
Doctoral Dissertation

High-Precision Power Modelling and
Optimisation of the Tegra K1

Heterogeneous Multicore
Architecture

Kristoffer Robin Stokke

August 2016

Submitted to the Faculty of Mathematics and Natural Sciences at
the University of Oslo in partial fulfilment of the requirements for

the degree of Philosophiae Doctor

ii

Abstract

Modern, mobile devices such as smart phones, laptops or even drones fulfill many of the
users’ need for games, social, work and other activities. Much of the processing done on
these devices is related to multimedia, for example with applications such as Snapchat,
Pokemon Go, Ingress and YouTube. However, mobile devices are constrained with a lim-
ited energy supply, where the evolution in battery energy density has not followed the
power requirements of modern processors. These integrate Systems-on-Chip (SoC), such
as the Tegra K1 SoC, that feature a range of different hardware accelerators, general pur-
pose processors and advanced power management mechanisms such as frequency scaling.
The challenge for system architects and programmers is thus to understand how to de-
velop, distribute and schedule multimedia workloads across the heterogeneous, multicore
processors. However, manually measuring power usage of running software on different
processors is unfeasible, and separating the power usage of an application’s instructions
and memory usage from other processes and power components is very hard. Models for
power are therefore necessary to understand the relation between energy consumption,
software activity and power saving mechanisms. However, the state-of-the-art power
modelling methods that exist in the literature fail to give an accurate view of the energy
consumption of SoCs such as the Tegra K1. In this thesis, we therefore develop an im-
proved power modelling methodology that is able to predict power usage of the Tegra K1
with close to 100 % accuracy. By tracking platform frequencies and voltages, power- and
clock-gating as well as fine-grained hardware activity measurements, our model provides
detailed insight into static and dynamic power components of the Tegra K1’s heteroge-
nous processors and memory. By using our power model, we identify main reasons behind
energy-inefficiency in processors, analyse and optimise the energy consumption of kernel
drivers, and study the effects of programming using different types of instructions, non-
coherent caches and load-balancing between heterogeneous processors.

iii

iv

Acknowledgements

The work presented in this thesis was started on the fifth of June, 2014. I always recall this
as a warm, sunny day, getting my hands on the Tegra 3 “Kayla” development platform.
After just a few weeks, we had learned that understanding how these devices consume
energy is far from trivial. In fact, it can be very challenging at times, when mechanisms
that are often far beyond the scope of easy understanding and reach complicate even the
simplest of tasks. Therefore this thesis is about understanding these devices. Without my
research group in Simula, located in the old airport terminal in Fornebu, I do not think
this task would even be manageable. While some of the days here have indeed been long
and rough, I look back at this time with a smile when I remember our airconditioning
unit, the Petter Solberg posters, ice cream in the sun (and occasionally snow and rain),
running after Vamsi in all kinds of hikes, travels around the world and unvoluntary trips
around volcanoes. I think the environment is the most important thing for a PhD student
to thrive, and to be encouraged and motivated. The Media group at Simula has and
continues to provide a great social community, while still being able to guide and listen to
us when things are not going so well. I would like to give a huge thank you to Dr. H̊akon
Kvale Stensland, Prof. P̊al Halvorsen, Prof Carsten Griwodz and Prof. Tor Sverre Lande.
You have not only been my supervisors, but also travel companions and better friends
than I could ask for. I would also like to thank my office colleagues; Kristian, Preben,
Vamsi, Ragnhild, Olga, Minoo, Jonas, Michael, Andreas, Konstantin, Lilian, Georgios,
Iffat and last but not least, Kjetil. Special thanks to Marius, Cathrine, Jim, Kaja and
Tor Martin: UiO was never the same without you, so I am very grateful that we are
still in touch today. Finally, dearest of appreciation to my father, Per (the toolbuilder),
my sister Helle, Trond and Anette, Liv and all the rest of my family for their continued
support and unlimited patience over these years. This thesis is for you.

v

vi

Contents

I Overview 1

1 Introduction 3

1.1 Background and Motivation . 3

1.2 Problem Statement . 8

1.3 Limitations . 9

1.4 Research Method . 10

1.5 Main Contributions . 11

1.6 Outline . 13

2 The Tegra K1 as a Mobile Multimedia Processor 15

2.1 Device Architecture . 15

2.1.1 Functional Description . 15

2.1.2 Energy Distribution of an Island Architecture 16

2.2 Power Measurement . 17

2.2.1 Current Sensing . 18

2.2.2 Other Approaches . 18

2.2.3 Failed Attempts . 19

2.2.4 Solutions for the Jetson-TK1 . 20

2.3 The Fundamental CMOS Equations . 21

2.4 Workload: Video Processing Filters . 24

2.4.1 Debarreling . 25

2.4.2 Image Rotation . 25

2.4.3 Motion Vector Search . 25

2.4.4 DCT . 26

2.4.5 Variable Length (Huffman) Coding 26

2.5 Effects of Dynamic Voltage and Frequency Scaling 27

2.6 Summary . 33

3 Evaluation of State of the Art Power Modelling Methodologies 35

3.1 CMOS-Based . 36

3.2 State-Based . 37

3.3 Rate-Based . 38

3.4 Instruction-Level . 39

3.5 Model Accuracy . 40

3.6 Summary . 44

vii

4 High-Precision Power Modelling 47

4.1 Concept and Derivation . 47

4.2 Measuring Hardware Activity . 49

4.2.1 CPU . 49

4.2.2 GPU . 53

4.2.3 RAM . 56

4.3 Methodology . 56

4.4 Design Issues . 59

4.5 GPU Model . 62

4.5.1 Regression Analysis . 62

4.5.2 Model Accuracy: Video Processing 65

4.6 CPU Model . 68

4.6.1 Regression Analysis . 68

4.6.2 Instruction Power . 71

4.6.3 Model Accuracy: Video Processing Filters 74

4.7 Full-Hybrid Models for Different Platforms 82

4.8 Summary . 87

5 Energy-Efficient Multimedia Processing 89

5.1 Processing Live Video . 90

5.2 Energy-Efficient Load Balancing on Heterogeneous Cores 96

5.2.1 Measuring Energy-Efficiency . 97

5.2.2 Scope and Method . 99

5.2.3 Offloading a Single Filter . 100

5.2.4 Offloading Under Heavy Processing 102

5.3 Tegra K1 System-Level Energy Analysis 103

5.3.1 Component-Level Breakdown . 103

5.3.2 Optimising the ACTMON Kernel Driver 105

5.4 Instructions’ Effect on Energy Consumption 107

5.4.1 GPU Instructions and Cache Modifiers 107

5.4.2 NEON Acceleration . 108

5.5 Summary . 110

6 Conclusion 113

6.1 Summary and Contributions . 113

6.2 Open Issues and Future Work . 118

II Research Papers 129

Paper I: Energy Efficient Video Encoding Using the Tegra K1 Mobile
Processor 131

Paper II: Energy Efficient Continuous Multimedia Processing Using the
Tegra K1 Mobile SoC 137

viii

Paper III: Why Race-to-Finish is Energy-Inefficient for Continuous Mul-
timedia Workloads 141

Paper IV: A High-Precision, Hybrid GPU, CPU and RAM Power Model
for Generic Multimedia Workloads 151

Paper V: High-Precision Power Modelling of the Tegra K1 Variable
SMP Processor Architecture 165

ix

x

List of Figures

1.1 Games and social media applications that perform video processing. 4

1.2 Evolution in the number of on-chip transistors between 1970 and 2015 and
lithium-ion battery technology between 1990 and 2012 (data as provided
by Rohan et. al. [55]). 5

2.1 Jetson-TK1 device architecture. 16

2.2 Integrating the INA219 as a power measurement sensor on the Jetson-TK1. 19

2.3 Keithley 2280S as a power measurement device. 20

2.4 General overview of the Tegra K1 island-style architecture. 22

2.5 Measured voltage (top row) and power (bottom row) under various fre-
quency ranges. 24

2.6 Illustration of our multimedia workloads. 25

2.7 Illustration of variable length coding. 26

2.8 Debarreling energy per frame. Only the GPU achieved a framerate of
25 FPS. The blue, transparent grid indicates the EPF under the standard
DVFS algorithms. 28

2.9 Rotation energy per frame on the GPU and the CPU. The Jetson-TK1 is
operating under normal DVFS conditions. Red-violet colouring indicates
CPU benchmarks, while green-yellow colouring indicates GPU benchmarks.
The blue, transparent grid indicates the EPF under the standard DVFS
algorithms. 29

2.10 DCT energy per frame on the GPU and the CPU. The Jetson-TK1 is
operating under normal DVFS conditions. Red-violet colouring indicates
CPU benchmarks, while green-yellow colouring indicates GPU benchmarks.
The blue, transparent grid indicates the EPF under the standard DVFS
algorithms. 30

2.11 Huffman energy per frame over all core configurations, CPU and memory
frequencies. The Jetson-TK1 is operating under normal DVFS conditions.
The blue, transparent grid indicates the EPF under the standard DVFS
algorithms. 31

2.12 MVS energy per frame over all core configurations, CPU and memory fre-
quencies. The Jetson-TK1 is operating under normal DVFS conditions.
The blue, transparent grid indicates the EPF under the standard DVFS
algorithms. 32

3.1 Classification of modelling methodologies. 36

3.2 Error for the filters in our preliminary, CMOS-based model [63]. 40

xi

3.3 Power estimation error for common model types on the Tegra K1’s CPU
(top row, four cores) and GPU (bottom row). 41

4.1 Overview of the Tegra K1 CPU architecture. 49
4.2 Overview of the Tegra K1 GPU architecture. 52
4.3 Effects of GPU rail- and clock-gating timers. 53
4.4 Activity monitoring framework. 60
4.5 Training data statistics for the GPU model. 62
4.6 GPU power model dynamic power coefficients. 63
4.7 Power over time for a single DCT frame. 65
4.8 GPU model prediction error for different filters. 66
4.9 Power prediction error for the motion estimation kernel. 67
4.10 Training data statistics for the CPU model. 69
4.11 Generic CPU model coefficients. Error bars show the 95 % confidence

interval. 70
4.12 Residual power (workload-dependent instruction power). 72
4.13 Per-benchmark residual power versus square-voltage instructions per second. 73
4.14 Workload-dependent instruction coefficients (CPU model). 74
4.15 Idle system. 75
4.16 Idle system model error (HP cluster). 76
4.17 Problems measuring HP rail voltage in an idle system. 76
4.18 Instruction (residual) power plotted versus V 2IPS for our test filters. . . . 77
4.19 Residual power for the debarreling filter, plotted for V 2IPS and memory

frequencies. 78
4.20 Model error (MVS). 79
4.21 Model error (DCT). 80
4.22 Model error (Huffman). 80
4.23 Model error (debarreling). 81
4.24 Base, core leak and core clock power residuals plotted over core rail voltage. 83
4.25 Full-hybrid model coefficients and standard deviations for three different

Tegra K1 platforms. 85

5.1 Energy breakdown for the CPU filters. The barplots show the best CPU-
memory frequency combination for two, three and four active cores. 91

5.2 Energy breakdown for the CPU filters actively processing on four cores. . . 92
5.3 Cycles per instruction (top row) and total number of instructions (bottom

row) for the video processing filters. 93
5.4 Energy breakdown for the DCT filter running on the GPU. The barplots

show the best GPU-memory frequency combination, where the CPU is idle
and restricted to the LP core. 94

5.5 Cycles per instruction (top row) and total number of instructions (bottom
row) for the video processing filters running on the GPU. 95

5.6 Evaluating energy-efficiency with different strategies for test runlength. . . 98
5.7 Offloading experiments. 100
5.8 Platform state under normal (idle) operating conditions. 103
5.9 Idle power component breakdown. The right bar is the measured energy

consumption, and the left bar is the estimated. 104

xii

5.10 Idle system-level energy breakdown for the Tegra K1 under various optimi-
sation strategies for the activity monitor drivers. The right bars represent
the measured energy consumption, and the left bars represent estimated. . 106

5.11 Effects of different instructions and cache usage on GPU power usage. The
left and middle bars show the estimated and measured power usage, re-
spectively. The right bars show the kernel duration. 107

5.12 Energy per frame for the DCT filter with and without NEON instructions. 108
5.13 Capacitive load per instruction for the DCT filter with and without NEON

instructions. 109
5.14 Comparison between NEON and non-NEON DCT filter energy breakdowns.110

xiii

xiv

List of Tables

2.1 The Tegra K1 clocks, voltage and frequency ranges. 23

3.1 CMOS-based model predictors. 42
3.2 Rate-based model predictors. 43
3.3 State-based model predictors. 44

4.1 GPU model training suite. 57
4.2 CPU model training suite. 58
4.3 GPU model. 64
4.4 CPU model. 69
4.5 Full-hybrid models for three different Tegra K1 platforms. 83

xv

xvi

Abbreviations

A/D Analog-to-Digital

ACTMON . . . Activity Monitor

API Application Programming Interface

BIOS Binary Input Output System

CMOS Complementary Metal-Oxide-Semiconductor

CPI Cycles Per Instruction

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

CUPTI CUDA Profiling Tools Interface

DCT Discrete Cosine Transform

DSP Digital Signal Processor

DVFS Dynamic Voltage and Frequency Scaling

EMC External Memory Controller

EMMC Embedded MultiMedia Card

EPF Energy per Frame

FPS Frames per Second

GPU Graphical Processing Unit

HD High Definition

HDMI High Definition Multimedia Interface

HP High Power

HPC Hardware Performance Counter

LP Low Power

xvii

MMU Memory Management Unit

MPEG Motion Picture Experts Group

MVS Motion Vector Search

OS Operating System

PCI Peripheral Component Interconnect

PERF Performance Counters for Linux

PMIC Power Management Integrated Circuit

PPW Performance per Watt

QoS Quality of Service

RAM Random Access Memory

RTC Real Time Clock

RTL Register Transfer Language

SAD Sum of Absolute Differences

SFU Special Function Unit

SIMD Single Instruction, Multiple Data

SMP Symmetric MultiProcessor

SoC System-on-Chip

TLB Translation Lookaside Buffer

UEFI Universal Extensible Firmware Interface

USB Universal Serial Bus

VFP ARM Floating Point Architecture

VLIW Very Long Instruction Word

xviii

Part I

Overview

Chapter 1

Introduction

Energy is an important resource in mobile environments, where the small evolution in
battery energy density constrains the usefulness of devices such as smart phones, laptops,
sensor nodes or even drones. Motivated by this limitation, many researchers attempt to
analyse and optimise the power usage of for example multimedia systems on different
mobile devices. However, it is difficult to gain insight into the power usage of different
architectural units, such as different heterogeneous, multicore processors and memory,
when limited to measuring the total power usage of the device. Power models are neces-
sary to bridge the gap between software activity and the power usage of hardware, but
unfortunately, the state-of-the-art methods that exist to model power all have individual
weaknesses that limit their accuracy. In this thesis, we motivate and develop a high-
precision power modelling method that can capture the power usage of a modern SoC
with almost 100 % accuracy, and subsequently, use this model to analyse the power usage
of a modern SoC. The remainder of this section is outlined as follows. Section 1.1 gives an
introduction to the topic of energy modelling and motivates the need for improved power
modelling methodologies. The problem statement of this thesis is given in Section 1.2.
Limitations and research method is outlined in Sections 1.3 and 1.4, respectively. Finally,
we state the main contributions of this thesis in Section 1.5.

1.1 Background and Motivation

Mobile computing devices, such as smart phones, sensor nodes, laptops or even drones
fulfill many of everyday users’ needs for gaming, social networking, working, browsing and
other activites. Multimedia workloads account for a substantial part of the processing
being performed on these devices. In fact, according to Cisco, by 2019 the sum of all
forms of video will be in the range of 80 to 90 percent of global consumer traffic, and of
this, 14 percent will be mobile data traffic [13]. Youtube is an example application that
incurs both heavy networking usage and video processing, where users can download and
upload videos directly using their smart phones. Facebook is another application that
automatically downloads and plays back videos from the news feed. The video processing
in these applications is performed on dedicated hardware encoders and decoders (DSPs),
which today typically support H.264 or Google’s VP.8 encoding standards.

While integrated DSPs are able to encode and decode full High Definition (HD) video
at framerates above 25 Frames Per Second (FPS), they only provide fixed functions to

3

4 Chapter 1. Introduction

(a) Snapchat. (b) Pokemon Go. (c) Ingress.

Figure 1.1: Games and social media applications that perform video processing.

the programmer. Therefore, additional rendering and processing in general purpose pro-
cessors may be needed. Snapchat is here a good example (see Figure 1.1a). In addition
to taking and transmitting single photos and short videos, the application has a face
recognition feature and several filters that draw sunglasses and other dynamic elements
on the person’s face. This additional processing must be done on the device’s application
processors, unless the device has intrinsic DSP support for some of the features such as
face recognition. Pokemon Go, a virtual reality game where users walk around the real
world to catch make-believe animals, is hot in the news these days (see Figure 1.1b).
Here, the creatures are drawn directly into a live video recording taken by the device’s
own camera. Ingress is another virtual reality game where 3D-objects are drawn directly
on top of a real-world map (see Figure 1.1c) using GPS coordinates. While today’s and
future’s mobile applications and services will continue to add new and original filters to
process multimedia, these may not be supported by dedicated DSPs. As a consequence,
some additional processing will have to be done on general purpose processors.

To provide programmers with a flexible computing environment, modern mobile de-
vices implement powerful application processors and multimedia accelerators, such as
DSPs, integrated on a SoC. The SoC also implements many other components, such as
USB host controllers, various data buses (camera, RAM, I2C), Power Management In-
tegrated Circuits (PMIC), clock generators and voltage sensors. The Tegra K1 [43], for
example, is a SoC meant to be used in mobile devices. This SoC is used as a case study
in this thesis because it provides excellent programmability and flexibility for multime-
dia processing through many heterogeneous cores and DSPs. It has two main Central
Processing Units (CPU), with a dedicated Low Power (LP) core and a quad-core High-
Performance (HP) CPU for demanding workloads. The operating system and applications
can be migrated seamlessly between the LP core and the HP cluster, and all five CPU
cores support Single Instruction, Multiple Data (SIMD) instructions that accelerate mul-
timedia processing. In addition to this, the Tegra K1 has a fully programmable, 192-core

1.1. Background and Motivation 5

1970 1980 1990 2000 2010
Year

200

250

300

350

400

450

500

550

E
n
e
rg

y
 D

e
n
si

ty
W
h

L
it
re

Energy Density

103

104

105

106

107

108

109

1010

T
ra

n
si

st
o
r

C
o
u
n
t

Transistor Count

1970 1980 1990 2000 2010
Year

200

250

300

350

400

450

500

550

E
n
e
rg

y
 D

e
n
si

ty
W
h

L
it
re

Energy Density

Figure 1.2: Evolution in the number of on-chip transistors between 1970 and 2015 and
lithium-ion battery technology between 1990 and 2012 (data as provided by Rohan et.
al. [55]).

Kepler-based Graphical Processing Unit (GPU) for computationally heavy multimedia
processing. The Tegra K1’s GPU is programmable through the Compute Unified De-
vice Architecture (CUDA) framework. On the Jetson-TK1 development kit we are using,
the Tegra K1 is also equipped with 2 GB of DDR3 RAM. The clock frequencies of the
various components, such as the LP core, HP cluster, GPU and memory and over 20
other components can be dynamically adjusted to meet performance and power require-
ments of applications. This offers system architects and programmers with a range of
design choices as to what cores should process different multimedia workloads, and which
operating frequencies should be used.

The Tegra K1’s rich and flexible computing environment, however, also comes with
concerns of a limited energy supply. The isolated Tegra K1 SoC, without a network
interface or a display, can for example draw up to 10 W alone under heavy computation,
which would deplete a normal cell battery of 15 Wh in little more than an hour. The high
power usage of the Tegra K1 and other SoCs may be attributed to the rapid evolution
in on-die transistor density. In 1965, Gordon Moore published a paper [37] where he
predicted that the number of transistors in an integrated circuit would double every year.
This prediction has turned out to be relatively accurate until around 2012 (see Figure 1.2).
The transistor gate widths are reduced, increasing the potential number of transistors
that can reside on a die. This allows for more complex, higher-performance circuits to be
implemented on a die with components such as CPUs, GPUs, DSPs, caches and memory.
However, this also increases the power usage caused by switching activity and leakage
currents. Additionally, as transistor gate widths decrease beyond 250-300 nm, transistor
leakage currents increases significantly and becomes a major obstacle for integration [30].

While the potential number of transistors on a die has increased by a magnitude of
three between 1991 and 2012, the evolution in energy density of lithium-ion batteries has
only tripled [55] (see Figure 1.2). This does not mean that the power usage of SoCs has
increased by a magnitude of three; but it does show that the current battery technology
has not been able to keep up with the developments in large-scale integration. It is difficult

6 Chapter 1. Introduction

to state the design choices that the SoC vendors make in the face of this challenge, but
it is likely to be a compromise between the number and type of transistors, what types
of compute capabilities to provide and power usage, not to mention costs. What is easy
to see, however, is that the uneven scaling between performance, power usage and energy
storage is evident through the need for frequent battery charging and external battery
packs to power all the user’s need for gaming, social, browsing and other activities. In
scenarios where for example a user or a drone is filming a football game or a concert,
one can imagine several interesting video processing filters that post-process a live, raw
video stream to for example increase the visibility of the football or perform debarreling
of image frames to compensate for lens distortion. In terms of the Tegra K1, the challenge
for system architects and developers is to decide what cores should process the different
filters, and what platform frequencies should be used, to meet timing constraints while
using as little energy as possible.

The need to understand the energy consumption of modern, mobile devices and in-
crease power-efficiency has become increasingly apparent to researchers in computer sci-
ence in recent years. However, conducting research in this field is challenging for a number
of reasons. Research into energy-efficient computing is a multi-disciplinary field that, in
its entirety, requires a high degree of understanding of physics and energy dissipation in
transistors, battery chemistry, the complexities of operating systems, software applica-
tions and instrumentation. Perhaps the most complex issue is the lack of ways to measure
the power usage of a device, and to bind this power usage to software activity. The
availability of sensors to measure power is usually restricted to development versions of
devices and a few smart phone vendors, such as HTC and Google. Research has shown
that the quality of such sensors, for example in terms of their sampling rate and accuracy,
is lacking [15]. Additionally, such sensors are usually restricted to measuring the total
power usage of the device. This hinders insight into the actual power usage of the de-
vice’s subcomponents, such as the CPU, GPU, display and RAM. Manually instrumenting
production devices can reveal the power usage of these components, but this is usually
impossible due to the board layout, and at best cumbersome, for example by inserting
current sense resistors [20] in series with the device’s internal components [10].

Challenged with the problems of measurements, researchers have in the past ten to
fifteen years resorted to moving away from measurements and rely on models for power.
These are completely necessary to bridge the gap between software activity and energy
consumption of a device. It is for example not feasible to measure directly an individual
process’ power usage on a CPU. An application may utilise one of several cores, caches
and buses integrated on a SoC. These are impossible to measure directly, and even if it was
possible, it would require cost-expensive sensors with sampling rates capable of capturing
the power usage of instructions that elapse in a matter of microseconds. For these reasons,
researchers have in recent years resorted to modelling techniques that capture the power
usage of a platform as a function of hardware activity. There are three common modelling
methodologies found in the literature; state-, rate- and CMOS-based models. Of these,
rate- and CMOS-based models are the most commonly used to describe the power usage
of SoCs. Through our initial research, we have discovered that these can mispredict power
usage of a platform such as the Tegra K1 substantially.

Rate-based power models [15, 28, 34, 70, 71, 75] are common in the literature. These
assume that power grows proportionally with hardware activity. Hardware activity can

1.1. Background and Motivation 7

for example be instruction throughput or CPU utilisation. While such models have been
shown to yield relatively good accuracy above 90 %, rate-based power models have a fun-
damental weakness in the way power is modelled. Power is assumed to grow proportionally
with hardware utilisation, but the models neglect changes in voltage. As for example CPU
frequency is increased, the CPU voltage also increases to sustain the current throughput
of the CPU’s circuitry. Voltage changes have dramatic effects on dynamic power, which
grows proportionally with the square voltage. In effect, rate-based models can therefore
mispredict power usage substantially. In our own research [64, 65], we have studied the
effects that frequency scaling has on the power estimation accuracy of common types of
power models. Not surprisingly, depending on the Tegra K1’s clock frequencies, the esti-
mation error compared to real measurements can be substantial up to 20 % on the CPU,
and 50 % on the GPU. It can only be speculated that the reported estimation accuracies
above 90 % are because the devices’ frequency scaling algorithms keep the clock frequen-
cies on the platform at similar levels, when subjected to model training and verification
software activity. While this may not be a problem as long as the device under study is
operating under the default Dynamic Voltage and Frequency Scaling (DVFS) algorithms,
the lack of operating frequencies and voltage in rate-based models render them useless to
yield any insight into how DVFS affects power usage on a platform. The inaccuracy of
rate-based models is not only limited to frequency settings. Without exception, they also
ignore the effects of core and rail power gating [61], variable cost of executing different
instructions and contention of hardware resources such as caches [4].

In contrast to rate-based models, CMOS-based models take voltage into account and
correlate power with the operating frequency of components such as processors and mem-
ory. There are few such models, but some have been proposed [11]. While being theoreti-
cally well-founded compared to rate-based models, CMOS-based models do not consider in
detail the hardware utilisation of, for example, CPU caches and different arithmetic-logic
units. The cost per clock cycle will vary depending on how different software workloads
excersise the underlying hardware components. As for example CPU clock-frequency in-
creases, the memory utilisation may also increase as a result, but CMOS-based models do
not account for this. By correlating power usage directly with only clock frequency, they
implicitly assume that the increase in power as for example CPU frequency increases, is
solely due to increased power usage of that component. The error of these models can,
because of this, be 20 to 30 % on the Tegra K1’s CPU, and up to 50 % on the GPU, and
as for rate-based models, the estimation error varies significantly depending on operating
frequencies. State-based models is another modelling methodology. Here, the power usage
of components such as wireless interfaces and processors is associated with the state that
they are in, such as whether the processor is on, sleeping or off. However, these models
neglect both voltages and dynamic power completely and, as a result, can mispredict
power with up to 60 %. It is clear that there is a lack of power models that have been
extensively verified over the possible ranges of operating frequencies on a platform, and
that successfully capture the detailed power usage of individual components on the device
such as the CPU, GPU, memory and their subcomponents, such as compute logic and
caches. This is necessary to bridge the gap between power usage and the unique ways
that different applications excersise the underlying hardware. In this thesis, we aim to
investigate the power usage of a modern SoC such as the Tegra K1 and develop power
models for its various computational elements, that can successfully reflect accurately not

8 Chapter 1. Introduction

only the total power usage of the platform, but also how an application consumes energy
in these individual elements.

1.2 Problem Statement

Modern SoCs for mobile devices, such as the Tegra K1, provide developers and system ar-
chitects with a flexible multimedia-processing environment through several heterogeneous,
multi-core processors and DSPs. Mobile devices such as smart phones, laptops or even
drones, however, consume non-negligible energy and are limited by the lack of high-density
energy storages, restraining the usefulness of such devices. Power models are necessary
to bridge the gap between software activity, frequency scaling, gating mechanisms and
the energy consumption of SoCs, where physical measurement is otherwise impossible.
This can be used to estimate the energy consumption of processes, identify candidates
for energy-optimisation and eliminate the need for cost- and space-expensive energy con-
sumption sensors. Existing modelling methodologies, such as rate- and CMOS-based
models, have never been verified over the span of possible operating frequency ranges,
and consequently end up mispredicting energy consumption in the various components of
the SoC. Rate-based models, which are commonly used on devices such as smart phones,
are especially susceptible to this problem because their accuracy depends on the operating
frequencies that are in use on a platform. Additionally, rate-based models ignore changes
in voltage that occurs as a result of frequency scaling. CMOS-based models capture
changes in frequency and voltage, but fail to consider the power usage at the fine-grained
level of, for example, floating point conversion instructions, cache hierarchies and power
gating mechanisms. It is therefore a clear need for a new power modelling methodology
that is able to bind the power usage of heterogeneous processors and memory to software
activity with higher accuracy than state-of-the-art methods.

In this thesis, we use the Tegra K1 SoC as a case study. This is partly due to its
compute capabilities. It has many heterogeneous cores and power management mecha-
nisms that enable us to investigate in detail how different software workloads consume
energy on different processors and hardware configurations. While we consider only one
SoC, we have worked on several heterogenous processors, such as the Tegra K1’s LP
CPU core, the HP CPU cluster, the GPU and memory. The Tegra K1 is also the first
mobile SoC to provide a CUDA-programmable GPU. Other SoCs also have GPUs, but
the only method of programming these was through framworks that were not originally
intended for general purpose programming, such as OpenGL [22,54,73]. Additionally, as
explained in the next section, working on one SoC has allowed us to delve deeply into
the power usage of one platform, and to discover how complex this topic can be. We
investigate whether more accurate power modelling methodologies can be developed for
the Tegra K1’s heterogeneous processors and memory under the following hypotheses:

Hypothesis 1: To achieve a high degree of accuracy, a power model for the
Tegra K1 SoC must combine chip-, hardware- and software-level knowledge
into dynamic and static power terms for all of the SoC’s architectural units.

Hypothesis 2: The average capacitive load per CPU instruction remains the
same over time for repetitive workloads.

1.3. Limitations 9

We have approached the problem of developing more precise power models for the
Tegra K1 in the following steps:

• We show that existing modelling methods are not accurate and fine-grained enough
to estimate in detail the power usage of individual components of the Tegra K1 SoC,
such as the two CPUs, GPU and memory.

• Combining CMOS- and rate-based models, we develop a more accurate power model
for the Tegra K1 by accounting for frequency scaling, variable voltages and more
fine-grained accounting of hardware activity and power management mechanisms
such as clock-, core- and rail-gating.

• Given the lack of Hardware Performance Counters (HPC) to measure the number
and types of instructions that are executed on the Tegra K1’s CPU, we show that
it is possible to estimate the CPU’s instruction costs on a per-process basis.

The focus of this thesis is to show how we can use all the heterogeneous processing
elements, such as the CPU, GPU and memory, as well as power management mechanisms,
such as frequency scaling, on the Tegra K1 to energy-efficiently process multimedia work-
loads while meeting Quality-of-Service (QoS) constraints, such as a framerate. In this
aspect, we use our developed power model to investigate the power usage of the SoC in
terms of the following steps:

• We show how frequency scaling affects the total energy consumption of multimedia
workloads operating under some given QoS constraint, such as a framerate, and
how the Tegra K1’s heterogeneous processors are energy-inefficient at high processor
frequencies.

• Given that the Tegra K1’s heterogenous processors are more energy-inefficient at
higher frequencies, we perform preliminary experiments to energy-efficiently balance
multimedia workloads across these.

• Through our power model, we show how we can analyse the total power usage of
the Tegra K1 SoC, for example in terms of static and dynamic power components
in its processors and memory.

• The Tegra K1’s CPU and GPU provide the developer with different types of in-
structions and cache modifiers. We show how these can be used to further reduce
the energy consumption of multimedia workloads.

1.3 Limitations

In our study, we have only used the Tegra K1 as a case study of mobile SoCs. This is
because it takes time and effort to understand and model power accurately. There are
many mechanisms, and indeed bugs, that are functionally transparent from a program-
mer’s perspective, but visible when modelling power. For example, the Tegra K1 increases
the CPU voltage when temperatures fall below a specific point, effectively increasing CPU
power usage. This occurred randomly above a ventilation vent in our server room, which

10 Chapter 1. Introduction

we used to avoid changes in static power as a result of temperature variations. Some
CUDA libraries disable power management on the Tegra K1’s GPU, meaning that the
GPU rail will never be suspended, and the GPU clock is never gated. This will not cause
CUDA programs to fail, but we experienced that our model’s accuracy decreased. While
confirmed by NVIDIA as a power management bug, we have never received any fix to
this problem. These issues are indeed very hard to see without physically measuring rail
voltages. For this and several other reasons, we have limited our study to the Tegra K1.
While this has only allowed us to focus on one SoC, it has enabled us to go extremely
deep into this architecture. However, we believe that our methods, model predictors and
experiences can be of use to model future SoCs and further investigate the generality of
our results.

The software workloads introduced in this thesis are strictly multimedia applications
that process live video. In part, this choice was made because video processing is arguably
a substantial part of modern, mobile computing where many applications are manipulating
live video feeds from the network or a camera. However, they also have the advantage
that they have a QoS constraint in terms of a framerate that they must reach. This
allows us to measure the workloads’ performance when we tune, for example, platform
frequencies on the Tegra K1, while at the same time observing the changes in total energy
consumption. As the filters are essentially performing the same work over and over on
consecutive frames, this also allows us to verify whether the average capacitive load per
CPU instruction remains the same over time.

This thesis focuses on mobile devices. Stationary devices and desktop environments
are left out in a large part due to time constraints. However, working on mobile SoCs
offers some advantages that simplifies research in this field. At the SoC level we are
working very close to bare-metal hardware. There is no BIOS or UEFI handling low-
level device management and everything is essentially running in the Linux kernel that is
mostly open-source. For the Tegra K1, some driver code handling the GPU is, of course,
proprietary, but the Jetson-TK1’s circuit layout is open to the public. In a stationary
computer, the actual equivalent to the Tegra K1 SoC would be the main processor cir-
cuitry, but many functional parts such as external peripherals, north- and south-bridges,
memory controllers etc. would be scattered across the motherboard and potentially hard
to monitor in terms of hardware and software activity. Furthermore, energy is a funda-
mental issue in mobile environments where users rely on batteries to function as long as
possible.

1.4 Research Method

In 1989, the ACM Education Board approved a report [14] made by the Task Force
on the Core of Computer Science that characterised the structure of computing, and
how researchers in this field approach their work. In this report, it was recognised that
computer science is essentially at a crossroads between the central processes of applied
mathematics, science and engineering, reflected in the paradigms of theory, abstraction
and design. Theory is concerned with characterising the objects under study, formulate
and hypothesize possible relationships among them, determine whether the relationships
among them are true and then interpret the results. Abstraction, or modelling, is rooted
in the experimental scientific method. Through the investigation of a phenomenon, the

1.5. Main Contributions 11

researcher forms an hypothesis, constructs a model, designs experiments and collects data,
and then analyses the results. The third paradigm, design, has its roots in engineering.
For a given problem, the researcher states requirements and state space for a solution,
designs and implements the system, and then tests the system.

The three paradigms in computer science are intertwined.For example, in the course
of our work on this thesis, a substantial amount of design has been done to implement the
various systems to measure hardware activity in processors and memory, to synchronise
external power measurements with the events on the Tegra K1’s processors, to process
video and develop prototypes for live video encoding on the Tegra K1’s computational
elements [62]. Requirement and state space engineering has been an integral part of this
process. However, the various pieces of software we have built is not the main contribution
of this thesis, although they have been necessary to reach our conclusions. The paradigm
of theory shares some similarities with our work. Indeed, we have characterised the objects
under study, the Tegra K1’s two CPUs, GPU and memory, and we have formulated a
possible relationship between the hardware and software activity in these units, their
supply voltages, and the total energy consumption of the platform in both state-, rate-
and CMOS-based power models. However, we do not seek to conclusively prove these
relationships, for example for all SoCs in the world. Many of the parameters we use to
measure hardware activity, such as active memory cycles spent serving GPU requests, are
possible because the Tegra K1 has intrinsic support for them. It is not given that these
will be available for different SoCs. Finally, the paradigm of abstraction is the one that
shares most similarities with our work. Our contributions in this thesis have indeed been
founded on our hypothesis, which is that the accuracy of power models can be improved
by compensating for variations in rail voltages and correlate dynamic and static power
with fine-grained hardware activity measurements in all parts of the SoC. The innovation
lies in the addition of voltages in the equation. Coupled with fine-grained hardware-
and software-activity measurements in the Tegra K1’s CPUs, GPU and memory, it is
formulated into an original model for power usage. The model is subsequently trained,
and the number of electrons being switched through the circuitry on various hardware and
software events and leakage currents is estimated. The model is subsequently subjected
to extensive verification over all possible platform frequencies with several workloads.
Finally, we analyse the estimation accuracy of the model and use it to study the power
usage of various multimedia workloads.

1.5 Main Contributions

The main research question in Section 1.2 states the challenge of utilising the Tegra K1’s
hereogeneous multicore processors to process multimedia workloads in an energy-efficient
manner. In our initial work [61], we experimented with a video encoder (”Codec 63”),
several video filtering operations such as frame rotation, Huffman encoding, the Discrete
Cosine Transform (DCT) and Motion Vector Search (MVS), and the effects that fre-
quency scaling had on the energy-efficiency of these multimedia operations. We have also
investigated in detail the energy consumption of video encoding, subject to framerate
constraints, over different types of DVFS algorithms [58]. In our live demonstration [62],
users could dynamically adjust processor frequency, choose the CPU to use and the num-
ber of active cores, as well as several task partitioning schemes (CPU-only, GPU-only and

12 Chapter 1. Introduction

hybrid) while the Tegra K1 was encoding a live video feed. The change in performance
(framerate) and energy consumption was displayed live on a dedicated computer. From
these and other studies [61], we observed that a good heuristic when performing the DCT,
MVS, debarreling or rotation on a video feed was to minimise processor frequency such
that application requirements (for example a framerate) was just met. In Section 2.5, we
have extended these results to also minimise memory frequency, finding that between 10
to 40 % energy can be saved when minimising processor and memory frequency compared
to the standard DVFS algorithms. But why is this such an effective strategy? What is
physically happening within SoCs that makes frequency minimisation such an effective
strategy?

The aforementioned questions are demanding to answer. Very little can be said about
the energy consumption of a SoC’s internal logical circuits and compute elements, as it
is essentially a ”black box” containing potentially billions of transistors. The last point
where it is physically possible to measure the energy consumption of these elements are
the power rails providing the various components, such as CPUs and GPUs, with energy.
This is also rarely feasible in practice, however, and researchers are therefore limited to
measuring the total power usage of the SoC. Our master student, Øyvind Skjøld [57], built
a rate-based power model for the Tegra K1 and demonstrated through experiments that
it had the potential for substantially mispredicting power usage by up to 50 % in different
hardware configurations. This was in accordance with our findings in this thesis, where
we show that state-of-the-art power modelling methods have the potential for serious
misprediction of power usage over different processor and memory operating frequencies.
This thesis’ main contribution is the introduction of a power modelling methodology that
is able to estimate running SoC power usage with close to 100 % accuracy [64, 65]. The
improvement over state-of-the-art methods, that can incur estimation errors between 10 to
70 percent, was made possible by two main contributions. First, we correlate transistor
switching activity (dynamic power) with fine-grained hardware activity measurements.
Our power model for the Tegra K1 captures dynamic power at a granularity that has
never been done for any SoC:

• We measure the number and type of instructions executed on the GPU, for example
integer, single- and double precision and conversion instructions, as well as GPU
cache utilisation.

• We associate cache utilisation and application-specific instruction power on the
CPU, which has only one single generic instruction counter.

• We measure the number of active memory cycles spent serving CPU and GPU
memory requests through our own kernel tracing framework.

• We measure active LP core, HP cluster, GPU and memory cycles, subject to clock-
gating.

• We consider rail voltages of the LP core, HP cluster, GPU and memory, based on
the current platform frequencies in use.

This allowed us to estimate in detail the dynamic energy consumption of running
processes as they execute code on both the Tegra K1’s CPU and GPU, as well as the

1.6. Outline 13

pressure on external (off-chip) memory. Second, our model also considers leakage currents.
We have developed a special kernel tracing framework that is able to track when and for
how long individual CPU cores are power-gated. Combining this with rail voltages and
rail-gating, we are able to estimate leakage currents of all the four main power rails on
the Tegra K1 as well as individual CPU cores. Finally, our model has been verified over
all CPU, GPU and memory operating frequencies, which has never been done before for
any other power model, and demonstrated to yield significant accuracy over all of them.
By taking all these factors into account, our model yields unprecedented insight into the
energy consumption of a complex SoC. We have also presented our model to Nvidia’s
Tegra product management team [59,60].

To demonstrate the insight given by our power model, we have also applied it to our
video processing filters through a series of extensive experiments. First, we demonstrated
that the increase in energy-efficiency as platform frequencies are reduced such that the
running application’s QoS requierments is met, is mainly due to reduced rail voltages.
However, our model also revealed another critical insight: the number of processor cycles
required to complete an instruction increases on some processor and memory frequency
combinations, additionally reducing energy-efficiency. This detail would be impossible to
see without our fine-grained power model. Second, we took the role of a system architect
and investigated the power usage of a running idle system. We identified the critical power
components, such as memory clock power, which is never clock-gated, and demonstrated
how our methodology can be used to estimate idle instruction power and optimise system
services and drivers. Third, we showed that, in their evaluation of energy-efficiency, many
researchers do not consider the effects of base power in their experiments. Consequently,
they risk optimising away base power that it is impossible to avoid, and reduce the energy-
efficiency of the actual workload. Finally, as we observed that the Tegra K1’s processor
cores are energy-inefficient at higher frequencies, we exploited this by offloading video
processing between the Tegra K1’s CPU and GPU. By offloading workload from the
GPU, we could for example reduce its processor frequency and demonstrate an additional
5 % energy saving per processed frame.

1.6 Outline

The outline of this thesis is as follows. To understand the power model development in
later sections, we introduce the Tegra K1 mobile SoC as a generic multimedia processor
in Section 2. We outline the power distribution circuitry, as well as the effect of DVFS, on
our Jetson-TK1 development platform. Furthermore, we introduce our multimedia work-
loads as well as preliminary experiments with frequency scaling and energy consumption.
Section 3 is a literature review for state-of-the-art power modelling methodologies. We
outline the three common methods; state-, rate- and CMOS-based models, and also in-
vestigate the accuracy of such models on the Tegra K1. In Section 4, we motivate and
introduce our main contribution, that is, the high-precision power modelling methodol-
ogy. We outline the various predictors of the model, which includes fine-grained hardware-
and software-activity measurements, power- and rail-gating statistics and rail voltages.
Furthermore, our methodology to train the models is introduced, which includes specific
model training benchmarks that stress specific components of the Tegra K1’s CPU, GPU
and memory. We conclude the chapter by verifying that the accuracy of the model is

14 Chapter 1. Introduction

close to 100 percent over all processor and memory frequencies. In Section 5, we use our
multimedia workloads as case studies and investigate the power-inefficiency that occurs
at high frequencies. Additionally, we use our model to analyse and optimise idle system
power usage. Finally, Section 6 concludes the thesis.

Chapter 2

The Tegra K1 as a Mobile
Multimedia Processor

In this chapter, we introduce the Tegra K1 mobile SoC, which is integrated on a Jetson-
TK1 development kit, as a mobile multimedia processor. In Section 2.1, we outline
the Tegra K1 device architecture in terms of its power distribution framework, which
is important to understand our modelling efforts presented in Chapter 4. An introduc-
tion to power measurement methods, and our solutions for power measurement on the
Jetson-TK1 development kit, is given in Section 2.2. In Section 2.3, we introduce the fun-
damental CMOS equations. These relate static and dynamic power usage of transistors
with platform voltages and clock frequencies. They are important to understand both
our evaluation of state-of-the-art power modelling methods in Chapter 3, and the foun-
dations of our modelling methodology in Chapter 4. We also verify the CMOS equations
with power measurements. In Section 2.4, we introduce our video processing filters that
are used throughout the experiments in this thesis. We study the effects that frequency
scaling has on the energy consumption of our video proessing filters in Section 2.4. We
summarise this chapter in Section 2.6.

2.1 Device Architecture

The Tegra K1 is a mobile SoC featuring a range of heterogeneous, multicore processors,
DSPs and various peripherals. In this section, we give an introduction to the hardware
architecture of the Tegra K1, and how power is distributed to the various hardware
resources on the SoC. This is important to understand the various compute capabilities
that the platform provides, as well as our modelling efforts in Chapter 4.

2.1.1 Functional Description

The Tegra K1 is a SoC that provides many heterogeneous, multicore processors to the
programmer. It features a CUDA-programmable GPU and two CPUs split into a low-
power core (LP core) and a quad-core high performance compute cluster (HP cluster). On
the Jetson-TK1, it is additionally equipped with 2 GB of DDR3 RAM (see Figure 2.1).
The LP core and the HP cluster are seen as two separate CPUs, where processing is only
restricted to one of them at any point in time. The Jetson-TK1 is running Ubuntu 12 with

15

16 Chapter 2. The Tegra K1 as a Mobile Multimedia Processor

DCDC

AS3728
x1

DCDC

AS3728
x2

DCDC

AS3728
x3

LDO

LDO

LDO
TPS51220

12 V

LDO

LDO

LDO

AS3722

DCDC
x1

DCDC
x1

3.3 V SYS

5.0 V STBY

5.0 V SYS

DCDC
x2 512 MB DDDR3

512 MB DDDR3

512 MB DDDR3

512 MB DDDR3

Cortex A15
ARM

L1 Cache

L2 Cache

Cortex A15
ARM

L1 Cache

Cortex A15
ARM

L1 Cache

Cortex A15
ARM

L1 Cache

HP Rail

Clocks
cpug

GK20A

Kepler-Based Mobile GPU

GPU Rail

Clocks
gpu

RTC Rail

RTC PMC

Core Rail
Cortex A15

ARM

L1 Cache

L2 Cache

Clocks
cpu_lp

sbus
msel
emc
pciex
host1x

PCI-e SAX

ISP, VI,
CSI

MPE VDE
HDMI,

DSI, DP

DISP XUSBVIC

AHB APB

USBEMC

MC
LDO

LDO

LDO

IRAM

LDO

LDO

LDO

Other Rails

Tegra K1 SoCJetson TK1 Devkit

Figure 2.1: Jetson-TK1 device architecture.

Linux as its default Operating System (OS), where Linux kernel drivers manage migration
between the CPUs. The CPU cores are nearly identical ARM Cortex-A15 cores. There
are only small differences between these in terms of external memory access latency (three
cycles instead of two [44]), as well as smaller L2 cache (512 MB vs. 2048 MB). The Kepler-
based NVIDIA GPU is a fully programmable processor consisting of 192 compute cores.
This gives developers good flexibility to run workloads on different, heterogeneous cores.
Furthermore, the operating frequencies of the LP core, HP cluster, GPU and memory
can be scaled to meet power and performance requirements. From a power management
perspective, it is therefore an interesting SoC because developers and system architects
have good flexibility to schedule their workloads on several processors, while at the same
time fine-tuning frequency levels in all components of the SoC.

2.1.2 Energy Distribution of an Island Architecture

The Tegra K1 [44] implements an island-style device architecture (see Figure 2.1). From
the perspective of an engineer integrating the SoC on a device, it is just a small chip with
many input pins. Most of these pins are buses, or signaling pins, for communication with
external devices. Some of them, however, power the various subcomponents of the SoC,
such as its two CPUs, GPU and RAM. These are referred to as individual rails supplying
these units with power. The Tegra K1 has five main power rails. These, and other, less
important rails are part of a complex power distribution circuit, which is implemented
by the PMIC. The PMIC manages power on the platform. It is not integrated on the
Tegra K1 SoC itself, but is built around the SoC as part of the Jetson-TK1’s board
layout. The PMIC in turn takes an input voltage, which for the Jetson-TK1 is 12 V,
and downconverts it to the voltages required for the various power rails of the SoC. The
downconversion is done by regulators [32], which can be of two types: DC-DC (buck,
or switching, converters) and Linear DropOut (LDO) regulators. The regulators waste

2.2. Power Measurement 17

energy as heat in the downconversion. While we in this thesis do not model these effects,
such as for example Castagnetti et. al. [11] and Lee et. al. [32], it is important to be aware
that the loss is there. Buck-regulators can have superior energy-efficiency, which depends
on its output current and configuration, but the output voltage is noisy because energy
is switched out of an inductance in specific intervals that decide the output voltage. The
energy loss of LDO-regulators is always proportional to the current draw, but the output
voltage is less noisy. This makes LDO-regulators necessary for some of the more delicate
electronic components.

As mentioned above, the Tegra K1 has five power rails. The RTC rail is always on.
It powers an internal PMIC on the Tegra K1, which is unfortunately poorly documented,
and a Real-Time Clock (RTC). The internal PMIC most likely controls at least power-
gating to the CPU cores, and maybe also the Tegra K1’s GPU. A core rail powers the
LP core and its L1 and L2 caches, the boot processor, IRAM, a range of over 20 different
clock generators, DSPs and various peripherals such as USB host controllers and the PCI-
express root complex. It also contains the External Memory Controller (EMC), which
arbitrates accesses to off-chip memory. The core rail is the most complex rail in terms
of the high degree of functionality integrated on it. This rail is also always on. There
is support to turn off more units within the core rail, reducing leakage and clock power,
by cutting off the voltage supply to additional “subrails” (Other Rails in Figure 2.1).
Additionally, the core rail supports a deep-sleep mode where the rail is turned off, and
waked up after a predefined amount of time from the RTC rail. These functions, however,
are out of scope for this thesis. The HP rail powers the HP cluster and its clock generator.
This rail is turned off when processing is restricted to the LP core. Otherwise, it is on
and supplying the HP cluster with energy. The process of dynamically shutting off supply
voltage to electrical circuits, such as the entire HP rail, is commonly referred to as gating,
or more specifically in this case, rail-gating. Similarly to the HP rail, the GPU rail powers
the Tegra K1’s GPU. The GPU rail is also normally rail-gated when the GPU is idle for
a predefined amount of time. This duration can be specified in sysfs. Sysfs is a RAM file
system for kernel parameters in Linux. However, the Tegra K1’s GPU rail is subject to
a power management bug that disables power gating on that rail (see Section 4.2.2). For
this reason, unless otherwise specified, the GPU is always on and consuming GPU cycles
throughout the experiments in this thesis.

2.2 Power Measurement

The most basic requirement to understand energy usage of devices is to measure power.
This process is at best cumbersome with modern devices. There is generally a lack
of sensors to do this, forcing researchers to resort to complex laboratory setups and
advanced techniques to overcome problems related to for example synchronisation [53].
In this section, we outline the most common approach to measurement, the sense-resistor,
used in both laboratory setups and production devices. We also discuss the technical
challenges we encountered in using production-device sensors, alternative approaches and
design-tradeoffs. We outline the solutions we have used to measure power usage on the
Jetson-TK1.

18 Chapter 2. The Tegra K1 as a Mobile Multimedia Processor

2.2.1 Current Sensing

By far, the most common approach to measure power is based on inserting [53] or using
existing sense resistors [10] in series with relevant electrical components, such as the
Tegra K1’s CPU, GPU and memory rails. The voltage drop across it, Usense, can then
be measured using an Analog-to-Digital (A/D) converter. Given the sense resistor value
Rsense, instantaneous power can be calculated by straightforward application of Ohm’s
law:

Prail = Urail
Usense
Rsense

(2.1)

where Urail is the rail voltage. Many authors of power models focus on production
devices that have current sense capability. Typical smart phone examples that have
such sensors are HTC and Google, but these sensors are only capable of measuring the
total power usage of the board. Dong and Zhong [15] and Yung et. al. [28] show in their
experiments with the Nokia N95, Lenovo ThinkPad T61 and Google Nexus One that such
sensors can incur significant latency, and as a result, the power measurement samples as
read by the device’s CPU can be delayed by several seconds. This occurs because some
sensors are actively averaging readings to achieve better accuracy, effectively behaving as
a low-pass filter.

The common case, however, is that devices do not have integrated sensors, and more
manual labour is needed. In their experiments on the OpenMoko Freerunner smart phone,
Carroll and Heiser [10] show that it is possible to insert sense resistors in series with most
of the device’s power rails. They then use A/D converters to measure the voltage drop
across these and are able to build a detailed breakdown of all power components in the
system (CPU, GPU, DSP, RAM, WiFi etc.). However, it is rare for production devices’
circuit layout to be built for this purpose. It is also challenging to open such devices
without breaking them, and they cannot be used normally after this because of all the
external wiring (see for example Figure 2.2a).

Most researchers have to use external measurement meters [34, 46, 69, 70] connected
directly to the main power supply of the device. Monsoon power meters1 are commonly
used [71], but unfortunately, researchers often do not mention what type of measurement
units they are using and other details that are important such as accuracy and sampling
rate. An issue which is almost always neglected and raised by Rice and Hay [53] is that of
measurement synchronisation. When using external measurement tools, the measurement
readings must be synchronised with the events on the device, in particular the CPU. Rice
and Hay propose to solve this by triggering a specific pattern in the power measurement
log by turning on and off energy-consuming devices, which can be used for synchronisation
(see Section 2.2.4 for details).

2.2.2 Other Approaches

Several other measurement methods exist, but compared to the sense-resistor based ap-
proach these are more rarely used. Xu et. al. [71] exploit the drop in battery terminal
voltage as the battery load current changes, to estimate total device current using the

1https://www.msoon.com/

https://www.msoon.com/

2.2. Power Measurement 19

(a) A surface-mounted INA219 rail current sen-
sor (circled).

(b) Circuit schematics.

Figure 2.2: Integrating the INA219 as a power measurement sensor on the Jetson-TK1.

internal battery voltage sensor. This scheme has the advantage that most battery-driven
devices have voltage sensors. However, it is unclear what type of requirements this solu-
tion places on existing voltage sensors in terms of accuracy and sampling rate. Hergen-
roder and Furthmuller [20] present a range of different measurement methods intended
for embedded devices. Dutta et. al. [16] propose to equip buck-regulators with a micro-
controller to count the switching frequency of the converter, and thus be able to count
the total energy switched into the circuitry. This solution has been used in some sensor
node implementations such as Quanto [18]. Some manufacturers have also included their
own solutions. For example, Nokia supported the Nokia Energy Profiler for their smart
phones in earlier years, which has been used by many researchers [50].

Instead of direct measurement, power can also be estimated based on other tools
such as Wattch [8], SimplePower [72] and SimpleScalar [3]. Kalla et. al. [29] use publicly
available Register Transfer Language (RTL) code to estimate the power usage of individual
processor components - such as the core, MMU, register file, execution unit, integer unit
and memory interface unit - of a Sun MicroSparcIIep processor. This solution has the
advantage that it achieves very fine-grained insight into the power usage of a commercial
processor. It is, however, not based on real measurements.

2.2.3 Failed Attempts

In our experience with many NVIDIA products, we have had several challenges working
with integrated power measurement sensors. This is a short summary of these:

• Many of NVIDIA’s desktop GPUs implement current sensors, monitoring power
of the three PCI Express power rails. This is possible to see by dumping VGA
BIOS tables [49], revealing that single-rail INA219 or triple-rail INA3221 sensors
are often used. These can be programmed using NVIDIA’s own virtual I2C-over-
PCI-E framework. Attempting to do so however only resulted in hanging the host
OS, and we have also experienced that a GTX 570 GPU broke from these attempts.

• The Kayla development kit for the Tegra 3 SoC, SECO mITX, contains kernel
configuration data for INA219 sensors. However, as we were unable to communicate

20 Chapter 2. The Tegra K1 as a Mobile Multimedia Processor

Keithley 2280S

Output USB

Logger

NetworkUSB

DC IN

Jetson TK1

Network

(a) Measurement setup.

SYNC STARTSYNC S1 SYNC S2 SYNC S3 SYNC S4
SYNC STOP

2

3

4

5

6

7

8

9

10

Po
w

er
 [W

]

Latency: 157 ms
Original Power Trace
Synchronised Power Trace

(b) Measurement synchronisation.

Figure 2.3: Keithley 2280S as a power measurement device.

with them, our support contact suggested that they were probably removed from
the final hardware revision.

• The Jetson-TX1 development platform and the Shield TV (Tegra X1) has on-board
INA3221 sensors. However, communicating directly with NVIDIA’s own Jetson-
TX1 development platform manager we found that these are not working on the
current hardware revision, because the sense resistors are removed. The Shield TV
is in turn challenging to use because there are no official kernel sources for it and
more limited IO connections.

• The Jetson-TK1’s power regulators have current sense capability. However, the
datasheet was unavailable and closed to the public at the start of the work in this
thesis. Additionally, the recently released datasheet does not provide the sense
resistor value.

Due to our challenges with finding on-board measurement sensors, we therefore re-
sorted to design our own power measurement solutions.

2.2.4 Solutions for the Jetson-TK1

As mentioned in the preceding sections, the Jetson-TK1 has current sensors integrated
with the buck regulators supplying the CPU clusters and GPU with power. However,
these can not be used because the sense resistor value is unknown. Initially, we used
a custom solution with a single surface-mounted INA219 [66] (see Figure 2.2a) and an
existing 5mΩ sense-resistor mounted on the main power rail (see Figure 2.2b). This
allowed us to measure the total power of the board by polling the Jetson-TK1’s I2C
interface. We later changed this solution to a Keithley 2280S which both sources and
measures power of the board. In addition to having a better measurement error (0.02 %)
and current resolution (between 10nA and 10µA), this solution also removes the overhead
of logging power during experiments.

Figure 2.3a shows how the Keithley 2280S is used to measure power of the Jetson-
TK1. It can simultaneously measure output voltage and current, but this effectively halves
the measurement rate because the 2280S has only one A/D conversion unit. Because the
2280S is configured to deliver a stable 12 V to the Jetson-TK1, and only the current varies

2.3. The Fundamental CMOS Equations 21

significantly, we disable voltage measurement to improve the reading rate. The 2280S
is not designed to make long-running measurements, where current readings are stored
in a ring buffer with space for 2500 samples. Therefore, an external machine (logger
in Figure 2.3a) is needed to continuously retrieve these and store them locally using
SCPI commands. Logging can be started, stopped and transferred remotely. Initially, we
attempted to communicate with the 2280S over USB through the USBTMC protocol, but
this often broke for unknown reasons. The 2280S however runs a Standard Commands
for Programmable Instruments (SCPI) server on port 5051, and we managed to develop a
workaround that communicates with this server instead. This effectively made the system
more stable. The system is configured to provide one sample per millisecond.

As stated by Rice and Hay [53], synchronisation is needed to match the timestamps
of the (external) power measurements with the events of the device under test. Our re-
quirement is millisecond-synchronisation, where our workloads are always targeting frame
processing deadlines between 20 to 40 ms. Inspired by Rice and Hay’s solution we create a
power pulse (see Figure 2.3b) which can be used to synchronise the logs. At the beginning
of any experiment, the Jetson-TK1 starts the power logging remotely. Then, it starts the
synchronisation process as follows:

1. At SYNC START in Figure 2.3b, the Tegra K1’s CPU:

• Minimises all clock frequencies on the platform.

• Restricts processing to the HP cluster with all (four) cores on.

• Initiates four threads that are doing dummy vectorised (NEON) floating point
operations.

• Sleeps for a predefined amount of time.

2. At SYNC S1, S2, S3 and S4, the Tegra K1 cycles the platform between high-and-
low power states by maximising and minimising CPU and memory frequencies,
respectively.

3. At SYNC STOP, the synchronisation pulse is done.

At the end of an experiment, the power log is retrieved from the logger. The Tegra K1
then scans the log for the synchronisation pulses, calculates the offset in time and makes
the necessary shifts to the power log. For example, the offset in Figure 2.3b has been
determined to be 157 ms. This solution only compensates for delay between starting
the measurements on the Tegra K1 until they are physically starting on the logger. It
can not compensate for clock drifts between the logger and the Tegra K1. However, we
assume that this drift is negligible where our experiments are run for very short durations
(typically less than one minute), and synchronisation is done for every experiment.

2.3 The Fundamental CMOS Equations

We have outlined how power is distributed through the Jetson-TK1’s power distribution
framework to the Tegra K1 SoC, and how we measure power using the Keithley 2280s
high-precision measurement unit. Understanding how the actual SoC consumes power,

22 Chapter 2. The Tegra K1 as a Mobile Multimedia Processor

DC IN
 12 V

DCDC

DCDC HP Cluster

LP Cluster

Core ClocksCore Rail

HP Rail
0.80 - 1.20 V

0.80 - 1.05 V

DRAM

DRAM ClockMemory Rail
1.35 V

Tegra K1 SoC

DCDC

GPU

GPU Clock
GPU Rail

0.77 - 1.03 V

5 V

DCDC

DCDC

DCDC

LDO

LDO

DRAM

DRAM ClockMemory Rail
1.35 V

DCDC

GPU

GPU Clock
GPU Rail

0.77 - 1.03 V

Figure 2.4: General overview of the Tegra K1 island-style architecture.

however, is challenging. This is not only because it is hard to measure the power usage on
each of the Tegra K1’s power rails, but also due to limited insight into how the Tegra K1
SoC functions internally. In this section, we will introduce and validate the fundamental
CMOS equations. These equations describe the power usage of CMOS transistors in
relation to operating frequencies and rail voltages on the platform, and are important to
understand the clock architecture of the Tegra K1 as well as our modelling methodology
in Chapter 4.

The power usage of CMOS circuits can be described as the sum of static and dynamic
power [30]:

Pcmos = Pstat + Pdyn (2.2)

Static power is caused by leakage currents in transistors and other electrical compo-
nents. It is modelled as the product of the leakage current, IR,leak, and voltage V :

Pstat = IleakV (2.3)

Dynamic power is caused by switching activity in transistors as these change state, for
example on clock cycles, instruction execution, cache accesses and other forms of hardware
utilisation. The canonical formula for dynamic power is as follows:

Pdyn = αCV 2f (2.4)

where C can be viewed as the maximum capacitive load (in coloumbs per volt per cycle)
being switching through a circuit f times per second operating at voltage V . α ∈ [0, 1]
is an environmental factor which decides how much of the maximum capacitive load C is
switched through the circuit at every clock cycle.

The Tegra K1 is an island-style SoC with several rails powering different parts of the
system (see Figure 2.4):

• The HP rail supplies the quad-core HP CPU and its clock-generator.

• The core rail supplies the LP core and most of the Tegra K1’s clock generators.

• The GPU rail supplies the GPU and its clock generator.

2.3. The Fundamental CMOS Equations 23

Clock Rail Description
Frequency

Voltage Range
Steps Range [MHz]

cpu g HP Rail HP cluster 20 [204, 2320] [0.80, 1.20]
cpu lp Core Rail LP core 9 [51, 1092] [0.80, 1.05]
emc Core Rail Memory 9 [40, 924] [0.80, 1.01]

pciex Core Rail PCIe 1 250 [0.85]
mselect Core Rail Crossbar 1 204 [0.90]

sbus Core Rail Unknown 1 204 [0.85]
host1x Core Rail Unknown 1 81 [0.80]

gpu GPU LP core 15 [72, 852] [0.79, 1.05]

Table 2.1: The Tegra K1 clocks, voltage and frequency ranges.

