
To prune or not to prune:
Exploring the effects of nodes in

neural networks

Master’s Thesis Autumn 2020

Lucas Georges Gabriel Charpentier

Thesis submitted for the degree of
Master in Computational Science

(Imaging and Biomedical Computing)
60 credits

Department of Informatics
Department of Physics

Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2020

To prune or not to prune:
Exploring the effects of nodes in

neural networks

Master’s Thesis Autumn 2020

Lucas Georges Gabriel Charpentier

© 2020 Lucas Georges Gabriel Charpentier

To prune or not to prune: Exploring the effects of nodes in neural
networks

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract
Over the past decade, computational power has become more accessible,
as hardware previously only found in research or military computers has
become mainstream. These improvements have led to a vastly increased
speed in repetitive calculations, allowing for the widespread adoption
of machine learning and, especially, of deep neural networks. Whereas
previously large neural networks were impossible to use due to limited
memory and computer power, they have now become commonplace in
many areas. But, with the increase in popularity of deep neural networks
came a need to get a better grasp on their internal behavior. As such,
research has deepened the understanding of layers that comprise these
neural networks. Researchers now not only rely on fully connected layers
but also locally connected layers or temporally connected layers. Further,
they solved the mystery of deeper models becoming less performant,
with residual layers. However, even though our understanding of neural
network layers has considerably improved, our understanding of the
components of these layers, the nodes, is still lacking.

In this thesis, we focus on understanding how individual nodes
contribute to a neural network’s performance. To this end, we try to
classify them using a metric that connects the individual nodes to the loss
of the model. Furthermore, we also analyze how removing nodes can
affect the neural network. Our underlying assumption is that not all nodes
contribute to the neural network’s performance. We believe that some
nodes are redundant and that these nodes both do not actively contribute
to the performance of the model and increase its needed resources. By
removing them, we reduce wasted resources and speed up the processing
time of the model at the training and inference stage.

Our results show that not all nodes contribute to a model’s perform-
ance. More specifically, some nodes are redundant as they extract the same
features as others. Others negatively impact the performance as a whole,
while some initially contribute positively to the network, but actually, only
correct errors initiated by other nodes. Another important result is the in-
creased stability between models from which we remove nodes. In other
words, models of the same architecture trained on the same dataset, but
with different initial weights, have a noticeably higher variation in per-
formance before and after node pruning. This can be seen with the pruned
convolutional neural network having a 5% reduction in its loss on average
and a 19% lower loss variation. While this study makes no claim to provide
a full understanding of how nodes impact neural networks, it does suggest
promising paths for future works that could enhance our understanding of
neural networks.

i

ii

Acknowledgments

I would like to thank my official supervisors Michael, Pål, Steven and
Vajira. Their good advice and feedback helped shape and write this thesis.
I am very grateful for the weekly meetings over the summer and autumn
especially during at times when the coronavirus required all meetings to
be virtual. I feel lucky to have you as supervisors and this thesis would

not have been possible without you.

I would also like to thank my parents, Lilian and Bastien as well as my
sister Julia. Lilian pushed me hard to work on and complete my thesis,

with delicious meals as a carrot during a summer of confinement in Paris.
Finally, my dad gave me the resources to complete my work faster in

terms of computations. The walks in the forest with my sister and mother
helped me decompress and relax by providing a welcomed breath of fresh
air in between between confinement spells. Finally, I would like to thank

my dad and my godfather Thierry for their feedback on my thesis,
especially on the abstract, introduction, and conclusion. Their point of

view as outsiders to the field was most helpful.

Finally, I would also like to thank two of my friends. First, Sean for
motivating me during these times. Second, my roommate Ådne for

motivating me to keep working on this thesis every day while giving me
confidence that I would soon finish it.

iii

iv

Contents

1 Introduction 1
1.1 Background and Motivation 1
1.2 Problem Statement . 2
1.3 Scope and Limitations . 3
1.4 Research Method . 3

1.4.1 Theory . 4
1.4.2 Abstraction . 4
1.4.3 Design . 4

1.5 Main Contributions . 5
1.6 Thesis Outline . 6

2 Background 9
2.1 Machine Learning . 9

2.1.1 Supervised Learning 9
2.1.2 Unsupervised Learning 9

2.2 Artificial Neural Networks . 10
2.2.1 Perceptron . 10
2.2.2 Multilayer Perceptron 11
2.2.3 Training a Neural Network 11

2.3 Convolutional Neural Network 14
2.3.1 Convolutional Layers 15
2.3.2 Pooling Layers . 17

2.4 Neural Network Training Optimization 18
2.4.1 Optimizers . 18
2.4.2 Weight Initialization 19
2.4.3 Training Batch Size . 21
2.4.4 Dropout . 21
2.4.5 Activation functions 21

2.5 Network Pruning . 22
2.6 Datasets . 22

2.6.1 MNIST . 23
2.6.2 Fashion MNIST . 23
2.6.3 CIFAR-10 . 24
2.6.4 Kvasir . 25

2.7 VGG-16 . 26
2.8 Summary . 27

v

3 Methodology 29
3.1 Neural Networks . 29
3.2 Node Importance . 31
3.3 Node Pruning . 32
3.4 Algorithms . 32
3.5 Summary . 36

4 Exploring node pruning and node importance in simple neural
networks 37
4.1 Pruning Nodes at Random . 37

4.1.1 MNIST . 38
4.1.2 Fashion MNIST . 42
4.1.3 Summary . 45

4.2 Estimating Node Importance based on Loss 46
4.2.1 Single-layer ANN . 46
4.2.2 MLP . 47
4.2.3 CNN . 49
4.2.4 Summary . 50

4.3 Effects of Changing Training Batch Size on Node Importance 50
4.3.1 Single-layer ANN . 50
4.3.2 MLP . 57
4.3.3 CNN . 60
4.3.4 Summary . 64

4.4 Effects of Using Dropout . 64
4.4.1 Single-layer ANN . 65
4.4.2 MLP . 68
4.4.3 Summary . 71

4.5 Pruning network with pre-calculated importance 71
4.5.1 Single-layer ANN . 71
4.5.2 Other models . 75
4.5.3 Summary . 75

4.6 Pruning Nodes based on the Loss 75
4.6.1 Single-layer ANN . 76
4.6.2 MLP . 80
4.6.3 CNN . 86
4.6.4 Summary . 86

4.7 Greedy approach to pruning instead of Exhaustive approach 87
4.7.1 MLP . 87
4.7.2 CNN . 91
4.7.3 Summary . 91

4.8 Looking at effects of per class accuracy after pruning 92
4.9 Iterative weight initialization using Node importance 94

4.9.1 Single-Layer ANN . 94
4.9.2 Other Models . 95
4.9.3 Discussion . 95

4.10 Summary . 95

vi

5 Case study: Reducing a VGG-16 model trained on the Kvasir
dataset 99
5.1 Node importance estimation 99
5.2 Model pruning . 101
5.3 Pruning Results . 101
5.4 Summary . 106

6 Conclusion 109
6.1 Main Contributions . 110
6.2 Future Works . 112

A Algorithms 115

B Single-layer ANN - Extra Figures and Tables 131
B.1 Estimating Node Importance 131

B.1.1 MNIST . 131
B.1.2 Fashion MNIST . 132

B.2 Effects of batch size on Node Importance 133
B.2.1 MNIST . 133
B.2.2 Fashion MNIST . 134

B.3 Effects of dropout on Node Importance 135
B.3.1 MNIST . 135
B.3.2 Fashion MNIST . 136

B.4 Pre-calculated Pruning . 139
B.4.1 MNIST . 139
B.4.2 Fashion MNIST . 141

B.5 Exhaustive Pruning . 145
B.5.1 MNIST . 145
B.5.2 Fashion MNIST . 147

B.6 Iterative Weight Initialization 153
B.6.1 Fashion MNIST . 153

C MLP - Extra Figures and Tables 155
C.1 Estimating Node Importance 155

C.1.1 MNIST . 155
C.1.2 Fashion MNIST . 158

C.2 Effects of batch size on Node Importance 160
C.2.1 MNIST . 160
C.2.2 Fashion MNIST . 164

C.3 Effects of dropout on Node Importance 166
C.3.1 MNIST . 166
C.3.2 Fashion MNIST . 170

C.4 Pre-calculated Pruning . 172
C.4.1 MNIST . 172
C.4.2 Fashion MNIST . 176

C.5 Exhaustive Pruning . 180
C.5.1 MNIST . 180
C.5.2 Fashion MNIST . 186

vii

C.6 Greedy Pruning . 188
C.6.1 MNIST . 188
C.6.2 Fashion MNIST . 193

C.7 Iterative Weight Initialization 195
C.7.1 MNIST . 195
C.7.2 Fashion MNIST . 196

D CNN - Extra Figures and Tables 197
D.1 Estimating Node Importance 197

D.1.1 MNIST . 197
D.1.2 Fashion MNIST . 201
D.1.3 CIFAR-10 . 205

D.2 Effects of batch size on Node Importance 209
D.2.1 MNIST . 209
D.2.2 Fashion MNIST . 214
D.2.3 CIFAR-10 . 219

D.3 Pre-calculated Pruning . 222
D.3.1 MNIST . 222
D.3.2 Fashion MNIST . 226
D.3.3 CIFAR-10 . 230

D.4 Exhaustive Pruning . 234
D.4.1 MNIST . 234
D.4.2 Fashion MNIST . 237
D.4.3 CIFAR-10 . 240

D.5 Greedy Pruning . 243
D.5.1 MNIST . 243
D.5.2 Fashion MNIST . 248
D.5.3 CIFAR-10 . 253

D.6 Effects of pruning on class accuracy 258
D.6.1 MNIST . 258
D.6.2 Fashion MNIST . 261
D.6.3 CIFAR-10 . 264

D.7 Iterative Weight Initialization 266
D.7.1 MNIST . 266
D.7.2 Fashion MNIST . 267

viii

List of Figures

2.1 Perceptron . 11
2.2 A multilayer perceptron with 5 input nodes and a hidden

layer of 3 nodes. 12
2.3 CNN Structure . 14
2.4 Convolution . 15
2.5 Convolutional layer . 16
2.6 Pooling layer . 17
2.7 Pooling operation . 18
2.8 Efficiency of Adam method compared to other methods . . . 20
2.9 Example MNIST . 23
2.10 Example Fashion MNIST . 24
2.11 Example CIFAR-10 . 25
2.12 Example Kvasir . 26
2.13 VGG-16 architecture . 27

4.1 Accuracy versus nodes removed without improvement
(MNIST) . 39

4.2 Loss versus nodes removed without improvement (MNIST) 40
4.3 Number of nodes removed while randomly removing nodes

(MNIST) . 41
4.4 Accuracy versus nodes removed with improvement (MNIST) 41
4.5 Loss versus nodes removed with improvement (MNIST) . . 42
4.6 Accuracy versus nodes removed without improvement

(Fashion MNIST) . 43
4.7 Loss versus nodes removed without improvement (Fashion

MNIST) . 44
4.8 Number of nodes removed while randomly removing nodes

(Fashion MNIST) . 45
4.9 Accuracy versus nodes removed with improvement (Fash-

ion MNIST) . 45
4.10 Loss versus nodes removed with improvement (Fashion

MNIST) . 46
4.11 Important nodes for ANN on MNIST (Batch sizes) 51
4.12 Average importance of important nodes for ANN on MNIST

(Batch sizes) . 51
4.13 Worse nodes for ANN on MNIST (Batch sizes) 52
4.14 Average importance of worse nodes for ANN on MNIST

(Batch sizes) . 52

ix

4.15 Zero nodes for ANN on MNIST (Batch sizes) 53
4.16 Important nodes for ANN on Fashion MNIST (Batch sizes) . 54
4.17 Average importance of important nodes for ANN on Fashion

MNIST (Batch sizes) . 55
4.18 Worse nodes for ANN on Fashion MNIST (Batch sizes) . . . 55
4.19 Average importance of worse nodes for ANN on Fashion

MNIST (Batch sizes) . 56
4.20 Zero nodes for ANN on Fashion MNIST (Batch sizes) 56
4.21 Important nodes for MLP on Fashion MNIST (Batch sizes) . 57
4.22 Average importance of important nodes for MLP on Fashion

MNIST (Batch sizes) . 58
4.23 Worse nodes for MLP on Fashion MNIST (Batch sizes) 58
4.24 Average importance of worse nodes for MLP on Fashion

MNIST (Batch sizes) . 59
4.25 Zero nodes for MLP on Fashion MNIST (Batch sizes) 59
4.26 Important nodes for MLP on CIFAR-10 (Batch sizes) 61
4.27 Average importance of important nodes for CNN on CIFAR-

10 (Batch sizes) . 61
4.28 Worse nodes for MLP on CIFAR-10 (Batch sizes) 62
4.29 Average importance of worse nodes for CNN on CIFAR-10

(Batch sizes) . 62
4.30 Zero nodes for MLP on CIFAR-10 (Batch sizes) 63
4.31 Important nodes for ANN on MNIST (Dropout) 65
4.32 Average importance of important nodes for ANN on MNIST

(Dropout) . 65
4.33 Worse nodes for ANN on MNIST (Dropout) 66
4.34 Average importance of worse nodes for ANN on MNIST

(Dropout) . 66
4.35 Zero nodes for ANN on MNIST (Dropout) 67
4.36 Important nodes for MLP on Fashion MNIST (Dropout) . . . 68
4.37 Average importance of important nodes for MLP on Fashion

MNIST (Dropout) . 68
4.38 Worse nodes for MLP on Fashion MNIST (Dropout) 69
4.39 Average importance of worse nodes for MLP on Fashion

MNIST (Dropout) . 69
4.40 Zero nodes for MLP on Fashion MNIST (Dropout) 70
4.41 Number of nodes removed versus accuracy change for ANN

(MNIST/pre-calc removal/train set) 72
4.42 Number of nodes removed versus loss change for ANN

(MNIST/pre-calc removal/train set) 72
4.43 Number of nodes removed versus accuracy change for ANN

(MNIST/pre-calc removal/validation set) 73
4.44 Number of nodes removed versus loss change for ANN

(MNIST/pre-calc removal/validation set) 74
4.45 Number of nodes removed versus accuracy change for ANN

(MNIST/exhaustive prune/train set) 76
4.46 Number of nodes removed versus loss change for ANN

(MNIST/exhaustive prune/train set) 76

x

4.47 Number of nodes removed versus accuracy change for ANN
(MNIST/exhaustive prune/validation set) 77

4.48 Number of nodes removed versus loss change for ANN
(MNIST/exhaustive prune/validation set) 78

4.49 Evolution of accuracy during exhaustive pruning of ANN
(MNIST/train set) . 79

4.50 Evolution of loss during exhaustive pruning of ANN
(MNIST/train set) . 79

4.51 Evolution of accuracy during exhaustive pruning of ANN
(MNIST/validation set) . 80

4.52 Evolution of loss during exhaustive pruning of ANN
(MNIST/validation set) . 80

4.53 Number of nodes removed versus accuracy change for MLP
(Fashion MNIST/exhaustive prune/train set) 81

4.54 Number of nodes removed versus loss change for MLP
(Fashion MNIST/exhaustive prune/train set) 81

4.55 Number of nodes removed versus accuracy change for MLP
(Fashion MNIST/exhaustive prune/validation set) 82

4.56 Number of nodes removed versus accuracy change for MLP
(Fashion MNIST/exhaustive prune/validation set) 83

4.57 Evolution of accuracy during exhaustive pruning of MLP
(Fashion MNIST/train set) . 84

4.58 Evolution of loss during exhaustive pruning of MLP (Fash-
ion MNIST/train set) . 84

4.59 Evolution of accuracy during exhaustive pruning of MLP
(Fashion MNIST/validation set) 85

4.60 Evolution of loss during exhaustive pruning of MLP (Fash-
ion MNIST/validation set) . 85

4.61 Number of nodes removed versus accuracy change for MLP
(Fashion MNIST/greedy prune, cutoff:−1e−2) 88

4.62 Number of nodes removed versus loss change for MLP
(Fashion MNIST/greedy prune, cutoff:−1e−2) 88

4.63 Number of nodes removed versus accuracy change for MLP
(Fashion MNIST/greedy prune, cutoff:−1e−3) 89

4.64 Number of nodes removed versus loss change for MLP
(Fashion MNIST/greedy prune, cutoff:−1e−3) 89

4.65 Evolution of accuracy during greedy pruning of MLP (Fash-
ion MNIST) . 90

4.66 Evolution of loss during greedy pruning of MLP (Fashion
MNIST) . 91

4.67 Class accuracy before and after pruning for CNN (CIFAR-10) 92

5.1 Evolution of loss of all three sets 102
5.2 Evolution of loss of test set . 103
5.3 Evolution of accuracy of all three sets 103
5.4 Evolution of accuracy of test set 104

B.1 Number of important nodes (ANN-Fashion MNIST-Dropout) 136

xi

B.2 Average importance for important nodes (ANN-Fashion
MNIST-Dropout) . 136

B.3 Number of worse nodes (ANN-Fashion MNIST-Dropout) . . 137
B.4 Average importance for worse nodes (ANN-Fashion MNIST-

Dropout) . 137
B.5 Number of zero nodes (ANN-Fashion MNIST-Dropout) . . . 137
B.6 Change in accuracy vs nodes removed (ANN-Fashion

MNIST-Pre calculated removal-Training set) 141
B.7 Change in loss vs nodes removed (ANN-Fashion MNIST-Pre

calculated removal-Training set) 141
B.8 Change in accuracy vs nodes removed (ANN-Fashion

MNIST-Pre calculated removal-Validation set) 142
B.9 Change in loss vs nodes removed (ANN-Fashion MNIST-Pre

calculated removal-Validation set) 142
B.10 Change in accuracy vs nodes removed (ANN-Fashion

MNIST-Exhaustive pruning-Training set) 147
B.11 Change in loss vs nodes removed (ANN-Fashion MNIST-

Exhaustive pruning-Training set) 147
B.12 Evolution of accuracy (ANN-Fashion MNIST-Exhaustive

pruning-Training set) . 148
B.13 Evolution of loss (ANN-Fashion MNIST-Exhaustive pruning-

Training set) . 148
B.14 Change in accuracy vs nodes removed (ANN-Fashion

MNIST-Exhaustive pruning-Validation set) 149
B.15 Change in loss vs nodes removed (ANN-Fashion MNIST-

Exhaustive pruning-Validation set) 149
B.16 Evolution of accuracy (ANN-Fashion MNIST-Exhaustive

pruning-Validation set) . 150
B.17 Evolution of loss (ANN-Fashion MNIST-Exhaustive pruning-

Validation set) . 150

C.1 Number of important nodes (MLP-MNIST-Batch) 160
C.2 Average importance of important nodes (MLP-MNIST-Batch) 160
C.3 Number of worse nodes (MLP-MNIST-Batch) 161
C.4 Average importance of worse nodes (MLP-MNIST-Batch) . . 161
C.5 Number of zero nodes (MLP-MNIST-Batch) 161
C.6 Number of important nodes (MLP-MNIST-Dropout) 166
C.7 Average importance of important nodes (MLP-MNIST-

Dropout) . 166
C.8 Number of worse nodes (MLP-MNIST-Dropout) 167
C.9 Average importance of worse nodes (MLP-MNIST-Dropout) 167
C.10 Number of zero nodes (MLP-MNIST-Dropout) 167
C.11 Change in accuracy vs nodes removed (MLP-MNIST-Pre

calculated removal-Training set) 172
C.12 Change in loss vs nodes removed (MLP-MNIST-Pre calcu-

lated removal-Training set) 172
C.13 Change in accuracy vs nodes removed (MLP-MNIST-Pre

calculated removal-Validation set) 173

xii

C.14 Change in loss vs nodes removed (MLP-MNIST-Pre calcu-
lated removal-Validation set) 173

C.15 Change in accuracy vs nodes removed (MLP-Fashion
MNIST-Pre calculated removal-Training set) 176

C.16 Change in loss vs nodes removed (MLP-Fashion MNIST-Pre
calculated removal-Training set) 176

C.17 Change in accuracy vs nodes removed (MLP-Fashion
MNIST-Pre calculated removal-Validation set) 177

C.18 Change in loss vs nodes removed (MLP-Fashion MNIST-Pre
calculated removal-Validation set) 177

C.19 Change in accuracy vs nodes removed (MLP-MNIST-
Exhaustive pruning-Training set) 180

C.20 Change in loss vs nodes removed (MLP-MNIST-Exhaustive
pruning-Training set) . 180

C.21 Evolution of accuracy (MLP-MNIST-Exhaustive pruning-
Training set) . 181

C.22 Evolution of loss (MLP-MNIST-Exhaustive pruning-Training
set) . 181

C.23 Change in accuracy vs nodes removed (MLP-MNIST-
Exhaustive pruning-Validation set) 182

C.24 Change in accuracy vs nodes removed (MLP-MNIST-
Exhaustive pruning-Validation set) 182

C.25 Evolution of accuracy (MLP-MNIST-Exhaustive pruning-
Validation set) . 183

C.26 Evolution of loss (MLP-MNIST-Exhaustive pruning-Validation
set) . 183

C.27 Change in accuracy vs nodes removed (MLP-MNIST-Greedy
pruning-cutoff:−1e− 2) . 188

C.28 Change in loss vs nodes removed (MLP-MNIST-Greedy
pruning-cutoff:−1e− 2) . 188

C.29 Change in accuracy vs nodes removed (MLP-MNIST-Greedy
pruning-cutoff:−1e− 3) . 189

C.30 Change in loss vs nodes removed (MLP-MNIST-Greedy
pruning-cutoff:−1e− 3) . 189

C.31 Evolution of accuracy (MLP-MNIST-Greedy pruning) 190
C.32 Evolution of loss (MLP-MNIST-Greedy pruning) 190

D.1 Number of important nodes (CNN-MNIST-Batch) 209
D.2 Average importance of important nodes (CNN-MNIST-Batch) 209
D.3 Number of worse nodes (CNN-MNIST-Batch) 210
D.4 Average importance of worse nodes (CNN-MNIST-Batch) . 210
D.5 Number of zero nodes (CNN-MNIST-Batch) 210
D.6 Number of important nodes (CNN-Fashion MNIST-Batch) . 214
D.7 Average importance of important nodes (CNN-Fashion

MNIST-Batch) . 214
D.8 Number of worse nodes (CNN-Fashion MNIST-Batch) . . . 215
D.9 Average importance of worse nodes (CNN-Fashion MNIST-

Batch) . 215

xiii

D.10 Number of zero nodes (CNN-Fashion MNIST-Batch) 215
D.11 Change in accuracy vs nodes removed (CNN-MNIST-Pre

calculated removal-Training set) 222
D.12 Change in loss vs nodes removed (CNN-MNIST-Pre calcu-

lated removal-Training set) 222
D.13 Change in accuracy vs nodes removed (CNN-MNIST-Pre

calculated removal-Validation set) 223
D.14 Change in loss vs nodes removed (CNN-MNIST-Pre calcu-

lated removal-Validation set) 223
D.15 Change in accuracy vs nodes removed (CNN-Fashion

MNIST-Pre calculated removal-Training set) 226
D.16 Change in loss vs nodes removed (CNN-Fashion MNIST-Pre

calculated removal-Training set) 226
D.17 Change in accuracy vs nodes removed (CNN-Fashion

MNIST-Pre calculated removal-Validation set) 227
D.18 Change in loss vs nodes removed (CNN-Fashion MNIST-Pre

calculated removal-Validation set) 227
D.19 Change in accuracy vs nodes removed (CNN-CIFAR-10-Pre

calculated removal-Training set) 230
D.20 Change in loss vs nodes removed (CNN-CIFAR-10-Pre

calculated removal-Training set) 230
D.21 Change in accuracy vs nodes removed (CNN-CIFAR-10-Pre

calculated removal-Validation set) 231
D.22 Change in loss vs nodes removed (CNN-CIFAR-10-Pre

calculated removal-Validation set) 231
D.23 Change in accuracy vs nodes removed (CNN-MNIST-

Exhaustive pruning) . 234
D.24 Change in loss vs nodes removed (CNN-MNIST-Exhaustive

pruning) . 234
D.25 Evolution of accuracy (CNN-MNIST-Exhaustive pruning) . 235
D.26 Evolution of loss (CNN-MNIST-Exhaustive pruning) 235
D.27 Change in accuracy vs nodes removed (CNN-Fashion

MNIST-Exhaustive pruning) 237
D.28 Change in loss vs nodes removed (CNN-Fashion MNIST-

Exhaustive pruning) . 237
D.29 Evolution of accuracy (CNN-Fashion MNIST-Exhaustive

pruning) . 238
D.30 Evolution of loss (CNN-Fashion MNIST-Exhaustive pruning) 238
D.31 Change in accuracy vs nodes removed (CNN-CIFAR-10-

Exhaustive pruning) . 240
D.32 Change in loss vs nodes removed (CNN-CIFAR-10-Exhaustive

pruning) . 240
D.33 Evolution of accuracy (CNN-CIFAR-10-Exhaustive pruning) 241
D.34 Evolution of loss (CNN-CIFAR-10-Exhaustive pruning) . . . 241
D.35 Change in accuracy vs nodes removed (CNN-MNIST-

Greedy pruning-cutoff:−1e− 2) 243
D.36 Change in loss vs nodes removed (CNN-MNIST-Greedy

pruning-cutoff:−1e− 2) . 243

xiv

D.37 Change in accuracy vs nodes removed (CNN-MNIST-
Greedy pruning-cutoff:−1e− 3) 244

D.38 Change in loss vs nodes removed (CNN-MNIST-Greedy
pruning-cutoff:−1e− 3) . 244

D.39 Evolution of accuracy (CNN-MNIST-Greedy pruning) 245
D.40 Evolution of loss (CNN-MNIST-Greedy pruning) 245
D.41 Change in accuracy vs nodes removed (CNN-Fashion

MNIST-Greedy pruning-cutoff:−1e− 2) 248
D.42 Change in loss vs nodes removed (CNN-Fashion MNIST-

Greedy pruning-cutoff:−1e− 2) 248
D.43 Change in accuracy vs nodes removed (CNN-Fashion

MNIST-Greedy pruning-cutoff:−1e− 3) 249
D.44 Change in loss vs nodes removed (CNN-Fashion MNIST-

Greedy pruning-cutoff:−1e− 3) 249
D.45 Evolution of accuracy (CNN-Fashion MNIST-Greedy pruning)250
D.46 Evolution of loss (CNN-Fashion MNIST-Greedy pruning) . . 250
D.47 Change in accuracy vs nodes removed (CNN-CIFAR-10-

Greedy pruning-cutoff:−1e− 2) 253
D.48 Change in accuracy vs nodes removed (CNN-CIFAR-10-

Greedy pruning-cutoff:−1e− 2) 253
D.49 Change in accuracy vs nodes removed (CNN-CIFAR-10-

Greedy pruning-cutoff:−1e− 3) 254
D.50 Change in loss vs nodes removed (CNN-CIFAR-10-Greedy

pruning-cutoff:−1e− 3) . 254
D.51 Evolution of accuracy (CNN-CIFAR-10-Greedy pruning) . . 255
D.52 Evolution of loss (CNN-CIFAR-10-Greedy pruning) 255
D.53 Class accuracy (CNN-MNIST-Class) 258
D.54 Class accuracy (CNN-Fashion MNIST-Class) 261

xv

xvi

List of Tables

4.1 Accuracy versus nodes removed without improvement
(MNIST) . 38

4.2 Loss versus nodes removed without improvement (MNIST) 39
4.3 Number of nodes removed versus removal batch size (MNIST) 40
4.4 Accuracy versus nodes removed without improvement

(Fashion MNIST) . 43
4.5 Loss versus nodes removed without improvement (Fashion

MNIST) . 43
4.6 Number of nodes removed versus removal batch size (Fash-

ion MNIST) . 44
4.7 Average node importance classification for an MLP on

Fashion MNIST (training set) 48
4.8 Average node importance classification for an MLP on

Fashion MNIST (validation set) 48
4.9 Average node importance classification for an CNN on

CIFAR-10 (training set) . 49
4.10 Average node importance classification for an CNN on

CIFAR-10 (validation set) . 49
4.11 Accuracy statistics for ANN (Batch sizes/MNIST) 52
4.12 Loss statistics for ANN (Batch sizes/MNIST) 53
4.13 Accuracy statistics for ANN (Batch sizes/Fashion MNIST) . 54
4.14 Loss statistics for ANN (Batch sizes/MNIST) 55
4.15 Accuracy statistics for MLP (Batch sizes/Fashion MNIST) . 58
4.16 Loss statistics for MLP (Batch sizes/Fashion MNIST) 59
4.17 Accuracy statistics for CNN (Batch sizes/CIFAR-10) 61
4.18 Loss statistics for CNN (Batch sizes/CIFAR-10) 62
4.19 Accuracy statistics for ANN (Dropout rate/MNIST) 66
4.20 Loss statistics for ANN (Dropout rate/MNIST) 67
4.21 Accuracy statistics for MLP (Dropout rate/Fashion MNIST) 69
4.22 Loss statistics for MLP (Dropout rate/Fashion MNIST) . . . 70
4.23 Number of nodes removed for ANN (MNIST, pre-calculated

node importance on train set) 73
4.24 Number of nodes removed for ANN (MNIST, pre-calculated

node importance on validation set) 73
4.25 Number of nodes removed for MLP (Fashion MNIST, ex-

haustive pruning based on node importance on train set) . . 82

xvii

4.26 Number of nodes removed for MLP (Fashion MNIST, ex-
haustive pruning based on node importance on validation
set) . 83

4.27 Time taken to prune MLP (Fashion MNIST) 90
4.28 Accuracy statistics for CNN before and after pruning

(CIFAR-10) . 93
4.29 Loss statistics for CNN before and after pruning (CIFAR-10) 93
4.30 Comparison of accuracy statistics for ANN (Weight optimiz-

ation/ANN) . 94
4.31 Comparison of loss statistics for ANN (Weight optimiza-

tion/ANN) . 95

5.1 The loss and accuracy of each set before and after pruning
the trained VGG-16 model. It also shows the change in those
metrics after pruning. 100

5.2 Estimated number of nodes in each class and number of
nodes removed from a VGG-16 (Kvasir) 100

5.3 Change in class classification (test set) 105
5.4 Change in class classification (validation set) 105
5.5 Change in class classification (training set) 106

B.1 Number of nodes in each class (ANN-MNIST-Estimating
Node Importance-Training set) 131

B.2 Number of nodes in each class (ANN-MNIST-Estimating
Node Importance-Validation set) 131

B.3 Number of nodes in each class (ANN-Fashion MNIST-
Estimating Node Importance-Training set) 132

B.4 Number of nodes in each class (ANN-Fashion MNIST-
Estimating Node Importance-Validation set) 132

B.5 Number of nodes in each class (ANN-MNIST-Batch) 133
B.6 Average importance of each class (ANN-MNIST-Batch) . . . 133
B.7 Number of nodes in each class (ANN-Fashion MNIST-Batch) 134
B.8 Average importance of each class (ANN-Fashion MNIST-

Batch) . 134
B.9 Number of nodes in each class (ANN-MNIST-Dropout) . . . 135
B.10 Average importance of each class (ANN-MNIST-Dropout) . 135
B.11 Accuracy statistics (ANN-Fashion MNIST-Dropout) 138
B.12 Loss statistics (ANN-Fashion MNIST-Dropout) 138
B.13 Number of nodes in each class (ANN-Fashion MNIST-

Dropout) . 138
B.14 Average importance of each class (ANN-Fashion MNIST-

Dropout) . 138
B.15 Accuracy statistics (ANN-MNIST-Pre calculated pruning-

train set) . 139
B.16 Loss statistics (ANN-MNIST-Pre calculated pruning-train set) 139
B.17 Accuracy statistics (ANN-MNIST-Pre calculated pruning-

validation set) . 140

xviii

B.18 Loss statistics (ANN-MNIST-Pre calculated pruning-validation
set) . 140

B.19 Number of nodes removed statistics (ANN-Fashion MNIST-
Pre calculated pruning-train set) 143

B.20 Accuracy statistics (ANN-Fashion MNIST-Pre calculated
pruning-train set) . 143

B.21 Loss statistics (ANN-Fashion MNIST-Pre calculated pruning-
train set) . 143

B.22 Number of nodes removed statistics (ANN-Fashion MNIST-
Pre calculated pruning-validation set) 144

B.23 Accuracy statistics (ANN-Fashion MNIST-Pre calculated
pruning-validation set) . 144

B.24 Loss statistics (ANN-Fashion MNIST-Pre calculated pruning-
validation set) . 144

B.25 Number of nodes removed statistics (ANN-MNIST-Exhaustive
pruning-Training set) . 145

B.26 Accuracy statistics (ANN-MNIST-Exhaustive pruning-Training
set) . 145

B.27 Loss statistics (ANN-MNIST-Exhaustive pruning-Training set)145
B.28 Number of nodes removed statistics (ANN-MNIST-Exhaustive

pruning-Validation set) . 146
B.29 Accuracy statistics (ANN-MNIST-Exhaustive pruning-Validation

set) . 146
B.30 Loss statistics (ANN-MNIST-Exhaustive pruning-Validation

set) . 146
B.31 Number of nodes removed statistics (ANN-Fashion MNIST-

Exhaustive pruning-train set) 151
B.32 Accuracy statistics (ANN-Fashion MNIST-Exhaustive pruning-

train set) . 151
B.33 Loss statistics (ANN-Fashion MNIST-Exhaustive pruning-

train set) . 151
B.34 Number of nodes removed statistics (ANN-Fashion MNIST-

Exhaustive pruning-validation set) 152
B.35 Accuracy statistics (ANN-Fashion MNIST-Exhaustive pruning-

validation set) . 152
B.36 Loss statistics (ANN-Fashion MNIST-Exhaustive pruning-

validation set) . 152
B.37 Accuracy statistics (ANN-Fashion MNIST-Iterative weights) 153
B.38 Loss statistics (ANN-Fashion MNIST-Iterative weights) . . . 153

C.1 Number of nodes in each class (MLP (layer 1)-MNIST-
Estimating Node Importance-Training set) 155

C.2 Number of nodes in each class (MLP (layer 2)-MNIST-
Estimating Node Importance-Training set) 155

C.3 Number of nodes in each class (MLP (layer 3)-MNIST-
Estimating Node Importance-Training set) 156

C.4 Number of nodes in each class (MLP (layer 1)-MNIST-
Estimating Node Importance-Validation set) 157

xix

C.5 Number of nodes in each class (MLP (layer 2)-MNIST-
Estimating Node Importance-Validation set) 157

C.6 Number of nodes in each class (MLP (layer 3)-MNIST-
Estimating Node Importance-Validation set) 157

C.7 Number of nodes in each class (MLP (layer 1)-Fashion
MNIST-Estimating Node Importance-Training set) 158

C.8 Number of nodes in each class (MLP (layer 2)-Fashion
MNIST-Estimating Node Importance-Training set) 158

C.9 Number of nodes in each class (MLP (layer 3)-Fashion
MNIST-Estimating Node Importance-Training set) 158

C.10 Number of nodes in each class (MLP (layer 1)-Fashion
MNIST-Estimating Node Importance-Validation set) 159

C.11 Number of nodes in each class (MLP (layer 2)-Fashion
MNIST-Estimating Node Importance-Validation set) 159

C.12 Number of nodes in each class (MLP (layer 3)-Fashion
MNIST-Estimating Node Importance-Validation set) 159

C.13 Accuracy statistics (MLP-MNIST-Batch) 162
C.14 Loss statistics (MLP-MNIST-Batch) 162
C.15 Number of nodes in each class (MLP (layer 1)-MNIST-Batch) 162
C.16 Number of nodes in each class (MLP (layer 2)-MNIST-Batch) 162
C.17 Number of nodes in each class (MLP (layer 3)-MNIST-Batch) 163
C.18 Average importance of each class (MLP (layer 1)-MNIST-

Batch) . 163
C.19 Average importance of each class (MLP (layer 2)-MNIST-

Batch) . 163
C.20 Average importance of each class (MLP (layer 3)-MNIST-

Batch) . 163
C.21 Number of nodes in each class (MLP (layer 1)-Fashion

MNIST-Batch) . 164
C.22 Number of nodes in each class (MLP (layer 2)-Fashion

MNIST-Batch) . 164
C.23 Number of nodes in each class (MLP (layer 3)-Fashion

MNIST-Batch) . 164
C.24 Average importance of each class (MLP (layer 1)-Fashion

MNIST-Batch) . 164
C.25 Average importance of each class (MLP (layer 2)-Fashion

MNIST-Batch) . 165
C.26 Average importance of each class (MLP (layer 3)-Fashion

MNIST-Batch) . 165
C.27 Accuracy statistics (MLP-MNIST-Dropout) 168
C.28 Loss statistics (MLP-MNIST-Dropout) 168
C.29 Number of nodes in each class (MLP (layer 1)-MNIST-

Dropout) . 168
C.30 Number of nodes in each class (MLP (layer 2)-MNIST-

Dropout) . 168
C.31 Number of nodes in each class (MLP (layer 3)-MNIST-

Dropout) . 169

xx

C.32 Average importance of each class (MLP (layer 1)-MNIST-
Dropout) . 169

C.33 Average importance of each class (MLP (layer 2)-MNIST-
Dropout) . 169

C.34 Average importance of each class (MLP (layer 3)-MNIST-
Dropout) . 169

C.35 Number of nodes in each class (MLP (layer 1)-Fashion
MNIST-Dropout) . 170

C.36 Number of nodes in each class (MLP (layer 2)-Fashion
MNIST-Dropout) . 170

C.37 Number of nodes in each class (MLP (layer 3)-Fashion
MNIST-Dropout) . 170

C.38 Average importance of each class (MLP (layer 1)-Fashion
MNIST-Dropout) . 170

C.39 Average importance of each class (MLP (layer 2)-Fashion
MNIST-Dropout) . 171

C.40 Average importance of each class (MLP (layer 3)-Fashion
MNIST-Dropout) . 171

C.41 Number of nodes removed statistics (MLP-MNIST-Pre cal-
culated pruning-Training set) 174

C.42 Accuracy statistics (MLP-MNIST-Pre calculated pruning-
Training set) . 174

C.43 Loss statistics (MLP-MNIST-Pre calculated pruning-Training
set) . 174

C.44 Number of nodes removed statistics (MLP-MNIST-Pre cal-
culated pruning-Validation set) 175

C.45 Accuracy statistics (MLP-MNIST-Pre calculated pruning-
Validation set) . 175

C.46 Loss statistics (MLP-MNIST-Pre calculated pruning-Validation
set) . 175

C.47 Number of nodes removed statistics (MLP-Fashion MNIST-
Pre calculated pruning-Training set) 178

C.48 Accuracy statistics (MLP-Fashion MNIST-Pre calculated
pruning-Training set) . 178

C.49 Loss statistics (MLP-Fashion MNIST-Pre calculated pruning-
Training set) . 178

C.50 Number of nodes removed statistics (MLP-Fashion MNIST-
Pre calculated pruning-Validation set) 179

C.51 Accuracy statistics (MLP-Fashion MNIST-Pre calculated
pruning-Validation set) . 179

C.52 Loss statistics (MLP-Fashion MNIST-Pre calculated pruning-
Validation set) . 179

C.53 Number of nodes removed statistics (MLP-MNIST-Exhaustive
pruning-Training set) . 184

C.54 Accuracy statistics (MLP-MNIST-Exhaustive pruning-Training
set) . 184

C.55 Loss statistics (MLP-MNIST-Exhaustive pruning-Training set) 184

xxi

C.56 Number of nodes removed statistics (MLP-MNIST-Exhaustive
pruning-Validation set) . 185

C.57 Accuracy statistics (MLP-MNIST-Exhaustive pruning-Validation
set) . 185

C.58 Loss statistics (MLP-MNIST-Exhaustive pruning-Validation
set) . 185

C.59 Accuracy statistics (MLP-Fashion MNIST-Exhaustive pruning-
Training set) . 186

C.60 Loss statistics (MLP-Fashion MNIST-Exhaustive pruning-
Training set) . 186

C.61 Accuracy statistics (MLP-Fashion MNIST-Exhaustive pruning-
Validation set) . 187

C.62 Loss statistics (MLP-Fashion MNIST-Exhaustive pruning-
Validation set) . 187

C.63 Difference in number of nodes removed statistics (MLP-
MNIST-Greedy pruning-cutoff:−1e− 2) 191

C.64 Difference in number of nodes removed statistics (MLP-
MNIST-Greedy pruning-cutoff:−1e− 3) 191

C.65 Accuracy statistics (MLP-MNIST-Exhaustive pruning) 192
C.66 Loss statistics (MLP-MNIST-Greedy pruning) 192
C.67 Time taken (MLP-MNIST-Greedy pruning) 192
C.68 Difference in number of nodes removed statistics (MLP-

Fashion MNIST-Greedy pruning-cutoff:−1e− 2) 193
C.69 Difference in number of nodes removed statistics (MLP-

Fashion MNIST-Greedy pruning-cutoff:−1e− 3) 193
C.70 Accuracy statistics (MLP-Fashion MNIST-Exhaustive pruning)194
C.71 Loss statistics (MLP-Fashion MNIST-Greedy pruning) 194
C.72 Accuracy statistics (MLP-MNIST-Iterative weights) 195
C.73 Loss statistics (MLP-MNIST-Iterative weights) 195
C.74 Accuracy statistics (MLP-Fashion MNIST-Iterative weights) 196
C.75 Loss statistics (MLP-Fashion MNIST-Iterative weights) . . . 196

D.1 Number of nodes in each class (CNN (layer 1)-MNIST-
Estimating Node Importance-Training set) 197

D.2 Number of nodes in each class (CNN (layer 2)-MNIST-
Estimating Node Importance-Training set) 197

D.3 Number of nodes in each class (CNN (layer 3)-MNIST-
Estimating Node Importance-Training set) 198

D.4 Number of nodes in each class (CNN (layer 4)-MNIST-
Estimating Node Importance-Training set) 198

D.5 Number of nodes in each class (CNN (layer 5)-MNIST-
Estimating Node Importance-Training set) 198

D.6 Number of nodes in each class (CNN (layer 1)-MNIST-
Estimating Node Importance-Validation set) 199

D.7 Number of nodes in each class (CNN (layer 2)-MNIST-
Estimating Node Importance-Validation set) 199

D.8 Number of nodes in each class (CNN (layer 3)-MNIST-
Estimating Node Importance-Validation set) 199

xxii

D.9 Number of nodes in each class (CNN (layer 4)-MNIST-
Estimating Node Importance-Validation set) 200

D.10 Number of nodes in each class (CNN (layer 5)-MNIST-
Estimating Node Importance-Validation set) 200

D.11 Number of nodes in each class (CNN (layer 1)-Fashion
MNIST-Estimating Node Importance-Training set) 201

D.12 Number of nodes in each class (CNN (layer 2)-Fashion
MNIST-Estimating Node Importance-Training set) 201

D.13 Number of nodes in each class (CNN (layer 3)-Fashion
MNIST-Estimating Node Importance-Training set) 201

D.14 Number of nodes in each class (CNN (layer 4)-Fashion
MNIST-Estimating Node Importance-Training set) 202

D.15 Number of nodes in each class (CNN (layer 5)-Fashion
MNIST-Estimating Node Importance-Training set) 202

D.16 Number of nodes in each class (CNN (layer 1)-Fashion
MNIST-Estimating Node Importance-Validation set) 203

D.17 Number of nodes in each class (CNN (layer 2)-Fashion
MNIST-Estimating Node Importance-Validation set) 203

D.18 Number of nodes in each class (CNN (layer 3)-Fashion
MNIST-Estimating Node Importance-Validation set) 203

D.19 Number of nodes in each class (CNN (layer 4)-Fashion
MNIST-Estimating Node Importance-Validation set) 204

D.20 Number of nodes in each class (CNN (layer 5)-Fashion
MNIST-Estimating Node Importance-Validation set) 204

D.21 Number of nodes in each class (CNN (layer 1)-CIFAR-10-
Estimating Node Importance-Training set) 205

D.22 Number of nodes in each class (CNN (layer 2)-CIFAR-10-
Estimating Node Importance-Training set) 205

D.23 Number of nodes in each class (CNN (layer 3)-CIFAR-10-
Estimating Node Importance-Training set) 205

D.24 Number of nodes in each class (CNN (layer 4)-CIFAR-10-
Estimating Node Importance-Training set) 206

D.25 Number of nodes in each class (CNN (layer 5)-CIFAR-10-
Estimating Node Importance-Training set) 206

D.26 Number of nodes in each class (CNN (layer 1)-CIFAR-10-
Estimating Node Importance-Validation set) 207

D.27 Number of nodes in each class (CNN (layer 2)-CIFAR-10-
Estimating Node Importance-Validation set) 207

D.28 Number of nodes in each class (CNN (layer 3)-CIFAR-10-
Estimating Node Importance-Validation set) 207

D.29 Number of nodes in each class (CNN (layer 4)-CIFAR-10-
Estimating Node Importance-Validation set) 208

D.30 Number of nodes in each class (CNN (layer 5)-CIFAR-10-
Estimating Node Importance-Validation set) 208

D.31 Accuracy statistics (CNN-MNIST-Batch) 211
D.32 Loss statistics (CNN-MNIST-Batch) 211
D.33 Number of nodes in each class (CNN (layer 1)-MNIST-Batch) 211
D.34 Number of nodes in each class (CNN (layer 2)-MNIST-Batch) 211

xxiii

D.35 Number of nodes in each class (CNN (layer 3)-MNIST-Batch) 212
D.36 Number of nodes in each class (CNN (layer 4)-MNIST-Batch) 212
D.37 Number of nodes in each class (CNN (layer 5)-MNIST-Batch) 212
D.38 Average importance of each class (CNN (layer 1)-MNIST-

Batch) . 212
D.39 Average importance of each class (CNN (layer 2)-MNIST-

Batch) . 212
D.40 Average importance of each class (CNN (layer 3)-MNIST-

Batch) . 213
D.41 Average importance of each class (CNN (layer 4)-MNIST-

Batch) . 213
D.42 Average importance of each class (CNN (layer 5)-MNIST-

Batch) . 213
D.43 Accuracy statistics (CNN-Fashion MNIST-Batch) 216
D.44 Loss statistics (CNN-Fashion MNIST-Batch) 216
D.45 Number of nodes in each class (CNN (layer 1)-Fashion

MNIST-Batch) . 216
D.46 Number of nodes in each class (CNN (layer 2)-Fashion

MNIST-Batch) . 216
D.47 Number of nodes in each class (CNN (layer 3)-Fashion

MNIST-Batch) . 217
D.48 Number of nodes in each class (CNN (layer 4)-Fashion

MNIST-Batch) . 217
D.49 Number of nodes in each class (CNN (layer 5)-Fashion

MNIST-Batch) . 217
D.50 Average importance of each class (CNN (layer 1)-Fashion

MNIST-Batch) . 217
D.51 Average importance of each class (CNN (layer 2)-Fashion

MNIST-Batch) . 217
D.52 Average importance of each class (CNN (layer 3)-Fashion

MNIST-Batch) . 218
D.53 Average importance of each class (CNN (layer 4)-Fashion

MNIST-Batch) . 218
D.54 Average importance of each class (CNN (layer 5)-Fashion

MNIST-Batch) . 218
D.55 Number of nodes in each class (CNN (layer 1)-CIFAR-10-

Batch) . 219
D.56 Number of nodes in each class (CNN (layer 2)-CIFAR-10-

Batch) . 219
D.57 Number of nodes in each class (CNN (layer 3)-CIFAR-10-

Batch) . 219
D.58 Number of nodes in each class (CNN (layer 4)-CIFAR-10-

Batch) . 219
D.59 Number of nodes in each class (CNN (layer 5)-CIFAR-10-

Batch) . 220
D.60 Average importance of each class (CNN (layer 1)-CIFAR-10-

Batch) . 220

xxiv

D.61 Average importance of each class (CNN (layer 2)-CIFAR-10-
Batch) . 220

D.62 Average importance of each class (CNN (layer 3)-CIFAR-10-
Batch) . 220

D.63 Average importance of each class (CNN (layer 4)-CIFAR-10-
Batch) . 220

D.64 Average importance of each class (CNN (layer 5)-CIFAR-10-
Batch) . 221

D.65 Number of nodes removed statistics (CNN-MNIST-Pre cal-
culated pruning-Training set) 224

D.66 Accuracy statistics (CNN-MNIST-Pre calculated pruning-
Training set) . 224

D.67 Loss statistics (CNN-MNIST-Pre calculated pruning-Training
set) . 224

D.68 Number of nodes removed statistics (CNN-MNIST-Pre cal-
culated pruning-Validation set) 225

D.69 Accuracy statistics (CNN-MNIST-Pre calculated pruning-
Validation set) . 225

D.70 Loss statistics (CNN-MNIST-Pre calculated pruning-Validation
set) . 225

D.71 Number of nodes removed statistics (CNN-Fashion MNIST-
Pre calculated pruning-Training set) 228

D.72 Accuracy statistics (CNN-Fashion MNIST-Pre calculated
pruning-Training set) . 228

D.73 Loss statistics (CNN-Fashion MNIST-Pre calculated pruning-
Training set) . 228

D.74 Number of nodes removed statistics (CNN-Fashion MNIST-
Pre calculated pruning-Validation set) 229

D.75 Accuracy statistics (CNN-Fashion MNIST-Pre calculated
pruning-Validation set) . 229

D.76 Loss statistics (CNN-Fashion MNIST-Pre calculated pruning-
Validation set) . 229

D.77 Number of nodes removed statistics (CNN-CIFAR-10-Pre
calculated pruning-Training set) 232

D.78 Accuracy statistics (CNN-CIFAR-10-Pre calculated pruning-
Training set) . 232

D.79 Loss statistics (CNN-CIFAR-10-Pre calculated pruning-
Training set) . 232

D.80 Number of nodes removed statistics (CNN-CIFAR-10-Pre
calculated pruning-Validation set) 233

D.81 Accuracy statistics (CNN-CIFAR-10-Pre calculated pruning-
Validation set) . 233

D.82 Loss statistics (CNN-CIFAR-10-Pre calculated pruning-
Validation set) . 233

D.83 Number of nodes removed statistics (CNN-MNIST-Exhaustive
pruning) . 236

D.84 Accuracy statistics (CNN-MNIST-Exhaustive pruning) . . . 236
D.85 Loss statistics (CNN-MNIST-Exhaustive pruning) 236

xxv

D.86 Number of nodes removed statistics (CNN-Fashion MNIST-
Exhaustive pruning) . 239

D.87 Accuracy statistics (CNN-Fashion MNIST-Exhaustive prun-
ing) . 239

D.88 Loss statistics (CNN-Fashion MNIST-Exhaustive pruning) . 239
D.89 Number of nodes removed statistics (CNN-CIFAR-10-

Exhaustive pruning) . 242
D.90 Accuracy statistics (CNN-CIFAR-10-Exhaustive pruning) . . 242
D.91 Loss statistics (CNN-CIFAR-10-Exhaustive pruning) 242
D.92 Difference in number of nodes removed statistics (CNN-

MNIST-Greedy pruning-cutoff:−1e− 2) 246
D.93 Difference in number of nodes removed statistics (CNN-

MNIST-Greedy pruning-cutoff:−1e− 3) 246
D.94 Accuracy statistics (CNN-MNIST-Exhaustive pruning) . . . 247
D.95 Loss statistics (CNN-MNIST-Greedy pruning) 247
D.96 Time taken (CNN-MNIST-Greedy pruning) 247
D.97 Difference in number of nodes removed statistics (CNN-

Fashion MNIST-Greedy pruning-cutoff:−1e− 2) 251
D.98 Difference in number of nodes removed statistics (CNN-

Fashion MNIST-Greedy pruning-cutoff:−1e− 3) 251
D.99 Accuracy statistics (CNN-Fashion MNIST-Exhaustive prun-

ing) . 252
D.100Loss statistics (CNN-Fashion MNIST-Greedy pruning) . . . 252
D.101Time taken (CNN-Fashion MNIST-Greedy pruning) 252
D.102Difference in number of nodes removed statistics (CNN-

CIFAR-10-Greedy pruning-cutoff:−1e− 2) 256
D.103Difference in number of nodes removed statistics (CNN-

CIFAR-10-Greedy pruning-cutoff:−1e− 3) 256
D.104Accuracy statistics (CNN-CIFAR-10-Exhaustive pruning) . . 257
D.105Loss statistics (CNN-CIFAR-10-Greedy pruning) 257
D.106Time taken (CNN-CIFAR-10-Greedy pruning) 257
D.107Accuracy statistics (CNN-MNIST-Class) 259
D.108loss statistics (CNN-MNIST-Class) 259
D.109Class accuracy statistics (CNN-MNIST-Class-Before pruning) 259
D.110Class accuracy statistics (CNN-MNIST-Class-After pruning) 260
D.111Accuracy statistics (CNN-Fashion MNIST-Class) 262
D.112loss statistics (CNN-Fashion MNIST-Class) 262
D.113Class accuracy statistics (CNN-Fashion MNIST-Class-Before

pruning) . 262
D.114Class accuracy statistics (CNN-Fashion MNIST-Class-After

pruning) . 263
D.115Accuracy statistics (CNN-CIFAR-10-Class) 264
D.116loss statistics (CNN-CIFAR-10-Class) 264
D.117Class accuracy statistics (CNN-CIFAR-10-Class-Before prun-

ing) . 264
D.118Class accuracy statistics (CNN-CIFAR-10-Class-After pruning)265
D.119Accuracy statistics (CNN-MNIST-Iterative weights) 266
D.120Loss statistics (CNN-MNIST-Iterative weights) 266

xxvi

D.121Accuracy statistics (CNN-Fashion MNIST-Iterative weights) 267
D.122Loss statistics (CNN-Fashion MNIST-Iterative weights) . . . 267

xxvii

xxviii

Chapter 1

Introduction

1.1 Background and Motivation

Machine learning has increased in popularity over the past few years,
with rapid growth in the number of methods and techniques used. It
has also become much more common to see machine learning being
applied in research and industry. This is not the first time that machine
learning (or artificial intelligence) has become popular. The base of most
machine learning algorithms is the Perceptron, based on the McCulloch-
Pitts Neuron [16] and later enhanced by Rosenblatt [21] in 1958. However,
computing power back then was scarce and more expensive, both to
produce and to run, especially in terms of cooling. Indeed, aspiring
computer engineers were taught to calculate the amount of salt required
to cool the computer running their programs, to get an estimate of the
cost of running an algorithm. Another major hindrance in the early days
of computing was memory which occupied significant space for limited
capacity (at most a few Mega-Bytes (MB) rather than today’s Tera-Bytes
(TB)). Seeing that most machine learning algorithms rely on having large
amounts of data, not having an easy way to access this data digitally
proved a major hurdle. A final bottleneck was the amount of random-
access memory (RAM) available by computers. RAM is used to run
programs and store the information used by the program while running.
Back in those days, this memory did not exceed a few kilo-bits (kb).
However, looking at modern neural networks used in machine learning,
we see that they would not be able to run due to running out of memory
space. This all led to the hype built by the possibilities of machine learning
to die down.

