
UNIVERSITY OF OSLO

Department of Informatics

Silhouette

Extraction using

Graphics

Processing Units

Master’s Thesis

Kristian Haga

Karstensen

Contents

1 Introduction 1

1.1 Background . 1
1.2 Problem Statement . 1
1.3 Limitations . 2
1.4 Main Contributions . 2
1.5 Outline . 3

2 Silhouette extraction 5

2.1 Definition . 5
2.2 Background subtraction . 5
2.3 Other ways to extract silhouettes . 9
2.4 Summary . 9

3 Graphics Processing Units and OpenCL 11

3.1 Introduction . 11
3.2 General-purpose computing on graphics

processing units . 11
3.3 OpenCL . 12

3.3.1 Open standard for parallel programming 12
3.3.2 OpenCL-implementation and hardware used 12
3.3.3 Kernels . 12
3.3.4 Kernel execution . 13
3.3.5 Synchronization . 14
3.3.6 OpenCL memory types . 14

3.4 Optimization strategies on GPU . 16
3.4.1 Keeping and reusing data in device memory 16
3.4.2 Coalesced memory access . 17
3.4.3 Local memory . 17

ii

iii

3.4.4 Read-only data in constant memory 17
3.4.5 Using OpenCL Images . 18

3.5 Summary . 18

4 Silhouette extraction algorithm 20

4.1 Introduction . 20
4.2 Training step . 21

4.2.1 Selection of distribution form . 21
4.2.2 Possible optimizations . 22

4.3 Background modeling . 22
4.3.1 Two background models . 22
4.3.2 Color conversion . 23
4.3.3 Creating background models . 23
4.3.4 Possible optimizations . 24

4.4 Background subtraction, thresholding
and foreground extraction . 24
4.4.1 Background subtraction and thresholding 24
4.4.2 Foreground extraction . 25
4.4.3 Possible improvements . 25

4.5 Foreground refinement / morphological processes 26
4.5.1 Motivation . 26
4.5.2 Closing and opening . 26
4.5.3 Connected Components Labeling . 27
4.5.4 Optimization strategies . 28

4.6 Profile extraction . 29
4.6.1 Covering the object . 29
4.6.2 Fixing covered holes in the object . 29
4.6.3 Optimization strategies . 29

4.7 Background update . 29
4.7.1 Gradual changes in lighting . 30
4.7.2 Changes in background geometry . 31

4.8 Output format . 32
4.8.1 One number for each silhouette . 32
4.8.2 Limitations . 32

4.9 Summary . 32

iv

5 GPU Implementation 34

5.1 Introduction . 34
5.1.1 Steps not implemented . 34
5.1.2 Method for testing and evaluation . 34
5.1.3 Assumptions and notes . 37
5.1.4 Choice of work group sizes . 37
5.1.5 Source code . 37

5.2 Training step . 38
5.2.1 Parallelization . 38
5.2.2 Running statistics . 38
5.2.3 Optimizing memory access . 38
5.2.4 Experimental results . 39

5.3 Background modeling . 39
5.3.1 Experimental results . 41

5.4 Background subtraction, thresholding
and foreground extraction . 41
5.4.1 Subtraction and thresholding . 41
5.4.2 Output data . 43
5.4.3 Experimental results . 43

5.5 Morphological processes . 43
5.5.1 Closing and opening . 44
5.5.2 Connected Components Labeling . 49

5.6 Profile extraction . 51
5.7 Background update . 52

5.7.1 Limitations . 52
5.7.2 Experimental results . 52

5.8 Total runtime of the algorithm . 52
5.8.1 Experimental results . 53

5.9 Summary . 53

6 Comparison between CPU and GPU implementation 55

6.1 Introduction . 55
6.1.1 Notes about CPU performance . 55

6.2 Training step . 56
6.2.1 Experimental results . 56

6.3 Background modeling . 56

v

6.3.1 Experimental results . 57
6.4 Background subtraction, thresholding and foreground extraction 57

6.4.1 Subtraction and thresholding . 57
6.4.2 Experimental results . 57

6.5 Morphological processes . 58
6.5.1 Closing and opening . 58
6.5.2 Connected Component Labeling . 59

6.6 Background update . 59
6.6.1 Experimental results . 59

6.7 Measurement of the whole pipeline . 60
6.7.1 Experimental results . 60

6.8 Summary . 60

7 Quality assesment of the silhouette extraction algorithm 62

7.1 Introduction . 62
7.2 Ground truth . 62
7.3 Measurements . 63

7.3.1 Notes and limitations . 63
7.3.2 False positive and false negative errors 63
7.3.3 Experimental results . 64

7.4 Summary . 66

8 Conclusion 73

8.1 Future work . 73
8.1.1 Faster connected component labeling 74
8.1.2 Implementation of profile extraction 74
8.1.3 Improvement of thresholding . 74

Bibliography 76

List of Figures

2.1 Example representation of a silhouette in a binary image 6
2.2 Demonstration of blue screen at the Special Effects show, Museum of Science,

Boston. 7

4.1 Extraction of the color component H from RGB 23
4.2 Subtracting background and thresholding image 25
4.3 Shadow removal in suspicious foreground . 25
4.4 Steps in a closing and opening . 26
4.5 Effects of a closing and opening . 28
4.6 Profile extraction applied to foreground element 30

5.1 Video 1 - First frame . 36
5.2 Video 2 - First frame . 36

7.1 Video 1 - False negative and false positive errors 64
7.2 Video 2 - False negative and false positive errors 64
7.3 Video 1 - Frame 800 - False positive errors . 67
7.4 Video 1 - Frame 780 - False negative and false positive errors 68
7.5 Video 1 - Frame 350 and 390 - Low FP and FN 69
7.6 Video 2 - Frame 270 - 288.68% FP error . 70
7.7 Video 2 - Frame 170, 200 and 440 - low error rates 71

vi

List of Tables

5.1 Training step: Runtime in milliseconds . 40
5.2 Background modeling: Runtime in milliseconds 41
5.3 Background subtraction and thresholding: Runtime in milliseconds 44
5.4 Closing and opening: Runtime in milliseconds 49
5.5 Connected component labeling: Runtime in milliseconds 51
5.6 Background update: Runtime in milliseconds 52
5.7 Full algorithm on GPU: Runtime in milliseconds 53

6.1 Training step - CPU and GPU - runtime in milliseconds 56
6.2 Background modeling - CPU and GPU - runtime in milliseconds 57
6.3 Background subtraction and thresholding - CPU and GPU - runtime in millisec-

onds . 58
6.4 Closing and opening - CPU and GPU - runtime in milliseconds 58
6.5 Connected Component Labeling - CPU and GPU - runtime in milliseconds . . 59
6.6 Background update - CPU and GPU - runtime in milliseconds 60
6.7 Full algorithm - CPU and GPU - runtime in milliseconds 60

vii

Listings

5.1 OpenCL kernel for creating/updating background model 40
5.2 OpenCL kernel for background subtraction and thresholding 42
5.3 Execution of closing and opening kernels . 44
5.4 Dilate-kernel with global memory . 45
5.5 Dilate-kernel with Image 2D . 46
5.6 Dilate-kernel with Image 2D . 46
5.7 Dilate-kernel with Image 2D . 46
5.8 Closing and opening in one kernel, excerpt . 47

viii

Acknowledgements

I would like to thank my advisors Alexander Eichhorn and Pål Halvorsen, for their valuable
feedback and guidance during the work with this thesis.

Thanks to Tor Ivar Johansen, Christian Tryti and the rest of the students at the Simula lab for a
productive and fun environment.

I would also like to thank my parents for their good support throughout my studies.

A special thank you to my wife Marte for her constant support, encouragement and patience.

Oslo, May 2012
Kristian Haga Karstensen

x

Chapter 1

Introduction

1.1 Background

A silhouette gives an outline of a person or an object. When extracting silhouettes from an
image or video, we acquire information about where in the image the foreground objects are
located, their sizes and their shapes. This silhouette information can be useful in many ways.

In computer vision, silhouette extraction plays an important role. Many applications need
to extract people or objects, e.g. in video surveillance, tracking of objects, human or object
detection [1], 3D-reconstruction [2] or mixed reality [3] applications. For instance in a mixed
reality scenario, we may want to reinsert a person into a different setting or location to interact
with other people in real-time.

Many of the aforementioned applications use, at least in part, silhouettes (from one or mul-
tiple viewpoints) as input. Since the extraction of silhouettes is often a small part of these
applications, it has to be done as fast as possible — at least in real-time applications, leaving
valuable execution time to the rest of the application.

General-purpose computing on graphics processing units (GPGPU) has become in-
creasingly popular the last years. With development frameworks like CUDA [4] and OpenCL [5],
the parallel processing power of GPUs have never been easier to utilize. This gives us the pos-
sibility to develop real-time applications using high resolution video.

1.2 Problem Statement

As we will see in chapter 2, many different approaches for extracting and refining silhouettes
in different environments have been proposed. Since silhouette extraction is often only one of
the needed processing steps in applications where silhouettes are used, high speed silhouette

1

2

extraction is needed. Many proposed methods on CPU work well and in real time on low
resolution images, and are therefore well suited in applications where low resolution images are
adequate.

Many modern applications will also require silhouettes from higher resolution images, and
with high frame rates, for example to create 3D models for use in mixed reality scenarios. We
therefore want to implement an already existing algorithm for silhouette extraction on GPU, to
see how much we can improve the performance compared to a CPU-implementation, aiming at
real time execution.

We will perform an experimental approach on our GPU implementation, with different op-
timizations on the different parts of the algorithm, and present the effects they have on the
execution time.

We will also do a simple quality assessment of our algorithm looking at the percentage of
correct/incorrect detection of foreground pixels, to see how accurate our chosen algorithm is
extracting silhouettes.

1.3 Limitations

Our implementations will be tested on video of sizes 1024x576 and 512x288 pixels, with 25
fps. As the algorithm we have chosen to implement includes many different steps, we will omit
the last filtering and refinement steps, to limit our scope a bit.

Our main focus will be on developing a fast algorithm, so performance is our primary goal.
Improving the existing algorithm to get higher quality silhouettes is therefore not the main goal
of the thesis, even though it is desirable. We discuss some possible improvements in chapter 4
and 8.

1.4 Main Contributions

The main contributions in this thesis are as follows: We explore a silhouette extraction algorithm
and implement most parts of this algorithm on both CPU and GPU, with the GPU implemen-
tation being our main focus. In our GPU-implementation, we investigate different optimization
approaches on each step of the algorithm, measure runtime on different video data and report
our results. We show that when implementing image processing algorithms on GPU, multiple
implementations should be tried to get the best runtime, as small changes can make pretty big
differences.

We show that our GPU implementation is between 2 and 3.4 times faster than our CPU

3

implementation in the worst case and that we can get around 6 frames per second on video data
with size 1024x768. On video with size 512x288 we get a framerate of around 26 fps.

We perform a simple quality assessment of experimental resulting silhouettes of the algo-
rithm, and point at possible optimizations that can be performed to get better results.

1.5 Outline

In chapter 2, we present our definition of silhouette extraction and look at previous work done
in this field, presenting different approaches. We then move on to chapter 3, where we take
a look at GPGPU and present the OpenCL framework for programming on heterogeneous ar-
chitectures, focusing on GPU programming. We present the different memory types, execution
model, and look at different optimization strategies for GPU-implementation. In chapter 4, we
present the silhouette extraction algorithm we will implement on GPU, explaining the different
steps of the algorithm in detail. We introduce some optimizations to the algorithm, and look
briefly at possible optimization strategies on GPU for the different steps. Chapter 5 presents
our GPU implementation, including different optimizations for each step. We also show per-
formance measurements of the different optimizations, and present the total runtime of the
algorithm on different video data. Our CPU implementation is briefly presented in chapter 6,
and a performance comparison between the CPU and GPU implementation is shown. We show
the runtime differences in each of the steps, and finally present the total runtime difference
between CPU and GPU versions on different video data. A simple quality assessment of the
extracted silhouettes is presented in chapter 7, comparing our output against a number of man-
ually segmented ground truth masks. We show percentages of false negative and false positive
errors, and discuss possible optimizations that can be applied to increase the quality. At last our
conclusions are drawn and future work is presented in chapter 8.

4

Chapter 2

Silhouette extraction

In this chapter we look at some of the previous work done in the field of silhouette extraction.
In section 2.1 we present our definition of silhouette extraction. In section 2.2, we look at
different methods for background subtraction, and in section 2.3 we briefly present some other
tried methods for extracting silhouettes.

2.1 Definition

Silhouette extraction is the combined process of extracting, or separating, a foreground object
in video from the background, with some criteria defining what belongs to foreground and what
belongs to background. This process can involve multiple steps. The result should be one or
more silhouettes of people or other objects in the video that are not part of the background.

One or more silhouettes can be represented in a binary, black and white image mask, where
the background and the silhouettes are black and white, respectively - see figure 2.1. This binary
mask can be used for further processing by other algorithms. If there are multiple silhouettes,
another reasonable representation is to give each connected silhouette a unique, positive number
in the image, with black still being background.

2.2 Background subtraction

A commonly used technique for silhouette extraction is based on background subtraction [6–
8]. Background subtraction is a process where the background in video is subtracted from
the image, leaving us with the silhouettes of the foreground elements. A number of different
methods and algorithms have been presented, as we will see below.

The basic principle of the technique is that we keep a background model of the video we

5

6

Figure 2.1: Example representation of a silhouette in a binary image

are capturing, either as a static background or as a dynamic model that is updated as the video
changes. This model is then an estimate of how the background would look if no foreground
objects were present [6]. We compare the current video frame against this background model,
detecting foreground elements that have changed or moved in the video, or in some cases differ
from a known background property, usually color.

Many different background models and alterations to this basic principle exists [7–17].

Static background

In earlier approaches to background subtraction, e.g. [18, 19], the assumption has been that the
background is static.

Chroma keying, also known as green- or bluescreen is a static background subtraction tech-
nique widely used in television and movie-production. It is performed by having a solid color
background (usually green or blue) in the shot, to be able to easily separate the background from
the people in the foreground (see figure 2.21). The background is then replaced with something
else, e.g. a weather map, special effects or other videos or images. A limiting factor is that the
subject in the foreground has to avoid clothes with colors that are similar to the background, as
they then can be falsely segmented out as background elements.

