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Abstract

Advanced and automated medical systems have been in the research focus for a long time.
Together with the rapid development of sensing devices, the modern information analysis meth-
ods allow the new wave of computer-assisted systems to improve health care, quality of life,
and patient survival rate. Together with the traditional computer vision and medical imaging,
core competencies of the multimedia community such as integration and analysis of data from
several sources, real-time processing and the assessment of usefulness for end-users play an
essential role for the successful improvement of health care systems addressing challenges and
open problems in the field of medicine.

Our work explores different fields in multimedia research, starting from collection and an-
notation of multimedia data through automatic analysis of content and efficient processing of
workloads to visualization and results representation. We have researched and developed a
holistic medical multimedia system addressing a use case with an important medical and so-
cietal impact. We target lesions and findings detection and localization in the gastrointestinal
(GI) tract of the human body in order to be able to support medical experts in their daily rou-
tine work. The early and precise detection of abnormalities in the GI tract greatly increases the
chance of successful treatment if the initial observation of disease indicators occurs before the
patient notices any symptoms, it is a non-trivial task that can be, however, efficiently automated.

We investigated the GI tract visual analysis from a multimedia research point of view via
several steps of research and development. First, we looked into the problem of medical data
acquisition. We collected, annotated, and published several datasets and data annotation tools
as open source. Then, we designed and developed a set of lesion and findings detection and
localization approaches based on hand-crafted methods as well as on global-, local- and deep-
feature-based methods, which serves as the algorithmic basis of our system. Next, we created
a holistic medical multimedia system called DeepEIR. We researched and developed different
subsystems for our DeepEIR system, namely (i) the data exploration and annotation subsystem,
which makes it possible to collect and annotate data and transfer knowledge from medical
experts into our system; (ii) the detection and localization subsystem, which perform medical
data analysis in order to detect and localize lesions and findings; and (iii) the visualization and
results representation subsystem that provides the information to medical personnel.

Furthermore, the focus of the DeepEIR system lies on the accurate and time-efficient pro-
cessing of multimedia data. We investigated, therefore, parallel and distributed processing,
GPU-based acceleration and different classification and segmentation approaches that are eval-
uated and compared with state-of-the-art methods, algorithms, and systems.

We demonstrated that the DeepEIR system could outperform state-of-the-art approaches in
both processing speed and detection accuracy reaching processing speeds above 300 frames
per second, a frame-wise detection accuracy above 95% and pixel-wise localization accuracy
above 90%. With our results good enough for the clinical trials and successful demonstration
of full-scale prototypes of DeepEIR system, we were able to attract several hospitals for tight
collaborations, and the DeepEIR system is being prepared for a broad testing and using under
clinical conditions within our collaborating hospitals.
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Chapter 1

Introduction

In current modern life, we all are surrounded by a huge amount of data. The dominating one
is the multimedia data and, especially, visual data in forms of images and videos. The constant
progress in the fields of computer vision, information retrieval and understanding already re-
sulted in a variety of efficient methods that can utilize such the data and produce a broad range
of valuable output ranging from face recognition for social networks and security systems to
remote sensing application that are able to detect disasters in remote areas using satellite im-
agery. The estimated size of data in the health care system for the whole world is around 162
exabyte, with an estimated increase of 2.5 exabytes per year [27]. A significant part of this data
is producing by the health care system with the increasing speed. The future gigantic scale of
medical data [116] comes with several challenges to analyze, store, transmit and utilize it for
useful purposes. However, the challenges should be addressed as soon as possible to bring the
advantages related to the multimedia data processing to the current healthcare system.

Some of multimedia data challenges in medicine are collecting, understanding and analyz-
ing data, and reusing the medical knowledge. Next, the practical challenges of performance
and real-time processing speed come to the front during the implementation of the real systems
for live patient examination, communication, or other medical tasks. Even the very modern
visual data processing and understanding methods cannot be efficient enough yet because of
both under-development and lack of available training data. Another need that comes with a
large amount of data is efficient, robust and scalable data processing methods. Because of a
large amount of multimedia data in the health care system, parallel processing and elastic het-
erogeneous resources are important [116] to achieve fast processing of multimedia workloads
by being able to process a large amount of data in parallel at the same time.

In this work, we investigate how the new computer vision and machine learning methods
can be utilized and improved in order to build a completely automatic diagnostic assisting sys-
tem that is able to support medical experts in disease detection, live patient examinations and
national-wide screening programs. Since the medical field by itself is enormous, we decided
to address one area in this field specifically. We decided on the human gastrointestinal (GI)
system because it can potentially be affected by many types of diseases that are visually dis-
tinguishable. This choice is also supported by the fact that the most common cancer types are
located in the GI tract [147]. An accurate automatic medical analysis system will have a high
impact on the medical sector, influencing patient survival rates, clinical workflows and costs. In
the GI field, medical imaging has created visual representations of the interior of a body with
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images, videos and corresponding text descriptors made by doctors during routine procedures.
This work focuses on investigating efficient analysis and processing of multimedia workloads
in the field of GI endoscopy with the goal of creating new methods and a complete prototype of
an end-to-end medical multimedia system that will assist doctors during GI tract investigations.

1.1 Background and Motivation

The modern healthcare system has been intensively improved during the last decades, introduc-
ing a lot of different modern diagnostic methods. However, there are a lot of unsolved medical
and societal challenges still affecting the effectiveness of the health care systems worldwide. In
some areas of the human body, such as the gastrointestinal (GI) tract (figure 1.1), the detection
of abnormalities and diseases directly improves the chance of successful treatment.

