a testbed as described in section 5.1. To enable the host
acting as receiver to communicate over two physical interfaces it had to be
reconfigured as described in section 5.2. To add the right characteristics to
each link so that one link act as a wireless LAN and the other as HSPA (3G)
we had to shape the traffic and add some additional delay to each link as
described in section 5.3. To aggregate the traffic over both links we had
to diverge some of the packets in the TCP flow at the sender and merge
back all the diverged packets back to the original TCP flow at the receiver,
how this is done is described in section 5.4. In section 5.5 we will describe
which tools we use in our experiments and in section 5.6 we are describing
which metrics we use to measure throughput, aggregated throughput and
reordering.

5.1 Testbed Set-up

The testbed as shown in figure 5.1 corresponds of a dedicated sender and
receiver. They both run Linux version 4.0. The receiver is connected
to a bridge (bridge0) using two 100 Mbit/s Ethernet links. The bridge0
is again connected to a router using a 1000 Mbit/s Ethernet link. The
sender is connected to a bridge (bridge1) using a 1000 Mbit/s Ethernet link,
bridge1 is then connected to the same router as bridge0 using a 1000 Mbit/s
Ethernet link.

The idea behind this emulated testbed is to easily configure the paths
properties such as throughput and RTT. This is difficult in a practical
network since its characteristics fluctuates at each moment. The emulated
testbed also makes simulations deterministic, which is not the case when
running simulations in a practical network.
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Figure 5.1: Configuration of our network testbed

5.2 Configuring Receiver To Communicate Over Two
Interfaces

To enable the receiver to communicate over two interfaces with different
addresses, we must tell the kernel to use a specific interface when a source
address is used. To achieve this, we must first configure one routing table
for each interface identified with a routing table number. We then need to
add some new rules in the routing policy table telling the kernel to use a
spesicic routing table when a source address is used.

As default the kernel can respond to Address Resolution Protocol (ARP)
requests with addresses from other interfaces. The reason for doing this is
to increase the chance of successful communication, and IP addresses are
owned by the host on Linux and not by the particular interface. In our case
this causes some problems and it needs to be configured. To make ARP
requests for each interface to be answered based on the source address for
that interface we only need to configure the kernel parameter arp_ f ilter to
1, the default value is 0.

Our bash script for configuring the receiver to communicate over two
interfaces is shown in listing 5.1.

Listing 5.1: Bash script for configuring receiver

1 #!/bin/bash
2 # Adding routing tables
3 ip route add 10.0.0.0/24 dev eth1 src 10.0.0.11 table 1
4 ip route add 10.0.0.0/24 dev eth2 src 10.0.0.17 table 2
5 # Adding default gateways
6 ip route add default via 10.0.0.1 dev eth1 table 1
7 ip route add default via 10.0.0.1 dev eth2 table 2
8 # Adding rules in policy list
9 ip rule add from 10.0.0.11 table 1

10 ip rule add from 10.0.0.17 table 2
11 # Correction to ARP flux
12 sysctl -w net.ipv4.conf.all.arp_filter =1

5.3 Rate Control and Network Delay

To change the path characteristics so that we can emulate a wireless LAN
and a HSPA connection at the receiver, we must use some mechanisms to
control the data rate and add network delay to each path.
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In section 5.3.1, we will talk about which tool we use to control the data
rate to each path, enlighten a problem with respect to RTT if the buffer size
is too large (Bufferbloat) and how we should choose a more correct buffer
size with respect to the latter problem.

In section 5.3.2 we will talk about which tool we use to add network
delay to each path and why it must be located on a different node than
where the data rate control is performed.

5.3.1 Rate Control

To control the data rate to each path, we are using the Linux traffic control
(tc) facilities at bridge1 to manipulate the Active Queue Managements
(AQM) settings. We are using the classful queueing discipline (qdisc)
known as the Hierarchy Token Bucket (HTB), which enables us to classify
the traffic based on the destination address so that we can distinguish the
data rate between each path.