Dynamic background

The assumption that the background is static has the effect that the algorithm won’t work cor-
rectly under different changing conditions in the background video. This can for example be

1http://en.wikipedia.org/wiki/Chroma_key (last accessed: 15/04-2012)

7

Figure 2.2: Demonstration of blue screen at the Special Effects show, Museum of Science,
Boston.

light conditions, e.g. light gradually changing during the day, clouds appearing over the sun,
lamps being dimmed in a room etc. Moving objects in the background, like waving branches
on trees, waves at the ocean, rain and snow, or bigger things like someone parking a car in the
scene would also cause problems, as these elements would be recognized as foreground. This
limits the usage of these kinds of algorithms to controlled environments.

Dynamic background models use different methods to keep and update data about the back-
ground over time, to be able to adjust to changing conditions in the background. The back-
ground model usually use some sort of statistics of the previous background frames. This could
be e.g. the average or median of the last N frames, updating each pixel in the model on each

8

new frame. The update will only happen if the pixel is detected as background.
Hedayati et al. [9] and Benezeth et al. [8] reviewed some of the most common algorithms

using dynamic background modeling to keep track of changes in the background.
Median based modelling is a widely used technique, having the advantages of fast compu-

tational time, and reasonably good results. Median Filtering extracts background depending on
the median values of pixels in a buffer. Cucchiara et al. [10] showed that using median filtering
allowed fast detection of moving objects. Hung et al. [20] presented an approach for reducing
median computation, by using repetition checking of consecutive frames, showing good experi-
mental results. A recursive version of Median based modelling, Approximate median, proposed
by McFarlane and Schofield [11], tries to predict the median values to reduce computational
time.

Gaussian based modelling models each pixel as one or more Gaussian distributions. It
is a recursive technique, and the two most common approaches are Gaussian Mixture Model
(GMM), proposed by Friedman and Russell [12] and Running Gaussian Average (RGA) by
Wren et al. in [13]. Gaussian based modelling has the advantage that it does not have to keep
a large buffer of frames in memory, thus lowering the total memory requirements. Stauffer and
Grimson [14] used a GMM to model each pixel, with good results in both outdoor and indoor
scenarios. The algorithm takes care of slow lighting changes, flickering computer screens,
waving branches on trees, etc. Shimada et al. [15] presented an approach where the number of
Gaussian distributions modelling each pixel can be increased and decreased dynamically, giving
reduced computational time, and higher accuracy.

Kernel Density modelling or Kernel Density Estimation (KDE), presented by Elgammal et
al. [16] is a non-parametric, distribution free model, estimating pixel intensity density from sam-
ple history values. Compared to a GMM-algorithm with the same amount of memory available,
higher sensitivity is reported on their KDE-algorithm. Zhang et al. [17] presented a modified
KDE-algorithm that also takes neighbouring pixels into consideration when estimating.

Thresholding

Thresholding is used when detecting changes in a new frame, compared to the background
model. Usually, the background model is subtracted from the value of the new frame, resulting
in the difference between the new frame and the background. One or more threshold values are
then used to separate the background from the foreground e.g. by saying that values above a
given threshold is foreground, below is background.

If thresholds are set correctly, they can improve detection accuracy, and lower computational
time. A manual threshold will not adapt to changes in the environment such as change in

9

lighting, and therefore an automatic thresholding algorithm is the preferred choice [9]. Otsu
Rosin [21] and Sezgin and Sankur [22] reviewed different methods for automatic thresholding,
regarding different background models.

Data validation / refinement of foreground

Data validation or refinement-techniques take care of correcting misclassified pixels after back-
ground subtraction has been performed. With misclassified pixels we mean background pixels
classified as foreground or foreground pixels classified as background. As there are usually
some errors in the detection and thresholding process, this step is needed to get more accurate
silhouettes.

Various techniques have been developed to take care of these errors: noise removal, blob
processing, object level feedback, saliency test and optical flow test [9], to mention some. We
will look closer at some refinement techniques in chapter 4.

2.3 Other ways to extract silhouettes

Even though background subtraction is a common approach for extracting silhouettes, other
approaches can be used. Chen et. al. [23] used motion detection and graph cuts for accurate
extraction of silhouettes, giving good experimental results in complex scenes.

Alahi et. al. [24] used a camera pair and stereo mismatch in combination with a Total
Variation framework to produce a dense disparity map for extracting silhouettes. Experiments
showed good results in complex scenes and with sudden changes in illumination.

2.4 Summary

In this chapter we have looked at silhouette extraction in video and presented our definition of
what it is. We have looked at a common approach using background subtraction, thresholding
and data validation/refinement, and finally mentioned a couple of other methods from literature.
In the next chapter we look at using GPUs for parallel programming, presenting the OpenCL
framework and common optimization strategies.

10

Chapter 3

Graphics Processing Units and OpenCL

In this chapter we look at using Graphics Processing Units (GPU) for parallel processing.

3.1 Introduction

In section 3.2, we look briefly at the evolvement of GPGPU. Section 3.3 introduces the OpenCL
framework for development on heterogenous platforms, with our focus being on GPUs. This
is followed by section 3.4, where we present some common optimization strategies used when
programming on GPU.

3.2 General-purpose computing on graphics

processing units

General-purpose computing on graphics processing units (GPGPU) has become increas-
ingly popular the last few years. Frameworks like CUDA and OpenCL have made it easy for
anyone with a modern graphics card to develop applications that take advantage of the great
parallel processing power provided by GPUs. In the field of computer vision, this has given us
the possibility to explore real-time computation of high resolution images and video, opening
for lots of new applications and use-cases. In this thesis we will use the OpenCL framework for
implementing our application on GPU.

11

12

3.3 OpenCL

3.3.1 Open standard for parallel programming

Khronos group, the technology consortium behind OpenCL, describe it like this:

OpenCL™ is the first open, royalty-free standard for cross-platform, parallel pro-
gramming of modern processors found in personal computers, servers and hand-
held/embedded devices. OpenCL (Open Computing Language) greatly improves
speed and responsiveness for a wide spectrum of applications in numerous market
categories from gaming and entertainment to scientific and medical software. [5]

In other words, OpenCL can be used on multiple platforms and with various types of hard-
ware, like CPUs and GPUs, as long as the vendor has implemented support for it. This means
that we can write software that is possible to run on different hardware, as long as it has support
for OpenCL.

Our focus will be on GPU implementations, even though OpenCL also can be used for dif-
ferent processors. As we mention in 3.3.2, different hardware may need different optimization
techniques, so even though an application will run on a GPU from another vendor, it may need
some vendor-specific tweaks to get good performance.

3.3.2 OpenCL-implementation and hardware used

Each vendor supporting OpenCL has its own implementation, supporting its hardware. These
implementations can differ a bit, both because they are implemented for different hardware, but
also because the implementations are not always identical. This means that optimizing for one
vendor’s hardware will not necessarily give the same results for another.

We will in this thesis use NVIDIA GPUs, and use the NVIDIA OpenCL 1.1 CUDA im-
plementation described in the NVIDIA OpenCL Programming Guide version 4.1 [25]. The
specification for OpenCL 1.1 is described in the OpenCL Specification version 1.1 [26]. The
hardware used is a NVIDIA GeForce GTX 460 card with compute capability 2.1.

Most of what is described here will apply to e.g. AMD GPUs, but may also differ in certain
ways regarding optimizations, implementation, etc. Covering two or more GPU vendors, and
optimizing differently for both of them is beyond the scope of this thesis.

3.3.3 Kernels

In OpenCL, the functions or programs that execute on GPU (or other processors) are called
kernels. They are written in the OpenCL C [26] language, very similar to regular C, with some

13

limitations, such as lack of recursion.

3.3.4 Kernel execution

NDRange

The kernels are executed in parallel over a specified number of work items, an NDRange, or
N-dimensional range, that can be 1, 2 or 3 dimensions. As an example, if we have a kernel
that is supposed to do something to every pixel in an image of size 256x256, we can launch a
2-dimensional range with width and height of the image. We then have one work item for each
pixel, addressable by its x and y coordinates in the image.

Work group

The NDRange, described above, is divided into work groups of a size chosen by the user, or
automatically by OpenCL. We could as an example choose a work group size of 16x16 for the
abovementioned 256x256 NDRange, giving us 256 work groups with 256 work items in each
group. Manually choosing the work group size is often advisable, in many cases even necessary,
giving us more control over how the kernel is executed.

This is essential when dividing our problem, and different work group sizes can also give
different performance because of memory access, as described in 3.4.2. Work items within
a work group can share local memory between them, giving fast access to neighboring work
items’ data. They can also synchronize, meaning that each work item can do some work until a
set point, then wait until every work item is finished, before continuing execution.

Work item

A work group is divided into work items, also called threads. Each work item executes the same
kernel, but has its own unique id, both a global id, and local (work group) id, in the dimensions
it is executed. This identifies the work item in the NDRange, thus giving it a way to index the
data it reads and writes to.

Work item execution

The work groups are scheduled and executed in a group of 32 work items, also called a warp,
or wavefront in AMD terminology. This should not be confused with a work group, where the
work items can share local memory. All the work items in a warp start executing at the same
time.

14

If the work items in the warp perform the same instructions, they will execute simultane-
ously. If conditional branches like if-statements cause work items to execute different paths
of the code, each path is executed serially, making the other work items wait until they share
the execution path again. For the best possible performance, branching should be avoided if
possible.

3.3.5 Synchronization

As mentioned, the work items can synchronize, meaning that they at specified points in the code
can wait for all the other work items to finish, before continuing execution. This can be very
useful in many situations. E.g. if each work item calculate something that is going to be reused
by other work items later, making sure it is written back to memory before continuing execution
is essential to get correct results.

3.3.6 OpenCL memory types

There are different memory types available in OpenCL, with different sizes and properties. We
will describe them below, and briefly mention possible uses where they fit.

Global memory

Global memory is located in device memory. It is accessed by memory transactions of size 32-,
64- or 128-byte. As an example, this means that if one work item reads one 4 byte integer, a
32-byte memory transaction has to be performed.

In a warp, these memory accesses are coalesced, meaning that if multiple work items in a
warp are reading elements from within the same 32, 64 or 128 byte memory block, these reads
are combined. This means that if the data the work items read is sequential (e.g. each of the 32
work items in the warp reads 4 bytes of sequential data), one 128 byte read can be performed.
If, however, the data is very spread or the access pattern is not sequential, multiple memory
accesses have to be performed. This will result in reading of lots of data that is not used, thus
causing the memory performance to decrease.

Using coalesced global memory is described more in 3.4.2.

Local memory

Local memory, called shared memory by NVIDIA, is fast on-chip memory accessible to every
work item in a work group. It is divided into memory banks, and different banks can be accessed
simultaneously.

15

Local memory is fast for all work items in a warp, as long as bank conflicts — accesses to
different data elements in the same memory bank at the same time — is avoided. Multiple work
items accessing the same elements of the same bank have no performance decrease, as the reads
are then broadcasted to the requesting work items. Writes to the same element are performed
by only one of the work items - which one is undefined.

If bank conflicts between two or more work items occur, those accesses are serialized, de-
creasing performance.

Local memory can give a very good performance increase when used on kernels where work
items are dependent on neighboring work items’ data. Each work item will read in its respective
data from global memory into local memory. The work group is then synchronized, before the
processing starts.

Private memory

Private memory is the memory used for variables in each work item. It can not be accessed by
other work items.

The private memory size and location is not defined in the OpenCL specification, so it
can differ between different devices and compilers. Minimizing usage of private memory can
therefore be a good precaution, but only proper profiling of the application can give an answer
to the effects of this, and the maximum amount that can be used before performance decreases.

Constant memory

Constant memory is, as the name tells us, read-only memory defined on the host before ex-
ecution of a kernel. It is placed in device memory, but is cached in the constant cache of a
multiprocessor, giving faster memory access on a cache hit. On a cache miss, the access time is
the throughput of device memory [25].

Texture (image) memory

Image2D and Image3D are special image types in OpenCL, optimized for image processing.
Multiple image formats with different data types and sizes are supported, ranging from 4 to 1
channel images. We can, however, put any data we want into image objects, as long as we make
sure to use the same data types (and an image format supporting that data type).

Texture memory is used for accessing Image2D and Image3D-objects in OpenCL. It is
cached, meaning that on a cache miss, it has to be read from device memory, but on cache
hit, it uses the texture cache, giving higher performance.

16

The cache is optimized for 2D spatial locality, giving best performance if work items in the
same warp all read data that is located close in memory.

Other reasons to use Image2D and Image3D objects in OpenCL include:

• Addressing calculations are performed by dedicated hardware

• Image boundary checks can be ignored, returning specified data on boundary misses

• Conversion between certain image types

• Built-in optional conversion and normalization of values

Even though there are multiple advantages of using Image objects, they can only be either
read or written within a single kernel call. This means that kernels performing changes to the
data during the execution will have to store these changes in other types of memory during
execution, and write them back to another write-only Image object in the end. In these cases,
using global memory with proper coalesced access may be a better choice.

3.4 Optimization strategies on GPU

There are multiple well-known strategies for optimizing performance when programming on
GPUs. Limits in memory sizes, different types of memory and knowing the way the work items
on GPU accesses memory are important aspects.

Another important aspect is to think about what kind of optimizations to focus on in the
different applications. Focusing on memory access in an application that mainly has problems
with branching, is for instance, not the best approach. Of course, some applications might need
more than one optimization strategy, but the main point is to focus on the major issues first.

In this section, we present some optimization-strategies often used when implementing on
the GPU.

3.4.1 Keeping and reusing data in device memory

Memory transfers between the host (CPU) and the GPU are very expensive, and can in many
cases take more time than the actual processing done in the kernel on the GPU.

As we usually call multiple kernels that perform different operations to the same data, trans-
ferring the data between host and device memory between every kernel call will cause a fatal
blow to the performance. Keeping the data in device memory after it has been transferred the
first time, and minimizing transfers back to the host unless it is absolutely necessary is of major

17

importance. This way one kernel performs a task, and the next one will reuse its memory as in-
put — without any transfers back to the host. The last kernel in the pipeline will finally transfer
back the needed results to the host.

