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Abstract

This thesis explores the properties of a novel framework aspiring to achieve Gen-
eral Intelligence via Neuroevolution, called ‘Neuroevolution of Artificial Gen-
eral Intelligence‘ (NAGI). A weight agnostic neuroevolution technique based on
‘Neuroevolution of Augmenting Topologies’ (NEAT) was used to evolve Spiking
Neural Networks (SNNs), which function as controllers for agents interacting
with mutable environments in silico, gaining rewards and learning unsupervised
through embodiment throughout their lifetime. Synaptic weights are excluded
from the genome, ensuring that intrinsic knowledge about the environment is
not passed on from parent to offspring, while network topology, the type of
neurons and the type of learning are all subject to the evolutionary process.

The results showed that the agents emerging from the framework were able to
achieve a high accuracy of correct actions when interacting with mutable envi-
ronments, even new environments that were never encountered during training.
It also showed that great care must be taken in when designing a neuroevo-
lution technique in order to properly guide the evolution towards agents with
competing desirable properties.
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Preface

This report, combined with the authors implementation of the framework it is
based on, concludes the research and findings from the work done on the authors
master thesis at University of Oslo (UiO). The code for the implementation
is available at the GitHub repository neat-nagi-python (https://github.com/
krolse/neat-nagi-python).

I want to thank main supervisor Sidney Pontes-Filho, as well as co-supervisors
Stefano Nichele, P̊al Halvorsen, Michael Riegler and Anis Yazidi for the oppor-
tunity to be a part of this exciting research, and for their invaluable feedback
while working on the thesis.
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Chapter 1

Introduction

This chapter gives a brief overview of the master thesis by presenting central
topics and the motivation behind the work. It also defines the goals and research
questions for the thesis.

1.1 Background and Motivation

Research on Artificial Intelligence (AI) has led us to outstanding advancement
in different scientific fields. Today, AI models are ubiquitous and can be found
in almost any large scale system. However, the majority of the AI models in use
today are trained and specialized for specific tasks, for which they are becoming
increasingly good at performing. Machines have caught up to humans (and are
poised to surpass us) in image recognition tasks, something our bodies have
naturally evolved to be specialists at. However, many AI models arguably lack
the ability of generalization and self-adaptation. These are properties being
explored in the research field of Artificial General Intelligence (AGI) or strong
AI, with the ultimate goal being a reproduction of life-like, or more specifically
human-like intelligence in machines.

Living beings in the real world learn primarily by interaction with their envi-
ronment (including other living beings), which provides endless unlabeled and
mutable data. Our means of interaction are our senses, such as sight, hearing,
taste, smell, touch and so on. Our brain, the organ that interprets the encoded
signals from our sensory organs, has through continuous evolution gained the
ability of being able to distinguish between positive and negative sensory expe-
riences depending on what is good or harmful to us, such as pain and pleasure,
which serves as reward and penalty mechanisms that affect our learnt behavior.

The natural brain is a product of the evolutionary process, and is therefore the
reason living beings have gained the ability to learn through interaction. Evo-
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lution is an extremely complex process on a micro scale level, but it is driven
by two simple concepts: survival and reproduction. If you are well suited for
survival in your environment, you’re likely to live longer and have more oppor-
tunities to reproduce, both by simply being alive for longer and having desirable
traits that are sexually attractive to potential mates. These mechanisms ensure
that desirable traits to a larger degree than undesirable traits are passed on
through generations in a population.

In the search for AGI in its simplest form, we will in this thesis explore a
framework designed with three key points of biological inspiration in mind: i)
the structure of interconnected processing units that compose the brain, ii) the
evolutionary process that evolved it, and iii) the sensory interaction with the
world that makes learning in the brain possible. Translated into AI models,
they can be summarized as follows:

1. Biologically plausible neuron models (Spiking Neurons);

2. Evolution of neural network structures (Neuroevolution);

3. Simulated agent-environment interaction promoting self-learning through
embodiment.

The hypothesis is that an approach to natural intelligence with a smaller level of
abstraction may lead to an AI with the same general and self-adapting properties
found in intelligent beings in the natural world.

1.2 Goals and Research Questions

The goal of this thesis is to explore how EAs can be applied to SNNs to evolve
agents that are able to self-learn throughout their lifetime by interacting with
environments that are constantly changing. To reach this goal, we define the
following research questions that we aim to answer:

• Research Question One: Is it feasible to evolve controllers that are
able to learn varied decision boundaries1 without any existing knowledge
about the environment by using a weight-agnostic neural network?

• Research Question Two: Do the controllers emerging from the evolu-
tion display general, problem-independent learning capabilities by being
able to perform in never before seen environments?

• Research Question Three: With only the sensory feedback from the
interactions with the environment, are the agents able to learn by them-
selves?

1In classification problems, the vector space is divided into decision regions where all vectors
in that region are assigned to a single category. Decision regions are divided by a decision
boundary, where there is a tie between two or more categories [1].
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1.3 Research Method

In order to achieve the goal of this thesis and answer the research questions, a
‘proof of concept’ system was designed by the supervisors and the author, and
implemented from scratch by the author. Experiments with agent-environment
interaction were designed and conducted through simulation with these ap-
proaches and metrics in mind in order to measure and analyze how the solutions
performed.

1.4 Report Structure

All the theories central to understanding the approaches explored in the thesis
are explained in Chapter 2. Related work and approaches are presented and
discussed in Chapter 3. The approaches that are used in the framework explored
in the thesis are explained in full in Chapter 4. In Chapter 5 we briefly discuss
the implementation of the code used in the thesis. The design and setup of
the experiments are explained in Chapter 6, and the results from these are
presented in Chapter 7, which in turn are evaluated in Chapter 8. Chapter 9
presents suggestions for further research. Chapter 10 contains the conclusion of
the thesis.
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Chapter 2

Background Theory

In this chapter we explain the relevant background theory necessary to under-
stand the approaches used in the thesis.

2.1 Artificial General Intelligence

AGI [2] is quite young as a research area and does not have a precise definition.
Sometimes it is compared to ‘natural intelligence’ or ‘strong AI’, which in broad
strokes describe intelligence comparable to human or natural intelligence. It is
therefore worth elaborating on what is meant by AGI in the context of NAGI.
We focus on the ‘general’ learning and adaptation capabilities of an AGI model,
as opposed to the bulk of mainstream AI models that are specialized at certain
tasks. In this work, we are not looking for models with comparable or superior
intelligence to humans, but for a rather simple model able to continuously adapt
in a changing and increasingly complex environment through self-learning.

2.2 Neural Networks

Neural Networks are computational models of neural circuits found in the brain
of animals. A neural circuit consists of neurons interconnected by synapses.
Neurons are electrically excitable nerve cells which pass electronic signals along
the synapses [3, p. 39].

Artificial neural networks attempt to mimic the behavior and adaptive features
of biological neural circuits, and are integral to modern Machine Learning (ML),
Deep Learning (DL) and Artificial Intelligence (AI) systems. They are useful
for solving complex problems where it is difficult to manually code an analytical
solution. In this section we will detail two types of neural networks, as well as

4



the different learning paradigms that they utilize.

2.2.1 Classical Artificial Neural Networks

Artificial Neural Networks (ANNs) [3, pp. 39–49] consist of computational units
called neurons that are interconnected by weighted connections, often simply
referred to as ‘weights’. ANNs are organized into layers, of which there are
three types: input, hidden and output. The input layer does not actually contain
neurons, but nodes that receive information from some source, which is passed
forward throughout the neurons in the hidden layers until it reaches the neurons
in the output layer. A generic ANN architecture can be seen in Figure 2.1.

Figure 2.1: Graph representation of a generic ANN with three input nodes,
two hidden layers with four neurons each and two output neurons.

So how does a neuron compute its output? A commonly used neuron is the
McCulloch and Pitts neuron [3, pp. 40–42] (also called a perceptron), where each
neuron computes the sum of products y between its inputs {x1, x2, ..., xn} and
the weights of the connections the inputs are passed through {w1, w2, ..., wn},
given by

y =

n∑
i=1

wixi. (2.1)

Given some activation function1 ϕ, the output of the neuron is given by ϕ(y).
Figure 2.2 illustrates this. An ANN consisting of perceptrons is called a multi-
layer perceptron.

1In the original McCulloch and Pitts neuron, the activation function was a simple threshold
function. In modern ANNs, we use other activation functions such as the sigmoid function or
the rectifier function (ReLU).
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Figure 2.2: McCulloch and Pitts neuron.

2.2.2 Spiking Neural Networks

Spiking Neural Networks (SNNs) [4] [5] are a type of ANNs with a lower level
of abstraction (more biologically plausible) than regular ANNs. Unlike ANNs,
they incorporate a temporal dimension, or a concept of time. In regular ANNs,
the information passed to the inputs are values. In SNNs, however, input comes
in the form of sequences of spikes, like a binary pulse signal. Just like biological
neurons, the neurons in SNNs have a membrane potential that changes each
time the neuron receives a spike as input. Once the membrane potential passes
a certain threshold, it gives an output in the form of a spike. This means that
neurons in an SNN do not give an output at every propagation cycle, unlike
regular ANNs.

Neuroplasticity

Neuroplasticity [6] is the continuous process of change of the synapses in the
brain in response to sensory stimuli such as pain, pleasure, smell, sight, taste,
hearing and any other sense an animal can have. This is the idea behind how
weights are adjusted in SNNs in order to learn. More specifically, they incor-
porate Hebbian Learning in the form of Spike Timing Dependent Plasticity
(STDP) [7], where the neuron’s weights of incoming connections (dendrites) are
adjusted depending on the relative timing of input and output spikes. Neurons
in SNNs have an associated learning rule that determines how to adjust the
weights of its inputs once it spikes. Four different Hebbian learning rules are
illustrated in Figure 2.3.
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Figure 2.3: Hebbian learning rules. The graphs illustrate the adjustment of
a weight (in percent) ∆w dependent on the relative timing between input and
output spikes ∆t. Image taken from [7].

2.2.3 Learning Paradigms

There are several different approaches to ML/DL. Which paradigm an approach
belongs to depends on the learning algorithm and to which degree supervision is
required in order to learn. The three common paradigms are called supervised
learning, unsupervised learning and reinforcement learning. Our work in this
thesis fits into a different paradigm, which is self-supervised learning.

Supervised learning

Supervised learning [3, p. 6] is the ML/DL paradigm of learning an approxima-
tion of some function that best maps a set of inputs to their correct outputs,
given a training set that contains example pairs of inputs and correct outputs
(also called labels or ground truths). With this training set, we are able to let
our model ‘practice’ predictions and gradually learn to approximate the function
we are interested in.

To train the model, an error function to be optimized is defined, based on the dif-
ference between the predicted outputs and the ground truths. During training,
the network receives input examples from the training set which are fed forward
throughout the neural network, resulting in the output. We then calculate the
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error of each such output with regards to the ground truths. The actual learning
happens when the weights are adjusted. A common method for adjusting the
weights of the model with supervised learning is called backpropagation, where
the error at the output layer is propagated backwards throughout the neural
network, allowing the adjustment of the weights in the hidden layers so that it
can make better approximations in the future. There are also other training
methods available for supervised learning, such as evolutionary algorithms.

Supervised learning is well suited for classification and prediction problems. For
example, it can be used to predict the score of a movie review based on the text
in the reviewer’s comment, or the classic ML example of predicting if an image
contains a cat or a dog. However, it is not very general, as a model resulting
from supervised learning is specialized at solving a specific problem. Training
sets are also required, and ideally these are very large. Large data sets can be
expensive to produce, and in the cases that they are not available, supervised
learning may not be applied.