The GI tract diagnosis is important since it is the site of many common diseases (see fig-
ure 1.2 for the examples) with high mortality rates. About 2.8 million new luminal GI cancers
(esophagus, stomach, colorectal) are detected yearly in the world, and the mortality is about
65% [50]. In addition to these cancers, numerous other chronic diseases affect the human GI
tract. The most common ones include gastroesophageal reflux disease, peptic ulcer disease,
inflammatory bowel disease, celiac disease and chronic infections. All these diseases have a
significant impact on the patients’ health-related quality of life [34] and, therefore, gastroen-
terology is one of the critical and largest medical branches.

For the most severe, colorectal cancer (CRC), which has one of the highest incidences and
mortality of the diseases in the GI tract, early detection is essential for a good prognosis and
treatment. Minimally invasive endoscopic and surgical treatment is most often curative in early
stages (I-II) with a 5-year survival probability of more than 90%. But in advanced stages
(III-IV), radiation and/or chemotherapy is often required, and it has a 5-year survival of only
10-30% [30]. Moreover, several studies have shown that large population-based endoscopic
screening programs reduce the mortality and incidence of CRC. The current European Union
guidelines, therefore, recommend screening for CRC [143]. Several screening methods exist,
e.g., fecal immunochemical tests (FITs), sigmoidoscopy screening, computer tomography (CT)

Figure 1.1: An overview of the human GI tract (hdfootagestock.com).
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(a) Angiectasia (b) Bleeding (c) Esophagitis

(d) Inflamation (e) Polyp (f) Flat polyp

(g) Ulcerative colitis (h) Erosion (i) Melanosis

Figure 1.2: An inconclusive list of diseases that can be observed and diagnosed in GI tract [95].
These are the real images recorded from endoscopic equipment during routine examinations.
Green box shows the status a colonoscope device.

scans and colonoscopy. However, in randomized trials, only endoscopic methods have shown
precision enough to reduce CRC incidence.

There are several ways of detecting pathology in the GI tract, but currently available methods
have limitations regarding sensitivity, specificity, access to qualified medical staff and overall
cost. Here, the manual endoscopy, where the doctor inserts an endoscope in the patient, either
via the mouth or the anus, is the recommended standard for detection and examination. An
alternative to the manual colonoscopy (figure 1.3) is to perform the examination using a wireless
camera pill, which is a video capsular endoscope (VCE) that can be swallowed by the patient
and is able to record a video of the whole GI system.

However, scheduled testing (screening) of a population for a whole country is challenging
due to high costs, a limited willingness by the patients to undertake the unpleasant procedure,
high time consumption for the medical experts and a shortage of qualified medical person-
nel. Moreover, colonoscopy (the endoscopic examination of the colon) is unpleasant [142] for
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(a) Colonoscopy (hopkinsmedicine.org) (b) Coloscope (olympus.com)

Figure 1.3: Colonoscopy is the endoscopic examination (a) of the large bowel and the distal
part of the small bowel with a special type endoscope called coloscope (b) [115].

the patients, each requires about two staff-hours of medical personnel and often lesions are
missed because of tiredness of the medical doctor or because a specific part in the colon was
not reachable due to narrow passages in the colon. Furthermore, there are high costs related to
these procedures. In the US, for example, colonoscopy is the most expensive cancer screening
process with an annual cost of $10 billion dollars [136], i.e., an average of $1,100 per exami-
nation [137] (up to $6,000 in New York). In the United Kingdom, the costs are around $2,700
per examination [122]. Moreover, on average, 20% of polyps, precursors of CRC, are missed or
incompletely removed, i.e., the risk of getting CRC depends mainly on the endoscopist’s ability
to detect polyps [69], thus requiring expensive specialized training for them.

To scale such examinations up to a large population either nationally or internationally,
there are huge challenges that must be addressed to reduce cost per examination and to improve
procedures for the detection of pathology (diseases). It is our vision that computer-based auto-
matic execution of these tasks might be an important part of the solution, increasing the overall
quality of the examinations and ultimately improving the patient outcome. The proposed tech-
nical solution targets ground-breaking research and innovation for global major health issues
like colorectal, gastric and stomach cancer worldwide. By developing and studying an auto-
matic system for the traditional push endoscopy and the modern VCEs, the aim is to make
these examinations more easily accessible for patients and participants in screening programs,
i.e., making the public healthcare system more scalable and cost-effective. Even more, we tar-
get utilization of the large amounts of disease records already store in the hospital information
systems. Unfortunately, is not used [115] efficiently enough and holds a lot of potential, for ex-
ample, by using it for efficient and accurate automatic analysis or by researching and developing
live computer-assisted diagnosis based on it.

To summarize, the existing shortage of qualified medical personnel in conjunction with the
high endoscopic procedures cost request for the computerization and automation of the complex
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(a) Capsule endoscopy (igniteoutsourcing.com) (b) VCE (wikipedia.org)

Figure 1.4: Capsule endoscopy is a non-invasive procedure used to record internal images of
the GI tract using a small swallowed VCE device equipped with a camera, a battery and a
transmitting or recording module [115].

and labor-demanding GI tract diagnostic procedures allowing for assisted detection, highlight-
ing and interpretation of lesions, diseases and findings in the GI tract in order to improve current
medical practices and to save more lives.