Reorganizing our algorithms and kernels to reuse memory as efficiently as possible can
therefore be a major optimization.

3.4.2 Coalesced memory access

Accessing global memory is one of the biggest bottlenecks in GPU programming. When read-
ing and writing to global memory inefficiently, we can get major performance drawbacks com-
pared to the potential throughput.

As we mentioned in 3.3.6, each warp coalesces memory accesses, meaning that if each work
item in a warp read successive memory elements, they will be combined, or coalesced, into one
or more reads. If they read completely different memory locations, we will in the worst case
get 32 accesses of 32 Byte (when each work item reads 4 bytes).

Knowing that one 128 Byte memory access would be sufficient if all the elements read were
coalesced (in the best case), it is clear that planning the layout of memory and work groups is
very important.

3.4.3 Local memory

Accessing neighboring elements

When work items are dependent on accessing neighboring work items’ values, using local mem-
ory is essential. Each work item in a work group will be responsible for reading its own value
from global into local memory. The work group is then synchronized, making sure all the values
are available before execution.

After this is done, the work items access the values from local memory instead of global,
allowing faster access, unless bank conflicts occur, as described in 3.3.6.

3.4.4 Read-only data in constant memory

Some applications use data that is read many times, but never changes. In some of these cases,
using constant memory can give us a good performance boost. In some cases, however, the data
is too big to fit into constant memory, therefore it has limited uses.

One example where it would be smart to use constant memory, is if we are performing some
filtering to an image, using a filter-kernel. The filter-kernel is usually a block of values, maybe

18

8x8 or 16x16 pixels in size. The block is read for every work item in the whole image, and
does not change during execution. Mapping this region into constant memory could be very
profitable, as the memory is cached in the constant cache, thus giving better performance.

3.4.5 Using OpenCL Images

As mentioned in 3.3.6, using the OpenCL Image types can be profitable in many cases. In
kernels that need a lot of boundary checking, using images can be a good choice, as they can be
read out of bounds without crashing our program, but rather returning a border value, usually 0.

This way, branching caused by boundary checking can be avoided, increasing the execution
efficiency of the warps.

3.5 Summary

In this chapter we have presented the OpenCL framework, and how it can be used for GPU
programming. We have looked at the different memory types, execution model, and presented
some common optimization strategies to keep in mind when implementing on GPU.

In the next chapter we present a silhouette extraction algorithm, explaining the different
steps and talking a bit about how to implement it on GPU.

19

Chapter 4

Silhouette extraction algorithm

In this chapter we look at an algorithm for silhouette extraction proposed by Kim et. al. in [27].
This algorithm is the basis for our implementation-work in this thesis, implementing parts of it
on GPU for the best possible execution time.

We present the algorithm as it is in [27], looking into the details of the different parts. We
also discuss briefly some possible optimization techniques for implementing the different parts
of it on GPU. Our actual GPU implementation is presented in chapter 5.

4.1 Introduction

In the paper “Robust Foreground Extraction Technique Using Gaussian Family Model and Mul-
tiple Thresholds” [27], Kim et. al. describe a full pipeline for extracting silhouettes from video.
The algorithm is adaptive to changes in light and changes in geometry over time.

The steps covered in the paper include choosing a statistical model based on training data
(the first N frames in the video), creating and maintaining a background model based on this
data, and extracting the foreground using multiple thresholds.

It also includes shadow removal and various morphological processes for improving and
refining the extracted foreground mask, giving a better result in total.

In the following sections we take a closer look at the different parts of this algorithm, and
how they are connected. We will look at the following:

• Section 4.2: Training step

• Section 4.3: Background modeling

• Section 4.4: Background subtraction, thresholding and foreground extraction

• Section 4.5: Foreground refinement / morphological processes

20

21

• Section 4.6: Profile extraction

• Section 4.7: Background update

• Section 4.8: Output format

4.2 Training step

The algorithm has a training step initially, where the N first frames of the video are used to get
data about the background in the video, and choose a background model based on these data.
The number of training frames, N is not defined, but chosen by the user.

4.2.1 Selection of distribution form

Different probability distributions have different properties, and are often used and combined in
certain ways when creating background models.

This algorithm uses the Generalized Gaussian Family (GGF) distributions for modeling
the background. The GGF-model is parametric, meaning we can choose which form of distri-
bution to use for each pixel. This gives us the ability to choose the model that is most fit for our
data. In this specific algorithm, Gaussian and Laplace distributions are used, but this could be
expanded easily by changing the shape parameter.

Excess kurtosis

To be able to decide which distribution to use for each pixel of the image, we have to calculate
the excess kurtosis of each pixel of the training data. The excess kurtosis tells us if the data is
flat or peaked relative to a normal distribution, giving us information about the most suitable
model for each pixel. For calculating the excess kurtosis we first need to calculate the mean and
variance of the traning data.

The equation for calculating excess kurtosis, g2 , is shown in eq. 4.1. Here, n is the number

of samples/training images. x is the pixel value and µ is the mean of the samples for one pixel.

g2 =
m4

σ4
− 3 =

n
�n

i=1(xi − µ)4

(
�n

i=1(xi − µ)2)2
(4.1)

For each pixel, we select the distribution form most fit for its excess kurtosis value, and use
that distribution when creating the background model. The excess kurtosis for Gaussian is 0

and for Laplace it is 3. In the GGF-model, the shape parameter β selects the distribution form.

22

β = 2 means a Gaussian distribution, and β = 1 means a Laplace one. These values will be
used when creating and updating the background model, described in section 4.3.

4.2.2 Possible optimizations

Memory usage when calculating statistics

For calculating the excess kurtosis, we need the mean and variance of the data. As we see in
eq. 4.1, we also have to sum N training frames per pixel, meaning we have to keep all the
N training frames in memory to perform the needed calculations. This can consume a lot of
memory, depending on the size of the video, and the number of training frames.

As memory is more limited on GPU than on the host, and memory transfer times gives us
longer total execution time, we propose to use running, or online statistics, as presented in [28]
and [29]. Instead of keeping all frames, we update the mean and variance when each new frame
is processed, keeping only the result.

We will investigate this futher in chapter 5.

4.3 Background modeling

A background model is, as described in chapter 2, used for keeping statistics of the background
over time. This way we can compare new frames to the background model and use this infor-
mation for segmenting out the foreground elements.

4.3.1 Two background models

The algorithm uses two distinct background models: one based on the luminance of the image
and one based on the color.

As normal RGB components are sensitive to changes in lighting and noise in the video, the
luminance model is used for the initial detection and segmentation of the foreground objects.

The color component on the other hand, is used for removing shadow regions incorrectly
detected as foreground in the previous step. More specifically, the H component of the HSI
color space is used. The color component is used for shadow-removal because even though the
brightness change in shadow-regions, the color remains rougly the same.

23

4.3.2 Color conversion

The assumed input to the algorithm is RGB image data. As we need one luminance component
and one color component for our background models, the RGB-data is converted to these two
components, as described below.

Luminance component

The equation for extracting the luminance component Y is not mentioned by Kim et.al., so we

extract it using eq. 4.2, assuming a regular conversion from RGB to YUV [30].

Y = R× 0.299 +G× 0.587 + B × 0.114 (4.2)

Color component

The color component H from the HSI-model is used for the color model. This is extracted as
shown in 4.1 [27].

Figure 4.1: Extraction of the color component H from RGB

4.3.3 Creating background models

When we have performed the training step and chosen distribution types, we can create the
actual background models, starting with a new video frame. The equation for GGF-distributions
is shown in eq. 4.3 where Γ is a gamma function, and γ = 1

σ(
Γ(3/ρ)
Γ(1/ρ)). x is the pixel value, σ

is the standard deviation of the pixel value and µ is the mean. The mean and standard deviation
is first calculated from the training frames, and later updated as shown in section 4.7.

24

The value of ρ choose the distribution type, so ρ = 2 represents a Gaussian distribution
and ρ = 1 a Laplace distribution.

p(x : ρ) =
ργ

2Γ(1/ρ)
exp(−γ

ρ|x− µ|ρ) (4.3)

This is done for both color data and luminance data, creating two distinct models. The same
equation is then used for each new frame.

4.3.4 Possible optimizations

Color-conversion

The algorithm assumes RGB image data, but converts it to Y (luminance) and H (color). Getting
YUV-data as input instead of RGB could save at least one conversion, getting the Y-component
directly. This might save some computation time, but this also depends on the possibility of
conversion from YUV to HSV.

4.4 Background subtraction, thresholding

and foreground extraction

4.4.1 Background subtraction and thresholding

In the thresholding step, three different threshold values, K1, K2 and K3 are used to define
which group each pixel of the subtracted image belong to. The pixels are divided into four
groups:

• Reliable background

• Suspicious background

• Suspicious foreground

• Reliable foreground

The threshold values K1, K2, K3 are predefined, and needs to be tuned to perform well on
different video data. This is a limitation of this algorithm, making it a bit harder to adapt to new
locations and environments.

The background is subtracted and pixels are thresholded as shown in 4.2 [27]. LI is the lu-
minance component of the current frame and LB is the luminance component of the background

25

model. σ is the standard deviation of the background model and p means the current pixel. The
luminance background-model is subtracted from the luminance data of the new frame, and the
absolute value of this subtraction is used as input to the thresholding.

Figure 4.2: Subtracting background and thresholding image

Pixels that belong to the Suspicious foreground region will sometimes be shadows and re-
flections incorrectly detected as foreground. Therefore, a shadow removal is performed on these
pixels, using the equation in 4.3 [27]. Here, HI is the color component of the image, HB is the
color background model and σH is the standard deviation of the color background model.

The pixels that are marked as being shadows are relabeled as Suspicious background.

Figure 4.3: Shadow removal in suspicious foreground

4.4.2 Foreground extraction

After the thresholding has been performed, the pixels identified as Foreground and the remain-
ing pixels in Suspicious foreground are put into a one channel image as foreground pixels (1).
The rest are all marked as background (0). In addition to this, we keep the pixel classifications,
as they are to be used in 4.6.2.

4.4.3 Possible improvements

To get more control over the shadow removal, introducing another threshold value, e.g. KBG

instead of using K1 in this step would allow for more fine-tuning of the result.

26

4.5 Foreground refinement / morphological processes

4.5.1 Motivation

After foreground extraction is performed, the foreground may contain gaps and holes wrongly
detected as background, or noise wrongly detected as foreground. As this is not necessarily
good enough for many use cases, improvements of these regions are needed. The resulting
one channel image from the foreground extraction step in section 4.4 is further processed using
various morphological processes.

4.5.2 Closing and opening

Closing and opening operations are performed to remove small noise regions, and growing
together regions that have small gaps between them. Closing and opening are morphological
operations consisting of in total four operations, as shown in Figure 4.4. Closing is performed
by doing one dilate operation, followed by one erode. Opening is the opposite of this, one erode
followed by one dilate.

Figure 4.4: Steps in a closing and opening

Dilation

Dilation is the process of growing foreground regions. Each pixel looks at its neighbouring
pixels, defined by a structuring element (most often a 3x3 block of pixels, where the given pixel
we look at is the one in the middle). If one of the neighboring pixels are marked as foreground,
that pixel will also be marked as foreground. This is a way to remove small holes in foreground
regions, making the detected foreground more robust.

Erosion

Erosion is the opposite of dilation. We look at the neighbouring pixels, and if one of them are
marked as background, this pixel is also marked as background.

27

Effect

The effect of a closing followed by an opening is that pixels that are close to other pixels will
be merged together. Pixels that are spread around, however, such as noise in the image that is
small enough, are removed. There is most often still some noise left after this is done, if there
are larger noise regions in the image.

Figure 4.5 shows the effect of a closing and opening of a segmented video frame. As you
can see in the first dilate step, many pixels of the segmented person in the foreground are tied
together. In the two following erode steps, some of the smaller noise regions are removed. A
negative side effect of this is that some of the unconnected regions inside the person are also
removed.

The last dilate step expand the remaining foreground regions, also including the remaining
noise regions.

4.5.3 Connected Components Labeling

Some regions are wrongly detected as foreground, even after the closing and opening step ex-
plained above. To filter out these regions, we use a threshold THRG, set to 0.1% of the image
size. We remove the regions that have fewer connected pixels than THRG. To be able to do
this, we have to find the connected pixels, or components of the image, using a Connected

Components Labeling (CCL) [31] algorithm.

Input and output

As input, we use the output of the closing and opening step, where background pixels have the
value 0 and the foreground pixels have values 1. As output, a one channel image where each
region of connected components have a unique positive integer is preferred. We also need to
store the size of each region.

Choice of algorithm

There exists multiple algorithms for CCL, both on CPU [32–34] and GPU [35–37]. Kim et
al. [27] use one of the algorithms from [38], but do not mention which one. Since we are
focusing on a GPU-implementation, we have to find one that fits our goal of high performance.

28

Figure 4.5: Effects of a closing and opening

4.5.4 Optimization strategies

When implementing these morphological operations on GPU, we have to think about how the
memory is accessed. In the previously mentioned steps, each pixel only depended on itself.
Here we have to look at neighbouring pixels, and as we saw in chapter 3, using local memory
could be one way to optimize this. As we also have to check image boundaries when accessing
neighbouring pixels, using the OpenCL Image types might prove helpful. OpenCL Images have
automatic boundary checking, meaning we can avoid branching that would normally be caused
by checking image boundaries.

29

The Connected Components Labeling is even more demanding, potentially accessing pixels
spanning over large areas of the image. OpenCL Images, local memory and merging the data
between the work groups are all possible strategies to look into, depending on the algorithm.

4.6 Profile extraction

The last steps consists of smoothing the resulting foreground regions, using a profile extraction
technique that covers small concavities and holes inside and around the objects.

4.6.1 Covering the object

It is performed by moving a one pixel thick drape from one side to the other of each object.
The pixels adjacent to the drape are connected with something described as an “elastic spring”,
covering the object, but without infiltrating gaps smaller than a set threshold M . This is per-
formed from all edges of the object, covering the object as shown in Figure 4.6. The foreground
is shown as black in the figure, for better readability.