• The memory rail supplies off-chip memory and its clock-generator.

Equation 2.3 and 2.4 can be readily applied to these rails [11]. Their key insight is
that rail power is proportional to the square rail voltage (Prail ∝ V 2

rail). For example, a
doubling in voltage essentially increases dynamic power by a factor or four. Rail voltage
in turn increases and decreases with clock frequency on that rail to sustain the current
throughput:

fR ∝
(VR − Vth)α)

VR
(2.5)

where fR is the clock frequency on rail R, VR is the rail voltage, Vth is the transistor
threshold (minimum operating) voltage and α is an experimentally derived constant for
the current technology [30]. The relation between operating frequencies and rail voltages
for the Tegra K1 can be seen in Figure 2.5a for the core rail, 2.5b for the HP rail and
2.5c for the GPU rail. It is important to be aware that there is a lower threshold where
supply voltage cannot be further reduced, even if frequency allows for it. The GPU rail
voltage is for example never reduced below 0.77 V. This is because the transistors in the
circuit cannot operate on lower voltages.

The relevance between the CMOS equations and power usage of the Tegra K1 can
all be confirmed. For example, Figure 2.5a, 2.5b and 2.5c show measured voltage over
the core, HP and GPU rails over the relevant clock frequencies. The core rail voltage in
Figure 2.5a is the most intricate. It supplies over 39 different clock generators. Most of
these are powered down or idle, but for the remaining clocks (see “core-rail” clocks in
Table 2.1), the core rail voltage is the maximum required by any of these at any point
in time. The PCI express, crossbar and unknown core rail clocks are therefore fixed to
relatively low values to avoid impacting the rail voltage. Only variations in the LP core
and memory clock frequency impacts core rail voltage (see Figure 2.5a).

Figure 2.5d shows the impact that frequency adjustments have on average power while
running a CPU-intensive workload. We see that measured power increases linearly with
frequency when rail voltage is approximately constant (0.9 V below 600 MHz LP core and
500 MHz memory frequency). In this frequency region, measured power grows linearly
with frequency because dynamic power is proportional to clock frequency. Above these
operating points, core rail voltage increases. This has a profound effect on power, because
dynamic power is proportional to the square rail voltage. Additionally, static power will
increase. As a result, we see that the slope of the curve in Figure 2.5d in these areas is
much steeper than when rail voltage is constant.

24 Chapter 2. The Tegra K1 as a Mobile Multimedia Processor

LP Core Frequency [MHz]200 400 600 800 1000
Memory Frequency [MHz]

300
500

700
900

LP Rail Voltage [V]

0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06

(a) LP and memory.

200 600 1000 1400 1800 2200
HP Frequency [MHz]

0.8

0.9

1.0

1.1

1.2

HP
 R

ai
l V

ol
ta

ge
 [V

]

(b) HP.

100 250 400 550 700 850
GPU Frequency [MHz]

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

GP
U

Vo
lta

ge
 [V

]

(c) GPU.

LP Core Frequency [MHz]200 400 600 800 1000

Memory Frequency [MHz]

300
500

700
900

Pow
er [W

]

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

(d) LP and memory.

HP Frequency [MHz]

200
600

1000
1400

1800
2200Memory Frequency [MHz]

300
500

700
900

Pow
er [W

]

2
3
4
5
6
7
8

(e) HP and memory.

GPU Frequency [MHz]

100
250

400
550

700
850Memory Frequency [MHz]

300
500

700
900

Pow
er [W

]

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

(f) GPU and memory.

Figure 2.5: Measured voltage (top row) and power (bottom row) under various frequency
ranges.

The HP and GPU rails show the same trends, and are simpler because they power their
own clocks. Above 1.3 GHz HP and 400 MHz GPU frequency, voltage climbs above the
threshold voltage levels (see Figure 2.5e and 2.5f). Similarly to the core rail, we see that
the slope of the average measured power curve increases superlinearly with frequency
above these points due to increased voltage. It is worth noting that the variation in
memory frequency in these plots has an effect on both the core and memory rails. On
the core rail, it varies the voltage. But the off-chip memory and its clock is driven on the
memory rail, therefore increasing or decreasing dynamic power on that rail. The memory
rail voltage is always 1.35 V.

2.4 Workload: Video Processing Filters

As described in the introduction, multimedia applications and in particular video pro-
cessing consitutes a substantial part of the processing done in modern, mobile SoCs.
Throughout this thesis, we use several multimedia workloads (video processing filters)
to evaluate energy efficiency. Some of these are stand-alone filters that can be applied
directly to any raw video stream in YUV 422 format, such as rotation and debarreling.
However, we also have filters that are integral parts of video encoding, such as MVS, DCT
and Huffman encoding. These were originally part of a video encoder on the Tegra K1 [62],
but are mostly used as stand-alone filters throughout this thesis. All of our filters are
implemented in C on both the Tegra K1’s CPU and GPU using CUDA. The CPU im-
plementations are multithreaded, where six concurrent threads simultaneously process a
pixel area of the size of a U or V frame. This divisioning is reasonable given that every Y
frame can be divided into four areas of roughly the size of a U or V frame. Furthermore,

2.4. Workload: Video Processing Filters 25

(a) Video stream rotation. (b) An illustration of the operation of the di-
amond search algorithm.

Figure 2.6: Illustration of our multimedia workloads.

all of our workloads can be offloaded between the cores. For example, it is possible for
the GPU to process 20 % of the per-frame MVS workload, while the CPU processes the
remainin 80 %. The divisioning is based on the number of 8x8 pixel macroblocks to pro-
cess, and can be adjusted in 100 steps from 0 to 100 % GPU offloading. For the remainder
of this section, we introduce the video processing filters used throughout this thesis.

2.4.1 Debarreling

Barrel distortion is an effect that occurs with different lenses [68]. Our “debarreling”
workload computes a constant debarreling map for one type of lens. This map only needs
to be calculated once and is subsequently applied to each frame. The debarreling filter is
the least compute-intensive filter we consider, and is majorly memory-intensive.

2.4.2 Image Rotation

In the image rotation tests, each frame of a video stream is being rotated by a continuously
increasing angle θ (see Figure 2.6a). The algorithm treats each frame as a cartesian
coordinate space centered in the middle of the frame. Reference pixel positions (u, v) are
calculated by multiplying each original pixel coordinate (x, y) by the rotation matrix as
follows: [

u
v

]
=

[
cos− θ −sin− θ
sin− θ cos− θ

] [
x
y

]
(2.6)

Subsequently, each reference pixel at position (u, v) is put at its corresponding frame
location (x, y).

2.4.3 Motion Vector Search

In the second filter, we apply a motion vector search on the raw video stream. MVS is
a common technique in video encoding to reduce the amount of information that has to
be stored with each frame. In our scenario, it works by dividing each frame into a set
of macroblocks of 8x8 pixels, and then attempting to estimate each block’s displacement
(the vector) relative to the previous frame.

26 Chapter 2. The Tegra K1 as a Mobile Multimedia Processor

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 3 0 -1 0 0 0 0

3 1 5 -1 -1 0 0 0

0 -2 -4 1 1 0 0 0

-26 -3 0 -3 -6 2 1 0

 -26, -3, 0, 3, -2, 0, -3, -4, 1, 1, 0, 3, 5, 1, -6, 2, 1, -1, 0, 0, 0, 0, 0, 0, -1, -1, 0, 1,
0, 0

Figure 2.7: Illustration of variable length coding.

We have implemented the diamond search algorithm [76]. Diamond search estimates
the displacement of each macroblock by computing the sum of absolute difference (SAD)
of the current macroblock and the eight surrounding macroblocks in the previous frame
(as shown in Figure 2.6b). At every step, as long as the macroblock with the lowest
SAD is not in the center of the “search window”, the window will be re-centered at the
macroblock with the lowest SAD. After three iterations, the pattern changes to a smaller
diamond with only four surrounding macroblocks, where the one block with the lowest
SAD is estimated to be correct.

2.4.4 DCT

The DCT is used to convert macroblocks of incoming YUV video frames to the frequency
domain. It is a necessary step in compression techniques to remove high-frequency com-
ponents from each frame, reducing video size. Normally, in video encoding, quantisation
is done after the DCT. This is left out from this benchmark, which only transforms each
macroblock of 8x8 pixels into the frequency domain according to the following equation:

Mu,v = γ(u)γ(v)

7∑
x=0

7∑
y=0

mx,ycos[
π

8
(x+

1

2
)u]cos[

π

8
(y +

1

2
)v] (2.7)

In Equation 2.7, u, v ∈ [0, 7] are the DCT output coordinates, Mu,v are the frequency
components, mx,y are the original pixel values in the macroblock, and γ(w) is a normalising
function. The DCT is implemented in two versions; one version with NEON optimisation
and one version without.

2.4.5 Variable Length (Huffman) Coding

Huffman coding, or variable length coding, is a lossless compression technique developed
by David A. Huffman [23] in 1952. Given some input data, Huffman coding represents
source symbols as variable length codes. The codes are extracted from a table where
frequently-occurring source symbols are represented by shorter codes. The source symbols
in the case of for example video encoding can be residual frequency components from a
quantised image macroblock (see Figure 2.7).

2.5. Effects of Dynamic Voltage and Frequency Scaling 27

2.5 Effects of Dynamic Voltage and Frequency Scal-

ing

Not all workloads, such as video processing filters, need to process data as fast as possible.
Especially for multimedia workloads that operate on videos, it is enough that they reach
a framerate that is fast enough to avoid quality degradations in the delivered material.
With a framerate requirement of 25 FPS, for example, the requirement is that a video
processing filter finishes processing each frame within 40 ms, or at least 40 ms on average,
if some delay in the delivery of the frames can be tolerable. The framerate requirement
allows us to measure the performance of our video processing filters, and further allows
us to experiment with the operating frequencies that are used on the Tegra K1’s CPUs,
GPU and memory. In this section, we investigate how frequency scaling on the Tegra K1
impacts performance and energy consumption of our video processing filters under a
framerate constraint.

CMOS circuits have the advantage that they have very small leakage currents and dis-
sipate most energy as dynamic power in transistor switching activity. Frequency scaling
is therefore recognised as one of the key methods to conserve energy in processors, where
the operating frequency of various computational elements can be changed to accommo-
date application demand for processor power [11]. The Tegra K1, for example, can vary
LP core, HP cluster, GPU and memory frequency to accommodate applications’ demand
for performance. Frequency scaling has adverse effects on performance and power. At
every CPU, GPU or memory clock cycle, an electrical charge is switched through the
circuitry, effectively dissipating energy as heat. Increasing the clock frequency increases
the rate at which this occurs and, consequently, the average power usage on that rail.
Furthermore, rail voltage also increases with frequency [30], which is necessary for the
circuitry to remain stable and deterministic. Dynamic power is proportional to rail volt-
age (PR,dyn ∝ V 2

R), meaning that variations in voltage have a considerable impact on the
power of all switching activity on a rail (see Section 2.3).

It is well known in literature that standard frequency scaling algorithms in the Linux
kernel overreact to changes in processor utilisation. This leads to unecessarily high CPU,
GPU and memory operating frequencies. As a result, the frequency scaling algorithms
waste energy. In our experiments on the Tegra K1 [61, 62], we found that by minimising
CPU and GPU frequencies for a video processing filter such that a certain framerate is met,
we could save around 10 % energy. This is in accordance with the findings of for example
You and Chung [74]. They develop a GPU frequency scaling algorithm that reduces
memory frequency such that a target framerate is met, demonstrating energy saving of
between 11 to 21 % on the Exynos 4412 SoC. Pathania et. al. [48] conduct a detailed study
of how CPU, GPU and memory frequencies affect the framerate of several Android games
on the Exynos Octa SoC. They also design a frequency scaling algorithm that tune these
to meet specific framerates. Bortolotti et. al. [6] develop a mobile transmission gateway
for body sensor networks on the Exynos 5422 SoC. The gateway compresses body sensor
data and transmits it to a receiver. This SoC is equipped with two CPUs comprised of a
quad-core Cortex-A15 cluster as well as a quad-core Cortex-A7 cluster. They also observe
that processor frequency should be minimised such that application requirements, in this
case the average received signal to noise ratio at a receiver, is met.

Jiao et. al. [26] study the impact of both processor and memory frequency on power

28 Chapter 2. The Tegra K1 as a Mobile Multimedia Processor

GPU Frequency [MHz]

100
300

500
700

900
Memory Frequency [MHz]

350
500

650
800

950

Energy Per Fram
e [µ

W
h]

30
35
40
45
50
55
60

Figure 2.8: Debarreling energy per frame. Only the GPU achieved a framerate of 25 FPS.
The blue, transparent grid indicates the EPF under the standard DVFS algorithms.

efficiency on a GTX 280 GPU under workloads such as matrix multiplication, matrix
transpose, and the fast fourier transform. They measure power efficiency in performance
per watt, or more directly, mega-bytes per second per watt. Interestingly, they find that
an increased frequency increases the power efficiency compared to running the benchmarks
on lower frequency levels. This contradicts to the general belief that lower frequencies
save energy. However, as many authors do [12, 22, 35, 54, 73], Jiao et. al. stop measuring
power when the benchmarks complete, and as a result, the increased power efficiency
may be a result of reduced energy consumption from idle (constant) power components.
This is confirmed in their discussion for the matrix transpose benchmark, where the
benchmark runtime happens to be constant over memory frequencies due to the memory-
intense nature of the task. Here, we can confirm that performance per watt is high at low
frequencies, which happens because the energy consumption of idle power components is
constant. We discuss this phenomenon in detail in Section 5.2.1. In this section, we study
how these results behave on the Tegra K1, that is, how frequency scaling affects energy
usage and performance of various multimedia workloads.

Our workloads (see Section 2.4) resemble video processing operations. Some of these,
such as the rotation and debarreling filters, resemble stand-alone pre-processing opera-
tions that can be applied before encoding stages of a video processing pipeline. Other
filters, such as the DCT, MVS and Huffman encoding are common components found
in a complete video encoding pipeline. In these experiments, we let each of these filters
process 80 HD frames, separately on the CPU and the GPU, at a rate of 25 FPS. The
results are shown in Figures 2.8, 2.9, 2.10, 2.11 and 2.12. The Energy per Frame (EPF)
is plotted over all memory and processor (CPU or GPU) frequencies. Those frequency
combinations that do not reach 25 FPS are not shown in the figures. The EPF achieved
by the standard DVFS algorithms are shown as a blue, transparent grid in the plots. In
the GPU experiments, the CPU is fixed to process on the LP core, disabling DVFS on
this processor and fixing the CPU frequency to 1 GHz. Otherwise, in the CPU exper-
iments, the ondemand [45] DVFS governor is active. All input data (raw YUV-format
video or Huffman-ready compressed frames) are pre-loaded into ramfs to avoid accesses
to persistent storage.

2.5. Effects of Dynamic Voltage and Frequency Scaling 29

CPU Frequency [MHz]

22002220224022602280230023202340
Memory Frequency [MHz]

350
500

650
800

950

Energy Per Fram
e [µ

W
h]

30
40
50
60
70
80

(a) Two HP cores (CPU).

CPU Frequency [MHz]

160017001800190020002100220023002400
Memory Frequency [MHz]

350
500

650
800

950

Energy Per Fram
e [µ

W
h]

30
40
50
60
70
80

(b) Three HP cores (CPU).

CPU Frequency [MHz]

10001200140016001800200022002400
Memory Frequency [MHz]

350
500

650
800

950

Energy Per Fram
e [µ

W
h]

30
40
50
60
70
80

(c) Four HP cores (CPU).

GPU Frequency [MHz]

100
300

500
700

900
Memory Frequency [MHz]

350
500

650
800

950

Energy Per Fram
e [µ

W
h]

25
30
35
40
45
50
55

(d) GPU.

Figure 2.9: Rotation energy per frame on the GPU and the CPU. The Jetson-TK1 is
operating under normal DVFS conditions. Red-violet colouring indicates CPU bench-
marks, while green-yellow colouring indicates GPU benchmarks. The blue, transparent
grid indicates the EPF under the standard DVFS algorithms.

The EPF for the debarreling experiment is shown in Figure 2.8. For this filter, only the
GPU managed to process the full-HD live-stream at 25 FPS. The CPU’s frame processing
time is always above 40 ms, even if four cores are active at the maximum operating
frequency. This occurs because the debarreling operation is memory-intensive. At every
frame, every Y, U and V pixel must be shifted to form a new (lens-corrected) raw image.
The GPU is naturally better than the CPU at performing this operation, because it has
a larger number of concurrently active threads that shift individual pixels. Additionally,
the memory interface is 64-bit, whereas on the CPU, it is only 32-bit, leading to a higher
memory throughput on the GPU. The best EPF is 34.13µWh, located at fgpu = 180MHz
and fmem = 300MHz. At this frequency combination, the EPF is better than when the
DVFS algorithms are operating (37.01µWh), which represents an energy saving of 7.78 %.

The results of the rotation filter is shown in Figure 2.9, where red-violet colouring
indicates CPU benchmarks, while green-yellow colouring indicates GPU benchmarks. The
CPU is now capable of processing at 25 FPS when operating on two, three or four cores.
Studying Figure 2.9, we can see that the CPU is most energy-efficient on four cores
(Figure 2.9c). When a fewer number of cores are active, the EPF increases. The fact that
EPF is reduced when more CPU cores are active, means that the extra cost of adding

30 Chapter 2. The Tegra K1 as a Mobile Multimedia Processor

CPU Frequency [MHz]

2100
2150

2200
2250

2300
2350

Memory Frequency [MHz]
350

500
650

800
950

Energy Per Fram
e [µ

W
h]

303540455055
60
65
70
75

(a) Two HP cores (CPU).

CPU Frequency [MHz]

1400
1600

1800
2000

2200
2400

Memory Frequency [MHz]
350

500
650

800
950

Energy Per Fram
e [µ

W
h]

303540455055
60
65
70
75

(b) Three HP cores (CPU).

CPU Frequency [MHz]

1200
1400

1600
1800

2000
2200

2400
Memory Frequency [MHz]

350
500

650
800

950

Energy Per Fram
e [µ

W
h]

303540455055
60
65
70
75

(c) Four HP cores (CPU).

GPU Frequency [MHz]

300
400

500
600

700
800

900
Memory Frequency [MHz]

350
500

650
800

950

Energy Per Fram
e [µ

W
h]

303540455055
60
65
70
75

(d) GPU.

Figure 2.10: DCT energy per frame on the GPU and the CPU. The Jetson-TK1 is oper-
ating under normal DVFS conditions. Red-violet colouring indicates CPU benchmarks,
while green-yellow colouring indicates GPU benchmarks. The blue, transparent grid in-
dicates the EPF under the standard DVFS algorithms.

compute cores is smaller than the saving we achieve by reducing operating frequencies:
the possible (25 FPS) frequency range increases as more cores are used. This indicates
that scalability is important for energy usage on the Tegra K1. With two cores, the
CPU frequency has to be above 2.1 GHz to reach 25 FPS. With three cores, the CPU
frequency can be reduced to 1.6 GHz, and with four cores, the frequency can be as low
as 1.2 GHz. With four CPU cores operating at fcpu = 1.2GHz and fmem = 396MHz,
the EPF is only 50.19µWh. This is again smaller than 57.33µWh, which is the EPF
operating under the standard DVFS algorithms. The energy saving is 12.45 %. However,
the GPU in Figure 2.9d achieves a much better EPF, 26.45µWh, at fgpu = 108MHz and
fmem = 204MHz. This again, is lower than what the standard GPU DVFS algorithm
achieves, which is an improvement of 11.77 % from 29.98µWh. Even if both the CPU
and the GPU can process the rotation filter at 25 FPS, the GPU outperforms the CPU
in terms of the EPF by 47.30 %. This suggests that the GPU should be used for this
workload.

Similar observations can be made for the DCT benchmark in Figure 2.10. Both
the CPU and the GPU reach 25 FPS using two, three or four HP cores (Figure 2.10a,
2.10b and 2.10c, respectively). As more CPU cores are used, the potential CPU and

2.5. Effects of Dynamic Voltage and Frequency Scaling 31

CPU Frequency [MHz]

1400
1600

1800
2000

2200
2400

Memory Frequency [MHz]
350

500
650

800
950

Energy Per Fram
e [µ

W
h]

30
35
40
45
50

(a) Two HP cores.

CPU Frequency [MHz]

10001200140016001800200022002400
Memory Frequency [MHz]

350
500

650
800

950

Energy Per Fram
e [µ

W
h]

30
35
40
45
50

(b) Three HP cores.

CPU Frequency [MHz]

80010001200140016001800200022002400
Memory Frequency [MHz]

350
500

650
800

950

Energy Per Fram
e [µ

W
h]

30
35
40
45
50

(c) Four HP cores.

Figure 2.11: Huffman energy per frame over all core configurations, CPU and memory
frequencies. The Jetson-TK1 is operating under normal DVFS conditions. The blue,
transparent grid indicates the EPF under the standard DVFS algorithms.

memory frequency ranges that reach 25 FPS increase, with the lowest EPF of 47.97µWh
at fcpu = 1.2GHz and fmem = 204MHz. The improvement compared to the standard
CPU DVFS algorithm is substantial at 31.88 % from 70.43µWh. The GPU reaches the
lowest EPF of 31.08µWh at fgpu = 324MHz and fmem = 204MHz, again outperforming
the CPU. However, the difference compared to the CPU’s lowest EPF on the rotation
filter is smaller, with a 35.20 % improvement. Compared to the standard GPU DVFS
algorithms, we see that we can outperform it in terms of energy savings by 12.00 % from
35.32µWh.

The results for the Huffman filter is shown in Figure 2.11. For this filter, the GPU
is not able to reach 25 FPS at any frequency combination. This is not surprising given
that Huffman (or variable-length) coding is not easily parallelisable. The CPU, however,
reaches 25 FPS when more than two cores are active. As before, we can also see that the
EPF decreases as more CPU cores are active, reducing the lowest frequency which reaches
a framerate of 25 FPS. The lowest EPF of 33.28µWh is reached at fcpu = 828MHz and
fmem = 204MHz with four cores active, which is 27.39 % better than the DVFS EPF at
45.84µWh.

Finally, the results for the MVS filter is shown in Figure 2.12. Similarly to the Huffman
filter, the GPU is not able to sustain a throughput of 25 FPS. However, the CPU is able
to perform the MVS filter on all the HP cores as well as the LP core (not shown). On
the LP core, the best EPF is 32.94µWh at fcpu = 1.0GHz and fmem = 396MHz. The
HP cluster, however, performs better, but the margins are different. So far, in general,
we have seen that the best EPF is found at the lowest processor and memory frequencies
that reach the QoS requirement of 25 FPS. However, if we study Figure 2.12d carefully,
we can see that at the lowest frequency point the EPF is 29.26µWh. Increasing CPU
frequency above this effectively lowers the EPF by a marginal amount with for example
28.60µWh per frame at 696 MHz CPU frequency. We have also observed that the best
EPF for the CPU is found with a higher number of cores. For the MVS filter, one, two,
three and four cores reach minimum EPF values of 29.18, 28.36, 28.13 and 28.60µWh,
respectively. The memory frequency which achieves this throughput is always 204 MHz,
but the CPU frequency is reduced from 1.0 GHz (at one HP core) to 696 MHz at four
HP cores. The MVS filter has the lowest observed EPF on three HP cores. However, the
EPF values are so similar that using four cores, or slightly increasing the CPU frequency,

32 Chapter 2. The Tegra K1 as a Mobile Multimedia Processor

CPU Frequency [MHz]

10001200140016001800200022002400
Memory Frequency [MHz]

350
500

650
800

950

Energy Per Fram
e [µ

W
h]

25
30
35
40
45

(a) One HP core.

CPU Frequency [MHz]

500
1000

1500
2000

2500
Memory Frequency [MHz]

350
500

650
800

950

Energy Per Fram
e [µ

W
h]

25
30
35
40
45

(b) Two HP cores.

CPU Frequency [MHz]

500
1000

1500
2000

2500
Memory Frequency [MHz]

350
500

650
800

950

Energy Per Fram
e [µ

W
h]

25
30
35
40
45

(c) Three HP cores.

CPU Frequency [MHz]

0
500

1000
1500

2000
2500

Memory Frequency [MHz]
350

500
650

800
950

Energy Per Fram
e [µ

W
h]

25
30
35
40
45

(d) Four HP cores.

Figure 2.12: MVS energy per frame over all core configurations, CPU and memory fre-
quencies. The Jetson-TK1 is operating under normal DVFS conditions. The blue, trans-
parent grid indicates the EPF under the standard DVFS algorithms.

makes negligible difference.

The lesson learned from these experiments, is that standard DVFS algorithms oper-
ating on the Tegra K1 can be easily outperformed in terms of energy consumption. By
minimising processor and memory frequency, such that application requirements and QoS
constraints are met, it is trivial to increase energy-efficiency of our video processing filters
by up to for example 27 % in the case of the Huffman filter. For the MVS filter, this
strategy is not optimal with respect to what we have observed, but the margins are small
enough that it makes negligible difference. It is not simple to state why frequency minimi-
sation is an effective strategy. To some extent, it can be argued that reduced voltage as
platform frequencies are reduced, impact energy-efficiency. However, one cannot neglect
the possiblity that other factors, such as power management mechanisms, pipeline effi-
ciency and memory access stalls, also impact energy-efficiency. Without the possibility to
measure directly the power usage of individual compute units, power models are necessary
to understand how the Tegra K1’s CPUs, GPU and memory consume energy under these
workloads.

2.6. Summary 33

2.6 Summary

In this section, we have introduced the Tegra K1 mobile SoC and the heterogeneous
processors it provides to the programmer. We have outlined how we measure power usage
on the Jetson-TK1, and how energy is distributed to the Tegra K1’s five main power rails:
the RTC, core, HP, GPU and memory rails. This insight is important to understand how
the SoC consumes energy and our high-precision power modelling methodology in later
sections. Furthermore, we have introduced the fundamental CMOS-equations. These
describe the dynamic and static energy dissipation in these rails as a function of clock
frequencies and voltage. We have put special emphasis on how rail voltages are affected
by DVFS, and verified that the Tegra K1’s total power usage increases superlinearly with
frequency as rail voltages increase. This confirms that the CMOS-equations are valid for
our platform.

We have also studied how DVFS affects the energy consumption of multimedia process-
ing. We have observed that, in terms of energy-efficiency, the Tegra K1’s heterogeneous
compute cores are best at processing specific workloads. For example, in terms of the
energy consumption per frame, the GPU is better than the CPU to process the DCT fil-
ter. The CPU is best at processing the MVS and Huffman filters. This is a challenge for
developers, where care must be taken to implement the filter on the appropriate proces-
sor. Additionally, we discovered that processor (CPU or GPU) and memory frequencies
should be minimised such that application requirements are met to save energy. This
corresponds to observations made by other researchers on different SoCs. However, the
application must allow for flexibility in terms of performance reduction. Video process-
ing filters are here a good example, because they must adhere to deadlines to produce
frames at a specific framerate. The fact that the processor is running slower is of little
importance, as long as this framerate is met.

An interesting question is here how energy consumption can be reduced for other types
of workloads. For example, what about shorter, and more intermittent types of workloads,
that do not have any specific or natural deadlines to adhere to? This could for example
be kernel drivers or software libraries that stand-alone applications rely on. The require-
ment is now that that the supporting drivers and libraries do not cause any dependent
applications to miss their own processing deadlines. Stand-alone applications may also
not have intrinsic deadlines to accommodate. In this scenario, the issue becomes much
more complex and, in some cases, psychological. From a user perspective, it is of best
interest that application performance is decent, and that as little time as possible is spent
waiting for operations to complete. In this respect, allowing a mobile device to operate
at full speed may allow the user to finish quickly, putting the device into standby earlier,
and saving energy. However, operating at high frequencies has been shown to be energy-
inefficient. Therefore, it becomes more interesting to find some threshold frequencies that
achieves decent performance while being able to save some energy. Another important
aspect that we have not investigated in detail is that of variance in frame processing time.
Our filters generally use the same amount of time to finish processing each frame over a
video stream. If for example the time taken to finish processing each frame varied signif-
icantly, a frequency scaling framework that consistently attempted to minimise platform
frequencies might cause a filter to miss frame processing deadlines. This could for example
occur while processing I-, P- and B-frames in an MPEG video encoder. It is also easy to

34 Chapter 2. The Tegra K1 as a Mobile Multimedia Processor

imagine scenarios where even a filter with uniform frame processing time would have this
type of problem, if for example other processes in the system posed significant contention
on shared hardware resources.

It is hard to conclude why frequency minimisation is such an effective strategy. It is for
example not possible to measure power usage of the Tegra K1’s individual processors and
memory, and break this measurement down into static and dynamic power components.
In this aspect, power models are necessary to provide insight into how the Tegra K1’s
processors and memory consume energy, for example under the influence of software
workloads and frequency scaling. In the next chapter of this thesis, we will discuss and
evaluate state-of-the-art power modelling methods found in the literature.

Chapter 3

Evaluation of State of the Art Power
Modelling Methodologies

In the previous chapter, we introduced the Jetson-TK1 development kit, and the Tegra K1
SoC, in terms of its device architecture and compute capabilities. Studying the impact
of DVFS on the energy-efficiency of our video processing filters, we found that processor
and memory frequency should be minimised such that application requirements are met.
However, it is hard to understand why this occurs, because we are limited to measuring
the total power usage of the SoC. In this aspect, power models are useful because they
provide insight into the energy consumption the various hardware components, such as
the Tegra K1’s CPUs, GPU and memory.

Many power models have been introduced in the literature. These are generally used
for a range of hardware components such as processors, SoCs and wireless interfaces, and
can be classified into one out of three categories: state-, rate- and CMOS-based models
(see Figure 3.1). Instruction-based models are also often referred to in the literature.
These can be considered as rate-based models because of their tendency to correlate power
with the throughput of instructions. State- and rate-based power models are by far the
most simple and commonly used models, seeing a wide range of adoption to investigate
power usage of processors and especially network interfaces. Introducing both a simple
state- and a rate-based power model for the IEEE 802.11 predecessor, the Lucent Wavelan
network interface, Feeney and Nilsson [17] are often at the source of these works. The
three model types differ mainly in terms of the abstraction level that they use to attribute
power or energy to a system, and have individual strengths and weaknesses.

In this section we outline the differences between the three main power modelling
methodologies. In Section 3.1, 3.2, 3.3 and 3.4, we introduce CMOS-, state-, rate- and
instruction-based models found in the literature. These often cover more exotic hardware
components, such as DCDC and LDO regulators. In Section 3.5 we build power models
according to the three power modelling methodologies on the Tegra K1. We show that
their accuracy can vary significantly depending on the operating frequency levels on the
Tegra K1. Finally, we conclude our observations in this chapter in Section 3.6.

35

36 Chapter 3. Evaluation of State of the Art Power Modelling Methodologies

Energy Model Types Abstraction Level

Rate-Based
Energy Models

State-Based
Energy Models

CMOS-Based
Energy Models

Logical & Hardware Events

Instructions, cycles, cache hits..

Time in Hardware States

CPU Active, CPU sleep, CPU off..

Transistors
Leakage, switching activity..

High Level

Low Level

Figure 3.1: Classification of modelling methodologies.

3.1 CMOS-Based

The CMOS equations (Equations 2.3 and 2.4 in Section 2.3) represent the deepest ab-
straction levels used in power modelling, and several authors attempt to use these directly
to model power. Castagnetti et. al. [11] model both dynamic (αC) and static (Icpu,leak)
power of an Intel XScale SoC by running a CPU- and memory-benchmark on five fre-
quency configurations with fixed CPU, bus, memory and SDRAM frequencies. The model
achieves an accuracy above 90 %. Pathania et. al. [47] model an ARM variable SMP ARM
CPU (quad-core Cortex-A7 + quad-core Cortex-A15) and a GPU (on the Odroid-XU+E
development kit) for mobile gaming workloads. The SoC used is the Exynos-5. They
propose to use a processor’s utilisation factor as a substitue for α and estimate the max-
imum capacitive load for the CPU and GPU (Ccpu and Cgpu) using regression, achieving
an accuracy above 85 %. However, their method assumes that capacitive load per cycle is
constant and independent of workload, which is not necessarily true. Power management
mechanisms such as clock-gating and different types of instructions will excersise the pro-
cessor pipeline and switching activity in different ways depending on software activity.
This fact is not recognised by other authors in the field.

In our own research on the Tegra K1 [63] we also modelled power using the CMOS
equations, but we attempted to separate more accurately the static and dynamic power
terms. For example, we ran many experiments when the Tegra K1 was idle to estimate
leakage currents for each cluster and for each core, and we estimated average capacitive
loads over more rails (HP, core and memory) for three multimedia workloads. We also used
more CPU and memory frequency combinations, where the Tegra K1 is a more modern
chip with more frequency levels and clock domains. Despite careful development our model
had a worst-case error of 13 %. The average error over all CPU and memory operating
frequencies and benchmarks is 8 %, which is similar to that reported by Pathania [47]
and Castagnetti [11].

It is interesting that CMOS-based models seem to share the same average error over
all operating frequencies of about 6 % for such diverse SoCs and electrical implementa-
tions. Because it is impossible to physically measure and verify the power of each rail, it
is difficult to conclusively prove why CMOS-based models fail to model power more ac-
curately. However, we believe that the main cause of the error is the implicit assumption
of linearity between capacitive loads in one domain and frequency in another. For exam-
ple, increasing memory frequency under a memory-intensive workload is likely to increase

3.2. State-Based 37

switching activity in both the CPU and memory rail. It therefore becomes unreasonable
to assume that the increase in power as for example memory frequency is increased, is
solely due to increased switching activity on that rail, but this is assumed by for example
Castagnetti [11]. The same argument can be made for Pathania [47], where CPU and
GPU capacitive load per cycle is estimated based on only the maximum frequency levels,
or in research where regression is used directly over experiments where both memory and
CPU frequency is varied [63].

3.2 State-Based

State-based power models are more high-level than CMOS-based models. These models
abstract hardware platforms into components with associated states, where each state
is attributed a constant power draw. Lee et. al. [24], for example, propose to abstract
an ARM926EJ-S CPU into idle and active states, where each state has an associated,
constant power draw. Some models also propose to incorporate transition cost between
states [5]. Transition costs can for example be related to changing clock oscillator fre-
quency, but these effects are rarely considered in practice. Formally, the energy consump-
tion of a component is given by the following equation:

Ecomp =
s∈S∑

T (s)P (s) +
n∈S∑m∈S∑

N(n,m)C(n,m) (3.1)

where S is the set of hardware states for the component, T (s) is the time spent in state
s, P (s) is the constant power draw of state s, N(n,m) is the number of state transitions
and C(n,m) is the energy cost per transition between state n and m. The total platform
energy usage is the sum of energy of each component.

State-based models are typically more extensively used to predict power of networking
interfaces, and not only processors. Negri et. al. [38–40] and Cano et. al. [9] have for
example used this model type for the Bluetooth low-power, transmission and reception
states. Rantala et. al. [52] build a state-based power model for a WiFi interface. Others
consider a more complete systems perspective. For example, Perrucci et. al. [50] use a
Nokia N95 as a case study and derive state costs for the CPU, display, memory, Bluetooth,
WiFi, 2G and 3G. Measurements are primarily done with the Nokia energy profiler and
verified using an external power meter. Their methodology is based on isolating the power
usage of individual components to the extent possible by turning off others. The CPU is
divided into five different hardware states based on the utilisation rate. Pathak et. al. [46]
focus on the HTC Magic, Touch and Tytn II, abstracting power states for the CPU, disk
and WiFi. The CPU’s power states is based on the minimum and maximum utilisation
levels.

Fonseca et. al. [18] develop an energy profiler for wireless sensor networks with an
underlying, state-based power model. The model is based on datasheets and exposes the
current draw of hardware component states. To find the power draw of each state, the
current must be multiplied with the component’s voltage supply and it is therefore one
of the few state-based models that consider voltages. This resembles static power and it
can therefore appear to be closer in nature to CMOS-based models, but the authors refer
to it in terms of states and there is no explicit mention of dynamic power. The CPU is

38 Chapter 3. Evaluation of State of the Art Power Modelling Methodologies

here divided into states depending on whether it is fully active or in any of five low-power
modes. The authors also show how power models can be built on-line with regression,
which is done by augmenting drivers to expose the time each component spends in each
of its states.

3.3 Rate-Based

Rate-based modelling is typically used to build more complete power models for devices
such as smart phones. In this methodology, power usage is correlated with hardware
utilisation. Hardware utilisation is typically measured with any available performance
counters (HPCs) on the device under study, and has units of hardware events per second.
Formally, power is modelled as:

Pplatform = β0 +

Np∑

i=1

βiρi (3.2)

In Equation 3.2, Np is the number of events, ρi is a predictor in events per second, βi is
the power cost in watts per event per second and β0 is the constant, always-present base
power. Some authors [21,25,33,69] have slightly different interpretations of Equation 3.2,
and replace βi with the maximum power usage of a component Pi,max (ρi ∈ [0, 1]). The
predictors βi normally reflect utilisation of various hardware components, such as CPU,
GPS, display, storage and wireless network interfaces [15,28,34,70,71,75]. Multivariable,
linear regression is commonly used to estimate the model coefficients βi over training
benchmarks. Some authors, such as Limin et. al. [34] use neural networks to estimate
the model coefficients. In later years, researchers have established a new category of
rate-based models where smart phone power models are built on-line using existing power
measurement sensors [15,28,71,75]. Whether external measurement setups are necessary
is a topic for dicussion. Dong and Zhong [15], for example, show that on-board sensors
can be inaccurate and subject to signal processing such as averaging (see Section 2.2.1).
In these cases it becomes important to characterise the on-board sensors such that the
appropriate design decisions can be taken to guarantee accurate measurements over time.
Nevertheless, self-constructive models are a promising development in power modelling
that is necessary to tackle the fundamental problem of device heterogeneity. No devices,
even of the same type and brand, are guaranteed to have the same energy consumption
characteristics [36]. Self-constructive modelling is therefore a promising technique to
overcome this issue in production devices.

Many rate-based models focus primarily on CPUs and GPUs. Vatjus-Anttila and
Hickey [69] build a rate-based model for the Tegra 2’s OpenGL ES 2.0 graphics pipeline
by correlating power usage to the utilisation of triangle, rendering and texture 3D prim-
itives. Hong and Kim [21] and Leng et. al. [33] build power models for CUDA-capable
desktop GPUs. Their models are based on the hardware utilisation in the GPU’s var-
ious computational units, such as the floating point, integer and special function units,
register file, shared memory, texture and constant caches and GPU RAM. Utilisation
in these hardware domains can be traced by executing instructions that excersise the
specific hardware units [21]. Pricopi et. al. [51] focus on an ARM variable SMP CPU
(dual-core Cortex-A15 + three-core Cortex-A7) on a development kit, and build what

3.4. Instruction-Level 39

is one of the most detailed rate-based power models for this type of architecture by us-
ing fine grained accounting for instructions and cache accesses. Power is correlated with
individual instructions, such as floating point and integer execution. However, different
CPU implementations may not include support for measuring detailed hardware utilisa-
tion. This is up to the manufacturer of the SoC, with the exception of certain HPCs. For
example, the armv7 architecture [2] must always provide an HPC to measure the number
of elapsed active CPU cycles. On the Tegra K1, there is no support for HPCs that count
the number and type of instructions executed. Pricopi et. al. also build detailed per-
formance models that are capable of estimating cache misses and branch mispredictions
on the heterogeneous CPU cores. Xiao et. al. [70] build a full-system power model for a
tablet, similarly to self-constructive models in the previous paragraph. The power of an
ARM 1136 CPU, WLAN and display is considered, where the authors consider 17 different
HPCs for the CPU model. These HPCs reflect utilisation in data and instruction caches,
instructions executed, TLB misses, stalls and active cycles. There is however a limit to
the number of HPCs that can be tracked simultaneously (three, where one is always the
cycle counter). This is a common issue in rate-based modelling. Most authors solve this
by running the same model training benchmarks as many times as needed to collect the
event rates [27]. Xiao et. al. propose to use the HPCs with the highest estimated power
cost per event per second. The resulting CPU HPCs are the cycle counter, data cache
writeback and TLB misses. To some extent, it can be argued that the model implicitly
considers RAM because data cache writebacks will evict old cache lines to RAM. We
agree in the choice of the cycle counter as an important model predictor, where we expect
especially the cycle counter to correlate strongly with power. However, the coefficients of
these hardware events is not a good measure of how important that event is for power
usage. That depends on how often that particular event occurs, which can vary depending
on workloads and resource usage.

3.4 Instruction-Level

A modelling method which is related to rate-based models is instruction-level models.
These are similar because they attempt to correlate power with individual instructions.
However, they often consider more sophisticated and low-level techniques to model power
of microprocessors that requires much deeper hardware knowledge. Instead of modelling
utilisation in hardware units (integer, floating point) as a result of executing specific
instructions, power is directly attributed to instructions and how these exersise the un-
derlying processor pipeline. Tiwari et. al. [67] propose to build power models for the Intel
486DX and Fujitsu SPARClite CPU, assuming that every instruction i residing in the
processor pipeline causes a constant, base current draw per clock cycle Ii,base. The core
idea is that the additional effects in terms of of inter-instruction dependencies, instruction
operand bits, pipeline stalls and cache misses can be modelled on top of the base current
draw. It is for example shown that prefetch buffer stalling cycles draw 250 mA, and that
pipeline stalls due to cache misses draw 216 mA. Kalla et. al. [29] build an instruction-
level power estimation tool called SEA for the Sun MicroSparcIIep processor. For a set
of instructions I, they describe the energy of the processor as:

40 Chapter 3. Evaluation of State of the Art Power Modelling Methodologies

HP Cluster Frequency [MHz]

0
500

1000
1500

2000
2500

Memory Frequency [MHz]

0
200

400
600

800
1000

P
ow

er [W
]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

(a) DCT, one core.

HP Cluster Frequency [MHz]

0
500

1000
1500

2000
2500

Memory Frequency [MHz]

0
200

400
600

800
1000

P
ow

er [W
]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

(b) Rotation, two cores.

HP Cluster Frequency [MHz]

0
500

1000
1500

2000
2500

Memory Frequency [MHz]

0
200

400
600

800
1000

P
ow

er [W
]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

(c) Debarrel, three cores.

Figure 3.2: Error for the filters in our preliminary, CMOS-based model [63].

Pcpu = ((
i∈I∑

Pi,avgni,act) + (
i∈I∑

ni,stall)Pstall)T (3.3)

where i is an instruction in the set of instructions I executed on the processor in the
time interval T , ni,act and ni,stall is the number of active and stalling cycles, Pi,avg is the
average power and Pi,stall is the average stall power. Tiwari and Kalla agree that stall
power is similar across instructions (independently of the source of the stall). Based on
register transfer level power estimations of the processor, Kalla et. al. build a power
database where Pi,avg can be extracted automatically for any instruction i. Their method
to build this database is their main contribution and compensates for power variations as
a result of data dependencies and inter-instruction effects. Unlike Tiwari et. al., they find
that some pairs of instructions (such as add-and) lower the power usage of the processor
(0.94 W) compared to running for example only add in a loop (1.08 W). Despite using
fine-grained power estimations based on register transfer level abstractions, the authors
do not discuss the reasons behind this but instead argue that Tiwari’s assumptions, that
inter-instruction effects are always added to the base power of instructions, are not correct
for this processor.

Brandolese et. al. [7] focus on an Intel i80486DX processor. They break the processor
down into components, such as fetch-and-decode, arithmethic and logic unit, write regis-
ter, load, store and branching units. For any instruction executing in the pipeline, they
estimate the average current per processor cycle in each of these units. This approach
is similar to Lee et. al. [31], where the authors estimate the energy (in joules) per cy-
cle in each component of an ARM7TDMI processor using regression. Sami et. al. [56]
extend this method to VLIW cores. This is more challenging because the number of inter-
instruction and other effects is much higher due to the data parallelism in these types
of cores. The authors’ methodology to model power of such architectures is therefore
based on distinguishing the processor components where the rate of energy consumption
is independent (their power usage do not depend significantly on other components).

3.5 Model Accuracy

In our first modelling attempts [63], we aimed to build a CMOS-based model for the
Tegra K1’s CPU clusters and RAM under our video processing filters. The prediction error

3.5. Model Accuracy 41

CPU Frequency [MHz]
200

700
1200

1700
2200

Memory Frequency [MHz]

300
500

700
900

Estim
ation error [%

] 60
40
20
0

20
40
60

(a) CMOS-based model
(CPU, DCT).

CPU Frequency [MHz]
200

700
1200

1700
2200

Memory Frequency [MHz]

300
500

700
900

Estim
ation error [%

] 60
40
20
0

20
40
60

(b) Rate-based model (CPU,
DCT).

CPU Frequency [MHz]200
700

1200
1700

2200

Memory Frequency [MHz]

300
500

700
900

Estim
ation error [%

] 60
40
20
0

20
40
60

60

45

30

15

0

15

30

45

60

(c) State-based model (CPU,
DCT).

GPU Frequency [MHz]
200

400
600

800EMC Frequency [MHz] 100
300

500
700

900

Estim
ate error [%

]

80
60
40
20
0

20
40
60
80

(d) CMOS-based model (GPU, MVS).

GPU Frequency [MHz]
200

400
600

800

EMC Frequency [MHz]

100
300

500
700

900

E
stim

a
te

 e
rro

r [%
]

80

60

40

20

0

20

40

60

80

60

45

30

15

0

15

30

45

60

(e) Rate-based model (GPU, MVS).

Figure 3.3: Power estimation error for common model types on the Tegra K1’s CPU (top
row, four cores) and GPU (bottom row).

of this model, for each filter, can be seen in Figure 3.2, plotted over all CPU and memory
frequencies. Three different core configurations (one, two or three CPU cores powered)
are shown. While the average error is between 6-7 % over all frequencies, we observed
more substantial modelling errors at different frequencies and core configurations. For
example, our model overestimated power for the rotation filter running on three cores
by an average 13.4 %, but on one core, the average error was only 5.1 %. Furthermore,
at the lowest CPU and memory frequency points, the error is much smaller. The lesson
from these results is that, despite extensive efforts to build an as accurate power model
as possible, the estimated error may vary significantly depending on the number of cores
and frequencies used. It is rare that authors of power models perform such extensive
validation over hardware configurations, and especially frequencies.

Motivated by the large variations in prediction error over different hardware configu-
rations and frequency levels, we built power models for all the major categories of models:
state-, rate- and CMOS-based models. The models are built individually for the CPU and
GPU. Through extensive verification over the different core configurations and operating
frequencies, the results show significant variation in accuracy on our platform. Consider
for example the CMOS-based model in Table 3.1. The training data for this model is
generated by running our filters over all possible CPU, GPU and memory frequencies.
Average capacitive load per CPU, GPU and memory clock cycle, as well as leakage cur-
rents on these rails, are estimated directly using multivariable, linear regression. We
notice that GPU rail leakage is now negative. This indicates that there are already some
assumptions that are incorrect. Furthermore, the coefficients that are directly comparable
to our more accurate hybrid model presented in Section 4.7 are much higher, such as the

42 Chapter 3. Evaluation of State of the Art Power Modelling Methodologies

CMOS-Based
Predictor Coefficient Description

CPU

ρcore,clk 591.9 pC
V

LP core clock
Vcore 172.6mA Core rail leakage

ρhp,clk1 579.1 pC
V

HP core clock (first core)

ρhp,clk2 514.4 pC
V

HP core clock (second core)

ρhp,clk3 413.7 pC
V

HP core clock (third core)

ρhp,clk4 317.6 pC
V

HP core clock (fourth core)
Vhp 377.4mA HP rail leakage

ρmem,clk 342.1 pC
V

Memory clock
Pbase 1.08W Base power

GPU

ρgpu,clk 3116.7 pC
V

GPU clock
Vgpu −2239.4mA GPU rail leakage

ρmem,clk 528.1 pC
V

Memory clock
Pbase 3.65W Base power

Table 3.1: CMOS-based model predictors.

average capacitive load per cycle. This is because the CMOS-based models neglect hard-
ware utilisation in for example the GPU’s integer and floating-point units. The cost of
utilising these are now estimated as an integral part of the average cycle cost. Our refined
model in Section 4.7 captures switching activity at a more detailed level, attributing it
to individual instructions, cache usage and memory activity instead of only the average
capacitive load per cycle.

The accuracy of the CPU- and GPU-model is shown in Figure 3.3a and 3.3d. The
models are verified using our DCT and MVS filters over all frequency combinations. We
see that the accuracy of the CMOS-based CPU-model generally remains constant with
an underestimation of power at around 20 %-30 %. At the lowest CPU frequencies, the
error is close to 0 %. For the GPU-model, the error is generally below 15 % but it can
also be very high up to 50 % at very high GPU and memory frequencies. On average, the
model predicts reasonably well but these plots show that it might also severely mispredict
power usage. The most important point from these results is that the observed accuracy
dependends on the frequency levels in use at the time of the verification. If this is not
controlled, the frequencies set by the DVFS algorithms are used.

With limited opportunity to measure rail power, the underlying reason for the predic-
tion error of CMOS-based models is hard to determine. However, they implicitly assume
that the capacitive load per clock cycle in one domain, such as the memory rail, is inde-
pendent of the frequency in others, such as the CPU. This is because CMOS-based models
use multivariable, linear regression to estimate the average capacitive load per clock cycle
in different architectural units. Another way to interpret this is that the models assume
that increasing memory frequency will only increase switching activity on the memory rail.
It is trivial to imagine scenarios where this assumption may fail. For example, when exe-
cuting a memory-intensive workload, it is reasonable to expect that the switching activity
per clock cycle on both the CPU and memory rail will increase with memory frequency.
Furthermore, CMOS-based models assume that the average capacitive load per clock cycle
in different domains is constant, independently of the workload. This assumption is also
questionable. Authors of instruction- and rate-based models, such as Tiwari et. al. [67]
and Pricopi et. al. [51] show that power varies depending on how applications excersise
the underlying hardware, such as processor pipeline stages and hardware units. In our
CMOS-based model [63], we took this into account and modelled switching capacitance

3.5. Model Accuracy 43

Rate-Based
Predictor Coefficient Description

CPU

ρcore,clk 397.0 W
eps

LP core clock

ρhp,clk1 499.2 pW
eps

HP core clock (first core)

ρhp,clk2 415.2 pW
eps

HP core clock (second core)

ρhp,clk3 377.9 pW
eps

HP core clock (third core)

ρhp,clk4 319.7 pW
eps

HP core clock (fourth core)

ρmem,clk 582.0 pW
eps

Memory clock

ρcpu,l1l2 −60.5nW
eps

Cache maintenance, L1 and L2

ρcpu,l2ram 51.0nW
eps

Cache maintenance, L2 and RAM

ρcpu,ips 79.0 pW
eps

Global instructions

Pbase 1.50W Base power

GPU

ρgpu,L2R −18.6nW
eps

L2 cache 32 B reads

ρgpu,L1R 0.0nW
eps

L1 cache 32 B reads

ρgpu,L1W −3.7nW
eps

L1 cache 32 B writes

ρgpu,int 62.4 pW
eps

Integer instructions

ρgpu,f32 66.5 pW
eps

Single-precision instructions

ρgpu,f64 279.8 pW
eps

Double-precision instructions

ρgpu,cnv 326.9 pW
eps

Conversion instructions

ρgpu,msc −300.3 pW
eps

Miscallaneous instructions

ρcore,clk 887.0 pW
eps

LP core clock

ρcpu,ips 1.4nW
eps

Global instructions

Pbase 2.83W Base power

Table 3.2: Rate-based model predictors.

individually for our different filters.
We also built rate-based models for the Tegra K1’s CPU and GPU. The predictors

and estimated coefficients can be seen in Table 3.2. The CPU model here considers
individual core clock frequencies, cache maintenance operations and the number of (glob-
ally executed) instructions. The GPU model is intended to be more similar to Pricopi’s
model [51], where we disregard the clock but allow for instruction, L1 and L2 cache utili-
sation to be measured. The error of these models is shown in Figure 3.3b and 3.3e, where
we see that the models still mispredict substantially across frequencies. For the CPU, the
estimation error is closer to 0 % at CPU frequencies below 1.2 GHz. The error increases
towards higher CPU frequencies, reaching a maximum of around 20 %. The GPU model
is worse than its CMOS-based equivalent. The model mispredicts up to 70 % on the
maximum and minimum GPU and memory frequency combinations.

The strength of rate-based models is that they capture consumption of energy that
occurs as a result of hardware utilisation. Therefore, they can estimate accurately the
power usage of for example integer and floating-point units in processors. However, they
disregard variations in voltage. This may not be a problem for devices where voltage does
not change. However, we believe that for modern SoCs such as the Tegra K1, it has a
profound effect on the model’s accuracy. The GPU coefficients, for example, represent an
average over a set of extensive tests where all GPU and memory frequencies are varied.
This is why the model shows good accuracy “in the middle” (green area of Figure 3.3e):

• Increasing GPU and memory frequency beyond the green area increases voltage on
the GPU and core rails, effectively increasing dynamic and static power, and causing
the model to underpredict.

• Decreasing GPU and memory frequency below the green area decreases voltage on

44 Chapter 3. Evaluation of State of the Art Power Modelling Methodologies

State-Based
Predictor Coefficient Description

CPU
Php 164mW HP rail on
Pcore 367mW Core on
Pbase 1.50W Base power

Table 3.3: State-based model predictors.

the GPU and core rails, effectively decreasing dynamic and static power, and causing
the model to overpredict.

Similar observations can be made for the CPU model. Below 1.2 GHz CPU frequency,
the model error is very close to 0 %. However, increasing frequency above this also in-
creases CPU voltage, again increasing static and dynamic power and causing the model to
underpredict. The error plot shows little effect on changes in terms of memory frequency.
It is possible that the increase in core voltage as memory frequency increases is covered
by the relatively large cost per memory clock cycle.

We also built a state-based model for the CPU. The GPU, which doesn’t expose more
than a single hardware state (rail on or off), is ignored. For the CPU, we have a base state
where processing is restricted to the LP core. The HP rail exposes two states: on and off.
Additionally, power gating is tracked as normal on each individual core (on the HP and
core rails), which also exposes on- and off-states. The coefficients can be seen in Table 3.3.
As expected, this model performs badly (see Figure 3.3c), overpredicting power by 60 %
at low memory and CPU frequencies, and underpredicting by 60 % at high frequencies.
This may be caused by the same reasons as for the rate-based models expressed in the
previous paragraph. State-based models additionally predict badly because they ignore
both changes in voltage and dynamic power. They are instead naturally good at capturing
the quiescent power related to the state that components are in, which is directly related
to especially leakage currents.

3.6 Summary

In this section, we have reviewed the state-of-the-art power modelling methodologies.
State-, rate- and CMOS-based power models are used to describe the power usage of
mobile devices and SoCs, where rate-based models are the most prominently used for
devices such as smart phones. We have seen that regression is the most widely used
method to estimate power model coefficients. Self-constructive models, where the power
model is built by the same device as it is to be used for, have been introduced in recent
years. These models are promising because no device, even if it is of the same brand
and type, is guaranteed to share the same physical characteristics in terms of energy
consumption.

We have built power models according to each of the main power modelling methodolo-
gies of state-, rate- and CMOS-based models. While these have their individual strengths,
they also have weaknesses that cause them to mispredict power on the Tegra K1. State-
based models, for example, are good at reflecting static power, which is always present
depending on the hardware state and supply voltage. They do not, however, take into
account the effects of dynamic power as a result of hardware utilisation, for example as a

3.6. Summary 45

result of executing instructions. Most of these also do not consider voltage levels on the
SoC. Rate-based models are good at capturing dynamic power, because they correlate
the power usage of a platform with hardware activity. Active processor cycles, cache
misses and instruction execution are all examples of popular predictors for rate-based
models. However, they do not consider changes in voltage levels on the SoC or leak-
age currents. Also, there are no rate-based models that take into account the effects of
complex power-saving mechanisms such as core- and clock-gating. CMOS-based mod-
els have strong theoretical foundations. These models take into account both static and
dynamic power, as well as voltage variations. However, they correlate dynamic power
with operating frequency of the various components (CPU, GPU or memory) of the SoC.
Because every process is composed of a unique instruction mix, the way in which they
excersise the underlying hardware and transistors is different. Therefore the estimated
capactive load per cycle will vary depending on the workload that was used in the mod-
elling phase. In summary, the three main categories of models can mispredict power usage
of the Tegra K1 substantially because of these fundamental issues.

It is important to emphasise that the model accuracies presented in this chapter were
evaluated on the Tegra K1. They do not represent the accuracy of the models found
in the literature. However, what can be noted about these works is that the models do
not usually undergo extensive testing over different operating frequencies and workloads.
This is also hard to test without access to the various devices and SoCs found in the
literature. Older devices and SoCs may have been simpler, and this may be why the
models have not been validated more extensively. The Intel XScale [11], for example,
has only five CPU frequency operating points. It is also possible that frequency and/or
voltage scaling has not been implemented, in which case a state-based model may have
performed adequately. The results presented in this chapter are meant to demonstrate
that the mathematical abstractions, the core ideas behind these, and the predictors typi-
cally used in literature, can mispredict power on a modern platform such as the Tegra K1.
Power management mechanisms such as core-, clock- and rail-gating are for example never
considered in related work, and the lack of rail voltages in rate-based models can cause
these to mispredict substantially. An original modelling methodology is necessary to suc-
cessfully capture static and dynamic power usage of the various compute elements on the
Tegra K1 SoC, and bind this power usage to software activity.

46 Chapter 3. Evaluation of State of the Art Power Modelling Methodologies

Chapter 4

High-Precision Power Modelling

From our discussion in the previous section, we have seen that state-, rate- and CMOS-
based models predict power with varying degrees of accuracy on the Tegra K1. This is
because they all have their own strengts and weaknesses, where none of them are able
to capture all the aspects that are required to model power with high accuracy. In this
chapter, we motivate, develop and evaluate our high-precision power modelling method-
ology for the Tegra K1. Our method is able to capture the power usage of the Tegra K1
with an accuracy close to 100 %, achieves unprecedented insight into the power usage
of the Tegra K1 SoC, and bridges the gap between software activity, power management
mechanisms and energy consumption in the Tegra K1’s various compute elements and
memory. The improvement in modelling accuracy is made possible by correlating dy-
namic power with fine-grained hardware- and software-activity measurements, while at
the same time accounting for voltage, in all of the Tegra K1’s processors and memory.
Additionally, static power usage is carefully modelled by considering rail- and core-gating
mechanisms that shut off leakage current in various parts of the SoC. Capacitive loads and
leakage currents are estimated based on linear, multivariable regression through carefully
developed model training benchmarks. The resulting power model is evaluated using our
video processing filters.

The outline of this chapter is as follows. In Section 4.1, we start by explaining the
fundamental concepts behind our model. In Section 4.2, we outline how hardware and
software activity is measured in the various components of the SoC. Our regression-based
method, as well as our model training benchmarks, are explained in Section 4.3. We also
review some major design issues that have impacted the development of our model in
Section 4.4. Individual models for the Tegra K1’s GPU and CPU are built and evaluated
in Section 4.5 and 4.6. Full-hybrid models for all compute cores on three Tegra K1
development kits in Section 4.7.

4.1 Concept and Derivation

In the previous chapter, we have evaluated the three state-of-the-art power modelling
methodologies for modern, mobile devices. We have argued that these have individual
strenghts and weaknesses that cause them to mispredict power on the Tegra K1 SoC.
CMOS-based models, for example, are theoretically well founded, considering both static
and dynamic power as well as variations in voltage levels. However, the methods that

47

48 Chapter 4. High-Precision Power Modelling

are used to build them fail because they assume independency between clock frequency
and switching capacitance per cycle in different power domains. Additionally, they often
assume that switching capacitance per cycle is constant and independent of the workload.
We expect switching activity to vary depending on how software exercises the underly-
ing hardware, for example by executing different instruction types and utilising different
hardware components. In principle, rate-based models are good at tackling exactly this
problem because they correlate hardware activity with power. Their strength is therefore
their ability to capture dynamic power. However, they ignore both rail voltage and static
power. State-based models are in turn naturally good at capturing static power, because
they abstract hardware into components with associated states. However, these models
again ignore dynamic power, and, like rate-based models, voltage. Additionally, we have
seen that among the vast range of models for different types of devices in Section 3, there
is considerable variety in the type and number of predictors that are used to model power.
These all ignore many effects that are related to gating of rails, cores and clocks. For a
heterogeneous architecture such as the Tegra K1, it is important to take all these factors
into account in the resulting model.

The total power usage of the Tegra K1 can be expressed as the sum of power usage of
the core (Pcore), HP (Php), memory (Pmem) and GPU (Pgpu) rails:

Ptotal = Pcore + Pmem + Pgpu + Pbase (4.1)

where base power Pbase is assumed to be a constant power draw of idle components
within the Tegra K1 SoC and on the Jetson-TK1 development board. The power usage
of the networking interface and persistent memory (embedded 16 GB EMMC) is assumed
to be constant, where we run all experiments in a RAM filesystem with as little network
communication as possible.

Following our discussion on power modelling, we will now develop an improved model
based on the CMOS equations. The core improvement is that we will express dynamic
power on each rail based on measurable hardware events occurring on that rail. This is
similar to rate-based models, but we will also compensate for rail voltage. Dynamic power
on a rail is expressed as:

PR,dyn =

NR∑

i=1

CR,iρR,iV
2
R (4.2)

where, on rail R, ρR,i is a hardware event (in events per second), CR,i is the capacitive
load per event per second (in coloumbs per volt), NR is the number of hardware activity
predictors on the rail and VR is the rail voltage. Expressed differently, we model dynamic
power on a rail as the sum of dynamic power contributors on that rail. The contributors
are based on measurable hardware activity, where every hardware event is assumed to
trigger transistor switching activity with a specific capacitive load. The total power usage
of the Jetson-TK1 becomes:

Pjetson =
R∈R∑

(PR,dyn + PR,stat) + Pbase (4.3)

where PR,stat is the leakage current on that rail (see Equation 2.3) subject to power
management mechanisms such as rail- and core-gating. The resulting expression is linear

4.2. Measuring Hardware Activity 49

CPU - ARM Cortex-A15 4-Plus-1

Core Rail

HP Cluster
 HP Core 2

32 KB L1
Data

32 KB L1
Instruction

Integer NEON
VFP

 HP Core 1

32 KB L1
Data

32 KB L1
Instruction

Integer NEON
VFP

2 MB L2 Cache

 HP Core 3

32 KB L1
Data

32 KB L1
Instruction

Integer NEON
VFP

 HP Core 4

32 KB L1
Data

32 KB L1
Instruction

Integer NEON
VFP

 LP Companion Core

32 KB L1
Data

32 KB L1
Instruction

512 KB L2 Cache

Integer NEON
VFP

Core
HP Rail

0.90 V

1.05 V1092 MHz

51 MHz

0.80 V

1.05 V2320 MHz

204 MHz
cpu_g Voltage

cpu_lp Voltage

1 GB
DDR3

32 bit 32 bit

1 GB
DDR3

32 bit64 bit
To GPU

Memory Controller (MC)

Arbiter Protocol

External Memory Controller

MC Clock

462 MHz

6 MHz
emc / 2 Voltage

EMC Clock

0.90 V

1.05 V 924 MHz

12 MHz

emc Memory
Rail

Core
Rail

1.35 V

1.35 V

Figure 4.1: Overview of the Tegra K1 CPU architecture.

where the unknown coefficients are the leakage currents on each rail IR,leak, capacitive
loads CR,i and base power Pbase. We solve this equation for the unknown variables with
multivariable, linear regression.