1.2 Problem Statement

To satisfy the existing demands in assisted detection, highlighting and interpretation of lesions,
diseases and findings in the GI tract via the computer-aided diagnostic procedures required to
improve existing diagnostic practices and scale necessary GI tract examinations, we have started
inter-disciplinary research of a next generation of the medical multimedia system, which will
support endoscopists in the finding and interpretation of diseases in the entire GI tract.

The research question for this thesis is: Can modern computer vision and machine learn-
ing methods be used to build a holistic automated computer-aided diagnostic system sup-
porting medical experts by analyzing images and videos in both live colonoscopy and VCE
examinations?

The goal of this thesis is to be a solid basement for building a complete, holistic and ap-
plicable medical multimedia system that can answer our research question and have a societal
impact by helping people to survive lethal diseases. From our question, we define the objectives
targeted by this thesis as follows:

Main Objective: Conduct research and develop a medical multimedia system that integrates
and combines state-of-the-art tools with new and enhanced algorithms for detection and
localization (highlighting) of pathological endoscopic findings and anatomical landmarks
in the GI tract. The system should include the entire pipeline from content creation and
annotation, learning and analysis to finally visualization of the output. The mechanisms
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should be combined in an extensible distributed architecture with real-time processing
and efficient resource consumption for massive scale and high accuracy.

Sub-objective 1: Conduct research and develop a subsystem that can be used by the medical
doctors (experts) to analyze, sort and annotate new and already collected images effi-
ciently to minimize the amount of time required for such the annotations tasks. Addi-
tionally, search for the possibility to extract and make publicly available GI-tract-related
medical imaging data already available in hospital medical information systems, with the
following publishing datasets based on the annotated data.

Sub-objective 2: Conduct research and develop a subsystem for computer-based detection and
decision support for live endoscopic procedures and VCE data analysis. The subsystem
should receive video from endoscopic devices, perform analysis and show the clinicians
both detected lesions and localization information overlaid over the main endoscopic
video output. For the VCE case, the subsystem should be able to automatically analyze
a large amount of VCE data in a reasonable time to enable future large-scale automatic
population screening.

Sub-objective 3: Conduct research and develop a subsystem for visualization of the automatic
detection results generated during live and VCE endoscopic examinations intended to
decrease workload held by medical personnel during and after examination procedures.

To achieve these objectives, we teamed up with experienced specialists in the area of GI
disease diagnosis to investigate how multimedia research can improve medical systems. In this
thesis, we discuss and investigate why multimedia research is important and needed for the
medical field and how a proper combination of medical experience, data collection, computer
vision, deep- and machine-learning, automatic image and video analysis can become the key
to solving medical challenges. Continuing from an initial version of the system called EIR
developed earlier, this thesis presents the new, improved and extended version of the system
called DeepEIR. The overall goal is to develop both, a live system assisting the visual detection
and highlighting of different diseases during colonoscopies that are verified with different use
cases, and a fully automated assisting system for the GI tract screening using VCEs, i.e., a
small detached swallowable capsule-type device with one or more image sensors traveling along
the GI tract. These aims come with strict requirements on the accuracy of the detection in
order to avoid false negative findings (overlooking a disease). The live system should also
avoid false positive findings (being too alarming can distract doctors and worry patients). Both
systems should have low resource consumption and reasonable hardware requirements. The
live-assisted system also must support real-time processing capabilities (defined [115] as being
able to process at least 25 video frames per second (FPS)) captured with Full HD image quality,
which is common for the modern endoscopic equipment. The screening-assisted system should
be able to process a large amount of data and be able to adapt to a variety of used sensors
characteristics from low-resolution to Full HD.

As the final outcome of this research, a holistic medical multimedia system is built for the
GI endoscopy use case. Another outcome is an international cooperation of computer science
researchers, medical experts and manufacturers of medical equipment already resulted in the
problem-oriented work-groups, new datasets, medical protocols and disease atlases can also be
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used for the doctors’ and IT researchers’ training process. This cooperation is also going to
continue the work after this PhD.

1.3 Scope and Limitations

Based on the research question and its objectives described in section 1.2, the scope of this
thesis is on researching a complete medical multimedia system from annotation to visualization
for the use case of different diseases and landmarks detection in the GI tract using mainly image
and video data from different sources (traditional endoscopes and VCEs), and also prepare the
algorithmic base of the system for other use-cases, including non-medical, and for the usage of
various data types.

This research is the part of our larger project with the main goal of building a sale-ready
medical information system that will support doctors in their daily duties. For this particular
research, we limit the scope to the most common GI tract diseases, landmarks and findings, and
two different medical data sources types. These scope limitations caused by the high complexity
of the problem area and lacking of available data. High complexity is caused by the high
variance of human diseases, their varying appearance, symptoms, localization and development
stages, as well as limitations of diagnostic methods. The lack of available medical data is a well-
known problem caused mostly by data privacy issues and the inability to use the data without
explicit patient consent. This makes it hard to develop, evaluate and compare methods and
algorithms. For testing, validation and evaluation, we used several publicly available datasets
including our own newly collected datasets, which were made publicly available.

During this research, we faced with another limiting factor from the real world, which is
the huge variety of the equipment used in different hospitals and even within single hospitals’
departments. Different types of diagnostic equipment produce visual data with different resolu-
tion, color balance, sharpness, lighting conditions, frame rate, the field of view, quality, etc. The
output of the equipment can be videos, still images, 360-degree images and videos, location in-
formation, etc. Even within a well-known group of our partner hospitals including ASU Mayo
Clinic, Vestre Viken Hospital Trust, Rikshospitalet and the Karolinska University Hospital, the
range of equipment includes multiple producers and different equipment models.