After this is done, everything inside the “elastic spring” is marked as foreground, refining
the silhouette.

4.6.2 Fixing covered holes in the object

This profile extraction step covers actual holes inside the objects, so as a final step, holes in the
objects that are bigger than a set threshold and that was masked as reliable background in the
thresholding step are opened again.

4.6.3 Optimization strategies

To limit our scope a bit, we will not implement this specific part on GPU. We will however
discuss a bit what to think about if doing so.

4.7 Background update

The algorithm supports two different kinds of background changes:

• Gradual changes in lighting

• Changes in background geometry

30

Figure 4.6: Profile extraction applied to foreground element

4.7.1 Gradual changes in lighting

To deal with the gradual changes in the background caused by changes in the lighting, the mean

and variance used in the background model is updated with a running average for each pixel, as

31

shown in eq. 4.4.

µt + 1 = αxt + (1− α)µt

σ
2
t+1 = α(xt − µt)

2 + (1− α)σ2
t (4.4)

Here, xt means the current pixel value. α = 0.5 if xt is marked as background in the
previous steps. If xt is foreground, α = 0. This means that the background will only be
updated for the pixels marked as background in the preivous steps. The foreground pixels will
not alter the background model.

4.7.2 Changes in background geometry

If an object in the video is moved to a new location, and stays there for a long time, or per-
manently, both the new and the old location will be detected as foreground. Since it will not
change over time, it will be marked as foreground permanently.

This problem is handled by having a counter on foreground pixels. If they have been fore-
ground for THBg frames, the background models are replaced by new ones, thus setting the
foreground pixel as background again. The threshold THBg is chosen manually, depending on
the wanted behaviour.

The replacement is only done if the pixels are not connected to a foreground region where
some of the pixels change over time. E.g. if a person is standing in the same spot, but moving
his arms, it would be wrong to set the rest of the body as background, just because only the arms
are moving. Therefore, if any pixels in the same connected region are changed, the counter for
all the pixels in the region are set to zero again.

Memory requirements

To be able to replace background models at any given time, we need to keep image data for
a certain number of frames at all times, so we can recalculate the mean and variance of each
pixel when needed. As mentioned in section 4.2, we could use running statistics for keeping the
mean and variance, saving a lot of memory.

This means we will keep another set of mean and variance, separate from the background
model, in case we need to replace the background model for some of the pixels.

32

4.8 Output format

The output of a silhouette extraction algorithm should obviously be silhouettes in some form.
As the term silhouettes can be a bit abstract, we want to clarify in what form we will output the
silhouettes.

4.8.1 One number for each silhouette

Different applications will probably benefit from different kinds of output, but with this ap-
proach, the output silhouettes are represented as positive numbers in a one channel image. Each
unique number represents one silhouette of connected pixels, and the number 0 represents back-
ground pixels.

4.8.2 Limitations

The silhouettes can be sorted and relabeled so that e.g. the biggest silhouettes gets the lowest
number. This does however not guarantee that a silhouette will have the same identification
number over multiple frames, as the size will change from one frame to the other. Therefore,
we would need other measures for identifying and following objects. This will not be explored
further in this thesis.

4.9 Summary

In this chapter we have explored an algorithm for extraction of silhouettes from video. We have
looked at the different steps, and briefly discussed strategies for implementing it on GPU.

In chapter 5, we look at the implementation of some of the specific parts of this algorithm
on GPU, using OpenCL. We try out different optimizations and measure the effects they have
on the execution time.

33

Chapter 5

GPU Implementation

In this chapter we present a GPU implementation of most of the steps in the algorithm we
presented in chapter 4. We try out various optimization strategies and evaluate the effects.

5.1 Introduction

As we saw in chapter 3, there are several ways to optimize the performance when using GPU
implementations in OpenCL. In the following sections, we look at the steps of the algorithm,
as presented in the previous chapter, and try different optimization approaches to improve the
execution time.

We describe our implementation and try out different solutions and alterations.

5.1.1 Steps not implemented

To limit the scope of our work a bit, the profile extraction and some of the filtering steps are not
implemented, but we present some aspects to think about when solving these steps on GPU.

5.1.2 Method for testing and evaluation

As optimizations are explored, we measure the execution time of each step by taking the current
time before and after the execution and calculating the elapsed time.

The results shown is to be read as the runtime of one video frame, showing the minimum,
maximum and mean runtimes, as this can differ between frames. In the case of connected
component labeling, the differences between frames can be pretty big, as they depend on the
detected foreground in the image, and size of the connected components.

34

35

Running of tests

Tests are run and results calculated as follows:

• All the tests, on two different videos, resolutions and variations of the algorithm, are run
5 times each.

• For the mean-result, the average of the 5 runs is presented.

• For the min-result, the min of all 5 runs is presented.

• For the max-result, the max of all 5 runs is presented.

Total runtime measurement

After finding the implementations that give the best runtime of each step in the algorithm, we
finally measure the total execution time of all the implemented steps. The maximum execution
time has the highest weight of the measurements here, telling us what we can expect from the
algorithm in the worst case (with our video data).

Experimental data used for testing

The video we have used is captured with a Sony NEX-5N digital camera. The original captured
data was 1920x1080 pixels, but we have resized it to two sizes: 1024x576 and 512x288, reen-
coded to x264, 25 FPS. All test video was encoded in the same way - no noise reduction was
applied.

We use two videos for our experiments. What will be referred to as “Video 1” is captured in
a living room at night. The light sources in the room are all artificial (lamps), creating different
shadows as a subject walks around in the room. There are also pictures on the walls with glass
frames, causing reflections.

“Video 2“ is captured in larger room with chairs and desks, some glass walls and polished
floors, possibly causing reflections. A person walks around in the scene, sometimes being partly
covered by the furniture in the room.

Both videos start without a subject in the foreground, as described in 5.1.3. The first frame
of the videos are shown in fig. 5.1 and fig. 5.2.

36

Figure 5.1: Video 1 - First frame

Figure 5.2: Video 2 - First frame

37

5.1.3 Assumptions and notes

Video dimensions

We assume that the video width and height is dividable by 16 and 32 as this is needed by our
chosen work group sizes. A solution to this limiation could be to pad the input video to the
nearest width and height, and not include these padded regions on output, but we have not
implemented this.

Empty background initially

Another assumption about the video is that it starts with a few seconds of just background,
without foreground elements present. This is needed by the training step of the background
subtraction algorithm we use, to build an initial background model.

Different video, different results

In some of the steps in the program the content of the video will have an impact on performance.
E.g. a video with multiple, large foreground objects, will give a longer runtime than a video
with few, small foreground objects. This is especially the case in the CCL part of the algorithm,
where the number of iterations is dependent on the size of the connected component.

Even though our test video try to cover both large and small objects in the foreground to
give a realistic runtime measurement, the results will not automatically apply to any video.

5.1.4 Choice of work group sizes

We have chosen to try two different work group sizes: 16x16 and 32x32 work items in each.
We do this to see if it affects the runtime, and in that case, how much. In addition to this,
in the kernels that do not require fixed work group sizes (where each work item can work
independently), we also let the OpenCL subsystem choose its own work group sizes (by not
specifying it explicitly). This is done to see if it results in better or worse runtimes than our
chosen work groups.

5.1.5 Source code

The source code for our implementation can be downloaded from http://hjem.ifi.uio.no/kristhk/master-
thesis/. The code is released under the GNU Lesser General Public License Version 2.1 (LGPLv2.1).

38

5.2 Training step

5.2.1 Parallelization

The training step, where we calculate the mean and variance of a given number of frames,
is per-pixel parallel. This means that each work item can be responsible for its own pixel
without needing to access any of the other work items’ data. This makes the implementation of
the traning step very easy, not having to think about memory accesses between neighbouring
threads.

The training step also includes a kernel that performs conversion of RGB data to luminance
Y and color component H. The measurements performed are of both these kernels in total.

We run the kernels as a 2D-grid with the width and height of the input image. The work
group sizes are as described in 5.1.4.

5.2.2 Running statistics

As mentioned in chapter 4, we use running statistics for calculating mean, variance and excess
kurtosis. Instead of grabbing all training frames, transferring them to the GPU-memory, and
then executing the training-kernel, we execute the kernel once for each training frame, copying
only that frame.

The amount of data transfer is the same in total, as we execute the kernel for every new
training frame. We can, however choose how many training frames we want to use, without the
amount of memory available on the GPU being a limiting factor.

Another problem with copying and processing all the frames in one step is that we might
have to drop new frames that were supposed to be used in the next steps, because of the training
step taking too much time. By processing one frame at a time, we can keep our goal of real-time
performance, without dropping any frames.

5.2.3 Optimizing memory access

Since each thread only needs data for its own pixel, we will not have to use local memory shared
between threads. We do, however, have to read and keep some data in global memory between
each iteration of the training step:

• Mean

• Second, third and fourth moment about the mean

• Variance

39

• Image data

• Storage/map for which distribution to use

Bundling data

This data has to be stored for both the color and the luminance, creating a need for lots of
data buffers to be passed to the kernel, and lots of reads and writes to global memory. To
minimize this we choose to bundle / pack multiple values into one buffer, reducing the number
of reads/writes we have to do in each kernel.

We keep image data in an int2, distribution map in an int2, mean and variance in a float4,
and each of the moments about the mean in float2s. This way, each thread can read and write
more than one value from global memory at a time.

We test our implementation with and without this data bundling, to see if we gain anything.

5.2.4 Experimental results

As we can see from the results in table 5.1, the runtime differences are quite small, actually
showing a slightly worse min and mean runtime on the 512x288 videos that have bundled data.
The max runtime is though around 0.22 ms lower on all workgroup sizes.

On the 1024x576 videos, we see a slightly more positive difference all over, giving around
0.15 ms lower min and mean, and on average 0.28 ms lower max runtime.

Even though the differences seem very small, we do gain a little bit on high resolution
videos. The 16x16 work group size is giving the best overall performance, showing little differ-
ence in the 512x288 videos, but slightly lower (around 0.10 ms) min and mean runtimes on the
1024x576 ones, compared to the other work group sizes.

The runtime does not differ mentionable between the two videos. This was expected, since
the kernels in the training step are all per-pixel parallel and the data does not change the be-
haviour of the program.

5.3 Background modeling

Creating and updating the background model for every new frame is a relatively simple proce-
dure, since this is also a per-pixel parallelization. The data needed for reading and writing is
bundled in the same way as mentioned above.

The kernel is very simple, just performing the needed calculations and writing back to mem-
ory. It does perform a lot of mathematical operations that could slow down the execution, but

40

Without bundling of data

WG size Video 1 Video 2

512x288 1024x576 512x288 1024x576

min max mean min max mean min max mean min max mean

Auto 0.38 1.01 0.42 1.69 2.45 1.78 0.38 1.04 0.41 1.68 2.57 1.76

16x16 0.39 0.99 0.42 1.59 2.44 1.68 0.39 0.99 0.41 1.58 2.44 1.65

32x32 0.38 1.02 0.42 1.68 2.52 1.78 0.38 1.05 0.41 1.69 2.81 1.76

With bundling of data

Auto 0.44 0.79 0.47 1.55 2.27 1.63 0.44 0.76 0.46 1.55 2.23 1.60

16x16 0.44 0.77 0.46 1.45 2.22 1.53 0.44 0.77 0.46 1.44 2.19 1.50

32x32 0.46 0.80 0.48 1.54 2.30 1.63 0.46 0.79 0.48 1.54 2.30 1.60

Table 5.1: Training step: Runtime in milliseconds

no branching is needed, making this a straight forward kernel to implement. The code for the
kernel using bundled memory is shown in listing 5.1. Accessing multiple elements in bundled
data is done by accessing varname.s0, varname.s1 etc.

1 _ _ k e r n e l vo id upda te_bg_model (g l o b a l i n t 2 * Data , g l o b a l f l o a t 2 * lc_Model ,
g l o b a l f l o a t 4 * M_V, g l o b a l i n t 2 * DistMap) {

3 / * i d f o r t h i s p i x e l * /
i n t i d = g e t _ g l o b a l _ i d (1) * g e t _ g l o b a l _ s i z e (0) + g e t _ g l o b a l _ i d (0) ;

5

/ * M_V c o n t a i n s : luma−mean , c o l o r−mean ,
7 luma−v a r i a n c e , c o l o r−v a r i a n c e , i n t h a t o r d e r * /

f l o a t 4 MV = M_V[i d] ;
9 f l o a t 2 model = lc_Model [i d] ;

i n t 2 d i s t _ ma p = DistMap [i d] ;
11 i n t 2 l c _ d a t a = Data [i d] ;

13 / * S t a n d a r d d e v i a t i o n i s s q r t o f v a r i a n c e * /
f l o a t lS tdDev = s q r t (MV. s2) ;

15 f l o a t cStdDev = s q r t (MV. s3) ;
i n t l D i s t = d i s t _m a p . s0 ;

17 i n t c D i s t = d i s t _m a p . s1 ;

19 / * C a l c u l a t e luma model * /
f l o a t Yl = (1 / lS tdDev) * (pow ((tgamma ((f l o a t) 3 / l D i s t)) /

21 (tgamma ((f l o a t) 1 / l D i s t)) , 0 . 5)) ;

23 model . s0 = ((l D i s t * Yl) / (2* tgamma ((f l o a t) 1 / l D i s t))) *
exp (pow(−Yl , l D i s t) * pow ((f a b s ((f l o a t) l c _ d a t a . s0 − MV. s0)) , l D i s t)) ;

25

/ * C a l c u l a t e c o l o r model * /
27 f l o a t Yc = (1 / cStdDev) * (pow ((tgamma ((f l o a t) 3 / c D i s t)) /

(tgamma ((f l o a t) 1 / c D i s t)) , 0 . 5)) ;
29

model . s1 = ((c D i s t * Yc) / (2* tgamma ((f l o a t) 1 / c D i s t))) *

41

31 exp (pow(−Yl , c D i s t) * pow ((f a b s ((f l o a t) l c _ d a t a . s1 − MV. s1)) , c D i s t)) ;

33 / * Wr i t e o u t model t o g l o b a l mem * /
lc_Model [i d] = model ;

35 }

Listing 5.1: OpenCL kernel for creating/updating background model

5.3.1 Experimental results

As we see in table 5.2, the runtime differences of bundling and not bundling the data in this
kernel are very small, with only the maximum time showing a slightly, non significantly better
runtime when bundling. This kernel needs fewer buffers than the mean, variance and kurtosis
kernel in the training step - so a possible explanation is that unless a large amount of buffers are
used, the effect of bundling the data is minimal.

