
OPVQ and OpenVQ

Creating free software tools for video quality assessment

Kristian Skarseth and Henrik Bjørlo

Master’s Thesis Spring 2015





OPVQ and OpenVQ
Creating free software tools for video quality assessment

Kristian Skarseth and Henrik Bjørlo

May 4, 2015

cbna

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


ii



Abstract

PSNR is to this day the most common metric used to measure video
quality, despite having been shown for decades to do so with very
limited accuracy. Better metrics have been standardised, but their
implementations are proprietary and expensive to license, which means
that they are unavailable to most researchers.

The primary goal of this master’s thesis is to develop an implemen-
tation of a standardised video quality metric that performs significantly
better than PSNR, and make it available as Free Software. Subsequently,
we want to provide useful abstractions to make it easy for researchers to
implement their own metrics within the framework of this software.

An introduction to video quality measurement and its history is
presented together with an examination of existing metrics that may be
used as foundation for our implementation. We show how the metric
called PEVQ standardised in ITU-T Recommendation J.247 is chosen as a
basis from which we derive our own metric called OPVQ. The differences
between the base and the derived metric are described in detail before
we evaluate the performance of OPVQ.

OPVQ is implemented, not as a stand-alone program, but as part
of a more general toolkit that is called OpenVQ. We explain the
considerations that went into the design of this software, and describe
the implementation in detail. We also give an introduction to how to
use the program, both to assess video quality and to implement a video
quality metric.

iii



iv



Contents

I Introduction 1

1 Introduction 3
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Significance of Study . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Limitations and Scope . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related Work 9
2.1 Understanding Video Quality Measurement . . . . . . . . . 9
2.2 Validation of Video Quality Metrics . . . . . . . . . . . . . . 11
2.3 Non-Perceptual FR Metrics . . . . . . . . . . . . . . . . . . . 12

2.3.1 Peak signal-to-noise ratio . . . . . . . . . . . . . . . . 13
2.3.2 Structural Similarity . . . . . . . . . . . . . . . . . . . 13

2.4 Perceptual FR Metrics . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Models from ITU-T Rec. J.144 . . . . . . . . . . . . . 15
2.4.2 Models from ITU-T Rec. J.247 . . . . . . . . . . . . . 15
2.4.3 Models from ITU-T Rec. J.341 . . . . . . . . . . . . . 16
2.4.4 Other Metrics . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Review of candidates . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Availability of subjective test data . . . . . . . . . . . . . . . 19

II OPVQ – The Open Perceptual Video Quality metric 21

3 From PEVQ to OPVQ 23
3.1 PEVQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Limitations with PEVQ . . . . . . . . . . . . . . . . . 23
3.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Sequence alignment . . . . . . . . . . . . . . . . . . . . . . . 25

v



3.3.1 Temporal Alignment . . . . . . . . . . . . . . . . . . . 26
3.3.2 Spatial Alignment . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Colour Alignment . . . . . . . . . . . . . . . . . . . . 28

3.4 Distortion Analysis . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Intra-frame spatial distortion . . . . . . . . . . . . . 30
3.4.2 Luma Indicator . . . . . . . . . . . . . . . . . . . . . . 32
3.4.3 Chroma Indicator . . . . . . . . . . . . . . . . . . . . 35
3.4.4 Inter-frame spatial distortion . . . . . . . . . . . . . 37
3.4.5 Introduced and Omitted Component Indicator . . . 38

3.5 Mapping to DMOS . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.1 Mapping coefficients . . . . . . . . . . . . . . . . . . . 42

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Results 45
4.1 About performance evaluation . . . . . . . . . . . . . . . . . 45

4.1.1 Subjective vs. objective scores . . . . . . . . . . . . . 45
4.1.2 Evaluation metrics . . . . . . . . . . . . . . . . . . . . 46
4.1.3 Data fitting . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1.4 Comparative evaluation of OPVQ and PEVQ . . . . 48
4.1.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Score mapper evaluation . . . . . . . . . . . . . . . . . . . . 51
4.2.1 Constraining the score mapper . . . . . . . . . . . . 51
4.2.2 Optimising mapping coefficients . . . . . . . . . . . 53
4.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Overall performance evaluation . . . . . . . . . . . . . . . . 58
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

III OpenVQ – The Open Video Quality Toolkit 63

5 Designing a Video Quality Toolkit 65
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Video handling and processing . . . . . . . . . . . . 67
5.2.2 Memory and I/O . . . . . . . . . . . . . . . . . . . . . 69

5.3 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Implementation 71
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Decoding video files . . . . . . . . . . . . . . . . . . . . . . . 72

6.2.1 Opening a video file . . . . . . . . . . . . . . . . . . . 73

vi



6.2.2 Decoding the video stream . . . . . . . . . . . . . . . 74
6.3 Structures and representation . . . . . . . . . . . . . . . . . 75

6.3.1 Frame representation . . . . . . . . . . . . . . . . . . 75
6.3.2 The Frame class . . . . . . . . . . . . . . . . . . . . . . 76

6.4 The Algorithm interface . . . . . . . . . . . . . . . . . . . . . 77
6.4.1 Processing passes . . . . . . . . . . . . . . . . . . . . . 78

6.5 User options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5.1 Command line syntax . . . . . . . . . . . . . . . . . . 81
6.5.2 Options handling . . . . . . . . . . . . . . . . . . . . . 81

6.6 Implementing a metric . . . . . . . . . . . . . . . . . . . . . . 83
6.7 Access and licensing . . . . . . . . . . . . . . . . . . . . . . . 83
6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7 Using OpenVQ 85
7.1 Installation and usage . . . . . . . . . . . . . . . . . . . . . . 85

7.1.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . 85
7.1.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.1.3 Running the program . . . . . . . . . . . . . . . . . . 87

7.2 Implementing PSNR with OpenVQ . . . . . . . . . . . . . . 88
7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

IV Conclusions 93

8 Conclusions 95
8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2 Further Research and Development . . . . . . . . . . . . . . 95

8.2.1 Support for higher resolutions . . . . . . . . . . . . . 96
8.2.2 Support for hybrid models . . . . . . . . . . . . . . . 96
8.2.3 Temporal Alignment . . . . . . . . . . . . . . . . . . . 97
8.2.4 GPU utilisation . . . . . . . . . . . . . . . . . . . . . . 97

9 Reflections 99

10 References 103

vii



viii



List of Figures

3.1 Overview of the PEVQ model . . . . . . . . . . . . . . . . . . 24
3.2 Unnoticeable black edge on left image (PVS) as a result of

a shift by 1 pixel. Right image act as the SRC . . . . . . . . 25
3.3 Luma of source (left) and processed frame (right) . . . . . 29
3.4 Normalised histograms and cumulative histograms . . . . 29
3.5 Intra-frame spatial distortion analysis procedure . . . . . . 31
3.6 More pronounced error, but equal disturbance . . . . . . . 34
3.7 Example of mapping coefficient matrix from PEVQ. . . . . 40
3.8 Demonstration of the curve parameters . . . . . . . . . . . 41
3.9 Equal curves with different parameters . . . . . . . . . . . . 41
3.10 Original PEVQ model (left) and the derived OPVQ model

(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 VQRs from OPVQ with unaltered PEVQ mapping coefficients 54
4.2 VQR from OPVQ with mapping coefficients optimised

using the other datasets as training data . . . . . . . . . . . 55
4.3 Best-fit cubic polynomials for OPVQ using unaltered PEVQ

mapping coefficients . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Best-fit cubic polynomials for OPVQ rating using opti-

mised mapping coefficients . . . . . . . . . . . . . . . . . . . 57
4.5 Cubic fitted PSNR scores plotted against subjective DMOS

scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Cubic fitted OPVQ scores plotted against subjective DMOS

scores. OPVQ mapping coefficients optimised with the
other available datasets . . . . . . . . . . . . . . . . . . . . . 61

5.1 Conceptual overview of a Video Quality toolkit application 70

6.1 Schematic overview of the concrete OpenVQ implementa-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 The Frame struct in OpenVQ . . . . . . . . . . . . . . . . . . 76
6.3 OpenVQ algorithm Interface. . . . . . . . . . . . . . . . . . . 77
6.4 Procedure to implement a metric in OpenVQ . . . . . . . . 83

ix



x



List of Tables

2.1 Overview of research efforts into objective video quality
metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 J.247 model performance overview . . . . . . . . . . . . . . 16
2.3 J.341 model performance . . . . . . . . . . . . . . . . . . . . 17
2.4 Comparison of candidate models . . . . . . . . . . . . . . . 19

3.1 PEVQ distortion indicators . . . . . . . . . . . . . . . . . . . 30
3.2 Overview of changes from PEVQ to OPVQ . . . . . . . . . . 44

4.1 Subjective test data for VGA resolution sequences . . . . . 49
4.2 Inital guess for unconstrained optimisation (original VGA

coefficients) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Inital guess for constrained optimisation (changed values

in bold) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Variability of optimised coefficients . . . . . . . . . . . . . . 52
4.5 Performance of DMOS mapping after optimisation . . . . . 53
4.6 OPVQ performance with unaltered PEVQ mapping coeffi-

cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 OPVQ performance with optimised mapping coefficients

using the other datasets as training data . . . . . . . . . . . 55
4.8 OPVQ performance with optimised mapping coefficients

using only the other datasets based on the same test
methodology as training data . . . . . . . . . . . . . . . . . . 56

4.9 OPVQ DMOS Mapper performance measured by the
linearity of the fitted and unfitted data . . . . . . . . . . . . 56

4.10 Final performance data after cubic fitting (best results in
bold) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Component applicability in the general case . . . . . . . . . 67

7.1 Dependency listing for OpenVQ . . . . . . . . . . . . . . . . 85

xi



xii



Acknowledgements

First and foremost we would like to sincerely thank Carsten Griwodz,
who has tirelessly engaged in discussions and always been available
to answer questions. Also, thanks to Pål Halvorsen for following our
work. Thanks to Simula Research Laboratory for providing an excellent
working environment, and the MPG Premium Coffee Club — for your
existence we are forever grateful. Thanks to Espen Utne Landgraff for
notes and corrections.

We want to thank Mads, Peder, Bård, Andreas, Kenneth and Bendik,
our fellow master students and lunch companions at Simula Research
Laboratory. Every day here has been a blast, engaging in interesting
(and less interesting) discussions on a wide array of topics.

I, Kristian Skarseth, would personally like to thank Henrik Bjørlo, my
co-worker on this project, who has been an absolute joy to work with.
His endless energy and knowledge is an inspiration which I’m sure will
be recognised in his coming career. I also want to thank my family for
their support while pursuing my masters degree, and all the talented and
lovely people I have worked with during my studies.

I, Henrik Bjørlo, would like to thank my partner in crime, Kristian
Skarseth. You make a fantastic collaborator by putting in a lot of hard
work (really, alot), keeping in touch and up to date, and always being
open for suggestions and discussions. I have no doubt that these qualities
will serve you well in the future. Thanks to my parents, Mona and Kåre,
for continuous support during my studies. Finally, I want to extend my
sincerest thanks to my loved ones, Kine — words cannot describe your
amazing support — and our wonderful baby girl Sofia. You mean the
world to me.

Sincerely,
Kristian Skarseth and Henrik Bjørlo
Fornebu, April 30, 2015

xiii



xiv



Part I

Introduction

1





Chapter 1

Introduction

Video streaming is responsible for a large amount of the Internet traffic
generated today, through popular providers such as YouTube and Netflix.
Digital video is bandwidth intensive, and video streaming over the
Internet would not be feasible without efficient compression techniques.
Such compression introduces loss of information, which can impact the
quality of the displayed video. We are interested in the video quality
as it is perceived by human viewers. Video quality assessment has
traditionally been carried out by letting a set of humans give their
subjective evaluation of the quality. Because of the time and human
resources involved, this method of quality assessment is expensive, and
in many research applications prohibitively so.

Signals like pictures and audio are represented digitally as a sequence
of numbers, and we can develop metrics to measure different mathemat-
ical properties of them. We can combine such metrics to create a quality
assessment model that, hopefully, correlates well with the human per-
ception of quality.

In this thesis we expand on where video quality assessment research
stands today, what issues there are, and present our own research in the
field. Our research has yielded two main results. The first result is a video
quality metric called Open Perceptual Video Quality, or OPVQ for short,
which is based on a standardised metric called PEVQ. The work we have
done regarding PEVQ and OPVQ is described in chapters 3–4. The other
result is a video quality software toolkit called OpenVQ which facilitates
implementation of video quality metrics. OPVQ is implemented as part
of OpenVQ. All of this is released as Free Software.1 OpenVQ is described
in chapters 5–7.

1What is free software? https://www.gnu.org/philosophy/free-sw.en.html (visited
27/4/2015)

3



1.1 Background

Researchers working with video may need to measure the video quality
to validate their work. Performing large scale subjective tests are
currently the only way to truly know the quality of a video sequence
as it is perceived by humans. Arranging such tests is however expensive
and time consuming.

Digital video is fundamentally nothing else than a sequence of
consecutive still image frames displayed in quick succession. Because
we have digital representations of these frames available, we can quite
easily perform mathematical calculations on them – they are after all
nothing else than a set of numbers. Digital video is almost always stored
in highly compressed formats, which in most cases means that a lot of
the originally recorded data is lost. If we have available both the original
data and a lossy compressed version of the same video sequence, we can
compare the two signals objectively.

However, a mathematical difference between an original and a
compressed signal alone is not enough to conclude that quality is
degraded. What is important is how humans perceive the quality when
watching the video being displayed to them, which is covered by the
umbrella term Quality of Experience (Kuipers et al. 2010), abbreviated as
QoE. This is a crucial realisation when assessing video quality. We often
distinguish between subjective and objective video quality assessment; the
former being assessments made by human test subjects and the latter by
some sort of algorithmic approach. The performance a video quality
metric is defined by its ability to accurately predict quality ratings given
by human test subjects.

One of the earlier video quality metrics is known as peak signal-to-
noise ratio (PSNR), and is nothing more than a pixel-by-pixel mean square
error (MSE) between an original and a compressed image. Due to its
simplicity, this model is still today the most widely used measure of video
quality. However, PSNR can only approximate video quality as a human
perceives it, and has been shown to do so with limited precision (Winkler
and Mohandas 2008).

Efforts to develop quality metrics for digital video that correlate
better with subjective opinion than PSNR has been ongoing since the
early 1990s. The Alliance for Telecommunications Industry Solutions
(ATIS) performed the first large scale validation test of such metrics
in 1994–95, and since the late 1990s the Video Quality Experts
Group (VQEG) has performed several similar tests resulting in various
standards (M. H. Pinson et al. 2013).

4



In later years the best candidates from these validation tests are all
developed by companies as commercially licensed proprietary software.
Most researchers cannot afford to purchase expensive licenses to such
metrics, and are forced to make do with outdated and less precise metrics
such as PSNR.

1.2 Objectives

As indicated in the introduction to this chapter, there is a lack of good
video quality metrics that researchers can use freely in their work. Our
primary goal is to improve this situation by developing an adapted
implementation of a modern video quality metric, and make it available
as Free Software. This adaptation is to be based on one of the metrics
standardised as a result of VQEG’s validation efforts.

Subsequently, we want to provide a software toolkit with useful
abstractions that can help researchers in implementing their own
metrics.

1.3 Research Method

The research presented in this thesis is the result of a process that to a
large degree conforms to the design paradigm for the computer science
discipline, as defined by the ACM Education Board (Comer et al. 1989).
The design paradigm has roots in engineering, and consists of stating the
requirements and specifications, designing and implementing a system
accordingly and testing the system.

We are applying this design paradigm to two different, but related
systems; 1. a video quality metric; and 2. a general software toolkit for
video quality assessment, where the latter is intended to facilitate the
implementation of the former.

1.4 Significance of Study

A free and open source metric for measuring video quality that correlates
well with human perception of quality, can be of use to anyone working
with video quality. It can be used within QoE research, hereunder video
streaming services and video codecs. Better tools and metrics to assess
video quality without requiring significant funds for commercial licenses
represents an improvement to the situation for researchers in the field.

5



1.5 Limitations and Scope

Video quality metrics are evaluated using subjective test scores. The
results of such evaluation is therefore only conclusive within the limits of
the subjective test data used. Test video sequences are generally around
10 seconds long (ITU-R 2012; ITU-T 2008b), and subjecitve scores are
collected for a limited set of degradation types. In addition, each metric
will have its own limitations which we will be forced to follow as well.
We cover the specific limitations of our chosen metric in section 3.1.1.

As we discuss in section 4.1.5, there is a lack of freely available
datasets with subjective test scores and corresponding test video se-
quences. Such datasets are required to test and to validate our metric,
and the lack of data limits our ability to fully validate our implementa-
tion.

1.6 Outline

In chapter 2 we give a brief introduction to objective video quality
assessment and the history of the field. We cover the current status of
video quality research, and describe how and why we singled out PEVQ
as the inspiration for our own metric OPVQ.

In chapter 3 we cover the design of the OPVQ metric and how it is
derived from PEVQ, and the metric is tested and evaluated in chapter 4.

Chapters 5, 6 and 7 cover details about the design, implementation
and usage of the OpenVQ toolkit.

We give conclusions about the achieved results in chapter 8, along
with some pointers for further work. In the final chapter we discuss
some of our subjective experiences with the project.

1.7 Summary

Video QoE is important when working with video services. Assessing the
quality of video provided through a service using subjective testing is too
expensive and time consuming. On the other hand, free objective metrics
do not provide satisfactory results. Objective models producing results
that correlate well with human perception are subject to expensive
commercial licensing terms, and most researchers cannot afford them.
As an effort to provide researchers with a modern tool that provides
satisfactory performance we develop a free, open source, full reference
objective video quality assessment metric that we call OPVQ. It is inspired

6



by the PEVQ metric standardised through VQEG’s validation tests. In
addition, our program, called OpenVQ, will work as a toolkit where
additional video quality metrics can be implemented with ease.

7



8



Chapter 2

Related Work

This chapter will provide a short introduction to how video quality
measurement works, as well as a brief historical introduction to efforts
for standardising objective video quality metrics. We then look at
currently avilable objective video quality metrics. Based on an evaluation
of these metrics we select one that we feel is best suited for a free and
open source implementation.

2.1 Understanding Video Quality
Measurement

The first and most obvious distinction one has to make within the field
of video qality measurement is the difference between subjective and
objective testing. Subjective quality measurement means that human
test subjects view a series of video sequences and give their opinion of
the quality of the video. Configuration of the room where the testing is
performed is crucial, and everything from viewing distance, monitor size
and colour calibration must be perfectly tuned. Jiménez Bermejo (2012)
summarises different methods for subjective assessment as follows:

“Subjective testing for visual quality assessment has been for-
malised in ITU-T Rec. P.910 (ITU-T 2008c) and ITU-R Rec. BT.500 (ITU-
R 2012). . .

• Double Stimulus Continous Quality Scale (DSCQS), where
subjects rate short sequence pairs, consisting of a test and
corresponding reference video.

• Double Stimulus IMpairment Scale (DSIS), also referred to
as Degradation category Rating (DCR), where subjects rate
the amount of impariment in the test video with respect to
the known reference video.

9



• Single Stimulus Continous Quality Evaluation (SSCQE),
where subjects watch a program of typically 20-30 minutes
duration and continously rate the instantaneously preceived
quality on a slide.

• Absolute Category Rating (ACR), a single-stimulus method,
where subjects rate each test video individually without
comparison to an explicit reference.

• Pair Comparison (PC), where the test videos from the same
scene but different conditions are paired in many possible
combinations and subjects make a preference judgement for
each pair.

. . . ”

Methodology for subjective assessment of video quality has been for-
malised in ITU-T Rec. P.910 (ITU-T 2008c) and ITU-R Rec. BT.500 (ITU-R
2012).

Objective measurement is performed solely by a computer. Objective
metrics are categorised as either full reference (FR), reduced reference
(RR) or no reference (NR), depending on the amount of reference data
needed. The reference data in this context is the original source sequence
from which the sequence under assessment is derived. As implied by the
name, FR metrics require access to the entire reference sequence, RR
metrics require a subset of the data from the reference sequence, and
NR metrics do not need any reference data. Not surprisingly, FR models
are able to achieve the highest correlation with subjective test results.
For this reason we have chosen to limit our reserach to FR metrics.