Unsupervised learning

In unsupervised learning [3, p. 181], no ground truth is provided from the train-
ing data during training2. Since unsupervised learning methods have nothing
to practice against, they instead look at the input data and try to categorize
them together based on intrinsic similarities. Unsupervised learning models can
also mimic input data, that is to generate new data samples with the same
statistics as the input data set. In other words, the data itself is used to guide
the learning.

In order to understand how such methods work in practice, we will take a look
at a simple clustering algorithm called K-means Clustering [3, pp. 282–285].
This method does not involve neural networks, but is easy to understand. In
K-means Clustering, the data is divided into K classes (or clusters) given that
you are able to determine how many clusters your data set should be divided
into. The algorithm is initialized by placing K center points for clusters in your
data set at random. Each data point is assigned to the class representing the
closest center point. Once all the data points have been assigned to a cluster,
the center point is moved to the mean of the points assigned to it. This process
is iterated until convergence. An illustration of how the algorithm clusters data
points is shown in Figure 2.4.

Another unsupervised approach that involves neural networks is called Gener-
ative Adversarial Nets (GAN) [8]. In GAN, two neural networks are trained
simultaneously: one generative model G that generates new ‘fake’ data similar
to the training data, and one discriminative model D that estimates the prob-
ability that an input sample came from G rather than the training data. G is
trained in a way so that it maximizes the error of D’s predictions.

2Ground truths may be used in unsupervised learning for performance validation.
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Figure 2.4: Visualization of the K-means Clustering algorithm. Image taken
from https://rpubs.com/cyobero/k-means.

Reinforcement learning

We have seen how supervised learning trains a model by providing it the cor-
rect answers from the training data, and how unsupervised learning trains by
exploiting similarities in the data. Reinforcement learning [3, pp. 231–246] can
be described as a paradigm somewhere in between the two. In reinforcement
learning, the model receives feedback that quantifies how good an answer is,
but not how to improve it. In other words, the reinforcement learner needs to
search for different strategies in an attempt to figure out which one gives the
best solution.

It can be explained in terms of an agent interacting with an environment. In the
context of reinforcement learning, the agent is the learner, and the environment
is where it is learning and what it is learning about. The environment provides
the agent with input in the form of states, and gives feedback about how good
a strategy is through some reward function. The ultimate goal of the agent is
to find a strategy that maximizes the total reward.

Reinforcement learning is based on the concepts of states and actions. The
states are given as input to the agent from the environment, which maps them
to actions that will maximize the total reward. This mapping from states to
actions is called the policy, π. Given a state St at time step t, the agent performs
an action At and receives a reward Rt+1 from the environment which ends up
in state St+1. This cycle is illustrated in Figure 2.5.

Since future rewards are uncertain, and we often care more about immediate
rewards, future rewards are usually discounted3. The total future reward R
from time step t is therefore given by

R =

∞∑
k=0

γkrt+k+1, γ ∈ [0, 1], (2.2)

where γ is the discount factor for future rewards.

3Temporal discount is also a phenomenon found in human decision making [9].
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Figure 2.5: The reinforcement learning cycle.

Generally, there are two classes of reinforcement learning problems: episodic
and continuous. In episodic problems, learning is split into episodes where each
episode has a terminal state, which means that the majority of the rewards can
be given at the end. An example is the video game Super Mario Bros., where
the goal is to navigate Mario to a flag pole (the terminal state) at the end of
each episode. Continuous problems, on the other hand, continue forever. In
other words, they have no terminal state. An example is the video game Flappy
Bird, where the goal is to navigate a bird between as many pipes as possible
without crashing.

Self-supervised learning

In self-supervised learning [10], there is no external supervision involved in the
learning of the model. Instead, the input itself is used to adjust the controller of
the model through some sensory response. A type of self-supervised learning is
called embodied learning, where an agent interacts with an environment through
its senses.

To get an idea of what self-supervision through embodiment means, we take a
look at a simple scenario. Imagine someone tasting some food they have never
seen or tasted before. It might taste disgusting or delicious, and their sense
of taste will provide them with a response corresponding to a punishment or
reward respectively. If it was disgusting, they are less inclined to eat it again.
On the other hand, if it was delicious they have now learned a new type of food
that they like. The taste for delicious and disgusting food was acquired through
several years of supervised evolution [11]. So now, even without supervision
from the environment, one can interact and learn something from one’s own
sensory experience.
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2.3 Evolutionary Algorithms

An evolutionary algorithm (EA) [12, pp. 25–34] [13] is a meta-heuristic4 opti-
mization algorithm that draws inspiration from biological evolution. EAs are
population-based, which means that the algorithm processes a set of multiple
candidate solutions simultaneously. The underlying idea stems from Charles
Darwin’s theory of evolution [15], where the individuals in the population com-
pete within some environment under environmental pressure, which in turn
causes natural selection. For a given optimization problem with a fitness func-
tion to be maximized, we can then apply this function to the candidate solution
as a measure of fitness. Since the superior solutions and their offspring are more
likely to survive, the overall performance of the solutions in the population in-
creases.

There are several subclasses of EAs that are specialized for different applications
and problems. Some of the most popular variants are called Genetic Algorithms
(GA), Genetic Programming (GP), Evolutionary Programming (EP) and Evolu-
tionary Strategies (GS). While these differ in certain areas, such as how solutions
are represented (genotype), they all share the same general scheme of an EA.

2.3.1 General Scheme

At the very beginning of a run of an EA, an initial population is generated. The
individuals in the initial population are typically randomly generated, but it is
also possible to apply problem-specific knowledge during initialization.

The next step, called parent selection, is to sample candidate solutions to be
recombined with each other into new solutions, similar to mating between indi-
viduals in a biological population.

Once pairs of parents are selected, a binary variation operator, called recombi-
nation or crossover, is applied to the two individuals. Recombination merges
information from both parents into one or two offspring.

In addition to recombination, most EAs also use a mechanism called mutation to
explore diverse solutions. A mutation is a binary operation on a single individ-
ual. Typically, an individual has a low chance of mutating between generations,
where the mutation is a small change in the solution. A mutation can be applied
to an offspring, or an offspring can be created by mutation alone.

After the algorithm has generated an additional set of new candidates (the
offspring), the fitness function is then applied to all the solutions to measure
their performance. Based on their fitness score, both offspring and parents
are selected for a place in the new population of the next generation, where
individuals with higher fitness have a higher chance of being selected.

4A meta-heuristic is a higher level, problem independent, iterative generation strategy that
helps to guide an underlying search algorithm [14].
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This whole iteration may be repeated until some termination condition has been
achieved. This could be that a satisfactory solution has been found, or a com-
putational limit has been reached, at which point the algorithm will terminate
and the individual with the highest fitness is selected as the solution.

This general scheme is visualized in Figure 2.6. It is also worth noting that
not all EAs include every step in the scheme. EP, for example, does not use
recombination.

Figure 2.6: Flowchart representation of an EA.

2.3.2 Genotypes

The first step in defining an EA is how to link the original problem in the
‘real world’ to the problem solving space where the EA operates. Optimization
problems can be complex, like optimizing the height and width of an airplane
wing or the path of the Travelling Salesman Problem. To be able to apply EAs,
it is often necessary to simplify or abstract some aspects of the real world. In
other words, we need to define a way to represent the objects that we wish to
optimize in a way that can be stored, evaluated and manipulated by a computer.

The solutions in the context of the ‘real world’ are called phenotypes, while the
encoding of the phenotype, or the individuals within the context of the EA, are
called genotypes (also called genomes). In the example of the airplane wing, the
phenotype is the actual physical wing itself, and the genotype could for example
be a collection of floating point numbers containing the dimensions of the wing.

There are numerous possible data structures that can be used as genotypes.
Genotypes can be simple or they can be more complex objects that include
multiple features, which are often referred to as ‘genes’. Some common genotype
representations are listed below:

• Binary representation (bit strings);

• Integer representation;
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• Real-valued or floating-point representation;

• Permutation representation;

• Tree representation [12, pp. 75–76].

Choosing the genotype has multiple implications for the further definition of the
EA. How the fitness function is defined, as well as recombination and mutation
must be done with the genotypic representation in mind. If the genotype is a
permutation, it will need a different kind of strategy for recombination than a
genotype that is a floating point number. As for mutation, if the genotype is a
permutation, a mutation could be to swap the order of two subsequent members
of the permutation, while a mutation of a floating point number could be a small
increase or decrease to the value of a gene.

There are two main approaches to how the genotype can be mapped to its
phenotype. They are called direct and indirect encoding. In direct encoding,
every feature of the phenotype are explicitly defined directly in the genotype.
The genotype in an approach using indirect encoding is more like a compressed
representation that does not directly represent what the phenotype will look
like, but functions more like a set of instructions on how the phenotype should
develop, much like DNA in living beings.

2.4 Neuroevolution

Neuroevolution [16] is the application of EAs on neural networks. In neuroevo-
lution, EAs may be utilized to evolve features of the neural networks, such as
weights, topology, learning rules and activation functions, with the ultimate
goal of optimizing the performance of the neural network.

The different features of a neural network are topics for evolution. We can
roughly divide the levels that neuroevolution operates on into three categories:
connection weights, network topology and learning rules. Historically, the most
common way of evolving neural networks is by evolving the weights. Crossover
and mutation is utilized to evolve the weight values of a network instead of
using gradient based methods such as backpropagation. Evolving the topology
enables neuroevolution to explore neural network architectures and adapt to
problems without the need of human design and predefined knowledge. Evolving
the learning rules is especially interesting with regards to Artificial General
Intelligence (AGI), because it can be regarded as a process of ‘learning how to
learn’. Like with evolving topologies, this also enables automatic design and
discovery of novel learning rule combinations within the neural network.

From the perspective of the EA, the neural networks serve as the phenotype.
Just as with the general case of EAs, a central problem when defining any
neuroevolution algorithm is how to encode the neural network into a genetic
representation. Genotype encoding schemes can be divided into two main cat-
egories: direct and indirect encoding. In direct encoding schemes (used by
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most neuroevolution algorithms) the genome contains information about every
node and the connections between the nodes, while indirect encoding usually
only specifies the rules for how a neural network may be constructed from the
genome.

2.4.1 Neuroevolution of Augmenting Topologies

NeuroEvolution of Augmenting Topologies (NEAT) [17] is a Topology and Weight
Evolving Artificial Neural Network (TWEANN) neuroevolution algorithm. NEAT
presents a solution to the competing conventions problem, in addition to remov-
ing the necessity of designing topologies for the networks to be evolved.

Two networks can represent the exact same function even though their encod-
ings are different, as illustrated by Figure 2.7. This is called the competing
conventions problem, and offspring generated by competing conventions typi-
cally have poor fitness since it will lose desirable properties from its parents.
NEAT’s solution is to historically mark each gene with an innovation number
that identifies the historical ancestor of each gene. Whenever a new connection
gene emerges, it is assigned a new innovation number and stored in a global
innovation list. This way, the algorithm is able to look up and identify equal
genes to avoid competing conventions.

Figure 2.7: The competing conventions problem. The figure illustrates how
recombination between two functionally equivalent networks produce damaged
offspring. Image taken from [17].

NEAT’s genotype represents the linear connectivity of a neural network and con-
tains genes for both nodes and connections. The node genes contain a unique
node identifier and information about what type of node it is (input, hidden
or output). Each connection gene contains references to the in-node and the
out-node that it connects, the weight value of the connection, an enable-bit that
determines whether the connection gene is expressed or not, and an innovation
number as previously described. If a gene is not expressed in the genotype, it
will not be included in the phenotype. The relationship between genotype and
phenotype is illustrated in Figure 2.8. NEAT features three different mutation
operators: mutating weight values, adding connections and adding nodes. The
node and connection mutations are illustrated in Figure 2.9. The weights are
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Figure 2.8: An example of genotype to phenotype mapping in NEAT. Image
taken from [17].

mutated by simply modifying the value of the weight. When adding a connec-
tion, a new connection gene is created and added to the genotype. When adding
a node, it’s in practice inserted in between a connection. The old connection
is disabled, and the new node is added to the genotype together with two new
connection genes: one from the input to the disabled gene to the new gene, and
one from the new gene to the output of the old gene. When crossover is applied,

Figure 2.9: Illustration of how nodes and connections are added to neural
networks through mutation. Image taken from [17].

connection genes with the same innovation numbers in both parents are lined
up. The genes with matching innovation numbers are randomly chosen from
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either parent, and the rest of the genes are inherited from the parent with the
best fitness value.