An additional limiting factor is the medical personnel’s subjectivity and individual prac-
tice used in the data collection. There are no common standardized ways of collecting visual
samples of diseases, and no well-documented strategies for the documentation of the diagnos-
tic procedure, especially for GI tract medical interventions. This resulted in a wide variety of
data collection practices and local standards used by different doctors. For example, in the
Karolinska institute, doctors do not record videos at all and rely on extensive documentation
using images. In Vestre Viken, medical experts store short video clips of the most important
findings in combination with images. Even further, the availability of the already collected
and annotated data in form of shared and publicly accessible datasets is very limited. This is
addressed by introducing two newly collected, annotated and freely accessible public datasets
created during this research in collaboration with the experienced doctors.

All these factors lead to strong requirements to the system adaptability and flexibility. The
system developed with real-world cases in mind should be easily modifiable and able to adapt
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to different equipment used in different hospitals, different data formats and their properties,
allow for handling of the individual data from each hospital if necessary.

Taking into account the limitations, the scope of this research should be reasonably lim-
ited. Our focus is on the detection of colon polyps, angioectasia flat lesion and bleedings. For
these lesions, we provide frame-wise detection and point-wise localization (highlighting) via
segmentation masks. We also provide detection for several normal findings and landmarks in
the human GI tract. In order to be applied in real use-case scenarios, the system should be
accurate, able to handle a large amount of data and be efficient in terms of processing speed.

1.4 Research Methods

In 1989, the ACM Education Board approved a report [45] created by a Task Force on the
Core of Computer Science that determines and characterizes the structure of how research in
computing should be approached. It defines computer science in its essence as an intersec-
tion between several central processes of applied mathematics, science and engineering. These
central processes are basically reflected in the paradigms of theory, abstraction and design.

Theory is concerned with defining and characterizing the objects under study by formulat-
ing, hypothesize and determining possible relationships among objects, verifying relationship
correctness and interpreting the results. Abstraction is used for modeling process and directly
connected to experimental scientific methods. During the abstraction process, a researcher is
investigating a problem, forming a hypothesis, creating a model, designing and running the
experiments and, finally, collecting and analyzing the data. Design is tied with engineering
and involves formulating of the requirements and creating appropriate solutions, followed by
designing and implementing a system. This is concluded by the evaluation of the designed
system.

For the theoretical part, the thesis touches elements of linear algebra, information theory,
image and video representation, image processing with quality enchantment and color space
operations, 2D vector-based geometric operations, building, training and testing of neural net-
works, human interpretation of multimedia content, etc. In the design of the algorithmic basis
for the system, we developed a set of the complete end-to-end multi-purpose image classifica-
tion and objects localization and segmentation algorithms.

To verify our hypothesizes, we created several experimental setups using different existing
and newly collected datasets and did various experiments within our research group and public
competitions in the relevant research communities. We explore image retrieval, analysis and
features extraction techniques for single- and multi-class classification problems. We employ
various image and multimedia data processing operations in different use cases. We study the
performance of our system in terms of accuracy and processing speed aiming for real-world use
cases and real-time applications. We also study the users’ response to our solution and designed
several user studies to collect annotation for the data and validate our system.

All the theories and abstractions presented in the thesis are implemented in several demo
systems and prototypes. The developed software is thoroughly tested with the real data obtained
from different equipment. The developed system was assessed by the experienced endoscopists
from usability and efficiency points of view.
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The developed system design is verified for technical correctness by creating various system
prototypes for disease detection and localization that can be used in hospitals. To gain insights
into domain-specific requirements, knowledge and to get access to actual medical data, we entry
into a tight collaboration with experienced medical doctors from Vestre Viken Hospital Trust
and Karolinska University Hospital.

The multi-purpose nature of the developed algorithms and complete parts of the system
is verified by creating prototypes for objects detection on satellite images and out-of-patient
medical images.

1.5 Contributions

The work presented in this thesis is a continued and extended research on the broad and com-
plex topic of automated lesion detection in the human GI tract. The basic version of the EIR
system was jointly developed by Michael Riegler and Konstantin Pogorelov, the author of this
thesis. The basic EIR system was described in Riegler’s thesis [112]. The second extended and
improved version of the EIR system called DeepEIR is presented in this thesis. Both theses
include the description of the background, motivation, problem, related work, algorithms and
results obtained by Riegler and Pogorelov. The individual author’s contributions are explained
in chapter 5 and section 1.6.

The main contributions of this thesis are:

• technical development of a medical multimedia system called DeepEIR including anno-
tation, detection, in-frame localization, visualization and proof-of-concept demonstration
tools that confirm the potential of multimedia research in the health care system;

• broad comparison of various image classification approaches including classical machine
learning and modern deep-learning-based approaches;

• research and development an efficient generalized distributed use-case-aware multimedia
data processing method is able to achieve real-time performance for medical multimedia
workload processing;

• demonstration and proof of the great potential of multimedia methods and experience of
the multimedia community for applied research in medicine, and illustration how multi-
media technology and methods can be used in the medical field to improve workflows,
patient care and most importantly saving lives;

• contribution to the open-research community with the freely accessible novel open-source
software libraries, datasets, prototypes and demos of the system;

• multiple published research papers about our findings and experiences.

Publications in top-tier conferences or journals support all the main contributions of the
thesis. The diagram in figure 1.5 gives an overview of which of the attached papers contribute
to which objectives. In more detail, the main contributions to the objectives defined in section
1.2 of the thesis are:
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Figure 1.5: This diagram depicts the contributions for each of the in part II attached papers to
the, for this thesis defined, objectives.

