
UNIVERSITY OF OSLO

Department of Informatics

Investigating

Host-Device

communication in a

GPU-based H.264

encoder.

Master thesis

Kristoffer Egil

Bonarjee

May 16, 2012

Contents

1 Introduction 5

1.1 Background and motivation . 5

1.2 Problem statement . 8

1.2.1 Limitations . 8

1.3 Research Method . 8

1.4 Main Contributions . 9

1.5 Outline . 9

2 Video Coding and the H.264/MPEG4-AVC standard 11

2.1 Introduction . 11

2.1.1 Color Spaces and human perception 13

2.2 Frames, Slices and Macroblocks . 16

2.2.1 Macroblocks . 16

2.2.2 Independent slices . 18

2.2.3 Predicted slices . 20

2.2.4 Bi-predicted slices . 25

2.2.5 Switching I and Switching P slices 26

2.3 Transform coding and Quantization . 26

2.4 Deblocking . 30

2.5 Entropy coding . 32

2.5.1 CAVLC . 33

2.5.2 Exponential Golomb codes . 34

2.5.3 CABAC . 36

i

ii

2.6 Related work . 37

2.7 Summary . 39

3 nVidia Graphic Processing Units and the Compute Unified Device Architec-

ture 41

3.1 Introduction . 41

3.2 History . 42

3.3 Hardware overview . 45

3.3.1 Stream Multiprocessors . 45

3.3.2 Compute capability . 47

3.3.3 Memory hierarchy . 48

3.3.4 Programming model . 52

3.3.5 Software stack . 57

3.4 Vector addition; a trivial example . 58

3.5 Summary . 59

4 Software basis and testbed 61

4.1 Introduction . 61

4.1.1 Design . 61

4.1.2 Work in progress . 64

4.2 Evaluation . 64

4.3 Summary . 65

5 Readahead and Writeback 67

5.1 Introduction . 67

5.2 Design . 69

5.2.1 Rationale . 69

5.2.2 Implementation . 70

5.2.3 Hypothesis . 72

5.3 Evaluation . 73

5.4 Write buffering . 75

5.5 Readahead Window . 77

iii

5.6 Lessons learned . 79

5.7 Summary . 80

6 Memory 81

6.1 Introduction . 81

6.2 Design . 82

6.2.1 Rationale . 82

6.3 Implementation . 84

6.3.1 Necessary groundwork . 84

6.3.2 Marshalling implementation . 84

6.4 Evaluation . 86

6.5 Lessons learned . 88

6.6 Summary . 88

7 CUDA Streams 91

7.1 Introduction . 91

7.2 Design . 92

7.2.1 Implementation . 92

7.2.2 Hypothesis . 94

7.3 Evaluation . 94

7.4 Lessons learned . 98

7.5 Summary . 98

8 Deblocking 99

8.1 Introduction . 99

8.2 Design . 100

8.2.1 Implementation . 101

8.3 Evaluation . 103

8.4 Lessons learned . 105

8.5 Summary . 106

9 Discussion 107

9.1 Introduction . 107

iv

9.2 State of GPU hardware . 107

9.3 GPU Multitasking . 109

9.4 Design emphasis for offloaded applications 110

9.5 Our findings in a broader scope . 112

10 Conclusion 115

10.1 Summary . 115

10.2 Further work . 117

10.3 Conclusion . 118

A Code Examples 119

A.1 CUDA Vector Addition Example . 119

References 121

Internet-references 125

List of Figures

2.1 4:2:0 Sub sampling. For each 4 Luma samples, only one pair of Chroma

samples are transmitted. 15

2.2 I-, P- and B-frames. 18

2.3 A selection of the available 4x4 intra-modes [1]. 19

2.4 Half- and Quarter-pixels [1]. 22

2.5 Octa-pixel interpolation [2]. 23

2.6 The current motion vector E is predicted from its neighbors A, B and C. 25

2.7 A JPEG image showing clear block artefacts. 29

2.8 ZigZag pattern of a 4x4 luma block [2]. 29

2.9 Plotted pixel values of an edge showing typical signs of blocking arte-

facts. As the difference in pixel value between the edges of adjacent

blocks p0 and q0 is much higher than the differences between p0 − p4

and q0 − q4, it is likely a result of quantization [9]. 30

2.10 Flowchart of the CAVLC coding process [3]. 33

3.1 CPU transistor usage compared to GPU [4]. 43

3.2 Diagram of a pre-DX10 GPU pipeline. [5] The Vertex processor was pro-

grammable fromDX8, while the Fragment processorwas programmable

from DX9. 43

3.3 Fermi Stream Multiprocessor overview. [39] 46

3.4 Feature support by compute capability. [40] and slightly modified. . . . 48

3.5 Fermi memory hierarchy: Local, global, constant and texture memory

all reside in DRAM. [39], slightly modified. 49

3.6 Example execution grid [40]. 54

v

vi

3.7 An application built on top of the CUDA stack [40]. 58

4.1 Modified Motion vector prediction in cuve264b [6]. 63

5.1 Serial encoding as currently done in the encoder. 67

5.2 Threaded encoding as planned, where the separate threads will pipeline

the input, encoding and output steps, reducing the elapsed time. 68

5.3 Improvement in encoding time due to readahead and writeback. 74

5.4 Writeback performance over various GOP levels. 75

5.5 Writeback performance over various QP levels. 75

5.6 IO buffering from application memory to storage device. Based on [41]. 76

5.7 Writeback performance with buffer flushing. 78

5.8 Readahead performance under different resource constrains. 79

6.1 Encoder state shared between host and device. 83

6.2 Device memory accesses for the direct port. 85

6.3 Device memory accesses for the optimized port. 85

6.4 Performance of the two marshalling implementations. 86

7.1 Improvement in encoding time due to streams and pinned memory. . . . 95

7.2 Improvement in encoding time due to reordering on device. 96

8.1 Wavefront deblock filter [7]. 99

8.2 Limited error propagation with DFI [8]. 101

8.3 Padding of a deblocked frame prior to referencing. 102

8.4 Column flatting of raster order. 103

8.5 Performance of deblock helper kernels vs host functions 104

List of Tables

2.1 Determining Boundary strength. Data from [9]. 31

4.1 Hardware specifications for the machine Kennedy. 65

6.1 Selected profiling data from our marshalling implementations. 87

6.2 Instruction and data accesses of host marshalling implementations. . . . 88

7.1 Time used to copy and reorder input frames with and without over-

lapped transfer. 95

7.2 Time used to re-order input frames on host and device, including transfer. 97

7.3 Time used to re-order input frames on host and device, excluding transfer. 97

8.1 Relative runtime of deblock helper functions and kernels. 105

vii

viii

List of Abbreviations

ALU Arithmetic Logic Unit

APU Accelerated Processing Unit

ASMP Asymmeric Multiprocess[ing/or]

B-slice Bi-predicted slice

Bs Boundary Strength

CABAC Context-based Adaptive Binary Arithmetic Coding

CAVLC Context Adaptive Variable Length Coding

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

Cb Chroma blue color channel

Cr Chroma red color channel

DCT Discreet Cosinus Transform

DFI Deblocking Filter Independency

DVB Digital Video Broadcasting

EIB Element Interconnect Bus

FIR Finite Impulse Response

FMO Flexible Macroblock Ordering

GOP Group of Pictures

GPGPU General-Purpose computing on Graphics Processing Units

GPU Graphical Processing Unit

I-slice Independent slice

JIT Just In Time

ix

MFP Macroblock Filter Partition

MVD Motion Vector Difference

MVP Motion Vector Prediction

MVp Predicted Motion vector

P-slice Predicted slice

QP Quantization Parameter

RGB Red Green Blue

SAD Sum of Absolute Differences

SAE Sum of Absolute Error

SFU Special Function Unit

SIMT Single Instruction, Multiple Threads

SMP Symmetric Multiprocess[ing/or]

SM Stream Multiprocessor

Y Luma color channel

x

List of Code Snippets

2.1 ExpGolomb code example. 35

3.1 CUDA kernel call . 53

3.2 Thread array lookup. 54

3.3 __syncthreads() example. 56

5.1 Queue header . 71

6.1 Block Metadata. 82

9.1 Branch-free variable assignment . 108

9.2 Branching variable assignment . 108

A.1 Vector addition; a trivial CUDA example 119

xi

Preface

Modern graphical processing units (GPU) are powerful parallel processors, capable of

running thousands of concurrent threads. While originally limited to graphics process-

ing, newer generations can be used for general computing (GPGPU). Through frame-

works such as nVidia Compute Unified Device Architecture (CUDA) and OpenCL,

GPU programs can be written using established programming languages (with minor

extensions) such as C and C++. The extensiveness of GPU deployment, low cost of

entry and high performance makes GPUs an attractive target for workloads formerly

reserved for supercomputers or special hardware. While the programming language

is similar, the hardware architecture itself is significantly different than a CPU. In ad-

dition, the GPU is connected through a comparably slow interconnect, the PCI Express

bus. Hence, it is easy to fall into performance pitfalls if these characteristics are not

taken into account.

In this thesis, we have investigated the performance pitfalls of a H.264 encoder written

for nVidia GPUs. More specifically, we looked into the interaction between the host

CPU and the GPU. We did not focus on optimizing GPU code, but rather how the

execution and communication was handled by the CPU code. As much manual labour

is required to optimize GPU code, it is easy to neglect the CPU part of accelerated

applications.

Through our experiments, we have looked into multiple issues in the host application

that can effect performance. By moving IO operations into separate host threads, we

masked away the latencies associated with reading input from secondary storage.

By analyzing the state shared between the host and the device, wewhere able to reduce

1

2

the time spent synchronizing data by only transferring actual changes.

Using CUDA streams, we further enhanced our work on input prefetching by trans-

ferring input frames to device memory in parallel with the encoding. We also exper-

imented with concurrent kernel execution to perform preprocessing of future frames

in parallel with encoding. While we only touched upon the possibilities in concurrent

kernel execution, the results where promising.

Our results show that a significant improvement can be achieved by focusing opti-

mizing effort on the host part of a GPU application. To reach peak performance, the

host code must be designed for low latency in job dispatching and GPUmemory man-

agement. Otherwise the GPU will idle while waiting for more work. With the rapid

advancement of GPU technology, this trend is likely to escalate.

Acknowledgements

I would like to thank my advisors Håkon Kvale Stensland, Pål Halvorsen and Carsten

Griwodz for their valuable feedback and discussion. I would also like to thank Mei

Wen and the National University of Defense Technology in China for source code ac-

cess to their H.264 encoder research. This thesis would not have come to fruition with-

out their help.

Thanks to Håvard Espeland for helping me restart the test machine after I trashed it on

numerous occasions.

Thanks to my fellow students at the Simula lab and PING for providing a motivating

working environment with many a great conversation and countless cups of coffee.

Thanks to my father, Vernon Bonarjee, for his support and help with proofreading.

Thanks to my mother in law, Solveig Synnøve Gjestang Søndberg, for relieving me of

household chores in the final sprint of thesis work.

Finally, I would like to thank my wife Camilla and our children Maria and Victor for

encouragement, motivation and precious moments of joy and relaxation.

Oslo, May 16, 2012

Kristoffer Egil Bonarjee

3

4

Chapter 1

Introduction

1.1 Background and motivation

Since the announcement of ENIAC, the first electronic general-purpose computer in

1946 [42], there has been a great demand for ever increasing processing power. In

1965, Intel co-founder Gordon Moore predicted that the amount of components, eg

transistors, in an integrated circuit would double approximately every two years [43].

While Moore anticipated this development would hold for at least ten years, it is still

the case today, and has been known as "Moore’s law".

For decades, the advancement of processors where driven by an ever increasing clock

speed. However, increasing clock speed results in higher power requirements and

heat emission. While this trend has resulted in processors with multigigahertz clock

frequencies, it has approached the limit of sustainable power density, also known as

the power wall.

To further increase the processing power of a single processor beyond the power wall,

processor manufacturers have focused on puttingmultiple processing cores on a single

die, referred to as multi-core processors. By placing multiple processor cores on a

single unit, enhanced processing power can be achieved with each core running at a

lower clock speed. These individual cores are then programmed in a similar fashion as

multiple identical processors, known as Symmetric Multiprocessing (SMP).

5

6

While multi-core processors increase the total computational power of the processors,

they do not improve performance for programs designed for single-core processors.

To take advantage of the increased computing power, it is crucial that algorithms are

designed to run in parallel. While eight-core processors are a commodity today, the

maximum performance of an algorithm is limited by the sum of its serial parts [10].

Thus, programmers cannot exploit modern processors without focusing on parallel

workloads.

SMP allows for some scalability by increasing the amount of independent cores on

each processor as well as multiple processors per machine. However, each additional

processor or core further constrains access to shared resources such as systemmemory

and data bus. The symmetry of the processors also means that each core must be of

identical design, which may not yield optimal usage of die space for parallel work-

loads.

Asymmetric Multiprocessing (ASMP) relaxes the symmetry requirement. Hence, the

independent cores of an asymmetric processor can trade the versatility of SMP for

greater computing power in a more limited scope. Thus, the limited die space can be

used most efficient for the purposed tasks. For instance, each x86 processing core in-

cludes support for instruction flow control such as branch prediction. However, if we

take careful steps when designing our algorithms, we can make certain our code does

not branch. While branch prediction is crucial for the performance of a general pur-

pose processor, we can take the necessary steps to make it obsolete for special purpose

processing cores. Thus, we free up die space that can be more efficiently used.

ASMP systems usually consists of a traditional "fat" CPU core that manages a number

of simpler cores designed for high computing performance rather than versatility. The

main core and the computing cores are connected through a high speed interconnect

along with memory and IO interfaces. One example of such a heterogeneous ASMP

architecture is the Cell Broadband Engine [11], which consists of a general purpose

PowerPC core and eight computing cores called Synergistic Processing Elements, con-

nected through the Element Interconnect Bus (EIB).

Unfortunately, ASMP processors are not as widespread as their symmetrical coun-

7

terparts, and cannot be considered a commodity. While the first generation of Sony

Playstation 3 gaming consoles could be used as a general purpose Cell computing de-

vice, the option to boot non-gaming operating systems was later removed from future

firmware updates [44].

Modern GPUs on the other hand, can be found in virtually any relatively new com-

puter. They are massively parallel processors designed to render millions of pixel val-

ues at a fraction of a second. Frameworks such as nVidia Compute Unified Device Ar-

chitecture (CUDA) (see chapter 3) and Open Computing Language (OpenCL) allows

supported GPUs to be used for general purpose programming. Combined with a gen-

eral purpose processor such as an Inter Core i7, a modern GPU allows us to perform

massively parallel computations on commodity hardware similar to ASMP processors.

However, a notable limitation compared to a fullblown ASMP processor is intercon-

nect bandwidth. While for instance the EIB in a Cell processor has a peak bandwith

of 204.8GB/s [11], a GPU is usually connected via the PCI Express bus. While the

bandwith of the PCI Express bus has doubled the bandwith twice with version 2 [45]

and 3 [46], the ratio between available bandwith and the computational power is in-

creasing. Compared to the quadroupled bandwith, the number of CUDA cores have

increased from 128 [47] in the first CUDA compatible Geforce 8800 GTX (using PCI Ex-

press 1.0) to 1536 [48] in the Geforce GTX 680 using PCI Express 3. This is an increase

of 12 times, without taking increased clock speed, improved memory bandwith etc.

into consideration.

In the case of our test machine (see table 4.1), the GPU is connected through a PCI Ex-

press v2 x16 port with an aggregate bandwith in both directions combined of approx-

imately 16GB/s [45]. Hence, GPU applications must be designed with this limitation

in mind to fully utilize the hardware. This is especially the case for high-volume, data

driven workloads.

8

1.2 Problem statement

One task requiring substanial computational power is video encoding. As the com-

puting power of processors has increased, video standards have evolved to take ad-

vantage of it. By using advanced techniques with higher processing requirements, the

same picture quality can be achieved with lower bitrate. However, due to data depen-

dencies, all parts of the video encoding process might not run efficiently on a GPU.

This can lead to the GPU idling for prolonged times unless care is taken to design the

application efficiently.

In this thesis we will investigate such performance pitfalls in a CUDA-based H.264 en-

coder. By cooperating with researchers from the National University of Defense Tech-

nology in China, we will work to increase GPU efficiency by analyzing and improving

the on-device memory management, host-device communication and job dispatching.

We will take an in-depth approach to the memory transfers to identify data that can

be kept on the GPU, utilize CUDA Streams to overlap execution and transfer, as well

as using conventional multi-threading on the host to make input/output operations in

the background while keeping the GPU busy.

1.2.1 Limitations

We limit our focus on the host-device relationship, so we will not go into topics such

as device kernel algorithms or design unless specified otherwise.

1.3 Research Method

For this thesis, we will design, implement and evaluate various improvements on a

working H.264 encoder. Our approach is based on theDesignmethodoligy as specified

by the ACM Task Force on the Core of Computer Science [12].

9

1.4 Main Contributions

Through the work on this master thesis, we have designed and implemented a number

of proposed improvements to the cuve264b encoder. These proposals include asyn-

chronos IO through separate readahead and writeback threads, more efficient state

synchronization by only sending relevant data, removal of reduntant frame transfers,

and usage of CUDA Streams to perform memory transfers and preprosessing work in

parallel.

With the exception of our deblocking work, we have reduced the encoding time by

23.3% and GPU idle time by 27.3 % for the tractor video sequence. Note that the re-

duction in idle time is probably even higher, as the CUDA Visual Profiler [49] does not

currently support concurrent kernels [50]. We have also identified additional work to

further reduce the GPU idle and consequent runtime. While we performed our exper-

iments on a video encoder, our findings may apply to any GPU-offloaded application,

especially for high-volume, data driven workloads.

In addition to the work covered by our experiments, we initially ported the encoder

to Unix1. In connection with our porting efforts, we also added getopt support and

a progress bar. Addionally, we made the encoder choose the best GPU available in

multi-GPU setups, so it could be debugged with the CUDA debugger.

1.5 Outline

The rest of this thesis is organized as follows; In chapter 2, we give an introduction

to video coding and the H.264/MPEG4-AVC Standard. In chapter 3, we introduce

GPGPU programming and the nVidia CUDA architecture, used in our evaluations.

Chapter 4 introduces the cuve264b encoder, the software basis for our experiments,

as well as our evaluation method and testbed specifications. In chapter 5, we start

our experiments with our investigation of readahead and writeback. Chapter 6 con-

tinues with our analysis and proposals to reduce redundancy in host-device memory

1While we expect it to work on Mac OSX due to its POSIX support, we have only tested it on Linux.

10

transfers. In chapter 7, we investigate howwe can utilize CUDA Streams to extend our

Readahead work to on-device memory. Chapter 8 completes our experiments with our

work on a GPU-based deblocking filter. In chapter 9 we discuss our results and lessons

learned. Chapter 10 concludes our thesis.

Chapter 2

Video Coding and the

H.264/MPEG4-AVC standard

2.1 Introduction

H.264/MPEG4-AVC is the newest video coding standard developed by the Joint Video

Team (JVT), comprising of experts from Telecommunication Standardization Sector

(ITU-T) Study Group 16 (VCEG) and ISO/IEC JTC 1 SC 29 / WG 11 Moving Picture

Experts Group (MPEG). The standard was ratified in 2003 as ITU-T H.264 [51] and

MPEG-4 Part 10 [52]. In the rest of the thesis, we will refer to it simply as H.264.

Older standards such as ITU-T H.262/MPEG-2 [53] has been at the core of video con-

tent such as digital television (both SD and HD) and media such as DVDs. However,

an increasing number of HD content require more bandwidth on television broadcast

networks as well as storage media. While broadcast networks can handle a limited

amount of MPEG-2 coded HD streams, more efficient video coding is necessary to

scale. At the same time, emerging trends such as video playback on mobile devices

require acceptable picture quality and robustness against transmission errors under

bandwidth constraints. H.264 allows for higher video quality per bit rate than older

standards and has been broadly adopted. It is used in video media such as Blu-ray,

broadcasting such as the Digital Video Broadcasting(DVB) standards, as well as online

11

12

streaming services like Youtube.

The H.264 standard improves the video quality by enhancing the coding efficiency. To

support a broad range of applications from low powered hand held devices to digital

cinemas, it has been divided into different profiles. The profiles support different fea-

tures of the standard, from the simplest constrained baseline to the most advanced High

4:4:4 P. This allows implementors to utilize the standard without carrying the cost of

unwanted features. For instance, the constrained baseline profile lacks many features

such as B-slices (see section 2.2.4), CABAC (see section 2.5.3), and interlaced coding.

While this profile cannot code video as efficient as the more advanced profiles, the lack

of features makes it easier to implement. This makes it well suitable for low-margin

applications such as cellular phones.

A modern video coding standard uses a multitude of approaches to achieve optimal

compression performance, such as:

• Removing unnecessary data without influencing subjective video quality. By re-

moving image properties that cannot be seen by the human eye, there is less data

to compress without perceptible quality loss. This will be explained in the fol-

lowing subsection.

• Removing data that influences subjective video quality on a cost/benefit basis. By re-

moving fine-grained details from the images, we can reduce the amount of data

stored. However, as this impacts the video quality, it is a matter of data size ver-

sus picture quality. This step, known as quantization, will be covered in section

2.3.