We also wish to group each of the three objective approaches into
two additional groups; perceptual and non-perceptual. In later years,
researchers have found that simple metrics, such as PSNR, can predict
subjective quality ratings to a limited degree, but in order to get truly
good correlation with subjective scores it is necessary to develop metrics
that attempt to view the video the same way the human visual system
(HVS) does. Perceptual metrics are developed using our understanding
of the HVS, while non-perceptual metrics are only mathematical models
with no consideration of human perception.

In the next section we give an overview of validation tests of objective
video quality metrics performed the past 20 years.

10



2.2 Validation of Video Quality Metrics

The 1990’s saw the rise of digital video codecs. This quickly created a
need for models that could say something useful about the quality of
digitally encoded video. A number of efforts was made to create better
objective video quality metrics. Furthermore, these new metrics needed
to be validated to determine their correlation with human perception of
quality.

The first large scale validation test was performed by the Alliance
for Telecommunications Industry Solutions (ATIS) in 1994-95, which
resulted in the two American National Standards Institute (ANSI)
standards T1.801.01 and T1.801.03.1 The test did not standardise any
video quality metrics, but it did result in, among other things, a set of
publicly available source video sequences that can be used for further
testing.

In the late 1990’s participants from the International Telecommuni-
cations Union (ITU) were drawn together to form the Video Quality Ex-
perts Group (VQEG), with a goal to advance the field of video quality
research (M. H. Pinson et al. 2013). This group has since made a num-
ber of efforts to validate the performance of new objective video quality
metrics for the purpose of standardisation, and in 1997 the first VQEG
meeting found place in Turin.

To date, VQEG has performed several large testing phases. From
1999 to 2000 their first phase, the full reference television (FRTV) Phase
I, was conducted by the Independent Lab Group (ILG). It was designed
for testing full- and no-reference standard definition television quality,
however, none of the NR models made it to the testing phase. The
conclusion from the test was that none of the submitted models were
statistically better than PSNR.

Following the FRTV Phase I came FRTV Phase II (2002-2003),
the multimedia Phase I (2007-2008), reduced reference/no reference
television (RRNR-TV) Phase I (2008-2009) and the high definition
television (HDTV) test (2009-2010). All tests were conducted by ILG
with some proponents involved in certain cases. Eight FR models were
published in a first rendition of ITU-T Rec. J-144 following FRTV Phase
I (2001). FRTV Phase II published a revised version of ITU-T Rec. J.144
as well as ITU-T Rec. BT.1683, where four FR models were standardised.
In both phases all NR models were withdrawn.

1Institute for Telecommunication Sciences — National and International Stan-
dards http://www.its.bldrdoc.gov/resources/video-quality-research/standards/
national-and-international-standards.aspx (visited 6/11/2014)

11

http://www.its.bldrdoc.gov/resources/video-quality-research/standards/national-and-international-standards.aspx
http://www.its.bldrdoc.gov/resources/video-quality-research/standards/national-and-international-standards.aspx


Test-phase name Org. Date Resolutions Standards documents

T1A1 ATIS 1994–1995 NTSC T1.801.03 & T1.801.01

FRTV Phase I VQEG 1999–2000 NTSC, PAL ITU-T Rec. J.144

FRTV Phase II VQEG 2002–2003 NTSC, PAL ITU-T Rec. J.144 & ITU-R
Rec. BT.1683

Multimedia VQEG 2007–2008 VGA, CIF, QCIF ITU-T Rec. J.247, ITU-R
BT.1866, ITU-T Rec. J.246
& ITU-R BT.1867

RRNR-TV Phase I VQEG 2008–2009 NTSC, PAL ITU-T Rec. J.249

HDTV VQEG 2009–2010 1080i, 1080p ITU-T Rec. J.341 & ITU-T
Rec. J.242

Table 2.1: Overview of research efforts into objective video quality metrics

Following the Multimedia Phase I, FR models from Nippon Telegraph
and Telephone Corporation (NTT), OPTICOM, Psytechnics and Yonsei
University were standardised in ITU-T Rec. J.247 and ITU-R BT.1866.
One RR model, from Yonsei University, was standardised in ITU-T
Rec. J.246 and ITU-R BT.1867. Again no NR models were standardised.
The RRNR-TV Phase I test standardised 3 RR models in ITU-T Rec. J.249,
and the HDTV test in 2009-2010 standardised two FR models in J.341
and one RR model in J.242. Two NR models were mentioned in VQEG’s
final report for the HDTV test, but neither were standardised.

For more information on the history of VQEG’s validation tests, see M.
Pinson, Staelens, et al. (2013). Table 2.1 is an overview of the test phases
described in this section. It includes the test phase name, organisation
that performed the test, date, resolutions tested and which standards
were produced from the test phases. In the following sections we discuss
various metrics that are available today. We review the standardised
metrics and select one as basis for our own implementation.

2.3 Non-Perceptual FR Metrics

Early video quality metrics did not take the human visual system into
account. The two most recognised early metrics are PSNR and SSIM.
In the following sections we briefly describe these two metrics. While
neither play a big part in our work, they serve as a useful benchmark
and we use them in our results evaluation in chapter 4.

12



2.3.1 Peak signal-to-noise ratio

Peak signal-to-noise ratio (PSNR) is probably the most used objective
video quality assessment metric today, even though its correlation with
subjective tests is limited as explained by Huynh-Thu and Ghanbari
(2008). The reason so many still use it, despite its shortcomings, can be
explained by its simplicity. PSNR is nothing more than a mean squared
error (MSE) as shown in equation 2.1.

MSE = 1
W H

W�1P
i=0

H�1P
j=0
|SRC(i, j)� PVS(i, j)|2 (2.1)

The score is then represented in dB as defined in equation 2.2, where
MAX 2

I is the highest possible value of each pixel squared (typically
2#bi ts per pixel�1).

PSNR = 10 · log10

⇣
MAX 2

I
MSE

⌘
(2.2)

• W and H represent picture width and height.

• SRC and PVS is the source and processed video sequences
respectively

Small spatial, colour or temporal shifts do not necessarily affect a
subjective viewer noticeably, but it can have a large affect on the PSNR
score, which is based on pixel-by-pixel comparison with the reference.
The PSNR correlation to subjective score can therefore be improved by
performing alignment before the MSE calculation is done. We discuss
sequence alignment in detail in section 3.3. VQEG use a slightly modified
version of PSNR, standardised in ITU-T Rec. J.340 (ITU-T 2010), where
values for constant shifts in the spatial, temporal and luminance domain
are calculated, as a minimum acceptable performance benchmark.

2.3.2 Structural Similarity

Structural similarity index is not much more complex than PSNR, but
as explained in Z. Wang et al. (2005) it attempts to extract structural
information from a visual scene. This is also a feature of the human visual
system (HVS). Unlike PSNR, which estimates perceived errors, SSIM
estimates perceived change in structural information. While the creators
of SSIM claim it is a significant improvement over PSNR, Dosselmann
and Yang (2011) explain how SSIM in fact is not so different from PSNR,
and state that SSIM does not fill “the enormous gap that continues to

13



exist between an automated measure of quality and that of the human
mind”.

SSIM is calculated by applying equation 2.3 to windows of an image.
A window is a subset of pixels within the image and a typical window
size can be 8⇥ 8 pixels. The resulting value from the equation is in the
range [�1,1], and is averaged over the number of windows in the image.
The values x and y represents a window from SRC and PVS respectively.

SSI M(x , y) =

�
2µxµy + c1
��

2�x y + c2
�

Ä
µ2

x +µ
2
y + c1

äÄ
�2

x +�
2
y + c2

ä (2.3)

where

• µx and µy are the averages of x and y

• �2
x and �2

y are the variances of x and y

• �x y is the covariance of x and y

• c1 and c2 are constants

For a video sequence the final value indicating the quality of the
video is generated by averaging each frame value over the number of
frames. More detailed information on the mathematics behind SSIM
can be found in (Z. Wang et al. 2005) and (Wang Z., Bovik, A. C. and
Sheikh, H. R. and Simoncelli, E. P. 2004).

Like with PSNR, spatial, temporal and colour misalignment between
the SRC and PVS can affect the results, and therefore such alignment
should be performed before the SSIM equation is calulated.

2.4 Perceptual FR Metrics

In order to improve the performance of objective metrics it is necessary
to take the HVS into account. Since VQEG’s FRTV Test Phase II, the top
performing metrics have been perceptual metrics in that they, at least to
some degree, perform calculations based on knowledge about the HVS.
In this section we present the perceptual models we have considered,
most of whom have been standardised as a result of VQEG’s validation
efforts.

14



2.4.1 Models from ITU-T Rec. J.144

ITU-T Rec. J.144 was first published in 2001 as a result of the FRTV Phase
I, and then rebulished in 2004 after the FRTV Phase II. It was in the
2004 edition where four models were standardised. VQM, developed
by a branch of the National Telecommunications and Information
Administration (NTIA), was the top performing metric in the test phase,
and it has been freely available for anyone to use since then, both
commercially and non-commercially. VQEG hosts the VQM website,
where the software is freely available for download.2

The VQM model is much more complex than PSNR and SSIM, and
includes spatial, temporal and colour alignment steps before what they
call the General Model Parameters are calculated. The parameters consist
of 7 independent values, four from the spatial gradients of the luminance
component, two from features extracted from the vector formed by
the two chrominance components and one based on the product of
features that measure contrast and motion. From these parameters the
General Model calculates a final score where the parameters are linearly
weighted (M. Pinson and Wolf 2004).

2.4.2 Models from ITU-T Rec. J.247

The ITU-T Rec. J.247 standardises four separate full reference models
that all significantly outperform PSNR (ITU-T 2008a). The models were
evaluated for VGA, CIF and QCIF resolutions.

All four models have a detailed description attached with the
standardisation document which makes it possible to deduce if any of
the metrics are feasible to implement within the time constraints of a
master thesis.

Table 2.2 shows the Pearson correlation for each of the four metrics
as presented in the standard, with PSNR added for comparison. The
OPTICOM metric, named PEVQ, and Psytechnics metrics clearly stand
out as the two best metrics. PEVQ has the best average and minimum
correlation for both VGA and QCIF resolutions, while Psytechnics stand
out with the highest amount of rank 1 occurences, as well as the best
results for CIF resolution. Judging from these results alone either of
them seems like the best choice among the four.

When looking closer at the description we see that the PEVQ model is
explained well with both text and mathematical equations. This makes

2VQEG — Video Quality Metric (VQM) http://www.its.bldrdoc.gov/resources/
video-quality-research/software.aspx (visited 17/2/2015)

15

http://www.its.bldrdoc.gov/resources/video-quality-research/software.aspx
http://www.its.bldrdoc.gov/resources/video-quality-research/software.aspx


VGA NTT OPTICOM Psytechnics Yonsei PSNR

Avg. correlation 0.786 0.825 0.822 0.805 0.713

Min. correlation 0.598 0.685 0.565 0.612 0.499

Occurences at rank 1 8 10 11 10 3

CIF

Avg. correlation 0.777 0.808 0.836 0.785 0.656

Min. correlation 0.675 0.695 0.769 0.712 0.440

Occurences at rank 1 8 13 14 10 0

QCIF

Avg. correlation 0.819 0.841 0.830 0.756 0.662

Min. correlation 0.711 0.724 0.664 0.587 0.540

Occurences at rank 1 9 11 12 4 1

Table 2.2: J.247 model performance overview

it possible to relatively easily get a general overview of the amount of
code that has to be written. Our initial analysis suggested it would be
relatively doable to create an implementation of the metric within our
time constraints.

PEVQ’s high stability with good correlation, paired with both text and
equations to describe the metric, makes it our preferred choice from the
ITU-T Rec. J.247 standard.

2.4.3 Models from ITU-T Rec. J.341

The resolution known as Full HD3 has become the de facto standard
for delivering digital video4,5, and it is the native resolution for most of
today’s television panels. One could argue that any effort to provide an
implementation of a video quality model should have support for at least
Full HD resoltion.

ITU-T Rec. J.341 (ITU-T 2011) standardises one new full reference
model. This model was evaluated against PSNR for 1080i and 1080p

3Full HD: 1920x1080
4Broadcasting standards ATSC (America), DVB (Europe), Optical standard Blu-ray

Disc, Internet content from YouTube and Netflix all use 1080p or 1080i resolutions
51080p — Wikipedia, The Free Encyclopedia http://en.wikipedia.org/wiki/1080p

(visited 10/11/2014)

16

http://en.wikipedia.org/wiki/1080p


Metric PSNR SwissQual

Superset RMSE 0.71 0.56

Top performing group total 1 5

Better than PSNR total - 4

Better than superset PSNR - Yes

Superset correlation 0.78 0.87

Table 2.3: J.341 model performance

television signals6 with two different framerates; 25 fps and 29.97 fps.7

However, the model in J.341 does not come with a formal description in
the recommendation. The author, SwissQual AG, have instead released
reference source code attached to the standard. This reference source
code is protected under copyright, and it is subject to strict licensing
from the owner. Any potential user, including researchers, must apply to
the owner for a license to reproduce, modify and/or use the software,
the conditions of which is not presented in the reference code’s copyright
notice.

Software copyright of this kind is a problematic intellectual property
issue, but this is outside the scope of this thesis. Any implementation of
this model will need to be carried out by at least two separate persons;
one of which has to analyse the reference code and describe it formally,
while the other in turn can use this formal description to create a new
implementation. This new implementation would constitute original
source code, licensable at the author’s discretion.

In addition to being challenging and most likely time consuming to
implement, the only information we get on the metrics performance
is summarised in table 2.3. While it is clearly stated in the standard
document that the metric outperforms PSNR, the limited information
on the performance and the fact that it is not compared to any other
perceptual models makes it difficult to make judgements about its
performance.

2.4.4 Other Metrics

There are perceptual metrics available today that has not been standard-
ised, but due to time constraints we have been forced to focus on the

61080i: 1920x1080 interlaced, 1080p: 1920x1080 progressive
7fps: frames per second

17



standardised metrics in our research. We would however like to briefly
mention the MOtion-based Video Integrity Evaluation index (MOVIE). It
is a FR metric developed by K. Seshadrinathan and A. C. Bovik (Seshadri-
nathan and Bovik 2010). The metric has not been submitted to any of
VQEG’s test phases and has therefore not been standardised. The authors
ran their own correlation testing and compared results with multiple
variants of PSNR, SSIM and VQM on the LIVE Video Quality Database.
In these tests the metric outperformed all other metrics (Seshadrinathan,
Soundararajan, et al. 2010). Even though we have not had the time to
look into this metric in more detail, it could be interesting to compare it
to OPVQ in the future.

ITU-T Rec. J.343 was approved in November 2014 and is the result
of VQEG-JEGs hybrid-FR test phase. The test plans are available, but the
standardisation documents are currently restricted to TIES users8 and
we do therefore not have access to them. Because we do not have access
to the standardisation documents, and the fact that the standard was
not approved when we started our project, J.343 was never a possible
candidate for us. The results may however contain useful and relevant
information and should be examined when made available.

2.5 Review of candidates

VQEG’s FRTV Phase II resulted in VQM, the first standardised metric
to conclusively outperform PSNR. Since then, the top performing,
and consequently standardised metrics, are licensed commercially as
proprietary software. Descriptions of the metrics are however published
with the standardisation documents. In this section we review the
metrics published as a result of VQEG’s Multimedia Phase I and HDTV
Phase I in ITU-T Rec. J.247 and J.341, and we choose one of these metrics
as the basis for our own implementation.

We have been unable to find any surveys where all the metrics
we have talked about in this chapter are compared. Seshadrinathan,
Soundararajan, et al. (2010), Y. Wang (2006) and Martinez-Rach et al.
(2006) are all surveys where open and free metrics, most commonly
PSNR, SSIM and VQM, are tested, but none of them include metrics
from J.341 or J.247. In addition, OPTICOMs PEVQ metric which we
concluded was the best choice from J.247 is not developed for the same
resolutions as SwissQual AGs metric from J.341. This means the two

8TIES is a set of networked information resources and services offered to ITU
members http://www.itu.int/TIES/ (visited 20/4/2015)

18

http://www.itu.int/TIES/


OPTICOM SwissQual

Feature (J.247, PEVQ) (J.341)

Better than PSNR Yes Yes

Validated for HD No Yes

Formal description Yes No

Source code No Yes (copyrighted)

Patented Partially ?

Implementable Single stage Multi stage

Table 2.4: Comparison of candidate models

metrics have not been tested against the same video sequences and that
the little performance information we have on SwissQual AGs metrtic
cannot be compared directly to the PEVQ metric performance results.

The absolute lack of independent tests outside of VQEG comparing
the J.341 and J.247 metrics with other free metrics is a testament
to the problem that researchers working with improving video quality
measurement are unable to afford the latest standardised metrics.

The model from J.341 has the clear advantage that it has been
validated for high definition resolution. However, the disadvantage is
that implementing it comes at the cost of a laborious and potentially
error prone approach. The more formal description of PEVQ in J.247
makes it more compelling from an implementation standpoint. Another
observation is that just because PEVQ has not been validated for HD
resolutions, doesn’t mean that it can’t provide useful and even good
results. Adding support for HD could be a potential direction for further
research if the implementation is a success, subject to validation against
subjective test data.

We can see that there are pros and cons associated with both
candidates, as summarised in table 2.4. For the resources we have
available, the required process of implementing SwissQual’s model in
two separate phases is unfortunately a deal breaker, and we are left with
PEVQ as the only option.

2.6 Availability of subjective test data

The method used for validation testing of the proposed models in
VQEG’s Multimedia Phase I is well documented in the ITU-T Rec. J.247.
However, the actual source sequences used are not freely available,

19



due to licensing restriction, but also due to multi party non-disclosure
agreement signed by the proponents and the research institutions that
helped conduct the validation tests, referred to as VQEG’s Independent
Lab Group (ILG).9,10 We do not own a PEVQ license from OPTICOM, so
comparing the results directly is not a viable option either. This limits the
extent to which we have been able to validate our own implementation
against PEVQ. Details about this and performance evaluation in general
can be found in chapter 4.

9VQEG — Multimedia Phase I http://www.its.bldrdoc.gov/vqeg/projects/
multimedia-phase-i/multimedia-phase-i.aspx (visited 10/11/2015)

10VQEG — Independent Lab Group (ILG) http://www.its.bldrdoc.gov/vqeg/projects/
ilg.aspx (visited 10/11/2015)

20

http://www.its.bldrdoc.gov/vqeg/projects/multimedia-phase-i/multimedia-phase-i.aspx
http://www.its.bldrdoc.gov/vqeg/projects/multimedia-phase-i/multimedia-phase-i.aspx
http://www.its.bldrdoc.gov/vqeg/projects/ilg.aspx
http://www.its.bldrdoc.gov/vqeg/projects/ilg.aspx


Part II

OPVQ – The Open Perceptual
Video Quality metric

21





Chapter 3

From PEVQ to OPVQ

As we have discussed previously we are lacking an open, free to
use, video quality metric that attempts to mimic human perceptive
mechanisms. We have decided to use the PEVQ metric from ITU-T
Rec. J.247 as the basis for our implementation. In this chapter we
provide a brief description of the PEVQ model as a whole, and present
our final design and how it is derived from PEVQ.

3.1 PEVQ

PEVQ (Perceptual Evaluation of Video Quality) as described in J.247
has five main steps. The first step is a simple pre-processing step
consisting of some predefined cropping based on the video resolution.
Next, six statistical aspects are calculated over the source and processed
video sequences, based on which the sequences are coarsly aligned
temporally. The luma1 levels are also corrected at this point, using
histogram correction. In the third step, fine alignment is done both in
the spatial and temporal domain, i.e. the sequences should at this point
be aligned from start to finish. Chroma correction is also performed
using histogram correction. The fourth step is the distortion analysis
which generates five separate indicators that in the sixth and last step
are weighted using parameters specific to the resolution, and mapped to
a single mean opinion score (MOS).