Nowadays, with RAM reaching the TB, large-capacity storage memory
becoming physically smaller, and computing power being more readily
available at a much-reduced price, machine learning has had the oppor-
tunity to flourish and evolve. It started with the Perceptron, then be-
came Multi-layer Perceptrons or Artificial Neural Networks. Those then
branched out to different types of neural networks such as Convolutional
Neural Networks, Recurrent Neural Networks, and others. We also star-
ted to do machine learning with different methods, such as unsupervised

1

learning, with unlabelled data, or reinforcement learning where we "teach"
the computer to imitate or even surpass humans by using a reward system.

During this evolution, we kept making neural networks bigger and
more complex. This is especially true in terms of how deep (number of
hidden layers) neural networks have become. However, neural networks
reached a point where deeper neural networks performed worst than their
shallower counterparts. This, however, led to a contradiction since we
could prove mathematically that at worst, an extra layer should act as an
identity layer and therefore leave the performance of the model unchanged
rather deteriorating it. This problem was then solved by residual layers [9],
which showed that this contradiction came from layers ’forgetting’ what
was learned by previous layers.

While the problem of increasing layers in a model has been solved, we
have not heavily explored the number of nodes needed in each layer, or
how the number of nodes in a model and in each layer affects the results.
Therefore, in this thesis, we will explore how nodes affect the network and
whether all the nodes contribute to the neural network or if some of them
either have no effect or even a negative one. Moreover, we will explore how
changing the batch size or adding dropout affects the node’s importance
of the neural networks. By gaining a better understanding of the nodes,
we will be able to remove them. This could lead to improved model
performance as well as reducing waste of resources in terms of memory
or computing power.

1.2 Problem Statement

As stated at the end of the above section, our goal in this thesis is to explore
the effects of nodes in neural networks. To achieve this, we will prune
(i.e. remove progressively nodes from) our neural networks and see how
their performance changes after pruning. We will also categorize the nodes
based on their usefulness to the network. This will provide us an initial idea
of how nodes contribute to neural networks and if they do all contribute,
or if some have little or a negative impact on the model’s performance.

The question we are trying to answer in this thesis is the following;

How do the nodes in a neural network contribute to the overall
performance?

Our research question is motivated by our hypothesis that some nodes
might be redundant and, therefore, do not contribute to the performance
of the model. With this in mind, we also want to investigate how different
neural networks with different depth and layer types are affected when
pruning them. To better answer our research question, we split our work
into three objectives. These objectives will help us navigate the different
facets of our question.

• Objective 1: Exploring the effects of pruning neural networks and
developing different pruning techniques for both reproducibility and
time-consumption.

2

• Objective 2: Classifying the nodes into different classes based on how
they affect the neural network if removed.

• Objective 3: Seeing how different parameters and types of neural
networks affect the nodes impact on neural networks.

1.3 Scope and Limitations

This thesis is concerned with fully connected neural networks and
convolutional neural networks. For this exploratory investigation on node
importance of nodes in neural networks, we will only look at how a single
hyper-parameter (batch size during training) affects the node importance of
nodes and a technique applied to the layers (Dropout [26]) affect the node
importance of nodes. Limited computation power and time constraints
prevented us from exploring different hyper-parameter. In the pruning
section, we only test a decreasing number of networks as their complexity
increases. This is again due to the time it takes to prune a single network,
and at times, the lack of graphics card memory available and memory
corruption, making the testing fail halfway through. The same reasons also
led us to look into faster ways to prune the networks. Finally, we also look
at a more complex network. However, we will only do this once since the
time it takes to prune a large complex network is consequential because
we have not yet found a way to parallelize the pruning algorithm, and the
limited time available.

For the scope, we consider four different datasets, MNIST [13], Fashion
MNIST [28], CIFAR-10 [12], and Kvasir [19]. The first three were chosen
because they are popular datasets when exploring neural networks and
each is more complex than the previous. The last dataset is employed
for a more real-world example investigation, when we also consider a
substantially more complex neural network (a VGG-16 model [24]).

1.4 Research Method

While there are various ways to conduct research, we followed the method
developed in 1989 by a task force assembled by the Association for
Computing Machinery Education Board. Their task was to define the core
ideas of computer science and computer engineering in a detailed report.
Its article "Computing as a discipline" [2] splits the discipline into three
paradigms:

1. theory;

2. abstraction;

3. design.

This thesis’s research is conducted in compliance with this methodology
and we now describe how we adhere to each paradigm.

3

1.4.1 Theory

The theory paradigm is based on mathematics. It consists of four steps:

1. characterize objects of study (definition);

2. hypothesize possible relationships among them (theorem);

3. determine whether the relationships are true (proof);

4. interpret results.

These four steps help us in the development of a coherent, valid theory.
We follow this paradigm by analyzing how different methods of node

pruning affect the reduction in size and performance of the pruned neural
networks. We also measure how changing certain parameters changes
the importance of nodes in neural networks. Specifically, the presence of
dropout and the size of the batch size during training. Finally, we analyze
how pruning affects differently various types of neural networks.

1.4.2 Abstraction

The abstraction paradigm is based on the experimental scientific method
and consists in four stages:

1. form a hypothesis;

2. construct a model and make a prediction;

3. design an experiment and collect data;

4. analyze results.

These four stages help us in the investigation of a phenomenon.
Our experiments follow this paradigm. We start by hypothesizing that

removing nodes from a network can affect it. We then test this out, based
on the results obtain, we refine this hypothesis, and test out new corollaries.
Finally, we take all our results, form a more refined hypothesis and test it
out on a more practical experiment to see if the hypothesis holds in the
practical realm.

1.4.3 Design

The design paradigm is rooted in engineering. It consists of four steps:

1. state requirements;

2. state specifications;

3. design and implement the system;

4. test the system.

4

These four steps describe the construction of a system to solve a given
problem.

We follow this paradigm by constructing different pruning algorithms.
We start by pruning randomly before turning to a metric to decide whether
or not to prune a node. For each pruning algorithm, we specify what is
needed (be the number of nodes to prune or a method to select which node
to prune) and evaluate the algorithm before either refining it or using it as
our final algorithm.

1.5 Main Contributions

This thesis explores how nodes and their removal affect neural networks.
To guide our exploration, we split our research questions into three
different objectives, couched as follows:

Objective 1: Exploring the effects of pruning neural networks and developing
different pruning techniques for both reproducibility and time-consumption.

Through the thesis, we will explore different facets of this objective.
We will go from a random pruning technique (which is hardly re-
producible) to one that works based on unchanging node paramet-
ers and metrics but is rather time-consuming. Finally we settle for a
technique that keeps the reproducibility of the latter but reduces its
time-consumption by at least a factor of two. We will also investigate
how different parameters are affected by pruning and will be able to
conclude that pruning a model has a noticeable impact on neural net-
works by generally reducing the loss, or in some cases, not changing
it or slightly improving it.

Objective 2: Classifying the nodes into different classes based on how they affect
the neural network if removed.

To this end we will develop a metric, called “node importance”, to
classify these nodes based on their effect on the loss of the model. The
node importance is as the change in the loss of the model generated
by this removal of a node. If the loss of the model increases, then the
node is classified as an important node. If the loss does not change
or the change is insignificant, then the node is considered to be a zero
node. Finally, if the removal of the node decreases the loss, then it
falls in the worse node category. To avoid pruning nodes randomly,
we iteratively remove worse and zero nodes from the network till all
the nodes left are important. We will do this both in an “exhaustive”
fashion (finding the node with the highest node importance value
and removing it) and in a “greedy” fashion (removing the first zero
or worse node we come across).

Objective 3: Seeing how different parameters and types of neural networks affect
the nodes impact on neural networks.

5

This thesis will use three different types of neural networks to explore
their reaction to pruning. We will also modify one hyper-parameter
(batch size during training) and see how the inclusion of dropout to
our purely fully connected networks affects performance.

We will be able to achieve our three objectives and form hypotheses
on how pruning affects neural networks. A metric based exclusively
on the loss of the model, arguably the most important metric of model
performance, provides a way to evaluate whether an individual node
can impact the model positively (important nodes) and negatively (worse
nodes). This will lead us to the hypothesis that some nodes are redundant
or even at times unhelpful for the model overall. To be able to strengthen
this hypothesis further, we should continue exploring these effects by
broadening our metric to how nodes impact other model metrics such as
accuracy and precision, etc. Further, looking at the individual effects of
nodes is a good starting point in giving us intuition on the impact of nodes
on the model. However, looking at how one node impacts another node,
would help us better understand how nodes interact with each other and
ultimately how these interactions impact the neural network as a whole.

This thesis we will show that pruning frequently has a positive effect.
In most cases, the model loss will diminish and the accuracy will either
stay similar or will increase slightly. Even though the model loss will not
change much for the larger network, we will be able to significantly reduce
the size of our network (reduction in excess of 35% in the number of filters
and nodes). This in itself is a positive since using a much smaller network
will require less memory and computation. This will also lead us to a
new hypothesis where a network, through pruning, could be overfitted
to a different dataset from the one it was trained on. Further researching
this new path could lead us to a better understanding of neural networks.
Moreover, by logging the evolution of the model loss through the pruning
process, we will see that the loss of our model did start by decreasing before
increasing due to overfitting. This will help us ascertain our views that not
all nodes in a network directly benefit it.

Our thesis will start to answer our research question on how nodes
contribute to the overall performance of neural networks. As mentioned
in the two previous paragraphs, we will see and hypothesize some of the
effects of nodes on neural networks. We will also show that removing
nodes frequently improve our models. These experiments have open new
paths into better understanding neural networks and specifically their
base element, the node. Continuing the exploration of these previously
unknown new paths could lead us to better answer our research question
and truly understand the impact of nodes on neural networks.

The code for this thesis can be found at https://github.com/lgcharpe/
Masters (MIT License).

1.6 Thesis Outline

The rest of this thesis is structured as follows:

6

https://github.com/lgcharpe/Masters
https://github.com/lgcharpe/Masters

• chapter 2: Background: We will provide background knowledge on
the techniques and methods employed in this thesis.

• chapter 3: Methodology: We will explain our methodology. We will
describe the three different neural networks we will use. We will then
describe the main metric, node important, employed to gauge the
node’s usefulness. After that, we will explain the different ways we
prune our networks. From randomly pruning the networks to using
the node importance to decide which nodes to remove. Finally, we
will describe all the algorithms we programmed to prune networks
and estimate the node importance.

• chapter 4: Exploring node pruning and node importance in simple
neural networks: We will explore how we estimate the node
importance and we will see how two different hyper-parameters
affect it. We will also evaluate different pruning techniques and their
effectiveness at ameliorating the performance of networks. Finally,
we will try to use node importance to improve initial conditions. In
section 4.1, we will prune the networks randomly and analyze how
effective it is. In section 3.2, we will introduce our node importance
metric and classify nodes into three different importance categories.
In section 4.3 and section 4.4 we will analyze how changing the
batch size during training and adding dropout to the fully connected
networks, changes the node importance of the neural networks. In
the section 4.5, section 4.6, and section 4.7, we will test pruning our
networks based on the node importance. We will start by pruning
the networks based on pre-calculated node importance. We will then
move to pruning iteratively, calculating the node importance of the
nodes, removing a node, and restarting till the networks are fully
pruned. Finally, we will suggest another technique to prune networks
similar to the previous one but has for objective to be faster than
the previous one. In all the sections we will also explore whether
pruning on the validation set instead of the training set makes a
difference. In section 4.8, we will look at how pruning affects the
class accuracy of the networks. We will also analyze how it changes
the regular accuracy and loss. In section 4.9, we will attempt to use
node importance to improve the initial weights before training.

• chapter 5: Case study: Reducing a VGG-16 model trained on the
Kvasir dataset: The techniques developed in the previous chapter are
used on a more complex neural network (VGG-16) trained on a more
complex dataset (Kvasir) to estimate the node importance and prune
the network. We will then evaluate how effective the node pruning is
and how it affects accuracy, class accuracy, and loss.

• chapter 6: Conclusion: We will sum up all of our results and draw
conclusions from them. We will also suggest topics of interest for
future research.

7

8

Chapter 2

Background

2.1 Machine Learning

In this chapter, we will give some background to machine learning tech-
niques used nowadays and more specifically, techniques used in this thesis.
For this reason, we will focus on supervised learning, specifically multi-
layer perceptron, and convolutional neural networks. These techniques
have become very popular in both research and applications to real-world
problems.

2.1.1 Supervised Learning

Supervised learning is used in a wide area of applications, from image
recognition to text translation to stock predictions. To be able to do
supervised learning, we need labeled data. We need the labels to be able to
tune our algorithms to do its specified task. This can be loosely paralleled
to teaching kids what an object is or how a word is pronounced. We let the
algorithm tell us what it thinks the data is. If it is wrong, we update the
weights in the direction of the correct label, while if it is correct, we do not
change any weights. We do this till it converges or starts learning the noise
of the data. Some examples of supervised learning are linear regression,
logistic regression, and neural networks. In this project, we will only look
at supervised learning, specifically neural networks.

2.1.2 Unsupervised Learning

Unsupervised learning is commonly used to separate data into clusters.
Contrarily to supervised learning, the data fed to an unsupervised
algorithm is not labeled. Therefore, we are not able to judge the
performance of the model with respect to ground truth. Nonetheless,
unsupervised learning is still very useful. Once the machine cluster
the data into different groups, we can analyze these groups and try to
determine similarities between items in the group. This is possible because
these algorithms usually cluster data by how close they are to each other
(where the distance between the data points is determined by a pre-defined
metric).

9

2.2 Artificial Neural Networks

Artificial Neural Networks, also called multi-layer perceptrons, are the
simplest form of neural networks. They contain one or more hidden layers
of perceptrons which are all fully connected in between layers. This was the
first type of neural network used to do supervised machine learning and is
an extension of linear/logistic regression since they are neural networks
with no hidden layers. These computational models were inspired by
the neural networks found in the human brain. However, since their
introduction, they have diverged from their biological roots and have
become a staple in the search for optimizing machine learning results.

Three important features strongly affect the architecture of ANN. The
two first are the number of hidden layers and the number of nodes in each
of these layers. These, when increased, generally improve the performance
of the model but also significantly increase computational resource usage
both in the form of computing time and hardware requirements. The
last feature to highly affect the architecture of ANNs is the activation
function applied to each layer. It is used to introduce non-linearity to the
model. If the activation functions were linear then we would in essence be
performing an over-engineered linear regression since the layers could all
be collapsed into a single layer. Therefore having the possibility for non-
linearity will help us solve problems with non-linear decision boundaries
that are otherwise unsolvable for a linear model.

ANNs were more common in the past being used for every type
of application. However, we have since created more advanced types
of neural networks to solve different tasks. For images, we now
use convolutional neural networks, while natural language processing
frequently makes use of recurrent neural networks.

2.2.1 Perceptron

The base element of an ANN is the perceptron. The perceptron is inspired
by the McCulloch-Pitts Neuron [16], which is a simplified version of the
human neuron. A M-P neuron takes inputs (x1, x2, ..., xn) that are then
summed up. If the sum is bigger than a threshold, then the neuron ’fires’
(outputs one) otherwise the neuron outputs zero. The perceptron has a
few differences from an M-P neuron. First proposed by Rosenblatt [21], a
perceptron works by taking inputs (x1, x2, ..., xn) multiplying them by set of
weights (w1, w2, ..., wn) and then summing them up. As for the MP neuron,
if the sum is bigger than a threshold, then the neuron ’fires’ (outputs one)
otherwise the neuron outputs zero. This is also shown in Figure 2.1.

f =

{
0 if ∑n

i=0 wixi ≤ 0
1 if ∑n

i=0 wixi > 0
(2.1)

The identity function was replaced by different functions (named
activation functions) in more recent years. Nowadays there is a wide range
of different activation functions used in neural networks. The ones used in

10

∑

x1

x2

xn

w1

w2

wn

y ∈ {0, 1}

Figure 2.1: Perceptron

this paper are described in subsection 2.4.5. A bias term b was also added
to the sum making Equation 2.1 become Equation 2.2.

f =

{
0 if ∑n

i=0 wixi + b ≤ 0
1 if ∑n

i=0 wixi + b > 0
(2.2)

While excitement for the uses of the perceptron started high, they
diminished with Minsky and Papert’s paper [17] which showed that while
the perceptron could replicate linearly separable behaviors such as AND
and OR. If the behavior was not linearly separable, such as XOR, no amount
of tuning could make a perceptron mimic it.

2.2.2 Multilayer Perceptron

The solution to the non-linearly separable problem (such as XOR) was
to have a layer of perceptron between the inputs and the outputs. This
layer became a hidden layer where every perceptron (now called a hidden
node) had a bias and took all inputs in. They then all contributed to
the output. However, each hidden node’s contribution was weighted,
with the weights being tuned during training in a similar fashion as the
weights applied to the input nodes. This is also referred to as a feed-
forward architecture, where each previous layer contributes to the next
layer. A visual representation can be seen in Figure 2.2. By having
multiple perceptrons together, we approximate any function as proven by
the universal approximation theorem [3]. If we look at the connections
between each layer, we can see that each node, whether it be a hidden,
input, or output node, is fully connected to all the nodes in the previous
and next layer when they exist. This is referred to as fully connected layers
or dense layers.

2.2.3 Training a Neural Network

As mentioned in the two previous sections, the outputs passed by either the
input nodes or hidden nodes are weighted. These weights have to be finely-
tuned for the model to be performant. This procedure of finely-tuning the

11

Figure 2.2: A multilayer perceptron with 5 input nodes and a hidden layer
of 3 nodes.

weights of the model is known as training. A general explanation of how
training is performed for each learning type is presented in section 2.1.
Since this thesis focuses on supervised learning, we will describe more
carefully its training procedure in this section. A mentioned before the
main idea is to train our model using labeled data. This can be paralleled to
how humans learn, however, our model will require a substantial amount
of labeled data to perform similarly to humans.

The training of a model consists of three main components. The first
is a loss function. Once we have obtained an output from our model, for
a given input, we need to compare it to the ground troop. To be able to
objectively compare them we need a function that compares our model’s
output to the ground truth. This function is called the loss function (also
referred to as error function or cost function). Now that we can compare
our model’s output to the ground truth, we need to be able to pass those
errors to the weights of the model. By passing the errors to the weights of
the model, they will be able to learn from them and hopefully recognize
patterns in the data such that when it encounters similar inputs it will be
able to produce the correct output.

The method to pass the errors to the weights is our second training
component and is called backpropagation [22], where the gradients of the
loss function with respect to each weight are passed back to each layer.
Since, the gradients dependent both on the loss function and weights, as
we go back in the layers, we need to apply a series of chain rules since
the layers learn both from the loss function and the layers that succeed

12

it. To avoid calculating gradients multiple times, we save the gradient
calculations of a layer before moving to the next.

The final training component ties in directly with the backpropagation
method since it determines how we apply the gradients to the weights such
that they can learn from the ground truth. For this, we use an optimizer.
The most basic optimizer used is gradient descent where we apply the
calculated gradients to the weights. To not move the weights by too large
of a margin, we usually multiply the gradients by a learning rate. While
this is the simplest optimizer, it is not frequently used. In subsection 2.4.1,
we describe the optimizers used in this thesis.

With these components, we can train our models to perform correctly
on labeled data. The training procedure is performed a given number
of times, where each time we complete training on the whole dataset
being called an epoch. The parameters used in the optimizer, such as
the learning rate, the optimizer used, the maximum number of epochs of
training to do, and other parameters that can be altered are referred to as
hyper-parameter. Fine-tuning these parameters is also important to achieve
highly performant models. For example, if the learning rate is high, we
might train faster but we run the risk of overshooting the global minimum
and therefore not be able to train the model to its full potential. On the
other hand, a learning rate that is too small risks getting stuck in a local
minimum or taking very long to converge.

A final note on training the neural networks is how we prepare our
data. To make sure that our neural network is not fitting the noise of the
data we have instead of learning the general patterns of the data, we split
our data into two or three different sets:

1. Training set: This is usually the largest set and the one we use to train
the data. This is the set that the model learns from.

2. Test set: This set is unseen by the model, till the very end, where we
use it to test our model performance. This set will tell us if our final
model understands the general underlying pattern in the data or if it
learns background noise from the training set.

3. Validation set (optional): This set is usually found during the
training set, it is used to validate whether the model is learning the
general pattern or if it overfitting (learning the noise of the training
set). If the loss on this set starts increasing while the loss on the
training set decreases, then we are overfitting the model. In other
words, the larger the difference between the loss of the validation
and training set is, the more overfitted the model is.

Once we have separated our data into these two or three sets, then we are
ready to start training our models.

13

2.3 Convolutional Neural Network

As mentioned in the previous section, MLPs have become less common
depending on the problem needed to be solved by the machine. This
is especially true for problems involving images. With all the layers in
an MLP being fully connected, as the number of inputs increases the
parameter space rapidly increases. This causes the search for the global
minima of the loss function to become increasingly complex. This is called
the curse of dimensionality [1].

Another weakness of MLPs is that they do not take into account the
spatial structure of the input images directly. Since there is no sense of
distance between nodes, whether a pixel is close to another or they are
far apart, they will be treated similarly. Since images usually contain
useful spatial information, and having a notion of those helps greatly in
classifying an image. Therefore, not being able to learn from the spatial
structure hinders an MLP greatly.

Figure 2.3: The typical structure of a CNN1.

To solve these weaknesses, a new type of neural network was
developed, a Convolutional Neural Network. Similarly to an MLP, a CNN
is a feed-forward network, however, instead of all being fully connected
between layers, it is instead locally connected between some layers. In
other words, instead of a node in a hidden being connected to all the nodes
in the previous layer, it is only connected to a small subset of nodes. By
doing this, we greatly reduce the parameter space of the network, even if
we have a deeper network. This also solves the problem of distance since
the nodes only depend on nodes that are near each other in the previous
layer.

The hidden layers of a CNN can be separated into two parts. The first is
a series of convolutional and pooling layers (described in the next section).
These layers take advantage of local connectivity and share weights to
both reduce the total parameter space and extract spatial features from the
images. The next part is a series of fully connected layers to classify the
extracted spatial features and images. This is shown in Figure 2.3.

1Credit goes to author Mathworks.com: https://www.mathworks.com/solutions/
deep-learning/convolutional-neural-network.html

14

https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html

2.3.1 Convolutional Layers

Convolutional layers are at the heart of convolutional neural networks. Not
only do they do most of the work, but they are also the main reason CNNs
are so effective on image data. The idea for these layers comes from image
analysis, specifically, convolutions, such as the Sobel operator [25] used for
edge detection or Gaussian blur, where a Gaussian function is applied as a
filter to an image, used to smooth images, where we could extract features
from images that help us classify.

The basic functioning of a convolutional layer is very similar to
convolutions. We have a filter, usually of small square dimensions such
as 3 × 3 × D or 5 × 5 × D (where D represents the number of channels
(depth) the image contains, for example, RGB images have three channels;
R, G, and B, while grayscale images only have one channel), we then slide
this filter across the whole image, this gives us a new 2-dimensional image.
The sliding consists of an element-wise multiplication of the values in the
filter with the image values the filter is currently covering. Figure 2.4 gives
a visual representation of a convolution. However, instead of defining the
convolution function before, convolutional layers start with a set of filters
with random weights that are then fine-tuned by training those weights
with the ground truth label of the data.

Figure 2.4: A convolution with a 3 by 3 filter2.

Another difference to normal convolutions is that in convolutional
layers, we use multiple filters for each layer. Once each of these
convolutions is executed the resulting two-dimensional images are stacked
together to make a three-dimensional image with the number of filters
being the depth of the image. This is visually represented by Figure 2.5.

Using these convolutional layer provides two big advantages:

1. Local Connectivity

2Credit goes to author nVidia: https://blogs.nvidia.com/blog/2018/09/05/
whats-the-difference-between-a-cnn-and-an-rnn/

3Credit goes to author Brilliant.org: https://brilliant.org/wiki/
convolutional-neural-network/

15

https://blogs.nvidia.com/blog/2018/09/05/whats-the-difference-between-a-cnn-and-an-rnn/
https://blogs.nvidia.com/blog/2018/09/05/whats-the-difference-between-a-cnn-and-an-rnn/
https://brilliant.org/wiki/convolutional-neural-network/
https://brilliant.org/wiki/convolutional-neural-network/

Figure 2.5: A convolutional filter from a convolutional layer gives one of
the depth layer of the output layer3.

2. Parameter Sharing

As mentioned before, when all nodes are connected, we end up having
no explicit distinction between nodes that are close or far spatially. This
is a problem especially in images where neighboring pixels unusually
share similar features. Further, by using local connectivity instead of full
connectivity, we dramatically reduce the number of total connections and
therefore parameters in the model. This both reduces our risk of running
into high-dimensionality problems and increase our training speed.

Parameter sharing is another big positive to using convolutional layers.
This again reduces the total number of parameters. By sharing parameters
we assume that a particular feature found in one place can also be found
in different parts of the image. Both of the advantages together, help
the network classify images into the same class even if the image is
manipulated (shifted, rotated, etc.). With the help of local connections
and shared parameters, the positioning, rotation, or even the color of an
object/animal does not influence the final classification as much.

In practice to create these convolutional layers we need to set four
parameters:

1. Number of filters (K);

2. Filter dimensions (F) (in terms of width and length since depth is
always equal to the depth of the image);

3. Stride (S): the number of pixels moved between each convolution
calculation. In other words, if we have a stride of one, we slide our
filter one pixel at a time, while a stride of two skips every other pixel.

4. Amount of zero padding (P): the number of zeros to add to each
direction (width/length). By zero padding, we can decide on the

16

output image size.

Once we have these four parameters, then assuming that our initial
image has dimensions W1 × H1 × D1. Our output image will be of
dimensions:

• W2 = W1−F+2P
S + 1

• H2 = H1−F+2P
S + 1

• D2 = K

2.3.2 Pooling Layers

In addition to the convolutional layer, CNNs commonly also include
pooling layers. These have for function to reduce both the spatial size of
the outputs and reducing the total number of parameters. This speeds
computation and helps us control overfitting. Usually, we follow either
a convolutional layer or a series (normally no longer than three) of
convolutional layers by a pooling layer. The most common type of pooling
layer is a max-pooling layer of size two and stride two. A max-pooling
layer returns the maximum of the values considered in the window.
Figure 2.6 shows how a pooling layer works, and Figure 2.7 shows how
the max pooling operation works.

Figure 2.6: A pooling layer of size 2 by 24.

4Credit goes to author CS231n: https://cs231n.github.io/convolutional-networks/

17

https://cs231n.github.io/convolutional-networks/

Figure 2.7: A max pooling operation of size 2 by 24.

2.4 Neural Network Training Optimization

As mentioned in subsection 2.2.3, adjusting hyper-parameters is one way
to optimize the training procedure for neural networks. However, this is
not the only technique, we can also optimize our weight initialization, or
modify both the feed-forward and backpropagation algorithms.

2.4.1 Optimizers

As mentioned previously, while gradient descent is the simplest optimizer
techniques, it is rarely used. For machine learning, more refined optimizers
are usually used.

Stochastic Gradient Descent

A variation of gradient stochastic gradient descent. The basic idea for this
method comes from the Robbins-Monro algorithm [20]. Instead of doing
gradient descent on the whole dataset, we do gradient descent by batches.
In other words, during training, we shuffle and divide the training set into
batches of user-defined sizes. We then feed-forward a batch before doing
backpropagation on that batch. An epoch, in this case, represents multiple
feed-forward and backpropagation passes till the whole training set has
been passed to the model. By splitting our dataset into multiple batches
we reduce the computational burden for each backpropagation iteration.
We also increase our chances of exiting a local minimum since we have
introduced some randomness to the training process. Finally, with the
increased updates per epoch, we end up converging faster than when using
gradient descent. A paper by Le Cunn et al [14] showed that stochastic
gradient descent is a standard optimizer when training neural networks.

18

Adam: Adaptive Moment Estimation

Unlike stochastic gradient descent which has a single learning rate for
all weight updates, Adam has a learning rate for each weight of the
network. Furthermore, these learning rates are adapted during training.
Adam was described and created by Kingma and Ba in 2015 [11]. It
combines the advantages of two previous optimizers, RMSProp [10] a
method that improves performance on noisy data and online problems,
and AdaGrad [4] which has a learning rate for each weight, especially
useful for problems with sparse gradients. To do this Adam adapts its
learning rates based on both the first moment (the mean) and the average
of the second moment (the uncentered variance) of the gradients. To do
this Adam has four parameters; α representing the learning rate, β1 ∈ [0, 1)
representing the exponential decay rate of the first moment, β2 ∈ [0, 1)
representing the exponential decay rate of the average of the second
moments, and ε which is used to ensure that there is no division by zero.

The update procedure for the Adam algorithm is as follows [11]:

gt = ∇θ ft(θt−1) (Gradients of the loss function)
mt = β1mt−1 + (1− β1)gt (Update of biased first moment estimate)

vt = β2vt−1 + (1− β2)g2
t (Update of biased second moment estimate)

m̂t = mt/(1− βt
1) (Bias-corrected first moment estimate)

v̂t = vt/(1− βt
2) (Bias-corrected second moment estimate)

θt = θt−1 − αm̂t/(
√

v̂t + ε) (Parameter update)

where βt
1 and βt

2 denote β1 and β2 to the power t and θt represents the loss
function at iteration t.

By only using the gradients, the method is computationally efficient
and requires little memory. This can be seen in Figure 2.8. Good default
values for the Adam parameters are 0.001 for the learning rate, 0.9 for β1,
0.999 for β2 and 1e−8 for ε. We initialize the first and second moments to be
zero.

2.4.2 Weight Initialization

Weight initialization is a very important factor in determining how well our
network will learn. To see this, we will consider three different scenarios:

1. Initializing all the weights to zero: This will lead our model to be the
same as a linear model. This is because the derivative with respect to
the loss will the same for all the weights, meaning that the weights
will always have the same values.

2. Initializing the weights to arbitrarily small values: This is especially
a problem in deep neural networks since small weights will lead to
gradients becoming smaller and smaller. Therefore the first layers of

5Credit goes to author Diederik Kingma and Jimmy Lei Ba: https://arxiv.org/pdf/1412.
6980.pdf

19

https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf

Figure 2.8: Comparison of the efficiency of the Adam optimizer versus
other optimizers5

the model will only slowly improve if at all. This problem is called
vanishing gradients.

3. Initializing the weights to arbitrarily large values: This leads to
the opposite problem to the previous scenario, where the gradient
becomes larger and larger to the point where there is a possibility of
them becoming too big for the computer to assign a numerical value.
This is called exploding gradients.

To solve all these problems, Glorot, and Bengio [5] came up with several
initialization schemes. The one used in this thesis is called glorot uniform
initialization. This initialization scheme uses the number of incoming
nodes and the number of outgoing nodes to define a set from which the
weights are uniformly initialized. Mathematically this comes to:

W ∈ U (−

√
6

nin + nout
,

√
6

nin + nout
)

20

2.4.3 Training Batch Size

As seen in subsection 2.4.1 while training our models, we split our models
into batches. The sizes of these batches are considered a hyper-parameter
that can be optimized to better fit our model to the data. If we use a
batch size, then we introduce too much randomness which might lead the
model to take too long to train or in the worst cases not converge. On the
other hand, if it is too large then we risk getting stuck in a local minimum.
Therefore finding the right balance is important to achieve the best results
for our model.

2.4.4 Dropout

Instead of affecting the initial weights or the hyper-parameters, we could
modify the training procedure itself. If during training we decided to
consider only a subset of the nodes of a particular layer, then we might
be able to reduce the co-adaption problem that happens in fully-connected
layers. This is when multiple nodes in a layer extract the same features,
this typically occurs when nodes have very similar weights. By only
considering a different subset of the nodes at each training iteration, we
try to make the nodes in the network learn more about the data instead of
trying to correct errors from previous layers. This method is called Dropout
and was developed by Hinton, et al [10]. Explicitly, for a given hidden
layer, we define a probability that a node be dropped or not. Then to make
sure that mean of the nodes is the same whether nodes are dropped or not
we multiply the values of the nodes by 1

1−pdrop
.

2.4.5 Activation functions

A final way to optimize a neural network is to change the activation
functions used in the hidden layers. In this thesis, we only use the Rectified
Linear Unit (ReLU) and softmax functions in our models.

Rectified Linear Unit

The ReLU function is the most commonly used activation function in
modern machine learning models. This function was first introduced by
Hahnloser et al. in 2000 [7] before being shown, in 2011, to train deeper
neural network by Glorot et al. [6]. The ReLU function is the identity
function for all positive values and zero otherwise. Mathematically:

f (x) =

{
x if x ≥ 0
0 else

This function has a few advantages, it reduces computations since it
either does not change the variable or sets it to zero. Also by having a
constant gradient of one, it better avoids the vanishing gradient problem.
Finally, it leads to sparser models since all nodes with values below zero,

21

do not contribute to the model. This however can lead to nodes ’dying’
since a node could output zero for all inputs which means that it will never
be able to learn.

Softmax

Once we have passed the input through all the hidden layers, we want to
represent our outputs in such a way as to be comparable to our ground
truths, which are usually vectors of zeros with a one for the position of the
class of the image. Therefore we use the softmax function on the output
layer. This makes sure that the output value for each class is between zero
and one and that the sum of the outputs equals one. Mathematically the
softmax function comes out to:

θ(z)i =
ezi

∑K
j=0 ezj

for i = 1, . . . , K and z = {z1, . . . , zK} ∈ RK

By doing this we ensure that all the values are between zero and one
and that they add up to one.

2.5 Network Pruning

The main focus of our thesis is getting a deeper understanding of how
nodes affect the neural network. To do this, we prune our networks and see
how the model reacts to it by assessing the change in performance. While
this is relatively unexplored, network pruning has been done. This can be
seen in [18] and [8]. However, the goal in these papers is not as much to
understand the roles of nodes but to find a method to compress the model
to make them more resource-efficient. As such, they employ a series of
network pruning followed by re-training of the model, while in this thesis,
we only prune without re-training. Furthermore, we use a stricter metric
to prune our networks. In [18], the metric we used is referred to as oracle-
loss. While it is explored quickly, it is considered too costly to compute.
This leads to different methods to estimate the impact of nodes to be used.
While this is more computationally efficient, it leads to slightly less accurate
results when trying to determine how nodes affect networks. Therefore, we
will stick to a stricter metric since we want to better understand the impact
of nodes on the network.

2.6 Datasets

In this thesis, we consider four different datasets. The first three, MNIST,
Fashion MNIST, and CIFAR-10 are simpler and cleaner image datasets that
are often used to experiment with new techniques since they have good
baselines to be compared to. In this thesis, we use these datasets to explore
our methods and their effectiveness. The final dataset, Kvasir, is used to
simulate the real-world performance of our methods.

22

2.6.1 MNIST

The MNIST (Modified National Institute of Standards and Technology)
dataset [13] is a collection of black and white images of hand-written digits.
The dataset contains 60,000 training images and 10,000 test images. Each
image is of dimension 28 by 28. Each image is labeled into one of ten
classes. Those classes are the digits zero to nine. Figure 2.9 depicts a few
images from the MNIST dataset

Figure 2.9: Example images from the MNIST dataset6

2.6.2 Fashion MNIST

The Fashion MNIST dataset [28] is similar to the MNIST dataset wherein
there are 60,000 training images and 10,000 test images, each of these
images are black and white and have dimensions 28 by 28. However,
instead of being images of hand-written digits, they are images of ten
different categories of fashion items. The ten categories are as follow:

• Class 0: T-shirt/top

• Class 1: Trouser

• Class 2: Pullover

• Class 3: Dress

• Class 4: Coat

• Class 5: Sandal

• Class 6: Shirt
6Credit goes to author Josef Steppan: https://en.wikipedia.org/wiki/MNIST_database

23

https://en.wikipedia.org/wiki/MNIST_database

• Class 7: Sneaker

• Class 8: Bag

• Class 9: Ankle boot

Figure 2.10 depicts some images from the Fashion MNIST dataset.

Figure 2.10: Example images from the Fashion MNIST dataset7

2.6.3 CIFAR-10

The CIFAR-10 (Canadian Institute For Advanced Research) dataset [12]
also contains 60,000 training images and 10,000 test images. However, these
images are RGB (in color) and have dimensions 32 by 32. They represent
ten different categories of objects and animals. These ten categories are as
follow:

Figure 2.11 shows ten random images of each class, and the ten class
names.

7Credit goes to author Tensorflow.org: https://www.tensorflow.org/tutorials/keras/
classification

8Credit goes to author Alex Krizhevsky: https://www.cs.toronto.edu/~kriz/cifar.html

24

https://www.tensorflow.org/tutorials/keras/classification
https://www.tensorflow.org/tutorials/keras/classification
https://www.cs.toronto.edu/~kriz/cifar.html

Figure 2.11: Example images from the CIFAR-10 dataset8

2.6.4 Kvasir

Unlike the three previous datasets, the Kvasir dataset [19] is used both for
research and for real-world applications. The dataset consists of images,
annotated, and verified by medical doctors. These images include several
classes showing anatomical landmarks, pathological findings, or polyp
removals in the GI tract. 8,000 images representing eight classes, each
class containing 1,000 images. Each of these images is in RGB and have
dimensions going from 720 by 576 to 1920 by 1072. The eight classes
represented by these images are the following:

• Class Dyed and Lifted Polyps (dlp): where the polyps have been
injected and lifted to make it easier to correctly remove it.

• Class Dyed Recesection Margins (drm): where the image shows the
site of a removed polyp for a doctor to determine the completeness of
the polyp removal.

• Class Esophagitis (eso): an inflammation of the esophagus visible as
a break in the esophageal mucosa in relation to the Z-line.

• Class Cecum (nce): the most proximal part of the large intestine.
Reaching it indicates a complete colonoscopy.

• Class Pylorus (npy): the area around the opening from the stomach
into the first part of the small intestine.

25

• Class Z-line (nzl), marks the transition site between the esophagus
and the stomach.

• Class Polyps (pol): lesions within the bowel detectable as mucosal
outgrows.

• Class Ulcerative Colitis (uco): a chronic inflammatory disease
affecting the large bowel.

The Dyed and Lifted Polyps and Dyed Recesection Margins classes are
examples of polyp removals. The classes Cecum, Pylorus, and Z-line are
examples of anatomical landmarks. The n prefix in the shortened class
names indicates that the image represents a normal or healthy anatomical
landmark. Finally, the classes Esophagitis, Polyps, and Ulcerative Colitis
represent pathological findings. Figure 2.12 shows an example of each class
in the Kvasir dataset.

Figure 2.12: An example of each class in the Kvasir dataset9

2.7 VGG-16

In this thesis, we will first use simple CNN and MLP architectures with the
MNIST, Fashion MNIST, and CIFAR-10 datasets. However, we will also
test our methods on a more complex and used model called VGG-16. The
VGG-16 model was first proposed by Simonyan and Zisserman [24] for the
ImageNet Large Scale Visual Recognition Challenge [23] in 2014. It took the
first position to classify images in 200 classes and second position to classify
images in 1,000 classes. A visual representation of the VGG-16 architecture
can be found in Figure 2.13.

9Credit goes to author Simula: https://datasets.simula.no/kvasir/#dataset-details

26

https://datasets.simula.no/kvasir/##dataset-details

Figure 2.13: The architecture of a VGG-16 model to classify images in 1,000
different classes10

While the VGG-16 achieves high performance, it also has two main
drawbacks. The first is that is very slow to train. The second is that it
is large in terms of memory usage. This is due to the high number of
parameters contained in the VGG-16 architecture. Therefore, smaller and
similarly performing networks such as GoogLeNet [27] are often preferred.

2.8 Summary

We have presented a lot of different machine learning techniques and
algorithms used commonly nowadays. We saw that there has been a great
emphasis on using neural networks to do supervised learning. This has led
to various new layers and optimization techniques to be developed to make
a neural network more accurate, performant, and efficient. Furthermore,
there has been much focus on making these networks deeper and larger
at each layer (more nodes and filters in each layer). While this has been
successful in achieving better results, it has also led to big networks that
take up a lot of space and computational power. An investigation on
the effects of nodes in each layer and whether all of them are required
has been missing. In this thesis, we aim to better understand how
nodes contribute to the neural networks’ performance. By having a better
understanding of which nodes contribute and which do not, we hope to
be able to reduce wasted resources and improve performance. In the
next chapter, we will describe our methodology. We will mention the
techniques we use to classify nodes depending on their contribution to the
network. Furthermore, we will describe the algorithms we use to remove
the unhelpful nodes of a neural network.

10Credit goes to the author Rohit Thakur: https://towardsdatascience.com/
step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c

27

https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c
https://towardsdatascience.com/step-by-step-vgg16-implementation-in-keras-for-beginners-a833c686ae6c

28

Chapter 3

Methodology

3.1 Neural Networks

In chapter 4, we consider three different types of neural networks to
calculate node importance (see section 3.2) and be pruned. These are a
single-layer ANN (which can also be called a single-layer MLP, but since
MLP implies multiple layers and to make the distinction between this
network and the next, we call it a single-layer ANN), a three-layer MLP,
and a five-layer CNN. The reason we chose these three networks are as
follows. The first network, a single-layer ANN, was chosen to check
whether doing pruning or calculating node importance was viable and to
see how removing a hidden node would impact the model, without it being
related to other hidden nodes. We then consider a three-layer MLP to see
how having multiple layers changes the impact of pruning and the node
importance calculations. Finally, we consider a five-layer CNN to look at an
even deeper model and to see how a convolutional layer reacts to pruning
compared to the dense networks. All three neural networks will be trained
on the MNIST and Fashion MNIST datasets. The CNN will also be trained
on the CIFAR-10 dataset. The exact composition of the neural networks are
as follows, for the single-layer ANN we have:

• Hidden Layer: 128 Nodes with a ReLU activation function

• Activation function for Output Layer: Softmax

• Number of epochs: five epochs for both MNIST and Fashion MNIST.

Then we have the three layer MLP:

• Structure:

1. Dense hidden layer: 128 nodes with a ReLU activation function.

2. Dense hidden layer: 64 nodes with a ReLU activation function.

3. Dense hidden layer: 32 nodes with a ReLU activation function.

4. Output layer with softmax activation.

• Number of epochs: for both MNIST and Fashion MNIST we will run
five epochs of training.

29

Finally, we have the five layer CNN:

• Structure:

1. Convolutional layer: 32 filters of size 3 × 3 with a ReLU
activation function.

2. Max Pooling layer with a window size of 2× 2 and a stride of 2.

3. Convolutional layer: 64 filters of size 3 × 3 with a ReLU
activation function.

4. Max Pooling layer with a window size of 2× 2 and a stride of 2.

5. Convolutional layer: 128 filters of size 3 × 3 with a ReLU
activation function.

6. Max Pooling layer with a window size of 2× 2 and a stride of 2.

7. Convolutional layer: 256 filters of size 3 × 3 with a ReLU
activation function.

8. Dense hidden layer of 64 nodes with a ReLU activation function.

9. Output layer with softmax activation.

• Number of epochs: five epochs for all three datasets.

All these networks were coded using the TensorFlow [15] library for
python.

Throughout our experiments, we will keep a few hyper-parameters of
the networks constant. The batch size for training will be 32 samples, this
will be kept constant except for when we explore the effect of batch size
on node importance in section 4.3 (see section 3.2 for an explanation on
node importance). We will use an ADAM optimizer with a learning rate
of 0.001, a β1 of 0.9, a β2 of 0.999 and an ε of 1e−7. Further, all the weights
are initialized using a Glorot uniform strategy [5]. The reason we chose
these parameters was that they are the recommended defaults for these
methods [11, 15]. Since we are trying to look at how effective pruning is,
using the defaults that generally lead to good results seemed advisable.

From section 4.6, we will start considering a validation set, with an 85:15
split of the original training set, in addition to the train and test set. Before
that, we only consider the train and test sets. The reason we consider a
validation set is because we want a set that the model is not trained upon
but that we can use to prune the model before testing its new performance
with the test set. The train set contains 60000 images, and the test set
contains 10000 images, this is the case for all three datasets considered.
Finally, in section 4.4, we will have slightly modified versions of the ANN
and MLP models since we explored the effect of having a dropout layer on
the node importance. Namely, the single-layer ANN will be:

• Hidden Layer: 128 Nodes with a ReLU activation function and
dropout.

• Activation function for Output Layer: Softmax

30

• Number of epochs: five epochs for both MNIST and Fashion MNIST.

and the MLP:

• Structure:

1. Dense hidden layer: 128 nodes with a ReLU activation function
and dropout.

2. Dense hidden layer: 64 nodes with a ReLU activation function
and dropout.

3. Dense hidden layer: 32 nodes with a ReLU activation function
and dropout.

4. Output layer with softmax activation.

• Number of epochs: for both MNIST and Fashion MNIST we will run
five epochs of training.

For the MLP, all the hidden layers will have the same dropout rate.
In chapter 5, we use a CNN with the VGG-16 architecture (see

section 2.7 for details on the architecture) with eight outputs representing
the eight classes in the Kvasir dataset. We will have a 70:15:15 split for the
train, validation, and test sets, we will use a batch size of 32 and an SGD
optimizer with a learning rate of 0.001 with a Nesterov momentum of 0.5
for training. We train the network for a maximum of 200 epochs with early
stopping using a patience of seven epochs. Once the training stops, we
revert to the weights to the ones that performed best on the validation set.

3.2 Node Importance

To estimate which nodes are important to the neural network when making
a prediction, we use a self-defined metric called node importance. The node
importance of a node is defined as the difference between the loss when
the node is included and the loss when the node is removed. The more
negative the node importance is, the more important the node is. This is
described mathematically in Equation 3.1, where ψm,n is node importance
for node n in layer m and Cm,n is the loss when node n in layer m is removed.

ψm,n = C(x, y)− Cm,n(x, y) (3.1)

Using the node importance metric and two user-defined tolerances
called low tolerance and high tolerance, we define three types of nodes:

• Important nodes: when the node has a lower node importance value
than the low tolerance.

• Zero nodes: when the node has a node importance value between
low tolerance and high tolerance.

• Worse nodes: when the node has a node importance value higher
than the high tolerance.

31

We set the low tolerance to −1e−5 and the high tolerance to 1e−5. These
tolerances are not strictly necessary as we could instead label all nodes
with a node importance value above zero; worse nodes, all those under
zero; important nodes, and all those with a zero node importance zero
nodes. However, in this thesis, we want to see the effects of removing
worse and zero nodes from the neural networks while keeping the accuracy
and loss steady. Therefore, to achieve both goals, we relax the definition of
important, zero, and worse nodes with a tolerance for the range of the zero
nodes.