Since the HTB qdisc is timer based, it will temporarily buffer all the
incoming packets and drain it with a given amount of packets within a
given time period. If the buffer is full, it will drop the incoming packet.

Because the packets are buffered, it will add some additional delay to
each packet from the time it was buffered to the time it is drained. The RTT
will then vary based on how full the buffer is and the variation of RTT will
therefore vary based on the buffer size.

To minimize the RTT variation we must choose a buffer size based on
the characteristics of a given link. Traditionally, router buffers have been
provisioned according to the Bandwidth Delay Product (BDP) shown in
equation 5.1.

However, according to Nichols and Jacobson in [30] this can be
problematic since today’s links vary in bandwidth and the individual
connections vary in delay. Also when we where aggregating the traffic
over two links and used BDP for each link to calculate the queue length
needed, we experienced loss on the path with the lowest RTT as shown in
figure 5.2, resulting in a degraded overall throughput.

Our hypothesis for this behavior is that the TCP sender looks at the
aggregated link as just one link, and therefore we decided to calculate
the packet queue length for both paths based on the aggregated path
characteristics, using the aggregated bandwidth and the longest RTT in
the calculation of BDP. The result of this is shown in figure 5.3, and we
can see that we now have a higher utilization of the AQM buffer for both
paths. The difference in goodput from old settings to the new ones is shown
in figure 5.4, where we can see that the old settings had a much higher
variance of goodput causing it to have a lower overall goodput.

To calculate the packet queue length from BDP, we use equation 5.2
(where the Maximum Transmission Unit (MTU) is the largest size of a
packet specified in bytes).

Lastly shown in listing 5.2 is our entire bash script for controlling the
data rate to each path.
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Figure 5.2: Measurements of buffer occupancy in Active Queue Manage-
ment with HTB rate control calculating queue length for each path based
on their own BDP
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Figure 5.3: Measurements of buffer occupancy in Active Queue Manage-
ment with HTB rate control calculating queue length for each path based
on BDP from their combined bandwidth and the longest RTT
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BDP = Bandwidth(Bytes)× RTT(Seconds) (5.1)

QLEN = BDP/MTU (5.2)

5.3.2 Network Delay

To add network delay to each path, we are using a network emulator called
netem at bridge0 and the receiver. Netem is an enhancement of the Linux
traffic control (tc) which we are using also usning to control the data rate as
descibed in section 5.3.1. This allows us to add network delay to outgoing
packets from a selected network interface.

As stated by the bufferbloat project in [33] the netem qdisc does not
work in conjunction with other qdiscs. A combination of netem and any
other complex qdiscs will misbehave, and it will make our data suspicious.
An entire separate machine is therefore required for adding network delay
in conjunction with rate control. That is why we control the data rate at
bridge1 and add network delay at bridge0. At bridge0, we also need to
simulate delay in both directions. If the delay is suppose to be 100ms for
a path, we need to add 50ms at bridge0 in each direction of the path. Our
entire bash script for adding network delay is shown in listing 5.3.

5.4 Diverge and Merge TCP Packets

To make the sender aggregate data as Kaspar did in [25] over both available
paths (referred to as primary and secondary path) to make use of all the
available bandwidth on both of them, the sender must diverge some of
the packets belonging to the TCP connection using the primary path to the
secondary path. The receiver must then merge back all packets previously
diverged back onto the original TCP flow.

As shown in figure 5.5 this is performed with the use of Destination
Network Address Translation (DNAT) at both the sender and receiver. The
sender must also include a packet scheduler since we are only diverging
a subset of the packets within the TCP connection. To mitigate reverse
path reordering (which as shown by Leung, Li, and Yang in [26] causes
additional challenges to TCP) and to reduce the need of a packet scheduler
at the receiver, we are only translating addresses in the direction towards
the receiver. The result of this is that all ACKs only traverse the primary
path, which is what we want.