4.2 Measuring Hardware Activity

To build an accurate power model for the Tegra K1 and its various subsystems such as
the LP core, HP cluster, GPU and RAM, we want to express dynamic power in terms
of measurable hardware activity in each subsystem. This constitutes a major task in
understanding how software excersises the underlying hardware and which factors are
important to model power usage. Hardware activity can be measured using standard HPC
collection libraries such as PERF and CUPTI. However, we had to implement our own
systems to measure activity in hardware units such as the external memory controller. In
addition to measurements that reflect dynamic power, it is also important to understand
when and how power management mechanisms turn off individual components, impacting
both dynamic and static power. In this section, we outline the how we measure hardware
activity in the Tegra K1’s processors and memory.

4.2.1 CPU

The Tegra K1 is composed of two “clusters” of CPUs: the single LP core situated on the
core rail and the quad-core HP cluster on the HP rail (see Figure 4.1). As described in

50 Chapter 4. High-Precision Power Modelling

Chapter 2, all five cores are of the type ARM Cortex-A15 [1]. The Tegra K1 technical
reference manual [44] only specifies slight differences in L2 cache size and memory access
latency between the LP and HP cluster’s CPU cores. Therefore, the CPU cores are
assumed to be otherwise electrically identical. This simplifies modelling because factors
such as leakage current, cache and instruction cost can be assumed to be similar across
the cores. Hardware activity for ARM cores is popularly tracked with the Linux PERF
library. PERF provides direct access to various performance counters, HPCs, and insight
into hardware activity within each CPU core. However, we also found it necessary to
implement spesialised kernel drivers to model the effects of power management.

Every clock cycle in every CPU core triggers switching activity in the core’s transis-
tors. The number of clock cycles per second is therefore a classical predictor, and has
been shown to have strong correlation with power in other research [70]. However, authors
never consider the effect of gating mechanisms. The Tegra K1’s CPU cores are subject
to active power management. The HP rail with its quad-core cluster and clock generator
is for example only powered when the HP cluster is active. Otherwise, the HP rail is
off, effectively removing static and dynamic power on that rail entirely. When powered
but idle, cores are either clock- or power-gated. Clock-gating shuts off clock distribu-
tion through the core circuitry, removing dynamic power entirely from that core. Core
power gating additionally blocks voltage supply to individual cores and removes leakage
current. Due to these effects, the leakage current of the LP or HP rail is therefore:

IR,leak = δ(IHP/core,leak +NHP/coreIcpu,leak) (4.4)

where IHP/core,leak is the base leakage current on the HP or core rail, δ ∈ [0, 1] indicates
whether the rail is on or off, NHP/core is the number of active cores on each rail and Icpu,leak
is the individual leakage current of each core. Unfortunately, there are no standard
HPCs that track when and for how long individual cores on individual rails are power-
gated. Such information is not exposed through standard APIs or HPCs. Instead, we
implemented our own kernel tracing framework that expose the total time (in µs) each
individual core is power-gated. This information is then used to track each core’s uptime in
any time interval. Note that this approach is likely to overestimate the actual core uptime,
but exactly by how much is impossible to know. This is because there is some extra
overhead between our kernel tracing framework measuring the time when the Tegra K1’s
power management drivers are asked to power-gate cores, until the cores are physically
gated in hardware. Similarly, the same reasoning can be made when the cores are un-
gated until our tracing framework detects this in software. To measure clock-gating,
we originally developed another kernel tracing framework to measure the time when the
Tegra K1’s power management driver requested individual CPU cores to be clock-gated.
However, in the course of our modeling efforts, we discovered that the clock cost was
modelled inaccurately (see for example the T-17 model in Section 4.7). This occurs
because the CPU cores are also clock-gated in hardware, and not only by software requests.
To accurately measure clock-gating, we therefore resorted to use the active cycles

PERF HPC.
Caches are also often assumed to have non-negligible effect on power. Consequently,

researchers use HPCs to monitor cache activity as well. The Tegra K1 is comprised of a
two-level cache hierarchy (see Figure 4.1). Each core has a private 64 kB L1 cache divided
into two equally-sized 32 kB instruction- and data-cache banks. The HP cluster and LP

4.2. Measuring Hardware Activity 51

core has 2 MB and 512 kB L2 cache, respectively, serving any type of access. The ARM
HPC implementation [2] defines three types of HPCs reflecting hardware utilisation in
these caches:

• Accesses count the number of read or write accesses to the respective cache. There
are two counters counting instruction- and data-access to the L1 cache.

• Writebacks count the number of memory accesses that cause a writeback of data
towards off-chip memory. These have separate counters for data- and instruction-
accesses, with a total of four counters.

– L1 cache writebacks count writebacks to L2 or RAM.

– L2 cache writebacks count writebacks to RAM.

• Refills count the number of memory accesses that cause a refills of data towards L1
cache. These have separate counters for data- and instruction-accesses, as well as
Transaction Lookaside Buffer (TLB) refills, with a total of five counters.

– L1 data cache refills count refills from L2 or RAM.

– L2 data cache refills count refills from RAM.

– L1 instruction cache refills.

– L1 data TLB refills.

– L1 instruction TLB refills.

There are in total 11 HPCs tracking all types of cache utilisation in each core. With
a total of six available HPCs per core, it is impossible to track these simultaneously.
This is also not reasonable given that we do not know the internal workings of the cache
hierarchies, and how these HPCs affect power usage. It is likely that most of these events
contribute to power usage. However, we made several observations that were important to
the cache power model. For example, we discovered that cache refills, that are triggered by
accesses to empty cache lines, are usually accompanied by cache writebacks. This occurs
because the Tegra K1’s CPU cache eviction policy is least-recently-used: Over time, all
cache lines are filled, and accesses that hit empty cache lines cause a writeback of the
cache contents to outer memory hierarchies. This is to create new space in the L1 cache
for the stale data. In practice, this means that the rates at which the cache writebacks
and refills occur, is approximately the same in any time interval. Therefore, it becomes
impossible to isolate the cost of both using regression. This important detail conserves
HPC space, as we only need to track either refills or writebacks on the L1 and L2 caches.
Consequently, however, the estimated cost of these events will reflect the cost of both a
refill and a writeback. We therefore model cache utilisation in terms of communication
between the cache hierarchies as follows:

ρcom,l1l2 = (Nl1d,rf −Nl2d,rf) +Nl1i,rf (4.5)

ρcom,l2ram = Nl2,rf (4.6)

In Equation 4.5 and 4.6, ρcom,l1l2 reflects cache communication between L1 and L2
and ρcom,l2ram reflect cache traffic between L2 and RAM. Nl1d,rf is the number of L1 data

52 Chapter 4. High-Precision Power Modelling

Core Core

Core Core

Core Core

Core Core

DP Unit

DP Unit

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

Te
xt

ur
e

DP Unit

DP Unit

Core Core

Core Core

Core Core

Core Core

Te
xt

ur
e

Core Core

Core Core

Core Core

Core Core

Te
xt

ur
e

Core Core

Core Core

Core Core

Core Core

Te
xt

ur
e

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

DP Unit

DP Unit

Te
xt

ur
e

Core Core

Core Core

Core Core

Core Core

Te
xt

ur
e

Core Core

Core Core

Core Core

Core Core

Te
xt

ur
e

Core Core

Core Core

Core Core

Core Core

Te
xt

ur
e

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

DP Unit

DP Unit

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

12 KB
Tex Cache
Data Read

12 KB
Tex Cache

12 KB
Tex Cache

Lo
ad

 /
S

to
re

64
 K

B
 S

h
a

re
d

 M
em

o
ry

 /
L

1
C

ac
h

e

Instruction Buffer

Warp Scheduler

Register File
16.384 x 32-bit

Operand collectors

Dispatch Dispatch

Instruction Cache

Instruction Buffer

Warp Scheduler

Register File
16.384 x 32-bit

Operand collectors

Dispatch Dispatch

Instruction Buffer

Warp Scheduler

Register File
16.384 x 32-bit

Operand collectors

Dispatch Dispatch

Instruction Buffer

Warp Scheduler

Register File
16.384 x 32-bit

Operand collectors

Dispatch Dispatch

GPU - GK20A

12
8

K
B

 L
2

C
ac

he

LP Core

32 KB L1
Data

32 KB L1
Instruction

512 KB L2 Cache

2 MB L2 Cache

HP Cluster

CPU - ARM Cortex-A15 4-Plus-1

64 bit

32 bit

GPU Rail
72 - 852 MHz
0.79 - 1.05 V

Memory Rail
40.8 - 924 MHz
1.35 V

Core Rail
1.092 GHz
1.05 V

1 GB
DDR3

32 bit 32 bit

1 GB
DDR3

Memory Controller (MC)

Arbiter Protocol

External Memory Controller

Integer NEON
VFP

Figure 4.2: Overview of the Tegra K1 GPU architecture.

cache refills from L2 or RAM, Nl2d,rf is the number of L2 data cache refills from RAM,
and Nl1i,rf is the number of instruction cache refills to L1. Because the L1 data cache refill
HPC in Equation 4.5 reflects both refills that occur from L2 and RAM, it is important
to remove the refills from RAM to L2 cache from the equation. We have also added
the number of L1 instruction cache refills. Originally, we also attempted to include TLB
refills. However, this significantly reduced the quality of the resulting model. We do not
include cache access costs, assuming this to be an integrated part of the CPU instruction
cost.

As software executes instructions on the cores, they excersise the underlying hard-
ware in various architectural units such as the integer, NEON and VFP units in Fig-
ure 4.1. Pricopi et. al. [51] suggest to use the individual types of instructions (integer,
VFP, NEON, data movement etc.) executed as model predictors for an ARM big.Little
CPU architecture. However, the PERF HPCs counting these types of hardware events are
not implemented on the Tegra K1. The only HPC reflecting instruction execution on the
Tegra K1 is the total instructions exectued counter. This essentially complicates
modelling. Without the capability to count the number and type of each instruction
executed on the cores, the model looses generality. However, the PERF HPCs can be
counted on a per-process basis. We therefore assume that, over time, the capacitive load
per generic instruction executed per process will remain approximately constant. We be-
lieve this to be a valid assumption especially for video processing filters, where the same
work is essentially being done repeatedly over consecutive frames in our video processing
filters. The downside of this approach is however that instruction power must be carefully
evaluated over different processes in the system, and specific care must be taken to vary
the processes’ instruction throughput in accordance to each other, in order for regression
to estimate meaningful coefficients to these events.

4.2. Measuring Hardware Activity 53

1000 1200 1400 1600 1800 2000
Timestamp [ms]

1.5

2.0

2.5

3.0

3.5

4.0
Po

w
er

[W
]

Normal Run
Bugged Run
Last CUDA Call
GPU Railgate

Figure 4.3: Effects of GPU rail- and clock-gating timers.

4.2.2 GPU

The Tegra K1 contains a Kepler-based [42] 192-core NVIDIA GPU. Differently from the
CPU, the Tegra K1’s GPU is a more parallel architecture. While the CPU is only able
to run a maximum of four threads in parallel, the GPU is able to run four groups of
32 concurrent threads called warps at the same time through its four warp schedulers
(see Figure 4.2). GPU threads are concurrently utilising various hardware units, such
as the compute cores, load/store and Special Function Units (SFUs). Due to the high
number of concurrently active threads, memory pressure is substantial. If for example
128 concurrent threads access a unique element in an array of 128 8 B double precision
floating point values, memory throughput easily becomes a bottleneck. Furthermore,
threads often cooperate and share data. For these reasons, the Tegra K1’s GPU has a
64-bit interface with RAM (where the CPU only has 32-bit), a 128 kB L2 cache and
flexible 64 kB L1 cache that can be used not only to cache data but also to share data
between threads.

Like the Tegra K1’s CPU, the GPU is also subject to power management. However,
there is no publicly available information about when this occurs and what hardware
units are affected. Early versions of the Jetson-TK1’s GPU kernel drivers exposed two
files in sysfs: railgate delay and clockgate delay. These parameters were set to 500
and 50 ms, respectively. The effects of these timers is shown in Figure 4.3. The plot
shows the measured Jetson-TK1 power usage over time, with the final CUDA API call
at approximately 1200 ms. The figure reveals that after approximately 500 ms, there is a
significant drop in power where the GPU rail is powered down, eliminating static power
usage on this rail. These types of gating effects are easy to observe, but it is very hard
to ascertain whether individual GPU units, such as the compute cores, are subject to for
example clock-gating during runtime.

In our work with the Tegra K1, we use CUPTI HPCs to track hardware utilisation in
the GPU. However, after some time, we discovered that there is a power management bug
involved in using these which is only possible to see if you directly measure the GPU rail
voltage. Any call to the CUPTI library disables power management on the GPU. It is no

54 Chapter 4. High-Precision Power Modelling

longer clock- or rail-gated for the remaining uptime of the Tegra K1. As can be seen in
Figure 4.3, while this bug is active, there is no longer any visible change in power usage
500 ms after the last CUDA call. Additionally, the platform power usage is very high,
approximately 0.84 W higher while the GPU rail is powered but idle (between 1200 and
1650 ms). Incidentally, this number closely matches the estimated GPU clock power in
Section 4.7. This test was run at GPU frequency 540 MHz, where the GPU rail voltage is
875 mV, with an estimated GPU clock power of 0.87 mW. This indicates that the GPU
clock is in fact stuck, and never gated, after CUPTI calls. This unfortunately forces us
to ignore the effects of clock- and rail-gating on the Tegra K1’s GPU, but simplifies GPU

clock and GPU leakage modelling. Because the GPU clock and the GPU rail is never
gated, estimation of these power contributors is a simple matter of logging the GPU clock
frequency and rail voltage.

The Tegra K1’s GPU cache is a complex memory unit. With almost a hundred CUPTI
HPCs, the challenge is to identify those that reflect hardware utilisation as generically
as possible. For example, the HPCs gld throughput and gst throughput reflect RAM
read and write throughput. However, the source of the read or write is transparent. It
can reflect a read or write operation from or to actual RAM, L2 and L1 cache. We expect
the costs for each of these types of memory accesses to be different. Pricopi et. al. [51] use
these counters directly. In contrast, our goal is to track these types of hardware utilisation
at a more fine-grained level where the cost of each memory access types, such as L1 and
L2 reads and writes, can be found.

L2 cache utilisation can be tracked by two CUPTI HPCs: l2 subp0 total read -

sector queries and l2 subp0 total write sector queries. These counters count the
raw number of 32 B reads and writes to that cache. However, we have been unable to
estimate a capacitive load per 32 B L2 cache write. The estimated load has a higher
standard deviation than the other coefficients, and is always much smaller than the other
coefficients. We believe this indicates that the GPU’s L2 cache is writeback. There is no
evidence of this in any publicly available documents for the Tegra K1, but if true means
that the GPU’s memory write operations are immediately evicted to RAM with negligible
switching activity on the GPU rail. As a result we do not estimate any cost to L2 cache
writes. Instead, hardware activity associated with RAM writes is measured directly as
an integrated part of active GPU memory cycles (see Section 4.2.3).

For the L1 cache, there is no possibility to measure directly the physical number
of reads and writes per second (as for the L2 cache). Instead, L1 hardware utilisation
must be approximated through other HPCs that reflect the various means of using it.
The GPU’s L1 cache is a flexible cache which is used for several purposes. First, it is
used to cache local memory. Exactly what type of memory this is and what is being
cached is unclear and poorly documented from NVIDIA. However, it is at least used
to cache data related to GPU code (such as code and function parameters) as well as
local register spills (which occurs when GPU kernels are out of available registers during
computation). Local memory accesses can be tracked with the l1 local store hit and
l1 local load hit HPCs. These counters increment by one for each transaction. L1
cache is also used to cache RAM reads, not writes. This type of utilisation can be tracked
with the l1 global load hit HPC. In this case the cached data is not coherent with
RAM.

L1 cache is also used as shared memory. From a developer’s perspective, this is the

4.2. Measuring Hardware Activity 55

most common and flexible way of using L1 cache, providing a convenient way to share
data between groups of threads. Shared memory accesses can be tracked through the
HPCs l1 shared load transactions and l1 shared store transactions. However,
capacitive loads cannot be attributed directly to these counters. For example, in the
event that a group of 32 threads read the same shared memory location, that value is
broadcasted to all threads of that warp. The value is physically read once, but the HPC
counting the number of shared loads will inrease by 32. Therefore, the counters must be
multiplied with the shared efficiency HPC:

L1shared,load/store = L1shared {load/store} × shared efficiency (4.7)

Where the shared efficiency HPC is the ratio between actual shared memory read
or write transactions and the requested. However, this solution has drawbacks. The
shared efficiency HPC does not distinguish between reads and writes. If the capacitive
load per L1 cache shared read or write is different, it becomes impossible to estimate the
energy cost related to these events. Fortunately, as we will see in Section 4.7, the estimated
capacitive load per shared read and write is similar.

In summary, L1 cache utilisation is approximated as follows:

L1reads = L1local,read + L1RAM,read + L1shared,load (4.8)

L1writes = L1local,write + L1shared,store (4.9)

where L1local,∗ is the number of local memory reads or writes and L1RAM,read is the
number of cached RAM reads.

Instruction power is easier to track on the GPU because the CUPTI library provides
access to all types of instructions executed. The following HPCs are used to estimate
instruction power:

• inst fp 32 / inst fp 64 counts floating point operations on different datatypes
(32-bit or 64-bit operations).

• inst integer counts integer operations.

• inst bit convert counts bit conversion instructions.

• inst control counts control flow instructions, such as branching and jumps.

• inst misc counts miscellaneous instructions, such as register moves and NOP in-
structions.

In our experiments, we could not attribute a positive capacitive load to control instruc-
tions. Additionally, the last category of instructions, inst inter thread communication,
is not used in our multimedia workloads. We therefore removed these components from
the model.

56 Chapter 4. High-Precision Power Modelling

4.2.3 RAM

RAM is a computing resource which has never been directly considered in literature. To
some extent, it can be argued that RAM power is indirectly considered in certain HPCs.
Cache misses [70], for example, are likely to trigger hardware activity in off-chip RAM.
However, no authors have attempted to estimate directly the cost of RAM hardware
utilisation from various components in the SoC. This is not only limited to the CPU
and GPU, but also other hardware peripherals such as PCI devices that also need to
communicate with the CPU through this channel.

By default, there is no way of measuring the number of RAM reads and writes. It may,
however, be possible to approximate RAM utilisation with local HPCs. For example, the
CPU has HPCs that count L2 cache refills and writebacks. However, this would occcupy
four HPCs (instruction + data) for tracking all types of data traffic to and from RAM.
As the Tegra K1’s CPU HPC implementation only supports seven concurrent HPCs to
monitor, this should be avoided to free up space for other counters. The Tegra K1’s GPU
again does not have any means to count RAM read and write traffic. Some NVIDIA
GPUs have counters for this type of hardware utilisation, but these have a dedicated
pool of GPU RAM. The Tegra K1 has only one RAM pool which is shared between the
GPU and the CPU. We believe this is why this CUPTI HPC is not implemented on the
Tegra K1.

The Tegra K1’s EMC does, however, have a specialised means of tracking utilisation

of RAM. A dedicated hardware monitoring unit called the activity monitor (ACTMON)
counts two important metrics:

• The total number of active memory cycles serving any system component (CPU,
GPU or other).

• The total number of active memory cycles serving GPU or other system components
(not including the CPU).

While these counters do not separate between reads and writes, the activity monitor
does provide an essential way to track RAM utilisation. We modified the driver for
the activity monitor to expose the total number of active memory cycles serving the
CPU or GPU (and other) units. Using this as a measure of RAM hardware activity, we
estimate capacitive loads to each of these hardware events. In addition to direct hardware
utilisation, RAM continuously maintains the consistence of its contents at every clock

cycle. It is never gated. Therefore, we also use the number of RAM clock cycles per
second as a hardware activity predictor.

4.3 Methodology

Our methodology to estimate coefficients (capacitive loads and leakage currents) of the
various components on the Tegra K1 is based on multivariable, linear regression. This
is similar to the majority of related work. In this regard, our goal is to design a set of
benchmarks that stress the various architectural units of the Tegra K1 in such a way
that meaningful (non-negative) coefficients can be estimated based on our power mod-
elling predictors. Negative coefficients in a power model, such as those we developed in

4.3. Methodology 57

Benchmark Description
Components / instructions under explicit stress

CPU
RAM
(CPU)

GPU
RAM
(GPU)

L2 L1 INT F32 F64 Conv. Misc.

Idle CPU GPU off, CPU in idle state.

CPU-workload GPU off, CPU processing.

Idle GPU GPU on and idle, CPU in idle state.

L2 Read Stresses L2 cache reads only.

L1 Read Stresses L1 cache reads.

L1 Write Stresses L1 cache writes.

RAM Stresses RAM activity (GPU memory cycles).

Integer Stresses integer arithmetic unit.

Float32 Stresses floating point unit.

Float64 Stresses floating point unit.

Control Stresses conversion instructions.

Misc Stresses miscellaneous instructions.

Table 4.1: GPU model training suite.

Section 3.5 and reported by for example Limin et. al. [34], are confusing because they
ultimately mean that power can be gained. Some researchers, such as Xiao et. al. [70],
use regression with non-negative coefficients to overcome this issue. However, we argue
that an accurate regression-based model should naturally produce non-negative leakage
currents and capacitive loads. If not, there should be clear explanations as to why they
are there. For example, with respect to static power, this is evident in that a closed,
non-powered circuit consumes energy when supplied with voltage. We should also be
able to attribute positive capacitive loads to hardware events (dynamic power), under
the assumption that the hardware event reflects the total switching activity in a group of
transistors.

Throughout the model development in this thesis, we have in many cases encountered
negative coefficients. These are almost exclusively dynamic power coefficients. Exam-
ples are the costs of CPU cache refills and writebacks in Section 4.2.1, as well as the
issues attributing capacitive loads to GPU L2 cache writebacks and control instructions
(Section 4.2.2). In most of these scenarios, we discovered or hypothesised reasons be-
hind these phenomenon. You cannot attribute capacitive loads to CPU cache refills and
writebacks, because the event rates do not vary enough when compared to one another.
The assumption that the GPU’s L2 cache is writeback, that explained why no switching
activity could be attributed to these events, was partly confirmed by NVIDIA executives.
Critically pursuing positive coefficients has also enabled us to discover bugs and other
issues that broke the model training phases, such as the CUPTI power management bug
(Section 4.2.2), or the fact the the rail voltages on the Tegra K1 is increased to 1.0 V
when the SoC is sufficiently cold. In summary, it has helped us develop and argue which
model predictors to use, as well as why we use them, to the extent possible. This is not
done by any related modelling efforts.

When developing our power model on the GPU and the LP core [64], we initially
attempted a straight-forward approach where we executed some of NVIDIA’s own sample
kernels over all combinations of GPU and memory frequencies. However, we quickly dis-
covered that this approach had a disadvantage. Logging the power modelling predictors,
we observed that several of the CUPTI HPCs occur at a rate which is proportional to
the frequency level used. For example, halving the GPU frequency halved the number of

58 Chapter 4. High-Precision Power Modelling

Benchmark Description
Components under explicit stress

Instruction Cost
RAM
(CPU)

L1 - L2 L2 - RAM INT FPU NEON

Idle CPU CPU idle. 2.50 nC
V

L1-WB L1 writeback
stress.

0.15 nC
V

L1-RF L1 refill stress. 0.18 nC
V

MMUL-INT Matrix mul-
tiply (integer
operations).

0.45 nC
V

MMUL-INT-VOL Same as above,
volatile memory.

0.27 nC
V

MMUL-F32 Matrix multiply
(floating point
operations).

0.36 nC
V

MMUL-NEON Matrix mul-
tiply (NEON
floating point
operations).

0.44 nC
V

Table 4.2: CPU model training suite.

L2 cache reads per second, but also halved the number of GPU integer instructions per
second. Since the predictors (hardware access rates) do not exhibit enough variation be-
tween each other, it is therefore impossible or at least challenging to estimate meaningful
coefficients (capacitive loads) to these events.

An important design goal, which is never mentioned by other authors, is therefore to
design training benchmarks such that we guarantee that the hardware access rates are
diverse enough between training samples to produce meaningful estimations. This can
only be achieved by careful development of training benchmarks that are designed with
this in mind. For our power models, we developed a methodology where we stress as
few architectural units as possible before adding units on top (in a “pyramid-fashion”,
see the GPU benchmarks in Table 4.1 and the CPU benchmarks in Table 4.2). This
is challenging in a number of ways. For example, it impossible to stress only integer
arithmetic without also stressing L1 or L2 cache utilisation. This is because the kernels
must perform global loads or stores. Otherwise, the GPU runtime driver detects that
the kernel is not performing meaningful computation, and optimises it away. Imagine for
example that we create a GPU kernel with one million threads, where each thread only
reads one value from an array of one million integers. The CUDA runtime management
will detect that these do not yield any meaningful output, and they will therefore never
be launched.

The only GPU component which can essentially be stressed alone on the Tegra K1
SoC is the L2 cache. For example, it is possible to have some million threads read the
same integer value from RAM, if that value is written back in an if-condition which we
know never evaluates to true. Subsequently, other units can be added on top by executing
integer, floating point or data movement instructions. RAM activity can be stressed by
using GPU assembly instructions that access volatile memory pointers. The resulting
benchmarks for the GPU are shown in Table 4.1. Similarly, for the CPU, the same
reasoning can be made. However, as outlined in the previous section, PERF exposes a
limited set of instruction HPCs and it is therefore simpler to design training benchmarks
(see Table 4.2). Here, we implemented benchmarks that stresses cache traffic between the
L1, L2 and RAM memory hierarchies. As mentioned in the previous section, the CPU
only has a single, global instruction counter. Therefore, our training benchmarks exercise

4.4. Design Issues 59

different types of hardware units, such as integer, floating point and NEON instructions,
where we estimate “workload-specific” capacitive loss per instruction per benchmark.

For each of the five core configurations (LP core or any of the four HP cores on), the
CPU benchmarks in Table 4.2 are run over all CPU and memory frequencies. Similarly,
the GPU benchmarks in Table 4.1 are run over all GPU and memory frequencies, with
only the LP core online at 1 GHz. This approach has several advantages:

• It creates natural variation in hardware access rates. Changes in frequency in one
domain will vary the rate at which events occur in other domains.

• Rail voltages vary with frequency. This also helps to create diversity in model
predictors (see Equation 4.2).

• It is necessary to estimate leakage currents, which can only be modelled by observing
changes in power while varying rail voltages. In this respect, it is important to note
that the memory rail is always set to 1.35 V. Therefore, it is impossible to model
leakage current on this rail.

• It helps trigger clock- and power-gating in individual CPU cores.

The hardware activity predictors and rail voltages are logged in periodic intervals,
where the rail voltages are measured and stored as hard-coded, frequency-indexed tables.
At the end of each test (processor and memory frequency tuple), the power log is down-
loaded from the power measurement unit, synchronised with the Tegra K1’s local event
log, and a profile in csv-format is generated (see Section 2.2.4). The resulting training
datasets take less than 24 hours to generate and are composed of between 30 000 and
40 000 samples. We believe that training time can be substantially reduced if fewer fre-
quencies are used, where we essentially only need to cover frequency ranges such that rail
voltages are varied. Using matlab, we take care to process the training data as follows:

• For every rail R ∈ R, all dynamic power predictors (hardware access rates) ρR,i
must be multiplied by the corresponding square rail voltage V 2

R.

• Static power terms (leakage currents) must be taken into account, taking care to
compensate for CPU gating (Equation 4.4).

The model predictors are then passed to a regression solver and correlated with mea-
sured power. The GPU and CPU models were initially built separately, where the result-
ing coefficients can be found in Table 4.4 for the CPU and Table 4.3 for the GPU. The
GPU model was built before the CPU model, and as a result, most of the CPU predictors
in Table 4.4 are missing from the GPU model. In the next sections, we evaluate and
discuss these models separately.

4.4 Design Issues

To estimate power or collect power modelling training data, we need to collect HPCs from
many sources (see Section 4.2):

60 Chapter 4. High-Precision Power Modelling

LP HPHPHPHP GPU

S
o
ft

w
a
re

 E
xe

cu
ti

o
n

G
C

G

C CPU Core

GPU Kernel

C

C

C

G

G

G

C

C

Activity Monitoring Framework

Done collecting
 HPCs?

Start HPC collection

Kernel Launch

ASYNC CUPTI
 callback

Kernel Exit

Done collecting
 HPCs?

Log GPU and CPU HPCs.

No Yes

Compute Hash

100 ms

Trigger CPU log.

Figure 4.4: Activity monitoring framework.

• We use PERF to track HPCs for the ARM cores. PERF is a Linux HPC im-
plementation that can track different types of hardware and software events. We
track several, raw HPCs provided by the ARM CPU cores to measure instruction
throughput, active clock cycles and different types of cache utilisation.

• CUPTI is NVIDIA’s own HPC framework for GPU kernels, capable of counting
almost 200 hardware events related to kernel execution. We measure the number of
different instruction types (integer, floating point, etc), GPU cache utilisation and
active cycles.

• Our own kernel tracing framework is built into the Linux kernel to expose when CPU
power-gating takes place and how many active memory cycles are spent serving CPU
and other (GPU) memory requests.

• Additionally, we control and track several platform-specific details:

– Which rails (HP and GPU) are on at any time.

– How many HP cores are on, if any.

– What CPU, GPU and memory frequencies are used.

– Rail voltages are stored in static voltage-frequency tables in our framework.

The main design goal of our framework is to impose as small overhead as possible
on normal processes running on the CPU and the GPU, as well as reliable accounting
of hardware activity (see Figure 4.4). This is trivial in the context of the two latter
bulletpoints above. Our kernel tracing framework exposes counters in sysfs to measure
core power gating, and our framework itself controls the CPU cluster, number of cores
online and the platform frequencies. However, with regards to PERF and CUPTI there
are several issues. A major headache is the lack of documentation and, in terms of PERF,
lack of error reporting. The Tegra K1’s CPU cores, for example, each support seven PERF
HPCs, where one is always occupied by the active cycles HPC. We initially tracked a
total of five HPCs for five system processes:

4.4. Design Issues 61

• The full system (aggregate count over all CPU activity).

• Our activity monitoring framework.

• The three ACTMON kernel drivers.

With these processes, we must track a total of 25 HPCs. This number is larger than
the number of available HPC slots on each core. It is easy to assume, incorrectly, that
this is not a problem. Because the five “processes” all share the same five unique HPCs,
one easily expects that these counters are shared when the PERF subsystem is tracking
the HPCs over different processes. However, after many failed modelling attempts, we
realised that some HPCs for processes were never counted (failed without error), but
the full system counters counted as normal. Consulting the PERF developers, we were
made aware that even if the HPCs can in principle be shared in hardware, the PERF
system does not support that functionality. PERF instead uses one HPC slot on the
CPU per process to track, even if the same HPC is measured over processes. If there is
not enough HPC space, the HPCs are multiplexed, but priority is given to system-wide
counter collection. For our CPU model, this had an adverse effect in that we could not
differentiate CPU instruction power between our video processing benchmarks and system
services as originally intended. In the end, we just counted system-wide HPCs. These
issues have heavily influenced model development, as we originally intended to separate
instruction power for different processes in addition to different CPU benchmarks.

Our understanding of CUPTI has also developed over time, and we have learned several
insights that have influenced our design choices. To count HPCs for kernel launches, we
use callbacks that are triggered on function call entry and exit (see Figure 4.4). For
example, as our code calls cudaLaunch(..) to execute kernels on the Tegra K1’s GPU,
a callback is executed on that thread on function call entry and exit. But how is that
callback invoked? It can be serially, on the thread that executes cudaLaunch(..), or
it can be asynchronously in a separate thread. The CUPTI documentation does not
state how the callbacks are implemented. The reason why this is important is related
to synchronisation. We must know exactly what kernel was executed at what time, and
for how long it was running. Initially, we used a type of synchronisation primitive that
blocked until all pending GPU activity had finished inside these callbacks. However this
expensive blocking call added several hundred milliseconds to kernel launches, which is
not desirable. In the end, we talked with several of the CUPTI engineers at NVIDIA’s
own GPU technology conference, and we learned that the callbacks are executed serially
on the thread that invokes cudaLaunch(..). This insight enabled us to avoid expensive
blocking synchronisation primitives by using stream synchronisation and CUPTI events
to track timing for kernel launches.

Logging of hardware activity is done every 100 ms, or at the end of any kernel launch
(see Figure 4.4). PERF is light-weight and easy to use; there is no overhead of collecting
them apart from reading special HPC files. However, the CUPTI HPC collection incurs
a substantial amount of overhead and not all the HPCs (for types of instructions, cycles,
cache utilisation) can be tracked simultaneously. A total of four runs are needed to track
HPCs for each kernel. It is trivial to understand that an overhead of 200 ms for a kernel
that normally takes 20 ms to finish is not tolerable. Our solution is to avoid tracking
HPCs at every kernel launch, and instead measure the GPU HPCs once for every unique

62 Chapter 4. High-Precision Power Modelling

CPU GPU L1R L1W L2R H2D D2H INT F32 F64 CTRL MISC
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

R
e

s
id

u
a

l

(a) Residual error.

CPU GPU L1R L1W L2R H2D D2H INT F32 F64 CTRL MISC
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

R
IN

T

(b) Outliers.

Figure 4.5: Training data statistics for the GPU model.

kernel. For example, our framework tracks HPCs for every new kernel, the first four
times that kernel is launched. To implement this, we compute a hash for each kernel at
cudaLaunch(..) invocations. The hash is a function of the kernel’s symbol name and
execution configuration. On subsequent kernel launches, new CUPTI HPCs are measured.
Once HPC collection is complete for a kernel, that kernel will be logged at every exit from
cudaLaunch(..). This solution avoids the need to continuously measure HPCs, but it
also has disadvantages. For example, the HPC measurements (integer instructions, cache
utilisation, etc) can vary depending on kernel launch parameters. Our rotation filter is an
example workload where hardware utilisation will vary depending on the angle to rotate
the video. However, in the case of most our filters, it is enough to distinguish the kernels
depending on their launch configuration.

4.5 GPU Model

In this section, we discuss our developed GPU model. In this model, only the CPU’s
LP core is activated and operating at 1 GHz. The CPU is only running our profiler
and system services, where the activity monitor kernel drivers are the most significant
processes. Inspired by Xiao [70] we attribute capacitive loads to the number of CPU
instructions per cycle and the number of cycles per instruction. This is different from
the CPU model in Section 4.6, where we attribute capacitive loads to the number of
instructions per second. The effects of CPU gating, cache traffic and variable instruction
power are not considered (see Section 4.6). This design choice was made based on the
assumption that the CPU consumes negligible power compared to the GPU, which was
the main focus of the study. We first discuss the quality of the resulting power model,
in terms of a statistical analysis, in Section 4.5.1. Then, we evaluate the accuracy of the
model under our video processing filters in Section 4.5.2.

4.5.1 Regression Analysis

The model training data is collected as described in Section 4.3 using the specialised
GPU model training benchmarks in Table 4.1. The final dataset is composed of 1800
samples, where each sample contains measured hardware utilisation and average power

4.5. GPU Model 63

C
m
em
,C
PU

C
m
em
,O
TH

C
m
em
,c
lo
ck

C
cp
u,
cl
oc
k

C
gp
u,
cl
oc
k

C
gp
u,
L2
R

C
gp
u,
L1
R

C
gp
u,
L1
W

C
gp
u,
IN
T

C
gp
u,
F3

2

C
gp
u,
F6

4

C
gp
u,
C
N
V

C
gp
u,
M
SC

10-11

10-10

10-9

10-8

10-7

Ca
pa

ci
tiv

e
Lo

ad
 [C V

] EMC
CPU
GPU

Figure 4.6: GPU power model dynamic power coefficients.

usage over all possible combinations of GPU and memory frequencies. The residual error
of the model can be seen in Figure 4.5a. Each of the 1800 residuals are grouped into the
model training benchmark they belong to. Studying the figure, we see that the residual
error generally remains below 100 mW. Some benchmark groups, in particular the pure
memory-copy ones (host-to-device and vice versa), include worst-case residual errors up
to 300 mW. However, the mean observed residual is only 8.0810−16W , with a standard
deviation of 57 mW. This is very close to zero, indicating that the correlation between
observed power usage, and the model predictors (capacitive loads and leakage currents),
can be described as a linear function. Figure 4.5b shows residual confidence intervals,
where intervals which do not contain zero (the red line) are likely to be outliers. The plot
shows that there are very few of these, where 96.2 % of the samples contain zero.

From the GPU model coefficients in Table 4.3, we see that all predictors are above zero.
This is a good initial result because it indicates that we have successfully separated and
captured individual static and dynamic power coefficients across the platform. Most of
the GPU coefficients, such as clock and instruction costs, yield very small 95 % confidence
intervals (see Figure 4.6). This is good because we can generally expect these coefficients
to be very close to their estimated values (based on the observations in the training data).
The estimated cost for miscallaneous instructions (Cgpu,MSC) exhibits higher variation
than the others, but it is difficult to establish exactly why this occurs. One possible reason
is that miscallaneous instructions actually reflect a range of different instruction types,
each of which excersise different hardware units (similarly to the CPU’s global instruction
counter). For example, the CUDA documenation [41] places different instructions such
as NOP, VOTE, S2R and other barrier instructions in this category. Additionally, sources
claim that the miscellaneous instructions HPC counts other instruction types as well,
such as MOV. This is a fact we can confirm on the Tegra K1’s GPU as well. Because the
CUDA compiler can compile our benchmarks into any of these miscellaneous instructions
(or more), it is possible that the estimated coefficient reflects the cost of all of these.
Consequently, it would explain the larger variation in the coefficient estimate for this
group of instructions.

64 Chapter 4. High-Precision Power Modelling

Rail Predictor Description Coefficient Value 95 %

GPU

Vgpu GPU voltage Igpu,leak 0.27A [0.24, 0.30]

ρgpu,clock Total clock cycles per second Cgpu,clock 2.10nC
V

[2.08, 2.12]

ρgpu,L2R L2 cache 32B reads per second Cgpu,L2R 10.79nC
V

[10.29, 11.28]

ρgpu,L1R L1 cache 4B reads per second Cgpu,L1R 8.90nC
V

[8.38, 9.41]

ρgpu,L1W L1 cache 4B writes per second Cgpu,L1W 8.43nC
V

[7.49, 9.36]

ρgpu,INT Integer instructions per second Cgpu,INT 41.11 pC
V

[40.35, 41.87]

ρgpu,F32 Float (32-bit) instructions per second Cgpu,F32 38.15 pC
V

[37.27, 39.04]

ρgpu,F64 Float (64-bit) instructions per second Cgpu,F64 115.33 pC
V

[112.23, 118.43]

ρgpu,CNV Conversion instructions per second Cgpu,CNV 72.42 pC
V

[69.83, 75.01]

ρgpu,MSC Miscellaneous instructions per second Cgpu,MSC 28.36 pC
V

[23.21, 33.52]

Memory
ρmem,clock Total clock cycles per second Cmem,clock 258.66 pC

V
[253.01, 264.30]

ρmem,CPU CPU busy memory cycles per second Cmem,cpu 2.25nC
V

[1.94, 2.57]

ρmem,OTH GPU busy memory cycles per second Cmem,oth 2.17nC
V

[2.10, 2.24]

Core Vcpu CPU voltage Icpu,leak 0.79A [0.62, 0.95]

ρcpu,cpi CPU instructions per cycle Ccpu,cpi 3.72mC
V s

[1.78, 5.66]

ρcpu,acl CPU active cycles per second Ccpu,acl 166.62 pC
V

[78.52, 254.72]

Other Pbase Base power 1 0.78W [0.62, 0.94]

Table 4.3: GPU model.

Coefficients related to CPU execution show broader estimation variation than the
GPU coefficients. This is expected where we have not modelled the CPU as accurately as
the GPU. For example, the cost of active CPU and GPU memory cycles is similar (2.25
and 2.17 nC

V
, respectively), but the CPU memory cycle cost has a broader 95 % confidence

interval of about ±0.30nC
V

. The active GPU memory cycle cost has a better interval which
is closer to the estimate at ±0.07nC

V
. This is because we are not intentionally stressing

active CPU memory cycles enough through our benchmarks, especially when compared
to active GPU memory cycles. Also, the off-chip CPU memory activity observed in our
training data is caused by for example driver accesses to various other buses and units on
the SoC. The coefficients on the core rail in Table 4.3 show significant variation in leakage
and the cost of LP core clock cycles and instructions per second. The large confidence
intervals on the CPU side of the platform indicates that we do not capture accurately
enough the hardware activity occurring here. For instance, in this model, we have ignored
CPU gating effects. Also, modelling CPU instructions relative to the number of cycles
executed as proposed by Xiao [70], is not a good design choice. The rationale behind
this must be that, as more cycles are needed to execute a single instruction, the lower
the average power will be. In other words, instruction power is expressed as a function
of CPU cycles. However, the faster a CPU is operating (in terms of clock frequency), the
faster the rate of instruction execution will be, regardless of how many cycles it takes to
complete a single instruction. In this regard, it seems reasonable to expect that power
also increases with the speed that the processor is operating at.

Studying the dynamic power predictors in Figure 4.6, we see that the hardware events
corresponding to cache loads and stores are two orders of magnitude more expensive than
generic compute instructions. This result indicates that cache memory usage should be
avoided when and if possible. This can be done by for example using local register space
to store data instead of shared memory, or by disabling caching at different levels on data
movement instructions. We perform additional experiments on this topic in Section 5.4.1.
The cost for reading and writing L1 and L2 cache is generally similar at around 10.0nC

V
.

This result is promising if we assume that the same type of transistors are used in these
cache hierarchies.

4.5. GPU Model 65

6350 6400 6450 6500 6550
Time[ms]

0

1

2

3

4

5

6

7

8

P
o
w

e
r[

W
]

Measured Power

Estimated Power

CPU Power

GPU Power

Memory Power

Base Power

One Frame

Kernel Launches

Kernel Launch
 Overhead

Figure 4.7: Power over time for a single DCT frame.

The capacitive load per GPU clock cycle is 2.10nC
V

, which is an order of magnitude
higher than the CPU and memory clock. The fact that the GPU clock estimate is higher
than on the CPU can be attributed to the large number of compute cores and other
processing elements on the GPU. However, it is important to note that we are comparing
with a dedicated low power CPU core. In a real application scenario, the HP cluster
is also likely to be on, with four individial cores that may have even higher individual
clock costs. Furthermore, as GPU power management is broken in these experiments (see
Section 4.2.2), it is possible that the cycle cost in a “non-nugged state” is lower.

Integer, floating point, conversion and other types of instructions have the smallest
costs per event, between 40.0 to 115.0nC

V
. The cost of the different instruction types exhibit

more variation. Single-precision floating point operations are less expensive than double-
precision operations, which is expected. Interestingly, the estimated cost per integer
instruction is similar to a single-precision floating point instruction, but this does not
mean that the operations cost the same amount of energy. This depends on the time
taken to complete each instruction. Integer operations are for example often assumed to
be faster than floating point instructions. In this case, less GPU processor cycles will be
consumed to complete the operation, and the integer instruction will draw less energy
(when considering the whole processor).

4.5.2 Model Accuracy: Video Processing

In this section, we discuss and evaluate our GPU model’s accuracy. To illustrate the type
of insight achieved from the GPU model, consider Figure 4.7. This figure shows measured
and estimated power components in a single DCT frame encoding interval, where the
peaks in the plot represent kernel launches (six peaks, or kernel launches, per frame). We
see that the total estimated power is very accurate over time and close to 100 %. The
model allows us to see how much energy is being consumed on each of the rails, without
the need for specialised measurement circuitry. As expected, the CPU and memory power

66 Chapter 4. High-Precision Power Modelling

GPU Frequency [MHz]
200

400
600

800

EMC Frequency [MHz]

100
300

500
700

900

Estim
ate error [%

]

80
60
40
20
0

20
40
60
80

(a) Debarreling.

GPU Frequency [MHz]200
400

600
800

EMC Frequency [MHz]

100
300

500
700

900

Estim
ate error [%

]

80
60
40
20
0

20
40
60
80

60

45

30

15

0

15

30

45

60

(b) Motion estimation.

GPU Frequency [MHz]
200

400
600

800

EMC Frequency [MHz]

100
300

500
700

900

Estim
ate error [%

]

80
60
40
20
0

20
40
60
80

(c) DCT.

GPU Frequency [MHz]200
400

600
800

EMC Frequency [MHz]

100
300

500
700

900

Estim
ate error [%

]

80
60
40
20
0

20
40
60
80

60

45

30

15

0

15

30

45

60

(d) Rotation.

Figure 4.8: GPU model prediction error for different filters.

components are relatively constant over time where there is not much activity on these
rails. The model is very accurate while kernel launches take place, but appears less precise
in the periods between frames. During this time, frames are read and written from and to
RAM, and there is a non-negligible kernel launch overhead before the first kernel launch at
the beginning of each frame. This overhead is represented as an average since the exit of
the last kernel of the previous frame. Furthermore, as stated in the previous section, the
CPU model coefficients have larger confidence intervals (less precise), which can worsen
the prediction accuracy between consecutive frames.

Figure 4.8 shows the model error in % for a total of 70 processed frames over all
GPU and memory frequency combinations, for the debarreling, MVS, DCT and rotation
workloads. The estimation is very accurate. Not considering the MVS filter, the accuracy
of our model is over 99 % on average and always above 96 %. This demonstrates that our
model, which is built using entirely synthetic benchmarks, is able to consisely capture the
power usage of kernels comprised of a more complex mix of instructions. Furthermore, it
is a significant improvement over the accuracy of the rate- and CMOS-based models in
Section 3.5, where the model error could be as large as 50 %.

The MVS filter shows the worst prediction error of all our benchmarks of up to 4 %.
For this reason we now focus our discussion on this filter with a closed-up plot of its
prediction error in Figure 4.9a. We see that, in general, estimation is good (between
zero to one percent error) at low GPU frequencies. Moving toward the lowest memory
and GPU frequencies, estimation accuracy tends to degrade toward its lowest point at
4 %. This trend is true for all the filters, but hard to see in Figure 4.8. Furthermore,
we see that at 756 MHz GPU frequency, estimation accuracy shows a significant drop.

4.5. GPU Model 67

GPU Frequency [MHz]

200
400

600
800

EMC Frequency [MHz]

0 200 400 600 8001000

Es
tim

at
e

er
ro

r [
%

]

4
2

0
2
4

(a) Normal.

GPU Frequency [MHz]

200400
600

800
EMC Frequency [MHz]

0 2004006008001000

Es
tim

at
e

er
ro

r [
%

]

4
2

0
2
4

5
4
3
2
1

0
1
2
3
4
5

(b) No kernel launches.

Figure 4.9: Power prediction error for the motion estimation kernel.

It is important to note that there is a non-negligible amount of time where the GPU is
not actively processing, but the CPU is busy reading the next frame or writing results in
memory (for example between the kernel launches in Figure 4.7). When error starts to
increase, we see that prediction error during this period is larger than when the GPU is
active. Consider for example Figure 4.7, where a single peak (Y-frame motion estimation
kernel) is shown. For this test, the error was 4 %. It is clear that the estimation during
the kernel launch is very accurate. However, in the period between frames, the estimation
is worse, leading us to the conclusion that the CPU model is not well enough designed
and developed. We also believe that inaccuracy in HPC counting for the MVS filter can
reduce model accuracy. This GPU workload excersises shared memory more, and runs
for 5 to 26 times longer than for the other filters, depending on frequency settings. We
found that the CUPTI HPCs for shared memory transactions do not appear to be reliable,
which can cause our model to mispredict more than the other filters. For the U and V
frames, CUPTI is for example not able to count shared memory transactions at all. Only
shared memory transactions for the Y frames are actually counted.

To further test the accuracy of the CPU and memory model, we run a differential test
on the MVS benchmark. No GPU kernels are executed, but frames are read and results
written as normal. To avoid compiler optimisations that detect the absence of kernel
launches and consequently optimise code away, we conditionally execute the MVS kernel
in an if-statement which never evaluates to true. The result can be seen in Figure 4.9b.
Compared with the normal experiment in Figure 4.9a, where GPU execution is enabled,
we see that the model still mispredicts down to 4 % even when the GPU is not used.
As memory frequency increases, estimation accuracy also increases and is close to 100 %
accurate at 924 MHz. Again, this result indicates that the CPU and memory models may
not be modelled precisely enough. However, the model still succeeds to capture most of
the relations. We believe that a better power model for the CPU is necessary to increase
prediction accuracy.

In this section, we have evaluated our GPU model for the Tegra K1. The model was
built using carefully designed, synthetic benchmarks that stressed individual architectural
units on the Tegra K1’s GPU. We have shown through our regression analysis that our
modelling methodology successfully captures the relationship between measured power

68 Chapter 4. High-Precision Power Modelling

usage of the Tegra K1, and our dynamic and static power usage predictors. We have also
discovered a power management bug on the Tegra K1, and that the GPU’s L2 cache is
write-back. Furthermore, we have evaluated and discussed the accuracy of the platform
over all GPU and memory frequencies, using our video processing filters. The model
accuracy is close to 100 % with worst-case errors of only 4 %. This extensive validation
over different platform frequencies has not been done before in the literature. However,
as we have seen by removing GPU execution from the MVS experiment, modelling errors
of up to 4 % can occur. For the MVS filter, we also encountered issues with inaccurate
CUPTI HPC counting of shared memory transactions. This can lead to reduced model
accuracy. We believe that an improved CPU model and further investigations into the
reliability of CUPTI HPCs to be good starters for improving the modelling accuracy.

4.6 CPU Model

In this section, we discuss our developed CPU model for the Tegra K1. The CPU model
is built according to the same methodology as the GPU (presented in Section 4.3). For
each core configuration (LP core or HP cluster with one, two, three or four cores active),
the CPU model training benchmarks listed in Table 4.2 are run over all possible memory
and CPU frequency combinations. Model predictors are sampled at 100 ms intervals for
a total of 38 000 samples. As discussed in Section 4.2 there is a lack of PERF HPCs to
track hardware utilisation in the various compute units of the Tegra K1’s CPU. Pricopi
et. al. [51], for example, have access to individual HPCs measuring data movement, integer
and floating point instructions. The Tegra K1 only has one generic instruction counter.
This complicates modelling, because we expect the capacitive load per instruction to vary
between the different system processes, and how these excersise the underlying hardware.
We therefore assume that each individual process will exhibit the same average instruction
cost over time, and use this to model the average capacitive load per generic instruction
per process in the system. This can pose a problem with regards to varying the instruc-
tion throughputs enough to estimate meaningful (non-negative) per-process capacitive
instruction loads. However, we found this to be more trival than on for example the
Tegra K1’s GPU, because the way system processes and their threads are scheduled is
arbitrary. For example, the Linux scheduler, conditionals, interprocess communication,
blocking synchronisation primitives and sleeping all contribute to varying the rates of
cache accesses and instruction throughput across samples. In this section, we first discuss
the quality of the developed CPU model in terms of a statistical analysis in Section 4.6.1.
In Section 4.6.2, we model application-specific instruction power for our video process-
ing filters. We evaluate the accuracy of our CPU model with real measurement of the
platform in Section 4.6.3.

4.6.1 Regression Analysis

In this section, we discuss the quality of our CPU model in terms of a statistical analysis.
Figure 4.10a shows the residual error over the training data, categorised into the groups
of CPU training benchmarks. The mean residual is 6.624210−15W , which is very close to
zero. This indicates that the correlation between observed power usage, and the model
predictors (capacitive loads and leakage currents), can be described as a linear function.

4.6. CPU Model 69

IDLE NEON VFP INT INTV L1RF L1WB

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

R
e
s
id

u
a
l
[W

]

(a) Residual error.

IDLE NEON VFP INT INTV L1RF L1WB
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

R
IN

T

(b) Outliers.

Figure 4.10: Training data statistics for the CPU model.

Rail Predictor Description Coefficient Value 95 %

HP

Vhp HP rail voltage (when powered) Ihp,leak 105.41mA [100.81, 110.01]

ρhp,clk1 Active cycles (one core) Chp,clk1 422.72 pC
V

[419.74, 425.71]

ρhp,clk2 Active cycles (two cores) Chp,clk2 244.35 pC
V

[241.71, 247.00]

ρhp,clk3 Active cycles (three cores) Chp,clk3 228.94 pC
V

[226.17, 231.71]

ρhp,clk4 Active cycles (four cores) Chp,clk4 232.43 pC
V

[229.90, 234.96]

Core
Vcore Core rail voltage Icore,leak 881.91mA [834.66, 929.17]

ρcore,clk Active cycles (LP core) Ccore,clk 222.86 pC
V

[215.11, 230.61]

Common

Vcom,online CPU Core leakage Icpu,leak 42.66mA [41.19, 44.13]

ρcom,l1l2 L1 data / instruction cache refills Ccom,l1rf 33.13nC
V

[30.67, 35.58]

ρcom,l2m L2 data cache refills Ccom,l2rf 26.40nC
V

[23.79, 29.00]
ρcom,ips Instructions (workload-specific) Ccom,l1tlb See Figure 4.14

Memory

ρmem,clk Clock cycles Cmem,clk 206.60 pC
V

[200.24, 212.97]

ρmem,CPU CPU memory cycles Cmem,cpu 2.76nC
V

[2.71, 2.82]

ρmem,CPU Other memory cycles Cmem,cpu 3.69nC
V

[0.11, 7.26]
βmem,204 Power offset at 204 MHz Pmem,204 −3.10mW [-7.17, 0.97]
βmem,300 Power offset at 300 MHz Pmem,300 53.38mW [50.21, 56.56]

Other Pbase Base power 1 671.91mW [634.69, 709.14]

Table 4.4: CPU model.

The standard deviation is 69.4 mW, which is similar to the GPU model. Figure 4.10b
shows the residual interval, where samples that do not include zero are indications of
outliers. We see that there are very few samples where this occurs. With a coverage
96.73 % samples that contain zero, we do not remove any samples from the model training
data.

The coefficients for the CPU model are shown in Table 4.4. Studying the base power
component Pbase we see that it has been estimated to be 0.67 W. This is lower than in the
GPU model (see Table 4.3), where the base power was estimated to 0.78 W. Additionally,
the 95 % confidence interval is much lower between 0.63 and 0.70 W, where for the GPU
model, it was between 0.62 and 0.94 W. This may be due to the number of modelling
improvements (clock- and power-gating, per-process instruction cost, etc.). Additionally,
the GPU rail is completely off, removing disturbance from GPU rail static and dynamic
power. Figure 4.11a shows the leakage currents (static power contributors). The core rail
has an estimated leakage of 881.91 mA. This is substantial compared to for example the
HP rail leakage, which is estimated to be only 105.41 mA. Additionally, the core leakage
current estimate has a higher 95 % confidence interval than the other leakage currents (see
Figure 4.11a). The large difference in leakage currents between the rails, is reasonablethe
given that the core rail includes many additional hardware components (see Section 2.1).

70 Chapter 4. High-Precision Power Modelling

HP L
ea

k

Core
 Le

ak

CPU
 Core

 Le
ak

0
200
400
600
800

1000

Le
ak

ag
e

Cu
rr

en
t [

m
A]

(a) Leakage currents.

HP1
 Cloc

k

HP2
 Cloc

k

HP3
 Cloc

k

HP4
 Cloc

k

LP
 Cloc

k

EM
C Cloc

k

RAM (C
PU

)

RAM (O
TH

)

L1
 Cac

he
 Refi

ll

L2
 Cac

he
 Refi

ll10-10

10-9

10-8

10-7

Ca
pa

ci
tiv

e
Lo

ad
 [C V

]

(b) Dynamic power.

Figure 4.11: Generic CPU model coefficients. Error bars show the 95 % confidence
interval.

The core rail powers more functional units, such as two display controllers, various DSPs
for video and audio processing, PCI-express- and USB-controllers, buses and more. The
HP rail only powers the HP rail cluster clock. An important question here is thus whether
it is possible to power off additional circuitry on the core rail (such as clocks). Finally, the
per-core leakage is estimated to be 42.66 mA. This leakage adds to the static power usage
of the SoC when the core is not under power-gating. Interestingly, the base power and
core rail leakage estimates are similar to those made in our first CMOS-based modelling
attempts on the Tegra K1 [63]. Here, base power was estimated to be 0.82 W, with a core
rail leakage current of about 800 mA. However, this is also where the similarities end. The
per-core leakage current, for example, was estimated to be around 150 mA, which is over
three times higher than the current estimate. The results are not directly comparable,
however, as this model was based directly on the CMOS equations. Compared to our
more refined model in this section, it is too simple in terms of the number of predictors
to accurately model power usage of the Tegra K1.

The generic model coefficients are shown in Figure 4.11b. These are assumed to be
generic in that they are not expected to vary depending on the workload. From the
figure we see that the HP cluster clock coefficients vary depending on which core they
power. The first HP clock, for example, has an estimated capacitive load per clock cycle
at 422.72pC

V
. The three other clocks have more similar cost between 228.94 and 244.35pC

V
.

It is reasonable to expect that the actual switching activity per clock cycle in each core is
similar at around 240.00pC

V
, but that the cost per cycle of having the HP clock generator

on adds to the capacitive load per cycle when only one HP core is on. This is reasonable
if the clock-generator itself is shutdown entirely when only one HP core is active, and that
core is clock-gated. The cost per active CPU memory cycle is estimated to be 2.76nC

V
. This

is higher than what was estimated in the GPU model (2.25nC
V

), but the 95 % confidence
interval is much smaller (between 2.71 and 2.82 instead of 1.94 and 2.57). In the GPU
model, only system services such as drivers were dominating execution time on the LP
core, and CPU memory activity was not stressed to the extent done here. It is possible
that whatever active CPU memory cycles triggered in the GPU model, constituted lower-

4.6. CPU Model 71

overhead accesses to other computational units on the Tegra K1, such as DSPs and PCI-E
devices. Consequently, the cost per “driver-access” can be thought of as potentially lower.
The CPU memory cycle cost in the CPU model, however, reflects application-specific
memory accesses and the cost per active cycle is shown to be higher. Interestingly, for
the cost of other active memory cycles is now at 3.69nC

V
with a significantly large 95 %

confidence interval between 0.11 and 7.26nC
V

. This is again because there are very few
active memory cycles stemming from other sources, where the GPU is not on. L1 and
L2 cache refill events are estimated to cost 33.13nC

V
and 26.40nC

V
, respectively. With the

exception of the other memory cycle estimate, all the generic model predictors for this
model are credible with very small 95 % confidence intervals.

4.6.2 Instruction Power

Modelling instruction power on the Tegra K1’s CPU is more challenging than for the
GPU. This is because the CPU cores do not implement HPCs to count the types and
number of instructions executed, such as floating point, integer and data movement oper-
ations. The CPU cores only implement an HPC that counts the total number of executed
instructions. This essentially complicates modelling. However, instruction power on the
Tegra K1’s CPU can still be estimated if we assume that a process’ average capacitive
load per instruction remains the same over time. In this section, we show how CPU
instruction power can still be estimated on a per-process basis by observing the changes
in residual power. Residual power is the remaining power usage of the Tegra K1 after all
other (generic) power components, such as leakage currents and cache power, have been
removed.

To analyse instruction power, we separately estimate the average capacitive load per
CPU instruction per benchmark. Figure 4.12 illustrates the basic observations behind
the idea. Assume that most of the CPU model coefficients in Table 4.4 are generic,
that is, they do not vary depending on the current CPU workload. Further assume that
instruction capacitive load is process-specific and varies depending on how each process
excersises each CPU core. For every sample n ∈ N, where N is the set of 38000 CPU
model training samples, the total power usage of each sample can be described as:

Pn = Pn,gen + Pn,res (4.10)

where Pn is the measured average power of sample n, Pn,gen are the generic power
components stemming from clock, cache and leakage terms for sample n and Pn,res is a
residual power component for sample n. Residual power Pn,res is assumed to be related
to the rate of instruction execution as follows:

Pn,res = ρn,ipsCn,ipsV
2
com + Pb + e (4.11)

where ρn,ips is the number of instruction per second executed by sample n, Cn,ips is the
unknown average capacitive loss per executed instruction, and Vcom is the CPU voltage
(depending on frequency settings and which cluster is active). We abbreviate rhon,ipsVcom
as V 2IPS, which can be interpreted as the number of square-voltage instructions per
second. Pb is an intercept (for V 2IPS = 0) and e is a modelling error which follows the
same distribution as seen in Figure 4.10a. Figure 4.12a shows the residual power compo-
nent Pn,res for every sample in the training data set plotted versus the model predictor

72 Chapter 4. High-Precision Power Modelling

10
6

10
7

10
8

10
9

10
10

10
11

0

0.5

1

1.5

2

Model Predictor (Square−Voltage Instructions per Second)

R
es

id
ua

l P
ow

er

10
6

10
7

10
8

10
9

10
10

10
11

0

0.5

1

1.5

2

Model Predictor (Square−Voltage Instructions per Second)

R
es

id
ua

l P
ow

er

IDLE
INT
INTV
VFP
NEON
L1RF
L1WB

(a) Over all instructions.
10

6
10

7
10

8
10

9
10

10
10

11

0

0.5

1

1.5

2

Model Predictor (Square−Voltage Instructions per Second)

R
es

id
ua

l P
ow

er

10
6

10
7

10
8

10
9

10
10

10
11

0

0.5

1

1.5

2

Model Predictor (Square−Voltage Instructions per Second)

R
es

id
ua

l P
ow

er

IDLE
INT
INTV
VFP
NEON
L1RF
L1WB

(b) Over workload-specific instructions.