3.3 Node Pruning

We use two different strategies to prune nodes in chapter 4. The first,
which we explore briefly in section 4.1, is removing nodes at random from
the neural networks. We do this in two different ways, the first is to
randomly choose n nodes to remove and remove them (see algorithm 1).
The other is to choose n nodes to remove, check if removing them improves
a combination of the accuracy and loss of the model. If it does improve it,
we remove the nodes otherwise we do not remove them (see algorithm 2).

Past section 4.1, we prune nodes depending on the node importance
class of the nodes. We do this in three different ways, the first, which we
use in section 4.5, is to remove nodes dependent on their pre-calculated
node importance’s. In other words, we calculate the node importance of
each node and then remove all the nodes that are considered worse or
zero (see algorithm 3). The second method used (seen in section 4.6) is
to find the worse of the worse/zero nodes (the one with the highest node
importance value) in the layer, remove it from the neural network and then
repeat until all the nodes are considered important nodes. We do this layer
by layer, going backward from the hidden layer before the output (see
algorithm 8). Finally, we use a variation of the previous version, where
instead of finding the node with the highest node importance value, we
remove the first worse/zero node we encounter and repeat till all nodes
are considered important (see algorithm 9). We also ’ignore’ all nodes that
are considered too important by the user (have a node importance value
under a certain threshold). This method is the one used for chapter 5.

The next section explains the algorithms used in this thesis in more
detail and includes a pseudo-code version of the algorithms. With some
of the pseudo-code of the algorithms being included in Appendix A.

3.4 Algorithms

In chapter 4 and chapter 5, we use a few self-defined algorithms to either
prune nodes, estimate node importance, or edit initial weights of the neural
network. In section 4.1, we use two algorithms that remove nodes at
random from a single-layer ANN. The first algorithm we use in section 4.1
is algorithm 1.

32

Algorithm 1: Removing a user defined number of random nodes

1 def removeRandomNodes(n, weights, to_consider):
Input:
n is the number of nodes removed;
weights are the weights of the model;
to_consider is an array containing the nodes to consider in the
random choosing
Output: The weights with the nodes removed (set to zero) and

the positions of the nodes removed
/* Start of the code */

2 to_drop← choose n from to_consider without replacement
3 for i in to_drop:
4 weights[0][:,i] = 0 ; /* weights going to the node */
5 weights[1][i] = 0 ; /* bias going to the node */
6 weights[2][i,:] = 0 ; /* weights outgoing the node */

7 return weights, to_drop

This algorithm is designed to work on single-layer ANNs only since it
only considers the existence of a single hidden layer in the model. The
algorithm randomly chooses n nodes from either the whole network or
from a list (to_drop) passed by the user and then removes them from the
network. The second algorithm used is algorithm 2.

Instead of removing nodes randomly, as in algorithm 1, the algorithm
selects n nodes to remove from the network and checks whether removing
them improves a combination of the accuracy and loss of the model. If it
does improve the model, the nodes are removed. Otherwise, the model
is kept the same. This is repeated a fixed number of times (the value
to_test defined by the user), where each time the model improves, nodes
are removed. Finally, it outputs the weights of the shrunk model and the
number of nodes removed by the algorithm. These two algorithms tend to
be unstable since we choose the nodes randomly.

To remedy this, we devise algorithm 4, which estimates the node
importance of each node. The algorithm traverses the networks backward,
as in backpropagation. This method is used in section 4.2, section 4.3
and section 4.4. We could also have traversed the network forward when
estimating importance (as in algorithm 5), however, to simulate removing a
node, we need it to output zero. Therefore, it makes sense to go backwards
since we set the incoming weights to zero. This algorithm goes through the
network layer by layer, removes a node, calculates the difference in loss,
classifies the node as important, zero, or worse, and finally reverts back to
the full model weights. It does this for every node in the layer before going
to the next layer. As mentioned before, we also have algorithm 5, which
calculates the node importance by going forward. However, this code is
not used but is the basis for calculating node importance in a single layer
done by algorithm 6.

algorithm 6 uses the forward logic to calculate node importance but

33

Algorithm 2: Shrinking the model by removing nodes randomly

1 def shrinkModelRandomly(model, acc, loss, weights, n, to_test, x_train,
y_train, v):

Input:
model is the TensorFlow model of the neural network used;
acc is the accuracy of the original model;
loss is the loss of the original model;
weights are the weights of the model;
n is the number of nodes removed at each step;
to_test is the number of times we try to remove nodes;
x_train is the training dataset used;
y_train is the labels of the training dataset used;
v defines whether are output should be verbose or not;
Output: The weights with the nodes removed (set to zero) and

the number of nodes removed
/* Start of the code */

2 best_loss← loss
3 best_acc← acc
4 best_weights← copy(weights)
5 num_removed← 0
6 to_consider← list from 0 to the number of nodes
7 for _ in range(to_test):
8 test_weights← copy(best_weights)
9 test_weights, dropped = removeRandomNodes(n, test_weights,

to_consider)
10 new_loss, new_acc← evaluate model on x_train and y_train
11 score =

(1− (new_loss/best_loss)) + ((new_acc/best_acc)− 1)
12 if score > 0:
13 best_loss← new_loss
14 best_acc← new_acc
15 best_weights← copy(test_weights)
16 increment num_removed by n
17 for node in dropped:
18 remove node from to_consider

19 return best_weights, num_removed

does it only for one layer. As mentioned before, we can simulate removing
a node by setting its incoming weights to zero. However, the opposite is
also true, since setting all its outgoing nodes to zero means that the node
has no effect on the nodes in the next layer as its contribution to the sum is
zero. While algorithm 6 is not used on its own in our paper, we use it as
part of algorithm 7 to re-randomize weights.

algorithm 7 re-randomizes the initial weights of the network until a
defined minimum fraction of the nodes is considered important. We use

34

this in section 4.9. This algorithm ’optimizes’ the weights layer by layer,
starting at the first hidden layer and ending at the last one. To do this, it
first obtains the node importance of the nodes in the layer it is currently
optimizing. After that, it takes all the nodes considered either worse or
zero and re-randomizes them using a Glorot uniform strategy. Once the
minimum fraction of important nodes is reached, it locks the weights and
moves on to the next layer. It repeats this process until all the layers are
optimized.

Our final class of algorithms involves node pruning based on the node
importance. We have three different algorithms that do node pruning. The
first is algorithm 3.

Algorithm 3: This algorithm prunes the nodes classified as either
zero or worse after there node importance is estimated.

1 def pruneNodesPreCalculatedImportance(model, tester_model,
layer_sizes, tol_low, tol_high, x, y):

Input:
model is the TensorFlow model of the trained neural network
used;
tester_model is a untrained copy of model, this will be used as a
tester model to test different network weights;
layer_sizes is the number of nodes/filters in each layer of the
considered network (organized in a backward direction);
tol_low is the tolerance for which node importance values below
it, categorize the nodes as important;
tol_high is the tolerance for which node importance values
above it, categorize the nodes as worse;
x is the dataset to consider when estimating the node
importance;
y is the labels of x;
Output: Pruned weights (where incoming weights are set to 0

for the pruned nodes)
/* Start of the code */

2 weights← weights of model
3 weight_len← len(weights)− 3 ; /* We remove 3 for the bias

and weight value to the output layer plus 1 because
python lists start at 0 */

4 _, places← estimateNodeImportance(model, tester_model,
layer_sizes, tol_low, tol_high, x, y)

5 for layer, place in enumerate(places):
6 for nodes in place[0 : 2]:
7 weights[weight_len− (2 ∗ layer + 1)][..., nodes]← 0
8 weights[weight_len− 2 ∗ layer][nodes]← 0

9 return weights

For algorithm 3, the pruning is done by first calculating the node

35

importance of all nodes and then removing all nodes that are either
classified as worse or zero. To do this, we first use algorithm 4 to get the
class of each node. We then proceed to remove all the worse and zero nodes
classified by algorithm 4. The second method is algorithm 8, this is the most
time-consuming algorithm we use in this thesis.

The reason algorithm 8 is time-consuming is that it looks for the node
with the highest node importance value in a layer, removes it, and then
repeats till no nodes are considered either worse or zero. As for algorithm 4,
it traverses the networks backward instead of forward. The reason we
chose to traverse the network backward instead of forwards is that a node
at a later layer should potentially have a smaller effect on the nodes of
the previous layers than on the nodes in the next layers. Therefore, by
removing the nodes closest to the outputs first, we try to minimize the
effects of removing nodes on the node importance of other nodes in a
different layer. As for the reason we remove zero nodes, it is because
they could potentially be redundant nodes that do the same or similar
work as other nodes in the layer. Furthermore, removing them reduces
wasted resources, since it takes less processing power to compute a smaller
network.

The final method (algorithm 9) we consider is a variation of algorithm 8,
where instead of removing the node with the highest node importance
value, we remove the first worse or zero node we encounter. We also
’ignore’ nodes where if a node returns a node importance value under a
user-defined threshold, we then never recalculate its node importance. The
reason we have this more ’greedy’ method is to reduce the time it takes
to prune a network while having a method that takes into account the
metric we use to classify nodes. algorithm 9 ends up being much faster
than algorithm 8 while having very similar pruning results, see section 4.7
for the results. This algorithm is the one we use with algorithm 4 to both
estimate the number of important, zero, and worse nodes and prune the
network in chapter 5.

algorithm 4 to algorithm 9 can be found in Appendix A.

3.5 Summary

All these models, techniques, and algorithms will be used to give us a better
grasp on how nodes contribute to a neural network. The node importance
metric will help us quantify the contribution of a node, while the pruning
algorithms will help us remove the unhelpful nodes that take up resources
and processing time. These methods will be used in our two next chapters
to experiment evaluating the contributions of nodes as well as the effects of
pruning nodes.

36

Chapter 4

Exploring node pruning and
node importance in simple
neural networks

This chapter explores how pruning affects three different neural networks,
a single-layer ANN, a three-layer MLP, and finally a five-layer CNN. We
start by pruning the nodes randomly on the single-layer ANN. We then
introduce the node importance metric and look at how having a validation
set or not affects it. Next, we look at how changing the batch size affects the
node importance of the different neural networks. Finally, we will look at
how dropout changes node importance for the single-layer ANN and MLP
networks.

We will then move on to pruning the models dependent on the node
importance. We will start by pruning the model based on their pre-
calculated node importance. We will check if this ends up improving
the models. We will move on to pruning the models exhaustively using
algorithm 8, seeing how many nodes are removed and how much of an
improvement we earn after the pruning. We will then test another method
of pruning to prune nodes faster. We will compare the pruning done by
the greedy method to the one done by the exhaustive method and check
whether they perform similarly. Furthermore, we will look at how pruning
the CNN network affects the accuracy of each class. We will end by
exploring whether initializing weights using node importance improves
the final models.

4.1 Pruning Nodes at Random

In this section, we use two different algorithms to prune nodes at random.
Both these algorithms are designed to work on single-layer ANNs since, in
this section, we only consider those. algorithm 1 removes n nodes (where n
is a value chosen by the user) from either all the nodes in the hidden layer
or from a list defined by the user (the value called to_consider).

algorithm 2 is one that shrinks an ANN through trying to remove n
random nodes at each step. The n random nodes will only be removed

37

if removing them improves a combination of the loss and accuracy of the
model. We try removing nodes to_test number of times. Finally, once nodes
are removed, they cannot be randomly selected again.

We will start by exploring the effects of removing an increasing number
of nodes randomly by using algorithm 1 has on an ANN trained on
first the MNIST dataset. Then on another ANN trained on the Fashion
MNIST dataset. We will then explore how shrinking our models by using
algorithm 2 affects accuracy, loss, and the total number of nodes removed
when varying the number of nodes removed at each step.

4.1.1 MNIST

After training our single-layer ANN, we obtain the following statistics on
the test set:

• Accuracy: 0.9724

• Loss: 0.0879

We will first focus on the change in accuracy and loss when removing an
increasing number of nodes. To do this, we try removing randomly 1,
2, 4, 8, 16, 32, and 64 nodes from the model. For each number of nodes
removed, we repeat the removal algorithm 1000 times on the same initial
model and then record the loss and accuracy of the modified model. We
then get aggregate the results to get some basic statistics on them.

1 2 4 8 16 32 64

mean 0.9720 0.9714 0.9704 0.9681 0.9619 0.9427 0.8485
std 0.0009 0.0013 0.0020 0.0032 0.0056 0.0130 0.0417
min 0.9687 0.9624 0.9602 0.9523 0.9270 0.8861 0.6831
25% 0.9715 0.9708 0.9694 0.9664 0.9588 0.9364 0.8215
50% 0.9721 0.9717 0.9708 0.9685 0.9628 0.9448 0.8546
75% 0.9726 0.9724 0.9719 0.9704 0.9660 0.9526 0.8803
max 0.9736 0.9743 0.9744 0.9749 0.9724 0.9662 0.9328

Table 4.1: Statistics on the accuracy of the model after randomly removing
a varying number of nodes

As can be seen in Figure 4.1, as the number of nodes removed increases,
the accuracy of the model decreases. We also see that, on average, we never
get better accuracy than the original model. If we focus on Table 4.1, we see
that when removing one, two, or four nodes, the 75-percentile and above
have similar or better accuracy than the original model. We can also see
that the maximum value when removing 8 or 16 nodes have higher for
the former, and the same for the latter, accuracy. Therefore, by removing
nodes, we can probably make our model better. However, we might need
to remove them in a more controllable way, since on average, we get lower
(although not significantly) accuracy (spanning from 0.9720 to 0.9616 when
removing 1 to 16 nodes). However, we also see that when we remove too

38

Figure 4.1: The average accuracy of the model after randomly removing
nodes

many nodes (32 or 64), we end up with an accuracy that is always lower
than the original model (even at its maximum values). A mean accuracy
not too significantly lower for 32 nodes (0.9427 instead of 0.9724) but much
lower when removing 64 nodes (around a 12% drop in accuracy).

Since the MNIST dataset is relatively unbiased, the accuracy can be
considered a good measure to determine the performance of the model.
However, it does not tell us everything. Therefore, including the change
in loss is important to get a better understanding of the performance
implications of the model after removing nodes.

1 2 4 8 16 32 64

mean 0.0895 0.0914 0.0948 0.1024 0.1216 0.1794 0.4466
std 0.0026 0.0038 0.0058 0.0095 0.0164 0.0361 0.1074
min 0.0848 0.0839 0.0838 0.0844 0.0901 0.1127 0.2306
25% 0.0877 0.0887 0.0907 0.0957 0.1101 0.1516 0.3662
50% 0.0890 0.0907 0.0937 0.1012 0.1186 0.1738 0.4313
75% 0.0908 0.0932 0.0981 0.1069 0.1305 0.1980 0.5112
max 0.0997 0.1245 0.1292 0.1489 0.2233 0.3409 0.9883

Table 4.2: Statistics on the loss of the model after randomly removing a
varying number of nodes

Unsurprisingly, in Figure 4.2, we see that the behavior of the loss is
very similar to the accuracy. The loss is at its lowest for the original model
compared to the average loss of the modified models. However, when we
focus on Table 4.2, we see that when removing one node, the 25-percentile
and under have a lower loss than the original model. When removing two,
four, or eight nodes, we still get at least one model (in this case, the ones
that achieve the minimum loss) where the loss is smaller. However, when
looking at the average loss, we see another story. For one or two nodes,

39

Figure 4.2: The average loss of the model after randomly removing nodes

we have a loss that is close to the original model. Once we start removing
four or more nodes, we get a significant increase in the loss, with removing
four nodes increasing the loss by 8% to quintupling of the original loss
when removing 64 nodes. Therefore, when focusing on the loss, we see
that removing nodes randomly deteriorates the performance of the model
as the number of nodes removed increases.

To combat this, we will use algorithm 2 to shrink our models. Using
this method, we continue picking randomly which nodes to remove while
only removing them if they improve the loss and accuracy of the model.
Instead of trying to remove up to 64 nodes at a time, we will only consider
removing one, two, three, four, or eight nodes at a time. To get our results,
we will do 20 tests for each amount to remove. In each of those tests, we
will try removing nodes 64 times (the to_check value in algorithm 2) from
the model.

1 2 3 4 8

mean 7.4000 8.9000 8.2500 5.8000 2.4000
std 1.6983 2.7891 2.7314 3.3023 3.7613
min 5.0000 4.0000 3.0000 0.0000 0.0000
25% 6.0000 7.5000 6.0000 4.0000 0.0000
50% 7.0000 8.0000 9.0000 4.0000 0.0000
75% 8.2500 10.0000 9.7500 8.0000 8.0000
max 11.0000 16.0000 12.0000 12.0000 8.0000

Table 4.3: Statistics on the number of nodes removed depending on the size
of the batch removed at each step

The first thing we see from Figure 4.3 is that we rarely remove more
than ten nodes from our model. Another thing we see is that removing
a smaller value of nodes at a time tends to remove more nodes in total,
with a peak at two nodes in Figure 4.3. However, since the mean value of

40

Figure 4.3: Average total number of nodes removed at each number of
nodes removed at each step

two nodes is within the error bars of one and three nodes, removing one
to three nodes at a time is very similar. This is reinforced by Table 4.3,
where the minimum value for removing four or eight nodes at a time is
zero nodes removed. By focusing on eight nodes removed at a time, we
see that less than half of the models removed any nodes and at best a
model removed eight nodes. However, since we only try removing nodes
64 times, as the number of nodes removed at a time approaches 64 we have
more combinations that we can choose from, making it less likely to choose
a combination that will improve our model compared to when removing a
smaller number of nodes at each step.

Now, we will look at how the number of nodes removed affects the
loss and accuracy. We will do this by considering just the total of nodes
removed and not how big the removal was at each step.

Figure 4.4: Accuracy of shrinked models depending on the number of
nodes removed

41

Figure 4.5: Accuracy of shrinked models depending on the number of
nodes removed

From Figure 4.4 and Figure 4.5, we see that we get a better loss or
accuracy for every modified model, albeit a few models where the final loss
was slightly worse. Surprisingly, it looks like the more nodes we remove,
the better the model does, although it is not very distinct. Moreover, it
looks like the maximum decrease in the loss or increase in accuracy quickly
flattens out as more nodes are removed. However, since it does not get
worse, it might indicate that by using a more guided method to remove the
nodes, we might be able to remove more nodes.

4.1.2 Fashion MNIST

Before we delve into a more guided method, we will re-do the same
investigation as in subsection 4.1.1 but on the Fashion MNIST dataset. We
expect to get a very similar result, but we might have some noticeable
differences since this is a slightly more complicated dataset. After training
our single-layer ANN, we obtain the following statistics on the test set:

• Accuracy: 0.8685

• Loss: 0.3557

As before we, will try removing randomly 1, 2, 4, 8, 16, 32, and 64 nodes.
We will do it 1000 times and then get statistics on the accuracy and loss of
the updated models.

Looking at Table 4.4, we see that, as for the MNIST dataset, the accuracy
stays similar up to 16 nodes removed with all of them having a max
accuracy value above the original accuracy. This is slightly different than
with the MNIST dataset since, this time, we have a removal of 16 nodes
that ends up with higher accuracy than the original accuracy. However, as
for the previous dataset, removing 32 or 64 nodes decreases the accuracy
noticeably. Now we will focus on the changes in the loss.

When looking at Table 4.5, we again get very similar results for the loss
in this new dataset compared to the previous dataset. We get results close

42

1 2 4 8 16 32 64

mean 0.8677 0.8667 0.8652 0.8618 0.8543 0.8295 0.7394
std 0.0021 0.0030 0.0042 0.0059 0.0096 0.0200 0.0443
min 0.8578 0.8470 0.8470 0.8405 0.8050 0.7382 0.5493
25% 0.8670 0.8653 0.8632 0.8582 0.8491 0.8190 0.7171
50% 0.8684 0.8674 0.8659 0.8626 0.8558 0.8336 0.7437
75% 0.8686 0.8685 0.8681 0.8663 0.8611 0.8441 0.7698
max 0.8726 0.8735 0.8745 0.8767 0.8747 0.8656 0.8307

Table 4.4: Statistics on the accuracy of the model after randomly removing
a varying number of nodes

Figure 4.6: The average accuracy of the model after randomly removing
nodes

1 2 4 8 16 32 64

mean 0.3578 0.3601 0.3643 0.3730 0.3939 0.4607 0.7062
std 0.0049 0.0070 0.0098 0.0137 0.0228 0.0495 0.1182
min 0.3459 0.3452 0.3434 0.3448 0.3515 0.3725 0.4730
25% 0.3557 0.3559 0.3576 0.3629 0.3772 0.4245 0.6235
50% 0.3564 0.3584 0.3625 0.3711 0.3900 0.4504 0.6867
75% 0.3591 0.3632 0.3693 0.3811 0.4060 0.4857 0.7619
max 0.3791 0.4055 0.4035 0.4297 0.5106 0.7079 1.3649

Table 4.5: Statistics on the loss of the model after randomly removing a
varying number of nodes

to the original loss for removing one to four nodes, before increasing by
around 5% on average for eight nodes removed and more as more nodes
are removed. However, as for accuracy, we get a shrunk model by 16 nodes,
where we get a better loss than the original one. This was not the case for
the MNIST dataset. In conclusion, we get similar results for MNIST and

43

Figure 4.7: The average loss of the model after randomly removing nodes

Fashion MNIST when removing nodes randomly. Still, it seems we will
be able to remove a few more nodes when working with the slightly more
complicated dataset.

Next, we will use algorithm 2 to shrink the models randomly while still
improving them. We will again try removing the nodes 64 times. We will
repeat the process 20 times.

1 2 3 4 8

mean 5.5000 8.6000 10.6500 8.400 5.6000
std 1.5728 1.8468 3.1502 3.409 3.7613
min 2.0000 6.0000 3.0000 4.000 0.0000
25% 5.0000 8.0000 9.0000 7.000 0.0000
50% 5.5000 8.0000 12.0000 8.000 8.0000
75% 6.2500 10.0000 12.0000 12.000 8.0000
max 8.0000 12.0000 18.0000 16.000 8.0000

Table 4.6: Statistics on the number of nodes removed depending on the size
of the batch removed at each step

Interestingly by looking at Table 4.6 we see that we remove fewer nodes
than for the MNIST dataset when removing one or two nodes at each step,
but when removing more nodes at a time, we get noticeably more nodes
removed. Especially for eight nodes removed, wherein more than half the
tests, we have eight nodes removed. Finally, we will look at the accuracy
and loss of each of these models.

For both Figure 4.9 and Figure 4.10 we get very consistent results for
any number of nodes removed. This could mean that only a few nodes
improve the model, while a few others have almost no effect on the model.
In contrast to the MNIST dataset, there is no clear increase in accuracy or
decrease in loss when more nodes are removed. The results seem to be
more stable.

44

Figure 4.8: Average total number of nodes removed at each number of
nodes removed at each step

Figure 4.9: Accuracy of shrinked models depending on the number of
nodes removed

4.1.3 Summary

In summary, removing nodes randomly is not the best idea if we want
to shrink the models. We need to have a more guided way to choose
which nodes to remove. We also tried to remove nodes randomly while
still checking that the removal makes the model better or stay the same.
We see that this does work where we can remove nodes and make the
model perform better or at least stay the same. Finally, when comparing
the results between models trained on MNIST compared to those trained
on Fashion MNIST, we get very similar results, with probably a few more
nodes being able to be removed for the Fashion MNIST models.

45

Figure 4.10: Loss of shrinked models depending on the number of nodes
removed

4.2 Estimating Node Importance based on Loss

In this section, we use algorithm 4 to estimate the importance of nodes
inside different models. We will continue using a batch size of 32 and train
each model for five epochs. However, now instead of using one model, we
will create multiple models with the same architecture and then estimate
the node importance. We will also use two different sets to estimate node
importance. First, we will estimate using the training set, where all the
dataset is divided between the train and test sets. After we will estimate
using the validation set, where the validation set is a part of the previous
training set that is not used to train the model. The reason we do not use
both sets for all experiments is that if we do not take advantage of the
validation set in anyway, then it is better to have a bigger training set than
having a smaller training set with extra data we do not use for anything. We
consider the validation set in these experiments due to the noise fitting that
happens during training. Using the validation set instead of the training set
for estimating node importance might turn the nodes considered important
by the training to worse nodes when it comes to the validation set. In other
words, we think there will be more worse and zero nodes when using the
validation set than when using the training set.

4.2.1 Single-layer ANN

We will estimate node importance on two datasets, MNIST and Fashion
MNIST. However, we will only discuss our results for the MNIST dataset,
for our results on the Fashion MNIST dataset and more detailed results,
refer to section B.1. For our experiment, we will estimate the node
importance of 50 different single-layer ANNs, for both datasets and sets
(validation and training). We will start by discussing our results on the
training set. Here is the average number of worse, zero, and important

46

nodes based on the training set:

• Worse nodes: 14

• Zero nodes: 2

• Important nodes: 112

From our results, it looks like most of our nodes are considered important.
However, we still have 16 worse and zero nodes. Therefore, we should be
able to reduce our models while also increasing the model performance.
Compared to previously, when we removed the nodes randomly, we
should be able to prune more nodes by basing ourselves on these values.
We will now look at our result when using the validation set to estimate
node importance:

• Worse nodes: 25

• Zero nodes: 2

• Important nodes: 101

Compared to when basing ourselves on the training set, we have close
to double the number of worse nodes in this case, while the number of
zero nodes is approximately the same. Therefore, this could indicate that
the validation set picks up on nodes that end up being important for the
training set because they fit the noise of the training set. While when
using the validation set to classify them, end up being worse instead. This
furthers our suspicion that we will able to remove more nodes using node
importance than when doing it randomly.

For Fashion MNIST, we have the same difference between the training
and validation set node importance estimates. The biggest difference is that
there are many more zero nodes and between slightly (for the validation
set) to a noticeable (around 50% increase) in worse nodes compared to
the number of worse and zero nodes when trained on the MNIST dataset.
Therefore, it seems that the more complicated a dataset or the lower the
performance of the model is, the less important node there are.

4.2.2 MLP

We will estimate node importance on an MLP trained on both MNIST and
Fashion MNIST. This time we will focus on the result obtained for Fashion
MNIST. For our result on MNIST and more detailed statistics, refer to
section C.1. We will again estimate the node importance for 50 MLP models
for both datasets and both the validation set and training set. We will start
by looking at our results on the training set. Table 4.7 shows the average
number of nodes in each category for each layer.

As we can see, the number of worse nodes decreases as we go deeper
into the model. However, if we consider the percentage of worse nodes,
then we see that it first increases (from 14% to 19%) before decreasing
(from 19% to 13%). Therefore it seems that the second layer has the highest

47

Worse Nodes Zero Nodes Important Nodes

128-node layer 18 18 92
64-node layer 12 4 48
32-node layer 4 3 26

Table 4.7: Average number of node classified in each category of node
importance based on the training set for an MLP trained on the Fashion
MNIST

proportion of worse nodes. For the zero nodes, it is quite clear that the
first layer has the highest proportion of zero nodes and that the second
layer has the lowest. Finally, if we look at the proportion of unimportant
nodes (aka zero and worse nodes), we see that the first layer has the highest
proportion with 28%, the second layer has 25%, and the last layer has the
lowest proportion with 22%. If we now look at Table 4.8 for our results on
the validation data.

Important Nodes Zero Nodes Worse Nodes

128-node layer 27 18 83
64-node layer 17 4 43
32-node layer 5 3 24

Table 4.8: Average number of node classified in each category of node
importance based on the validation set for an MLP trained on the Fashion
MNIST

As for the single-layer ANN, for all the layers, we have more worse
nodes when using the validation set to estimate node importance, while the
number of zero nodes stays the same. This further reinforces our point that
using the validation set helps us capture the nodes that fit the noise rather
than the actual data. Otherwise, we have the same layer behavior with
the second layer having the most worse nodes and the last layer having
the least. Except for the validation data, these proportion differences are
slightly higher with 21% for layer one, 27% for layer two, and 16% for layer
three. However, we continue having the highest proportion of unimportant
nodes in the first layer with 35%, then we have the second layer with 33%,
and finally, the last layer with 25%.

Our results on the MNIST dataset are very similar to the results for
the Fashion MNIST dataset where all layers have more worse nodes on
the validation set, while the number of zero nodes stays constant. For
the proportion of worse nodes, the second and first layer have the same
proportion (or slightly smaller for the second layer on the validation set)
while the last layer again has less, although it is much smaller proportion
wise than it is for the Fashion MNIST dataset (about half the proportion of
nodes are worse nodes in the last layer compared to the first and second
layer).

48

4.2.3 CNN

Finally, we will also estimate node importance for a CNN. We will do
this on the MNIST, Fashion MNIST, and CIFAR-10 datasets. Although we
will only discuss the results of the CIFAR-10 dataset, the results for the
other two datasets and more detailed statistics can be found in section D.1.
Instead of estimating the node importance of 50 models, we will only
estimate the node importance of ten CNN models for each dataset and sets
(validation and training). We will first look at our results on the training
set. Table 4.9 shows the average number of each type of node in each layer
of our CNNs.

Worse Nodes Zero Nodes Important Nodes

32-filter layer 2 2 28
64-filter layer 3 8 53
128-filter layer 13 27 88
256-filter layer 25 75 156
64-node layer 1 38 25

Table 4.9: Average number of node classified in each category of node
importance based on the training set for a CNN trained on the CIFAR-10

This time we see the opposite behavior compared to the MLP, where the
deeper we go into the layer, the higher the proportion of worse nodes and
zero nodes. The only exception is when we get to the dense layer, where
the number of zero nodes does increase, but the number of worse nodes
dramatically reduces. This could mean that most nodes are redundant at
the last layer level and end up doing much of the same thing. Therefore
removing them does not change anything to the model. While in the
convolutional layers, we might still have some of those, but we also have
more nodes that negatively impact the model. However, in terms of
unimportant nodes, the proportion of them increases as we go deeper into
the model, starting at 13% going all the way up to 61%. Table 4.10 shows
our results for the validation set.

Important Nodes Zero Nodes Worse Nodes

32-filter layer 5 2 25
64-filter layer 9 10 45
128-filter layer 25 26 77
256-filter layer 72 85 100
64-node layer 2 43 19

Table 4.10: Average number of node classified in each category of node
importance based on the validation set for a CNN trained on the CIFAR-10

We see the same general trend as for the other neural network models,
where the number of worse nodes increases in each layer. However, for
all layers except the first and third, the number of zero nodes also goes

49

up, while previously, the number of zero nodes stayed similar between the
two sets. All of this further supports the theory that using the validation
set identifies the nodes that fit the noise of the training set rather than the
actual images. Otherwise, the same behavior in terms of the proportion
of unimportant, zero, and worse nodes can be observed here compared to
when we were estimating using the training set.

We have pretty much the same behavior for the other two datasets. For
the Fashion MNIST dataset, we have a higher proportion of worse nodes
but a smaller proportion of zero nodes in general. The same goes for the
MNIST dataset, except that in general, there are even more worse in each
layer (the exception being the last convolutional layer), while the number
of zero nodes is in-between the number for Fashion MNIST and the number
for CIFAR-10.

4.2.4 Summary

As we saw in all three models, when using the validation set to estimate
node importance, we end up having more nodes classified as worse or
zero than when using the training set. Therefore our theory that using the
validation data to calculate node importance leads to being able to identify
nodes that contribute to fitting the noise of the training data instead of
the data itself could be valid. Otherwise, we saw that when looking at
dense layers, the deeper we go, the less worse and zero nodes there are. On
the other hand, with convolutional layers, the opposite is true. However,
since the size of layers usually decreases as we go deeper with dense layers,
while when using convolutional layers, it usually increases, it could as well
be due to the size of layers rather than a difference between convolutional
and dense layers.

4.3 Effects of Changing Training Batch Size on Node
Importance

Now that we have looked at the node importance on our set batch size
of 32, we will look at whether changing the batch size affects the node
importance. Furthermore, instead of estimating the node importance on
both the training and validation set, we will only estimate node importance
on the validation set. This not only speeds up the pruning but also helps
us avoid classifying nodes as important when they are fitting the noise of
the training set rather than the general pattern of the data. We will test five
different batch sizes: 1, 8, 32, 256, and 1024.

4.3.1 Single-layer ANN

For the single-layer ANN, we will estimate node importance on 25 trained
models at each batch size. We will record the node importance at each batch
size. We will also record the loss and accuracy of each model. Finally, we

50

will also calculate the average node importance of the important and worse
nodes.

Figure 4.11: Average number of important nodes at each batch size for 25
single-layer ANNs trained on the MNIST dataset

Figure 4.12: Average node importance of important nodes at each batch
size for 25 single-layer ANNs trained on the MNIST dataset

If we start by looking at Figure 4.11, we see that the number of
important nodes increases as the batch size increases, and with a batch
size of 1024, almost all nodes (122 nodes on average) in the network are
considered important. If we then look at Figure 4.12, we see that for a batch
size of one, we have substantially lower average node importance than
for the other batch sizes. The other batch sizes have roughly equal node
importance when considering the error. The reason for such a difference is
probably due to the differences between each image in the set. Since we do
backpropagation for each image, we update the errors based on how one
class is being classified. This could result in nodes specializing in detecting

51

Figure 4.13: Average number of worse nodes at each batch size for 25
single-layer ANNs trained on the MNIST dataset

Figure 4.14: Average node importance of worse nodes at each batch size for
25 single-layer ANNs trained on the MNIST dataset

1 8 32 256 1024

mean 0.9705 0.9759 0.9750 0.9657 0.9453
std 0.0029 0.0019 0.0013 0.0012 0.0017
min 0.9627 0.9715 0.9714 0.9631 0.9408
25% 0.9694 0.9748 0.9745 0.9652 0.9444
50% 0.9704 0.9760 0.9752 0.9658 0.9455
75% 0.9730 0.9776 0.9761 0.9666 0.9465
max 0.9751 0.9794 0.9767 0.9674 0.9481

Table 4.11: Statistics on the accuracy of the 25 single-layer ANNs trained
on the MNIST dataset at each batch size

52

Figure 4.15: Number of zero nodes at each batch size for 25 single-layer
ANNs trained on the MNIST dataset

1 8 32 256 1024

mean 0.1687 0.0873 0.0810 0.1162 0.1924
std 0.0180 0.0062 0.0040 0.0031 0.0050
min 0.1410 0.0761 0.0730 0.1110 0.1855
25% 0.1553 0.0834 0.0786 0.1138 0.1897
50% 0.1682 0.0859 0.0805 0.1159 0.1912
75% 0.1773 0.0923 0.0830 0.1182 0.1950
max 0.2057 0.1031 0.0896 0.1226 0.2085

Table 4.12: Statistics on the loss of the 25 single-layer ANNs trained on the
MNIST dataset at each batch size

a specific class, therefore removing such a node would significantly impact
the performance of the model.

If we look at Figure 4.13, increasing the batch size decreases the number
of worse nodes in the model. This is unsurprising since Figure 4.11 shows
an increase in important nodes. However, in this case, the reduction seems
to be accelerating as we increase the batch size, with the number of worse
nodes for batch sizes 1, 8, and 32 being very similar (within error margins
of each other) while a batch size of 256 halves the number of worse nodes in
the model. This can be explained by Figure 4.15, where the number of zero
nodes quickly decreases between batch sizes 1 and 32 before stabilizing
around two zero nodes per model and finally slightly increasing for a batch
size of 1024 (although the increase is within error margins). If we take a
look at Figure 4.14, we see that the average node importance of the worse
nodes decreases as batch sizes increases. This could be due to the same
reasoning as for the node importance of important nodes, where, at smaller
batch sizes, the model has a node that specializes in fitting the noise of the
model and therefore end up being nodes that do not help classify new data.

Finally, if we look at Table 4.11 and Table 4.12, we see that we achieve

53

the best loss with a batch size of 32, the best accuracy is achieved with a
batch size of eight. However, the accuracy for the models trained with a
batch size of 32 is very comparable to the ones trained with a batch size
of eight, while the loss in the former is noticeably better than the latter. If
we now combine what we saw in Figure 4.11 to Figure 4.15 we see that
even though we have more worse and zero nodes with a batch size of one
compared to a batch size of 32 and the average node importance of worse
nodes of the former is significantly higher, the difference in loss (0.17413 for
the former and 0.08176 for the latter) is too large to get similar performance
after removing them. This is especially true since the number of worse
nodes between the two are comparable. Therefore, for the single-layer
ANN, we get the best chance in reduction while keeping good performance
with a batch size of 32.

We repeat this experiment on the Fashion MNIST dataset with the same
parameters.

Figure 4.16: Average number of important nodes at each batch size for 25
single-layer ANNs trained on the Fashion MNIST dataset

1 8 32 256 1024

mean 0.8520 0.8684 0.8703 0.8571 0.8443
std 0.0052 0.0054 0.0040 0.0068 0.0023
min 0.8435 0.8526 0.8619 0.8403 0.8382
25% 0.8494 0.8657 0.8676 0.8541 0.8430
50% 0.8508 0.8698 0.8697 0.8582 0.8446
75% 0.8554 0.8719 0.8741 0.8621 0.8462
max 0.8636 0.8752 0.8793 0.8666 0.8480

Table 4.13: Statistics on the accuracy of the 25 single-layer ANNs trained
on the Fashion MNIST dataset at each batch size

If we compare Figure 4.16 to Figure 4.11, we get the same trend but
the number of important nodes is smaller for each batch size. Focusing

54

Figure 4.17: Average node importance of important nodes at each batch
size for 25 single-layer ANNs trained on the Fashion MNIST dataset

Figure 4.18: Average number of worse nodes at each batch size for 25
single-layer ANNs trained on the Fashion MNIST dataset

1 8 32 256 1024

mean 0.4720 0.3731 0.3590 0.4012 0.4445
std 0.0231 0.0168 0.0083 0.0161 0.0040
min 0.4433 0.3497 0.3388 0.3807 0.4382
25% 0.4557 0.3604 0.3566 0.3901 0.4407
50% 0.4614 0.3695 0.3599 0.3965 0.4452
75% 0.4863 0.3805 0.3611 0.4076 0.4476
max 0.5336 0.4189 0.3788 0.4406 0.4530

Table 4.14: Statistics on the loss of the 25 single-layer ANNs trained on the
Fashion MNIST dataset at each batch size

55

Figure 4.19: Average node importance of worse nodes at each batch size for
25 single-layer ANNs trained on the Fashion MNIST dataset

Figure 4.20: Average number of zero nodes at each batch size for 25 single-
layer ANNs trained on the Fashion MNIST dataset

on Figure 4.17, we again see that a batch size of one generates important
nodes with a smaller average node importance. However, the trend seen
in Figure 4.12 is accentuated with the node importance of important nodes
being significantly smaller at batch size 256 than at batch sizes 8 and 32.
With Figure 4.18, we have a slightly different behavior where the number of
worse nodes is approximately the same from batch size 1 to 256 (all within
each other’s margins of errors) before significantly decreasing at batch size
1024. Furthermore, from Figure 4.19, the average node importance for
worse nodes is stable across all batch sizes (except for batch size 256, where
it is noticeably higher). This is very different to Figure 4.14 where the node
importance decreased as batch size increased. This is quite surprising since
it seems to contradict our previous theory that nodes could specialize in
the noise of the dataset. However, since this is a slightly more complicated

56

dataset, this might be due to the model not being to fully capture the
differences between the different classes and therefore not being able to
start overfitting on the training data. This is somewhat confirmed by
Table 4.14, where the difference between the loss for batch size 32 (best loss
on average) and the one for batch size one is not as different as previously.

Figure 4.20 behaves in much of a similar fashion as for the MNIST
dataset, except that it stabilizes around ten nodes instead of two nodes.
Once again, we see that having a batch size of 32 seems to be the sweet
spot for node reduction and performance.

More detailed statistics on the number of nodes in each class of nodes
and their importance’s can be found in section B.2

4.3.2 MLP

As for the single-layer ANN, we estimate the node importance on 25
trained models at each batch size. We do this both for MNIST and Fashion
MNIST. However, we will only discuss our results for Fashion MNIST, the
results for MNIST as well as more detailed statistics on the results can be
found in section C.2.

Figure 4.21: Average number of important nodes at each batch size and
layer for 25 three-layer MLPs trained on the Fashion MNIST dataset

Before we start looking at our results, we must note that the number
of nodes in each layer is different, with the first layer having the most
nodes (128), while the last layer has the least nodes (32). This means
that the number of nodes in each layer could be smaller as we go deeper
into the model. However, we are focusing more on the trends than the
actual numbers, so as long we have similar trends per layer, then the layers
perform similarly.

From Figure 4.21 we see the same trend as in the ANN, where the
bigger the batch size, the more important nodes there are. Looking at
Figure 4.22, we have some interesting trends. First, if we look at average
node importance for a batch size of one, we see that the deeper in the model

57

Figure 4.22: Average node importance of important nodes at each batch size
and layer for 25 three-layer MLPs trained on the Fashion MNIST dataset

Figure 4.23: Average number of worse nodes at each batch size and layer
for 25 three-layer MLPs trained on the Fashion MNIST dataset

1 8 32 256 1024

mean 0.8448 0.8681 0.8691 0.8620 0.8494
std 0.0085 0.0061 0.0058 0.0048 0.0051
min 0.8258 0.8543 0.8570 0.8510 0.8351
25% 0.8397 0.8651 0.8644 0.8596 0.8467
50% 0.8474 0.8681 0.8700 0.8621 0.8508
75% 0.8504 0.8715 0.8735 0.8659 0.8529
max 0.8572 0.8773 0.8778 0.8689 0.8568

Table 4.15: Statistics on the accuracy of the 25 three-layer MLPs trained on
the Fashion MNIST dataset at each batch size

58

Figure 4.24: Average node importance of worse nodes at each batch size
and layer for 25 three-layer MLPs trained on the Fashion MNIST dataset

Figure 4.25: Average number of zero nodes at each batch size and layer for
25 three-layer MLPs trained on the Fashion MNIST dataset

1 8 32 256 1024

mean 0.5081 0.3736 0.3662 0.3821 0.4266
std 0.0493 0.0186 0.0147 0.0119 0.0112
min 0.4367 0.3483 0.3447 0.3650 0.4084
25% 0.4753 0.3579 0.3562 0.3722 0.4190
50% 0.5035 0.3708 0.3625 0.3818 0.4254
75% 0.5289 0.3809 0.3740 0.3911 0.4373
max 0.6304 0.4174 0.3982 0.4074 0.4541

Table 4.16: Statistics on the loss of the 25 three-layer MLPs trained on the
Fashion MNIST dataset at each batch size

59

we go, the closer to zero the node importance gets with a big increase in
node importance between layers two and three. Another difference being
the reduction in standard deviation as we go deeper into the model. This
is interesting since there are more nodes in the first two layers compared
to the last layer. This could be due to the compounded effect of removing
a node in a shallow layer compared to a deeper layer since a node in a
deeper layer affect fewer nodes than in one in a shallower layer. Then, as
we increase to a batch size of eight, all the layer has roughly equal node
importance which is close to zero. Past that point, as we increase the batch
size during training, we see the deeper the layer, the quicker the node
importance decreases. Especially for layer three, where the average node
importance is noticeably smaller than for the other layers. A final detail
is that while the standard deviation of layers one and two starts as much
larger than for layer three, once we reach a batch size of 1028, the standard
deviation of the node importance in layer three is noticeable while layers
one and two have almost no standard deviation.

Figure 4.23 shows that while the number of worse nodes in layer one
stays relatively constant (it is smaller at a batch size of 1024, but since the
standard deviation is relatively high, we could have a very similar number
of worse nodes in layer one at a batch size of 1024), the number of worse
nodes decreases as the batch size increases in layers two and three. If we
now focus on Figure 4.24, we see that the average node importance of the
worse nodes is approximately the same across all batch sizes and layers.
Again, the loss and accuracy of the model are not as good as for MNIST,
therefore, this could contribute to the theory that nodes can only specialize
in the noise if the model can sufficiently learn the differences between the
classes. Figure 4.25 has very similar trends to the ones seen in the ANN
models, where the number of zero nodes decreases before stabilizing or
slightly increasing as batch size increases.

As for the ANN models, we achieve our best loss/accuracy when
training with a batch size of 32 (as seen in Table 4.15 and Table 4.16). Since
the trends for the worse and zero nodes are very similar to the ones seen in
the ANN models and we attain the best loss/accuracy with a batch size of
32, we think using a batch size of 32 is optimal for node pruning.

4.3.3 CNN

We finally repeat the experiment for our CNN model. However, instead
of looking at 25 models for each batch size, we only look at 15 models at
each batch size. We do it on all three datasets, but we only do a detailed
analysis of the CIFAR-10 dataset. For our results on the other datasets and
more detailed statistics, refer to section D.2.

The first aspect of note in Figure 4.26 is how close to zero the number
of important nodes are when the batch size is one. By looking at Table 4.17,
we can understand this better since at least 75% of all models have an
accuracy of 0.1. Since there are ten different classes, that means the model
is randomly guessing which class each image is from. If we also take a look
at Figure 4.28 and Figure 4.30, we see that almost all the nodes are zero

60

Figure 4.26: Average number of important nodes at each batch size and
layer for 15 CNNs trained on the CIFAR-10 dataset

Figure 4.27: Average node importance of important nodes at each batch
size and layer for 15 CNNs trained on the CIFAR-10 dataset

1 8 32 256 1024

mean 0.1592 0.6883 0.7222 0.5757 0.5736
std 0.1564 0.0170 0.0098 0.1130 0.0138
min 0.1000 0.6461 0.7050 0.2925 0.5420
25% 0.1000 0.6827 0.7164 0.5701 0.5669
50% 0.1000 0.6909 0.7239 0.6151 0.5720
75% 0.1000 0.7008 0.7286 0.6381 0.5834
max 0.5503 0.7097 0.7364 0.6595 0.5970

Table 4.17: Statistics on the accuracy of the 15 CNNs trained on the CIFAR-
10 dataset at each batch size

61

Figure 4.28: Average number of worse nodes at each batch size and layer
for 15 CNNs trained on the CIFAR-10 dataset

Figure 4.29: Average node importance of worse nodes at each batch size
and layer for 15 CNNs trained on the CIFAR-10 dataset

1 8 32 256 1024

mean 2.1697 0.9285 0.8289 1.4442 1.1973
std 0.3525 0.0557 0.0311 0.8975 0.0347
min 1.2895 0.8709 0.7752 0.9675 1.1469
25% 2.3030 0.8878 0.8094 1.0275 1.1760
50% 2.3031 0.9233 0.8350 1.0945 1.1993
75% 2.3033 0.9338 0.8460 1.2947 1.2112
max 2.3038 1.0835 0.8787 4.0439 1.2748

Table 4.18: Statistics on the loss of the 15 CNNs trained on the CIFAR-10
dataset at each batch size

62

Figure 4.30: Average number of zero nodes at each batch size and layer for
15 CNNs trained on the CIFAR-10 dataset

nodes, meaning that the model does not do much classification, but rather
randomly assigns values to each data point. Therefore it would make sense
that there are either none or almost no important or worse nodes in the
model (this is confirmed in the tables found in section D.2).

Otherwise, the number of important nodes follows the same trend as
for previous neural network models. However, the number of worse nodes
in the model behaves very differently from the previous models. They first
increase (except for layer five where they decrease if we ignore the first
result) till reaching a maximum at a batch size of 256, at which point it starts
decreasing again. Layer five is the only layer that follows the trend of the
layers in the previous models, it is also the only dense layer, which is the
only type of layers considered in the previous models. From that, we can
theorize that batch size affects dense and convolutional layers in different
ways when it comes to worse nodes, but relatively similarly when it comes
to important nodes.

When looking at Figure 4.27, we see that the first and last layers have
the lowest node importance on average, with the last layer having the
lowest node importance on average. The fact that node importance is at its
lowest in the first and last layer, could mean that most of the classification
is done there. However, one thing to take into account is that these are
also the layers with the least nodes, this could lead to inflated results for
those layers. The results shown in Figure 4.29 are very surprising since
the average node importance of worse nodes is relatively stable across
batch sizes except for when the batch size is 256. This also happened
when training the single-layer ANN on the Fashion MNIST set. We had
considered it not to be too significant then. However, it has happened again
for the CNN, and what is more, it happens for all five layers. The reason for
this is hard to tell and would need to be investigated more. A final note on
this is that this discrepancy for a batch size of 256 does not happen when
the CNN is trained on MNIST or Fashion MNIST.

63

As for Figure 4.30, we have very similar trends to the previous neural
network models. Again, we get our best accuracy/loss for a batch size of
32 (see Table 4.17 and Table 4.18). The results for the other datasets are very
similar except that the number of worse nodes maximizes at a batch size of
32 and, as mentioned before, there is no discrepancy when the batch size
is 256. Moreover, the average node importance of important nodes follows
the trend seen in the previous neural network models, with very low node
importance when the batch size is one, before being relatively stable or
slowly decreasing as the batch size increases.

4.3.4 Summary

From our results, we can see that the batch size affects node importance.
Whether it be in a single-layer ANN, an MLP, or a CNN. In general, the
larger the batch size, the more important nodes there are in the model.
When it comes to worse nodes, if we consider dense layers, then the
number of worse nodes decreases as we increase batch size. However,
for convolutional layers, the number of worse nodes starts by increasing
before reaching a maximum and then decreasing. For the average node
importance of important nodes, in most cases, we have the lowest node
importance when the batch size is one (the notable exception being for the
CNN trained on CIFAR-10, where it was unable to classify when the batch
size is one). Before stabilizing or slightly decreasing as we increase batch
size. As for the average node importance of worse nodes, it stays relatively
similar for all batch sizes except for the CNN trained on CIFAR-10 and
the single-layer ANN trained on Fashion MNIST where we have a sudden
increase in node importance for batch size 256. This increase at batch size
256 is hard to explain with our current results and would require more
investigation. Otherwise, the zero nodes decrease and then stabilize as we
increase batch size, and overall we achieve the best accuracy/loss with a
batch size of 32.

In conclusion, the best batch size to use for all datasets and neural
network models seems to be 32 because it both yields a good number
of worse nodes compared to the other batch sizes and has a good initial
loss/accuracy. Even though looking at batch size 256 for a CNN trained on
CIFAR-10 to see how the discrepancy affects pruning would be interesting.
To keep results consistent between neural network models and datasets,
we will use a batch size of 32 going forward.

4.4 Effects of Using Dropout

We will now look at whether adding dropout to each layer affects node
importance. We will only focus on the single-layer ANN and MLP neural
networks. Again we will calculate node importance based on the validation
set. We will test five different dropout rates: 0.1, 0.3, 0.5, 0.7, and 0.9. All
the models will be trained for five epochs.

64

4.4.1 Single-layer ANN

As for the batch size experiment, we will train 25 models for each dropout
rate. For the results without dropout, we will refer to section 4.2 and
section 4.3 (the results when batch size is equal to 32). We will do this for
both the MNIST and Fashion MNIST datasets, but we will only discuss
MNIST for the single-layer ANN. For the results on Fashion MNIST or
more detailed statistics, refer to section B.3.