3.1.1 Limitations with PEVQ

At present there are patents registered by OPTICOM GmbH regarding
temporal alignment of video sequences. Temporal alignment is a major

1PEVQ’s internal working format is Y0CBCR 4:4:4 (ITU-T 2008a)

23



Figure 3.1: Overview of the PEVQ model

part of PEVQ as described in J.247, so parts of the model may need to
be substituted with an original mechanism, to avoid legal issues when
publishing our implementation.

PEVQ as described in J.247 provides support for only a limited set
of spatial resolutions (VGA, CIF and QCIF). Adding support for other
resolutions is possible, but may require significant effort. Due to the
limited availability of testing data, as discussed in section 2.6, we focus
on verifying OPVQ with VGA resolution video sequences (chapter 4).

In addition, any objective video quality metric based on digital signal
processing will only be able to reliably detect and account for a limited
set of errors or degradations. Limitations as to what type of errors PEVQ
and the other metrics evaluated in J.247 were validated for is defined in
the VQEG Multimedia Phase 1 Final Report (VQEG 2008), and further
specified in the ITU-T J.247 recommendation (ITU-T 2008a). These
limitations include video framerate, minimum and maximum bitrates
and frame freeze or skip lengths. These properties limit the amount
of relevant test sequences we can use to validate OPVQ, but it also
explains what type of degradations we should expect our implementation
to handle.

24



3.2 Pre-processing

The purpose of pre-processing is to crop each frame of the PVS and SRC
sequences as the outer edges of the frames are generally not noticed by
a human viewer. To crop the three resolutions officially supported by
PEVQ we use equations (3.1-3.2).

Sp[i, j, t ] = S[i + c, y + c, t ]8i 2 [0..W �2ci, j 2 [0..H �2ci (3.1)

Pp[i, j, t ] = P[i + c, y + c, t ]8i 2 [0..W �2ci, j 2 [0..H �2ci (3.2)

The constant c is the crop size which is defined explicitly for each
resolution.

cV GA = 12 cC I F = 6 cQC I F = 3 (3.3)

3.3 Sequence alignment

Full reference algorithms require a source and a processed video
sequence. Compression may give rise to small changes in the resulting
video that do not represent quality degradations in the eyes of human
viewers. For instance, imagine that every frame in a PVS is shifted
1 pixel to the right relative to SRC. A human viewer will not detect
any degradation in quality, but a FR algorithm making a pixel-by-pixel
comparison will see lots of errors. To avoid such a scenario, we need
to perform sequence alignment. Figure 3.2 illustrates a right shift of 1
pixel in the left image which is barely noticeable without magnifying and
comparing the left edges of the two pictures.

Figure 3.2: Unnoticeable black edge on left image (PVS) as a result of a shift by 1
pixel. Right image act as the SRC

25



Misalignment may need to be eliminated in various domains. Maybe
the most obvious example is temporal misalignment. If our PVS for
example misses the first frame of the source, we can’t compare its first
frame with the first frame in SRC. Compression techniques such as
downampling and downscaling can lead to spatial misalignment when
upscaled to display resolution. Colour will also be subject to slight
change as an effect of lossy compression. In this section, we expand
on the different sequence alignment procedures employed in OPVQ.

3.3.1 Temporal Alignment

A significant part of the PEVQ algorithm deals with temporal alignment,
and OPTICOM holds patents pertaining to their temporal alignment
mechanism, which prevents us from including it in our free, open source
implementation. This leaves us with the option to a) design our own
temporal alignment mechanism; or b) leave temporal alignment out all
together. In order to make the decision, we analysed the scope of the
temporal alignment algorithm.

J.247 lists "transmission errors with packet loss" and "Temporal errors
(pausing with skipping) of maximum 2 seconds" as test factors (ITU-
T 2008a). However, modern digital video delivery systems generally
give priority to continuous playback by pre-buffering and proactively
adapting the bitrate to the current network conditions. More often than
not, this runs on top of reliable transport layer protocols such as TCP.
Furthermore, the video codecs themselves encode timing information
into the video. Our understanding is that these factors to a large degree
mitigate temporal errors of this kind.

Temporal errors still occur in modern streaming scenarios in the case
of buffer underrun events. In these cases, the playback will freeze as the
video is re-buffered, but it will not skip ahead when playback is resumed.
Such errors are common, and the subject of much research, as they can
severely impact the viewer’s QoE. However, given the nature of VQEG’s
test factors in J.247, PEVQ’s temporal alignment and distortion analysis
mechanisms do not efficiently handle such errors.

Based on this analysis, we decided to leave out the parts of PEVQ
dealing with temporal alignment and errors. These parts are the steps
named Signal Analysis, Coarse Temporal Alignment, Fine Temporal
Alignment and Temporal Distortion Analysis in figure 3.1. Seeing as this
is a significant part of the algorithm, leaving these parts out reduces the
total number of steps and simplifies the flow of the algorithm, in turn
giving rise to potentially reduced execution time.

26



3.3.2 Spatial Alignment

Spatial alignment is performed on a frame-by-frame basis to detect
spatial shifts in the degraded video. In the PEVQ description in J.247
these potential offsets are found using a mean square error (MSE)
approach as shown in equation 3.4.

f (�x ,�y , t) =

vuut 1
Norm

min(W ,W+�x )�1P
i=max(0,�x )

min(H,H+�y )�1P
j=max(0,�y )

|Pt(i +�x , j +�y , t)� St(i, j, t)|2 (3.4)

where

Norm = (min(W , W +�x)�max(0,�x))(min(H, H +�y)�max(0,�y)) (3.5)

The goal is to find the (�x ,�y) pair that minimises f , i.e. has the
lowest MSE, and therefore probably the most accurate alignment (3.6).

f (�x [t ],�y [t ], t)! min (3.6)

�x 2 {�1, 0,1}, �y 2 {�1,0, 1} (3.7)

These minimum error offsets (�min,x ,�min,y) are used to correct PVS
frames, while the SRC frames remain unchanged (3.8 and 3.9).

Ss,µ[i, j, t ] = Sp,µ[i, j, t ] (3.8)

Ps,µ =

8
><
>:

Pt,µ[i +�min,x [t ], j +�min,y [t ], t ] if
0 (i +�min,x [t ]) <W and

0 ( j +�min,y [t ]) < H
Ss,µ[i, j, t ] otherwise

(3.9)

We found this description to be overly complicated. As the results
of f (3.4) are only used comparatively, taking the square root is not
necessary and represents waste of execution time. Also, there is a lot
of bounds checking going on. As we have cropped the frames at least 3
pixels (sec. 3.2), and we only need to move 1 pixel outside the cropped
bounds(eq. 3.7), we know that we never leave the bounds of the existing
data. Because W and H are no longer affected by the � offsets, the
summation ranges can be simplified. In addition, it eliminates the need
to take the mean, because Norm will always be equal to W H. This leaves
us with the following modified f and aligned PVS frame Ps,µ:

f (�x ,�y , t) =
W�1P
i=0

H�1P
j=0
|Pt(i +�x , j +�y , t)� St(i, j, t)|2 (3.10)

Ps,µ = Pt,µ[i +�min,x [t ], j +�min,y [t ], t ] (3.11)

27



3.3.3 Colour Alignment

Colour alignment attempts to find any changes in the luma and chroma
channels of PVS relative to SRC and correct them. In short, the algorithm
analyses the colour distribution of both sequences, and tries to correct
any shifts present in PVS. For instance, there may be a peak at the value
100 in the luma channel of SRC. The same peak should be present in PVS
as well, but it may be slightly shifted up or down. The colour correction
algorithm creates a map, or correction curve, that is applied to PVS, after
which the colour distribution of PVS should be more similar to that of
SRC. This process is known as histogram matching (Shapira et al. 2013).

It’s worth noting that PEVQ performs luma alignment twice, the
first time as part of the temporal alignment procedure. Since temporal
alignment is not part of OPVQ, the luma and chroma alignment steps
are merged into a single colour alignment step that is performed after
spatial alignment.

Histogram matching

An image frame is a countable set of pixel values. A histogram is created
by counting how many pixels hold each value — or the distribution of
the pixel values. We end up with what’s often described as a set of bins
or buckets, one for each possible value. If we have 8-bit values, we get
28 = 256 different bins, regardless of the size of the image. The sum of
all the bins will be the same as the number of pixels in the image, i.e.
the spatial resolution, because each pixel fall into exactly one bin.

We can normalise a histogram by dividing by the spatial resolution.
The sum of the normalised histogram is 1. The normalised histogram
defines the empirical probability density function (epd f ) of the frame’s
pixel values. We can cumulate the normalised histogram to get the
empirical cumulative distribution function (ecd f ).

The colour alignment process in PEVQ finds a transformation that
matches the ecd f of PVS as closely as possible to the ecd f of SRC.
Conceptually, the process transforms the x-axis of the cumulative
histogram from PVS in a non-linear fashion so that it matches the
cumulative histogram of SRC as closely as possible.

First, we traverse the sequences to produce histograms, non-
cumulative and cumulative, of the luma and chroma channels. Next,
we use these histograms to generate a correction curve which is applied
to PVS. There are slight differences between the correction curve calcu-
lations for the luma and chroma channels.

28



Figure 3.3: Luma of source (left) and processed frame (right)

0 50 100 150 200 250
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 50 100 150 200 250
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.4: Normalised histograms and cumulative histograms

The histogram calculations is described in PEVQ as follows:

hs,µ[k] =
1

N ·W ·H
N�1P
t=0

W�1P
i=0

H�1P
j=0
�[k, Ss[i, j, t ]] (3.12)

hp,µ[k] =
1

N ·W ·H
N�1P
t=0

W�1P
i=0

H�1P
j=0
�[k, Ps[i, j, t ]] (3.13)

�[a, b] =

®
1 if a = b

0 otherwise
(3.14)

The cumulation into cumulative histograms is defined as follows:

HCs,µ[�] =
�P

k=0
hs,µ[k] (3.15)

HCp,µ[�] =
�P

k=0
hp,µ[k] (3.16)

29



Correction curves

From the histograms created by (3.12-3.16), correction curves are
calculated for each channel using histogram matching. The PEVQ
description provides pseudo code for this process. These correction
curves serve as mapping tables, according to which the pixel values of
the spatially aligned PVS are corrected (3.18). SRC remains unchanged
as shown in (3.17).

SA,µ[i, j, t ] = Ss,µ[i, j, t ] (3.17)

PA,µ[i, j, t ] = Correct ionCurveµ[Ps,µ[i, j, t ]] (3.18)

3.4 Distortion Analysis

At this point, we have a spatially aligned and colour corrected pair of
SRC and PVS, and are ready to perform the actual analysis that leads to
the assessment of the quality of PVS.

Index Name Distortion type

1 Luma Indicator
�

Intra-frame
´

Spatial distortion
2 Chroma Indicator

3 Introduced Component Indicator
�

Inter-frame
4 Omitted Component Indicator

5 Frame Repeat Indicator Temporal distortion

Table 3.1: PEVQ distortion indicators

During the distortion analysis step, PEVQ calculates 5 different
indicators that independently contribute to the final score. The first
two indicators measure intra-frame distortion for the luma and chroma
channels respectively. Distortion is measured as introduction or loss of
edges in a specific frame. Indicators three and four measure inter-frame
distortion, i.e. distortion in the transition from one frame to the next.
The fifth and last indicator takes anomalous frame skips/repeats into
account, based on information from the temporal alignment routine.

3.4.1 Intra-frame spatial distortion

The Luma and Chroma Indicators follow the same overall procedure to
measure distortion, with subtle differences in some of the steps. The
general algorithm is as follows:

30



FOR EACH FRAME
Step 1. Create edginess image for SRC and PVS

1.1 L2 norm of horizontal and vertical 1D filtering operations
1.2 3x3 dilation filter

Step 2. Calculate change in edginess for each frame
2.1 Subtract SRC edginess from PVS edginess
2.2 Weight by local colour and local edginess
2.3 Clip to minimum/maximum impact range

Step 3. Aggregate over space using Lp norm weighted by pixel position
FOR ALL FRAMES

Step 4. Average frame-wise distortions over time

Figure 3.5: Intra-frame spatial distortion analysis procedure

Step 2.2 is maybe the most interesting, explicitly displaying the intent
to mimic the human perception. The theory is that loss or introduction of
edginess in an area where there is already lots of edges, is less disturbing
to the human eye than the loss or introduction of edginess in an area
with little or noe edges. The authors of PEVQ also postulate that the
local colour (luminance and chrominance) affects the importance of the
visual qualities. We expand on this last part in the sections about the
corresponding indicators.

Step 3 is also a perceptual one, giving more weight to changes
appearing close the center of the frame than ones appearing further
away.

Edginess Image

The first step is to create the edginess images needed by the luma
and chroma indicator calculations. We perform the same operations
as in the PEVQ description, but we have done some renaming to
improve readability. This is done by applying the filtering operation
Ed ginessF il ter to all channels µ 2 {Y , CB, CR} in all frames t of the
aligned sequences SA and PA.

Sed ge,µ[t ] = Ed ginessF il ter
�
SA,µ[t ]
�

Ped ge,µ[t ] = Ed ginessF il ter
�
PA,µ[t ]
� (3.19)

31



The Ed ginessF il ter operation on an image I involves two steps.
First, the image is convolved with two separate 1 dimensional filtering
kernels, one vertical and one horizontal, and aggregate the two results
using an L2 norm. We then run a binary dilation operation on this result,
using a 3⇥3 square as the structuring element. The dilation step is what
gives rise to the notion of an edginess image as opposed to a regular edge
image. In other words, if there is an edge at a specific position, the whole
neighbouring area is defined to have edginess.

Ed ginessF il ter(I) = dilate3⇥3

⇣∆
(I ⇤Kv)2 +(I ⇤Kv)2

⌘

Kv =

2
66664

0.5
0.5
0
�0.5
�0.5

3
77775

Kh =
⇥

0.5 0.5 0 �0.5 �0.5
⇤ (3.20)

For an image I with 8 bit color depth, the edginess image E has the
following properties:

Ix ,y 2 [0,256]

+
I 0� = I ⇤K�, � 2 {v, h} �!I 0�,x ,y 2 [�256, 256]

I 00 =
«

I 02v + I 02h �!I 00x ,y 2 [0,
p

2 ·256]

+
E = Ed ginessF il ter(I) �! Ex ,y 2 [0,

p
2 ·256] ⇡ [0,362]

(3.21)

3.4.2 Luma Indicator

The luma indicator implements steps 2 and 3 from the procedure
outlined in figure 3.5 for the luma channels of the sequences.

In PEVQ, the change in edginess from SRC to PVS eY is defined as
follows:

eY [i, j, t ] =
Ped ge,Y [i, j, t ]� Sed ge,Y [i, j, t ]

Sed ge,Y [i, j, t ] + 80+ dev[i, j, t ]
(3.22)

where

dev[i, j, t ] = max(|SA,Y [i, j, t ]�100|, |PA,Y [i, j, t ]�100|) (3.23)

32



The result is clipped to the impact range [�40,40]

ecl ippedY [i, j, t ] =

8
><
>:

�40 if eY [i, j, t ]  �40

40 if eY [i, j, t ] � 40

eY [i, j, t ] otherwise

(3.24)

Dividing by Sed ge,Y means weighting by local edginess, and dividing
by the so-called deviation signal dev corresponds to weighting by local
colour, as described in section 3.4.1. The authors of PEVQ write that if
introduction or loss of edginess appears in dark or bright areas, it is less
disturbing than if it appears in an area with mid-range brightness, which
is why we weight by the maximum absolute difference from 100 in local
brightness. It is unclear why 100 is chosen as the middle point, being
around 21% darker than the middle of the range at 127.

The weighting is made more obscure by the addition of the constant
80 in the denominator, but we can only assume that this is an expression
of the relative importance of the other contributors to the weighting. I.e.
the presence of a positive dev or Sed ge,Y value, will impact the absolute
value of eY less if the constant 80 is already there.

A problem arises when arriving at the clipping performed in (3.24).
If we examine the input values to eY , we find the following properties:

D = Ped ge,Y [i, j, t ]� Sed ge,Y [i, j, t ] �! D 2 {�362,362}
W = Sed ge,Y [i, j, t ] + 80+ dev[i, j, t ] �!W 2 {80, 597}

+
eY [i, j, t ] 2 [�4.525,4.525]

(3.25a)

Given the shared component Sed ge,Y in the difference and the weighting
factor, the actual range of eY is

eY [i, j, t ] 2 [�0.819,4.525] (3.25b)

Knowing this, it obviously doesn’t make sense to clip eY to [�40,40]
as described. Still, one has to assume that the clipping is there for a
reason, namely to limit the impact of the change in edginess at a single
point. Thus, to skip the clipping altogether is not a good solution. This
leaves us with two options; 1. to upscale eY by some factor to activate
the clipping for high values, and 2. to downscale the clipping range.
While it may seem easier to change the clipping range, this has the effect
that it changes the output range of the final aggregated indicator. This
is unfortunate, because our score mapping function also depends on

33



clipping to an impact range (see section 3.5). In both cases, the actual
scaling factor cannot be much more than a best guess.

We mentioned the constant 80 present in the denominator of (3.22),
controlling the relative importance of the weighting factors Sed ge,Y and
dev. It of course also has the effect of yielding a smaller absolute value
as the result. If we scale eY by the same constant 80, this effect is
compensated for.

eY0 [i, j, t ] = 80

✓
Ped ge,Y0 [i, j, t ]� Sed ge,Y0 [i, j, t ]

Sed ge,Y0 [i, j, t ] + 80+ dev[i, j, t ]

◆
(3.26)

In this case, we get an output range [�65.52, 362], which will activate
the clipping. The clipping may seem to be activated very easily, but it
makes sense that an introduced edge with absolute difference of 40 in
edginess in a mid-brightness area without any edges in SRC is about as
seriously disturbing to a human viewer as any spatial distortion.

Figure 3.6: More pronounced error, but equal disturbance

The clipped results are aggregated using a normalised weighted L5

norm as (3.27).

eY [t ] =
5

vuuuuuut

W�1P
i=0

H�1P
j=0

��ecl ippedY [i, j, t ]
��5w[i, j]

W�1P
i=0

H�1P
j=0

w[i, j]
(3.27)

w[i, j] =
���sin
�
⇡ i

w

�
· sin
Ä
⇡

j
h

ä��� (3.28)

The factor w[i, j] works to give more weight to errors close to the
center of the frame than ones further away.

Finally these eY [t ] values are averaged over the sequence length N
to produce the final indicator (3.29).

LumaIndicator = 1
N

N�1P
t=0

eY [t ] (3.29)

34



3.4.3 Chroma Indicator

The chroma indicator is the second intra-frame indicator, following the
same general procedure as the luma indicator. The chroma indicator
takes both chroma channels into account.

Again, we look at the change in edginess from SRC to PVS. These are
the definitions from the PEVQ description:

ecb[i, j, t ] =
Ped ge,cb[i, j, t ]� Sed ge,cr [i, j, t ]

Sed ge,cb[i, j, t ] + 40+ 0.8 · dev[i, j, t ]
(3.30)

ecr [i, j, t ] =
Ped ge,cr [i, j, t ]� Sed ge,cr [i, j, t ]

Sed ge,cr [i, j, t ] + 40+ 0.8 · devcb;cr [i, j, t ]
(3.31)

where

devcb;cr [i, j, t ] = max(M x [i, j, t ], M y [i, j, t ]) (3.32)

M x [i, j, t ] =
«�

SA,cb[i, j, t ]�128
�2
+
�
SA,cr [i, j, t ]�128

�2
(3.33)

M y [i, j, t ] =
«�

PA,cb[i, j, t ]�128
�2
+
�
PA,cr [i, j, t ]�128

�2
(3.34)

There are a few obvious typographical errors in this description. The
first can be found in (3.30), where we subtract the CR channel of Ped ge
from the CB channel of Sed ge in the calculation of the change of edginess
for the CB channel. Also in (3.30), there is no channel index specified
for the deviation signal dev in the denominator, which may introduce
confusion with the deviation signal defined in section 3.4.2 for the Y0

channel. By correcting these two typos, ecb and ecr are defined equally
but using the edginess data from the respective channels only, see (3.39–
3.41).