Receiver Sender

eth1

eth2

eth1
Router

PSQNAT

NAT

Bridge0 Bridge1

Figure 5.5: Overview of our network emulation Test-bed
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Listing 5.2: Bash script for rate control

1 #!/bin/bash
2 #==============================#
3 # Primary path characteristics #
4 #==============================#
5 pri_limit =5000
6 pri_delay =100
7 pri_addr =10.0.0.11
8 #================================#
9 # Secondary path characteristics #

10 #================================#
11 sec_limit =5000
12 sec_delay =10
13 sec_addr =10.0.0.17
14 #==========================================#
15 # Bandwidth Delay Product and queue length #
16 #==========================================#
17 delay=$pri_delay
18 if [ $pri_delay -lt $sec_delay ]; then
19 delay=$sec_delay
20 fi
21 bdp=$(bc <<< "((( $pri_limit+$sec_limit)*1000) /8)*( $delay

*0.001)")
22 mtu =1500
23 qlen=$(echo "$bdp␣$mtu" | awk ’{printf("%d\n" ,($1/$2))}’)
24 # FIX rounding UP if we have rest in BDP % MTU
25 if [ 0 -lt $(echo "$bdp␣$mtu" | awk ’{printf("%d\n" ,($1 %

$2))}’) ]; then
26 qlen=$(echo "$qlen" | awk ’{printf("%d\n", ($1 + 1))

}’)
27 fi
28 #================================#
29 # Rate control #
30 #================================#
31 tc qdisc add dev eth1 root handle 1: htb
32 # Adding primary class with rate limit
33 tc class add dev eth1 parent 1: classid 1:1 htb rate "

$pri_limit"kbit
34 # Adding secondary class with rate limit
35 tc class add dev eth1 parent 1: classid 1:2 htb rate "

$sec_limit"kbit
36 # Adding primary queue length
37 tc qdisc add dev eth1 parent 1:1 pfifo limit $qlen
38 # Adding secondary queue lengt
39 tc qdisc add dev eth1 parent 1:2 pfifo limit $qlen
40 # Attach filter to primary class
41 tc filter add dev eth1 protocol ip prio 1 u32 match ip

dst $pri_addr flowid 1:1
42 # Attach filter to secondary class
43 tc filter add dev eth1 protocol ip prio 1 u32 match ip

dst $sec_addr flowid 1:2
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Listing 5.3: Bash script for adding network delay at bridge0

1 #!/bin/bash
2 #==============================#
3 # Primary path characteristics #
4 #==============================#
5 # Network interface
6 pri_dev=eth3
7 # Network delay in ms
8 pri_delay =50
9 #================================#

10 # Secondary path characteristics #
11 #================================#
12 # Network interface
13 sec_dev=eth4
14 # Delay in ms
15 sec_delay =5
16 #==============================#
17 # Reverse path characteristics #
18 #==============================#
19 # Network address
20 pri_addr =10.0.0.11/32
21 sec_addr =10.0.0.17/32
22 #======================#
23 # Adding network delay #
24 #======================#
25 tc qdisc add dev $pri_dev root netem delay "$pri_delay"ms
26 tc qdisc add dev $sec_dev root netem delay "$sec_delay"ms
27 tc qdisc add dev eth1 root handle 1: prio
28 tc qdisc add dev eth1 parent 1:1 handle 10: netem delay "

$pri_delay"ms
29 tc qdisc add dev eth1 parent 1:2 handle 20: netem delay "

$sec_delay"ms
30 tc filter add dev eth1 protocol ip parent 1:0 prio 3 u32

match ip src $pri_addr flowid 1:1
31 tc filter add dev eth1 protocol ip parent 1:0 prio 3 u32

match ip src $sec_addr flowid 1:2
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To implement the DNAT with the additional packet scheduler at the
sender, we first looked at what was possible to do with iptables in Linux.
Iptables is an administration tool for IPv4/IPv6 packet filtering and NAT.
We found out that by it self iptables cannot apply rules to translate network
addresses only to a subset of the packet stream within a TCP connection,
which is what we want. Iptables uses connection tracking only applying
rules on a connection basis. This makes sense since what we are doing
actually breaking up the connection. We found out that it is two possible
approaches to solve this.