• Reduce spatial redundancy across a frame. As neighboring pixels in a picture often

contain similar values, we can save space by storing differences between neigh-

bors instead of the full values. This is known as intra-frame prediction, and will

be elaborated in section 2.2.2.

• Reduce temporal redundancy across series of frames. Comparable to the relationship

between spatial neighboring pixels, there often exist a same kind of relationship

between pixels in different frames of a video sequence. By referring to pixels of a

13

previously encoded frame, we store the differences in pixel value instead. This is

known as inter-frame prediction, and will be detailed in section 2.2.3.

• Use knowledge of the data to efficiently entropy-code the result.When all the previous

steps have been completed, the nearly-encoded video will contain certain pat-

terns in the bitstream. The last part of the encoding process is to take advantage

of these patterns to further compress the bitstream. Entropy-coding will be cov-

ered in section 2.5.

In the rest of this chapter, we will explain the techniques mentioned above, and how

they are used in the H.264 standard.

2.1.1 Color Spaces and human perception

The Red Green Blue Color space

Most video devices today, both input devices such as cameras and display equipment

such as HDTV’s, uses the Red Green Blue (RGB) color space. RGB, named after its

three color channels; red green and blue, and convey the information of each pixel by a

triplet giving the amount of each color. For instance, using 8bit per channel, the colors

red will be (255,0,0), green (0,255,0), blue (0,0,255), and cyan (0,255, 255).

RGB is well suited for both capturing and displaying video. For instance, the pixel

values can be mapped to the lighting sources in displays, such as phosphor dots in

CRT monitors or sub-pixels in LCD panels. However, the three RGB channels carry

more information than the human vision can absorb.

Limitations of the human vision

The human vision system is actually two distinct systems, from the cells in the retina

to the processing layers in the primary visual cortex. The first one is found in all mam-

mals. The second is a complimentary system we share with other primates. The mam-

mal system is responsible for our ability to register motion, depth and position, as well

14

as our overall field of vision. It can distinguish acute variation of brightness, but it

does not detect color. The primate system is responsible for detecting objects, such as

facial recognition, and is able to detect color. However, it has a lower sensitivity to

luminance and is less acute [13]. As a result, our ability to detect color is at a lower

spatial resolution compared to our detection of brightness and contrast.

Knowing this, we can reduce the amount of color information in the video accordingly.

We loose information, but because of the limits of the human vision, the subjective

video quality experienced will be the same.

Y’CbCr

To take advantage of the human vision in terms of video coding, we need a way to re-

duce the resolution of the color information while keeping the brightness and contrast

intact. As we noted above, this is not possible with RGB, where the pixel values are

given solely by their color. However, we might use the derivative Y’CbCr colorspace.

It works in an additional fashion similar to RGB, and transforming from the one to the

other involves few computations.

Instead of identifying a pixel value by its composition of amounts red green and blue,

it is identified by its brightness and color difference. Color difference is the differ-

ence between brightness (Luma1) and the RGB colors. Only the Chroma blue(Cb) and

Chroma red(Cr) is transmitted, as Chroma green (Cg) = 1− (Cb+ Cr). With bright-

ness separated from color, we can treat them separately, and provide them in different

resolutions to save space.

Chroma sub-sampling

Using a lower resolution for the chroma components is called chroma sub-sampling.

The default form of sub-sampling in the H.264 standard is 4:2:0. The first number,

1Note that the term Luma must not be confused with Luminance, as the nonlinear Luma is only an

approximation of the linear Luminance [14].

15

4, is reminiscent to the legacy NTSC and PAL standards, and represents the Luma sam-

ple rate. The second number, 2, indicates that Cb and Cr will be sampled at half the

horizontal sample rate of Luma. Originally, the second and third digits denoted the

horizontal subsample rate of Cb and Cr respectively, as the notation predates vertical

sub-sampling., Today however, a third digit of zero now indicates half ivertical sample

rate for both Cb and Cr. (For a more thorough explanation, the reader is referred to

[14].)

Luma (Y)

Chroma (Cb and Cr)

4:2:0 sub-sampling

Figure 2.1: 4:2:0 Sub sampling. For each 4 Luma samples, only one pair of Chroma

samples are transmitted.

Using 4:2:0, we only use half of the luma sample size to store both chroma compo-

nents. As shown in figure 2.1, the chroma samples are only stored for every fourth

luma sample. H.264 supports richer chroma sampling as well, through the Hi422 and

Hi444P profiles, which supports 4:2:2 and 4:4:4 respectively, as well as higher bi-

trate per input pixel [51].

16

2.2 Frames, Slices and Macroblocks

In H.264, each picture in the video to be encoded can be divided into multiple inde-

pendent units, called slices. This can make the resulting video more robust, as package

loss will only suffer the slices that looses information, while keeping the others intact.

It also makes it possible to process different slices in parallel [15]. The number of slices

to use is left for the encoder to decide, but it is a trade-off between robustness against

transmission errors and picture quality. Slicing reduces the efficiency of prediction, as

redundancy over slice boundaries cannot be exploited. This reduces the picture area

available for reference, and may reduce the efficiency of both spatial and temporal

prediction. When macroblocks must be predicted from sub-optimal prediction blocks,

the difference in pixel values, the residual, will increase. This results in an increased

bitrate to achieve identical objective picture quality [16], as the larger residuals needs

additional storage in the bitstream. On the other hand, independent slices increase

the robustness of the coded video, as errors in one slice cannot propagate across slice

boundaries.

Slices can be grouped together in groups called slice groups, referred to in earlier ver-

sions of the draft standard and in [1] as Flexible Macroblock Ordering (FMO). When

using only one slice group per frame, the macroblocks are (de)coded in raster order.

By using multiple slice groups, the encoder is free to map each macroblock to a slice

group as deemed fit. There are 6 predefined maps, but it is also possible to explicitly

define the slice group corresponding to each macroblock. For frames with only one

slice, the terms can be interchanged, but we will continue to use the term slice in the

rest of the chapter. In inter-prediction, other slices refers to the same slice in another

frame, not a different slice in the same frame.

2.2.1 Macroblocks

After a frame has been divided into one or more slices, each slice is further divided

into macroblocks. They are non-overlapping groups of pixels similar to the pieces of a

17

jigsaw puzzle, and they form the basic work units of the encoding process.

Introduced in the H.261 standard [54], macroblocks was always 16x16 pixels in size,

with 8x8 for the chroma channels. In H.264, however, they can be a divided in a

plethora of sizes; 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4, depending on the prediction mode.

This partitioning makes it possible for the encoder to adapt the prediction block size

depending on the spatial and temporal properties of the video. For instance, 16x16

blocks might be used to predict large homogeneous areas, while 4x4 sub-blocks will be

applicable for heterogeneous areas with rapid motion.

H.264 uses two types of macroblocks depending on their prediction mode. Intracoded

macroblocks reference neighboring blocks inside the current slice, thereby exploiting

spatial redundancy by only storing the residual pixel differences. Instead of storing the

whole block, only the difference between the block and its most similar neighbor must

be transmitted. Intercoded macroblocks references blocks in other slices, exploiting

temporary redundancy. This allows us to take advantage of similar blocks in both

space and time.

Slices made up of only intra-coded macroblocks are referred to as independent slices,

as they do not reference any data from other slices. We will elaborate on independent

slices in the following subsection.

Slices containing inter-coded macroblocks are known as predicted slices. As inter-

coded macroblocks refer to similar macroblocks in prior encoded slices, a predicted

slice cannot be used as a starting point for the decoding process. Predicted slices will

be discussed in subsection 2.2.3.

An extension of predicted slices, Bi-predicted slices, support predicting each block

from two different reference frames, known as bi-prediction. They are only available

in the extended or more advanced profiles, and is further explained in subsection 2.2.4.

Lastly, the extended profile also supports two special switching slices, briefly explained

in section 2.2.5.

18

2.2.2 Independent slices

Independent (I) slices are the foundation of the encoded video, as they are the initial

reference point for the motion vectors in Predicted and Bi-predicted slices. They form

random access points for the decoder to start decoding the video, as well as a natural

point in the stream for fast forward/rewind.

Figure 2.2: I-, P- and B-frames.

An I-slice and the P- and B-slices that references it, is known as a group of pictures

(GOP). See figure 2.2.

H.264 uses intraslice predictions to reduce the amount of data needed for each mac-

roblock. If a macroblock is similar to one of its neighbors, we only need to store the

residuals needed to predict the pixel values from it.

In prior standards, such as H.262/MPEG2 [53], I-slices where encoded without any

prediction. Thus, they did not take advantage the spatial redundancy in the slices.

Intraslices also supports a special mode called I_PCM, where the image samples are

given directly, without neither prediction nor quantization and transform-coding (de-

scribed in detail in section 2.3.

Intraslice prediction in H.264 is implemented as intra-coded macroblocks with a set

of predefined modes. Depending on the channel to be predicted and the spatial cor-

relations in the slice, the encoder chooses the mode resulting in the minimal residual

data. For instance, it might summarize the absolute difference in pixel values for the

different modes, and select the one with the least number. This test is often referred to

as the Sum of Absolute Error (SAE) or Sum of Absolute Differences (SAD) [2].

For the luma channel, the macroblocks are either predicted for 16x16 macroblocks as a

whole, or of each 4x4 sub-block. Chroma blocks on the other hand, are always coded as

19

8x8. As the predictionmode for a chroma block is only signaled once for both channels,

Cb and Cr always share the same prediction mode.

Figure 2.3: A selection of the available 4x4 intra-modes [1].

4x4 sub-blocks can be predicted in nine different ways, some of which are shown in

figure 2.3. Eight of these represent a direction; such as mode 0 - vertical and mode 1

- horizontal, where the arrows shows how the block will be predicted. Mode 2 - DC

is a special case where all the pixels in the block is predicted from a mean value of

upper and left hand samples. As an example, a Mode 0 - vertical prediction uses the

last row of pixels from the neighboring block directly above. The residual block is then

formed by calculating the difference between the pixel values in the reference row and

every row in the current block. In the event of slice boundaries, the modes crossing the

boundaries will be disabled, and the input for the DC mode will be similarly reduced.

For smooth areas, 16x16 prediction might yield less signaling overhead than four 4x4

blocks combined. There are four 16x16 modes available, of which the first three are

similar to the 4x4 ones. Namely mode 0 - vertical, mode 1 - horizontal and mode 2 -

DC. Mode 3 - Plane, uses the upper and left pixels as input in a linear plane function,

resulting in a prediction block with a smooth transition between them [2].

The chroma blocks have similar prediction modes as the 16x16 luma blocks. However,

the ordering is different: Mode 0 is DC, followed by horizontal, vertical and plane.

The chosen mode for each (sub)block is signaled in the bit stream along with the pre-

diction residuals. However, as there often is a relationship among neighboring blocks,

the standard supports an implicit prediction mode called most_probable_mode. If

20

both the block above and to the left of the current block is predicted using the same

mode, it will be the most probable mode for the current block. If they differ, the most

probable mode defaults to DC. The implicit mode selection makes it possible to signal

the most probable mode by only setting the use_most_probable_mode flag. Other-

wise, use_most_probable_mode is nilled, and the remaining_mode_selector

variable signals the new mode.

2.2.3 Predicted slices

Similar to the spatial redundancy exploited in I-slices, there also often exist a correla-

tion between macroblocks of different slices. Using a reference slice as a starting point,

we may further reduce the space requirements by storing the pixel difference between

a macroblock and a similar macroblock in another slice. To accomplish this, the H.264

standard use motion vectors. A motion vector allows a macroblock to be predicted

from any block in any slice available for reference in memory. Instead of limiting the

prediction options to a limited set of modes, a motion vector explicitly points to the

coordinates of the referential block. This gives the encoder great flexibility to find the

best possible residual block.

Akin to the different prediction block sizes for intra-codedmacroblocks, inter-predicted

blocks support different sizes. Depending on the amount, speed and extensiveness of

motion in the sequence, the best prediction block size for a given macroblock can vary.

Picking the best prediction block size to code themotion of a block is known asmotion-

compensation.

To facilitate efficientmotion-compensation for both rapid and slowermovement, H.264

supports macroblock partitioning. Each macroblock can be divided into partitions of

either the default 16x16, two 16x8, two 8x16 or four 8x8 sub-blocks. The 8x8 parti-

tions can be further divided up into 8x8, 8x4, 4x8 or 4x4 blocks. These sub-blocks are

then motion-compensated separately, each requiring a separate motion vector in the

resulting bitstream. However, each sub-block might yield a smaller residual. On the

other hand, homogeneous regions can be represented by larger blocks with fewer mo-

21

tion vectors. Depending on the amount and speed of movement in the input video,

the encoder can then find the combination of block sizes that minimize the combined

signaling of motion vectors and residuals.

Motion vector search

For each (sub)macroblock to be inter-predicted, the encoder must find a similar sized

block in a prior coded reference slice. However, as H.264 decouples coding- and dis-

play order, the encoder is free to code a slice suitable for motion compensation earlier

than it is actually displayed on screen. It also supports pinning slices as long term

reference slices that might be used for motion compensation far longer than display

purposes would suggest.

Similar to earlier video coding standards from ITU-T and ISO/IEC, the scope of the

H.264 standard only covers the bit stream syntax and decoder process; An encoder is

valid as long as it outputs a bit stream that can be decoded properly by a conformant

decoder; The actual motion search is not defined in the standard. In fact, the H.264

syntax supports unrestricted motion vectors, as the boundary pixels will be repeated

for vectors pointing outside the slice [17].

The extensiveness of the motion vector search depends on the use case of the encoder.

For instance, a real time encoder might use a small search area to keep deadlines, com-

bined with multiple slices to make the stream robust. Afterward, the video can be

encoded offline with a thorough full-slice motion vector search without realtime re-

quirements.

While the procedure of motion vector search is left to the encoder implementation, the

general approach is to search a grid surrounding the identical position in the reference

slice. Each block with its potential motion vector in the search window is evaluated.

The optimal solution is the one which gives the lowest possible residuals. For instance,

an encoder might calculate the SAD over all the potential blocks and select the one

yielding the lowest sum.

H.264 also supports a special inter-predicted macroblock type P_Skip, where no mo-

22

tion vector or prediction residual is transmitted [15]. Instead, the macroblock is pre-

dicted as a 16x16 macroblock with a default motion vector pointing to the same po-

sition (i.e. 0,0) in the first available prediction slice. Macroblocks without motion can

then be transmitted by only signaling the metadata of macroblock type, while skipping

the actual data.

Half- and Quarter-pixels

The motion vectors in H.264 is given with quarter pixel accuracy. To support this

within the finite resolution of a sampled video frame, the quarter-pixels (quarter-pels)

must be interpolated. For the luma channel, this is done in a two step procedure;

we first interpolate half-pixels (half-pels) which then again get interpolated to form

quarter-pels.

Figure 2.4: Half- and Quarter-pixels [1].

To interpolate a half-pel, a six-tap Finite Impulse Response (FIR) filter [2] is used, in

which three pixels on either side is weighted to calculate the half-pel value. Figure 2.4

shows a block, a grid of pixels (in gray) with a selection of interpolated half-pels, and

quarter-pels (white). To determine the value of half-pel b (shown between pixels G and

H), the FIR filter would be applied as follows [2]:

23

b =
E− 5F+ 20G+ 20H − 5I + J

32
(2.1)

After the half-pels have been calculated, the quarter-pels are calculated by means of an

unweighted linear interpolation. Depending on position, they are either interpolated

horizontal, vertically or diagonally. In figure 2.4, awould be horizontally interpolated

between G and b, d vertically between G and h, while e would be interpolated diago-

nally between G and j.

Figure 2.5: Octa-pixel interpolation [2].

Due to the chroma sub sampling, the resolution of the chroma channels are halved in

both dimensions. To support the same motion vector accuracy as the luma channel,

we must calculate octa-pixels (octa-pels) for Cb and Cr. This is done in one step, where

each octa-pel to be calculated in linearly interpolated between 4 chroma pixels. Each

chroma pixel is weighted according to its distance from the octa-pel. For instance, the

octa-pel a in figure 2.5 is calculated by [2]:

a = round

(

(8− dx)(8− dy)A+ dx(8− dy)B+ (8− dx)dyC+ dxdyD

64

)

(2.2)

24

We substitute dx with 2 and dy with 3, which gives us

a = round

(

30A+ 10B+ 18C+ 6D

64

)

(2.3)

The higher-resolution motion vectors allow us to more precisely represent the mo-

tion between the slices. For instance, if two adjacent macroblocks yields the fewest

residuals, but both have differences in its direction, the higher resolution enables us to

generate a macroblock representing their mean values.

Given the large number of potential motion vectors, quadrupled by the quarter pixel

resolution, an exhausting search for motion vectors will require much processing time.

Finding more efficient motion search algorithms has resulted in numerous research

efforts. For instance, the popular open source X264 supports a range of different algo-

rithms, including Diamond search [18] and Uneven MultiHexagon search [55].

Motion vector prediction

Having performed a motion vector search over the slice, the individual motion vectors

often have high correlation, similar to the spatial redundancy exploited in intra-coded

macroblocks.

To take advantage of this, H.264 uses Motion Vector Prediction (MVP), to predict the

current motion vector. A predicted motion vector (MVp) is made from certain neigh-

boring motion vectors and a residual motion vector difference (MVD). As motion vec-

tor prediction is carried out as defined in the standard, only the MVD needs to be

encoded in the bitstream.

To calculate the MVp for a macroblock, the median of the block above, to the left and

above and to the right is calculated as shown in figure 2.6 for the block E. If any of

these are of smaller partition size than the current block, the topmost of the ones to the

left, and the leftmost of the ones above is used. If any of the blocks are missing, for

instance if the current macroblock is on a slice border, the median is calculated for the

remaining blocks.

25

A

B C

E

Figure 2.6: The current motion vector E is predicted from its neighbors A, B and C.

A special case is partitions of size 16x8 or 8x16. In the case of 16x8, the upper partition is

predicted from the block above, while the lower partition is predicted from the block to

the left. Similarly, the leftmost partition of a 8x16 partitioned macroblock is predicted

from the block to the left, while the rightmost block is predicted from the block above

and to the right.

2.2.4 Bi-predicted slices

Bi-predicted slices (B-slices) are part of the Main profile and extend P-slices with the

ability to reference two slices; Macroblocks might use motion vectors pointing to either

slice, broadening the potential to exploit temporal redundancy with two directions. In

addition, B-slices supports bi-prediction by using two independent motion vectors to

predict each block. The weight of each motion vector can be specified by the encoder.

Weighted prediction is also supported in P-slices, where it can be used to better code

certain special cases such as fade to black. By default, the prediction samples are evenly

averaged. H.264 also supports implicit weighted prediction, whereby the weighting

factor is calculated based on the temporal distance between each reference slice and

the current slice [2].

B-slice macroblocks can also be encoded in Direct mode, in which no motion vector is

transmitted. Instead, the motion vector is calculated on the fly by the decoder. A direct

bi-predicted macroblock without prediction residuals is also referred to as a B_Skip

26

macroblock, similar to the P_Skipmacroblock we detailed in section 2.2.3.

2.2.5 Switching I and Switching P slices

In addition to the already mentioned slice types, H.264 also supports two special pur-

pose slices, Switching Independent and Switching Predicted [19] as part of the ex-

tended profile. Using switching slices, it is possible to change bitstream, such as the

same content at a different resolution, without synchronizing on the next or previous

I-slice. For instance, a videostream displayed on a mobile phone might switch to a

lower resolution if 3G connectivity is lost. The standard have also been annexed with

the Scalabe Video Coding Extension to improve its support in such scenarios [20].

2.3 Transform coding and Quantization

The intra- and inter-predictions detailed in previous sections greatly reduces the re-

dundancy in the information, but to achieve high compression ratio, we need to actu-

ally remove some data from the residuals.

By using transform coding with its basis in Fourier theory, we may transform the

residual blocks to the frequency domain. Instead of representing the residual for each

pixel, a transform to the frequency domain gives us the data as a sum of coefficients

to a transform-dependent continuous function. Instead of spatial pixel differences,

we have transformed the values to a range of coefficients, ranging from low to high-

frequency information. The first coefficient is themean value of the transformed signal,

known as the DC coefficient.

By removing high-frequency coefficients from the transformed result, we may rep-

resent the data in a more compact form with a controlled loss of information. The

transform to and from the frequency domain is by itself lossless [21]. However, as the

transforms often operate on real numbers (and even imaginary numbers for the Fourier

transform), rounding the result to integer values may lead to inaccurate reconstruction.

27

Most known transforms in this area are the Fourier transform, Discreet cosine trans-

form (DCT), Walsh-Hadamard transform and Karhunen-Loève transform. The DCT is

not the most efficient to pack information. However, it gives the best ratio between

computational cost and information packing. This property has established DCT as an

international standard for transform coding [22].

In H.264, DCT is not used directly. Instead, it uses a purpose-built 4x4 integer trans-

form that approximates the DCT while providing key properties essential to the ef-

ficiency and robustness of the transform [23]. Most notably, it gives integer results.

Due to the DCT producing real numbers, floating point operations and subsequent

rounding may produce slightly different results between different hardware, and the

inverse-transformed residuals will be incorrect. This is known as drifting. As both

inter- and intra-coded slices depend on the correctness of the residuals, the inverse

transform must provide exact results.