• Contributions to the main objective: We developed DeepEIR (the second version of
the EIR system) for automatic detection and in-screen localization of lesions in the GI
tract is capable for both real-time visual feedback during live colonoscopies using tra-
ditional endoscopic equipment and processing huge amount of data for population mass
screening using VCEs [101, 102, 116, 117, 120].

Using the ASU Mayo dataset [133], we showed that the detection subsystem of DeepEIR
reaches high performance in terms of accuracy and processing. We can report a per-frame
sensitivity and precision of almost 98% and 94%, respectively. This means that DeepEIR
is able to find polyps in almost all cases with high precision. This can help the medical
experts to save time and lives [101, 102, 116, 117, 120].

Using the recent public Hospital Clinic of Barcelona dataset [23, 24] and our public
datasets [94, 95], we showed that the detection subsystem of DeepEIR could reach high

12



frame-wise classification performance in terms of accuracy, with a detection specificity
of 94% and an accuracy of 90.9%. With the same datasets, the localization subsystem
reaches the specificity and accuracy of 98.4% and 94.6%, respectively. The resulting
performance of our detection and localization approaches is significantly higher than
competing global-feature- and deep-learning-based approaches including the most recent
real-time YOLOv2 [107] convolutional neural network (CNN).

Using the angiecstasia segmentation public dataset [23], we showed that the detection
and the localization subsystems of DeepEIR can reach outstanding performance that ex-
ceeds clinical requirements (sensitivity and specificity higher than 85%). In summary,
we achieved a sensitivity of 88% and a specificity of 99.9% for pixel-wise angiectasia lo-
calization, and a sensitivity of 98% and a specificity of 100% for frame-wise angiectasia
detection [93].

Moreover, we compared DeepEIR with other existing systems and participated in a clas-
sification challenge where we showed that we outperform or reach at least same perfor-
mance in accuracy as other state-of-the-art methods and that we are leading in terms of
processing performance [25, 102, 116, 120]. Nevertheless, it is important to point out that
the used datasets are still relatively limited in size and that evaluations on a large amount
of data is recommended as soon as the data is available.

For the real-time processing challenge, we showed that DeepEIR can process at least 300
FPS for polyp detection, which is a good indicator that we created a scalable medical
multimedia system able to process data in real-time [116]. We conducted research and
implemented several ways of distributed and parallel processing by using heterogeneous
computational architectures to improve the performance of the DeepEIR system. One of
the methods that we investigated is the implementation of the detection and localization
part on graphics processing units (GPUs) [101, 120]. Another method that we researched
was to distribute the DeepEIR workloads via device lending [72, 102]. Both methods
improved the processing performance significantly [72, 102].

We contributed to two open source projects: Lire, in the field of content-based image
retrieval [80], and OpenVQ, on video quality [125]. We also released the base algorithm
of DeepEIR as an open source project called Opensea [90].

For each part of the DeepEIR system, we developed working prototypes and demo appli-
cations. These prototypes and demo applications have been presented at conferences [17,
102, 116, 120]. All-in-all, we contributed with a holistic medical multimedia system for
GI examinations [115] that will in the future help medical doctors to save lives.

• Contributions to sub-objective 1: For the annotation subsystem of DeepEIR, we con-
ducted extensive research, together with our partner doctors, to make the process of med-
ical knowledge transfer into our system easy and efficient for the medical experts. We
explored and developed semi-supervised and cluster-based annotation tools [90, 98, 119].

For medical data collection and publishing, we investigated the ethical and legal aspects of
medical data use within our research process. We contacted several Norwegian hospitals
and established relations with the data storage managing personnel. With the help of our
medical-side collaborators, we made the agreements allowing us to extract and use the
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fully anonymized data from the hospital medical information systems. Using these data,
we created two datasets (called Kvasir [95] and Nerthus [94]) and published them online
freely accessible for educational and research purposes. We did our own evaluation of the
datasets to give the baseline for other researchers [87, 99].

We used the published datasets for organizing Medico: The 2018 Multimedia for Medicine
Task challenge within MediaEval Benchmarking Initiative for Multimedia Evaluation [61,
100, 118]. Our Medico challenge was accepted by the public and the research commu-
nity. The datasets were evaluated by independent researchers and they are already used
widely around the world.

• Contributions to sub-objective 2: As a basis for the detection subsystem, we developed
a search-based classification algorithm that uses global image features, reaches good clas-
sification performance and is very fast at the same time [90]. As a basis for the localization
subsystem, we developed a polyp localization algorithm based on the hand-crafted local
features and global heat map post-processing, which reaches good polyp localization pre-
cision with reasonable high false-alert rate [25].

We researched the problem of bleeding detection for VCE-captured videos and developed
the basic bleeding detection and localization algorithm for the DeepEIR system [128].

We implemented the multi-class global-features- and deep-learning-based classifiers are
able to handle multiple lesions, landmarks and normal findings of the GI tract for the
detection subsystem, investigated its efficiency both in terms of accuracy and processing
speed and compared it to existing competitors [91, 96]. This formed a basis for developing
the DeepEIR system into the holistic system that is usable and helpful in the real-world
conditions.

In order to extend the lesion detection capabilities of the DeepEIR system, we investigated
and developed a GAN-based detection and localization approach for the angiectasia GI
tract lesion [93]. Also, inspired by the success of our angiectasia detection approach, we
researched and developed a GAN-based polyp detection and localization approach [92].