Without bundling of data

WG size Video 1 Video 2

512x288 1024x576 512x288 1024x576

min max mean min max mean min max mean min max mean

Auto 0.62 0.75 0.62 2.55 2.68 2.56 0.62 0.76 0.62 2.56 2.69 2.56

16x16 0.60 0.74 0.60 2.36 2.48 2.36 0.60 0.75 0.60 2.36 2.49 2.37

32x32 0.66 0.80 0.67 2.61 2.73 2.62 0.66 0.83 0.67 2.61 2.75 2.62

With bundling of data

Auto 0.62 0.71 0.63 2.57 2.71 2.67 0.62 0.69 0.63 2.58 2.66 2.59

16x16 0.60 0.67 0.61 2.35 2.44 2.36 0.60 0.70 0.61 2.36 2.43 2.36

32x32 0.67 0.76 0.67 2.58 2.66 2.59 0.67 0.76 0.67 2.59 2.68 2.60

Table 5.2: Background modeling: Runtime in milliseconds

5.4 Background subtraction, thresholding

and foreground extraction

5.4.1 Subtraction and thresholding

The background model created in the step above is subtracted from the image data, to get
the difference. Afterwards, our predefined thresholds are used to separate each pixel into the
foreground and background groups explained in chapter 4. This is a pretty straight forward
kernel, but it includes some if-statements, creating branching.

42

As we also use manually set threshold values K1,K2,K3 we try to define them as constants
instead, to see if we gain anything. We also introduce a new threshold value, KBG, to be able
to fine tune the shadow removal independent on the value of K1.

The code for this kernel is shown in listing 5.2.

1 _ _ k e r n e l vo id s u b t r a c t _ a n d _ t h r e s h o l d (g l o b a l i n t 2 * Data , g l o b a l f l o a t 2 * lcModel ,
g l o b a l f l o a t 4 * M_V, _ _ w r i t e _ o n l y image2d_ t ou tpu t_ img , g l o b a l i n t * r e g i o n _ v a l u e s ,

3 /*− I f i n p u t o f n e x t k e r n e l i s glbl_mem :
g l o b a l u c h a r * o u t p u t _ b u f f e r −* /) {

5 i n t wid th = g e t _ g l o b a l _ s i z e (0) ;
i n t x = g e t _ g l o b a l _ i d (0) ;

7 i n t y = g e t _ g l o b a l _ i d (1) ;
i n t i d = (y* wid th) + x ;

9

/ * Get d a t a * /
11 i n t 2 l c _ d a t a = Data [i d] ;

f l o a t 2 model = lcModel [i d] ;
13 f l o a t 4 MV = M_V[i d] ;

15 f l o a t l D a t a = (f l o a t) l c _ d a t a . s0 ;
f l o a t cData = (f l o a t) l c _ d a t a . s1 ;

17 f l o a t lModel = model . s0 ;
f l o a t cModel = model . s1 ;

19

/ * S u b t r a c t luma d a t a f o r c u r r e n t f rame from luma model * /
21 f l o a t BD = f a b s (lDa ta−lModel) ;

23 / * I n i t i a l i z e t e s t r e s u l t t o 0 * /
u i n t o u t v a l = 0 ;

25 i n t r e g i o n _ v a l = 0 ;
f l o a t lS tdDev = s q r t (MV. s2) ;

27 f l o a t cStdDev = s q r t (MV. s3) ;

29 i f (BD < (K1* lS tdDev)) { / / Background
o u t v a l = 0 ;

31 r e g i o n _ v a l = 0 ; }
i f ((K1* lS tdDev) <= BD && BD <= (K2* lS tdDev)) { / / S u s p i c i o u s background

33 o u t v a l = 0 ;
r e g i o n _ v a l = 1 ; }

35 i f ((K2* lS tdDev) <= BD && BD <= (K3* lS tdDev)) { / / S u s p i c i o u s f o r e g r o u n d
o u t v a l = 1 ;

37 r e g i o n _ v a l = 2 ;
/ / E l i m i n a t e shadows from s u s p i c i o u s f o r e g r o u n d wi th h e l p from c o l o r−d a t a :

39 i f (f a b s (cData − cModel) < (KBG* cStdDev)) {
o u t v a l = 0 ;

41 r e g i o n _ v a l = 1 ; } }
i f ((K3* lS tdDev) <= BD) { / / Fo reg round

43 o u t v a l = 1 ;
r e g i o n _ v a l = 3 ; }

45

/ * Wr i t e o u t which group t h e d i f f e r e n t p i x e l s
47 were t h r e s h o l d e d t o * /

r e g i o n _ v a l u e s [i d] = r e g i o n _ v a l ;

43

49 /*− Depending on t h e n e x t k e r n e l s i n p u t , e i t h e r : −* /
/ * Wr i t e o u t p u t t o g l o b a l memory * /

51 o u t p u t _ b u f f e r [i d] = o u t v a l ;
/*− or −* /

53 / * Wr i t e o u t p u t t o Image2D * /
u i n t 4 ou tpu t_mask ;

55 ou tpu t_mask . s0 = o u t v a l ;
w r i t e _ i m a g e u i (ou tpu t_ img , (i n t 2) (x , y) , ou tpu t_mask) ;

57 }

Listing 5.2: OpenCL kernel for background subtraction and thresholding

5.4.2 Output data

The output from this kernel is a one channel image where the foreground pixels have the value
1 and the background pixels have the value 0. It is stored in either an OpenCL 2D-image, or a
uint8_t global memory buffer, depending on the kernels used in the closing and opening step,
as they expect either an image or a buffer. When writing to 2D-image, we use the CL_R format,
meaning that we only use one channel in the image for storing data.

Since the threholding divide each pixel into one of four groups, we also store this as values
1-4 in a global memory buffer.

5.4.3 Experimental results

As we can see in table 5.3, using constant memory for the threshold values give little or no
difference. The max runtimes are sometimes higher when using constants, but in some cases
the min and thus mean runtimes are actually lower.

A possible explanation to this could be that on the first frame, a cache miss occurs, giving
slower memory access, but on the rest of the video, the lookups will give cache hits, giving
higher performance. We have, however not tested if this is actually the case. Since this kernel
does not use these constants many times every execution, the benefits are probably too small
to pinpoint exactly, and effects of using constants would probably be more visible in a kernel
reading the same values many times on every execution.

5.5 Morphological processes

The morphological processes are the more advanced parts of this algorithm when it comes to
implementation on the GPU. Since these algorithms depend on data in their pixel neighbour-
hood and the rest of the image, both efficient memory accesses and boundary checking are

44

Without thresholds as constants

WG size Video 1 Video 2

512x288 1024x576 512x288 1024x576

min max mean min max mean min max mean min max mean

Auto 0.09 0.15 0.09 0.49 0.69 0.53 0.09 0.15 0.09 0.49 0.58 0.51

16x16 0.08 0.17 0.08 0.27 0.38 0.27 0.08 0.17 0.08 0.37 0.47 0.39

32x32 0.11 0.18 0.11 0.38 0.55 0.40 0.11 0.21 0.11 0.38 0.50 0.40

With thresholds as constants

Auto 0.08 0.20 0.09 0.38 0.54 0.39 0.08 0.20 0.09 0.38 0.54 0.39

16x16 0.08 0.19 0.08 0.28 0.43 0.28 0.08 0.19 0.08 0.28 0.45 0.28

32x32 0.11 0.23 0.11 0.39 0.56 0.40 0.11 0.22 0.11 0.39 0.56 0.40

Table 5.3: Background subtraction and thresholding: Runtime in milliseconds

important factors to consider for increasing performance.

5.5.1 Closing and opening

The two operations used in closing and opening, dilation and erosion, are very similar. Both
depend on their neighbouring elements, giving us some choices in how we want to implement
it. We tried the following implementations, to see what gave the best runtime.

Two kernels, called multiple times

We created two kernels, to perform the dilation and erosion, respectively. They kernels are
executed from the host as shown in the pseudo code in listing 5.3.

1 / * b u f f e r 1 c o n t a i n s t h e o u t p u t from t h e t h r e s h o l d i n g s t e p , and i s used as i n i t i a l i n p u t * /
/ * b u f f e r 2 i s empty i n i t i a l l y * /

3 d i l a t e _ k e r n e l (b u f f e r 1 , b u f f e r 2) ;
e r o d e _ k e r n e l (b u f f e r 2 , b u f f e r 1) ;

5 e r o d e _ k e r n e l (b u f f e r 1 , b u f f e r 2) ;
d i l a t e _ k e r n e l (b u f f e r 2 , b u f f e r 1) ;

7 / * R e s u l t now i n b u f f e r 1 * /

Listing 5.3: Execution of closing and opening kernels

Global memory

We first created two simple kernels that use global memory buffers. These kernels have to per-
form boundary checks at the edges of the image to not read out of bounds. The dilate kernel is
implemented as shown in 5.4. The erode kernel is similar, but using the min-function instead of
max, as it performs the opposite operation. The values are also initialized to 255 initially.

45

1 _ _ k e r n e l vo id d i l a t e _ i m a g e _ g l o b a l m e m (_ _ g l o b a l u c h a r * inpu t_ img ,
_ _ g l o b a l u c h a r * o u t p u t _ i m g) {

3 u i n t wid th = g e t _ g l o b a l _ s i z e (0) ;
u i n t h e i g h t = g e t _ g l o b a l _ s i z e (1) ;

5 u i n t x = g e t _ g l o b a l _ i d (0) ;
u i n t y = g e t _ g l o b a l _ i d (1) ;

7

u i n t i d = y* wid th +x ;
9

/ * I n i t i a l i z e t o 0 i n i t i a l l y * /
11 u c h a r my_val , l e f t _ v a l , r i g h t _ v a l , t o p _ v a l ,

bo t tom_va l , t o p l e f t _ v a l , t o p r i g h t _ v a l ,
13 b o t t o m l e f t _ v a l , b o t t o m r i g h t _ v a l = 0 ;

15 / * Read my v a l u e * /
my_val = i n p u t _ i m g [i d] ;

17

/*− Check b o u n d a r i e s f o r n e i g h . p i x e l s −* /
19 i f (x > 0) {

l e f t _ v a l = i n p u t _ i m g [(y* wid th) +(x−1)] ;
21 }

i f (x < (width −1)) {
23 r i g h t _ v a l = i n p u t _ i m g [(y* wid th) +(x +1)] ;

}
25 i f (y > 0) {

t o p _ v a l = i n p u t _ i m g [(y−1)* wid th +x] ;
27 i f (x > 0) {

t o p l e f t _ v a l = i n p u t _ i m g [((y−1)* wid th) +(x−1)] ;
29 }

i f (x < (width −1)) {
31 t o p r i g h t _ v a l = i n p u t _ i m g [((y−1)* wid th) +(x +1)] ;

}
33 }

i f (y < (h e i g h t −1)) {
35 b o t t o m _ v a l = i n p u t _ i m g [(wid th * (y +1)) +x] ;

i f (x > 0) {
37 b o t t o m l e f t _ v a l = i n p u t _ i m g [((y +1) * wid th) +(x−1)] ;

}
39 i f (x < (width −1)) {

b o t t o m r i g h t _ v a l = i n p u t _ i m g [((y +1) * wid th) +(x +1)] ;
41 }

}
43

/ * I f any of t h e n e i g h b o r i n g p i x e l s a r e f o r e g r o u n d ,
45 t h e r e s u l t o f max w i l l be f o r e g r o u n d * /

u c h a r max_top , max_center , max_bottom = 0 ;
47

max_top = max (max (t o p l e f t _ v a l , t o p _ v a l) , t o p r i g h t _ v a l) ;
49 max_cen te r = max (max (l e f t _ v a l , my_val) , r i g h t _ v a l) ;

max_bottom = max (max (b o t t o m l e f t _ v a l , b o t t o m _ v a l) , b o t t o m r i g h t _ v a l) ;
51

u c h a r max_a l l ;
53 max_a l l = max (max (max_top , max_cen te r) , max_bottom) ;

46

55 / * Wr i t e o u t r e s u l t * /
o u t p u t _ i m g [i d] = max_a l l ;

57 }

Listing 5.4: Dilate-kernel with global memory

OpenCL Image 2D

We also created two kernels using the built in Image 2D type in OpenCL. This way we can get
cached reads and do not have to think about boundary checking, as reading out of bounds just
return 0, without causing memory errors.

The difference in code is shown in the dilate-kernel in listings 5.5, 5.6, 5.7.

1 _ _ k e r n e l vo id d i l a t e _ i m a g e (_ _ r e a d _ o n l y image2d_ t inpu t_ img ,
_ _ w r i t e _ o n l y image2d_ t o u t p u t _ i m g) {

3 / * Sampler f o r image * /
c o n s t s a m p l e r _ t sampl = CLK_NORMALIZED_COORDS_FALSE |

5 CLK_ADDRESS_CLAMP |
CLK_FILTER_NEAREST ;

Listing 5.5: Dilate-kernel with Image 2D

/*− Get v a l u e s , don ’ t b o t h e r c h e c k i n g b o u n d a r i e s −* /
12 u i n t 4 my_val = r e a d _ i m a g e u i (inpu t_ img , sampl , (i n t 2) (x , y)) ;

u i n t 4 l e f t _ v a l = r e a d _ i m a g e u i (inpu t_ img , sampl , (i n t 2) (x−1, y)) ;
14 u i n t 4 r i g h t _ v a l = r e a d _ i m a g e u i (inpu t_ img , sampl , (i n t 2) (x +1 , y)) ;

u i n t 4 t o p _ v a l = r e a d _ i m a g e u i (inpu t_ img , sampl , (i n t 2) (x , y−1)) ;
16 u i n t 4 b o t t o m _ v a l = r e a d _ i m a g e u i (inpu t_ img , sampl , (i n t 2) (x , y +1)) ;

u i n t 4 t o p l e f t _ v a l = r e a d _ i m a g e u i (inpu t_ img , sampl , (i n t 2) (x−1, y−1)) ;
18 u i n t 4 t o p r i g h t _ v a l = r e a d _ i m a g e u i (inpu t_ img , sampl , (i n t 2) (x +1 , y−1)) ;

u i n t 4 b o t t o m l e f t _ v a l = r e a d _ i m a g e u i (inpu t_ img , sampl , (i n t 2) (x−1, y +1)) ;
20 u i n t 4 b o t t o m r i g h t _ v a l = r e a d _ i m a g e u i (inpu t_ img , sampl , (i n t 2) (x +1 , y +1)) ;

Listing 5.6: Dilate-kernel with Image 2D

/ * Wri t e o u t * /
34 w r i t e _ i m a g e u i (ou tpu t_ img , (i n t 2) (x , y) , max_a l l) ;

Listing 5.7: Dilate-kernel with Image 2D

One kernel, called once

Another possibility is to have only one kernel that performs the whole closing and opening
operation. To make this work, synchronization between the work groups has to be performed
between the different steps.