In earlier standards without intra-prediction, this was solved by periodic I-frame re-

freshes. However, with intra-prediction, drifting may occur and propagate within the

I-slice itself. By using an integer transform without risk of drifting, the standard guar-

antees that the results will be reliable for reference. Another important property of the

transform is that is requires less computation than DCT, as it only requires addition

and binary shifts [23].

While H.264 uses the described integer transform for most of the residual blocks, it

uses the Walsh-Hadamard transform on the four DC components in a 16x16 intra-

macroblock, as well as the 2x2 chroma DC coefficients of any block. This second

transform of DC coefficients often improves the compression of very smooth regions

typically found in 16x16-mode intra-coded macroblocks and the sub-sampled chroma

blocks [15].

Quantization

After transforming the residuals into the frequency domain, the next step is quan-

tization. Depending on the desired compression level, a number of high frequency

28

coefficients will be removed. By removing the frequencies, less information must be

stored in the bitstream, which results in very efficient compression. On the other hand,

the lost data cannot be restored by the decoder, thereby degrading the output. Hence,

efficient quantization does not solely depend on the compression efficiency, but also

fine-grained control over the process.

In H.264, quantization is controlled with the Quantization Parameter (QP). It can range

from 0 to 51 for luma, and 39 for chroma channels. For every sixth step of QP, the level

of quantization doubles. Compared to earlier standards, H.264 allows for better control

for near-lossless quantization. For instance, a zeroed QP in H.263+ corresponds to 6 in

H.264, giving more control over the information loss [23]. The fine granularity of QP

allows for encoding video for a range of different scenarios, depending on the cost and

benefit of perceived video quality versus the cost of data transmission. For instance,

neither the expected video quality nor associated data rate cost will be the same for

the offline playback of a bluray movie as streaming of a live soccer match over a 3G

connection.

Depending on the QP, multiplying the coefficients with the quantization table will re-

sult in coefficients clipped to zero. When the decoder decodes the slice, it will in turn

inverse the multiplication. However, the zeroed coefficients will not be restored, and

some details in the picture will be lost. Depending on the grade of quantization, er-

rors will be introduced in the decoded picture. Figure 2.7 shows similar quantization

artefacts in a JPEG image. When the inverse block transform is performed with fewer

coefficients, details will be lost. Thus, the text in the upper left corner is not readable.

As the quantization is performed per block, the edges between the restored blocks will

degrade. For instance, the lines in the wall looks jagged, as there is not enough infor-

mation in the image to restore the transition between the transformed blocks. We will

return to how H.264 reduces the extensiveness of these errors when we explain the

in-loop deblocking filter in 2.4.

After quantization, the coefficients clipped to zero will introduce redundancy that will

be exploited in the coding step explained in section 2.5. Before that, however, we will

need to re-arrange the data from raster to a pattern know as "zig-zag" as shown in

29

figure 2.8.

Figure 2.7: A JPEG image showing clear block artefacts.

Figure 2.8: ZigZag pattern of a 4x4 luma block [2].

This will order the coefficients so that the zeroed values are grouped together. Having

reordered the coefficients, we can compress them more efficiently as continuous runs

of zeroes, instead of individual values scattered across the raster order.

30

2.4 Deblocking

To minimize the blocking artefacts introduced by the quantization step, H.264 man-

dates an in loop deblocking filter. As such, the deblocking filter is a part of both the

encoding and decoding process, as opposed to deblocking as a post-processing step

done by the decoder. This ensures a level of quality, as the encoder can guarantee the

quality delivered to the end user by a conforming decoder. It also works more effi-

ciently than a post-processing filter, as it greatly reduces the propagation of blocking

artefacts throughmotion vectors [9]. It also reduces the residual size, as the smoothing

of artefact results in closer resemblance to the original pixels.

Figure 2.9: Plotted pixel values of an edge showing typical signs of blocking artefacts.

As the difference in pixel value between the edges of adjacent blocks p0 and q0 is much

higher than the differences between p0 − p4 and q0 − q4, it is likely a result of quanti-

zation [9].

The purpose of the deblocking filter is to evaluate the edges between the 4x4 luma

transformation blocks and 2x2 chroma blocks to determine if there is a block artefact

between them, as opposed to any other form of edge due to actual picture content.

A synthetic edge from blocking artefacts is identified by a pronounced spike in pixel

values between the edge pixels that does not continue across the interior samples, as

seen in figure 2.9. The sharp spike between pixel values p0 and q0 does not propagate

31

Condition Bs

One of the blocks is intra-coded and on a macroblock edge 4

One of the blocks is intra-coded 3

One of the blocks has coded residuals 2

Difference of block motion ≥ 1 luma sample distance 1

Motion compensation from different reference slices 1

Else 0

Table 2.1: Determining Boundary strength. Data from [9].

in the interior pixels p1− p3 and q1− q3. Edges that fall into such a pattern is smoothed

over by interpolation with interior pixels.

The deblocking filter in H.264 works in a two-step process. First, each edge is given

a score, known as Boundary strength(Bs). It is based on the type of macroblock and

how it has been predicted. It is then given a value between 0 and 4, determining the

expected amount of filtering necessary. For edges with a Bs of 0, deblocking will be

disabled. Edges with a Bs between 1-3 might be filtered with the normal filter, while

edges between intra-coded macroblocks gets a score of 4 and receives extra strong

filtering. The conditions for the assignment of Bs is given in table 2.1. Each condition

is tested as ordered in the table, and the corresponding boundary strength is chosen

from the first matching condition.

After each edge has been assigned a Bs, the pixel values for those with Bs≥ 1 is ana-

lyzed to detect possible blocking artefacts. As the amount of block artefacts depends

on the amount of quantization, the tested threshold values, α(IndexA) and β(IndexB),

is dependent on the current QP. IndexA and IndexB is derived from QP, with optional

influence from the encoder. The possible values for α and β is predefined in the stan-

dard, and originates from empirical data that should ensure good results for a broad

range of different content. For instance, QP values close to zero will result in very low

data loss, so the deblocking filter can safely be disabled.

The pixel values are then tested, and the edge is filtered if the following conditions

hold:

32

|p0 − q0| < α(IndexA) (2.4)

|p1 − q1| < β(IndexB) (2.5)

|p2 − q2| < β(IndexB) (2.6)

where β(IndexB) generally is significantly smaller than α(IndexA).

If the above conditions hold, the edge is filtered according to its Bs. For edges with Bs

≤ 3, the edge pixels and up to 1 pixel on either side of the edge might be filtered. For

Bs = 4, the edge pixels and up to two interior pixels on either side might be filtered.

Thus, the filter smooths out artefacts while keeping the original image content sharp.

Compared to non-filtered video, the deblocking filter reduces the bit rate by 5− 10%

while keeping the same quality.

2.5 Entropy coding

Before the quantized prediction residuals and associated parameters such as predic-

tion mode or motion vectors are written to the output bitstream, they are further com-

pressed with entropy coding. The prior steps we introduced earlier worked in either

the spatial- or frequency domain of the input frame, while entropy coding takes ad-

vantage of patterns in the resulting bitstream. Instead of using natural binary coding

to write the end result of the prior encoding steps, we use our knowledge of the data to

assign shorter codewords for frequent data. For instance, the quantization step in sec-

tion 2.3 does not reach its compression potential unless we represent the runs of zeroes

more densely than just a zero word for each occurrence. H.264 uses context-adaptive

entropy coding, by which means that the assignment of codewords adapts with the

content. Depending on recently coded macroblocks, the encoder will choose the code

tables that it estimates will yield the shortest codes for the current block.

H.264 supports two entropy coding methods, either Context Adaptive Variable Length

Coding (CAVLC) or Context-basedAdaptive BinaryArithmetic Coding (CABAC).While

33

CAVLC is available in all profiles, the latter is only available in the Main profile or

higher. The choice of encoding is signaled via the entropy_coding_mode flag [2].

2.5.1 CAVLC

When the entropy_coding_mode is clear, CAVLC is used to code the residual blocks.

After a blocks has been reordered in a zigzag pattern, it is coded as shown in figure

2.10:

Figure 2.10: Flowchart of the CAVLC coding process [3].

First, a variable coeff_token is coded and written to the bitstream. coeff_token

holds two values; the number of nonzero coefficients and how many of these are ±1.

As coeff_token only stores up to 3 trailing ones, any further ones are stored along

with the other nonzero coefficients. On the other hand, if there are fewer than 3 trailing

ones, we know that the last nonzero coefficient can not be±1. CAVLC takes advantage

of this by storing the first coefficient decremented by ±1.

The standard defines four lookup tables for coding coeff_token, and the table in

current use depend on the number of nonzero coefficients stored in the neighboring

blocks above and to the left of the current block. If both the upper and left block has

34

been coded, the table chosen is the mean value, or the same table is uses if only one is

available. If the block is the first to be encoded, it defaults to the first table.

The tables are constructed so that the first table most efficiently codes low values, while

the second and third tables code increasingly larger values. The fourth table uses a 6bit

fixed length and is used for values not available in the other tables. Thus, the choice of

lookup table for coeff_token is one of the properties that makes the coding context

adaptive.

After coding coeff_token, the sign of each ±1 is coded as a 1bit

trailing_one_sign_flag following the convention from two’s complements neg-

ative numbers with the bit set for minus, and cleared for plus. Note that the signs are

given in reverse order.

Following the special case ones, the rest of the nonzero coefficients are coded, again in

reverse order. Each one is coded as a two-touple, level_prefix and level_suffix.

The level is divided into two code words to more efficiently code the variety of coeffi-

cient values by adapting the size of level_suffix. level_suffix uses between 0

and 6 bits, and the number of bits used by the currently coded coefficient depends on

the magnitude of prior coded coefficients. The number of bits used by level_suffix

is another property that makes CAVLC context adaptive.

Subsequent to coding all the nonzero coefficients, the total number of zeroes between

the start of the block and the highest nonzero coefficient is coded in total_zeroes.

Finally, each run of zeroes before a nonzero coefficient is coded in a run_before code.

As with level_suffix and trailing_one_sign_flag, this is done in reverse or-

der. However, this is not done for the first coefficient, as we already know the total

numbers of zeroes through total_zeroes.

2.5.2 Exponential Golomb codes

While CAVLC is used for residual block data, another approach is used for other in-

formation such as headers, macroblock type, motion vector difference etc, called Expo-

35

nential Golomb (Exp-Golomb) codes. In contrast to the tailored approach, Exp-Golomb

codes is a general coding scheme that follows a general pattern. Each codeword con-

sists of N leading zeroes separated from M bits of information with a 1, except for the

first codeword that is coded as simply one. The second codeword is 010, the third,

111, the fourth 00100 and so forth. Hence, the shorter the code number, the shorter

the codeword will be.

For a given code number n, the corresponding Exp Golomb code can easily be calcu-

lated as shown in listing 2.1 (which prints the code as text for readability).

import math

def ExpGolomb_code (code_num) :

i f code_num == 0 : return ’ 1 ’

M = in t (math . f l o o r (math . log (code_num+1 , 2)))
INFO = bin (code_num +1 − 2* *M) [2 :] # s k i p 0b

pad = M − len (INFO) # number o f b i t s t o pad t h e INFO f i e l d

return M* ’ 0 ’ + ’ 1 ’ + pad * ’ 0 ’ + INFO

Listing 2.1: ExpGolomb code example.

Each code number is decoded by counting until reading a 1, and then read the same

amount of bits as the INFO field. The code number is then found by calculating

code_num = 2M + INFO− 1. (2.7)

As Exp-Golomb coding is a general coding scheme, its efficiency lies in the lookup

tables matching code words with actual data. To achieve the best compression, the

shorter code words must be used for the most frequent data. As Exp-Golomb coding

is used for a range of parameters, four different types of mappings are used:

• me, mapped symbols, are coding tables defined in the standard. They are used

for, among others, inter macroblock types, and are specifically crafted to map the

most frequent values to the shortest code numbers.

• ue, unsigned direct mapping, where the code number is directly mapped to

the value. This is used for, inter alia, the reference frame index used in inter-

prediction.

36

• te, truncated direct mapping, is a version of uewhere short codewords are trun-

cated. If the value to be coded cannot be greater than 1, it is coded as a single bit

b, where b = !code_num [24].

• se, signed mapping, is a mapping interleaving positive and negative numbers.

A positive number p is mapped as 2|p| − 1, while a negative or zero number n is

mapped as 2|n|.

2.5.3 CABAC

When the entropy_coding_mode flag is set, CABAC is used. It uses arithmetic cod-

ing for both residual data and parameters, and achieves higher compression ratio at the

cost of higher computational costs. In test sequences for typical broadcast scenarios,

CABAC has shown a mean improvement of 9% - 14% increased compression rate [25].

The process of encoding with CABAC is threefold:

1. First, the syntax element to be encoded must go through binarization, by which

means that a non-binary value must be converted to a binary sequence, as the

arithmetic coder only works with binary values. The resulting binary sequence

is referred to as a bin string, and each binary digit in the string as a bin. If the

value to be coded already has a binary representation, this step can naturally be

omitted.

The binarization step represent the first part of the encoding process, as the bina-

rization scheme employed by CABAC assigns shorter codes to the most frequent

values. It uses four basic types, unary codes, truncated unary codes, k’th order

Exp-Golomb codes and fixed length codes, and combine these types to form bi-

narization schemes depending on the parameter to be coded. In addition, there

are five specifically crafted binary trees constructed for the binarization of mac-

roblock and sub-block types. The binarization step also makes the arithmetic

coder significantly less complex, as each value is either 0 or 1.

2. After binarization, the next step is context modeling, in which a probability distri-

37

bution is assigned one or more bins for each bin string. The selection of context

model depends on the type of syntax element to be encoded, the current slice

type, and statistics from recently coded values. The choice of context model for

the current bin is influenced by neighboring values above and to the left. CABAC

uses nearly 400 context models for all the syntax elements to be coded. CABAC

also includes a simplified mode where this step is skipped for syntax values with

a near-uniform probability distribution.

The probability states in the context models are initialized for each slice, based on

the slice QP. As the amount of quantization has a direct impact on the occurrence

of various syntax values. For each encoded bin, the probability estimates are

updated to adapt to the data. As the context model gains more knowledge of

the data, recent observations are given more impact as the frequency counts gets

scaled down after a certain threshold.

3. Following the selection of context model, both the bin to be coded and its context

model is passed on to the arithmetic coder, which encodes the bin according to

the model. The frequency count of the corresponding bin in the context model is

then updated. The model will then continue to adapt based on the encoded data,

until a new slice is to be encoded and the models are reset.

2.6 Related work

Many of the features that makes H.264 efficient depend on exploiting the relationship

and similarities between neighboring macroblocks. A prime example of this is the mo-

tion vector prediction illustrated in figure 2.6. To efficiently compress themotion vector

E, it is stored as a residual based on the median of its neighbors A, B and C. In terms

of data dependencies, this means that E cannot be predicted until A, B and C has been

processed. While this allows the video to be compressed more efficient, it also compli-

cates parallelism, as the interdependent macroblocks cannot be processed in parallel

by default. However, research shows that various steps of the encoding process can be

parallelized by novel algorithms or relaxing requirements while minimizing the asso-

38

ciated drawbacks.

Parallelizing of H.264 can be broadly categorized as either strategies to parallelize the

overall encoding workflow, or parallelized solutions to specific parts of the encoding

process. Of the overall strategies, there are two independent methods; slice-based and

I-frame/GOP-based.

The slice-based approach takes advantage of slices (see section 2.2) to divide each

frame into self-standing slices that can be processed in parallel. While slices add ro-

bustness by being independently decodable, the same independence reduce the effi-

ciency of prediction. Measures by Yen-Kuang Chen et al. has shown that using 9 slices

increases the bitrate by 15-20% to maintain the same picture quality [16], with support-

ing findings by A. Rodríguez et al. [26].

One advantage of the slice-based approach is that it supports real-time applications, as

it does not add extra latency or dependence on buffered input. Examples of encoders

using the slice-based approach are the cuve264b encoder we introduce in chapter 4,

including its origin, the Streaming HD H.264 Encoder [6]. Slice-based parallelism was

also the original threading model for the free software X264 encoder [56].

The GOP/frame based approach is to use the interval of I-frames to encode different

GOPs in parallel [26]. By predefining each GOP, the video can be divided into work-

ing units handled by different threads. An important drawback with the GOP-based

strategy is that it is unsuitable for real-time applications, as it depends on enough con-

secutive frames to form a working unit. It also adds latency, as each GOP in itself is

encoded sequentially.

As both approaches work independent of each other, they can also be combined to

form hierarchal parallelization. By further dividing each GOP into different slices per

frame, each GOP can also be encoded in parallel [26].

In addition to the mentioned approaches, there also exists different strategies to par-

allelize certain parts of the encoding process. However, the algorithmic detail of such

designs is out of scope of this thesis.

39

2.7 Summary

In this chapter, we introduced the H.264 video coding standard, and gave an overview

of its main means of achieving effective video compression. We also laid out related

work in parallelization of video encoding. In the next chapter, we will introduce GPUs

in general, and the nVidia CUDA framework in particular.

40

Chapter 3

nVidia Graphic Processing Units and

the Compute Unified Device

Architecture

3.1 Introduction

In the previous chapter, we introduced the H.264 video encoding standard. In this

chapter, we give an introduction to the massive parallel architecture of GPUs. We

give a brief history on the evolution of GPUs, and a more thorough overview of cur-

rent GPU architecture and the Compute Unified Device Architecture (CUDA). In later

chapters, we will use CUDA-enabled GPUs to improve video encoding performance

of a H.264 encoder introduced in the following chapter.

A GPU is a specialized hardware unit for rendering graphics on screen. It can typ-

ically be an integrated part of a motherboard chipset such as nVidia Ion [57], or as

a discrete expansion card. In addition, modern processors such as AMD Fusion se-

ries [58] and Intel Sandy Bridge [59] Accelerated Processing Units (APUs) combine a

CPUwith a GPU on a single die, enabling more efficient communication between CPU

and GPU [27].

41

42

While originally limited to rendering graphics, modern GPUs are essentially massively

parallel processors. Designed to render 3D scenes onto a frame of 2D pixels, they en-

able the concurrent computation of large numbers of values. The first generations of

GPUs had a fixed pipeline with limited programmability, but modern GPUs enable

general purpose programming through C-like languages such as nVidia CUDA and

OpenCL by the Khronos Group. Thus, the same thread model applied to pixel pro-

cessing can be applied for solving problems not limited to graphics. This is known as

general-purpose computing on graphics processing units (GPGPU),

GPUs, due to their special purpose design, have a different architecture than CPUs.

CPUs spend much die space on control logic, such as branch prediction and out-of-

order execution and large cache to maximize performance [4]. GPUs have much less

control logic, freeing up more die space for arithmetic logic units (ALUs). This gives

a GPU more calculation capacity, at the cost of programming complexity. To reach

peak performance, the programmer must explicitly design the application for the tar-

get GPU.

As shown in figure 3.1, most die space on a GPU is used for ALUs, while a typical CPU

uses the majority of die space for control and cache. Thus, for applicable workloads,

GPUs can outperform CPUs with the same number of transistors [28].

The computational strength of a GPU lies in performing the same calculations over a

large number of values. While originally limited to shaders performing transform and

lightning of 3D graphics, the same processing power can be used for general purpose

computations. For instance, rendering a 1080P frame involves about two millions of

independent pixels.

3.2 History

The term GPU was defined by nVidia in 1999, when they released their Geforce 256

graphics adapter [29]. While Geforce 256 was not the first 3D graphics adapter, it was

the first to support Transform & Lightning accelerated in hardware compatible with

43

Figure 3.1: CPU transistor usage compared to GPU [4].

Figure 3.2: Diagram of a pre-DX10 GPU pipeline. [5] The Vertex processor was pro-

grammable from DX8, while the Fragment processor was programmable from DX9.

DirectX 7. However, due to the limits of a fixed function pipeline, the GPUwas limited

to providing visual effects.

The progression of GPUs has been largely driven by the gaming industry, and new

generations have been released to implement requirements of the popular Microsoft

DirectX API. Each following major version of the framework resulted in a generation

of new GPUs.

DirectX 8 compatible GPUs, such as nVidia Geforce 3 and Ati Radeon 8500, added

support for programmable vertex shaders. This allowed the programmer to control

44

how each vertex in the 3D scene was converted to discrete pixels in the output, such as

position and texture coordinates.

The next generation of GPUs, compatible with DirectX 9, added support for

programmable fragment shaders. This gave the programmer direct control over pixel

lightning, shadows, translucency and highlighting. This per-pixel control could also

be used for general computation, given that the problem could be mapped as a frame

to be rendered.

While the pipeline was still primary focused for graphic tasks, the ability to write pro-

grams for the GPUs made it possible to utilize the GPU processing power for other

tasks. However, to do so, applications needed to be specially adapted for the 3D

pipeline in terms of vertices and fragments [28]. As shown in figure 3.2, the program-

mer could program the Vertex processorwith DX8, and the Fragment processorwith DX9.

Data input is stored as textures on the GPU, and computations in calculated by a shader

program on streams of textures. The results are then stored in either texture memory

or the framebuffer, depending on the number of passes necessary for the computation.

While the fixed function pipeline limits the complexity of each pass, complex compu-

tations can be solved as multiple passes. For instance, Peercy et al. [30] have written

a compiler that translates a higher level shading language into multiple OpenGL ren-

dering passes.