Figure 4.31: Average number of important nodes at each dropout rate for
25 single-layer ANNs trained on the MNIST dataset

Figure 4.32: Average node importance of important nodes at each dropout
rate for 25 single-layer ANNs trained on the MNIST dataset

Looking at Figure 4.31, we see that the number of important nodes
starts by decreasing till a dropout rate of 0.7 before increasing significantly
when the dropout rate is 0.9 (goes from 92 to 113). A possible reason
for this might be a specialization of nodes to certain classes once the
number of nodes trained on at each step becomes much smaller. This

65

Figure 4.33: Average number of worse nodes at each dropout rate for 25
single-layer ANNs trained on the MNIST dataset

Figure 4.34: Average node importance of worse nodes at each dropout rate
for 25 single-layer ANNs trained on the MNIST dataset

0.1 0.3 0.5 0.7 0.9

mean 0.9761 0.9749 0.9710 0.9606 0.9293
std 0.0015 0.0012 0.0010 0.0013 0.0022
min 0.9710 0.9723 0.9689 0.9579 0.9242
25% 0.9755 0.9742 0.9705 0.9597 0.9284
50% 0.9764 0.9748 0.9710 0.9609 0.9299
75% 0.9771 0.9759 0.9717 0.9617 0.9308
max 0.9775 0.9767 0.9725 0.9629 0.9334

Table 4.19: Statistics on the accuracy of the 25 single-layer ANNs trained
on the MNIST dataset at each dropout rate

66

Figure 4.35: Average number of zero nodes at each dropout rate for 25
single-layer ANNs trained on the MNIST dataset

0.1 0.3 0.5 0.7 0.9

mean 0.0775 0.0822 0.0962 0.1333 0.2714
std 0.0044 0.0033 0.0027 0.0032 0.0076
min 0.0713 0.0753 0.0913 0.1261 0.2612
25% 0.0750 0.0802 0.0944 0.1313 0.2641
50% 0.0765 0.0819 0.0957 0.1331 0.2710
75% 0.0797 0.0842 0.0982 0.1363 0.2749
max 0.0925 0.0893 0.1034 0.1393 0.2926

Table 4.20: Statistics on the loss of the 25 single-layer ANNs trained on the
MNIST dataset at each dropout rate

seems to be confirmed by Figure 4.32 where the node importance starts
by increasing before dropping back down to around the node importance
observed when the dropout rate is 0.1. The theory of node specializing
is furthered by Figure 4.33, where the number of worse sharply decreases
when the dropout rate is 0.9. Otherwise, it slowly increases as the dropout
rate increases.

As for Figure 4.34 and Figure 4.35, the trends are pretty stable where
the average node importance of worse nodes decreases while the number
of zero nodes increases as the dropout rate increases. Finally, looking at
Table 4.19 and Table 4.20, the best results are obtained when the dropout
rate is 0.1. The models tend to get worse as we increase the dropout rate.

If we compare our results to the results without dropout, we see that
apart from having a dropout layer with a dropout rate of 0.1, where we get
a similar result as when there is no dropout, having a dropout layer seems
to make results worse. Therefore, having no dropout seems to be a better
ides for node pruning.

The results for the single-layer ANNs trained on Fashion MNIST are
very similar, except that there are less important nodes and more zero and

67

worse nodes at each dropout rate.

4.4.2 MLP

We will again train 25 models for each dropout rate. In this experiment,
we chose to apply the same dropout rate to every layer. Finally, we train
both on the MNIST and Fashion MNIST dataset. However, we only discuss
our result on the Fashion MNIST dataset. For our other result and more
detailed statistics, refer to section C.3

Figure 4.36: Average number of important nodes at each dropout rate and
layer for 25 three-layer MLPs trained on the Fashion MNIST dataset

Figure 4.37: Average node importance of important nodes at each dropout
rate and layer for 25 three-layer MLPs trained on the Fashion MNIST
dataset

If we start by focusing on layers two and three in Figure 4.36, we see
that instead of having a high number of important nodes with a dropout
rate of 0.9, we maximize the number of important nodes at a dropout rate

68

Figure 4.38: Average number of worse nodes at each dropout rate and layer
for 25 three-layer MLPs trained on the Fashion MNIST dataset

Figure 4.39: Average node importance of worse nodes at each dropout rate
and layer for 25 three-layer MLPs trained on the Fashion MNIST dataset

0.1 0.3 0.5 0.7 0.9

mean 0.8672 0.8552 0.8082 0.5525 0.1135
std 0.0043 0.0040 0.0198 0.0742 0.0187
min 0.8575 0.8433 0.7440 0.4459 0.1000
25% 0.8645 0.8532 0.8007 0.4869 0.1000
50% 0.8675 0.8568 0.8071 0.5501 0.1020
75% 0.8703 0.8581 0.8209 0.6084 0.1283
max 0.8742 0.8592 0.8308 0.6871 0.1518

Table 4.21: Statistics on the accuracy of the 25 three-layer MLPs trained on
the Fashion MNIST dataset at each dropout rate

69

Figure 4.40: Average number of zero nodes at each dropout rate and layer
for 25 three-layer MLPs trained on the Fashion MNIST dataset

0.1 0.3 0.5 0.7 0.9

mean 0.3685 0.4043 0.5125 1.1333 2.2959
std 0.0113 0.0082 0.0247 0.1173 0.0123
min 0.3545 0.3902 0.4648 0.8891 2.2610
25% 0.3605 0.3984 0.4967 1.0668 2.2945
50% 0.3661 0.4032 0.5072 1.1045 2.3025
75% 0.3739 0.4086 0.5314 1.2491 2.3026
max 0.4037 0.4213 0.5569 1.3161 2.3027

Table 4.22: Statistics on the loss of the 25 three-layer MLPs trained on the
Fashion MNIST dataset at each dropout rate

of 0.7. A good explanation for this can come from Table 4.21, where we
see that at least 25% of the models trained with a dropout rate of 0.9 are
guessing which class each image is in (and thus reaching an accuracy of
0.1). Therefore, having a dropout rate of 0.9 is too high and will often not
let the model learn the patterns. Therefore, if we ignore that result, we see
that layers two and three have similar behavior to the single-layer ANN.
If we now focus on layer one, we see that the behavior is different where
the number of important nodes decreases as the dropout rate increases.
However, if we now look at Figure 4.37, we see that all the layers follow
the same trend as for the single-layer ANN. Therefore our theory that
nodes specialize seems to still be applied here. This is further supported by
Figure 4.38, where the number of worse nodes increases until the dropout
rate is 0.5, before dropping when the dropout rate is 0.7. This is the same
behavior seen when using a single-layer ANN.

As for the node importance of worse nodes, looking at Figure 4.39, it
seems to decrease as we increase the dropout rate. For layer one, it remains
relatively constant as the dropout rate increases, while for layers two and
three it decreases slowly at first before dropping significantly for a dropout

70

rate of 0.7. Finally, the number of zero nodes behaves in a very similar
fashion as for a single-layer ANN when looking at layer one in Figure 4.25.
However, for layers two and three, there seems to never be any zero nodes
between a dropout rate of 0.1 and 0.7. Table 4.21 and Table 4.16 again
shows that the model gets worse as we increase the dropout rate, and that
overall, we have a slightly worse model to prune with a dropout rate of 0.1
compared to having no dropout layer.

The results for the MNIST dataset are similar to the previous methods
as having a dropout rate of 0.9 being too high to train a decent model.

4.4.3 Summary

As for batch size, having dropout and different dropout rates affect
the node importance of the nodes. Interestingly, in this case, it seems
that at a certain dropout rate, we have node specializing in classifying
certain classes and therefore increasing the number of important nodes and
decreasing their node importance. We see that the behavior of a single-
layer ANN can be seen in the two last layers of an MLP, and while the
behavior of the first layer of the MLP is slightly different (the number of
important nodes continuously decrease instead of significantly increasing
at the highest usable dropout rate), overall the behavior is still very similar
to a single-layer ANN.

Even though adding a dropout rate induces interesting patterns, the
models almost always perform worse in both loss and accuracy. The only
case where we get very similar results is when the dropout rate is 0.1, but
since the result is just similar and not better, we will not have a dropout
layer moving forward.

4.5 Pruning network with pre-calculated importance

This the first section in which we will prune our models based on their node
importance. In this case, we will start by calculating their node importance
and then removing all the nodes that are either classified as worse or zero.
We will also do this for both node importance based on the training set and
the validation set. As mentioned in section 4.3 and section 4.4, we will not
have dropout and will train with a batch size of 32.

4.5.1 Single-layer ANN

For the single-layer ANN, we will train 50 models for each dataset (MNIST
and Fashion MNIST) and each set (training and validation). We will only
discuss the MNIST dataset results, but our results for the Fashion MNIST
dataset and more statistics on our results can be found in section B.4. We
will start by analyzing our results when estimating node importance on the
training set.

As Figure 4.41 and Figure 4.42 mirror each other and that node
importance is based on loss, we will focus Figure 4.42. The first thing we

71

Figure 4.41: Impact of number of nodes removed based on their pre-
calculated node importances, calculated on the training set, from single-
layer ANNs trained on the MNIST dataset on the accuracy of the model

Figure 4.42: Impact of number of nodes removed based on their pre-
calculated node importances, calculated on the training set, from single-
layer ANNs trained on the MNIST dataset on the loss of the model

notice is that almost no model has improved after being pruned. The loss
stays relatively the same up to 15 nodes pruned before it starts increasing
exponentially. However, if we look at Table 4.23, we see that on average
we are pruning 17 nodes, which does not seem to change the loss of the
model by a significant margin. However, on average, the change loss
from pruning based on pre-calculated node importance is 0.03542 (when
ignoring the result when almost 40 nodes are removed, otherwise it is
0.04654), which, since the average loss of the model is around 0.081, is
almost a 50% increase in loss. Therefore it seems that pruning based on pre-
calculated node importance might not be a great way to prune our models.
Next, we will look at how estimating the node importance on the validation

72

Number of Nodes

mean 16.92
std 7.28
min 4.00
25% 12.00
50% 17.00
75% 22.00
max 39.00

Table 4.23: Statistics on the number of nodes pruned from single-
layer ANNs trained on the MNIST dataset when pruning based on pre-
calculated node importance calculated on the training set

set changes our results.

Figure 4.43: Impact of number of nodes removed based on their pre-
calculated node importances, calculated on the validation set, from single-
layer ANNs trained on the MNIST dataset on the accuracy of the model

Number of Nodes

mean 26.82
std 6.89
min 11.00
25% 23.00
50% 25.50
75% 31.00
max 41.00

Table 4.24: Statistics on the number of nodes pruned from single-
layer ANNs trained on the MNIST dataset when pruning based on pre-
calculated node importance calculated on the validation set

73

Figure 4.44: Impact of number of nodes removed based on their pre-
calculated node importances, calculated on the validation set, from single-
layer ANNs trained on the MNIST dataset on the loss of the model

As before, Figure 4.44 and Figure 4.43 mirror each and we will therefore
focus on Figure 4.44. At first glance, our results look worse, with almost all
pruned models having worse loss than the original model. However, if we
focus on the x-axis and Figure 4.43, we see that we prune many more nodes
compared to before. From Table 4.24, we see that we prune on average 27
nodes, which is ten more than when pruning based on node importance
calculated on the training set. If we compare our result at each number
of nodes removed, we see that we now have a smaller or similar change
in loss, which could indicate that pruning on the validation set can lead
to more removal, with better or similar results. This is especially true for
the higher number of nodes removed, where we never increase our loss
by more than 0.4, while before, at around 40 nodes, we increase our loss
by almost 0.6 (although there is only a single data point there and could
be an outlier). Finally, if we compare the increase in loss when removing
between 25 and 30 nodes, we see that when using the validation set, we
never increase the loss by much more than 0.1, while when we use the
training set, we can increase the loss by 0.2. Therefore it seems that using
the validation set to estimate node importance might be a better idea.

A reason that pruning based on pre-calculated node importance gives
us models with worse or significantly worse loss could be that some nodes
are redundant and therefore removing one of the redundant nodes does not
affect our model much or even could make it better. However, if we remove
all the nodes, then we also remove all the redundant nodes. In other words,
we remove all the nodes doing the specific classification. Therefore it might
be better to re-evaluate each time we remove a node.

For the Fashion MNIST dataset, we get very similar results except
that more nodes can be removed. Also since the initial loss is higher,
the percentage increase in the loss for the Fashion MNIST set is smaller
than for the MNIST set. However, only two or three models have a

74

negligible increase in the loss while all the others have either a noticeable or
significant change in the loss. Therefore, we come to the same conclusion
that using pre-calculated node importance is not the best idea for node
pruning.

4.5.2 Other models

We get similar results for MLP and CNN, where the pruning based on pre-
calculated node importance generally leads to significantly worse models.
The biggest differences are that more nodes are removed for those models
since they have more nodes, to begin with. We also observe the same
trend that when calculating the node importance on the validation set,
we get more node removed (although that is expected since in section 4.2
we saw that there were more worse and zero nodes when estimating on
the validation set), but we get a lower or similar increase when the same
number of nodes are removed. The results for these models can be found
in section C.4 and section D.3.

4.5.3 Summary

Using pre-calculated node importance to prune our models seemed to be
a good idea but after experimenting with it, we saw that, in general, the
pruned models end up having significantly worse loss and accuracy. A
reason that might be the case is that a few nodes might be doing the same
type of classification meaning that they are redundant in respect to one
another. Therefore the node importance of each one of them classifies them
as either worse or zero nodes. With our current way of pruning, we end
up removing all of them instead of keeping one of them (which is needed
since it does some type of classification). We also saw that pruning based
on node importance calculated via the validation set gives us a similar or
better result when the number of nodes removed is the same. Besides, it
removes more nodes on average, although this is expected since we saw
in section 4.2 that there are more worse and zero nodes when we use the
validation set to estimate node importance.

4.6 Pruning Nodes based on the Loss

We saw that pruning nodes based on pre-calculated node importance
does not yield very good results. To remedy this, we will try a new
approach to pruning where we start by finding the nodes with the highest
node importance in the layer, remove it, and then re-calculate the node
importance of the other nodes. We do this till all the nodes in the layer
are considered important and then move on to the previous layer. We do
this till all hidden layers are pruned. We will again consider both node
importance calculated on the training set and the validation set for the
single-layer ANN and the MLP. For the CNN, we will only consider node
importance calculated on the validation set.

75

4.6.1 Single-layer ANN

We will prune 20 different single-layer ANN models for both datasets
(MNIST and Fashion MNIST) and both sets (training and validation). We
will again only discuss our results for MNIST. More detailed statistics and
the results for the Fashion MNIST dataset can be found in section B.5. We
will start by analyzing the pruned models where pruning is based on the
training set loss.

Figure 4.45: Impact of number of nodes removed based on their loss and
pruned in an exhaustive fashion, calculated on the training set, from single-
layer ANNs, trained on the MNIST dataset, on the accuracy of the model

Figure 4.46: Impact of number of nodes removed based on their loss and
pruned in an exhaustive fashion, calculated on the training set, from single-
layer ANNs, trained on the MNIST dataset, on the loss of the model

The first thing we notice when looking at Figure 4.46 is that the number
of nodes removed is much smaller than the estimated number of zero and
worse nodes. Here, we have an average of seven nodes removed, whereas

76

section 4.2 estimates there to be 16 unimportant nodes. This seems to
support our argument that some nodes are considered redundant and that
removing them does not change or makes the model better. We can also
see that the model always improves (albeit slightly for some cases). On
average, we reduce the test loss by 0.005, which is around a 7% decrease
in loss. A final observation to make is that the decrease in loss seems to
slightly increase as we remove more nodes, although it is not a big increase,
and we could just as well have it be stable across the number of nodes
removed. Further, since we only look at the difference in loss and not the
final and initial loss, it could be that those with more nodes removed start
at a higher initial loss. For the accuracy, we see that Figure 4.45 also shows
an average increase in accuracy, but it is usually less than half a percent and
therefore not very consequential. If we compare these results to the ones we
obtain using random removal (section 4.1), we see that we obtain similar
results in terms of the number of nodes removed (seven versus nine), but
we get a higher reduction in the loss on average. Furthermore, the big
difference is that here we use different models, while we only have one
model for when randomly removing. Therefore, to get similar results, we
would have to hope that we choose the right variation, or we need to try
many variations to find a sensible one. Therefore, using this method leads
to more stable results across models than randomly removing. We will
now look at how the pruning differs when we consider node importance
calculated on the validation set.

Figure 4.47: Impact of number of nodes removed based on their loss and
pruned in an exhaustive fashion, calculated on the validation set, from
single-layer ANNs, trained on the MNIST dataset, on the accuracy of the
model

Looking at the x-axis in Figure 4.48, we see that we now remove
more nodes than when considering node importance calculated on the
training set. We have, on average, 13 nodes removed instead of the seven
previously. However this still less than the estimated number of zero
and worse nodes estimated (in this case 27). Moreover, it looks like we

77

Figure 4.48: Impact of number of nodes removed based on their loss and
pruned in an exhaustive fashion, calculated on the validation set, from
single-layer ANNs, trained on the MNIST dataset, on the loss of the model

have a few models that end up having worse performance than before
being pruned. However, we still, on average, decrease the loss by 0.005.
However, the average loss of the models trained with a validation set is
0.004 higher. Therefore, while using the validation set prunes more of the
model, the end model tends to have a higher loss than if we only had a
training set. However, for more complex models, we always tend to have
a validation model so that we can make sure we do not overfit a model.
While the end loss is higher, the amount of loss decreased is roughly the
same (6% decrease instead of 7%). A final advantage is that since the
validation set is much smaller than the training set, it takes less time to
prune when calculating the node importance on the validation set.

One reason why we can remove more nodes without sacrificing
performance in terms of loss reduction might be that when using the
validation set, we can remove nodes that classify the noise of the training
set. With the validation set, we have them classified as worse or zero nodes,
while on the training set, they would be considered important nodes.

To end this section, we will look at the evolution of loss and accuracy
for two single-layer ANNs, one where node importance is calculated on the
training set, whereas the other is calculated on the validation set.

For the model pruned on the training set, we have:

• Original Loss: 0.0695

• Original Accuracy: 0.9783

• Number of nodes removed: 2

• New Loss: 0.06689

• New Accuracy: 0.9797

For the model pruned on the validation set, we have:

78

Figure 4.49: Evolution of the training accuracy during the exhaustive
pruning of a single-layer ANN trained on the MNIST dataset

Figure 4.50: Evolution of the training loss during the exhaustive pruning of
a single-layer ANN trained on the MNIST dataset

• Original Loss: 0.0833

• Original Accuracy: 0.9759

• Number of nodes removed: 15

• New Loss: 0.0773

• New Accuracy: 0.9768

We can see from both evolution curves that we start by decreasing loss
faster before slowing down, which is to be expected given our method.
As expected from our previous results, we get more reduction with the
validation set than with the training set, but since the initial loss is quite
different, the difference in the number of nodes removed is enhanced.

79

Figure 4.51: Evolution of the validation accuracy during the exhaustive
pruning of a single-layer ANN trained on the MNIST dataset

Figure 4.52: Evolution of the validation loss during the exhaustive pruning
of a single-layer ANN trained on the MNIST dataset

Otherwise, both models increase the accuracy, but, for the models pruned
on the validation data, we have a much less smooth increase in the
accuracy.

We get very similar results for the Fashion MNIST data, except that
the number of nodes removed and the loss decreased (in value at least) is
larger. The biggest difference is that the loss reduction for nodes pruned on
the validation set is noticeably larger than the nodes pruned on the training
set (0.021 vs. 0.014 reduction in loss).

4.6.2 MLP

Now we go on to prune MLP models, instead of testing 20 models, we
will now test ten different models. We will again test both on MNIST and

80

Fashion MNIST and both on the training set and the validation set. As for
previous sections, we will only discuss our results for the Fashion MNIST
dataset, but our result for the MNIST dataset and more statistics on our
results can be found in section C.5. We will begin with pruning based on
the training set.

Figure 4.53: Impact of number of nodes removed based on their loss and
pruned in an exhaustive fashion, calculated on the training set, from three-
layer MLPs, trained on the Fashion MNIST dataset, on the accuracy of the
model

Figure 4.54: Impact of number of nodes removed based on their loss and
pruned in an exhaustive fashion, calculated on the training set, from three-
layer MLPs, trained on the Fashion MNIST dataset, on the loss of the model

From Table 4.25, we can see that we remove fewer nodes than the
estimated number of worse and zero nodes, both in terms of the total
number of nodes removed (36 pruned versus 59 estimated) and per layer
(23 instead of 36 for layer one, 8 instead of 16 for layer two, 5 instead of 6
for layer three). While the proportion of unimportant nodes is lower, the

81

Layer 3 Layer 2 Layer 1

mean 4.60 7.90 23.00
std 1.84 2.28 3.53
min 2.00 6.00 19.00
25% 3.25 6.00 20.00
50% 4.50 7.50 22.50
75% 5.00 8.75 25.50
max 8.00 13.00 30.00

Table 4.25: Statistics on the number of nodes pruned from three-layer MLPs
trained on the Fashion MNIST dataset when pruning exhaustively based
on node importance calculated on the training set

first layer still has the highest proportion of unimportant nodes. However,
the last and second layers flip, with the last layer now having a higher
proportion than the second layer. Nevertheless, compared to single-layer
ANN, the number of nodes we remove is closer to the estimate, around 60%
here instead of 50% for the single-layer ANNs. Moreover, the number of
nodes removed for layer three is very close to the number of worse and zero
nodes estimated. As for the single-layer ANN, Figure 4.54 shows that the
decrease of loss is relatively similar across the number of nodes removed,
except when 28 nodes are removed where the decrease in loss is around
0.0075 instead of the average of 0.0186. However, this might be due to a
lower initial loss for this model compared to the other models tested. As
for accuracy, Figure 4.53 shows that we at most increase the accuracy by
1%, meaning that, while the accuracy does increase, it is not significant.

Figure 4.55: Impact of number of nodes removed based on their loss and
pruned in an exhaustive fashion, calculated on the validation set, from
three-layer MLPs, trained on the Fashion MNIST dataset, on the accuracy
of the model

For the validation data, we have very similar results in terms of the

82

Figure 4.56: Impact of number of nodes removed based on their loss and
pruned in an exhaustive fashion, calculated on the validation set, from
three-layer MLPs, trained on the Fashion MNIST dataset, on the accuracy
of the model

Layer 3 Layer 2 Layer 1

mean 6.40 9.90 25.90
std 1.71 3.45 3.78
min 3.00 6.00 20.00
25% 6.00 8.00 22.75
50% 6.00 9.50 26.00
75% 7.75 10.00 28.00
max 9.00 18.00 31.00

Table 4.26: Statistics on the number of nodes pruned from three-layer MLPs
trained on the Fashion MNIST dataset when pruning exhaustively based
on node importance calculated on the validation set

number of nodes removed compared to the number of estimated worse
and important nodes. Instead of around 60% of the estimated nodes are
pruned, we have around 55% of estimated nodes pruned with again the 3rd

layer highest percentage of estimated nodes pruned (75% on average, all
of these are based on the number of estimated nodes and not their exact
positions). We again have a very similar experience to the single-layer
ANN with nodes pruned based on the validation set compared to nodes
pruned based on the training set. Where we have more nodes pruned when
using the validation set against using the training set, but we have a similar
decrease in loss, 0.0182 for the former versus 0.0186 for the latter (or around
5% for both). However, we again have a lower initial loss for the model
trained on a full training set compared to a reduced one. Since we do get
similar performance, and the difference in loss is not extreme and the gain
in time to prune and the number of nodes removed is substantial, using the
validation set seems to be a good idea.

83

We will now look at the evolution of loss during pruning of two MLP
models, one pruning based on the training set while the other prunes are
based on the validation set.

Figure 4.57: Evolution of the training accuracy during the exhaustive
pruning of a three-layer MLP trained on the Fashion MNIST dataset

Figure 4.58: Evolution of the training loss during the exhaustive pruning of
a three-layer MLP trained on the Fashion MNIST dataset

For the model pruned on the training set, we have:

• Original Loss: 0.3453

• Original Accuracy: 0.8785

• Number of nodes removed (layer 3): 3

• Number of nodes removed (layer 2): 4

• Number of nodes removed (layer 1): 19

84

Figure 4.59: Evolution of the validation accuracy during the exhaustive
pruning of a three-layer MLP trained on the Fashion MNIST dataset

Figure 4.60: Evolution of the validation loss during the exhaustive pruning
of a three-layer MLP trained on the Fashion MNIST dataset

• New Loss: 0.3282

• New Accuracy: 0.883

For the model pruned on the validation set, we have:

• Original Loss: 0.3531

• Original Accuracy: 0.8707

• Number of nodes removed (layer 3): 4

• Number of nodes removed (layer 2): 11

• Number of nodes removed (layer 1): 23

• New Loss: 0.3456

85

• New Accuracy: 0.8744

As previously, we see that while the evolution of the loss and accuracy is
relatively smooth on the training set, only the evolution of loss is smooth on
the validation set. The evolution of accuracy jumps around but does settle
at a higher point. A notable difference in the evolution of loss between the
training set and validation set is that most of the reduction in loss happens
on the first layer for the training set, while it happens on the second layer
for the validation set. This is probably due to the model differences and not
a systematic difference between the two types of pruning. Although, more
research is needed to understand this in more detail. Finally, it seems that
the majority of nodes removed in the first layer are zero nodes rather than
worse nodes.

4.6.3 CNN

We experimented with the CNN model too. However, due to the amount
of time it takes to prune one model based on the training set, we decided
to only do the pruning based on the validation. Using the two previous
models, we see that we still get good results pruning on the validation set,
even if we have a higher initial loss, we tend to reduce more nodes without
sacrificing too much performance. Moreover, it is much faster to prune
based on the validation data compared to the training data. Furthermore,
we only test five models for each dataset, MNIST, Fashion MNIST, and
CIFAR-10.

For our result, we have very similar results to previous architectures.
We have fewer nodes pruned than the number of estimated worse and zero
nodes, with the last layer having the closest number of nodes pruned to the
estimated number of worse and zero nodes. Further, suppose we order the
layers based on the proportion of nodes removed. In that case, we see that
we get the same order as for the estimation of node importance, where the
deeper in the model we get, the larger the proportion of removed nodes (or
estimated zero and worse nodes). Moreover, if we ignore the last layer, the
differences in the proportion of nodes removed at each layer is similar to
the difference in the number of estimated zero and worse nodes between
layers. Our full results can be found in section D.4.

4.6.4 Summary

From our results, we see that the most significant difference between
pruning based on the training or validation set comes from the number
of nodes pruned. There is also the difference in start loss, which makes
pruning on the training set slightly more performant than pruning on the
validation set. However, considering the difference in speed in pruning
on the validation set against the training set and that we do not only care
about performance but also reducing the models the most possible, using
the validation set to prune the models seems to an adequate solution to
pruning.

86

Even though pruning with the validation set is faster than pruning
with the training set, it is still relatively slow once we start adding layers.
Therefore, we will consider a new approach to pruning that should speed
up our pruning while keeping a similar performance in terms of decreased
loss and number of nodes removed.

4.7 Greedy approach to pruning instead of Exhaustive
approach

To try to reduce the amount of time it takes to prune nodes, we propose
a new approach where we search for the first zero or worse node we run
across, we remove it, and restart searching the layer from the start. As
before, we do this layer by layer and in a backward fashion, starting with
the last layer and moving back to the first layer. Another time-saving
feature of this algorithm is that we ignore in future passes any node that
has a node importance under a user-defined threshold. In this experiment,
we try with two different thresholds, −1e−2 and −1e−3. Moreover, since
pruning on the single-layer ANN is relatively quick, we only consider the
MLP and CNN models. Further, based on our results from section 4.6 and
that our goal is to reduce the time it takes to prune, we will only consider
node importance based on the validation set. From now on, we will refer
to this method as greedy, while referring to the one used in section 4.6 as
exhaustive.

4.7.1 MLP

We will start by experimenting with our MLP model. We will prune ten
different MLP models with the same architecture for each dataset (MNIST
and Fashion MNIST) and each threshold (−1e−2 and −1e−3). We will only
discuss the Fashion MNIST dataset in detail. For more results and detailed
statistics, check section C.6. We will start looking at our results using a
threshold of −1e−2.

From Figure 4.61, we see that we remove slightly more nodes using
the greedy method (two more nodes on average). However, we have a
slightly lower decrease in loss (0.0022 or an 18% less decrease compared
to the exhaustive method. If we now look at our result when using a
threshold of −1e−3 (Figure 4.63), we see that we get a comparable increase
in the number of nodes removed (again two on average) and also a similar
lower decrease in loss (0.0023 or 19% less decrease). Therefore, using either
threshold delivers similar performances.

Now that we have discussed the performance of the greedy method, we
should focus on Table 4.27 to see if the method is faster and by how much.
The greedy method is much faster than the exhaustive method, with the
lower threshold pruning the model 2.5 times faster (103 seconds instead of
256 seconds), while the higher threshold prunes six times faster (40 seconds
instead of 256 seconds). Since the performance for each threshold is similar,
using the higher threshold is a better idea. Therefore, to finish, we will look

87

Figure 4.61: Impact of number of nodes removed based on their loss and
pruned in an greedy fashion with an ignore cutoff of −1e−2, calculated on
the validation set, from three-layer MLPs, trained on the Fashion MNIST
dataset, on the accuracy of the model

Figure 4.62: Impact of number of nodes removed based on their loss and
pruned in an greedy fashion with an ignore cutoff of −1e−2, calculated on
the validation set, from three-layer MLPs, trained on the Fashion MNIST
dataset, on the loss of the model

at how the loss and accuracy evolve as we remove nodes using the greedy
method with a threshold of −1e−3. Our results are as follow:

• Original Loss: 0.3681

• Original Accuracy: 0.8661

• Number of nodes removed (Layer 1): 6

• Number of nodes removed (Layer 2): 16

• Number of nodes removed (Layer 3): 24

88

Figure 4.63: Impact of number of nodes removed based on their loss and
pruned in an greedy fashion with an ignore cutoff of −1e−3, calculated on
the validation set, from three-layer MLPs, trained on the Fashion MNIST
dataset, on the accuracy of the model

Figure 4.64: Impact of number of nodes removed based on their loss and
pruned in an greedy fashion with an ignore cutoff of −1e−3, calculated on
the validation set, from three-layer MLPs, trained on the Fashion MNIST
dataset, on the loss of the model

• New Loss: 0.3456

• New Accuracy: 0.8771

Contrarily to pruning with the exhaustive method, the evolution of
loss using the greedy method is very erratic, with the rate of loss decrease
randomly changing. However, this is to be expected since we remove the
first worse or zero nodes we encounter.

For the MNIST dataset, the results are a bit more mitigated. While the
number of nodes removed is slightly higher (five on average), the decrease

89

Exhaustive Greedy (-1e-2 cutoff) Greedy (-1e-3 cutoff)

mean 256.68 103.87 40.89
std 38.38 11.50 5.75
min 186.69 85.84 33.24
25% 239.47 94.70 35.96
50% 255.32 104.55 41.23
75% 277.03 114.04 44.40
max 321.65 119.49 49.47

Table 4.27: Time taken in seconds to prune MLPs trained on the Fashion
MNIST dataset using two different ignore cutoff points (if a node has an
importance inferior to the cutoff, it will not be re-evaluated in future passes
of the algorithm)

Figure 4.65: Evolution of the validation accuracy during the greedy
pruning with a ignore cutoff of −1e−3 of a three-layer MLP trained on the
Fashion MNIST dataset

in loss is substantially smaller (0.0099 versus 0.0066 or a 33% less decrease
in loss). However, the increase in speed is only slightly smaller, with the
greedy method with the smaller threshold going five times faster, while the
other goes two times faster. Therefore, it is a toss-up on whether to use the
greedy method to prune for the MNIST dataset or the exhaustive method.
It will depend on whether it is reasonable to sacrifice a noticeable amount
of performance to go faster, but since the MNIST is a relatively simple
dataset, taking only three minutes to prune exhaustively, we are not sure
that the sacrifice in performance is worth it. However, using this method in
combination with pruning on the training set might be interesting since the
speed up in that case (assuming that it is similar or to the one when using
the validation set) is more noticeable.

90

Figure 4.66: Evolution of the validation loss during the greedy pruning
with a ignore cutoff of −1e−3 of a three-layer MLP trained on the Fashion
MNIST dataset

4.7.2 CNN

We repeated these experiments on CNN models, but instead of using ten
models for each dataset, we only use five models for each dataset. On the
CIFAR-10, we get slightly worse results for CNN, where the decrease in
loss is smaller when using the greedy method compared to the exhaustive
method (around 75% of the loss decrease). However, we do remove
more nodes (14 more nodes removed on average), especially in the last
convolutional layer (11 more nodes removed). In this case, we get better
results using a threshold of −1e−3 to ignore future nodes. For the Fashion
MNIST, we get very similar results to the MLP, where the decrease in loss is
very similar between the two methods. However, we do remove a couple
more nodes (around ten more nodes removed). Finally, for MNIST, we
again get pretty poor results using the greedy method. The decrease in loss
is noticeably smaller, while the increase in the number of nodes removed
is the smallest of the three datasets (around 6). However, the time saved
using this method is more accentuated for the CNN, where the pruning
was anywhere between 2.5 to 3.75 times faster when the threshold is−1e−3

and 2.8 to 11 times faster when the threshold is −1e−2, with the largest
speed-up being observed for the CIFAR-10 dataset.

As for the evolution of loss, we again do not have a smooth decrease but
random decrease increments, but this is to be expected with our pruning
method. For all the results and more detailed statistics, refer to section D.5.

4.7.3 Summary

From our result, we saw that using the greedy method can give us
anywhere from similar results to significantly worse results. However,
the worse results seem to be on simpler datasets which usually take less
time to run through. Further, the simpler dataset benefits the least from

91

the speed-up of using the greedy method. For a more complex dataset on
a larger and deeper neural network, we saw a similar or slightly worse
performance with a consequential speed-up (up to 11 times faster than
the exhaustive method). Therefore, using this method for deeper neural
networks with a more complex/larger dataset is useful since the small
sacrifice in performance leads to a noticeable increase in speed. However,
for the MNIST dataset and simpler datasets where the loss is smaller, it is
possible that using a smaller threshold will lead to better results. Also as
mentioned before, using this method in conjunction with pruning on the
training set might lead to interesting results.

4.8 Looking at effects of per class accuracy after
pruning

Up to this point, we have only looked at general accuracy, but since we
are doing multi-class classification, it might be interesting to look at how
node pruning affects class wise accuracy. We will also take this occasion to
look at the accuracy and loss of the pruned model compared to the original
model. For this experiment, we will only use CNN models to be pruned on.
We will use the greedy method with a threshold of −1e−3. For each dataset
(MNIST, Fashion MNIST, and CIFAR-10), we will look at the ten different
CNN models. While we have results for all datasets, we will only go into
detail for the CIFAR-10 dataset. For the other results and more detailed
statistics refer to section D.6.

Figure 4.67: Average class accuracy before and after pruning ten CNNs
trained on the CIFAR-10 dataset. These models were pruned based on the
validation set and with the greedy method.

When looking at Figure 4.67 we see that while the class accuracy of
each class is relatively similar (except for classes two and three or bird and
cat), the error bars or standard deviation is much smaller for all classes.
On average the standard deviation for the class accuracy before pruning

92

Before Pruning After Pruning

mean 0.7323 0.7328
std 0.0064 0.0058
min 0.7250 0.7256
25% 0.7274 0.7279
50% 0.7314 0.7326
75% 0.7344 0.7363
max 0.7455 0.7430

Table 4.28: Statistics on the accuracy before and after pruning of ten CNNs
trained on the CIFAR-10 dataset. These models were pruned based on the
validation set and with the greedy method.

Before Pruning After Pruning

mean 0.8011 0.7746
std 0.0238 0.0192
min 0.7598 0.7379
25% 0.7953 0.7645
50% 0.8076 0.7835
75% 0.8159 0.7855
max 0.8300 0.7946

Table 4.29: Statistics on the loss before and after pruning of ten CNNs
trained on the CIFAR-10 dataset. These models were pruned based on the
validation set and with the greedy method.

is 0.054, while after pruning it drops to 0.019, which is almost three times
smaller. This reduction in standard deviation is not limited to the class
accuracy, it also occurs for the loss, where it goes from 0.0238 to 0.0192 or a
19% drop, and for the accuracy, where it goes from 0.0064 to 0.0058 or a 9%
drop. While neither is as impressive as for the class accuracy, they are still
significant, at least for the loss. For the accuracy it is debatable. Therefore,
even if the number of nodes removed is not stable, it seems that by pruning
the models, we get more stable models that produce much similar results.

The other datasets show the same result but amplified, especially in the
loss and accuracy department. For the MNIST dataset, we have a 77% drop
in loss variation and a 71% drop in accuracy variation, while for Fashion
MNIST we have a 62% drop in loss variation and a 44% drop in accuracy
variation. It does seem that having a simpler model or one easier to train on
leads to larger drops in variation. However, this might also due to how the
threshold for the greedy algorithm and the zero node definition fits with
the models. Although based on the previous section, we should see the
opposite if we are looking at how well the greedy method works to prune
these models.

To wrap-up, it looks like pruning mainly decreases variation in the
model, with a more stable loss, accuracy, and class accuracy. Furthermore,

93

the simpler dataset seems to profit the most from this with a drop of at
least 70% in the variation of loss and accuracy between models trained on
the MNIST dataset. Digging more into this stability could be interesting.
Moreover, inspecting how the exhaustive method or using the training set
instead of the validation set affects the stability, could lead to even stabler
models.

4.9 Iterative weight initialization using Node import-
ance

Up to now, we have removed nodes after training, but what if we try
to optimize the nodes before training such that the nodes are for the
majority considered important. In this section, we will look into it and
see if optimizing the weights before training leads to an improvement in
performance.

4.9.1 Single-Layer ANN

We will try to optimize the weights of 25 different single-layer ANN models
for both the MNIST dataset and Fashion MNIST dataset, such that at
least 90% of nodes are considered important when calculating the node
importance on the validation set. We will only go into details for our results
on the MNIST dataset, for our other results go to section B.6.

Unoptimized Weights Optimized Weights

mean 0.8689 0.8691
std 0.0060 0.0061
min 0.8571 0.8562
25% 0.8643 0.8669
50% 0.8691 0.8698
75% 0.8745 0.8731
max 0.8789 0.8782

Table 4.30: Comparison of statistics of the accuracy of 25 single-layer ANNs
where the weight are un-optimized using pruning versus the same layers
where weight has been optimized with pruning. The ANNs are trained on
the MNIST dataset.

Whether we look at Table 4.30 or Table 4.31, the result is the same.
Optimizing the weights such that at least 90% are considered important
before training, leads to almost the same final loss. The only difference is
that it takes much longer to do it (80 seconds instead of six). Therefore,
optimizing weights does not seem to be a viable solution. The results for
the Fashion MNIST are very much the same with training taking longer for
no gain.

94

Unoptimized Weights Optimized Weights

mean 0.0791 0.0814
std 0.0041 0.0051
min 0.0712 0.0731
25% 0.0764 0.0763
50% 0.0783 0.0819
75% 0.0813 0.0840
max 0.0866 0.0929

Table 4.31: Comparison of statistics of the loss of 25 single-layer ANNs
where the weight are un-optimized using pruning versus the same layers
where weight has been optimized with pruning. The ANNs are trained on
the MNIST dataset.

4.9.2 Other Models

The results do not get better for the CNN model or the MLP model.
Whether we optimize the weights or not we end up with either similar or
slightly worse loss and accuracy. Further, the method now starts to become
very long with on average 270 seconds to train an MLP on the MNIST
dataset and 510 seconds to train on the Fashion MNIST. It is even worse for
the CNN, where we are forced to reduce the percentage of important nodes
to 60% to make it work consistently for the MNIST and Fashion MNIST
(taking 600 and 760 seconds respectively to train), while we could not get
the optimization to work on the CIFAR-10 model and therefore could not
get results for it. For comparison, it normally takes seven seconds to train
an MLP on Fashion MNIST and 12 seconds to train a CNN on CIFAR-10.
The full results can be found in section C.7 and section D.7.

4.9.3 Discussion

In theory, this seemed like an interesting idea, setting all the nodes to be
important might have led the model in the correct direction when training.
However, this was not the case, and using this ends up being much too
long and either not improving results or making it slightly worse. We
could try to optimize on the training set instead of the validation set to see
if that ameliorates the situation, but, when considering these results and
the fact that it would probably take longer to optimize on the training set,
we would probably still obtain very similar unsatisfying results. A more
interesting idea would be to increase the number of zero or worse nodes at
the start instead.

4.10 Summary

We started by trying to prune our models randomly. First by removing n
nodes at random and seeing how that affected the model. Those results
usually gave equal or slightly worse models up to four nodes removed.

95

Once we passed four nodes removed, the models were significantly worse.
Therefore, we decided to still remove randomly but in a more controlled
manner where if the model on the train set did not improve from the
removal, then we did not remove them. On the other hand, if it did, then we
did we remove them. This was better, with the models often being better
while being able to remove eight nodes on average. However, it was not
very consistent, where we could remove anywhere between zero and 16
nodes in a lot of cases depending on the dataset trained on and the random
combination of nodes that happened to occur.

Since these methods did not seem to be sufficiently reliable, we looked
into using node importance to prune. However, before starting to prune
using node importance, we needed to investigate how different datasets
and models affected the node importance and how node importance
worked with multiple layers. We saw that for a single-layer ANN, more
complex models tended to generate more worse and zero nodes, while that
was not so evident when we had multiple layers, wherein a lot of cases the
opposite tended to happen. We also saw that for dense layers, the deeper
we went in the model, the less unimportant nodes there were, while for the
convolutional layers it was the opposite. However, this could also be due to
the sizes of layers, since they evolve in opposite directions when looking at
dense and convolutional layers. Finally, we also looked at estimating node
importance with the validation set versus using the training set. We saw
that we always had more unimportant nodes when using the validation
set compared to using the training set. This leads us to believe if we use the
validation set, then we can capture the nodes that optimize the noise rather
than the data itself.

Then we started looking at how two different parameters could affect
node importance. The first was batch size during training. We saw that
in general, as batch size increased, so did the number of important nodes.
For worse nodes, it was a bit more complicated, where for dense layers,
the number would decrease, while for convolutional layers it would start
by increasing before reaching a maximum and then decreasing rapidly.
As for zero nodes, they would usually decrease, before stabilizing at a
minimum, or slightly increase. When looking at average node importance
for important nodes, we saw that it would be at its lowest (which means
that they were more important) when the batch size was one and then
increasing to a stable point and only slightly decreasing again for a few
layers. The notable exception was for the CNNs, where the models were
unable to learn anything when the batch size was one. Where it would
instead minimize at the same point as when the number of worse nodes
is maximized. Finally, the average node importance for worse nodes is
relatively stable across all batch sizes, except for batch size 256, where
for a single-layer ANN trained on Fashion MNIST or a CNN trained on
CIFAR-10, it is maximized. Overall, we decided to keep a batch size of 32
as our defacto batch size, since it offered the best starting performance to
the number of worse/zero/important nodes.

Then we focus on seeing how adding dropout to networks only
containing dense layers affected their node importance. In general, we

96

have the number of important nodes decrease along with its average
node importance increasing, before suddenly jumping up for the number
of important nodes and jumping down for its average node importance.
This leads us to believe that at a certain dropout rate we have the node
specializing in classifying specific classes rather than being general. This
is emphasized by the opposite behavior for the worse nodes, where they
increase before suddenly jumping down. The same cannot be said for their
average node importance, where it constantly decreases instead of having
any erratic behavior. Moreover, while this is the case for the single-layer
ANN, it is only the case for the two last layers of the MLP, the first layer
instead has a constant decrease of important nodes as the dropout rate
increases, while the number of worse nodes still follows the same pattern
as all the others. As for the number of zero nodes, it just constantly goes up
as the dropout rate increases. Overall, the results obtained using dropout
are not that impressive since they are either equal or worse than when there
is no dropout. Therefore we decided to have no dropout going forward.

Now that we have explored how different parameters, models and
datasets can affect node importance, we move on to prune the models using
node importance. We first start by pruning based off of pre-calculated
node importance, where all the nodes classified as zero or worse would be
removed. This leads to lackluster results, with models almost always being
considerably worse than before they are pruned. This led us to believe that
removing all the nodes classified as worse and zero could be an error since
some of these nodes might be redundant and that we would need to keep
at least one of these nodes to avoid losing model performance.

Thus, we decided to prune the models in an iterative fashion and per
layer, where we would find the node with the highest node importance
in a layer, remove it, and then re-calculate the node importance of the
other nodes. We would do this until there were only important nodes
left in the layer, then we would move on to the previous layer since we
did this in a backward fashion. Overall, we ended up removing fewer
nodes than the number of zero and worse nodes we estimated there to
be. However, this made sense since removing them all made the model
worse. Furthermore, we tended to remove as many nodes as when
removing randomly. However, it was generally faster and more consistent
when looking at a per model average. We also, once again, compared
using the training set and validation set to calculate node importance.
Unsurprisingly, we removed more nodes using the validation set compared
to using the training set. However, we also saw that the decrease in
loss between using either set being very similar. Moreover, using the
validation set was faster than using the training set. Therefore we decided
to use only the validation set going forward, even though the initial model
performance was lower than when having no validation set.

As mentioned before, using the validation set is faster than using the
training set. However, it is still relatively slow. Therefore, we decided
to test a new method to remove nodes, where instead of removing the
node with the highest node importance, we remove the first worse or
zero node we encounter in the layer before restarting the node importance

97

calculations. Further, we set an upper threshold under which nodes
with a node importance value under it would be ignored in further node
importance calculations (and therefore not be able to be removed any
more). We will refer to this method as greedy, while the previous method
is called exhaustive. The results we obtained were pretty positive, with
slightly lower performing models compared to the models pruned with
the exhaustive model, but still better than the unpruned models. However,
the number of nodes removed was pretty similar. Finally, and most
importantly, the speed-up of using this technique was very significant, with
up to 11 times faster pruning with this method compared to the exhaustive
method. There were a few models (especially with simple datasets on
simple neural networks such as the single-layer ANN) where the greedy
method performed significantly worse. However, we only tested two
different thresholds, and even with only two, we saw that for some models
the higher one was better, while for others, it was the opposite. Therefore,
this gives us hope that if we used a different threshold, we could end up
with similarly performing models using this method, so, we decided to
stick to this method for future experiments.

Now that we have found a relatively stable and fast method to prune
nodes, we decided to look at how pruning affected the class accuracy
instead of the whole accuracy. This was very informative. While
the class accuracy stayed either relatively similar or slightly higher, the
standard deviation of the class accuracy, general accuracy, and loss reduces
significantly after pruning. This is especially true for simpler datasets,
where standard deviation for loss dropped by up to 77%. This tells us that
there might be a common model that all other models could be based off
and if we tried to tweak the threshold for ignoring nodes, the limits of zero
nodes, or switching to exhaustive pruning instead of greedy pruning, we
might be able to find it.

Our final experiment was to try optimizing the weights using the node
importance before training. The idea behind it was that if we started with
a higher percentage of important nodes, then this might guide the model
in the right direction to learn the model. However, this was not the case,
with the models trained with and without optimization had the same final
performance. Not only that, optimizing the model significantly increased
the time taken to train the model, and for the CNN on the CIFAR-10 data,
we were unable to optimize it, even when dropping the starting percentage
of important nodes.

98

Chapter 5

Case study: Reducing a
VGG-16 model trained on the
Kvasir dataset

Now that we have explored how to prune networks and how different
methods, datasets, and parameters affect pruning, we will try to prune
a bigger network trained on the Kvasir dataset. For our neural network
architecture, we decided to use the VGG-16 architecture because it is
commonly used in image classification problems and has achieved high
results in the ImageNet Challenge [23]. Moreover, it is a relatively
large network, therefore it might show the effects of pruning and node
importance more clearly. Since we are using the original VGG-16 structure,
we first resize our images to be of size 224× 224× 3. We then split our data
into three sets, a test set, a training set, and a validation set. We split the
data in a 70:15:15 fashion where the largest set is the training set. We also
make sure that the class bias (number of samples per class in the set) in each
set is as close to zero as possible. We initialize our VGG-16 weights using
the Glorot Uniform [5] initialization and then train our model. For training
we use an early stopping strategy where, if the model does not improve
the validation data within seven epochs, it will stop training and revert to
the best weights obtained (which were the weights seven epochs ago). For
example, if we train our model for 60 epochs before it stops, our weights
would be the ones obtained after 53 epochs of training since there has not
been any improvement after epoch 53. The performance of the model on
each set after training can be found in the first column of Table 5.1.

5.1 Node importance estimation

After the first basic training and testing iteration, we start the procedures to
prune the model. Before pruning our model, we first need to estimate our
node importance to have an idea about how many nodes will be removed
during the process and what the distribution of worse, zero, and important
nodes is in each layer. For reasons explained in chapter 4, we will use the
validation set in both the estimating node importance process and during

99

Before Pruning After Pruning Change

Training set
Loss 0.1371 0.2818 +0.1447
Accuracy 0.9554 0.9034 -0.052

Validation set
Loss 0.357 0.192 -0.165
Accuracy 0.8817 0.9625 +0.0808

Test set
Loss 0.4099 0.4103 +0.0004
Accuracy 0.8725 0.8467 -0.0258

Table 5.1: The loss and accuracy of each set before and after pruning the
trained VGG-16 model. It also shows the change in those metrics after
pruning.

pruning.

Important Zero Worse Zero Pruned
Nodes Nodes Nodes Worse Nodes Nodes

1st 64-filters layer 36 14 16 30 21
2nd 64-filters layer 25 17 22 39 25
1st 128-filters layer 56 30 42 72 46
2nd 128-filters layer 47 34 47 81 47
1st 256-filters layer 75 88 93 181 96
2nd 256-filters layer 85 73 98 171 94
3rd 256-filters layer 85 79 92 171 84
1st 512-filters layer 198 139 175 314 170
2nd 512-filters layer 182 137 193 330 186
3rd 512-filters layer 222 84 206 290 143
4th 512-filters layer 271 52 189 241 109
5th 512-filters layer 282 28 202 230 88
6th 512-filters layer 299 11 202 213 33
1st 4096-nodes layer 1976 287 1833 2120 1337
2nd 4096-nodes layer 2002 207 1877 2094 2334

Table 5.2: Estimated number of important, zero and worse nodes for a
VGG-16 trained on the Kvasir dataset. After the separation looks at the
number of unimportant nodes (zero and worse nodes) compared to the
number of nodes removed by pruning of the network.

If we look at the first three columns of Table 5.2, we can see our
results after estimating the node importance. At a first glance, we see that
for a number of layers, less than half of its nodes/filters are considered
important. The four exceptions being the first layer and the three last 512-
filter layers. Another noteworthy aspect is that there are more worse nodes
than zero nodes in every layer, and the ratio of worse nodes to zero nodes
increases as we get deeper into the model. When we reach the dense layers
it increases at the switch between convolutional and dense layers before
decreasing again. With the high number of worse nodes, we expect our
model to reduce the number of nodes significantly and hopefully have a
lower loss after pruning.