We created a kernel that reads the data from global into local memory before using it. This
way the work items get faster access to their neighboring pixels.

47

Since we need synchronization between the four dilate and erode steps, we write the pixels
of the work group back to global memory between each step, synchronizing the work items
afterwards, and then reading back the changed border pixels into local memory before executing
the next step. This way we can execute all the steps inside one kernel, avoiding the overhead of
executing multiple kernels.

A negative effect of this approach is that the kernel gets more boundary checking and
branching, and gets generally more complex.

Another negative impact this method has is that the reusability of the code for other purposes
is limited, as we don’t separate the erode and dilate functions. In our case this is not important,
as trying to get the best possible runtime is our goal.

Note: This kernel had some small implementation bugs that caused some artifacts in the
output, but since this shouldn’t impact the performance, we include it in our runtime results
for comparison. An excerpt of the code, including the first dilate step is shown in listing 5.8.
read_border_regions is an inline OpenCL function where we check image boundaries and read
back the border regions to local memory. If out of bounds, a specified value (here 0) is inserted
instead.

_ _ k e r n e l vo id c lo se_and_open_ image (_ _ g l o b a l u c h a r * inpu t_ img ,
2 _ _ g l o b a l u c h a r * ou tpu t_ img ,

_ _ l o c a l u c h a r * l_ img) {
4 u i n t wid th = g e t _ g l o b a l _ s i z e (0) ;

u i n t h e i g h t = g e t _ g l o b a l _ s i z e (1) ;
6 u i n t b l o c k _ w i d t h = g e t _ l o c a l _ s i z e (0) ;

u i n t b l o c k _ h e i g h t = g e t _ l o c a l _ s i z e (1) ;
8 / * 1 p i x e l padd ing around t h e image f o r b o r d e r s * /

u i n t b l o c k _ w i d t h _ p a d = b l o c k _ w i d t h + 2 ;
10 u i n t b l o c k _ h e i g h t _ p a d = b l o c k _ h e i g h t + 2 ;

u i n t x = g e t _ g l o b a l _ i d (0) ;
12 u i n t y = g e t _ g l o b a l _ i d (1) ;

u i n t g l o b a l _ i d = y* wid th +x ;
14

/ * Loca l x and y * /
16 u i n t l x = g e t _ l o c a l _ i d (0) ;

u i n t l y = g e t _ l o c a l _ i d (1) ;
18 l x = l x + 1 ; / / Compensate f o r padd ing

l y = l y + 1 ; / / o f l o c a l mem
20 u i n t l o c a l _ i d = (b l o c k _ w i d t h _ p a d * l y) + l x ;

22 / * Read my v a l u e t o l o c a l mem * /
l_ img [l o c a l _ i d] = i n p u t _ i m g [g l o b a l _ i d] ;

24

/ * Read b o r d e r r e g i o n s (padd ing) t o l o c a l memory * /
26 r e a d _ b o r d e r _ r e g i o n s (inpu t_ img , l_img ,

width , h e i g h t , x , y ,
28 lx , ly , b lock_wid th ,

b l o c k _ h e i g h t , 0) ;
30

48

/ * Done r e a d i n g t o l o c a l memory . S y n c h r o n i z e * /
32 b a r r i e r (CLK_LOCAL_MEM_FENCE) ;

34 / * 1 s t d i l a t e * /
u c h a r max_a l l = f i n d _ m a x _ v a l u e (l_img , b lock_wid th_pad , lx , l y) ;

36 b a r r i e r (CLK_LOCAL_MEM_FENCE) ;
l_ img [l o c a l _ i d] = max_a l l ; / / s t o r e v a l u e i n l o c a l mem

38

/ * Sync t o g l o b a l mem * /
40 i n p u t _ i m g [g l o b a l _ i d] = max_a l l ;

b a r r i e r (CLK_GLOBAL_MEM_FENCE) ;
42

/*− −−− CUT −−− −* /
44 /*− A f t e r t h i s , e rode , e r o d e and d i l a t e f o l l o w s −* /

/*− Data i s synced and b o r d e r r e g i o n s r e a d back between each s t e p , a s above −* /

Listing 5.8: Closing and opening in one kernel, excerpt

Structuring element and neighbourhood

We use a structuring element of 3x3 and eight-neighbour connectivity, meaning that our pixel
is in the middle of a 3x3 pixel-block, and we look at the neighbouring pixels in all 8 directions.
This is the usual way to perform dilation and erosion. Other structuring elements are possible,
but in our implementation we have hardcoded the use of a 3x3 structuring element, to focus on
reliability and not flexibility, thus simplifying the kernel.

Experimental results

As we see in table 5.4, the Image2D kernels actually give the worst runtimes in all the cases,
both compared to the global memory kernels and the single kernel with global and local mem-
ory. In some cases, the maximum runtime is more than 3 times as slow as the global memory
version.

These results show us that even though OpenCL Image objects have automatic boundary
checking and caching, it is not always the best choice for every implementation. Benefiting
from the caching requires us to get many cache hits, and judging from the numbers, this has
not been the case here. The kernels are also very simple, where the work items only read once
from memory. A lesson learned from this is that implementing multiple versions of the same
program can save us alot of execution time.

Comparing the global memory kernels against the single global/local-kernel, we see that the
runtimes are pretty similar on the two kernels, with the min and mean runtimes of the global
memory kernels being a bit lower than the single kernel. The single kernel does, however have

49

a slightly lower maximum runtime (around 0.10 ms) on the higher resolution video using 16x16
workgroups. The 16x16 workgroups also give the lowest runtimes in all the implementations.

For the lowest predictable max runtime, the single kernel with global and local memory
will therefore probably be the best choice when using higher resolution videos, however the
differences are minimal compared to the global memory two-kernel approach.

Multiple kernels with global memory

WG size Video 1 Video 2

512x288 1024x576 512x288 1024x576

min max mean min max mean min max mean min max mean

16x16 0.18 0.43 0.18 0.61 0.93 0.62 0.18 0.19 0.18 0.61 0.87 0.62

32x32 0.21 0.24 0.21 0.76 1.02 0.76 0.21 0.23 0.21 0.76 1.07 0.76

Multiple kernels with Image 2D

16x16 0.34 0.57 0.35 1.22 1.47 1.23 0.34 0.38 0.35 1.22 1.53 1.23

32x32 0.51 0.84 0.51 1.91 2.31 1.92 0.51 0.77 0.51 1.91 2.17 1.92

One kernel with global and local memory

16x16 0.18 0.19 0.18 0.70 0.79 0.70 0.18 0.27 0.18 0.70 0.79 0.70

32x32 0.26 0.35 0.26 1.00 1.09 1.00 0.26 0.33 0.26 1.00 1.07 1.00

Table 5.4: Closing and opening: Runtime in milliseconds

5.5.2 Connected Components Labeling

Algorithms

Our plan was to try two algorithms for CCL, finding weak spots and choosing the algorithm
best suited for our problem. At the time of writing however, only one of the algorithms are
functional enough for testing, so we present the runtimes of this algorithm.

Label equivalence algorithm

This algorithm is presented by Kalentev et. al. in [36]. It is a label equivalence algorithm, based
on the algorithm presented in [35] by Hawick et. al. This algorithm is divided into three steps:
Initialize labels, scanning, analyzation.

Initialize labels

The initialization step reads the values from the closing and opening step, and gives each pixel

50

a unique value, equal to its pixel position in the image. The background-pixels keep their value
(0).

In this step, each pixel is independent on the others, so we launch the kernel as a 2D-grid the
size of the image. We try 16x16, 32x32 and automatic work group sizes. The input and output
is Image2D in our implementation, but we could just as well used global memory here, since
this step does not depend on neighboring pixels.

Scanning

In the scanning step, each work item look at its neighboring pixels and set its value to the lowest
non-zero value of the neighbors and itself. The scanning phase iterates multiple times, until the
neighbors have the same label (or 0 if background), and then terminates execution. We have
used Image2D as input to this kernel, to get cached reads when accessing neighboring pixels.
What could also have been tested was to use global memory instead, and read the pixels into
local memory. As we planned to get the other algorithm up and running, we haven’t tested this.

We did, however try to improve execution a bit by using 8 neighboring pixels in the compar-
ison above, instead of only 4. This way, more pixels are compared each iteration (even though
more elements has to be read). The results of this can be seen below, but we have only tested it
on a 16x16 work group size.

Analyzation

In the analyzation step, the final merging of the labels take place, where each work item run in
a loop. Using its label as lookup position in memory, it checks if the label at that position is
equal to its own label. If not, the new label is taken, and this is again used as a reference. This
goes on until the current label and the label at global_mem[label] is the same number. We use
Image2D for reading the initial labels in this step, and global memory for the rest, to be able to
update the labels in a loop, as Image2D is read only or write only within a kernel.

Experimental results

Table 5.5 shows the runtime of the implemented CCL algorithm. As we can see, the max
runtime on both small and especially on large videos is very high.

We note that the work group size has a pretty noticable impact on performance, especially
on the large videos. The 16x16 work group is definitely the fastest. We also notice that the
runtime difference between the two videos is pretty big, giving the highest runtime on Video 1.
As the foreground object in Video 1 is closer to the camera than in Video 2, the objects will be

51

bigger, and finding all the connected pixels of this object will then demand more iterations of
the scanning kernel than in Video 2.

Using 8 neighbors instead of 4 for the scanning part of the algorithm was only tested for a
16x16 work group size. As our experiments show, the runtime is considerably lower with this
approach. As the scanning part now does more in each iteration, it has to run fewer iterations,
and this may explain the shorter total runtime. We run around 40 ms faster on the larger videos
with this approach. The mean and min runtimes are a bit higher, but on this step it is the worst
case that is most important.

Notes

As the chosen algorithm is naturally hard to parallelize, accessing global values over the whole
image, we started the implementation of another, more parallel algorithm. The algorithm is
presented by Stava and Benes in the book GPU Computing Gems Emerald Edition [37]. It is
more sophisticated than the abovementioned algorithm, containing multiple merging steps and
utilization of local memory, for better performance.

As this implementation was not finished in time, we can not give any runtime results, but we
believe that it could give a good performance increase on the CCL-step, as it utilizes the GPU
much better than the aforementioned algorithm.

WG size Video 1 Video 2

512x288 1024x576 512x288 1024x576

min max mean min max mean min max mean min max mean

4 neighbor lookup in scanning part

Auto 0.22 52.40 7.72 1.03 254.81 47.09 0.33 30.70 2.83 1.97 190.12 71.90

16x16 0.20 49.91 6.91 0.82 188.04 33.40 0.31 33.76 2.49 1.81 137.98 49.99

32x32 0.25 55.79 7.71 1.03 233.95 40.91 0.36 37.61 2.85 2.25 174.79 65.41

8 neighbor lookup in scanning part

16x16 0.22 36.43 7.96 0.97 142.80 34.12 0.33 34.07 3.21 1.70 95.99 38.51

Table 5.5: Connected component labeling: Runtime in milliseconds

5.6 Profile extraction

The profile extraction has not been implemented on GPU. However, we have some thoughts to
how an implementation could be approached.

52

If there are multiple silhouettes detected in the image, the profile extraction has to run one
time for each of these silhouettes, covering it from each of the sides. Keeping different parts of
the GPU busy with different silhouettes at the same time to maximize utilization is one thing to
think about.

Since this step also requires accessing neighboring pixels, reading in data to local memory
before using it would be a good idea, to save global memory reads and maximize performance.

5.7 Background update

5.7.1 Limitations

In the background update step, we have omitted the part about changes in background geometry,
and only implemented the background update for gradual changes in lighting. As this is a very
simple kernel, we have not tried any specific optimizations here. We have executed it with
different work group sizes.

5.7.2 Experimental results

The runtimes are found in table 5.6. As we can see, the 16x16 work group performs best of the
three choices.

WG size Video 1 Video 2

512x288 1024x576 512x288 1024x576

min max mean min max mean min max mean min max mean

Auto 0.14 0.18 0.15 0.63 0.69 0.64 0.14 0.18 0.15 0.63 0.70 0.63

16x16 0.13 0.22 0.13 0.48 0.57 0.49 0.13 0.15 0.13 0.48 0.55 0.49

32x32 0.17 0.23 0.17 0.62 0.71 0.63 0.17 0.26 0.17 0.62 0.64 0.62

Table 5.6: Background update: Runtime in milliseconds

5.8 Total runtime of the algorithm

To get a sense of how fast our entire implementation is, we have performed a total runtime
comparison of all the steps above. We use the configurations that gave best runtimes in the
experiments above on each step, to get the best runtimes in total. As we already know that the
CCL step is the slowest part, we have tested with and without this step. This does not influence

53

the video, as the CCL step only finds the connected components in the image, but we do no
filtering based on this in our implementation.

5.8.1 Experimental results

Table 5.7 shows our runtime results. On the small videos, we get around 38 ms total runtime in
the worst case, giving us around 26 frames per second. On the large videos, our max runtime
is 148.49 ms, giving a frame rate of around 6,7 fps. The min and mean runtimes on the large
videos are much lower, between 6-8 ms min runtime and 40-50 ms mean, showing that the
runtime will vary very much depending on the foreground regions in the image.