We investigated the topic of deep neural network internal processes visualization for bet-
ter medical image classification and classification understanding [62]. We investigated
the tradeoffs using binary versus multi-class neural network classification for medical
multi-disease detection [26].

Based on the use cases addressed in the thesis and the DeepEIR system itself, we showed
that the global- and local-feature-based algorithms together with the deep-learning-based
approaches can form a strong basis for the multi-lesion detection system. We showed that
the local hand-crafted features together with GAN-based approaches, can provide a good
localization performance for the challenging lesions that are hard to see even for humans.
In total, we proved that the developed algorithms are well suited to be applied in several
use cases that involve image classification and analysis problems [91, 92, 93, 99, 101,
102, 115, 116, 117, 120].

• Contributions to sub-objective 3: We investigated different types of visualization for
the output of the DeepEIR system. We developed the Web-based visualization application
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for research and medical experts [90] and its easier-to-use web-based version [120]. We
developed an initial visualization approach that is able to visualize all outputs of the
DeepEIR system [116], that was later developed in a live visualization application [96].
We investigated the problems of automatic reporting and developed a decision support
system for deep-learning-based analysis in the medical domain [63, 64]

Additional contributions: Here, we list contributions that have been made during the PhD
and are not related to the main topic of the thesis but were conducted because of it. These
contributions are:

• We investigated and developed an approach to the flooding detection on the satellite im-
ages using our GAN-based approach that showed promising results [14, 15, 121] and
built a unique system for collecting information and monitoring natural disasters by link-
ing social media with satellite imagery can potentially save lives [13, 16].

• We investigated how context (a certain watching situation) influences the quality of expe-
rience for users when they are watching videos during a flight as a use-case. We hosted a
MediaEval benchmark task [97] about this topic and published a dataset [114].

• We developed a system for efficient live and on-demand tiled HEVC 360 VR video
streaming and investigated its performance in real use-case scenarios [55].

• We investigated and developed the new top-down saliency detection approach driven by
visual classification, which showed promising performance on common saliency detec-
tion evaluation datasets [84].

1.6 This thesis author’s independent contributions

This thesis describes the DeepEIR medical multimedia system, which was built as the next step
towards clinical-ready GI tract disease detection and localization computer-aided solution. This
thesis author’s main independent contributions are the following:

• Speed optimization of the LIRE library used in the basic version of the detection subsys-
tem (see Paper I).

• Development of the initial version of the global-feature-based clustering and visualization
application (see Paper I).

• Development of the enhanced version of OpenSea classification tool used in the initial
version of the detection system (see Paper II).

• Research and design of the efficient hyper-tree-based representation of the images clus-
tering output (see Paper III).

• Development of hyper-tree-based visualization and annotation application has been used
in data collection and annotation process (see Paper III).
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• Research and design of the efficient feature extraction pipeline for the feature-based im-
age classification approach used in visualization and detection subsystems (see Paper IV).

• Research and design of the real-time image-oriented database used in ClusterTag appli-
cation (see Paper IV).

• Research and design of the real-time image clusters drawing module used in ClusterTag
application (see Paper IV).

• Development of ClusterTag, the interactive visualization, clusterization and annotation
application has been used in data collection and annotation process (see Paper IV).

• Research and design of the local hand-crafted-feature-based polyp localization approach.
Development of the initial version of the localization subsystem using this approach (see
Paper V).

• Research and design of the multi-CPU global features extraction. Development of the
speed-improved feature-based version of the detection subsystem (see Paper V).

• Research and design of the GPU-accelerated features extraction. Development of the
second version of the speed-improved feature-based detection subsystem (see Paper VI).

• Research and design of the GPU-accelerated speed-improved version of hand-crafted-
feature-based polyp localization. Development of the second version of the localization
subsystem (see Paper VI).

• Development of the detection and localization evaluation application for the MICCAI
polyp finding challenge (see Paper VI).

• Research and design of the real-time detection and localization approach based on global
and hand-crafted features. Development of the corresponding system evaluation applica-
tion (see Paper VII).

• Research and design of the multi-class classifier for the detection subsystem. Develop-
ment of the global-features- and deep-feature-based classification module for the Deep-
EIR system (see Paper VIII).

• Processing and annotation of the Kvasir dataset (see Paper VIII).

• Research and design of the second improved version of CUDA-based GPU-accelerated
feature extraction and classification approach. Development of the corresponding module
for the DeepEIR detection subsystem (see Paper IX).

• Research and design of the distributed multi-GPU feature extraction approach with the
use of device landing for data processing speed improvement. Development of the cor-
responding parallel processing module and related DeepEIR detection subsystem modifi-
cations (see Paper X).
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• Research of the pros and cons of the developed global- and deep-feature-based detection
approaches. Detection and localization subsystems optimization for processing speed.
Development of the live polyp detection and localization software (see Paper XI).

• Kvasir, Nerthus and Medico datasets preparation, annotation and publication. Develop-
ment of the base-line classification algorithms for these datasets (see Papers XII and XIII).

• Research and design of the GI tract lesion segmentation approach (see Papers XIV and XV)
based on a generative adversarial network (GAN) architecture.

• Research and design of the GAN-based pixel-wise localization and frame-wise detection
approach for angiectasia and polyp lesions. Development of the new angiectasia and
polyp modules for the detection and localization subsystems (see Papers XIV and XV).

• Research and design of the block-wise localization-via-detection approach for polyp le-
sions. Development of the additional polyp module for the detection and localization
subsystems (see Paper XV).