In order to protect the emergence of innovative new topologies and allow them
time to optimize their structure, NEAT features speciation. The idea of speci-
ation is that individuals primarily compete within their own niche rather than
with the entire population. NEAT implements speciation by calculating a mea-
sure of distance δ between individuals based on the number of excess genes E
and disjoint genes D, as well as the average weight difference of matching genes
W , given by

δ =
c1E

N
+
c2D

N
+ c3W, (2.3)

where N is the total number of nodes in a gene and c1, c2 and c3 are coefficients
that can be modified to adjust the importance of the different factors.

If the distance δ between two individuals is above some threshold δth, the two
individuals are defined as belonging to different species and are unable to be
crossed over with one another.

To ensure diversity in the population and to prevent a single species from being
too dominant in the population, NEAT also uses a population management
approach called fitness sharing. This means that all individuals of a species
share the fitness of their niche, which encourages exploring a variety of diverse
solutions even though they might have a lower fitness than a more populous
niche.

2.4.2 Neuroevolution of Artificial General Intelligence

The neuroevolution component of NAGI [18] is a modification of NEAT. The
actual algorithm is largely the same, but the features in the genotype of the in-
dividuals are different, partly because the phenotypes intended for NAGI come
in the form of SNNs. The genotype of individuals in NEAT includes information
about the weights of a network. NAGI’s focus is on the self-learning capabilities
of artificial neural networks. We do not want new individuals to inherit knowl-
edge about the environment, and information about the weights of the SNNs are
therefore not included in the genotype, but instead randomly initialized for each
individual in every generation. In the absence of weights, the genotype includes
information about the type of neuroplasticity in a neuron, and if a neuron is
either inhibitory or excitatory.

Fitness of individuals is measured by their lifetime after a simulation in a re-
active and mutable environment. When an agent interacts with a reactive en-
vironment, it must create some sort of reaction in the agent which is either
positive, negative or neutral. This is necessary in order for learning to happen.
A mutable environment means an environment that can change its structure
and rules during simulation.
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Chapter 3

Related Work

In this chapter we refer to previous research that has used similar approaches
to those used in the NAGI framework.

3.1 Adaptive NEAT

Stanley et al. [19] present an approach combining NEAT with adaptive synapses,
utilizing local Hebbian learning rules to adjust the weights of a network. The
intent of the approach is to train controllers for agents interacting in an environ-
ment where they forage for food. The authors verified the performance of this
approach both with and without adaptive synapses, and their results show that
networks in both cases reach maximum fitness. Because of this, they argued
that they were displaying adaptive properties.

This approach is quite similar to the approach in the NAGI framework, with
some key differences. Importantly, agents were interacting with static envi-
ronments, meaning an environment never changed its state during the agents
lifetime. Secondly, learning rules were associated to connections, as illustrated
in Figure 3.1. In the NAGI framework a learning rule is instead associated to a
neuron and affects all the incoming connections to that neuron.
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Figure 3.1: Illustration of how learning rules are assigned to connections. Image
taken from [19].

3.2 Weight Agnostic Neural Networks

Gaier and Ha [20] present their Weight Agnostic Neural Networks (WANNs)
approach where they question the importance of weight parameters of a neural
network in comparison to the network architecture in regards to the learning
capabilities of a network. In their work, they explore to what extent a net-
work architecture alone, without learning any weight parameters, is able to
solve a given task. To this end, they sample a single weight parameter from a
uniform random distribution that is shared between every single connection in
the network. They demonstrated that they were able to find minimal network
architectures that could solve several reinforcement learning tasks using this
approach.

3.3 Polyworld

Some of the key driving forces in natural evolution for many species are cooper-
ation and competition. Certain species are absolutely dependent on each other
and achieve much more together with other individuals in flocks or packs than
they would alone. Competition both inter- and cross-species serves as pressure
pushing the most fit individuals to figure out the best way to survive. For these
reasons, there are good arguments to be made that multi-agent environments
are promising when searching for AGI.
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One of the first approaches using multi-agent environments is the PolyWorld eco-
logical simulator by Yaeger [21]. PolyWorld is a simulated environment where
agents forage for randomly generated food. These agents have artificially evolved
neural network controllers that utilizes Hebbian learning. The agents can in-
teract both with the environment and each other by eating, moving, fighting,
mating, change their field of view and communicate by changing the brightness
of their bodies. Their results showed that the behavior that emerged from the
agents in PolyWorld showed similarities to behavior seen in natural occurring
environments.

3.4 Projective Simulation for AI

One of intelligence’s many manifestations is creativity, a phenomenon where
something new and valuable is formed. Creativity comes from being able to
imagine or project something that has never happened or existed, and extrap-
olate previous limited knowledge to something new. In other words, creativity
allows intelligent beings to imagine unprecedented scenarios, and to relate pre-
viously experienced scenarios with future conceivable scenarios. For example,
applying music theory and musical inspiration from other artists into the process
of constructing a completely new song is creativity in motion.

Briegel and De las Cuevas [22] present a scheme of information processing for
intelligent agents which allows for an element of creativity as described above,
allowing agents to adapt based on experience. They call their central feature
Projective Simulation (PS), which allows agents to project themselves into pos-
sible future scenarios based on previous experience. PS uses a memory system
which they call Episodic and Compositional Memory (ECM) that serves as the
basis that allows agents to simulate possible future actions before they decide
on their actual action. In broad strokes, ECMs are stochastic networks of clips,
which represent previous experience. The ECM is constantly updated in three
different ways:

1. By updating the transition probabilities between existing clips;

2. By creating new clips based on experience (i.e. new input);

3. By creating new clips from existing ones.

PS then happens by doing a random walk through the ECM, which when pro-
cessed influences the action an agent makes together with perceived input as
illustrated in Figure 3.2.
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Figure 3.2: Illustration of the information processing flow in an agent using
PS. Illustration taken from [22].

3.5 Neural MMO

Suarez et al. [23] present an AI environment inspired by the video game
genre Massively Multiplayer Online Role-Playing Games (MMORPGs or sim-
ply MMOs), aiming to simulate the setting of a massive number of organisms
competing for limited resources. The environment pressures the agents to learn
and adopt robust combat and navigation strategies in order to survive in the
presence of a large number of other agents attempting to do the same.

The results from their experiments show that population size magnified the
development of behavior needed to survive due to increased exploration. Agents
trained in a large population outclassed agents trained in smaller populations
when pitted against each other. In their approach, agents could also have shared
or unshared weights. They found that agents with unshared weights more so
than agents with shared weights developed policies that naturally diverged to
fill different niches in order to avoid competition, and thus they found that niche
development was magnified by increasing the number of agents with unshared
weights in the population.

3.6 A Brain-Inspired Framework for Evolution-
ary Artificial General Intelligence

Nadji-Tehrani and Eslami [24] present A Brain-Inspired Framework for Evolu-
tionary Artificial General Intelligence (FEAGI), a framework inspired by the
evolution of the human brain, which utilizes neuroevolution, both excitatory
and inhibitory spiking neurons, neuroplasticity and neuronal/synaptic prun-
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ing1. They present a proof of concept which they claim demonstrates how a
simplified model of the human visual cortex is capable of character recognition.

3.7 Unsupervised Learning of Digit Recognition
Using Spike-Timing-Dependent Plasticity

Diehl and Cook [26] present an approach to digit recognition using SNNs with
conductance based synapses, STDP for weight changes, lateral inhibition (an
excited neuron has the ability to reduce the activity of its neighbors) and adap-
tive spiking thresholds. They did not use a teaching signal or labelled data
in their approach. Their architecture was able to achieve a 95% accuracy on
the MNIST benchmark data set. Since no domain-specific knowledge was used
when training the architectures, they argue that this points towards the general
applicability of the resulting networks.

3.8 Social Learning vs Self-teaching in a Multi-
agent Neural Network System

Le et al. [27] present a study where they compare the effect of social learning
with the effect of individual learning. They propose a neural architecture called
a ‘self-taught neural network’ which allows an agent to learn by itself without
any external supervision. This network architecture operates with two mod-
ules, both of which are neural networks: an action module and a reinforcement
module, which have the same sets of inputs, but differing hidden and output
neurons. The action module takes sensory information as inputs and produces
reinforcement outputs in order to guide the action of the agent. The goal of the
reinforcement network is to provide reinforcement signals to guide the behavior
of each agent.

They simulated a multi-agent system where agents need to develop adaptive
behavior in order to compete with each other in order to survive. The results
from their experiments showed that the evolved self-taught behavior was the
most effective in their simulated environment.

1Synaptic pruning is a process happening in the brain of mammals (including humans)
where synapses are gradually being eliminated between early childhood and puberty [25].
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Chapter 4

Neuroevolution of Artificial
General Intelligence

This chapter contains a detailed explanation of the approaches that are used in
this thesis, which make up the NAGI framework. The first section explains the
concept behind the framework itself, while the subsequent sections explain its
components in detail.

4.1 Framework concept

Neuroevolution of Artificial General Intelligence (NAGI), proposed by Pontes-
Filho and Nichele [18], is a framework that brings together approaches from AI,
evolutionary robotics and artificial life [28]. The authors of NAGI envision that
the framework can lead research a step in the right direction for the emergence
of AGI in its simplest form. The main concept and inspiration behind the
framework stems from the long-lasting natural evolution of general intelligence
found in biological organisms.

The learning paradigm in focus is self-supervised learning through embodiment,
which is also inspired from how biological organisms do most of their learning.
This is done by simulating an agent interacting with an environment that is
constantly changing. The hypothesis is that by using this approach, it will
lead to the emergence of simple models that have general, problem independent
learning capabilities, and that are able to adapt in changes to their environment
without any supervision from the environment or otherwise.

The following is a condensed summary of the framework concept. An agent is
equipped with a SNN as its control unit. The SNN topologies are evolved by
an EA starting from a minimalist structure which gets increasingly bigger and
more complex as generations go by. The agent is placed in a mutable environ-
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ment where the rules of interaction are constantly changing. The mutability
of an environment is important in order for the agents to be able to develop
generalizing capabilities (or ‘learn how to learn’) and solve the survival problem
for multiple environments rather than just learning how to survive optimally in
a single static environment. Over time, agents that are consistently able to sur-
vive in changing environments should be able to survive in environments never
seen before, even by their ancestors. Agents survive for longer if they perform
the correct actions, which is determined by some logic dependant on the mod-
eled problem. The same action can be correct and incorrect at different points
in time because of the mutable nature of the environment. Agents have access
to the environment through an ‘interface’ of sensory inputs. The environment
provides rewards and punishment to the agent through these senses. Fitness of
each agent is measured by how long they survived in an environment, so the
goal for each agent is to survive for as long as possible.

4.2 Spiking Neural Networks as Control Units

This section explains how to encode input for SNNs and some spiking neuron
models that were used in the framework. SNNs are explained in Section 2.2.2.