The first approach is to use iptables to filter out and queue all the
packets belonging to the given TCP connection and send it to user space for
further processing using libnetfilter_queue. The libnetfilter_queue is a user
space library providing an API to packets that have been queued by the
kernel packet filter. In user space we could implement a packet scheduler
to only translate network addresses to a subset of the TCP packets queued.
The drawback of manipulation packets in user space is that it will add some
extra processing time. Unless we are trying to filter large bandwidths, this
approach will work just fine.

The second approach is to make a new netfilter module, which is
a Linux module where we register a netfilter hook. By doing this we
could write a packet scheduler in kernel space. For the module to receive
commands from user space to dynamically add new rules we could use
IOCTL which enables us to receive commands from user space by writing
to a device file.

We decided to go for the second approach. We implemented a kernel
module for the sender and a slightly different one for the receiver. A more
detailed description is given in section 5.4.1.

5.4.1 Netfilter Modules

To receive packets inside the kernel which we want to further process, we
must register a netfilter hook inside our Linux module to express which
packets we are interested in. As shown in figure 5.6 these hooks can be
either PREROUTING, POSTROUTING, FORWARD, INPUT, or OUTPUT.
These hooks are briefly described in the following list.

• In the PREROUTING hook it is allowed to alter (mangle, DNAT)
incoming packets before they are routed.

• In the POSTROUTING hook it is allowed to alter (mangle, SNAT)
outgoing packets after they are routed.

• In the FORWARD hook it is allowed to alter (mangle) or filter
forwarded packets.

• In the INPUT hook it is allowed to alter (mangle) or filter incoming
packets addressed to the local host before they are handed over to the
local process.
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Figure 5.6: Overview netfilter packet flow

• In the OUTPUT hook it is allowed to alter (mangle, DNAT) or filter
locally generated packets before they are routed.

Sender Module

The sender module registers to the OUTPUT hook since its going to alter
the destination address and maybe the destination port number to some of
the locally generated packets. We have implemented a rule chain within
the module which contains the destination address and destination port
number to the primary and secondary path. We then filter the outgoing
packets with the primary destination address and primary port number
to select which packets we may have to alter. From this flow of selected
packets, the path is selected based on a the bandwidth ratio between
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the paths, which is predefined in the rule chain. To do this we have
implemented a packet scheduler which uses a send vector like Kaspar did
in [25] to select in a round-robin fashion which path the next packet will
traverse, altering the destination address and destination port number if
needed.

The send vector is represented as a bit field in the kernel module. A look
up in the send vector determines which path to take. A 0 bit represents a
packet which is to be sent on the primary path and a 1 bit represents a
packet which is to be sent on the secondary path. To traverse the send
vector, we have a variable which tells us the bit position to look up in the
send vector for the next outgoing packet. Since the send vector has a finite
bit length, the bit position variable must wrap around using the modular
operation.

In order to dynamically load rules from user space into the kernel
module, we use an IOCTL call to the module, which sends over a command
and the data containing the rule. Every rule needs to include the following
data set as shown in table 5.1. As we can see in the data set, the send
vector is represented as a 64 bit field and must be generated a priori in user
space before it is loaded into the kernel module. Algorithm 1 shows how
we generate the binary send vector. However when n is small, like 64 in
our experiments, the send vector is often unable to accurately represent the
ratio between the two weights. Error of such will translate directly into loss
in aggregation efficiency. However, the error is bounded and will never
exceed 1

2n .