The vertex and fragment processors where originally programmed in assembly lan-

guage [29]. However, multiple higher-level languages, such as C for graphics (Cg) [31],

High Level Shading Language (HLSL) [60] and OpenGL Shading Language (GLSL) [61]

emerged, allowing programmers to program in C-like languages.

With DirectX 10, the traditional 3D pipeline was replaced with a more general process-

ing architecture [32]. While still being driven by the demands from gaming and other

applications of graphic accelerations, the architecture included many features impor-

tant for GPGPU use. For instance, it added support for integer operations and more

stricter IEEE-754 floating point support. This change in architecture made the GPU

much more suitable as a general purpose stream processor, without the inherent limits

45

of the legacy graphics pipeline. CUDA, released by nVidia in 2007, made it possible to

program its DirectX 10 compatible GPUs with extensions to the C language [33].

DirectX 11 introduced the Compute Shader, also known as Direct Compute. The Com-

pute Shader expands the DirectX API to also encompass GPGPU programming sim-

ilar to the CUDA stack. However, the Compute Shader is not dependant on a single

hardware vendor, providing a more general abstraction. Although released as part

of DirectX 11, Compute Shaders also run on DirectX 10 compatible hardware, within

hardware limitations.

Since the initial release of CUDA, both the software stack and the underlying GPU

architecture has been through both major and minor revisions, with the current com-

pute capability (see section 3.3.2) at 2.1. Improvements include 32bit atomic integer

instructions, 32bit floating point instructions, 64 atomic integer instructions, double

precision floating point instructions and improved synchronization and memory fenc-

ing instructions.

While writing this thesis, nVidia released its latest generation GPU architecture, Ke-

pler [62]. However, we will focus on the previous revision, Fermi [39].

3.3 Hardware overview

The Fermi GPU architecture consists of a number of processing cores clustered in

Stream Multiprocessors (SMs), with a shared level 2 cache, device memory, host in-

terface and a global scheduler which dispatches jobs to the SMs.

3.3.1 StreamMultiprocessors

Each Fermi-class SM, as shown in figure 3.3, contains 32 separate CUDA cores with

both integer ALU and floating point units [39]. It also includes registers, instruction

cache and local memory shared by all the local cores. Each SM also contains 16 load

and store units, allowing one half-warp of threads access to DRAM in parallel.

46

In addition to the 32 CUDA cores, each SM also contains four Special Function Units

(SFUs), responsible for calculating transcendental instructions such as square root and

(co)sine. For such functions, CUDA provides two types of operations: Regular func-

tions such as single precision sinf(x), and functions prefixed with double under-

score, such as __sinf(x). The latter ones maps directly to SFU instructions on the

device, but with limited accuracy. The regular sinf(x) is implemented on top of

__sinf(x), providing better accuracy1. However, the additional instructions lead to

a more expensive computation. This is especially the case for trigonometric functions

on operandswith largemagnitude, as the argument reduction codemight need to store

intermediate results in local memory. Direct usage of the SFU intrinsics can be forced

at compile-time through the -use_fast_math flag.

Figure 3.3: Fermi Stream Multiprocessor overview. [39]

Scheduling of the CUDA cores is handled by a dual warp scheduler and instruction

1sinf(x) has a maximum error of 2 units of least precision. __sinf(x) on the other hand, has an

error of 2−21.41 for x in [−π,π] with no bounds given for other values of x.

47

dispatching unit. This allow two groups of threads, called warps, to be executed con-

currently. Thus, half of each of the two warps may run on 16 CUDA cores, run 16

load/store operations or use the 4 SFUs at any given time. Each of the threads of each

such half-warp run the same instruction, and branching is not supported. If branching

occurs, each of the branches must be evaluated for all the running threads, reducing

performance.

Since the launch of Fermi, nVidia has released an updated SM design supporting 48

CUDA cores and 8 SFUs. It also includes an updated warp scheduler which issues two

instructions at a time.

3.3.2 Compute capability

As the CUDA-compatible GPUs continue to evolve, newer features such as support for

atomic instructions, double-precision floating point operations and support for multi-

ple simultaneous kernel calls are added. To keep track of the improvements in the

hardware, nVidia uses a version numbering system known as device compute capa-

bility. Using a major and a minor number, compute capability conveys the supported

features of the GPU. See figure 3.4 for features added since 1.0. At compile time, the

programmer can specify the target compute capability instruction set through the com-

pile flag -arch=sm_Mm, where M and m are the major and minor version number. For

instance, -arch=sm_13 compiles for the 1.3 compute capability, which is the first to

support double precision floating point operations. If the flag is not specified, the code

will be assembled in the default instruction set. For instance, double precision floating

point operations mentioned above will be truncated to single precision unless the tar-

get compute capability is specified. Similarly, the compute capability for compiled bi-

naries can be specifiedwith the -code=sm_Mm flag. The important distinction between

target assembly instruction set and binary will be explained in section 3.3.5. The com-

pute capability of a GPU can be queried with the cudaGetDeviceProperties()

function.

48

Figure 3.4: Feature support by compute capability. [40] and slightly modified.

3.3.3 Memory hierarchy

As noted in the section above, each SM contains register space and shared memory for

its cluster of CUDA cores. In addition to this, the GPU has larger memory resources

available, but not integrated in the GPU. This results in a memory hierarchy where

memory usage can have a crucial impact on performance. See figure 3.5 for a diagram

of the memory hierarchy of a Fermi-class GPU.

49

Figure 3.5: Fermi memory hierarchy: Local, global, constant and texture memory all

reside in DRAM. [39], slightly modified.

On the first level, not shown in the diagram, we have the registers used by the CUDA

cores. They have an access time of one clock cycle, but limited in size. On a Fermi-

generation SM, the 32 cores share a total of 32768 four-word registers. If these gets

exhausted, due to a large number of variables or large structures or arrays, local mem-

ory is used instead. Local memory is private to each thread, but resides in global

memory which will be described below. On a Fermi-class GPU, 512KB is reserved as

local memory per thread.

The second level of memory is the shared memory, also residing on-chip within each

SM. Shared memory also has access time of one clock cycle, but accessible to all the

running threads. This give all the cores of each SM a fast pool of memory for sharing

data, reducing the need of off-chipmemory for data reuse. However, the throughput of

50

sharedmemory is dependent on how the accessed data is laid out. The sharedmemory

is uniformly divided into modules, called banks. Prior to Fermi, shared memory was

divided into 16 banks, which increased to 32 with Fermi and compute capability 2.0.

Each memory bank can be accessed independently, so n memory accesses across n

banks can be performed in parallel. On the other hand, if a single bank gets more than

one memory access, they must be serialized. This is known as a bank conflict. For a

n-way bank conflict, the conflicting memory accesses are divided into n independent

non-overlapping accesses, with a respective reduction in access time.

Each Fermi-class SM contain 64KB of memory used for both shared memory and a L1

cache. Of the 64KB, 48KB can be used for shared memory with additional 16KB used

as L1 cache, or vice versa. Shared memory can either be statically allocated in a kernel,

or dynamically allocated at kernel execution from the host.

Off chip, the GPU has access to significantly larger amounts of memory, albeit with

orders of magnitude slower access times. This memory is referred to as global memory,

and is both available to the load/store units on each SM as well as the host. Global

memory can be accessed with 32-, 64- or 128-byte transactions, given that the accessed

address is aligned to the transaction size. When threads access global memory, the

request of each thread will be combined into larger transactions if possible, known as

memory coalescing.

The efficiency of coalescence depends on the access patterns and the compute capabil-

ity of the GPU at hand. For the first generation CUDA devices with compute capabil-

ity 1.0 and 1.1, the requirements are strict: Each thread needed to access 32, 64 or 128

bits from the same memory segment in sequence. For instance, a half-warp reading

a float array indexed by a thread’s id would be coalesced. Newer compute capa-

bilities have loosened the requirements for memory coalesced as the load/store units

have improved. For example, compute capability 1.2 removed the requirements for se-

quential access and supported coalesced access of 8- and 16-bit words. If the half-warp

in the previous example read an array of type short or char instead, this would be

coalesced with compute capability 1.2 or above, but serialized in 1.0 or 1.1.

51

Even with memory coalescing, global memory access incur significantly more latency

than the registers and shared memory local to a SM. Given a sufficient number of

threads, the scheduler will try to mask away the latency by scheduling other warps

on the CUDA cores while the memory access is carried out. Global memory may be al-

located statically in a kernel, or dynamically via CUDA-specific versions of malloc()

etc, i.e. cudaMalloc().

The GPU also has two additional memory spaces that are read-only from device code,

constant and texture memory. They can only be written to from the host. The ad-

vantage of these memory spaces is that they are cached on each SM. Depending on

application access patterns leading to cache hits, these memory spaces can greatly re-

duce the access time. A prerequisite for using either constant or texture memory is

that the intended data fit in the limited space. Constant memory is limited to a total

of 64KB, with 8KB cache per SM. Texture memory is limited to between 6-8KB cache

per SM, depending on GPU. When the accessed data is not residing in cache, constant

and texture memory have the same access time as regular global memory. The major

difference between constant and texture memory is that CUDA exposes a subset of the

texturing hardware of the GPU through functions working on texture memory.

As briefly noted above, Fermi introduced a L1 cache in combination with shared mem-

ory. While kernels must be explicitly programmed to take advantage of shared mem-

ory, the L1 cache caches both local and global memory accesses transparent to the pro-

grammer. The caching of local memory mitigates the increased latency incurred due

to to exhausted register space.

Fermi also introduces a second level cache, shared between all the SMs on the device. It

provides 768KB of unified cache and handles all load, store or texture requests. As the

cache is shared, it can be used to efficiently share data between threads across different

blocks.

In addition to the different memory regions on the SMs and off chip memory, kernels

executing on the device might also access host memory. A prerequisite is that the

memory region has been allocated as page-locked, often referred to as pinnedmemory.

Such memory cannot be swapped out to secondary storage and is therefore a scarce

52

resource. Forgetting to free such memory can easily trash a system. Something I can

confirm from personal experience. After allocating a region of pinned memory, it can

be mapped into the device memory space with the cudaHostGetDevicePointer()

function.

3.3.4 Programming model

Programming of the GPU follows the stream programming paradigm; the GPU code

is implemented as kernels that gets executed over the data. A kernel is written sim-

ilarly as a regular sequential function, without any special vector instructions. It is

then executed in one instance per thread by the CUDA schedulers. This is referred to

as Single instruction, multiple threads (SIMT) model, as all the threads spawned from

a single kernel call will issue the same instructions. The only differences between the

threads are the special variables blockIdx and threadIdx. They identify the current

thread, and get set at kernel invocation time. In addition, gridDim and blockDim

will contain the maximum dimensions for the thread hierarchy. In the source code,

a GPU kernel is denoted by the __global__ identifier, for instance __global__

void vec_add(float **a, float **b, float **result). CUDA also sup-

ports device functions called from a kernel, identified with __device__.

Grid, blocks and threads

CUDA uses a two-tiered threading model that maps directly to the architecture of the

GPU. Threads are bundled into groups, which are organized in a grid. The global

scheduler on the GPU then distributes the groups of threads to the available SMs. All

the threads inside each group executes on the same SM, and individual threads are

managed by the local scheduler.

The programmer is free to choose how the two tiers are organized, i.e. within the

hardware limits and the compute capability of the GPU. The thread groups and grid

may be organized as either a one-dimensional row, a two-dimensional grid or a three-

dimensional cube. This is done with the dim3 integer vector types, which can contain

53

up to three dimensions.

Prior to a kernel call, the programmer must specify the number and distribution of

threads per block and blocks per grid. For instance, dim3 grid(256);will create

a variable gridwith 256 ∗ 1 ∗ 1 blocks, and dim3 threads(32, 32, 4)will create

a variable threadswith 32 ∗ 32 ∗ 32 threads. Note that for a single dimension, passing

a regular intwill suffice.

A kernel call is then issued on the form as shown in listing 3.1:

myKernel<<<grid , threads , shared_memory , stream>>>
(funct ion , parametres) ;

Listing 3.1: CUDA kernel call

Except from the parameters enclosed in <<< >>>, the kernel call looks similar to a

regular C-style function call. However, the call executes a kernel in parallel on a mas-

sive number of threads. The grid and threads specify the amount and distribution

of the grid and threads per block as described above. shared_memory allows the

programmer to dynamically allocate shared memory at invocation time. (This is not

possible from inside the kernel itself.) stream controls which CUDA stream in which

the kernel will be scheduled. We will elaborate on CUDA streams in chapter 7 Only

grid and threads are mandatory, so if neither shared_memory nor stream are

used, they need not be specified.

See figure 3.6 for an example with a 2D grid containing 2D thread groups. The outer

grid contains 6 thread groups, which each contains 12 threads. When executed, the

global scheduler on the GPUwill assign the blocks to the available SMs. As the number

off threads is less than the number of available cores per SM, each core will not be

utilized. Likewise, 6 thread groups will not utilize all the SMs on a modern GPU.

This figure originated with the now outdated version 2 of [40], when each SM only

contained 8 cores. It shows the nature of the massive parallelism of the GPU; to fully

utilize the computation power, the algorithms used must scale to a large number of

threads.

As shown in figure 3.6, each thread within each block gets assigned a unique combina-

tion of dim3 blockIdx and threadIdx2. gridDim will be (3, 3, 1) and blockDim

54

Figure 3.6: Example execution grid [40].

(3, 2, 1) These variables are then used to index the data set, effectively distributing the

data among the threads. For instance, if the threads in the figure worked on a 2D array

with one element for each thread, the thread-specific datumwould be read from global

memory as shown in listing 3.2.

in t i = blockIdx . x * blockDim . x + threadIdx . x ;
in t j = blockIdx . y * blockDim . y + threadIdx . y ;

*mydata = input [i] [j] ;

Listing 3.2: Thread array lookup.

2Although not shown in the figure, each blockIdx and threadIdxwill have an implicit z-member

of 0, with a corresponding z-member in blockDim and threadDim of 1.

55

Occupancy and efficient GPU utilization

The division between thread in each group and group in each grid has a direct im-

pact on resource distribution at runtime. As each SM has a finite number of register

space and shared memory, it is important to find the optimum division for the work-

load at hand. If the register space is exhausted, off-chip memory will be used instead,

incurring a massive increase in access time. On the other hand, reducing the threads

per group also reduces the sharing of shared memory, while enabling more data to

be stored per thread. The GPU utilization achieved by a kernel call is referred to as

the occupancy, and defined as the ratio between the number of resident warps and the

maximum number of resident warps supported by the GPU [40].

A poor configuration of thread groups and grid may leave the CUDA cores in each SM

blocked on memory accesses while leaving computing resource idle. Even though the

numbers of concurrent threads are limited to 16 on each SM, interleaving of warps can

keep the CUDA cores busy while other threads wait for memory accesses. To aid the

programmers in achieving high occupancy, nVidia has written an occupancy calculator

to find the optimum parameters for their kernels.

Flow control

As noted in section 3.3, the CUDA cores does not support branching. However, branch-

ing is possible on the outer grid, as each thread in awarpwill take the same branch. For

workloads with certain edge cases, mapping the edge cases as separate thread groups

makes it possible to implement on CUDA without divergent branching. For instance,

in our contribution to [34], we implemented a Motion JPEG encoder where the frame

edge-cases where handled as separate groups. This enabled us to have special cases at

the rightmost and lowest parts of the frame where pixel extrapolation was necessary.

In addition to being an abstraction of the GPU hardware, the grid and thread block

hierarchy also gives the programmer some degree of execution control. While the

scheduling of blocks and threads on SMs are outside of the programmers control, bar-

riers and fences can be used to synchronize the execution within a thread group as well

56

as completion of memory accesses within expanding scopes:

• void __syncthreads() synchronizes the threads in a block.

• int __syncthreads_count(int predicate) synchronizes the threads in

a block and evaluates the predicate for all threads. The return value is the

count of threads where the result was non-zero.

• int __syncthreads_and(int predicate) synchronizes and evaluates

predicate, but returns non-zero only if the result was non-zero for all the

threads.

• int __syncthreads_or(int predicate) works similar to the and func-

tion above, but the result of the threads is OR-ed together instead of AND. It re-

turns non-zero if at least one result was non-zero.

• int __threadfence_block() blocks until all accesses of global and shared

memory made by the current thread are visible to the other threads in the block.

• __threadfence() additionally blocks until global memory accesses are visible

to all the threads on the device.

• __threadfence_system() expands the fence even further, by blocking until

accesses to pinned host memory is visible from the host.

For instance, the __syncthreads() barrier is crucial to efficient usage of shared

memory. If all the threads in a block work on the same data, such as with the cal-

culation of a DCT coefficient, all the threads can be assigned to fetch one value each

from global memory as shown in listing 3.3. The subsequent __syncthreads() en-

sures that all the threads have loaded their assigned value into shared memory before

the processing begins.

__global__ void syncthreads_exaple (f l o a t * input)
{

__shared__ f l o a t values [SIZE] ;

/ * Read my p a r t o f t h e d a t a s e t i n t o s h a r e d memory * /
values [threadIdx . x] = input [blockIdx . x * blockDim . x + threadIdx . x] ;

__syncthreads () ;

/ * From t h i s p o i n t on , we can assume t h a t
v a l u e s [] has been p o pu l a t e d * /

57

}

Listing 3.3: __syncthreads() example.

3.3.5 Software stack

The CUDA software stack is built around three components; the compiler, runtime and

driver.

At compile-time, the CUDA language extensions are used to determine which parts

of the code gets compiled for the host with a standard C compiler such as gcc, and

the kernel code that gets compiled for the GPU. This is handled by the nvcc com-

piler driver. Prior to host code compilation, nvcc replaces the CUDA-specific kernel

call syntax with corresponding runtime function calls for loading and executing each

kernel.

The device code is then either compiled into binary form, known as a cubin object, or

assembled into the CUDA instruction set, called PTX. Any PTX instruction code loaded

by the driver will be compiled just-in-time (JiT) prior to execution. The cubin-code is

then cached, minimizing the time penalty of compilation for further application usage.

The choice between compiled or assembled device code depends on the necessary

compatibility, as binary compatibility is only guaranteed for one future minor compute

capability. For instance, a binary compiled for a GPUwith capability 1.1 is guaranteed

to run on 1.2, but not 1.3 or 1.0.

PTX instructions, on the other hand, can always be compiled for GPUs with equal

or higher compute capability. Hence, the assembled code will be future-proof, while

incurring the cost of JiT-compilation (and possible exposure of any trade secrets in the

assembly code if applicable).

In addition to the compiler, CUDA consists of a runtime library and a driver API. Both

are available to the application, as shown in figure 3.7. The runtime library provides

convenient functions for most tasks such as memory allocation and copying, lower-

ing the level of entry. These wrapper functions then call the CUDA driver to perform

58

the operations. The driver API gives the programmer additional control over the ap-

plication by providing lower-level control over the GPU, such as CUDA contexts, the

equivalent of host processes. (We also observe that the runtime does not distinguish

between host processes and threads in this regard.) However, more control also means

that the programmer must explicitly take care of initialization etc. that is done implicit

by the runtime. The programmer can leverage both to achieve the best of both worlds.

For instance, if the runtime has already been initialized, the programmer can access the

current context by calling the cuCtxGetCurrent() function. Vice versa, the runtime

will make use of a context initialized from the driver API.

Figure 3.7: An application built on top of the CUDA stack [40].

3.4 Vector addition; a trivial example

To wrap up our chapter on GPUs and CUDA, lets have a look at a trivial example of a

complete CUDA program, namely vector addition. A.1 shows an example implemen-

tation with explanatory comments. Error handling has been left out for brevity.

Compiling and running the program gives the following output:

$./cuda_example

0xDEAD0000+0xBEEF=0xDEADBEEF

59

3.5 Summary

In this chapter, we gave an overview of GPUs in general, with a focus on the CUDA

framework developed by nVidia. We explained key components of a CUDA compat-

ible GPU and the CUDA programming framework, and introduced the fermi GPU

architecture. In the next chapter, we will introduce the software basis of our work, as

well as the hardware testbed used to perform our experiments.

60

Chapter 4

Software basis and testbed

4.1 Introduction

In this chapter, wewill introduce the software basis for our experiments, briefly explain

how they are carried out, and list the specifications of our test machine. As a founda-

tion for our experiments, we use the cuve264b encoder, a research project byMeiWen

et al. from the National University of Defense Technology, China. cuve264b is a port

of their Streaming HDH.264 Encoder [6] to the CUDA architecture. The stream design

of the original encoder makes it a suitable application for the CUDA SIMT model we

elaborated is section 3.3.4.

4.1.1 Design

Slices

cuve264b uses slices to help parallelize the encoding process. By dividing each frame

into multiple slices, the encoder can encode each slice independently, and hence in

parallel. However, the number of slices to use is not configurable. Instead, the en-

coder depends on exactly 34 slices. Specifying any other value will result in corrupted

output.

61

62

While our snapshot of the encoder only supports 1080P, support for 720P has been

added at a later stage. To correctly encode 720P, the number of slices must be set to 45.

The choice of slices is clearly the result of a calculation, but the basis is unfortunately

not documented in the source code.