4.2.1 Data Representation and Input/Output Encoding

In classic ANNs, input and output usually come in the form of integers or
floating point values. In SNNs, however, the data flowing in and out of a
network are encoded as a sequence of spikes with an associated firing rate, i.e.
a frequency, or the number of spikes per second. The firing rate usually has a
minimum and a maximum value, and signals can be encoded to either continuous
firing rates in between these, or binary values. The range of the firing rates
can either be encoded explicitly, such as values in the range [0Hz, 100Hz], or
simplified such as a real number in the range [0, 1]. From these firing rates,
spike trains (sequences of spikes over a time interval) are generated which serve
as input (also called stimulus) to the network. The spikes can be sampled
from different probability distributions such as Poisson, Normal or Uniform
distributions, resulting in different inter-spike interval patterns.

In the approach used in this thesis, we used binary values for the firing rates.
Binary data values such as 0 and 1 were encoded into low and high frequencies
respectively. We also chose to use One Hot Encoding for the inputs. A one-hot
is a group of bits where the only legal combinations of values are those where a
single bit has the value 1, and the rest have the value 0 [29, p. 129]. An example
is shown in Table 4.1.
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Binary One-Hot Firing Rate
0 01 (low, high)
1 10 (high, low)

Table 4.1: How binary encoded data values coincides with one-hot encoded
values, which in turn translates into a tuple of firing rates for SNN input.

4.2.2 Network Architecture

Each SNN has a fixed number of input nodes and output neurons, and an
arbitrary number of hidden neurons. Hidden neurons can be both excitatory
or inhibitory, while output neurons are always excitatory. Cycles are permitted
while duplicate connections between two neurons are prohibited. Neurons may
also be connected to themselves.

4.2.3 Spiking Neuron Models

There are many different models available for spiking neurons that differ in
complexity and computational requirements. In this section we will explain two
models that were explored for use in NAGI: the biologically plausible Izhikevich
Neuron Model and the simpler Integrate and Fire Neuron Model.

Izhikevich Neuron Model

The first neuron model that was considered for the framework is the Simple
Model of Spiking Neurons presented by Izhikevich [5]. The model is claimed to
be as computationally efficient as the integrate and fire model, and as biologi-
cally plausible as the Hodgkin-Huxley model [30].

Mathematically the model operates with two variables u and v:

• v denotes the membrane potential of the neuron;

• u denotes the membrane recovery of the neuron.

In addition, it uses four parameters a, b, c and d that affects how the value of
these variables are manipulated:

• a decides the time scale for the recovery variable u. A smaller value for a
results in a slower recovery for u;

• b decides the sensitivity of the recovery variable u with regards to the
fluctuations of the membrane potential v below the firing threshold. A
bigger value for b makes the recovery variable u follow the fluctuations of
v more strongly;
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• c decides the reset value for the membrane potential v following an output
spike;

• d decides the reset value for the recovery variable u following an output
spike.

Different combinations of values for a, b, c and d result in neurons with varying
firing patterns, some of which can be seen in Figure 4.1. To update v and u,

Figure 4.1: Different firing patterns resulting from different combinations of
values for a, b, c and d. Electronic version of the figure and reproduction
permissions are freely available at www.izhikevich.com.

the equations for the derivatives with regards to the time t are given by

v′ = 0.04v2 + 5v + 140− u+ I (4.1)

u′ = a(bv − u) (4.2)

where I is the current going through the neuron at that point in time. We can
then then express the changes in these variables, ∆v and ∆u, with regards to a
time step size ∆t with the following equations:

∆v(∆t) = ∆t(0.04v2 + 5v + 140− u+ I) (4.3)

∆u(∆t) = ∆ta(bv − u) (4.4)

Given input values {x1, x2, ..., xn} and the weights of the connections the inputs
are passed through {w1, w2, ..., wn} at time step t+ 1, the current I is updated
by

I = b+

n∑
i=1

wixi (4.5)

where b is the bias current into the neuron.

v and u are reset to the following after the membrane potential has exceeded
the firing threshold vth:

if v > vth, then

{
v ← c
u← u+ d

(4.6)
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Integrate and Fire Neuron Model

The Integrate and Fire (IF) Neuron Model is one of the first neuron models
that was explored and is still used somewhat frequently today because of its
computational simplicity. The idea behind the model is to represent a neuron
with a simple electric circuit consisting of a resistor and a capacitor connected
in parallel to each other [31], as illustrated in Figure 4.2.

Figure 4.2: Illustration of an IF neuron modelled after an electronic circuit.
Image taken from [31].

A neuron is represented in time by the equation

I(t) = Cm
dv(t)

dt
(4.7)

which is the derivative with regards to time of the law of capacitance q = CV ,
where q is the electronic charge, C is the capacitance and V is the voltage.
When the membrane potential v exceeds the membrane threshold vth, a spike is
released and the membrane potential returns to the resting membrane potential
vrest:

if v > vth, then v ← vrest (4.8)

Simplified Integrate and Fire Neuron Model

We can introduce a simplified IF model which mimics the behavior of the IF
model while abstracting away its electric circuit nature. A neuron’s membrane
potential v is increased directly by its inputs (similar to the current in the
Izhikevich Model) and decays over time by a factor λdecay. We can then express
the change in membrane potential ∆v with regards to a time step ∆t by the
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equation

∆v(∆t) =

n∑
i=1

wixi −∆tλdecayv (4.9)

Like the IF model, if the membrane potential v exceeds the membrane thresh-
old vth, a spike is released and the membrane potential returns to the resting
membrane potential vrest as expressed by Equation 4.8.

4.2.4 Homeostasis

Homeostasis in biological terms is a steady equilibrium of physical and chemical
conditions in a living system. We want to achieve something similar for our
neural networks. Neurons can have inhomogenous inputs, which could lead to
very different firing rates. For example, the firing rate of a neuron with five
incoming connections may dominate the firing rate of a neuron that only has
one incoming connection. It is desirable that all neurons have approximately
equal firing rates [32]. In order to homogenize the firing rates of the neurons in
a network, the net membrane threshold v∗th is given by

v∗th = min(vth + Θ,

n∑
i=1

wi) (4.10)

where Θ is increased every time a neuron fires and decays exponentially. Each
neuron has an individual Θ. This way, a neuron firing very frequently will get an
increasingly large membrane threshold and by consequence a lower firing rate,
while a neuron with weak incoming weights will get an increased firing rate.

4.3 Spike Timing Dependent Plasticity

Adjustment of the weights of the connections going into a neuron happens on
every input and output spike to and from a neuron through STDP. This is
done by keeping track of the time elapsed since the last output spike, as well
as the time elapsed since each input spike for each incoming connection within
a time frame, called the STDP time window, which is usually set to be around
±40ms − 50ms. The difference between pre and post synaptic spikes, or the
relative timing between them, denoted by ∆t is given by the equation

∆t(tout, tin) = tout − tin (4.11)

where tout is the timing of the output spike and tin is the timing of the input
spike.

The synaptic weight change ∆w is calculated in accordance to one of the four
Hebbian learning rules mentioned in Section 2.2.2. An illustration of the curves
corresponding to each learning rule can be seen in Figure 2.3. The functions for
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each of the four learning rules are given by the equations below

∆w(∆t) =


A+e

−∆t
τ+ ∆t > 0

−A−e
∆t
τ− ∆t < 0

0 ∆t = 0

Asymmetric Hebbian (4.12)

∆w(∆t) =


−A+e

−∆t
τ+ ∆t > 0

A−e
∆t
τ− ∆t < 0

0 ∆t = 0

Asymmetric Anti-Hebbian (4.13)

∆w(∆t) =

 A+g(∆t) g(∆t) > 0
A−g(∆t) g(∆t) < 0
0 g(∆t) = 0

Symmetric Hebbian (4.14)

∆w(∆t) =

 −A+g(∆t) g(∆t) > 0
−A−g(∆t) g(∆t) < 0
0 g(∆t) = 0

Symmetric Anti-Hebbian (4.15)

where g(∆t) is a Difference of Gaussian function given by

g(∆t) =
1

σ+
√

2π
e
− 1

2 (
∆t
σ+

)2 − 1

σ−
√

2π
e
− 1

2 (
∆t
σ−

)2

(4.16)

A+ and A− are parameters that affect the height of the curve, τ+ and τ+ are
parameters that affect the width or steepness of the curve of the Asymmetric
Hebbian functions and σ+ and σ− are the standard deviations for the Gaussian
functions used in the Symmetric Hebbian functions. It is also required that
σ− > σ+. By using the graphing tool Desmos (www.desmos.com) we manually
found fitting ranges for each of these parameters, which can be seen in Table
4.2 and Table 4.3.

Symmetric
A+ [1.0, 10.6]
A− [1.0, 44.0]
σ+ [3.5, 10.0]
σ− [13.5, 20.0]

Table 4.2: Symmetric STDP parameter ranges.

Asymmetric
A+ [0.1, 1.0]
A− [0.1, 1.0]
τ+ [1.0, 10.0]
τ− [1.0, 10.0]

Table 4.3: Asymmetric STDP parameter ranges.

Weights can take values in a range [wmin, wmax], and every neuron has a weight
budget wbudget it must follow. What this means is that if the sum of a neu-
ron’s incoming weights exceed wbudget after STDP has been applied, they are
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normalized to wbudget, given by

if

n∑
i=1

wi > wbudget, then wi =
wiwbudget∑n

i=1 wi
. (4.17)

4.4 Modified NEAT

The framework uses an EA to evolve the SNNs for agents which is a modified
version of NEAT, explained in Section 2.4.1. Most of the modifications have
been made to accommodate for the fact that we are using SNNs in place of
regular ANNs. This section will explain all the modifications to the EA. Any
part of the EA not mentioned in this section functions exactly the same as in
NEAT.

4.4.1 Genome

At the top level, the genome looks a lot like the genome in NEAT. It contains
a collection of node genes and a collection of connection genes. It’s on the gene
level where the modifications to the genome are made, which we will examine
in the following sections. A full example genome is illustrated in Figure 4.3.

Node Genes

Like in NEAT, the node genes come in three types: input nodes (or sensor nodes,
as they are called in NEAT), hidden nodes and output nodes. Depending on
the type of the node gene, it will have a different collection of loci1.

The input nodes serve the same purpose as they do in regular NEAT. They do
not actually represent neurons, they simply receive input signals and distribute
them along the network. As such, they have not been modified at all. Both the
hidden nodes and the output nodes represent spiking neurons. They both have
three additional loci: a learning rule, a collection of learning rule parameters
and a bias.

The learning rule is one of the four Hebbian Learning rules seen in Figure 2.3.
The collection of learning rule parameters contain four parameters that decides
the shape of curve corresponding to the learning rule. They are different for
symmetric and asymmetric learning rules, with the symmetric parameters being
{A+, A−, σ+, σ−} and the asymmetric parameters being {A+, A−, τ+, τ−}.
Refer to Section 4.3 for an explanation of each parameter. The bias is a Boolean
value that determines whether it should have a constant bias signal, analogous
to the background noise of a neuron.

1In EA terms, a value within a gene is also called a locus (plural loci).
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Figure 4.3: An example genotype to phenotype mapping in NAGI.

In addition, the hidden node genes have a locus with a Boolean value that
determines if it represents an inhibitory or excitatory neuron. This locus is not
included in the output node genes because they are always excitatory.

Connection Genes

The connection genes in our modified NEAT are very similar to the ones found
in regular NEAT. One important principle in the NAGI framework is that we
don’t want individuals inheriting information about the environment from their
predecessors. Because of this, the locus containing the value for the weight
are removed from the genome. Weights are instead assigned random values
during initialization when the genome is decoded into a SNN. We also chose to
rename two loci in the connection genes: the ‘in’ and ‘out’ node identifiers have
been renamed to ‘origin’ and ‘destination’ respectively to avoid confusion. A
connection points from the origin node to the destination node.
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4.4.2 Initializing Additional Loci

The following is a description of how each of the loci introduced to the genome
in NAGI are initialized:

• Excitatory/Inhibitory: A neuron is initialized either as a inhibitory or
excitatory neuron. The probabilities for the two outcomes can be different;

• Bias: A neuron is initialized either with or without a bias. The probabil-
ities for the two outcomes can be different;

• Learning Rule: A neuron is initialized with one of four Hebbian learning
rules described in Section 4.3. The probabilites for each outcome can be
different. In the approach used in this thesis, inhibitory neurons had a
higher probability of being initialized with the two Anti-Hebbian rules, and
excitatory neurons had a higher probability for the two ‘regular’ Hebbian
rules;

• Learning Rule Parameters: Each parameter is initialized by sampling
from a uniform distribution within the ranges listed in Table 4.2 and Table
4.3.