Proof. The approximation error, which is the difference between the true
ratio: rw = w0/(w0 + w1) and the send vector’s approximated ratio:
rv = m/n, where m is the number of zeros and n is the vector length.
The approximation error is defined as:

err = |rw − rv|

In the worst case, m will differ its ideal value rw ∗ n by ± 1
2 (adjusting of r in

algorithm 1). We can therefore write m as rw ∗ n± 1
2 , and replace it in the

equation:
err =

∣∣rw − m
n

∣∣ = ∣∣∣rw −
rw∗n± 1

2
n

∣∣∣
To find the upper limit, we must set rw and n such that m differs from rw ∗ n
by ± 1

2 making this a worst case scenario. An example would be: rw ← 1
2 ,

n ← 3 and m ≈ (rw ∗ n). The maximum error in the worst case scenario
would then be:

err = rw −
m
n

=
1
2
− 1

3
=

3
6
− 2

6
=

1
6
=

1
2n

The upper limit then simplifies to:

err ≤ 1
2n
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Variable name Data type Description
pri_daddr u32 Primary destination address
sec_daddr u32 Secondary destination address
pri_dest u16 Primary destination port
sec_dest u16 Secondary destination port
send_vector u64 A 64 bit binary send vector

Table 5.1: List of data needed for a valid rule in the sender netfilter module

Algorithm 1: generateSendVector(n, w0, w1)
Data: Vector length n ∈N > 0
Primary weight w0 ∈N ≥ 0
Secondary weight w1 ∈N ≥ 0
Result: Send vector V of length n
V = zero(n); // initialize V with n zeros
r = w1/(w0 + w1); // calculate weight ratio
r = round(r ∗ n)/n; // adjust r such that r ∗ n is an integer
for i = 1 to r ∗ n do

V[i/r] = 1
end

Receiver Module

The receiver module registers to the PREROUTING hook since its going
to alter the destination address and maybe the destination port number to
some of the incoming packets.

We are also using a rule chain here, much like the one we are using in
the sender module, the only difference is the it lacks the send vector since
the receiver module doesn’t contain any packet scheduler.

We filter the incoming packets with the secondary destination address
and port number to select which packets we must alter.

The rules are also dynamically loaded from user space as we did in the
sender module.

There is also two kernel parameters we have to configure to successfully
forward packets from one interface to another.

Firstly we have to configure ip_forward to allow forwarding between
interfaces. In Linux forwarding is by default disabled.

Secondly we have to configure The reverse path filter: rp_filter,
which chooses the reverse path forwarding mode as defined in RFC3704 [4].
By default the reverse path filter is configured to strict mode. In our exper-
iments the packets arriving at the secondary interface would be discarded
in this mode. This is why we need to reconfigure the reverse path filter.
Based on our traffic, loose mode would be a correct way to do this. These
modes are briefly described in the following list

• Reverse path forwarding strict mode test each incoming packet
against the Forwarding Information Base (FIB) to check if the
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Listing 5.4: Bash script to allow our receiver to forward packets form the
secondary interface to the primary interface

1 #!/bin/bash
2 #============#
3 # Interfaces #
4 #============#
5 # Primary
6 pri_dev=eth1
7 # Secondary
8 sec_dev=eth2
9 #===================#

10 # Enable forwarding #
11 #===================#
12 # 0 - Disabled #
13 # 1 - Enabled #
14 #===================#
15 sysctl -w net.ipv4.ip_forward =1
16 #=============================================#
17 # Configure reverse path filter to loose mode #
18 #=============================================#
19 # 0 - No source validation #
20 # 1 - Strict mode #
21 # 2 - Loose mode #
22 #=============================================#
23 sysctl -w net.ipv4.conf.$pri_dev.rp_filter =2
24 sysctl -w net.ipv4.conf.$sec_dev.rp_filter =2
25 sysctl -w net.ipv4.conf.all.rp_filter =2

interface which received the packet would be the one used to forward
packets to the source address of the packet received. If it fails the
packet is discarded.

• Reverse path forwarding loose mode test each incoming packet
against the FIB to check if there exist a route via any interface to
the source address of the packet received. If it fails the packet is
discarded.

Our script to allow the receiver to forward packets form the secondary
interface to the primary interface is shown in listing 5.4.

5.5 Tools

For our experiments, we use a variety of tools to measure network
performance and to analyse TCP. These are briefly described in the
following list.

• iperf is a tool for performing network throughput measurements. We
use it to generate traffic from the sender to the receiver.
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• tcpdump is a tool which prints out a description of the contents of
packets traversing the network interface its attached to. We use it to
capture packets between the sender and receiver to a packet capture
(PCAP) file for later analysis.