Intra Prediction

To increase parallelization of the encoding process, cuve264b deviates from the refer-

ence encoder by relaxing the dependencies between neighboring macroblocks. When

performing intra-slice prediction, the different prediction modes are evaluated to find

the mode that yields the lowest residual block. Due to the quantization step, the mac-

roblocks available for reference might be different from the blocks in the raw input

slice. Thus, to achieve the best accuracy, the neighboring macroblocks must be en-

coded and subsequently decoded before the different prediction modes can be evalu-

ated. However, this limits the number of macroblocks that can be predicted in parallel.

By using the original uncoded macroblocks instead, the prediction tests can be carried

out without the prior encoding of neighboring blocks. While this will reduce the ac-

curacy of the search, tests performed on high definition sequences has shown that the

quality loss is negligible [35]. After the best mode has been found, the residual blocks

are calculated using proper reconstructed macroblocks.

Motion Vector Prediction

As noted in section 2.2.3, H.264 not only uses motion vectors to exploit temporary

redundancy, but also predicts motion vectors from its neighbors to take advantage of

spatial redundancy between the motion vectors. Unfortunately, MVP constrains the

number of motion vectors that can be coded in parallel, as the MVp for a macroblock

depends on the blocks above, to the left and above as well as to the right, as shown

in figure 2.6. By relaxing the MVp calculation as shown in figure 4.1, each row of

macroblocks can be coded in parallel. Tests performed with the Clair test sequence

63

Figure 4.1: Modified Motion vector prediction in cuve264b [6].

showed that the Peak Signal to Noise Ratio decreased by at most 0.4DB compared to

the X.264 video encoder [6].

CAVLC

To be able to parallelize CAVLC, the entropy coding has been split up into two separate

steps, encoding and linking. The encoding step can be performed independently for

each macroblock, and is performed on the GPU. The linking step on the other hand,

is performed on the host. In linking, the independently processed macroblock data is

processed to correctly place the information correctly in the bitstream. This includes

alignment on byte boundaries, calculating each macroblocks position in the bitstream,

and writing the information in the right position.

64

4.1.2 Work in progress

As the cuve264b encoder is a work in progress, not all parts of the encoding process

is done by the GPU yet. For instance, the deblocking filter runs on the host. This

leads to unnecessary copying of reference frames from the host to the device. Due to

inter prediction, the encoder must keep at least one prior encoded frame available to

reference. To ensure that the frame used for reference is identical to the frame read

by the decoder, this frame must be encoded and deblocked. As the deblocking filter

is done on the host, the encoded frame must be copied back to the device after it has

been deblocked. We will explore this further in chapter 8.

4.2 Evaluation

Except for a small number of special cases, most of our proposed improvements are

evaluated by measuring the encoding time and comparing the result. To perform

the encoding tests, we use three different test sequences, blue_sky, tractor and pedes-

trian_area [63]. They all consist of 4:2:0 frames of 1080P video, but varies in length.

They also have different content suitable to test various cases for motion estimation

and prediction, such as camera panning, zooming and objects in various degrees of

motion. However, as we only compare different runs of the same test sequences, we

assume that this will have no impact on our results.

To measure integral parts of the encoding process, such as host function calls and de-

vice kernel calls, wewrap the code ingettimeofday() system calls. gettimeofday()

was the preferred Linux timing source evaluated by Ståle B. Kristoffersen [36] as part

of his work on the P2G framework [37].

Most of our results are presented as the reduction in encoding time, given in percent.

However, for the re-ordering and helper kernels measured in chapter 7 and 8, we give

them in direct ratio to better clarify the large differences.

All our tests have been carried out on the machine Kennedy, with its most significant

65

CPU Intel Core i7 860 (2.80GHz)

CPU Cores 4 with Hyperthreading

Memory 8GB

GPU GTX 480 (GF100)

Harddrive Seagate Barracuda 7200rpm

Operating System Ubuntu 10.04.4 LTS 32bit X86 (Linux 2.6.32-38-generic-pae)

Table 4.1: Hardware specifications for the machine Kennedy.

properties listed in table 4.1.

4.3 Summary

In this chapter, we have introduced the cuve264b encoder, the software basis for our

work. We have also given an overview of the environment used to carry out or bench-

marks and explained how they are carried out. In the following chapters, we will

introduce and evaluate our proposed improvements to cuve264b.

66

Chapter 5

Readahead and Writeback

5.1 Introduction

As the computational throughput of GPUs increase, it is important for the host to pro-

vide new work on time. If the host is not ready to dispatch more work for the GPU

when the current work is done, the GPU will idle. Optimizing the GPU code or up-

grading the GPUwill not give any performance gain, as the host has become the bottle

neck.

Read input frame Encode frame Write output slices

Read input frame Encode frame Write output slices

Read input frame Encode frame Write output slices

Frame 1

Frame 2

Frame N

Read input frame Encode frame Write output slices...

Fram encoding time

Total encoding time = N x Frame encoding time

Figure 5.1: Serial encoding as currently done in the encoder.

To keep the GPU busy, the host must ensure that more work is ready, as soon as the

GPU has completed its current operations. The next workload should already be resi-

67

68

dent in memory, and the host process should not block on IO operations. In the event

that the next workload must be read from secondary storage, the GPU will idle. This

hurts performance, and can neither be resolved by optimizing the GPU code nor in-

vesting in a more powerful GPU. On the contrary, both options will only increase the

idle time.

In terms of video encoding, a prime example of such potential pitfalls is reading raw

frames from secondary storage, and, albeit to a lesser extent, the subsequent writing

of completed slices. Performing such IO operations in sequence with the encoding

imposes unnecessary idle time both for the host and the GPU. This is the case for the

cuve264b encoder in its current state as shown in figure 5.1.

At the start of each frame, the GPU must wait for the host to read the raw frame from

secondary storage. When the frame has been read, it is the host’s time to idle while

the GPU encodes the frame. The GPU is then yet again idling while the host writes the

encoded slices to disk before reading in the next frame.

Read input frame Encode frame Write output slices

Read input frame Encode frame Write output slices

Read input frame Encode frame Write output slices

Frame 1

Frame 2

Frame N

Read input frame Encode frame Write output slices...

Total encoding time

Fram encoding time

Figure 5.2: Threaded encoding as planned, where the separate threads will pipeline

the input, encoding and output steps, reducing the elapsed time.

The idle time can be somewhat reduced bymaking the host start reading the next frame

while the GPU encodes. However, if the GPU completes its operations while the host

is blocking on IO access, it will still idle unnecessary. To reduce the idle time as much

as possible, we must implement the IO operations asynchronously. This will allow us

69

to perform IO-operations in separate threads concurrently with the encoding. As show

in figure 5.2, this will reduce the encoding time by masking away IO operations while

the encoding happens.

5.2 Design

5.2.1 Rationale

Our longest test sequences, tractor, is 604 frames1of 1920+1080p YUV4:2:0 frames of

about 3MB each. These are read from the local hard disk, which is a Seagate Barracuda

7200rpm SATA disk. It has an average latency of 4.16 ms and a best-case 160MB/sec

read speed as reported by the manufacturer. Before frame N+1 is read from the disk,

the already encoded slices of frameN is written to disk. Hence, every frame read incurs

the cost of a disk seek. This gives us the total estimated read time of

604 ∗

(

4.16 ∗ 10−4 +
3

160

)

= 12seconds (5.1)

However, this does not take file-system metadata or other disk accesses into account.

Neither does the manufacturer specify an average read speed, only the peak value.

To get more realistic data, we performed 10 continuous reads of the whole tractor se-

quence2. With care taken to drop any in-memory caching prior to each read, we got

a median result of 16.07 seconds. For a single frame, the corresponding median was

0.087 seconds. Our goal is to read new frames into memory while the encoder works

on the current frame. This allows us to mask away all reads, except the 0.087 seconds

needed for the first frame. As the encoded slices take vastly less space than the raw

frames (31MBwith QP at 30), writebackwill not have the same impact on performance.

However, it should have a noticeable reduction in encoding time.

1While [63] lists tractor as containing 761 frames, our local copy only contains 604 frames which is

within the limits of 32bit IO operations.
2As we read the whole sequence, we did not incur the expected seeks prior to each frame.

70

In addition to masking out IO latency, splitting the application into three threads al-

lows us to divide the workflow into more general pre-processing, encoding and post-

processing workloads. One advantage of such a division, is pre-processing of input

data. This can be done while reading input frames from disk. For instance, the encoder

pads incoming frames to ensure that all blocks are of equal size. While the original en-

coder did this as a separate step in the process, we do it inline while reading from

file.

5.2.2 Implementation

To separate IO operations from the encoding of each frame, the encoder has been di-

vided into three threads: The main encoder thread and a readahead and a writeback

helper.

The encoder thread will be nearly identical as the non-threaded version, albeit IO op-

erations will be removed. Instead of reading input frames from file, it will retrieve

ready-buffered frames from the readahead helper. When a frame has been successfully

encoded, the resulting slices will be sent to the writeback thread so it can continue

encoding further frames without waiting on IO. In addition, the main thread must

initialize the helper threads at startup and synchronize with the writer thread before

exiting.

The readahead thread will read all the input frames from disk, and pass them on to

the main thread. As noted in the previous subsection, the thread will also take care

of padding the input frames as necessary. The writeback thread will wait for encoded

slices from the main thread, and write them to disk as they become available.

Queue

Splitting up the encoder in three different threads, requires that we have an effective

way of inter-thread communication. As both raw frames and finished slices are han-

dled first-in-first-out, we base our implementation on a singly linked list with head

71

and tail. This gives us insert at the head and pop at the tail inO(1) time, while keeping

the implementation details simple. To keep the list thread-safe, we use mutexes and

condition variables provided by the pthreads POSIX standard API.

An important aspect of our multi-threaded implementation is to prioritize the encod-

ing thread at the expense of the helpers. To do this, we implement two sets of func-

tions in the list: Single operations such as insert() which grabs the mutex for each

invocation, as well as corresponding _batch() functions that assume that the mutex

is taken. This allows the main encoder thread to lock the list for multiple operations,

while the helper threads must release the lock for each access. For example, cuve264b

uses multiple slices to perform the encoding. These slices are then written to the out-

put container as multiple independent buffers. When the encoding of a frame is done,

the main thread can then insert all the slices in the writeback queue without releasing

the lock. The writeback thread, on the other hand, must acquire the lock for each slice

removed from the list. Hence, the time spent by the main thread waiting for the list is

minimized.

Our list can also support resource limits on the number of items in the list. We will

use this feature to evaluate the optimum readahead window size for the encoder. For

instance, it is not necessary useful to prefetch more raw frames than what is needed

to stay ahead of the encoder. In real-time conditions such as live footage, it would not

even be possible without delaying the stream. Using condition variables, we can wake

up dormant threads when the size of the list gets below the limit.

For a complete list of the features of our list implementation, see listing 5.1.

1 # ifndef THREADLIST_H
2 #define THREADLIST_H
3
4 / * t h r e ad−s a f e s i n g l e l i n k e d l i s t used f o r i o c a c h i ng and wr i t e−back * /
5
6 / * l i s t e l emen t * /
7 s t ru c t elem
8 {
9 unsigned char * data ; / * b i t s t r e am da t a * /

10 s t ru c t elem * next ; / * nex t e l emen t * /
11 } ;
12 typedef s t ru c t elem elem ;
13
14 / * l i s t metadata , p o i n t e r s and l o c k i n g * /
15 s t ru c t l i s t
16 {
17 elem *head ;
18 elem * t a i l ;
19 pthread_mutex_t lock ;

72

20 pthread_cond_t nonempty , empty , nonfu l l ;
21 in t s ize , l im i t ;
22 } ;
23 typedef s t ru c t l i s t l i s t ;
24
25 / * c o n s t a n t s * /
26 #define LIST_NOLIMIT 0
27
28 / * l i s t f u n c t i o n s * /
29
30 / * i n i t i a l i z e s l i s t * /
31 void l i s t _ i n i t (l i s t * l , in t l im i t) ;
32
33 / * Lock t h e l i s t so mu l t i p l e o p e r a t i o n s may be run in b a t c h * /
34 void l i s t _ b a t ch _ l o ck (l i s t * l) ;
35
36 / * Unlock t h e l i s t a f t e r a b a t c h o f o p e r a t i o n s * /
37 void l i s t _ba t ch_un lock (l i s t * l) ;
38
39 / * I n s e r t s * d a t a a t t h e end o f l i s t * l * /
40 void i n s e r t (l i s t * l , unsigned char * data) ;
41
42 / * I d e n t i c a l t o i n s e r t () , but i t presumes t h a t t h e
43 * l o c k has been t a k en . Used f o r b a t c h o p e r a t i o n s
44 * /
45 void i n s e r t _ba t ch (l i s t * l , unsigned char * data) ;
46
47 / * Pops t h e l i s t and r e t u r n s t h e popped da t a .
48 * b l o c k i n g i f t h e l i s t i s empty * /
49 unsigned char *pop (l i s t * l) ;
50
51 / * Pops t h e l i s t i f any i t ems a r e a v a i l a b l e .
52 * I f not , NULL i s r e t u rn e d * /
53 unsigned char * try_pop (l i s t * l) ;
54
55 / * I d e n t i c a l t o pop () , but i t assumes t h e l o c k i s t a k en * /
56 unsigned char * pop_batch (l i s t * l) ;
57
58 / * B l o c k s t h e c a l l i n g t h r e a d u n t i l t h e l i s t i s empty * /
59 void block_unti l_empty (l i s t * l) ;
60
61 / * Get t h e l e n g t h o f t h e l i s t ,
62 * assuming t h e l o c k has been t a k en * /
63 in t l i s t _ b a t c h _ l e n (l i s t * l) ;
64
65 / * Get t h e l e n g t h o f t h e l i s t * /
66 in t l i s t _ l e n (l i s t * l) ;
67
68 / * Get t h e e n f o r c e d l i m i t on t h e l i s t ,
69 * assuming t h e l o c k has been t a k en * /
70 in t l i s t _ b a t c h _ l im i t _ g e t (l i s t * l) ;
71
72 / * Get t h e e n f o r c e d l i m i t on t h e l i s t * /
73 in t l i s t _ l im i t _ g e t (l i s t * l) ;
74
75 #endif / * THREADLIST_H * /

Listing 5.1: Queue header

5.2.3 Hypothesis

Our hypothesis is that the Readahead andWriteback threads will have a positive effect

on the encoder runtime. First because we decouple IO operations from the main exe-

cution thread, and second because the Readahead thread may double-buffer incoming

73

frames for immediate use. The encoder only has to wait for the initial buffering.

As the encoder reads significantly more data than it writes, the writeback implemen-

tation will have less impact. However, we do expect it to have a measurable impact.

5.3 Evaluation

We benchmarked our readahead and writeback implementations by measuring the

time spent encoding three test sequences, blue_sky, tractor and pedestrian_area [63]. Fig-

ure 5.3 shows the mean improvement in encoding time after 10 runs. As can be seen

from the figure, the results from our readahead implementation is in line with our hy-

pothesis. The mean improvement in encoding time is 22%. This is consistent with our

expectations of masking away the disk accesses as detailed in section 5.2.1. Our earlier

measurement for disk accesses showed that reading tractor sequentially took a median

time of 16.07. The mean encoding time is 91.8 seconds without and 72.6 seconds with

readahead enabled. This is an improvement of 19.2 seconds, slightly better than our

estimate. This is probably due to the interleaved writes and corresponding increase in

seek time.

On the other hand, our writeback implementation did not have a significant impact on

the encoding time. In the best case of blue_sky, the improvement was a meager 0.55%.

In contrast with readahead, the impact of writeback seems to decrease with input size.

It would be interesting to see if this trend continued with larger test sequences. Unfor-

tunately, the encoder does only support 32bit file operations, which severely limits the

input file size. We spent a short time trying to port the encoder to 64bit file operations,

but we ran out of time due to underlying bugs. Hence, we will leave it for future work,

as part of a thorough port to X86_64.

We can however investigate how the writeback implementation will perform if we in-

crease the output size. With more data being written, the benefits of a separate write-

back thread might become more apparent. In our tests, we performed the encodings

using a QP of 30 and a single GOP (see section 2.2.2 and section 2.3 respectively). This

74

Writeback Readahead Both
0

5

10

15

20

25

30

35
E
n
co

d
in

g
 t
im

e
 i
n
 p

e
rc

e
n
t
re

la
ti
v
e
 t
o
 d

e
fa

u
lt

0.05

20.91 20.97

0.14

23.06 22.92

0.55

21.76 21.61

Tractor
Pedestrian area
Blue sky

Figure 5.3: Improvement in encoding time due to readahead and writeback.

was the defaults in the encoder. As both the amount of quantization and frequency of

I-frames have a major impact on the level of compression, our writeback implementa-

tion might perform better on larger writes. To further investigate this, we tested the

implementation while varying the QP and GOP levels to increase output size.

Figure 5.4 shows writeback performance with decreasing GOP from 60 to 1. Similarly,

figure 5.5 shows QP from 30 to 0. Decreasing GOP and QP to increase the output data did

not show any pattern in writeback behaviour. This indicates that our implementations

perform poorly independent of the amount of data being written.

While we did not expect the writeback implementation to improve performance to the

same degree as readahead, we still expected the results to be more prominent than

the <1% achieved. To understand the results, we decided to study the path from the

write()-call until the data resides on disk.

75

GOP=60 GOP=50 GOP=40 GOP=30 GOP=20 GOP=10 GOP=1
0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
e
d
ia

n
 e

n
co

d
in

g
 t
im

e
 i
n
 p

e
rc

e
n
t
re

la
ti
v
e
 t
o
 d

e
fa

u
lt

0.39

0.32
0.27

0.17

0.28
0.32

0.38

0.59

0.05

0.56

0.42

0.03

0.22

0.06

0.22

0.48

0.13

0.22

1.04

0.46
0.50

Tractor
Pedestrian area
Blue sky

Figure 5.4: Writeback performance over various GOP levels.

QP=30 QP=25 QP=20 QP=15 QP=10 QP=05 QP=00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
n
co

d
in
g
 t
im

e
 i
n
 p
e
rc
e
n
t
re
la
ti
v
e
 t
o
 d
e
fa
u
lt

0.35

0.14

0.57
0.59

0.66

0.26

0.42

0.87

0.34

0.43

0.71

0.23

0.40

0.26

0.57

0.24

0.59

0.50
0.48

0.38

0.22

Tractor
Pedestrian area
Blue sky

Figure 5.5: Writeback performance over various QP levels.

5.4 Write buffering

The rationale behind our writeback implementation was based on the notion that writ-

ing to disk in the main encoding thread would incur delays. Each output slice of each

76

frame would be written separately, which would result in many syscalls to write to

disk. Each of these calls would block the encoding thread until finished and the device

would idle.

Application Buffers

Library Buffers

Kernel Buffers

Persistent Storage

Userspace

Kernelspace

Volatile Cache

DMA

write()

Figure 5.6: IO buffering from application memory to storage device. Based on [41].

This assertion turned out to be wrong. As shown in figure 5.6, both the C library

and the kernel contains buffers to optimize disk accesses [41]. This happens implicitly

outside the scope of the program. However, the programmer can explicitly flush the C

library and kernel buffers with fflush() and fsync() respectively. This allows the

programmer to control the integrity of the data being written to disk.

In our case of video encoding, we can just re-encode any lost video after an outage. On

the other hand, we can use fflush() and fsync() to evaluate how our writeback

implementation would have worked if our assumptions held, and which of the C li-

brary and kernel buffers masks away most of the write costs. To simulate the absence

of either C library or kernel buffering, we performed a new set of writeback tests with

an explicit fflush() or fsync() after each write.

As shown in figure 5.7, our implementation had a significant impact on encoding time.

77

However, even with writeback, the encoding time is far slower without the buffering.

Comparing the bars for fflush() and fsync(), it is clear that most of the buffering

takes place in the C library.

Even though writeback worked better without buffering, it is clear that we based our

implementation on wrong assumptions. The buffering in the C library and kernel mit-

igates the problem well enough without the added complexity of a separate writer

thread.

Nevertheless, our implementation is not without merit. While an initial improvement

of < 1% was less than we expected, it can be improved. Separation of the encoder

into three threads allows us to distinguish pre- and post-processing from the main

encoding process. For instance, the encoder currently performs parts of the entropy

coding on the CPU. As this is done as part of the main thread, without dispatching

any more work to the GPU, processing time is clearly wasted. However, the upstream

project was revising the entropy coding implementation at the time of our discovery.

Therefore, moving such post-processing work would be more fit for future work when

the code has been overhauled.

5.5 Readahead Window

As noted in our queue implementation in section 5.2.2, we implemented resource lim-

its. This allows us to investigate how our enhancements perform under limited win-

dows sizes. Limiting the writeback queue would only force the encoder to idle, so we

focus solely on readahead.

How fast the readahead thread can fill up its buffers depends on multiple factors. For

instance how fast the encoder performs, and the throughput of the underlying storage

medium. Without any limits, it might buffer more frames than necessary. Even with

vast amount of memory, there is no point in buffering more often than needed. Then it

is better if the thread can sleep until enough buffers have been freed up.

To evaluate how the readahead thread perform with various limits, we timed the en-

78

FFlush FSync

15

20

25

30

E
n
co

d
in
g
 t
im

e
 i
n
 p
e
rc
e
n
t
re
la
ti
v
e
 t
o
 d
e
fa
u
lt

20.68 20.73

28.31 28.39

16.69 16.90

Tractor
Pedestrian area
Blue sky

Figure 5.7: Writeback performance with buffer flushing.

coding process with a window size of one, to and three frames with an additional run

without limits. We expect the implementation to excel as long as there is at least one

cached frame available to the encoder.