Just as with the luma indicator, the change in edginess is clipped to
a minimum/maximum impact range.

ecl ippedC b[i, j, t ] =

8
><
>:

�40 if eC b[i, j, t ]  �40

40 if eC b[i, j, t ] � 40

eC b[i, j, t ] otherwise

(3.35)

ecl ippedC r [i, j, t ] =

8
><
>:

�40 if eC r [i, j, t ]  �40

40 if eC r [i, j, t ] � 40

eC r [i, j, t ] otherwise

(3.36)

35



The same discrepancy as with the luma indicator is present here, as
the output range of eµ is approximately [�0.9, 9]. We solve this the same
way, by scaling up by the constant 40, see section 3.4.2 for details.

The change in edginess is aggregated using a weighted L1 norm —
or simply weighted average — as opposed to the L5 norm used for the
luma indicator. This reflects that luma degradations are considered more
severe due to the fact that the HVS is much more sensitive to brightness
than colour.

eC b[t ] =

W�1P
i=0

H�1P
j=0

ecl ippedC b[i, j, t ]w[i, j]

W�1P
i=0

H�1P
j=0

w[i, j]
(3.37)

eC r [t ] =

W�1P
i=0

H�1P
j=0

ecl ippedC r [i, j, t ]w[i, j]

W�1P
i=0

H�1P
j=0

w[i, j]
(3.38)

This definition of the aggregation, however, is also flawed. ecl ippedC b
and ecl ippedC r range from �40 to 40, so aggregation of the non-absolute
values is susceptible to cancellation. It cannot be the case that lots
of introduced edges and loss of edges is better than just introduced
edginess. Equally, it cannot be the case that introduced edges and loss of
edges — as long as they are proportional in abundance — yields the same
quality as no introduction nor loss of edges at all, i.e. no degradation. We
therefore have to conclude that we must aggregate the absolute values
of ecl ippedC b and ecl ippedC b. This change is reflected in (3.43).

The last averaging steps over the two chroma channels and over the
length of the sequence remain unchanged, see (3.44).

In addition to eliminating the flaws found in the PEVQ description,
we wanted to generalise the operation to make it clear that we are
performing the exact same calculations for both chroma channels. The
definitions have been rewritten for OPVQ as follows:

36



µ 2 {CB,CB}

eµ[i, j, t ] = 40

✓
Ped ge,µ[i, j, t ]� Sed ge,µ[i, j, t ]

Sed ge,µ[i, j, t ] + 40+ 0.8 · devCB;CB
[i, j, t ]

◆ (3.39)

devCB;CB
[i, j, t ] = max(M(SA[i, j, t ]), M(PA[i, j, t ])) (3.40)

M(V ) =
r�

VCB
�128
�2�
�
VCR
�128
�2

(3.41)

ecl ipped,µ[i, j, t ] =

8
><
>:

�40 if eµ[i, j, t ]  �40

40 if eµ[i, j, t ] � 40

eµ[i, j, t ] otherwise

(3.42)

eµ[t ] =

W�1P
i=0

H�1P
j=0

��ecl ipped,µ[i, j, t ]
��w[i, j]

W�1P
i=0

H�1P
j=0

w[i, j]

w[i, j] =
����sin
Å
⇡

i
W

ã
· sin
Å
⇡

j
H

ã����

(3.43)

ChromaIndicator =

N�1P
t=0

✓
eCB

[t ] + eCR
[t ]

2

◆

N
(3.44)

3.4.4 Inter-frame spatial distortion

As opposed to the intra-frame luma and chroma indicators, the omitted
and introduced component indicators are inter-frame indicators. A
component is in this sense the amount of change at a specific position
between two adjacent frames. The indicators are based on the difference
of the components at the same spatial position in the corresponding pair
of adjacent frames from SRC and PVS. The difference d is defined as the
PVS component subtracted from the SRC component (3.45) in PEVQ.

d[i, j, t ] =
��SA,Y [i, j, t ]� SA,Y [i, j, t �1]

���
��PA,Y [i, j, t ]� PA,Y [i, j, t �1]

�� (3.45)

37



3.4.5 Introduced and Omitted Component Indicator

If a component is more pronounced in PVS than in SRC, we have
an introduced component. Vice-versa, an omitted component is less
pronounced in PVS than in SRC. Change in components are aggregated
over space and time. Introduced components are treated as more severe
degradations, to mimic human perception. This is reflected in the
aggregation, as introduced components are aggregated over space by
a normalised L2 norm, and over time by a normalised L5 norm. Omitted
components are simply averaged (L1 norm) over both space and time.

This is the definition of the Omitted Component Indicator from PEVQ:

domit ted [i, j, t ] =

®
0 if d[i, j, t ]  0

�d[i, j, t ] otherwise
(3.46)

domit ted [t ] =
1

H ·W
W�1P
i=0

H�1P
j=0

domit ted [i, j, t ] (3.47)

Omit tedComponent Indicator =
1
N

N�1P
t=0

domit ted [t ] (3.48)

As in the description, we have an omitted component if the difference
d is positive, because the value of the component was lower in PVS.
It’s unclear, however, why the positive value d should be negated in the
other case (3.46). The aggregations in (3.47) and (3.48) are simple
averages over space and time, which means that the resulting indicator
will remain negative when the values in domit ted [i, j, t ] are negative. The
expected output range of the indicator is not defined in the indicator’s
section in the PEVQ description, but it is defined in the section about
mapping the indicators to a final score as a positive range. Based on
this, our conclusion is that the negation in the second case of (3.46) is
an unintended typographical error. This has been corrected in the OPVQ
definition, see (3.53).

The Introduced Component Indicator is defined in PEVQ as follows:

dint roduced [i, j, t ] =

®
0 if d[i, j, t ] � 0

d[i, j, t ] otherwise
(3.49)

dint roduced [t ] = 5

vut 1
W ·H

W�1P
i=0

H�1P
j=0

d5
int roduced [i, j, t ] (3.50)

Int roducedComponent Indocator =

vut 1
N

N�1P
t=0

d2
int roduced [t ] (3.51)

38



Here, we encounter a problem related to the error in the definition
of Omitted Component Indicator. As dint roduced [i, j, t ] consists of strictly
negative numbers, the contents of the 5th root in (3.50) will be negative
as well. While negative numbers have real odd roots, it’s not a concept
well supported by the numerical math routines of computers. Because,
the L2 norm in (3.51) yields a positive result for whatever signedness
resulting from (3.50), the suspicion is that the negation from (3.46)
should really be placed in (3.49)

In addition to the flaws we have already pointed out, we find the
negative definitions of the different component types in (3.46) and
(3.49), i.e. excluding the irrelevant values instead of only including the
relevant ones, to be unnecessarily implicit in nature.

These are the rewritten definitions for OPVQ:

d[i, j, t ] =
��SA,Y0 [i, j, t ]� SA,Y0 [i, j, t �1]

���
��PA,Y0 [i, j, t ]� PA,Y0 [i, j, t �1]

�� (3.52)

domit ted [i, j, t ] =

®
d[i, j, t ] if d[i, j, t ] > 0

0 otherwise
(3.53)

domit ted [t ] =

W�1P
i=0

H�1P
j=0

domit ted [i, j, t ]

W ·H (3.54)

Omit tedComponent Indicator =

N�1P
t=0

domit ted [t ]

N
(3.55)

dint roduced [i, j, t ] =

®��d[i, j, t ]
�� if d[i, j, t ] < 0

0 otherwise
(3.56)

dint roduced [t ] =

5

vuuut
W�1P
i=0

H�1P
j=0

d5
int roduced [i, j, t ]

W ·H (3.57)

Int roducedComponent Indicator =

vuuut
N�1P
t=0

dint roduced [t ]

N
(3.58)

39



3.5 Mapping to DMOS

The PEVQ description in J.247 uses the following formula for mapping
the indicator values I [i] to a final score:

Score = LinearO f f set +
4P

i=0

w[i]
1+e↵·Il im[i]+� [i] (3.59)

where

Il im =

8
><
>:

Imin[i] if I [i] < Imin[i]

Imax [i] if I [i] > Imax [i]

I [i] otherwise

(3.60)

A matrix of coefficients Imin, Imin, w, ↵ and � corresponding to
each indicator, as well as a LinearO f f set, is given for each supported
resolution (fig. 3.7). Imin and Imin are called input scaling factors, which
is inaccurate as they are not used to scale the indicator values I , but
rather clip them. w, ↵ and � are reported to be output scaling factors,
which is accurate for w, but not for ↵ and � . The summation body from
equation 3.59 is a logistic function, whose curve has a sigmoid or S-like
shape. ↵ controls the acuteness of the curve, while � offsets the curve
along the x-axis.

Mapping coefficients used for VGA resolution:
i Indicator (I [i]) I

min

[i] I

max

[i] w [i] ↵[i] � [i]
0 LumIndicator 0.0000000 26.3458920 5.5178358 0.1982675 -1.9184154
1 ChromIndicator 0.0888870 11.9341383 -61.9967023 0.8956342 -14.5877780
2 OmittedComponent

Indicator
0.0000000 1603.3526610 -12.8507869 0.0026048 2.3705606

3 IntroducedComponent
Indicator

0.0000000 44.0389137 -0.2219432 0.7256163 -15.7681800

4 FrameRepeatIndicator 0.0000000 3.3093989 27700.0404630 2.4068676 11.2761009
LinearO f f set 63.1413711

Figure 3.7: Example of mapping coefficient matrix from PEVQ.

These degrees of freedom make it possible to very finely tune the
impact of the individual indicators that produce the final score. Given
an initial guess and subjective test results, a numerical optimisation
algorithm can be employed to optimise the coefficients to minimise the
error and maximise the correlation of the objective scores. However, the
parameters can be combined in multiple ways to create the same curve.
This represents a problem for machine learning algorithms that depend
on finding minima or maxima. This can be remedied with additional

40



0 10 20 30
0

0.5

1

↵ adjustment

0 10 20 30
0

0.5

1

� offset

0 10 20 30
0

0.5

1

w scaling

0 10 20 30
0

0.5

1

LinearO f f set

Figure 3.8: Demonstration of the curve parameters

0 5 10
0

0.5

1

w = 1,↵= �1,� = 5,
LinearO f f set = 0

0 5 10
0

0.5

1

w = �1,↵= 1,� = �5,
LinearO f f set = 1

Figure 3.9: Equal curves with different parameters

41



constraints. If we look at the denominator of (3.59) separately we find
the following:

d(I) = 1+ e↵I+�

d 0(I) = ↵e↵I+� )
®

d % if ↵> 0

d & if ↵< 0
(3.61)

This means that both w (the nominator) and ↵ influence the direction
of the curve. If we constrain w 2R>0, ↵ alone controls the direction.

Further, we observe that for all of our indicators, the value increases
with the number of degradations encountered. Thus, we expect our
mapping curves to be decreasing, i.e. contributing less to the total score
if the indicator value is high. As w is a strictly positive constant, this is
achieved by having an increasing denominator. We can therefore apply
the constraint ↵ 2R>0.

We define our final mapping function as follows:

Score = ✏+
3X

i=0

![i]

1+ e↵[i]Il im[i]+� [i]

↵,! 2R>0

� ,✏ 2R
(3.62)

DMOSP =

8
><
>:

1 if Score < 1

5 if Score > 5

Score otherwise

(3.63)

3.5.1 Mapping coefficients

Because of the changes to the indicator calculations documented
previously in this section, we expect that the mapping coefficients have
to be recalculated to produce a meaningful score that correlates well
with human subjective assessment. Furthermore, we notice that many
of the coefficients supplied in the PEVQ description produce curves that
weight their corresponding indicators oppositely from what they were
intended to. For instance, the coefficients for the Chroma Indicator for
VGA resolution makes the weighting sigmoid curve increasing, which
in turn makes the Chroma Indicator contribute positively to the final
score if the indicator value — i.e. number of errors — is high. While
one can only make guesses as to why this is so, our assertion is that the
most probable reason is that the authors have employed an unbounded
numerical optimisation algorithm to optimise the coefficients to correlate
well with a validation data set. Because the mapping function is additive
in nature, such unbounded optimisation may well yield a result that
correlates very well, but that doesn’t follow the intention of the model

42



designer, i.e. that more errors found contributes negatively to the final
score, resulting in an overfitted mapping. This problem will be mitigated
by constraining the model as described in section 3.5. Details about
optimising the coefficients for OPVQ and evaluation of the improvements
outlined in this section are presented in chapter 4.

3.6 Summary

In this chapter we have provided a full description of the OPVQ
algorithm, and how its components are derived from PEVQ. Most of the
components have been altered in some fashion compared to the original
description, and some have been left out altogether. The resulting
OPVQ algorithm is significantly less complex than PEVQ. All changes and
corrections described in this chapter are summarised in table 3.2, and
figure 3.10 shows schematic representation of both PEVQ and OPVQ.

43



PEVQ component Detailed OPVQ status

Preliminary steps

Pre-processing Identical

Signal analysis Removed

Coarse temporal alignment Removed

Coarse luminance alignment Removed

Detailed sequence alignment

Fine temporal alignment Removed

Spatial alignment Altered

Colour alignment Identical

Spatial distortion analysis

Luma indicator Altered

Chroma indicator Altered

Omitted component indicator Altered

Introduced component indicator Altered

Temporal distortion analysis Frame repeat indicator Removed

Score mapping Mapping to DMOS Altered

Table 3.2: Overview of changes from PEVQ to OPVQ

S (SRC) P (PVS)

Pre-processing (cropping)

Sequence alignment
– Spatial alignment
– Colour alignment

Distortion analysis
– Luma indicator
– Chroma indicator
– Introduced component indicator
– Omitted component indicator

Mapping to DMOS

DMOS

SP

SA

PP

PA

I0 I1 I2 I3

Figure 3.10: Original PEVQ model (left) and the derived OPVQ model (right)

44



Chapter 4

Results

In chapter 1 we described the goal of this project as implementing a video
quality metric that represents a significant improvement over PSNR and
releasing it as Free and Open Source Software for the general public
as well as the research community to use and modify. In this chapter
we evaluate the performance of the metric and conclude whether or not
we have reached the goal of creating a metric that performs better than
PSNR.

4.1 About performance evaluation

Evaluating the metric’s performance is important if we’re going to
assert that it represents an improvement over PSNR. In addition to
the immediate goal of outperforming PSNR, we expect OPVQ to at
least equal the performance of PEVQ for non temporally distorted
sequences. We follow VQEG’s guidelines for measuring the performance
of video quality metrics against subjective test data. VQEG’s guidelines
for performance evaluation are defined in their Final Report for the
Multimedia Phase I validation effort (VQEG 2008), and a condensed
version of the same guidelines are included as an appendix to the ITU-T
Rec. J.247 (Appendix II) that we have already made multiple references
to in the context of PEVQ. In this section we present details about these
guidelines and the subjective test data we have been able to source.

4.1.1 Subjective vs. objective scores

When comparing subjective and objective data, it is important to
take into account the inherent characteristics of the subjective data.
For instance, subjective video quality assessment scores are often

45



compressed at the ends of the rating scales, according to VQEG. Such
characteristics are regarded as weaknesses that objective models are
not required to mimic (VQEG 2008). Because of this, a non-linear
mapping function that provides the best fit to the subjective data, should
be applied to the predicted scores when validating objective metrics.
Whenever we talk about predicted scores in this chapter, we differentiate
between fitted and unfitted scores. In keeping with VQEG’s notation in
the Multimedia Phase I report, fitted scores are denoted DMOSP , while
the unfitted scores are denoted VQR, short for Video Quality Rating. The
data fitting process is described in section 4.1.3.

4.1.2 Evaluation metrics

Three separate statistical measures are employed to assess the perfor-
mance of objective models againt subjective test data, according to
VQEG’s Multimedia Phase I report:

1. Pearson correlation coefficient (Pearson’s r)
2. Root-mean-square error (RMSE)
3. Outlier ratio (OR)
The first two, Pearson’s R and RMSE, are well known statistical

measures. The Outlier Ratio OR is not a common statistical measure,
but is described in detail in the Multimedia Phase I report. The following
paragraphs describe each of these evaluation metrics in detail.

Pearson correlation coefficient

The Pearson correlation coefficient (Pearson’s r) is a measure of linear
correlation between two variables. It is defined as the covariance of
the two variables divided by the product of their standard deviations.
This yields values in the range (�1, 1), 1 being total positive correlation,
0 no correlation and 1 total negative correlation. In statistical terms
we’re dealing with samples in our work, so the following definition is
employed:

r =

NP
n=1

(xn� x̄)(yn� ȳ)
vut NP

n=1
(xn� x̄)2

vut NP
n=1

(yn� ȳ)2

(4.1)

46



where

x = {x1, . . . , xN}
y = {y1, . . . , yN}

The variables x and y represent the observed and predicted values. In
our context the observed values are subjective DMOS scores, while the
predicted values are the scores predicted by OPVQ or other objective
models, either as unfitted VQR scores or fitted DMOSP scores.

Root-mean-square error

RMSE is a commonplace statistic that measures the difference between
predicted/estimated values and actually observed values, and is re-
garded as a good measure of the accuracy of the predictive model in
question. As the name suggests, RMSE is the square root of the mean of
the squared differences between the predicted and observed values. In
other words, it is the standard deviation of the differences between the
values. We define RMSE mathematically as

RMSE =

vuuut
NP

n=1
(xn� yn)

2

N � d
(4.2)

where x represents the observed values and y represents the predicted
values. The degrees of freedom of the fitting model d is taken into
account to remove bias (VQEG 2008). E.g., if no data fitting is applied,
d = 0. In the case of cubic polynomial data fitting as applied by VQEG,
d = 4, see details in section 4.1.3.

Outlier ratio

In the Multimedia Phase I Final Report, VQEG defines a simple evaluation
metric Outlier Ratio which is simply the number of outlier measurements
divided by total number of measurements.

OR =
NumOutl iers

N
(4.3)

In statistics, there is no hard definition as to what constitutes an outlier,
so a definition is provided in the report which states that a measurement
is an outlier if the following is satisfied:

|xn� yn|> K2 ·
�xnp
Nsub js

(4.4)

47



The standard deviation �xn
is the standard deviation of the subjective

scores for test case n. K2 is the absolute value of the 95% confidence
interval of the distribution in question. The appropriate distribution is
the Student’s T distribution with degrees of freedom d f = Nsub js� 1.
It is stated in VQEG’s report (VQEG 2008, p. 44), however, that it can
be substituted for a Gaussian distribution if Nsub js � 30, for which
K2 = 1.96. Why the limit is set to 30 is not clear, as Student’s T’s K2
does not approach 1.96 before d f = 100 approximately.

4.1.3 Data fitting

As mentioned in section 4.1.1, data fitting is applied to VQR scores before
evaluation with Pearson’s r, RMSE and OR. The function used is the
cubic polynomial

DMOSP = ax3 + bx2 + cx + d (4.5)

where the result DMOSP is the predicted score to be compared with
the subjective DMOS, and the variable x corresponds to a VQR. The
coefficients {a, b, c, d} are then calculated so that the resulting set of
DMOSP values fits the set of subjective DMOS scores as well as possible.

Data fitting is performed in two steps. First, correlation is maximised
by determining {a0, b0, c0} for the function

DMOSp = k(a0x3 + b0x2 + c0x)+ d (4.6)

with k = 1 and d = 0 kept constant. In this step the maximisation
is constrained by the requirement that the function is monotonic within
the range of possible values, defined by the scale of the subjective scores.

Next, the RMSE is minimised by determining {k, d} for (4.6). With
{k, d} determined, we expand (4.6) so that

a = ka0 b = kb0 c = kc0 (4.7)

and obtain the final coefficients {a, b, c, d} for (4.5).

4.1.4 Comparative evaluation of OPVQ and PEVQ

As OPVQ is based on PEVQ, it would be interesting to compare the
performance of OPVQ to the performance of PEVQ as reported in
J.247. The standard presents some numbers describing the performance
achieved by the model during the validation testing, but the datasets
are not available to the general public, as discussed in section 2.6. This

48



means that the performance of OPVQ presented in this thesis may not
be comparable with the performance of PEVQ from J.247, because the
subjective baseline for the evaluation is different.