• mergecap, tcpprep and tcprewrite is used to merge two PCAP files
created by tcpdump at receiver. We translate the destination address
to the diverged packets to mimic merging performed by receiver
module since PCAP doesn’t pick that up. When all of this is done,
the merged PCAP file is ready to be used by tools to retrieve network
performance metrics.

• captcp is used for TCP analysis of PCAP files.

• tcp_probe_reordering is a modification we made to the original
tcp_probe which is a Linux kernel module for obtaining detailed in-
formation about TCPs state. Our modification adds some additional
TCP state variables to be tracked.

• tdn-aqmprobe is an in-house kernel module that probes qdiscs and
extracts drop statistics. We use it extract buffer occupancy and drop
statistics in the Active Queue Management at bridge1.

• R is used in conjunction with ggplot2 to create plots.

5.6 Metrics

• Throughput is the link utilization or flow rate in bits per second
between sender and receiver. Throughput can include packet header
size in addition to the payload size for each packet.

• Goodput is a subset of throughput consisting of useful traffic. It omits
lost or retransmitted packets.

• Displacement (D) is a metric defined in RFC5236 [23] to measure
the displacement of a packet from where it was expected to be
received. A negative values of displacement indicates the earliness of
a packet and a positive value of displacement indicates the lateness
of a packet. It omits lost or retransmitted packets

• Reorder density (RD) is defined in RFC5236 [23] as the distribution
of displacement frequencies normalized with respect to the number
of packets received. It omits lost or retransmitted packets

59



60



Part III

Results and conclusion
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Chapter 6

Results

In section section 6.1 we are showing some results which relates to the
degree of reordering to give us a better picture of how much reordering we
experience at the TCP receiver and how robust Linux TCP sender is against
network reordering. In section 6.2 we will show some results related to
the performance at different network configurations when aggregating the
available paths with our own network layer aggregation or aggregating
them with MPTCP.

6.1 Network Reordering

6.1.1 Displacement (D)

Figure 6.1 shows us the displacement and duplicated packets for the first
60 seconds received by the TCP receiver. During the run for the aggregated
path WLAN ⊕ HSPA, we can see that during slow-start (the beginning of
the connection) we experience a high magnitude of displacement. After
this, the two aggregated paths behaves more or less the same. We also
believe that the spikes we see in the negative directions relates to the high
points of senders congestion window. As we can see right after each spike
of displacement, we receive duplicate packets.

6.1.2 Reorder Density (RD)

Looking at figure 6.2 which shows us the Reorder Density (RD) over
the entire connections for both aggregated paths HSPA ⊕ WLAN and
WLAN ⊕ HSPA, we can see that the 50% of the displacement is between
first quantile (Q1) and third quantile (Q3) for each connection. The median
for both connection is 0, given that the data rate is the same for both paths.
We can also see that WLAN ⊕ HSPA has over twice as much maximum
displacement in both directions, it gains this during slow-start.

Also most of the packets are actually not on time, only around 2% is.
There is also slightly more late than early packets for both connections, but
this is such a small number that we could say that the ratio between early
and late packets is almost one to one.
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6.1.3 Linux TCP’s robustness against network reordering

Looking at figure 6.3 and 6.4, we can see how Linux TCP is handling the
network reordering in both test cases where we measure the amount of
selectively acknowledged packets in the retransmission queue compared
to the reordering metric, senders congestion window and which congestion
avoidance state we are in.

We can see that we are mostly in the disorder state, and after entering
the recovery state when sacked_out >= reordering, we can see that
snd_cwnd is being halved because loss is detected and that is an indication
of congestion in the network.