• Research and design of the bladder cancer cells detection and localization approach (see
subsection 3.6.4.1).

• Research and design of the spermatozoon detection and localization approach (see sub-
section 3.6.4.2).

• Performance evaluation of the EIR and DeepEIR systems in whole and their subsystems
(see Papers I- XV).

In addition to the above contributions, the author also supervised several master students,
organized workshops and was part of program committees for conferences. One of the latest
papers describing author’s GAN-based detection and localization approach (that was developed
for the DeepEIR system) called "Deep Learning and Hand-crafted Feature Based Approaches
for Polyp Detection in Medical Videos" won a Best Paper Award at the 2018 IEEE 31st Inter-
national Symposium on Computer-Based Medical Systems [92] (Paper XV).

1.7 Outline

The research presented in this PhD thesis has been started from a simple medical image knowl-
edge extraction task, which was rapidly developed into the whole and a complete end-to-end
system is able to perform efficiently and to assist doctors during their routine work. From the
very beginning, we decided to develop our system as a set of semi-independent subsystems,
namely: annotation and data acquiring, analysis and visualization. We developed the corre-
sponding methods and algorithms for these subsystems, finely tuned them for our use case and
joined them into the complete DeepEIR system. Using our own and other publicly available
data, we trained and evaluated our system, achieving promising results in terms of detection
and localization accuracy. Finally, we investigated the system performance and successfully
improved it reaching the goals of real-time (and even fasted) data processing performance and
handling huge amount of data using distributed, parallel and GPU-enabled processing.
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The rest of this thesis is organized as follows, giving an introduction to the main ideas that
are described in more depth in the attached papers in chapter 5:

Chapter 2: Medical Multimedia Systems: We provide the background information about the
human GI tract use case. We briefly describe the medical data challenges and our prac-
tical experience. We present related work focused on other medical multimedia systems,
methods and datasets available.

Chapter 3: The DeepEIR System: We describe the complete DeepEIR system, its general
overview, internal structure and connections to the outer world. Next, we describe the an-
notation, detection, localization and visualization subsystems and their algorithmic base,
including some experimental results and discussion of real-world scenarios for the sys-
tem. Then, we describe our experience with the system’s data processing speed improve-
ment, our approach to the real-time processing and handling of huge amounts of data.
Finally, we describe our demos and prototypes that were used for testing and proving that
the DeepEIR system can be used for the real-world medical use-case scenarios.

Chapter 4: Conclusion: We summarize and conclude this thesis and present ideas and con-
cepts for further studies in the intersection between GI endoscopy and medical multimedia
systems.

Chapter 5: Papers and Author’s Contributions: Finally, we present all the core research
papers that are included and discussed in this thesis. For each paper, we include a de-
scription of the author’s contributions to it and indicate to which objectives it contributed.
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Chapter 2

Medical Multimedia Systems

Medical multimedia systems introduce various challenges both for from research and devel-
opment point of view. In this chapter we first look into the medical side of the problem area
including the modern endoscopic devices. Then, we tackle the problem of medical data avail-
ability and search for available data sources. Next, we describe the state-of-the-art in medical
data analysis and summarize currently unsolved challenges. Finally, we briefly describe our
initial EIR system implementation and summarize our goals.

2.1 Gastrointestinal Tract Case Study

At a first glance, the modern health-care system is equipped with a huge amount of high-tech
equipment to make the diagnosis, cure and follow-up processes fast, easy and convenient for
the patients. In some areas, for example, blood sampling and computer tomography of internal
organs, this is true. However, many of the medical investigations do still not only require a vast
amount of preparation and manual work done by an experienced and specially trained doctor
but also bring discomfort and pain into the patient’s life.

Despite the progress in non-invasive human body scanning methods like, e.g., CT, MRT
and ultrasound imaging, there are only few methods readily available for gastroenterologists for
robust and reliable imaging of the GI tract and, especially, the upper part of digestive system
and its colorectal area.

Upper Endoscopy An upper endoscopy is a procedure used to visually examine the upper
digestive system with a tiny camera on the end of a long, flexible tube. A specialist in diseases
of the digestive system (gastroenterologist) uses endoscopy to diagnose and, sometimes, treat
conditions that affect the esophagus, stomach and beginning of the small intestine (duodenum).
The medical term for an upper endoscopy is esophagogastroduodenoscopy. It can be done at a
general practitioner’s office, an outpatient surgery center or a hospital.

Colonoscopy A colonoscopy is an examination method used to detect changes or abnormalities
in the large intestine (colon) and rectum. During a colonoscopy, a long, flexible tube (colono-
scope) is inserted into the rectum. A tiny video camera at the tip of the tube allows the doctor
to view the inside of the entire colon. If necessary, polyps or other types of abnormal tissue
can be removed through the endoscope during a colonoscopy. Tissue samples (biopsies) can
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be taken during a colonoscopy as well. The most common reasons for colonoscopies include
investigation of the GI-tract for signs and symptoms and possible causes of abdominal pain,
rectal bleeding, chronic constipation, chronic diarrhea and other intestinal problems. Another
reason is screening for colon cancer in people aged over 50, to be performed every ten years to
screen for colon cancer. The previous history of colon polyps and CRC can also be a cause for
necessary follow-up colonoscopies to look for and remove any additional polyps. This is done
to reduce the risk of developing CRC.

Colonoscopy include conventional white-light endoscopy and virtual endoscopy [52]. Con-
ventional white-light colonoscopy is regarded as the gold standard screening test for CRC [104].
Various randomized clinical examination and prospective cohort investigations have testified
that conventional colonoscopy with polypectomy lowers the incidence of CRC significantly by
40-90% and decreases mortality [108]. Therefore, the demand for colonoscopy continues to
increase.