As shown in figure 5.8, performance decreases reciprocally to window size. There is

nothing to gain by pre-fetching more than one frame at a time, as it is enough for

the encoder to consume without delay. Increasing the window beyond a single frame

reduces the performance, so there is no gain from allocating more memory.

This allows us to be restrictive in our allocation of pinned memory as we experiment

with CUDA Streams in chapter 7. As pinned memory is a scarce resource, allocating

more memory than necessary may result in performance loss due to comparably slow

allocation times.

79

Window=1 Window=2 Window=3 Unlimited
20

21

22

23

24

25
E
n
co

d
in
g
 t
im

e
 i
n
 p
e
rc
e
n
t
re
la
ti
v
e
 t
o
 d
e
fa
u
lt

21.51 21.50 21.46

20.80

23.72 23.66 23.60

23.08

22.40
22.23

22.35

21.35

Tractor
Pedestrian area
Blue sky

Figure 5.8: Readahead performance under different resource constrains.

5.6 Lessons learned

Our implementation shows the importance of designing efficient host code to take full

advantage of GPU offloading. While optimizing device code is crucial to maximize

performance, it is imperative that the host code is kept up to speed. By going back to

the basics of masking away IO accesses through asynchronous operations, we have re-

duced the encoding time by 20%. This clearly shows that narrowly optimizing certain

code paths might leave out low hanging fruit yielding significant improvements.

At the same time, we have shown how crucial it is to base our research on sound

assumptions. The results of our tests shows that our rationale for implementing write-

back was wrong. The poor performance of our writeback implementation led us to

study why, giving us greater knowledge in how the C library and kernel handles write

operations.

80

5.7 Summary

In this chapter we have looked at the start and end of the encoding process, namely

reading and writing from secondary storage. We have implemented readahead of raw

frames and writeback of the encoded frames to reduce the encoding time used for IO

operations. Our benchmarks shows that particularly readahead have a strong impact

on encoding time. This shows that CUDA programs can be optimized with minor

changes to the device code.

Chapter 6

Memory

6.1 Introduction

As the computational power of GPUs increase, so does the amount of memory avail-

able. Similarly to host memory, memory allocated from the device global memory is

reserved for the runtime of an application. Hence, we can use the global memory to

keep as much state of the application on the GPU as needed.

However, the cuve264b encoder does not currently take advantage of this. Instead,

state is only kept for the lifetime of each encoded frame. This leads to unnecessary

allocations and memory operations, as the same state must be allocated, transferred

and freed for each frame.

This approach has numerous drawbacks. By freeing up the memory after each frame,

we cannot reuse any state left from the previous encoding. While the cost of re-

allocating the freed memory is negligible, discarding the device state has numerous

flaws without any gain.

One major flaw is the superfluous synchronization between the host and the device.

As all memory will be freed, we must synchronize all metadata back to the host after

completing a frame, before subsequently transferring the metadata back to the device

before encoding the next frame. For each block in the frame to be encoded, metadata

81

82

such as block position, previous motion vector etc is synchronized.

However, if we keep the state on the GPU, we only need to synchronize the data that

actually change. For this, we traced the updates to the state to determine which data

must be transferred which way. Listing 6.1 shows the metadata stored for every block.

1 / * Motion Vec t o r * /
2 s t ru c t S_MV
3 {
4 in t x ;
5 in t y ;
6 } ;
7
8 / * B l o c k Metadata * /
9 s t ru c t S_BLK_MB_INFO

10 {
11 in t SliceNum ;
12 in t Type ;
13 in t SubType ;
14 in t Pred_mode ;
15 in t IntraChromaMode ;
16 in t QP;
17 in t CBP ;
18 in t TotalCoeffLuma ;
19 in t TotalCoeffChroma ;
20 in t RefFrameIdx ;
21 in t Loc ;
22 in t MinSAD;
23 s t ru c t S_MV MV;
24 } ;

Listing 6.1: Block Metadata.

6.2 Design

6.2.1 Rationale

Without any state kept on the device, the whole S_BLK_MB_INFO array needed to be

transferred back and forth for every encoded frame. By analyzing the changes made,

we found multiple sources for redundancy. One such source is constant information

determined by the host at the start of the encoding process. For instance, the number of

slices per frame and the resolution of each frame is the same throughout the encoding.

Thus, the grouping of blocks into slices will stay constant, and the int SliceNum

field will never be updated. Similarly, the location of a block, int Loc, is kept con-

stant. This information only needs to be sent to the device once, instead of once per

frame as done currently. Similarly, some state kept by the GPU are never read by the

83

host, such as Pred_mode and TotalCoeffChroma. Hence, we can differentiate the

state into three groups: Constants shared once from the host, state private to the GPU,

and GPU state shared with the host. Figure 6.1 shows the state shared between the host

and the device, and in which direction. The constants need only be transferred once,

while the shared GPU state is synchronized for every frame. cuve264b currently syn-

chronizes all the state in both directions, while the arrows shows which updates are

strictly necessary.

Host Device

SliceNum

Type

SubType

Pred_mode

IntraChromaMode

QP

CBP

TotalCoeffLuma

TotalCoeffChroma

RefFrameIdx

Loc

MinSAD

MV.x

MV.y

SliceNum

Type

SubType

Pred_mode

IntraChromaMode

QP

CBP

TotalCoeffLuma

TotalCoeffChroma

RefFrameIdx

Loc

MinSAD

MV.x

MV.y

Figure 6.1: Encoder state shared between host and device.

Another source of redundancy is the size of the variables. While storing variables

at 32bit boundaries yield better computation performance, it also increases the band-

width needed to transfer the data. Our analysis shows that most of the fields can be

stored using only one byte, reducing the bandwidth by 4. The only exceptions are Loc

and MinSAD, which both require 2 bytes. However, due to the 32bit GPU alignment

requirements [40], it is infeasible to reduce the size of the structure itself.

To reduce the data transfer size, we need an alternative representation of the data. As

we know which data are shared between the host and device, we devised a simple

marshalling scheme. Depending on the direction of the transfer, we simply write the

shared state in a bytestream, using as few bytes as necessary per variable. This gives

84

us a transfer size of 8 bytes per block for state shared by the device, and 4 bytes per

block for the initial state from the host.

Even though the transfer size is reduced, our scheme incurs additional costs, as the

marshalling process itself delays the transfer. To evaluate the efficiency of our mar-

shalling scheme, we wrote two different implementations: A proof of concept, and an

implementation optimized for the GPU.

6.3 Implementation

6.3.1 Necessary groundwork

Before we could implement our marshalling, we needed to refactor the encoder to keep

state throughout the encoding. Instead of allocating and releasing memory as part of

the main encode_cuda() encoding function, we created separate functions for en-

coder initialization and destruction, init_cuda_encoder() and

free_cuda_encoder(). This allowed us to keep memory allocation and freeing in

separate functions, reducing memory allocations and cleaning up the code. Keeping

the memory allocations over the lifetime of the application also allowed us to trans-

fer constant data only once, and allocating them in constant memory. However, as

such data amounts to very little data, the reduction in transfer time was negligible.

Nonetheless, the refactoring was a necessary foundation for further improvements.

6.3.2 Marshalling implementation

To implement our simple marshalling scheme, we first wrote an implementation for

the host side. Afterwards, we implemented the GPU part as a minimal rewrite. With-

out any regards for the GPU hardware, we simply rewrote the host function to use

blockIdx and threadIdx instead of an outer loop. As shown in figure 6.2, each

thread reads its data from a different part of the bytestream. Each adjacent thread will

85

read from global memory with a stride the size of a marshalled structure. As a re-

sult, none of the memory accesses will be adjacent, and none of the requests will be

coalesced.

Thread Global memory

(0,0)

(0,1)

(0,2)

(0,3)

Type

Subtype

...

Type

Subtype

...

Type

Subtype

...

Type

Figure 6.2: Device memory accesses for the direct port.

To achieve coalesced memory accesses, each thread must read from adjacent global

memory. Therefore, we redesigned the order of the bytestream so that it is ordered by

structure field before the structure items. Thus, the bytestream will first contain the

type field for every structure, the subtype field of every structure, and so forth.

Thread Global memory

(0,0)

(0,1)

(0,2)

(0,3)

Type

Type

Type

Type

Subtype

Subtype

Subtype

Subtype

...

...

Figure 6.3: Device memory accesses for the optimized port.

As shown in figure 6.3, the new bytestream order meets the coalescence criteria ex-

plained in section 3.3.3. All the threads in each half-warp reads from the same seg-

86

ment, in sequence. While the first generation of CUDA-enabled GPUs did not support

coalescing 8-byte operations, this was gained with compute capability 1.2 [40].

Given this, our new implementation should increase device performance. By optimiz-

ing memory accesses, the cost of the marshalling process should be reduced. However,

the efficiency of our marshalling approach also depend on the host marshalling per-

formance. While our second approach should increase device efficiency, it might have

side effects for the host code. While the initial host code consisted of sequential reads

and writes, this is not the case for the new variant.

6.4 Evaluation

To evaluate the performance of our two marshalling implementations, we measured

the time spent encoding blue_sky, tractor and pedestrian_area [63].

Direct port Coalesced
0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
n
co

d
in

g
 t
im

e
 i
n
 p

e
rc

e
n
t
re

la
ti
v
e
 t
o
 d

e
fa

u
lt

0.72

0.59

1.01

0.77

1.12

0.88

Tractor
Pedestrian area
Blue sky

Figure 6.4: Performance of the two marshalling implementations.

87

Implementation GPU time L2 Write requests Dram writes

Direct port 203.712 151044 228249

Coalesced 199.584 78768 33284

Difference 2.03% 47.85% 85.42%

Table 6.1: Selected profiling data from our marshalling implementations.

Figure 6.4 shows the improvement in percent on total encoding time for both our im-

plementations. They both improve the encoding performance, as less time is spent on

data transfer. As can be expected, the improvement increases linearly with the num-

bers of frames to be encoded. Somewhat unexpectedly, the unoptimized implemen-

tation outperform the device-optimized one. To be sure, we profiled the optimized

version with the CUDA Visual Profiler [49] to be sure that the memory accesses im-

proved. Table 6.1 shows selected profiling data from the bytestream writing kernel,

dev_pack_mbinfo(), after encoding the tractor sequence. As the numbers shows,

the rearrangement of the bytestream significantly reduces the number of write opera-

tions performed.

Unfortunately, the drawbacks for the host implementation are greater than the device

improvements, decreasing total performance.

By timing the corresponding unpack_mbinfo() on the host, wemeasured an average

of 0.831 seconds spent in the device-optimized function during the course of encod-

ing tractor. The corresponding time for the unoptimized implementation was 0.739 ,

resulting in a 10.97% increase in runtime.

To take a closer look at the host code performance, we wrote a minimal test tool to

explore the host code in isolation. Simulating the tractor sequence, it runs the

unpack_mbinfo() host function 604 times with 8160 blocks. By profiling the test tool

with cachegrind, part of the Valgrind instrumentation framework [64], we simulated

the memory and cache behaviour.

While the number of cache misses was consistent, the device-optimized implementa-

tion resulted in an increase in both number of instructions and data accesses. As shown

in table 6.2, the device-optimized implementation uses roughly 20% more memory ac-

88

Implementation Instructions Data read Data write

Direct port 336,531,570 182,775,445 59,290,116

Coalesced 425,247,090 236,990,485 74,076,036

Difference 20.86% 22.88% 19.96%

Table 6.2: Instruction and data accesses of host marshalling implementations.

cesses than the direct port.

6.5 Lessons learned

The performance of our twomarshalling implementations, show the importance of the

relationship between the host and the GPU. While our coalesced implementation per-

forms better on the GPU, the same access patterns results in multiple scattered accesses

on the CPU, reducing performance. As solutions in the interface between host and de-

vice may have multiple solutions playing to the strengths of different architectures, it

is important to evaluate them to make sure that the best solution has been found.

6.6 Summary

In this chapter, we took a closer look at the memory allocations on the GPU, and the

encoder state shared between the host and the device. By extending the lifetime of

memory allocations to last throughout the encoding process, we have enabled the en-

coder to keep state on the device. Prior to this, all the encoder state was synchronized

between the host and the device for every encoded frame.

With state kept on the device, we analyzed the changes inmetadata to determinewhich

updates was necessary, and in which direction. Afterwards, we used the results to

design a simple marshalling scheme by writing the updates with the shortest variable

sizes needed.

To verify the efficiency of our design, we wrote to different implementations of the de-

89

sign, one with the starting point in the host code and written to be efficient on the host,

and a second implementation optimized for the GPU to achieve coalesced memory ac-

cesses. While the optimized implementation greatly reduced the number of memory

accessed on the GPU, the additional costs in memory accesses for the host outnum-

bered the improvement. Hence, the first implementation was the best solution to our

problem.

90

Chapter 7

CUDA Streams

7.1 Introduction

In chapter 5, we reduced IO lag by prefetching raw frames from secondary storage.

However, the transfer of a raw frame is not completed until it reaches device memory.

Thus, our readahead thread is not a complete solution, as the GPU still has to wait for

the frames to be copied from host.

Asmentioned earlier, our readahead (andwriteback) design uses multiple host threads

to asynchronously perform IO operations. However, we cannot use host threads alone

to perform concurrent operations on both host and device. To enable this, CUDA pro-

vides an asynchronous API, referred to as CUDA Streams.

To copy the frames directly to device memory, we must use CUDA Streams, allow-

ing us to queue up multiple operations on the GPU in independent queues, referred

to as Streams [40]. In essence, a CUDA Stream is a series of commands performed

asynchronous to the host thread. By queueing work to be performed by the device

in a CUDA stream, the host may perform other tasks in parallel with the GPU. While

the first generation of CUDA-enabled GPUs did not support any form for overlap or

concurrency, compute capability 1.1 added support for overlapping memory transfers

with kernel execution. This made it possible to introduce prefetching by performing

an asynchronous memory transfer in parallel with kernel execution. Finally, compute

91

92

capability 2.X added support for concurrent kernel executions. This enables us to not

only prefetch raw frames, but also perform any necessary preprocessing on the device

itself.

To enable asynchronous memory transfer, the involved memory regions on the host

must be allocated as pinned memory. This allows the GPU to access the memory di-

rectly through DMA transfer, without involving the CPU, as the pinned pages is guar-

anteed to be resident in main memory.

7.2 Design

7.2.1 Implementation

Readahead thread adaption

We designed our frame buffering mechanism as an extension of our prior work imple-

menting readahead. As the readahead thread already reads the raw frames from disk

including memory allocation, we adapted it to use pinned memory instead of regular

paged memory. The change itself only altered a couple of lines (cudaHostAlloc()

instead of malloc() and cudaFreeHost() instead of free(), but affected the life-

time of the memory alloactions.

As raw frames are read by the readahead thread, the memory used for storing them

gets assigned a different CUDA context than the main encoder thread. This means

that any resources such as allocated memory is isolated between different host pro-

cesses and threads. Fortunately, the API function for allocating pinned memory,

cudaHostAlloc(), accepts a flag cudaHostAllocPortable. This allows us to

share the memory allocated by the readahead thread with the main encoder.

While this allows us to share the memory, normal restrictions regarding the lifetime

of allocated memory still applies. Hence, the lifetime of the allocated memory is lim-

ited to that of the readahead thread. In our original implementation of the readahead

thread, we simply ran the thread in a for-loop until all the frames were read from

93

memory. This will not suffice, as the allocated memory will be automatically released

on thread termination. To keep the thread alive throughout encoding the last frame,

we added a condition variable encoder_done to signal that memory might be freed.

Memory reuse

Pinned memory is a limited resource, and such allocation requests often takes longer

time to satisfy. Especially for the large continuous areas necessary to hold the raw

frames, allocation can take substantially longer time than the unpinned equivalent.

To measure this, we wrote a trivial test utility in which we allocated and freed up

the same amount of memory as required to read all frames from the tractor sequence.

Timing the utility for paged and pinned allocations show that paged allocations took

a negligible total of 0.0055 seconds. On the other hand, it took 2.746 seconds to satisfy

the allocations of pinned memory, an increase of nearly 500 times.

To minimize the cost of allocations, we must recycle already allocated memory instead

of free up used memory. To implemented this, we use an additional linked list to send

used buffers back to the readahead thread. Before allocating more memory, we test to

see if any recycled buffers are available.

Implementation

We implemented overlappedmemory transfers by replacing the memory transfer code

with a transfer scheduling function, schedule_framestreaming().

schedule_framestreaming() checks if any frames are available from the reada-

head thread, and as long as a new frame is available, it schedules a new transfer.

Similar to our previous readahead work, we also use the overlapping memory transfer

to perform some preprocessing, further reducing the waiting time. Prior to encoding a

P-frame, the raw frame must be available in both the default raster order and grouped

by macroblock, known as block flattened order. The re-ordering was performed on

the host, before both versions of the frame was transferred. This meant that the delay

94

caused by the file transfer was doubled, in addition to the wait incurred by the re-

ordering function itself.

As part of the transition to overlapping memory transfers, we ported the host code to

the GPU, and perform the reordering as part of the memory transfer. This should fur-

ther reduce the delays prior to encoding each frame. Note that all the measurements

shown in figure 7.1 perform the reordering on the GPU, including the measurements

with overlapping disabled. Figure 7.2 shows the effect on device re-ordering in isola-

tion.

7.2.2 Hypothesis

As we saw in chapter 5, buffering raw frames from disk reduced the encoding time by

20%. However, the performance gap between disk and main memory is much wider

than between the 4x PCI Express 2.0 slot used by the GPU and global memory. While

some increase in encoding time is to be expected, it is significantly lower than what

was achieved by the readahead implementation. The GPU only need to wait for the

first frame to be transferred, so the improvement should scale linearly with the num-

ber of frames in the encoded sequence. Another aspect to look into is the effect of

pinned memory in and of itself, as the CUDA runtime accelerates accesses to such

allocations [65].

7.3 Evaluation

To measure the improvements on the overall encoding time, we repeated the measure-

ments of blue_sky, tractor and pedestrian_area.

As shown in figure 7.1, overlapping memory transfers decrease the encoding time

even further than our disk readahead implementation. This exceeded our expecta-

tions. However, the results without reordering is closer to our expectations.

To further measure the improvement onmemory transfer overlap in isolation, wemea-

95

Overlap Overlap w/o reordering Pinned memory
0

5

10

15

20

25

E
n
co

d
in

g
 t
im

e
 i
n
 p

e
rc

e
n
t
re

la
ti
v
e
 t
o
 d

e
fa

u
lt

25.57

9.58

0.85

23.93

9.26

1.22

25.32

9.02

1.06

Tractor
Pedestrian area
Blue sky

Figure 7.1: Improvement in encoding time due to streams and pinned memory.

sured the time spent in the schedule_framestreaming() function used to sched-

ule an asynchronous memory transfer, versus the synchronous memory transfers and

subsequent reordering in the existing code. As shown in table 7.1, the overlapped

transfer is about ten times faster than the synchronous one, depending on the number

of frames. As our test sequences are of limited length, the differences would be far

larger for longer videos such as television shows and feature films.

Our results show that overlapping memory transfers had a positive effect on the over-

Implementation tractor pedestrian area blue sky

Overlap 0.032722 0.0191878 0.0121936

Synchronous 0.3754249 0.2041722 0.1183091

Difference 11.47x 10.64x 9.70x

Table 7.1: Time used to copy and reorder input frames with and without overlapped

transfer.

96

all encoding time, and reduced the time spent transferring raw frames to the device by

about ten times for our test sequences, with a positive trend with increasing number

of frames. We also determined that the improvements was to a lesser degree if we re-

moved reordering of P-frames from the equation. To study the effect on reordering in

detail, we compared the encoding time of host reordering with device reordering. As

this step only accounts for a minuscule fraction of total encoding time, we expect the

change to have little impact on overall encoding time.

Reordering on device.
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
n
co
d
in
g
 t
im

e
 i
n
 p
e
rc
e
n
t
re
la
ti
v
e
 t
o
 d
e
fa
u
lt

0.44

0.75

1.04

Tractor
Pedestrian area
Blue sky

Figure 7.2: Improvement in encoding time due to reordering on device.

As shown in figure 7.2, the effect on device re-ordering is of little impact on the to-

tal encoding process in and of itself. Combined with overlapped memory transfers

however, it increases the amount of work that can be performed concurrently. The

re-ordering should also perform faster on the device, due to the concurrent memory

accesses. To investigate this further, we measured the time spent performing the re-

ordering including memory transfer, and the re-ordering in isolation. In addition to

our regular test sequences, we measured the two first frames from tractor. This gave

97

Implementation tractor pedestrian area blue sky single p

Host re-order 1.1564997 0.6235881 0.3641031 0.0019702

Device re-order 0.7108312 0.3785024 0.218602 0.0010049

Difference 1.63x 1.65x 1.67x 1.96x

Table 7.2: Time used to re-order input frames on host and device, including transfer.

Implementation tractor pedestrian area blue sky single p

Host re-order 0.4293988 0.2283571 0.1357333 0.0009586

Device re-order 0.3727366 0.1986199 0.1147213 0.0005289

Difference 1.15x 1.15x 1.18x 1.81x

Table 7.3: Time used to re-order input frames on host and device, excluding transfer.

us the measurements for a single P-frame in the last columns. Table 7.2 and 7.3 shows

the measured times with and without transfer time, respectively. As expected, remov-

ing the redundant memory transfer has naturally reduced the time spent copying the

frames. The device re-order kernel was designed solely to enable this.