Without the CCL step, we get some quite different results. In the worst case, on the large
videos, we get a runtime of 5.72 ms, or more than 170 frames per second. It shows both how
fast the rest of the implementation is, and how much of the runtime is used by the CCL step.

WG size Video 1 Video 2

512x288 1024x576 512x288 1024x576

min max mean min max mean min max mean min max mean

With Connected Component Labeling (CCL)

N/A 1.61 37.91 9.42 6.44 148.49 39.74 1.99 35.56 4.66 7.16 101.69 44.13

Without Connected Component Labeling (CCL)

N/A 1.36 1.75 1.38 5.20 5.64 5.23 1.36 1.85 1.38 5.22 5.72 5.24

Table 5.7: Full algorithm on GPU: Runtime in milliseconds

5.9 Summary

In this chapter we have presented our GPU implementation of the silhouette extraction algo-
rithm presented in chapter 2. We have explored different optimizations, and shown runtime
results on different video. In chapter 6 we compare this GPU implementation to our CPU-
implementation, looking at differences in execution time in each of the steps, and in total.

54

Chapter 6

Comparison between CPU and GPU

implementation

In this chapter we look at the difference in runtime between our GPU implementation described
in chapter 5 and our CPU-implementation of the same algorithm.

6.1 Introduction

To be able to measure the performance improvements of our GPU implementation, a reference
CPU-implementation was needed. We implemented the same pipeline on CPU as on GPU.
Instead of implementing every step of the algorithm ourselves, we have used already existing
algorithms from the Open Computer Vision library (OpenCV) [39] for some of the process-
ing.

For the most accurate results, the same training data has been used for both CPU and GPU
implementations, as well as the parameters and thresholds to the algorithms. The performance
measurements are also performed the same way as on GPU, calculating min, max and mean of
the runtimes.

The following sections describe the differences between GPU and CPU runtime in each
of the different steps. We use the GPU runtimes with the shortest max time from chapter 5 to
compare against the CPU implementation A runtime comparison of the whole pipeline will also
be shown.

6.1.1 Notes about CPU performance

The CPU implementation is compiled with the -O3 flag, but no other optimization approaches
have been followed. A tuned and optimized CPU version would probably give better runtimes

55

56

than those we have measured, but since we have focused on the GPU implementation in this
thesis, optimizing the CPU version was out of scope.

The tests have been run on a machine with an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
processor and 8 GB of memory. This is the same machine the GPU implementation is tested
on.

6.2 Training step

The training step is pretty straight forward, doing per-pixel calculations in a loop. The same
running statistics approach as mentioned in chapter 5 has been implemented here.

6.2.1 Experimental results

As we see in table 6.1, the performance increase in our GPU version is very high on small
and large videos, giving maximum values a runtime that is around 14 times faster on the small
videos, and up to 20 times faster on the large videos. Even though the training step need to copy
a certain amount of data to the GPU, the performance improvements are very high. As this step
is per-pixel parallel, this was expected, as memory reads and writes can be performed coalesced
and there is no access of neighboring pixels that can slow down the parallel execution.

CPU Implementation

WG Video 1 Video 2

512x288 1024x576 512x288 1024x576

min max mean min max mean min max mean min max mean

N/A 7.07 10.98 7.39 28.55 44.32 29.89 7.06 10.98 7.30 28.61 44.36 29.46

GPU Implementation

16x16 0.44 0.77 0.46 1.45 2.22 1.53 0.44 0.77 0.46 1.44 2.19 1.50

Table 6.1: Training step - CPU and GPU - runtime in milliseconds

6.3 Background modeling

The background modeling contains usage of quite a bit of math operations like pow, exp, sqrt
and gamma functions. On the CPU these functions can be pretty slow, and running them se-
quentially will take some time.

57

6.3.1 Experimental results

This may be one of the explanations to the high runtime on the CPU shown in table 6.2.
As the GPU is optimized for these kinds of operations, this, combined with the power of

parallelization show that the GPU version runs more than 100 times faster in all cases. An
optimized CPU version would probably weigh up for some of this, but it is still a very high
increase.

CPU Implementation

WG Video 1 Video 2

512x288 1024x576 512x288 1024x576

min max mean min max mean min max mean min max mean

N/A 73.38 75.32 73.74 287.97 294.69 288.94 73.38 75.11 73.97 291.19 295.63 292.82

GPU Implementation

16x16 0.60 0.67 0.61 2.35 2.44 2.36 0.60 0.70 0.61 2.36 2.43 2.36

Table 6.2: Background modeling - CPU and GPU - runtime in milliseconds

6.4 Background subtraction, thresholding and foreground ex-

traction

6.4.1 Subtraction and thresholding

The background subtraction and thresholding is performed by looping over all the pixels, ex-
tracting the background and performing thresholding.

6.4.2 Experimental results

The data in table 6.3, shows pretty clear that this is a per-pixel operation, giving the GPU a big
advantage of executing in parallel. The step does contain some if-statements, so some branching
will create a bit of serial execution on the GPU. We do however still get a speedup of around
13x on the max times of the large videos. The smaller videos have a little lower speedup, of
around 7-8x faster. The speedups on min and mean execution time is around 14-18x.

58

CPU Implementation

WG size Video 1 Video 2

512x288 1024x576 512x288 1024x576

min max mean min max mean min max mean min max mean

N/A 1.10 1.54 1.21 4.52 5.76 5.04 1.12 1.46 1.16 4.78 6.03 5.00

GPU Implementation

16x16 0.08 0.19 0.08 0.28 0.43 0.28 0.08 0.19 0.08 0.28 0.45 0.28

Table 6.3: Background subtraction and thresholding - CPU and GPU - runtime in milliseconds

6.5 Morphological processes

6.5.1 Closing and opening

Implementation

The closing and opening is performed using the cv::morphologyEx function from OpenCV. This
performs the dilation and erosion the same way as described in the previous chapters, with a
3x3 kernel.

Experimental results

Table 6.4 shows the runtime results of the closing and opening. Even though the runtime on
CPU for the smaller videos seem low, we can see that the GPU version is around 14-15 times
faster on all videos and sizes.

CPU Implementation

WG size Video 1 Video 2

512x288 1024x576 512x288 1024x576

min max mean min max mean min max mean min max mean

N/A 2.69 3.02 2.71 10.65 11.83 10.88 2.69 3.01 2.73 10.69 11.14 10.81

GPU Implementation

16x16 0.18 0.19 0.18 0.70 0.79 0.70 0.18 0.27 0.18 0.70 0.79 0.70

Table 6.4: Closing and opening - CPU and GPU - runtime in milliseconds

59

6.5.2 Connected Component Labeling

The connected component labeling step is where we hit a weak spot in our GPU implementation.
As we haven’t implemented very efficient algorithm on GPU, the CPU version is actually faster
in this case.

Experimental results

Table 6.5 shows the runtime results, and as we can see, the CPU version have between 1.2 and
1.5 times faster runtimes on Video 1 and the high resolution Video 2. The low resolution Video
2 is more than 8 times faster on CPU, in the worst case. This shows us that a more parallel and
effective CCL algorithm is definitely needed on GPU.

CPU Implementation

WG size Video 1 Video 2

512x288 1024x576 512x288 1024x576

min max mean min max mean min max mean min max mean

N/A 0.29 27.15 0.87 1.17 127.07 12.14 0.30 3.91 0.51 1.78 66.79 15.89

GPU Implementation

16x16 0.22 36.43 7.96 0.97 142.80 34.12 0.33 34.07 3.21 1.70 95.99 38.51

Table 6.5: Connected Component Labeling - CPU and GPU - runtime in milliseconds

6.6 Background update

The background update is very simple, updating the mean and variance running average for the
background pixels.

6.6.1 Experimental results

Table 6.6 shows that the GPU version in the worst case (max runtime) is between 8 and 12 times
faster than the CPU version. This is expected, as there is almost no branching and a very simple
kernel, making it easy to run in parallel.

60

CPU Implementation

WG size Video 1 Video 2

512x288 1024x576 512x288 1024x576

min max mean min max mean min max mean min max mean

N/A 1.26 1.78 1.28 5.17 6.41 5.29 1.27 1.73 1.30 5.18 6.06 5.25

GPU Implementation

16x16 0.13 0.22 0.13 0.48 0.57 0.49 0.13 0.15 0.13 0.48 0.55 0.49

Table 6.6: Background update - CPU and GPU - runtime in milliseconds

6.7 Measurement of the whole pipeline

A total comparison of the whole pipeline on CPU and GPU shows us how much faster our GPU
implementation is.

6.7.1 Experimental results

In table 6.7, we see that max runtimes on GPU are between 2 and 3.4 times lower and on CPU.
The highest runtime decrease is seen on the large video 2, running 3.4 times faster on GPU.
Considering the CCL step is actually slower on GPU, this is a quite high runtime improvement.

WG size Video 1 Video 2

512x288 1024x576 512x288 1024x576

min max mean min max mean min max mean min max mean

CPU Implementation

N/A 69.83 96.27 70.57 277.00 410.70 289.46 69.84 73.78 70.30 278.65 347.30 294.26

GPU Implementation

N/A 1.61 37.91 9.42 6.44 148.49 39.74 1.99 35.56 4.66 7.16 101.69 44.13

Table 6.7: Full algorithm - CPU and GPU - runtime in milliseconds

6.8 Summary

In this chapter we have compared the runtime of our GPU and CPU implementations. The GPU
version runs between 2 and 3.4 times faster in total, with only the CCL step giving an increased
runtime on GPU compared to CPU. In the next chapter we look at the quality of the silhouettes
produced by our implementation.

61

Chapter 7

Quality assesment of the silhouette

extraction algorithm

In this chapter we look at the quality of the silhouettes produced by our silhouette extraction
algorithm.

7.1 Introduction

We perform a brief evaluation of the quality of the silhouettes produced by the silhouette extrac-
tion algorithm we have implemented. We count pixels wrongly detected as either background
or foreground in a small set of sample images.

7.2 Ground truth

To be able to measure how accurate the detected silhouettes are, we have created ground truth
data for 10 frames in each of our two videos. The frames have been selected by hand, to make
sure we have different results, not only the frames where we get the best results.

The ground truth is created by editing the original images by hand and drawing around the
foreground objects in them. The foreground is then masked as white, and the background as
black.

62

63

7.3 Measurements

7.3.1 Notes and limitations

A comparative and extensive quality assessment would require us to implement multiple known
approaches for silhouette extraction, and compare our results to those, giving us a measure to
how well our chosen algorithm performs compared to others. As our main focus has been to
implement one algorithm, and to do so on GPU for high performance, this is out of scope for
this thesis.

Instead, we measure our own implementation against ground truth data, giving us measures
of how accurate our chosen algorithm is at the current state of implementation.

CPU implementation

In our CPU implementation we have added the step of filtering out regions in the image that
are smaller than a given threshold, as presented in chapter 4. Note that this step is not included
in our performance testing. As this is not included in our current GPU implementation, we use
the CPU implementation with this enabled for creating the test data, giving a more complete
representation of the algorithm used. The profile extraction step is, however, not implemented,
so foreground objects are expected to have false negative errors, as described below.

Video size

We have only performed these measurements on video with size 1024x576.

7.3.2 False positive and false negative errors

For each of our two test-videos, we compare 10 selected frames, where a foreground object is
present. Each frame is compared to its corresponding ground truth data.

We count two kinds of errors: False positive (FP) and false negative (FN). FP errors are
pixels that are detected as foreground where they should be background. FN on the other hand
are pixels detected as background when they should be foreground. The error percentages are
calculated with equation 7.1.

error =
number of erroneous pixels

number of foreground pixels in ground truth
x100(%) (7.1)

64

Figure 7.1: Video 1 - False negative and false positive errors

Figure 7.2: Video 2 - False negative and false positive errors

7.3.3 Experimental results

In figure 7.1 and 7.2 we show the FN and FP errors on different frames of the two videos.

65

Video 1

In Video 1, we can see that the FP errors in some cases are quite high, the highest being 41.45%,
in frame 800. The reason for this can be lights, reflections and shadows being incorrectly
identified as foreground. Original frame, ground truth and extracted foreground of frame 800
is shown in figure 7.3. The FN errors are in many cases quite low, but in some frames they are
very high, e.g. 55.66% in frame 1360 and 43.36% in frame 780.

The effect of this can be seen in figure 7.4, where the foreground silhouette is full of holes.
This frame also has 31.38% FP errors, where some of it is clearly caused by reflection in the
glass frame on the wall.

In some cases, refinement of the detected foreground, and increasing the threshold on how
large foreground objects can be filtered out might help. The main problem, though, is setting and
adapting the thresholds correctly, so shadow regions are recognized as suspicious foreground,
and then filtered out with the shadow removal step. Since we have just hand-tuned thresholds
and found something that works OK, we don’t get the best results possible.

Frame 350 and 390 have quite low FP and FN errors, the results compared to ground truth
can be seen in figure 7.5.

Video 2

In Video 2, the results are quite different, where the highest FN error, in frame 200, is at 27.21%.
The FP errors are, however, very high. In frame 270, the FP error percentage is 288.68%,
meaning that alot more than the foreground object has been detected as foreground. As we can
see in figure 7.6, light in the roof and reflections in the glass window in the top of the scene
is wrongly detected as foreground objects, creating the high error rate. Better tuning of the
thresholding parameters might help with this. As the FN errors are so low compared to Video
1, we have probably tuned it to be way too permissive in regard to what ends up in the reliable
foreground category. We have not used very much time on tuning the parameters.

Frames 170, 200 and 440 have the lowest FP error rates in video 2. They are shown in
figure 7.7.

Discussion

As we can see, the extracted silhouettes are far from perfect, in some cases giving lots of false
positive errors, and other cases quite high false negative error rates. Some errors are expected,
as we haven’t tuned the parameters for thresholding very much, and as we can see in some
cases, reflections and shadows can cause false positive errors. False negative errors can cause

66

holes inside a detected foreground object. Implementing the profile extraction step, described
in chapter 4, could help improve the silhouettes significantly.