In WLAN⊕HSPA the RTTM is oscillating between 10 and 55 ms and in
HSPA ⊕WLAN its oscillating between 55 and 100 ms. In WLAN ⊕ HSPA
the initial SRTT after the connection is established is 10 ms where as in
HSPA ⊕WLAN its 100 ms because we don’t start diverging packets before
the connection is established. We can see the effect of this if we compare the
first five seconds of the snd_cwnd plot in both figures. In figure 6.4 we can
see that the snd_cwnd is oscillating two times in this time period. If we then
look at the congestion avoidance state plot in the same time period, we can
see that we enter loss state exactly the same time the snd_cwnd is dropped.
If we than compare it to what we see in figure 6.3, we can see that we have
a much smoother start and we do not enter loss state in any given moment.

In both cases the reordering metric is growing to a stable value much
faster than what previously observed by Kaspar in [25], specially for
WLAN ⊕ HSPA, which was growing very slowly.

6.2 Performance

In terms of performance, we first looked at the effect in relation to
throughput and goodput when it comes to the difference in data rate to
each network path. This is shown in figure 6.5 and 6.6. Both figures shows
that having a higher data rate for the network path with the highest RTT
has a small but positive effect. The opposite will have a negative effect in
terms of small but periodic loss in throughput and goodput.

We then looked at the impact in relation to the throughput and goodput
when the data rate was equal for each network path, and this time we
let the test run for 30 minutes. This is shown in figure 6.7 and 6.8. Both
figures shows that the network aggregated paths has periodically dropped
in throughput and goodput. MPTCP however has a stable and consistent
throughput and goodput. Despite this, the network aggregated paths
outperforms MPTCP.

We also notice that the overall throughput for the network aggregated
paths is slightly higher than the combined data rate for both paths they are
aggregated with. This is probably due to the accuracy of the HTB queuing
discipline in Linux traffic control. As mention by Benita in [5], its possible
to control the throughput accuracy by changing the cburst/burst values.
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Figure 6.6: Goodput test with different data rate and network path
aggregation configurations
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Figure 6.7: Throughput test with equal data rate for each network path
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Chapter 7

Conclusion

In section 1.2 we stated that we needed to solve the problems listed
below to find the true origin of how Linux TCP is robust against network
reordering how good it is doing that job in relation to sending traffic over
an aggregating path which includes two network paths with differences in
both delay and bandwidth.

1. Recreate the testbed Kaspar used in [25] and test this out on a newer
version of the Linux kernel.

2. Investigate how Linux TCP is robust against network reordering.

3. Compare the performance of our network layer aggregation against
MPTCP with different test cases where we experiment with the ratio
and order of bandwidth and delay to the aggregated paths.

We have successfully recreated the testbed Kaspar had in [25] and tested it
on the newest stable version of the Linux kernel which is now 4.0.

We have found out how Linux TCP is robust against network reorder-
ing, which is explained more in detail in chapter 4 and shortly summarized
in the list below:

• To proactively prevent false fast retransmit, Linux TCP uses SACK
to find and store the maximum detected reordering length in a new
variable named reordering. The reordering variable is than used as
the new dupThresh variable to the fast retransmit algorithm.

• To recover from false fast retransmits, Linux TCP uses D-SACK
as a mechanism to detect spurious retransmissions. If a spurious
retransmission is proven, Linux TCP tries to the congestion reduction
by reverting back to the old snd_cwnd logged before entering fast
retransmit.

Our tests has also shown that Linux TCP is now so robust against network
reordering that it outperformed MPTCP in relation to overall throughput
and goodput. Linux TCP now also manage to utilize approximately the
sum of all the available bandwidth regardless of how its configuration in
relation to low and high RTT for the primary and secondary path.
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Chapter 8

Future Work

• Deploy and test our network layer aggregation on a practical testbed
where we have competing traffic. The receiver must here be extended
with some NAT punching mechanism in order to make it possible.
Otherwise would the packets traversing the secondary path be
dropped by middle boxes such as NATs.

• Make a TCP extension or an application layer protocol to auto
configure multi-homed end hosts to transparently send data over
multiple network paths.

• Make the bandwidth ratio adaptively adjust in the sender side
module.

• Find out how to fix the periodically small amount of loss in
throughput over the network aggregated paths.
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