4.4.3 Mutating Additional Loci

The following is a description of how each of the loci introduced to the genome
in NAGI are mutated when a node mutates:

• Excitatory/Inhibitory: There is a chance with a predetermined prob-
ability that it changes from excitatory to inhibitory and vice versa;

• Bias: There is a chance with a predetermined probability that it gains a
bias (if it lacks one) or loses its bias (if it has one);

• Learning Rule: There is a chance with a predetermined probability that
the learning rule is changed to one of the three other learning rules. If
the learning rule changes from a symmetric learning rule to an asym-
metric learning rule or vice versa, the learning rule parameters are also
re-initialized as described in Section 4.4.2;

• Learning Rule Parameters: The learning rule parameters can mutate
in two ways, each with a predetermined probability:

– By incrementing or decrementing each parameter p by sampling from
a normal distribution with µ = 0 and σ2 = M(p) and adding the
sampled value to the current parameter value. M(p) is the mutate
scale for the given parameter and is given by the equation

M(p) = 0.2(pmax − pmin) (4.18)
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where pmax and pmin are the maximum and minimum values the
parameter can have, given by the ranges in Table 4.2 and Table 4.3.
The mutate scales for each parameter can be found in Table 4.4 and
Table 4.5;

– By fully re-initializing each parameter as described in Section 4.4.2.

Symmetric
M(A+) 1.92
M(A−) 8.6
M(σ+) 1.3
M(σ−) 1.3

Table 4.4: Symmetric learning rule parameter mutate scales.

Asymmetric
M(A+) 0.18
M(A−) 0.18
M(τ+) 1.3
M(τ−) 1.3

Table 4.5: Asymmetric learning rule parameter mutate scales.

4.4.4 Initial Population Topologies

At the start of the algorithm, every individual in the population consists of
only input and output nodes. There’s a few things to consider when initializing
their topology. One approach is to initialize every network densely connected2,
but that would mean that all genomes are equal initially, greatly narrowing the
search and also limiting the possible topologies, especially minimal ones. On the
other hand, if you initialize them completely randomly, there’s a good chance
that many individuals in the population will have ‘dead‘ nodes (nodes that are
not connected to the rest of the network), as illustrated in Figure 4.4.

As a balanced measure, we opted for the following approach when initializing
connections in the initial genomes: first, each output node is connected to one
input node. After that, every remaining possible connection has a chance of also
being included in the genome with a predetermined probability Iconnection. This
ensures that there is a path going to every output node and most likely from
every input node, which makes for ‘healthier’ initial topologies while keeping a
varied population.

2In a densely connected network, also called a Dense Neural Network, every single node in
a layer is connected to every single node in the next layer.
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Figure 4.4: A network with a dead input node (0).

4.4.5 Fitness Function

The fitness of an individual is measured through a simulation of agent-environment
interaction which is explained in Section 4.5.3. Performance is based on the life-
time t of an agent in an environment. We make use of a fitness function that
measures performance based on an agent’s lifetime t and is normalized for val-
ues in the range [0, 1] using the maximum possible lifetime Lmax and minimum
possible lifetime Lmin. The fitness function f is given by

f(t) =
t− Lmin

Lmax − Lmin
. (4.19)

4.5 Agent-environment Simulation

In this section we describe the different parts and actors that go into play during
simulation of agent-environment interactions.

4.5.1 Self-Supervised Learning Through Embodiment

Our approach suggests that agents are able to learn self-supervised through em-
bodiment, i.e. interacting with and sensing the environment with their bodies.
Since local learning rules are tasked with adjusting the weights, and by conse-
quence the behavior of the network, the learning approach is therefore within
the realm of self-supervision. However, simulated agents don’t have senses or
tangible bodies. Self-supervised learning is only plausible when interaction be-
tween an agent and the environment is mutually reactive (also referred to as
an agent interacting in a reactive environment), meaning that the environment
affects the agent and vice versa, for example the sensory-motor system of self-
driven cars driving on roads in the real world. Non-reactive environments do
not react to anything the agent does. An example is an object detector where
the environment only provides visual information with no other interaction.
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To achieve self-supervised learning through embodiment for non-reactive envi-
ronments, we propose Virtual Embodied Learning (VEL), a method for emu-
lating a virtual reactive environment. VEL introduces a sensory-motor system,
providing the agent with environmental rewards and penalties, as illustrated
in Figure 4.5. Additionally, VEL keeps track of information pertaining to the
internal state of the agent, like health and/or hunger.

Figure 4.5: Illustration of information flow and mechanisms allowing for self-
supervised learning through embodiment by use of VEL. Image taken from [18].

4.5.2 The Components of the Agent

The agent can be broken down into four main components, all of which interact
with each other in a feedback loop:

• Self-learning controller: A SNN as described in Section 2.2.2 and Sec-
tion 4.2;

• Sensors: The sensors provide input to the controller. The inputs can
further be broken into two types: the input samples from the environment
and the reward or penalty from the sensory-motor system;

• Actuators: The actuators keep count the number of spikes that has
occurred within a time window in the output nodes of the controller.
Different actuators represent different actions the agent can make. The
current action of the agent is determined by the actuator with the highest
current spike count. In the case of tied spike counts between actuators,
the action will be chosen from the actuator that previously had the highest
spike count;

• Internal States: In the work conducted in this thesis, this is simply the
agent’s health points, which were not used as sensory input.

All of the different components of an agent is illustrated in Figure 4.5.
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4.5.3 Flow of Agent-environment Simulation

The simulation starts with creating an agent from a genome evolved from our
EA, as well an environment. On creation, the environment creates an input
order and a state order. The order of the inputs can be any permutation of the
possible input types, but the order always loops after one full sequence of the
possible inputs have been presented to the agent. Similar to the input order,
the environment state order is random and loops once every possible state has
been active.

Once everything is set up, the agent is presented with input one at a time.
Interaction is then simulated for a predetermined number of time steps with a
predetermined step size, while the environment gives reward or penalty signals
and deals damage to the agent depending on the agents actuators. After a
predetermined number of inputs have been presented to and consumed by the
agent, the environment mutates into a different state.

The agent continuously loses health points (or receives damage) from living
in the environment. The damage an agent takes depends on the value of its
actuators and the environment state. In simple terms, if the agent is making
the correct decision, it takes minimal damage, while taking maximal damage if
making the wrong decision. In addition, if the agent is confident in its decision
(if the spike count in one actuator is considerably larger than the other), the
damage is either reduced or amplified based on whether the action for that ac-
tuator is correct or not. First, two partitions are calculated: a correct partition
pc, and an incorrect partition pi, given by

pc(sc, si) =

{
max(0,min(sc,st))−max(0,min(sc,st))+st

2st
sc + si ≤ 2st

sc
sc+si

sc + si > 2st
(4.20)

pi(sc, si) = 1− pc(sc − pi) (4.21)

where sc and si are the spike count for the correct and incorrect actions and st is
the minimum ‘target’ number of spikes. The purpose of st is to avoid assigning
a too high or low fitness to agents that fire few spikes through their outputs.
The agent takes damage at every time step given by

d(sc, si) = dcpc(sc, si) + dipi(sc, si) (4.22)

where dc and di are values for the damage an agent would take for a fully correct
or incorrect damage respectively. This is iterated until the agent runs out of
health points and ‘dies’. At the end of simulation, the fitness of the agent is
calculated from the fitness function expressed in Equation 4.19.

4.5.4 Mutable Environment

We’re looking to exploit and assert the self-learning and generalizing properties
of the evolving SNNs, which serve as controllers in agents tasked with surviving
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in their environment for as long as possible. We therefore introduce a mutable
environment, where the rules of survival are constantly changing.

In the real world, biological organisms inherit survival mechanisms that allow
them to adapt to the environment, like animals with camouflaging bodies that
mimic their habitat. Certain insects, like stick-bugs have inherited bodies that
makes them difficult to make out visually as long as they stay in their habitat
[33]. Some organisms have taken it a step further, allowing them to adapt to
changes in the environment. Certain octopi, fish, frogs and chameleons are able
to change the colour and/or texture of their bodies to blend in with their sur-
roundings (or for communication) [34][35], and furred mammals like the arctic
fox change the density and/or color of their coat depending on the season to
keep them from freezing or overheating, or to camouflage themselves in snow
[36].

In the following sections, we propose two types of mutable environment inspired
by such examples from nature. They both make use of binary inputs, but differ
in the number of input signals per input sample.

Food Foraging

We first propose a simple environment for food foraging simulation. The envi-
ronment provides the agent with two types of input, or food: black and white.
The agent can interact with food in one of two ways, by eating it or by avoiding
it. The food can either be toxic or healthy, and whether a color of food is toxic
or healthy is dependent on the state of the environment. For example, white
food can start out being healthy, and the agent should eat it. But once the en-
vironment mutates, it can suddenly make white food toxic, and now the agent
should avoid it. Figure 4.6 is a simple illustration of this type of environment.
The food is encoded in a way so that the agent is able to distinguish between
them, but the agent cannot know which food is healthy and which is toxic at
any one time. The agent can only figure this out by interacting with the food.
An incorrect action is defined by eating a toxic food, or avoiding a healthy food,
while a correct action is defined by eating a healthy food or avoiding a toxic
food. If the agent makes an incorrect action, it receives a penalty signal (repre-
senting pain, revulsion or hunger) and if it makes a correct action, it receives a
reward signal. The environment has four possible states which describe which
color of food is currently healthy: black, white, both or none. The correct action
for each state is shown by Table 4.6.

Food Truth Table

Input
Healthy

Black White None Both

Black Eat Avoid Avoid Eat
White Avoid Eat Avoid Eat

Table 4.6: Truth table showing the correct action for each combination of input
food color and healthy food.
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Figure 4.6: Simple illustration of a food foraging type environment using binary
encoding. Image taken from [18].

Logic Gates

In this environment, the mutable environment state is a two-input logic gate.
The environment provides the agent with two binary inputs of 0’s and 1’s. The
agent’s task is to predict the correct output for the current logic gate given the
current input. Similarly to the food foraging environment, it receives a reward
signal if it’s currently predicting the correct output, and a penalty signal if it’s
currently predicting the wrong output.

In order to measure the generalizing properties of agents, we propose the use
of two slightly different environments: a training environment, which is used in
calculating the fitness while running the EA, and a test environment which has
a fully disjoint set of possible environmental states. A full overview of the logic
gates found in both the training and the test environments, as well as exhaustive
truth values for all input and output combinations, are found in Table 4.7 and
Table 4.8.

Training Logic Gate Truth Table
Input

A B NOT A NOT B ONLY 0 ONLY 1 XOR XNOR
A B
0 0 0 0 1 1 0 1 0 1
0 1 0 1 1 0 0 1 1 0
1 0 1 0 0 1 0 1 1 0
1 1 1 1 0 0 0 1 0 1

Table 4.7: Truth table showing the correct output for each training logic gate.
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Testing Logic Gate Truth Table
Input

AND NAND OR NOR
A B
0 0 0 1 0 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 0 1 0

Table 4.8: Truth table showing the correct output for each testing logic gate.