4.1.5 Datasets

To evaluate the performance of our objective metric, we need access
to subjective scores. Not many sources of subjective data are freely
available to the research community and the general public. We also face
the further limitation that OPVQ only supports a small set of resolutions,
namely VGA, CIF and QCIF. Due to time/resource limitations, we decided
to validate OPVQ’s performance only for VGA resolution data, and not
the lower CIF and QCIF resolutions. We have located the following
datasets that provide subjective scores for VGA resolution sequences:

Institution Dataset Types of distortion # sequences
ref/dist

IRCCyN Influence Content1 H.264/SVC coding 60/240
IRCCyN H264 AVC vs. SVC2 H.264 and H.264/SVC coding 4/48
IRCCyN SVC4QoE Replace

Slice3,4
H.264 and H.264/SVC coding,
transmission errors

9/131

IRCCyN SVC4QoE QP0 QP13 H.264 and H.264/SVC coding 11/313
IRCCyN SVC4QoE Temporal

Switch5,3
H.264 and H.264/SVC coding,
switching between SVC base
layer and SVC enhanced layer

11/379

ETFOS VGA Video Quality
(EVVQ) database6,7

H.264/AVC compression and
MPEG-4 Visual compression

8/90

Table 4.1: Subjective test data for VGA resolution sequences

IRCCyN/IVC Datasets

IRCCyN is the Institute for Research into Communications and Cybernet-
ics at the École Centrale de Nantes, France. The institute’s Images and
Video-communications team (IVC) make all of their subjective test data
available to the general public on their website8, which has proven to be

1Pitrey, Barkowsky, Pépion, et al. (2012)
2Pitrey et al. (2010b)
3Pitrey, Engelke, Barkowsky, et al. (2011)
4Pitrey et al. (2010a)
5Pitrey, Engelke, Le Callet, et al. (2011)
6Rimac-Drlje et al. (2010)
7Vranješ et al. (2013)
8http://ivc.univ-nantes.fr/en/databases/filter/Quality%2520Assessment/

49

http://ivc.univ-nantes.fr/en/databases/filter/Quality%2520Assessment/


a rich source of test data. At present, the IVC team has made five sepa-
rate datasets for VGA video available, two of which contain two separate
data series.

Unfortunately, some of the datasets contain quality degradations
that are outside the scope of the distortion detection mechanisms of
OPVQ. The SVC4QoE Replace Slice test considers errors that are limited
to a few slices9 of the H.264 frames. Because of the spatial averaging
present in the OPVQ distortion indicators10, the impact of highly local
errors is diluted, which does not correspond to human perception. The
SVC4QoE Temporal Switch test features a mid-sequence quality switch,
which similarly represents an error local to only part of the sequence,
however in the temporal domain instead of the spatial domain. OPVQ
also does temporal averaging of errors, which makes it incapable of
correcly assessing temporal switching of quality in the PVS. We did not
include data from these two tests in our performance evaluation.

Out of the remaining datasets, all tests were conducted according to
the ACR-HR testing methodology (VQEG 2008), except the H.264 AVC
vs. SVC test, which was conducted according to the SAMVIQ testing
methodology (Péchard et al. 2008).

ETFOS Dataset

ETFOS is the Faculty of Electrical Engineering of the University of Osijek,
Croatia. Their Video Quality Group (VQG) has made available one
dataset of subjective test data for VGA video sequences. The subjective
test was conducted according to the SAMVIQ testing methodology. The
source and processed video sequences were made available as raw planar
Y0CBCR 4:2:0 video files, at 25 fps. For convenience, we wrapped these
video streams in AVI containers11, using the Libav tool avconv12:

user@host: ~ $ find . -name "*.yuv" | xargs -I{} basename "{}" .yuv
| xargs -I{} avconv -y -r 25 -f rawvideo -s 640x480 -pix_fmt

yuv420p -i "{}".yuv -vcodec rawvideo -pix_fmt yuv420p -f avi -r
25 -s 640x480 "{}".avi

9Slice: row of macroblocks
10see Step 3 of figure 3.5, p.31
11Microsoft Developer Network — AVI RIFF File Reference https://msdn.microsoft.

com/en-us/library/ms779636.aspx (visited 7/4/2015)
12Libav https://libav.org/about.html (visited 20/1/2015)

50

https://msdn.microsoft.com/en-us/library/ms779636.aspx
https://msdn.microsoft.com/en-us/library/ms779636.aspx
https://libav.org/about.html


4.2 Score mapper evaluation

A significant part of the OPVQ algorithm deals with the mapping of
the four separate distortion indicators that are produced, into a single
VQR. As described in section 4.1.1, VQR scores should not necessarily
mimic the non-linear characteristics of subjective scores, without being
subject to data fitting after the fact. Nontheless, OPVQ’s score mapper
is intended to generate VQR scores that closely resemble those reported
by human test subjects, and inherently employs non-linear weighting of
the degradation indicators to achieve this. This means that if the OPVQ
score mapper performs well on its own, additional polynomial fitting
will not be necessary. Thus, a good measure of the performance of the
OPVQ score mapper and its coefficients will be the linearity of the best-fit
polynomial DMOSP . The linearity can be measured by calculating the
Pearson correlation coefficient for the fitted and unfitted data.

In this section we look at the changes made to the score mapper in
isolation from the rest of the algorithm, and evaluate their impact on the
result.

4.2.1 Constraining the score mapper

The PEVQ description comes with a set of mapping coefficients to be used
in the score mapping function ({!,↵,� ,✏} from eq. 3.62, p. 42). In order
to adapt these mapping coefficients to perform well with our altered
degradation indicators, we want to employ convergence based numerical
optimisation algorithms. A problem is that the PEVQ mapping function
makes it possible to map a set of indicators to the same score with wildly
different mapping coefficients. In section 3.5 we proposed to constrain
the mapping function to amend this issue. With such constraints applied,
we expect different optimisation algorithms to produce similar and
predictable results. Another aspect is that constraining the mapper
prevents overfitting the model to the training data supplied, thereby
potentially improving the model’s performance directly.

To test this, we ran numerical optimisation with and without the
proposed constraints. Some of the original coefficients from PEVQ fall
outside the constrained bounds, which meant that we could not use
the original coefficients directly as the initial guess for the constrained
optimisation. By only flipping the signs of the offending coefficients,
we kept the scale and shape of the individual mapping curves intact,
but changed the direction to adhere to the constraints and follow the
intended mapping model.

51



i Indicat or [i] ![i] ↵[i] � [i]
0 LumIndicator 5.5178358 0.1982675 -1.9184154
1 ChromIndicator -61.9967023 0.8956342 -14.5877780
2 OmittedComponent

Indicator
-0.2219432 0.7256163 -15.7681800

3 IntroducedComponent
Indicator

-12.8507869 0.0026048 2.3705606

✏ 63.1413711

Table 4.2: Inital guess for unconstrained optimisation (original VGA coefficients)

i Indicat or [i] ![i] ↵[i] � [i]
0 LumIndicator 5.5178358 0.1982675 -1.9184154
1 ChromIndicator 61.9967023 0.8956342 -14.5877780
2 OmittedComponent

Indicator
0.2219432 0.7256163 -15.7681800

3 IntroducedComponent
Indicator

12.8507869 0.0026048 2.3705606

✏ -63.1413711

Table 4.3: Inital guess for constrained optimisation (changed values in bold)

The Python library scipy.optimize provides several numerical
minimisation algorithms for multivariate functions.13 We ran all the
applicable algorithms14 with the IRCCyN Influence Content dataset as
input data, and used the resulting mapping coefficients on the smaller
IRCCyN H.264 AVC vs. SVC dataset, with and without constraints.

Average standard deviation

! ↵ � ✏

Unconstrained 4.672 1392.633 6951.061 9.367

Constrained 1.652 5.548 35.323 1.703

Table 4.4: Variability of optimised coefficients

It’s obvious from table 4.4 that the constraints help us get less variable
coefficients. From the results in table 4.5 we make the observation
that even though the unconstrained optimisation produces slightly

13SciPy Reference Guide — Optimization (scipy.optimize) http://docs.scipy.org/doc/
scipy/reference/tutorial/optimize.html (visited 5/2/2015)

14Algorithms used: Nelder-Mead, Powell, CG, BFGS, L-BFGS-B, TNC to minimise
RMSE. The first three do not support constraints, so the constraints were implicitly
enforced by the provided optimizable function. The latter two algorithms take explicit
bounds for each variable as additional input.

52

http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html
http://docs.scipy.org/doc/scipy/reference/tutorial/optimize.html


Correlation RMS error Outlier ratio

avg. min avg. max avg. max

Unconstrained

Influence content 0.909 0.908 0.452 0.455 0.524 0.542

H.264 AVC vs. SVC 0.957 0.955 0.359 0.394 0.326 0.417

Constrained

Influence content 0.906 0.898 0.460 0.477 0.526 0.571

H.264 AVC vs. SVC 0.961 0.957 0.342 0.413 0.243 0.417

Table 4.5: Performance of DMOS mapping after optimisation

better mapping during training, the coefficients from the constrained
optimisation performs better on the test data. We interpret this as the
constraints guarding against overfitting as expected.

4.2.2 Optimising mapping coefficients

OPVQ produces four different degradation indicators that are mapped
into a single VQR. The calculation of these indicators, as well as
the mapping function itself, has been changed from the description in
PEVQ. We suspected that the coefficients needed for mapping the OPVQ
indicators to a VQR had to be re-calculated to reflect this change. To
investigate this, we started by evaluating the performance of OPVQ using
the original coefficients from PEVQ.

Table 4.6 shows better correlation for OPVQ on the IRCCyN and
ETFOS datasets than PEVQ on VQEG’s unavailable datasets from the
Multimedia Phase I tests. On the other hand, the error measures are
worse. This indicated to us that the coefficients indeed needed to be
re-calculated.

To test if we could tune the coefficients with a numerical method
using training data from one or more subjective datasets to predict
scores from a different dataset, we ran a simple cross-validation scheme
using the different available datasets as a partition of a larger superset.
For every dataset, we optimised the coefficients using all the other
available datasets as training data and the predicted scores for the
dataset that was left out from training. To optimise, we used the L-BFGS-
B bounded multivariate minimisation algorithm from the Python library
scipy.optimize to minimise average RMSE for the training data.

The results show that correlation has been improved. There is also

53



Dataset Averages

AVC/SVC Infl.cont. QP0 QP1 (A) QP0 QP1 (B) EVVQ OPVQ PEVQ15

Pearson R 0.939 0.898 0.856 0.856 0.888 0.887 0.825

RMS error 0.338 0.722 0.695 0.695 0.583 0.606 0.571

Outlier ratio 0.375 0.829 0.790 0.790 0.556 0.668 0.502

Table 4.6: OPVQ performance with unaltered PEVQ mapping coefficients

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC H264 AVC vs SVC

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC Influence Content

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC SVC4QoE QP0 QP1 (Part A)

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC SVC4QoE QP0 QP1 (Part B)

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

ETFOS VGA Video Quality (EVVQ)

Figure 4.1: VQRs from OPVQ with unaltered PEVQ mapping coefficients

siginficant improvement in precision, accounted for by less error and
fewer outliers. This shows us that training the mapping coefficients using
subjective data is a sound method.

We wanted to investigate if the testing methodology used in the
subjective test impacted the degree to which a dataset is suitable as
training data. Of the five datasets used, two — AVC/SVC and EVVQ —
were conducted using the SAMVIQ test methodology, while ACR-HR was
used for the remaining three — Influence Content and QP0 QP1 Parts A
and B. To determine if this impacted the trained coefficients, we re-ran
the cross-validation scheme, but this time only training with datasets
produced using the same methodology. This meant that the coefficients
used for testing AVC/SVC were trained using only EVVQ etc.

15Averages for PEVQ are taken from J.247, and are not computed using the same test
data.

54



Dataset Averages

AVC/SVC Infl.cont. QP0 QP1 (A) QP0 QP1 (B) EVVQ OPVQ PEVQ

Pearson R 0.942 0.907 0.861 0.870 0.880 0.892 0.825

RMS error 0.291 0.477 0.589 0.598 0.409 0.473 0.571

Outlier ratio 0.167 0.592 0.577 0.677 0.222 0.447 0.502

Table 4.7: OPVQ performance with optimised mapping coefficients using the other
datasets as training data

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC H264 AVC vs SVC

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC Influence Content

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC SVC4QoE QP0 QP1 (Part A)

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC SVC4QoE QP0 QP1 (Part B)

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

ETFOS VGA Video Quality (EVVQ)

Figure 4.2: VQR from OPVQ with mapping coefficients optimised using the other
datasets as training data

The results do not show improvement compared to training with all
the other available subjective data. The lack of sufficient training data
does seem to play a significant role, because the two SAMVIQ datasets
(AVC/SVC and EVVQ) that are left with only each other as training
data suffer the greatest decline. Incidentally, these are also the two
datasets with the lowest number of samples, 48 and 90 respectively.
This makes it difficult to draw any conclusions from this result, and
further experimentation with more subjective data available would be
preferable.

55



Dataset Averages

AVC/SVC Infl.cont. QP0 QP1 (A) QP0 QP1 (B) EVVQ Trained with

SAMVIQ ACR-HR ACR-HR ACR-HR SAMVIQ Same method All data

Pearson R 0.937 0.905 0.864 0.870 0.880 0.891 0.892

RMS error 0.498 0.491 0.581 0.595 0.675 0.568 0.473

Outlier ratio 0.542 0.537 0.595 0.695 0.744 0.623 0.447

Table 4.8: OPVQ performance with optimised mapping coefficients using only the
other datasets based on the same test methodology as training data

4.2.3 Evaluation

In section 4.1.1 we described issues with mapping an objective video
quality rating to a subjective scale. In this section we evaluate the OPVQ
score mapper’s ability to produce subjective scale results.

We performed data fitting as described in section 4.1.1 for VQR
scores produced with the original coefficients from PEVQ and optimised
coefficients using the same scheme as in section 4.2.2. Figures 4.3
and 4.4 show the subjective DMOS scores plotted against objective VQR
along with the best-fit cubic polynomials.

Table 4.9 shows that training the coefficients beforehand results in
less fitting necessary after the fact, and that OPVQ’s built in DMOS
Mapper is capable of mimicking nonlinear characteristics of subjective
data.

Linearity

Unaltered Optimised

AVC/SVC 0.995 0.999

Infl.cont. 0.990 1.000

QP0 QP1 (A) 0.973 0.991

QP0 QP1 (B) 0.980 0.998

EVVQ 0.998 0.989

Average 0.987 0.996

Table 4.9: OPVQ DMOSMapper performancemeasured by the linearity of the fitted
and unfitted data

56



0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC H264 AVC vs SVC

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC Influence Content

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC SVC4QoE QP0 QP1 (Part A)

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC SVC4QoE QP0 QP1 (Part B)

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

ETFOS VGA Video Quality (EVVQ)

Figure 4.3: Best-fit cubic polynomials for OPVQ using unaltered PEVQ mapping
coefficients

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC H264 AVC vs SVC

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC Influence Content

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC SVC4QoE QP0 QP1 (Part A)

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC SVC4QoE QP0 QP1 (Part B)

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

ETFOS VGA Video Quality (EVVQ)

Figure 4.4: Best-fit cubic polynomials for OPVQ rating using optimised mapping
coefficients

57



4.3 Overall performance evaluation

Part of the primary goal of this project was to implement a video quality
metric that performs significantly better than PSNR. Subsequently, we
expect our implementation to be on par with OPTICOM’s PEVQ, the
metric that it’s derived from. As mentioned in section 4.1.4 however,
we do not have the resources to make a direct comparison with PEVQ.

To investigate if OPVQ performs significantly better than PSNR, we
calculated PSNR ratings for the applicable datasets, and used cubic
polynomial fitting to best fit the scores to the subjective scale of each
dataset. We used our own implementation of PSNR with spatial
alignment enabled (see section 7.2), to ensure optimal conditions for
PSNR. We also calculated the final performance evaluation data for
OPVQ with cubic polynomial fitting, using unaltered PEVQ coefficients
as well as optimised coefficients using both schemes described in
section 4.2.2.

The results in table 4.10 show a clear difference in performance
between PSNR and OPVQ in all configurations, and strongly indicate
that we have achieved our goal of implementing a video quality metric
that significantly outperforms PSNR.

An interesting observation is that the best performance for OPVQ
after polynomial fitting is achieved when using the unaltered PEVQ
coefficients — if only slightly better than with trained coefficients. As
we discussed in section 3.5.1 the coefficients from the PEVQ description
are not logically sound for some indicators, as they reward increase in
amount of errors with higher contribution to the final score. Because
of this, and the fact that the difference recorded is only minimal,
our recommendation is to use optimised coefficients adhering to the
constraints defined for OPVQ in section 3.5.

As we do not own a PEVQ license and the subjective data used for
the validation of PEVQ in ITU-T Rec. J.247 is unavailable, we do not
have the sufficient means to investigate the subsequent goal of keeping
OPVQ’s performance on par with PEVQ. The performance data we have
been able to produce shows better performance for OPVQ than what’s
reported for PEVQ in J.247, but as these figures are not produced using
the same test data they are not reliable for comparison.

58



Dataset

AVC/SVC Infl.cont. QP0 QP1 (A) QP0 QP1 (B) EVVQ Average

OPVQ w/coeffs unaltered from PEVQ

Pearson R 0.943 0.907 0.872 0.873 0.890 0.897

RMS error 0.201 0.454 0.567 0.578 0.283 0.416

Outlier ratio 0.000 0.521 0.643 0.665 0.078 0.381

OPVQ w/coeffs optimised using all other datasets

Pearson R 0.943 0.907 0.869 0.871 0.890 0.896

RMS error 0.201 0.454 0.574 0.583 0.283 0.419

Outlier ratio 0.000 0.529 0.649 0.677 0.078 0.386

OPVQ w/coeffs optimised using datasets of same test methodology

Pearson R 0.943 0.907 0.867 0.871 0.886 0.895

RMS error 0.201 0.454 0.576 0.583 0.288 0.420

Outlier ratio 0.000 0.525 0.655 0.671 0.111 0.392

PSNR w/spatial alignment

Pearson R 0.515 0.813 0.807 0.807 0.715 0.731

RMS error 0.516 0.629 0.684 0.700 0.434 0.593

Outlier ratio 0.542 0.642 0.631 0.701 0.200 0.543

SSIM w/spatial alignment

Pearson R 0.584 0.859 0.864 0.878 0.859 0.809

RMS error 0.489 0.552 0.583 0.567 0.317 0.502

Outlier ratio 0.458 0.604 0.589 0.623 0.100 0.475

PEVQ as reported in J.247 – not tested with the same data

Pearson R - - - - - 0.825

RMS error - - - - - 0.571

Outlier ratio - - - - - 0.502

Table 4.10: Final performance data after cubic fitting (best results in bold)

59



4.4 Summary

In this chapter we have described our evaluation of the OPVQ full
reference video quality metric. We have seen that for the subjective data
available to us and within an expected range of quality degradations,
OPVQ performs significantly better than PSNR. Because the amount of
subjective test data available is small, we encourage further validation
of the metrics performance using other datasets. We have not been able
to conclusively compare the performance of OPVQ with PEVQ.

60



0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC H264 AVC vs SVC

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC Influence Content

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC SVC4QoE QP0 QP1 (Part A)

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC SVC4QoE QP0 QP1 (Part B)

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

ETFOS VGA Video Quality (EVVQ)

Figure 4.5: Cubic fitted PSNR scores plotted against subjective DMOS scores

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC H264 AVC vs SVC

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC Influence Content

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC SVC4QoE QP0 QP1 (Part A)

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

IRCCyN/IVC SVC4QoE QP0 QP1 (Part B)

0 1 2 3 4 5

VQR

0

1

2

3

4

5

DM
OS

ETFOS VGA Video Quality (EVVQ)

Figure 4.6: Cubic fitted OPVQ scores plotted against subjective DMOS scores. OPVQ
mapping coefficients optimised with the other available datasets

61



62



Part III

OpenVQ – The Open Video
Quality Toolkit

63





Chapter 5

Designing a Video Quality
Toolkit

When we first started this project, the goal was to pick a standardised
video quality metric and create a stand-alone implementation. After
deciding on PEVQ as the base metric, we started implementing a
program according to the standard. The PEVQ description in ITU-T J.247
consists mainly of mathematical descriptions of the individual steps that
make up the complete metric, which require many layers of abstraction
to be implemented in a computer program before they are directly
applicable. To provide these abstractions, we had to familiarise ourselves
with several problems regarding programmatic handling of video data.
Examples of such problems are decoding compressed video residing
on disk into raw frames in memory, encoding of color spaces, chroma
subsampling and performing mathematical operations on frames/pixels.