Figure 4.12: Residual power (workload-dependent instruction power).

(ρn,ipsV
2
com, V 2IPS). In other words, if our assumptions are correct, the residual power

in Figure 4.12a should reflect only the cost of instructions across all the samples in the
model training data set. Figure 4.12a does not distinguish between types of instructions
(benchmarks). We see that the residual power lies in the region between 0 and 2 W.
Some of the samples also have negative residuals below zero, but the majority are above.
The presented data indicates that there is a large variation in residual power. At one
billion “square-voltage instructions per second” the potential difference in residual power
is as large as 300-400 mW. It is possible to fit a regression line to this data to estimate
a generic capacitive load per instruction over all our benchmarks. However, this solution
would incur non-negligible modelling error because of the large variation in the dataset.
In Figure 4.12b, we have grouped the samples (colored) after which benchmark group
they belong to. If we study the groups carefully we can see that the instructions issued
by specific benchmarks generally follow more specific trend lines, where the variation in
residual power is much lower. This strengthens our hypothesis that capacitive loads can
be attributed to specific processes in the system. It is important to note that, even if resid-
ual power can be negative for some benchmarks, this is assumed to be due to the model
error e. Ultimately, it is the slope of the line that will decide the estimated contribution

4.6. CPU Model 73

0 5 10 15

x 10
7

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
IDLE

ρ
ips

 V
cpu
2

R
es

id
ua

l P
ow

er
 P

re
s

0 5 10 15

x 10
9

0

0.5

1

1.5

2

2.5
INT

ρ
ips

 V
cpu
2

R
es

id
ua

l P
ow

er
 P

re
s

0 5 10 15

x 10
9

0

0.5

1

1.5

2

2.5
INTV

ρ
ips

 V
cpu
2

R
es

id
ua

l P
ow

er
 P

re
s

0 5 10 15

x 10
9

0

0.5

1

1.5

2

2.5
VFP

ρ
ips

 V
cpu
2

R
es

id
ua

l P
ow

er
 P

re
s

0 5 10

x 10
9

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

NEON

ρ
ips

 V
cpu
2

R
es

id
ua

l P
ow

er
 P

re
s

0 1 2

x 10
10

0

0.5

1

1.5

2

2.5

3
L1RF

ρ
ips

 V
cpu
2

R
es

id
ua

l P
ow

er
 P

re
s

0 5 10 15

x 10
9

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

L1WB

ρ
ips

 V
cpu
2

R
es

id
ua

l P
ow

er
 P

re
s

Figure 4.13: Per-benchmark residual power versus square-voltage instructions per second.

to dynamic power from that group of instructions.
Figure 4.13 shows the residuals for each of the seven CPU training benchmarks in

closed views. A regression line is also drawn through the samples. The gradient of this line
is the estimated capacitive load per instruction. Note that the gradients of the regression
lines in this example do not represent the capacitive loads in Figure 4.14, but are provided
for illustrative purposes. The actual modelled instruction costs are shown in Figure 4.14.
We can see that there is a very good fit for most of the CPU training benchmarks.
The residuals in these examples clearly show a linear trend towards the model predictor
(V 2IPS), indicating that it is possible to get good estimates for instruction cost. The
residuals for the IDLE benchmark, however, are significantly scattered and it is not easy to
ascertain where the regression line should be. Despite this, the residual power increases
with the square-voltage instructions per second and yields a positive capacitive load.
It is difficult to conclusively argue why this occurs. One explanation can be that the
modelling error is larger than the cost of IDLE instructions. The V 2IPS throughput is
three orders of magnitude smaller than for the benchmarks that are actively processing,
and consequently, the power usage of those instructions is also very low and hard to
capture. Consequently, the residuals may “drown” in noise stemming from error. The idle
instructions can also belong to any process in the system; therefore it may be possible to

74 Chapter 4. High-Precision Power Modelling

INST
_ID

LE

INST
_N

EO
N

INST
_V

FP

INST
_IN

T

INST
_IN

TV

INST
_L1

RF

INST
_L1

WB
10-10

10-9

10-8

Ca
pa

ci
tiv

e
Lo

ad
 [C V

]

Figure 4.14: Workload-dependent instruction coefficients (CPU model).

get better estimations by studying the instruction throughputs of different system services,
or per core. The per-benchmark instructions costs are shown in Figure 4.14, where we see
that per-instruction cost varies significantly between applications. The NEON benchmark
instructions, for example, cost twice as much as L1WB instructions, which have the overall
lowest cost per instruction. The NEON instructions also cost more than VFP instructions.
These benchmarks both calculate matrix products of single-precision floating-point values,
but the NEON instructions process more data per instruction. From this perspective,
NEON instructions appear more energy-efficient. However, the actual energy cost will
also depend on how long time it takes to complete the instructions, how many CPU
cycles are consumed in that time, and other factors.

4.6.3 Model Accuracy: Video Processing Filters

In this section, we study the instruction power and accuracy of our model for four distinct
test cases. The Tegra K1 is either idle or actively processing one of our workloads, the
DCT, MVS, debarreling and Huffman encoding filters. The methodology to estimate
instruction cost per benchmark is similar to our discussion in the previous section. Each
of the four bencmarks is run over all possible core configurations, memory and CPU
frequencies. Power is estimated in set intervals of 100 ms. After each test, we remove
the generic power components from the samples. The remaining residual power should
reflect only the cost of CPU instructions (see Equation 4.10 and 4.11). These residuals
are subsequently used to estimate the cost of instructions, and add this cost to the generic
power predictors. The measured power is subtracted from the final estimated power to
verify the model with real measurements.

The idle-system residuals are shown per core configuration in Figure 4.15a. As we
observed in the previous section, we see that there is not any clear correlation between
the rate of instruction execution and residual power. Although some of these residuals are
larger than 100 mW, the majority are “clustered” in a region between 0 and 100 mW at
20 to 60 V 2IPS. As debated in the preceding paragraphs, this is assumed to be an effect
of noise (error) where the regression error in Figure 4.10a generally lies in the same region.

4.6. CPU Model 75

0 50 100 150 200
Model Predictor (Million ρcom,ipsV 2

com)

0.1

0.0

0.1

0.2

0.3

0.4

Re
si

du
al

 P
ow

er
 [W

]

HP-1, Cips=343 pC
V

, Pb=-33 mW

HP-2, Cips=3.29e+03 pC
V

, Pb=-1.4e+02 mW

HP-3, Cips=2.59e+03 pC
V

, Pb=-92 mW

HP-4, Cips=1.65e+03 pC
V

, Pb=-58 mW

LP, Cips=40.5 pC
V

, Pb=15 mW

(a) Capacitive instruction load.

CPU Frequency [MHz]

200 400 600 800 1000

Memory Fre
quency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

60

45

30

15

0

15

30

45

60

(b) Model error (LP core).

Figure 4.15: Idle system.

If we draw regression lines through each of the CPU core configurations (in Figure 4.15a)
we can see that these yield very different results. The resulting base (Pb in Equation 4.11)
is negative for all the four HP core configurations. The capacitive load per idle instruction
on the HP cluster also exhibits large variations between 343.00pC

V
and 3.29nC

V
, depending

on how many cores are active. If we take the average of these, the cost per instruction
on the HP cluster is 2.05nC

V
. At a rate of 50M V 2IPS, this corresponds to an instruction

power of 100 mW. The idle instruction cost on the LP core is only 40.50pC
V

, corresponding
to an instruction power of only 2 mW. We investigate the Tegra K1’s idle system power
further in Section 5.3.

We now use the estimated capacitive loss per instruction and base power (see Fig-
ure 4.15a) to estimate total power (generic and workload-dependent, see Equation 4.10)
over all idle system scenarios. This includes all memory and CPU frequency combinations
and core configurations. The result can be seen in Figure 4.15b for the LP core and Fig-
ure 4.16 for the HP cluster. For all five core configurations, the absolute average model
error is below 0.34 % and the standard deviation is below 2.70 %. These are good initial
results that show that the model captures idle power accurately. For the LP core and one
HP core, the worst case (maximum observed) error is less than 3.72 %. However, for two,
three and four HP cores, the worst-case error is much larger with underpredictions down
to 9.43 %.

Studying the error plots in Figure 4.16b, 4.16c and 4.16d, we can make two important
observations. First, the modelling error worsens at higher CPU frequencies (slightly
red area above 1.6 GHz CPU frequency). Second, the model accuracy worsens when
more cores are active. This is not immediately distinguishable from Figure 4.16, but
the standard deviation increases from one to four cores at 0.82, 1.42, 2.67 and 2.70 %.
During the development of the CPU model, we have worked intensively to increase the
accuracy of the idle test cases. We discovered that the HP rail voltage in an idle system
exhibits high variation which is challenging to capture in static frequency-voltage tables
in our code. Figure 4.17 shows the difference in measured HP rail voltage depending
on how many HP cores are active. When the Tegra K1 is actively processing, that is,
continuously processing for example a video filter, the voltage is the highest observed. At
2.3 GHz, for example, it is above 1100 mV. But as the Tegra K1 idles, and the number
of HP cores decreases, the voltage also decreases. With only one HP core active, the HP
rail voltage is as low as 870 mV. The rail voltages shown in Figure 4.17 are based on

76 Chapter 4. High-Precision Power Modelling

CPU Frequency [MHz]

200 600 1000140018002200
Memory Frequency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

(a) Model error (one HP core).

CPU Frequency [MHz]

2006001000140018002200

Memory Fre
quency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

60

45

30

15

0

15

30

45

60

(b) Model error (two HP cores).

CPU Frequency [MHz]

200 600 1000140018002200
Memory Frequency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

(c) Model error (three HP cores).

CPU Frequency [MHz]

2006001000140018002200

Memory Fre
quency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

60

45

30

15

0

15

30

45

60

(d) Model error (four HP cores).

Figure 4.16: Idle system model error (HP cluster).

0 500 1000 1500 2000 2500
HP Cluster Frequency [MHz]

800

850

900

950

1000

1050

1100

1150

HP
 R

ai
l V

ol
ta

ge
 [m

V]

Active Processing
Idle (one core)
Idle (two cores)
Idle (three cores)
Idle (four cores)

Figure 4.17: Problems measuring HP rail voltage in an idle system.

4.6. CPU Model 77

0 2000 4000 6000 8000 10000 12000 14000
Model Predictor (Million ρcom,ipsV 2

com)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Re
si

du
al

 P
ow

er
 [W

]

HP-1, Cips=292 pC
V

, Pb=44 mW
HP-2, Cips=310 pC

V
, Pb=36 mW

HP-3, Cips=311 pC
V

, Pb=52 mW
HP-4, Cips=311 pC

V
, Pb=58 mW

LP, Cips=273 pC
V

, Pb=53 mW

(a) MVS.

0 2000 4000 6000 8000 10000 12000 14000
Model Predictor (Million ρcom,ipsV 2

com)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Re
si

du
al

 P
ow

er
 [W

]

HP-1, Cips=293 pC
V

, Pb=5.7 mW
HP-2, Cips=321 pC

V
, Pb=-13 mW

HP-3, Cips=322 pC
V

, Pb=22 mW
HP-4, Cips=324 pC

V
, Pb=15 mW

LP, Cips=331 pC
V

, Pb=-17 mW

(b) DCT.

0 2000 4000 6000 8000 10000 12000
Model Predictor (Million ρcom,ipsV 2

com)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
si

du
al

 P
ow

er
 [W

]

HP-1, Cips=212 pC
V

, Pb=13 mW
HP-2, Cips=234 pC

V
, Pb=13 mW

HP-3, Cips=249 pC
V

, Pb=1.8 mW
HP-4, Cips=241 pC

V
, Pb=38 mW

LP, Cips=281 pC
V

, Pb=-12 mW

(c) Huffman.

0 100 200 300 400 500 600 700 800
Model Predictor (Million ρcom,ipsV 2

com)
0.0

0.5

1.0

1.5

2.0

Re
si

du
al

 P
ow

er
 [W

]
HP-1, Cips=3.26e+03 pC

V
, Pb=-11 mW

HP-2, Cips=2.83e+03 pC
V

, Pb=-20 mW

HP-3, Cips=2.71e+03 pC
V

, Pb=-59 mW

HP-4, Cips=2.56e+03 pC
V

, Pb=-71 mW

LP, Cips=2.21e+03 pC
V

, Pb=13 mW

(d) Debarreling.

Figure 4.18: Instruction (residual) power plotted versus V 2IPS for our test filters.

real measurements taken after 10 s of idling. The measurements were taken using the
Keithley 2110 which averaged one second of voltage readings per sample. In general, the
voltage appears to be more stable across cores when the Tegra K1 is actively processing.
Initially, we only used the voltage curve for an active system which caused large idle-
system prediction errors above 1.4 GHz. Incidentally, this is also the point where the
rail voltages start to vary depending on how many HP cores are on. The plots shown in
Figure 4.16 were validated with specific voltage tables that match the characteristics of
Figure 4.17. However, we have not compensated for this in the model training data. We
believe better estimations can be achieved by compensating more accurately for changes
in rail voltage. Ideally, platform voltages should be measured during model training to
achieve the best estimations possible.

We now focus our discussion on the model accuracy of our video processing filters
(MVS, DCT, Huffman encoding and debarreling). Figure 4.18 shows the residual power
for all of the filters plotted versus the V 2IPS for that benchmark. It is important to note
that V 2IPS is a measure of the number of instructions per second multiplied with the
square CPU rail voltage. We can see that instruction power can be substantial up to 4.3 W
for the MVS and DCT filters in Figures 4.18a and 4.18b. The Huffman and debarreling
filters in Figures 4.18c and 4.18d exhibit lower instruction powers of 2.7 and 1.7 W. The
V 2IPS can be as high as 14000M V 2IPS, with the exception of the debarreling filter
at only 700M V 2IPS. The low instruction throughput of the debarreling filter can be
attributed to stalling memory operations that continuously shift pixels at subsequent
HD frames. For the MVS, DCT and Huffman filters, we can observe that the residuals
follow the same trend line. This is a promising result, as we can expect this to occur

78 Chapter 4. High-Precision Power Modelling

Model Predictor (Million ρ
com,ipsV 2

com)
100275450625800

Memory Frequency [MHz]250400550
700

850

Re
si

du
al

 P
ow

er
 [W

]

0.5
0.0
0.5
1.0
1.5
2.0
2.5

Figure 4.19: Residual power for the debarreling filter, plotted for V 2IPS and memory
frequencies.

when all the CPU cores are of the same type and are running the same workload. The
rate of instruction issue (and V 2IPS) increases as more cores are added, but the cost
per instruction remains similar. The capacitive load per instruction for the MVS and
DCT filters is generally between 270 and 325pC

V
, respectively. For the Huffman filter, the

capacitive load per instruction is between 212 and 281pC
V

. Additionally, the regression
lines’ intercept (Pb in Equation 4.11) is very close to zero.

The capacitive load per cycle for the debarreling filter (see Figure 4.18d) appears to be
more unstable than for the other filters. For any given core configuration, we can see that
the residuals do not follow one specific trend line. Instead, there seems to be many trend
lines where it is possible to fit individual regression lines. For example, for the four-core
HP cluster variant (blue residuals in Figure 4.18d) there appears to be between five or
six regression lines that individually yield better fits. Incidentally, this number is very
close to the number of memory frequencies used in the experiment (seven). Additionally,
as we suspect this filter to be the most memory-intensive benchmark, it is possible that
the observed capacitive load per instruction varies depending on the memory frequency.
Figure 4.19 shows the residual power for the debarreling filter in a three-dimensional
plane, where the x- and y-axes correspond to the V 2IPS and memory frequency used.
Note that the residual color represents the memory frequency used, and not the core
configuration (as in Figure 4.18). This also means that the residuals for each memory
frequency includes data from all five core configurations. From the figure, we can see
that the capacitive load per instruction for this filter must be further classified depending
on the memory operating frequency. The cost per instruction is highest at the lowest
memory frequency (5.74nC

V
at 204 MHz). As memory frequency increases, the instruction

cost for this filter decreases to 2.41nC
V

at 924 MHz memory frequency. This cost is very
large compared to the relatively low capacitive loads per instruction of the other filters, at

4.6. CPU Model 79

CPU Frequency [MHz]

200 400 600 800 1000
Memory Frequency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

(a) LP core.

CPU Frequency [MHz]

200 600 1000140018002200
Memory Frequency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

(b) One HP core.

CPU Frequency [MHz]

200 6001000140018002200
Memory Fre

quency [M
Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

60

45

30

15

0

15

30

45

60

(c) Two HP cores.

CPU Frequency [MHz]

200 600 1000140018002200
Memory Frequency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

(d) Three HP cores.

CPU Frequency [MHz]

200 6001000140018002200
Memory Fre

quency [M
Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

60

45

30

15

0

15

30

45

60

(e) Four HP cores.

Figure 4.20: Model error (MVS).

around 300pC
V

. However, V 2IPS is also very low due to the slow rate of instruction issue,
which means that each instruction spends more time in the processor pipeline. This is
likely due to memory access stalls and causes more switching activity to be attributed to
each instruction. Another point, which is harder to distinguish from Figure 4.19, is the
regression lines’ intercept point Pb. For the 204 MHz memory frequency, this is -410 mW,
which is an order of magnitude smaller than the intercept point found in the other filters.
Ultimately, this means that the generic power model is overpredicting when the memory
frequency is low for this memory-intensive benchmark. As memory frequency increases,
however, the intercept increases and at 924 MHz it is only -144 mW.

With decent estimates for the capacitive instruction loads for all the video processing
filters, it is now possible to add the workload-dependent power (see Equation 4.10) to
compare the accuracy of the model with real measurements. The error percentage for all
of the five core configurations over all four filters comprise the 20 error plots shown in
Figure 4.20, 4.21, 4.22 and 4.23. The average absolute error is rarely above 1 % (1.18
and 1.08 % for two-core DCT and two-core Huffman). Additionally, worst case error is
generally below 3 %. The exception is the debarreling filter, which has a worst case error
of -4.57 % on three cores. This is better than for the idle system model, where we observed
worst-case modelling errors of up to almost 10 %. This is because the frequency-voltage
tables in our power estimation framework are more accurate when the Tegra K1’s CPU
is actively processing a filter (see Figure 4.17). The standard deviation is always below
3 %.

In this section, we have evaluated our CPU model for the Tegra K1. As for the
GPU, this model was built using spesialised, synthetic benchmarks that stress various
architectural units of the SoC. We have seen that our model successfully captures the

80 Chapter 4. High-Precision Power Modelling

CPU Frequency [MHz]

200 400 600 800 1000
Memory Frequency [M

Hz]

250
400

550
700

850
Pr

ed
ic

tio
n

Er
ro

r [
%

]

60
40
20
0
20
40
60

(a) LP core.

CPU Frequency [MHz]

200 600 1000140018002200
Memory Frequency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

(b) One HP core.

CPU Frequency [MHz]

200 6001000140018002200
Memory Fre

quency [M
Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

60

45

30

15

0

15

30

45

60

(c) Two HP cores.

CPU Frequency [MHz]

200 600 1000140018002200
Memory Frequency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

(d) Three HP cores.

CPU Frequency [MHz]

200 6001000140018002200
Memory Fre

quency [M
Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

60

45

30

15

0

15

30

45

60

(e) Four HP cores.

Figure 4.21: Model error (DCT).

CPU Frequency [MHz]

200 400 600 800 1000
Memory Frequency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

(a) LP core.

CPU Frequency [MHz]

200 600 1000140018002200
Memory Frequency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

(b) One HP core.

CPU Frequency [MHz]

200 6001000140018002200
Memory Fre

quency [M
Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

60

45

30

15

0

15

30

45

60

(c) Two HP cores.

CPU Frequency [MHz]

200 600 1000140018002200
Memory Frequency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

(d) Three HP cores.

CPU Frequency [MHz]

200 6001000140018002200
Memory Fre

quency [M
Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

60

45

30

15

0

15

30

45

60

(e) Four HP cores.

Figure 4.22: Model error (Huffman).

4.6. CPU Model 81

CPU Frequency [MHz]

200 400 600 800 1000
Memory Frequency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

(a) LP core.

CPU Frequency [MHz]

200 600 1000140018002200
Memory Frequency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

(b) One HP core.

CPU Frequency [MHz]

200 6001000140018002200
Memory Fre

quency [M
Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

60

45

30

15

0

15

30

45

60

(c) Two HP cores.

CPU Frequency [MHz]

200 600 1000140018002200
Memory Frequency [M

Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

(d) Three HP cores.

CPU Frequency [MHz]

200 6001000140018002200
Memory Fre

quency [M
Hz]

250
400

550
700

850

Pr
ed

ic
tio

n
Er

ro
r [

%
]

60
40
20
0
20
40
60

60

45

30

15

0

15

30

45

60

(e) Four HP cores.

Figure 4.23: Model error (debarreling).

relation between power usage and our dynamic and static model predictors. However,
we only had to consider stressing different levels of the CPU’s cache hierarchies, and not
specific instruction types. With respect to modelling, a challenge with the Tegra K1’s
CPU is that it does not have fine-grained instruction accounting, allowing us to measure
the type and number of executed instructions. In this aspect, we are the first to develop
a method to model instruction power based on individual applications. The method is
based on removing the generic (workload-independent) power components from power
estimation samples, and subsequently use regression to estimate the average capacitive
load per instruction per benchmark. We have seen that we are able to observe a linear
trend between the residual (instruction) power and the model predictor, which is the
number of square-voltage instructions per second, V 2IPS. However, our debarreling
filter showed that the average capacitive load may also depend on the memory frequency
for memory-intensive benchmarks. Finally, investigating our model’s prediction accuracy,
we have demonstrated that our method is able to estimate power with 99 % accuracy
for our video processing filters. The worst case error for most of the filters is below 3 %,
but for the debarreling filter it is 5 %. The prediction error when the Tegra K1 is idle
is below 0.34 % on average. However, the worst case error can be as large as almost
10 %. In general, the larger errors are found at higher CPU frequencies. This is because
the idle-system CPU rail voltage exhibits considerable variation at higher frequencies,
and therefore, our static frequency-voltage tables are not sufficient to capture the HP rail
voltage accurately. A future topic for research is therefore whether model accuracy can
be improved by measuring rail voltages throughout the model training and verification
phases. In conclusion, these results show that we have successfully captured power usage
for the video processing filters with very high precision. As a result, the accuracy is much

82 Chapter 4. High-Precision Power Modelling

better than the traditional modelling methods (CMOS-, state- and rate-based models in
Figure 3.3).

4.7 Full-Hybrid Models for Different Platforms

In the previous sections, we have verified and built power models for the Tegra K1’s indi-
vidual compute units (CPU and GPU). We have shown that our methodology to model
power is successfull, with very close to 100 % accuracy over many different software work-
loads, over all CPU, GPU and memory frequencies and CPU core configurations. These
models were built and verified for a Jetson-TK1 development kit called Rey. However,
the general applicability of our method has not been demonstrated on several Tegra K1-
enabled systems. Additionally, the GPU model presented in Section 4.5 did not include
the more developed CPU model in Section 4.6. In this section, we therefore build the
CPU and GPU model simultaneously on Rey and on two additional platforms: another
Jetson-TK1 development kit called Ren, and the T-17, which is a customised develop-
ment platform containing only the Tegra K1 SoC. We constrain ourselves to build models
for these devices, and do not verify them using software workloads (to the extent pre-
sented in Section 4.5 and 4.6). The full-hybrid models for Rey and Ren, however, are
used and verified in Chapter 5 as the “final” models built for these systems.

An introduction to the T-17 platform is necessary before we proceed. The T-17 is
a heavily simplified version of the Jetson-TK1 development kit presented in Figure 2.1.
It contains only the Tegra K1 SoC and the regulators powering the HP, Core, GPU,
memory and USB (clock) rails. With the exception of USB, there are no external pe-
ripherals. Instead of DDR3 RAM operating at 1.35 V, it is equipped with LPDDR3
RAM operating at 1.2 V. The capacitances between the main buck regulators and the
Tegra K1 SoC are much smaller than on the Jetson-TK1 kits. These capacitances form
a low-pass filter into the SoC, effectively “smoothing out” the rail voltage. Because the
“rail capacitances” are much smaller than on the Jetson-TK1 kits, the rail voltages on
the T-17 exhibit considerable variation (noise) and are very challenging to control us-
ing hard-coded frequency-voltage tables. The platform is not able to sustain the current
throughput at maximum frequencies. For this reason the maximum CPU (HP) frequency
used is 2.0 GHz, while for the Jetson-TK1, it is 2.3 GHz.

The T-17 was only available to us for a brief period of time. Unfortunately, the
problems with PERF and our kernel tracing framework to measure clock gating in the
CPU cores (see Section 4.4) is present in this model’s training data. Due to these issues,
along with the difficulty of measuring rail voltages, we had to adjust the model predictors
as follows:

• The NEON CPU training benchmark was removed, because the instruction cost
was estimated to be negative.

• The cache is only modelled based on the number of L1 refills, whereas on the Jetson-
TK1 kits, it is modelled as a function of both L1 and L2 refills.

• The HP rail leakage is assumed to be the leakage of one core. We were unable to
model the HP rail leakage independently.

4.7. Full-Hybrid Models for Different Platforms 83

Rail Predictor Description Coefficient Ren Rey T-17

HP

Vhp HP rail voltage (when powered) Ihp,leak 53.39 mA 106.29 mA 27.86 mA

ρhp,clk1 Active cycles (one core) Chp,clk1 411.70 pC
V

402.63 pC
V

430.62 pC
V

ρhp,clk2 Active cycles (two cores) Chp,clk2 279.75 pC
V

251.07 pC
V

437.66 pC
V

ρhp,clk3 Active cycles (three cores) Chp,clk3 246.01 pC
V

221.78 pC
V

333.90 pC
V

ρhp,clk4 Active cycles (four cores) Chp,clk4 248.97 pC
V

238.39 pC
V

353.49 pC
V

Core
Vcore Core rail voltage + core clocks † Icore,acc 342.56 mA 379.31 mA 499.31 mA

ρcore,clk Active cycles (LP core) Ccore,clk 242.76 pC
V

202.91 pC
V

311.55 pC
V

Common

Vcom,online CPU Core leakage Icpu,leak 15.63 mA 35.78 mA 27.86 mA

ρcom,l1l2 L1 data / instruction cache refills Ccom,l1rf 16.11nC
V

27.11nC
V 8.27nC

Vρcom,l2m L2 data cache refills Ccom,l2rf 6.77nC
V

27.06nC
V

ρcom,ips Instructions (workload-specific) Ccom,l1tlb See Figure 4.25c

GPU

Vgpu GPU voltage Igpu,leak 156.41 mA 158.95 mA 24.93 mA

ρgpu,clock Total clock cycles per second Cgpu,clock 2.22nC
V

2.12nC
V

2.14nC
V

ρgpu,L2R L2 cache 32B reads per second Cgpu,L2R 9.54nC
V

8.73nC
V

10.59nC
V

ρgpu,L1R L1 cache 4B reads per second Cgpu,L1R 7.14nC
V

5.27nC
V

9.03nC
V

ρgpu,L1W L1 cache 4B writes per second Cgpu,L1W 8.76nC
V

8.01nC
V

10.70nC
V

ρgpu,INT Integer instructions per second Cgpu,INT 38.89 pC
V

36.32 pC
V

43.11 pC
V

ρgpu,F32 Float (32-bit) instructions per second Cgpu,F32 37.67 pC
V

11.29 pC
V

39.05 pC
V

ρgpu,F64 Float (64-bit) instructions per second Cgpu,F64 104.54 pC
V

73.77 pC
V

112.41 pC
V

ρgpu,CNV Conversion instructions per second Cgpu,CNV 33.17 pC
V

509.19 pC
V

13.52 pC
V

ρgpu,MSC Miscellaneous instructions per second Cgpu,MSC 31.16 pC
V

28.70 pC
V

84.97 pC
V

Memory

ρmem,clk Clock cycles Cmem,clk 233.57 pC
V

227.04 pC
V

184.94 pC
V

ρmem,CPU CPU memory cycles Cmem,cpu 3.23nC
V

2.82nC
V

7.15nC
V

ρmem,CPU Other memory cycles Cmem,cpu 1.98nC
V

1.80nC
V

2.02nC
V

βmem,204 Power offset at 204 MHz Pmem,204 -2.25 mW -2.74 mW
N/A

βmem,300 Power offset at 300 MHz Pmem,300 59.06 mW 55.68 mW
Other Pbase Base power 1 1211.94 mW 1173.69 mW 67.18 mW

†Leakage current modelled with core clocks.

Table 4.5: Full-hybrid models for three different Tegra K1 platforms.

0.9 0.95 1 1.05 1.1 1.15

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

Core Rail Voltage [V]

B
as

e,
 C

or
e

Le
ak

 a
nd

 C
or

e
C

lo
ck

 P
ow

er
 [W

]

Base Power + Core Leak + Core Clock
Polynomial Fit
Linear Fit

Figure 4.24: Base, core leak and core clock power residuals plotted over core rail voltage.

84 Chapter 4. High-Precision Power Modelling

All these issues, however, are fixed in the full-hybrid models for Rey and Ren.
The method used to build these models is a combination of the methods used to build

the CPU and GPU models in Sections 4.5 and 4.6. The main difference is that the CPU
model has been improved. The intention is that this will help to build the GPU model
more accurately. However, during our initial development of the full-hybrid model on
the T-17, we had problems estimating a positive base power (Pbase in Table 4.5). The
T-17’s base power was always estimated to be around -300 mW, even when all the other
coefficients were positive and similar to those estimated on Rey and Ren. We believe
that the reason behind this is that core rail leakage is over-estimated, causing the base
power to be underestimated. This occurs because we have forgotten to model some of the
core clocks (sbus, mselect, pciex and host1x). Consider Figure 4.24, where the residual
power (Pres,core) stemming from base power, core leak and core clocks are plotted over
core rail voltages on Ren. All other power components have been removed (based on a
model for Ren). Under these (incorrect) assumptions the residual power is described as:

Pres,core = Pbase + VcoreIcore,leak (4.12)

According to Equation 4.12, the residuals in Figure 4.24 should show a linear trend
with core rail voltage. However, it can be argued that this is not the case. The second-
degree polynomial curve-fit in Figure 4.24 shows a better fit with the residuals. This may
be hard to realise from the figure, where the other power components have been removed
based on this (faulty) model. However, we provide this figure for demonstration purposes.
The fact that the polynomial fit is a better approximation to these residuals is supported
by the fact that we have not modelled the core clocks on the core rail (see Table 2.1).
In reality, the accessory power (residuals in Figure 4.24) should rather be described as a
sum of base power, core leakage and core clocks CLK:

Pcore,acc = Pbase + Pcore,stat +
clk∈CLK∑

CclkfclkV
2
core (4.13)

The core clock frequencies are set to fixed values and do not vary over execution time.
However, as rail voltage increases, the dynamic power contribution from these clocks will
increase. Consequently, the leakage current (slope of the linear fit) is overestimated. To
overcome this issue, we model accessory power as a simple polynomial:

Pcore,acc = Pbase + V 2
coreIcore,acc (4.14)

where Icore,acc is a coefficient with units of ampere per volt. Note that we also at-
tempted to include a first order variable (VcoreIcore,leak). However, we removed this term
because Icore,leak was always estimated to be zero.

When the core clocks have been considered in the model, the resulting models for Ren,
Rey and T-17 show more promising results (see Table 4.5). It should first be noted that,
in general, the three models are similar. The models for Ren and Rey, which are Jetson-
TK1 kits, are most similar to each other. These also have fixes for the issues with PERF
and clock gating measurements. The T-17 does not have these fixes, and as a result, the
model for this system is more different compared to the Jetson-TK1 development kits.
The area where the models are most different is in terms of base power. The T-17 now
has a positive base power of 67.18 mW, whereas the Jetson-TK1 development kits have

4.7. Full-Hybrid Models for Different Platforms 85

HP L
ea

k

Core
 Le

ak

CPU
 Le

ak

GPU
 Le

ak
0

100
200
300
400
500
600

Le
ak

ag
e

Cu
rr

en
t [

m
A]

Rey
Ren
T-17

(a) Leakage currents.

HP1
 Cloc

k

HP2
 Cloc

k

HP3
 Cloc

k

HP4
 Cloc

k

LP
 Cloc

k

EM
C Cloc

k

GPU
 Cloc

k

RAM (C
PU

)

RAM (O
TH

)

L1
 Refi

ll

L2
 Refi

ll10-10

10-9

10-8

10-7

Ca
pa

ci
tiv

e
Lo

ad
 [C V

] Rey
Ren
T-17

(b) CPU dynamic power.

INST
_ID

LE

INST
_N

EO
N

INST
_V

FP

INST
_IN

T

INST
_IN

TV

INST
_L1

RF

INST
_L1

WB0.0

0.2

0.4

0.6

0.8

1.0

Ca
pa

ci
tiv

e
Lo

ad
 [C V

]

1e 9

Rey
Ren
T-17

(c) Instruction coefficients.

GINST
_F3

2

GINST
_F6

4

GINST
_C

NV

GINST
_M

ISC

GINST
_L2

R

GINST
_L1

R

GINST
_L1

W
10-12

10-11

10-10

10-9

10-8

10-7

Ca
pa

ci
tiv

e
Lo

ad
 [C V

] Rey
Ren
T-17

(d) GPU dynamic power.

Figure 4.25: Full-hybrid model coefficients and standard deviations for three different
Tegra K1 platforms.

more similar values of 1211.94 and 1173.69 mW. This is reasonable given that the T-17
does not have any external peripherals. The Jetson-TK1 kits implement a plethora of
external periphery, such as USB host controllers, network interfaces, other PCI-e devices,
serial interface, HDMI ports and more. The power usage of these units are interated
into a constant power term, the base power, for the Jetson-TK1 kits. Consequently, the
estimated base power for the Jetson-TK1 kits is higher.

A graphical comparison of the model coefficients for the three Tegra K1-based systems
are shown in Figure 4.25. The core rail leakages are shown in Figure 4.25a. Generally,
the estimates are good with relatively low 95 % confidence intervals. We can see that
the leakage currents for Ren and Rey agree, except for the HP rail leakage. Here, the
leakage is estimated to be over twice as high on Rey as for Ren. The model differences are
larger between the Jetson-TK1 kits and the T-17. For example, core leakage is estimated
to be at about 540 mA on the T-17, but only some 370 mA on the Jetson-TK1 kits.
Additionally, the GPU leakage is too low (only some 20 mA compared to 170 mA on the
Jetson-TK1 kits). However, it is possible to manually model the GPU leakage on the
T-17 according to our own method [63]. By only considering the increase in dynamic and
static power as GPU frequency increases in an idle system, the leakage is much closer to
those observed on the Jetson-TK1 kits. We believe that the large differences in leakage
currents between the T-17 and the Jetson-TK1 kits can be caused by the problems with

86 Chapter 4. High-Precision Power Modelling

PERF, measurement of CPU clock gating and rail voltages at high GPU frequencies.

Figure 4.25b shows the dynamic power coefficients on the CPU. We can see that
the estimated coefficients between Rey and Ren are very close to each other. The only
coefficients where there is a discrepancy is for the L1 and L2 cache refill costs. These are
estimated to be much higher on Rey than on Ren. L2 refills, for example, are estimated
to cost an order of magnitude more. However, it is worth noting that the 95 % confidence
interval is very large on Ren for the L1 and L2 refill cost. It is possible that something
has occurred during this experiment that caused this coefficient to be mis-predicted.
For example, it is possible that the low cost of L2 refills on Ren can be attributed to
instructions, where we in Figure 4.25c can observe that instruction cost is slightly higher
on Ren than on Rey for the different CPU benchmarks. If we study the clock power, we
can see that the T-17 has a higher clock cost than the Jetson-TK1 kits. Additionally,
the cost per clock cycle gradually decreases as more CPU cores are added to the system
(from 430pC

V
at one HP core to 437pC

V
, 333pC

V
and 353pC

V
for each of the remaining cores,

respectively). This is very different from the Jetson-TK1 kits, where the cycle cost on
the first core is larger (400pC

V
) than for the second, third and fourth CPU core, which

have the same cost of around 250pC
V

. Finally, the T-17 and the Jetson-TK1 kits have
different memory dynamic power costs. This is reasonable to expect given that the T-17
is equipped with LPDDR3 RAM, whereas the Jetson-TK1 kits have DDR3. We can see
that the LPDDR3 cycle cost is lower at 194pC

V
instead of 233pC

V
and 227pC

V
on Ren and

Rey, respectively. Interestingly, the cost per active CPU memory cycle is higher on T-17
at 7.15nC

V
instead of 2.23nC

V
and 2.82pC

V
. The active memory cycle cost from other (GPU)

hardware units is similar at around 2.0nC
V

.

Studying the CPU instruction costs in Figure 4.25c, we can make several interesting
observations. First, the idle cost is much lower, and it can be comparable to the other
instruction costs. In the CPU-only model, this cost was estimated to be much higher
(around 1.0nC

V
in Figure 4.14), but now it is only 0.08nC

V
and 0.44nC

V
per idle instruction on

Rey and Ren, respectively. Furthermore, we see that the per-benchmark instruction costs
remain very similar between Rey and Ren, leading us to the conclusion that the model
performs well between these devices. The instruction costs for the T-17 are estimated
to be much lower than on the Jetson-TK1 kits. We believe that this is caused by the
problems measuring instruction throughput with PERF. Additionally, it is possible that
the instruction power has been absorbed by the CPU cores’ cycle cost in Figure 4.25b.
These are estimated to be higher than on the Jetson-TK1 kits.

Finally, Figure 4.25d shows the estimated GPU instruction costs. This is the group
of model coefficients that agree the most between Rey, Ren and the T-17 development
kits. The integer, double-precision floating point and miscallaneous instructions, as well
as the L1 and L2 cache utilisation costs, are almost in complete unison with very small
95 % confidence intervals. However, there are a few things to note. On Rey, the single-
precision floating point instructions have a 95 % confidence interval which is very large,
and indeed, goes below zero. This is not the case on Ren and the T-17. Furthermore,
conversion instructions show very large 95 % confidence intervals across the three devices.
This leads us to believe that for some reason, it is very hard to get a good estimate for
this type of instruction. However, it is challenging to make an educated guess as to why
this occurs.

In this section, we have built our full-hybrid models for three different platforms:

4.8. Summary 87

Two Jetson-TK1 development kits, Rey and Ren, as well as a special development kit
containing only the Tegra K1 SoC, the T-17. We have seen that the model coefficients
between Ren and Rey are similar. The coefficients for the T-17 are more different to the
two due to implementation problems with PERF. Additionally, the rail voltages on the
T-17 are hard to capture using static frequency-voltage tables in our code. However, the
resulting model for the T-17 was good enough to discover a modelling error, where we in
Sections 4.5 and 4.6 had forgotten to consider some of the clocks running on the core rail.
This caused the estimated base power to be negative. By also considering these clocks in
the model, the resulting base power on the T-17 was estimated to be 67.18 mW, which is
reasonable given that the platform does not have any external peripherals around the SoC.
The improved models on Rey and Ren show that the coefficients are similar between the
platforms, but it is hard to state whether modelling is necessary on every SoC. Dynamic
power components are for example slightly higher on Ren than on Rey, but static power
components are smaller. Considering the coefficients in Table 4.5, we would argue that
only one model is necessary for Rey and Ren. However, this may not be true for other
Tegra K1 SoCs. The PMIC, for example, and its DCDC and LDO regulators powering
the power rails, will waste power differently depending on the circuit layout and hardware
components. Additionally, one cannot neglect the possibility of manufacturing differences
of the SoC.

4.8 Summary

There is a lack of power modelling methodologies that can successfully capture the com-
plex relations between software activity and the energy consumption of processors, mem-
ory and other hardware units. State-, rate- and CMOS-based methods all have their own
strengts and weaknesses, but none of them are able to accurately model power usage of
the Tegra K1’s CPU and GPU over different frequency ranges. In this chapter, we have
introduced a high-precision power modelling method that is able to predict power usage
of several multimedia workloads running on the Tegra K1 with “worst-case” errors of
only 3 %, with an average accuracy very close to 100 %. Our method achieves higher
precision than state-of-the-art approaches by combining their different insights to model
both static and dynamic power of the system. By expressing dynamic and static power
in terms of measureable hardware activity, such as instructions for workloads (CPU) and
architectural units (GPU), L1 and L2 cache usage, clock-, power- and rail-gating, and
subsequently combining these metrics with measured rail voltages, our method achieves
fine-grained insight into a closed system. We have also built our full-hybrid model on both
Rey and Ren (Jetson-TK1 development kits) and a customised platform, the T-17, which
is a minimal Tegra K1 implementation with very few hardware peripherals. Through
these experiments we have shown that our model is applicable to different devices, where
the estimated model coefficients are comparable. This also made us aware that we had
forgotten to model the constant system clocks on the core rail. We believe that the best
way to improve the current model is to also measure the rail voltages of the platform,
instead of resorting to hard-coded frequency-voltage tables that are, especially in the case
of an idle system, inaccurate. Ending our discussion on high-precision power modelling,
we now finally focus on using these models to achieve insight into the power usage of
running workloads.

88 Chapter 4. High-Precision Power Modelling

Chapter 5

Energy-Efficient Multimedia
Processing

In the previous chapters, we have motivated, developed and evaluated our high-precision
power modelling method for the Tegra K1. We have shown that our model is able to
capture a complete picture of the energy consumption of the platform, broken down into
processor elements, instructions, cache and off-chip memory usage. In this chapter, we
show through several preliminary case studies the insight that our model can give into
the energy consumption of a complex, mobile SoC such as the Tegra K1. Through the
use of our high-precision power model, we show how energy is consumed on the Tegra K1
under idle and active processing scenarios, how the Tegra K1 is energy-inefficient, and
how heterogeneous cores can be used to conserve energy. These experiments should be
considered to be preliminary studies that show the type of insight our power model can
provide. We leave it to future work to continue investigating these scenarios.

The remainder of this section is organised as follows. In Section 5.1, we focus on our
video processing filters from Section 2.5 and their per-frame energy usage. Using our
power model, we investigate the reasons behind energy-inefficiency at higher platform
frequencies. We find that the increased rail voltage at high operating frequencies, as well
as the number of processor cycles to complete each instruction, are important factors for
energy-efficiency. In Section 5.2, we exploit the fact that the Tegra K1’s processors are
inefficient at higher operating frequencies, and show that workloads can be split between
the Tegra K1’s heterogeneous compute cores to save 5 % energy under our DCT filter.
In Section 5.3, we investigate idle system power breakdown. We show through our model
the main power consuming entities of the Tegra K1 SoC, such as the core rail leakage
and memory clock. We demonstrate how kernel modules can be analysed and optimised
for better energy-efficiency. The effects of different GPU and CPU instruction types and
cache access modifiers, in terms of performance and energy consumption, is investigated in
Section 5.4. We demonstrate 3.2 % energy saving by exploiting different GPU instructions
and cache hierarchies, and 50 % saving by using NEON CPU instructions, for the DCT
filter.

89

90 Chapter 5. Energy-Efficient Multimedia Processing

5.1 Processing Live Video

In Section 2.5, we studied the effects that DVFS has on continuous video filter processing.
We discovered that a good heuristic to save energy is to minimise processor and memory
frequencies such that the QoS requirements, which in our case is a framerate, is met.
This heuristic consistently outperforms the standard DVFS, cluster and core algorithms
operating on the Tegra K1 by between 7 to 40 %. However, it is hard to argue why this
occurs, because there is no way to measure the individual power draw of the Tegra K1’s
compute components. In this section, we investigate the sources of energy-inefficiency by
using our model (Section 4.7) to gain insight into-per component energy consumption. We
focus our study on the DCT, MVS and Huffman filters, which are common components
of a video processing chain. We first study how energy consumption varies depending on
how many CPU cores are active, where we let the Tegra K1 process these filters at two,
three and four CPU cores. Here, we only consider the processor and memory frequency
combinations that reach the lowest EPF. We do not evaluate one core, because most of
the filters cannot reach 25 FPS in this core configuration. Subsequently, we evaluate
how frequency scaling affects energy consumption of the the filters. Only three processor
and memory frequency combinations that reach the 25 FPS requirement for each filter
are evaluated, where we first consider the maximum processor and memory frequencies,
before we reduce the memory and processor frequencies to the lowest that reach 25 FPS,
respectively. Therefore, a possible extension to these results is to consider all the power
components of our model over all possible processor and memory frequencies. This may
uncover additional sources of energy-inefficiency in the Tegra K1 SoC.

Figure 5.1 shows the energy breakdown for the DCT (Figure 5.1a), Huffman (Fig-
ure 5.1b) and MVS (Figure 5.1c) filters processing on two, three and four CPU cores.
The energy displayed is the total consumption processing 70 frames. The breakdowns
represent the tests (processor and memory) frequencies that reached the lowest total en-
ergy consumption. The figures therefore show the effects of adding and removing cores. If
we study the DCT filter in Figure 5.1a, we see that there is a large difference in processing
between two and three cores. The total energy consumption is reduced from 4750µWh to
3530µWh. The breakdown shows that the large reduction in energy consumption is due
to reductions in CPU clock and instruction costs. This is due to reduced CPU voltage:
at two HP cores, the CPU must operate at 2.2 GHz (1.08 V), whereas on three cores,
it can be lowered to 1.4 GHz (0.88 V). Otherwise, most of the energy components are
similar or the change is negligible. For example, adding a CPU core adds some leakage
current on the HP rail, and the memory frequency is increased to 528 MHz, effectively
increasing the memory clock energy slightly. However, the extra consumption is much
lower than the savings from the CPU clock and instruction energy. Finally, adding the
fourth HP core to process the DCT filter further increases the energy-efficiency. There
is some (negligible) increase in HP rail leakage, but adding the fourth core enables us to
drastically reduce the memory frequency to only 204 MHz. The CPU frequency is also
reduced to 1.3 GHz (from 1.4 GHz at three cores), but this has little effect on CPU cycle-
and instruction-energy.

Similar observations can be made for the Huffman and MVS filters in Figures 5.1b
and 5.1c. Note that the CPU instruction power for the DCT filter is significant at some
1000 mWh compared to the relatively low instruction costs of between 200-250 mWh for

5.1. Processing Live Video 91

2 Cores
2.2 GHz CPU
396 MHz RAM

3 Cores
1.4 GHz CPU
528 MHz RAM

4 Cores
1.3 GHz CPU
204 MHz RAM

0

1000

2000

3000

4000

5000

En
er

gy
 C

on
su

m
pt

io
n

[u
W

h]

(a) DCT filter.

2 Cores
1.5 GHz CPU
204 MHz RAM

3 Cores
1.1 GHz CPU
204 MHz RAM

4 Cores
1.1 GHz CPU
204 MHz RAM

0

200

400

600

800

1000

1200

En
er

gy
 C

on
su

m
pt

io
n

[u
W

h]

(b) Huffman filter.

2 Cores
960 MHz CPU
204 MHz RAM

3 Cores
828 MHz CPU
204 MHz RAM

4 Cores
828 MHz CPU
204 MHz RAM

0

500

1000

1500

2000

2500

En
er

gy
 C

on
su

m
pt

io
n

[u
W

h]

(c) MVS filter.

Memory Access
CPU Instructions

CPU Core Leakage

CPU Core Clock

GPU Clock

Memory Clock

GPU Rail Leakage

HP Rail Leakage

Core Rail Leakage

Base

Figure 5.1: Energy breakdown for the CPU filters. The barplots show the best CPU-
memory frequency combination for two, three and four active cores.

the other filters. For the Huffman filter in Figure 5.1b, we can see that moving from two
to three cores enables us to reduce CPU frequency from 1.5 GHz to 1.1 GHz. Similarly
to the DCT filter, this helps reduce CPU clock and instruction power. However, adding
the fourth core here has a negative effect on the total energy consumption. This result is
consistent with what we can measure. The energy per frame increases from 33.14 µWh

frame
to

33.21 µWh
frame

. The increase stems from the increase in HP rail leakage as the fourth core is
added. There is no positive effect, such as further reduction in processor frequency, that
can balance out the increase in static power usage on the HP rail. For the MVS filter in
Figure 5.1c, the number of active CPU cores has negligible impact on energy consumption.
25 FPS is reached with only two cores on at 960 MHz, and adding cores has no other
positive effect than reducing this to 828 MHz. This frequency reduction does not reduce
HP rail voltage, and therefore, there is no reduction in CPU clock and instruction power.
By adding cores, the same amount of work (instructions and cycles) is done, but it is
distributed over more cores. This indicates that the main source of energy-inefficiency is
purely the increase in HP rail voltage, and not a result of increased hardware utilisation
(more cycles or instructions).

In Section 2.5, we saw that lowering processor and memory frequencies had a positive
effect on the EPF of our filters. However, we could not state exactly why this occurred
because it is not possible to measure the power usage of individual units on the Tegra K1.

92 Chapter 5. Energy-Efficient Multimedia Processing

4 Cores
2.3 GHz CPU
924 MHz RAM

4 Cores
2.3 GHz CPU
204 MHz RAM

4 Cores
1.3 GHz CPU
204 MHz RAM

0

1000

2000

3000

4000

5000

6000

En
er

gy
 C

on
su

m
pt

io
n

[u
W

h]

(a) DCT filter.

4 Cores
2.3 GHz CPU
924 MHz RAM

4 Cores
2.3 GHz CPU
204 MHz RAM

4 Cores
1.1 GHz CPU
204 MHz RAM

0

200

400

600

800

1000

1200

1400

1600

En
er

gy
 C

on
su

m
pt

io
n

[u
W

h]

(b) Huffman filter.

4 Cores
2.3 GHz CPU
924 MHz RAM

4 Cores
2.3 GHz CPU
204 MHz RAM

4 Cores
828 MHz CPU
204 MHz RAM

0

500

1000

1500

2000

2500

3000

3500

En
er

gy
 C

on
su

m
pt

io
n

[u
W

h]

(c) MVS filter.

Memory Access
CPU Instructions

CPU Core Leakage

CPU Core Clock

GPU Clock

Memory Clock

GPU Rail Leakage

HP Rail Leakage

Core Rail Leakage

Base

Figure 5.2: Energy breakdown for the CPU filters actively processing on four cores.

Our model is able to show how frequency scaling influences the power usage on the
Tegra K1. Figure 5.2 shows the energy consumption of our filters on four cores. We
now study the total energy consumption as the processor and memory frequencies are
reduced from the maximum processor and memory frequencies (left bar in each plot).
The memory and processor frequencies, respectively, are set to the lowest that reach
the required framerate in the middle and right bars. For each of the filters (DCT in
Figure 5.2a, Huffman in Figure 5.2b and MVS in Figure 5.2c), we can observe that,
reducing memory frequency has many positive effects. In all of the filters, the memory
frequency can be lowered to 204 MHz while still reaching 25 FPS. The Tegra K1 supports
memory frequencies down to 12.5 MHz, but we were unable to test these because the
Tegra K1 suffers from occasional hangs when using these frequencies. The core leakage
energy is reduced. This is because processing is restricted to the HP cluster, and therefore,
the core rail voltage only depends on the memory frequency. Additionally, the memory
clock energy is reduced. There is, however, no change in the cost of memory accesses
(active memory cycles). This is because the memory rail voltage is always 1.35 V, and
the benchmarks all consume the same number of active memory cycles, regardless of the
frequency settings.

If we study the middle bars in Figures 5.2a, 5.2b and 5.2c, we can see that lowering
the memory frequency to 204 MHz has an interesting side-effect: the CPU core clock
energy increases. For the DCT and Huffman filter, the total energy usage is lower than

5.1. Processing Live Video 93

CPU Frequency [MHz] 1200
1600

2000
2400

Memory Frequency [MHz]250400550700
850

CPI

23.0
23.5
24.0
24.5
25.0
25.5
26.0
26.5
27.0
27.5

(a) DCT.

CPU Frequency [MHz] 800
1200

1600
2000

2400

Memory Frequency [MHz]250400550700
850

CPI

9.5
10.0
10.5
11.0
11.5
12.0

(b) Huffman.

CPU Frequency [MHz]
4008001200160020002400

Memory Frequency [MHz]250400550700
850

CPI

20
30
40
50
60
70
80

(c) MVS.

CPU Frequency [MHz] 1200
1600

2000
2400

Memory Frequency [MHz]250400550700
850

Bi
lli

on
 In

st
ru

ct
io

ns

2
4
6
8
10
12
14

(d) DCT.

CPU Frequency [MHz] 800
1200

1600
2000

2400

Memory Frequency [MHz]250400550700
850

Bi
lli

on
 In

st
ru

ct
io

ns

2
4
6
8
10
12
14

(e) Huffman.

CPU Frequency [MHz]
4008001200160020002400

Memory Frequency [MHz]250400550700
850

Bi
lli

on
 In

st
ru

ct
io

ns

2
4
6
8
10
12
14

(f) MVS.

Figure 5.3: Cycles per instruction (top row) and total number of instructions (bottom
row) for the video processing filters.

when the memory frequency is at 924 MHz, but for the MVS filter, reducing memory
frequency to 204 MHz increases the total energy usage. These results are consistent
with actual measurement of the platform energy usage, which is 3281µWh at 204 MHz
memory frequency and 2858µWh at 924 MHz. Because the CPU frequency remains
unchanged, the increase in CPU core clock energy must be caused by an increase in the
number of cycles. This is likely to be an effect of reduced instruction pipeline inefficiency,
where each instruction consumes more processor cycles to complete. This effect is hard
to capture without our power model. Interestingly, when we additionally reduce the
processor frequency to 1.3, 1.1 and 0.8 GHz (right bar), the HP rail leakage and CPU
core clock energy is reduced. This reduction in core clock energy is caused by the drop
in HP rail voltage as the CPU frequency is reduced, but it is also possible that each
instruction consumes less CPU cycles (increased pipeline efficiency).

Figure 5.3 illustrates the effects that frequency scaling has on the number of Cycles
per Instruction (CPI). We can see that, for all the filters, the CPI count is higher at
low memory and high CPU frequencies. The effect is most prominent for the MVS filter
in Figure 5.3c. Here, the processor efficiency is at best around 27 CPI, but when the
memory and processor frequencies are set to 204 MHz and 2.3 GHz, respectively, the CPI
can be worse at around 72 CPI. If we study the measurements in Figure 2.12d, we can see
that the EPF increases substantially in this same frequency region. The total number of
instructions executed in each benchmark is always the same (see Figures 5.3d, 5.3e and
5.3f), but because each instruction consumes more cycles to complete, the energy per frame
increases for frequency combinations where the CPI increases. The same observation can
be made for the DCT and Huffman filters in Figures 5.3a and 5.3b, but the effect is not as
detrimental as for the MVS. At low memory and high processor frequencies, the processor
efficiency decreases to 27 CPI for the DCT filter. This is an increase from the “best case”

94 Chapter 5. Energy-Efficient Multimedia Processing

852 MHz GPU
924 MHz RAM

852 MHz GPU
204 MHz RAM

324 MHz GPU
204 MHz RAM

0

500

1000

1500

2000

2500

3000

3500

4000

En
er

gy
 C

on
su

m
pt

io
n

[u
W

h]

Memory Access

GPU Instructions

CPU Instructions

CPU Core Leakage

CPU Core Clock

GPU Clock [Bugged]

GPU Clock

Memory Clock

GPU Rail Leakage

HP Rail Leakage

Core Rail Leakage

Base

Figure 5.4: Energy breakdown for the DCT filter running on the GPU. The barplots show
the best GPU-memory frequency combination, where the CPU is idle and restricted to
the LP core.

CPI value of around 24. The change in CPI value is negligible for the Huffman filter. As
a result, these findings indicate that only some workloads are severely affected by poor
CPI scaling at certain processor and memory frequency combinations. The effect of the
increasing CPI value for the DCT filter, for example, is not easily distinguishable in the
measurements in Figure 2.10c.

We now study the factors that lead to energy-inefficiency on the GPU. The Tegra K1’s
GPU is not able to process the MVS and Huffman filters at 25 FPS. However, it reaches
25 FPS for the DCT filter, where the energy breakdown over three GPU and memory
frequency combinations is shown in Figure 5.4. In this energy breakdown, we differ
between “bugged” and “normal” GPU clock cycles. The bugged cycles are caused by the
CUPTI power management bug, and are there because the GPU is not able to clock-gate
itself when idle. The normal cycles are those caused by the actual processing of the filter,
and is measured as normal using CUPTI HPCs. Note that, under normal processing
(not bugged) circumstances, the GPU clock is gated after a pre-defined number of idle
milliseconds. This number can be set manually in sysfs. This means that there will always
be some excess waste when the GPU is idle, caused by the clock being active for some set
amount of time, before it is gated. The displayed CPU instruction energy is only caused
by cache activity, where we neglect the cost of instructions.

From Figure 5.4, we can make similar observations as for the CPU filters. Reducing
memory frequency to 204 MHz also reduces the memory clock energy, but core leakage is
not reduced. This is because the LP core frequency is fixed at 1.0 GHz, forcing the rail
voltage to stay at above 1.0 V. Interestingly, we can also here observe that the number of
clock cycles directly related to the processing of the filter (non-bugged cycles) increases.
This means that the GPU may also be affected by inefficiency in the processor’s pipeline.
The “bugged” cycle energy is reduced, because more of these “always-on” GPU cycles are
used to process the actual filter. The net amount of GPU cycle energy, however, remains
the same. Reducing the GPU frequency to 324 MHz, which is the optimal GPU frequency
to process this filter, we can see that GPU leakage energy decreases as a result of reduced
GPU rail voltage. GPU instruction cost also decreases because of this, and additionally,

5.1. Processing Live Video 95

GPU Frequency [MHz]
400

600
800

Memory Frequency [MHz]250400550700
850

CPI

0.0040
0.0042
0.0044
0.0046
0.0048
0.0050
0.0052

(a) DCT.

GPU Frequency [MHz]
200

400
600

800

Memory Frequency [MHz]400
550

700
850

CPI

0.001
0.002
0.003
0.004
0.005
0.006

(b) Debarreling.

GPU Frequency [MHz]
200

400
600

800

Memory Frequency [MHz]250400550700
850

CPI

0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

(c) Rotation.

GPU Frequency [MHz]
400

600
800

Memory Frequency [MHz]250400550700
850

Bi
lli

on
 In

st
ru

ct
io

ns

50
100
150
200
250
300

(d) DCT.

GPU Frequency [MHz]
200

400
600

800

Memory Frequency [MHz]400
550

700
850

Bi
lli

on
 In

st
ru

ct
io

ns

50
100
150
200
250
300

(e) Debarreling.

GPU Frequency [MHz]
200

400
600

800

Memory Frequency [MHz]250400550700
850

Bi
lli

on
 In

st
ru

ct
io

ns

50
100
150
200
250
300

(f) Rotation.

Figure 5.5: Cycles per instruction (top row) and total number of instructions (bottom
row) for the video processing filters running on the GPU.

the GPU clock power is greatly reduced. There is no visible change in the memory access
costs.

We have observed that, similarly to the CPU, there is an inefficiency in the GPU’s
processor pipeline. At low memory and high GPU frequencies, more processor cycles
are consumed to process the same number of instructions. To show this effect in detail,
consider the DCT, debarreling and rotation filters in Figure 5.5. The GPU can reach
25 FPS for all of these filters. The results show that the CPI is heavily dependent on
the frequency settings. At 204 MHz memory frequency, the number of cycles required
to complete an instruction increases with GPU frequency. For examle, the CPI for the
DCT in Figure 5.5a goes from 0.004 to 0.005, the debarreling filter in Figure 5.5b from
0.002 to 0.006, and for the rotation filter in Figure 5.5c from 0.003 to 0.009. Compared
to the CPU, the number of cycles required to complete an instruction is four orders of
magnitude smaller (between 9 and 27 CPI for the CPU). This is because the GPU is
able to sustain a higher number of instructions due to its large number of compute cores.
However, the large number of cores increases the pressure on RAM. In essence, the GPU’s
192 CUDA cores can simultaneously request 128 unique 64-bit data values from memory.
We believe this is the reason for the GPU’s susceptibility to low memory frequencies.
The processor is effectively stalling when waiting for unsatisified memory read and write
requests, consuming additional cycles. The effect is destructive for energy-efficiency. The
clock energy required to process the same number of instructions (see Figure 5.5d, 5.5e
and 5.5f) increases by between 20 %(DCT) to 600 % (debarreling). Note that this effect
is not distinguishable from the measurements in Figure 2.10d, 2.8 and 2.9d in Section 2.5.
This is because the GPU clock is operating in a bugged state where it is never turned off
when idle. Therefore, any cycles saved by operating at frequency levels with lower CPI
will be consumed as “bugged” GPU cycles, and it will not be possible to observe this

96 Chapter 5. Energy-Efficient Multimedia Processing

effect with physical measurement.

In this section, we have studied the effects that adding and removing CPU cores, as
well as adjusting processor and memory frequencies, has on the energy-efficiency of our
video processing filters. We have shown that adding CPU cores generally has a positve
effect on energy consumption for all our filters. This is because the time taken to process
each frame is reduced, allowing us to reduce both processor and memory frequency. This
contributes to energy-efficiency by lowering rail voltages, reducing both static and dynamic
power usage of the Tegra K1. This result means that multi-threaded applications that
scale well with the number of CPU cores active have positive effects on power usage. The
cost of adding a core, in terms of additional leakage current, is negligible compared to
the saving of reducing the workload per core, and by extension, processor and memory
frequency. However, if the performance benefit of adding a core is not enough to reduce
operating frequencies, such as when adding the fourth CPU core for the Huffman and
MVS filters, we observed that the energy consumption increases slightly due to increase
core leakage currents. However, this extra cost is negligible.

Considering changes in frequencies, the main cause of increased energy-efficiency at
lower frequency levels is reduced operating voltage. It is possible to minimise processor
and memory frequencies, such that the required framerate is met, and therefore save both
static and dynamic power. Otherwise, the same number of processor instructions are
executed. However, we also revealed an additional effect that is hard to observe without
our fine-grained power model. At certain processor and memory frequency combinations,
the number of cycles required to complete each instruction increases. This means that,
at these frequencies, more processor cycles are consumed to process the same number
of instructions. We believe that this is caused by reduced pipeline-inefficiency due to
off-chip memory access stalls, and that additional memory access contention from con-
tending processes may further worsen the pipeline inefficiency. An interesting topic for
DVFS algorithms is that, since the CPI count can be easily measured and is a source of
energy-inefficiency, DVFS algorithms should monitor it and attempt to configure platform
frequencies to avoid high CPI values for different processes. However, this topic is left for
future work.