38



Chapter 5

Implementation of the
NAGI Framework

In this chapter we briefly discuss choices related to the implementation of the
code, as well as giving credits to existing code that influenced the implementa-
tion. The code is available at https://github.com/krolse/neat-nagi-python.
The implementation is part of the Socrates Project [37] on GitHub, and future
development will be made in a fork of the original implementation which will
be made available at https://github.com/SocratesNFR/neat-nagi-python

at a later point.

5.1 Language

When deciding on the language for the implementation, there were two main
deciding factors. It made a lot of sense to choose a language that was familiar
to both the author and the supervisors, and we wanted the implementation
to be written in a language that’s accessible and relevant to the scientific AI
community. We decided on writing the implementation in Python 3 [38], because
it is widely used in AI computing, having access to excellent AI frameworks such
as PyTorch [39] and TensorFlow [40], as well as optimization packages such as
multiprocessing and NumPy.

5.2 Coding Practice

Reading and writing code is a great way to learn the inner workings of a subject,
such as SNNs and neuroevolution. However, it can be quite challenging to
comprehend an implementation of a complex subject, depending on how the
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code is written. This is especially true with dynamically typed languages like
Python where it can be confusing what data structures are being used in the
code. We wanted the implementation to be easy to read and follow so that it may
serve as a comprehensible resource later for anyone looking to learn or implement
any of the concepts used in NAGI. To achieve this we emphasized structure and
readability over pure performance during implementation. We made sure that
variables, arguments and functions had semantically descriptive names across
the entire implementation. We also made frequent use of type hints, a feature
introduced in the 3.5 version of Python 3 that allows you to specify type hints
of any argument or variable. While type hints doesn’t make Python a statically
typed language, it is valuable for readability and linting purposes. Below is a
short excerpt of code from the implementation that illustrates these practices.

1 def get_nth_top_genome(n: int, measure: str, results: Dict[int, Dict]):

2 individuals = [(generation_number, genome_key)

3 for (generation_number, value) in results.items()

4 for genome_key in value['population'].genomes.keys()]
5

6 if measure == 'fitness':
7 individuals.sort(key=lambda x:

8 results[x[0]]['fitnesses'][x[1]], reverse=True)

9 elif measure == 'accuracy':
10 individuals.sort(key=lambda x:

results[x[0]]['accuracies'][x[1]], reverse=True)

11 elif measure == 'end_of_sample_accuracy':
12 individuals.sort(

13 key=lambda x:

14 (results[x[0]]['end_of_sample_accuracies'][x[1]],
15 results[x[0]]['accuracies'][x[1]]),
16 reverse=True)

17 else:

18 raise Exception("Error: Faulty measure.")

19 generation, genome_id = individuals[n]

20 return results[generation]['population'].genomes[genome_id]

5.3 Credits

While much of the code in our implementation is original, we drew inspiration
from three repositories in certain areas of the code. Much of the code related
to SNNs, as well as some of the code for modified NEAT was inspired by the
code found in the GitHub repository neat-python, authored by McIntyre et al.
[41]. The code for modified NEAT is also inspired by code from Sean Wellecks
compact NEAT-implementation on the GitHub Gist neat.py [42]. The code
for visualizing neural network topologies is an expansion of the code related
to visualizing neural networks in the GitHub repository brain-tokyo-workshop
authored by Gaier and Ha [43].
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5.4 Implementation Storyline

Before the implementation of the framework could start, we had to divide it
into smaller tasks. First of all, we divided it into three main components: i)
SNNs, ii) Modified NEAT, and iii) agent-environment simulation.

We decided to start with implementing the code for SNNs first, as this would
give a better idea of which additional features that was going to be needed for
the modified NEAT. The first thing we did was to implement code for SNNs
with the Izhikevich neuron model, using neat-python by McIntyre et al. [41] as
a starting point. Once an early iteration of SNNs was implemented, we went on
to implement modified NEAT, using both neat-python and neat.py by Wellecks
[42] for inspiriation. After this, we implemented STDP functionality for the
SNNs, at which point we figured the parameters for the Hebbian learning rules
could be added to the genome and be evolved by the EA.

When most of the SNNs and modified NEAT was implemented, we started
writing tests to verify different parts of the code. In order to do this properly,
we needed some way of visualizing both network behavior and topology. We
implemented functionality for visualizing neuron behavior, weight modification
(STDP) and visualizing neural network, the latter of which we used brain-tokyo-
workshop by Gaier and Ha [20] as a starting point.

We encountered a challenge with visualizing our networks because we allow
the networks to create cycles of connections between neurons, which makes it
difficult to decide which layer a neuron belongs to. We solved this issue by
making use of NEAT’s innovation numbers:

1. Make a copy of the network, which is only used for calculating neuron
positions;

2. Identify all simple cycles in the network;

3. For each simple cycle1 in the copy, remove the connection with the largest
innovation number, if it still remains (it is possible that a single connection
can close multiple simple cycles);

4. Calculate node positions (layers) using the modified copy;

5. Visualize the original genome using the positions from the modified copy.

After visualization scripts were in place, we implemented the components needed
for simulation. We also made visualization plots for the network activity during
simulation, but we found that it was too complicated to analyze the activity of
the Izhikevich neurons. After some consideration, we decided to use the simpli-
fied IF neuron model instead as it would simplify the analysis and presentation

1A cycle or a circuit is a path of connections through a graph where the first and final
nodes are repeated. A simple cycle or a simple circuit is a cycle where the first and final
nodes are the only nodes repeated, meaning there is no smaller cycle contained within the
cycle [44, p. 164].

41



of a simulation. We re-used the implementation from the Izhikevich neuron
model and modified it to accommodate for the differences in the two models.

After this followed multiple iterations of parameter tweaking, bug-fixing and
testing until the implementation was performing as intended. We streamlined
the user experience of the framework by making use of the operative systems file
browsing. Finally, we wrote scripts for saving data structures, extracting data,
and visualizing many different data plots that show activity during simulation
and statistics from EA, which will be presented in Chapter 7.
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Chapter 6

Experiments

This chapter details the experiments and hypotheses that were defined in order
to answer the research questions of the thesis.

In order to answer Research Question 1, we define:

• Hypothesis 1: The evolved controllers with randomly initialized weights
will be able to learn multiple decision boundaries by using evolved local
learning rules.

The following hypothesis was used to answer Research Question 2:

• Hypothesis 2: The evolved controllers display general and problem-
independent properties by being able to perform in new environments.

The following hypothesis was used to answer Research Question 3:

• Hypothesis 3: The evolved controllers are able to adjust the course of
their actions based on sensory feedback.

6.1 Experiment 1: Food Foraging (Single Input)

The goal of this experiment was to test Hypothesis 1 and 3. To do this, we
used the modified NEAT to evolve SNN controllers for agents with a single one-
hot encoded input sensor and a single one-hot encoded reward/penalty sensor
for a total of 4 input nodes, and 2 output nodes representing each possible
action. Their fitness scores were measured by simulation in a food foraging type
environment, as described in Section 4.5.4.
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6.1.1 Expectations

The results from this experiment were expected to show that the agents were
able to perform the correct actions in the changing environment, and that they
would adjust their behavior from the sensory feedback.

6.2 Experiment 2: Logic Gates (Dual Input)

The goal of this experiment was to test Hypothesis 2, in addition to Hypothesis 1
and 3. To do this, this experiment includes two types of environments: a training
environment for measuring the fitness of the population, and a test environment
that is never encountered during training. In this experiment we used modified
NEAT to evolve SNN controllers for agents with two one-hot encoded input
sensors and a single one-hot encoded reward-penalty sensor for a total of 6
input nodes, and 2 output nodes representing each possible prediction. Their
fitness scores were measured by simulation in a logic gate type environment,
as described in Section 4.5.4, and their performance was tested on an unseen
environment to measure generalizing and adaptive properties.

6.2.1 Expectations

From this experiment, the results were expected to show that the evolved con-
trollers could perform comparably well in new environments that were not en-
countered during training.

6.3 Explanation of Metrics

Three different metrics are measured in the experiments: i) fitness, ii) accuracy,
and iii) end-of-sample accuracy. The fitness of an agent is explained in Section
4.4.5. The accuracy A of an agent is the number of time steps where the agent
was currently selecting the correct action tcorrect divided by the total number
of time steps ttotal, given by

A =
tcorrect
ttotal

. (6.1)

The end-of-sample accuracy Aeos of an agent is similar to the accuracy, but
instead of regarding the state of the agent at every time step, we only regard
the state of the agent at the end of each input sample, given by

Aeos =
scorrect
stotal

(6.2)

where scorrect is the number of correct actions at the end of a completed sample
and stotal is the total number of completed samples.
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A fourth metric that we didn’t explicitly measure in the experiments, but is
important to define because of the discussion of the results in Chapter 7, is
confidence. Confidence was briefly mentioned when explaining how damage is
dealt in Section 4.5.3. The confidence C of an agent’s action is given by

C =
sc

sc + si
(6.3)

where sc is the spike count for the correct action actuator and si is the spike
count for the incorrect action actuator. In simple terms, a large spike count for
the correct action and a low spike count for the incorrect action yields a high
confidence.

6.4 Experimental Setup

This section contains tables with values and explanations of every configurable
hyperparameter that were used in the experiments. The Simplified Integrate and
Fire Neuron Model (described in Section 4.2.3) was used for both experiments.

Spiking Neural Networks

Parameter Explanation
Value

Experiment 1 Experiment 2
Vspike The voltage of the spike sig-

nals from both the inputs and
the spiking neurons.

1mV 1mV

vth The membrane potential
threshold.

1mV 1mV

b The value of the constant bias
voltage of a neuron (if it has a
bias).

1.0e-3mV 1.0e-3mV

Θincr How much the threshold Θ of
a neuron is incremented each
time it fires an output spike,
as discussed in Section 4.2.4.

0.2mV 0.2mV

Θdecay The decay rate of the thresh-
old Θ per time step, as dis-
cussed in Section 4.2.4.

1.0e-3 1.0e-3

fhigh The high frequency for the
one-hot encoded data, as dis-
cussed in Section 4.2.1.

50Hz 50Hz

flow The low frequency for the one-
hot encoded data, as discussed
in Section 4.2.1.

5Hz 5Hz

Table 6.1: Experimental setup for hyperparameters related to SNNs.
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Weight Adjustment (STDP)

Parameter Explanation
Value

Experiment 1 Experiment 2
wbudget The weight budget of each

neuron, as explained in Sec-
tion 4.3.

5 5

wmax The maximal possible value of
a connection weight.

1 1

wmin The minimum possible value
of a connection weight.

0 0

twindow The time window where
STDP happens, as explained
in Section 4.3.

±40ms ±40ms

Table 6.2: Experimental setup for hyperparameters related to STDP.

NEAT Mutation Rates

Parameter Explanation
Value

Experiment 1 Experiment 2
Menable The probability of mutating

the enabled/disabled gene.
0.01 0.01

Mnode The probability of mutating
by adding a node.

0.1 0.1

Mconnection The probability of mutating
by adding a connection.

0.1 0.1

Minhibitory The probability of mutat-
ing the inhibitory/excitatory
gene.

0.1 0.1

Mrule The probability of mutating
by changing the learning rule.

0.1 0.1

Mparams The probability of mutating
by perturbing the learning
rule parameters.

0.1 0.1

Mreinit The probability of mutat-
ing by fully reinitializing the
learning rule parameters.

0.02 0.02

Mbias The probability of mutating
the bias gene.

0.1 0.1

Table 6.3: Experimental setup for hyperparameters related to mutation in
modified NEAT.
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NEAT (Miscellaneous)

Parameter Explanation
Value

Expmt. 1 Expmt. 2
popsize The number of individuals in a popu-

lation.
100 100

ngen The number of generations the algo-
rithm is ran for.