100

5.2 Model pruning

To prune our model we used the greedy method (described in section 3.4).
We utilized an ignore threshold of −5e−5. The reason for using such a high
ignore threshold is mainly due to the time it takes to prune this network.
We started by trying a lower threshold, but after a week of computing time
(over 150 hours of computation), we were still had not gotten through half
of the last layer (the first layer to be pruned).

The pruning process had to be adjusted for this network. Due to the
consequential amount of time to run this pruning process, we decided to
save the nodes removed, the evolution of the loss, and accuracy as nodes
were removed. The reason for this two-fold. Firstly, the GPU (an Nvidia
RTX 2070 Super) sometimes hit a limit where the memory that stored the
data corrupted and therefore became inaccessible, stopping the progress of
the pruning. By saving which nodes were removed, we made sure that the
progress up to that point was not lost.

The second reason is that the computer used to run this test was a home
computer that needed to be shut down infrequently (due to its placement).
Therefore, having our progress saved, helped us to make sure that the
progress was not lost. Since we saved the nodes removed, we did not need
to test them again when restarting the algorithm. However, we did not save
the previously ignored nodes. Therefore the program reconsidered these
nodes as potential nodes to be pruned. Which in turn led to some of them
being removed even though had the program run in a single execution,
they would have been kept. However, due to how the files with the nodes
removed were written and read, we did not have the problem of removing
nodes from a layer after the previous layer had already started removing
nodes.

5.3 Pruning Results

Looking at the two last columns of Table 5.2, we can observe that for
almost all layers we have the same behavior as previously shown where
the number of pruned nodes (last column in the table) is under the number
of unimportant nodes (before-last column).

However, this is not the case for the last layer, where there are 240
more nodes removed than the estimated number of zero and worse
nodes. From our previous experiments, we know that removing all
estimated unimportant nodes is not a good solution. This leads us to
believe that a substantial number of estimated important nodes are being
removed. Therefore, we hypothesize that some of the important nodes
are only important because they fix errors/miss-classification of other
nodes. Therefore once those nodes are removed, the nodes correcting them
become either unnecessary and contribute nothing to the loss (becoming
zero nodes), or over-correct and increase the loss (becoming worse nodes).
Therefore using an ignore cutoff could be risky if it is too low since some of
these correcting nodes could end up being ignored.

101

The proportion of pruned nodes to estimated unimportant nodes
strongly decreases between the 1st 4096-nodes layer and the 6th 512-filter
layer. After that, it increases as we go back through the layers to reach
about 0.5 at the 3rd 512-filter layer. It then stays relatively high, with
the proportion varying between 0.5 and 0.7. Therefore the last three
convolutional layers (4th to 6th 512-filter layers) are the only layers with
significantly less than half the estimated number of unimportant nodes
pruned. Seeing that these are the layers right before the dense layers and
that we get the lowest proportion of pruned nodes to estimated nodes at
the last convolutional layer, we suspect that the change from convolutional
to dense layers might affect the number of truly worse and zero nodes in
the layer. However, we would need further investigation to verify this.

The results obtained after pruning can be seen in the second column of
Table 5.1. The third column of Table 5.1 represents the change in loss and
accuracy after pruning the model.

As one can see in Table 5.1 the obtained results are rather surprising.
Firstly, the test set loss almost did not change (only 0.0004 higher after
pruning), but the accuracy drops by 2.5%, which, while not excessive, is
still noticeable. Another surprising result is that we now have a validation
set with a lower loss and higher accuracy than the training set. While it is
normal that the loss of the training set increases through pruning based
on the validation set, we did not expect it to increase this significantly.
This seems to indicate that through pruning we achieved overfitting for
the validation set even though we never trained our weights on it.

Figure 5.1: Evolution of the loss for the training, validation and test set as
the model is pruned.

This is confirmed by looking at the evolution of the loss of the training
and validation set in Figure 5.1, where we see the validation loss passing
under the training set and then the gap in the two losses widening
as we prune nodes before slightly stabilizing. This is an unexpected
phenomenon, and an initial theory that we can posit is that there is noise
present in a small subset of the training set which is much more common

102

in the validation set. Therefore, pruning on the validation set leads to
focusing the classification on this noise. Which in turn increases the overall
loss of the training set since it is only present in a minor part of the data
while decreasing the loss of the validation set where this noise has a bigger
influence on the data. However, since we do not have class bias in our
data for each set (all sets have the same amount of each class samples or
each class represents 12.5% of the data of each set), this is hard to prove.
Focusing on the evolution of the test loss (seen in both Figure 5.1 and
Figure 5.2), we again see signs of overfitting, with the loss reducing down
to around 0.35 before increasing back to around 0.41.

Figure 5.2: Evolution of the loss for the test set as the model is pruned.

Figure 5.3: Evolution of the accuracy for the training, validation and test
set as the model is pruned.

This trend is less pronounced for the accuracy of the test set. While
the accuracy of the test set did decrease, from 87.3% to 84.7%, the
accuracy during pruning never increase by much, peaking right under 89%.
However, it only started significantly reducing around the same point as

103

Figure 5.4: Evolution of the accuracy for the test set as the model is pruned.

when the loss started increasing. Therefore, we can say that the trend is
maintained for the accuracy, where we see overfitting on the validation set.
The reason, the initial increase is not as significant as the reduction in the
loss, is probably due to us pruning solely based on the loss and not based
on the accuracy.

A final metric we decided to look at was the change in the class accuracy
before and after pruning. Table 5.3, Table 5.4 and Table 5.5 show the
percentage change between the confusion matrix before pruning to the one
after pruning. These values are calculated by taking the difference between
the two confusion matrices and dividing each value by the number of
images in each class (150 for the validation and test sets, 700 for the train
set), and finally multiplying the values by 100. In the tables, the positive
values represent an increase of images from class x being classified as class
y, while the negative values represent a decrease. The reason we look at the
differences between the confusion matrices instead of looking at the two
confusion matrices is to emphasize the effects of pruning the networks.

Looking at Table 5.4, we can see that the diagonal is almost all positive
values, meaning that more images are classified correctly. The only class
where this is not the case is the Esophagitis class with a 0.7% decrease in
correctly classified images. However, this only represents one image, and
therefore we assume that overall, it did not affect the classification for the
Esophagitis class. The same can be said for classes Pylorus and Ulcerative
Colitis, where the increase in correctly classified images is also negligible.
If we now look at the changes in more depth, we can observe that the vast
majority of newly correctly classified images in the classes Dyed and Lifted
Polyps and Dyed Recesection Margins come from each other. In other
words, a significant number of Dyed and Lifted Polyps images previously
incorrectly classified as Dyed Recesection Margins became classified as
Dyed and Lifted Polyps, and vice-versa (although it is less important in
the other direction). This makes sense since they are both dyed images
and therefore have more in common with each other than with other

104

Predicted Labels
dlp drm eso nce npy nzl pol uco

Actual Labels

dlp -4.7 +4 0 0 0 0 0 +0.7
drm +4.7 -5.3 0 +0.7 0 0 +1.3 -1.3
eso 0 0 -12.7 0 -0.7 +13.3 0 0
nce 0 0 0 +2.7 0 0 0 -2.7
npy 0 0 -0.7 0 -1.3 +2 -0.7 +0.7
nzl 0 0 -8.7 0 +1.3 +7.3 0 0
pol +0.7 0 0 0 -0.7 0 +6 -6
uco +2 -0.7 0 +5.3 +1.3 0 +4.7 -12.7

Table 5.3: Confusion matrix on the percentage change of classification per
class on the test set after pruning. The percentage is calculated based on
the number of images in each class (150 in this case). In other words, the
number of images that changed classification over the number of images in
each class (150).

Predicted Labels
dlp drm eso nce npy nzl pol uco

Actual Labels

dlp +22 -18.7 0 0 0 0 -2 -1.3
drm -10 +11.3 0 +0.7 0 0 -0.7 -0.7
eso 0 0 -0.7 0 -0.7 +1.3 0 0
nce 0 0 0 +4.7 0 0 -2 -2.7
npy 0 0 -1.3 0 +0.7 +0.7 0 0
nzl 0 0 -14.7 0 -3.3 +18 0 0
pol 0 0 0 0 -1.3 0 +8 -6.7
uco 0 0 0 +2 0 0 -2.7 +0.7

Table 5.4: Confusion matrix on the percentage change of classification per
class on the validation set after pruning. The percentage is calculated based
on the number of images in each class (150 in this case). In other words, the
number of images that changed classification over the number of images in
each class (150).

classes. Otherwise, there was a significant increase in the number of
images classified as Z-line, where the largest increase was for the correctly
classified images, while the number of images classified as Esophagitis
noticeably reduced. Unsurprisingly, the most movement was between
these two classes since they both look at the z-line. The last classes did
not get as significantly impacted by the network pruning.

Comparing Table 5.3 to Table 5.4, we see that there are both, some
similarities and some major differences. The most surprising difference
is the reduction in classification accuracy between the Dyed Recesection
Margins and Dyed and Lifted Polyps classes. While we still see a switch of
images between the two classes, we can observe it in the opposite direction,
where previously correctly classified images become incorrectly classified.
This is quite confusing since we expected such a significant increase in

105

Predicted Labels
dlp drm eso nce npy nzl pol uco

Actual Labels

dlp -7.7 +7.9 0 +0.1 0 0 -0.1 -0.1
drm +6.1 -6.3 0 0 0 0 +0.1 0
eso 0 0 -13.3 0 -0.6 +12.7 0 0
nce 0 0 0 -2.3 0 0 +2 +0.3
npy 0 0 +0.4 0 -1.9 +1.3 0 +0.1
nzl 0 0 -0.9 0 -0.6 +1.4 0 0
pol +0.4 0 0 +2.6 0 +0.4 -2.3 -1.1
uco +0.3 0 0 +4.3 +0.7 +0.1 +3.3 -8.7

Table 5.5: Confusion matrix on the percentage change of classification per
class on the training set after pruning. The percentage is calculated based
on the number of images in each class (700 in this case). In other words, the
number of images that changed classification over the number of images in
each class (700).

classification on the validation set to be due to a better understanding
of the general patterns of the classes rather than the noise. Otherwise
we, still have three classes that have an increase in accuracy, the Cecum,
Z-line, and Polyps classes. This is not very surprising since they were
classes with significant increases in accuracy for the validation set. We
again see the trend of images previously classified as Esophagitis, now
being classified as Z-line. However, it now also occurs for the previously
correctly classified Esophagitis images, which is disappointing. A final
major difference is a heavy decrease in the number of correctly classified
Ulcerative Colitis images (12.7% equivalent to 19 images). A majority of
those were reclassified as either Cecum or Polyps. In the validation set, it
seemed that there was no real change in how the Ulcerative Colitis images
were classified.

Table 5.5 repeats much of the same trends as the test set, except that they
are more pronounced. Here only the Z-line class becomes more accurate.
However, it is a much smaller increase (1.4% versus 18% and 7.3%). Except
for that difference we have the same trends as for the test set.

5.4 Summary

To summarize, through pruning a more complex network trained on a
real-world dataset, we learned a new behavior that nodes have in neural
networks and an important effect pruning has on the model. Through
the fact the number of pruned nodes on the last layer was larger than the
number of estimated unimportant nodes in that layer, we saw that some
nodes initially important end up becoming unimportant. This leads us to
believe that some nodes in the network are there to correct errors in the
model. This goes in line with the idea of co-adaption which dropout tries to
remove. The other main finding from this case study was the possibility of

106

overfitting on the validation set when pruning based on it. We previously
hypothesized that pruning on the validation set rather than the training set
would lead to a reduction of noise fitting by the model. This was disproved
for this case study, where we saw the model becoming overfitted on the
validation set. Our current hypothesis is that the model is overfitting on
the noise shared by both the validation and training set. However, this can
be very data set specific (the Kvasir dataset has some green screen in screen
on some frames, which could lead to this behavior) and we need to do more
research to either reject our hypothesis or refine it.

107

108

Chapter 6

Conclusion

While we have extensive knowledge of neural network layers and increas-
ing their depth, specific nodes in those layers still hold many mysteries
to their contributions to a neural network. Throughout this thesis, we en-
deavoured to expand our knowledge of their inner workings, but we have
only scratch the surface. We developed a metric to understand their im-
pact on the neural network (which is similar to the metric developed by
Nvidia [18]). However, our metric does not tell us how a node affects or
works with another node of the same layer or a different layer. We also
look at how removing an individual node impacts the loss of the model.
This being a key metric for understanding model performance tells us a lot
about how a node impacts a neural network. However, to gain an even
deeper understanding, looking at a variety of model metrics might help.
Finally, we saw that changing hyper-parameters such as batch size during
training can have a significant impact on the number of nodes in each class
of node importance (important, zero, and worse).

During our thesis, we improved our pruning techniques and derived
hypotheses based on our results as to how pruning was affecting neural
networks. We started by randomly removing nodes, this led to a mediocre
result that was not reproducible since the nodes removed were chosen
at random. Therefore, we started using our node importance metric to
remove nodes. Our initial idea was to pre-calculate the node importance
of all nodes and remove all the nodes that either negatively impacted the
model performance, or had no effect on it (worse and zero nodes). This led
to models that constantly and noticeably performed worst after pruning
which led us to hypothesis that some nodes are redundant. Therefore, the
number of unimportant nodes is inflated due to some unimportant nodes
being important when considered in isolation to their redundant nodes in
the network. For example, if two nodes in a model both extract the same
feature, then removing either of them does not change the performance of
the model, however, by removing both, we lose the ability to extract that
feature. Based on our results and hypothesis we changed our strategy to
removing nodes one by one and re-calculating node importance after each
iteration. This supported our hypothesis to always removing fewer nodes
than the number of pre-calculated unimportant nodes.

109

We then decided to try pruning based on the validation set rather than
the training set. The reason for this was two-fold, first using the smaller
validation set would decrease the time to prune networks, second, we
hypothesized that using the training set to prune the networks will not
catch the nodes that are trained on the noise of the training set. We saw that
pruning based on the validation set led to a very similar result in terms of
an increase in performance while increasing the number of nodes pruned.
Therefore, we decided to stick with pruning on the validation set as a more
optimal form of pruning.

While pruning on the validation set reduced the time to prune our
networks, the pruning was still relatively slow. Therefore, we devised
a new pruning strategy. This new strategy ended up being a ten-fold
acceleration compared to the previous. While the model performance
increase (i.e., the decrease in loss) was slightly reduced, the number of
nodes pruned was slightly increased. Therefore, we decided to continue
using this pruning strategy going forward.

Now that we have improved our pruning techniques, we decided to
look at how pruning affected the class accuracy, general loss, and general
accuracy. We saw that overall the class accuracy went up. For those classes
where it did not, it either stayed the same or reduced slightly. However, a
more interesting result was that the variation between the class accuracies
of different models with the same initial architecture was at least halved
if not more. This was also observable for the general loss and accuracy of
the models, where the reduction is usually smaller, reaching from a 10%
reduction up to a 70% reduction.

Finally, we considered all our previous results and applied them to a
more complex network (VGG-16) on a new dataset (Kvasir). While we
expected to get similar results, we ended up getting surprising results.
Firstly, after pruning we end up with a very similar performing model,
instead of a better model. Upon further investigation, we saw that the
pruning overfitted the validation set and that the test loss started by
reducing before increasing again. Secondly, for the last layer, we pruned
more nodes than the estimated number of unimportant nodes. This might
indicate that some initially important nodes were correcting unimportant
nodes, which once removed, made those important nodes unimportant.
Therefore, these new results gave us a new dimension to how nodes affect
neural networks. Whereas previously we only saw nodes either being
redundant or unhelpful, we now have nodes that are only helpful for
correcting unhelpful ones. Therefore once the node a node corrects for is
removed, the previously helpful node starts over-correcting for an error
that it no longer there, thus introducing a new error.

6.1 Main Contributions

In this thesis, we explored how nodes and their removal affect neural
networks. To guide our exploration, we split our research questions into
three different objectives. These are as following:

110

Objective 1: Exploring the effects of pruning neural networks and developing
different pruning techniques for both reproducibility and time-consumption.

Through the thesis, we explore different facets of this objective. We
go from a pruning technique that is hardly reproducible due to its
inherent randomness to one that works based on unchanging node
parameters and metrics but is rather time-consuming. Before finally
settling for one that keeps the reproducibility of the previous but
reduces its time-consumption by at least a factor of two. We also look
at various metrics affected by the pruning of a network, and we can
conclude that pruning a network has a noticeable impact on neural
networks by generally reducing the loss, or in some cases keeping it
constant or slightly increasing it. This might also be interesting for
generalization of the networks which needs to be further studied.

Objective 2: Classifying the nodes based on how they affect the neural network if
removed.

The thesis supports this objective since we develop a metric, called
node importance, to classify these nodes based on their effect on the
loss of the model. The node importance is calculated by removing
a node from the neural network and then calculating the change in
the loss of the model generated by this removal. Then if the loss
of the model increases, the node is classified as an important node.
If the loss does not change or the change is insignificant then the
node is considered to be a zero node. Finally, if the removal of the
node decreases the loss, then it falls in the worse node category. We
also use node importance to help us prune networks. To not prune
nodes randomly, we iteratively remove worse and zero nodes from
the network, till all the nodes left are important. We do this both
in an exhaustive fashion (finding the node with the highest node
importance value and removing it) and greedily (removing the first
zero or worse node we come across).

Objective 3: Seeing how different parameters and types of neural networks affect
the nodes impact on neural networks.

During the thesis, we use three different types of neural networks
to explore their reaction to pruning. We also modify one hyper-
parameter (batch size during training) and see how the inclusion of
dropout to our purely fully connected networks affects performance.

We were therefore able to achieve our three objectives and create
hypotheses on how pruning affects neural networks. By focusing our
node importance metric solely on the loss of the model, arguably the
most important metric for model performance, we see that individual
nodes impact the model in both positive (important nodes) and negative
ways (worse nodes). This led us to hypothesize that some nodes are
redundant or even unhelpful for the model overall. To be able to strengthen
this hypothesis further, we should continue exploring these effects by
broadening our metric to how nodes impact other model metrics such as
accuracy and precision, etc. Moreover, looking at the individual effects of

111

nodes is a good starting point in giving us intuition on the impact of nodes
on the model. However, looking at how one node impacts another node,
would help us to better understand how nodes interact with each other and
ultimately how these interactions impact the neural network as a whole.

For the pruning, we have shown throughout the thesis that it frequently
has a positive effect. In most cases, the model loss went down and the
accuracy either stayed similar or increased slightly. Even though the
model loss did not change much for the larger network, we were able
to significantly reduce the size of our network (over 35% reduction in
the number of filters and nodes). This in itself is a positive effect since
using a much smaller network will require less memory and computation.
This also led us to a new hypothesis where a network, through pruning,
could be overfitted to a different dataset than the one it was trained on
which would lead to a kind of transfer learning effect. Further researching
this new path could lead us to a better understanding of neural networks
and transfer learning. Moreover, by logging the evolution of the model
loss through the pruning, we saw that the loss of our model did start by
decreasing before increasing due to overfitting. This helps ascertain our
views that not all nodes in a network directly benefit the network.

Our thesis does start to answer our research question on how nodes
contribute to the overall performance of neural networks. As mentioned in
the two previous paragraphs, we have seen and hypothesize some of the
effects of nodes on neural networks. We have also shown that removing
nodes frequently improve our models. These experiments have opened
new paths to better understand how one of the base elements of neural
networks, the nodes, work. Continuing the exploration of these previously
unknown new paths could lead us to better answer our research question
and truly understand the impact of nodes on neural networks.

The code for this thesis can be found at https://github.com/lgcharpe/
Masters (MIT License).

6.2 Future Works

As mentioned before, in this thesis we have only scratched the surface
of how nodes affect neural networks. We have created ways to prune
the neural networks that do, in general, improve the performance while
reducing the size of those networks. We were able to classify the nodes
into three different categories, depending on their contribution to the loss
of the model. Finally, we have started looking at how some parameters
affect the node importance of the model’s nodes. From these results, we
have seen various new avenues to explore to have a better grasp of how
nodes affect neural networks. Some of them are discussed in the following.

• Explore how different hyper-parameters affect
node importance
While we have only looked at how batch size during training affects
node importance in this thesis, we saw that it did have a significant

112

https://github.com/lgcharpe/Masters
https://github.com/lgcharpe/Masters

effect on the node importance. Therefore, we should further
investigate how other hyper-parameters affect node importance. We
believe that looking at how changing the number of nodes per layer
or changing the learning rate can affect node importance could help
us better understand the role of nodes in neural networks.

• Develop a more refined node importance metric
that considers various performance metrics
As mentioned previously, we measure node importance solely based
on the loss of the model. While this a key metric to judge model
performance since it looks at how close to perfectly classifying each
image to its class, it is not the only one. Therefore, redesigning our
node importance metric by calculating node importance based on a
linear combination of model metrics such accuracy, AUC, F1-score,
etc. in addition to the loss could lead to a better understanding of
nodes and a more efficient and reliable way to prune models.

• Develop a metric that measures node interactions
This builds up on the above discussed idea. Our current metric
and the redesigned one proposed by the point above only consider
the individual effect of the nodes on the model performance. It
does not tell us much about how nodes interact with each other.
Therefore, trying to develop a metric that measures node interactions
and how removing one, affects the others would help us strengthen
the hypothesis observed during this thesis, such as redundant nodes
and error-correcting nodes. Developing this metric will deepen our
understanding of nodes.

• Improve the pruning algorithm to make it less
time-consuming
While our greedy method does improve the pruning time, it is still
very long on larger models when compared to the training time. A
possible solution to remedy this problem is using different metrics
that do a coarser estimation of the node importance (as seen in
the paper by Nvidia [18]). However, a more interesting solution
would be to develop a pruning technique that continues to use node
importance (or a redesigned version of it) to prune networks. To do
this, we would look at ways to accelerate our current technique using
parallel programming would be interesting. This would need to be
validated as parallelizing pruning might lead to some inaccuracies in
terms of node importance.

• Delve further into the reduction in variance
between models after pruning
A very interesting result of our exploration was the reduction in vari-
ation caused by pruning models. We believe that further exploring
this reduction might lead to finding a base model performance that is
shared by all similar models. In other words, we believe that it might

113

be possible to reduce the variance to zero. If this is the case, then
we would try to develop a mathematical explanation for this phe-
nomenon. This would greatly help not only our understanding of
neural networks but also give us a better idea of performance before
even training a model.

• Explore and reduce the validation overfitting
caused by pruning
As seen in our case study, pruning on the validation set caused the
model to overfit on the validation set. This was unexpected since,
while being a form of training, we do not change any of the weights
of non-pruned nodes. Therefore delving deeper into how pruning
leads to overfitting is needed. Our current hypothesis is that the noise
present in both the train and validation set is amplified when pruning
on the validation set. However, we need to look further into it to
confirm this theory. Once we get a better grasp of how the overfitting
occurs, we will try to develop a pruning technique that reduces it. By
doing this, we will develop a more reliable pruning technique.

114

Appendix A

Algorithms

115

Algorithm 4: Algorithm to estimate the node importance of each
node and then classifying them

1 def estimateNodeImportance(model, tester_model, layer_sizes,
tol_low, tol_high, x, y):

Input:
model is the TensorFlow model of the trained neural network
used;
tester_model is a untrained copy of model, this will be used as a
tester model to test different network weights;
layer_sizes is the number of nodes/filters in each layer of the
network (ordered backwards from the layer closest to the
output to the one closest to the input);
tol_low is the tolerance for which node importance values below
it, categorize the nodes as important;
tol_high is the tolerance for which node importance values
above it, categorize the nodes as worse;
x is the dataset to consider when estimating the node
importance;
y is the labels of x;
Output: The number of nodes in each category for each layer

and their position in the layer
/* Start of the code */

2 loss← the loss of model when evaluated on x and y
3 original_weights← weights of model
4 weight_len← len(original_weights)− 3 ; /* We remove 3 for

the bias and weight value to the output layer plus 1
because python lists start at 0 */

5 amounts_removed← empty list
6 places← empty list
7 for layer, size in enumerate(layer_sizes):
8 num_zeros, num_worse, num_important← (0, 0, 0)
9 zeros_place← empty list

10 worse_place← empty list
11 important_place← empty list
12 for i in range(size):
13 w← copy(original_weights)

/* Setting the values of the bias and weights
incoming to the node to zero, has the same
effect as removing the node. */

14 w[weight_len− (2 ∗ layer + 1)][..., i]← 0 ; /* We set the
weights incoming to node i in layer to 0 */

15 w[weight_len− (2 ∗ layer)][i]← 0 ; /* We set the bias
incoming to node i in layer to 0 */

16 weights of tester_model← w
17 new_loss← the loss of tester_model when evaluated on x

and y
18 change← loss− new_loss

116

16

17

18

19 if change ≤ tol_high and change ≥ tol_low:
20 num_zeros← num_zeros + 1
21 zeros_place append i

22 elif change > tol_high:
23 num_worse← num_worse + 1
24 worse_place append i

25 else:
26 num_important← num_important + 1
27 important_place append i

28 amounts append (num_zeros, num_worse, num_important)
29 places append (zeros_place, worse_place, important_place)

30 return amount, places

117

Algorithm 5: Algorithm to estimate the node importance of each
node and then classifying them. This traverses the network in a
forward manner, from the hidden layer after the input layer to the
hidden layer before the output layer.

1 def estimateNodeImportanceForward(model, tester_model,
layer_sizes, tol_low, tol_high, x, y, back, forward):

Input:
model is the TensorFlow model of the trained neural network
used;
tester_model is a untrained copy of model, this will be used as a
tester model to test different network weights;
layer_sizes is the number of nodes/filters in each layer of the
network;
tol_low is the tolerance for which node importance values below
it, categorize the nodes as important;
tol_high is the tolerance for which node importance values
above it, categorize the nodes as worse;
x is the dataset to consider when estimating the node
importance;
y is the labels of x;
back is a boolean that indicates if we remove the incoming
connections;
forward is a boolean that indicates if we remove the outgoing
connections;
Output: The number of nodes in each category for each layer

and their position in the layer
/* Start of the code */

2 loss← the loss of model when evaluated on x and y
3 original_weights← weights of model
4 amounts_removed← empty list
5 places← empty list
6 for layer, size in enumerate(layer_sizes):
7 num_zeros, num_worse, num_important← (0, 0, 0)
8 zeros_place← empty list
9 worse_place← empty list

10 important_place← empty list
11 for i in range(size):
12 w← copy(original_weights)
13 if back:
14 w[2 ∗ layer][..., i]← 0 ; /* We set the weights

incoming to node i in layer to 0 */
15 if forward:
16 w[2 ∗ layer + 2][..., i, :]← 0 ; /* We set the weights

outgoing the node i in layer to 0 */
17 w[2 ∗ layer + 1][i]← 0 ; /* We set the bias incoming

to node i in layer to 0 */
18 weights of tester_model← w
19 new_loss← the loss of tester_model when evaluated on x

and y
118

1

17

18

19 change← loss− new_loss
20 if change ≤ tol_high and change ≥ tol_low:
21 num_zeros← num_zeros + 1
22 zeros_place append i

23 elif change > tol_high:
24 num_worse← num_worse + 1
25 worse_place append i

26 else:
27 num_important← num_important + 1
28 important_place append i

29 amounts append (num_zeros, num_worse, num_important)
30 places append (zeros_place, worse_place, important_place)

31 return amount, places

119

Algorithm 6: Algorithm to estimate the node importance of each
node in a single layer and then classifying them

1 def estimateNodeImportanceSingleLayer(model, tester_model,
layer, layer_size, tol_low, tol_high, x, y, back, forward):

Input:
model is the TensorFlow model of the trained neural network
used;
tester_model is a untrained copy of model, this will be used as a
tester model to test different network weights;
layer is the layer to consider;
layer_size is the number of nodes/filters in the layer considered;
tol_low is the tolerance for which node importance values below
it, categorize the nodes as important;
tol_high is the tolerance for which node importance values
above it, categorize the nodes as worse;
x is the dataset to consider when estimating the node
importance;
y is the labels of x;
back is a boolean that indicates if we remove the incoming
connections;
forward is a boolean that indicates if we remove the outgoing
connections;
Output: The number of nodes in each category and their

position in the layer
/* Start of the code */

2 loss← the loss of model when evaluated on x and y
3 original_weights← weights of model
4 num_zeros, num_worse, num_important← (0, 0, 0)
5 zeros_place← empty list
6 worse_place← empty list
7 important_place← empty list
8 for i in range(size):
9 w← copy(original_weights)

10 if back:
11 w[2 ∗ layer][..., i]← 0 ; /* We set the weights

incoming to node i in layer to 0 */
12 if forward:
13 w[2 ∗ layer + 2][..., i, :]← 0 ; /* We set the weights

outgoing the node i in layer to 0 */
14 w[2 ∗ layer + 1][i]← 0 ; /* We set the bias incoming to

node i in layer to 0 */
15 weights of tester_model← w
16 new_loss← the loss of tester_model when evaluated on x

and y
17 change← loss− new_loss

120

15

16

17

18 if change ≤ tol_high and change ≥ tol_low:
19 num_zeros← num_zeros + 1
20 zeros_place append i

21 elif change > tol_high:
22 num_worse← num_worse + 1
23 worse_place append i

24 else:
25 num_important← num_important + 1
26 important_place append i

27 amounts← [num_zeros, num_worse, num_important]
28 places← [zeros_place, worse_place, important_place]

29 return amount, places

121

Algorithm 7: This algorithm re-randomizes the weights till a layer
have a higher fraction of important nodes than asked. It does this
for each layer going forward in the network.

1 def optimizeWeights(model, tester_model, layer_sizes, filter_sizes,
tol_low, tol_high, x, y, input_size, output_size, min_imp_frac,
input_nodes):

Input:
model is the TensorFlow model of the trained neural network
used;
tester_model is a untrained copy of model, this will be used as a
tester model to test different network weights;
layer is the layer to consider;
layer_sizes is the number of nodes/filters in each layer of the
considered network;
filter_sizes is the dimension of the filters in each convolutional
layer of the considered network (for a Dense layer, we have the
value None. We assume that all filters are square);
tol_low is the tolerance for which node importance values below
it, categorize the nodes as important;
tol_high is the tolerance for which node importance values
above it, categorize the nodes as worse;
x is the dataset to consider when estimating the node
importance;
y is the labels of x;
input_size is a number of inputs/filters for the input layers;
output_size is the number of outputs in the output layer (this is
usually the number of classes in the dataset);
min_imp_frac is the fraction of the nodes in a layer that need to
be important;
input_nodes if the input is an image, then this represents the
number of inputs for the image. Otherwise this value is not
used;
Output: Updated weights
/* Start of the code */

2 for layer, size in enumerate(layer_sizes):
3 f ilter ← f ilter_sizes[layer]
4 if layer < len(layer_sizes)− 1:
5 f ilter_out← f ilter_sizes[layer + 1] ; /* The size of

the filter in the next layer */
6 next_size← layer_sizes[layer + 1]
7 else:
8 f ilter_out← None
9 next_size← output_size

10 if layer == 0:
11 tmp_amount, tmp_place←

estimateNodeImportanceSingleLayer(model,
tester_model, layer, size, tol_low, tol_high, x, y, True, True)

122

10

11

12 else:
13 tmp_amount, tmp_place←

estimateNodeImportanceSingleLayer(model,
tester_model, layer, size, tol_low, tol_high, x, y, False, True)

14 imp_ f rac← tmp_amount[2]
size

15 while imp_ f rac ≤ min_imp_ f rac:
16 w← weights of model if f ilter:
17 if f ilter_out:
18 limit_out←

√
6

(size∗ f ilter2)+(next_size∗ f ilter_out2)
;

/* Using Glorot uniform to initialize new
weights. */

19 else:

20 limit_out←
√

6
size+next_size

21 if layer == 0:
22 if input_nodes:
23 limit_in←

√
6

input_nodes+size

24 else:
25 limit_in←

√
6

input_size+size

26 if tmp_amount[1]:
/* Checking if there are any worse nodes, and

replacing them */
27 if f ilter_out:
28 size_out←

(f ilter_out, f ilter_out, tmp_amount[1], next_size)
29 else:
30 size_out← (tmp_amount[1], next_size)
31 w[2 ∗ layer + 2][..., tmpplace[1], :]← new random

weights chosen from a uniform distribution in
(−limit_out, limit_out)

32 if layer == 0:
33 size_out←

(f ilter, f ilter, inputsize, tmp_amount[1])
34 else:
35 size_out← (inputsize, tmp_amount[1])
36 w[2 ∗ layer][..., tmpplace[1]← new random weights

chosen from a uniform distribution in
(−limit_in, limit_in)

123

35

36

37

38 if tmp_amount[0]: ; /* Checking if there are any
zero nodes, and replacing them */

39

40 if f ilter_out:
41 size_out←

(f ilter_out, f ilter_out, tmp_amount[0], next_size)
42 else:
43 size_out← (tmp_amount[0], next_size)

44 w[2 ∗ layer + 2][..., tmpplace[0], :]← new random
weights chosen from a uniform distribution in
(−limit_out, limit_out)

45 if layer == 0:
46 size_out←

(f ilter, f ilter, inputsize, tmp_amount[0])
47 else:
48 size_out← (inputsize, tmp_amount[0])

49 w[2 ∗ layer][..., tmpplace[0]← new random weights
chosen from a uniform distribution in
(−limit_in, limit_in)

50 model weights← w if layer == 0:
51 tmp_amount, tmp_place←

estimateNodeImportanceSingleLayer(model,
tester_model, layer, size, tol_low, tol_high, x, y, True,
True)

52 else:
53 tmp_amount, tmp_place←

estimateNodeImportanceSingleLayer(model,
tester_model, layer, size, tol_low, tol_high, x, y, False,
True)

54 imp_ f rac← tmp_amount[2]
size

124

Algorithm 8: This algorithm starts by looking for the worst node
in a layer and prunes it. It continues doing so till all nodes left in
the layer are above a given threshold. It then goes to the next layer
till all layers are pruned.

1 def pruneNodesExhaustively(model, tester_model, x, y, layer_sizes,
tol):

Input:
model is the TensorFlow model of the trained neural network
used;
tester_model is a untrained copy of model, this will be used as a
tester model to test different network weights;
layer_sizes is the number of nodes/filters in each layer of the
considered network (organized in a backward direction);
x is the dataset to consider when estimating the node
importance;
y is the labels of x;
tol is the tolerance for which nodes with a node importance
value above it will be removed;
Output:
weights: Pruned weights (where incoming weights are set to 0
for the pruned nodes);
ev_acc: The evolution of the model accuracy as nodes are
removed;
ev_loss: The evolution of the model loss as nodes are removed;
amounts: The number of nodes/filters removed in each layer;
places: The places of the nodes/filters removed in each layer;
/* Start of the code */

2 old_loss← the loss of model when evaluated on x and y
3 old_acc← the accuracy of model when evaluated on x and y
4 ev_loss← a list containaing old_loss
5 ev_acc← a list containaing old_acc
6 weights← copy of orignial_weights
7 weight_len← len(weights)− 3 ; /* We remove 3 for the bias

and weight value to the output layer plus 1 because
python lists start at 0 */

8 best_acc← 0
9 best_loss← a large number

10 amounts← empty list
11 places← empty list
12 for layer, size in enumerate(layer):
13 end_not_reached← True ; /* Whether or not we have

reached the end of the layer */
14 current_pos← 0 ; /* The current position of in the

layer */
15 num_removed← 0
16 best_pos←−1 ; /* The position of the current best

node (highest node importance value) to remove on
this pass */

125

15

16

17 best_change← tol ; /* Node importance of the current
best node */

18 node_removed← empty list
19 improved← False ; /* Whether or not we have removed a

node in this pass */
20 while end_not_reached or improved:
21 if not (end_not_reached:
22 end_not_reached← True
23 improved← False
24 current_pos← 0
25 size← size− 1
26 nodes_removed append best_pos
27 weights[weight_len− (2 ∗ layer + 1)][..., best_pos]← 0
28 weights[weight_len− 2 ∗ layer][best_pos]← 0
29 best_pos←−1
30 old_loss← best_loss
31 old_acc← best_acc
32 ev_loss append best_loss
33 ev_acc append best_acc
34 best_change← tol
35 num_removed← num_removed + 1
36 if current_pos in nodes_removed:

/* if the nodes has already been removed,
skip it */

37 current_pos← current_pos + 1
38 if current_pos− num_removed ≥ size:

/* Check whether we have reached the end
of the layer */

39 end_not_reached← False
40 continue
41 w← copy(weights)
42 w[weight_len− (2 ∗ layer + 1)][..., best_pos]← 0
43 w[weight_len− 2 ∗ layer][best_pos]← 0
44 weights of tester_model← w
45 new_loss← the loss of tester_model when evaluated on x

and y
46 new_acc← the accuracy of tester_model when evaluated

on x and y
47 if old_loss− new_loss ≥ best_change:
48 best_change← old_loss− new_loss
49 best_pos← current_pos
50 improved← True
51 best_loss← new_loss
52 best_acc← new_acc
53 current_pos← current_pos + 1

126

51

52

53

54 if current_pos− num_removed ≥ size:
55 end_not_reached← False

56 amounts← num_removed
57 places← nodes_removed

58 return weights, ev_acc, ev_loss, amounts, places

127

Algorithm 9: This algorithm prunes the first node under a given
node importance threshold it encounters. It continues doing so till
all nodes left in the layer are above a given threshold. It then goes
to the next layer till all layers are pruned.

1 def pruneNodesGreedy(model, tester_model, x, y, layer_sizes, tol,
ignore_cutoff):

Input:
model is the TensorFlow model of the trained neural network
used;
tester_model is a untrained copy of model, this will be used as a
tester model to test different network weights;
layer_sizes is the number of nodes/filters in each layer of the
considered network (organized in a backward direction);
x is the dataset to consider when estimating the node
importance;
y is the labels of x;
tol is the tolerance for which nodes with a node importance
value above it will be removed;
ignore_cutoff is the node importance for which nodes with a
value under it will be ignored in future passes;
Output:
weights: Pruned weights (where incoming weights are set to 0
for the pruned nodes);
ev_acc: The evolution of the model accuracy as nodes are
removed;
ev_loss: The evolution of the model loss as nodes are removed;
amounts: The number of nodes/filters removed in each layer;
places: The places of the nodes/filters removed in each layer;
/* Start of the code */

2 old_loss← the loss of model when evaluated on x and y
3 old_acc← the accuracy of model when evaluated on x and y
4 ev_loss← a list containaing old_loss
5 ev_acc← a list containaing old_acc
6 weights← copy of orignial_weights
7 weight_len← len(weights)− 3 ; /* We remove 3 for the bias

and weight value to the output layer plus 1 because
python lists start at 0 */

8 best_acc← 0
9 best_loss← a large number

10 amounts← empty list
11 places← empty list
12 for layer, size in enumerate(layer):
13 end_not_reached← True
14 node_removed← empty list
15 num_removed← 0

128

14

15

16 nodes_to_estimate← list of integers from 0 to the number of
nodes - 1 ; /* This will be a list of the nodes that
have not been removed or ignored */

17 current_pos← nodes_to_estimate[0]
18 idx ← 0 ; /* Position in the array for the node to

consider */
19 while end_not_reached:
20 w← copy(weights)
21 w[weight_len− (2 ∗ layer + 1)][..., best_pos]← 0
22 w[weight_len− 2 ∗ layer][best_pos]← 0
23 weights of tester_model← w
24 new_loss← the loss of tester_model when evaluated on x

and y
25 new_acc← the accuracy of tester_model when evaluated

on x and y
26 if old_loss− new_loss ≥ tol:
27 best_loss← new_loss
28 best_acc← new_acc
29 size← size− 1
30 nodes_removed append current_pos
31 nodes_to_estimate remove current_pos
32 weights[weight_len− (2 ∗ layer + 1)][..., best_pos]← 0
33 weights[weight_len− 2 ∗ layer][best_pos]← 0
34 ev_loss append new_loss
35 ev_acc append old_acc
36 num_removed← num_removed + 1
37 idx ← 0

38 elif old_loss− new_loss ≤ ignore_cuto f f :
39 size← size− 1
40 nodes_to_estimate remove current_pos

41 else:
42 idx ← idx + 1

43 if idx ≥ size:
44 end_not_reached← False

45 else:
46 current_pos← nodes_to_estimate[idx]

47 amounts← num_removed
48 places← nodes_removed

49 return weights, ev_acc, ev_loss, amounts, places

129

130

Appendix B

Single-layer ANN - Extra
Figures and Tables

B.1 Estimating Node Importance

B.1.1 MNIST

Tables - Training set

Zero Nodes Worse Nodes Important Nodes

mean 2.26 13.86 111.88
std 1.43 6.00 5.90
min 0.00 4.00 100.00
25% 1.00 9.00 107.25
50% 2.50 13.00 112.00
75% 3.00 18.00 116.75
max 5.00 27.00 123.00

Table B.1: Number of nodes in each class of nodes

Tables - Validation set

Zero Nodes Worse Nodes Important Nodes

mean 2.12 24.64 101.24
std 1.60 6.47 6.20
min 0.00 11.00 86.00
25% 1.00 19.00 96.25
50% 2.00 24.00 102.00
75% 3.00 29.75 105.00
max 5.00 39.00 112.00

Table B.2: Number of nodes in each class of nodes

131

B.1.2 Fashion MNIST

Tables - Training set

Zero Nodes Worse Nodes Important Nodes

mean 13.96 20.92 93.12
std 3.36 6.50 7.02
min 5.00 8.00 80.00
25% 12.00 16.00 89.00
50% 14.00 19.50 92.00
75% 16.00 25.75 97.75
max 24.00 36.00 115.00

Table B.3: Number of nodes in each class of nodes

Tables - Validation set

Zero Nodes Worse Nodes Important Nodes

mean 15.32 27.54 85.14
std 3.04 6.79 6.46
min 10.00 14.00 71.00
25% 13.00 22.25 80.50
50% 15.00 26.50 86.00
75% 18.00 32.75 90.75
max 21.00 41.00 97.00

Table B.4: Number of nodes in each class of nodes

132

B.2 Effects of batch size on Node Importance

B.2.1 MNIST

Tables

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 10.16 29.56 88.28 3.96 26.44 97.6 1.96 26.04 100.00 1.76 13.60 112.64 3.16 3.96 120.88
std 3.24 4.44 4.48 2.24 4.97 5.9 1.43 4.89 5.39 1.76 7.05 7.52 1.75 3.66 4.08
min 3.00 22.00 78.00 0.00 19.00 87.0 0.00 17.00 88.00 0.00 3.00 96.00 1.00 0.00 112.00
25% 8.00 27.00 86.00 2.00 22.00 93.0 1.00 23.00 96.00 1.00 10.00 107.00 2.00 1.00 118.00
50% 10.00 30.00 88.00 4.00 27.00 98.0 2.00 25.00 101.00 1.00 12.00 114.00 3.00 3.00 122.00
75% 12.00 32.00 91.00 6.00 29.00 103.0 2.00 30.00 104.00 3.00 17.00 117.00 5.00 5.00 124.00
max 16.00 42.00 97.00 8.00 36.00 106.0 7.00 38.00 110.00 6.00 29.00 124.00 6.00 14.00 127.00

Table B.5: Number of nodes in each class of nodes

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0018 -0.0043 -0.0 0.0008 -0.0023 -0.0 0.0007 -0.0025 -0.0 0.0006 -0.0027 -0.0 0.0003 -0.0028
std 0.0 0.0006 0.0008 0.0 0.0003 0.0003 0.0 0.0002 0.0003 0.0 0.0003 0.0003 0.0 0.0003 0.0002
min -0.0 0.0009 -0.0072 -0.0 0.0004 -0.0030 -0.0 0.0003 -0.0036 -0.0 0.0002 -0.0034 -0.0 0.0000 -0.0031
25% -0.0 0.0013 -0.0046 -0.0 0.0006 -0.0023 -0.0 0.0007 -0.0027 -0.0 0.0004 -0.0028 -0.0 0.0001 -0.0029
50% 0.0 0.0018 -0.0040 0.0 0.0007 -0.0021 0.0 0.0008 -0.0024 0.0 0.0005 -0.0026 -0.0 0.0002 -0.0027
75% 0.0 0.0020 -0.0038 0.0 0.0009 -0.0021 0.0 0.0008 -0.0023 0.0 0.0008 -0.0024 0.0 0.0004 -0.0026
max 0.0 0.0034 -0.0033 0.0 0.0017 -0.0019 0.0 0.0016 -0.0020 0.0 0.0013 -0.0023 0.0 0.0008 -0.0025

Table B.6: Average importance for each node class

133

B.2.2 Fashion MNIST

Tables

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 55.28 24.88 47.84 28.24 23.88 75.88 14.80 26.68 86.52 10.56 27.2 90.24 12.56 13.04 102.4
std 4.76 5.18 5.23 3.82 5.39 5.47 4.02 4.34 5.24 3.23 8.5 8.87 2.97 5.84 6.0
min 43.00 15.00 37.00 20.00 17.00 66.00 6.00 19.00 73.00 5.00 9.0 76.00 8.00 1.00 93.0
25% 53.00 22.00 44.00 27.00 19.00 72.00 12.00 23.00 85.00 8.00 21.0 84.00 11.00 11.00 98.0
50% 54.00 25.00 49.00 28.00 22.00 77.00 15.00 26.00 88.00 11.00 28.0 87.00 13.00 13.00 103.0
75% 56.00 28.00 52.00 30.00 27.00 81.00 18.00 30.00 89.00 12.00 33.0 96.00 14.00 15.00 107.0
max 63.00 35.00 55.00 36.00 34.00 85.00 22.00 34.00 94.00 16.00 41.0 110.00 19.00 24.00 112.0

Table B.7: Number of nodes in each class of nodes

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0020 -0.0121 -0.0 0.0016 -0.0040 -0.0 0.0016 -0.0032 -0.0 0.0038 -0.0075 -0.0 0.0017 -0.0076
std 0.0 0.0010 0.0026 0.0 0.0008 0.0006 0.0 0.0007 0.0004 0.0 0.0023 0.0018 0.0 0.0009 0.0007
min -0.0 0.0007 -0.0175 -0.0 0.0003 -0.0054 -0.0 0.0004 -0.0045 -0.0 0.0009 -0.0109 -0.0 0.0006 -0.0092
25% -0.0 0.0012 -0.0137 -0.0 0.0012 -0.0042 -0.0 0.0011 -0.0033 -0.0 0.0019 -0.0089 -0.0 0.0010 -0.0081
50% 0.0 0.0017 -0.0119 -0.0 0.0015 -0.0039 -0.0 0.0015 -0.0031 -0.0 0.0028 -0.0069 -0.0 0.0014 -0.0074
75% 0.0 0.0028 -0.0108 0.0 0.0018 -0.0036 0.0 0.0019 -0.0029 0.0 0.0055 -0.0063 0.0 0.0020 -0.0071
max 0.0 0.0042 -0.0081 0.0 0.0037 -0.0030 0.0 0.0036 -0.0027 0.0 0.0081 -0.0047 0.0 0.0037 -0.0066

Table B.8: Average importance for each node class

134

B.3 Effects of dropout on Node Importance

B.3.1 MNIST

Tables

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 2.20 23.68 102.12 2.60 23.24 102.16 3.36 25.52 99.12 4.24 32.32 91.44 9.16 5.32 113.52
std 1.47 5.76 5.70 1.66 7.19 7.22 1.87 5.12 5.73 1.79 7.43 6.93 2.30 4.10 5.03
min 0.00 13.00 85.00 0.00 8.00 91.00 1.00 14.00 89.00 1.00 21.00 77.00 4.00 1.00 101.00
25% 1.00 21.00 100.00 2.00 19.00 96.00 1.00 22.00 94.00 3.00 27.00 87.00 8.00 3.00 112.00
50% 2.00 24.00 103.00 2.00 22.00 104.00 4.00 27.00 99.00 4.00 32.00 93.00 9.00 4.00 115.00
75% 3.00 25.00 105.00 3.00 30.00 105.00 4.00 29.00 103.00 6.00 38.00 95.00 11.00 6.00 116.00
max 6.00 41.00 110.00 7.00 36.00 120.00 7.00 33.00 113.00 7.00 45.00 102.00 14.00 17.00 122.00

Table B.9: Number of nodes in each class of nodes

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0005 -0.0013 0.0 0.0004 -0.0009 -0.0 0.0004 -0.0007 0.0 0.0004 -0.0006 -0.0 0.0002 -0.0013
std 0.0 0.0002 0.0002 0.0 0.0001 0.0001 0.0 0.0001 0.0001 0.0 0.0001 0.0001 0.0 0.0001 0.0001
min -0.0 0.0002 -0.0019 -0.0 0.0002 -0.0011 -0.0 0.0002 -0.0009 -0.0 0.0002 -0.0007 -0.0 0.0000 -0.0015
25% -0.0 0.0004 -0.0013 -0.0 0.0003 -0.0009 -0.0 0.0003 -0.0007 -0.0 0.0003 -0.0007 -0.0 0.0001 -0.0013
50% 0.0 0.0005 -0.0012 0.0 0.0004 -0.0008 0.0 0.0003 -0.0007 0.0 0.0004 -0.0006 -0.0 0.0002 -0.0012
75% 0.0 0.0007 -0.0012 0.0 0.0005 -0.0008 0.0 0.0004 -0.0006 0.0 0.0004 -0.0006 0.0 0.0002 -0.0012
max 0.0 0.0011 -0.0010 0.0 0.0007 -0.0007 0.0 0.0006 -0.0006 0.0 0.0005 -0.0005 0.0 0.0006 -0.0011

Table B.10: Average importance for each node class

135

B.3.2 Fashion MNIST

Figures

Figure B.1: Number of important nodes per dropout rate

Figure B.2: Average importance for important nodes per dropout rate

136

Figure B.3: Number of worse nodes per dropout rate

Figure B.4: Average importance for worse nodes per dropout rate

Figure B.5: Number of zero nodes per dropout rate

137

Tables

0.1 0.3 0.5 0.7 0.9

mean 0.8697 0.8674 0.8599 0.8471 0.7813
std 0.0041 0.0029 0.0037 0.0034 0.0144
min 0.8596 0.8606 0.8517 0.8404 0.7392
25% 0.8677 0.8665 0.8581 0.8452 0.7807
50% 0.8706 0.8680 0.8600 0.8472 0.7855
75% 0.8726 0.8693 0.8622 0.8498 0.7894
max 0.8747 0.8730 0.8660 0.8522 0.8006