Implementing all of the steps necessary before getting to perform
even the first operations defined in the OPVQ description made us realise
that these problems had nothing to do with the specific metric we were
trying to implement. Different video quality metrics share a common
modus operandi. They have a set of digital signal processing (DSP) steps
that they perform on each frame, or a few consecutive frames, from the
first to the last frame. In other words, if we were setting out to implement
even a primitive metric such as PSNR, the steps of, for instance, decoding
video and defining a representation of the frames in memory would
still need to be tackled first. Furthermore, even integral parts of OPVQ
itself, such as the alignment steps, could be implemented as modules
to be plugged into other metric implementations in a dynamic fashion.
This gave us the incentive to generalise parts of the implementation to
develop a toolkit that provides the abstractions necessary to implement

65



any video qualty metric — not just OPVQ — instead of a specialised
OPVQ program. We call this the Open Video Quality toolkit, or OpenVQ
for short. In this chapter we describe considerations that went into the
design of OpenVQ.

5.1 Background

The first revision of our implementation was a stand alone implementa-
tion of PEVQ. Development of this first revision progressed from January
through September of 2014, at which point we had a complete imple-
mentation of the PEVQ model as described in J.247. This revision did
not yield good results, which made us analyse the PEVQ description in
more detail. This analysis resulted in the closely related metric OPVQ as
detailed in chapter 3. Subsequently, development continued until Jan-
uary 2015 when our implementation was working to produce results as
reported in chapter 4.

In programming terms, the design idea revolved around creating
separate classes for each stage in the metric — now OPVQ — with
a manager function that called these separate classes into action
accordingly for each stage. The results would be stored in a separate
container class which the manager controlled and passed on to any later
stage requiring access to the results. Even though we had an object
oriented implementation with separate modules performing different
tasks, all parts of our code including video decoding, scaling, video frame
structures and alignment processing, were tailored to the specific needs
of OPVQ.

The OpenVQ toolkit we present was created by identifying the areas
that were suited for generalisation to provide a programming interface
for a user who wants to implement another video quality metric. This
part represented the last iteration of our development process.

5.2 Considerations

To develop our implementation from a stand-alone OPVQ imeplemen-
tation to a toolkit for any metric, we needed to consider how we could
divide our code into general utilities and metric specifc parts.

Table 5.1 summarises the basic building blocks used in OPVQ. We
have split the table in two parts where the top part includes the modules
we believe can be generalised and used for any video quality metric.
Notice that even though signal processing steps such as cropping and

66



Component Status

Program options handling

Generaliseable

Video decoder

Colourspace conversion

Video sequence structure

Frame structure

Video processing system

Cropping

Alignment procedures

Indicator calculations
OPVQ specific

Score Mapping

Table 5.1: Component applicability in the general case

alignment are explicitly described in OPVQ, they are categorised as
generaliseable. The idea is that such steps can be implemented as
plug in modules or common functions, that users can add to their own
metrics if needed, potentially saving resources compared to having to
implement the same steps from scratch. The bottom part consists of
OPVQ specific calculations and includes indicator calculation and Score
mapping. These parts are most likely not suited for direct reusability in
other metrics.

5.2.1 Video handling and processing

It seems favorable to handle video access to the video frames as
transparently as possible in our toolkit. To come up with a design that
works well in the general case, we make a few assertions about the
general modus operandi of video quality metrics:

• All metrics will need access to the frames from a sequence.
• Metrics perform the same processing operations on all frames.
• Frames will be accessed in sequential order, because that’s the way

a human viewer sees the frames.
This is typically implemented by placing the processing operations in a
loop that iterates over the video sequence frame by frame. This is known
as a processing pass, demonstrated in listing 5.1.

In some cases, multiple passes may be needed. An example from
OPVQ is the colour alignment, where the correction curves are based on

67



Listing 5.1: Pseudocode for a processing pass

Data: sequence : Video Sequence
foreach frame in sequence do

some operation on frame;
some other operation on frame;
;

end

histograms for the full sequences. Histograms are calculated in the first
pass, after which the correction curves are calculated, and the correction
curves are applied to the PVS frames in the second pass (sec. 3.3.3, p. 28).

We want to provide the notion of a processing pass as an abstraction
called makePass. This way, a metric implementation can contain as many
passes necessary. In programming terms, this can be implemented by
having a function for every pass called a function body, in which the
processing steps are collected (listing 5.3). These function bodies can be
given as references to the makePass interface (listing 5.2).

Listing 5.2: Pseudocode for makePass interface (toolkit)

input: body : Function Reference;
Data: sequence : Video Sequence;
foreach frame in sequence do

call body with reference to frame;
end

Listing 5.3: Pseudocode for function body (metric specific)

input: body : Function Reference;
some operation on frame;
some other operation on frame;
;

This separation lets the metric implementation be agnostic to all the
details about video handling — it simply receives a reference to a frame.
In the next section we talk about video files and memory handling, which
because of this abstraction is now nicely contained as part of the toolkit,
and none of the metric implementation’s concern.

68



5.2.2 Memory and I/O

In the first OPVQ implementation we stored all video frames in memory
during the analysis. This is fine for OPVQ as it is designed for short
sequences of no higher than VGA resolution. However, other metrics
that may want to analyse longer sequences or higher resolutions will run
out of available memory on most platforms when using this design. An
alternative design is to read video frames from disk when they are needed
and freeing the memory afterwards. This means that each frame will be
read from disk multiple times if they are needed during different stages
of the analysis, which can cause the program to become I/O bound 1,
but it elimitates the memory issue.

As we demonstrate in section 6.4.1, we decided to implement a
variant of the second design where the memory issue is solved. Because
video processing is extremely demanding for the CPU, the execution
speed of most VQMs will be limited by the CPU and not I/O. This solution
is designed with CPU processing in mind, and it should be noted that
it may not be the best solution if a GPU is used for the computation.
A GPU is a device with its own physical memory and I/O between the
main memory and the device memory will have to be taken into account.
We have not had the time to tackle the issues of GPU support and our
solutions in chapter 6 will in certain cases reflect this.

5.3 Concept

Based on the separation shown in table 5.1, we came up with the
following conceptual description of OpenVQ:

• A metric is implemented as a plug-in module, conforming to a
common interface. OpenVQ can contain many different metric
implementations, and the user may specify which one to use at
run time.

• Common signal processing steps may also be implemented as
plug-in modules. Such a module may be integral to the metric’s
algorithm, or it may be possible for the user to switch it on and off.
For instance, if spatial alignment is a plug-in processing module
part of a metric implementation, the user may wish to switch it off
if he knows that SRC and PVS are already spatially aligned.

1I/O bound: The execution speed of a program is limited because of input-output
operations.

69



• The toolkit should provide a facility for such run time configuration
of the metric through user specified options.

• The toolkit contains a video decoding module that provides a high
level representation of a video sequence as a sequence of image
frames.

Figure 5.1 shows a high level schematic representation of the
OpenVQ concept.

5.4 Summary

In this chapter we have described the basis for a general video quality
toolkit, and our proposed concept for the interfaces that such a toolkit
should provide the user.

In the next chapter we expand on the details of the implementation
of OpenVQ.

Metric 1
(e.g. OPVQ)

Metric 2
(e.g. PSNR) Metric N...

Main program

Video
Decoder

Processing step 1
(e.g. cropping)

Processing step 2
(e.g. spatial alignment)

Processing step N
(e.g. color correction)

...

Disk

Metrics with shared 

base functionality. 

A metric contains 

its specific 

algorithm, which 

may include 

common steps.

Common steps that 

can be plugged in 

by the user writing 

the metric.

The main program 

can run one of 

many metrics.

Figure 5.1: Conceptual overview of a Video Quality toolkit application

70



Chapter 6

Implementation

The considerations and requirements we proposed in the previous
chapter serve as a conceptual foundation of the OpenVQ toolkit and its
design. This chapter covers the implementation details of the toolkit.
We describe the most important aspects of OpenVQ’s implementation
in detail, with particular weight given to the abstractions useful for
implementing new metrics inside the framework of OpenVQ. A quick
introduction to how a new metric may be implemented is summarised
towards the end of this chapter.

6.1 Overview

In section 5.2 we provided an overview of components that we regard
as common for all video quality metrics. These are the components
that make up the bulk of OpenVQ. Figure 6.1 shows the most important
building blocks in the OpenVQ implementation.

Some of the components from table 5.1 are self contained in one
part of OpenVQ, while some are distributed across different parts. For
instance Video decoding is nicely contained in the VideoSequence class.
Implementing a metric involves inheritance from the Algorithm base
class, which provides some useful abstractions to process the video
sequence(s). In the following sections we describe the most important
parts of the implementation in detail.

71



- Global options
- Initialising libraries
- Initialising metric
- Running metric

main.cpp
Entry point

- Category specific options
- Initialising video sequence
- Sequential or parallel

processing of sequence

Algorithm.cpp
Base for all metrics

- Opening and reading 
video
- Initialising codec
- Providing decoded video

frames on demand

VideoSequence.cpp
Video sequence abstraction

- OPVQ specific options
- OPVQ algorithm body

OPVQ.cpp
OPVQ implementation

- PSNR specific options
- PSNR algorithm body

PSNR.cpp
PSNR implementation

- SSIM specific options
- SSIM algorithm body

SSIM.cpp
SSIM implementation

libavcodec
libavformat
libavutil
libswscale

Libav libraries

core
imgproc

OpenCV

program_options

Boost libraries
- Get description and

instance of metric
algorithm from name

Metrics.cpp
Index of metrics

Figure 6.1: Schematic overview of the concrete OpenVQ implementation

6.2 Decoding video files

Providing decoded video frames is maybe the most fundamental ab-
straction in OpenVQ. Video is most often delivered together with audio.
However, in most cases video and audio are encoded as separate me-
dia streams. Because of this, most multimedia file formats are so called
container formats, that is files that contain multiple media streams that
are supposed to be played back together. The container also includes
the metadata about the streams that is necessary to know how to de-
code them. For a video stream, such information may include the video
encoding format, pixel format and resolution and frame rate. Some con-
tainers — such as AVI — are agnostic to the encoding formats of the
media streams, while others — such as MP4 — are more specialised to
support only one or a few formats.

We wanted to be able to take virtually any multimedia file containing
a video stream as input to our program. Libav is a free and open-source
library to interact with multimedia formats and protocols, written in

72



portable C.1,2 Libav is widely used and has an active community, and
was a good choice for us to handle interaction with different multimedia
formats. Libav is licensed under the GNU LGPL ver. 2.1, with optional
parts that, if enabled, apply the more restrictive GNU GPL ver. 2.3

In this section we describe the steps necessary to read an arbitrary
video file into memory as a sequence of decompressed video frames using
the Libav library suite.

6.2.1 Opening a video file

The first step when opening a multimedia file for reading is to determine
the container format. The Libav library that deals with file formats is
called libavformat. Libav recognises container formats based on the
file extension appended to the filename — e.g. .avi or .mp4 — so for
well known containers, the user only needs to supply the path of the file
to be opened.

Listing 6.1: Opening video files with libavformat

AVFormatContext *formatContext = avformat_alloc_context();
avformat_open_input(&formatContext, "movie.avi", NULL, NULL);

Listing 6.2: Finding video stream and initialising codec

avformat_find_stream_info(formatContext, NULL);
int videoStream = -1;
for (int i = 0; i < formatContext->nb_streams; i++) {

AVStream *stream = formatContext->streams[i];
if (stream->codec->codec_type == AVMEDIA_TYPE_VIDEO) {

videoStream = i;
break;

}
}
AVCodecContext *codecContext = formatContext->streams[i]->codec;
AVCodec *decoder = avcodec_find_decoder(codecContext->codec_id);
avcodec_open2(codecContext, decoder, NULL);

Next, we must examine the container and determine the video stream
that we want to decode. The container can contain multiple streams, but
more often than not there will be only one video stream. In OpenVQ we
use only the first video stream in the container’s index. When the stream

1Libav https://libav.org/about.html (visited 20/1/2015)
2Libav is a fork of the FFmpeg project https://www.ffmpeg.org/about.html
3Details about the GNU licenses can be found at https://www.gnu.org/licenses/

73

https://libav.org/about.html
https://www.ffmpeg.org/about.html
https://www.gnu.org/licenses/


is identified, we determine the encoding format of the stream, and we
initialise the appropriate codec4 if the format is recognised. This is done
by a few simple calls to Libav, which allocates buffers and initialises
internal structures as needed behind the scenes. In return we get a
codec context, a data structure that contains all information necessary
to decode the stream. This context will be passed back to Libav during
the subsequent calls. To interface with the available codecs, we use the
library libavcodec.

6.2.2 Decoding the video stream

When our codec context is initialised, we can start reading the video
stream into memory. Even though different streams are encoded
separately, the data is often interleaved to ensure sequential access when
reading from disk. libavcodec has the notion of a packet, which is
a data structure containing a sequence of bytes from the data stream
along some info about the data, such as the stream index to which the
data corresponds. By reading the data stream piece by piece into such
packets, we can de-interleave the stream by assigning input tagged with
a specific stream index to a corresponding handler. In our case, we’re
only interested in the input for the previously determined videoStream
index, and are free to discard data from the other streams. Listing 6.3
shows the code necessary to decode a video stream and place it in an
AVFrame.

Listing 6.3: Reading and decoding a frame from the video stream

AVPacket packet;
av_init_packet(&packet);
int currentStream = -1;
while(currentStream != videoStream) {

if (av_read_frame(formatContext, &packet) < 0) {
// R e a c h e d end o f f i l e ; r e t u r n

}
currentStream = packet->stream_index;

}
AVFrame *frame = avcodec_alloc_frame();
avcodec_decode_video2(codecContext, frame, NULL, &packet);

The AVFrame structure contains pointers to the decoded frame in
memory. A video frame generally consists of multiple channels to make
up a colour image, either in a RGB-type colour space or as Y0CBCR.

4Codec: Software that encodes and decodes a specific media encoding format (coder-
decoder).

74



Channels are not necessarily of equal size due to chroma subsampling.5

Libav can convert a frame’s pixels to a specific format. The user must
be aware of the fact that some conversions are lossy and can introduce
distortion of its own, which is a problem for video quality assessment.
Other conversions, such as upscaling without interpolation does not
affect the data. Listing 6.4 is an example of converting a frame from
planar Y0CBCR 4:2:0 to planar Y0CBCR 4:4:4, using the Libav library
libswscale.

Listing 6.4: Converting between pixel formats using libswscale

// A l l o c a t e s p a c e f o r 4 : 4 : 4 d a t a

size_t sz = frame->width * frame->height;
uint8_t *out[3] = {new uint8_t[sz], new uint8_t[sz], new uint8_t[sz

]};
int lineSizes[3] = {frame->width, frame->width, frame->width};

SwsContext *swsContext = sws_getContext(
frame->width, frame->height, AV_PIX_FMT_YUV420P,
frame->width, frame->height, AV_PIX_FMT_YUV444P,
SWS_X, NULL, NULL, NULL

);
sws_scale(swsContext, frame->data, frame->linesize, 0,

frame->height, out, lineSizes);

At this point, we have a raw video frame stored in memory on the
format we want to work with.

6.3 Structures and representation

6.3.1 Frame representation

The uncompressed video frames decoded with libavcodec are stored
as arrays of pixel values. However, mathematically we think of a
video frame in terms of a matrix of pixel values, and we can apply
matrix operations on whole frames at a time. We went in search for
a library that implemented this abstraction, and found the Open Source
Computer Vision (OpenCV) library to be a good fit. OpenCV is based
on such a matrix representation of image frames, and has defined a
lot of mathematical operations on these structures. These include basic
arithmetic operations and statistical calculations as well as more complex
operations like image filtering, feature detection, motion analysis and

5More about chroma subsampling in Poynton (2012, pp. 121–128)

75



object tracking.6 OpenCV is very widely used and has a large and active
community.

By not having to implement all the matrix operations ourselves, we
eliminated possible sources of error and ended up with leaner and more
readable code. All this made it an easy decision to use OpenCV to handle
the image processing and to hold our video frame data in its matrix
container.

Listing 6.5: Adding a scalar to all pixels in a frame, with and without OpenCV

// M a n u a l l y

uint8_t *out_array = new uint8_t[f->width * f->height];
for (int i = 0; i < f->width * f->height; i++) {

out_array[i] = f->data[0][i] + 80;
}

// U s i n g OpenCV

cv::Mat out_matrix(f->height, f->width, CV_8UC1, f->data[0]);
out_matrix += cv::Scalar(80);

Listing 6.6: Applying an arbitrary filter kernel using OpenCV

cv::Mat in(f->height, f->width, CV_64FC1, f->data[0]);
cv::Mat out(in.rows, in.cols, in.type())
cv::Mat kernel = (cv::Mat_<double>(1,5) << -1, -1, 0, 1, 1);
cv::filter2D(in, out, in.depth(), kernel);

6.3.2 The Frame class

Frame

cv::Mat Y;
cv::Mat U;
cv::Mat V;

Figure 6.2: The Frame
struct in OpenVQ

Because a colour frame consists of three
channels, we need three cv::Mat objects
to hold the data for a single frame. A
cv::Mat can actually hold multiple chan-
nels itself, but as OpenCV always treat
multi channel matrices as RGB frames,
this was not a viable option as we needed
to support Y0CBCR. We solved this by cre-
ating a small data structure that wraps
three cv::Mat objects, one for each of the
channels.

6Open Source Computer Vision http://opencv.org/about.html (visited 19/1/2015)

76

http://opencv.org/about.html


Algorithm

init(int argc, const char **argv)=0: void
run()=0: int

FullReferenceAlgorithm

makePass(IntraFrameFunction body): virtual void
makePassWithPrev(IntraFrameFunction body): virtual void

ParallelFullReferenceAlgorithm

makePass(IntraFrameFunction body): void
makePassWithPrev(IntraFrameFunction body): void

Figure 6.3: OpenVQ algorithm Interface.

6.4 The Algorithm interface

Abstracting the video decoding step goes a long way to make it easy for a
user to implement his or her own metric. Still, there is room for further
generalisation. For instance for full reference metrics, we know that we
will require two video sequences, SRC and PVS. Also, many metrics will
access one frame or maybe two consecutive frames at a time to perform
a processing step. Doing this for all the frames in a video sequence
is known as a processing pass. Some algorithms may be performed in
a single pass, while other may require a few passes to do their job.
These tasks are implemented in the base classes in the Algorithm class
hierarchy in OpenVQ.

Our algorithm interface was written as generic as possible to fit any
video quality metric. The actual interface is an abstract class with a
constructor and two purely virtual functions, init and run. Any metric
using this interface must override these functions. We wanted to limit
the extent of Algorithm to this simple interface. On the one hand,
we provide as much freedom as possible to the author of a new metric
implementation. On the other hand we make it as simple as possible to
plug an algorithm into the function that wants to run it — two simple
function calls.

From Algorithm we derive another class FullReferenceAlgorithm.
This class implements the two functions makePass and makePassWith-

77



Prev that facilitate making a processing pass over the SRC and PVS
sequences. Because video processing is CPU intensive work, we derive
yet another class ParallelFullReferenceAlgorithm that provides a
parallel variant of the processing pass functions.

We have limited the current implementation to provide abstractions
for Full Reference metrics only. A natural continuation of the develop-
ment is to provide equivalent derivations for Reduced Reference and No
Reference metrics. Figure 6.3 presents the current class hierarchy.

6.4.1 Processing passes

We wanted to make it easy to implement a metric that operates by
performing a series of processing steps on SRC and PVS, frame by frame.
As discussed in section 5.2.1, one or a set of consecutive processing steps
can be implemented as a function, called a body, that receives a reference
to the frame at a given position t. If only one frame is handled at a time,
we define it as an intra-frame function body. If the steps process two
frames at a time from each sequence, we call the function an inter-frame
function body. This is analogous to the discussion in 3.4.