500 1000

Ibias The probability of a neuron being ini-
tializied with a bias.

0.2 0.2

Iexcitatory The probability of a neuron being ini-
tializied with as an excitatory neuron.

0.7 0.7

Iconnection The probability of additional connec-
tions being included in a genome in the
initial population, as explained in Sec-
tion 4.4.4

0.7 0.7

pdisabled The predetermined disabled rate for
connections during recombination, as
explained in Section 2.4.1.

0.7 0.5

bdist The learning rule distribution bias, or
the probability that excitatory and in-
hibitory neurons are initialized with
Hebbian and Anti-Hebbian learning
rules respectively.

0.7 0.7

E The excess connection coefficient used
in calculating the distance δ between
two individuals.

1 1

D The disjoint connection coefficient
used in calculating the distance δ be-
tween two individuals.

1 1

δth The distance threshold for deciding if
two individuals belong to the same
species.

0.7 1

mcutoff The mating cutoff percentage. Only
the mcutoff top individuals of a
species are able to reproduce.

0.2 0.2

smin The minimum size of a species. 2 2
sprotection The number of generations a species is

protected from extinction.
30 30

sstagnation The number of generations after which
a species is considered stagnant if it
has not improved its average fitness.

20 20

popmin The minimum number of species in a
population.

4 4

elitism The percentage of top individuals from
a species that is kept in the population
between generations.

0.1 0.1

Table 6.4: Experimental setup for miscellaneous hyperparameters related to
modified NEAT.
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Simulation

Parameter Explanation
Value

Experiment 1 Experiment 2
∆t The time step size used when

advancing the SNNs each time
step during simulation.

0.1ms 0.1ms

tsample The simulation time for each
input sample.

1s 1s

tactuator The time window of the actu-
ators.

0.25s 0.25s

ninput The number of input samples
in a max duration simulation.

40 32

nflip Decides how often the envi-
ronment mutates (after every
nflipth input sample).

4 4

st The minimum ‘target’ number
of spikes, as discussed in Sec-
tion 4.5.3.

3 3

dc The damage taken from exe-
cuting a correct action.

1 1

di The damage taken from exe-
cuting an incorrect action.

2 2

Table 6.5: Experimental setup for hyperparameters related to simulation.
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Chapter 7

Results

In this chapter we present figures illustrating the results from the experiments
described in Chapter 6.

7.1 How to Read the Results

There is a lot of information in the result figures. In this section we explain how
to read them.

7.1.1 NEAT Monitoring

Figure 7.1, Figure 7.2, Figure 7.3, Figure 7.9, Figure 7.10 and Figure 7.11 show
statistics over the NEAT population in both experiments. They show different
metrics but are read the same way. The blue dots represent the fitness of a
single individual in the population, the yellow line shows the average of the
given metric in the population and the green line shows the maximum of the
given metric in the population. The plots from Experiment 2 also have a gold
line, which is the result of a simulation in a test environment of the top individual
in that metric category (the individual on the green line).

Figure 7.4 and Figure 7.12 are stack plots that show the number of individuals
in each species of the population at each generation.

7.1.2 Simulation Figures

In Figure 7.6, Figure 7.7, Figure 7.8, Figure 7.14, Figure 7.15 and Figure 7.16
there are certain elements that are common among them:
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• White Background Regions: The regions with white background in-
dicate blocks of time steps where the agent was currently deciding on a
correct action and receiving a pleasure/reward signal.

• Red Background Regions: The regions with red background indicate
blocks of time steps during simulation where the agent was currently de-
ciding on an incorrect action and receiving a pain/penalty signal.

• Vertical Grey Perforated Lines: These lines indicate a point where a
new input sample is encountered.

• Vertical Black Lines: These lines indicate a point where the environ-
ment mutates.

• Bottom Table: This table shows the input (top row) and the environ-
ment state (bottom row) for that block of the simulation.

7.1.3 Membrane Potential Figures

Figure 7.6 and Figure 7.14 show the membrane activity of each neuron in an
agent’s SNN during simulation. The numbers in parenthesis on the left hand
side of the figure is the neuron identifier for that line lane. The green line
represents the neuron’s membrane potential and the blue line represents the
neuron’s membrane threshold. Each time the blue line’s value increases, the
neuron fires an output spike.

7.1.4 Weight Figures

Figure 7.7 and Figure 7.15 show the value of the weight of each connection in
the agent’s SNN during simulation. The numbers in parenthesis on the left hand
side of the figure indicates the connection for that lane and is read as ‘(origin
node, destination node)’. The y-axis ranges from [0, 1] for all lanes in the weight
figures.

7.1.5 Actuator History Figures

Figure 7.8 and Figure 7.16 show the spike count of the agent’s actuator during
simulation. In Figure 7.8 from Experiment 1, the green line represents the spike
count of the ‘eat’ actuator while the blue line represents the spike count of the
‘avoid’ actuator. In Figure 7.16 from Experiment 2, the green line represents
the spike count of the ‘1’ actuator, while the blue line represents the spike count
of the ‘0’ actuator.
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7.2 Experiment 1

This section presents the results from Experiment 1.

7.2.1 NEAT Monitoring

Figure 7.1, Figure 7.2 and Figure 7.3 illustrate fitness, accuracy and end-of-
sample accuracy statistics for the population during the run of the EA. Figure
7.4 illustrates the distribution of species in the population.

Figure 7.1: Visualization of the fitness statistics from NEAT in Experiment 1.
See Section 7.1.1 for a full explanation.
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Figure 7.2: Visualization of the accuracy statistics from NEAT in Experiment
1. See Section 7.1.1 for a full explanation.

Figure 7.3: Visualization of the end-of-sample accuracy statistics from NEAT
in Experiment 1. See Section 7.1.1 for a full explanation.
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Figure 7.4: Visualization of the distribution of species in the NEAT population
in Experiment 1.
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7.2.2 Simulation of High Performing Agent

After termination of the EA, a high performing agent was selected for validation
simulation. For this experiment, the chosen agent was the agent with the highest
accuracy in any generation, which was the agent with the highest accuracy in
generation 34, as can be seen in Figure 7.2. Five validation simulations were
conducted on this agent (all with different randomly initialized weights), the
results of which can be seen in Table 7.1.

Experiment 1 Validation Simulations
# Fitness Accuracy Eos. Acc. Input Order Environment

Order
1 0.356 89.5% 96.3% white, black both, none, white,

black
2 0.362 90.6% 100% white, black white, none, both,

black
3 0.361 91.3% 100% black, white white, both, none,

black
4 0.348 85.4% 92.3% white, black white, black, both,

none
5 0.359 89.2% 100.0% black, white both, white, black,

none

Avg. 0.357 89.2% 97.7% n/a

Table 7.1: Validation simulations of the chosen agent from Experiment 1.

Figure 7.5 illustrates the topology of the chosen high-performing agent’s SNN.
Figure 7.6 illustrates the membrane activity of each neuron during simulation 1.
Figure 7.7 illustrates the adjustment of each weight in the agent’s SNN during
simulation 1. Figure 7.8 illustrates the actuator history of the agent during
simulation 1.

54



(a) Learning rules.

(b) Numeric identifiers.

Figure 7.5: Illustration of the network topology of the chosen agent. The one-
hot encoded input sample goes into node 0 and 1, and the one-hot encoded
reward/penalty signal goes into node 2 and 3. Node 4 is the output for the ‘eat’
actuator and node 5 is the output for the ‘avoid’ actuator.
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7.3 Experiment 2

This section presents the results from Experiment 2.

7.3.1 NEAT Monitoring

Figure 7.9, Figure 7.10 and Figure 7.11 illustrate fitness, accuracy and end-
of-sample statistics for the population during the run of the EA. Figure 7.12
illustrates the distribution of species in the population.

Figure 7.9: Visualization of the fitness statistics from NEAT in Experiment 2.
See Section 7.1.1 for a full explanation.
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Figure 7.10: Visualization of the accuracy statistics from NEAT in Experiment
2. See Section 7.1.1 for a full explanation.

Figure 7.11: Visualization of the end-of-sample accuracy statistics from NEAT
in Experiment 2. See Section 7.1.1 for a full explanation.
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Figure 7.12: Visualization of the distribution of species in the NEAT population
in Experiment 2.
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7.3.2 Simulation of High Performing Agent

After termination of the EA, a high performing agent was selected for valida-
tion simulation. For this experiment, we chose an agent that demonstrated a
high end-of-sample accuracy in both the training environment and the test en-
vironment. The chosen agent is the agent from generation 86 with the highest
end-of-sample accuracy, as can be seen in Figure 7.11. Five validation sim-
ulations were conducted on this agent (all with different randomly initialized
weights), the results of which can be seen in Table 7.2.

Experiment 2 Validation Simulations
# Fitness Accuracy Eos. Acc. Input Order

(A, B)
Environment
Order

1 0.333 82.9% 95.2% (1, 1), (0, 1),
(0, 0), (1, 0)

NAND, AND,
NOR, OR

2 0.333 80.5% 95.2% (0, 0), (0, 1),
(1, 1), (1, 0)

NOR, NAND,
OR, AND

3 0.330 75.9% 90.5% (1, 1), (0, 1),
(1, 0), (0, 0)

NOR, NAND,
AND, OR

4 0.333 86.2% 100% (1, 1), (0, 1),
(0, 0), (1, 0)

NAND, OR,
AND, NOR

5 0.332 77.6% 90.5% (1, 1), (0, 0),
(0, 1), (1, 0)

OR, AND,
NOR, NAND

Avg. 0.332 80.6% 94.3% n/a

Table 7.2: Validation simulations of the chosen agent from Experiment 2.

Figure 7.13 illustrates the topology of the chosen high-performing agent’s SNN.
Figure 7.14 illustrates the membrane activity of each neuron during simulation
1. Figure 7.15 illustrates the adjustment of each weight in the agent’s SNN
during simulation 1. Figure 7.16 illustrates the actuator history of the agent
during simulation 1.
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(a) Learning rules.

(b) Numeric identifiers.

Figure 7.13: Illustration of the network topology of the chosen agent. The one-
hot encoded input sample ‘A’ goes into node 0 and 1, the one-hot encoded input
sample ‘B’ goes into node 2 and 3, and the one-hot encoded reward/penalty
signal goes into node 4 and 5. Node 6 is the output for the ‘0’ actuator and
node 7 is the output for the ‘1’ actuator.
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Chapter 8

Evaluation

In this chapter we evaluate the results presented in Chapter 7.

8.1 Non-increasing Fitness in the Population

In both experiments, the fitness distribution of the population stays roughly
the same through all generations, as shown by Figure 7.1 and Figure 7.9. The
expected and desired result would be an increase in the fitness distribution as
generations go by.

A reason for the flat fitness curve could be that the fitness is measured by
an agents lifetime, which in turn is increased by optimizing two properties:
accuracy and confidence. Agents that displayed a high accuracy tended to
employ a strategy of having actuators with a spike count close to each other
(either tied or within 1 spike of each other), which can be observed in Figure 7.8
and Figure 7.16. This way, the actuators can very quickly overtake one another,
allowing the agent to quickly switch to the correct action once a new input
sample is encountered or the environment changes. Of course, this strategy leads
to a low confidence, implying that these two properties are directly competing
with each other. The end-of-sample accuracy, on the other hand, does not
compete with confidence to the same degree as accuracy because it doesn’t
regard the state of the actuators until the end of an input sample and could be
a better candidate as a metric for simultaneously optimizing the confidence.
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8.2 Fluctuating Fitness and Accuracy in the Pop-
ulation

In Experiment 2, the maximum fitness, as well as the test fitness seems to fluc-
tuate considerably (however, the test fitness seems to loosely correlate with the
maximum training fitness). This is also true for accuracy and end-of-sample
accuracy in both experiments, though the average distribution stays fairly con-
sistent. This may be because of the different environments encountered in each
generation, meaning that the environment in some generations is ‘easier’ to sur-
vive in because of the input and environment order of that simulation. Another
reason for this could be that in our approach, the individuals that were kept
in the population due to elitism were also subject to mutation. By keeping
the top individuals in the population unchanged, it could lead to a more stable
performance in the upper tier of the population.