Table B.11: Statistics of accuracy of ANNs trained on Fashion MNIST

0.1 0.3 0.5 0.7 0.9

mean 0.3610 0.3681 0.3889 0.4235 0.6109
std 0.0124 0.0067 0.0074 0.0058 0.0121
min 0.3450 0.3590 0.3764 0.4120 0.5844
25% 0.3546 0.3631 0.3848 0.4200 0.6032
50% 0.3565 0.3674 0.3882 0.4232 0.6128
75% 0.3650 0.3714 0.3921 0.4278 0.6189
max 0.4048 0.3859 0.4083 0.4349 0.6334

Table B.12: Statistics of loss of ANNs trained on Fashion MNIST

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 15.04 29.20 83.76 16.68 28.64 82.68 19.40 26.40 82.20 22.12 25.56 80.32 37.72 5.36 84.92
std 3.12 6.22 6.76 3.78 6.88 6.43 5.21 9.01 7.69 3.54 8.21 9.20 4.59 3.71 3.32
min 7.00 16.00 66.00 10.00 13.00 71.00 11.00 14.00 64.00 17.00 14.00 61.00 26.00 0.00 80.00
25% 14.00 24.00 82.00 13.00 23.00 78.00 16.00 22.00 77.00 20.00 19.00 74.00 36.00 3.00 82.00
50% 15.00 30.00 84.00 17.00 29.00 82.00 20.00 26.00 82.00 22.00 23.00 83.00 38.00 5.00 85.00
75% 17.00 32.00 86.00 18.00 32.00 85.00 22.00 29.00 88.00 24.00 31.00 89.00 41.00 7.00 87.00
max 23.00 41.00 97.00 24.00 43.00 97.00 33.00 51.00 97.00 30.00 42.00 91.00 45.00 14.00 93.00

Table B.13: Number of nodes in each class of nodes

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0013 -0.0019 0.0 0.0009 -0.0013 -0.0 0.0007 -0.0011 0.0 0.0005 -0.0010 0.0 0.0003 -0.0022
std 0.0 0.0006 0.0004 0.0 0.0004 0.0001 0.0 0.0003 0.0001 0.0 0.0002 0.0002 0.0 0.0002 0.0003
min -0.0 0.0003 -0.0029 -0.0 0.0002 -0.0015 -0.0 0.0003 -0.0014 -0.0 0.0002 -0.0013 -0.0 0.0000 -0.0027
25% -0.0 0.0008 -0.0020 -0.0 0.0007 -0.0014 -0.0 0.0005 -0.0012 -0.0 0.0004 -0.0011 -0.0 0.0002 -0.0023
50% -0.0 0.0011 -0.0019 0.0 0.0009 -0.0013 -0.0 0.0007 -0.0011 0.0 0.0005 -0.0010 0.0 0.0002 -0.0022
75% 0.0 0.0016 -0.0016 0.0 0.0011 -0.0012 0.0 0.0009 -0.0010 0.0 0.0007 -0.0009 0.0 0.0003 -0.0020
max 0.0 0.0028 -0.0012 0.0 0.0020 -0.0010 0.0 0.0013 -0.0008 0.0 0.0012 -0.0007 0.0 0.0009 -0.0015

Table B.14: Average importance for each node class

138

B.4 Pre-calculated Pruning

B.4.1 MNIST

Tables - Training set

Change in Accuracy

mean -0.0155
std 0.0313
min -0.1972
25% -0.0165
50% -0.0046
75% -0.0010
max 0.0011

Table B.15: Statistics of change in accuracy of ANNs trained on MNIST

Change in Loss

mean 0.0465
std 0.0928
min -0.0025
25% 0.0047
50% 0.0145
75% 0.0494
max 0.5915

Table B.16: Statistics of change loss of ANNs trained on MNIST

139

Tables - Validation set

Change in Accuracy

mean -0.0361
std 0.0316
min -0.1300
25% -0.0469
50% -0.0277
75% -0.0113
max -0.0009

Table B.17: Statistics of change accuracy of ANNs trained on MNIST

Change in Loss

mean 0.1053
std 0.0926
min 0.0003
25% 0.0321
50% 0.0765
75% 0.1433
max 0.3680

Table B.18: Statistics of change loss of ANNs trained on MNIST

140

B.4.2 Fashion MNIST

Figures - Training set

Figure B.6: Change in accuracy after pruning based on pre-calculated node
importance

Figure B.7: Change in loss after pruning based on pre-calculated node
importance

141

Figures - Validation set

Figure B.8: Change in accuracy after pruning based on pre-calculated node
importance

Figure B.9: Change in loss after pruning based on pre-calculated node
importance

142

Tables - Training set

Number of Nodes

mean 32.78
std 7.19
min 19.00
25% 27.25
50% 34.00
75% 38.00
max 46.00

Table B.19: Statistics of number of nodes pruned from ANNs trained on
Fashion MNIST

Change in Accuracy

mean -0.0412
std 0.0328
min -0.1173
25% -0.0593
50% -0.0407
75% -0.0114
max 0.0024

Table B.20: Statistics of change in accuracy of ANNs trained on MNIST

Change in Loss

mean 0.1062
std 0.0865
min -0.0051
25% 0.0260
50% 0.1096
75% 0.1571
max 0.3725

Table B.21: Statistics of change loss of ANNs trained on MNIST

143

Tables - Validation set

Number of Nodes

mean 42.38
std 8.33
min 21.00
25% 37.25
50% 42.00
75% 49.00
max 61.00

Table B.22: Statistics of number of nodes pruned from ANNs trained on
Fashion MNIST

Change in Accuracy

mean -0.0656
std 0.0424
min -0.1885
25% -0.0827
50% -0.0602
75% -0.0387
max -0.0011

Table B.23: Statistics of change accuracy of ANNs trained on MNIST

Change in Loss

mean 0.1558
std 0.1035
min 0.0026
25% 0.0873
50% 0.1313
75% 0.2070
max 0.5218

Table B.24: Statistics of change loss of ANNs trained on MNIST

144

B.5 Exhaustive Pruning

B.5.1 MNIST

Tables - Training set

Nodes removed

mean 6.65
std 1.95
min 4.00
25% 5.00
50% 6.50
75% 7.25
max 11.00

Table B.25: Statistics of number of nodes pruned from ANNs trained on
MNIST

Accuracy

mean 0.0015
std 0.0011
min -0.0002
25% 0.0007
50% 0.0015
75% 0.0020
max 0.0035

Table B.26: Statistics of change in accuracy of ANNs trained on MNIST

Loss

mean -0.0050
std 0.0034
min -0.0112
25% -0.0081
50% -0.0043
75% -0.0021
max -0.0009

Table B.27: Statistics of change loss of ANNs trained on MNIST

145

Tables - Validation set

Nodes removed

mean 12.70
std 2.92
min 8.00
25% 11.50
50% 14.00
75% 15.00
max 17.00

Table B.28: Statistics of number of nodes pruned from ANNs trained on
MNIST

Accuracy

mean 0.0013
std 0.0016
min -0.0013
25% -0.0001
50% 0.0014
75% 0.0024
max 0.0040

Table B.29: Statistics of change accuracy of ANNs trained on MNIST

Loss

mean -0.0051
std 0.0040
min -0.0119
25% -0.0077
50% -0.0060
75% -0.0017
max 0.0029

Table B.30: Statistics of change loss of ANNs trained on MNIST

146

B.5.2 Fashion MNIST

Figures - Training set

Figure B.10: Change in accuracy after pruning with exhaustive method

Figure B.11: Change in loss after pruning bwith exhaustive method

147

Figure B.12: Evolution of training accuracy as an ANN is pruned

Figure B.13: Evolution of training loss as an ANN is pruned

148

Figures - Validation set

Figure B.14: Change in accuracy with exhaustive method

Figure B.15: Change in loss after pruning with exhaustive method

149

Figure B.16: Evolution of validation accuracy as an ANN is pruned

Figure B.17: Evolution of validation loss as an ANN is pruned

150

Tables - Training set

Nodes removed

mean 20.05
std 2.84
min 14.00
25% 19.00
50% 20.00
75% 22.00
max 26.00

Table B.31: Statistics of number of nodes pruned from ANNs trained on
Fashion MNIST

Accuracy

mean 0.0050
std 0.0043
min -0.0003
25% 0.0015
50% 0.0040
75% 0.0084
max 0.0123

Table B.32: Statistics of change in accuracy of ANNs trained on Fashion
MNIST

Loss

mean -0.0149
std 0.0095
min -0.0337
25% -0.0224
50% -0.0129
75% -0.0083
max -0.0022

Table B.33: Statistics of change loss of ANNs trained on Fashion MNIST

151

Tables - Validation set

Nodes removed

mean 27.00
std 2.97
min 23.00
25% 24.00
50% 26.50
75% 29.00
max 33.00

Table B.34: Statistics of number of nodes pruned from ANNs trained on
Fashion MNIST

Accuracy

mean 0.0073
std 0.0041
min 0.0011
25% 0.0048
50% 0.0057
75% 0.0092
max 0.0151

Table B.35: Statistics of change accuracy of ANNs trained on Fashion
MNIST

Loss

mean -0.0208
std 0.0116
min -0.0441
25% -0.0275
50% -0.0162
75% -0.0120
max -0.0097

Table B.36: Statistics of change loss of ANNs trained on Fashion MNIST

152

B.6 Iterative Weight Initialization

B.6.1 Fashion MNIST

Tables

Unoptimized Weights Optimized Weights

mean 0.8689 0.8691
std 0.0060 0.0061
min 0.8571 0.8562
25% 0.8643 0.8669
50% 0.8691 0.8698
75% 0.8745 0.8731
max 0.8789 0.8782

Table B.37: Statistics of accuracy of ANNs trained on Fashion MNIST

Unoptimized Weights Optimized Weights

mean 0.3647 0.3628
std 0.0141 0.0163
min 0.3426 0.3417
25% 0.3572 0.3505
50% 0.3619 0.3596
75% 0.3710 0.3667
max 0.4027 0.4062

Table B.38: Statistics of loss of ANNs trained on Fashion MNIST

153

154

Appendix C

MLP - Extra Figures and Tables

C.1 Estimating Node Importance

C.1.1 MNIST

Tables - Training set

Zero Nodes Worse Nodes Important Nodes

mean 2.98 18.48 106.54
std 1.86 6.20 6.41
min 0.00 2.00 89.00
25% 2.00 14.25 102.00
50% 3.00 19.00 107.00
75% 4.00 23.00 110.75
max 7.00 34.00 125.00

Table C.1: Number of nodes in each class of nodes for the first layer of the
MLP (128-node layer)

Zero Nodes Worse Nodes Important Nodes

mean 2.06 9.42 52.52
std 1.27 4.70 4.90
min 0.00 0.00 42.00
25% 1.00 6.00 49.00
50% 2.00 9.00 53.00
75% 3.00 12.75 56.00
max 5.00 20.00 62.00

Table C.2: Number of nodes in each class of nodes for the second layer of
the MLP (64-node layer)

155

Zero Nodes Worse Nodes Important Nodes

mean 2.04 2.18 27.78
std 1.64 2.06 2.57
min 0.00 0.00 22.00
25% 0.25 1.00 26.00
50% 2.00 2.00 28.00
75% 3.00 3.00 30.00
max 5.00 8.00 32.00

Table C.3: Number of nodes in each class of nodes for the third layer of the
MLP (32-node layer)

156

Tables - Validation set

Zero Nodes Worse Nodes Important Nodes

mean 3.14 33.46 91.40
std 1.74 6.51 6.24
min 0.00 21.00 78.00
25% 2.00 29.00 86.00
50% 3.00 33.00 92.00
75% 4.00 38.75 96.00
max 8.00 48.00 102.00

Table C.4: Number of nodes in each class of nodes for the first layer of the
MLP (128-node layer)

Zero Nodes Worse Nodes Important Nodes

mean 2.22 16.38 45.4
std 1.74 4.04 4.2
min 0.00 7.00 35.0
25% 1.00 14.00 42.0
50% 2.00 16.00 46.0
75% 3.00 19.00 48.0
max 9.00 27.00 56.0

Table C.5: Number of nodes in each class of nodes for the second layer of
the MLP (64-node layer)

Zero Nodes Worse Nodes Important Nodes

mean 2.4 4.58 25.02
std 1.5 2.42 2.32
min 0.0 1.00 19.00
25% 1.0 3.00 23.25
50% 2.0 4.50 25.50
75% 4.0 5.00 27.00
max 5.0 11.00 30.00

Table C.6: Number of nodes in each class of nodes for the third layer of the
MLP (32-node layer)

157

C.1.2 Fashion MNIST

Tables - Training set

Zero Nodes Worse Nodes Important Nodes

mean 17.66 18.46 91.88
std 3.59 7.02 7.12
min 10.00 3.00 75.00
25% 15.25 13.00 87.00
50% 17.50 19.00 92.00
75% 19.75 24.00 97.00
max 26.00 34.00 106.00

Table C.7: Number of nodes in each class of nodes for the first layer of the
MLP (128-node layer)

Zero Nodes Worse Nodes Important Nodes

mean 4.16 12.20 47.64
std 2.16 5.06 5.26
min 1.00 0.00 36.00
25% 2.25 9.00 44.00
50% 4.00 12.00 47.50
75% 6.00 15.00 51.00
max 10.00 23.00 58.00

Table C.8: Number of nodes in each class of nodes for the second layer of
the MLP (64-node layer)

Zero Nodes Worse Nodes Important Nodes

mean 2.78 3.52 25.70
std 1.73 2.37 2.38
min 0.00 0.00 20.00
25% 2.00 2.00 24.00
50% 2.00 3.00 26.00
75% 4.00 4.75 27.75
max 9.00 9.00 30.00

Table C.9: Number of nodes in each class of nodes for the third layer of the
MLP (32-node layer)

158

Tables - Validation set

Zero Nodes Worse Nodes Important Nodes

mean 17.78 27.22 83.00
std 3.44 6.27 6.88
min 12.00 7.00 66.00
25% 16.00 24.00 78.25
50% 17.00 27.00 84.00
75% 19.00 31.75 86.75
max 27.00 39.00 105.00

Table C.10: Number of nodes in each class of nodes for the first layer of the
MLP (128-node layer)

Zero Nodes Worse Nodes Important Nodes

mean 3.64 16.92 43.44
std 1.88 4.81 4.85
min 0.00 7.00 32.00
25% 3.00 14.00 39.00
50% 3.00 17.00 44.00
75% 4.00 20.00 46.00
max 8.00 27.00 55.00

Table C.11: Number of nodes in each class of nodes for the second layer of
the MLP (64-node layer)

Zero Nodes Worse Nodes Important Nodes

mean 2.80 5.14 24.06
std 1.65 2.29 2.44
min 0.00 1.00 18.00
25% 2.00 3.00 22.00
50% 2.00 5.00 24.50
75% 4.00 6.75 26.00
max 6.00 10.00 29.00

Table C.12: Number of nodes in each class of nodes for the third layer of
the MLP (32-node layer)

159

C.2 Effects of batch size on Node Importance

C.2.1 MNIST

Figures

Figure C.1: Number of important nodes per batch size

Figure C.2: Average node importance of important nodes per batch size

160

Figure C.3: Number of worse nodes per batch size

Figure C.4: Average node importance of worse nodes per batch size

Figure C.5: Number of zero nodes per batch size

161

Tables

1 8 32 256 1024

mean 0.9632 0.9729 0.9731 0.9696 0.9567
std 0.0041 0.0028 0.0026 0.0021 0.0020
min 0.9529 0.9674 0.9674 0.9637 0.9507
25% 0.9599 0.9709 0.9716 0.9683 0.9558
50% 0.9639 0.9723 0.9733 0.9700 0.9570
75% 0.9663 0.9743 0.9750 0.9712 0.9576
max 0.9695 0.9775 0.9782 0.9735 0.9599

Table C.13: Statistics of accuracy of MLPs trained on MNIST at each batch
size

1 8 32 256 1024

mean 0.2217 0.1008 0.0932 0.0998 0.1450
std 0.0312 0.0102 0.0091 0.0064 0.0063
min 0.1803 0.0828 0.0721 0.0875 0.1367
25% 0.2045 0.0937 0.0884 0.0967 0.1408
50% 0.2156 0.0993 0.0934 0.0997 0.1439
75% 0.2275 0.1075 0.0965 0.1038 0.1462
max 0.3225 0.1261 0.1176 0.1162 0.1603

Table C.14: Statistics of loss of MLPs trained on MNIST at each batch size

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 15.00 41.88 71.12 5.44 29.80 92.76 3.36 32.52 92.12 1.20 23.20 103.60 2.52 9.80 115.68
std 3.27 8.04 8.80 2.50 5.13 5.11 1.60 5.80 6.04 1.15 7.74 7.86 1.87 5.68 5.61
min 9.00 20.00 56.00 2.00 21.00 83.00 0.00 19.00 80.00 0.00 8.00 92.00 0.00 1.00 104.00
25% 14.00 36.00 65.00 3.00 26.00 91.00 2.00 30.00 88.00 0.00 16.00 98.00 1.00 5.00 112.00
50% 14.00 44.00 70.00 5.00 29.00 92.00 3.00 32.00 92.00 1.00 25.00 102.00 2.00 10.00 115.00
75% 17.00 49.00 75.00 7.00 32.00 97.00 5.00 36.00 95.00 2.00 28.00 110.00 3.00 13.00 119.00
max 21.00 54.00 89.00 11.00 41.00 102.00 6.00 45.00 107.00 4.00 35.00 119.00 7.00 23.00 125.00

Table C.15: Number of nodes in each class of nodes for the first layer of the
MLP (128-node layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 11.80 21.92 30.28 1.00 21.24 41.76 1.44 17.20 45.36 4.48 5.72 53.80 5.04 1.04 57.92
std 3.32 3.96 3.68 1.08 3.28 3.36 1.08 5.28 5.23 2.35 3.10 3.66 2.17 1.77 2.31
min 7.00 13.00 24.00 0.00 16.00 35.00 0.00 6.00 33.00 1.00 1.00 46.00 1.00 0.00 52.00
25% 9.00 19.00 28.00 0.00 19.00 38.00 1.00 14.00 42.00 3.00 3.00 52.00 3.00 0.00 57.00
50% 11.00 22.00 30.00 1.00 21.00 43.00 1.00 16.00 46.00 4.00 6.00 53.00 5.00 1.00 58.00
75% 14.00 25.00 34.00 1.00 23.00 43.00 2.00 20.00 48.00 6.00 8.00 56.00 6.00 1.00 59.00
max 18.00 28.00 37.00 3.00 28.00 47.00 3.00 31.00 57.00 9.00 13.00 61.00 11.00 7.00 62.00

Table C.16: Number of nodes in each class of nodes for the second layer of
the MLP (64-node layer)

162

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 2.76 13.48 15.76 0.88 8.04 23.08 2.36 5.04 24.60 3.28 1.04 27.68 2.56 0.04 29.40
std 2.68 3.62 2.50 0.78 2.89 2.71 1.29 2.51 2.35 1.65 0.84 1.73 1.56 0.20 1.55
min 0.00 3.00 10.00 0.00 3.00 19.00 0.00 0.00 21.00 1.00 0.00 24.00 0.00 0.00 25.00
25% 1.00 11.00 14.00 0.00 6.00 21.00 2.00 3.00 23.00 2.00 1.00 27.00 2.00 0.00 29.00
50% 1.00 14.00 16.00 1.00 8.00 23.00 2.00 5.00 25.00 3.00 1.00 28.00 3.00 0.00 29.00
75% 4.00 15.00 17.00 1.00 10.00 26.00 3.00 7.00 26.00 5.00 1.00 29.00 3.00 0.00 30.00
max 9.00 22.00 20.00 3.00 13.00 28.00 6.00 9.00 29.00 7.00 3.00 31.00 7.00 1.00 32.00

Table C.17: Number of nodes in each class of nodes for the third layer of
the MLP (32-node layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0036 -0.3009 0.0 0.0011 -0.0031 0.0 0.0011 -0.0032 0.0 0.0012 -0.0039 -0.0 0.0007 -0.0045
std 0.0 0.0014 0.3449 0.0 0.0006 0.0008 0.0 0.0004 0.0007 0.0 0.0006 0.0006 0.0 0.0004 0.0005
min -0.0 0.0014 -1.3614 -0.0 0.0004 -0.0052 -0.0 0.0003 -0.0048 -0.0 0.0004 -0.0060 -0.0 0.0001 -0.0057
25% -0.0 0.0023 -0.3223 -0.0 0.0008 -0.0032 0.0 0.0008 -0.0035 0.0 0.0008 -0.0043 -0.0 0.0004 -0.0047
50% 0.0 0.0037 -0.2173 0.0 0.0009 -0.0029 0.0 0.0011 -0.0030 0.0 0.0012 -0.0038 -0.0 0.0007 -0.0045
75% 0.0 0.0046 -0.0535 0.0 0.0013 -0.0027 0.0 0.0013 -0.0028 0.0 0.0016 -0.0035 0.0 0.0010 -0.0043
max 0.0 0.0066 -0.0223 0.0 0.0035 -0.0022 0.0 0.0019 -0.0020 0.0 0.0028 -0.0030 0.0 0.0017 -0.0037

Table C.18: Average importance for each node class for the first layer of the
MLP (128-node layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0036 -0.3009 0.0 0.0011 -0.0031 0.0 0.0011 -0.0032 0.0 0.0012 -0.0039 -0.0 0.0007 -0.0045
std 0.0 0.0014 0.3449 0.0 0.0006 0.0008 0.0 0.0004 0.0007 0.0 0.0006 0.0006 0.0 0.0004 0.0005
min -0.0 0.0014 -1.3614 -0.0 0.0004 -0.0052 -0.0 0.0003 -0.0048 -0.0 0.0004 -0.0060 -0.0 0.0001 -0.0057
25% -0.0 0.0023 -0.3223 -0.0 0.0008 -0.0032 0.0 0.0008 -0.0035 0.0 0.0008 -0.0043 -0.0 0.0004 -0.0047
50% 0.0 0.0037 -0.2173 0.0 0.0009 -0.0029 0.0 0.0011 -0.0030 0.0 0.0012 -0.0038 -0.0 0.0007 -0.0045
75% 0.0 0.0046 -0.0535 0.0 0.0013 -0.0027 0.0 0.0013 -0.0028 0.0 0.0016 -0.0035 0.0 0.0010 -0.0043
max 0.0 0.0066 -0.0223 0.0 0.0035 -0.0022 0.0 0.0019 -0.0020 0.0 0.0028 -0.0030 0.0 0.0017 -0.0037

Table C.19: Average importance for each node class for the second layer of
the MLP (64-node layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0036 -0.3009 0.0 0.0011 -0.0031 0.0 0.0011 -0.0032 0.0 0.0012 -0.0039 -0.0 0.0007 -0.0045
std 0.0 0.0014 0.3449 0.0 0.0006 0.0008 0.0 0.0004 0.0007 0.0 0.0006 0.0006 0.0 0.0004 0.0005
min -0.0 0.0014 -1.3614 -0.0 0.0004 -0.0052 -0.0 0.0003 -0.0048 -0.0 0.0004 -0.0060 -0.0 0.0001 -0.0057
25% -0.0 0.0023 -0.3223 -0.0 0.0008 -0.0032 0.0 0.0008 -0.0035 0.0 0.0008 -0.0043 -0.0 0.0004 -0.0047
50% 0.0 0.0037 -0.2173 0.0 0.0009 -0.0029 0.0 0.0011 -0.0030 0.0 0.0012 -0.0038 -0.0 0.0007 -0.0045
75% 0.0 0.0046 -0.0535 0.0 0.0013 -0.0027 0.0 0.0013 -0.0028 0.0 0.0016 -0.0035 0.0 0.0010 -0.0043
max 0.0 0.0066 -0.0223 0.0 0.0035 -0.0022 0.0 0.0019 -0.0020 0.0 0.0028 -0.0030 0.0 0.0017 -0.0037

Table C.20: Average importance for each node class for the third layer of
the MLP (32-node layer)

163

C.2.2 Fashion MNIST

Tables

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 57.48 29.68 40.84 33.16 24.00 70.84 17.84 28.64 81.52 10.60 27.60 89.80 10.68 18.16 99.16
std 4.19 7.08 6.85 4.37 6.63 6.69 3.64 6.61 7.57 3.15 6.56 6.44 3.26 8.74 10.05
min 47.00 20.00 27.00 22.00 11.00 54.00 12.00 15.00 64.00 4.00 17.00 79.00 6.00 3.00 73.00
25% 54.00 24.00 37.00 32.00 20.00 68.00 16.00 24.00 78.00 9.00 23.00 86.00 8.00 13.00 94.00
50% 57.00 27.00 40.00 33.00 24.00 71.00 18.00 31.00 80.00 11.00 29.00 89.00 11.00 17.00 100.00
75% 61.00 37.00 46.00 35.00 29.00 76.00 19.00 34.00 84.00 13.00 31.00 96.00 12.00 24.00 106.00
max 64.00 43.00 54.00 40.00 37.00 81.00 26.00 38.00 100.00 16.00 44.00 102.00 19.00 36.00 116.00

Table C.21: Number of nodes in each class of nodes for the first layer of the
MLP (128-node layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 24.12 20.64 19.24 3.0 20.84 40.16 4.40 16.88 42.72 6.64 8.56 48.80 9.00 3.84 51.16
std 5.15 4.77 3.87 1.8 4.89 5.11 2.68 5.11 5.16 2.36 4.16 4.16 2.92 2.56 3.68
min 15.00 12.00 14.00 0.0 12.00 30.00 0.00 6.00 37.00 2.00 3.00 39.00 5.00 0.00 44.00
25% 20.00 17.00 17.00 2.0 18.00 36.00 3.00 15.00 38.00 5.00 6.00 47.00 7.00 2.00 49.00
50% 24.00 20.00 19.00 3.0 19.00 41.00 4.00 17.00 42.00 7.00 8.00 49.00 8.00 4.00 52.00
75% 28.00 24.00 21.00 4.0 25.00 43.00 6.00 21.00 45.00 7.00 10.00 52.00 11.00 5.00 54.00
max 33.00 29.00 28.00 6.0 32.00 50.00 10.00 25.00 53.00 12.00 21.00 57.00 16.00 12.00 56.00

Table C.22: Number of nodes in each class of nodes for the second layer of
the MLP (64-node layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 5.52 12.52 13.96 1.68 8.76 21.56 3.48 5.00 23.52 3.40 1.88 26.72 5.40 0.56 26.04
std 3.16 3.60 2.79 1.22 2.96 3.14 1.94 1.98 2.45 1.76 1.13 1.99 2.25 0.65 2.52
min 1.00 5.00 11.00 0.00 3.00 14.00 1.00 1.00 20.00 1.00 0.00 22.00 1.00 0.00 21.00
25% 4.00 9.00 12.00 1.00 7.00 20.00 2.00 4.00 22.00 2.00 1.00 25.00 4.00 0.00 24.00
50% 4.00 13.00 14.00 1.00 9.00 22.00 3.00 5.00 23.00 3.00 2.00 27.00 5.00 0.00 26.00
75% 6.00 14.00 14.00 2.00 11.00 24.00 5.00 6.00 25.00 5.00 2.00 28.00 7.00 1.00 28.00
max 13.00 19.00 21.00 4.00 15.00 27.00 7.00 9.00 29.00 7.00 5.00 30.00 11.00 2.00 31.00

Table C.23: Number of nodes in each class of nodes for the third layer of
the MLP (32-node layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 0.0 0.0039 -0.4106 -0.0 0.0015 -0.0055 -0.0 0.0017 -0.0035 -0.0 0.0028 -0.0065 -0.0 0.0028 -0.0130
std 0.0 0.0019 0.4056 0.0 0.0011 0.0016 0.0 0.0009 0.0007 0.0 0.0015 0.0012 0.0 0.0022 0.0034
min -0.0 0.0013 -1.4856 -0.0 0.0005 -0.0103 -0.0 0.0003 -0.0057 -0.0 0.0008 -0.0099 -0.0 0.0002 -0.0272
25% -0.0 0.0026 -0.6050 -0.0 0.0008 -0.0057 -0.0 0.0010 -0.0039 -0.0 0.0015 -0.0071 -0.0 0.0015 -0.0134
50% 0.0 0.0036 -0.2745 -0.0 0.0012 -0.0055 -0.0 0.0014 -0.0035 -0.0 0.0029 -0.0061 -0.0 0.0020 -0.0123
75% 0.0 0.0049 -0.1248 0.0 0.0016 -0.0040 0.0 0.0024 -0.0030 0.0 0.0036 -0.0058 0.0 0.0035 -0.0113
max 0.0 0.0084 -0.0703 0.0 0.0053 -0.0036 0.0 0.0034 -0.0022 0.0 0.0069 -0.0048 0.0 0.0110 -0.0097

Table C.24: Average importance for each node class for the first layer of the
MLP (128-node layer)

164

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 0.0 0.0039 -0.4106 -0.0 0.0015 -0.0055 -0.0 0.0017 -0.0035 -0.0 0.0028 -0.0065 -0.0 0.0028 -0.0130
std 0.0 0.0019 0.4056 0.0 0.0011 0.0016 0.0 0.0009 0.0007 0.0 0.0015 0.0012 0.0 0.0022 0.0034
min -0.0 0.0013 -1.4856 -0.0 0.0005 -0.0103 -0.0 0.0003 -0.0057 -0.0 0.0008 -0.0099 -0.0 0.0002 -0.0272
25% -0.0 0.0026 -0.6050 -0.0 0.0008 -0.0057 -0.0 0.0010 -0.0039 -0.0 0.0015 -0.0071 -0.0 0.0015 -0.0134
50% 0.0 0.0036 -0.2745 -0.0 0.0012 -0.0055 -0.0 0.0014 -0.0035 -0.0 0.0029 -0.0061 -0.0 0.0020 -0.0123
75% 0.0 0.0049 -0.1248 0.0 0.0016 -0.0040 0.0 0.0024 -0.0030 0.0 0.0036 -0.0058 0.0 0.0035 -0.0113
max 0.0 0.0084 -0.0703 0.0 0.0053 -0.0036 0.0 0.0034 -0.0022 0.0 0.0069 -0.0048 0.0 0.0110 -0.0097

Table C.25: Average importance for each node class for the second layer of
the MLP (64-node layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 0.0 0.0039 -0.4106 -0.0 0.0015 -0.0055 -0.0 0.0017 -0.0035 -0.0 0.0028 -0.0065 -0.0 0.0028 -0.0130
std 0.0 0.0019 0.4056 0.0 0.0011 0.0016 0.0 0.0009 0.0007 0.0 0.0015 0.0012 0.0 0.0022 0.0034
min -0.0 0.0013 -1.4856 -0.0 0.0005 -0.0103 -0.0 0.0003 -0.0057 -0.0 0.0008 -0.0099 -0.0 0.0002 -0.0272
25% -0.0 0.0026 -0.6050 -0.0 0.0008 -0.0057 -0.0 0.0010 -0.0039 -0.0 0.0015 -0.0071 -0.0 0.0015 -0.0134
50% 0.0 0.0036 -0.2745 -0.0 0.0012 -0.0055 -0.0 0.0014 -0.0035 -0.0 0.0029 -0.0061 -0.0 0.0020 -0.0123
75% 0.0 0.0049 -0.1248 0.0 0.0016 -0.0040 0.0 0.0024 -0.0030 0.0 0.0036 -0.0058 0.0 0.0035 -0.0113
max 0.0 0.0084 -0.0703 0.0 0.0053 -0.0036 0.0 0.0034 -0.0022 0.0 0.0069 -0.0048 0.0 0.0110 -0.0097

Table C.26: Average importance for each node class for the third layer of
the MLP (32-node layer)

165

C.3 Effects of dropout on Node Importance

C.3.1 MNIST

Figures

Figure C.6: Number of important nodes per dropout rate

Figure C.7: Average node importance of important nodes per dropout rate

166

Figure C.8: Number of worse nodes per dropout rate

Figure C.9: Average node importance of worse nodes per dropout rate

Figure C.10: Number of zero nodes per dropout rate

167

Tables

0.1 0.3 0.5 0.7 0.9

mean 0.9743 0.9696 0.9564 0.7289 0.1135
std 0.0017 0.0014 0.0018 0.0575 0.0000
min 0.9700 0.9664 0.9538 0.6527 0.1135
25% 0.9739 0.9688 0.9552 0.6785 0.1135
50% 0.9746 0.9697 0.9561 0.7092 0.1135
75% 0.9755 0.9705 0.9576 0.7580 0.1135
max 0.9766 0.9718 0.9600 0.8546 0.1135

Table C.27: Statistics of accuracy of MLPs trained on MNIST

0.1 0.3 0.5 0.7 0.9

mean 0.0887 0.1108 0.1697 0.7803 2.3001
std 0.0049 0.0055 0.0063 0.0866 0.0037
min 0.0802 0.0990 0.1564 0.6178 2.2858
25% 0.0861 0.1094 0.1667 0.7299 2.3010
50% 0.0882 0.1114 0.1692 0.7903 2.3011
75% 0.0910 0.1131 0.1744 0.8502 2.3011
max 0.1019 0.1254 0.1812 0.8890 2.3012

Table C.28: Statistics of loss of MLPs trained on MNIST

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 3.8 30.72 93.48 5.68 34.76 87.56 14.92 38.92 74.16 59.08 23.28 45.64 127.68 0.04 0.28
std 2.0 6.67 5.64 2.53 6.54 6.50 3.65 6.95 5.60 5.53 7.00 7.23 1.11 0.20 0.98
min 1.0 15.00 82.00 0.00 25.00 68.00 10.00 25.00 60.00 49.00 8.00 35.00 124.00 0.00 0.00
25% 3.0 26.00 91.00 5.00 31.00 84.00 12.00 35.00 72.00 55.00 19.00 39.00 128.00 0.00 0.00
50% 3.0 28.00 95.00 5.00 34.00 87.00 14.00 39.00 74.00 60.00 24.00 46.00 128.00 0.00 0.00
75% 5.0 35.00 97.00 7.00 37.00 92.00 18.00 43.00 77.00 63.00 27.00 51.00 128.00 0.00 0.00
max 9.0 45.00 104.00 11.00 57.00 99.00 21.00 54.00 84.00 69.00 39.00 62.00 128.00 1.00 4.00

Table C.29: Number of nodes in each class of nodes for the first layer of the
MLP (128-node layer)

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 0.68 22.36 40.96 0.92 27.32 35.76 0.40 33.80 29.80 0.56 20.2 43.24 61.48 0.56 1.96
std 0.75 5.00 5.13 0.86 5.46 5.46 0.71 6.93 7.01 0.77 9.0 9.19 8.47 1.94 6.57
min 0.00 13.00 29.00 0.00 16.00 27.00 0.00 18.00 20.00 0.00 4.0 18.00 28.00 0.00 0.00
25% 0.00 19.00 38.00 0.00 24.00 32.00 0.00 27.00 24.00 0.00 15.0 38.00 64.00 0.00 0.00
50% 1.00 21.00 42.00 1.00 27.00 35.00 0.00 36.00 27.00 0.00 19.0 44.00 64.00 0.00 0.00
75% 1.00 26.00 45.00 1.00 32.00 39.00 1.00 40.00 36.00 1.00 26.0 49.00 64.00 0.00 0.00
max 2.00 33.00 51.00 3.00 37.00 48.00 2.00 44.00 46.00 2.00 44.0 60.00 64.00 9.00 27.00

Table C.30: Number of nodes in each class of nodes for the second layer of
the MLP (64-node layer)

168

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 0.56 9.44 22.0 0.04 12.80 19.16 0.08 12.56 19.36 0.12 5.4 26.48 30.92 0.04 1.04
std 0.58 3.07 3.2 0.20 4.04 4.02 0.28 4.83 4.84 0.44 4.0 4.02 3.32 0.20 3.32
min 0.00 3.00 17.0 0.00 3.00 11.00 0.00 5.00 10.00 0.00 0.0 17.00 19.00 0.00 0.00
25% 0.00 7.00 20.0 0.00 11.00 17.00 0.00 8.00 16.00 0.00 2.0 24.00 32.00 0.00 0.00
50% 1.00 10.00 21.0 0.00 13.00 19.00 0.00 13.00 19.00 0.00 5.0 27.00 32.00 0.00 0.00
75% 1.00 11.00 25.0 0.00 15.00 21.00 0.00 16.00 23.00 0.00 7.0 30.00 32.00 0.00 0.00
max 2.00 14.00 29.0 1.00 21.00 29.00 1.00 22.00 27.00 2.00 15.0 32.00 32.00 1.00 13.00

Table C.31: Number of nodes in each class of nodes for the third layer of
the MLP (32-node layer)

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0007 -0.0014 0.0 0.0006 -0.0010 -0.0 0.0007 -0.0011 -0.0 0.0008 -0.0027 0.0 0.0000 -0.0003
std 0.0 0.0002 0.0002 0.0 0.0002 0.0001 0.0 0.0001 0.0001 0.0 0.0003 0.0010 0.0 0.0000 0.0010
min -0.0 0.0003 -0.0022 -0.0 0.0003 -0.0014 -0.0 0.0005 -0.0013 -0.0 0.0003 -0.0044 -0.0 0.0000 -0.0037
25% -0.0 0.0005 -0.0015 -0.0 0.0005 -0.0010 -0.0 0.0006 -0.0012 -0.0 0.0006 -0.0032 -0.0 0.0000 0.0000
50% 0.0 0.0006 -0.0013 0.0 0.0007 -0.0010 -0.0 0.0007 -0.0010 -0.0 0.0008 -0.0027 0.0 0.0000 0.0000
75% 0.0 0.0009 -0.0012 0.0 0.0008 -0.0009 0.0 0.0008 -0.0010 0.0 0.0010 -0.0019 0.0 0.0000 0.0000
max 0.0 0.0013 -0.0011 0.0 0.0010 -0.0008 0.0 0.0010 -0.0008 0.0 0.0015 -0.0013 0.0 0.0001 0.0000

Table C.32: Average importance for each node class for the first layer of the
MLP (128-node layer)

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0007 -0.0014 0.0 0.0006 -0.0010 -0.0 0.0007 -0.0011 -0.0 0.0008 -0.0027 0.0 0.0000 -0.0003
std 0.0 0.0002 0.0002 0.0 0.0002 0.0001 0.0 0.0001 0.0001 0.0 0.0003 0.0010 0.0 0.0000 0.0010
min -0.0 0.0003 -0.0022 -0.0 0.0003 -0.0014 -0.0 0.0005 -0.0013 -0.0 0.0003 -0.0044 -0.0 0.0000 -0.0037
25% -0.0 0.0005 -0.0015 -0.0 0.0005 -0.0010 -0.0 0.0006 -0.0012 -0.0 0.0006 -0.0032 -0.0 0.0000 0.0000
50% 0.0 0.0006 -0.0013 0.0 0.0007 -0.0010 -0.0 0.0007 -0.0010 -0.0 0.0008 -0.0027 0.0 0.0000 0.0000
75% 0.0 0.0009 -0.0012 0.0 0.0008 -0.0009 0.0 0.0008 -0.0010 0.0 0.0010 -0.0019 0.0 0.0000 0.0000
max 0.0 0.0013 -0.0011 0.0 0.0010 -0.0008 0.0 0.0010 -0.0008 0.0 0.0015 -0.0013 0.0 0.0001 0.0000

Table C.33: Average importance for each node class for the second layer of
the MLP (64-node layer)

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0007 -0.0014 0.0 0.0006 -0.0010 -0.0 0.0007 -0.0011 -0.0 0.0008 -0.0027 0.0 0.0000 -0.0003
std 0.0 0.0002 0.0002 0.0 0.0002 0.0001 0.0 0.0001 0.0001 0.0 0.0003 0.0010 0.0 0.0000 0.0010
min -0.0 0.0003 -0.0022 -0.0 0.0003 -0.0014 -0.0 0.0005 -0.0013 -0.0 0.0003 -0.0044 -0.0 0.0000 -0.0037
25% -0.0 0.0005 -0.0015 -0.0 0.0005 -0.0010 -0.0 0.0006 -0.0012 -0.0 0.0006 -0.0032 -0.0 0.0000 0.0000
50% 0.0 0.0006 -0.0013 0.0 0.0007 -0.0010 -0.0 0.0007 -0.0010 -0.0 0.0008 -0.0027 0.0 0.0000 0.0000
75% 0.0 0.0009 -0.0012 0.0 0.0008 -0.0009 0.0 0.0008 -0.0010 0.0 0.0010 -0.0019 0.0 0.0000 0.0000
max 0.0 0.0013 -0.0011 0.0 0.0010 -0.0008 0.0 0.0010 -0.0008 0.0 0.0015 -0.0013 0.0 0.0001 0.0000

Table C.34: Average importance for each node class for the third layer of
the MLP (32-node layer)

169

C.3.2 Fashion MNIST

Tables

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 20.44 23.80 83.76 30.08 25.80 72.12 47.08 21.56 59.36 88.40 3.08 36.52 123.96 0.32 3.72
std 3.08 6.01 6.69 3.38 5.01 5.29 5.53 7.29 8.08 9.59 3.12 9.19 4.89 0.85 4.37
min 15.00 13.00 71.00 21.00 16.00 65.00 34.00 9.00 45.00 77.00 0.00 14.00 112.00 0.00 0.00
25% 18.00 19.00 80.00 28.00 23.00 67.00 43.00 16.00 52.00 83.00 1.00 33.00 122.00 0.00 0.00
50% 21.00 23.00 83.00 31.00 27.00 72.00 47.00 20.00 61.00 85.00 2.00 39.00 126.00 0.00 2.00
75% 22.00 29.00 89.00 32.00 29.00 76.00 51.00 27.00 65.00 90.00 3.00 43.00 128.00 0.00 6.00
max 28.00 35.00 94.00 34.00 35.00 81.00 57.00 36.00 76.00 111.00 11.00 45.00 128.00 4.00 15.00

Table C.35: Number of nodes in each class of nodes for the first layer of the
MLP (128-node layer)

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 0.76 18.6 44.64 0.68 21.52 41.80 0.28 19.08 44.64 1.08 2.68 60.24 44.08 4.60 15.32
std 0.88 5.2 5.37 0.85 5.45 5.39 0.54 6.26 6.18 1.29 5.66 6.44 20.45 4.96 16.28
min 0.00 7.0 36.00 0.00 13.00 33.00 0.00 7.00 32.00 0.00 0.00 40.00 8.00 0.00 0.00
25% 0.00 14.0 41.00 0.00 16.00 38.00 0.00 15.00 40.00 0.00 0.00 61.00 21.00 0.00 0.00
50% 1.00 18.0 45.00 0.00 22.00 41.00 0.00 19.00 45.00 1.00 0.00 63.00 54.00 4.00 8.00
75% 1.00 23.0 48.00 1.00 26.00 46.00 0.00 23.00 48.00 2.00 2.00 64.00 64.00 7.00 29.00
max 3.00 27.0 57.00 3.00 31.00 51.00 2.00 32.00 56.00 4.00 20.00 64.00 64.00 19.00 46.00

Table C.36: Number of nodes in each class of nodes for the second layer of
the MLP (64-node layer)

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 0.36 6.60 25.04 0.16 6.72 25.12 0.16 4.92 26.92 0.0 0.36 31.64 23.8 0.08 8.12
std 0.70 3.21 3.28 0.37 3.32 3.27 0.37 2.72 2.72 0.0 1.22 1.22 8.5 0.40 8.57
min 0.00 0.00 18.00 0.00 2.00 17.00 0.00 0.00 20.00 0.0 0.00 26.00 8.0 0.00 0.00
25% 0.00 4.00 23.00 0.00 5.00 23.00 0.00 3.00 26.00 0.0 0.00 32.00 16.0 0.00 0.00
50% 0.00 6.00 25.00 0.00 6.00 26.00 0.00 5.00 27.00 0.0 0.00 32.00 28.0 0.00 4.00
75% 1.00 9.00 28.00 0.00 9.00 27.00 0.00 6.00 29.00 0.0 0.00 32.00 32.0 0.00 16.00
max 3.00 14.00 32.00 1.00 15.00 30.00 1.00 12.00 32.00 0.0 6.00 32.00 32.0 2.00 24.00

Table C.37: Number of nodes in each class of nodes for the third layer of
the MLP (32-node layer)

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0012 -0.0019 -0.0 0.0009 -0.0016 0.0 0.0008 -0.0018 -0.0 0.0007 -0.0051 -0.0 0.0000 -0.0006
std 0.0 0.0009 0.0003 0.0 0.0004 0.0001 0.0 0.0004 0.0003 0.0 0.0020 0.0039 0.0 0.0001 0.0009
min -0.0 0.0003 -0.0025 -0.0 0.0004 -0.0019 -0.0 0.0002 -0.0024 -0.0 0.0000 -0.0164 -0.0 0.0000 -0.0025
25% -0.0 0.0007 -0.0019 -0.0 0.0006 -0.0017 -0.0 0.0006 -0.0020 -0.0 0.0001 -0.0059 -0.0 0.0000 -0.0012
50% -0.0 0.0010 -0.0018 -0.0 0.0009 -0.0016 0.0 0.0008 -0.0018 -0.0 0.0002 -0.0044 -0.0 0.0000 -0.0001
75% 0.0 0.0013 -0.0017 0.0 0.0009 -0.0015 0.0 0.0010 -0.0016 0.0 0.0005 -0.0020 0.0 0.0000 0.0000
max 0.0 0.0044 -0.0014 0.0 0.0024 -0.0014 0.0 0.0020 -0.0013 0.0 0.0098 -0.0012 0.0 0.0004 0.0000

Table C.38: Average importance for each node class for the first layer of the
MLP (128-node layer)

170

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0012 -0.0019 -0.0 0.0009 -0.0016 0.0 0.0008 -0.0018 -0.0 0.0007 -0.0051 -0.0 0.0000 -0.0006
std 0.0 0.0009 0.0003 0.0 0.0004 0.0001 0.0 0.0004 0.0003 0.0 0.0020 0.0039 0.0 0.0001 0.0009
min -0.0 0.0003 -0.0025 -0.0 0.0004 -0.0019 -0.0 0.0002 -0.0024 -0.0 0.0000 -0.0164 -0.0 0.0000 -0.0025
25% -0.0 0.0007 -0.0019 -0.0 0.0006 -0.0017 -0.0 0.0006 -0.0020 -0.0 0.0001 -0.0059 -0.0 0.0000 -0.0012
50% -0.0 0.0010 -0.0018 -0.0 0.0009 -0.0016 0.0 0.0008 -0.0018 -0.0 0.0002 -0.0044 -0.0 0.0000 -0.0001
75% 0.0 0.0013 -0.0017 0.0 0.0009 -0.0015 0.0 0.0010 -0.0016 0.0 0.0005 -0.0020 0.0 0.0000 0.0000
max 0.0 0.0044 -0.0014 0.0 0.0024 -0.0014 0.0 0.0020 -0.0013 0.0 0.0098 -0.0012 0.0 0.0004 0.0000

Table C.39: Average importance for each node class for the second layer of
the MLP (64-node layer)

0.1 0.3 0.5 0.7 0.9
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0012 -0.0019 -0.0 0.0009 -0.0016 0.0 0.0008 -0.0018 -0.0 0.0007 -0.0051 -0.0 0.0000 -0.0006
std 0.0 0.0009 0.0003 0.0 0.0004 0.0001 0.0 0.0004 0.0003 0.0 0.0020 0.0039 0.0 0.0001 0.0009
min -0.0 0.0003 -0.0025 -0.0 0.0004 -0.0019 -0.0 0.0002 -0.0024 -0.0 0.0000 -0.0164 -0.0 0.0000 -0.0025
25% -0.0 0.0007 -0.0019 -0.0 0.0006 -0.0017 -0.0 0.0006 -0.0020 -0.0 0.0001 -0.0059 -0.0 0.0000 -0.0012
50% -0.0 0.0010 -0.0018 -0.0 0.0009 -0.0016 0.0 0.0008 -0.0018 -0.0 0.0002 -0.0044 -0.0 0.0000 -0.0001
75% 0.0 0.0013 -0.0017 0.0 0.0009 -0.0015 0.0 0.0010 -0.0016 0.0 0.0005 -0.0020 0.0 0.0000 0.0000
max 0.0 0.0044 -0.0014 0.0 0.0024 -0.0014 0.0 0.0020 -0.0013 0.0 0.0098 -0.0012 0.0 0.0004 0.0000

Table C.40: Average importance for each node class for the third layer of
the MLP (32-node layer)

171

C.4 Pre-calculated Pruning

C.4.1 MNIST

Figures- Training set

Figure C.11: Change in accuracy after pruning based on pre-calculated
node importance

Figure C.12: Change in loss after pruning based on pre-calculated node
importance

172

Figures- Validation set

Figure C.13: Change in accuracy after pruning based on pre-calculated
node importance

Figure C.14: Change in loss after pruning based on pre-calculated node
importance

173

Tables - Training set

Layer 3 Layer 2 Layer 1

mean 4.42 10.50 20.74
std 1.73 4.01 7.62
min 2.00 3.00 5.00
25% 3.00 7.25 16.00
50% 4.00 11.00 20.00
75% 5.00 13.00 24.75
max 9.00 19.00 39.00

Table C.41: Statistics of number of nodes pruned from MLPs trained on
MNIST

Change in Accuracy

mean -0.0831
std 0.0706
min -0.2434
25% -0.1265
50% -0.0707
75% -0.0166
max 0.0001

Table C.42: Statistics of change in accuracy of MLPs trained on MNIST

Change in Loss

mean 0.2689
std 0.2576
min -0.0014
25% 0.0490
50% 0.2175
75% 0.4286
max 1.0061

Table C.43: Statistics of change loss of MLPs trained on MNIST

174

Tables - Validation set

Layer 3 Layer 2 Layer 1

mean 6.52 17.06 33.64
std 1.87 4.02 6.64
min 1.00 4.00 16.00
25% 6.00 15.00 30.25
50% 7.00 17.00 33.50
75% 7.75 20.00 39.75
max 10.00 25.00 44.00

Table C.44: Statistics of number of nodes pruned from MLPs trained on
MNIST

Change in Accuracy

mean -0.1837
std 0.1064
min -0.4639
25% -0.2606
50% -0.1829
75% -0.1154
max -0.0041

Table C.45: Statistics of change in accuracy of MLPs trained on MNIST

Change in Loss

mean 0.6232
std 0.4126
min 0.0059
25% 0.3227
50% 0.6055
75% 0.8457
max 1.9321

Table C.46: Statistics of change loss of MLPs trained on MNIST

175

C.4.2 Fashion MNIST

Figures - Training set

Figure C.15: Change in accuracy after pruning based on pre-calculated
node importance

Figure C.16: Change in loss after pruning based on pre-calculated node
importance

176

Figures - Validation set

Figure C.17: Change in accuracy after pruning based on pre-calculated
node importance

Figure C.18: Change in loss after pruning based on pre-calculated node
importance

177

Tables - Training set

Layer 3 Layer 2 Layer 1

mean 6.34 15.62 35.56
std 1.98 5.40 7.86
min 2.00 5.00 19.00
25% 5.00 12.00 31.00
50% 6.00 15.00 35.00
75% 7.00 19.00 40.00
max 12.00 29.00 50.00