5.2 Energy-Efficient Load Balancing on Heterogeneous

Cores

Many researchers attempt to increase the energy-efficiency of heterogeneous architectures,
by dividing workloads between heterogeneous processors [12, 22, 35, 54, 73]. These target
mobile SoCs such as the Tegra 2 [12,73], Samsung S4, Samsung Note II, Google Nexus 7
and Tegra 250 [54], Tegra 3 [22] and Texas Instruments’ OMAP 3530 platform [35].
The tested application areas are for example the scale-invariant feature transform [22,
54], where Huang and Lai [22] also experiment with BLAS benchmarks, mobile face
recognition [12,73] and face tracking [35].

The common approach in these studies is to offload certain computation blocks entirely
to the SoC’s GPU using the OpenGL ES graphics library. General purpose computing
frameworks such as CUDA were not available until the Tegra K1. With regards to what
computation blocks are offloaded, this is rarely discussed or argumented for in detail [54].

5.2. Energy-Efficient Load Balancing on Heterogeneous Cores 97

GPU-offloaded computational blocks for the scale-invariant feature transform, is for ex-
ample gaussian scale space [54] or convolution, difference of gaussians, octave gradient
and key description generation [22, 73]. In their face recognition system for the Tegra 2,
Cheng and Wang [12] offload the gabor wavelet to the mobile GPU. Lopez et. al. [35] de-
sign a full offloading scenario, where all mobile face tracking operations can be performed
on the CPU or GPU, and in addition, the CPU and GPU can work in parallel on two
independent frames.

Recent research into energy-efficient, mobile computing often implicitly or explicitly
make the assumption that processors are more energy-efficient at lower frequencies. We
have also observed this phenomenon on the Tegra K1 in the preceding chapters of this
thesis. As we concluded in Section 5.1, an important source of energy-inefficency is
voltage scaling. As for example GPU frequency is increased, the GPU’s rail voltage also
increases, which in turn increases dynamic and static power [30]. We have also observed
that the GPU and CPU CPI increases at certain processor and memory frequencies. In
effect, additional cycles and dynamic power are required to process the same number
of instructions. However, this raises an interesting question. Given that for example
the Tegra K1’s GPU is energy-inefficient at high frequencies; can we offload some of the
work per frame to the CPU, reducing the current processor’s frequency, and thereby save
energy? In this section, we first investigate whether this is possible when the Tegra K1’s
GPU is processing only the DCT filter, before we let the CPU process the MVS and
Huffman filters in additon. A possible extension to this work is to investigate the impact
of offloading under scenarios where there is additional contention for processing time on
the Tegra K1’s CPU and GPU, for example from other processes.

5.2.1 Measuring Energy-Efficiency

Authors who offload work to GPUs [12,21,22,35,54,73] report performance speedups and
increased energy-efficiency when both processors (CPU and GPU) are used. However, as
explicitly noted by Wang and Cheng [73], the increase in energy-efficiency is probably a
result of reduced execution time. All electrical platforms have idle power usage, caused
by for example constant current draw of various passive components, leakage currents
in transistors and various clocks which are not gated. When authors offload work to
the GPU, execution time is normally reduced, further reducing time to completion for
programs and leading to reduced energy consumption from idle components. This means
that authors who quantitatively measure energy-efficiency, for example in total runtime
energy [12,22,35,73] or Performance Per Watt (PPW) [19,54], observe increases in power-
efficiency under offloading which is potentially caused only by reduced energy consumption
from idle power components. Therefore, interpreting the result that hybrid processing
saves energy is dangerous. Idle power components is something we cannot affect. As
long as a platform is on and powered, there will be some base power component which
we can not remove without shutting down the whole system. When considering hybrid
processing scenarios, the real questions are how much energy our workloads consume on
each processor, which one is most efficient, and whether energy can actually be saved
by exploiting heterogeneous architectures. The risk of interpreting current results in this
area is that the ”increase” in power-efficiency is solely a by-product of reduced idle energy,
which effectively hides the answers to these questions.

98 Chapter 5. Energy-Efficient Multimedia Processing

0 20 40 60 80 100
Divisioning [%]

2.0
2.5
3.0
3.5
4.0
4.5
5.0

Pe
rfo

rm
an

ce
 P

er
 W

at
t [

fp
s

W
]

0
20
40
60
80
100
120
140
160

Fr
am

e
Pr

oc
es

si
ng

 T
im

e
[m

s]

(a) Early finish.

0 20 40 60 80 100
Divisioning [%]

8.0
8.2
8.4
8.6
8.8
9.0
9.2
9.4

Pe
rfo

rm
an

ce
 P

er
 W

at
t [

fp
s

W
]

0
20
40
60
80
100
120
140
160

Fr
am

e
Pr

oc
es

si
ng

 T
im

e
[m

s]

Performance Per Watt
Frame Processing (CPU)
Frame Processing (GPU)

(b) Constant time (20 s).

10 % 100 %0
1
2
3
4
5
6
7
8
9

En
er

gy
 C

on
su

m
pt

io
n

[m
W

h]

Memory Access
GPU Instructions
CPU Instructions
CPU Core Leakage
CPU Core Clock
GPU Clock
Memory Clock
GPU Rail Leakage
HP Rail Leakage
Core Rail Leakage
Base

(c) Early finish.

10 % 100 %0
2
4
6
8

10
12
14
16
18

En
er

gy
 C

on
su

m
pt

io
n

[m
W

h]

Memory Access
GPU Instructions
CPU Instructions
CPU Core Leakage
CPU Core Clock
GPU Clock
Memory Clock
GPU Rail Leakage
HP Rail Leakage
Core Rail Leakage
Base

(d) Constant time (20 s).

Figure 5.6: Evaluating energy-efficiency with different strategies for test runlength.

To illustrate how different conclusions we can make when not considering idle power,
consider the following experiment. Consider having our DCT filter process a sequence of
frames on the Tegra K1. For each frame, a specific number of macroblocks (in percent) can
be offloaded to the Tegra K1’s GPU. Figure 5.6a shows the PPW (in frames per second
per watt) as measured over varying offloading degrees from 0 to 100 % GPU offloading.
For example, at 40 % offloading, the GPU is processing 40 % of each incoming frame,
and the CPU is processing 60 %. In each test, we process 72 HD frames and the CPU,
GPU and memory frequency is set statically to 2320.5, 72.0 and 924.0 MHz. We see that
the maximum PPW is about 4.7 FPS per watt at 10 % GPU offloading, indicating that
it is very beneficial to combine the processors. Judging from the experimental results, we
almost increase power-efficiency by 100 % compared to a full GPU offloading scenario,
leading us to the conclusion that the GPU is very inefficient for this type of workload.

As mentioned above, the problem with measuring energy-efficiency in this way is
deeply coupled with idle power usage and the duration of each test. Like other authors,
in each of our tests (offloading percentages), we measure power from the start until the
test is done processing 72 frames. Consequently, as more per-frame workload is offloaded
to the GPU, the benchmarks finish earlier. This is visible in Figure 5.6a, where the highest
performance (framerate) is achieved at 10 % GPU offloading. Increasing or decreasing
offloading beyond 10 % degrades performance, because the GPU or the CPU takes longer
to finish processing each frame. We now build a detailed energy breakdown of all power
components in the system for 10 and 100 % GPU offloading using our detailed power model
for the Tegra K1 [64, 65]. The per-frame energy breakdown can be seen in Figure 5.6c,
where the lined blocks correspond to energy consumption from idle components. The

5.2. Energy-Efficient Load Balancing on Heterogeneous Cores 99

rest (non-lined) components are directly related to only the DCT’s hardware utilisation
on each processor. Comparing the offloading factors, we see that at 10 % there is a
substantial reduction in idle energy usage compared to 100 % offloading. This is caused
by the short runtime of the test. However, the energy which is related to the processing
of each frame, is much larger with 10 % offloading than in the case where the entire frame
is offloaded to the GPU. This indicates that full GPU offloading is in this case the most
energy-efficient alternative, a conclusion which is a radically different than we can make
from Figure 5.6a.

Many hardware manufacturers use PPW as a metric when evaluating energy-efficiency
of their products, but it is usually not clear how their experiments were run. Therefore,
it is impossible to say whether the actual power usage of the benchmarks on their hard-
ware is reduced. It is for example possible that the increase in PPW is due to increased
floating-point performance, allowing benchmarks to finish faster and thereby save more
base power. Interestingly, both approaches have merits. Consider for example a server
farm, where the service provider charges customers for power usage. From the perspective
of the customer, it is in their best interest to have a high PPW value for their workloads,
to avoid unnecessary expenses. However, as we have seen in this section, this can in-
crease the overall energy consumption, and the power expenses of the service provider.
The problems of measuring energy-efficiency using quantitative metrics can be overcome
without detailed power breakdowns and models. All that is necessary is to run each test
for the same duration, taking care not to allow frequency scaling algorithms and power
management change platform state during the tests. Considering for example Figure 5.6b,
we see that the PPW is best at high GPU offloading percentages. This is again confirmed
with a detailed breakdown in Figure 5.6d, where it is clearer that the contribution to
energy consumption from idle components is constant between the tests. The difference
in energy usage per frame is solely due to the energy consumption of the Tegra K1’s CPU
and GPU under the DCT workload.

5.2.2 Scope and Method

The problem of balancing a workload on two heterogeneous cores, where operating fre-
quencies, CPU cluster and the number of CPU cores can vary is large. Our video pro-
cessing filters (the DCT, MVS and Huffman coding) support fined-grained workload par-
titioning between the Tegra K1’s CPU and GPU, where a percentage of the per-frame
workload can be allocated to the GPU in 100 steps from 0 to 100 %. The CPU can be
operating on the LP core or the HP cluster, in which case we can also control the number
of potentially active cores, yielding an additional five configurations. There are 20 HP
cluster frequencies, 7 memory frequencies and 15 GPU frequencies. For just a single work-
load, this yields over a million possible solutions and makes exhaustive searches unfeasible
in practice.

In order to empirically investigate whether offloading can save energy we use the
following methodology. First, we decide to focus on the HP cluster with four cores. This
is because the Tegra K1 will have to utilise the HP cluster and a high number of CPU
cores, as well as the GPU, to achieve required application performance. For example,
on the Tegra K1 we found that the MVS filter scales much better, in terms of both
performance and energy, on the CPU than the GPU. For the video encoder to meet a

100 Chapter 5. Energy-Efficient Multimedia Processing

60 65 70 75 80 85 90 95 100
GPU Offloading [%]

40

50

60

70

80

90

En
er

gy
 p

er
 F

ra
m

e
[µ

W
h

fr
a
m
e
]

(a) EPF over offloading factors (DCT).

80 85 90 95 100
GPU Offloading [%]

60

70

80

90

100

110

120

En
er

gy
 p

er
 F

ra
m

e
[µ

W
h

fr
a
m
e
]

(b) EPF over offloading factors (all filters).

80 85 90 95 100
GPU Offloading [%]

0

500

1000

1500

2000

Fr
eq

ue
nc

y
[M

Hz
]

0

5

10

15

20

25

30

(c) Best frequency combinations
(DCT).

80 85 90 95 100
GPU Offloading [%]

0

500

1000

1500

2000
Fr

eq
ue

nc
y

[M
Hz

]

18

20

22

24

26

28

Fr
am

e
Pr

oc
es

si
ng

 T
im

e
[m

s]

(d) Best frequency combinations (all
filters).

80 85 90 95 100
GPU Offloading [%]

0

10

20

30

40

50

En
er

gy
 p

er
 F

ra
m

e
[µ

W
h

fr
a
m
e
]

(e) Breakdown (DCT).

80 85 90 95 100
GPU Offloading [%]

0

20

40

60

80

100

En
er

gy
 p

er
 F

ra
m

e
[µ

W
h

fr
a
m
e
]

(f) Breakdown (all filters).

Figure 5.7: Offloading experiments.

35 FPS full-HD QoS requirement, the HP cluster therefore must be active with three
or four cores to process the MVS filter. Furthermore, to limit the number of frequency
combinations to test, we first perform a coarse benchmark run. The coarse run always
includes four to seven frequencies from each domain (CPU, GPU and memory) and 11
offloading factors. The coarse run always includes the maximum and minimum frequency
from each domain. The frequency configuration (fmem, fcpu and fgpu) which achieves the
best EPF is then selected, and a fine-grained benchmark run is initiated. In this run,
five frequencies and offloading configurations around fmem, fcpu and fgpu are tested. We
always focus our search on lower frequencies because we expect, in accordance with our
own [61] and other previous work [48, 74], that more energy efficient configurations are
found there.

5.2.3 Offloading a Single Filter

We now focus on the DCT filter according to our methodology in the previous section.
Figure 5.7a shows the measured DCT EPF for GPU offloading percentages. Each coloured

5.2. Energy-Efficient Load Balancing on Heterogeneous Cores 101

line represents a single frequency combination, where the color intensity indicates the
frequency level. The more intense (red) the color, the higher the frequencies, and the more
cool (light-blue), the lower frequencies are used. Only the data points that reach the target
frame rate of 35 FPS are drawn. From the figure we can see that for both these filters,
the lowest measured EPF is found at very low frequency combinations (blue lines). This
confirms the theory that in general, frequency should be minimised such that application
requirements are met [48, 61, 74]. In the coarse test run, the frequency combination
that achieved the lowest EPF (and 35 FPS) is fmem = 528MHz, fcpu = 564MHz and
fgpu = 756MHz, where 90 % of the per-frame workload is processed on the GPU and the
rest is processed on the four CPU cores. The energy per frame is 44.41 µWh

frame
. Following

our methodology above, we now perform a fine-grained search around this frequency
and offloading configuration. We focus on ten offloading configurations between 80 to
90 %, and attempt to set the memory, GPU and CPU frequencies close to the best point
found. We now find a better offloading configuration, where memory frequency fmem has
decreased to 324 MHz, CPU frequency fcpu has been increased to 828 MHz and GPU
frequency fgpu is further reduced to 684 MHz. The EPF is also lower at 43.69 µWh

frame
.

Figure 5.7c shows, for any offloading percentage, the best frequency combination (in
terms of EPF) and FPT at that point reaching 35 FPS. We can see that the GPU frame
processing time is very close to the per-frame processing deadline of 28 ms. This is as
expected, where it is part of our assumption that frequency should be minimised such
that the frame processing deadline is just met. However, the CPU FPT is lower and
generally varies between 10 to 20 ms. Theoretically, this means that the CPU frequency
could be lowered, while still meeting the frame processing deadline of 28 ms. However,
investigating this issue we found that some milliseconds are necessary to synchronise the
CPU with GPU kernels. Therefore, if the CPU frequency is lowered, it takes too long to
synchronise with the GPU. Consequently, the frame processing deadline is not met even
if the actual GPU code finishes in time, if we further lower the CPU frequency.

Further studying Figure 5.7c, we see that from the 100 % offloading scenario, GPU
frequency is gradually reduced as more work is offloaded to the CPU. In turn, we see that
CPU frequency generally stays at around 828 MHz over most offloading configurations,
but that the CPU FPT gradually increases toward 28 ms as more work is offloaded from
the GPU to the CPU. At 80 % offloading, the CPU frequency has to increase to 1.0 GHz
to reach the frame processing time. Memory frequency generally stays at either 396 or
528 MHz, but as we can see from the figure, there is some variance in which frequency
is best, and there is not any clear explanation as to why memory frequency behaves this
way. It is our hypothesis that, as more work is distributed between the cores, the memory
controller becomes more efficient as it has both a 32 bit interface towards the CPU and
a 64 bit interface to the GPU. More memory requests can be served per unit time, and
therefore, the memory frequency shows some tendency to be reduced at 80 MHz.

To further understand what is happening within the SoC, and what is occurring within
the Tegra K1’s circuitry, we use our power model to understand what is happening on
each rail in terms of static and dynamic power. Figure 5.7e shows, for the best frequency
combination at each offloading factor, EPF broken down into the Tegra K1’s individual
power components. The red line shows the measured EPF, and the other blocks show
the energy consumption of the Tegra K1 broken down into static and dynamic power
components. We can see that the model prediction is decent, as the estimation generally

102 Chapter 5. Energy-Efficient Multimedia Processing

follows the measured values. Of the energy components, base power, core, HP and GPU
leakages as well as memory clock remain approximately constant over offloading configura-
tions. The GPU clock energy, however, shows dramatic reduction because the GPU clock
frequency is lowered from 100 towards 80 % GPU offloading. We can also see that the
CPU clock energy increases. This is as expected because more work is performed on the
CPU. The same trend can be seen for instruction energy. The GPU instruction energy is
reduced, and CPU instruction energy is increased, as more work is offloaded to the CPU.
Interestingly, memory access energy remains constant over offloading configurations. We
can conclude that it is possible to save energy by offloading 10 % DCT workload from the
GPU to the CPU. This is because the energy saved in reduced GPU clock and instruction
energy, and reduced GPU voltage, is larger than the additional cost of processing those
10 % on the CPU. Compared to running the filter 100 % on the GPU, 4.14 % energy per
frame was conserved from 45.56 µWh

frame
to 43.69 µWh

frame
. However, it is important to note that

the actual saving on the SoC is larger due to the large base power component. Without
it, the saving is 5.08 %.

5.2.4 Offloading Under Heavy Processing

In the previous section, we observed that it is possible to save 5 % EPF by offloading 10 %
of the DCT workload from the GPU to the CPU, under a QoS requirement of 35 FPS.
This is possible because the total amount of energy saved by reducing the GPU operating
frequency, conserving GPU clock energy and reducing GPU voltage, is larger than the
additional cost of processing that workload on the CPU. However, in this scenario, the
CPU was idle with respect to other tasks. In a video encoding scenario, the CPU must
also fulfill other tasks such as MVS and Huffman encoding. If the CPU is busy processing
other tasks, the extra cost of offloading DCT workload from the GPU may be too large
to achieve a positive gain of the offloading. We now repeat the above experiment, but let
the CPU process the MVS as well as the Huffman filters. The best EPF after the coarse
run was here 67.25 µWh

frame
at 100 % GPU offloading, at fmem = 924MHz, fcpu = 1.8GHz

and fgpu = 756MHz. Searching for better (lower) frequencies around this configuration
did not yield any better EPF. The results are shown in Figure 5.7b, where we see that
while the 100 % offloading configuration is best, there are several configurations, such as
at 86 and 92 % GPU offloading, that are very close to achieve the same EPF. Studying
Figure 5.7d, we can see that the GPU frequency is lowered as was the case for the single-
filter DCT experiment in the previous section. Additionally, the energy breakdown in
Figure 5.7f shows that GPU clock and instruction energy is reduced when more work
is offloaded from the GPU to the CPU. However, the additional cost of processing on
the CPU is larger than the saving of reduced GPU clock and instruction energy. This
occurs because the CPU is already working at a very high processor frequency of 1.8 GHz,
in order to process the MVS and Huffman filters at 35 FPS. Compared to running the
CPU at well below 1.0 GHz, which was the case for the previous single-filter experiment,
the CPU voltage has increased from 0.82 to 0.94 V. This increases dynamic and static
power components, such as instruction and clock energy on the CPU. It is worth noting,
however, that the margins are small. At 90 % offloading, the EPF is 70.01 µWh

frame
, which is

very close to the 100 % offloading EPF of 67.25 µWh
frame

.
In this section, motivated by the energy-inefficiency of the Tegra K1’s processors at

5.3. Tegra K1 System-Level Energy Analysis 103

4 6 8 10 12 14 16 18 20
1

2

3

P
o
w

e
r

[W
]

Power (Measured)
Power (Estimated)

4 6 8 10 12 14 16 18 20
0

1000

2000
F

re
q
u
e
n
c
y
 [
M

H
z
]

CPU Frequency
Memory Frequency

4 6 8 10 12 14 16 18 20
0

50

100

U
ti
lis

a
ti
o
n
 [
%

]

Time [s]

CPU Utilisation
Memory Utilisation

Figure 5.8: Platform state under normal (idle) operating conditions.

high frequencies, we have performed several preliminary experiments to save energy by
off-loading processing between heterogeneous processors. We have seen that it is possi-
ble to save 5 % EPF by offloading 10 % of the per-frame DCT workload to the CPU,
where the remaining 90 % is processed on the GPU. By offloading some processing to the
CPU, we can reduce the frame processing time on the GPU, additionally reducing GPU
frequency and rail voltage. The benefit of offloading, in terms of reduced GPU static
and dynamic power, is larger than the additional cost of processing 10 % on the CPU.
However, if the CPU is already constrained and working on other workloads, such as when
performing MVS and Huffman coding to file at the same framerate, we have observed that
the additional cost of processing on the CPU is at least equal to the saving of reducing
GPU frequency. This occurs because the CPU is already processing at a frequency close
to 2.0 GHz, where the energy-efficiency of CPU instructions is decreased due to increased
CPU rail voltage.

5.3 Tegra K1 System-Level Energy Analysis

Many mobile devices such as smart phones typically spend large amounts of time in an
idle state, where most components are left unused and the power usage should be minimal.
An important challenge for system-level energy optimisation is therefore to understand
how energy is consumed at a fine-grained level. For example, if we know how much
energy is consumed for cache maintenance, instruction execution and off-chip memory
access, it is easier to locate the important sources of energy loss. If for example a driver
is performing excessive device communication over an expensive communication bus, it
may be possible to further optimise power usage by doing changes to the code. In this
section we perform an idle state analysis of the Tegra K1, investigating how the platform
manages its resources, how system services contribute to power and how these services
can be optimised for energy-efficiency.

104 Chapter 5. Energy-Efficient Multimedia Processing

320

340

360

380

400

420

440

460

En
er

gy
 C

on
su

m
pt

io
n

[u
W

h]

Figure 5.9: Idle power component breakdown. The right bar is the measured energy
consumption, and the left bar is the estimated.

5.3.1 Component-Level Breakdown

Under normal operating conditions, the Tegra K1 is idling on the LP core at low memory
and processor frequencies. Figure 5.8 shows how frequencies are tuned in response to
changes in processor utilisation on Rey. The only significant process running in the
system is our profiler, which periodically samples and logs the platform state. We can see
that the CPU frequency varies between 200 to 800 MHz. The memory frequency remains
close to 200 MHz. The lower part of the plot shows the CPU and memory utilisation.
These are defined as the number of active cycles (CPU or memory) relative to the current
frequency operating point of that component. The graph shows that the CPU DVFS
algorithm reacts quickly to changes in processor utilisation. As the CPU utilisation is
already well below 100 %, it is possible that these increases in CPU operating frequency
are unnecessary.

We now use the model coefficients from Table 4.5 for Rey to build a more complete
picture of the power usage of individual units of the Tegra K1. When we attempted to
do this while the Tegra K1’s default power management mechanisms were active, the
HP cluster was activated and the CPU frequency was set to values well above 1 GHz.
We therefore force the Tegra K1 to operate at 204 MHz CPU andn 204 MHz memory
frequency, and restrict processing to the LP core. This has no detrimental effects on our
profiler’s ability to predict and log power usage in time. To model instruction cost, we
let the Tegra K1 idle for one second at every possible CPU and memory frequency. Using
regression, we calculate the cost of idle instructions to be 1475pC

V
, with a “constant base

instruction power” of 10.07 mW. With an V 2IPS of around 106, this corresponds to an
instruction power of around 15 mW. The prediction can be seen in Figure 5.8 and is
97.7 % accurate over time.

The component-level breakdown can be seen in Figure 5.9, where the total energy
consumption for an idle run of 1 s is shown. With 329.8µWh, the base cost is the most
substantial component. However, this energy represents electrical components external
to the Tegra K1 SoC. The most substantial component on the SoC is the core rail leakage
with 87.6µWh. This rail is impossible to turn off without settling the Tegra K1 in
more low-powered sleep modes. The memory clock is the second most energy-consuming
component, consuming 23.9µWh. The memory clock cannot be clock-gated because it
must always be on to maintain data consistency. It is possible to lower the memory
frequency below 204 MHz, but as already stated in the preceding section, this tends to

5.3. Tegra K1 System-Level Energy Analysis 105

hang the Tegra K1. The rest of the components, meaning the LP core clock and leakage,
cache and instructions as well as external memory accesses comprise 12.3µWh. Relative
to the rest of the SoC, this is only 10 % of the idle system energy (not considering
base energy). Of these components, the estimated CPU cache and instruction energy
components are larger and estimated to be 5.3 and 2.8µWh, respectively.

5.3.2 Optimising the ACTMON Kernel Driver

Following the discussion of the previous section, the rest of the idle power components
(LP core leakage, instruction cost, cache maintenance and off-chip memory accesses) cost
12.3µWh over one second. Much of this energy consumption is directly related to system
software, but is only 10 % of the Tegra K1’s idle power. Although this cost is small, we
now conduct an analysis to investigate and optimise the power usage of individual system
services.

There are many system processes running on the Tegra K1. Of these, only the activity
monitor drivers tracking off-chip memory utilisation are the most active. Because our
profiler process is normally not present, the largest optimisation potential is therefore in
the activity monitor. We now run the Linux tool perf to collect HPCs for 30 s, which
shows the percentage of instructions executed in specific function calls. The following
points show the five most significant entries:

1. 8.52 % avahi-daemon, unnamed function call.

2. 7.48 % activity-irq, software interrupt callback.

• 4.40 % activity-irq, get clock pointer from string.

– 4.39 % activity-irq, string compare.

3. 4.83 % swapper, spin unlock and enable interrupt.

It is clear from the above points that 4.40 % of the platform instructions are executed
in the activity monitors’ interrupt handler, with 4.39 % of in a string comparison function.
This function is in turn called from a function which gets a pointer to a clock from a clock
name. Upon inspection of the source code, we see that this function call is redundant for
every invocation of the interrupt handler. This means that it can be safely removed as
long as a single reference to the clock is stored at the first access to that clock pointer.
Additionally, the interrupt intervals for the activity monitor is set to 12 ms. This can
safely be increased to lower the rate at which these interrupts occur, and consequently,
reduce the instruction throughput from these drivers.

Figure 5.10 shows the effect that these optimisation strategies have on the estimated
and measured idle energy consumption over five seconds. The y-axis starts at 2180 µWh
to increase the visibility of the instruction and cache power components. The left bar
shows the standard scenario where the interrupts are occurring every 12 ms. The clock-
call is functioning as normal. The middle bar shows the effect of only calling this function
once (to retrieve a clock data structure) and subsequently re-using it in subsequent kernel
interrupts. We can see that the estimated energy consumption is lowered by 2µWh. How-
ever, the measured reduction is only 0.2µWh. This corresponds to a measured reduction

106 Chapter 5. Energy-Efficient Multimedia Processing

12 ms
Clock-call

12ms
No Clock-call

25ms
No Clock-call

2190

2200

2210

2220

2230

En
er

gy
 C

on
su

m
pt

io
n

[u
W

h]

Figure 5.10: Idle system-level energy breakdown for the Tegra K1 under various optimi-
sation strategies for the activity monitor drivers. The right bars represent the measured
energy consumption, and the left bars represent estimated.

in average power of 0.7 mW. The larger estimated reduction in power is mainly caused
by a reduction in the cache energy component. The right bar in Figure 5.10 shows the
effect of doubling the interrupt interval from 12 to 25 ms. This halves the number of
interrupts per second. The estimated reduction from the original source code (left bar) is
11µWh, with a measured change of 4µWh. This corresponds to a reduced average power
of 14.4 mW. In addition to further reduced cache and instruction utilisation, the LP core
leakage current is reduced. This is because the LP core is being power gated more often
due to higher idling intervals between the interrupts.

The estimates in Figure 5.10 overpredict the reduction in power usage. However, we
regard it as a positive result where we can observe reductions in the estimated and mea-
sured values. It is also important to be aware that we are handling changes in energy
that are extremely small when compared to the rest of the system. Our method of at-
tributing a constant, average capacitive load per idle instruction may also be improved.
For example, the OS operates based on events that occur in random intervals, such as
hardware interrupts and applications’ interactions with system calls. It is therefore not
given that the same capacitive load can be observed over time, because the OS does not
always execute the same code paths over time. Also, many of the services in the OS have
a constant throughput of instructions that do not vary in terms of for example frequen-
cies. The ACTMON drivers is a good example, where the rate of instruction throughput
rather depends on the interrupt frequency. Therefore, frequency scaling cannot affect
the instruction throughput sufficiently to trigger changes in instruction throughput. An
interesting topic for future work is to further analyse the power usage of instructions,
by attributing a capacitive load per instruction executed in individual code-paths in the
kernel. This could also be done for software applications.

In this section, we have investigated the idle-system power usage of the Tegra K1.
We have identified the largest consumers of energy, which is the core rail leakage and
memory clock. Such an analysis can be useful for system architects, for example to im-
plement further stages of power gating on the core rail or to use more modern types of
memory that can operate on lower voltages. For example, LPDDR3 can operate at 1.2 V,
whereas conventional DDR3 memory equipped with the Jetson-TK1 operates at 1.35 V.
Furthermore, we have considered idle system instruction power on the Tegra K1. We

5.4. Instructions’ Effect on Energy Consumption 107

FLOAT
L1 L2

DOUBLE
L1 L2

4.6

4.7

4.8

4.9

5.0

Po
w

er
 [W

]

0

1

2

3

4

5

Ke
rn

el
 D

ur
at

io
n

[m
s]

Kernel Dur.
Total Msr.
Base Est.
L1R Est.
L2R Est.
CNV Est.
F32 Est.
F64 Est.
EMC GPU Est.

Figure 5.11: Effects of different instructions and cache usage on GPU power usage. The
left and middle bars show the estimated and measured power usage, respectively. The
right bars show the kernel duration.

analysed the power usage of the ACTMON drivers and detected several potential areas
of optimisation, such as removing expensive function calls and increasing the interval at
which interrupts occur. However, while we observed reductions in energy usage, our power
model here overestimated the reduction. We believe that more fine-grained instruction
power estimation is needed, and that this can be a topic for future work. For example,
an interesting question can be if it is possible to attribute instruction costs through indi-
vidual code-paths in applications and drivers, and thereby increase the power estimation
accuracy.

5.4 Instructions’ Effect on Energy Consumption

Our discussion so far has revolved mostly around frequency settings and how these im-
pact performance and energy consumption of various multimedia workloads. This type of
optimisation is “macroscopic” in that the actual code is not augmented. A form of “micro-
scopic” optimisation would be to study the effects that for example different instructions,
or caching in different cache hierarchies, have on energy consumption. In this section, we
show the effects that these effects have on performance and energy consumption on the
Tegra K1’s GPU and CPU.

5.4.1 GPU Instructions and Cache Modifiers

Figure 5.11 shows the measured total and estimated breakdown of power for the DCT
benchmark running on the Tegra K1 at maximum operating frequencies. The right bar
shows the default implementation using double-precision floating point data types and
caching in the GPU’s L2 cache. We now instruct the compiler to cache data in only
L1 cache and not L2 (first and third bar from the left in Figure 5.11). Compared to
default caching in L2 (second and fourth bar) there is no change in the power usage of
the floating point and conversion instructions. However, L2 read power has bee reduced,

108 Chapter 5. Energy-Efficient Multimedia Processing

CPU Frequency [MHz]

1200
1400

1600
1800

2000
2200

2400Memory Frequency [MHz]
350

500
650

800
950

Energy Per Fram
e [µ

W
h]

50
60
70
80
90

100
110
120

(a) With NEON instructions.

CPU Frequency [MHz]

1200
1400

1600
1800

2000
2200

2400Memory Frequency [MHz]

350
500

650
800

950

Energy Per Fram
e [µ

W
h]

50
60
70
80
90

100
110
120

56

64

72

80

88

96

104

112

120

(b) Without NEON instructions.

Figure 5.12: Energy per frame for the DCT filter with and without NEON instructions.

while L1 read power has increased by the same amount. An interesting side-effect is that
the GPU’s memory power usage (EMC GPU) also decreases, which also causes the L1
caching strategy to be more energy-efficient than L2 caching. This surprising result can
be explained if we consider the fact that the GPU’s L1 cache is not cache coherent with
memory. This reduces communication with off-chip memory to maintain consistency of
the data. The estimation error with respect to measured power is large because these
results were based on the GPU model in Section 4.5, which did not have our improved
CPU model. However, if we study the relative reduction in measured and predicted
power with L2 and L1 caching, we can see that the reduction in power usage is the same.
Additionally, caching in L1 over L2 has a small positive effect on the kernel’s performance.

Using single- over double-precision floating point instructions can also increase energy
consumption and performance. Considering L1 caching with single- and double-precision
instructions (first and third bar in Figure 5.11), we can see that the double-precision
floating point power has been replaced with a smaller single-precision component. Ad-
ditionally, conversion instruction power has been removed entirely. We also see that the
relative predicted and measured power is similar, with an improved power usage of 3.2 %.
However, the actual saving is larger if we isolate the GPU from other power components
such as the CPU and base power. Considering only the power components in Figure 5.11,
for example, we have more than halved GPU cache and instruction power. These effects
would be impossible to see without our power model. Additionally, using single-precision
floating-point values has a positive effect on performance, where the kernel duration is
reduced by around 200 ms.

5.4.2 NEON Acceleration

The Tegra K1’s CPU does not have support for choosing where to cache data. However,
it does support NEON instructions. These are SIMD instructions that can perform arith-
metic operations in parallel on several data values using only one instruction vector. Our
DCT benchmark has been written both with and without NEON. To test the difference
in these implementations, we run the DCT with and without NEON instructions over
all CPU and memory frequencies with a framerate target of 25 FPS. Four HP cores are
active. In these experiments, we observed that the heaviest level of compiler-time opti-
misations, -O3 in gcc, is able to accelerate the no-NEON implementation with NEON

5.4. Instructions’ Effect on Energy Consumption 109

0 5000 10000 15000 20000
Model Predictor (Million ρcom,ipsV 2

com)
1

0

1

2

3

4

5

6

7

Re
si

du
al

 P
ow

er
 [W

]

NEON, Cips=383 pC
V

, Pb=-47 mW
NO-NEON, Cips=317 pC

V
, Pb=-1.2e+02 mW

Figure 5.13: Capacitive load per instruction for the DCT filter with and without NEON
instructions.

instructions, and the performance is similar to our own, hand-written NEON implemen-
tation. Therefore, for demonstration purposes to show the differences, the code in this
test was compiled with -O1 instead, which does some optimisation but avoids the use of
NEON instructions. The results can be seen in Figure 5.12, where Figure 5.12a shows
the frequency combinations that reached the 25 FPS requirement with NEON instruc-
tions enabled. Figure 5.12b shows the combinations that reached 25 FPS without NEON
acceleration enabled. From the figure it is clear that this type of instructions have crit-
ical effects on both performance and power usage. Without NEON, the lowest energy
per frame is 96.10µWh at fcpu = 2GHz, fmem = 924MHz. The NEON-accelerated ver-
sion reaches 25 FPS at fcpu = 1.3GHz, fmem = 600MHz with an energy per frame at
51.92µWh. This is an improvement of almost 50 % when considering the whole Tegra K1.

Our modeling methodologies can reveal what is happening within the SoC. For exam-
ple, if we study the capacitive load in Figure 5.13, we can make two important observa-
tions. First, the capacitive load per instruction is higher for the NEON DCT than the
one without NEON acceleration. This is reasonable given that NEON instructions oper-
ate on more data elements at a time, exersising more of the CPU’s circuitry in terms of
dynamic power. Second, the NEON-accelerated version reaches a lower model predictor,
V 2IPS. For example, the maximum V 2IPS for the NEON-accelerated version is around
7.5 billion V 2IPS, while it is much larger at 17 billion V 2IPS for the normal version.
This occurs because a fewer number of instructions are executed in total, when multiple
arithmetic operations can be done with a single instruction. An energy-breakdown for the
best frequency combinations with both DCT versions is shown in Figure 5.14. Here, we
can clearly see that the most substantial reduction comes from reduced instruction energy
consumption. Some of this reduction can be attributed to reduced HP rail voltage, but
as already stated the number of instructions required to complete processing the frames
are also reduced. This contributes to lowering instruction power, despite the fact that
the average capacitive load per instruction is higher. Cache energy is also reduced. In
addition to these effects, the traditional gains of lowering frequencies has positive effects
for both leakage currents as well as the CPU and memory clock.

110 Chapter 5. Energy-Efficient Multimedia Processing

NEON NO NEON0

1000

2000

3000

4000

5000

6000

7000
En

er
gy

 C
on

su
m

pt
io

n
[u

W
h]

Memory Access

GPU Instructions

CPU Cache

CPU Instructions

CPU Core Leakage

CPU Core Clock

GPU Clock [Bugged]

GPU Clock

Memory Clock

GPU Rail Leakage

HP Rail Leakage

Core Rail Leakage

Base

Figure 5.14: Comparison between NEON and non-NEON DCT filter energy breakdowns.

In this section, we have shown the effects in terms of power and performance of pro-
gramming using different types of instructions and cache modifiers on the Tegra K1.
Using shorter floating point datatypes and caching in the GPU’s non-coherent L1 cache,
for example, can save 3.2 % energy for our DCT filter. We have here experimented
with 32-bit versus 64-bit floating point datatypes, but newer Tegra SoCs support half-
precision (16-bit) datatypes as well. Based on our observations that shorter datatypes
consume less energy per instructions, as well as less processor cycles, we consider this
to be good for energy-efficiency. Caching in L1 over L2 cache additionally saves energy,
because that cache is not cache-coherent and as a result, there is less off-chip memory
communication to maintain the cache contents. This detail is hard to discover with-
out our fine-grained power model. Additionally, we saw that NEON instructions on the
Tegra K1’s CPU radically impacts energy-efficiency for the DCT filter. This is because
they increase application performance, allowing a significant reduction in processor and
memory frequencies compared to programming without them. However, in our experience
with the DCT filter, this type of optimisation is easy to achieve because the compiler is
already very effective at utilising NEON instructions to boost performance.

5.5 Summary

In this chapter, we have demonstrated the type of insight our power model for the Tegra K1
can yield under different processing scenarios. We showed that increased voltage and CPI
are two main factors that contribute to energy-inefficiency at high processor and memory
frequencies. Furthermore, we considered the case of an idle system and demonstrated
how our model can show the main power consuming entities of the Tegra K1 SoC. Such
information is useful to system designers and architects, for example to identify and
optimise the power usage of the platform. We also demonstrated how our methodology
can be used to identify power usage of individual system services, and to optimise the
energy consumption of kernel drivers. The effect of different instructions, such as NEON
instructions on the CPU, or single- and double-precision instructions on the GPU, as
well as GPU cache modifiers, was also shown to have significant effect on power usage.
Smaller floating point data types and NEON instructions, for example, reduces the energy
consumption of our DCT filter. Surprisingly, caching in the GPU’s L1 cache saved energy

5.5. Summary 111

because that cache is non-coherent with respect to memory, and consequently, energy was
reduced in off-chip memory activity. Finally, we exploited the fact that the Tegra K1’s
processors are energy-inefficient at higher frequencies to save 5 % EPF by moving 10 %
of the DCT per-frame workload from the Tegra K1’s GPU to the CPU. This saving is
possible because the reduction in the GPU’s per-frame workload allows us to reduce the
GPU’s operating frequency. The additional cost of processing on the CPU is lower than
the saving of reducing the GPU’s operating frequency. However, we also showed that if
the CPU is already busy processing the MVS and Huffman filters, it was impossible to
save energy by offloading because the CPU is more energy-inefficient due to increased
CPU rail voltage.

112 Chapter 5. Energy-Efficient Multimedia Processing

Chapter 6

Conclusion

Devices such as smart phones, laptops and drones provide mobility and utility at un-
precedented levels when compared to traditional, stationary compute systems. However,
with mobility also comes the issues of energy storage. Modern mobile devices integrate
SoCs to run mobile OSs and applications. These are heavily integrated chips providing
various functions such as DSPs for hardware-accelerated video encoding and decoding,
peripherals such as USB host controllers and PCI-e, as well as general purpose proces-
sors. The Tegra K1, for example, provides a rich compute environment with a low-power
CPU, a high-performance, quad-core CPU as well as a CUDA-capable GPU. SoCs like
the Tegra K1, however, provide no insight into the energy consumption of these hard-
ware components and there is typically limited support for direct measurement of these.
In this thesis, our main contribution is a power modelling methodology that is able to
predict power usage of the Tegra K1 with close to 100 % accuracy. By only measuring
the total power usage of the SoC, our developed model for the Tegra K1 provides de-
tailed insight into dynamic and static power components of heterogeneous processors at
an unprecedented level. The model exposes detailed insight into a closed system, and
ties software activity and power management mechanisms to the energy consumption of
hardware components. In this chapter, we conclude our work in Section 6.1, and outline
open issues and future research topics in Section 6.2.

6.1 Summary and Contributions

Many researchers have attempted to build power models for SoCs such as the Tegra K1.
These have the potential to expose how a platform consumes energy, for example in
terms of different software workloads, to a system architect or a programmer. However,
as stated in Section 3.5, we found that even CMOS-based models can mispredict power
usage with up to 13 % depending on frequency levels. Most previously developed power
models do not evaluate model accuracy over frequency levels. This questions the reliability
of these models under power management mechanisms such as for example frequency
scaling. Our initial problem statement in Section 1.2 was therefore to show that existing
modelling methods are not able to capture an accurate picture of static and dynamic
power of the Tegra K1’s different processors. In this aspect, we have studied state-,
rate- and CMOS-based power modelling methodologies, and found that they all have the
potential to mispredict power usage substantially on the Tegra K1. The misprediction

113

114 Chapter 6. Conclusion

varies depending on operating frequencies of the SoC.
The three main power modelling methods in use today have several weaknesses that

cause them to mispredict power on the Tegra K1. State-based models, for example, as-
sociate a fixed power usage with hardware states, for example depending on whether the
CPU is actively processing or sleeping. As such, they capture constant, static power
usage of computational elements, but fail to capture dynamic power usage. They also
ignore changes in voltage. On the Tegra K1, for example, the rail voltages vary signifi-
cantly depending on operating frequencies. Rate-based models correlate power usage with
hardware activity, such as elapsed processor cycles or cache misses. This resonates with
dynamic power usage (transistor switching activity) in the circuits, but factors such as
variations in rail voltage levels nor static power dissipation are not considered in these
models. CMOS-based models compensate for rail voltages, correlating power with the
clock frequency of the various hardware components, such as the CPU or memory. They
also model leakage currents in transistors. However, the capacitive load per clock cycle is
not constant over different software workloads, because all programs have different ways
of excersising the underlying processor through different instruction mixes. Also, CMOS-
based models implicitly assume independency between frequency and capacitive load per
clock cycle in different domains.

In addition to the limitations of the three main power modelling methodologies, we
have also seen that the methods that are used to build them are not detailed enough to
capture the complex hardware mechanisms of modern SoCs, such as rail-, core- and clock-
gating. Dynamic power is also rarely reflected accurately through extensive hardware
activity measurements. There are for example no examples in the literature that take into
account memory utilisation or cache maintenance costs. Motivated by the fundamental
weaknesses of state-of-the-art power modelling methods, the second problem statement
in Section 1.2 reflects the main hypothesis of this thesis:

Hypothesis 1: To achieve a high degree of accuracy, a power model for the
Tegra K1 SoC must combine chip-, hardware- and software-level knowledge
into dynamic and static power terms for all of the SoC’s architectural units.

In terms of this hypothesis, we have introduced a high-precision power modelling
method which is able to capture the power usage of the Tegra K1’s individual compu-
tational elements with close to 100 % accuracy.

Our high-precision power model for the Tegra K1 is a combination of rate- and CMOS-
based models, where we correlate dynamic power usage with hardware utilisation, while
simultaneously compensating for variations in rail voltage levels in the various parts of
the SoC. Dynamic power is reflected though a range of hardware activity measurements
at a granularity which has never been done before, where we consider clock-power and
clock-gating mechanisms, cache maintenance costs, the cost of active memory clock cycles
serving both CPU and GPU memory requests, and the cost of different instructions
executed on the GPU. In addition to dynamic power, we also model the static power
dissipation of the various power rails of the Tegra K1, in addition to CPU core-gating,
through our own kernel tracing frameworks. In contrast to other power models, we have
shown that our high-precision power modelling method is sufficiently accurate, when
compared to real measurements of the SoC, over all platform frequencies. This is necessary
to trigger changes in rail voltages and prove the generality of the method. This detailed

6.1. Summary and Contributions 115

evaluation method is rarely done by related modelling efforts. However, we have built
the model on two Jetson-TK1 development kits, as well as a customised board, the T-17.
The T-17 is a customised board essentially containing only the Tegra K1 SoC. We have
shown that the model coefficients remain similar across these devices.

Through the work in this thesis, we could not build our model for SoCs such as for
example the Tegra X1, Tegra X2 or other SoCs used in related research. Therefore, it
was impossible to continue researching the generality of our approach on different types
of systems. However, we believe that the challenge in terms of power modelling on other
SoCs is in the availability of hardware activity sensors, and not in our model’s theoretical
foundations (see Section 4.1) or the method used to build it (see Section 4.3). To model
dynamic and static power accurately, it is necessary to correlate these power components
with predictors that cover transistor switching activity and power management mecha-
nisms, to the highest degree possible. Our model categorises many such predictors into
static and dynamic power predictors, and ties these to the theory of dynamic and static
power dissipation in transistors. In this aspect, we argue that our model is well-founded
for any electrical (transistor) implementation of a processor.

Some of the predictors used in our model can be termed “classically used” in that
they surface as parts of simpler, rate-based models across different hardware implemen-
tations. In this sense, an argument can be made for our model that we use many classical
predictors that, based on past experience, are likely to be good predictors in the future.
However, these may not be available. A good example is the predictors for the power
model developed by Pricopi et. al. [51]. They had access to ARM cores with many HPCs
that could measure, in detail, the type and number of instructions executed by the indi-
vidual cores. However, we could only measure the total number of executed instructions
on the platform. A lack of ways to measure hardware activity in a hardware unit does not
mean that modelling power in that unit is impossible. It means that the model designer
must develop different metrics, possibly at higher abstraction levels, to reflect hardware
activity in that unit. If, for example, the activity monitor was not implemented on the
Tegra K1, we could resort to using CPU and GPU HPCs to estimate the number of off-
chip memory accesses. In this sense, the choice of predictors used in our model should be
regarded as guidelines, but not rules, as to what predictors should be used when modelling
power on different SoCs.

The lack of available HPCs to measure the type and number of instructions executed
on the Tegra K1’s CPU complicated our efforts. With only one generic instruction counter
per CPU core, we were restricted to measuring the total number of instructions executed
by applications. This led us to our second main hypothesis from Section 1.2:

Hypothesis 2: The average capacitive load per CPU instruction remains the
same over time for repetitive workloads.

We have shown that this hypothesis is true for our video processing filters, given the
linear trend between the V 2IPS and power usage residuals in for example Figure 4.18.
This is because repetitive workloads, for example multimedia processing filters that do
the same work on consecutive frames, will have the same average cost per instruction
over time. However, the debarreling filter also showed us that instruction cost can also
depend on the memory frequency if the filter is memory-intensive. This enables us to
get an accurate view of the different computational elements of the SoC, bridging the

116 Chapter 6. Conclusion

gap between software activity, power management mechanisms and the actual energy
consumption of the Tegra K1’s CPU clusters, GPU and memory.

Our power model for the Tegra K1 provides a fine-grained view of the SoC’s energy
consumption, and reveals what is happening in hardware under the influence of software
and power management mechanisms such as DVFS. Lowering platform frequencies, for
example, is often explicitly or implicitly assumed to reduce energy consumption of soft-
ware workloads that must adhere to QoS restrictions, such as a framerate. We found this
assumption to be valid in our case studies of several multimedia processing operations
that can be applied as filters to a raw video stream. It is easy to achieve reduced en-
ergy consumption compared to the Tegra K1’s standard DVFS algorithms by minimising
platform frequencies such that a QoS requirement (a framerate) is met. However, it was
impossible to state exactly why this occurred, which led us to our fourth problem state-
ment in Section 1.2. Why are the Tegra K1’s processors more energy-efficient at high
frequencies? Using our power model, we identified reduced voltage as the main cause
of energy-inefficiency. The hardware utilisation, for example in terms of the number of
instructions and active memory cycles, remain the same independently of the processor
and memory operating frequency. However, the increase in voltage as the standard DVFS
algorithms tend to stay at unnecessarily high frequencies has a drastic effect on dynamic
power. We have seen this occur under our video processing filters as well as in an idle sys-
tem. Additionally, static power dissipation increases with voltage. It therefore becomes
important to design or tune DVFS algorithms such that the required performance can be
delivered, while at the same time using as little energy as possible.

In addition to increased rail voltages, we also discovered another interesting effect
that contributes to energy-inefficiency. At some frequency combinations, the number of
cycles required to complete an instruction increases. For example, the number of cycles,
CPI, required to complete each MVS instruction on low memory and high processor
frequencies is above 70 CPI. This is much higher than the “best case” CPI value of 27.
This means that more cycles are required to complete the same number of instructions.
This is probably an effect of reduced processor pipeline efficiency. While this effect is
restricted to a small number of processor and memory frequency combinations, the effect
is detrimental to energy-efficiency in scenarios where the DVFS algorithms employ those
frequencies. Additionally, the results indicate that the effect is tied to the use of low
memory frequencies, which is important to keep the core rail voltage and static power
usage low.

We have seen that the Tegra K1’s processors and memory are more energy-efficient
at low frequencies. This is mainly due to increased voltage, but also due to an increased
number of processor cycles required to execute each instruction. Given that a processor
is more energy-inefficient at higher frequencies, is it possible to save energy by offloading
some work to another processor? The idea behind this is that, if some workload can
be offloaded from a processor that is working at high and energy-inefficient frequencies,
its frequency can be reduced while still meeting the framerate requirement. The saving
caused by the reduction in frequency must be higher than the additional energy cost
of processing some of the workload on another core. For the DCT filter operating at
35 FPS, we showed that it is possible to save 5 % energy by offloading 10 % of the per-
frame workload to the Tegra K1’s CPU. However, if we also let the Tegra K1’s CPU
process the MVS and Huffman filters, we were unable to achieve a saving although the

6.1. Summary and Contributions 117

margins were very small. This is because the CPU has to work at 1.8 GHz to reach
35 FPS for its filters. At this frequency, CPU rail voltage also increases, and therefore
the additional cost of processing the 10 % DCT workload becomes too high to achieve a
saving.

Whether offloading can save energy arguably depends on three factors, although we
have not looked into all of them. First, it is the voltage state of the processors. The higher
the voltage, the higher the potential for a saving if processor frequency is reduced. How-
ever, it also reduces the potential of a core to relieve other processors of their workloads.
Second, the performance of the filter is important. The faster a filter finishes processing
on a core, the fewer clock cycles it will need to completion. Of course, other factors
such as instruction and memory usage costs also matter. Most of our filters exhibit very
different performance on the Tegra K1’s CPU and GPU. The MVS and Huffman filters
are good examples, where we have never been able to achieve a saving by offloading to
the GPU. As such, the DCT is the best example because both the CPU and the GPU
reach 35 FPS at a broad range of operating frequencies. A third factor is the impact of
competition for resources. For example, if the GPU in our single-filter offloading scenario
was busy processing other workloads, its frequency must also be set higher to reach QoS
requirements, thereby reducing energy-efficiency. This could again have a positive effect
on the effects of offloading. An important last remark on the usefulness of offloading is
that it is an additional burden on the programmer. In addition to implementing an algo-
rithm on two heterogeneous cores, the workload would have to be divisible across those
cores. However, based on our observations throughout this thesis, we believe that not all
workloads have to be divisible. It is enough with one filter that has similar performance
and energy consumption characteristics across the cores. A load balancer can then divide
that single filter in response to changing processor demand to help keep the frequencies
down between the cores.

Our power model is also useful to investigate idle system power usage. This type of
analysis can be useful to system architects and designers, in order to identify important
areas of improvement. For example, on the Jetson-TK1, base power is the most substan-
tial power usage component with approximately 1.2 W. However, most of the components
integrated on the Jetson-TK1, with the exception of the network controller, is not used
and would be cut off in an actual implementation. On the T-17, which was a minimalistic
development board essentially containing only the Tegra K1 SoC, the base power compo-
nent was estimated to be only 67 mW. Not considering base power, the most substantial
power component is the core rail leakage at 340 mW. Little can be done about this cost,
however, as the core rail must always be on and powered. There is support for a deep-
sleep mode, where the core rail is powered down and only the RTC rail is powered, but
we have not tested this on the Jetson-TK1. From a systems perspective, the deep-sleep
mode should be enabled to conserve additional energy when the platform is entirely idle.
However, entry and exit latencies to and from the deep-sleep mode must also be consid-
ered. Other important details that are exposed through our model is for example the
memory clock, which is the second largest consumer of energy. At 204 MHz, the memory
clock is estimated to draw 85 mW. This cost is impossible to avoid, because every memory
cycle consumes energy whether the memory is in use or not. It is, however, possible to
equip the platform with improved memory technology. LPDDR3 RAM, for example, can
operate at lower supply voltages, which will positively affect idle clock power as well as

118 Chapter 6. Conclusion

off-chip memory access costs. It is also possible to reduce the Tegra K1 memory clock
to 12 MHz, but at this rate, the platform easily became unstable and crashed. We also
investigated idle instruction cost. While this cost is very small, and estimated to be only
40 mW, we identified and optimised a critical code segment in the Tegra K1’s activity
monitor kernel module.

While frequency scaling is an important tool to tune system performance and energy
consumption, some additional flexibility is given to programmers in terms of types of in-
structions and cache modifiers. On the Tegra K1’s GPU, for example, single- and double-
precision instructions are available, and newer Tegra SoCs also support half-precision
(16-bit) floating point instructions. We have shown that using lower precision has sig-
nificant gains in terms of both performance and energy consumption. Additionally, the
Tegra K1’s GPU allows the programmer to specify what cache hierarchy should be used
to cache data accesses. Surprisingly, we found that caching in the GPU’s L1 cache saved
energy because of reduced off-chip memory traffic. This occurs because the GPU’s L1
cache is not coherent with off-chip memory, and therefore, some signalling overhead is
saved. These two optimisations reduced the energy-consumption of our DCT filter by
3.2 %. However, it is important to note that the actual achievable saving can be larger
due to the high base power component and the high memory and GPU clock frequency in
this experiment. Similarly, for the CPU, we found that NEON instructions have signifi-
cant effects on both performance and energy consumption. NEON instructions accelerate
workloads, such as the DCT, in terms of performance. Therefore, the QoS requirement
of for example 25 FPS can be reached at much lower processor and memory frequencies.
However, as we observed in these experiments, the compiler is already good at optimising
CPU code with NEON instructions and consequently, this is an optimisation that may
be easily achievable without writing the assembly code manually.

6.2 Open Issues and Future Work

There are many candidates for future research that can extend and augment the results
presented here:

• Building the model on new devices. The power models presented in this thesis were
all built on Tegra K1-enabled devices. While this was necessary to achieve a fine-
grained, accurate and high-quality model, it limited us to this system. A definite
next step is to build power models for other types of systems. The Tegra K1’s suc-
cessor, Tegra X1, for example, is a good candidate. This is because the architecture
is similar to the Tegra K1, and therefore it is possible that some or all of the model
predictors can be re-used. Extending the method to other types of systems, such as
the Samsung Exynos and Snapdragon SoCs, or even stationary compute environ-
ments such as server farms, can be more challenging depending on the availability
to measure hardware activity, as well as openness of the platform in terms of for
example power management and power distribution.

• Accelerating Model Training Time. Our power model takes less than 24 hours to
generate. In future work, and especially for different SoCs, a relevant topic is
to reduce this training time and study the effects that reduced training time has

6.2. Open Issues and Future Work 119

on model accuracy. This can for example be achieved by reducing the amount
of frequencies in the training runs, where it is essentially only needed to trigger
variation in rail voltages. Also, it may not be necessary to test all combinations of
online CPU cores.

• Self-constructive, high-precision modelling. Research has shown that all devices are
different in terms of physical energy consumption characteristics. Models that are
built by the same device that they are for, can solve this issue. Future research
should attempt to use our method to build power models for Tegra K1-enabled sys-
tems. Production devices with power measurement capability are desirable. Some
platform-specific information, such as rail voltages, is here a challenge, but it may be
possible to use hard-coded frequency-voltage tables in the Linux kernel as reference
voltages.

• Temperature-aware power modelling. In the course of the work in this thesis, we
were unfortunately not able to include temperature in our model. As a result the
models presented here have been built under constant cooling with chip tempera-
tures between 20 to 30 degrees. Temperature is, nonetheless, an important factor
that impacts both static and dynamic power usage. The Tegra K1 is equipped
with temperature sensors on the core rail, HP cluster, GPU, memory controller and
clock generators. A research challenge in this aspect is to include temperature in the
equations for power in all the various rails, as well as controlling the temperature
through our model training benchmarks and methodology.

• Code-path power modelling. The Tegra K1’s CPU does not have HPCs to measure
the type and number of instructions executed on the various cores, such as the GPU.
This complicates modelling because the average capacitive load per instruction must
be re-estimated per workload. However, there are also advantages of using a single
(global) instruction counter. There is only a fixed number of HPC slots on each
CPU core. This means that the HPCs must be sampled when there are not enough
slots to count all the HPCs. In future work, an interesting research topic would be
whether average capacitive instruction loads can be estimated in individual code
paths, for example between branching points in kernel and application code.

• Effects of different instructions. Newer Tegra SoCs, such as the Tegra X1, include
half-precision (16-bit) floating point data types. In Section 5.4.1 we saw that using
shorter datatypes has positive effects on the Tegra K1 GPU’s power usage and
performance. A possible topic for future research is to investigate the effects of this
new datatype.

• Automatic Load Balancing. In a complete video processing chain, a number of filters
will be active at any point in time, processing a stream of video. A challenge with
these filters is that they must be distributed to the appropriate processor to provide
an adequate framerate, while consuming as little energy as possible. As we have seen
in this thesis, the heterogeneous cores on the Tegra K1 excel at processing different
workloads. For example, the CPU is best at processing the MVS and Huffman filters,
and the GPU is most suitable for the computationally heavy DCT. A possible topic
for future work is to design, implement and evaluate a system that can detect which

120 Chapter 6. Conclusion

parts of a video processing chain should be offloaded to which processors, for example
in response to changing demands for system resources. Furthermore, we have seen
that filters with good performance across heterogeneous processors, such as the
DCT filter, can be balanced across the Tegra K1’s processors to reduce operating
frequency and energy consumption of the filters. A load balancer can potentially
help mitigate the negative effects of high processor frequencies, by offloading filters
such as the DCT between heterogeneous cores.

• Investigating the CPI value. In this thesis, we have seen that the Tegra K1’s proces-
sors are more energy-inefficient at some frequencies due to increased CPI value. The
CPI value is a measure of how many processor cycles are necessary to execute each
instruction. Therefore, the higher the CPI value, the more cycle energy is consumed
to perform the same number of instructions. We believe that the CPI value is a
result of reduced processor pipeline inefficiency when the memory bandwidth is too
low. As such, an interesting future work is to investigate whether the CPI value
increases if more video filtering operations are operating concurrently, increasing
the memory pressure. In the context of DVFS algorithms, the CPI value is also
an important metric because the memory and processor frequency areas where CPI
increases, should be avoided. In fact, for the Tegra K1, this is an important observa-
tion that can potentially be used to increase the effectiveness of DVFS algorithms.

Bibliography

[1] ARM. Cortex-A15 Technical Reference Manual. Revision r4p0. http:

//infocenter.arm.com/help/topic/com.arm.doc.ddi0438i/DDI0438I_cortex_

a15_r4p0_trm.pdf [Online. Last accessed: August 2016], 2013.

[2] ARM. ARM v7-AR Architecture Reference Manual. https://silver.arm.com/

download/download.tm?pv=1603196 [Online. Last accessed: August 2016], 2014.

[3] Todd Austin, Eric Larson, and Dan Ernest. SimpleScalar: An Infrastructure for
Computer System Modeling. IEEE Computer, 35(2):59–67, 2002.

[4] Robert Basmadjian and Hermann de Meer. Evaluating and Modeling Power Con-
sumption of Multi-Core Processors. In Proceedings of Future Energy Systems: Where
Energy, Computing and Communication Meet (e-Energy), pages 1–10. IEEE, 2012.

[5] Luca Benini, Robin Hodgson, and Polly Siegel. System-level Power Estimation and
Optimization. In Proceedings of the International Symposium on Low Power Elec-
tronics and Design (ISLPED), pages 173–178. ACM, 1998.

[6] Daniele Bortolotti, Andrea Bartolini, Mauro Mangia, Riccardo Rovatti, Gianluca
Setti, and Luca Benini. Energy-aware bio-signal compressed sensing reconstruction:
Focuss on the wbsn-gateway. In Proceedings of the International Symposium on Em-
bedded Multicore/Many-core Systems-on-Chip (MCSoC), pages 120–126, Sept 2015.

[7] Carlo Brandolese, William Fornaciari, Fabio Salice, and Donatella Sciuto. Energy
Estimation for 32-bit Microprocessors. In Proceedings of the International Workshop
on Hardware/Software Codesign (CODES), pages 24–28. ACM, 2000.

[8] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. In Proceedings of the Inter-
national Symposium on Computer Architecture (ISCA), pages 83–94. ACM, 2000.

[9] Juan-Carlos Cano, José-Manuel Cano, Eva González, Carlos Calafate, and Pietro
Manzoni. Evaluation of the Energetic Impact of Bluetooth Low-Power Modes for
Ubiquitous Computing Applications. In Proceedings of the International Workshop
on Performance Evaluation of Wireless Ad-Hoc, Sensor and Ubiquitous Networks
(PE-WASUN), pages 1–8. ACM, 2006.

[10] Aaron Carroll and Gernot Heiser. An Analysis of Power Consumption in a Smart-
phone. In Proceedings of the Annual Technical Conference (ATC). USENIX, 2010.

121

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438i/DDI0438I_cortex_a15_r4p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438i/DDI0438I_cortex_a15_r4p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438i/DDI0438I_cortex_a15_r4p0_trm.pdf
https://silver.arm.com/download/download.tm?pv=1603196
https://silver.arm.com/download/download.tm?pv=1603196

122 Bibliography

[11] Andrea Castagnetti, Cécile Belleudy, Sebastien Bilavarn, and Michel Auguin. Power
Consumption Modeling for DVFS Exploitation. In Proceedings of the Euromicro Con-
ference on Digital System Design: Architectures, Methods and Tools (DSD), pages
579–586. IEEE, 2010.