8.3 Speciation of the Population

In both experiments, the species approximately equalize in size after some gen-
erations. In Experiment one there is a mass extinction event between generation
30 and 50, after which the remaining four species approximately equalize in size.
In Experiment 2, there are only three species in the initial population with no
additional species being developed. Experiment 2 concluded before Experiment
1, so we lowered the species distance threshold δth in order to increase the initial
number of species in Experiment 1, as shown in Table 6.4.

8.4 Validation Simulations

The results of the validation simulation found in Table 7.1 and Table 7.2 show
that the chosen agents for each experiment were able to consistently achieve
a high accuracy and end-of-sample accuracy in different environments, even
though their weights were initialized randomly each time. In Experiment 1, the
agent was able to get an average of 89.2% accuracy and a 97.7% end-of-sample
accuracy across five validation simulations. In Experiment 2, the agent was
able to get an average of 80.6% accuracy and a 94.3% end-of-sample accuracy
across five validation simulations in environments that were never encountered
during training. Interestingly, these highly accurate agents achieve a relatively
low fitness score which implies little to no correlation between our measure of
fitness and their accuracy.

From looking at any of Figure 7.6, Figure 7.7, Figure 7.8, Figure 7.14, Figure
7.15 or Figure 7.16, we can see that the agents are able to change their behavior
in response to sensory feedback. After a change in input sample or environment
mutation, there usually occurs a red region where the agent is receiving a pain
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signal, after which it changes action resulting in a white region and a pleasure
signal for the remainder of that input sample.

8.5 Answering the Research Questions

In this section we relate the results to the research questions and discuss if the
hypotheses were proven or disproven.

8.5.1 Research Question 1

Research Question 1 asks if it is feasible to evolve controllers that were able
to keep learning in mutable environment in a weight agnostic manner. The
results show that the chosen agents were indeed able to get a very high accuracy
with randomly initialized weights. We can see from Figure 7.7 and Figure
7.15 that the weights in the network are adjusted in different ways at different
points during simulation, depending on both the type of input and the sensory
feedback. However, the flat fitness progression of the population means that
it was not necessarily an evolutionary process that gave this result, but rather
a random search that was able to find a suitable controller for achieving high
accuracy. In any case, we argue that Hypothesis 1 was proven because the
agents did not inherit any weights and displayed highly accurate behavior.

8.5.2 Research Question 2

Research Question 2 asks if the controllers display general, problem-independent
learning capabilities by being able to perform in never before seen environments.
The results from experiment 2 shows that an agent was able to achieve a high
accuracy in the testing environment which it had not seen during training.
Because of this, we argue that Hypothesis 2 was proven in terms of general,
problem-independent learning capabilities.

8.5.3 Research Question 3

Research Question 3 asks if the agents were able to learn by themselves with
only sensory feedback from their interaction with the environment. The results
show that the agents were indeed quick to adjust their actions when receiving a
penalty signal until they instead were receiving a reward signal. Therefore we
argue that Hypothesis 3 was proven.
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Chapter 9

Further Research

This chapter outlines some of the ideas and findings that appeared during the
research process, but that were not implemented due to time constraints or
other reasons.

9.1 Inverted Pendulum / Pole Cart Balancing

A third experiment was initially intended to be conducted in the thesis, but
was scoped out due to time constraints: the Inverted Pendulum / Pole Cart
Balancing problem, which is a classic benchmark problem in testing controllers.
Gaier and Ha [20] were able to solve this problem in their approach, which is
referenced in as a related work in Section 3.2. It is suited for floating point en-
coding for input, in contrast to the experiments conducted in this thesis which
both used binary encoding. Figure 9.1 shows an example of such an environ-
ment with floating point encoded input. It would be valuable to measure if the
controllers emerging from NAGI are able to handle this class of problems. To
add a mutable property to this environment, one could for example flip the ori-
entation of the angle and/or the angular velocity, the directions the cart moves
in or the gravitational force.
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Figure 9.1: Illustration of a simple two-dimensional environment using floating
point encoding. Image taken from [18].

9.2 Experimenting with fitness functions

One of the bigger challenges related to implementing the framework was the
design of a proper way of measuring the fitness of a solution. As it stands,
a solutions fitness is measured as the normalized lifetime of the solution in
an agent-environment simulation, and the fitness function can be tweaked by
changing the rules of how much damage is dealt to an agent given the state of
the current input, the environment and the agent actuators.

Something that could be explored to keep networks from growing too big is
to penalize a network by incorporating the number of hidden neurons into the
damage calculation. A suggestion could look something like

D∗ = 1.01nD, (9.1)

where D∗ is the real damage, D is some arbitrary damage and n is the number
of hidden neurons.

Another thing that can be explored is to combine the accuracy of a network into
the fitness measure. We found that some networks can have a low fitness, but
a good accuracy. Since a high accuracy is a desirable trait in solutions, there
could be some merit to utilize this in fitness calculation.

9.3 Optimizing implementation

The implementation of the framework works reasonably well as a proof of con-
cept. However, simulation of SNNs take much longer time to run than with
classic ANNs. In addition to this fact, it’s common knowledge that interpreted
languages such as Python, without using optimization libraries such as NumPy
is a lot slower at run time compared to a compiled low level language such
as C++. This, combined with the reality that simulations of SNNs lasts a
lot longer than simulations of regular ANNs, results in simulations taking a
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very long time to run, and limits certain hyperparameters that affect run time
such as population size and number of generations for the genetic algorithm.
To illustrate this point, the 150th generation of a run of the algorithm with a
population size of 200 took 46 minutes to complete with multiprocessing on a
research server with an Intel® Xeon® W-2123 Processor with a clock speed of
3.60GHz, 4 cores and 8 threads, as well as 32GBs of RAM. It would certainly
be interesting to see the results of an optimized implementation that can handle
bigger networks, bigger populations and more generations in a reasonable time.

9.4 Distance metric

The distance metric used in the implementation is identical to the distance
metric used by NEAT, which only takes into consideration excess and disjoint
connection genes in the genome. However, in NEAT all neurons are equal.
Neurons in NAGI differ by multiple properties. They can be either excitatory
or inhibitory, they can have four different local learning rules with different
parameters and they may either have a bias or not.

Let us first consider the same connection present in two models evolved from
NEAT. This connection will behave very similarly in both models, only differing
by the associated weight because the origin neuron and the destination neuron
behave the same in both models and as such we can consider them a measure
of likeness.

Now let us consider the same case for two models emerging from NAGI. The
connection is present in both models, but what if the destination node in the first
model is excitatory and the destination node in the second model is inhibitory?
Now these connections serve very different purposes. In the first model, the
connection is contributing to reinforcing the membrane potential in the neurons
pointed to by the connections from destination neuron, but in the second model
the connection is doing the opposite. The same reasoning can be applied for
differing learning rules, as two neurons with different learning rules will adapt
the values of incoming connection weights in a different manner, even though
the connection is identical topologically.

There seems to be some merit to take into consideration these attributes of the
neurons when calculating the distance between two genomes. There could also
be some merit to exploring an approach to neuroevolution that doesn’t utilize
crossover at all, which would neutralize this challenge.

9.5 Izhikevich Neuron Model

The Izhikevich neuron model (discussed in Section 4.2.3) is more biologically
plausible and produces richer firing patterns than the IF neuron model. It also
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has multiple parameter configurations resulting in neurons with different firing
patterns, which could be integrated into NAGI’s neuroevolution by adding a
gene containing the parameters to the genome. This would increase the di-
mensionality of the search landscape, which could be kept minimal by limiting
the possible hyperparameter configurations to a predetermined set that produce
neurons with distinct and unique firing patterns. Using the Izhikevich neuron
model in NAGI could lead to more sophisticated neural networks.

9.6 Input encoding

In the work of this thesis, inputs were encoded into spike trains with a certain
frequency, also called a firing rate. These spikes were uniformly distributed over
the entire signal duration, leading to regular spike intervals. But observations
in the human cortex show us that spike intervals occurring in the brain are
irregular, meaning that a Poisson distribution of spike signals across a given
time interval would be more biologically plausible [45]. This would ever so
slightly affect how the agents make their decisions and how they learn.

9.7 No Overlap of Actuator Counting Between
Input Samples

In the work of this thesis, the actuators counting the spikes occurring in the
outputs of controllers within a time window overlapped between input samples,
meaning that once a new input sample is presented to an agent, the actuators
still count the spikes that are still within the time window from the last input
sample. This means that the last input sample may affect how the agent reacts
to the next input sample, at least in the beginning. Instead, one could explore
an approach where there is no such overlap. Once a new sample is encountered
by the agent, it “forgets” about the previous one and the sliding time window
simply starts at the time step where the new sample is encountered. Figure 9.2
illustrates the difference in these two approaches.
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Figure 9.2: Illustration of the difference in sliding window behavior with and
without overlap at the exact same time step (A with overlap, B without overlap).

9.8 Simulation of Multiple Environments Each
Generation

In our approach, environments were initiated with a random order for both
inputs and environment states. Since simulation is terminated once the agent
dies, it means that an agent will experience certain combinations of inputs and
environment states more than others in a given simulation. As a consequence,
agents have a chance get ‘lucky’ in some generations. They may be put in an
environment that starts out with an environmental state that they can easily
solve and as a consequence get a boost in fitness for that generation. In order
to reduce this fluctuation in fitness and to generalize even further, we suggest
simulating each agent in multiple environments each generation. The fitness
measure would be the mean of the fitness from the simulation of each of the
environments. Using this approach, one could either use different randomly
initialized weights for each environment, or use the same weight initialization
for each environment.

9.9 Increasingly Complex Environments

In our approach, the complexity of the environments stayed the same throughout
the generations of the EA. One approach that could be explored is to increase
the complexity of the environment throughout evolution, for example by creat-
ing new possible environmental states and input types, or through some other
measure like procedurally generated environments. This could facilitate the de-
velopment of adaptation and complexity of the agents in the later generations.
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Chapter 10

Conclusion

The main goal of this thesis was to explore how using EAs on SNNs could evolve
controllers for agents that were capable of self-learning throughout their life-
time by interacting with mutable environments through simulation. A weight-
agnostic neuroevolution technique based on NEAT, but modified for SNNs was
used to evolve controllers. Local learning rules and STDP were the mechanisms
used to adjust weights in order for learning to happen. All of these approaches
came together in the the first implementation of the NAGI framework. Exper-
iments were conducted in order to measure properties related to AGI, such as
self-learning, adaptation and generalization.

The results from the experiments showed that agents emerging from the frame-
work were able to consistently achieve a high accuracy of beneficial actions
in validation simulations with constantly changing environments, even being
able to generalize by achieving a high accuracy in new environments that were
never encountered during training. The agents showed signs of self-adaptation
through sensory experiences by changing their course of action when exposed to
the emulated pain. It was found that optimizing the speed of decision making
comes with a trade-off of lower confidence in the decision making, and design-
ing a proper fitness measure that optimizes both accuracy and confidence at the
same time proved challenging.

The results showed that it is possible to use SNN architectures and STDP for
weight adjustment to create controllers with AGI at a very basic level, but also
that considerable care must be taken when designing a neuroevolution technique
in order to evolve them. The results suggest that more research should be spent
on designing a neuroevolution technique that properly guides the evolution of
controllers towards AGI, as well as researching agent-environment interactions
with more complex data encoding.
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