Table C.47: Statistics of number of nodes pruned from MLPs trained on
Fashion MNIST

Change in Accuracy

mean -0.1087
std 0.0810
min -0.2773
25% -0.1674
50% -0.0967
75% -0.0329
max 0.0038

Table C.48: Statistics of change in accuracy of MLPs trained on Fashion
MNIST

Change in Loss

mean 0.3035
std 0.2519
min -0.0090
25% 0.0695
50% 0.2315
75% 0.4288
max 0.9918

Table C.49: Statistics of change loss of MLPs trained on Fashion MNIST

178

Tables - Validation set

Layer 3 Layer 2 Layer 1

mean 7.50 20.40 46.1
std 2.48 4.61 7.0
min 2.00 8.00 27.0
25% 6.00 18.00 44.0
50% 8.00 20.50 47.5
75% 9.00 23.00 50.0
max 13.00 28.00 58.0

Table C.50: Statistics of number of nodes pruned from MLPs trained on
Fashion MNIST

Change in Accuracy

mean -0.1744
std 0.0983
min -0.4558
25% -0.2380
50% -0.1670
75% -0.0987
max -0.0036

Table C.51: Statistics of change in accuracy of MLPs trained on Fashion
MNIST

Change in Loss

mean 0.5159
std 0.2955
min 0.0174
25% 0.2610
50% 0.5405
75% 0.7009
max 1.2444

Table C.52: Statistics of change loss of MLPs trained on Fashion MNIST

179

C.5 Exhaustive Pruning

C.5.1 MNIST

Figures - Training set

Figure C.19: Change in accuracy after pruning with exhaustive method

Figure C.20: Change in loss after pruning with exhaustive method

180

Figure C.21: Evolution of training accuracy as an MLP is pruned

Figure C.22: Evolution of training loss as an MLP is pruned

181

Figures - Validation set

Figure C.23: Change in accuracy after pruning with exhaustive method

Figure C.24: Change in accuracy after pruning with exhaustive method

182

Figure C.25: Evolution of validation accuracy as an MLP is pruned

Figure C.26: Evolution of validation loss as an MLP is pruned

183

Tables - Training set

Layer 3 Layer 2 Layer 1

mean 3.40 4.00 5.80
std 1.51 1.76 2.97
min 1.00 0.00 2.00
25% 2.00 3.25 3.25
50% 4.00 4.00 5.50
75% 4.75 5.00 8.25
max 5.00 6.00 10.00

Table C.53: Statistics of number of nodes pruned from MLPs trained on
MNIST

Accuracy

mean 0.0023
std 0.0019
min -0.0001
25% 0.0010
50% 0.0020
75% 0.0035
max 0.0054

Table C.54: Statistics of change in accuracy of MLPs trained on MNIST

Loss

mean -0.0091
std 0.0075
min -0.0259
25% -0.0099
50% -0.0073
75% -0.0046
max -0.0017

Table C.55: Statistics of change loss of MLPs trained on MNIST

184

Tables - Validation set

Layer 3 Layer 2 Layer 1

mean 5.50 8.40 12.10
std 2.17 2.07 3.07
min 3.00 5.00 9.00
25% 3.50 7.50 10.00
50% 5.00 9.00 10.50
75% 7.00 9.75 14.75
max 9.00 11.00 17.00

Table C.56: Statistics of number of nodes pruned from MLPs trained on
MNIST

Accuracy

mean 0.0024
std 0.0023
min -0.0003
25% 0.0009
50% 0.0018
75% 0.0040
max 0.0059

Table C.57: Statistics of change accuracy of MLPs trained on MNIST

Loss

mean -0.0136
std 0.0080
min -0.0289
25% -0.0193
50% -0.0117
75% -0.0079
max -0.0036

Table C.58: Statistics of change loss of MLPs trained on MNIST

185

C.5.2 Fashion MNIST

Tables - Training set

Accuracy

mean 0.0059
std 0.0023
min 0.0017
25% 0.0049
50% 0.0055
75% 0.0071
max 0.0097

Table C.59: Statistics of change in accuracy of MLPs trained on Fashion
MNIST

Loss

mean -0.0186
std 0.0068
min -0.0281
25% -0.0248
50% -0.0171
75% -0.0143
max -0.0075

Table C.60: Statistics of change loss of MLPs trained on Fashion MNIST

186

Tables - Validation set

Accuracy

mean 0.0085
std 0.0030
min 0.0057
25% 0.0063
50% 0.0067
75% 0.0102
max 0.0140

Table C.61: Statistics of change accuracy of MLPs trained on Fashion
MNIST

Loss

mean -0.0182
std 0.0069
min -0.0271
25% -0.0241
50% -0.0176
75% -0.0146
max -0.0071

Table C.62: Statistics of change loss of MLPs trained on Fashion MNIST

187

C.6 Greedy Pruning

C.6.1 MNIST

Figures - ignore cutoff: −1e− 2

Figure C.27: Change in accuracy after pruning with greedy method and an
ignore cutoff of −1e− 2

Figure C.28: Change in loss after pruning with greedy method and an
ignore cutoff of −1e− 2

188

Figures - ignore cutoff: −1e− 3

Figure C.29: Change in accuracy after pruning with greedy method and an
ignore cutoff of −1e− 3

Figure C.30: Change in loss after pruning with greedy method and an
ignore cutoff of −1e− 3

189

Figure C.31: Evolution of validation accuracy as an MLP is pruned

Figure C.32: Evolution of validation loss as an MLP is pruned

190

Tables - ignore cutoff: −1e− 2

Layer 3 Layer 2 Layer 1

mean 0.20 2.80 2.30
std 0.42 1.75 4.57
min 0.00 1.00 -4.00
25% 0.00 1.25 -0.75
50% 0.00 2.50 2.00
75% 0.00 3.75 6.00
max 1.00 6.00 8.00

Table C.63: Statistics of the difference in the number of nodes pruned from
MLPs trained on MNIST

Tables - ignore cutoff: −1e− 3

Layer 3 Layer 2 Layer 1

mean 0.30 2.40 1.90
std 0.48 1.90 4.46
min 0.00 -1.00 -4.00
25% 0.00 1.25 -2.00
50% 0.00 2.50 2.00
75% 0.75 3.00 5.50
max 1.00 6.00 8.00

Table C.64: Statistics of the difference in the number of nodes pruned from
MLPs trained on MNIST

191

Tables - general

Exhaustive Greedy (-1e-2 cutoff) Greedy (-1e-3 cutoff)

mean 0.0015 0.0004 0.0006
std 0.0015 0.0013 0.0015
min -0.0008 -0.0022 -0.0022
25% 0.0009 0.0004 -0.0004
50% 0.0015 0.0010 0.0004
75% 0.0024 0.0011 0.0015
max 0.0041 0.0016 0.0028

Table C.65: Statistics of change accuracy of MLPs trained on MNIST

Exhaustive Greedy (-1e-2 cutoff) Greedy (-1e-3 cutoff)

mean -0.0099 -0.0069 -0.0058
std 0.0051 0.0037 0.0043
min -0.0174 -0.0117 -0.0118
25% -0.0135 -0.0094 -0.0095
50% -0.0102 -0.0078 -0.0056
75% -0.0086 -0.0042 -0.0032
max -0.0003 -0.0013 0.0016

Table C.66: Statistics of change loss of MLPs trained on MNIST

Exhaustive Greedy (-1e-2 cutoff) Greedy (-1e-3 cutoff)

mean 150.75 73.60 30.09
std 20.71 16.16 3.07
min 118.61 56.29 23.58
25% 139.51 58.84 28.95
50% 143.73 68.98 29.91
75% 166.01 88.64 31.81
max 189.81 95.32 34.45

Table C.67: Time taken by different pruning algorithms to prune MLPs
trained on MNIST

192

C.6.2 Fashion MNIST

Tables - ignore cutoff: −1e− 2

Layer 3 Layer 2 Layer 1

mean 0.40 0.40 1.60
std 1.07 1.43 3.03
min -1.00 -2.00 -5.00
25% 0.00 0.00 0.25
50% 0.00 0.00 2.00
75% 0.75 1.00 4.00
max 3.00 3.00 5.00

Table C.68: Statistics of the difference in the number of nodes pruned from
MLPs trained on Fashion MNIST

Tables - ignore cutoff: −1e− 3

Layer 3 Layer 2 Layer 1

mean 0.40 0.40 1.50
std 1.07 1.43 3.14
min -1.00 -2.00 -5.00
25% 0.00 0.00 0.25
50% 0.00 0.00 2.00
75% 0.75 1.00 4.00
max 3.00 3.00 5.00

Table C.69: Statistics of the difference in the number of nodes pruned from
MLPs trained on Fashion MNIST

193

Tables - general

Exhaustive Greedy (-1e-2 cutoff) Greedy (-1e-3 cutoff)

mean 0.0041 0.0041 0.0041
std 0.0038 0.0025 0.0025
min 0.0000 0.0009 0.0009
25% 0.0011 0.0018 0.0018
50% 0.0029 0.0043 0.0043
75% 0.0075 0.0062 0.0062
max 0.0102 0.0073 0.0073

Table C.70: Statistics of change accuracy of MLPs trained on Fashion
MNIST

Exhaustive Greedy (-1e-2 cutoff) Greedy (-1e-3 cutoff)

mean -0.0124 -0.0102 -0.0101
std 0.0077 0.0059 0.0059
min -0.0218 -0.0189 -0.0189
25% -0.0192 -0.0150 -0.0150
50% -0.0130 -0.0089 -0.0084
75% -0.0062 -0.0058 -0.0060
max -0.0007 -0.0015 -0.0015

Table C.71: Statistics of change loss of MLPs trained on Fashion MNIST

194

C.7 Iterative Weight Initialization

C.7.1 MNIST

Tables

Unoptimized Weights Optimized Weights

mean 0.9741 0.9736
std 0.0020 0.0025
min 0.9685 0.9673
25% 0.9734 0.9726
50% 0.9743 0.9741
75% 0.9757 0.9748
max 0.9773 0.9778

Table C.72: Statistics of accuracy of MLPs trained on MNIST

Unoptimized Weights Optimized Weights

mean 0.0908 0.0900
std 0.0077 0.0092
min 0.0778 0.0763
25% 0.0869 0.0841
50% 0.0906 0.0894
75% 0.0955 0.0933
max 0.1087 0.1178

Table C.73: Statistics of loss of MLPs trained on MNIST

195

C.7.2 Fashion MNIST

Tables

Unoptimized Weights Optimized Weights

mean 0.8688 0.8695
std 0.0044 0.0064
min 0.8592 0.8505
25% 0.8655 0.8674
50% 0.8693 0.8705
75% 0.8716 0.8743
max 0.8759 0.8782

Table C.74: Statistics of accuracy of MLPs trained on Fashion MNIST

Unoptimized Weights Optimized Weights

mean 0.3670 0.3641
std 0.0115 0.0170
min 0.3471 0.3412
25% 0.3588 0.3559
50% 0.3663 0.3618
75% 0.3725 0.3686
max 0.3919 0.4265

Table C.75: Statistics of loss of MLPs trained on Fashion MNIST

196

Appendix D

CNN - Extra Figures and Tables

D.1 Estimating Node Importance

D.1.1 MNIST

Tables- Training set

Zero Nodes Worse Nodes Important Nodes

mean 25.70 9.30 29.00
std 6.11 5.31 4.50
min 19.00 2.00 20.00
25% 21.50 6.00 27.25
50% 24.50 8.00 29.50
75% 29.00 12.25 32.00
max 38.00 18.00 35.00

Table D.1: Number of nodes in each class of nodes for the first layer of the
CNN (32-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 73.60 62.30 120.10
std 13.57 21.06 19.89
min 51.00 27.00 90.00
25% 66.25 48.00 107.50
50% 71.50 62.50 118.50
75% 81.50 75.75 135.00
max 98.00 96.00 148.00

Table D.2: Number of nodes in each class of nodes for the second layer of
the CNN (64-filter layer)

197

Zero Nodes Worse Nodes Important Nodes

mean 14.20 31.40 82.40
std 5.05 11.40 9.20
min 9.00 11.00 66.00
25% 10.50 29.25 76.75
50% 13.00 33.00 83.00
75% 15.75 36.75 87.50
max 26.00 50.00 98.00

Table D.3: Number of nodes in each class of nodes for the third layer of the
CNN (128-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 3.00 16.60 44.40
std 1.63 6.67 6.29
min 0.00 8.00 35.00
25% 2.00 12.25 38.50
50% 3.00 16.00 46.00
75% 4.00 22.00 48.00
max 6.00 27.00 54.00

Table D.4: Number of nodes in each class of nodes for the fourth layer of
the CNN (256-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 4.8 6.20 21.00
std 2.3 4.49 4.52
min 1.0 1.00 13.00
25% 4.0 3.25 18.00
50% 5.0 5.00 21.50
75% 5.0 8.25 23.75
max 10.0 15.00 28.00

Table D.5: Number of nodes in each class of nodes for the fifth layer of the
CNN (32-node layer)

198

Tables- Validation set

Zero Nodes Worse Nodes Important Nodes

mean 2.50 14.80 14.70
std 1.43 3.12 3.77
min 0.00 10.00 9.00
25% 2.00 14.00 12.50
50% 2.50 14.50 14.50
75% 3.00 17.50 15.75
max 5.00 19.00 22.00

Table D.6: Number of nodes in each class of nodes for the first layer of the
CNN (32-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 1.70 29.20 33.10
std 1.16 3.61 4.07
min 0.00 23.00 28.00
25% 1.00 26.50 30.25
50% 2.00 30.00 32.00
75% 2.75 32.00 36.00
max 3.00 34.00 41.00

Table D.7: Number of nodes in each class of nodes for the second layer of
the CNN (64-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 10.90 54.50 62.60
std 4.58 8.63 8.71
min 2.00 40.00 47.00
25% 9.00 50.25 57.25
50% 11.00 54.00 66.00
75% 13.50 58.00 68.75
max 18.00 72.00 71.00

Table D.8: Number of nodes in each class of nodes for the third layer of the
CNN (128-filter layer)

199

Zero Nodes Worse Nodes Important Nodes

mean 55.80 120.70 79.50
std 8.99 13.83 16.85
min 38.00 103.00 50.00
25% 50.50 111.50 70.50
50% 57.50 117.50 83.00
75% 59.50 128.00 89.75
max 68.00 148.00 105.00

Table D.9: Number of nodes in each class of nodes for the fourth layer of
the CNN (256-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 25.00 16.70 22.30
std 3.97 4.97 4.08
min 20.00 11.00 13.00
25% 22.25 14.00 21.00
50% 24.50 15.50 23.00
75% 28.25 18.75 24.00
max 31.00 28.00 28.00

Table D.10: Number of nodes in each class of nodes for the fifth layer of the
CNN (32-node layer)

200

D.1.2 Fashion MNIST

Tables- Training set

Zero Nodes Worse Nodes Important Nodes

mean 25.70 6.30 32.00
std 4.79 2.87 4.06
min 19.00 2.00 26.00
25% 22.25 4.00 28.75
50% 25.50 6.50 32.50
75% 29.50 8.00 33.75
max 32.00 11.00 40.00

Table D.11: Number of nodes in each class of nodes for the first layer of the
CNN (32-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 49.10 48.30 158.60
std 3.45 20.69 20.43
min 44.00 12.00 124.00
25% 46.75 32.50 151.75
50% 50.00 50.50 155.50
75% 50.75 60.25 173.75
max 54.00 81.00 190.00

Table D.12: Number of nodes in each class of nodes for the second layer of
the CNN (64-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 11.30 23.20 93.50
std 2.95 7.81 8.59
min 6.00 10.00 82.00
25% 9.50 18.00 86.25
50% 11.00 25.00 92.00
75% 12.75 28.75 99.75
max 16.00 34.00 109.00

Table D.13: Number of nodes in each class of nodes for the third layer of
the CNN (128-filter layer)

201

Zero Nodes Worse Nodes Important Nodes

mean 3.00 16.60 44.40
std 1.63 6.67 6.29
min 0.00 8.00 35.00
25% 2.00 12.25 38.50
50% 3.00 16.00 46.00
75% 4.00 22.00 48.00
max 6.00 27.00 54.00

Table D.14: Number of nodes in each class of nodes for the fourth layer of
the CNN (256-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 0.60 3.90 27.50
std 0.84 3.63 3.72
min 0.00 0.00 21.00
25% 0.00 0.50 26.00
50% 0.00 3.50 28.50
75% 1.00 5.75 30.00
max 2.00 10.00 32.00

Table D.15: Number of nodes in each class of nodes for the fifth layer of the
CNN (32-node layer)

202

Tables- Validation set

Zero Nodes Worse Nodes Important Nodes

mean 0.40 12.20 19.40
std 0.70 2.66 2.50
min 0.00 8.00 16.00
25% 0.00 11.00 17.50
50% 0.00 11.50 20.00
75% 0.75 14.25 20.75
max 2.00 16.00 24.00

Table D.16: Number of nodes in each class of nodes for the first layer of the
CNN (32-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 1.40 25.60 37.00
std 1.17 6.26 5.83
min 0.00 16.00 29.00
25% 1.00 22.25 34.25
50% 1.00 26.00 35.50
75% 2.00 29.00 39.75
max 4.00 34.00 46.00

Table D.17: Number of nodes in each class of nodes for the second layer of
the CNN (64-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 10.80 47.80 69.40
std 2.90 7.80 6.42
min 7.00 36.00 58.00
25% 8.25 43.25 66.00
50% 11.50 45.00 71.00
75% 12.75 53.50 72.75
max 15.00 60.00 79.00

Table D.18: Number of nodes in each class of nodes for the third layer of
the CNN (128-filter layer)

203

Zero Nodes Worse Nodes Important Nodes

mean 44.90 133.60 77.50
std 5.15 21.81 19.65
min 36.00 103.00 42.00
25% 41.50 119.00 66.50
50% 45.50 131.50 79.50
75% 49.00 149.25 85.75
max 52.00 170.00 106.00

Table D.19: Number of nodes in each class of nodes for the second layer of
the CNN (256-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 27.10 12.50 24.40
std 4.33 3.75 2.46
min 20.00 6.00 20.00
25% 24.50 9.75 23.25
50% 26.50 13.00 24.50
75% 29.75 14.00 25.75
max 35.00 19.00 29.00

Table D.20: Number of nodes in each class of nodes for the third layer of
the CNN (32-node layer)

204

D.1.3 CIFAR-10

Tables- Training set

Zero Nodes Worse Nodes Important Nodes

mean 1.60 1.20 29.20
std 1.65 0.79 1.48
min 0.00 0.00 27.00
25% 0.25 1.00 29.00
50% 1.00 1.00 29.00
75% 2.75 2.00 30.50
max 5.00 2.00 31.00

Table D.21: Number of nodes in each class of nodes for the first layer of the
CNN (32-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 10.00 3.90 50.10
std 2.16 3.45 3.84
min 8.00 1.00 43.00
25% 8.25 2.00 47.75
50% 9.50 2.50 51.50
75% 11.00 3.75 52.75
max 15.00 12.00 54.00

Table D.22: Number of nodes in each class of nodes for the second layer of
the CNN (64-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 27.50 10.80 89.70
std 7.20 6.94 8.49
min 10.00 3.00 75.00
25% 26.00 5.25 85.50
50% 27.50 8.50 89.00
75% 31.75 17.25 93.75
max 35.00 22.00 107.00

Table D.23: Number of nodes in each class of nodes for the third layer of
the CNN (128-filter layer)

205

Zero Nodes Worse Nodes Important Nodes

mean 75.70 23.90 156.40
std 10.50 12.72 19.29
min 61.00 9.00 115.00
25% 69.25 14.00 148.50
50% 73.00 21.50 162.50
75% 83.75 30.25 169.75
max 92.00 49.00 176.00

Table D.24: Number of nodes in each class of nodes for the fourth layer of
the CNN (256-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 38.10 0.80 25.10
std 3.67 0.92 3.70
min 33.00 0.00 19.00
25% 35.50 0.00 23.00
50% 38.50 0.50 24.50
75% 40.00 1.75 28.25
max 44.00 2.00 31.00

Table D.25: Number of nodes in each class of nodes for the fifth layer of the
CNN (32-node layer)

206

Tables- Validation set

Zero Nodes Worse Nodes Important Nodes

mean 41.40 3.60 19.00
std 6.00 1.26 5.33
min 33.00 2.00 9.00
25% 37.25 3.00 17.25
50% 41.00 3.50 19.50
75% 44.00 4.00 23.25
max 52.00 6.00 25.00

Table D.26: Number of nodes in each class of nodes for the first layer of the
CNN (32-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 70.90 91.00 94.10
std 8.01 8.88 7.22
min 61.00 71.00 82.00
25% 63.25 87.00 90.25
50% 71.00 93.50 93.00
75% 78.75 97.25 98.25
max 80.00 99.00 107.00

Table D.27: Number of nodes in each class of nodes for the second layer of
the CNN (64-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 22.50 29.90 75.60
std 8.75 6.15 5.25
min 14.00 19.00 66.00
25% 16.25 25.75 73.25
50% 21.00 30.00 74.50
75% 25.50 33.25 78.50
max 43.00 40.00 85.00

Table D.28: Number of nodes in each class of nodes for the third layer of
the CNN (128-filter layer)

207

Zero Nodes Worse Nodes Important Nodes

mean 10.90 11.40 41.70
std 4.68 7.41 7.90
min 2.00 1.00 25.00
25% 9.00 7.50 37.25
50% 10.50 11.00 43.00
75% 14.25 13.75 47.75
max 18.00 28.00 51.00

Table D.29: Number of nodes in each class of nodes for the second layer of
the CNN (256-filter layer)

Zero Nodes Worse Nodes Important Nodes

mean 2.30 5.90 23.80
std 1.25 1.45 2.10
min 0.00 4.00 20.00
25% 2.00 5.00 23.00
50% 2.00 6.00 24.00
75% 3.00 6.75 24.75
max 4.00 8.00 28.00

Table D.30: Number of nodes in each class of nodes for the third layer of
the CNN (32-node layer)

208

D.2 Effects of batch size on Node Importance

D.2.1 MNIST

Figures

Figure D.1: Number of important nodes per batch size

Figure D.2: Average node importance of important nodes per batch size

209

Figure D.3: Number of worse nodes per batch size

Figure D.4: Average node importance of worse nodes per batch size

Figure D.5: Number of zero nodes per batch size

210

Tables

1 8 32 256 1024

mean 0.9755 0.9883 0.9892 0.9897 0.9882
std 0.0059 0.0023 0.0022 0.0016 0.0012
min 0.9664 0.9839 0.9846 0.9869 0.9861
25% 0.9703 0.9873 0.9883 0.9884 0.9875
50% 0.9755 0.9890 0.9893 0.9902 0.9881
75% 0.9803 0.9900 0.9904 0.9912 0.9890
max 0.9844 0.9909 0.9932 0.9915 0.9909

Table D.31: Statistics of accuracy of CNNs trained on MNIST at each batch
size

1 8 32 256 1024

mean 0.1014 0.0466 0.0386 0.0314 0.0360
std 0.0285 0.0127 0.0088 0.0054 0.0031
min 0.0586 0.0328 0.0247 0.0246 0.0302
25% 0.0840 0.0368 0.0324 0.0271 0.0339
50% 0.0979 0.0433 0.0374 0.0310 0.0368
75% 0.1088 0.0526 0.0429 0.0337 0.0374
max 0.1744 0.0760 0.0547 0.0416 0.0421

Table D.32: Statistics of loss of CNNs trained on MNIST at each batch size

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 25.33 0.93 5.73 13.53 6.87 11.60 2.87 15.13 14.00 0.27 12.07 19.67 0.20 9.00 22.80
std 1.11 0.88 1.22 1.73 2.88 3.33 1.55 3.62 2.62 0.59 4.13 3.83 0.56 5.57 5.81
min 23.00 0.00 4.00 10.00 3.00 7.00 0.00 10.00 10.00 0.00 5.00 11.00 0.00 0.00 14.00
25% 25.00 0.00 5.00 13.00 5.00 9.00 2.00 12.00 12.00 0.00 9.50 18.00 0.00 4.50 18.50
50% 25.00 1.00 6.00 14.00 6.00 11.00 3.00 16.00 13.00 0.00 12.00 20.00 0.00 9.00 23.00
75% 26.00 1.00 7.00 15.00 8.50 13.50 3.50 18.00 16.00 0.00 14.00 22.50 0.00 13.50 27.50
max 27.00 3.00 7.00 16.00 14.00 18.00 6.00 20.00 19.00 2.00 21.00 25.00 2.00 18.00 32.00

Table D.33: Number of nodes in each class of nodes for the first layer of the
CNN (32-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 39.60 5.47 18.93 9.20 24.67 30.13 2.27 30.13 31.60 0.60 27.73 35.67 0.40 18.80 44.80
std 2.44 5.40 3.92 3.47 5.73 5.84 1.28 4.84 4.76 0.74 4.65 4.73 0.63 7.03 6.84
min 34.00 0.00 9.00 4.00 12.00 20.00 0.00 22.00 25.00 0.00 18.00 29.00 0.00 4.00 37.00
25% 39.00 1.50 17.00 6.50 21.00 27.00 1.00 26.50 27.00 0.00 26.00 33.50 0.00 14.00 39.00
50% 40.00 5.00 19.00 8.00 26.00 29.00 2.00 30.00 31.00 0.00 27.00 36.00 0.00 21.00 43.00
75% 41.00 7.50 22.00 12.00 28.50 32.50 3.00 35.00 36.00 1.00 30.50 37.50 1.00 25.00 48.50
max 43.00 21.00 24.00 15.00 32.00 45.00 4.00 37.00 39.00 2.00 35.00 46.00 2.00 26.00 60.00

Table D.34: Number of nodes in each class of nodes for the second layer of
the CNN (64-filter layer)

211

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 84.80 13.13 30.07 29.93 44.80 53.27 10.13 53.27 64.60 3.20 50.93 73.87 1.53 43.33 83.13
std 3.61 6.69 7.30 6.12 7.16 6.19 3.29 8.37 8.74 1.78 5.99 5.71 1.64 9.66 9.50
min 79.00 4.00 14.00 21.00 31.00 42.00 4.00 37.00 50.00 1.00 42.00 66.00 0.00 23.00 65.00
25% 82.50 7.50 28.00 24.50 39.50 50.00 8.00 47.00 60.00 2.00 45.50 69.50 0.00 37.00 79.00
50% 85.00 13.00 31.00 31.00 43.00 53.00 11.00 55.00 64.00 3.00 53.00 73.00 1.00 44.00 83.00
75% 87.00 17.00 36.00 34.50 52.00 57.00 12.00 59.50 67.00 4.50 55.50 78.50 2.50 47.50 87.00
max 91.00 26.00 39.00 40.00 55.00 62.00 16.00 67.00 87.00 7.00 60.00 85.00 5.00 61.00 105.00

Table D.35: Number of nodes in each class of nodes for the third layer of
the CNN (128-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 186.87 26.93 42.20 78.67 94.80 82.53 57.00 119.60 79.40 27.93 113.27 114.8 22.27 95.13 138.60
std 8.75 11.68 10.66 9.04 16.97 15.87 8.41 9.81 12.93 3.71 7.24 7.3 5.50 13.37 12.81
min 163.00 9.00 26.00 65.00 62.00 61.00 49.00 106.00 44.00 23.00 98.00 105.0 15.00 74.00 109.00
25% 184.50 18.50 38.50 73.00 84.50 72.50 51.00 112.00 74.00 25.00 109.50 111.5 18.50 87.50 131.50
50% 189.00 25.00 40.00 77.00 99.00 76.00 53.00 118.00 80.00 27.00 114.00 115.0 21.00 94.00 142.00
75% 190.50 32.50 49.50 83.00 107.00 93.00 60.50 128.00 86.00 31.00 117.00 116.0 26.50 99.50 146.50
max 199.00 51.00 58.00 98.00 120.00 117.00 80.00 133.00 99.00 33.00 126.00 135.0 34.00 130.00 154.00

Table D.36: Number of nodes in each class of nodes for the fourth layer of
the CNN (256-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 38.93 7.73 17.33 18.53 21.47 24.0 25.53 16.00 22.47 25.47 7.60 30.93 22.60 3.87 37.53
std 5.48 5.95 3.60 4.44 4.93 3.7 5.99 4.96 3.18 4.16 4.19 3.77 3.74 2.92 4.66
min 28.00 0.00 11.00 13.00 12.00 19.0 16.00 8.00 18.00 19.00 0.00 23.00 16.00 0.00 29.00
25% 37.00 4.50 16.00 15.00 18.00 21.0 21.00 12.50 20.50 22.50 5.00 28.00 20.50 1.50 34.50
50% 40.00 7.00 17.00 18.00 22.00 24.0 25.00 15.00 22.00 25.00 7.00 31.00 22.00 4.00 36.00
75% 43.00 8.00 18.50 20.50 26.00 27.5 30.50 19.00 23.50 28.00 11.00 33.50 25.50 5.00 41.50
max 46.00 22.00 27.00 29.00 29.00 31.0 34.00 26.00 30.00 33.00 14.00 37.00 28.00 9.00 44.00

Table D.37: Number of nodes in each class of nodes for the fifth layer of the
CNN (32-node layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0028 -0.1127 0.0 0.0014 -0.0057 0.0 0.0013 -0.0026 0.0 0.0012 -0.0024 -0.0 0.0010 -0.0039
std 0.0 0.0055 0.0801 0.0 0.0010 0.0026 0.0 0.0010 0.0015 0.0 0.0009 0.0012 0.0 0.0011 0.0020
min -0.0 0.0000 -0.3357 -0.0 0.0003 -0.0113 -0.0 0.0004 -0.0063 -0.0 0.0003 -0.0050 -0.0 0.0000 -0.0087
25% 0.0 0.0000 -0.1490 -0.0 0.0008 -0.0076 -0.0 0.0005 -0.0033 0.0 0.0004 -0.0034 0.0 0.0004 -0.0051
50% 0.0 0.0002 -0.0915 0.0 0.0011 -0.0048 0.0 0.0009 -0.0020 0.0 0.0010 -0.0020 0.0 0.0005 -0.0026
75% 0.0 0.0032 -0.0599 0.0 0.0015 -0.0038 0.0 0.0017 -0.0017 0.0 0.0020 -0.0016 0.0 0.0013 -0.0024
max 0.0 0.0212 -0.0251 0.0 0.0040 -0.0027 0.0 0.0033 -0.0007 0.0 0.0030 -0.0009 0.0 0.0038 -0.0020

Table D.38: Average importance for each node class for the first layer of the
CNN (32-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0028 -0.1127 0.0 0.0014 -0.0057 0.0 0.0013 -0.0026 0.0 0.0012 -0.0024 -0.0 0.0010 -0.0039
std 0.0 0.0055 0.0801 0.0 0.0010 0.0026 0.0 0.0010 0.0015 0.0 0.0009 0.0012 0.0 0.0011 0.0020
min -0.0 0.0000 -0.3357 -0.0 0.0003 -0.0113 -0.0 0.0004 -0.0063 -0.0 0.0003 -0.0050 -0.0 0.0000 -0.0087
25% 0.0 0.0000 -0.1490 -0.0 0.0008 -0.0076 -0.0 0.0005 -0.0033 0.0 0.0004 -0.0034 0.0 0.0004 -0.0051
50% 0.0 0.0002 -0.0915 0.0 0.0011 -0.0048 0.0 0.0009 -0.0020 0.0 0.0010 -0.0020 0.0 0.0005 -0.0026
75% 0.0 0.0032 -0.0599 0.0 0.0015 -0.0038 0.0 0.0017 -0.0017 0.0 0.0020 -0.0016 0.0 0.0013 -0.0024
max 0.0 0.0212 -0.0251 0.0 0.0040 -0.0027 0.0 0.0033 -0.0007 0.0 0.0030 -0.0009 0.0 0.0038 -0.0020

Table D.39: Average importance for each node class for the second layer of
the CNN (64-filter layer)

212

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0028 -0.1127 0.0 0.0014 -0.0057 0.0 0.0013 -0.0026 0.0 0.0012 -0.0024 -0.0 0.0010 -0.0039
std 0.0 0.0055 0.0801 0.0 0.0010 0.0026 0.0 0.0010 0.0015 0.0 0.0009 0.0012 0.0 0.0011 0.0020
min -0.0 0.0000 -0.3357 -0.0 0.0003 -0.0113 -0.0 0.0004 -0.0063 -0.0 0.0003 -0.0050 -0.0 0.0000 -0.0087
25% 0.0 0.0000 -0.1490 -0.0 0.0008 -0.0076 -0.0 0.0005 -0.0033 0.0 0.0004 -0.0034 0.0 0.0004 -0.0051
50% 0.0 0.0002 -0.0915 0.0 0.0011 -0.0048 0.0 0.0009 -0.0020 0.0 0.0010 -0.0020 0.0 0.0005 -0.0026
75% 0.0 0.0032 -0.0599 0.0 0.0015 -0.0038 0.0 0.0017 -0.0017 0.0 0.0020 -0.0016 0.0 0.0013 -0.0024
max 0.0 0.0212 -0.0251 0.0 0.0040 -0.0027 0.0 0.0033 -0.0007 0.0 0.0030 -0.0009 0.0 0.0038 -0.0020

Table D.40: Average importance for each node class for the third layer of
the CNN (128-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0028 -0.1127 0.0 0.0014 -0.0057 0.0 0.0013 -0.0026 0.0 0.0012 -0.0024 -0.0 0.0010 -0.0039
std 0.0 0.0055 0.0801 0.0 0.0010 0.0026 0.0 0.0010 0.0015 0.0 0.0009 0.0012 0.0 0.0011 0.0020
min -0.0 0.0000 -0.3357 -0.0 0.0003 -0.0113 -0.0 0.0004 -0.0063 -0.0 0.0003 -0.0050 -0.0 0.0000 -0.0087
25% 0.0 0.0000 -0.1490 -0.0 0.0008 -0.0076 -0.0 0.0005 -0.0033 0.0 0.0004 -0.0034 0.0 0.0004 -0.0051
50% 0.0 0.0002 -0.0915 0.0 0.0011 -0.0048 0.0 0.0009 -0.0020 0.0 0.0010 -0.0020 0.0 0.0005 -0.0026
75% 0.0 0.0032 -0.0599 0.0 0.0015 -0.0038 0.0 0.0017 -0.0017 0.0 0.0020 -0.0016 0.0 0.0013 -0.0024
max 0.0 0.0212 -0.0251 0.0 0.0040 -0.0027 0.0 0.0033 -0.0007 0.0 0.0030 -0.0009 0.0 0.0038 -0.0020

Table D.41: Average importance for each node class for the fourth layer of
the CNN (256-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0010 -0.0345 -0.0 0.0010 -0.0017 -0.0 0.0014 -0.0025 0.0 0.0016 -0.0061 -0.0 0.0011 -0.0129
std 0.0 0.0009 0.0190 0.0 0.0011 0.0007 0.0 0.0009 0.0013 0.0 0.0010 0.0023 0.0 0.0008 0.0046
min -0.0 0.0000 -0.0675 -0.0 0.0003 -0.0034 -0.0 0.0004 -0.0058 -0.0 0.0000 -0.0109 -0.0 0.0000 -0.0253
25% -0.0 0.0004 -0.0432 -0.0 0.0005 -0.0021 -0.0 0.0008 -0.0032 0.0 0.0007 -0.0066 0.0 0.0005 -0.0136
50% -0.0 0.0007 -0.0356 -0.0 0.0007 -0.0016 -0.0 0.0012 -0.0020 0.0 0.0016 -0.0060 0.0 0.0011 -0.0124
75% 0.0 0.0016 -0.0211 0.0 0.0011 -0.0011 0.0 0.0015 -0.0016 0.0 0.0023 -0.0044 0.0 0.0014 -0.0107
max 0.0 0.0027 -0.0052 0.0 0.0048 -0.0010 0.0 0.0040 -0.0010 0.0 0.0031 -0.0034 0.0 0.0031 -0.0068

Table D.42: Average importance for each node class for the fifth layer of the
CNN (32-node layer)

213

D.2.2 Fashion MNIST

Figures

Figure D.6: Number of important nodes per batch size

Figure D.7: Average node importance of important nodes per batch size

214

Figure D.8: Number of worse nodes per batch size

Figure D.9: Average node importance of worse nodes per batch size

Figure D.10: Number of zero nodes per batch size

215

Tables

1 8 32 256 1024

mean 0.8674 0.9065 0.9114 0.8976 0.8715
std 0.0072 0.0044 0.0037 0.0049 0.0049
min 0.8502 0.8975 0.9034 0.8888 0.8631
25% 0.8627 0.9042 0.9092 0.8946 0.8686
50% 0.8692 0.9079 0.9121 0.8970 0.8709
75% 0.8713 0.9090 0.9132 0.9007 0.8741
max 0.8796 0.9136 0.9172 0.9068 0.8821

Table D.43: Statistics of accuracy of CNNs trained on Fashion MNIST at
each batch size

1 8 32 256 1024

mean 0.4019 0.2807 0.2526 0.2816 0.3540
std 0.0357 0.0152 0.0088 0.0120 0.0127
min 0.3635 0.2565 0.2396 0.2652 0.3279
25% 0.3761 0.2713 0.2459 0.2697 0.3446
50% 0.3889 0.2788 0.2490 0.2823 0.3557
75% 0.4192 0.2855 0.2593 0.2909 0.3614
max 0.4878 0.3196 0.2708 0.3009 0.3728

Table D.44: Statistics of loss of CNNs trained on Fashion MNIST at each
batch size

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 22.00 1.4 8.60 5.27 9.33 17.40 0.60 12.13 19.27 0.27 10.33 21.40 0.40 8.53 23.07
std 1.69 1.4 1.72 1.53 4.78 4.14 0.74 4.53 4.50 0.46 3.96 3.96 0.51 3.74 3.84
min 19.00 0.0 5.00 3.00 2.00 10.00 0.00 4.00 12.00 0.00 4.00 14.00 0.00 2.00 16.00
25% 21.00 0.0 8.00 4.00 7.00 15.00 0.00 10.00 16.00 0.00 7.50 20.00 0.00 6.00 20.50
50% 22.00 2.0 8.00 5.00 9.00 17.00 0.00 12.00 19.00 0.00 11.00 21.00 0.00 7.00 25.00
75% 23.00 2.0 9.50 6.00 11.00 21.00 1.00 15.50 21.00 0.50 12.00 24.00 1.00 11.50 25.50
max 25.00 4.0 12.00 8.00 18.00 24.00 2.00 20.00 28.00 1.00 18.00 28.00 1.00 15.00 30.00

Table D.45: Number of nodes in each class of nodes for the first layer of the
CNN (32-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 36.40 8.60 19.00 4.47 26.47 33.07 0.93 27.87 35.20 0.20 22.87 40.93 0.27 21.60 42.13
std 3.33 5.21 3.82 1.64 7.20 6.78 0.96 7.56 7.63 0.41 6.13 6.09 0.46 5.79 5.80
min 30.00 1.00 13.00 2.00 12.00 20.00 0.00 14.00 23.00 0.00 10.00 32.00 0.00 9.00 33.00
25% 35.50 5.50 16.50 3.50 23.00 30.00 0.00 25.00 30.50 0.00 19.00 37.50 0.00 19.00 37.50
50% 37.00 8.00 20.00 5.00 27.00 33.00 1.00 28.00 33.00 0.00 24.00 40.00 0.00 20.00 43.00
75% 38.50 12.00 21.00 6.00 29.00 37.50 1.50 32.50 38.00 0.00 26.50 44.50 0.50 26.50 45.00
max 40.00 19.00 26.00 7.00 40.00 46.00 3.00 41.00 50.00 1.00 32.00 54.00 1.00 31.00 55.00

Table D.46: Number of nodes in each class of nodes for the second layer of
the CNN (64-filter layer)

216

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 89.67 13.07 25.27 29.67 43.87 54.47 9.67 49.47 68.87 3.07 47.67 77.27 2.33 45.27 80.4
std 5.04 6.23 6.98 5.92 8.33 7.08 3.68 8.13 6.19 1.39 9.63 9.04 1.80 8.03 8.2
min 78.00 1.00 15.00 22.00 29.00 41.00 4.00 31.00 58.00 1.00 23.00 66.00 0.00 31.00 68.0
25% 86.50 9.00 18.50 25.50 38.00 51.00 7.50 46.50 65.00 2.00 43.50 70.50 1.00 38.50 74.5
50% 89.00 13.00 25.00 29.00 45.00 53.00 9.00 51.00 68.00 3.00 47.00 76.00 2.00 44.00 83.0
75% 93.50 18.00 30.50 34.00 49.00 57.50 10.50 54.00 72.50 4.00 56.00 82.00 3.00 51.50 85.5
max 96.00 25.00 37.00 42.00 59.00 69.00 17.00 63.00 83.00 5.00 59.00 100.00 6.00 57.00 96.0

Table D.47: Number of nodes in each class of nodes for the third layer of
the CNN (128-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 206.20 18.47 31.33 64.67 114.87 76.47 44.27 132.33 79.4 28.00 108.73 119.27 21.87 96.07 138.07
std 24.21 15.55 10.53 7.39 17.10 14.12 6.70 21.71 22.4 5.99 15.55 14.43 3.68 8.17 9.14
min 123.00 5.00 21.00 41.00 78.00 59.00 35.00 82.00 41.0 20.00 73.00 102.00 16.00 84.00 120.00
25% 208.00 8.50 26.50 64.00 111.00 66.50 39.00 123.50 66.5 22.50 104.00 109.50 19.50 89.00 133.00
50% 211.00 14.00 28.00 67.00 117.00 74.00 43.00 134.00 78.0 29.00 112.00 115.00 22.00 97.00 138.00
75% 217.00 22.50 33.50 68.00 123.00 80.00 49.50 141.00 92.0 32.50 119.50 126.50 24.50 100.00 144.00
max 227.00 67.00 66.00 73.00 149.00 111.00 56.00 172.00 129.0 38.00 128.00 150.00 28.00 110.00 154.00

Table D.48: Number of nodes in each class of nodes for the fourth layer of
the CNN (256-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 36.80 8.60 18.60 18.33 23.60 22.07 26.33 13.07 24.60 24.80 7.13 32.07 23.80 5.47 34.73
std 7.52 4.58 4.63 3.31 5.73 4.68 3.92 5.52 3.81 4.39 5.14 3.06 4.68 3.20 4.50
min 20.00 3.00 11.00 12.00 12.00 17.00 20.00 5.00 18.00 16.00 0.00 26.00 14.00 0.00 27.00
25% 36.00 6.00 16.50 16.00 20.00 19.00 25.00 10.00 22.00 21.50 3.50 31.50 21.00 3.00 32.00
50% 38.00 8.00 18.00 18.00 24.00 21.00 26.00 11.00 25.00 26.00 6.00 32.00 24.00 6.00 34.00
75% 39.00 9.50 20.00 21.50 28.00 24.00 28.00 14.50 27.50 28.00 10.50 34.00 25.50 7.50 37.00
max 47.00 20.00 31.00 23.00 32.00 36.00 37.00 25.00 30.00 31.00 16.00 37.00 33.00 11.00 44.00

Table D.49: Number of nodes in each class of nodes for the fifth layer of the
CNN (32-node layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0126 -0.0613 -0.0 0.0018 -0.0067 0.0 0.0013 -0.0038 -0.0 0.0019 -0.0062 0.0 0.0023 -0.0082
std 0.0 0.0270 0.0527 0.0 0.0010 0.0027 0.0 0.0007 0.0011 0.0 0.0010 0.0021 0.0 0.0020 0.0027
min -0.0 0.0000 -0.1895 -0.0 0.0006 -0.0132 -0.0 0.0001 -0.0056 -0.0 0.0005 -0.0121 0.0 0.0002 -0.0142
25% 0.0 0.0000 -0.0737 -0.0 0.0011 -0.0077 -0.0 0.0008 -0.0048 0.0 0.0011 -0.0068 0.0 0.0009 -0.0096
50% 0.0 0.0027 -0.0326 -0.0 0.0017 -0.0061 0.0 0.0015 -0.0036 0.0 0.0017 -0.0062 0.0 0.0020 -0.0073
75% 0.0 0.0055 -0.0296 0.0 0.0021 -0.0046 0.0 0.0018 -0.0029 0.0 0.0026 -0.0050 0.0 0.0031 -0.0064
max 0.0 0.0817 -0.0191 0.0 0.0042 -0.0037 0.0 0.0026 -0.0026 0.0 0.0035 -0.0035 0.0 0.0081 -0.0048

Table D.50: Average importance for each node class for the first layer of the
CNN (32-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0126 -0.0613 -0.0 0.0018 -0.0067 0.0 0.0013 -0.0038 -0.0 0.0019 -0.0062 0.0 0.0023 -0.0082
std 0.0 0.0270 0.0527 0.0 0.0010 0.0027 0.0 0.0007 0.0011 0.0 0.0010 0.0021 0.0 0.0020 0.0027
min -0.0 0.0000 -0.1895 -0.0 0.0006 -0.0132 -0.0 0.0001 -0.0056 -0.0 0.0005 -0.0121 0.0 0.0002 -0.0142
25% 0.0 0.0000 -0.0737 -0.0 0.0011 -0.0077 -0.0 0.0008 -0.0048 0.0 0.0011 -0.0068 0.0 0.0009 -0.0096
50% 0.0 0.0027 -0.0326 -0.0 0.0017 -0.0061 0.0 0.0015 -0.0036 0.0 0.0017 -0.0062 0.0 0.0020 -0.0073
75% 0.0 0.0055 -0.0296 0.0 0.0021 -0.0046 0.0 0.0018 -0.0029 0.0 0.0026 -0.0050 0.0 0.0031 -0.0064
max 0.0 0.0817 -0.0191 0.0 0.0042 -0.0037 0.0 0.0026 -0.0026 0.0 0.0035 -0.0035 0.0 0.0081 -0.0048

Table D.51: Average importance for each node class for the second layer of
the CNN (64-filter layer)

217

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0126 -0.0613 -0.0 0.0018 -0.0067 0.0 0.0013 -0.0038 -0.0 0.0019 -0.0062 0.0 0.0023 -0.0082
std 0.0 0.0270 0.0527 0.0 0.0010 0.0027 0.0 0.0007 0.0011 0.0 0.0010 0.0021 0.0 0.0020 0.0027
min -0.0 0.0000 -0.1895 -0.0 0.0006 -0.0132 -0.0 0.0001 -0.0056 -0.0 0.0005 -0.0121 0.0 0.0002 -0.0142
25% 0.0 0.0000 -0.0737 -0.0 0.0011 -0.0077 -0.0 0.0008 -0.0048 0.0 0.0011 -0.0068 0.0 0.0009 -0.0096
50% 0.0 0.0027 -0.0326 -0.0 0.0017 -0.0061 0.0 0.0015 -0.0036 0.0 0.0017 -0.0062 0.0 0.0020 -0.0073
75% 0.0 0.0055 -0.0296 0.0 0.0021 -0.0046 0.0 0.0018 -0.0029 0.0 0.0026 -0.0050 0.0 0.0031 -0.0064
max 0.0 0.0817 -0.0191 0.0 0.0042 -0.0037 0.0 0.0026 -0.0026 0.0 0.0035 -0.0035 0.0 0.0081 -0.0048

Table D.52: Average importance for each node class for the third layer of
the CNN (128-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0126 -0.0613 -0.0 0.0018 -0.0067 0.0 0.0013 -0.0038 -0.0 0.0019 -0.0062 0.0 0.0023 -0.0082
std 0.0 0.0270 0.0527 0.0 0.0010 0.0027 0.0 0.0007 0.0011 0.0 0.0010 0.0021 0.0 0.0020 0.0027
min -0.0 0.0000 -0.1895 -0.0 0.0006 -0.0132 -0.0 0.0001 -0.0056 -0.0 0.0005 -0.0121 0.0 0.0002 -0.0142
25% 0.0 0.0000 -0.0737 -0.0 0.0011 -0.0077 -0.0 0.0008 -0.0048 0.0 0.0011 -0.0068 0.0 0.0009 -0.0096
50% 0.0 0.0027 -0.0326 -0.0 0.0017 -0.0061 0.0 0.0015 -0.0036 0.0 0.0017 -0.0062 0.0 0.0020 -0.0073
75% 0.0 0.0055 -0.0296 0.0 0.0021 -0.0046 0.0 0.0018 -0.0029 0.0 0.0026 -0.0050 0.0 0.0031 -0.0064
max 0.0 0.0817 -0.0191 0.0 0.0042 -0.0037 0.0 0.0026 -0.0026 0.0 0.0035 -0.0035 0.0 0.0081 -0.0048

Table D.53: Average importance for each node class for the fourth layer of
the CNN (256-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0050 -0.0473 -0.0 0.0014 -0.0060 -0.0 0.0015 -0.0057 0.0 0.0034 -0.0168 -0.0 0.0040 -0.0450
std 0.0 0.0090 0.0347 0.0 0.0006 0.0027 0.0 0.0007 0.0018 0.0 0.0023 0.0048 0.0 0.0032 0.0182
min -0.0 0.0002 -0.1225 -0.0 0.0007 -0.0135 -0.0 0.0003 -0.0088 -0.0 0.0000 -0.0283 -0.0 0.0000 -0.0834
25% -0.0 0.0006 -0.0564 -0.0 0.0010 -0.0069 -0.0 0.0009 -0.0073 0.0 0.0018 -0.0189 0.0 0.0011 -0.0501
50% -0.0 0.0010 -0.0332 0.0 0.0012 -0.0057 -0.0 0.0015 -0.0057 0.0 0.0028 -0.0149 0.0 0.0038 -0.0410
75% 0.0 0.0033 -0.0234 0.0 0.0015 -0.0043 0.0 0.0017 -0.0040 0.0 0.0056 -0.0134 0.0 0.0055 -0.0317
max 0.0 0.0298 -0.0154 0.0 0.0028 -0.0029 0.0 0.0029 -0.0038 0.0 0.0074 -0.0118 0.0 0.0099 -0.0241

Table D.54: Average importance for each node class for the fifth layer of the
CNN (32-node layer)

218

D.2.3 CIFAR-10

Tables

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 31.13 0.07 0.80 10.40 3.0 18.60 1.87 6.07 24.07 0.40 9.87 21.73 0.20 4.13 27.67
std 2.29 0.26 2.11 2.77 2.2 2.67 1.06 2.02 2.09 0.74 4.67 4.32 0.41 3.91 3.92
min 25.00 0.00 0.00 6.00 0.0 15.00 0.00 2.00 20.00 0.00 2.00 14.00 0.00 0.00 21.00
25% 32.00 0.00 0.00 9.00 1.5 17.00 1.00 5.00 23.50 0.00 7.50 19.50 0.00 1.00 25.00
50% 32.00 0.00 0.00 10.00 3.0 18.00 2.00 6.00 24.00 0.00 10.00 22.00 0.00 4.00 28.00
75% 32.00 0.00 0.00 12.50 3.5 20.50 2.50 7.00 25.00 0.50 12.50 23.50 0.00 7.00 31.00
max 32.00 1.00 6.00 15.00 8.0 24.00 4.00 10.00 28.00 2.00 18.00 29.00 1.00 10.00 32.00