However, as table 7.3 shows, the re-ordering itself is handled faster by the GPU. While

the effect is indeed minuscule on the total encoding process, it shows that the GPU

is suitable for a broader workload than just heavy computation. Due to the multiple

load and store units on each SM, the GPU can also handle more mundane tasks such

as preprocessing. The difference in run-time might be minuscule or negligible in itself,

but offloading more tasks onto the GPU reduces the synchronization points between

the host and device. Using the asynchronous CUDA Streams API, multiple jobs can be

scheduled on the GPU, freeing up the host CPU for other work. Using newer GPUs

with compute capability 2.x further allows us to run multiple kernels in parallel, en-

abling efficient pipelining of tasks on the GPU without undue synchronization with

the host.

98

7.4 Lessons learned

Our experiments shows that using CUDA Streams to overlapmemory transfer reduces

GPU idle time and consequently encoding time. While overlapped memory transfer is

a benefit in and of itself, compute capability 2.x significantly expands this by enabling

concurrent kernel execution. Without the limitation of only queueing asynchronous

memory transfers, it is possible to schedule any kind of preprocessing (or post pro-

cessing) work. As our results regarding device re-ordering suggests, there can be ad-

vantages in porting more trivial tasks to the GPU as well. While every task might

not perform better on the GPU, it can be more time efficient to pre-process more work

units on the GPU in parallel with the main computationally intensive task. This is

particularly true for applications such as cuve264b, where the GPU is underutilized.

7.5 Summary

In this chapter, we expanded on our work in chapter 5, continuing the readahead

caching onto device memory. Using the asynchronous CUDA Streams API, we over-

lapped the memory transfer and reordering of raw frames with encoding. This further

reduced the overall encoding time by decreasing the waiting time between frames.

While we expected the increase in performance to be lower than the disk readahead

implementation, the asynchronousmemory transfers turned out to improve evenmore

than disk readahead.

Chapter 8

Deblocking

8.1 Introduction

As we mentioned in our introduction to the cuve264b encoder in chapter 4, the de-

blocking filter is currently implemented on the host. In addition to making the GPU

idle, this also leads to extra memory transfers between the host and the device, as the

filtered frames must be copied back to the device for further reference. By running the

deblocking filter on the GPU, we could take advantage of its computing power as well

as saving the mentioned data transfer.

Figure 8.1: Wavefront deblock filter [7].

Due to the inter-dependencies betweenmacroblocks, parallelizing the deblocking filter

is a complex problem, especially on a massively parallel architecture such as a GPU.

99

100

There exists solutions with limited parallelism, such as the wavefront parallelization

method. A wavefront deblocking example is shown in figure 8.1. Each square repre-

sent a macroblock, and the number inside shows in which pass the macroblock will

be deblocked. The number of macroblocks processed in parallel is initially only one,

and grows to a maximum when the wavefront reaches its widest length. After each

pass, the state of the wavefront must be synchronized. [7]. While the wavefront ap-

proach might work with limited parallelism, it does not scale to the massive number

of concurrent threads of a GPU.

Building on research by Sung-Wen Wang et al. [7], Bart Pieters et al. have shown that

it is possible to implement the H.264 deblocking filter on massive architectures with

only six synchronization points [8]. Due to the significant data dependencies between

neighboring macroblocks in the deblocking filter, it is not straightforward to imple-

ment onmassively parallel architectures. However, by analyzing the error propagation

of parallel deblocking, Sung-Wen Wang et al. observed that the errors only propagate

for a limited number of samples, called the limited error propagation effect [7]. How-

ever, Bart Pieters et al. found that the proposed parallelization method induced incor-

rect results, and hence not compliant with the standard. Their proposed modification,

which they named deblocking filter independency (DFI), is shown in figure 8.2. By

dividing each macroblock into different macroblock filter partitions(MFPs), the mac-

roblocks can be filtered independently. Depending on the filter strength applied for a

given edge, all samples in a MFP will not be filtered correctly after one pass. Hence,

to perform the deblocking filter according to the standard, it is necessary to filter the

MFPs in a strict order.

8.2 Design

Our approach to device deblocking was to port the host functions to device kernels as

simple as possible. We could then independently verify the different kernels, and later

integrate them with the encoder proper using the MB partitioning scheme proposed

by Bart Pieters et al. [8]. After reaching function parity, we would optimize the kernels

101

Figure 8.2: Limited error propagation with DFI [8].

with regards to minimizing branching, coalescing memory accesses and so forth. Be-

fore we could port the deblocking filter itself, we needed to port the underlying helper

functions.

8.2.1 Implementation

We implemented the device kernels similarly to the unoptimized marshalling imple-

mentation in chapter 6, by replacing relevant loops with blockIdx and threadIdx.

As we laid out in section 2.4, the deblocking filter relies on a Bs score to determine

filter strength. The current host code determine the Bs of an edge directly prior to the

filtering operation. To adapt to the massive parallelism of the GPU, we rewrote the Bs

determination code to evaluate all edges in a single kernel call. A similar refactoring

would presumably also improve the host function, by better utilizing the CPU cache.

As the Bs kernel consists of principally a series of branch evaluations, we expect it to

perform poorly on the GPU.

After the deblocking itself has been performed, the frame is padded with edge pixels

before it is used as a reference frame. As shown in figure 8.3, PadAmount numbers

of pixels are filled with edge pixels surrounding the frame. Unfortunately, the CUDA

102

Figure 8.3: Padding of a deblocked frame prior to referencing.

thread model does not support other shapes than rows, planes or grids, so we cannot

use a straightforward block hierarchy to pad the frame. To overcome this limitation, we

use a single row for the outer grid, with a length corresponding to the circumference

of the frame. The correct length is calculated as

grid =
buf_width

PadAmount
∗ 2+

(

buf_height

PadAmount
− 2

)

∗ 2 (8.1)

buf_height is subtracted by two so we do not count the corners twice. As one might

deduce from the calculation, we use a 2D plane of PadAmount*PadAmount as block

size. We then check which range the current blockIdx.x lies in, to determine the

correct edge position. If it is less than buf_width, the current block is above the

frame. Between buf_width and buf_width+buf_height is the left hand side of

the frame, and so forth.

After the deblocked frame has been padded, it is copied to the reference frame buffer

and re-ordered. Instead of the regular raster order, the frame is column flattened. Fig-

ure 8.4 shows an example where a 4x4 block is flattened. As the figure shows, each

row of raster data is rotated 90 degrees to form a column.

103

0 1 2 3

4 5 6 7

8 9 BA

C D E F

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

colflat

Figure 8.4: Column flatting of raster order.

The column flattening kernel used two outer loops to iterate between each row and

column, with the inner body re-ordering four values for each iteration. Our corre-

sponding kernel uses a 2D outer grid with 3D blocks, in which the Z-dimension cor-

responds to the four statements of the inner loop. Thus, each thread perform a single

copy operation.

For the deblock filters proper, we did not manage to complete the implementation. The

functions have been ported to kernel equivalents and compiles, but we have not com-

pleted the integration with the encoder or implemented the macroblock partitioning

scheme.

8.3 Evaluation

As we did not manage to finish the implementation, we cannot evaluate the perfor-

mance of the overall deblock filter. Nonetheless, we can still evaluate the helper func-

tions we successfully ported. They do not give any indication of the performance of the

deblock filter itself, but the number reported by the original research are promising [8]

Figure 8.5 shows the relative time difference for our kernels compared to the original

host functions. As the figure shows, not all of the kernels ran faster than the respective

host function. However, the ones that ran faster, contributed more to total difference

than the one that was slower. The last series of bars shows the total runtime for all

the helpers, which takes the relative contribution of the different kernel/functions into

104

Boundary Strength Edge padding Column flatting Total
−10

0

10

20

30

40

50

60

70
K
e
rn

e
l
ru

n
ti

m
e
 r

e
la

ti
v
e
 t

o
 h

o
st

 f
u
n
ct

io
n

57.2

-4.2

12.2

20.8

55.9

-4.2

12.2

20.4

60.8

-4.2

12.2

21.7

Tractor
Pedestrian area
Blue sky

Figure 8.5: Performance of deblock helper kernels vs host functions

account.

In total, the device kernels perform the same operations about 20 times faster than the

host functions. Especially the determination of Bs is significantly faster than we ex-

pected. Due to the large number of if-statements and resulting branches, we expected

it to perform poorly. However, the massive number of concurrent threads allowed the

GPU to brute-force all the different branches faster than the host CPU with its branch

prediction.

We do note that the host function has much potential for optimization, so the compar-

ison is not necessary fair. In addition to the weaknesses regarding caching described

earlier, the host function only uses a single thread. While they certainly do not in-

crement at the same speed as GPU cores, the number of cores of a CPU is increasing.

Another notable difference is that the host code issued a separate function call for each

MB. Cache issues notwithstanding, the high number of function calls could incur an

105

Relative runtime Host function Device kernel

Bs determination 0.734 0.266

Edge padding 0.003 0.358

Column flattening 0.358 0.448

Table 8.1: Relative runtime of deblock helper functions and kernels.

overhead. To quantify this, we inserted the gettimeofday() probes in the function

body instead of the function call. However, the difference in comparison to the GPU

was negligible.

Table 8.1 gives a clearer picture of the runtime of the various helper functions and

kernels. As shown, the host spends nearly ¾ of the measured time determining Bs

values. On the other hand, the edge padding is very efficient. However, as the device

kernel is 50 times faster on Bs determination, the fact that the edge padding runs 4

times slower is of little concern.

8.4 Lessons learned

In this experiment, we first and foremost learned to plan our work more realistically.

Regrettably, we did not find the time to complete the implementation. While much

of the work is done, the remaining effort must be left for future work. This would

also have allowed us to further improve on our state marshalling scheme covered in

chapter 6, as the state shared between the device and host would be even less. In

particular, the round-trip copying of the reference frame would be obsoleted.

That aside, the work we did perform supports our earlier results, namely that the GPU

is able to efficiently perform other work than just heavy computation. While our port

of the edge padding function shows otherwise, the GPU was able to outperform the

host CPU for the port as a whole. The performance of the Bs determination kernel is

particularly exciting, as the GPU still manages to perform on such heavily branching

code, without any support for branch prediction.

106

As the interface between the host and the device becomes a tighter bottleneck, the

looser we can couple the necessary synchronization, the better performance we can

achieve. While certain tasks will surely perform poorer on the GPU, the reduction in

data transfer between host and device will free up more bandwidth for data through-

put.

8.5 Summary

In this chapter, we planned to port the deblocking filter onto the GPU. While we did

not succeed in porting the filter completely, we managed to port and verify the helper

functions used former and latter. Our evaluation of the helper functions support our

results for the previous chapter, namely that the GPU can efficiently accelerate more

tasks than just the most computationally intensive ones.

Chapter 9

Discussion

9.1 Introduction

In this chapter, we will discuss the results of our experiments, how the development in

GPU technology effect GPGPU as a development platform, and how our findings can

benefit other applications outside the scope of video encoding.

9.2 State of GPU hardware

In our introduction to GPUs in section 3.1, we highlighted the differences between

a CPU and a GPU, and the trade-off between die space for control logic and calcu-

lation capacity. One consequence of this trade-off is that the SMs on the GPUs does

not support branching: Whenever branching happens, every possible branch must be

evaluated. Thus, branching should be avoided.

One strategy we employed on our earlier CUDA work [34] and in the chroma column

flattening kernel covered in section 8.2.1, is to rewrite a potential branching in variable

assignment with a calculation based on the predicates. For instance, we use the expres-

sion shown in listing 9.1 to choose the correct chroma channel in the chroma column

flattening kernel. Depending on the value of k, src will either point to in1 for Cb or

107

108

in2 for Cr. While this prevents branching, it is not as self-documenting as the branch-

ing equivalent in listing 9.2. The latter is obvious and easy to maintain, but will result

in two branches. A trade-off between readability and micro-performance.

However, Bs determination, which in essence is a series of branches, still outperforms

the branch-predicting host CPU when executed on our Fermi GPU. Even without sup-

port for branching, the GPU can perform an exhaustive branch execution faster than

the CPU. Such results makes us question if modern GPUs have become so powerful

that writing good enough code should be the goal instead of spending much manual

labour optimizing the GPU code. Unless the advancement of GPU processing power

subsides, this trend is likely to continue. While we will not discard such optimizations

as worthless, their effectiveness depend on peak utilization of the GPU. Otherwise, the

only achievement will be an increase in GPU idle time.

1 / * As b r anch ing on z w i l l c au s e d i v e r g e n t b ranche s , we use p o i n t e r
2 * a r i t hm e t i c t o c h o o s e t h e c o r r e c t image s ou r c e w i thou t b r anch ing . * /
3 char * s r c = (char *) ((in t) in1 * (k<2) + (in t) in2 * (k >=2)) ;

Listing 9.1: Branch-free variable assignment

1 char * s r c ;
2
3 i f (k <2)
4 s r c = in1 ;
5 else
6 s r c = in2 ;

Listing 9.2: Branching variable assignment

Another hardware disparity is the memory hierarchy we explained in section 3.3.3.

While correct memory handling on the device originally involved strict requirements,

they have been relaxed with newer hardware. As tested by Alexander Ottesen in

his master thesis [38], the added flexibility in global memory coalescence and shared

memory accesses enabled by compute capability 1.3 makes it easier for developers to

achieve low latency memory accesses. This trend is amplified in the Fermi architec-

ture, with the addition of level 1 and level 2 cache. While some algorithms might map

poorly to coalesced memory accesses, the additional cache layers should improve the

performance for such cases as well.

As shown in table 6.1, correct memory accesses can have a great impact on the number

109

of memory requests issued. In our case, the GPU time was reduced with 2% after little

effort on our part. However, as our kernel did not do any computational work, we ex-

pect the impact to be greater on computational kernels, where memory latency reduces

the occupancy. Thus, our results probably indicate a lower bound of optimization that

is possible using targeted memory access optimization.

9.3 GPUMultitasking

As we noted in section 3.3.4, CUDA uses a programming model called SIMT. How-

ever, with the release of the Fermi architecture, it became possible to run at most 16

concurrent kernels [39]. This enables a Multiple Instruction, Multiple Threads model,

thereby changing how we can interact with the GPU. In this regard, our work with

overlapped re-ordering in chapter 7 is a meagre exploit of the possibilities that concur-

rent streams provide. However, they indicate the benefit of not only running multiple

tasks in parallel, but also that the GPU can be efficient at performing such tasks. By

moving more work onto the GPU, less synchronization and data transfer between the

host and the device will be necessary. As the ratio between interconnect bandwidth

and GPU processing power increases, it might be a net benefit to perform traditionally

unsuited tasks on the GPU to reduce host-device communication.

With the original limit of single kernel execution, it was impossible to take advantage of

task-level parallelism. As the computational power of GPUs increase, it will be harder

for any given task to saturate the GPU alone. Task parallelism through concurrent

kernels allows for a wider approach to GPU application design. This broadens the

range of workloads that can be efficiently processed by a GPU. For instance, workloads

which does not scale to the number of threads accessible to a single kernel, might scale

using a hierarchical approach with both data parallelism and task parallelism.

As we described in section 2.6, the overall H.264 encoding process can be parallelized

by means of multiple slices and/or independently processed GOPs. While the former

is already implemented in cuve264b, the latter is unfeasible without task parallelism.

As we have already established that the current design under-utilizes the GPU, a GOP-

110

based task parallelism might further increase the efficiency of the encoder. By manag-

ing a separate CUDA stream for each concurrently encoded GOP, such an additional

layer of parallelism can easily be added.

Task parallelism also allow us to better structure our applications as separate tasks. By

running tasks without further data dependencies in separate streams, we make sure

to remove artificial bottle necks from the main progress. As an example, cuve264b

uses a two-step CAVLC procedure as explained in [6]. Parts of the entropy coding that

scales well run on the GPU,while the rest of thework is subsequently performed by the

host CPU. As we mentioned in section 2.5, entropy coding is the last step performed

before the encoded slice is written to the bitstream1. Most notably, the entropy-coded

data is not used for further prediction. Thus, by running CAVLC in a separate stream,

CAVLC coding of the current slice can commence in parallel with the encoding of the

next frame.

9.4 Design emphasis for offloaded applications

To achieve GPU peak performance, it is important to design the application with over-

all performance in mind. As long as the GPU is under-utilized, spending manual

labour further optimizing the device code will only increase the GPU idle time. The

results of our readahead experiments in chapter 5 show the importance of a broad fo-

cus on performance. Even if a GPU has immense processing power, any task offloaded

will still be bound by Amdahls law [10]; it will have to wait for sequential parts such as

reading the dataset from a mechanical disk. By using classic optimization techniques

on the host, such as asynchronous IO, we mitigate this cost. By minimizing the laten-

cies incurred by the host, we decrease the GPU wait time.

This is not limited to external issues such as the seek time of rotational media. IO op-

erations can be mitigated by investing in faster equipment such as high-end solid state

drives. Any task which requires a nontrivial amount of processing or blocking time,

1Technically H.264 does not use a specific bitstream format, but rather a logical packet format referred

to as a NAL unit [1]. However, NAL units are outside the scope of this thesis.

111

should be masked away. Every algorithm cannot be effectively parallelized, and many

can only be parallelized in part. In such cases, it is essential to make sure that a sequen-

tial step does not become a tighter bottle neck than strictly necessary. Our writeback

implementation is a poor example due to the output buffering performed in the C li-

brary. A more applicable example would be the second stage of the CAVLC entropy

coding we brought forward in section 9.3. Using the gettimeofday() approach we

employed in some of our experiments, wemeasured the second CAVLC step to occupy

nearly 10% of the execution time. However, the scope of the CAVLC process is limited

to the current frame, without any dependencies to future frames. Thus, the encoder

could start processing the next frame in parallel. By running the entropy coding in-

side the main thread, the scope of bottle neck is artificially enlarged to cover the whole

video sequence instead of a single frame. If the CAVLC step is performed in a separate

thread, the bottle neck will only effect the slice in question.

Some algorithms might not scale to the number of threads necessary to be efficiently

performed on a GPU. However, they might be suitable for limited parallelism, such as

the comparably small number of cores in contemporary CPUs. To achieve peak appli-

cation performance, it is important to also identify which parts can be efficiently paral-

lelized on the host CPU. For instance, our test machine (see section 4.2) has four CPU

cores. Except for the trivial CPU-time used by the readahead and writeback threads,

only a single core is used in cuve264b. Even if we accounted the single core as 100%

saturated, that still means that the CPU will idle 75% of the time. By taking full advan-

tage of the host CPU as well, the algorithms in question will perform better, reducing

both overall processing time and the waiting time of the GPU.

One example of such an algorithm is the H.264 deblocking filter. As we noted in chap-

ter 8, large scale parallel deblocking has been researched by Bart Pieters et al [8]. How-

ever, our snapshot of cuve264b predates its publication. Nevertheless, deblocking

can be parallelized for a limited number of processing cores through the wavefront

method as explained by Sung-Wen Wang et al. [7]. As the deblock filter is an integral

part of the encoding process, it will delay the encoding of subsequent frames. Hence,

optimizing the host deblocking filter will reduce the time delay until the next P- or

112

B-slice can be processed. A subsequent I-slice can be encoded without delay as long as

the deblocking filter is executed outside the main thread.

It is also important to be terse in the memory transfers between the host and the device.

As we showed in chapter 6, global device memory can be utilized to keep GPU state

through the lifetime of the application. By keeping such permanent state, it is possible

to only synchronize updates between the host and the device that is strictly necessary.

As state must be synchronized without any concurrent writes to guarantee correctness,

it is essential to keep the synchronization time as short as possible.

9.5 Our findings in a broader scope

While we focused on H.264 video encoding for our thesis, our findings are applicable

for all kinds of data driven workloads, and many are relevant for any kind of acceler-

ated workload; being performed by a GPU, a number of Cell SPEs or a custom FPGA

design. Common for all of them is the adage of keeping the device busy, by minimiz-

ing the impact of Amdahls law. To do so, it is important to design the application with

responsiveness at the core.

Latencies experienced at the extremities of the application, such as reading input from

rotational media, can easily be masked away by performing them in separate worker

threads. By employing separate threads, the main thread need not perform blocking

operations, and the worker threads can continue prefetching additional datasets in

parallel with the computational task.

Using overlapping memory transfers provided by CUDA streams, a similar benefit

can be achieved in transferring data between host and device memory. For GPUs sup-

porting concurrent kernel execution, it is also possible to overlap any pre- or post-

processing work associated with the transfer. As our results show, such additional

processing steps might actually perform better on the GPU even without overlapping.

Concurrent kernel execution can also be used to implement task parallelism on GPUs.

As earlier compute capabilities where limited to sequential kernel execution, task par-

113

allelism was not possible. While we have not performed any extensible experiments

on task parallelism, the results of our minuscule attempts look promising.

While task parallelism broadens the scope of tasks applicable for GPU offloading,

many algorithms do not scale sufficiently to be offloaded. In such cases, it is important

to identify the data dependencies associated with the algorithms. If the algorithm is

an integral part of the application, it might be possible to parallelize it using the host

CPU. Otherwise, it might create a bottle neck tighter than necessary. To ensure peak

performance, it is essential to focus on overall application performance, not solely the

parts offloaded on the GPU.