Automatic thresholding

As long as the thresholding step requires very manual tuning of the parameters, this algorithm
is pretty hard to use. The thresholds are selected manually, and have to be tuned for new en-
vironments - a time consuming and inaccurate process. For a more adaptable algorithm, a
more automated way to choose thresholds should be considered. In [40], Otsu presented a
nonparametric and unsupervised method to threshold gray level images automatically. Sun et.
al. [41] presented an automatic thresholding algorithm for moving foreground objects, present-
ing improvements to the method presented by Otsu [40]. Applying a scheme like this after the
background subtraction in our algorithm, instead of manually setting the thresholds could be
worth looking into for better results, and a much more adaptive algorithm.

7.4 Summary

In this chapter we have looked at the quality of the silhouettes generated by our algorithm.
We have measured false negative and false positive errors in selected frames and discussed our
findings. We have also presented some possible improvements, to get better results.

In the next chapter we conclude the thesis and present future work.

67

Figure 7.3: Video 1 - Frame 800 - False positive errors

68

Figure 7.4: Video 1 - Frame 780 - False negative and false positive errors

69

Figure 7.5: Video 1 - Frame 350 and 390 - Low FP and FN

70

Figure 7.6: Video 2 - Frame 270 - 288.68% FP error

71

Figure 7.7: Video 2 - Frame 170, 200 and 440 - low error rates

72

Chapter 8

Conclusion

In this thesis we have presented a silhouette extraction algorithm, and investigated how to im-
plement it on GPU. We have implemented most parts of the algorithm on GPU, and on CPU as
a reference. Our experimental results show that the performance increase in most steps is very
high compared to our CPU implementation. The connected component labeling step does how-
ever need a faster algorithm/implementation, as this part is even slower on GPU than on CPU
in the worst cases. We have mentioned an altenative algorithm for this that should possibly
improve performance.

Our implementation is a good starting point for achieving real time silhouette extraction that
can be used in multiple computer vision applications.

The quality of the silhouettes produced by our implementation are fairly good, but because
of shadow regions and reflections being wrongly detected as foreground, we get a lot of false
positive errors in some cases, detecting elements that is background as foreground. In other
cases, we get a high number of false negative errors, resulting in holes inside the silhouettes and
missing parts. As mentioned in chapter 7, tuning the thresholds or implementing an automatic
thresholding scheme could help with these problems. Because we omited the profile extraction
step of the algorithm in our implementation, there are also holes inside the foreground objects
at times.

8.1 Future work

The GPU implementation presented in this thesis is a good starting point for a real time high
quality silhouette extraction algorithm. There are, however several open issues.

73

74

8.1.1 Faster connected component labeling

As we mentioned in our results and the conclusion, a faster connected components labeling
algorithm is needed to get full real-time performance. An algorithm that might work well is
mentioned in chapter 5.

8.1.2 Implementation of profile extraction

An implementation of the profile extraction described in chapter 4 would refine the silhouettes
even more, giving a better total result, covering holes inside foreground objects.

8.1.3 Improvement of thresholding

As we have mentioned, the thresholding step in the algorithm is dependent on manually set
threshold values, specifically tuned for certain environments. This is not very portable, making
the algorithm hard to adapt to new environments. Implementing an automatic, adaptive thresh-
olding scheme would therefore be worth looking into. Possible algorithms for doing this is
mentioned in chapter 7.

75

Bibliography

[1] S. Pierard, A. Lejeune, and M. Van Droogenbroeck. A probabilistic pixel-based approach
to detect humans in video streams. In Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on, pages 921 –924, may 2011.

[2] Jordi Salvador, Xavier Suau, and Josep R. Casas. From silhouettes to 3d points to mesh:
towards free viewpoint video. In Proceedings of the 1st international workshop on 3D
video processing, 3DVP ’10, pages 19–24, New York, NY, USA, 2010. ACM.

[3] Simon Prince, Adrian David Cheok, Farzam Farbiz, Todd Williamson, Nik Johnson, Mark
Billinghurst, and Hirokazu Kato. 3d live: Real time captured content for mixed reality.
In Proceedings of the 1st International Symposium on Mixed and Augmented Reality, IS-
MAR ’02, pages 7–, Washington, DC, USA, 2002. IEEE Computer Society.

[4] NVIDIA CUDA C Programming Guide version 4.2, 2012.
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/

CUDA_C_Programming_Guide.pdf (2012-05-01).

[5] OpenCL - the open standard for parallel programming of heterogeneous systems.
http://www.khronos.org/opencl/ (2012-04-07).

[6] Alan M. Mcivor. Background Subtraction Techniques. 2000.

[7] M. Piccardi. Background subtraction techniques: a review. In Systems, Man and Cyber-
netics, 2004 IEEE International Conference on, volume 4, pages 3099 – 3104 vol.4, oct.
2004.

[8] Y. Benezeth, P.M. Jodoin, B. Emile, H. Laurent, and C. Rosenberger. Review and evalu-
ation of commonly-implemented background subtraction algorithms. In Pattern Recogni-
tion, 2008. ICPR 2008. 19th International Conference on, pages 1 –4, dec. 2008.

76

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://www.khronos.org/opencl/

77

[9] M. Hedayati, W.M.D.W. Zaki, and A. Hussain. Real-time background subtraction for
video surveillance: From research to reality. In Signal Processing and Its Applications
(CSPA), 2010 6th International Colloquium on, pages 1 –6, may 2010.

[10] R. Cucchiara, C. Grana, M. Piccardi, and A. Prati. Detecting moving objects, ghosts, and
shadows in video streams. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 25(10):1337 – 1342, oct. 2003.

[11] N. J. B. McFarlane and C. P. Schofield. Segmentation and tracking of piglets in images.
Machine Vision and Applications, 8:187–193, 1995. 10.1007/BF01215814.

[12] N. Friedman and Russell. Image segmentation in video sequences: A probabilistic ap-
proach. In Thirteenth Conf. on Uncertainty in Artificial Intelligence, pages 175–181, 1997.

[13] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: real-time tracking of
the human body. In Automatic Face and Gesture Recognition, 1996., Proceedings of the
Second International Conference on, pages 51 –56, oct 1996.

[14] C. Stauffer and W.E.L. Grimson. Adaptive background mixture models for real-time track-
ing. In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society Confer-
ence on., volume 2, pages 2 vol. (xxiii+637+663), 1999.

[15] A. Shimada, D. Arita, and R. Taniguchi. Dynamic control of adaptive mixture-of-
gaussians background model. In Video and Signal Based Surveillance, 2006. AVSS ’06.
IEEE International Conference on, page 5, nov. 2006.

[16] Ahmed Elgammal, David Harwood, and Larry Davis. Non-parametric model for back-
ground subtraction. In FRAME-RATE WORKSHOP, IEEE, pages 751–767, 2000.

[17] Shengping Zhang, Hongxun Yao, and Shaohui Liu. Spatial-temporal nonparametric back-
ground subtraction in dynamic scenes. In Multimedia and Expo, 2009. ICME 2009. IEEE
International Conference on, pages 518 –521, 28 2009-july 3 2009.

[18] P. Kumar, K. Sengupta, and S. Ranganath. Real time detection and recognition of human
profiles using inexpensive desktop cameras. In Pattern Recognition, 2000. Proceedings.
15th International Conference on, volume 1, pages 1096 –1099 vol.1, 2000.

[19] S. Jabri, Z. Duric, H. Wechsler, and A. Rosenfeld. Detection and location of people in
video images using adaptive fusion of color and edge information. In Pattern Recognition,
2000. Proceedings. 15th International Conference on, volume 4, pages 627 –630 vol.4,
2000.

78

[20] Mao-Hsiung Hung, Jeng-Shyang Pan, and Chaur-Heh Hsieh. Speed up temporal median
filter for background subtraction. In Pervasive Computing Signal Processing and Appli-
cations (PCSPA), 2010 First International Conference on, pages 297 –300, sept. 2010.

[21] P. Rosin. Thresholding for change detection. In Computer Vision, 1998. Sixth Interna-
tional Conference on, pages 274 –279, jan 1998.

[22] M. Sezgin and B. Sankur. Survey over image thresholding techniques and quantitative
performance evaluation, 2004.

[23] D. Chen, S. Denman, and C. Fookes. Accurate silhouette segmentation using motion de-
tection and graph cuts. In Information Sciences Signal Processing and their Applications
(ISSPA), 2010 10th International Conference on, pages 81 –84, may 2010.

[24] Alexandre Alahi, Luigi Bagnato, Damien Matti, and Pierre Vandergheynst. Foreground
Silhouettes Extraction robust to Sudden Changes of background Appearance. In IEEE
International conference on Image Processing, 2012.

[25] NVIDIA - "OpenCL Programming Guide for the CUDA Architecture", 2012.
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/

OpenCL_Programming_Guide.pdf (2012-04-13).

[26] The OpenCL Specification, 2011.
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf (2012-04-13).

[27] Hansung Kim, Ryuuki Sakamoto, Itaru Kitahara, Tomoji Toriyama, and Kiyoshi Kogure.
Robust foreground extraction technique using gaussian family model and multiple thresh-
olds. In Yasushi Yagi, Sing Kang, In Kweon, and Hongbin Zha, editors, Computer Vi-
sion – ACCV 2007, volume 4843 of Lecture Notes in Computer Science, pages 758–768.
Springer Berlin / Heidelberg, 2007.

[28] B. P. Welford. Note on a method for calculating corrected sums of squares and products.
Technometrics, 4(3):pp. 419–420, 1962.

[29] Sandia Report. Formulas for robust , one-pass parallel computation of covariances and
arbitrary-order statistical moments. Contract, SAND2008-6(September):1–18, 2008.

[30] YUV - Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/YUV (2012-04-30).

http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://en.wikipedia.org/wiki/YUV

79

[31] Azriel Rosenfeld and John L. Pfaltz. Sequential operations in digital picture processing.
J. ACM, 13(4):471–494, October 1966.

[32] Michael B. Dillencourt, Hannan Samet, and Markku Tamminen. A general approach to
connected-component labeling for arbitrary image representations. J. ACM, 39(2):253–
280, April 1992.

[33] Hanan Samet. Connected component labeling using quadtrees. J. ACM, 28(3):487–501,
July 1981.

[34] Roshan Dharshana Yapa and Harada Koichi. A connected component labeling algorithm
for grayscale images and application of the algorithm on mammograms. In Proceedings
of the 2007 ACM symposium on Applied computing, SAC ’07, pages 146–152, New York,
NY, USA, 2007. ACM.

[35] K.A. Hawick, A. Leist, and D.P. Playne. Parallel graph component labelling with gpus
and cuda. Parallel Computing, 36(12):655 – 678, 2010.

[36] Oleksandr Kalentev, Abha Rai, Stefan Kemnitz, and Ralf Schneider. Connected compo-
nent labeling on a 2d grid using cuda. Journal of Parallel and Distributed Computing,
71(4):615 – 620, 2011.

[37] Wen-mei W. Hwu. GPU Computing Gems Emerald Edition. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1st edition, 2011.

[38] George Stockman and Linda G. Shapiro. Computer Vision. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 2001.

[39] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[40] A threshold selection method from gray-level histograms. Systems, Man and Cybernetics,
IEEE Transactions on, 9(1):62 –66, jan. 1979.

[41] Zhihai Sun, Shan an Zhu, and Dawei Zhang. Real-time and automatic segmentation tech-
nique for multiple moving objects in video sequence. In Control and Automation, 2007.
ICCA 2007. IEEE International Conference on, pages 825 –829, 30 2007-june 1 2007.

80

	Introduction
	Background
	Problem Statement
	Limitations
	Main Contributions
	Outline

	Silhouette extraction
	Definition
	Background subtraction
	Other ways to extract silhouettes
	Summary

	Graphics Processing Units and OpenCL
	Introduction
	General-purpose computing on graphics processing units
	OpenCL
	Open standard for parallel programming
	OpenCL-implementation and hardware used
	Kernels
	Kernel execution
	Synchronization
	OpenCL memory types

	Optimization strategies on GPU
	Keeping and reusing data in device memory
	Coalesced memory access
	Local memory
	Read-only data in constant memory
	Using OpenCL Images

	Summary

	Silhouette extraction algorithm
	Introduction
	Training step
	Selection of distribution form
	Possible optimizations

	Background modeling
	Two background models
	Color conversion
	Creating background models
	Possible optimizations

	Background subtraction, thresholding and foreground extraction
	Background subtraction and thresholding
	Foreground extraction
	Possible improvements

	Foreground refinement / morphological processes
	Motivation
	Closing and opening
	Connected Components Labeling
	Optimization strategies

	Profile extraction
	Covering the object
	Fixing covered holes in the object
	Optimization strategies

	Background update
	Gradual changes in lighting
	Changes in background geometry

	Output format
	One number for each silhouette
	Limitations

	Summary

	GPU Implementation
	Introduction
	Steps not implemented
	Method for testing and evaluation
	Assumptions and notes
	Choice of work group sizes
	Source code

	Training step
	Parallelization
	Running statistics
	Optimizing memory access
	Experimental results

	Background modeling
	Experimental results

	Background subtraction, thresholding and foreground extraction
	Subtraction and thresholding
	Output data
	Experimental results

	Morphological processes
	Closing and opening
	Connected Components Labeling

	Profile extraction
	Background update
	Limitations
	Experimental results

	Total runtime of the algorithm
	Experimental results

	Summary

	Comparison between CPU and GPU implementation
	Introduction
	Notes about CPU performance

	Training step
	Experimental results

	Background modeling
	Experimental results

	Background subtraction, thresholding and foreground extraction
	Subtraction and thresholding
	Experimental results

	Morphological processes
	Closing and opening
	Connected Component Labeling

	Background update
	Experimental results

	Measurement of the whole pipeline
	Experimental results

	Summary

	Quality assesment of the silhouette extraction algorithm
	Introduction
	Ground truth
	Measurements
	Notes and limitations
	False positive and false negative errors
	Experimental results

	Summary

	Conclusion
	Future work
	Faster connected component labeling
	Implementation of profile extraction
	Improvement of thresholding

	Bibliography