[12] Kwang Ting Cheng and Yi Chu Wang. Using Mobile GPU for General-Purpose
Computing a Case Study of Face Recognition on Smartphones. In Proceedings of
the International Symposium on VLSI Design, Automation and Test (VLSI-DAT),
pages 54–57. IEEE, 2011.

[13] Cisco. White paper: Cisco VNI Forecast and Methodology, 2015–2020.
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/complete-white-paper-c11-481360.html

[Online. Last accessed: August 2016], 2016.

[14] Peter J. Denning, Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker,
A. Joe Turner, and Paul R. Young. Computing as a Discipline. Communications of
the ACM, 32(I):1–11, 1989.

[15] Mian Dong and Lin Zhong. Self-Constructive High-Rate System Energy Modeling for
Battery-Powered Mobile Systems. In Proceedings of the International Conference on
Mobile Systems, Applications and Services (MobiSys), pages 335–348. ACM, 2011.

[16] Prabal Dutta, Mark Feldmeier, Joseph Paradiso, and David Culler. Energy Metering
for Free: Augmenting Switching Regulators for Real-Time Monitoring. In Proceed-
ings of the International Conference on Information Processing in Sensor Networks
(IPSN), pages 283–294. IEEE, 2008.

[17] Laura Marie Feeney and Martin Nilsson. Investigating the Energy Consumption of a
Wireless Network Interface in an Ad Hoc Networking Environment. In Proceedings of
the Conference of the IEEE Computer and Communication Societies (INFOCOM),
volume 3, pages 1548–1557. IEEE, 2001.

[18] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica. Time and Energy Pro-
filing in Production Sensor Networks with Quanto. In Proceedings of the Conference
on Operating Systems Design and Implementation (OSDI), pages 323–338. USENIX,
2008.

[19] Rong Ge, Ryan Vogt, Jahangir Majumder, Arif Alam, Martin Burtscher, and Ziliang
Zong. Effects of Dynamic Voltage and Frequency Scaling on a K20 GPU. In Proceed-
ings of the International Conference on Parallel Processing (ICPP), pages 826–833.
IEEE, 2013.

[20] Anton Hergenroder and Jochen Furthmuller. On Energy Measurement Methods in
Wireless Networks. In Proceedings of the International Conference on Communica-
tions (ICC), pages 6268–6272. IEEE, 2012.

[21] Sunpyo Hong and Hyesoon Kim. An Integrated GPU Power and Performance Model.
In Proceedings of the International Symposium on Computer Architecture (ISCA),
pages 280–289. ACM, 2010.

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html

Bibliography 123

[22] Miaoqing Huang and Chenggang Lai. Accelerating Applications Using GPUs on Em-
bedded Systems and Mobile Devices. In Proceedings of the International Conference
on High Performance Computing and Communications (HPCC) and the Interna-
tional Conference on Embedded and Ubiquitous Computing (EUC), pages 1031–1038.
IEEE, 2013.

[23] D. A. Huffman. A method for the construction of minimum-redundancy codes. Pro-
ceedings of the Institute of Radio Engineers (IRE), 40(9):1098–1101, 1952.

[24] Ikhwan Lee, Hyunsuk Kim, Peng Yang, Sungjoo Yoo, Eui-Young Chung, Kyu-Myung
Choi, Jeong-Taek Kong, and Soo-Kwan Eo. PowerViP: SoC Power Estimation Frame-
work at Transaction Level. In Proceedings of the Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 551–558, 2006.

[25] Canturk Isci and Margaret Martonosi. Runtime Power Monitoring in High-End
Processors: Methodology and Empirical Data. In Proceedings of the International
Symposium on Microarchitecture (MICRO). IEEE, 2003.

[26] Y. Jiao, H. Lin, P. Balaji, and W. Feng. Power and Performance Characterization
of Computational Kernels on the GPU. In Proceedings of Green Computing and
Communications (GreenCom) & the International Conference on Cyber, Physical
and Social Computing (CPSCom), pages 221–228. IEEE, 2010.

[27] Russ Joseph and Margaret Martonosi. Run-Time Power Estimation in High Per-
formance Microprocessors. In Proceedings of the International Symposium on Low
Power Electronics and Design (ISLPED), pages 135–140. ACM, 2001.

[28] Wonwoo Jung, Chulkoo Kang, Chanmin Yoon, Donwon Kim, and Hojung Cha. De-
vScope: a Nonintrusive and Online Power Analysis Tool for Smartphone Hardware
Components. In Proceedings of the International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pages 353–362. ACM, 2012.

[29] Praveen Kalla, Jörg Henkel, and Xiaobo Sharon Hu. SEA: Fast Power Estimation for
Micro-Architectures. In Proceedings of the Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 600–605. ACM, 2003.

[30] Nam Sung Kim, Todd Austin, David Blaauw, Trevor Mudge, Krisztian Flautner,
Jie S. Hu, Mary Jnae Irwin, Mabmut Kandemir, and Vijaykrisbnan Narayanan.
Leakage Current: Moore’s Law Meets Static Power. IEEE Computer, 36(12):68–75,
2003.

[31] Sheayun Lee, Andreas Ermedahl, Sang Lyul Min, and Naehyuck Chang. An Accu-
rate Instruction-Level Energy Consumption Model for Embedded RISC Processors.
In Procedings of the SIGPLAN Workshop on Languages, Compilers and Tools for
Embedded Systems (LCTES), pages 1–10. ACM, 2001.

[32] Woojoo Lee, Yanzhi Wang, Donghwa Shin, Naehyuck Chang, and Massoud Pedram.
Power Conversion Efficiency Characterization and Optimization for Smartphones. In
Proceedings of the International Symposium on Low Power Electronics and Design
(ISLPED), pages 103–108. ACM, 2012.

124 Bibliography

[33] Jingwen Leng, Tayler Hetherington, Ahmed Eltantawy, Syed Gilani, Nam Sung Kim,
Tor M. Aamodt, and Vijay Janapa Reddi. GPUWattch: Enabling Energy Optimiza-
tions in GPGPUs. In Proceedings of the International Symposium on Computer
Architecture (ISCA), volume 41, pages 487–498. ACM, 2013.

[34] Niu Limin, Tan Xiaobin, and Yin Baoqun. Estimation of System Power Consumption
on Mobile Computing Devices. In Proceedings of the International Conference on
Computational Intelligence and Security (CIS), pages 1058–1061. IEEE, 2007.

[35] Miguel Bordallo López, Henri Nykänen, Jari Hannuksela, Olli Silvén, and Markku
Vehviläinen. Accelerating Image Recognition on Mobile Devices Using GPGPU. In
Proceedings of Parallel Processing for Imaging Applications (PPIA). SPIE, 2011.

[36] John C McCullough, Yuvraj Agarwal, Jaideep Chandrashekar, Sathyanarayan Kup-
puswamy, Alex C Snoeren, and Rajesh K Gupta. Evaluating the Effectiveness of
Model-Based Power Characterization. In Proceedings of the Annual Technical Con-
ference (ATC). USENIX, 2011.

[37] Gordon E. Moore. Cramming more components onto integrated circuits. IEEE
Electronics, 38(8):114–117, 1965.

[38] Luca Negri, Jan Beutel, and Matthias Dyer. The Power Consumption of Bluetooth
Scatternets. In Proceedings of the Consumer Communications and Networking Con-
ference (CCNC), volume 1, pages 519–523. IEEE, 2006.

[39] Luca Negri, Mariagiovanna Sami, David Macii, and Alessandra Terranegra. FSM-
Based Power Modeling of Wireless Protocols: the Case of Bluetooth. In Proceedings
of the International Symposium on Low Power Electronics and Design (ISLPED),
pages 369–374. ACM, 2004.

[40] Luca Negri, Mariagiovanna Sami, Que Dung Tran, and Davide Zanetti. Flexible
Power Modeling for Wireless Systems: Power Modeling and Optimization of Two
Bluetooth Implementations. In Proceedings of the International Symposium on a
World of Wireless Mobile and Multimedia Networks (WoWMoM), pages 408–416.
IEEE, 2005.

[41] NVIDIA. CUDA Binary Utilities. http://docs.nvidia.com/cuda/

cuda-binary-utilities/ [Online. Last accessed: August 2016].

[42] NVIDIA. Next Generation CUDA Compute Architecture: Kepler
GK110. http://international.download.nvidia.com/pdf/kepler/

NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf [Online. Last
accessed: August 2016], 2012.

[43] NVIDIA. Tegra K1 - A New Era in Mobile Computing. http://www.nvidia.

com/content/PDF/tegra_white_papers/tegra-K1-whitepaper.pdf [Online. Last
accessed: August 2016], 2014.

[44] NVIDIA. Tegra K1 Technical Reference Manual. https://developer.nvidia.com/
embedded/downloads [Online. Last accessed: August 2016], 2014.

http://docs.nvidia.com/cuda/cuda-binary-utilities/
http://docs.nvidia.com/cuda/cuda-binary-utilities/
http://international.download.nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
http://international.download.nvidia.com/pdf/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/tegra-K1-whitepaper.pdf
http://www.nvidia.com/content/PDF/tegra_white_papers/tegra-K1-whitepaper.pdf
https://developer.nvidia.com/embedded/downloads
https://developer.nvidia.com/embedded/downloads

Bibliography 125

[45] Venkatesh Pallipadi and Alexey Starikovskiy. The Ondemand Governor: Past,
Present and Future. In Proc of the Linux Symposium, pages 215–230, 2006.

[46] Abhinav Pathak, Y Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang.
Fine-Grained Power Modeling for Smartphones Using System Call Tracing. In Pro-
ceedings of the Conference on Computer Systems (EuroSys), pages 153–168. ACM,
2011.

[47] Anuj Pathania, Alexandru Eugen Irimiea, Alok Prakash, and Tulika Mitra. Power-
Performance Modelling of Mobile Gaming Workloads on Heterogeneous MPSoCs. In
Proceedings of the Annual Design Automation Conference (DAC). ACM, 2015.

[48] Anuj Pathania, Qing Jiao, Alok Prakash, and Tulika Mitra. Integrated CPU-GPU
Power Management for 3D Mobile Games. In Proceedings of the Design Automation
Conference (DAC), pages 1–6. IEEE, 2014.

[49] Martin Peres. Reverse Engineering Power Management on NVIDIA GPUs - A De-
tailed Overview. Technical report.

[50] Gian Paolo Perrucci, Frank H P Fitzek, and Jörg Widmer. Survey on Energy Con-
sumption Entities on the Smartphone Platform. In Proceedings of the Vehicular
Technology Conference (VTC), pages 1–6. IEEE, 2011.

[51] Mihai Pricopi, Thannirmalai Somu Muthukaruppan, Vanchinathan Venkataramani,
Tulika Mitra, and Sanjay Vishin. Power-Performance Modeling on Asymmetric
Multi-Cores. In Proceedings of the International Conference on Compilers, Archi-
tecture and Synthesis for Embedded Systems (CASES). IEEE, 2013.

[52] Enrico Rantala, Arto Karppanen, Seppo Granlund, and Pasi Sarolahti. Modeling En-
ergy Efficiency in Wireless Internet Communication. In Proceedings of the Workshop
on Networking, Systems and Applications for Mobile Handhelds (MobiHeld), pages
67–68. ACM, 2009.

[53] A. Rice and S. Hay. Decomposing Power Measurements for Mobile Devices. In
Proceedings of the International Conference on Pervasive Computing and Communi-
cations (PerCom), pages 70–78. IEEE, 2010.

[54] Blaine Rister, Guohui Wang, Michael Wu, and Joseph R. Cavallaro. A Fast and
Efficient SIFT Detector Using the Mobile GPU. In Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2674–2678.
IEEE, 2013.

[55] James F Rohan, Maksudul Hasan, Sanjay Patil, Declan P Casey, and Tomás Clancy.
Energy Storage : Battery Materials and Architectures at the Nanoscale. In ICT - En-
ergy - Concepts Towards Zero - Power Information and Communication Technology,
pages 107–138. 2014.

[56] Mariagiovanna Sami, Donatella Sciuto, Cristina Silvano, and Vittorio Zaccaria.
Instruction-Level Power Estimation for Embedded VLIW Cores. In Proceedings of
the International Workshop on Hardware/Software Codesign (CODES), pages 34–38.
ACM, 2000.

126 Bibliography

[57] Øyvind Skjøld. Investigating the Impact of Processor Gating Techniques on Energy
Consumption Modelling. Master’s thesis, University of Oslo, 2015.

[58] Kristoffer Robin Stokke. Energy and Performance Optimisation of a Simple Video
Encoder on the Jetson TK1, 2015. Poster presentation at the GPU Technology
Conference (GTC), NVIDIA.

[59] Kristoffer Robin Stokke. A High-Precision Power Model for the Tegra K1 CPU, GPU
and RAM, 2016. Poster presentation at the GPU Technology Conference (GTC),
NVIDIA.

[60] Kristoffer Robin Stokke. A High-Precision Power Model for the Tegra K1 CPU, GPU
and RAM, 2016. Talk and presentation at the GPU Technology Conference (GTC),
NVIDIA.

[61] Kristoffer Robin Stokke, H̊akon Kvale Stensland, Carsten Griwodz, and P̊al
Halvorsen. Energy Efficient Continuous Multimedia Processing Using the Tegra K1
Mobile SoC. In Proceedings of the International Workshop on Mobile Video (MoViD),
pages 15–16. ACM, 2015.

[62] Kristoffer Robin Stokke, H̊akon Kvale Stensland, Carsten Griwodz, and P̊al
Halvorsen. Energy Efficient Video Encoding Using the Tegra K1 Mobile Proces-
sor. In Proceedings of the Multimedia Systems Conference (MMSys), pages 20–23,
2015.

[63] Kristoffer Robin Stokke, H̊akon Kvale Stensland, P̊al Halvorsen, and Carsten Gri-
wodz. Why Race-to-Finish is Energy-Inefficient for Continuous Multimedia Work-
loads. In Proceedings of the International Symposium on Embedded Multicore/Many-
core Systems-on-Chip (MCSoC). IEEE, 2015.

[64] Kristoffer Robin Stokke, H̊akon Kvale Stensland, P̊al Halvorsen, and Carsten Gri-
wodz. A High-Precision, Hybrid GPU, CPU and RAM Power Model for Generic
Multimedia Workloads. In Proceedings of the International Conference on Multime-
dia Systems (MMSys). ACM, 2016.

[65] Kristoffer Robin Stokke, H̊akon Kvale Stensland, P̊al Halvorsen, and Carsten Gri-
wodz. High-Precision Power Modelling of the Tegra K1 Variable SMP Processor
Architecture. In Proceedings of the International Symposium on Embedded Multi-
core/Manycore Systems-on-Chip (MCSoC). IEEE, 2016.

[66] Texas Instruments. INA219 Datasheet. http://www.ti.com/lit/ds/symlink/

ina219.pdf [Online. Last accessed: August 2016], 2015.

[67] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of embedded soft-
ware: a first step towards software power minimization. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 2(4):437–445, Dec 1994.

[68] Gergely Vass and Tamás Perlaki. Applying and Removing Lens Distortion in Post
Production. In Proceedings of the Hungarian Conference on Computer Graphics and
Geometry, pages 9–16, 2009.

http://www.ti.com/lit/ds/symlink/ina219.pdf
http://www.ti.com/lit/ds/symlink/ina219.pdf

Bibliography 127

[69] Jarkko M. Vatjus-Anttila, Timo Koskela, and Seamus Hickey. Power Consumption
Model of a Mobile GPU Based on Rendering Complexity. In Proceedings of the
International Conference on Next Generation Mobile Apps, Services and Technologies
(NGMAST), pages 210–215. IEEE, 2013.

[70] Yu Xiao, Rijubrata Bhaumik, Zhirong Yang, Matti Siekkinen, Petri Savolainen, and
Antti Yla-Jaaski. A System-Level Model for Runtime Power Estimation on Mobile
Devices. In Proceedings of the International Conference on Green Computing and
Communications (GreenCom) & the International Conference on Cyber, Physical
and Social Computing (CPSCom), pages 27–34. IEEE, 2010.

[71] Fengyuan Xu, Yunxin Liu, Qun Li, and Yongguang Zhang. V-edge: Fast Self-
Constructive Power Modeling of Smartphones Based on Battery Voltage Dynamics.
In Proceedings of the Symposium on Networked Systems Design and Implementation
(NDSI), pages 43–55. USENIX, 2013.

[72] W. Ye, N. Vijaykrishnan, M. Kandemir, and M.J. Irwin. The Design and Use of Sim-
plePower: A Cycle-Accurate Energy Estimation Tool. In Proceedings of the Annual
Design Automation Conference (DAC), pages 340–345. ACM, 2000.

[73] Yi-Chu Wang and Kwang-Ting Cheng. Energy-Optimized Mapping of Application to
Smartphone Platform - A Case Study of Mobile Face Recognition. In Proceedings of
the IEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops (CVPR), pages 84–89. IEEE, 2011.

[74] Daecheol You and Ki-seok Chung. Quality of service-aware dynamic voltage and
frequency scaling for embedded gpus. IEEE Computer Architecture Letters, 14(1):66–
69, 2015.

[75] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert Dick, Zhuo-
qing Morley Mao, and Lei Yang. Accurate Online Power Estimation and Automatic
Battery Behavior Based Power Model Generation for Smartphones. In Proceedings of
the International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 105–114. ACM, 2010.

[76] Shan Zhu and Kai-Kuang Ma. A new diamond search algorithm for fast block-
matching motion estimation. IEEE Transactions on Image Processing, 9(2):287–290,
Feb 2000.

128 Bibliography

Part II

Research Papers

Paper I: Energy Efficient Video
Encoding Using the Tegra K1
Mobile Processor

Title: Energy Efficient Continuous Multimedia Processing Using the Tegra K1 Mobile
SoC [62].

Authors: K. R. Stokke, H. K. Stensland, C. Griwodz and P. Halvorsen.

Abstract: Energy consumption is an important concern for mobile devices, where the
evolution in battery storage capacity has not followed the power usage requirements
of modern hardware. However, innovative and flexible hardware platforms give de-
velopers better means of optimising the energy consumption of their software. For
example, the Tegra K1 System-on-Chip (SoC) offers two CPU clusters, GPU offload-
ing, frequency scaling and other mechanisms to control the power and performance
of applications. In this demonstration, the scenario is live video encoding, and par-
ticipants can experiment with power usage and performance using the Tegra K1s
hardware capabilities. A popular power-saving approach is a race to sleep strategy
where the highest CPU frequency is used while the CPU has work to do, and then
the CPU is put to sleep. Our own experiments indicate that an energy reduction of
28 % can be achieved by running the video encoder on the lowest CPU frequency at
which the platform achieves an encoding framerate equal to the minimum framerate
of 25 Frames Per Second (FPS).

Lessons learned: In this paper, we presented a live video encoding demonstration sys-
tem on the Tegra K1. The encoder performed many common video processing
operations, such as the DCT, iDCT, MVS and Huffman encoding. Attending par-
ticipants could fine-tune CPU and GPU clock frequencies, CPU cluster and the
number of active CPU cores on the Tegra K1. The encoder could also be partly
offloaded to the GPU, and the current framerate and energy consumption per frame
were displayed live to the participant. Through our demonstration, we learned that
a good heuristic to minimise the energy consumption per frame is to reduce the
processor frequencies, such that application requirements are met. This factor was
one contributing factor to the later frequency variation experiments.

Author’s contibutions: Stokke designed and implemented the video encoding system,
and built power measurement circuitry using the INA219 rail sensor. He wrote

131

132 . Paper I: Energy Efficient Video Encoding Using the Tegra K1 Mobile Processor

NEON-accelerated versions of the DCT, iDCT and MVS encoding blocks, a user-
space webcam driver, an improved I2C driver for the INA219, as well as a commu-
nication protocol with a dedicated decoding and playback computer. Stokke was
also the main author of this paper.

Published: Proceedings of the 6th Multimedia Systems Conference (MMSys), pages 81-
84, Portland (Oregon). ACM, 2015.

Energy Efficient Video Encoding Using the Tegra K1
Mobile Processor

Kristoffer Robin Stokke, Håkon Kvale Stensland, Carsten Griwodz, Pål Halvorsen

Simula Research Laboratory & University of Oslo, Norway
{krisrst, haakonks, griff, paalh}@ifi.uio.no

ABSTRACT
Energy consumption is an important concern for mobile de-
vices, where the evolution in battery storage capacity has
not followed the power usage requirements of modern hard-
ware. However, innovative and flexible hardware platforms
give developers better means of optimising the energy con-
sumption of their software. For example, the Tegra K1
System-on-Chip (SoC) offers two CPU clusters, GPU of-
floading, frequency scaling and other mechanisms to control
the power and performance of applications. In this demon-
stration, the scenario is live video encoding, and participants
can experiment with power usage and performance using the
Tegra K1’s hardware capabilities. A popular power-saving
approach is a“race to sleep”strategy where the highest CPU
frequency is used while the CPU has work to do, and then
the CPU is put to sleep. Our own experiments indicate that
an energy reduction of 28 % can be achieved by running
the video encoder on the lowest CPU frequency at which
the platform achieves an encoding frame rate equal to the
minimum frame rate of 25 Frames Per Second (FPS).

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]: Heterogeneous (hy-
brid) systems;
C.1.4 [Parallel Architectures]: Mobile processors;
I.4.0 [General]: Image processing software;
J.2.0 [Physical Sciences and Engineering]: Electronics

General Terms
Experimentation, Measurement

Keywords
Demonstration, video encoding, real-time, energy, power
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses,
contact the Owner/Author.

Copyright is held by the owner/author(s).

MMSys’15, Mar 18-20, 2015, Portland, OR, USA
ACM 978-1-4503-3351-1/15/03.
http://dx.doi.org/10.1145/2713168.2713186.

1. INTRODUCTION
Energy consumption is an important aspect for the usabil-

ity of mobile devices, where the evolution in battery technol-
ogy has not kept pace with the increasing power usage of the
devices [4]. This has not gone unnoticed by hardware pro-
ducers, who are developing more power-efficient and flexible
SoC architectures. For example, NVIDIA’s Tegra K1 [6] is a
highly flexible mobile multicore SoC equipped with one low-
performance, low-power CPU cluster, one high-performance,
high power CPU cluster as well as a GPU with 192 CUDA
cores. The platform gives full control of these capabilities
to the developer. For example, heavy, parallel computing
operations can be offloaded to the GPU while executing on
the power efficient CPU cluster to save energy. The chal-
lenge is to understand how these choices impact runtime
performance and energy consumption, and whether any en-
ergy can actually be saved depending on the choices of the
programmer.

In this demonstration, we let the participant tweak the
hardware settings of a Tegra K1 to minimise the energy con-
sumption of live video encoding. The challenge is to meet
a performance requirement of 25 FPS. The participant is
free to adjust the CPU and GPU core frequency, select the
active CPU clusters and control the number of active cores
(see Table 1). The encoder, called Codec 63 (C63), is a
highly simplified MPEG-inspired codec created for teaching
purposes (see Section 2.2 for further details). The effects of
the participant’s hardware settings in terms of the achieved
frame rate, power usage and CPU/GPU frequency are pre-
sented over time on a dedicated laptop. The laptop also
handles live video decoding (see Figure 1). Although C63
cannot compete with the performance of a dedicated hard-
ware encoder, the point is here to study the effects of the

Name Description
CPU Frequency CPU operating frequency.
CPU Cluster Encode using the high-power or low-

power CPU cluster.
CPU Cores Controls the number of active cores

to be used while actively encoding.
GPU Frequency GPU operating frequency.
GPU Offloading Offload nothing, some or all frames

to the GPU.

Table 1: Parameters that can be set by the participant. See
Section 2.2 for further description.

133

352x288
Live Stream

USB Connector

Jetson­TK1

Encoded Live
Video Stream

Ethernet

Decoding / Interface

M420 YUV

Web Camera

Figure 1: Demonstration set-up.

Tegra K1’s hardware capabilities, and not the efficiency of
the workload.

C63 can easily encode a frame in less than 40 ms, achiev-
ing a frame rate of at least 25 FPS. Although research shows
that a frame rate of 12 FPS may be satisfactory with current
mobile phones’ screen size, we use 25 FPS as the minimum
for the sake of display quality on the decoding computer.
The challenge is for the participant to minimise the con-
sumption of energy while meeting this frame rate require-
ment. For example, when we encoded 300 frames at 25 FPS
in real-time, almost 30% of the energy was saved by min-
imising CPU frequency instead of running the processor on
full speed to maximise the sleep period before the next frame
(a “race to sleep” heuristic, see Figure 2).

1.326 2.3205
CPU Frequency [GHz]

0

5

10

15

20

25

30

35

40

En
er

gy
 [m

W
h]

Energy Consumption

0

5

10

15

20

25

Fr
am

es
 p

er
 S

ec
on

d

FPS

Figure 2: Our own experiments indicate almost 30% energy
saving when minimising CPU frequency such that a target
frame rate of 25 FPS is achieved.

2. SYSTEM OVERVIEW
Our demonstration is composed of three units (see Fig-

ure 1). A web camera is continuously transmitting a raw
video stream to the encoder platform over a USB interface.
The encoder platform is a Jetson-TK1 mobile development
kit [5] featuring a Tegra K1 SoC. The Tegra K1 is contin-
uously encoding the live-stream using the C63 encoder. As
seen in Figure 3, we have also added a power measurement
sensor that can log the energy consumption of the Jetson-
TK1. Finally, the encoded stream is sent to a dedicated
decoding laptop, which fulfils two tasks. First, it decodes
the stream and plays it back live. Second, it displays the
achieved performance- and power-related parameters such
as the power usage, energy per frame and frame rate over
time. The participant may use the decoding laptop to con-
trol the parameters in Table 1. Throughout the rest of this
section, we will explain the system set-up in more detail.

Figure 3: The figure shows our power measurement exten-
sion (INA219, circled) on the Jetson-TK1.

Figure 4: The INA219 measures total platform power usage
over the Jetson’s main power rail.

2.1 Video Encoding Platform
We use a Tegra K1 multiprocessor SoC as our encoding

platform (see Figure 3). This processor is especially inter-
esting in terms of energy consumption, because it provides
many hardware capabilities that can be used for power op-
timisation. The Tegra K1, as well as SoCs with similar ca-
pabilities, have been implemented in real devices such as
NVIDIA’s SHIELD tablet. The Tegra K1’s capabilities are
as follows:

• CPU: Two clusters in “4+1” core configuration[7, 8].

– One high performance, high power (HP) cluster
with four Cortex-A15 ARM cores. Three of the
cores can be individually shut down.

– One low performance, low power (LP) cluster with
a single Cortex-A15 ARM core.

– Hardware-supported migration of OS and appli-
cations between the clusters.

– A 128-bit NEON single instruction, multiple data
(SIMD) instruction set tailored for multimedia
workloads.

134

– 22 configurable CPU frequencies (between 51 MHz
and 2.32 GHz).

• GPU: 192 programmable CUDA-cores based on the
Kepler-architecture on-chip.

– 15 configurable GPU frequencies (between 72 and
852 MHz).

The participant is free to change the CPU and GPU fre-
quencies, as well as to enable and disable cores and switch
CPU clusters. The relationship between the core frequency
and power is given by the Dynamic Voltage and Frequency
Scaling (DVFS) formula and is especially useful here [2]:

Pcore = αCV 2
corefcore (1)

In Equation 1, α is the core utilisation level, C is the core
switching capacitance, Vcore is the core voltage and fcore is
the core frequency. The DVFS formula shows that higher
performance in terms of processor frequency can be traded
for increased power consumption, allowing fine-grained tun-
ing of power and performance characteristics depending on
application requirements.

The Jetson-TK1 platform is not pre-equipped with any
power measurement sensors. Consequently, we have equipped
our platform with an INA219 power measurement sensor [9]
(see Figures 3 and 4) and developed a Linux kernel module
that provides access to the device through the sysfs filesys-
tem. The INA219 works by measuring the voltage drop,
Usense, over a sense resistor connected in series with the
main power rail of the Jetson-TK1. The electrical resistance
of the sense resistor, Rsense, must be very small to avoid af-
fecting the main circuitry (Rsense << Rjetson). The INA219
amplifies the voltage drop Usense, converts it to the digital
domain, and calculates the board’s current drain Ijetson as
follows:

Ijetson =
Usense

Rsense
(2)

The power consumption, Pjetson, at any time, is given by:

Pjetson = IjetsonUjetson (3)

where Ujetson is the main rail bus voltage potential. The
set-up is similar to that found in PowerScope [3], but more
complex because the INA219 is a small, surface mounted
device that requires a high degree of manual configuration.
There is also no separate logging machine; power logging is
done by the Tegra K1 itself, eliminating as much latency
as possible between the sensor and the Jetson-TK1. The
INA219 itself interfaces over an I2C bus adapter. Reading
directly from the CPU, we achieve a rate of 4000 power
measurement samples per second using this set-up.

2.2 Video Encoding Framework
As workload for our demo we use our own implementation

of the C63 video encoder, which is suitable for parallelisa-
tion using the Jetson-TK1’s hardware capabilities. C63 is
capable of encoding raw YUV 4:2:0, and the encoding oper-
ations are similar to H.264 or Google’s VP8. The operations
are as follows (see Figure 5):

• Motion vector search: The encoder divides the cur-
rent frame into a set of macroblocks, and attempts to
estimate their displacement between frames.

• Motion compensation: The encoder compensates the
current frame by removing information for each mac-
roblock where a motion vector could be found. This
reduces the amount of information that must be stored
(only the vector needs to be stored).

• Discrete Cosine Transform (DCT) and inverse DCT
(iDCT):. The DCT transforms each macroblock to
the frequency domain. The inverse DCT transforms
it back. We use the “Fast-DCT” algorithm [1] on the
CPU.

• Quantisation and de-quantisation: Quantisation re-
duces the value of the highest frequency components
of each macroblock, to which the human eye is less
sensitive to. De-quantisation transforms it back.

• Variable-length coding (VLC): The last step writes each
frame to persistent storage using variable length huff-
man encoding.

The demo implementation attempts to reach a frame rate
of 25 FPS by offloading none, some or all parts of the video
processing to the GPU (“CPU-only”, “GPU-only” or “hy-
brid”). For example, for the hybrid scheme, Y and U frames
are transmitted to and encoded on the GPU, while the V
frame is encoded on the CPU (see Figure 5). Frame writ-
ing is interleaved, such that the next frame starts processing
while the last is currently being written to network. If the
single frame encoding time is below the requirement (for ex-
ample 40 ms for 25 FPS), the frame rate is met, and the
CPU (and GPU) idles. In this case, the encoder sleeps for
the remaining duration. Figure 6 illustrates an example:

Figure 6: An illusation of single-frame encoding under the
“hybrid” processing scheme.

1. The CPU fetches a raw YUV frame from the web cam-
era.

2. The CPU distributes the Y and U frames to the GPU,
starts processing the V frame, and starts writing the
previously encoded frame to the network.

3. The GPU finishes processing before the CPU is done,
and idles.

4. The CPU finishes its processing before the 40 ms dead-
line. The CPU now sleeps for the remaining duration.

5. The cycle continues for the next frame.

135

Y U V

Input File CPU

Merged
Frame

GPU

Livestream
352x288

To Decoder

Motion
Estimation

Motion
Compensation

DCT

Quantisation Reverse
Quantisation

Reverse
DCT

Reconstructed
Framen-1

Frame
n

Entropy
Encoding
(Huffman)

Motion
Estimation

Motion
Compensation

DCT

Quantisation Reverse
Quantisation

Reverse
DCT

Reconstructed
Framen-1

Frame
n

Entropy
Encoding
(Huffman)

Figure 5: Our implementation of the C63 encoder operating in the “hybrid” processing scheme.

3. DEMONSTRATION
In this demo, we show how the energy consumption and

performance of a video encoder is impacted by hardware and
software configuration. Our demo supports runtime configu-
ration of CPU and GPU core frequency, active CPU cluster,
core shutdown and varying degrees of GPU offloading. The
impact of these reconfigurations, that is power usage, frame
rate, frequency and the decoded live video is displayed live
to the participant as plots over time. Thus, the question is
how energy-efficiently can you live-encode video?

4. REFERENCES
[1] L. V. Agostini, I. S. Silva, and S. Bampi. Pipelined fast

2d dct architecture for jpeg image compression. In
Integrated Circuits and Systems Design, 2001, 14th
Symposium on., pages 226–231. IEEE, 2001.

[2] A. Castagnetti, C. Belleudy, S. Bilavarn, and
M. Auguin. Power consumption modeling for dvfs
exploitation. In Digital System Design: Architectures,
Methods and Tools (DSD), 2010 13th Euromicro
Conference on, pages 579–586. IEEE, 2010.

[3] J. Flinn and M. Satyanarayanan. Powerscope: A tool
for profiling the energy usage of mobile applications. In
Mobile Computing Systems and Applications, 1999.
Proceedings. WMCSA’99. Second IEEE Workshop on,
pages 2–10. IEEE, 1999.

[4] K. Lahiri, S. Dey, D. Panigrahi, and A. Raghunathan.
Battery-driven system design: A new frontier in low

power design. In Proceedings of the 2002 Asia and
South Pacific Design Automation Conference, page 261.
IEEE Computer Society, 2002.

[5] NVIDIA. Jetson-TK1 Embedded Development
Platform., 2014. http://www.nvidia.com/object/jetson-
tk1-embedded-dev-kit.html.

[6] NVIDIA. Tegra K1 Next-Get Mobile Processor., 2014.
http://www.nvidia.com/object/tegra-k1-
processor.html.

[7] NVIDIA. Tegra K1 Whitepaper., 2014.
www.nvidia.com/content/PDF/tegra white -
papers/Tegra-K1-whitepaper-v1.0.pdf.

[8] NVIDIA. Variable SMP., 2014.
www.nvidia.com/content/PDF/tegra white -
papers/Variable-SMP-A-Multi-Core-CPU-Architecture-
for-Low-Power-and-High-Performance.pdf.

[9] Texas Instruments. INA219 Power Rail Monitor., 2014.
http://www.ti.com/product/ina219.

136

Paper II: Energy Efficient
Continuous Multimedia Processing
Using the Tegra K1 Mobile SoC

Title: Energy Efficient Continuous Multimedia Processing Using the Tegra K1 Mobile
SoC [61].

Authors: K. R. Stokke, H. K. Stensland, C. Griwodz and P. Halvorsen.

Abstract: Energy consumption is an important issue for mobile devices, as the tech-
nological development in battery technology has not kept pace with the power re-
quirements of mobile hardware. In this paper, we use a video rotation filter to study
the effects of CPU and GPU frequency scaling in terms of performance and energy.
Our platform is the Tegra K1 mobile processor with a quad-core CPU and a CUDA-
capable GPU. We find that most energy can be saved by minimising CPU frequency
while meeting the filter’s framerate requirement. Interestingly, the frequency scal-
ing affects GPUs differently, where the best frequency is always moderately higher
than the minimum which meets the framerate requirement. Using these heuristics,
it is possible to save up to 10 % energy compared to the standard Linux frequency
scaling algorithms, which use processor utilisation to adjust processor frequency.

Lessons learned: This paper was an extension to our demonstration paper, where we
investigated the impact of frequency scaling on energy consumption and performance
of a rotation filter. Comparing with the standard frequency scaling algorithms on
the Tegra K1, we learned that we could reduce energy consumption with up to
11 % by minimising GPU and CPU frequencies, such that framerates are still met.
However, in concluding this work, we realised that it is hard to argue why frequency
minimisation is an effective strategy to reduce energy consumption. This is because
it is essentially impossible to measure the individual power draw of the Tegra K1’s
processors.

Author’s contributions: Stokke designed and implemented the video processing filters,
ran and evaluated the experiments, and was the main author of this paper.

Published: Proceedings of the 7th Workshop on Mobile Video (MoVid), pages 15-16,
Portland (Oregon). ACM, 2015.

137

138
. Paper II: Energy Efficient Continuous Multimedia Processing Using the Tegra K1

Mobile SoC

Energy Efficient Continuous Multimedia Processing Using
the Tegra K1 Mobile SoC

Kristoffer Robin Stokke, Håkon Kvale Stensland, Carsten Griwodz, Pål Halvorsen
Simula Research Laboratory & University of Oslo, Norway

{krisrst, haakonks, griff, paalh}@ifi.uio.no

ABSTRACT
Energy consumption is an important issue for mobile de-
vices, as the technological development in battery technol-
ogy has not kept pace with the power requirements of mo-
bile hardware. In this paper, we use a video rotation filter
to study the effects of CPU and GPU frequency scaling in
terms of performance and energy. Our platform is the Tegra
K1 mobile processor with a quad-core CPU and a CUDA-
capable GPU. We find that most energy can be saved by
minimising CPU frequency while meeting the filter’s framer-
ate requirement. Interestingly, the frequency scaling affects
GPUs differently, where the best frequency is always moder-
ately higher than the minimum which meets the framerate
requirement. Using these heuristics, it is possible to save up
to 10 % energy compared to the standard Linux frequency
scaling algorithms, which use processor utilisation to adjust
processor frequency.

Categories and Subject Descriptors
C.1.3 [Other Architecture Styles]: Heterogeneous (hy-
brid) systems;
C.1.4 [Parallel Architectures]: Mobile processors;
J.2.0 [Physical Sciences and Engineering]: Electronics

Keywords
Multimedia, Tegra K1, CUDA, energy, performance, CPU-
GPU frequency scaling

1. INTRODUCTION
Battery capacity is a severe limitation of modern mobile

devices. Dynamic Voltage and Frequency Scaling (DVFS) [1]
algorithms minimise power usage of CPUs and GPUs by
lowering operating frequency, and is an effective way to save
energy when full performance is not needed. There have

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honoured. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions@acm.org.

MoVid’15, March 18-20 2015, Portland, OR, USA
Copyright 2015 ACM Copyright is held by the owner/author(s). Publication
rights licensed to ACM.
ACM 978-1-4503-3353-5/15/03. . . $15.00
http://dx.doi.org/10.1145/2727040.2727044 ...$15.00.

been many proposals from the research community on how
DVFS can be improved for mobile devices. However, these
consider GPUs that do not support general purpose com-
puting, such as CUDA [5, 4]. Those that consider DVFS for
CUDA-capable GPUs [2] typically target high-performance
applications found in data centres. We argue that common
mobile applications are lighter processes where the goal is
not to finish processing quickly, but to meet application-
specific QoS constraints such as a specific framerate. In this
paper, we consider a video processing filter implemented for
both CPU and GPU, where the goal is to provide an ac-
ceptable video quality of 25 FPS. We study the impact that
CPU and GPU frequency settings have on application per-
formance and energy using a Tegra K1 mobile SoC, and find
that 10 % energy can be saved by using workload specific
frequency settings compared to the standard Linux DVFS
algorithms.

2. SYSTEM SETUP
Our system is based on a Jetson-TK1 mobile development

kit equipped with a custom power measurement sensor. The
workload used in our study is an image rotation filter. The
filter rotates each frame of a 25-FPS video stream by a con-
tinuously increasing angle. Its operations resemble that of
a video stabiliser. The filter has been implemented for both
the CPU and the GPU using CUDA. To study the effects
of frequency scaling we disable the Linux DVFS algorithms
and set CPU and GPU operating frequency manually while
processing frames as follows:

1. While the CPU or the GPU is busy processing a frame,
its respective frequency is set to a higher frequency
which we vary throughout our experiments.

2. If the CPU or GPU processing ends before the frame
deadline (40 ms for 25 FPS), CPU frequency is lowered
to 204 MHz for the CPU and 72 MHz for the GPU.
The CPU sleeps for the remaining time.

It is important to note that the performance of the filter
never exceeds 25 FPS, but that it can be lower than this if
the manually set processing frequencies are too low.

3. EXPERIMENTAL RESULTS
We run our experiments using our setup with three input

resolutions (see Table 1). Each test is run ten times for
each frequency, stopping if the encoding time is longer than
12 s. This is to equalise the energy consumption of idle

139

Resolution
Userspace P-SAV Linux Governor (“ondemand”)

Improvement
Core Max Frequency Energy Core Energy

352x288 CPU 204 MHz (CPU) 9.22 mWh CPU 9.02 mWh -2.2 %

640x480 CPU 304 MHz (CPU) 11.33 mWh CPU 12.86 mWh 11.9 %

1920x1080 GPU 804 MHz (GPU) 26.00 mWh GPU 29.16 mWh 10.8 %

Table 1: The most energy efficient frequency configurations compared with the best Linux DVFS algorithm.

0 5 10 15 20 25 30 35 40
Time [ms]

0
1
2
3
4
5
6
7

Po
w

er
 [W

]

One Frame - Rotation (CPU, 352x288)
564 MHz
1092 MHz
2014 MHz

Figure 1: A single CPU frame encoding snapshot for differ-
ent operating frequencies.

components from each run. The framerate and total energy
usage for CPU- and GPU-execution can be seen in Figure 2.
The best frequencies are marked with red. As expected, we
see that higher frequencies increase the framerate. For the
CPU, the best frequency is very close to the point where the
25 FPS requirement is reached. After this, increasing the
operating frequency further only increases the total energy
usage on the CPU. A likely reason for this observation is
that a doubling in frequency effectively doubles the power
usage of the processor [1], but does not reduce the frame
encoding time by a corresponding amount, which can be
seen in Figure 1.

The GPU experiments show a different trend than that of
the CPU. For the mid-resolution video, 25 FPS is reached at
72 MHz. The best frequency is four frequency steps above,
at 324 MHz, reducing the energy usage by 23 %. In other
words, the frequency should not be minimised as for the
CPU. The effect is similar, but not as clear, for the high- and
low-resolution videos. However, we have run other types of
video filters which confirm this observation. Unfortunately,
we could not include them here due to space restrictions.

We also run the experiments with the standard Linux
DVFS algorithms [3], where the CPU and GPU operat-
ing frequencies are automatically adjusted in response to
changes in processor utilisation. There is only one GPU
DVFS algorithm, but of the four CPU algorithms, the “on-
demand” algorithm was consistently better. Compared to
these, up to 10 % energy can be saved by using workload-
specific frequencies (see Table 1).

4. CONCLUSION
In this paper, we study the impact of CPU and GPU fre-

quency settings on a mobile processor. Our workload is a
video rotation filter implemented for both the CPU and the
GPU using CUDA. We find that up to 10 % energy can be
saved by minimising CPU frequency such that a framerate
of 25 FPS is met generally saves energy over the standard
Linux DVFS algorithms. It is clear that the standard Linux
DVFS governors, which change processor frequency in re-
sponse to changes in utilisation [3], can be improved if QoS
requirements such as framerate were considered. The effect
of DVFS is different for the GPU, where the best frequency

204312564696828960
1092

1122
1224

1326
1428

1530
1632

1734
1836

1938
2014

2116
2218

2320

CPU Max Frequency [MHz]

0
10
20
30
40
50
60
70

En
er

gy
 [m

W
h]

Rotation - CPU

0

5

10

15

20

25

Fr
am

es
 p

er
 S

ec
on

d

72 108 180 252 324 396 468 540 612 648 684 708 756 804 852

GPU Max Frequency [MHz]

0
10
20
30
40
50
60
70

En
er

gy
 [m

W
h]

Rotation - GPU

0

5

10

15

20

25

Fr
am

es
 p

er
 S

ec
on

d

Figure 2: Frequency scaling experiments. The frequencies
shown correspond to the one used while the CPU or GPU
is actively processing a frame.

tends to lie moderately above the minimum which achieves
25 FPS. As this is work-in-progress, we do not yet know the
exact reasons behind this observation. For future work, it
would be interesting to see if existing GPU DVFS algorithm
proposals [4, 5] can be improved for our platform.

5. REFERENCES
[1] A. Castagnetti, C. Belleudy, S. Bilavarn, and

M. Auguin. Power consumption modeling for DVFS
exploitation. In Proc. of Euromicro DSD-AMT, pages
579–586, 2010.

[2] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher,
and Z. Zong. Effects of dynamic voltage and frequency
scaling on a k20 gpu. In Proc. of ICPP, pages 826–833,
2013.

[3] V. Pallipadi and A. Starikovskiy. The ondemand
governor. In Proc. of the Linux Symposium, volume 2,
pages 215–230, 2006.

[4] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra.
Integrated cpu-gpu power management for 3d mobile
games. In Proc. of the 51st Annual Design Automation
Conference, pages 1–6, 2014.

[5] D. You and K. Chung. Quality of service-aware
dynamic voltage and frequency scaling for embedded
gpus. IEEE Computer Architecture Letters, 2013.

140

Paper III: Why Race-to-Finish is
Energy-Inefficient for Continuous
Multimedia Workloads

Title: Why Race-to-Finish is Energy-Inefficient for Continuous Multimedia Workloads [63].

Authors: K. R. Stokke, H. K. Stensland, C. Griwodz and P. Halvorsen.

Abstract: It is often believed that a ”race-to-finish” approach, where processing is fin-
ished quickly, is the best way to conserve energy on modern mobile architectures.
However, from earlier work we know that for continuous multimedia workloads, the
best way to conserve energy is to minimise processor frequency such that application
deadlines are met. In this paper, we investigate the reasons behind this. We develop
an original method to model dynamic and static power on individual power rails of
the Tegra K1 by only measuring the total power usage of the board. Our model
has an average error of only 8 %. We find that the way an application scales per-
formance with frequency is very important for energy efficiency. We demonstrate
a 37 % energy saving by minimising processor and memory frequency of a video
processing filter such that a framerate of 20 FPS is met.

Lessons learned: Motivated by the lack of insight into the power usage of our video pro-
cessing filters under different processor frequencies, this paper was our first power
modelling attempt. We built a CMOS-based model for the Tegra K1 to investigate
the energy efficiency of different frequency scaling strategies. We learned many de-
tails that were important for modelling. For example, we found that the rail voltages
on the Tegra K1 automatically increased to 1.0 V if the SoC was sufficiently cold.
Also, we learned that the driver-reported rail voltages were not accurate enough.
We therefore measured the rail voltages to build more accurate models. Our most
important observation in the course of this work was that our model’s prediction
error varied with different CPU and memory frequencies. This phenomenon is rarely
shown in related literature, where only average error is reported. Furthermore, we
realised that, even with our careful method of attributing capacitive processor and
memory cycle loads to applications, we could not build an accurate view of the power
usage of the SoC. We believe this is because CMOS-based models implicitly assume
that the increase in power usage as for example memory frequency is increased, is
only due to increased dynamic power of that component.

141

142
. Paper III: Why Race-to-Finish is Energy-Inefficient for Continuous Multimedia

Workloads

Author’s contributions: Stokke designed and evaluated the CMOS-based power model
for the Tegra K1, as well as the experiments. He also implemented the different
frequency scheduling strategies and was the main author of this paper.

Published: Proceedings of the 9th International Symposium on Embedded Multicore/Many-
core Systems-on-Chip (MCSoC), pages 57-64, Turin (Italy). IEEE, 2015.

Why Race-to-Finish is Energy-Inefficient for
Continuous Multimedia Workloads

Kristoffer Robin Stokke, Håkon Kvale Stensland, Pål Halvorsen, Carsten Griwodz
Simula Research Laboratory & University of Oslo
{krisrst, haakonks, paalh, griff}@ifi.uio.no

Abstract—It is often believed that a ”race-to-finish” approach,
where processing is finished quickly, is the best way to conserve
energy on modern mobile architectures. However, from earlier
work we know that for continuous multimedia workloads, the best
way to conserve energy is to minimise processor frequency such
that application deadlines are met. In this paper, we investigate
the reasons behind this. We develop an original method to
model dynamic and static power on individual power rails of
the Tegra K1 by only measuring the total power usage of the
board. Our model has an average error of only 8 %. We find
that the way an application scales performance with frequency
is very important for energy efficiency. We demonstrate a 37 %
energy saving by minimising processor and memory frequency
of a video processing filter such that a framerate of 20 FPS is
met.

I. INTRODUCTION

Modern mobile architectures such as NVIDIA’s Tegra K1
SoC [5] have impressive power management capabilities. The
Tegra K1 includes among other components a Low-Power (LP)
core and a High-Performance (HP) quad-core application clus-
ter. The operating system and applications can be hardware-
migrated between the HP cluster and the LP core, the HP
cluster cores can be turned on and off, and the processor
and memory frequencies can be dynamically adjusted to meet
an application’s demands. A challenge for developers of such
heterogeneous architectures is to understand the power usage
of the platform because existing models are too simple and
model the device as one unit, making it hard to optimise the
energy usage of applications.

A particularly challenging type of workload is continuous
multimedia processing, which must generate results according
to a sequence of deadlines. For example, in a scenario where
video is being recorded on a mobile phone, multiple filters are
used for image stabilisation, debarreling, horizon detection,
feature extraction, sharpening and finally encoding in order
to produce the final video. These must be able to process
incoming video frames at a certain framerate while consuming
as little energy as possible. In our preliminary studies [10],
we observed that for such workloads, energy can be saved
by minimising CPU frequency such that application deadlines
are still met. This contradicts the popular belief that a race-
to-finish approach, where CPU frequency is maxed out until
the processing is done, is the most energy-efficient alternative.
Standard Linux frequency scaling algorithms are also easily
outperformed following this heuristic.

In this paper, we investigate the reasons for this, i.e.,
where and how energy is lost under computation on the
Tegra K1. We develop an original method to model individual

static and dynamic power of different hardware blocks of the
Tegra K1 based on extensive measurements of different parts
of the heterogeneous system. This is challenging because it
is impossible to install power usage sensors in series with the
power rails. In this respect, we are the first to provide a method
to model and quantify static and dynamic power on individual
power rails (the HP cluster, LP core and memory rails) for the
Tegra K1 by only measuring the total power usage of the board.
Our experiments show that, for example, the HP cluster with
one core active adds about 0.4 A to the leakage current on the
HP rail. Each additional core adds between 0.15 and 0.20 A.
This analysis is useful to understand static power loss which
is always present, independently of the workload. Dynamic
processor and memory power is workload-specific and must
be re-modelled for each workload. Our model has an average
error of 8 %.

We then implement a set of continuous multimedia work-
loads to study how processor and memory frequency impacts
energy efficiency. We find that the way our workloads scale
performance with memory and processor frequency is a key
aspect to energy efficency. Dynamic power alone grows at
least linearly with frequency, while application performance
typically grows sublinearly. In practice, this means that a lot
more power is needed for a marginal increase in performance,
and performance per watt decreases. We demonstrate a 37 %
energy saving for one of our workloads by minimising pro-
cessor and memory frequency, and choosing the best number
of cores active, such that a target framerate of 20 FPS is still
met. This translates to a 37 % increased battery lifetime in a
continuous video recording scenario.

II. RELATED WORK

There are several works for Tegra SoCs and other em-
bedded mobile platforms that study performance and power
usage of different applications. Many of these consider the
gain in terms of energy efficiency and performance of of-
floading computationally expensive tasks to different types of
application processors, such as GPUs and DSPs. Wang et.
al. [13] consider common image processing operations such
as the fast fourier transform and matrix multiplication on the
Tegra 2, Snapdragon S2 and OMAP platforms. Power usage
and performance have been evaluated on the CPU, GPU and
DSP, or a combination of these. Rister et. al. [8] optimise the
scale-invariant feature transform by partitioning the workload
between the CPU and the GPU of a Tegra 250. However, these
studies have the limitation that, while they are attempting to
investigate power-performance tradeoffs of applications using
different processors, they do not delve deeply into the physical

143

aspects of modern heterogeneous processors and electrical
components.

Castagnetti et. al. [1] investigate the power usage impact
of voltage regulators and static and dynamic processor power
on an Intel XScale mobile processor. They consider processor
frequency and rail voltage and their relation to power usage.
Dynamic and static power is modelled mathematically, as
similarly proposed by Kim et. al. [3]. Both works are similar
to ours, but we also model dynamic memory power. Pricopi
et. al. [6] propose a performance-counter based model for
power usage of the big.LITTLE architecture, as well as a
cycles-per-instruction based performance model for applica-
tions. The same authors also propose a power management
scheme [9] based on the same observations as we made in
earlier work [10]. To save power, processor frequency should
be minimised while meeting QoS requirements, such as a
specific framerate. Compared to existing work, we first take a
more fine-grained and quantitative approach to understanding
power usage of the heterogeneous Tegra K1 by modelling
power on individual power rails, and then, we investigate the
effects that make workloads energy-inefficient.

III. SYSTEM

A. Hardware Architecture

Insight into the relevant parts of the Jetson-TK1’s hardware
architecture is necessary for the methodology and results
derived in later sections. The Jetson-TK1 is a development
kit with an integrated NVIDIA Tegra K1 SoC and various
supporting infrastructure. This includes different IO compo-
nents such as HDMI and USB controllers, embedded buses,
memory, cooling, a power management controller and other
components. Because we focus on the CPU clusters and
the memory controller, only the Tegra K1 SoC and certain
details about the Jetson-TK1’s power regulators affect our
investigation.

The Tegra K1 consists of 20 power rails [4] which supply
the different functional blocks of the SoC with power. Most of
these are powered down. Figure 1 shows the most important
rails, because they power the components that are utilised by
our workloads. Only the power usage on those rails will vary.

• The core rail powers 40 clocks (most of which are
idle), the LP core and additional shared circuitry
between the LP and the HP cluster.

• The HP rail powers only the HP cluster and its clock.

• The memory rail powers the memory module and the
memory clock.

The clocks drive the different co-processors, memory and
buses. Higher clock frequency increases performance and
power usage of the connected component. An important side-
effect of clocking is that rail voltage increases with clock
frequency, which also increases static power usage. For exam-
ple, as processor frequency is increased, higher input voltages
on the respective rails are needed to sustain the current
throughput.

Table I shows a subset of the Tegra K1 clocks that are
powered-on as well as their frequency and voltage ranges.

Clock Rail Description Frequency Voltage RangeSteps Range [MHz]
cpu g HP Rail HP cluster 20 [204, 2320] [0.80, 1.20]
cpu lp Core Rail LP core 9 [51, 1092] [0.80, 1.05]

emc Core Rail Memory 9 [40, 924] [0.80, 1.01]
pciex Core Rail PCIe 1 250 [0.85]

mselect Core Rail Crossbar 1 204 [0.90]
sbus Core Rail Unknown 1 204 [0.85]

host1x Core Rail Unknown 1 81 [0.80]

TABLE I: The Tegra K1 clocks, voltage and frequency ranges.

DC IN
 12 V

DCDC

DCDC

DCDC

LDO

LDO

HP Cluster

LP Cluster

Core Clocks
Core Rail

HP Rail
0.80 - 1.20 V

0.80 - 1.05 V

DRAM

DRAM ClockMemory Rail
1.35 V

Tegra K1 SoC

Fig. 1: Critical components of the Jetson-TK1 architecture.

Only the processor and memory clocks can vary; all other
clocks are restricted to one frequency. The HP rail voltage is
only governed by the HP core clock (cpu g). However, the
core rail drives more components, and therefore the core rail
voltage is the maximum voltage required by any of its clocks
at any point in time. Because the only variadic clocks on the
core rail are the cpu lp and emc clocks, and the mselect clock
is set statically, requiring 0.9 V, it is the maximum voltage
required by these that decides the actual core rail voltage (see
Figure 6b). Each rail is powered by at least one regulator.

B. Power Measurement and Synchronisation

The Jetson-TK1 is not fabricated with any power measure-
ment sensors. In previous work [10], we used a low-cost power
measurement sensor attached to the main power rail. This
approach had the disadvantage that the Tegra K1 had to poll the
sensor for readings. To avoid this, we use a Keithley 2280S
power source. In addition to supplying the Jetson-TK1 with
power, the 2280S continuously measures output current with
an accuracy of 0.05 % [2] and a configured sampling rate
of 1 kHz. It also has a small internal circular buffer to store
readings which can be queried over USB. Our experimental
setup can be seen in Figure 2. We use an external logger
machine to store readings. The Tegra K1 can start, stop and
retrieve power measurements directly from the logger machine.

A challenge with this setup is that the measurements are not
synchronised with the Tegra K1. For example, when initiating
power measurements from the Tegra K1, up to 200 ms delay
until the measurements start on the 2280S can be expected.
The delay occurs as an effect of latency between the Tegra K1
and the logger machine, as well as between the logger and
the 2280S. The effect can be seen in Figure 3. We therefore
use a method suggested by Rice and Hay [7] to synchronise
the measurements and the Tegra K1. After initiating measure-
ments, the Tegra K1 cycles the platform between a low-power
and a high-power state in set intervals of 500 ms. This creates

144

Keithley 2280S

Output USB

Logger

NetworkUSB

DC IN

Jetson TK1

Network

Fig. 2: Measurement Setup.

SYNC STARTSYNC S1 SYNC S2 SYNC S3 SYNC S4
SYNC STOP

2

3

4

5

6

7

8

9

10

Po
w

er
 [W

]

Latency: 157 ms
Original Power Trace
Synchronised Power Trace

Fig. 3: A plot of a single synchronisation trace.

a power signature in the measurement trace as can be seen in
Figure 3, which is used to calculate and compensate for the
latency.

C. Workloads

Our workloads are continuous video processing operations
that are performed on raw video streams stored in the YUV
format. The operations are continuous and have per-frame
deadlines in the sense that the repeat the same task on
subsequent video frames. To achieve a framerate of 20 FPS, a
frame must be processed within 50 ms of its arrival. Frames
are read directly from RAM to avoid power usage due to disk
activity. We have implemented image rotation, debarreling and
the Discrete Cosine Transform (DCT) as workloads. In this
section, we explain the operations in more detail.

1) Debarreling: Barrel distortion is an effect that occurs
with wide [11]. Our “debarreling” workload computes a con-
stant debarreling map which only needs to be calculated once
and is subsequently applied to each frame. The debarreling
filter is the least compute-intensive filter we consider.

2) Image Rotation: In the image rotation tests, each frame
of a video stream is being rotated by a continuously increasing
angle. This emulates the operation of video stabilisers. The
pixel shifts need to be recalculated for each frame, which
makes this filter more compute-intensive than debarreling.

3) DCT: While DCT in itself is not a useful video process-
ing filter, it is a recurring part of others, for example compres-
sion. Our workload partitions each frame into macroblocks of
8x8 pixels and performs a naive 2D transformation.

IV. METHODOLOGY AND BACKGROUND

Building an accurate power model that separates the power
usage of the Tegra K1’s CPU clusters and memory is not
trivial, as it is impossible to install power measurement sensors

in series with the power rails. It is only possible to measure
the total power usage of the Jetson-TK1. In this section, we
outline the fundamental power models and summarise our
methodology used to build the power models.

Processor and memory power usage can be divided into
static and dynamic power [3], [12]. These are caused by
leakage current and switching activity within the processor’s or
memory’s transistors, respectively. An estimate of these power
components for an idle system can be seen in Figure 4. The
Jetson-TK1 has a base power usage caused by idle components
(USB controllers, bus adapters etc.). The total power usage can
be expressed by the following formula:

Pjetson = Pcpu,dyn + Php,stat + Pcore,stat + Pmem,dyn + Pbase (1)

where Pcpu,dyn is dynamic processor power (either on the core
or HP rail, depending on the active processor), Php,stat and
Pcore,stat is static power on the core and HP rails, Pmem,dyn
is dynamic memory power and Pbase is the power usage of all
other components and rails, also including static power on the
memory rail. It is important to note that the HP rail is powered
down whenever processing is restricted to the LP core (i.e.
Php,stat = 0).

A. Estimating Dynamic Power of Processor and Memory

Dynamic power for the processor or memory is modelled
as follows [3], [12]:

Pdyn = αCV
2
railf (2)

where Vrail is the rail voltage and f is the frequency of either
the processor or memory. The switching capacitance C and the
switching activity α are unknown variables. C can be viewed
as the potential maximum electric charge to be switched into
the processor or memory per cycle, and has units of coloumbs
per cycle. alpha ∈ [0, 1] is workload-specific, and indicates
(on average) how much of the maximum switching capacitance
C is being switched through the circuitry at every cycle. We
call αC the Dynamic Power Coefficient (DPC) of the processor
or memory.

In principle, our methodology to find the DPC is based on
the observation that increasing processor or memory frequency
does not always increase the rail voltage Vrail, and therefore,
regression can be used to estimate the DPC. For example, for
the HP rail, the rail voltage is approximately 0.81 V between
204 to 1224 MHz (see Figure 5a and 6). In this interval, we

51 181 311 441 572 702 832 962 1092
LP CPU Frequency [MHz]

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Po
w
er
 [W

]

Base Power
Leakage Power (Core)
Dynamic Power (Core)
Dynamic Power (Memory)

1.012 1.012 1.057
Core Voltage [V]

Fig. 4: Breakdown of different power components running the
LP core (Tegra K1 idle, and HP rail off).

145

0 200 400 600 800 1000 1200
LP CPU Frequency [MHz]

1.55

1.60

1.65

1.70

1.75

1.80
Po

w
er

 [W
]

Constant Voltage Range

aCV^2 = 4.9212E-11

Total Power
Regression Line

0.2

0.4

0.6

0.8

1.0

1.2

C
or

e
R

ai
l V

ol
ta

ge
 [V

]

Core Rail Voltage

(a)

0.90 0.92 0.94 0.96 0.98 1.00 1.02
Core Rail Voltage [V]

1.54

1.56

1.58

1.60

1.62

1.64

1.66

Po
w
er
 [
W
]

Ileak = 0.67 A

Total Power (Dynamic Power Removed)
Regression Line

(b)

Fig. 5: Estimating DPC (a) and leakage current (b) using regression.

0 500 1000 1500 2000 2500
HP Cluster Frequency [MHz]

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

H
P
R
ai
l V
ol
ta
ge

 [V
]

Reported Voltage
Measured (Idle)
Measured (Active, 1 Core)
Measured (Active, 2 Core)
Measured (Active, 3 Core)

(a) For HP rail, including driver-reported value.

LP Core Frequency [MHz]

1092 960 828 696 564 312 204
Memory Frequency [MHz]

0
200

400
600

800
1000

LP
 R

ai
l V

ol
ta

ge
 [V

]

0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06

(b) For core rail.

Fig. 6: Measured rail voltages.

also see that the power usage grows linearly with frequency,
which is in accordance with Equation 2. R = αCV 2

rail
can therefore be estimated by applying single-variable linear
regression over the slope where the rail voltage Vrail is stable.