We make use of the C++11 standard library functional to define
these two function types:

Listing 6.7: Definitions of IntraFrameFunction and InterFrameFunction

typedef std::function<void(std::shared_ptr<Frame> srcFrame,
std::shared_ptr<Frame> pvsFrame,
int t)>

IntraFrameFunction;

typedef std::function<void(std::shared_ptr<Frame> srcCurr,
std::shared_ptr<Frame> pvsCurr,
std::shared_ptr<Frame> srcPrev,
std::shared_ptr<Frame> pvsPrev,
int tCurr)>

InterFrameFunction;

The functions makePass and makePassWithPrev respectively take
references to an IntraFrameFunction and an InterFrameFunction as
arguments. The body is applied sequentially to the set of sequences, from
t = 0 all the way to t = N � 1, N being the length of the sequences.
The processing pass functions in ParallelFullReferenceAlgorithm
provide the additional feature of applying the body on j adjacent frames
in parallel, using threads. Metric implementations derived from this

78



base class must ensure that the function body passed to makePass or
makePassWithPrev is thread safe.

Listing 6.8 is a pseudocode representation of the makePass function
from FullReferenceAlgorithm. This function operates on a frame by
frame basis without any knowledge of any previous or coming frames.
The input to the function is, as mentioned, a function body that performs
the the metric specific calculations. Our makePass function then runs
a loop until the entire video is processed, preparing a frame from
each sequence in each iteration before calling the function body with
references to the SRC and PVS frames as arguments.

Listing 6.8: Pseudocode for makePass

input: body : IntraFrameFunction
while not eof do

srcCurr := next SRC frame;
pvsCurr := next PVS frame;
body(srcCurr, pvsCurr);

end

Listing 6.9 represents makePassWithPrev and is an extension of
listing 6.8. It stores the previous frame for each pass such that it is
possible to compare two frames.

Listing 6.9: Pseudocode for makePassWithPrev

input: body : InterFrameFunction
while not eof do

srcCurr := next SRC frame;
pvsCurr := next PVS frame;
body(srcCurr, pvsCurr, srcPrev, pvsPrev);
srcPrev := srcCurr;
pvsPrev := pvsCurr;

end

Listings 6.10 & 6.12 serve the same purpose as listings 6.8 & 6.9, but
have been modified to work on multiple frames in parallel. The paral-
lelised variants use worker threads that run jobs stored in a job queue.
A job in this context is a function body and the according arguments.

This is an instance of the classic Producer-Consumer problem7, with 1
producer — the main thread — and J consumers — the worker threads.

7https://en.wikipedia.org/wiki/Producer-consumer_problem

79

https://en.wikipedia.org/wiki/Producer-consumer_problem


J is defined in the variable jFactor. This number is automatically
determined to match the number of hardware threads supported by the
platform, but it can be overridden by the user on the command line.
jFactor also defines the capacity of the job queue. The main thread will
try to keep this filled as long as there are jobs left. This ensures that even
if all J threads want to remove a job from the queue at the same time,
none of them need to wait for I/O.

Listing 6.10: Pseudocode for parallel makePass

input: body : IntraFrameFunction;
initialise jobQueue;

launch jFactor worker threads;
while not eof do

srcCurr := next SRC frame;
pvsCurr := next PVS frame;
jobQueue.push(Job(body, srcCur, pvsCurr));

end
jobQueue.close();
foreach worker thread do join();

Listing 6.11: Pseudocode for worker thread

input: jobQueue;
repeat success := jobQueue.pop().run();
until not success;

Listing 6.12: Pseudocode for parallel makePassWithPrev

input: body : InterFrameFunction;
initialise jobQueue;

launch jFactor worker threads;
while not eof do

srcCurr := next SRC frame;
pvsCurr := next PVS frame;
jobQueue.push(Job(body, srcCurr, pvsCurr, srcPrev, pvsPrev));
srcPrev := srcCurr;
pvsPrev := pvsCurr;

end
jobQueue.close();
foreach worker thread do join();

80



6.5 User options

The main use case of OpenVQ is that a user wants to run a specific
quality metric on a source and a processed video sequence. These video
sequences must somehow be passed to the program at run time. The
individual metric may itself be further configurable or provide additional
features on demand, so the user needs to be able to pass along metric
specific options as well. Lastly, it may be preferable to provide the user
with some options that specify the behavior of the program itself, such
as the amount of information to be output to screen. In this section we
describe how this complex system of user specifiable options is handled
in all parts of our program.

6.5.1 Command line syntax

The command line syntax for OpenVQ is defined as follows:

openvq [global options] command [command specific options]

The global options and command specific options are either key-
word arguments or flags. Keywords and flags always have one or two
leading dashes. These options can be either required or optional. The
command specific option are passed along to the metric implementa-
tion, which gives the implementation all the flexibility it needs to be
configured at run time. The command itself is interpreted as a string,
and specifies which metric OpenVQ invokes. For example, the following
command line will run OPVQ with default settings:

openvq opvq --src <path to SRC> --pvs <path to PVS>

For an in depth view of the possible options, see section 7.1.3.

6.5.2 Options handling

Our program options parsing system is based on the boost.program_options
library8, which provides all the facilities necessary to parse command
line arguments. The syntax itself is defined using one or more so called
description objects, which are passed to a parser that parses the options
and stores the result in a map structure.

8Boost Program_options http://www.boost.org/doc/libs/1_51_0/doc/html/
program_options.html (visited 19/1/2015)

81

http://www.boost.org/doc/libs/1_51_0/doc/html/program_options.html
http://www.boost.org/doc/libs/1_51_0/doc/html/program_options.html


Listing 6.13: Minimal boost.program_options example

namespace po = boost::program_options;

int main(int argc, const char **argv) {
po::options_description opts("Options");
opts.add_options()("message,m", "Print message");
po::variables_map vars;
po::store(po::command_line_parser(argc, argv).

options(opts).run(), vars);
if (!vars.count("message")) {

std::cout << "Hello, World!" << std::endl;
} else {

std::cerr << opts;
}

}

The minimal program from listing 6.13 yields the following behaviour:

user@host: ~ $ program_options_example
Options:

-m [ --message ] Print message
user@host: ~ $ program_options_example -m
Hello, World!
user@host: ~ $ program_options_example --message
Hello, World!

A command_line_parser supports two types of description objects;
options_description and positional_options_description. De-
scription objects of both types can be added to the same parser ob-
ject. In this case, the parser identifies keyword arguments and flags
by leading dashes, and separates them from the rest. Any remain-
ing arguments are parsed as positional arguments. In the OpenVQ
case, the global options are defined in an options_description
object, and the command is defined as the only argument in a
positional_options_description.

The command_line_parser lets the user specify that unknown
options should not raise errors. We take advantage of this to ignore
any command specific options in the main program. The full argument
vector (argv) and the number of elements (argc) are passed on to the
init function of the metric implementation, which contains its own set
of description and parser objects. This structure makes it easy for the
authors of a new metric implementation to add all the user specifiable
options they want.

82



6.6 Implementing a metric

In the previous sections we have outlined the most important parts of
the OpenVQ toolkit. Figure 6.4 gives a step by step summary of how to
implement a video quality metric in OpenVQ.

Step 1. Derive a new class from one of the Algorithm base classes
Step 2. Implement functions

2.1 Constructor (optional): Set up metric specific options.
2.2 init: Call base class init. If any, handle metric specific options.
2.3 run: Perform the algorithm body, using makePass if applicable.

Step 3. Register the class in the Metrics index in the OpenVQ main program

Figure 6.4: Procedure to implement a metric in OpenVQ

6.7 Access and licensing

OpenVQ is released as Free Software. The source code is maintained
under version control, and the repository is available at:

https://bitbucket.org/mpg_code/openvq

OpenVQ is distributed under the GNU Affero General Public License
version 3.9 We chose the Affero variant of the General Public License
because it covers the case where a modified version of the software is
not distributed, but provided as a service accessible over the Internet.
Providing a service of this kind is not counted as distribution as defined
in the GNU GPL, and modified versions of a program licensed under GNU
GPL can be provided as an Internet service without the service provider
having to publish modifications made to the source code. The GNU
Affero GPL variant remedies this, by requiring the service provider to
make the modified source code available.

Even though OpenVQ in its current incarnation is not designed as a
network service, it’s not hard to imagine video quality assessment service
that accepts a pair of SRC and PVS sequences, and gives back a VQR.
Creating such a service based on OpenVQ is in no way prohibited, and
neither is charging for it, but a service provider would have to make
the modified source code freely available under equal licensing terms as
OpenVQ. We consider this a fair requirement.

9GNU AGPL https://www.gnu.org/licenses/agpl-3.0.html (visited 29/4/2015)

83

https://bitbucket.org/mpg_code/openvq
https://www.gnu.org/licenses/agpl-3.0.html


6.8 Summary

In this chapter we have provided details about the implementation of
OpenVQ, and the libraries OpenVQ employs for certain parts of the
processing. This can be used as a helpful guide to the structure of the
program and serves as a context when reading and using the source
code.

84



Chapter 7

Using OpenVQ

In this chapter we provide an introduction to general use of OpenVQ and
OPVQ. We also demonstrate how to implement a metric for the toolkit,
using our PSNR implementation as an example.

7.1 Installation and usage

7.1.1 Prerequisites

Before building OpenVQ, some dependencies have to be in place.
Table 7.1 lists the required programs or libraries. All the dependencies

Dependency Version Usage

CMake 3.0 Generating a project for the desired target plat-
form. Can also be used for building.

Libav 9 All video I/O operations.

OpenCV 2.4 Digital signal processing, mathematical opera-
tions on images.

Boost 1.54 Handling and parsing of program options.

Table 7.1: Dependency listing for OpenVQ

are well known and freely available, and can easily be installed using a
package manager. For example, the following command will install all
the dependencies on a Debian based Linux distribution:

user@host: ~ $ apt-get install cmake libavcodec-dev libavutil-dev
libavformat-dev libswscale-dev libopencv-dev libboost-program-
options-dev

85



7.1.2 Setup

OpenVQ is distributed as a CMake project. CMake is an extensible, open-
source system that manages the build process in an operating system
and in a compiler-independent manner.1 In principle, this means that
OpenVQ can be built and run on any platform for which CMake generates
project files. We have successfully built and run OpenVQ on the UNIX-
based platforms Linux and Mac OS X.

For UNIX systems, CMake can be invoked from the command line:

user@host: ~/openvq-build-dir $ cmake <path-to-openvq-source-dir>
-- The CXX compiler identification is GNU 4.8.2
-- Check for working CXX compiler: /usr/bin/c++ -- works
[...]
-- Found OpenCV version 2.4.8
-- Configuring done
-- Generating done
-- Build files have been written to: /home/user/openvq-build-dir

If no other project type is specified, CMake will generate a Makefile
that can be invoked with Make.

user@host: ~/openvq-build-dir $ make
make

Scanning dependencies of target openvq
[ 5%] Building CXX object src/CMakeFiles/openvq.dir/metrics/common

/alignment/SpatialAlignment.cpp.o
[ 11%] Building CXX object src/CMakeFiles/openvq.dir/metrics/common

/alignment/ColourAlignment.cpp.o
[...]
Linking CXX executable openvq
[100%] Built target openvq

The program is now built, and is ready to be installed into the system
path.

user@host: ~/openvq-build-dir $ make install
[100%] Built target openvq
Install the project...
-- Install configuration: ""
-- Installing: /usr/local/bin/openvq

The default install prefix is /usr/local. A different prefix can be
changed when CMake is invoked to generate the build files.

1CMake — the cross-platform, open-source build system http://www.cmake.org/
overview/ (visited 20/1/2015)

86

http://www.cmake.org/overview/
http://www.cmake.org/overview/


user@host: ~/openvq-build-dir $ cmake <path-to-openvq-source-dir> -
DCMAKE_INSTALL_PREFIX=<prefix>

7.1.3 Running the program

OpenVQ provides a simple command line interface. Running the
program with --help or without any arguments displays the help screen.

user@host: ~ $ openvq
[INFO] OpenVQ:
Usage:

openvq [global options] command [command specific options]

Available commands:
opvq Open Perceptual Video Quality metric
psnr Peak Signal-to-Noise Ratio
ssim Structural Similarity Index

Global options:
-h [ --help ] Print help message
--log-level arg Set log level threshold {trace,debug,info,

warn,error}

To get additional help for the individual commands, run:
openvq <command> --help

The individual metrics can specify their own specific options, in which
case they provide their own additional help screen.

user@host: ~ $ openvq opvq --help
[INFO] OpenVQ: Allowed options for algorithm OPVQ:

-t [ --max-frames ] arg Set frame limit
-h [ --help ] Print help message
--csv arg Path to csv file to which the indi-

cators will be added as a new line
-s [ --src ] arg Path to source video sequence

(required)
-p [ --pvs ] arg Path to processed video sequence

(required)
-j [ --num_threads ] arg Number of threads wanted. If no

value is given, the algorithm tries
to determine the number of threads
supported by the hardware.

--disable-spatial-alignment Disable spatial alignment
--disable-colour-correction Disable colour correction

An example run of the OPVQ algorithm may look like the following.

87



user@host: ~ $ openvq opvq -s src01_hrc00.avi -p src01_hrc09.avi
07:48:29 [INFO] SRC is src01_hrc00.avi
07:48:29 [INFO] PVS is src01_hrc09.avi
07:48:29 [INFO] Pass 1
[==========================================================>] 100%
07:48:35 [INFO] Pass 2
[==========================================================>] 100%
LINEAR OFFSET: 63.1414
INDICATOR VALUE MIN MAX CONTRIBUTION
Luma 7.118528 0.000000 26.345892 3.443753
Chroma 1.021960 0.088887 11.934138 -61.996631
Omitted 6.186605 0.000000 1603.352661 -1.081965
Introduced 1.238975 0.000000 44.038914 -0.221943
Final score: 3.284585 (will be clipped to [1, 5])
07:48:44 [INFO] Aggregated final score: 3.28459

7.2 Implementing PSNR with OpenVQ

Up to this point we have provided an explanation of the each intricate
part of OpenVQ, how they were designed and how they can be
used. To better demonstrate for potential users how other metrics
may be implemented with OpenVQ we have added a PSNR and SSIM
implementation with it. As previously described (2.3.1) PSNR is a simple
metric that by itself is nothing more than a MSE calculation over each
frame. Using OpenVQ we are however able to make use of our spatial
alignment module to potentially achieve better subjective correlation.
In this section we explain how we implemented PSNR with OpenVQ and
utilised our spatial alignment module.

Implementing a new metric in OpenVQ can be very simple. In
the case of PSNR we can utilise several of the modules included in
OpenVQ such that we only need to write some setup-code next to
the MSE calculation. The listed steps below summarise our PSNR
implementation.

• Create a new class, PSNR, inheriting one of the algorithms.
• Implement the following functions in the new class:

– constructor: Add program-option for spatial alignment and
initialise accumulation values.

– init: Call parent class init and enable/disable spatial
alignment

– run: Write the PSNR code in lambda fuction passed to
makePass.

• Add the PSNR class to the metrics list in metrics.cpp.

88



The first step in implementing a new metric in OpenVQ is choosing
the base class. PSNR is a full reference metric so we can choose between
FullReferenceAlgorithm and ParallelFullReferenceAlgorithm.

While PSNR can easily be paralleised we chose to use the Full-
ReferenceAlgorithm to make the implementation as simple as possible.
We can now make a PSNR class that is derived from FullReference-
Algorithm. Our new class only needs to implement a constructor, the
two abstract functions from the parent class (init and run) and one
function that performs the PSNR calculation itself.

The constructor (listing 7.1) has the job of calling the parent
constructor, providing a name for the metric. In the case of our PSNR
implementation we are passing the string PSNR as an argument to the
parent class and initialising two variables used for the PSNR calculation,
psnrAccum and framesCalculated, to zero. In addition, the constructor
add any metric specific program options to a list of available options.
For our PSNR implementation we add an option to disable or enable the
spatial alignment module.

Listing 7.1: The PSNR constructor

PSNR::PSNR()
: FullReferenceAlgorithm("PSNR"),
psnrAccum(0), framesCalculated(0) {

options.add_options()("disable-spatial-alignment",
"Disable spatial alignment");

}

OpenVQ passes along the command line arguments to the init
function (listing 7.2). These are passed through to the parent class’ init
function which will handle any options inherited through the algorithm
hierarchy. After that is done our init function can parse the same array
for the options we added in the constructor.

The next function to implement is run. This function will by called
by OpenVQ after init has completed, and it is from this function we
perform all the calculations. We can choose to implement the entire
metric here, including accessing video frames through the parent class,
or we can use one of the makePass functions available from the parent
class which does this work for us. Since we do not need access to more
than one SRC and PVS frame at a time we use the intra-frame algorithm,
named makePass (listing 6.8). The makePass function takes a function
body as parameter to which we can write the code required to calculate
the PSNR value of one video frame and store the result locally in the
PSNR class instance.

89



Finally, after the call to makePass has terminated, we can calculate
the final PSNR value by finding the mean of the accumulated variable
used in the function body. Listing 7.3 shows our run code. The functions
addFrame and calcPsnr are simply functions wrapping the functionality
for calculating the PSNR of a single frame and the final mean value
respectively.

Listing 7.2: The PSNR init function

void PSNR::init(int argc, const char **argv) {
FullReferenceAlgorithm::init(argc, argv);
opts::variables_map vm;
opts::parsed_options parsed =

opts::command_line_parser(argc, argv).
options(options).
allow_unregistered().
run();

opts::store(parsed, vm);
enableSpatialAlignment = !static_cast<bool>(

vm.count("disable-spatial-alignment"));
}

Listing 7.3: The PSNR run function

int PSNR::run() {
SpatialAlignment spatialAlignment;
makePass([&](std::shared_ptr<Frame> srcCurr, std::shared_ptr<

Frame> pvsCurr, int tCurr) {
if (enableSpatialAlignment) {

int crop = 1;
cv::Point2i sptialOffset = spatialAlignment.

spatialOffsetDetermination(srcCurr, pvsCurr, crop);
spatialAlignment.cropAndAlign(srcCurr, pvsCurr, crop,

sptialOffset);
}
addFrame(srcCurr, pvsCurr);

});
double psnr = calcPsnr();
std::vector<double> values = {psnr};
writeCSV(pvsURL, values);
return 0;

}

90



7.3 Summary

In this chapter we have shown how to build, install and run the OpenVQ
toolkit and OPVQ. We have also shown how to implement new metrics
inside the framework of OpenVQ, using our implementation of PSNR as
an example.

91



92



Part IV

Conclusions

93





Chapter 8

Conclusions

8.1 Contributions

Working with this project has been a learning experience from start
to finish. These lessons will hopefully have been conveyed and be of
interest to the readers of this thesis. As the project consists of two
separate parts, the matter of contributions is two fold as well.

In terms of the work pertaining to the metric itself, what was
ostensibly a simple matter of implementing a well defined metric for
video quality turned out to require significant analytical effort. This
analysis is a significant contribution for anyone interested in learning
about the workings of the standardised PEVQ metric in particular, and
objective video quality metrics in general.

The other significant contribution is the OpenVQ toolkit released as
Free and Open Source Software. The project will live on and enjoy
continued development and maintenance under the ownership of the
Media group at Simula Research Laboratory in Oslo. We view this as a
step in the right direction to bring more openness and transparency to
the video quality community, which from the outside appears very much
closed and opaque. A planned research paper submission about the
toolkit will, if accepted, hopefully aid in gaining publicity and possibly
brining in contributors from different parts of the community.

8.2 Further Research and Development

As all research projects, this project has been subject to time and resource
constraints. During the course of the research, we have thought of many
possible options to explore that we have not had the time to pursue. In

95



this section we briefly mention some of the possibilities for further work
that we think will prove the most rewarding if explored.

8.2.1 Support for higher resolutions

OPVQ has currently been tested and validated for VGA resolution only.
Video content today is to a large extent delivered at resolutions higher
than VGA. Given this current situation, finding a way to support higher
resolutions — specifically Full HD or higher — would be very relevant.