Table D.55: Number of nodes in each class of nodes for the first layer of the
CNN (32-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 61.40 0.33 2.27 20.87 7.13 36.00 8.27 13.53 42.2 2.67 21.07 40.27 0.53 16.80 46.67
std 6.86 0.90 5.99 3.94 3.42 4.88 3.56 5.90 6.1 1.50 3.53 3.53 1.06 3.76 4.05
min 44.00 0.00 0.00 12.00 2.00 28.00 5.00 5.00 31.0 1.00 15.00 36.00 0.00 7.00 40.00
25% 64.00 0.00 0.00 20.00 4.00 31.00 5.50 10.00 38.0 1.50 18.00 37.00 0.00 14.50 44.00
50% 64.00 0.00 0.00 20.00 8.00 37.00 7.00 12.00 43.0 2.00 22.00 39.00 0.00 18.00 45.00
75% 64.00 0.00 0.00 23.00 8.00 39.50 9.50 15.50 47.0 4.00 23.50 43.00 0.50 19.50 49.50
max 64.00 3.00 18.00 26.00 14.00 44.00 16.00 28.00 51.0 5.00 26.00 46.00 3.00 21.00 56.00

Table D.56: Number of nodes in each class of nodes for the second layer of
the CNN (64-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 123.27 1.07 3.67 58.53 13.73 55.73 25.33 29.87 72.80 6.13 47.87 74.00 3.87 40.20 83.93
std 13.23 3.39 9.98 13.99 6.54 12.62 7.66 7.50 7.92 2.59 4.82 4.23 1.85 8.19 7.59
min 81.00 0.00 0.00 29.00 5.00 38.00 16.00 15.00 58.00 2.00 41.00 68.00 1.00 27.00 70.00
25% 128.00 0.00 0.00 50.50 10.50 47.00 19.00 26.50 67.00 4.50 43.00 71.00 3.00 33.50 78.00
50% 128.00 0.00 0.00 62.00 12.00 56.00 26.00 30.00 74.00 6.00 50.00 74.00 4.00 41.00 84.00
75% 128.00 0.00 0.00 69.00 15.50 61.00 28.50 32.00 79.50 7.00 52.00 76.50 4.50 46.00 90.50
max 128.00 13.00 34.00 77.00 29.00 86.00 43.00 46.00 86.00 12.00 54.00 82.00 8.00 55.00 97.00

Table D.57: Number of nodes in each class of nodes for the third layer of
the CNN (128-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 248.07 2.67 5.27 103.33 60.53 92.13 81.73 80.87 93.40 46.07 99.47 110.47 32.60 80.73 142.67
std 20.59 7.02 13.66 18.78 13.32 12.81 13.54 13.03 11.35 6.82 10.40 8.45 7.91 9.84 13.59
min 187.00 0.00 0.00 71.00 44.00 72.00 56.00 59.00 71.00 37.00 83.00 95.00 18.00 67.00 117.00
25% 255.00 0.00 0.00 89.00 47.50 87.00 74.50 70.00 84.00 41.50 92.00 105.50 28.50 74.00 132.50
50% 256.00 0.00 0.00 104.00 62.00 90.00 80.00 83.00 95.00 45.00 99.00 109.00 34.00 80.00 144.00
75% 256.00 0.50 0.50 117.50 70.50 92.50 88.00 89.50 101.00 48.00 109.50 117.50 38.50 89.00 153.00
max 256.00 25.00 44.00 140.00 82.00 123.00 112.00 106.00 114.00 64.00 113.00 123.00 45.00 99.00 164.00

Table D.58: Number of nodes in each class of nodes for the fourth layer of
the CNN (256-filter layer)

219

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 60.73 0.73 2.53 36.4 7.07 20.53 43.13 2.80 18.07 37.00 5.20 21.80 35.73 1.13 27.13
std 8.64 2.15 6.70 5.5 4.06 3.70 4.37 2.21 2.89 4.83 3.03 3.91 4.65 1.46 3.93
min 38.00 0.00 0.00 22.0 3.00 16.00 36.00 0.00 12.00 31.00 1.00 15.00 26.00 0.00 22.00
25% 64.00 0.00 0.00 33.0 5.00 17.00 41.00 1.00 16.00 33.00 3.50 19.00 33.00 0.00 24.50
50% 64.00 0.00 0.00 38.0 6.00 21.00 43.00 2.00 18.00 37.00 4.00 22.00 38.00 1.00 26.00
75% 64.00 0.00 0.00 40.0 8.00 23.50 45.50 4.00 20.00 38.50 7.00 23.50 39.00 1.50 30.00
max 64.00 8.00 20.00 43.0 20.00 26.00 52.00 7.00 22.00 46.00 11.00 29.00 42.00 4.00 34.00

Table D.59: Number of nodes in each class of nodes for the fifth layer of the
CNN (32-node layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0004 -0.0467 0.0 0.0013 -0.0711 -0.0 0.0048 -0.0341 0.0 0.0856 -0.1385 0.0 0.0061 -0.1007
std 0.0 0.0016 0.1235 0.0 0.0018 0.0205 0.0 0.0036 0.0071 0.0 0.1352 0.1498 0.0 0.0048 0.0299
min -0.0 0.0000 -0.3654 -0.0 0.0000 -0.1089 -0.0 0.0010 -0.0492 0.0 0.0079 -0.6552 0.0 0.0000 -0.1643
25% 0.0 0.0000 0.0000 -0.0 0.0003 -0.0867 -0.0 0.0023 -0.0387 0.0 0.0191 -0.1429 0.0 0.0025 -0.1185
50% 0.0 0.0000 0.0000 0.0 0.0010 -0.0700 0.0 0.0042 -0.0322 0.0 0.0389 -0.0867 0.0 0.0050 -0.0956
75% 0.0 0.0000 0.0000 0.0 0.0013 -0.0575 0.0 0.0055 -0.0298 0.0 0.0626 -0.0683 0.0 0.0092 -0.0793
max 0.0 0.0060 0.0000 0.0 0.0071 -0.0328 0.0 0.0147 -0.0238 0.0 0.4927 -0.0608 0.0 0.0150 -0.0582

Table D.60: Average importance for each node class for the first layer of the
CNN (32-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0004 -0.0467 0.0 0.0013 -0.0711 -0.0 0.0048 -0.0341 0.0 0.0856 -0.1385 0.0 0.0061 -0.1007
std 0.0 0.0016 0.1235 0.0 0.0018 0.0205 0.0 0.0036 0.0071 0.0 0.1352 0.1498 0.0 0.0048 0.0299
min -0.0 0.0000 -0.3654 -0.0 0.0000 -0.1089 -0.0 0.0010 -0.0492 0.0 0.0079 -0.6552 0.0 0.0000 -0.1643
25% 0.0 0.0000 0.0000 -0.0 0.0003 -0.0867 -0.0 0.0023 -0.0387 0.0 0.0191 -0.1429 0.0 0.0025 -0.1185
50% 0.0 0.0000 0.0000 0.0 0.0010 -0.0700 0.0 0.0042 -0.0322 0.0 0.0389 -0.0867 0.0 0.0050 -0.0956
75% 0.0 0.0000 0.0000 0.0 0.0013 -0.0575 0.0 0.0055 -0.0298 0.0 0.0626 -0.0683 0.0 0.0092 -0.0793
max 0.0 0.0060 0.0000 0.0 0.0071 -0.0328 0.0 0.0147 -0.0238 0.0 0.4927 -0.0608 0.0 0.0150 -0.0582

Table D.61: Average importance for each node class for the second layer of
the CNN (64-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0004 -0.0467 0.0 0.0013 -0.0711 -0.0 0.0048 -0.0341 0.0 0.0856 -0.1385 0.0 0.0061 -0.1007
std 0.0 0.0016 0.1235 0.0 0.0018 0.0205 0.0 0.0036 0.0071 0.0 0.1352 0.1498 0.0 0.0048 0.0299
min -0.0 0.0000 -0.3654 -0.0 0.0000 -0.1089 -0.0 0.0010 -0.0492 0.0 0.0079 -0.6552 0.0 0.0000 -0.1643
25% 0.0 0.0000 0.0000 -0.0 0.0003 -0.0867 -0.0 0.0023 -0.0387 0.0 0.0191 -0.1429 0.0 0.0025 -0.1185
50% 0.0 0.0000 0.0000 0.0 0.0010 -0.0700 0.0 0.0042 -0.0322 0.0 0.0389 -0.0867 0.0 0.0050 -0.0956
75% 0.0 0.0000 0.0000 0.0 0.0013 -0.0575 0.0 0.0055 -0.0298 0.0 0.0626 -0.0683 0.0 0.0092 -0.0793
max 0.0 0.0060 0.0000 0.0 0.0071 -0.0328 0.0 0.0147 -0.0238 0.0 0.4927 -0.0608 0.0 0.0150 -0.0582

Table D.62: Average importance for each node class for the third layer of
the CNN (128-filter layer)

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean -0.0 0.0004 -0.0467 0.0 0.0013 -0.0711 -0.0 0.0048 -0.0341 0.0 0.0856 -0.1385 0.0 0.0061 -0.1007
std 0.0 0.0016 0.1235 0.0 0.0018 0.0205 0.0 0.0036 0.0071 0.0 0.1352 0.1498 0.0 0.0048 0.0299
min -0.0 0.0000 -0.3654 -0.0 0.0000 -0.1089 -0.0 0.0010 -0.0492 0.0 0.0079 -0.6552 0.0 0.0000 -0.1643
25% 0.0 0.0000 0.0000 -0.0 0.0003 -0.0867 -0.0 0.0023 -0.0387 0.0 0.0191 -0.1429 0.0 0.0025 -0.1185
50% 0.0 0.0000 0.0000 0.0 0.0010 -0.0700 0.0 0.0042 -0.0322 0.0 0.0389 -0.0867 0.0 0.0050 -0.0956
75% 0.0 0.0000 0.0000 0.0 0.0013 -0.0575 0.0 0.0055 -0.0298 0.0 0.0626 -0.0683 0.0 0.0092 -0.0793
max 0.0 0.0060 0.0000 0.0 0.0071 -0.0328 0.0 0.0147 -0.0238 0.0 0.4927 -0.0608 0.0 0.0150 -0.0582

Table D.63: Average importance for each node class for the fourth layer of
the CNN (256-filter layer)

220

1 8 32 256 1024
Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important Zero Worse Important

Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes Nodes

mean 0.0 0.0003 -0.0045 -0.0 0.0013 -0.0651 -0.0 0.0026 -0.1168 -0.0 0.0721 -0.1321 0.0 0.0040 -0.1026
std 0.0 0.0010 0.0120 0.0 0.0010 0.0378 0.0 0.0042 0.0601 0.0 0.1153 0.0741 0.0 0.0057 0.0349
min -0.0 0.0000 -0.0377 -0.0 0.0001 -0.1547 -0.0 0.0000 -0.2707 -0.0 0.0072 -0.2734 -0.0 0.0000 -0.1467
25% 0.0 0.0000 0.0000 -0.0 0.0005 -0.0887 -0.0 0.0002 -0.1348 0.0 0.0182 -0.1723 0.0 0.0000 -0.1345
50% 0.0 0.0000 0.0000 0.0 0.0007 -0.0507 -0.0 0.0007 -0.1063 0.0 0.0331 -0.1011 0.0 0.0010 -0.1156
75% 0.0 0.0000 0.0000 0.0 0.0018 -0.0391 0.0 0.0029 -0.0723 0.0 0.0452 -0.0790 0.0 0.0061 -0.0682
max 0.0 0.0041 0.0000 0.0 0.0031 -0.0240 0.0 0.0144 -0.0520 0.0 0.3705 -0.0520 0.0 0.0213 -0.0570

Table D.64: Average importance for each node class for the fifth layer of the
CNN (32-node layer)

221

D.3 Pre-calculated Pruning

D.3.1 MNIST

Figures - Training set

Figure D.11: Change in accuracy after pruning based on pre-calculated
node importance

Figure D.12: Change in loss after pruning based on pre-calculated node
importance

222

Figures - Validation set

Figure D.13: Change in accuracy after pruning based on pre-calculated
node importance

Figure D.14: Change in loss after pruning based on pre-calculated node
importance

223

Tables - Training set

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

mean 33.90 129.10 45.80 16.40 9.10
std 4.91 14.62 6.51 6.69 3.35
min 26.00 110.00 37.00 10.00 4.00
25% 31.25 119.50 39.50 11.25 7.50
50% 34.00 125.50 47.00 16.00 9.50
75% 37.25 132.75 50.00 18.00 10.00
max 41.00 157.00 56.00 32.00 16.00

Table D.65: Statistics of number of nodes pruned from CNNs trained on
MNIST

Change in Accuracy

mean -0.1227
std 0.1146
min -0.3826
25% -0.1638
50% -0.1187
75% -0.0282
max -0.0063

Table D.66: Statistics of change in accuracy of CNNs trained on MNIST

Change in Loss

mean 0.4370
std 0.3731
min 0.0509
25% 0.1505
50% 0.4016
75% 0.5955
max 1.3008

Table D.67: Statistics of change loss of CNNs trained on MNIST

224

Tables - Validation set

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

mean 41.40 179.80 67.20 29.30 18.00
std 4.17 14.25 6.89 3.02 2.26
min 35.00 158.00 59.00 24.00 16.00
25% 38.50 166.75 60.75 27.25 17.00
50% 41.00 182.50 66.50 30.00 18.00
75% 44.50 192.75 73.75 31.00 18.00
max 48.00 195.00 76.00 33.00 24.00

Table D.68: Statistics of number of nodes pruned from CNNs trained on
MNIST

Change in Accuracy

mean -0.4888
std 0.1919
min -0.8140
25% -0.6169
50% -0.5121
75% -0.3252
max -0.1997

Table D.69: Statistics of change in accuracy of CNNs trained on MNIST

Change in Loss

mean 1.6048
std 0.2270
min 1.1634
25% 1.4711
50% 1.5953
75% 1.7499
max 1.9258

Table D.70: Statistics of change loss of CNNs trained on MNIST

225

D.3.2 Fashion MNIST

Figures - Training set

Figure D.15: Change in accuracy after pruning based on pre-calculated
node importance

Figure D.16: Change in loss after pruning based on pre-calculated node
importance

226

Figures - Validation set

Figure D.17: Change in accuracy after pruning based on pre-calculated
node importance

Figure D.18: Change in loss after pruning based on pre-calculated node
importance

227

Tables - Training set

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

mean 28.00 78.40 30.60 7.60 3.30
std 4.37 15.15 4.97 5.80 2.50
min 21.00 61.00 25.00 2.00 0.00
25% 25.00 72.25 27.50 4.25 1.50
50% 27.00 75.00 30.00 6.00 3.50
75% 31.50 80.50 31.00 7.00 4.75
max 35.00 114.00 39.00 20.00 8.00

Table D.71: Statistics of number of nodes pruned from CNNs trained on
Fashion MNIST

Change in Accuracy

mean -0.0302
std 0.0364
min -0.0986
25% -0.0404
50% -0.0148
75% -0.0059
max 0.0000

Table D.72: Statistics of change in accuracy of CNNs trained on Fashion
MNIST

Change in Loss

mean 0.0826
std 0.0941
min 0.0027
25% 0.0168
50% 0.0470
75% 0.1040
max 0.2568

Table D.73: Statistics of change loss of CNNs trained on Fashion MNIST

228

Tables - Validation set

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

mean 39.30 168.00 56.30 24.20 11.80
std 3.09 15.14 6.31 4.78 3.77
min 34.00 136.00 43.00 17.00 4.00
25% 39.25 162.00 53.75 21.50 11.00
50% 40.00 168.00 57.00 23.50 11.50
75% 40.75 176.00 60.75 26.00 14.75
max 44.00 193.00 64.00 32.00 16.00

Table D.74: Statistics of number of nodes pruned from CNNs trained on
Fashion MNIST

Change in Accuracy

mean -0.2241
std 0.1016
min -0.4070
25% -0.2936
50% -0.2081
75% -0.1624
max -0.0679

Table D.75: Statistics of change in accuracy of CNNs trained on Fashion
MNIST

Change in Loss

mean 0.9204
std 0.2854
min 0.3761
25% 0.7847
50% 0.9581
75% 1.0797
max 1.3406

Table D.76: Statistics of change loss of CNNs trained on Fashion MNIST

229

D.3.3 CIFAR-10

Figures - Training set

Figure D.19: Change in accuracy after pruning based on pre-calculated
node importance

Figure D.20: Change in loss after pruning based on pre-calculated node
importance

230

Figures - Validation set

Figure D.21: Change in accuracy after pruning based on pre-calculated
node importance

Figure D.22: Change in loss after pruning based on pre-calculated node
importance

231

Tables - Training set

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

mean 38.90 99.40 36.30 11.60 3.90
std 3.75 15.89 7.73 3.37 1.37
min 31.00 77.00 29.00 7.00 2.00
25% 37.25 87.25 30.25 10.00 3.25
50% 39.00 99.50 35.50 11.00 4.00
75% 41.75 103.00 37.75 12.50 4.00
max 44.00 127.00 53.00 19.00 6.00

Table D.77: Statistics of number of nodes pruned from CNNs trained on
CIFAR-10

Change in Accuracy

mean -0.0579
std 0.0680
min -0.2376
25% -0.0634
50% -0.0423
75% -0.0321
max 0.0041

Table D.78: Statistics of change in accuracy of CNNs trained on CIFAR-10

Change in Loss

mean 0.1762
std 0.2611
min -0.0275
25% 0.0534
50% 0.1106
75% 0.1812
max 0.8854

Table D.79: Statistics of change loss of CNNs trained on CIFAR-10

232

Tables - Validation set

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

mean 45.30 155.90 53.00 21.90 5.70
std 4.14 8.36 6.04 4.31 1.83
min 39.00 142.00 46.00 12.00 1.00
25% 42.00 150.25 49.00 20.50 5.25
50% 46.00 154.50 50.50 22.50 6.00
75% 47.00 162.50 55.50 24.00 7.00
max 53.00 168.00 65.00 28.00 7.00

Table D.80: Statistics of number of nodes pruned from CNNs trained on
CIFAR-10

Change in Accuracy

mean -0.2505
std 0.1266
min -0.4209
25% -0.3670
50% -0.2328
75% -0.1368
max -0.1059

Table D.81: Statistics of change in accuracy of CNNs trained on CIFAR-10

Change in Loss

mean 0.8137
std 0.4598
min 0.2839
25% 0.4240
50% 0.7126
75% 1.1927
max 1.5416

Table D.82: Statistics of change loss of CNNs trained on CIFAR-10

233

D.4 Exhaustive Pruning

D.4.1 MNIST

Figures

Figure D.23: Change in accuracy after pruning with exhaustive method

Figure D.24: Change in loss after pruning with exhaustive method

234

Figure D.25: Evolution of validation accuracy as a CNN is pruned

Figure D.26: Evolution of validation loss as a CNN is pruned

235

Tables

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

mean 34.20 79.60 18.80 2.80 3.60
std 4.44 10.21 2.28 0.84 2.19
min 29.00 68.00 16.00 2.00 0.00
25% 30.00 70.00 17.00 2.00 4.00
50% 36.00 82.00 19.00 3.00 4.00
75% 37.00 87.00 21.00 3.00 4.00
max 39.00 91.00 21.00 4.00 6.00

Table D.83: Statistics of number of nodes pruned from CNNs trained on
MNIST

Accuracy

mean 0.0024
std 0.0016
min 0.0002
25% 0.0012
50% 0.0034
75% 0.0035
max 0.0035

Table D.84: Statistics of change accuracy of CNNs trained on MNIST

Loss

mean -0.0092
std 0.0056
min -0.0137
25% -0.0129
50% -0.0128
75% -0.0055
max -0.0012

Table D.85: Statistics of change loss of CNNs trained on MNIST

236

D.4.2 Fashion MNIST

Figures

Figure D.27: Change in accuracy after pruning with exhaustive method

Figure D.28: Change in loss after pruning with exhaustive method

237

Figure D.29: Evolution of validation accuracy as a CNN is pruned

Figure D.30: Evolution of validation loss as a CNN is pruned

238

Tables

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

mean 32.60 64.00 23.00 3.00 2.60
std 8.99 7.18 4.12 1.87 1.67
min 22.00 55.00 20.00 0.00 1.00
25% 24.00 60.00 20.00 3.00 1.00
50% 37.00 64.00 20.00 3.00 3.00
75% 38.00 67.00 27.00 4.00 3.00
max 42.00 74.00 28.00 5.00 5.00

Table D.86: Statistics of number of nodes pruned from CNNs trained on
Fashion MNIST

Accuracy

mean 0.0049
std 0.0018
min 0.0030
25% 0.0041
50% 0.0044
75% 0.0054
max 0.0078

Table D.87: Statistics of change accuracy of CNNs trained on Fashion
MNIST

Loss

mean -0.0192
std 0.0027
min -0.0225
25% -0.0213
50% -0.0188
75% -0.0170
max -0.0164

Table D.88: Statistics of change loss of CNNs trained on Fashion MNIST

239

D.4.3 CIFAR-10

Figures

Figure D.31: Change in accuracy after pruning with exhaustive method

Figure D.32: Change in loss after pruning with exhaustive method

240

Figure D.33: Evolution of validation accuracy as a CNN is pruned

Figure D.34: Evolution of validation loss as a CNN is pruned

241

Tables

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

mean 44.00 110.00 33.20 10.80 3.4
std 3.46 3.16 5.97 3.96 2.3
min 42.00 106.00 28.00 7.00 0.0
25% 42.00 108.00 29.00 8.00 3.0
50% 42.00 110.00 32.00 9.00 3.0
75% 44.00 112.00 34.00 14.00 5.0
max 50.00 114.00 43.00 16.00 6.0

Table D.89: Statistics of number of nodes pruned from CNNs trained on
CIFAR-10

Accuracy

mean 0.0066
std 0.0046
min 0.0023
25% 0.0023
50% 0.0073
75% 0.0075
max 0.0134

Table D.90: Statistics of change accuracy of CNNs trained on CIFAR-10

Loss

mean -0.0429
std 0.0117
min -0.0595
25% -0.0500
50% -0.0377
75% -0.0375
max -0.0300

Table D.91: Statistics of change loss of CNNs trained on CIFAR-10

242

D.5 Greedy Pruning

D.5.1 MNIST

Figures - ignore cutoff: −1e− 2

Figure D.35: Change in accuracy after pruning with greedy method and an
ignore cutoff of −1e− 2

Figure D.36: Change in loss after pruning with greedy method and an
ignore cutoff of −1e− 2

243

Figures - ignore cutoff: −1e− 3

Figure D.37: Change in accuracy after pruning with greedy method and an
ignore cutoff of −1e− 3

Figure D.38: Change in loss after pruning with greedy method and an
ignore cutoff of −1e− 3

244

Figure D.39: Evolution of validation accuracy as a CNN is pruned

Figure D.40: Evolution of validation loss as a CNN is pruned

245

Tables - ignore cutoff: −1e− 2

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

mean 1.40 7.20 -2.20 -0.60 -0.40
std 2.07 7.33 5.81 1.14 0.55
min -2.00 -3.00 -11.00 -2.00 -1.00
25% 1.00 3.00 -3.00 -1.00 -1.00
50% 2.00 8.00 -2.00 -1.00 0.00
75% 3.00 14.00 0.00 0.00 0.00
max 3.00 14.00 5.00 1.00 0.00

Table D.92: Statistics of the difference in the number of nodes pruned from
CNNs trained on MNIST

Tables - ignore cutoff: −1e− 3

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

mean 1.60 8.40 -2.60 -0.40 -0.20
std 0.89 7.02 5.86 0.89 0.45
min 1.00 -3.00 -11.00 -1.00 -1.00
25% 1.00 7.00 -4.00 -1.00 0.00
50% 1.00 10.00 -3.00 -1.00 0.00
75% 2.00 14.00 0.00 0.00 0.00
max 3.00 14.00 5.00 1.00 0.00

Table D.93: Statistics of the difference in the number of nodes pruned from
CNNs trained on MNIST

246

Tables - general

Exhaustive Greedy (-1e-2 cutoff) Greedy (-1e-3 cutoff)

mean 0.0010 0.0012 0.0013
std 0.0022 0.0021 0.0025
min -0.0007 -0.0008 -0.0008
25% -0.0003 0.0001 -0.0001
50% 0.0004 0.0008 0.0008
75% 0.0009 0.0012 0.0012
max 0.0047 0.0047 0.0055

Table D.94: Statistics of change accuracy of CNNs trained on MNIST

Exhaustive Greedy (-1e-2 cutoff) Greedy (-1e-3 cutoff)

mean -0.0061 -0.0038 -0.0040
std 0.0074 0.0078 0.0077
min -0.0187 -0.0169 -0.0171
25% -0.0063 -0.0050 -0.0050
50% -0.0021 0.0005 -0.0004
75% -0.0016 0.0010 0.0010
max -0.0016 0.0015 0.0015

Table D.95: Statistics of change loss of CNNs trained on MNIST

Exhaustive Greedy (-1e-2 cutoff) Greedy (-1e-3 cutoff)

mean 2615.01 941.65 906.90
std 122.20 85.53 85.75
min 2440.88 838.73 805.07
25% 2589.20 883.37 836.69
50% 2618.20 931.63 911.02
75% 2644.88 1011.24 989.73
max 2781.88 1043.29 991.97

Table D.96: Time taken by different pruning algorithms to prune CNNs
trained on MNIST

247

D.5.2 Fashion MNIST

Figures - ignore cutoff: −1e− 2

Figure D.41: Change in accuracy after pruning with greedy method and an
ignore cutoff of −1e− 2

Figure D.42: Change in loss after pruning with greedy method and an
ignore cutoff of −1e− 2

248

Figures - ignore cutoff: −1e− 3

Figure D.43: Change in accuracy after pruning with greedy method and an
ignore cutoff of −1e− 3

Figure D.44: Change in loss after pruning with greedy method and an
ignore cutoff of −1e− 3

249

Figure D.45: Evolution of validation accuracy as a CNN is pruned

Figure D.46: Evolution of validation loss as a CNN is pruned

250

Tables - ignore cutoff: −1e− 2

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

mean 2.00 5.20 1.20 -0.60 -0.40
std 2.55 7.26 4.15 1.52 0.55
min 0.00 -2.00 -5.00 -3.00 -1.00
25% 0.00 0.00 -1.00 -1.00 -1.00
50% 1.00 2.00 3.00 0.00 0.00
75% 3.00 13.00 4.00 0.00 0.00
max 6.00 13.00 5.00 1.00 0.00

Table D.97: Statistics of the difference in the number of nodes pruned from
CNNs trained on Fashion MNIST

Tables - ignore cutoff: −1e− 3

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

mean 1.60 7.40 1.00 -0.20 0.00
std 1.14 6.66 2.12 2.05 0.71
min 0.00 -1.00 -1.00 -2.00 -1.00
25% 1.00 2.00 -1.00 -2.00 0.00
50% 2.00 9.00 1.00 0.00 0.00
75% 2.00 13.00 2.00 0.00 0.00
max 3.00 14.00 4.00 3.00 1.00

Table D.98: Statistics of number of the difference in the nodes pruned from
CNNs trained on Fashion MNIST

251

Tables - general

Exhaustive Greedy (-1e-2 cutoff) Greedy (-1e-3 cutoff)

mean 0.0068 0.0056 0.0062
std 0.0050 0.0041 0.0037
min 0.0009 0.0026 0.0026
25% 0.0044 0.0026 0.0038
50% 0.0048 0.0037 0.0056
75% 0.0108 0.0070 0.0070
max 0.0131 0.0123 0.0120

Table D.99: Statistics of change accuracy of CNNs trained on Fashion
MNIST

Exhaustive Greedy (-1e-2 cutoff) Greedy (-1e-3 cutoff)

mean -0.0265 -0.0205 -0.0213
std 0.0141 0.0098 0.0102
min -0.0474 -0.0346 -0.0344
25% -0.0338 -0.0267 -0.0297
50% -0.0218 -0.0164 -0.0164
75% -0.0158 -0.0136 -0.0145
max -0.0134 -0.0113 -0.0113

Table D.100: Statistics of change loss of CNNs trained on Fashion MNIST

https://www.overleaf.com/project/5ed6731572d67d000198b89b

Exhaustive Greedy (-1e-2 cutoff) Greedy (-1e-3 cutoff)

mean 2395.55 933.53 774.59
std 271.36 64.82 40.88
min 1963.57 847.93 736.49
25% 2385.10 900.61 743.52
50% 2412.23 935.46 759.17
75% 2516.48 963.62 801.89
max 2700.38 1020.05 831.90

Table D.101: Time taken by different pruning algorithms to prune CNNs
trained on Fashion MNIST

252

D.5.3 CIFAR-10

Figures - ignore cutoff: −1e− 2

Figure D.47: Change in accuracy after pruning with greedy method and an
ignore cutoff of −1e− 2

Figure D.48: Change in accuracy after pruning with greedy method and an
ignore cutoff of −1e− 2

253

Figures - ignore cutoff: −1e− 3

Figure D.49: Change in accuracy after pruning with greedy method and an
ignore cutoff of −1e− 3

Figure D.50: Change in loss after pruning with greedy method and an
ignore cutoff of −1e− 2

254

Figure D.51: Evolution of validation accuracy as a CNN is pruned

Figure D.52: Evolution of validation loss as a CNN is pruned

255

Tables - ignore cutoff: −1e− 2

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

mean 0.0 11.00 3.20 -0.20 0.20
std 0.0 5.43 3.03 0.45 0.84
min 0.0 5.00 0.00 -1.00 -1.00
25% 0.0 7.00 2.00 0.00 0.00
50% 0.0 10.00 2.00 0.00 0.00
75% 0.0 15.00 4.00 0.00 1.00
max 0.0 18.00 8.00 0.00 1.00

Table D.102: Statistics of the difference in the number of nodes pruned from
CNNs trained on CIFAR-10

Tables - ignore cutoff: −1e− 3

Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

mean 0.0 11.00 2.40 -0.20 0.20
std 0.0 5.43 1.67 0.45 0.84
min 0.0 5.00 0.00 -1.00 -1.00
25% 0.0 7.00 2.00 0.00 0.00
50% 0.0 10.00 2.00 0.00 0.00
75% 0.0 15.00 4.00 0.00 1.00
max 0.0 18.00 4.00 0.00 1.00

Table D.103: Statistics of the difference in the number of nodes pruned from
CNNs trained on CIFAR-10

256

Tables - general

Exhaustive Greedy (-1e-2 cutoff) Greedy (-1e-3 cutoff)

mean 0.0030 0.0018 0.0020
std 0.0052 0.0038 0.0038
min -0.0041 -0.0024 -0.0024
25% -0.0006 -0.0019 -0.0019
50% 0.0057 0.0028 0.0038
75% 0.0059 0.0050 0.0050
max 0.0083 0.0055 0.0055

Table D.104: Statistics of change accuracy of CNNs trained on CIFAR-10

Exhaustive Greedy (-1e-2 cutoff) Greedy (-1e-3 cutoff)

mean -0.0383 -0.0272 -0.0278
std 0.0115 0.0103 0.0110
min -0.0527 -0.0396 -0.0396
25% -0.0487 -0.0368 -0.0396
50% -0.0317 -0.0216 -0.0216
75% -0.0307 -0.0213 -0.0213
max -0.0275 -0.0166 -0.0166

Table D.105: Statistics of change loss of CNNs trained on CIFAR-10

Exhaustive Greedy (-1e-2 cutoff) Greedy (-1e-3 cutoff)

mean 5415.37 1443.77 473.41
std 1330.57 95.43 57.16
min 4695.06 1333.10 437.31
25% 4710.69 1403.83 439.18
50% 4932.61 1413.23 442.63
75% 4952.64 1483.17 476.33
max 7785.82 1585.55 571.58

Table D.106: Time taken by different pruning algorithms to prune CNNs
trained on CIFAR-10

257

D.6 Effects of pruning on class accuracy

D.6.1 MNIST

Figures

Figure D.53: Class accuracy before and after pruning CNNs trained on
MNIST

258

Tables

Before Pruning After Pruning

mean 0.9897 0.9920
std 0.0020 0.0006
min 0.9869 0.9911
25% 0.9879 0.9914
50% 0.9903 0.9922
75% 0.9914 0.9925
max 0.9920 0.9926

Table D.107: Statistics on accuracy of CNNs trained on MNIST before and
after pruning

Before Pruning After Pruning

mean 0.0377 0.0302
std 0.0085 0.0020
min 0.0269 0.0275
25% 0.0316 0.0284
50% 0.0348 0.0302
75% 0.0430 0.0316
max 0.0510 0.0332

Table D.108: Statistics on loss of CNNs trained on MNIST before and after
pruning

0 1 2 3 4 5 6 7 8 9

mean 0.9920 0.9963 0.9907 0.9919 0.9896 0.9918 0.9849 0.9884 0.9875 0.9830
std 0.0074 0.0021 0.0067 0.0057 0.0081 0.0071 0.0145 0.0035 0.0109 0.0065
min 0.9735 0.9921 0.9758 0.9762 0.9725 0.9787 0.9499 0.9815 0.9702 0.9722
25% 0.9918 0.9956 0.9884 0.9916 0.9870 0.9933 0.9872 0.9876 0.9802 0.9797
50% 0.9929 0.9969 0.9927 0.9941 0.9898 0.9944 0.9916 0.9893 0.9918 0.9841
75% 0.9967 0.9974 0.9952 0.9941 0.9967 0.9955 0.9927 0.9908 0.9946 0.9871
max 0.9990 0.9991 0.9981 0.9960 0.9980 0.9978 0.9937 0.9922 1.0000 0.9911

Table D.109: Statistics on class accuracy of CNNs trained on MNIST before
pruning

259

0 1 2 3 4 5 6 7 8 9

mean 0.9952 0.9963 0.9919 0.9963 0.9897 0.9904 0.9898 0.9906 0.9925 0.9865
std 0.0021 0.0012 0.0025 0.0012 0.0039 0.0036 0.0034 0.0023 0.0036 0.0029
min 0.9918 0.9947 0.9874 0.9941 0.9817 0.9832 0.9823 0.9883 0.9867 0.9822
25% 0.9939 0.9952 0.9903 0.9953 0.9880 0.9882 0.9880 0.9886 0.9908 0.9851
50% 0.9944 0.9965 0.9918 0.9970 0.9898 0.9905 0.9906 0.9898 0.9923 0.9866
75% 0.9969 0.9971 0.9937 0.9970 0.9916 0.9927 0.9916 0.9920 0.9946 0.9889
max 0.9980 0.9982 0.9952 0.9980 0.9969 0.9955 0.9937 0.9951 0.9990 0.9901

Table D.110: Statistics on class accuracy of CNNs trained on MNIST after
pruning

260

D.6.2 Fashion MNIST

Figures

Figure D.54: Class accuracy before and after pruning CNNs trained on
Fashion MNIST

261

Tables

Before Pruning After Pruning

mean 0.9118 0.9135
std 0.0027 0.0015
min 0.9072 0.9110
25% 0.9098 0.9133
50% 0.9116 0.9137
75% 0.9140 0.9141
max 0.9161 0.9161

Table D.111: Statistics on accuracy of CNNs trained on Fashion MNIST
before and after pruning

Before Pruning After Pruning

mean 0.2509 0.2378
std 0.0135 0.0051
min 0.2340 0.2293
25% 0.2433 0.2343
50% 0.2505 0.2379
75% 0.2529 0.2398
max 0.2809 0.2456

Table D.112: Statistics on loss of CNNs trained on Fashion MNIST before
and after pruning

0 1 2 3 4 5 6 7 8 9

mean 0.8525 0.9856 0.8566 0.9213 0.8691 0.9794 0.7325 0.9695 0.9882 0.9633
std 0.0371 0.0019 0.0368 0.0227 0.0277 0.0128 0.0691 0.0136 0.0030 0.0106
min 0.8150 0.9830 0.8000 0.8800 0.8040 0.9510 0.6080 0.9420 0.9840 0.9490
25% 0.8280 0.9842 0.8292 0.9113 0.8608 0.9755 0.7005 0.9640 0.9865 0.9555
50% 0.8385 0.9850 0.8510 0.9265 0.8710 0.9825 0.7655 0.9670 0.9880 0.9635
75% 0.8742 0.9868 0.8878 0.9380 0.8865 0.9875 0.7852 0.9788 0.9888 0.9728
max 0.9200 0.9890 0.9080 0.9500 0.9010 0.9940 0.7940 0.9900 0.9940 0.9780

Table D.113: Statistics on class accuracy of CNNs trained on Fashion
MNIST before pruning

262

0 1 2 3 4 5 6 7 8 9

mean 0.8780 0.9834 0.8683 0.9279 0.8642 0.9800 0.7149 0.9777 0.9838 0.9571
std 0.0130 0.0033 0.0119 0.0080 0.0162 0.0070 0.0204 0.0047 0.0039 0.0058
min 0.8560 0.9780 0.8450 0.9110 0.8420 0.9670 0.6930 0.9700 0.9750 0.9440
25% 0.8675 0.9820 0.8622 0.9235 0.8522 0.9775 0.7010 0.9745 0.9822 0.9555
50% 0.8785 0.9835 0.8695 0.9285 0.8640 0.9815 0.7085 0.9780 0.9845 0.9570
75% 0.8882 0.9858 0.8760 0.9332 0.8712 0.9855 0.7315 0.9788 0.9860 0.9590
max 0.8930 0.9880 0.8840 0.9380 0.8980 0.9870 0.7510 0.9850 0.9890 0.9660

Table D.114: Statistics on class accuracy of CNNs trained on Fashion
MNIST after pruning

263

D.6.3 CIFAR-10

Tables

Before Pruning After Pruning

mean 0.7323 0.7328
std 0.0064 0.0058
min 0.7250 0.7256
25% 0.7274 0.7279
50% 0.7314 0.7326
75% 0.7344 0.7363
max 0.7455 0.7430

Table D.115: Statistics on accuracy of CNNs trained on CIFAR-10 before
and after pruning

Before Pruning After Pruning

mean 0.8011 0.7746
std 0.0238 0.0192
min 0.7598 0.7379
25% 0.7953 0.7645
50% 0.8076 0.7835
75% 0.8159 0.7855
max 0.8300 0.7946

Table D.116: Statistics on loss of CNNs trained on CIFAR-10 before and
after pruning

0 1 2 3 4 5 6 7 8 9

mean 0.7869 0.8486 0.6394 0.5000 0.6889 0.6336 0.8092 0.7735 0.8242 0.8190
std 0.0503 0.0305 0.0597 0.0779 0.0625 0.0848 0.0510 0.0414 0.0374 0.0458
min 0.7100 0.7910 0.5490 0.3640 0.5670 0.4340 0.7210 0.7160 0.7510 0.7150
25% 0.7510 0.8322 0.6132 0.4655 0.6532 0.5975 0.7788 0.7442 0.8148 0.8062
50% 0.7905 0.8485 0.6430 0.4950 0.7050 0.6655 0.8000 0.7660 0.8340 0.8215
75% 0.8080 0.8715 0.6772 0.5490 0.7238 0.6800 0.8530 0.8008 0.8460 0.8350
max 0.8690 0.8940 0.7430 0.6100 0.7920 0.7330 0.8780 0.8450 0.8640 0.8870

Table D.117: Statistics on class accuracy of CNNs trained on CIFAR-10
before pruning

264

0 1 2 3 4 5 6 7 8 9

mean 0.7719 0.8554 0.5907 0.5261 0.7076 0.6425 0.8199 0.7739 0.8361 0.8041
std 0.0196 0.0185 0.0388 0.0182 0.0200 0.0353 0.0198 0.0200 0.0108 0.0136
min 0.7380 0.8300 0.5130 0.4990 0.6700 0.5650 0.7870 0.7490 0.8150 0.7830
25% 0.7662 0.8382 0.5705 0.5155 0.6975 0.6250 0.8055 0.7557 0.8320 0.7972
50% 0.7715 0.8605 0.5945 0.5225 0.7135 0.6530 0.8215 0.7730 0.8385 0.8030
75% 0.7858 0.8660 0.6165 0.5357 0.7193 0.6607 0.8372 0.7877 0.8440 0.8128
max 0.7990 0.8810 0.6450 0.5640 0.7390 0.6910 0.8450 0.8070 0.8500 0.8280

Table D.118: Statistics on class accuracy of CNNs trained on CIFAR-10 after
pruning

265

D.7 Iterative Weight Initialization

D.7.1 MNIST

Tables

Unoptimized Weights Optimized Weights

mean 0.9906 0.9899
std 0.0012 0.0014
min 0.9889 0.9881
25% 0.9896 0.9885
50% 0.9909 0.9901
75% 0.9909 0.9907
max 0.9927 0.9918

Table D.119: Statistics of accuracy of CNNs trained on MNIST

Unoptimized Weights Optimized Weights

mean 0.0317 0.0372
std 0.0031 0.0055
min 0.0263 0.0279
25% 0.0297 0.0333
50% 0.0321 0.0372
75% 0.0336 0.0412
max 0.0371 0.0459

Table D.120: Statistics of loss of CNNs trained on MNIST

266

D.7.2 Fashion MNIST

Tables

Unoptimized Weights Optimized Weights

mean 0.9110 0.9110
std 0.0030 0.0028
min 0.9050 0.9069
25% 0.9089 0.9092
50% 0.9112 0.9107
75% 0.9136 0.9125
max 0.9143 0.9168

Table D.121: Statistics of accuracy of CNNs trained on Fashion MNIST

Unoptimized Weights Optimized Weights

mean 0.2559 0.2556
std 0.0079 0.0064
min 0.2438 0.2466
25% 0.2498 0.2505
50% 0.2552 0.2567
75% 0.2635 0.2586
max 0.2663 0.2672

Table D.122: Statistics of loss of CNNs trained on Fashion MNIST

267

268

Bibliography

[1] Richard Bellman. ‘Dynamic programming’. In: Science 153.3731
(1966), pp. 34–37.

[2] Douglas E Comer et al. ‘Computing as a discipline’. In: Communica-
tions of the ACM 32.1 (1989), pp. 9–23.

[3] George Cybenko. ‘Approximation by superpositions of a sigmoidal
function’. In: Mathematics of control, signals and systems 2.4 (1989),
pp. 303–314.

[4] John Duchi, Elad Hazan and Yoram Singer. ‘Adaptive subgradient
methods for online learning and stochastic optimization.’ In: Journal
of machine learning research 12.7 (2011).

[5] Xavier Glorot and Yoshua Bengio. ‘Understanding the difficulty of
training deep feedforward neural networks’. In: ed. by Yee Whye
Teh and Mike Titterington. Vol. 9. Proceedings of Machine Learning
Research. Chia Laguna Resort, Sardinia, Italy: JMLR Workshop and
Conference Proceedings, 13–15 May 2010, pp. 249–256. URL: http://
proceedings.mlr.press/v9/glorot10a.html.

[6] Xavier Glorot, Antoine Bordes and Yoshua Bengio. ‘Deep sparse
rectifier neural networks’. In: Proceedings of the fourteenth international
conference on artificial intelligence and statistics. 2011, pp. 315–323.

[7] Richard HR Hahnloser et al. ‘Digital selection and analogue amplific-
ation coexist in a cortex-inspired silicon circuit’. In: Nature 405.6789
(2000), pp. 947–951.

[8] Song Han, Huizi Mao and William J Dally. ‘Deep compression: Com-
pressing deep neural networks with pruning, trained quantization
and huffman coding’. In: arXiv preprint arXiv:1510.00149 (2015).

[9] Kaiming He et al. ‘Deep residual learning for image recognition’.
In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 770–778.

[10] Geoffrey E Hinton et al. ‘Improving neural networks by preventing
co-adaptation of feature detectors’. In: arXiv preprint arXiv:1207.0580
(2012).

[11] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. 2014. arXiv: 1412.6980 [cs.LG].

[12] Alex Krizhevsky, Geoffrey Hinton et al. ‘Learning multiple layers of
features from tiny images’. In: (2009).

269

http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://arxiv.org/abs/1412.6980

[13] Y. Lecun et al. ‘Gradient-based learning applied to document recog-
nition’. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. DOI:
10.1109/5.726791.

[14] Yann A LeCun et al. ‘Efficient backprop’. In: Neural networks: Tricks of
the trade. Springer, 2012, pp. 9–48.

[15] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org. 2015.
URL: https://www.tensorflow.org/.

[16] Warren S McClulloch and Walter Pitts. ‘A logical calculus of the ideas
immanent in neurons activity’. In: Bulletin of mathematical biophysics
5.115-133 (1943), p. 10.

[17] Marvin Minsky and Seymour Papert. ‘An introduction to computa-
tional geometry’. In: Cambridge tiass., HIT (1969).

[18] Pavlo Molchanov et al. ‘Pruning convolutional neural networks
for resource efficient inference’. In: arXiv preprint arXiv:1611.06440
(2016).

[19] Konstantin Pogorelov et al. ‘KVASIR: A Multi-Class Image Dataset
for Computer Aided Gastrointestinal Disease Detection’. In: Proceed-
ings of the 8th ACM on Multimedia Systems Conference. MMSys’17.
Taipei, Taiwan: ACM, 2017, pp. 164–169. ISBN: 978-1-4503-5002-0.
DOI: 10.1145/3083187.3083212. URL: http://doi .acm.org/10.1145/
3083187.3083212.

[20] Herbert Robbins and Sutton Monro. ‘A stochastic approximation
method’. In: The annals of mathematical statistics (1951), pp. 400–407.

[21] Frank Rosenblatt. ‘The perceptron: a probabilistic model for inform-
ation storage and organization in the brain.’ In: Psychological review
65.6 (1958), p. 386.

[22] David E Rumelhart, Geoffrey E Hinton and Ronald J Williams.
‘Learning representations by back-propagating errors’. In: nature
323.6088 (1986), pp. 533–536.

[23] Olga Russakovsky et al. ‘ImageNet Large Scale Visual Recognition
Challenge’. In: International Journal of Computer Vision (IJCV) 115.3
(2015), pp. 211–252. DOI: 10.1007/s11263-015-0816-y.

[24] Karen Simonyan and Andrew Zisserman. ‘Very deep convolu-
tional networks for large-scale image recognition’. In: arXiv preprint
arXiv:1409.1556 (2014).

[25] Irwin Sobel and Gary Feldman. ‘A 3x3 isotropic gradient operator for
image processing’. In: a talk at the Stanford Artificial Project in (1968),
pp. 271–272.

[26] Nitish Srivastava et al. ‘Dropout: a simple way to prevent neural
networks from overfitting’. In: The journal of machine learning research
15.1 (2014), pp. 1929–1958.

270

https://doi.org/10.1109/5.726791
https://www.tensorflow.org/
https://doi.org/10.1145/3083187.3083212
http://doi.acm.org/10.1145/3083187.3083212
http://doi.acm.org/10.1145/3083187.3083212
https://doi.org/10.1007/s11263-015-0816-y

[27] Christian Szegedy et al. ‘Going deeper with convolutions’. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015, pp. 1–9.

[28] Han Xiao, Kashif Rasul and Roland Vollgraf. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. 2017.
arXiv: 1708.07747 [cs.LG].

271

https://arxiv.org/abs/1708.07747

	Introduction
	Background and Motivation
	Problem Statement
	Scope and Limitations
	Research Method
	Theory
	Abstraction
	Design

	Main Contributions
	Thesis Outline

	Background
	Machine Learning
	Supervised Learning
	Unsupervised Learning

	Artificial Neural Networks
	Perceptron
	Multilayer Perceptron
	Training a Neural Network

	Convolutional Neural Network
	Convolutional Layers
	Pooling Layers

	Neural Network Training Optimization
	Optimizers
	Weight Initialization
	Training Batch Size
	Dropout
	Activation functions

	Network Pruning
	Datasets
	MNIST
	Fashion MNIST
	CIFAR-10
	Kvasir

	VGG-16
	Summary

	Methodology
	Neural Networks
	Node Importance
	Node Pruning
	Algorithms
	Summary

	Exploring node pruning and node importance in simple neural networks
	Pruning Nodes at Random
	MNIST
	Fashion MNIST
	Summary

	Estimating Node Importance based on Loss
	Single-layer ANN
	MLP
	CNN
	Summary

	Effects of Changing Training Batch Size on Node Importance
	Single-layer ANN
	MLP
	CNN
	Summary

	Effects of Using Dropout
	Single-layer ANN
	MLP
	Summary

	Pruning network with pre-calculated importance
	Single-layer ANN
	Other models
	Summary

	Pruning Nodes based on the Loss
	Single-layer ANN
	MLP
	CNN
	Summary

	Greedy approach to pruning instead of Exhaustive approach
	MLP
	CNN
	Summary

	Looking at effects of per class accuracy after pruning
	Iterative weight initialization using Node importance
	Single-Layer ANN
	Other Models
	Discussion

	Summary

	Case study: Reducing a VGG-16 model trained on the Kvasir dataset
	Node importance estimation
	Model pruning
	Pruning Results
	Summary

	Conclusion
	Main Contributions
	Future Works

	Algorithms
	Single-layer ANN - Extra Figures and Tables
	Estimating Node Importance
	MNIST
	Fashion MNIST

	Effects of batch size on Node Importance
	MNIST
	Fashion MNIST

	Effects of dropout on Node Importance
	MNIST
	Fashion MNIST

	Pre-calculated Pruning
	MNIST
	Fashion MNIST

	Exhaustive Pruning
	MNIST
	Fashion MNIST

	Iterative Weight Initialization
	Fashion MNIST

	MLP - Extra Figures and Tables
	Estimating Node Importance
	MNIST
	Fashion MNIST

	Effects of batch size on Node Importance
	MNIST
	Fashion MNIST

	Effects of dropout on Node Importance
	MNIST
	Fashion MNIST

	Pre-calculated Pruning
	MNIST
	Fashion MNIST

	Exhaustive Pruning
	MNIST
	Fashion MNIST

	Greedy Pruning
	MNIST
	Fashion MNIST

	Iterative Weight Initialization
	MNIST
	Fashion MNIST

	CNN - Extra Figures and Tables
	Estimating Node Importance
	MNIST
	Fashion MNIST
	CIFAR-10

	Effects of batch size on Node Importance
	MNIST
	Fashion MNIST
	CIFAR-10

	Pre-calculated Pruning
	MNIST
	Fashion MNIST
	CIFAR-10

	Exhaustive Pruning
	MNIST
	Fashion MNIST
	CIFAR-10

	Greedy Pruning
	MNIST
	Fashion MNIST
	CIFAR-10

	Effects of pruning on class accuracy
	MNIST
	Fashion MNIST
	CIFAR-10

	Iterative Weight Initialization
	MNIST
	Fashion MNIST