The DPC αC can then be found by dividing the regression
coefficient R over the rail voltage squared (αC = R

V 2
rail

). The
DPC varies depending on workload and core configuration. For
example, each workload utilises the hardware (α) in slightly
different ways, also depending on the cluster and number of
cores that are active. Therefore, the DPCs must be re-estimated
for each workload and core configuration.

Our method to estimate the DPC so far ignores the fact that
increasing processor frequency can affect memory hardware
utilisation αmem, and vice versa:

• If processor frequency increases while executing a
workload, memory utilisation (and memory dynamic
power) can also increase.

• If memory frequency increases, processor utilisation
(and processor dynamic power) can also increase,
for example if the processor is stalling, waiting for
memory requests to finish.

If these effects are not taken into consideration, an esti-
mated DPC may become too large (overfitting). In our initial
experiments, we noticed that this happened when estimating
processor DPC. Therefore, our workloads attempt to hide the
effects of memory latency with multithreading, so that the
rise in processor utilisation as memory frequency increases is

negligible. The memory DPC can be estimated and dynamic
memory power removed prior to estimating the processor DPC
(see Section VI-A for more details).

B. Static and Base Power

Static power Pstat on a rail is always present as long as
the rail is powered. Static power can be described as [3]:

Pstat = IleakVrail (3)

where Ileak is the leakage current on a power rail. Ignoring
temperature effects, the leakage current is always constant and
does not vary with workload. However, it varies when circuitry
is power gated. For example, a workload can be restricted to
the LP core, or running on the HP cluster, where it is possible
to use up to four cores. Turning off an HP core effectively
removes some leakage current, as that circuitry is power gated
in hardware. Restricting processing to the LP core effectively
disables the HP rail entirely. Therefore it is only necessary to
estimate leakage current once for each core configuration, and
not for each workload.

Leakage current can be estimated by observing the change
in total power usage as the rail’s voltage increases. How-
ever, dynamic (memory and processor) power must first be
estimated and removed. A simplified example is shown in
Figure 5b, where Ileak can be directly estimated by applying
single-variable linear regression to the slope where the rail
voltage Vrail is increasing.

Base power is found by subtracting the estimated dynamic
and static power for the processor and memory from the total

146

0 200 400 600 800 1000
Memory Frequency [MHz]

1.5

1.6

1.7

1.8

1.9

2.0

2.1
Po

w
er

 [
W

]
LP 51
LP 102
LP 204
LP 312
LP 564
LP 696
LP 828

(a) Over memory frequencies.

0 200 400 600 800 1000 1200
LP Core Frequency [MHz]

1.50

1.55

1.60

1.65

1.70

1.75

Po
w

er
 [

W
]

MEM 51
MEM 102
MEM 204
MEM 312
MEM 564
MEM 696
MEM 828

(b) Over LP core frequencies. Dynamic mem-
ory power has been removed.

0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06
Core Rail Voltage [V]

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

Po
w

er
 [

W
]

MEM 40
MEM 204
MEM 600
LP 51
LP 312
LP 828

(c) Over core rail voltage. All dynamic power
has been removed.

Fig. 7: Idle power usage.

Core Configuration
LP HP-1 HP-2 HP-3 HP-4

Leakage Currents [A]
Core Rail 0.78 0.76 0.82 0.78 0.80
HP Rail 0.0 0.38 0.54 0.68 0.80

Base Power [W] 0.82

TABLE II: Estimated leakage currents and base power over
the five different core configurations.

power usage. Estimation of leakage current on the memory rail
is impossible, because the rail voltage is always 1.35 V and
does not change with frequency. It is instead an implicit part
of the base power.

V. ESTIMATION OF LEAKAGE CURRENTS AND BASE
POWER

In this section, we describe our experiments to estimate
leakage currents and base power on the Tegra K1 using the
methodology presented in Section IV. As already mentioned,
leakage current estimation must be done for each core con-
figuration (LP or HP cluster with up to four cores) because
of power-gating, but it must only be done once because it is
independent of the workload. The final leakage currents can
be seen in Table II.

In the following experiments, we discovered that there is
a discrepancy between driver-reported rail voltages and those
measured with a voltmeter. This happens on both rails supplied
with a DCDC regulator (core and HP rails, see Figure 6a and
6b). The best estimates for the leakage current are achieved
by using voltage measurements on the rail.

A. Collecting Power Usage Data

We first have to collect power usage data for all possible
combinations of processor and memory frequencies, in each of
the five core configurations. There are a total of nine LP core
and memory frequencies, as well as twenty HP frequencies
(see Table I). We found that collecting this data when the
Tegra K1 is idle achieves the best estimations. At each step,
we let the Tegra K1 idle for five seconds, log the power usage
over that time, and proceed to the next frequency combination.

B. Estimating Dynamic Memory and LP Core Power

Figure 7a shows the total idle power versus the memory
frequency. The lines in the plot represent different LP core
frequencies. The steeper climb of the curves at higher frequen-
cies is due to increased static power, as voltage on the core
rail is increased at these frequencies. For frequencies below

this point, voltage is stable, and the memory DPC (αmemC)
can be estimated, noting the following points:

• Between the third and the fourth memory frequencies
of Figure 7a (102 MHz and 204 MHz), the increase
in power is less than for the other frequencies.

• At memory frequencies above this, several driver-
reported but undocumented clocks are automatically
activated on the core rail, having a negative impact on
the estimation.

Due to the different growth in power over memory fre-
quency, we do regression over the three lowest memory
frequencies (40 to 102 MHz), and then the next three (204
to 600 MHz) according to our methodology in Section IV-A.
Figure 8 shows the estimated memory DPCs, which are plotted
over the LP core frequencies.

Figure 7b shows the remaining total power over LP core
frequencies when dynamic memory power has been removed.
We see that the power grows linearly with LP core frequency
until the rail voltage starts to increase. We repeated the process
above to estimate the LP core DPC over different memory
frequencies. The result can be seen in Figure 8, where the
remaining power is plotted over memory frequencies. With
these results, dynamic LP core power can be estimated and
removed for all frequency combinations.

In Figure 8, we see that the DPC is approximately constant.
Increasing processor frequency for an idle system does not
increase memory utilisation, and vice versa. This may seem
illogical because, even for an idle system with no workloads,
there is still overhead in the running kernel. We believe this is
due to caching. All data in memory operated on by the kernel

0 200 400 600 800 1000 1200
Memory / LP Core Frequency

1

2

3

4

5

α
C

1e−10

Memory αC (Memory Frequency <= 102 MHz)
Memory αC (Memory Frequency > 102 MHz)
LP Core αC

Fig. 8: DPC for Memory and LP Core (idle workload).

147

200 400 600 800
Memory F equency [MHz]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
α
C
 (
H
P

C
lu

st
e

)
1e−9

DBR
DCT
ROT

1 CORE
2 CORE
3 CORE

(a) Over memory frequencies.

500 1000 1500 2000
HP Clus er Frequency [MHz]

0.5

1.0

1.5

2.0

α
C
 (

M
em

o
ry

)

1e−9

DBR
DCT
ROT

1 CORE
2 CORE
3 CORE

(b) Over HP cluster frequencies.

Fig. 9: Estimated DPC (αC) for processor and memory.

has most likely been cached in the processor’s internal L1 and
L2 caches, effectively making memory traffic negligible.

C. Estimating Leakage Current

When all dynamic power (memory and processor) has been
removed, the leakage current can be estimated. In Figure 7c
we show the remaining power as a function of the core rail
voltage. We use regression over the curves to estimate the
leakage current. We derive a leakage current on the LP rail
of 0.78 A, with a standard deviation of 0.12 A. The standard
deviation is high because the estimated leakage current over
the memory lines in Figure 7c is closer to 0.9 A, while for the
LP core lines, it is closer to 0.7 A. However, we believe that
this estimate is reasonable, as the approximations for the core
rail leakage current in the other core configurations are nearly
the same.

D. Leakage Current on the HP Rail

The leakage current is also modelled on the HP rail, which
requires that processing is restricted to the HP cluster. Dynamic
memory and processor power is removed as in the previous
section, but the rail leakage currents are estimated differently.
The difference is that when HP cluster frequency is increased,
the voltage of the HP rail increases. In practice this means
that only the “memory” lines in Figure 7c must be used to
estimate HP rail leakage, while the others must be used to
estimate the core rail leakage. The resulting leakages can be
seen in Table II.

VI. ENERGY USAGE OF VIDEO PROCESSING FILTERS

A. Estimating Dynamic Power of Workloads

We follow our methodology described in Section IV to
estimate dynamic power for our workloads. Each workload is
run over all possible frequency combinations, while logging
average power usage for each run. We then estimate the DPCs
for the HP cluster and memory (see Figure 9a and 9b). We
see that the memory DPC increases with processor frequency,
because the memory access rate also increases. Processor DPC,
however, remains almost constant over the range of memory
frequencies. Even when the memory frequency is low, memory
latency is hidden by computation because of the multithreaded
benchmarks, and so the processor utilisation does not go down.

B. Power Model Verification

To verify our model, we use Equation 1 and the estimated
dynamic power coefficients, leakage currents and base power
to predict total power. The result can be seen in Figure 10,
where measured power (top row) and model error (bottom

row) have been plotted over all frequency combinations. Due
to space restrictions, we do not show the results for all
benchmarks1.

Studying Figure 10 we see that our prediction generally
follows the measured total power. This is also true for the
other benchmarks (rotation and DCT). Our model has an error
over all frequency combinations of at most 13.4 %, but in most
cases between 6-8 % (see Table III). A characteristic of our
model is that it consistently overpredicts at least 0.15 W. We
believe this is due to an overestimation of core rail leakage
current because the LP core is off when the HP cluster is
active. Looking at Table II, we see that each HP core (which
is the same type as the LP core) adds between 0.15 to 0.20 A
to the leakage current, translating to about 0.15 W.

C. Energy Efficiency

From earlier work [10], we know that energy can be saved
compared to the standard Linux frequency scaling algorithms
by minimising processor frequency so that performance re-
quirements are met. We now add another dimension to the
problem and consider memory frequency as well. We have
already identified leakage currents as a source of energy
inefficieny, because the power loss due to leakage increases
with rail voltage at higher operating frequencies.

Figure 11 illustrates the Frame Processing Time (FPT)
over all possible memory and processor frequencies for each
benchmark (3 cores). In a live streaming scenario, a simple
requirement is that frames are processed at a certain rate.
We choose 20 FPS, which gives an FPT budget of 50 ms
per frame. The frequency combinations that achieve this are
marked with green, indicating a possible area of operation.
This area is largest for the DCT benchmark, followed by
debarreling and rotation. The reason for the differently sized
areas of operation is that the benchmarks scale differently with
operating frequencies. The DCT benchmark is for example
highly optimised with SIMD instructions, while the rotation
benchmark underutilises threads and recalculates pixel shifts
for each frame.

We see that the decrease in FPT (Figure 9a) is highest for
low processor and memory frequencies. Expressed differently,
more performance is gained per increase in processor and
memory frequency at low frequencies. From the experimental
data, we can see that the performance is at best growing
linearly with frequency. At high frequencies, the slope flattens
out, and performance increases sublinearly. This is another
source of energy inefficiency. Even when not considering
power loss due to leakage currents, a doubling in processor
frequency will at least double the dynamic power, but FPT is
not necessarily halved in return.

D. Race to Finish Versus Frequency Minimisation

To see the difference between race-to-finish and frequency
minimisation, we run our workloads on the minimum proces-
sor and memory frequency combination that satisfy the FPS
requirement (the “optimal” strategy). We compare with two
race-to-finish strategies, RTF-HP and RTF-LP. The results are

1All experimental data is available for download from http://folk.uio.no/
krisrst/papers/mcsoc/experiments.ods or on request.

148

 HP Cluster Frequency [MHz]

0
500

1000
1500

2000
2500

Memory Frequency [MHz]
0

200
400

600
800

1000

Pow
er [W

]

1.5
2.0
2.5
3.0
3.5
4.0
4.5

a)
Measured Power (1 Core, DCT)

 HP Cluster Frequency [MHz]

0
500

1000
1500

2000
2500

Memory Frequency [MHz]
0

200
400

600
800

1000

Pow
er [W

]

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

b)
Measured Power (2 Core, Rotation)

 HP Cluster Frequency [MHz]

0
500

1000
1500

2000
2500

Memory Frequency [MHz]
0

200
400

600
800

1000

Pow
er [W

]

1
2
3
4
5
6
7

c)
Measured Power (3 Core, Debarrel)

 HP Cluster Frequency [MHz]

0
500

1000
1500

2000
2500

Memory Frequency [MHz]
0

200
400

600
800

1000

Pow
er [W

]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

d)
Absolute Error (1 Core, DCT)

 HP Cluster Frequency [MHz]

0
500

1000
1500

2000
2500

Memory Frequency [MHz]
0

200
400

600
800

1000

Pow
er [W

]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

e)
Absolute Error (2 Core, Rotation)

 HP Cluster Frequency [MHz]

0
500

1000
1500

2000
2500

Memory Frequency [MHz]
0

200
400

600
800

1000

Pow
er [W

]

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

f)
Absolute Error (3 Core, Debarrel)

Fig. 10: Comparison of measured (top row) versus model error for some of the filters.

Benchmark Debarrel Rotation DCT
Cores 1 2 3 1 2 3 1 2 3
Minimum FPT [ms] 77.4 42.9 33.1 64.3 50.6 45.1 20.7 11.2 0.94
Model Error [%] 6.1 7.0 9.6 5.1 8.9 13.4 6.2 7.0 8.8
Model Overprediction [W] 0.15 0.20 0.31 0.12 0.24 0.39 0.15 0.20 0.29
Measured EPF (RTF-HP) [µWh] N/A 69.81 69.15 N/A N/A 68.27 37.92 36.04 36.36
Measured EPF (RTF-LP) [µWh] N/A 70.09 71.03 N/A N/A 68.39 40.35 39.93 41.38

Optimal

CPU Frequency [MHz] N/A 1224 696 N/A N/A 1734 828 564 564
Memory Frequency [MHz] N/A 924 792 N/A N/A 924 600 204 102
EPF (Predicted) [µWh] N/A 49.99 48.16 N/A N/A 57.80 34.11 33.46 35.13
EPF (Measured) [µWh] N/A 46.81 42.96 N/A N/A 52.56 32.88 30.38 31.21
Improvement (%) N/A 32.9 37.8 N/A N/A 23.0 13.2 15.7 14.16

TABLE III: Overview of model quality and most energy-efficient cpu and memory frequency (target framerate at 20 FPS).

Me
mo

ry
Fre

qu
en
cy

[M
Hz
]

200
400

600
800

HP Cluster Frequency [MHz]

0
500

1000
1500

2000
2500

Pro
cessin

g
 T
im

e [m
s]

0

20

40

60

80

100

120

a)
Frame Processing Time (3 Core, DCT)

Me
mo

ry
Fre

qu
en
cy

[M
Hz
]

200
400

600
800

HP Cluster Frequency [MHz]

0
500

1000
1500

2000
2500

Pro
cessin

g
 T
im

e [m
s]

0
100
200
300
400
500
600
700
800

b)
Frame Processing Time (3 Core, Rotation)

Me
mo

ry
Fre

qu
en
cy

[M
Hz
]

200
400

600
800

HP Cluster Frequency [MHz]

0
500

1000
1500

2000
2500

Pro
cessin

g
 T
im

e [m
s]

0

100

200

300

400

500

600

c)
Frame Processing Time (3 Core, Debarrel)

Fig. 11: Workload performance over memory and processor frequencies. The green lines mark configurations that achieve a
frame processing time of 50 ms or below.

149

 Debarreling, 2 Core
(RTF) (OPT)

 Rotation, 3 Core
(RTF) (OPT)

 DCT, 2 Core
(RTF) (OPT)

0

10

20

30

40

50

60

70

80

90
En

er
gy
 p
er
 F
ra
m
e
[µ
W
h]

Base Energy
Leakage Energy (Core)
Leakage Energy (HP)
Dynamic Energy (HP)
Dynamic Energy (Memory)

Fig. 12: Detailed breakdown of static, dynamic and base power.

shown in Table III, where energy usage is noted in Energy-
per-Frame (EPF). In both strategies, memory and processor
frequency is set to the maximum possible while a frame
is being processed. When the frame processing is complete,
RTF-HP scales down frequency to the minimum possible and
sleeps until the next frame is available. RTF-LP additionally
switches to the LP core. For some of the core configurations,
the required framerate of 20 FPS could not be met. These cases
are marked with N/A.

Table III shows that the RTF-LP strategy is consistently
outperformed by the RTF-HP strategy in terms of EPF by up
to 5µWh. The most likely reason for this is that switching
between the HP cluster and the LP core incurs large transi-
tion overheads in terms of both energy usage and time. For
example, the best- and worst-case switching overheads when
migrating to the HP cluster is 1.4 to 7.0 ms. The overhead
is strongly influenced by processor frequency. This result
indicates that the LP core should not be used to save energy
between frames.

Compared to the RTF-HP strategy, our approach to min-
imise frequency and power so that the target framerate of
20 FPS is met saves between 13.2 to 37.8 % energy. Based
on our power model, Figure 12 gives a detailed breakdown
of static, dynamic and base energy usage per frame between
some of the benchmarks. The core rail leakage and base
energy is roughly the same over the workloads. However, the
RTF-HP strategy consumes more dynamic power, as well as
more leakage energy on the HP rail. The increased HP rail
leakage energy is due to the high voltage required to sustain
the maximum frequency on the HP cluster. Furthermore, as
explained in Section VI-C, the modest performance increase at
high frequencies is not enough to compensate for the increase
in dynamic power usage. This makes it more efficient to use
lower frequency settings.

The debarreling and DCT benchmarks show that adding
cores can have positive effects in terms of energy usage. For
example, for the debarreling benchmark, using three cores
is more energy efficient than two. The extra leakage current
of adding a core pays for itself in that lower processor and
memory frequencies can be used. This is not always true,
however, when moving from two to three cores, the DCT
benchmark actually increases in energy consumption.

VII. CONCLUSION

In this paper, we investigate the power usage of the Jetson-
TK1 and how multimedia workloads can be energy-efficiently
processed using the Tegra K1 heterogeneous multicore SoC.
We look at three common video processing workloads and
ask which memory and processor frequencies yield the best
energy-efficiency. To accurately quantify energy consumption
and leakage for these heterogeneous systems, we have de-
veloped an original method to quantify leakage currents on
individual power rails by observing the increase in platform
power while varying rail voltage and clock frequencies. We
find that both leakage currents and architectural scaling (the
workload’s ability to scale performance with memory and
processor frequency) is very important for energy efficiency.
This is because lower memory and processor frequencies can
be used to process the workload, while meeting the workload’s
performance requirements. Furthermore, our experiments show
that the popular race-to-finish approach is inefficient in terms
of energy consumption for continuous workloads. For our
example workloads, we achieved between 13-37 % energy
saving by minimising memory and processor frequencies such
that a framerate of 20 FPS was met. Finally, the current system
accurately models the cores and memories of the Tegra K1.
However, modern systems also have various components like
GPUs and DSPs for offloading. We are therefore currently
extending our model to include such processors.

REFERENCES

[1] A. Castagnetti, C. Belleudy, S. Bilavarn, and M. Auguin. Power
Consumption Modeling for DVFS Exploitation. In Proc of DSD, pages
579–586. IEEE, 2010.

[2] Keithley. K2280S-32-6 Datasheet. Technical report.
[3] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J.

Irwin, M. Kandemir, and V. Narayanan. Leakage Current: Moore’s Law
Meets Static Power. IEEE Computer, pages 68–75, 2003.

[4] NVIDIA. Tegra K1 Circuit Schematics, Rev. 4.02. Technical report.
[5] NVIDIA. Tegra K1 Technical Reference Manual. Technical report.
[6] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and

S. Vishin. Power-Performance Modeling on Asymmetric Multi-Cores.
In Proc of CASES. IEEE, 2013.

[7] A. Rice and S. Hay. Decomposing Power Measurements for Mobile
Devices. In Proc of PerCom, pages 70–78. IEEE, 2010.

[8] B. Rister, G. Wang, M. Wu, and J. R. Cavallaro. A Fast and Efficient
SIFT Detector Using the Mobile GPU. In Proc of ICASSP, pages 2674–
2678. IEEE, 2013.

[9] T. M. S. Muthukaruppan, M. Pricopi, V. Venkataramani and S. Vishin.
Hierarchical Power Management for Asymmetric Multi-Core in Dark
Silicon Era. In Proc of DAC, pages 1–9. ACM, 2013.

[10] K. R. Stokke, H. K. Stensland, C. Griwodz, and P. Halvorsen. Energy
Efficient Continuous Multimedia Processing Using the Tegra K1 Mobile
SoC. In Proc of MoViD, pages 15–16. ACM, 2015.

[11] G. Vass and T. Perlaki. Applying and Removing Lens Distortion in
Post Production. In Proc of CGG, pages 9–16, 2009.

[12] T. Vogelsang. Understanding the Energy Consumption of Dynamic
Random Access Memories. In Proc of MICRO, pages 363–374. ACM,
2010.

[13] Y. C. Wang and K. T. Cheng. Energy and Performance Characterization
of Mobile Heterogeneous Computing. In Proc of SiPS, pages 312–317.
IEEE, 2012.

150

Paper IV: A High-Precision, Hybrid
GPU, CPU and RAM Power Model
for Generic Multimedia Workloads

Title: A High-Precision, Hybrid GPU, CPU and RAM Power Model for Generic Multi-
media Workloads [64].

Authors: K. R. Stokke, H. K. Stensland, C. Griwodz and P. Halvorsen.

Abstract: Energy efficiency of multimedia processing is a hot topic in modern, mobile
computing where the lifetime of battery-powered devices is low. Authors often use
power models as tools to evaluate the energy-efficiency of multimedia workloads and
processing schemes. A challenge with these models is that they are built without
sufficiently deep hardware knowledge and as a result they have the potential to
mispredict substantially depending on hardware configuration. Typical rate-based
power models can for example mispredict up to 70 % on the Tegra K1 SoC. Inspired
by multimedia workloads, we introduce a modelling methodology which can be used
to build a generic, high-precision power model for the Tegra K1’s GPU and memory.
By considering hardware utilisation, rail voltages, leakage currents and clocks, the
model achieves an average accuracy above 99 % over all operating frequencies, and
has been rigorously tested on several multimedia workloads. Our method exposes
detailed insight into hardware and how it consumes energy. This knowledge is not
only useful for researchers to understand how power models should be built, but also
helps to understand what developers can do to minimise power usage. For example,
experiments show that for a DCT benchmark, 3 % power can be saved by utilising
non-coherent caches and smaller datatypes.

Lesson’s learned: In this paper, we investigated the accuracy of state-of-the-art power
modelling methodologies for the Tegra K1’s GPU and LP CPU core. Learning that
rate- and CMOS-based power modelling methodologies can mispredict power usage
substantially depending on operating frequencies, we motivated and developed our
high-precision power modelling methodology. We demonstrated that the accuracy of
our method is close to 100 % over all GPU and memory operating frequencies. In the
course of this work, we learned that model training benchmarks that are designed
specifically to stress various architectural units on the Tegra K1, are needed to build
an accurate model. Furthermore, as the focus of this work was on modelling the

151

152
. Paper IV: A High-Precision, Hybrid GPU, CPU and RAM Power Model for Generic

Multimedia Workloads

Tegra K1’s GPU rather than the LP CPU core, we found that a more accurate CPU
power model was needed to further increase the accuracy of our method.

Author’s contribution: Stokke designed and implemented the power measurement setup,
model training benchmarks, the modelling method and the video filter operations
that were used to verify the approach. He also deisgned the experiments and is the
main author of this paper.

Published: Proceedings of the 7th Conference of Multimedia Systems (MMSys), Kla-
genfurt (Austria). ACM, 2016.

A High-Precision, Hybrid GPU, CPU and RAM Power Model
for Generic Multimedia Workloads

Kristoffer Robin Stokke, Håkon Kvale Stensland, Carsten Griwodz, Pål Halvorsen
Simula Research Laboratory & University of Oslo, Norway

{krisrst, haakonks, griff, paalh}@ifi.uio.no

ABSTRACT
Energy efficiency of multimedia processing is a hot topic in
modern, mobile computing where the lifetime of battery-
powered devices is low. Authors often use power models as
tools to evaluate the energy-efficiency of multimedia work-
loads and processing schemes. A challenge with these mod-
els is that they are built without sufficiently deep hardware
knowledge and as a result they have the potential to mis-
predict substantially depending on hardware configuration.
Typical rate-based power models can for example mispredict
up to 70 % on the Tegra K1 SoC. Inspired by multimedia
workloads, we introduce a modelling methodology which can
be used to build a generic, high-precision power model for
the Tegra K1’s GPU and memory. By considering hardware
utilisation, rail voltages, leakage currents and clocks, the
model achieves an average accuracy above 99 % over all op-
erating frequencies, and has been rigorously tested on several
multimedia workloads. Our method exposes detailed insight
into hardware and how it consumes energy. This knowledge
is not only useful for researchers to understand how power
models should be built, but also helps to understand what
developers can do to minimise power usage. For example,
experiments show that for a DCT benchmark, 3 % power
can be saved by utilising non-coherent caches and smaller
datatypes.

CCS Concepts
•Computer systems organization → Heterogeneous
(hybrid) systems; •Human-centered computing →
Mobile devices; •Applied computing → Electronics;

Keywords
Multimedia, Tegra K1, CUDA, energy, performance, CPU-
GPU frequency scaling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MMSys’16, May 10 - 13, 2016, Klagenfurt, Austria
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4297-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2910017.2910591

1. INTRODUCTION
Energy consumption is an important topic in mobile com-

puting. Today’s battery-powered mobile devices such as
smart phones, tablets, laptops or even drones have limited
uptime due to a combination of small battery capacity and
power-intensive hardware. As such, research in multimedia
systems have in the past decade focused on trying to un-
derstand the power requirements of hardware to aid energy
optimisation efforts. For example, Hosseini et al. [6] attempt
to save energy in a game streaming scenario by selectively
downloading and processing more important textures over
less important ones, and Sharrab et al. [16] propose a power
model for MPEG-4, MJPEG and H.264 and shows the effect
in terms of power usage under various H.264 compression
parameters.

Unfortunately, researchers’ view of how modern mobile
devices consume energy is limited. To evaluate energy us-
age of for example multimedia systems, they use power mod-
els which are too simple to justify the complex mechanisms
that govern the power usage of hardware. Hosseini et al. [6]
employ a smart phone power estimation tool called Power-
Tutor [21] to estimate the power of an HTC 3D evo phone
under their game streaming scenario. However, inspecting
the source code from PowerTutor we can see that the esti-
mates are actually based on a power model from the HTC
Dream. This leads to inaccurate estimates that give a false
impression of how hardware consumes energy.

Powertutor [21] and other authors [6, 4, 20] implement
rate-based power models, where for example power of a pro-
cessor is assumed to grow linearly with the processor’s utili-
sation level. Figure 1 shows prediction error for three types
of power models running a motion estimation workload on
the Tegra K1’s GPU, where 1a is the commonly-used rate-
based model. While the accuracy of this model type can
be close to 100 %, the misprediction can also be substantial
up to 70 % depending on the GPU and memory operat-
ing frequency. Thus the accuracy of such models is entirely
dependent on the operating frequencies selected by the Dy-
namic Voltage and Frequency Scaling (DVFS) algorithms
running on the platform at the time of the verification. The
inaccuracy of rate-based models is not only limited to fre-
quency settings. They also ignore many other mechanisms
that have non-negligible effects on power usage such as core
and rail power gating, frequency scaling and variations in
rail voltage levels [15], variable cost of executing different in-
structions (see Figure 12), different software workloads and
contention of hardware resources such as caches [1].

Some authors, such as Sharrab et al. [16] attempt to model

153

more accurately the effects of power saving mechanisms such
as frequency scaling. Their processor power model is based
on the work by He et al. [22] and suggests that processor
power is proportional to the cube of the number of cycles
required to finish processing. However, this assumes that
performance is inversely proportional to processor frequency.
This has been shown to be an incorrect assumption for the
Tegra K1, where performance scales sublinearly with fre-
quency due to contention for resources [15]. The model will
therefore mispredict on our platform.

In this paper, we propose a methodology to build high-
precision, generic power models for the Tegra K1 SoC with
special focus on its CUDA-capable GPU and main mem-
ory. We use several multimedia workloads intended for post-
processing a live, raw video feed as a case study and demon-
strate an average accuracy above 99 %. The model has been
more rigorously tested than related work by running all ex-
perimental benchmarks over all possible GPU and memory
frequencies. The accuracy is never below 96 %. Our method
is based on estimating swithing capacitance of captureable
hardware events, such as integer, floating point and con-
version instructions, clock cycles and leakage currents by
running a set of synthetic workloads stressing the various
hardware components 1. It also takes into account mea-
sured voltage levels on the rails supplying the SoC. Com-
pared to related modelling efforts, the increased accuracy
of our model does not compromise performance in power
estimation. Our contributions are as follows:

• An accurate power model which gives good insight into
power usage of a modern platform and can be used
for evaluating energy efficiency of generic multimedia
workloads.

• Our methodology shows other authors in the field how
accurate power models should be built and validated
for modern SoCs.

• By estimating the switching capacitance of various hard-
ware events, our model shows how developers can be
more energy-efficient by utilising local cache better or
using smaller datatypes.

• We demonstrate a 3 % power saving for the DCT mul-
timedia workload without compromising performance.

Our outline is as follows. Section 2 gives a short introduc-
tion to two common types of power models, and as a mo-
tivation compares the estimation accuracy of these and our
model. Section 3 introduces our GPU multimedia workloads
used to verify our model. In Section 4 and 5 we introduce the
GPU, memory and CPU model predictor, and we derive the
power model and the methodology to build it. The model
is verified and discussed in Section 6, where we also discuss
some preliminary energy-optimisation approaches. Finally,
we conclude our work in Section 7.

2. BACKGROUND AND RELATED WORK
There is a plethora of work that attempts to model the

power usage of various types of computing devices, such as
smart phones, embedded development systems, laptops and

1Source code and trace files are available at http://folk.uio.
no/krisrst/mmsys16/

stationary computers. These generally describe power or en-
ergy as linear systems where the cost of executing various
types of instructions, accessing different cache hierarchies,
disks or network interfaces is found using different method-
ologies. While some authors have used neural networks to
estimate these costs [7, 10] the vast majority use multivari-
able, linear regression. The typical way of describing for
example the power usage of GPUs [5, 9, 18] and CPUs [14,
19] is of the form:

Ptot = β0 +

Nρ∑

i=1

ρiβi (1)

In Equation 1, β0 is the power of idle components with
constant power draw, ρi is a predictor with units of accesses
per second, βi is the cost in Watt-seconds per access and Nρ
is the number of predictors. Note that some works [5, 9] have
slightly different interpretations of Equation 1. For example,
βi can be replaced with the maximum power of a hardware
component Pi,max, and ρi can be replaced with the utilisa-
tion of that component (ρi ∈ [0, 1]). The general form of
the expression remains the same and viable to solution with
regression. During the past five years several researchers
have extended these modelling efforts out of the laboratory,
where such models are built on-line on smart phones using
various types of power measurement sensors [4, 20, 21].

A liability with modelling power using Equation 1 is that
it does not consider the physical rules that govern energy
consumption. Modern SoCs such as the Tegra K1 (see Fig-
ure 6) are complex platforms featuring several rails powering
the various components within the SoC. Figure 6 shows four
of these: the GPU, memory and CPU cluster rails. Kim et
al. [8] describes the rate of energy consumption for logic
CMOS circuits as the sum of dynamic and static power.
These equations can be readily applied to individual power
rails [3, 15]. Static power is the product of the circuit’s
leakage current IR,leak and rail voltage VR:

PR,stat = IR,leakVR (2)

Dynamic power is caused by switching activity and is gov-
erned by both hardware and software. For example, as a
processor executes instructions, loads data from cache, or
the memory chip spends cycles serving memory read and
write requests, dynamic power is being used:

PR,dyn = αRCRV
2
RfR (3)

In Equation 3, CR is a potential maximum switching ca-
pacitance per cycle (with a unit of coloumbs per volt per
cycle) and αR ∈ [0, 1] is a workload-specific factor which
decides how much switching capacitance CR is being con-
sumed per cycle. fR is the operating frequency in cycles per
second.

The take-away point from Equations 2 and 3 is that the
cost of executing instructions (dynamic power) and using
hardware (static power) varies with voltage. The voltage
on a rail VR further depends on the operating frequency
on that rail fR [8], and is regulated by DVFS algorithms
(see Figure 2). When building rate-based power and energy
models using Equation 1, it is therefore reasonable to expect
that, depending on the frequency operating point where the
model was built, the estimated costs βi will vary.

We now conduct an experiment to find out how inaccu-
rate power estimations βi can be if rail voltage is not taken

154

(a) Rate-based model. (b) Modelling switching capacitance αC. (c) Our hybrid model.

Figure 1: Prediction error for a motion estimation kernel.

Figure 2: GPU voltage versus frequency.

into account. The details around this experiment is simi-
lar to the method presented in Section 5.2. We use Equa-
tion 1 and multivariable, linear regression to build a simple
power model based on our synthetic benchmarks listed in
Table 2 and our predictors in Table 1 (excluding memory,
clock and leakage predictors which are not typically used
but rather a part of our contributions). We verify the model
with a motion estimation filter for videos running on the
GPU (see Section 3.2). The result can be seen in Figure 1a,
where model accuracy is plotted versus memory and GPU
frequencies. As expected, we see that accuracy is very vari-
adic depending on operating frequency because Equation 1
does not consider rail voltages. The resulting planes show a
gradual increase in accuracy which for some frequency com-
binations is very close to 100 % (green and blue area). Our
hypothesis is that some of these areas show better accuracy
because they reflect better the frequency levels that were set
in the model training phase by the memory and GPU DVFS
algorithms. At high frequency levels the model underesti-
mates up to 60 %. In the opposite case (low frequencies),
the model overestimates by up to about 60 %. This is a
direct effect of the fact that rail voltage is not considered.

There are few works which attempt to incorporate rail
voltages into power models. Hong and Kim [5] model static
power considering both rail voltage and temperature, but
have a rate-based dynamic power model. Castagnetti et
al. [3] model the power of an Intel XScale CPU. Pathania
et al. [13] model power of a 4+4 ARM CPU in big. Lit-
tle configuration as well as a PowerVR GPU for gaming
workloads. Both take into account rail voltages as shown
in Equations 2 and 3. However, they are based on find-
ing the dynamic power coefficient αRCR either directly or
through the processor hardware utilisation level, similarly

Figure 3: Video stream rotation.

to the work by Stokke et al. [15]. The error of such a model
built for the Tegra K1 can be seen in Figure 1b. While the
error rate of such a model is better than a pure rate-based
one it can still be very high up to 50 %. The methodology
also has two disadvantages. First, αRCR changes depending
on the workload characteristics and must be subsequently
re-estimated for any workload combination. Secondly, in-
creasing frequencies in various domains (GPU or CPU) in-
evitably increases hardware utilisation αR in other parts of
the platform. In this aspect, we provide an entirely generic
model which takes as inputs the various utilisation levels
of different components in the Tegra K1 SoC as well as rail
voltages, and achieve a much better accuracy close to 100 %,
as shown in Figure 9c.

3. WORKLOADS
Our workload represents video processing operations in-

tended for post-processing raw video streams stored in the
YUV format. These have been implemented in CUDA for
the Tegra K1 GPU. In our benchmarks, these workloads
process 80 full-HD video frames.

3.1 Image Rotation
In the image rotation tests, each frame of a video stream

is being rotated by a continuously increasing angle θ (see
Figure 3). The algorithm treats each frame as a cartesian
coordinate space centered in the middle of the frame. Ref-
erence pixel positions (u, v) are calculated by multiplying
each original pixel coordinate (x, y) by the rotation matrix
as follows:

[
u
v

]
=

[
cos− θ −sin− θ
sin− θ cos− θ

] [
x
y

]
(4)

Subsequently, each reference pixel at position (u, v) is put
at its corresponding frame location (x, y).

3.2 Motion Vector Search
In the second test, we apply motion vector search (MVS)

on the raw video stream. MVS is a common technique in

155

Figure 4: An illustration of the operation of the diamond
search algorithm.

video encoding to reduce the amount of information that
has to be stored with each frame. In our case, it works by
dividing each frame into a set of macroblocks of 8x8 pixels,
and then attempting to estimate each block’s displacement
(the vector) relative to the previous frame.

We have implemented the diamond search algorithm [23].
Diamond search estimates the displacement of each mac-
roblock by computing the sum of absolute difference (SAD)
of the current macroblock and the eight surrounding mac-
roblocks in the previous frame (as shown in Figure 4). At
every step, as long as the macroblock with the lowest SAD
is not in the center of the “search window”, the window will
be re-centered at the macroblock with the lowest SAD. Af-
ter three iterations, the pattern changes to a smaller dia-
mond with only four surrounding macroblocks, where the
one block with the lowest SAD is estimated to be correct.

3.3 Compression
The third and final test is MJPEG video compression. In

this test, the video is compressed by removing high-frequency
components from each frame. The image compression algo-
rithm transforms each macroblock of 8x8 pixels into the fre-
quency domain using the discrete cosine transform (DCT):

Mu,v = γ(u)γ(v)

7∑

x=0

7∑

y=0

mx,ycos[
π

8
(x +

1

2
)u]cos[

π

8
(y +

1

2
)v] (5)

In Equation 5, u, v ∈ [0, 7] are the DCT output coordinates,
Mu,v are the frequency components, mx,y are the original
pixel values in the macroblock, and γ(w) is a normalising
function.

3.4 Debarreling
Barrel distortion is an effect that occurs with different

lenses [17]. Our“debarreling”workload computes a constant
debarreling map for one type of lens. This map only needs
to be calculated once and is subsequently applied to each
frame. The debarreling filter is the least compute-intensive
filter we consider.

4. ENERGY CONSUMING ENTITIES ON
THE TEGRA K1 SOC

To build a power model for the Tegra K1, it is important
to have solid understanding of the relevant parts of the ar-
chitecture (see Figure 6) which consumes energy under our
workloads. In this section, we describe these components,
the Hardware Performance Counters (HPCs) they expose to
our power model as predictors, and why we use them (see
Table 1 for an overview of the predictors).

(a) GPU is off (b) GPU is on and idle

Figure 5: Power usage depending on whether the GPU is off
or not.

4.1 Memory
The Jetson-TK1 is equipped with off-chip DDR3 Random

Access Memory (RAM) and two Embedded Memory Con-
trollers (EMC) [11]. The EMCs arbitrate memory accesses
from the CPU complexes (EMCcpu, 32-bit accesses) as well
as the GPU (EMCgpu, 64 bit accesses). The Tegra K1 is
thus capable of executing both CPU and GPU memory-
intensive programs at the same time. Carroll and Heiser [2]
show in their analysis of the OpenMoko Freerunner smart-
phone that RAM can account for a substantial amount of
total power depending on the type of workload, even with-
out an active GPU. Despite this, RAM power is usually not
directly accounted for in literature.

4.1.1 Dynamic Power for RAM
The possibility to monitor memory activity is not trivial.

Not accounting for two CPU HPCs that can count L2 cache
misses and writebacks there are few predictors which can
be used to trace memory utilisation. The CPU HPC im-
plementation only allows for collection of a maximum of six
counters simultaneously, so these should be avoided. The
GPU is also equipped with set of HPCs which can be read
during program execution, but these do not provide access
to the total number of bytes read or written to memory by
the GPU.

The Tegra K1 instead implements a hardware activity
monitor (ACTMON) which is intended to guide the memory
DVFS algorithm [11]. The ACTMON is capable of counting
the following:

• The total number of memory cycles spent serving CPU
memory requests.

• The total number of memory cycles spent serving any
memory requests (including GPU and other sources).

We wrote a modified kernel driver for the ACTMON, en-
abling us to count these variables in any time interval above
one ms. While this solution is not able to distinguish be-
tween memory reads and writes, it has several advantages.
For example, it provides a fine-grained measure of hardware
activity created by the GPU and the CPU. The method
is also able to count all accesses to memory, for example
caused by GPU driver overhead and memory accesses from
other sources, and avoid occupying HPC space.

4.1.2 Clock Power
The memory bank is continuously spending energy to main-

tain its consistency. In Figure 5a), the total power of the

156

Jetson-TK1 is plotted versus memory and GPU frequency.
In this example, the GPU rail is off. Therefore, there is
no change in power as GPU frequency increases. However,
the total power usage increases linearly with memory fre-
quency. We assume that this is due to increased self-refresh
frequency. The power model must take this factor into ac-
count.

At memory frequencies 204 and 300 MHz, we see that
there is an inconsistency in our assumption. Despite the
linear trend at other frequencies, power drops slightly at
204 MHz and increases at 300 MHz. We do not know the
reason for this, but some PLL clocks are activated in the core
domain at these frequencies. We take the drop and increase
of power usage (relative to the “linear” increase in power
at the other frequencies) into consideration in our model as
simple offsets.

4.2 GPU
The Kepler-based GK20A GPU on the Tegra K1 is a more

parallel architecture than the CPU, capable of running 128
threads in parallel. The GK20A contains a single SMX. An
SMX implements four warp schedulers, each of which is ca-
pable of concurrently running groups of 32 threads called
warps. Two independent instructions per warp can be exe-
cuted at the same time [12]. The threads utilise 192 CUDA
cores which provide arithmetic and floating point function-
ality and various other units such as code, data and texture
caches (see Figure 6). The Special Function Units (SFUs)
implement special functions such as sin and cosine. They
are out of scope for this paper.

Due to the high number of concurrently active threads,
memory pressure (and power usage) is substantial. The
SMX features a complex memory hierarchy to improve mem-
ory access latency and bandwidth. Read accesses from mem-
ory are performed through the Tegra K1’s 64 bit EMC2 in-
terface. Accesses are cached in a L2 cache with size 128 kB,
which is global to all threads running on the SMX. Memory
read accesses can also be stored in a warp-local 64 kB L1
cache, either implicitly on RAM loads or directly through
the use of shared memory (in which case it can also be writ-
ten).

When considering the power usage of the Tegra K1’s GPU
it is important to have the best control over hardware util-
isation of the different parts of the Kepler architecture. In
this section, we outline the HPCs used to collect this infor-
mation using NVIDIA’s profiling tool, nvprof.

4.2.1 Memory Hierarchy
Any memory access can result in hardware utilisation on

three different components of the Tegra K1. In the worst
case, the memory is fetched or stored off-chip in RAM. Data
can also be cached in L2 and L1.

An easy misconception is that the global memory (RAM)
throughput HPCs, gst_throughput and gld_throughput re-
flect actual amount of data stored and loaded from RAM.
However, we found in our experiments that these counters
do not separate between actual RAM accesses and L2/L1
cached accesses. Instead, we use the ACTMON activity
monitor to track the GPU’s utilisation of RAM.

The l2_subp0_total_read_sector_queries HPC counts
the number of 32 B read accesses to the L2 cache. In our
attempts to train the model, we also used the l2_subp0_to-

tal_write_sector_queries, but we were unable to estimate

a meaningful coefficient to it. We suspect this is because L2
writes are directly written to RAM, and that the power us-
age related to such events is instead captured by our RAM
activity counter.

The L1 cache utilisation is more difficult to trace accu-
rately because there is no single counter (as for the L2 cache)
which enables us to trace the raw number of read and write
transactions. L1 is used for caching thread-local memory
accesses, global memory accesses, and finally, it can be con-
figured for shared memory access between threads. To accu-
rately trace L1 cache utilisation, we need to trace all these
types of accesses.

Thread-local data consists of for example function param-
eters. This memory is allocated in RAM and automatically
cached in L1. Accesses to local memory via the L1 cache is
traced by the l1_local_{store/load}_hit HPCs, which in-
crement by one for each 128-bit transaction. Memory reads
from RAM may also be stored in L1, and are traced with
the l1_global_load_hit HPC. Memory stores to RAM are
not cached in L1 because L1 caches are not coherent, but
are instead directly written to L2 cache or RAM.

L1 utilisation that occurs as a result of shared memory
usage is harder to trace. These transactions are counted by
the HPCs l1_shared_{load/store}_transactions. How-
ever, shared memory accesses are often broadcasted to all or
several of the threads running in a warp, because all threads
access the same memory location. In this case, the num-
ber of transactions is still counted for each thread-initiated
share memory load or store. Therefore, the number of trans-
actions reported by these HPCs is much higher than what
is actually read or written in hardware. To estimate the
actual utilisation, we found that it is possible to use the
shared_efficiency HPC. This counter gives the ratio of re-
quested (actual) shared memory throughput to the required
(thread-initiated total) throughput. The actual L1 shared
access utilisation can be estimated as follows:

L1shr act {l/s} = L1 shr {l/s} × shared efficiency (6)

Note that the estimate can be inaccurate because shared_-
efficiency does not separate between reads and writes.

4.2.2 Functional Units
Running GPU threads utilise various hardware units to

perform additions, control operations, register loads and
stores etc. NVIDIA provides fine-grained accounting over
which types of instructions have been executed over time,
which are specified in several groups. The grouping allows
for more accurate tracking of hardware utilisation. For ex-
ample, it is to be expected that floating point operations
cost more power compared to pure integer operations. The
groupings of HPCs are as follows:

• inst_fp_32 / inst_fp_64 counts floating point oper-
ations on different datatypes (32-bit or 64-bit opera-
tions).

• inst_integer counts integer operations.

• inst_bit_convert counts bit conversion instructions.

• inst_control counts control flow instructions, such as
branching and jumps.

• inst_misc counts miscellaneous instructions, such as
register moves and NOP instructions.

157

Core Core

Core Core

Core Core

Core Core

DP Unit

DP Unit

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

Te
xt

ur
e

DP Unit

DP Unit

Core Core

Core Core

Core Core

Core Core

Te
xt

ur
e

Core Core

Core Core

Core Core

Core Core

Te
xt

ur
e

Core Core

Core Core

Core Core

Core Core

Te
xt

ur
e

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

DP Unit

DP Unit

Te
xt

ur
e

Core Core

Core Core

Core Core

Core Core

Te
xt

ur
e

Core Core

Core Core

Core Core

Core Core

Te
xt

ur
e

Core Core

Core Core

Core Core

Core Core

Te
xt

ur
e

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

LD/ST SFU Core Core

DP Unit

DP Unit

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

12 KB
Tex Cache
Data Read

12 KB
Tex Cache

12 KB
Tex Cache

Lo
ad

 /
S

to
re

64
 K

B
 S

h
a

re
d

 M
em

o
ry

 /
L

1
C

ac
h

e

Instruction Buffer

Warp Scheduler

Register File
16.384 x 32-bit

Operand collectors

Dispatch Dispatch

Instruction Cache

Instruction Buffer

Warp Scheduler

Register File
16.384 x 32-bit

Operand collectors

Dispatch Dispatch

Instruction Buffer

Warp Scheduler

Register File
16.384 x 32-bit

Operand collectors

Dispatch Dispatch

Instruction Buffer

Warp Scheduler

Register File
16.384 x 32-bit

Operand collectors

Dispatch Dispatch

GPU - GK20A

12
8

K
B

 L
2

C
ac

he

LP Core

32 KB L1
Data

32 KB L1
Instruction

512 KB L2 Cache

2 MB L2 Cache

HP Cluster

CPU - ARM Cortex-A15 4-Plus-1

64 bit

32 bit

GPU Rail

1 GB
DDR3

32 bit 32 bit

1 GB
DDR3

Memory Controller (MC)

Arbiter Protocol

External Memory Controller

Integer NEON
VFP

MC Clock

462 MHz

6 MHz
emc / 2 Voltage

1.35 V

EMC Clock

0.90 V

1.05 V 924 MHz

12 MHz

emc Memory
Rail

Core
Rail

1.35 V

Core Rail

0.90 V

1.05 V1092 MHz

51 MHz
cpu_lp Voltage

0.79 V

1.05 V852 MHz

72 MHz
gpu Voltage

Figure 6: Overview of the Tegra K1 and the Kepler SMX architecture.

4.2.3 Clock Power
In addition to dynamic power caused by application util-

isation in the GK20A’s memory hierarchies and functional
units, there is some power usage which is related to the
GPU’s own clock (clock power). This is visible when the
GPU is on (GPU rail is powered), but idle. Consider for
example Figure 5b. Here, we have set the GPU’s inactiv-
ity timer (the time before the GPU rail is powered off after
for example a kernel launch) to a few seconds, and logged
the average power usage of the Jetson-TK1 in this period
over all GPU and memory frequencies. Comparing with Fig-
ure 5a, where the GPU is off, we can clearly see that there is
non-negligible additional switching activity when the GPU
is powered and idle. Furthermore, we can see that the ad-
ditional overhead scales linearly with frequency until GPU
rail voltage starts to increase (at 400 MHz, see Figure 2).
From these point, power scales linearly with fgpuV

2
gpu. This

confirms that the additional overhead is an effect of dynamic
power on the GPU rail.

4.2.4 Static Power
Static power usage is caused by leakage currents in the

GPU’s circuitry (for example transistors). For the GK20A,
we have found that the estimated leakage current on the
GPU rail has higher standard deviation than the other pre-
dictors. This is likely due to power gating inside the cir-
cuitry.

4.3 LP CPU Core
The Tegra K1’s CPU is not the main target of this study,

but its power usage is non-negligible for several reasons. It
is for example running the operating system and all its sys-
tem services and drivers, as well as launching CUDA ker-
nels through our benchmark programs. It also utilises RAM
through its own EMC, in particular to fetch and store pro-
cessed frames. For these reasons, one cannot assume that
the power usage caused by CPU activity is negligible.

While the Tegra K1 has a complex, dual-cluster CPU with
a High-Performance (HP) quad-core cluster in addition to
the LP companion core, we restrict processing to the LP
core because the main target of this study is the GPU. Ide-
ally, it should only be necessary to model dynamic power of
the LP core by disabling the HP cluster and fixing proces-
sor frequency to 1092 MHz. This causes static power to be
estimated as part of the base power, because the core rail
voltage (and static power contribution) will not vary. How-
ever, in our experiments, we observed that the estimated
dynamic CPU power coefficients give more precise values if
the static power usage is also modelled.

The Tegra K1’s CPU has an HPC implementation which
can be queried with the perf Linux framework. Compared
to the GPU HPC implementation, the CPU has less fine-
grained instruction counting, with only one global (total)
instruction counter. It does, however, have better account-
ing for L1 and L2 cache accesses, which are able to separate
between hits and misses for both data and instruction cache
reads and writes. Only seven counters can be monitored
simultaneously, and one of these is always occupied by the
active cycle counter. Because we do not expect the dynamic
CPU power to be substantial, we ignore the CPU cache hier-
archy and variation in costs of different types of instructions.
We define a new metric, ρcpu,ipc, which is defined as the ra-
tio between the instruction count over the active cycle count
which accounts for CPU dynamic power caused indirectly by
software execution:

ρcpu,ipc =
Ncpu,inst
Ncpu,cycles

(7)

Intuitively, ρcpu,ipc will decrease estimated CPU dynamic
power when the CPU is stalling more. We let this counter
represent the software workload.

GPU and RAM have a clock-dependent dynamic power
cost which is basically an estimated cost per clock cycle.
This is also the case for the CPU, but the number of cy-

158

cles per second is not the raw frequency point for the CPU
(1092 MHz), as for RAM and the GPU. This is evident be-
cause attempting to use the raw frequency point to estimate
the dynamic clock power completely breaks the regression
results, severely reducing the accuracy of the model and
causing several negative coefficient estimates. We believe
that the CPU is power gating the clock aggressively when
it is idle, and therefore, the actual cycles per second is the
active cycle counter itself.

5. A HIGH-PRECISION POWER MODEL
In this section, we derive the power model used to esti-

mate power usage of our GPU multimedia workloads. The
main idea behind our methodology is that dynamic power is
modelled in terms of measurable hardware activity, and that
we compensate for variations in rail voltages. We describe
in detail the methodology used to build the model, where we
have implemented specialised benchmarks to stress the rele-
vant parts of the Tegra K1 in such a way that the regression
results become accurate.

5.1 Derivation
The total power usage of the Jetson-TK1 is the sum of

power usage on each rail PR and base power Pbase. The
Tegra K1 has 21 power rails, but only three are being used
in our scenario: the core, memory and GPU rails (see Fig-
ure 6). All other rails are assumed to be idle with constant
power usage as a part of Pbase. The total power usage be-
comes:

Ptotal = Pcore + Pmem + Pgpu + Pbase (8)

The total power usage on a rail is the sum of static and
dynamic power (see Equation 2 and 3). However, the dy-
namic power equation only gives a crude average of the
switching activity (instructions executed, memory requests,
caching operations etc). As mentioned in Section 2, the
dynamic power coefficient αRCR can be estimated using re-
gression [15], but the process is prone to error because αR
is not always constant over all frequency combinations. For
example, when increasing memory frequency, switching ac-
tivity (αR) in other architectural units such as the CPU
or GPU can also increase, leading to misprediction. The
core improvement of our model is that we express dynamic
power in terms of measurable hardware activity while also
accounting for changes in rail voltage. By doing this, our
hypothesis is that power usage can be more accurately esti-
mated for any workload on any operating frequency point.
We model dynamic power on a rail R as:

PR,dyn =

NR∑

i=1

CR,iρR,iV
2
R (9)

In the equation above, for rail R, ρR,i is a hardware activ-
ity predictor in occurrences per second, NR is the number of
predictors, and CR,i is the switching capacitance (coloumbs
per volt) per occurence of event ρR,i. The total power usage
of the Jetson-TK1 becomes the sum of power usage on each
of the three active rails R ∈ R and base power Pbase:

Pjetson =

R∈R∑
(PR,dyn + PR,stat) + Pbase (10)

Note that static power of the memory rail is not possible
to model because the voltage on that rail does not vary, as
per our discussion in the next section.

5.2 Methodology
By extension of Equation 10, the unknown variables are

the switching capacitances CR,i, leakage currents IR,leak and
base power Pbase. Our methodology to find these terms is
based on multivariable linear regression and is summarised
as follows. We create twelve spesialised benchmarks de-
signed to stress different hardware blocks of the Tegra K1
(see Table 2). Each of these are run over all possible combi-
nations of processor and memory frequencies (see Table 3)
for a total of 1830 samples. In each run, we log the predictors
ρR,i, voltages VR and operating frequencies. The predictors
must now be processed to account for the rail voltage:

• All dynamic power predictors ρR,i must be multiplied
by V 2

R (see Equation 9).

• The static power predictor is just the rail voltage VR
(see Equation 2).

The resulting “final” predictors are then passed to the re-
gression solver and produces the coefficients seen in Table 1.
Note that while related works often use multivariable regres-
sion with non-negative coefficients [19] we simply use normal
regression without ending up with negative coefficients2.

Running each benchmark over all possible frequency com-
binations has several advantages.

1. It creates natural variation between the model predic-
tors (access rates). When memory frequency is low
and GPU frequency is high, the memory access rate
is lower while the GPU hardware utilisation is higher,
and vice-versa. This is also helps test the full range of
model predictors (rates), which is extremely important
for regression to estimate accurately.

2. Rail voltages vary depending on operating frequency.
This also increases diversity in the training dataset’s
predictors.

3. Increasing frequency like this also helps estimate clock
power and leakage currents (which would be impossible
otherwise) because higher rail voltage is higher at high
GPU frequencies.

4. Increased dataset size.

Note that our method consists of a high number of runs
(1830) to complete the model training phase because each
of the benchmarks listen in Table 2 is run over all possible
GPU and memory frequency levels. The number of runs can
be reduced by including fewer frequency levels and should
not affect the accuracy of the model, but care must be taken
to force variation in rail voltages. For example, most of the
GPU frequencies below 400 MHz are not needed because rail
voltage does not vary (see Figure 2). We leave it to future
work to investigate the impact in terms of model accuracy
resulting from a reduced number of training frequencies.

In our initial attempts to train our model, we found that
trivially using example code (for example CUDA examples)

2The only exception is our memory offset ”tweak” at
204 Mhz, which is expected.

159

Rail Number Predictor Description Coefficient Value

GPU

0 Vgpu GPU voltage Igpu,leak 0.27A
1 ρgpu,clock Total clock cycles per second Cgpu,clock 2.10nCV
2 ρgpu,L2R L2 cache 32B reads per second Cgpu,L2R 10.79nCV
3 ρgpu,L1R L1 cache 4B reads per second Cgpu,L1R 8.90nCV
4 ρgpu,L1W L1 cache 4B writes per second Cgpu,L1W 8.43nCV
5 ρgpu,INT Integer instructions per second Cgpu,INT 41.11 pCV
6 ρgpu,F32 Float (32-bit) instructions per second Cgpu,F32 38.15 pCV
7 ρgpu,F64 Float (64-bit) instructions per second Cgpu,F64 115.33 pCV
8 ρgpu,CNV Conversion instructions per second Cgpu,CNV 72.42 pCV
9 ρgpu,MSC Miscellaneous instructions per second Cgpu,MSC 28.36 pCV

Memory
0 ρmem,clock Total clock cycles per second Cmem,clock 258.66 pCV
1 βmem,204 Power offset at 204 MHz Pmem,204 −0.03W
2 βmem,300 Power offset at 300 MHz Pmem,300 0.05W
3 ρmem,CPU CPU busy memory cycles per second Cmem,cpu 2.25nCV
4 ρmem,OTH Other (GPU) busy memory cycles per second Cmem,oth 2.17nCV

Core 0 Vcpu CPU voltage Icpu,leak 0.79A
1 ρcpu,cpi CPU instructions per cycle Ccpu,cpi 3.72mCV s
2 ρcpu,acl CPU active cycles per second Ccpu,acl 166.62 pCV

Other Pbase Base power - 0.78W

Table 1: Overview of energy model predictors and coefficients.

Benchmark Description
Components / instructions under explicit stress

CPU
RAM
(CPU)

GPU
RAM
(GPU)

L2 L1 INT F32 F64 Conv. Misc.

Idle CPU GPU off, CPU in idle state.

CPU-workload GPU off, CPU processing.

Idle GPU GPU on and idle, CPU in idle state.

L2 Read Stresses L2 cache reads only.

L1 Read Stresses L1 cache reads.

L1 Write Stresses L1 cache writes.

RAM Stresses RAM activity (GPU EMC).

Integer Stresses integer arithmetic unit.

Float32 Stresses floating point unit.

Float64 Stresses floating point unit.

Control Stresses conversion instructions.

Misc Stresses miscellaneous instructions.

Table 2: Overview of benchmarks and components under stress.

Clock Rail Description
Frequency

Voltage
Steps Range [MHz]

cpu lp Core LP core 9 [51, 1092] [0.80, 1.05]

emc Core Memory 10 [40, 924] [0.80, 1.01]

gpu GPU LP core 15 [72, 852] [0.79, 1.05]

Table 3: The Tegra K1 clocks, voltage and frequency ranges.

has two major drawbacks. First, the measured model pre-
dictors are not diverse enough for the regression to esti-
mate meaningful coefficients. For example, L1 and L2 read
throughput will remain virtually the same independently of
operating frequencies and benchmarks, as data passes both
stages anyway. Secondly, only using benchmarks which are
actively processing result in poor estimations. This is be-
cause some coefficients, such as leakage currents, clock and
base power are independent of the workload. Much better
estimations can be achieved by also profiling the power for
an idle system.

Ideally, each benchmark should stress just one architec-
tural unit of the system (memory writes, L2 reads, etc.).
This is hard, and in some cases impossible, to achieve in
practice. For example, attempting to only read 100 MB of
data from memory to L2 cache results in no data being read
at all, because the CUDA driver is very good at optimising

code and detects that the data is not actually used. This op-
timisation happens at a driver level and can not be disabled.
Furthermore, as mentioned above, at some points it is im-
possible to stress just one architectural unit. An example
is stressing the L1 cache. Stressing the L1 cache inevitably
results in stressing L2 cache and memory, because of cache
eviction policies and the internal workings of the GPU.

We have written twelve spesialised different benchmarks,
which can be seen in Table 2. Due to the limitations de-
scribed above, these are written in a ”pyramid”fashion where
we stress the (possible) small groups of hardware units first,
before adding units on top. For example, it is possible to
stress L2 cache reads only, without stressing memory or any
other hardware units, by reading the same data from mem-
ory over and over without L1 caching, and then conditionally
writing it back in an if-condition which never evaluates to
true. Then, the process can be done again, but this time
forcing the GPU to cache the global reads in L1 as well.
The regression will now have diversity in both predictors to
accurately estimate their coefficients.

The results of the regression can be seen in Table 1. Note
that there is no coefficient for L2 writes. The reason for
this is that the estimated coefficient is very small compared
to the others, and has very high standard deviation. We

160

believe this is because L2 writes are not actually cached
there, but immediately written back to memory. The power
usage related to this event is thus instead part of the active
memory cycles.

6. EXPERIMENTS AND DISCUSSION
In this section, we perform extensive verication of our

power model using generic multimedia workloads. We show
that our model is able to predict power with high accuracy,
discuss the model coefficients and finally look at possible
ways to save power by exploiting local caches and shorter
datatypes.

6.1 Setup
To verify our model, we have developed four different GPU

benchmarks for video processing (debarreling, DCT, motion
estimation and rotation). We let these process a full-HD
video stream for 80 frames, over all possible GPU and mem-
ory frequency combinations. Figure 7 shows a simplified flow
diagram for a single test run. Before power can be estimated,
the GPU HPCs must be collected. This is challenging for a
number of reasons:

• HPC collection for GPU kernels takes a substantial
amount of time, slowing down the kernels. We must
therefore log HPCs on a per-kernel basis to be re-used.

• HPC values vary not only based on the kernel exe-
cuted, but also on launch configuration and (possibly)
function parameters.

• Depending on the set of HPCs to collect, several runs
over one kernel is needed.

To solve these issues, we implement callback functions to
track kernel launches and kernel exits. On entry to these
functions, a hash is computed based on the kernel’s symbol
name and execution configuration. We ignore variance in
HPCs that result as changes in function parameters, which is
only relevant for the rotation workload. On kernel launches,
we initiate HPC collection as needed (in total three runs
per hashed kernel). On kernel exits, if HPC collection is
complete, we estimate power of the GPU, CPU and memory
using the counters. GPU execution time is measured by
reading the total elapsed GPU cycles for a hashed kernel
(the elapsed_cycles_sm HPC, ec) and dividing it with the
frequency of the GPU:

Tkern =
ec

fGPU
(11)

The experimental setup is based on a Keithley K2280S
power source and monitoring unit using an external machine
to avoid overhead on the Tegra K1 [15]. The power estima-
tion phase is low-overhead which involves straightforward
calculation of power using model coefficients and predictors
collected with PERF and CUPTI APIs and equations from
Section 5.