The amount of data in a frame of Full HD video is much larger than
in a VGA frame, but is not necessarily displayed on a larger display.
This means that the density of information is higher. An interesting
question is whether or not this affects OPVQ’s ability to assess quality.
To investigate this, a good place to start would be to try to determine a
set of mapping coefficients that correlate well with subjective tests for
higher resolutions. If this proves difficult, the indicator calculations may
need to be changed, or altogether new indicators may be added and
mapped into the final score. As mentioned in chapter 2, the model from
SwissQual AG standardised in ITU-T J.341 supports Full HD resolution.
Elements from this metric may be applicable — or at least of interest —
if changes to the model itself turn out to be necessary.

8.2.2 Support for hybrid models

In the introduction of this thesis, we state that video streaming is
responsible for a large amount of the internet traffic generated today.
Streaming video over networks introduces issues such as loss of quality
due to bitrate adaptation and buffer underrun events. There is ongoing
research into how such events affect the QoE over time.

To assess the quality of streamed video, it may be of interest to take
into account not just the decoded video frames, but other information
such as the bitstream itself and information carried in the protocol
headers of the packets that deliver the video. Such models are called
hybrid models, and VQEG have recently published a recommendation on
hybrid models through ITU-T, as mentioned in section 2.4.4.

To facilitate research into streaming related issues, abstractions that
deal with streaming video should probably be implemented as part of
the OpenVQ toolkit. The ITU-T Rec. J.343 will be of great interest in this
context when published, as it may contain metric descriptions that can
serve as a basis for such an extension.

96



We have considered a general design on our own that would allow
OpenVQ to support streaming input of arbitrarily long video sequences
by using a sliding window mechanism. When receiving streamed video,
the frames will be buffered until the window is filled, at which point
a VQR can be calculated for the buffered window. When a new frame
arrives it is buffered and the oldest frame in the buffer is pushed out.
The VQR can then be re-calculated for the updated buffer. This setup
would enable a more real time visualisation of the predicted quality.

For OPVQ, there are some challenges when it comes to the sliding
window solution, as recalculating the score for the entire window
whenever a new frame enters would prevent it from running in real-time.
However, figuring out a way to reuse for instance partially calculated
values from previous windows could make it possible to achieve real-
time performance.

8.2.3 Temporal Alignment

As we discussed in section 3.3.1 we chose to leave temporal alignment
out of OPVQ. Even so, temporal alignment may be useful to have as a part
of the metric, but it would need to be implemented based on something
else than the PEVQ description. A paper written by Barowsky, M.,
Bialkowski, J., Bitto, R., and Kaup, A. Barkowsky et al. (2007) mentions
the temporal alignment used in PEVQ, and proposes an improvement on
this model. This model may be possible to use for a temporal alignment
implementation in OPVQ, but as both Barowsky, M. and Bitto, R. are
affiliated with OPTICOM the patent situation must be examined.

8.2.4 GPU utilisation

We briefly mention in section 5.2.2 that we have not considered GPU
interaction when implementing OpenVQ. There is no doubt, however,
that facilitating for use of GPU devices would be a relevant development
for OpenVQ. Specifically, creating makePass abstractions that load Frame
objects into device memory instead of main memory could be a good
place to start. The latest major revision of OpenCV (version 3) contains
a new API, called Transparent API, that is supposed to make use of
hardware devices through OpenCL in a transparent fashion. It should
be investigated if this API has application in OpenVQ.

97



98



Chapter 9

Reflections

Throughout our development of OPVQ and OpenVQ we have learned
a lot about video quality measurement and software engineering. We
want to summarise some of the key experiences and perhaps provide
some pointers for others who wish to continue our work with a masters
or doctoral thesis. The contents of this section will not be directly
relevant to the scientific findings presented in this thesis, but rather act
as an informal summary of our own subjective opinions and experiences
gathered during the work.

While we did not have any good estimate on the time necessary to
develop an implementation of the standardised PEVQ model when we
started, we were determined to at least achieve the goal of proividing a
working metric implementation. In addition, the inital plan was that at
some point when we had a working version of PEVQ we would diverge
into different directions. One of us would then most likely research
possibilities for development of additional indicators and/or resolution
support, while the other would work on implementing these features.

As soon as we started work on the implementation we identified some
of the inconsistencies in the PEVQ description, and suspected that the
time required would be longer than we first had hoped. Around the
middle of September 2014 we had finished the first implementation of
PEVQ. At this stage the only library we had used was Libav for video
decoding, the rest of the image processing was written by us from
sctrach. We were not able to produce good results with this version of
the software, We made an effort to improve results, but after a few weeks
worth of debugging and fixing small errors, we decided to make some
big changes.

These changes were two fold. First of all, the changes involved
simplifying our solution as much as possibly by using tried and tested

99



libraries for as much as possible. This was perhaps the most important
choice we made from a software engineering point of view. Secondly, as
we progressed step by step through the implementation, we analysed
in detail the mathemtical description in PEVQ. This also turned out
to be a crucial part of the work. Within a few months of hard work
we had rewritten the entire implementation using OpenCV for all the
image processing. This automatically removed some bugs we had not
discovered and simplified the solution by making it shorter and more
understandable.

In hindsight we would probably have saved time by implementing
OPVQ using OpenCV from the beginning. At the same time we were
forced to thoroughly analyse every step of the PEVQ description when
we wrote the OpenCV implementation, which further improved our
understanding of every aspect of the metric. It is, however, a testament
to the fact that with all the open source libraries available for all kinds
of applications, spending a little time to find helpful libraries is a worth
while exercise.

The analysis of the PEVQ description turned out to be a crucial
part of the work, as it uncovered a large number of errors and
inconsistencies. We found it remarkable that a description published as
part of a standards document contained such an amount of flaws. In our
opinion, this raises questions about the soundness of the standardisation
procedure applied in this case.

The timeline below shows the key points of our development in
chronological order. We estimate that we have spent roughly 2 900 man-
hours on this project, which translates to 2.1 man-years by Norwegian
standards.1

Jan 2014

Start

Summer Christmas May 2015

DeliveryPE
VQ
ch
os
en

Im
pl.
Sta
rt

Fir
st
im
pl.
do
ne

Sta
rte
d u
sin
g O
pe
nC
V

Se
co
nd
im
pl.
do
ne

Re
du
ce
d s
co
pe
of
the
sis

OP
VQ
fin
ish
ed

Op
en
VQ
fin
ish
ed

PS
NR
an
d S
SIM

im
pp
lem
en
ted

Tes
t r
es
ult
s d
on
e

Timeline of key development steps

1Average annual hours actually worked per worker, as reported by OECD:
https://stats.oecd.org/Index.aspx?DataSetCode=ANHRS

100

https://stats.oecd.org/Index.aspx?DataSetCode=ANHRS


101



102



Chapter 10

References

Barkowsky, M. et al. (2007). “Temporal registration using 3D phase
correlation and a maximum likelihood approach in the perceptual
evaluation of video quality”. In: Multimedia Signal Processing, 2007.
MMSP 2007. IEEE 9th Workshop on, pp. 195–198. doi: 10.1109/MMSP.
2007.4412851.

Comer, D. E. et al. (1989). “Computing As a Discipline”. In: Commun.
ACM 32.1. Ed. by P. J. Denning, pp. 9–23. issn: 0001-0782. url: http:
//doi.acm.org/10.1145/63238.63239.

Dosselmann, R. and X. D. Yang (2011). “A comprehensive assessment of
the structural similarity index”. In: Signal, Image and Video Processing
5.1, pp. 81–91.

Huynh-Thu, Q. and M. Ghanbari (2008). “Scope of validity of PSNR
in image/video quality assessment”. In: Electronics Letters 44.13,
pp. 800–801. issn: 0013-5194. doi: 10.1049/el:20080522.

ITU-R (2012). Methodology for the subjective assessment of the quality of
television pictures. url: http://www.itu . int/rec/R-REC-BT.500- 13-
201201-I.

ITU-T (2008a). J.247: Objective perceptual multimedia video quality
measurement in the presence of a full reference. url: http://www.itu.
int/rec/T-REC-J.247-200808-I/en.

ITU-T (2008b). P.900: Telephone transmission quality, telephone installa-
tions, local line networks (audiovisual quality in multimedia services).
url: https://www.itu.int/rec/T-REC-P.911-199812-I/en.

ITU-T (2008c). Subjective video quality assessment methods for multimedia
applications. url: https://www.itu.int/rec/T-REC-P.910-200804-I/en.

ITU-T (2010). J.340: Reference algorithm for computing peak signal
to noise ratio of a processsed video sequence with compensation for

103

http://dx.doi.org/10.1109/MMSP.2007.4412851
http://dx.doi.org/10.1109/MMSP.2007.4412851
http://doi.acm.org/10.1145/63238.63239
http://doi.acm.org/10.1145/63238.63239
http://dx.doi.org/10.1049/el:20080522
http://www.itu.int/rec/R-REC-BT.500-13-201201-I
http://www.itu.int/rec/R-REC-BT.500-13-201201-I
http://www.itu.int/rec/T-REC-J.247-200808-I/en
http://www.itu.int/rec/T-REC-J.247-200808-I/en
https://www.itu.int/rec/T-REC-P.911-199812-I/en
https://www.itu.int/rec/T-REC-P.910-200804-I/en


constant spatial shifts, constant temporal shift and constant luminance
gain and offset. url: http://www.itu.int/rec/T-REC-J.340-201006-I.

ITU-T (2011). J.341: Objective perceptual multimedia video quality
measurement of HDTV for digital cable television in the presence of a
full reference. url: http://www.itu.int/rec/T-REC-J.341-201101-I/en.

Jiménez Bermejo, D. (2012). “High definition video quality assessment
metric built upon full reference ratios”. PhD thesis. Escuela Técnica
Superior de Ingenieros de Telecomunicación, Universidad Politécnica
de Madrid.

Kuipers, F. et al. (2010). “Techniques for Measuring Quality of Experi-
ence”. English. In: Wired/Wireless Internet Communications, pp. 216–
227. isbn: 978-3-642-13314-5. doi: 10.1007/978-3-642-13315-2_18.

Martinez-Rach, M. et al. (2006). “A study of objective quality assessment
metrics for video codec design and evaluation”. In: Multimedia, 2006.
ISM’06. Eighth IEEE International Symposium on. IEEE, pp. 517–524.

Péchard, S., R. Pépion, and P. Le Callet (2008). “Suitable methodology
in subjective video quality assessment: a resolution dependent
paradigm”. In: International Workshop on Image Media Quality and
its Applications, IMQA2008. Kyoto, Japan, p. 6.

Pinson, M. H., N. Staelens, and A. Webster (2013). “The history of video
quality model validation”. English. In: 2013 IEEE 15th International
Workshop on Multimedia Signal Processing (MMSP). IEEE, pp. 458–
463. isbn: 978-1-4799-0125-8. doi: 10.1109/MMSP.2013.6659332.

Pinson, M., N. Staelens, and A. Webster (2013). “The history of video
quality model validation”. In: Multimedia Signal Processing (MMSP),
2013 IEEE 15th International Workshop on, pp. 458–463. doi: 10.1109/
MMSP.2013.6659332.

Pinson, M. and S. Wolf (2004). “A new standardized method for objec-
tively measuring video quality”. In: Broadcasting, IEEE Transactions
on 50.3, pp. 312–322. issn: 0018-9316. doi: 10.1109/TBC.2004.834028.

Pitrey, Y., M. Barkowsky, R. Pépion, et al. (2012). “Influence of the source
content and encoding configuration on the perceived quality for
scalable video coding”. In: SPIE Human Vision and Electronic Imaging
XVII. Vol. 8291. 54. San franscisco, United States, pp. 1–6. url: https:
//hal.archives-ouvertes.fr/hal-00665993.

Pitrey, Y., U. Engelke, M. Barkowsky, et al. (2011). “Aligning subjective
tests using a low cost common set”. In: Euro ITV. Lisbonne, Portugal,
irccyn contribution. url: https : / / hal . archives - ouvertes . fr / hal -
00608310.

104

http://www.itu.int/rec/T-REC-J.340-201006-I
http://www.itu.int/rec/T-REC-J.341-201101-I/en
http://dx.doi.org/10.1007/978-3-642-13315-2_18
http://dx.doi.org/10.1109/MMSP.2013.6659332
http://dx.doi.org/10.1109/MMSP.2013.6659332
http://dx.doi.org/10.1109/MMSP.2013.6659332
http://dx.doi.org/10.1109/TBC.2004.834028
https://hal.archives-ouvertes.fr/hal-00665993
https://hal.archives-ouvertes.fr/hal-00665993
https://hal.archives-ouvertes.fr/hal-00608310
https://hal.archives-ouvertes.fr/hal-00608310


Pitrey, Y., U. Engelke, P. Le Callet, et al. (2011). “Subjective quality of
SVC-coded videos with different error-patterns concealed using spa-
tial scalability”. In: Third European Workshop on Visual Information
Processing (EUVIP). Paris, France, paper number 67. url: https://hal.
archives-ouvertes.fr/hal-00608300.

Pitrey, Y. et al. (2010a). “Evaluation of MPEG4-SVC for QoE protection
in the context of transmission errors”. In: SPIE Optical Engineering.
San Diego, United States. url: https://hal.archives-ouvertes.fr/hal-
00608337.

Pitrey, Y. et al. (2010b). “Subjective quality assessment of MPEG-4
scalable video coding in a mobile scneario”. In: Second European
Workshop on Visual Information Processing. Paris, France, paper 72.
url: https://hal.archives-ouvertes.fr/hal-00608333.

Poynton, C. (2012). Digital Video and HD: Algorithms and Interfaces.
2nd ed. Morgan Kaufman.

Rimac-Drlje, S., M. Vranješ, and D. Žagar (2010). “Foveated Mean
Squared Error–a Novel Video Quality Metric”. In: Multimedia Tools
Appl. 49.3, pp. 425–445. issn: 1380-7501. doi: 10.1007/s11042-009-
0442-1. url: http://dx.doi.org/10.1007/s11042-009-0442-1.

Seshadrinathan, K. and A. C. Bovik (2010). “Motion tuned spatio-
temporal quality assessment of natural videos”. In: Image Processing,
IEEE Transactions on 19.2, pp. 335–350.

Seshadrinathan, K., R. Soundararajan, et al. (2010). “A subjective study
to evaluate video quality assessment algorithms”. In: IS&T/SPIE
Electronic Imaging. International Society for Optics and Photonics,
75270H–75270H.

Shapira, D., S. Avidan, and Y. Hel-Or (2013). “Multiple histogram
matching”. English. In: 2013 IEEE International Conference on Image
Processing. IEEE, pp. 2269–2273. url: http :// ieeexplore . ieee .org/
articleDetails.jsp?arnumber=6738468.

VQEG (2008). Final Report from the Video Quality Experts Group om the
Validation of Objective Models of Multimedia Quality Assessment, Phase
I. Tech. rep. url: ftp ://vqeg. its .bldrdoc.gov/Documents/Projects/
multimedia/MM_Final_Report/VQEG_MM_Report_Final_v2.6.pdf.

Vranješ, M., S. Rimac-Drlje, and K. Grgić (2013). “Review of objective
video quality metrics and performance comparison using different
databases”. In: Signal Processing: Image Communication 28.1, pp. 1–
19. issn: 0923-5965. doi: http://dx.doi.org/10.1016/j. image.2012.
10 . 003. url: http : / /www . sciencedirect . com/ science / article /pii /
S0923596512001919.

105

https://hal.archives-ouvertes.fr/hal-00608300
https://hal.archives-ouvertes.fr/hal-00608300
https://hal.archives-ouvertes.fr/hal-00608337
https://hal.archives-ouvertes.fr/hal-00608337
https://hal.archives-ouvertes.fr/hal-00608333
http://dx.doi.org/10.1007/s11042-009-0442-1
http://dx.doi.org/10.1007/s11042-009-0442-1
http://dx.doi.org/10.1007/s11042-009-0442-1
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6738468
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6738468
ftp://vqeg.its.bldrdoc.gov/Documents/Projects/multimedia/MM_Final_Report/VQEG_MM_Report_Final_v2.6.pdf
ftp://vqeg.its.bldrdoc.gov/Documents/Projects/multimedia/MM_Final_Report/VQEG_MM_Report_Final_v2.6.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/j.image.2012.10.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.image.2012.10.003
http://www.sciencedirect.com/science/article/pii/S0923596512001919
http://www.sciencedirect.com/science/article/pii/S0923596512001919


Wang Z., Bovik, A. C. and Sheikh, H. R. and Simoncelli, E. P. (2004).
“Wavelets for Image Image quality assessment: From error visibility
to structural similarity”. In: IEEE Transactions on Image Processing
13.4, pp. 600–612. url: http://www.cns.nyu.edu/pub/eero/wang03-
reprint.pdf.

Wang, Y. (2006). “Survey of objective video quality measurements”. In:
Computer Science Faculty Publications. url: http ://digitalcommons .
wpi.edu/computerscience-pubs/42/.

Wang, Z., A. C. Bovik, and E. P. Simoncelli (2005). “Structural Ap-
proaches to Image Quality Assessment”. In: Handbook of Image and
Video Processing. 2nd. Academic Press. Chap. 8.3. url: https://ece.
uwaterloo.ca/~z70wang/publications/HIVP_chapter83.pdf.

Winkler, S. and P. Mohandas (2008). “The Evolution of Video Quality
Measurement: From PSNR to Hybrid Metrics”. In: IEEE Trans. on
Broadcasting 54.3, pp. 660–668. doi: 10.1109/TBC.2008.2000733.

106

http://www.cns.nyu.edu/pub/eero/wang03-reprint.pdf
http://www.cns.nyu.edu/pub/eero/wang03-reprint.pdf
http://digitalcommons.wpi.edu/computerscience-pubs/42/
http://digitalcommons.wpi.edu/computerscience-pubs/42/
https://ece.uwaterloo.ca/~z70wang/publications/HIVP_chapter83.pdf
https://ece.uwaterloo.ca/~z70wang/publications/HIVP_chapter83.pdf
http://dx.doi.org/10.1109/TBC.2008.2000733

	I Introduction
	Introduction
	Background
	Objectives
	Research Method
	Significance of Study
	Limitations and Scope
	Outline
	Summary

	Related Work
	Understanding Video Quality Measurement
	Validation of Video Quality Metrics
	Non-Perceptual FR Metrics
	Peak signal-to-noise ratio
	Structural Similarity

	Perceptual FR Metrics
	Models from ITU-T Rec. J.144
	Models from ITU-T Rec. J.247
	Models from ITU-T Rec. J.341
	Other Metrics

	Review of candidates
	Availability of subjective test data


	II OPVQ – The Open Perceptual Video Quality metric
	From PEVQ to OPVQ
	PEVQ
	Limitations with PEVQ

	Pre-processing
	Sequence alignment
	Temporal Alignment
	Spatial Alignment
	Colour Alignment

	Distortion Analysis
	Intra-frame spatial distortion
	Luma Indicator
	Chroma Indicator
	Inter-frame spatial distortion
	Introduced and Omitted Component Indicator

	Mapping to DMOS
	Mapping coefficients

	Summary

	Results
	About performance evaluation
	Subjective vs. objective scores
	Evaluation metrics
	Data fitting
	Comparative evaluation of OPVQ and PEVQ
	Datasets

	Score mapper evaluation
	Constraining the score mapper
	Optimising mapping coefficients
	Evaluation

	Overall performance evaluation
	Summary


	III OpenVQ – The Open Video Quality Toolkit
	Designing a Video Quality Toolkit
	Background
	Considerations
	Video handling and processing
	Memory and I/O

	Concept
	Summary

	Implementation
	Overview
	Decoding video files
	Opening a video file
	Decoding the video stream

	Structures and representation
	Frame representation
	The Frame class

	The Algorithm interface
	Processing passes

	User options
	Command line syntax
	Options handling

	Implementing a metric
	Access and licensing
	Summary

	Using OpenVQ
	Installation and usage
	Prerequisites
	Setup
	Running the program

	Implementing PSNR with OpenVQ
	Summary


	IV Conclusions
	Conclusions
	Contributions
	Further Research and Development
	Support for higher resolutions
	Support for hybrid models
	Temporal Alignment
	GPU utilisation


	Reflections
	References