If no further part of the application depend on the output of such an algorithm, it

should run in a separate worker thread, similar to the input from rotational media

mentioned to begin with. This allows the bottle neck associated with the limited scal-

ability to be masked away. However, such algorithm may still cause a long tail in

execution if not properly optimized.

114

Chapter 10

Conclusion

10.1 Summary

In this thesis, we have investigated Host-Device communication in GPU-accelerated

applications. This was done using a hands-on approach, by performing experiments

on an existing GPU-based H.264 encoder. However, our findings are relevant beyond

the scope of video encoding.

During our investigations, we have designed and evaluated different approaches to re-

ducing host-device communication, both in terms of data transfers on the PCI Express

bus, and responsiveness in the host code.

We looked into how the host performed IO operations, and how this affected GPU

waiting time. By implementing asynchronous IO in two separate threads, we man-

aged to reduce the penalty of input operations to a single frame. The remaining frames

would be read from disk in parallel with the encoding progress. The writeback imple-

mentation did not achieve similar performance. This led us to further investigate how

write operations are handled lower in the operative system stack. Our meagre results

could be explained by output buffers in both the C library and kernel. By repeating

our tests with flushing of library buffers and kernel buffers, we determined that the

buffers in the C library already mitigated our hypothetical output costs.

115

116

By analyzing state transfers between the host and the device, we identified which parts

of state needed to be synchronized, and in which direction. Based on this, we designed

a simple marshalling protocol to send partial updates instead of the full state. We

implemented and evaluated two different variations of the design; one written with

basis on the host, and another optimized for GPU memory coalescence. While the

coalesced implementation performed better on the GPU, the penalty observer on the

host led to a net loss compared to the host-based implementation.

While our readahead implementation efficientlymasked away disk reads, it only placed

the frames in host memory. Using CUDA Streams, we extended the transfer to include

device global memory, overlapped with the encoding kernel runs. We also took advan-

tage of concurrent kernel execution to perform reordering of input frames after trans-

ferring them to global memory. Overlapped transfer in combination with re-ordering

yielded even better results than the original readahead implementation, exceeding our

expectations. Not only did the overlapping mask away the associated delays, but the

re-ordering kernel itself performed about 15% better than the original host function.

We started implementing the H.264 deblocking filter on the GPU. Regrettably, we did

not finish the implementation. Our deblocking code compiles, but we did not find the

time to integrate our work with the encoder. Nonetheless, we could verify some of

the helper kernels we successfully ported. Of the three kernels combined, the net gain

was about 20 times faster than the respective host functions. The kernel that exceeded

our expectations most was the Bs determination kernel. With a body consisting of

mainly branch statements, we expected it to perform poorly. However, it ran about

50 times faster than the host function equivalent. While one of the kernels performed

poorer than the host function, the net result where significantly faster on the GPU. This

supports our findings on device re-ordering, and shows some of the possibilities in the

concurrent kernel support.

117

10.2 Further work

During our thesis work, we have looked at different strategies to improve the Host-

Device communication in cuve264b. While we managed to carry out many experi-

ments, we would have looked into many more if we had more time.

A natural starting point would be to finish our work on a GPU-based deblocking filter.

As the code is already written, it only needs integration with the encoder proper and

an undisclosed number of debugging hours. Completing the implementation would

improve the performance of the deblocking filter itself [8]. In addition, the deblocked

framewould not need to be copied back to the device, saving a (padded) frame transfer

for each frame. The state sent from the device to the host would also be reduced, as the

information to correctly choose Bs on the host would be obsoleted.

The performance potential in concurrent kernel execution could probably be the start-

ing point of another master thesis on its own. As we noted in the discussion, task

parallelism provided by multiple streams make it possible to implement a hierarchal

multiple slices and multiple concurrent GOP parallelization strategy, similar to that

described by A. Rodríguez et al. [26].

Concurrent kernels could also be used to experiment with running the different image

channels in parallel. For instance, one stream could encode the Y component, while

another could handle Cb and Cr.

Similarly, concurrent streams makes it possible to run the first part of the CAVLC en-

tropy coding in a separate stream, independent of the previous encoding steps.

The second part of the CAVLC step, performed by the host, could be separated into a

new thread. In addition to better utilizing the multiple cores of a contemporary CPU,

this would also mask away most of the time spent performing CAVLC in the main

thread today.

118

10.3 Conclusion

We have shown that when writing GPU-accelerated applications, we were able to

achieve significant performance increase by focusing our efforts on the host imple-

mentation, and the Host-Device communication. As the processing power of GPUs

increase, the effective rate of utilization will be limited by Amdahls law [10]. To reach

peak performance, it is important to minimize the sequential parts before and after the

GPU computation. Such sequential parts include IO operations, memory transfers be-

tween the host and the device, and any nontrivial computations performed on the host

CPU.

Appendix A

Code Examples

A.1 CUDA Vector Addition Example

1 # include < s t d l i b . h>
2 # include <s td io . h>
3 # include <a s s e r t . h>
4
5 #define ARRAY_SIZE 1024
6 #define ARRAY_SPACE ARRAY_SIZE* s izeof (in t)
7
8 / * T r i v i a l k e r n e l do ing v e c t o r a d d i t i o n * /
9 __global__ void vec_add (unsigned in t * a , unsigned in t *b , unsigned in t * r e su l t)

10 {
11 / * c a l c u l a t e g l o b a l ind ex * /
12 in t i = blockIdx . x * blockDim . x + threadIdx . x ;
13
14 / * Read bo th op e r ands from g l o b a l memory and wr i t e t h e r e s u l t b a ck . * /
15 r e su l t [i] = a [i] + b [i] ;
16 }
17
18 in t main (void)
19 {
20 / * d e v i c e p o i n t e r s * /
21 unsigned in t * dev_input1 , * dev_input2 , * dev_output ;
22
23 / * s t a t i c a l l y a l l o c a t e d h o s t memory * /
24 unsigned in t input1 [ARRAY_SIZE] , input2 [ARRAY_SIZE] , output [ARRAY_SIZE] ;
25
26 in t i ;
27
28 / * S t ep 1 : A l l o c a t e memory on d e v i c e * /
29 cudaMalloc ((void **)& dev_input1 , ARRAY_SPACE) ;
30 cudaMalloc ((void **)& dev_input2 , ARRAY_SPACE) ;
31 cudaMalloc ((void **)&dev_output , ARRAY_SPACE) ;
32
33 / * S e t some d e f a u l t v a l u e s * /
34 for (i =0 ; i <ARRAY_SIZE ; ++ i)
35 {
36 input1 [i] = 3735879680 ;
37 input2 [i] = 48879 ;
38 }
39
40 / * S t ep 2 : T r a n s f e r inpu t t o d e v i c e g l o b a l memory .
41 Note t h e l a s t paramet e r , which g i v e s
42 t h e d i r e c t i o n o f t h e copy o p e r a t i o n * /

119

120

43 cudaMemcpy(dev_input1 , input1 , ARRAY_SPACE, cudaMemcpyHostToDevice) ;
44 cudaMemcpy(dev_input2 , input2 , ARRAY_SPACE, cudaMemcpyHostToDevice) ;
45
46 / * S t ep 3 : Launch k e rn e l , n o t e t h e s h o r t e r form o f k e r n e l c a l l
47 wi thou t s h a r e d memory a l l o c a t i o n or cuda s t r e am * /
48 vec_add<<<ARRAY_SIZE/64 , 64>>>(dev_input1 , dev_input2 , dev_output) ;
49
50 / * As t h e k e r n e l c a l l i s asynchronous , h o s t c od e c o n t i nu e s u n t i l a
51 * synchronous cuda c a l l , such as a memory t r a n s f e r o r an e x p l i c i t
52 cudaThr eadSynchron i z e () wa i t s f o r t h e gpu t o c omp l e t e * /
53
54 / * S t ep 4 : R e t r i e v e r e s u l t s . The h o s t p r o c e s s w i l l b l o c k u n t i l c omp l e t i o n . * /
55 cudaMemcpy(output , dev_output , ARRAY_SPACE, cudaMemcpyDeviceToHost) ;
56
57 / * S t ep 5 : ???? * /
58 p r i n t f (" 0x%X+0x%X=0x%X\n" , input1 [0] , input2 [0] , output [0]) ;
59
60 / * S t ep 6 : P r o f i t * /
61 return EXIT_SUCCESS ;
62 }

Listing A.1: Vector addition; a trivial CUDA example

References

[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the

H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 13, no. 7, pp. 560–576, 2003.

[2] I. E. G. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next

Generation Multimedia. Wiley, 2003.

[3] J. Heo and Y.-S. Ho, “VLC table prediction algorithm for CAVLC in H.264 using

the characteristics of mode information,” vol. 5353 of Lecture Notes in Computer

Science, pp. 119–128, Springer, 2008.

[4] D. B. Kirk andW.meiW. Hwu, ProgrammingMassively Parallel Processors: A Hands-

on Approach (Applications of GPU Computing Series). Morgan Kaufmann, 2010.

[5] N. Goodnight, R. Wang, and G. Humphreys, “Computation on programmable

graphics hardware,” IEEE Computer Graphics and Applications, vol. 25, no. 5,

pp. 12–15, 2005.

[6] N.Wu,M.Wen,W.Wu, J. Ren, H. Su, C. Xun, and C. Zhang, “StreamingHDH.264

encoder on programmable processors,” in Proceedings of the 17th International Con-

ference onMultimedia 2009, Vancouver, British Columbia, Canada, October 19-24, 2009,

pp. 371–380, ACM, 2009.

[7] S.-W. Wang, S.-S. Yang, H.-M. Chen, C.-L. Yang, and J.-L. Wu, “Amulti-core archi-

tecture based parallel framework for H.264/AVC deblocking filters,” The Journal

of Signal Processing Systems, vol. 57, no. 2, pp. 195–211, 2009.

121

122

[8] B. Pieters, C.-F. Hollemeersch, J. D. Cock, P. Lambert, W. D. Neve, and R. V.

de Walle, “Parallel deblocking filtering in MPEG-4 AVC/H.264 on massively par-

allel architectures,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 21, no. 1, pp. 96–100, 2011.

[9] P. List, A. Joch, J. Lainema, G. Bjøntegaard, and M. Karczewicz, “Adaptive de-

blocking filter,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 13, no. 7, pp. 614–619, 2003.

[10] G. Amdahl, “Validity of the single-processor approach to achieving large-scale

computing requirements,” Computer Design, vol. 6, no. 12, pp. 39–40, 1967.

[11] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata, “Cell broadband engine architec-

ture and its first implementation - A performance view,” IBM Journal of Research

and Development, vol. 51, no. 5, pp. 559–572, 2007.

[12] Denning, Comer, Gries, Mulder, Tucker, Turner, and Young, “Computing as A

discipline,” CACM: Communications of the ACM, vol. 32, 1989.

[13] M. Livingstone, Vision and Art: The Biology of Seeing. Harry N. Abrams, 2002.

[14] C. Poynton, Digital Video and HD: Algorithms and Interfaces (The Morgan Kaufmann

Series in Computer Graphics). Morgan Kaufmann, 2002.

[15] G. J. Sullivan and T. Wiegand, “Video compression: From concepts to the

H.264/AVC standard,” Proceedings of IEEE, vol. 93, pp. 18–31, Jan. 2005.

[16] Y.-K. Chen, X. Tian, S. Ge, and M. Girkar, “Towards efficient multi-level threading

of H.264 encoder on intel hyper-threading architectures,” in 18th International Par-

allel and Distributed Processing Symposium (IPDPS 2004), IEEE Computer Society,

2004.

[17] T. W. Ralf Schäfer and H. Schwarz, “The emerging h.264/avc standard,” EBU

Technical Review, vol. 293, 2003.

[18] Y. Ismail, J. McNeely, M. Shaaban, and M. A. Bayoumi, “Enhanced efficient dia-

mond search algorithm for fast block motion estimation,” in International Sympo-

sium on Circuits and Systems (ISCAS 2009), pp. 3198–3201, IEEE, 2009.

123

[19] M. Karczewicz and R. Kurceren, “The SP- and SI-frames design for H.264/AVC,”

IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 637–

644, 2003.

[20] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding

extension of the H.264/AVC standard,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 17, pp. 1103–1120, Sept. 2007.

[21] N. Efford, Digital Image Processing: A Practical Introduction Using Java (With CD-

ROM). Addison Wesley, 2000.

[22] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition). Prentice

Hall, 2007.

[23] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky, “Low-complexity

transform and quantization in H.264/AVC,” IEEE Transactions on Circuits and Sys-

tems for Video Technology, vol. 13, no. 7, pp. 598–603, 2003.

[24] J.-B. Lee and H. Kalva, The VC-1 and H.264 Video Compression Standards for Broad-

band Video Services (Multimedia Systems and Applications). Springer, 2008.

[25] D. Marpe, T. Wiegand, and H. Schwarz, “Context-based adaptive binary arith-

metic coding in the H.264/AVC video compression standard,” IEEE Transactions

on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 620–636, 2003.

[26] A. Rodríguez, A. González, and M. P. Malumbres, “Hierarchical parallelization of

an H.264/AVC video encoder,” in Fifth International Conference on Parallel Comput-

ing in Electrical Engineering (PARELEC 2006), pp. 363–368, IEEE Computer Society,

2006.

[27] M. Doerksen, S. Solomon, and P. Thulasiraman, “Designing APU oriented scien-

tific computing applications in openCL,” in 13th IEEE International Conference on

High Performance Computing & Communication, HPCC 2011, Banff, Alberta, Canada,

September 2-4, 2011, pp. 587–592, IEEE, 2011.

[28] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kr"uger, A. E. Lefohn,

and T. J. Purcell, “A survey of general-purpose computation on graphics hard-

124

ware,” in STAR Proceedings of Eurographics 2004, (Grenoble, France), pp. 21–51,

Eurographics Association, Sept. 2004.

[29] E. Wu and Y. Liu, “Emerging technology about gpgpu,” IEEE Asia Pacific Confer-

ence On Circuits And Systems, pp. 618–622, 2008.

[30] M. S. Peercy, M. Olano, J. Airey, and P. J. Ungar, “Interactive multi-pass pro-

grammable shading,” in Siggraph 2000, Computer Graphics Proceedings,, Annual

Conference Series, pp. 425–432, ACM Press / ACM SIGGRAPH / Addison Wes-

ley Longman, 2000.

[31] R. Fernando andM. J. Kilgard, The Cg Tutorial: The Definitive Guide to Programmable

Real-Time Graphics. Addison-Wesley Professional, 2003.

[32] D. Blythe, “The direct3D 10 system,” ACM Transactions on Graphics, vol. 25, no. 3,

pp. 724–734, 2006.

[33] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE Micro, vol. 30, no. 2,

pp. 56–69, 2010.

[34] H. K. Stensland, H. Espeland, C. Griwodz, and P. Halvorsen, “Tips, tricks and

troubles: optimizing for cell and GPU,” in Network and Operating System Support

for Digital Audio and Video, 20th International Workshop, NOSSDAV 2010, Amster-

dam, The Netherlands, June 2-4, 2010, Proceedings, pp. 75–80, ACM, 2010.

[35] T. A. da Fonseca, Y. Liu, and R. L. de Queiroz, “Open-loop prediction in h.264/avc

for high definition sequences,” XXV Simposio Brasileiro de Telecomunicacoes,

Sep 2007.

[36] S. B. Kristoffersen, “Utilization of instrumentation data to improve distributed

multimedia processing,” Master’s thesis, University of Oslo, Norway, May 2011.

[37] P. B. Beskow, H. K. Stensland, H. Espeland, E. A. Kristiansen, P. N. Olsen,

S. Kristoffersen, C. Griwodz, and P. Halvorsen, “Processing of multimedia data

using the P2G framework,” in Proceedings of the 19th International Conference on

Multimedea 2011, Scottsdale, AZ, USA, November 28 - December 1, 2011, pp. 819–820,

ACM, 2011.

125

[38] A. Ottesen, “Efficient parallelisation techniques for applications running on GPUs

using the CUDA framework,” Master’s thesis, University of Oslo, Norway, May

2009.

126

References from the Internet

[39] nVidia Corporation, “Fermi compute architecture whitepaper.” http:

//www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_

Fermi_Compute_Architecture_Whitepaper.pdf, 2009.

[40] nVidia Corporation, “Nvidia cuda c programming guide, version 4.0.”

http://developer.download.nvidia.com/compute/DevZone/docs/

html/C/doc/CUDA_C_Programming_Guide.pdf, June 2011.

[41] J. Moyer, “Ensuring data reaches disk.” https://lwn.net/Articles/

457667/, september 2011.

[42] M. H. Weik, “The eniac story.” http://ftp.arl.mil/~mike/comphist/

eniac-story.html, 1961.

[43] G. E. Moore, “Cramming more components onto integrated circuits.”

ftp://download.intel.com/museum/Moores_Law/Articles-Press_

Releases/Gordon_Moore_1965_Article.pdf, april 1965.

[44] S. C. E. America, “Ps3 firmware (v3.21) update.” http://blog.us.

playstation.com/2010/03/28/ps3-firmware-v3-21-update/, march

2010.

[45] P. S. I. Group, “Pci-sig delivers pci express 2.0 specification.” http://

www.pcisig.com/news_room/PCIe2_0_Spec_Release_FINAL2.pdf, jan-

uary 2007.

127

128

[46] P. S. I. GRoup, “Pci-sig delivers pci express 3.9 specification.” http://www.

pcisig.com/news_room/PCIe_3_0_Release_11_18_10.pdf, november

2010.

[47] nVidia Corporation, “Geforce 8800 series specifications.” http://www.nvidia.

co.uk/page/geforce_8800.html.

[48] nVidia Corporation, “Geforce gtx 680 specifications.” http://www.geforce.

co.uk/hardware/desktop-gpus/geforce-gtx-680/specifications.

[49] nVidia Corporation, “Cuda visual profiler.” http://developer.nvidia.

com/nvidia-visual-profiler.

[50] S. Rennich, “Cuda c/c++ streams and concurrency [webinar slides].”

http://developer.download.nvidia.com/CUDA/training/

StreamsAndConcurrencyWebinar.pdf, January 2012.

[51] ITU-T, “H.264 : Advanced video coding for generic audiovisual services.” http:

//www.itu.int/rec/T-REC-H.264-201003-I/en, May 2003.

[52] ISO/IEC, “ISO/IEC 14496-10:2003, 2003. information technology - cod-

ing of audio-visual objects - part 10: Advanced video coding.” http:

//www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_

detail.htm?csnumber=43058, May 2003.

[53] ITU-T and I. J. 1, “Generic coding of moving pictures and associated audio infor-

mation: Video. ITU-T recommendation H.262 and ISO/IEC 13818-2 (MPEG-2).”

http://www.itu.int/rec/T-REC-H.262, July 1995.

[54] ITU-T, “H.261 : Video codec for audiovisual services at p x 384kbit/s.” http:

//www.itu.int/rec/T-REC-H.261-198811-S/en, Nov. 1988.

[55] N. L. Xiaoquan Yi, Jun Zhang, , and W. Shang, “Improved and simplified

fast motion estimation for jm (jvt p021).” http://wftp3.itu.int/av-arch/

jvt-site/2005_07_Poznan/JVT-P021.doc.

[56] L. Aimar, L. Merritt, J. Garrett-Glaser, S. Walters, A. Mitrofanov, H. Gramner, and

D. Kang, “X264.” http://www.videolan.org/developers/x264.html.

129

[57] nVidia Corporation, “nvidia ion specifications.” http://www.nvidia.com/

object/picoatom_specifications.html.

[58] N. Brookwood, “Amd white paper: Amd fusion™ family of apus.” http://

sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf,

March 2010.

[59] I. Corporation, “Products (formerly sandy bridge).” http://ark.intel.com/

products/codename/29900.

[60] Microsoft, “Programming guide for hlsl.” http://msdn.microsoft.com/

en-us/library/bb509635(v=VS.85).aspx.

[61] T. K. Group, “The opengl shading language v4.20.8.” http://www.opengl.

org/registry/doc/GLSLangSpec.4.20.8.clean.pdf, september 2011.

[62] nVidia Corporation, “Geforce gtx 680 whitepaper.”

http://www.geforce.com/Active/en_US/en_US/pdf/

GeForce-GTX-680-Whitepaper-FINAL.pdf, 2012.

[63] T. M. Technik, “1080p test sequences.” http://media.xiph.org/video/

derf/ftp.ldv.e-technik.tu-muenchen.de/pub/test_sequences/

1080p/ReadMe_1080p.txt, 2001.

[64] J. Seward, C. Armour-Brown, J. Fitzhardinge, T. Hughes, N. Nethercote, P. Mack-

erras, D. Mueller, B. V. Assche, J. Weidendorfer, and R. Walsh, “Valgrind instru-

mentation framework.” http://valgrind.org.

[65] nVidia Corporation, “NVIDIA CUDA library: cudahostal-

loc.” http://developer.download.nvidia.com/compute/

cuda/4_1/rel/toolkit/docs/online/group__CUDART_

_MEMORY_g15a3871f15f8c38f5b7190946845758c.html#

g15a3871f15f8c38f5b7190946845758c.