6.2 Accuracy
Figure 8 shows an example the measured and estimated

power components in a single DCT frame encoding interval.

Process Frame

Done collecting
 HPCs?

Start HPC collection

Kernel Launch

ASYNC CUPTI
 callback

Kernel Exit

Done collecting
 HPCs?

Estimate PowerLog HPCs.
No No

Yes

 Write
Frame

For each frame

 Read
Frame

Compute Hash

GPU Kernel

GPU Kernel

GPU Kernel

Sync Point

Figure 7: Per-Frame Benchmark flow.

6350 6400 6450 6500 6550
Time[ms]

0

1

2

3

4

5

6

7

8

Po
w

er
[W

]

Measured Power
Estimated Power
CPU Power
GPU Power
Memory Power
Base Power

One Frame

Kernel Launches

Kernel Launch
 Overhead

Figure 8: Power plot over time for the DCT kernel.

The peaks in the plot represent kernel launches. There are
six kernel launches per DCT frame because the Y frame is di-
vided into four subregions with the same size as a UV frame.
We see that the estimation is very accurate over time, close
to 100 %. This represents a substantial improvement from
state-of-the-art methods that do not consider rail voltages
(see Section 2). The total power estimate appears less pre-
cise between frames. This is because power estimation only
occurs after each kernel launch, and there is a non-negligible
kernel launch overhead before the first kernel launch at the
beginning of each frame. This overhead is represented as
an average since the exit of the last kernel of the previous
frame.

Figure 9 shows the model error in % for a total of 70
processed frames over all GPU and memory frequency com-
binations, for the debarreling, DCT and rotation workloads.
The estimation is very accurate. Not considering the motion
estimation filter, the accuracy of our model is over 99 % on
average and always above 96 %. This demonstrates that our
model, which is built using entirely synthetic benchmarks,
is able to consisely capture the power usage of kernels com-
prised of a more complex mix of instructions and branches.

We now study Figure 10a, which shows a closed-up plot
of prediction error for the motion estimation filter. We see
that, in general, estimation is good (between 99 to 100 %)
at low GPU frequencies. Moving towards the lowest mem-
ory and GPU frequency, estimation accuracy tends to de-
grade towards its lowest point. This is true for all the fil-
ters, but hard to see in Figure 9. Furthermore, we see that
at 756 MHz GPU frequency, estimation accuracy shows a
significant drop across all benchmarks. It is here important

161

(a) Debarreling. (b) DCT. (c) Rotation.

Figure 9: Prediction error for test benchmarks over all GPU and memory frequency combinations.

(a) Close-up view. (b) No GPU execution.

Figure 10: Motion estimation error over all frequencies.

Figure 11: Power over time for a single motion estimation
Y-frame processing at 756 MHz (GPU) and 924 MHz (mem-
ory).

to note that there is a substantial amount of time where
the GPU is not actively processing, but the CPU is busy
reading the next frame or writing results in memory (see
Figure 8). When error starts increasing, we see that the
power estimation during this period tends to be larger than
when the GPU is active. Consider for example Figure 11,
where a single peak (Y-frame motion estimation kernel) is
shown. For this test, the error was 4 %. It is clear that the
estimation during the kernel launch is very accurate. How-
ever, in the period between frames, the estimation is worse.
This indicates that either the CPU or memory estimate is
inaccurate.

To test the accuracy of the CPU and memory model, we
run a differential test on the motion estimation benchmark.

No GPU kernels are executed, but frames are read and re-
sults written as normal. To avoid compiler optimisations,
we conditionally execute the motion estimation kernel in an
if-statement which never evaluates to true. The result can
be seen in Figure 10b. We see that the error over CPU-
only execution can vary about the same amount as when
the GPU kernels are also being run. We believe that a bet-
ter power model for the LP core is needed to further increase
the accuracy of the model.

The motion estimation filter has a lower accuracy than
the rest of the filters. On average, it is 97 %, and the esti-
mation accuracy decreases more with GPU frequency than
for the other filters (at the lowest 95 % accurate). The mo-
tion estimation kernels stresses shared memory more, and
each kernel runs for 5 to 26 times longer than for the other
filters. We found that the CUPTI counters for shared mem-
ory transactions do not appear to be reliable, which can
cause our model to mispredict more than the other filters.
For the U and V frames, CUPTI is for example not able
to count shared memory transactions at all. Only shared
memory transactions for the Y frames are actually counted.
Furthermore, the implementation used to run the motion
estimation kernels is slightly different than for the filters. It
is therefore also possible that the CPU model is causing the
misprediction.

6.3 Model Coefficients and Power Breakdown
Table 1 shows all estimated model coefficients. Looking at

the leakage currents and base power, we see that the CPU
(LP core) leakage is estimated to be 0.79 A, and the base
power 0.82 W. This is very similar to our previous work [15]
where a different methodology is used to find dynamic, static
and base power. GPU leakage is estimated to 0.27 A, which
is much smaller than the CPU. Possible reasons for this is
that the GPU is implemented using a smaller number of
and/or another type of transistors. Related work has shown
that the leakage of the HP cluster varies between 0.38 to
0.80 A [15] depending on the number of online HP cores.
Given a choice between running a workload on any of these
processors, the GPU therefore seems like a better choice,
given that its static power dissipation will be much lower.
However, dynamic power must also be taken into account to
find the most energy-efficient alternative.

Figure 12 shows most of the dynamic power coefficients
from Table 1 in coloumbs per volt. Ccpu,cpi is not shown
because it has units of coloumbs per volt per second. Con-
sidering clock power (C∗,clock), we can see that the memory

162

Figure 12: Model coefficients.

Source
Energy Cost

per Transaction per Byte
LV HV LV HV

Memory 3.96nWs 0.49nWs
L2 Read 6.73nWs 11.89nWs 0.42nWs 0.74nWs
L1 Read 5.55nWs 9.81nWs 1.38nWs 2.45nWs

Table 4: Energy cost for reading from various cache and
memory hierarchies (excluding static and clock energy).

and LP core clock coefficients are similar, i.e., the capaci-
tance load per active clock cycle are the same. For example,
at the highest operating frequencies (see Table 3), the LP
core and memory clock power is estimated to be 0.20 and
0.43 W, respectively. The GPU clock capacitance is an order
of magnitude higher than for the CPU and memory. At the
highest frequency, the GPU clock power is estimated to be
1.97 W. From Section 4.2.3, we argue that clock power is in-
dependent of the workload. As a processor, the GPU there-
fore incurs a substantial overhead in terms of clock power
compared to the LP core.

The capacitance load per active memory cycle, Cmem,∗,
is the same independently of the source. For example, if
the CPU initiates a single memory active cycle, it will cost
the same as one initiated by the GPU. Since the GPU EMC
has a higher bandwidth than the CPU EMC (64-bit vs. 32-
bit), it may be possible to save energy in this way. We
wrote some simple programs to read and write memory from
the GPU, and found that regardless of operation (read or
write) the CPU EMC is capable of delivering 4 B per active
memory cycle, and the GPU EMC is capable of delivering
8 B per active cycle. This means that reading and writing
through the GPU EMC is twice as energy-efficient than the
CPU EMC. Other factors must of course also be taken into
account, such as the processing done on the data and cache
hierarchies.

Studying the workload-relevant GPU coefficients in Fig-
ure 12, we see that the capacitance load per transaction on
the cache hierarchies (Cgpu,L∗) is larger than the cost for
active memory cycles (Cmem,GPU). However, the actual en-
ergy cost depends also on the GPUs rail voltage (see Equa-
tion 9), as well as the number of bytes read or written per
transaction (see Table 4). Interestingly, memory transac-
tions appear to be more energy-efficient than reading from
L1 and L2 GPU cache in most cases (except for the lowest
GPU operating voltage). However, leakage and clock power
also play important factors. If memory is only read through
memory, memory fetches will take longer time, and so the
contribution from leakage and clock power will be larger.

Figure 13: Difference in power usage when using different
floating-point datatypes and cache strategies for the DCT.

6.4 Energy-Efficient Programming
In Section 6.3, we have seen that the cost of various in-

structions differ. For example, the model coefficients hint
that loading memory through the L1 cache is cheaper than
loading it through the L2 cache. 32-bit floating point in-
structions are also estimated to have a smaller switching
capacitance (see Figure 12). We now attempt to energy-
optimise some of our workloads using this information as a
preliminary experiment.

We run the DCT benchmark at the highest GPU and
memory operating frequencies where we study the impact
in terms of performance and power when caching in L1 over
L2 and using 32- and 64-bit floating point datatypes (see
Figure 13). In these tests, we target a rate of five FPS. This
is not because five FPS is very good, but only to equalise
the contribution to power usage from the EMCs, CPU and
other components. The variation in power usage will reflect
only a change in the GPU power usage. At this framerate,
the processing finishes within a window of 200 ms, and sleeps
for the remaining time before starting processing of the next
frame.

Studying Figure 13, we see through our model that using
64-bit floating point operations consumes above three times
as much power as using 32-bit operations. Furthermore,
a substantial amount of power is saved in bit conversion
instructions. With L2 caching, changing the datatype to
32-bit saves 2.4 % power on average. Additionally caching
in L1, we see that we are able to save 3.2 %. Our model
indicates two main reasons behind this. Although the com-
bined L1 and L2 read energy remains approximately the
same, caching in L1 can reduce energy usage because it re-
duces GPU EMC hardware activity. We believe that this
is because the L2 cache is coherent, and maintaining this
coherency involves some activity in memory. Note that this
is a system-wide measure with much idling between frames,
and that the actual saving will vary depending on workload
and framerate.

7. CONCLUSION
Power models commonly used for evaluation of multime-

dia systems in literature are very basic and have the po-
tential for serious misprediction. This is because they do
not take into account the physical phenomena which gov-

163

ern energy usage on modern platforms. In this paper, we
have shown that the evaluation of such systems mandates
more hardware insight than what is typical. Our method to
model power usage achieves an average accuracy above 99 %
for several GPU multimedia workloads on the Tegra K1.
Our method achieves better accuracy than traditional power
models by estimating the power costs of hardware utilisation
on the Tegra K1’s GPU, memory and CPU (for example in-
structions per second or active memory cycles) as well as
clock and leakage power using measured rail voltages. The
estimates are based on entirely synthetic benchmarks de-
signed to stress specific hardware blocks. The model has also
been more rigorously tested than normal, over all possible
operating frequencies and with different, complex multime-
dia workloads that excersise more hardware components at
the same time. Our model shows not only that it is pos-
sible to estimate power of workloads in a generic way (for
any GPU multimedia workload) using available HPCs on
the Tegra K1, but also helps us to understand better how
software can optimise energy usage of multimedia workloads
from a hardware point of view. Preliminary experiments
show that 3 % power can be saved by using shorter datatypes
(for example 32-bit floating point over 64-bit) and by ex-
ploiting local, non-coherent caches which do not consume
power to maintain consistency with other memory hierar-
chies.

Acknowledgments
This work has been performed in the context of the BIA
project Unified PCIe IO (#235530), with contributions from
the FRINATEK project EONS (#231687) both funded by
the Research Council of Norway (RCN).

8. REFERENCES
[1] R. Basmadjian and H. de Meer. Evaluating and

Modeling Power Consumption of Multi-Core
Processors. In Proc of e-Energy, pages 1–10, 2012.

[2] A. Carroll and G. Heiser. An analysis of power
consumption in a smartphone. In USENIX Technical
Conference, volume 14, 2010.

[3] A. Castagnetti, C. Belleudy, S. Bilavarn, and
M. Auguin. Power Consumption Modeling for DVFS
Exploitation. In Proc of DSD, pages 579–586, 2010.

[4] M. Dong and L. Zhong. Self-Constructive High-Rate
System Energy Modeling for Battery-Powered Mobile
Systems. In Proc of MobiSys, pages 335–348, 2011.

[5] S. Hong and H. Kim. An Integrated GPU Power and
Performance Model. In Proc of ISCA, pages 280–289,
2010.

[6] M. Hosseini, J. Peters, and S. Shirmohammadi.
Energy-Budget-Compliant Adaptive 3D Texture
Streaming in Mobile Games. In Proc of MMSys, pages
1–11, 2013.

[7] Q. Jiao, M. Lu, H. P. Huynh, and T. Mitra. Improving
GPGPU Energy-Efficiency Through Concurrent
Kernel Execution and DVFS. In Proc of CGO, pages
1–11, 2015.

[8] N. S. Kim, T. Austin, D. Blaauw, T. Mudge,
K. Flautner, J. S. Hu, M. J. Irwin, M. Kandemir, and
V. Narayanan. Leakage Current: Moore’s Law Meets
Static Power. IEEE Computer, pages 68–75, 2003.

[9] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani,
N. S. Kim, T. M. Aamodt, and V. J. Reddi.
GPUWattch: Enabling energy optimizations in
GPGPUs. SIGARCH Computer Architecture News,
41(3):487–498, 2013.

[10] N. Limin, T. Xiaobin, and Y. Baoqun. Estimation of
System Power Consumption on Mobile Computing
Devices. In Proc of CIS, pages 1058–1061, 2007.

[11] NVIDIA. Tegra K1 Technical Reference Manual.
Technical report.

[12] Nvidia. Kepler GK110. NVIDIA’s Next Generation
CUDA Compute Architecture: Kepler GK110, 2012.

[13] A. Pathania, A. E. Irimiea, A. Prakash, and T. Mitra.
Power-Performance Modelling of Mobile Gaming
Workloads on Heterogeneous MPSoCs. In Proc of
DAC, 2015.

[14] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani,
T. Mitra, and S. Vishin. Power-Performance Modeling
on Asymmetric Multi-Cores. In Proc of CASES, 2013.

[15] K. R. Stokke, H. K. Stensland, P. Halvorsen, C.
Griwodz. Why Race-to-Finish is Energy-Inefficient for
Continuous Multimedia Workloads. In Proc of
MCSoC, pages 57–64, 2015.

[16] Y. O. Sharrab and N. J. Sarhan. Aggregate Power
Consumption Modeling of Live Video Streaming
Systems. In Proc of MMSys, pages 60–71, 2013.

[17] G. Vass and T. Perlaki. Applying and Removing Lens
Distortion in Post Production. In Proc. of Hungarian
Conference on Computer Graphics and Geometry,
pages 9–16, 2003.

[18] J. M. Vatjus-Anttila, T. Koskela, and S. Hickey. Power
Consumption Model of a Mobile GPU Based on
Rendering Complexity. In Proc of NGMAST, pages
210–215, 2013.

[19] Y. Xiao, R. Bhaumik, Z. Yang, M. Siekkinen,
P. Savolainen, and A. Yla-Jaaski. A System-Level
Model for Runtime Power Estimation on Mobile
Devices. In Proc of GreenCom & CPSCom, pages
27–34, 2010.

[20] F. Xu, Y. Liu, Q. Li, and Y. Zhang. V-edge: Fast
Self-Constructive Power Modeling of Smartphones
Based on Battery Voltage Dynamics. In Proc. of
USENIX NSDI, pages 43–55, 2013.

[21] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick,
Z. M. Mao, and L. Yang. Accurate Online Power
Estimation and Automatic Battery Behavior Based
Power Model Generation for Smartphones. In Proc of
CODES/ISSS, pages 105–114, 2010.

[22] Zhihai He, Yongfang Liang, Lulin Chen, I. Ahmad,
and Dapeng Wu. Power-Rate-Distortion Analysis for
Wireless Video Communication Under Energy
Constraints. IEEE Transactions on Circuits and
Systems for Video Technology, 15(5):645–658, 2005.

[23] S. Zhu and K.-K. Ma. A new diamond search
algorithm for fast block-matching motion estimation.
IEEE Transactions on Image Processing,
9(2):287–290, 2000.

164

Paper V: High-Precision Power
Modelling of the Tegra K1 Variable
SMP Processor Architecture

Title: High-Precision Power Modelling of the Tegra K1 big.Little Processor Architec-
ture [65].

Authors: K. R. Stokke, H. K. Stensland, P. Halvorsen and C. Griwodz.

Abstract: Energy efficiency is an important issue for many embedded systems, where
limited battery lifetime and power-hungry hardware constrain the usefulness of such
devices. Modern Systems-on-Chip (SoCs) such as the Tegra K1 employ advanced
power management capabilities such as two CPU clusters, clock-gating, power-
gating and dynamic frequency tuning to meet application demands. At design
or runtime phases, it is challenging for system architects and software developers
to understand the effects that these mechanisms have in terms of power and per-
formance in all parts of the system. This is because it is impossible to measure
directly the power usage of cores, caches, memory and other hardware components.
Rate-based power models are often proposed as a solution for this, unfortunately
these can mispredict substantially on the Tegra K1 up to 30 %. In this paper, we
propose a power modelling method for the Tegra K1 CPU which overcomes the
limitations of the most common types of models found in literature, but still only
requires power measurement of the board. Through extensive empirical validation,
we demonstrate an accuracy which is close to 100 %. Preliminary experiments show
that our methodology is able to capture instruction power of individual system pro-
cesses and applications and produce detailed power breakdowns of all components
in the system.

Lesson’s learned: In this paper, we complete the GPU model in Paper IV with an im-
proved CPU model. Both CPU clusters are included, and we additionally modelled
the CPU’s cache hierarchy. In terms of the modelling effort, a challenge with the
Tegra K1’s CPU clusters is that they do not support fine-grained accounting of the
type and number of instructions executed. However, through our experiments we
learned that the instruction power of our workloads can be modelled with only a
generic instruction counter. After the work in this paper, we learned several critical
insights that we have used in this thesis to improve the CPU model. First, in the

165

166
. Paper V: High-Precision Power Modelling of the Tegra K1 Variable SMP Processor

Architecture

purpose of modelling CPU cycle cost, we use a kernel tracing framework to track
clock-gating in the CPU cores. However, we learned that the CPU cores are addi-
tionally clock-gating the cores in hardware. Therefore, the number of active cycles
must be measured with a PERF HPC. Second, our model relies on PERF to mea-
sure hardware activity. However, we discovered that PERF sometimes multiplexes
event counting through the CPU’s available HPC slots, even if there are in princi-
ple enough HPC slots to track all the required HPCs. Therefore, we had to avoid
tracking our PERF HPCs on a per-process basis, and instead only measure the total
event counts over all processes on the CPU. Third, we learned that our hard-coded
voltage-frequency tables do not capture variations in the HP rail voltages accurately
enough. Therefore, the model accuracy could be improved by also associating the
HP rail voltage with the number of currently active CPU cores.

Author’s contributions: Stokke designed and implemented the model training bench-
marks for the CPU and the video filter operations that were used to verify the
approach. He also designed the experiments, and is the main author of this paper.

To appear in: Proceedings of the 10th International Symposium on Embedded Multi-
core/Many.core Systems-on-Chip (MCSoC), Lyon (France). IEEE, 2016.

High-Precision Power Modelling of the Tegra K1
Variable SMP Processor Architecture

Kristoffer Robin Stokke, Håkon Kvale Stensland, Pål Halvorsen, Carsten Griwodz
Simula Research Laboratory & University of Oslo
{krisrst, haakonks, paalh, griff}@ifi.uio.no

Abstract—Energy efficiency is an important issue for many
embedded systems, where limited battery lifetime and power-
hungry hardware constrain the usefulness of such devices.
Modern Systems-on-Chip (SoCs) such as the Tegra K1 employ
advanced power management capabilities such as two CPU clus-
ters, clock-gating, power-gating and dynamic frequency tuning
to meet application demands. At design or runtime phases, it
is challenging for system architects and software developers to
understand the effects that these mechanisms have in terms
of power and performance in all parts of the system. This is
because it is impossible to measure directly the power usage of
cores, caches, memory and other hardware components. Rate-
based power models are often proposed as a solution for this,
unfortunately these can mispredict substantially on the Tegra K1
up to 30 %. In this paper, we propose a power modelling method
for the Tegra K1 CPU which overcomes the limitations of the
most common types of models found in literature, but still only
requires power measurement of the board. Through extensive
empirical validation, we demonstrate an accuracy which is close
to 100 %. Preliminary experiments show that our methodology is
able to capture instruction power of individual system processes
and applications and produce detailed power breakdowns of all
components in the system.

I. INTRODUCTION

Power usage is a timely topic in multicore embedded
systems. Devices such as smart phones, drones and laptops
are limited by a combination of power-intensive hardware and
limited battery capacity. For such devices, it is important that
they stay alive for as long as possible while at the same time
providing acceptable quality of service. One example is video
processing. According to Cisco, by 2019, the sum of all forms
of video will be in the range of 80 to 90 percent of global
consumer traffic, and of this, 14 percent will be mobile data
traffic [4]. When recording live events such as sports using
your smart phone or even a drone, it is important that the
device can manage the limited energy resource.

It is well known that state-of-the-art power management
generally reacts too quickly to changes in hardware utilisation,
and consequently end up staying at unnecessarily high CPU
and RAM operating frequencies [13], [15], [17], [22]. For
system architects it is therefore important to fine-tune soft-
ware algorithms, gating techniques, platform frequencies and
workloads for the different parts of the system at early design
stages, or even design intelligent power management schemes
at runtime. However, this facilitates the need to understand
power usage of individual units in the Tegra K1 Variable SMP
(vSMP) [12] processor architecture, such as the Tegra K1’s
Low Power (LP) core, High Performance (HP) cluster, caches,
RAM banks and clocks under the influence of software, which
is often unfeasible due to circuit-layout limitations.

It is not trivial to understand power usage of embedded
SoCs. Simply measuring power is a serious challenge due to a
lack of power measurement sensors. Research has also shown
that such sensors are inaccurate [5] and often only capable of
measuring total power usage. This includes individual power
draw from processor elements, buses, caches, graphics pro-
cessing units, hardware accelerators, regulators [3] and other
components [2]. Researchers often attempt to model power
usage of individual components by correlating total power
usage with hardware activity and/or hardware states, and three
model types are dominant in literature: state-, rate- and cmos-
based power models.

Aside from their individual strengths and limitations, the
three different modelling methodologies share a common de-
ficiency: they have the potential for serious misprediction of
power on the Tegra K1. This flaw has not been apparent before
because the model implementations are not tested extensively
enough over all CPU and memory frequency combinations.
Rate-based power models, which are by far the most com-
monly found in literature [5], [8], [21], [23], can for example
mispredict up to 30 % on the Tegra K1 when the CPU
frequency is above 1 GHz. This occurs for several reasons.
Rate-based models correlate total power usage with hardware
activity, such as the number of instructions, cycles or cache
misses per second. However, many mechanisms that have non-
negligible impact on power usage, such as frequency scaling,
variable cost of instructions, resource contention [1] and clock,
core and rail gating are usually ignored. Additionally, rate-
based models do not consider that rail voltages vary with
operating frequencies, having an adverse affect on power
usage [3], [9], [15]. For this reason, the accuracy of rate-
based models is entirely dependent of the frequency levels
selected by Dynamic Voltage and Frequency Scaling (DVFS)
algorithms at the time of the verification.

Models are necessary to understand the power usage of
small hardware components where direct measurement is
otherwise physically impossible or unsupported. They are
also necessary to attribute energy consumption to individual
software applications, determine and reduce the power usage
of components and to evaluate how systems consume power.
However, existing modeling methods fail to predict power
accurately on the Tegra K1.

In our previous work [18], we developed a high precision
power model for the GPU on the Tegra K1. This model
included a very simplified model for the Tegra K1’s LP core.
In this paper, we extend this model to predict power usage
of the Tegra K1’s quad-core CPU, different CPU caches and
memory. The accuracy is close to 100 % for multimedia

167

workloads such as the Discrete Cosine Transform (DCT),
huffman encoding, motion vector search and rotation. The
main contribution compared to the GPU model is that the
CPU cannot be modelled generally. This is because there is
a lack of Hardware Performance Counters (HPCs) that can
measure individual integer, floating point, data movement and
other types of instructions. Instead, our method for the CPU
estimates the average capacitive load per instruction on a
per-process basis. By taking into account measured rail volt-
ages and fine-grained hardware activity predictors, our model
exposes detailed insight into the power usage of individual
components, such as rail and core leakage currents, RAM
and CPU clock, RAM reads and writes, application-specific
workload power and cache hierarchies. Using the model, it is
possible to identify power-intensive hardware components and
software workloads. This can for example be used to optimise
the power usage of individual system services, reducing idle-
system workload power by 21 %. Combined, our GPU and
CPU models comprise a complete heterogeneous power model
for the Tegra K1, covering all general purpose compute aspects
of the SoC from its dual-cluster CPU, RAM and GPU.

The rest of this paper is organised as follows. We survey
related work and background on power modelling in Section II.
Section III describes the Tegra K1 platform and the details that
are important to model the platform accurately, in particular,
why it is impossible to build an entirely generic power model
for the Tegra K1’s CPU. The modeling methodology, model
training benchmarks as well as the coefficients are introduced
in Section IV. Furthermore, we extensively verify our model
over all platform frequencies using several intense compute
workloads in Section V, where we also investigate workload-
dependent power components and some preliminary use cases
of our model. We conclude our work in Section VI.

II. BACKGROUND AND MOTIVATION

There is an abundance of work which attempts to model
power usage of embedded systems. These generally fall into
three categories of models: state-, rate- and cmos-based mod-
els. Each type has its own advantages and disadvantages; but
as mentioned in the previous section, they can mispredict
badly depending on operating frequencies. Surprisingly, all of
them contribute with important insight into power, and they
all hold some merit which is key to building accurate models.
In this section, we take a brief look at these model types and
study their accuracy on the Tegra K1. More extensive details
about model predictors and estimated coefficients for these are
available for download here1.

Modern SoCs are based on CMOS technology and are built
with voltage-islands. This means that the components within
the SoC (clock generators, caches, buses, compute cores etc)
are divided into regions supplied by individual power rails
(see Figure 1). The power on a rail PR is the sum of static
PR,stat and dynamic PR,dyn power [9], [3] and make up the
foundation for cmos-based models:

PR = IR,leakVR + αRCRV
2
RfR (1)

In this equation, rail voltage VR and leakage current IR,leak
defines the static power component. Dynamic power is caused

1folk.uio.no/krisrst/papers/mcsoc/2016/model.ods

CPU - ARM Cortex-A15 4-Plus-1

Core Rail

HP Cluster
 HP Core 2

32 KB L1
Data

32 KB L1
Instruction

Integer NEON
VFP

 HP Core 1

32 KB L1
Data

32 KB L1
Instruction

Integer NEON
VFP

2 MB L2 Cache

 HP Core 3

32 KB L1
Data

32 KB L1
Instruction

Integer NEON
VFP

 HP Core 4

32 KB L1
Data

32 KB L1
Instruction

Integer NEON
VFP

 LP Companion Core

32 KB L1
Data

32 KB L1
Instruction

512 KB L2 Cache

Integer NEON
VFP

Core
HP Rail

0.90 V

1.05 V1092 MHz

51 MHz

0.80 V

1.05 V2320 MHz

204 MHz
cpu_g Voltage

cpu_lp Voltage

1 GB
DDR3

32 bit 32 bit

1 GB
DDR3

32 bit64 bit
To GPU

Memory Controller (MC)

Arbiter Protocol

External Memory Controller

MC Clock

462 MHz

6 MHz
emc / 2 Voltage

EMC Clock

0.90 V

1.05 V 924 MHz

12 MHz

emc Memory
Rail

Core
Rail

1.35 V

1.35 V

Fig. 1: Overview of the Tegra K1 SoC architecture [11].

200 600 1000 1400 1800 2200
HP Frequency [MHz]

0.8

0.9

1.0

1.1

1.2

HP
 R

ai
l V

ol
ta

ge
 [V

]

(a) The HP rail.

LP Core Frequency [MHz]

1003005007009001100Memory Frequency [MHz]
100

300500700900

Core Rail Voltage [V] 0.90
0.94
0.98
1.02

1.06

(b) The core rail.
Fig. 2: Measured rail voltages.

by transistor switching activity, where fR is the operating
frequency in cycles per second on that rail, CR is the potential
maximum switching capacitance per cycle (in coloumbs per
volt), and αR ∈ [0, 1] is best viewed as a workload-specific
factor which decides how much of CR is being switched
through the circuitry on that rail, per cycle. A key point from
Equation 1 is that rail power is strongly dependent on rail
voltage, which again depends on operating frequencies in that
domain (see Figure 2).

Several authors [3], [15] have attempted to estimate leakage
currents IR,leak and switching capacitance αRCR for rails
directly using regression. However, despite being theoretically
well-founded, cmos-based models mostly mispredicts between
20 to 25 % (see Figure 3a). This is a trend we also discovered
in our cmos-model [15] which occurs because the model as-
sumes an independent relationship between switching activity
and frequency levels in different domains. It is implicitly
assumed that the increase in power as for example CPU
frequency increases, is caused only by increased switching
activity on that rail. However, it is easy to imagine cases
where this is not true, for example when executing a memory
intensive program.

State-based models are perhaps the simplest model type
found in literature [16]. Models of this type abstract hardware
components into states and associate each with a constant
power draw and transition cost between these [19]. For ex-
ample, the Tegra K1’s CPU can be abstracted into two states
that reflect the currently active cluster, where either the Low
Power (LP) core or High Performance (HP) cluster is active.
It is further possible to add the state cost of having individual
cores active. State-based models are relatable to the change in

168

CPU Frequency [MHz]
200

700
1200

1700
2200

Memory Frequency [MHz]

300
500

700
900

Estim
ation error [%

] 60
40
20
0

20
40
60

(a) CMOS-based model.

CPU Frequency [MHz]200
700

1200
1700

2200

Memory Frequency [MHz]

300
500

700
900

Estim
ation error [%

] 60
40
20
0

20
40
60

60

45

30

15

0

15

30

45

60

(b) State-based model.

CPU Frequency [MHz]
200

700
1200

1700
2200

Memory Frequency [MHz]

300
500

700
900

Estim
ation error [%

] 60
40
20
0

20
40
60

(c) Rate-based model.

CPU Frequency [MHz]200
700

1200
1700

2200

Memory Frequency [MHz]

300
500

700
900

Estim
ation error [%

] 60
40
20
0

20
40
60

60

45

30

15

0

15

30

45

60

(d) Our hybrid model.

Fig. 3: Power estimation error for common model types running a DCT filter (four cores).

leakage current IR,leak on power rails which is directly tied to
the activation and deactivation of hardware components such
as cores and rails. However, they have bad accuracy on the
Tegra K1 because they ignore changes in rail voltages and
dynamic power completely (see Figure 3b).

Rate-based models are the most intensively used models
in the literature [5], [8], [14], [20], [21], [23] and has seen
widespread adoption since 1999 [6] (which is the first rate-
based model we have found). Rate-based models attempt to
correlate power usage with the rate at which hardware events
occur according to the following formula:

Ptot = β0 +

Nρ∑

i=1

ρiβi (2)

In Equation 2, β0 is the power of idle components with
constant power draw, ρi is a predictor (hardware event) with
units of accesses per second, βi is the cost in Watt-seconds
per access and Nρ is the number of predictors. Example of
hardware events can be instruction execution, elapsed cycles,
cache hits and misses and branching. These events naturally
reflect transistor switching activity, tying it to the dynamic
power component of Equation 1. With a prediction error
between 0 to 30 %, this model predicts better than the state-
based one (see Figure 3c). However, rate-based models ignore
rail voltages and static power. The only known exception is
Hong, S. and Kim, H. [7] who presented a standard rate-based
model, but it considers voltage as a part of the leakage current.
In defence of rate-based models, ignoring voltage levels might
not have a negative effect if power management is poorly
designed. For example, it is much easier to stick the Tegra K1
HP frequency at 1.15 V (see Figure 2a) independently of
frequency. It does however have an adverse effect on systems
where this is not the case, such as the Tegra K1.

In summary, state-based models reflect static power, but
do not capture dynamic power. Rate-based models are the
opposite. These reflect hardware utilisation and dynamic power
but not static power. Both ignore changes in voltage as a result
of changes in frequencies, and is a key source of inaccuracy

in these model types. Cmos-based models incorporate both
static and dynamic power as well as rail voltages. In terms
of accuracy, it shows less error variation, but has an inherent
weakness in that they assume independency in switching ac-
tivity and operating frequencies between rails. Our hypothesis
is therefore that we can achieve better accuracy if hardware
utilisation and switching capacitance can be captured more
accurately and independently on each rail. In the following
sections, we will outline important hardware activity predictors
on the Tegra K1’s CPU and how these can be combined with
voltage measurements to achieve close to 100 % accuracy (see
Figure 3d).

III. TEGRA K1 MOBILE SOC

In order to successfully build a high-precision power
model, it is important to have a solid understanding of the
platform (see Figure 1). We have chosen the Tegra K1 as a
case study due to its similarity with modern island-style SoCs.
In this section, we introduce the most important power rails
and clocks, and we describe how it is possible to monitor
hardware activity in the various units. Power measurement and
synchronisation is done as in our previous work [15], where
the Jetson-TK1 retrieves power measurement readings from a
Keithley 2280S power source via a dedicated measurement ma-
chine. We measure individual rail voltages using the Keithley
2110 high-precision voltage measurement unit.

A. Tegra K1 Architecture: Rails and Clocks

The Tegra K1 is a complete SoC featuring several rails
powering various functional units on the processor [10]. The
rails which are relevant for our investigation (see Figure 1) are
the core, HP and memory rails. These rails power the LP (core)
and HP clusters, as well as the External Memory Controller
(EMC) and memory banks. The power usage on all other rails
are assumed to be constant with no hardware activity.

Clocks drive switching activity inside the Tegra K1’s
hardware components. Every clock cycle consumes energy,
and CPU clock cycles normally correlate very strongly with

169

Clock Affects Description Frequency Voltage Range
Steps Range [MHz]

cpu g HP Rail HP cluster 20 [204, 2320] [0.80, 1.20]

cpu lp Core Rail LP core 9 [51, 1092] [0.90, 1.05]

EMC Core Rail Memory 6 [204, 924] [0.90, 1.01]

TABLE I: Tegra K1 cores, clock and voltage ranges.

power in rate-based models [20]. Clocks are also provided as a
power management mechanism where the operating frequency
of a component can be reduced to mitigate power dissipation
(while reducing performance). The Tegra K1 features a range
of different clocks driving different functional blocks (see
Table I). When building power models, it is important to be
aware that the voltages on different rails change, and that they
change with clock frequency [3], [9]. For example, depending
on the HP cluster clock (cpu g), HP rail voltage Vhp varies
between 0.81 and 1.13 V (see Figure 2a). The core rail voltage
is more complex. Its voltage Vcore depends on the LP core
frequency (cpu lp) as well as the EMC bus frequency. Unless
the HP cluster is active, the voltage set on this rail is always the
maximum required by any of these two clocks at any point in
time (see Figure 2b). Finally, memory rail voltage is statically
set to 1.35 V and does not change.

B. Power Saving Mechanisms

The Tegra K1 features several mechanisms to limit power
usage depending on the current demand for resources and hard-
ware utilisation. Generally, there are two types of optimisation
approaches to achieve this goal, which have never been taken
directly into account in previous models:

• Clock gating disables clock distribution to various
entities of the SoC, which disables their function and
reduces dynamic power. State is retained.

• Power gating disables supply voltage to various parts
of the circuity. This completely removes static power
draw and normally implies clock gating. Power gating
causes loss of state (for example in caches).

Exactly when and for how long cores are gated is decided
by both software and hardware. On the Jetson-TK1, the CPU-
idle kernel drivers monitor idle CPU cores and make decisions
to clock- or power-gate individual cores based on estimated
idle intervals and state transition overheads. Additonally, the
CPU cores perform clock-gating in hardware without the
intervention of software.

Application demand for processing time is satisfied by
automatic cluster and core selection as well as CPU and
memory frequency tuning. All of these mechanisms impact
power usage. Typically, when the Tegra K1 is idle, processing
is restricted to the LP core, in which case the entire HP rail is
power gated by disabling the HP rail voltage regulator. Kernel
drivers monitor resource usage. These may decide to switch
between the application clusters, activate additional CPU cores,
clock- and power-gate individual cores in short idle periods and
adjust EMC and CPU frequency. The challenge with regards to
power modelling is to track when and for how long processors
or other parts of the circuitry remains gated. To solve this,
we modified the Tegra K1 kernel sources to count the time
spent in the gated states and expose this information to running
applications.

C. Instruction Cost (Workload-Dependent Power)

One of the main challenges of power modelling the
Tegra K1 is that it does not have fine-grained accounting
for the types and number of instructions executed. Pricopi
et. al. [14] built a rate-based power model for a big.Little
CPU, which is the same cluster technology the Tegra K1 uses.
They show that it is possible to attribute an instruction cost to
different instructions such as branching, integer and floating
point operations, as well as RAM loads and stores. However,
the CPU implementation they used had dedicated HPCs to
count these instructions. This is also in accordance with our
experiences on the Tegra K1’s GPU [18], where we build
an fully generic power model using fine-grained instruction
accounting. Unfortunately, the Tegra K1 does not implement
these HPCs on its CPU.

When there is no possibility to trace what types of instruc-
tions have been executed, loss of generality in terms of power
modelling is unavoidable. Every application and system service
has its own way of exersising the processing pipeline using
different instructions. The only instruction counter we can use
is the instruction executed HPC, which counts the
number of instructions executed. Since the number of CPU
instructions can be counted on a per-process basis, we choose
to track these and estimate an average capacitance load per
instruction for each workload. The assumption behind this
is that each application will have roughly the same average
capacitive load over time. ARM CPUs are not required to im-
plement HPCs for fine-grained instruction accoutning, which
means that for CPUs it will be unavoidable to model workload
power in this way.

D. Cache Maintenance and Off-Chip Memory Access

The Tegra K1 implements a two-level on-chip cache hierar-
chy with last-recently used eviction policy. Cache costs usually
surface as a part of rate-based power models, where authors
attempt to attribute power costs to cache accesses and misses
directly [20]. In our model training, we found that these events
generally do not correlate well with power, often breaking the
estimation such that coefficients are negative. This is not easy
to understand, but we believe that the cost of accessing caches
is not constant. A cache access may end up in other data being
evicted elsewhere or trigger refills from other cache levels or
memory: the cost is not generic in itself and depends on many
other factors.

Because of the problems of modelling cache accesses, we
decided to attempt to model instead the power which is spent
maintaining the cache. The intuition behind this is that, if we
can model the way the cache maintains its own consistency,
cache accesses will instead just be an integral part of the
average instruction cost (see Section III-C). The ARM HPC
implementation has a range of cache performance counters.
We use the following HPCs:

• L1D CACHE REFILL. Counts data cache refill
events from external, off-chip memory.

• L1D CACHE WB. Counts data cache writebacks to
external, off-chip memory.

• L2D CACHE REFILL. Counts data cache refill
events from L1 cache or external, off-chip memory.

170

• L2D CACHE WB. Counts data cache writebacks to
L1 cache or external, off-chip memory.

We then defined two new counters that trace cache main-
tenance operations between the cache hierarchies:

ρl1l2 = (Nl1,refill −Nl2,refill) + (Nl1,wb −Nl2,wb) (3)

ρl2ram = Nl2,refill +Nl2,wb (4)

where ρl1l2 is an indication of on-chip cache maintenance
between L1 and L2 data caches, and ρl2ram is an indication
of cache traffic between L2 and off-chip memory. Note that
the Tegra K1 also implements other types of caches, for
example L1 instruction cache. Since only seven HPCs can be
occupied concurrently, and one of these always is the active
cycle HPC, there is not enough HPC space to trace all the
hierarchies.

Unique memory accesses ultimately end up in off-chip
memory accesses at least once. Exactly how often this happens
is very hard to trace. CPU HPCs exist, but there may be
many other components in the system which also access
RAM, such as PCI devices and peripherals. Fortunately, the
Tegra K1 implements an activity monitor which can provide
the number of active memory cycles spent serving the CPU or
other peripherals. We modifiy the kernel driver for the activity
monitor to provide us with these statistics, which represent our
measure of memory utilisation.

IV. HIGH-PRECISION POWER MODELLING

We outline our methodology to model the Tegra K1 power
usage with high precision. The method is an extension to
our previous work on the Tegra K1’s GPU [18]. The main
challenge with modelling power on the Tegra K1’s CPU
compared to the GPU is that it is impossible to build an
entirely generic model. This is because the CPU does not
have dedicated HPCs for the type and number of instructions
executed (see Section III-C). Therefore, the resulting model is
a combination of generic power (most of the predictors seen in
Table II) and workload-specifc power, which varies depending
on the various types of instructions executed on each core.

A. Derivation

Following our discussion in Section II, we now describe the
dynamic power component of Equation 1 in terms of measur-
able hardware activity predictors as outlined in Section III. The
dynamic part of Equation 1 can be re-interpreted as follows:

PR,dyn =

NR∑

i=1

CR,iρR,iV
2
R (5)

In Equation 5, NR is the number of hardware predictors, ρR,i
is a hardware activity predictor for rail R in occurrences per
second (for example instructions per second), and CR,i is the
unknown switching capacitance per occurrence of event ρR,i.
Static power on a rail R is the product of that rail’s voltage
VR and total leakage current IR,ltot [9]:

PR,stat = VRIR,ltot (6)

The Tegra K1 continuously performs power gating of proces-
sors on the HP and core rails. When power gating a core, the

leakage current Icpu,leak from that core is also removed. The
total leakage current on the HP and core rail, for Nc active
cores, is:

IR,ltot = IR,leak +

Nc∑

i=1

Icpu,leak (7)

The total power usage of the Jetson-TK1 becomes:

Pjetson =
R∈R∑

(PR,dyn + PR,stat) + Pbase (8)

Noting that the static power on the memory rail cannot be
modelled, because the rail voltage on this rail does not change.
It is instead a part of base power Pbase, which also includes
the constant power draw of all other rails and idle components.

B. Methodology

The total power usage of the Jetson-TK1 is shown in
Equation 8, where the unknown variables are the capacitive
loads, rail and core leakage coefficients (CR,i, IR,leak and
Icpu,leak). Base power Pbase is also unknown. Our method-
ology to find these terms is based on multi-variable, linear
regression. We create seven benchmarks spesialised to stress
different architectural units of the Tegra K1’s processor (see
Table III):

• We have several versions of a simple matrix-multiply
program, where the element type, for example inte-
ger, floating point (VFP) or vectorised floating point
(NEON), is being varied.

• An idle benchmark, where only the Linux kernel and
system services are running, is useful to trigger power-
and clock-gating mechanisms.

• We found it necessary to also implement specialised
benchmarks to stress L1 cache refills and write-backs
more than the other benchmarks did.

Each benchmark is run over all possible memory and
processor frequency combination (see Table I), and over the
five possible core combinations (LP core or any number of the
four HP cores active). During the benchmarks, power is being
logged while the HPCs are being collected at regular, short
intervals of 100 ms. This is to avoid counter overflow, which
occurs relatively easily for some of the HPCs (under loads,
the active cycle counter overflows within two seconds at the
maximum operating frequency). The final dataset size is of
30912 entries containing the necessary predictors and power
measurement samples. The coefficient estimates can be seen
in Table II.

As argued in Section III-C, it is not possible to generalise
the cost of instruction execution because different instruction
types (integer, floating point, data movement) have different
costs. The Tegra K1 only has one instruction counter, and
the estimated cost per instruction will vary depending on
workload. We make a single instruction cost estimate for each
of the benchmarks in Table III. The estimates are shown
in Table III. Not considering the IDLE test, which has a
significantly larger instruction cost, the cost is similar across
the rest of the benchmarks. Higher instruction cost does not
automatically imply a higher rate of energy consumption. For
example, the IDLE test consumes less power on average than

171

Rail Number Predictor Description Coefficient Value

HP

0 Vhp HP rail voltage (when powered) Ihp,leak 59.8mA

1 ρhp,clk1 Active clock cycles per second (first core) Chp,clk1 395.65 pCV
2 ρhp,clk2 Active clock cycles per second (second core) Chp,clk2 270.40 pCV
3 ρhp,clk3 Active clock cycles per second (third core) Chp,clk3 261.89 pCV
4 ρhp,clk4 Active clock cycles per second (fourth core) Chp,clk4 213.95 pCV

Core 0 Vcore Core rail voltage (always powered) Icore,leak 633.7mA

1 ρcore,clk Active clock cycles per second (LP core) Ccore,clk 301.49 pCV

Common

0 Vcom,online Rail voltage when any core is online (not gated) Icpu,leak 24.00mA
1 ρcom,l1l2 Cache maintenance, L1 and L2 Ccom,l1l2 2.35nCV
2 ρcom,l2ram Cache maintenance, L2 and RAM Ccom,l2ram 2.29nCV
3 ρcom,ips Instructions per second (workload-specific) Ccom,ips See Table III

Memory

0 ρmem,clk Total clock cycles per second Cmem,clk 238.21 pCV
1 βmem,204 Power offset at 204 MHz Pmem,204 11.80mW
2 βmem,300 Power offset at 300 MHz Pmem,300 69.00mW
3 ρmem,CPU CPU busy memory (EMC) cycles per second Cmem,cpu 2.15nCV
4 ρmem,OTH Other busy memory (EMC) cycles per second Cmem,oth 2.76nCV

Other Pbase Base power - 0.87W

TABLE II: Overview of generic energy model predictors and coefficients.

Benchmark Description Components under explicit stress Instruction CostRAM
(CPU)

L1 - L2 L2 - RAM INT FPU NEON

Idle CPU CPU idle. 2.50nC
V

L1-WB L1 writeback stress. 0.15nC
V

L1-RF L1 refill stress. 0.18nC
V

MMUL-INT Matrix multiply (integer op-
erations).

0.45nC
V

MMUL-INT-VOL Same as above, volatile
memory.

0.27nC
V

MMUL-F32 Matrix multiply (floating
point operations).

0.36nC
V

MMUL-NEON Matrix multiply (NEON
floating point operations).

0.44nC
V

TABLE III: Benchmarks and components under stress.

the other benchmarks, despite the high estimated instruction
cost. This is because so few instructions are executed compared
to the other benchmarks. Similar conclusions can be made to
the other benchmarks. Comparing for example floating point
matrix multiply with VFP or NEON instructions, the NEON
variant has a higher estimated cost per instruction. However,
NEON instructions process four floating point values at a time
whereas the VFP variant only process one at a time. Our
training data therefore shows that the NEON variant draws
less average power than the VFP variant.

V. EXPERIMENTS

In this section, we verify the accuracy of our model
by extensive validation over all operating frequencies. The
workloads we use are common video processing operations for
the DCT, Huffman coding, motion vector search and rotation.
Due to space limitations, we are unable to describe these
here, but interested readers can refer to our previous work for
details [18]. We also argue that our method to model workload-
specific instruction power is correct, and finally present some
preliminary case studies of potential use cases for the model.

A. Verification

To verify our model, we let our video processing filters
process an HD stream at 25 FPS over all possible operating
frequencies. This process is done once for each core configura-
tion (five possible combinations where either the LP cluster or
any number of the four HP cores are active). While running,
our implementation estimates generic platform power every
100 ms (see Section III-C) using the predictors in Table II and

additionally logs measured total power usage. The workload-
dependent power usage is now missing, and must be estimated
per workload. When each filter is done processing the HD
stream at all frequency combinations, per-instruction switch-
ing capacitance is estimated by subtracting predicted generic
platform power from total measured power. The residual power
is always positive and is used in a linear regression solver to
estimate the switching capacitance per instruction, which is in
turn used to estimate the power component directly related to
instruction execution.

The resulting prediction error can be seen in Figures 3d
and 4 for all of our filters. Due to space restrictions, we can
not show all the error plots for each core configuration, but
we include plots across all of them for at least one filter. The
plots show that our model performs well, with a high accuracy
across all frequency domains which is very close to 100 %.
In general, the average accuracy over all frequencies is never
below 98 % for any filter, with worst-case prediction errors
that are never worse than ± 4 %. This is much better than
the related modelling methods in Figure 3, where our model
not only successfully captures hardware utilisation (dynamic
power), but also takes into account increased power from
higher rail voltages and leakage currents (static power).

B. Residual (Workload/Instruction-Dependent) Power

Our verification methodology has an unavoidable weak
point in the way workload-dependent power is estimated. Per-
instruction capacitance loss is estimated based on residual
power after generic power components are removed from real
measurements. The estimated workload power is subsequently
added to the power prediction. It is possible to claim that
this estimated workload-dependent power component ”simply
happens to nicely cover” most of the residual power which
would otherwise be the root cause of a large prediction
error. It is difficult to conclusively disprove this claim. Per-
instruction capacitance loss is tied to software implementation;
it can not be re-used for other pieces of code and it cannot
be guaranteed to be the same if the code is changed by
recompilation or by changing input data (for example, reducing
video resolution or changing algorithmic parameters). It is,
however, possible to show in some more detail how residual
workload power behaves across frequencies, how diverse per-
instruction capacitance loss estimates are and how they can be
used in practice.

172

CPU Frequency [MHz]
200

700
1200

1700
2200

Memory Frequency [MHz]

300
500

700
900

Estim
ation error [%

] 60
40
20
0

20
40
60

(a) Rotation filter (three cores).

CPU Frequency [MHz]
200

700
1200

1700
2200

Memory Frequency [MHz]

300
500

700
900

Estim
ation error [%

] 60
40
20
0

20
40
60

(b) Huffman filter (one HP core).
CPU Frequency [MHz]

200
400

600
800

1000

Memory Frequency [MHz]

300
500

700
900

Estim
ation error [%

] 60
40
20
0

20
40
60

60

45

30

15

0

15

30

45

60

(c) Motion vector search (LP core).

Fig. 4: Power estimation error for idle and video processing scenarios.

0 1 2 3 4 5 6 7 8
Model Predictor (ρcom,ipsV 2

com) 1e9
0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Re
si

du
al

 P
ow

er
 [W

]

Fig. 5: Residual (workload-specific) power plotted for the
model predictor (square-voltage instructions per second).

When generic power has been removed from measured
power, the residual power Pres should reflect only the cost
of executing instructions (see Equation 5):

Pres = Ccom,ipsρcom,ipsV
2
R (9)

In Equation 9, the unknown variable is the per-instruction
capacitance loss Ccom,ips. Figure 5 shows the residual power
Pres for the DCT filter running on four cores. Each residual,
which represents a unique sample at an operating frequency
point, is plotted for its corresponding predictor (ρcom,ipsV 2

R in
Equation 9). From the figure, we can see that residual power
follows a linear trend with its predictor, which is as expected
from Equation 9 and confirms our theory that instruction power
can be modelled this way. At the data points around 3E9,
we can see that the residuals ”drop” by some 50-60 mW.
This is because the rail voltage reading, which is stored as
a frequency-dependent static table in our code, is slightly
incorrect: buck regulator output voltage is unpredictive and
varies with output current. This is also visible in Figure 3d at
around 1 GHz CPU frequency.

The gradient of the line in Figure 5 is the estimate of
switching capacitance Ccom,ips. This is easily found using
regression, which yields a capacitive load of 439pCV per
instruction. We also use the estimated constant offset in the
model, which is rarely above 30-40 mW. For the rest of the
filters, estimated capacitive load is never above 607pCV (HP,
single-core DCT) and never below 197pCV (LP core, huffman).
In general, for all the filters, the more cores are active the
higher the capacitive instruction load.

The capacitive load itself does not offer any insight into
the actual power usage of instructions. This depends on how
many of these are executed per second. To investigate this,
we plot the generic and workload-specific power in Figures 6a
and 6b. We see that instructions can account for a substantial
fraction of the total estimated power. Not considering base
power Pbase, instruction power can account for up to 50 % of

CPU Frequency [MHz]

200
700

1200 1700 2200Memory Frequency [MHz]
300

500
700

900

Generic Pow
er [W

]

2.0

2.5

3.0

(a) Generic components.

CPU Frequency [MHz]

200
700

1200 1700 2200Memory Frequency [MHz]
300

500
700

900

Instruction Pow
er [W

] 0.0
0.5
1.0
1.5
2.0
2.5

(b) Instructions.

Fig. 6: Estimated power.

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

Core Rail Leakage
Core Leakage
LP Core Clock
Memory Clock
Instruction
Cache (L1/L2)
Cache (L2/memory)
EMC CPU
EMC OTH

0.658

0.6585

0.659

0.6595

0.66

0.6605

0.661

0.659

0.66

0.661

P
o
w

e
r

[W
]

Core Rail Leakage
Core Leakage
LP Core Clock
Memory Clock
Instruction
Cache (L1/L2)
Cache (L2/memory)
EMC CPU
EMC OTH

Fig. 7: Idle system power breakdown.

the total power and varies between 0.4 to 2.0 W. This means
that instruction power is an important power component, and
that care must be taken to estimate it correctly to achieve a
high prediction accuracy. However, this may not always be
easy to achieve in practice. Our workloads are cyclic in that
they continuously perform the same work (and instructions) on
new incoming frames. It is easy to imagine scenarios where
it may not be so easy to estimate average instruction cost,
for example for workloads which are not cyclic or incorporate
heavy branching (not always following the same code paths).
It is for example tempting to hypothesise that instruction
cost could be estimate along code branches. SoCs with fine-
grained instruction accounting (as for the Tegra K1’s GPU)
can potentially solve this problem by enabling fully generic
models, but in practice, it is likely that there will always be
SoCs which only implement HPCs for the total number of
executed instructions.

C. Use Cases

We now conduct a set of experiments to show how high-
precision power modelling can be useful to developers and
system architects. A basic use case is to produce power break-
down of the system, in order to analyse the power consuming
components and identifying important candidates to minimise
power usage. For example, Figure 7 shows the contribution
to power from each of the generic power components. The
system is idle, and under the control of the standard power
management algorithms where the CPU and memory are run-
ning generally underutilised at the same frequency (204 MHz).
We can see that cache maintenance and off-chip RAM accesses

173

Normal No Clock
0

5

10

15

20

25

P
ow

er
 [m

W
]

Call Disabled Avahi

Profiler
Avahidaemon
ACTMON
P

w

Normal Optimised

Fig. 8: Instruction power breakdown of the three dominating
idle system services.

are virtually non-present. Workload power is negligible, only
accounting for about 20 mW. The memory clock accounts
for the second most substantial power component. This is
interesting as the capacitance loss per cycle is comparative
with the CPU and they are both running at the same frequency.
However, the CPU is better at handling underutilisation with
clock- and power-gating and is consequently better at hiding
the unnecessary power overhead. The memory, however, is not
clock-gated and therefore ends up wasting cycles which are
not used. Among the static power contributors, the core rail
leakage current is very large at 570 mW, but little can be done
to this component other than ensuring that the core rail voltage
is as small as possible.

Our methodology is also fine-grained enough to estimate
instruction power of individual system services. To show that
it is able to handle very small changes in instruction power,
we focus on the three most dominating system services for
the idle system. The residual workload power from these is
only 20 mW and the breakdown can be seen to the left in
Figure 8 for the profiler (our modelling and estimation tool),
the avahidaemon and an activity monitor which logs RAM
utilisation. Studying the source code for the activity monitor,
we found several optimisation points where we were able
to remove expensive string comparison functions. We also
disabled the avahidaemon, which is unnecessary. The result
shows that we are able to reduce residual power by 20 %
(Pw). While the actual impact of the system is small (some
5 mW), this proves that the model is indeed fine-grained and
is able to pick up on very small changes in the system.

VI. CONCLUSION

Power models are important tools to diagnose modern
embedded multicore SoCs at early design stages or for runtime
power analysis and management. This is because it is not
trivial to measure and attribute power of individual compu-
tational units, such as cores, caches, clocks and memory to
applications. In this paper, we have shown that state-of-the-
art power modelling methods can mispredict substantially on
the Tegra K1. Our main contribution is a methodology which,
by considering rail voltages and fine-grained hardware activity
measurements, is able to predict power with an accuracy close
to 100 %. It is not possible to build a fully generic model
for the Tegra K1 because of a lack of fine-grained CPU
instruction accounting. Instead, we extend our method from
previous work [18] and show how instruction power can be
measured on a per-process basis using only a single HPC
for the total number of instructions executed. It has been

extensively verified over all frequencies using several video
processing workloads.

REFERENCES

[1] R. Basmadjian and H. de Meer. Evaluating and Modeling Power
Consumption of Multi-Core Processors. In Proc of e-Energy, pages
1–10, 2012.

[2] A. Carroll and G. Heiser. An Analysis of Power Consumption in a
Smartphone. In Proc of ATC, 2010.

[3] A. Castagnetti, C. Belleudy, S. Bilavarn, and M. Auguin. Power
Consumption Modeling for DVFS Exploitation. In Proc of DSD, pages
579–586, 2010.

[4] Cisco. Cisco Visual Networking Index: Fore-
cast and Methodology, 2014-2019, White Paper.
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-
ngn-ip-next-generation-network/white paper c11-481360.html.

[5] M. Dong and L. Zhong. Self-Constructive High-Rate System Energy
Modeling for Battery-Powered Mobile Systems. In Proc of MobiSys,
pages 335–348, 2011.

[6] L. M. Feeney. An Energy Consumption Model for Performance
Analysis of Routing Protocols for Mobile Ad Hoc Networks. Ad Hoc
Networks, pages 1–13, 1999.

[7] S. Hong and H. Kim. An Integrated GPU Power and Performance
Model. In Proc of ISCA, volume 38, pages 280–289, 2010.

[8] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha. DevScope: a
Nonintrusive and Online Power Analysis Tool for Smartphone Hardware
Components. In Proc of CODES+ISSS, pages 353–362, 2012.

[9] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J.
Irwin, M. Kandemir, and V. Narayanan. Leakage Current: Moore’s Law
Meets Static Power. IEEE Computer, pages 68–75, 2003.

[10] NVIDIA. Tegra K1 Circuit Schematics, Rev. 4.02. Technical report.
[11] NVIDIA. Tegra K1 Technical Reference Manual. Technical report.
[12] NVIDIA. Variable SMP – A Multi-Core CPU Architecture for Low

Power and High Performance. Technical report, 2011.
[13] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra. Integrated CPU-

GPU Power Management for 3D Mobile Games. In Proc of Design
Automation Conference, pages 1–6, 2014.

[14] M. Pricopi, T. S. Muthukaruppan, V. Venkataramani, T. Mitra, and
S. Vishin. Power-Performance Modeling on Asymmetric Multi-Cores.
In Proc of CASES, 2013.

[15] K. R. Stokke, H. K. Stensland, P. Halvorsen, C. Griwodz. Why Race-
to-Finish is Energy-Inefficient for Continuous Multimedia Workloads.
In Proc of MCSoC, pages 57–64, 2015.

[16] T. Simunic, L. Benini, P. Glynn, and G. De Micheli. Dynamic power
management for portable systems. In Proceedings of the 6th annual
international conference on Mobile computing and networking, pages
11–19, 2000.

[17] K. R. Stokke, H. K. Stensland, C. Griwodz, and P. Halvorsen. Energy
Efficient Continuous Multimedia Processing Using the Tegra K1 Mobile
SoC. In Proc of MoViD, pages 15–16, 2015.

[18] K. R. Stokke, H. K. Stensland, P. Halvorsen, and C. Griwodz. A
High-Precision, Hybrid GPU, CPU and RAM Power Model for Generic
Multimedia Workloads. In Proc of MMSys, 2016.

[19] Y. Xiao. Modeling and Managing Energy Consumption of Mobile
Devices. PhD thesis, 2011.

[20] Y. Xiao, R. Bhaumik, Z. Yang, M. Siekkinen, P. Savolainen, and A. Yla-
Jaaski. A System-Level Model for Runtime Power Estimation on
Mobile Devices. In Proc of GCC and CPS, pages 27–34, 2010.

[21] F. Xu, Y. Liu, Q. Li, and Y. Zhang. V-edge: Fast Self-Constructive
Power Modeling of Smartphones Based on Battery Voltage Dynamics.
In Proc of NDSI, pages 43–55, 2013.

[22] D. You and K.-S. Chung. Quality of service-aware dynamic voltage and
frequency scaling for embedded GPUs. IEEE Computer Architecture
Letters, 14(1):66–69, 2015.

[23] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang. Accurate Online Power Estimation and Automatic Battery
Behavior Based Power Model Generation for Smartphones. In Proc of
CODES+ISSS, pages 105–114, 2010.

174

	I Overview
	Introduction
	Background and Motivation
	Problem Statement
	Limitations
	Research Method
	Main Contributions
	Outline

	The Tegra K1 as a Mobile Multimedia Processor
	Device Architecture
	Functional Description
	Energy Distribution of an Island Architecture

	Power Measurement
	Current Sensing
	Other Approaches
	Failed Attempts
	Solutions for the Jetson-TK1

	The Fundamental CMOS Equations
	Workload: Video Processing Filters
	Debarreling
	Image Rotation
	Motion Vector Search
	DCT
	Variable Length (Huffman) Coding

	Effects of Dynamic Voltage and Frequency Scaling
	Summary

	Evaluation of State of the Art Power Modelling Methodologies
	CMOS-Based
	State-Based
	Rate-Based
	Instruction-Level
	Model Accuracy
	Summary

	High-Precision Power Modelling
	Concept and Derivation
	Measuring Hardware Activity
	CPU
	GPU
	RAM

	Methodology
	Design Issues
	GPU Model
	Regression Analysis
	Model Accuracy: Video Processing

	CPU Model
	Regression Analysis
	Instruction Power
	Model Accuracy: Video Processing Filters

	Full-Hybrid Models for Different Platforms
	Summary

	Energy-Efficient Multimedia Processing
	Processing Live Video
	Energy-Efficient Load Balancing on Heterogeneous Cores
	Measuring Energy-Efficiency
	Scope and Method
	Offloading a Single Filter
	Offloading Under Heavy Processing

	Tegra K1 System-Level Energy Analysis
	Component-Level Breakdown
	Optimising the ACTMON Kernel Driver

	Instructions' Effect on Energy Consumption
	GPU Instructions and Cache Modifiers
	NEON Acceleration

	Summary

	Conclusion
	Summary and Contributions
	Open Issues and Future Work

	II Research Papers
	Paper I: Energy Efficient Video Encoding Using the Tegra K1 Mobile Processor
	Paper II: Energy Efficient Continuous Multimedia Processing Using the Tegra K1 Mobile SoC
	Paper III: Why Race-to-Finish is Energy-Inefficient for Continuous Multimedia Workloads
	Paper IV: A High-Precision, Hybrid GPU, CPU and RAM Power Model for Generic Multimedia Workloads
	Paper V: High-Precision Power Modelling of the Tegra K1 Variable SMP Processor Architecture