Regardless of the achievement of colonoscopy in lowering cancer deaths, an important av-
erage miss rate for detection of both massive polyps and cancers is present and is approximated
to be around 4 − 12 percent [78, 88, 109]. The traditional endoscopies, such as colonoscopy
and gastroscopy, only allow a physician to examine few regions of the GI tract. The traditional
endoscopies cannot visualize the small intestine, due to cable length limitation. Furthermore,
they can also tear intestinal walls in case of severe medical conditions, and endoscopies such
as enteroscopy and push enteroscopy are uncomfortable for the patients. They are performed in
real-time and are challenging to scale to a larger population [91]. Also, the procedure is expen-
sive. In the United States, for instance, the colonoscopy is the most expensive cancer screening
procedure with yearly expenses of 10 billion dollars, with an average of $1,100 per person. In
the UK, the prices are around $2,700 per person. Norway has an average cost of about $450 per
examination. Scaling this to a population-sized cohort is very resource demanding and incurs
enormous costs. Additionally, approximately one medical-doctor-hour and two nurse-hours,
per evaluation is required that makes the real population-wide screening unrealistic scenario.

Prior to the introduction of wireless VCE, physicians could not examine the small intes-
tine without any surgical operation. VCE was devised by a group of researchers in Baltimore
in 1989, and afterwards introduced by Given Imaging Ltd., Yoqneam, Israel, as a commercial
instrument. The device became publicly available in 2000 and used wireless electronic technol-
ogy [67] that captures images of complete GI tract. This capsule-shaped pill can be swallowed
by the patients in the presence of clinical experts without any discomfort [128]. Unlike conven-
tional endoscopy procedures, this procedure investigates the entire GIT without pain, sedation
and air insufflation. VCE has assisted more than 1.6 million patients worldwide until now. An
additional advantage of this new technology is that the process of the physical examination that
does not require sedation and is non-invasive, so it only applies little pain to the patient [41].
This entire VCE procedure enables clinicians to diagnose and detect ulcers, tumors, bleedings
and other lesions in the small intestine to make offline diagnostic decisions afterward.

Moreover, GI tract inspection and screening is one of the areas under-covered by automation
and computer-based support systems. Thus, the importance of corresponding GI-tract-oriented
automated medical systems that provide support for diagnostics, examination, surgery, report-
ing and teaching cannot be underestimated. Moreover, regardless of the automation level, the
support systems must be interactive, since the medical professionals must be in the loop to pro-
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vide input, interpret and act on the results. Our investigation in the field showed that there is
no complete medical multimedia system for analyzing multimedia data containing information
about the GI tract in real-time. Thus, our primary goal is to develop such a complete system.

Following the general preconditions for medical system and common GI-tract-procedures,
we define the following requirements:

1. Support for decision making during the traditional push enteroscopy (colonoscopy) and mod-
ern VCE.

2. Ability to process video streams from standard endoscopic equipment as well as images and
videos captured by VCE.

3. Real-time detection and in-frame localization of different GI-tract diseases.

4. Ability to implement a complete processing pipeline including data collection, annotation,
medical knowledge transfer, automatic analysis and visualization.

5. Ability to be extend to new diseases.

Up to now, detection of diseases in the GI tract was mostly focused on polyps. The main
reason for this is the importance of polyp detection and the lack of well-annotated training and
validation data for other gastric diseases. Automatic analysis of polyps in colonoscopies has
been in the focus of research for a long time and several studies have been published. However,
there are no complete systems, and none of the developed approaches can perform detection in
real-time and support doctors by computer-aided diagnosis during colonoscopies. Furthermore,
all the existing systems are limited to a very specific use case, trained and validated with very
limited datasets or rely on a specific type of equipment.

2.1.1 Endoscopic Devices

As the first step in our research, we investigated the variety of the existing GI tract examination
methodologies currently used in hospitals world-wide. All-in-all, we split them into two main
categories: the indirect and direct investigation methods. Indirect methods include magnetic
resonance imaging, various tomography, blood and fecal samples analysis. Direct methods
are various endoscopic procedures and surgical interventions. In this research, we focus only
on endoscopic diagnostic methods which give precise and reliable results with the reasonable
cost and patient discomfort comparing to other methods. Also, comparing to, for example,
fecal sample biomarker-based analysis, GI tract endoscopic screening covers all known GI-
tract-related lesions. All types of endoscopic examination are performed using traditional and
wireless video capsular endoscopic devices.

2.1.1.1 Traditional Endoscopes

Traditional endoscopy is a nonsurgical procedure used to examine a person’s GI tract. It is
performed using an endoscope, a flexible tube with a light and camera attached to it. The
video stream is transmitted to an external TV monitor (and optionally a recording device and/or
computer) showing the internal contents of a patient’s GI tract. In general, the endoscopic
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procedures are non-invasive, but they can introduce a significant discomfort to the patient not
only during the procedure itself, but also during a preparation phase. Most types of endoscopy
require to stop eating solid foods for up to 12 hours before the procedure. Typically, the prepa-
ration requires strong laxatives or enemas to use the night before the procedure to clear the
digestive system. There are many types of endoscopic procedures, but the most common are
upper endoscopy and colonoscopy.

2.1.1.2 Wireless Video Capsular Endoscopes

Video Capsule Endoscopy (VCE) provides visualization of the gastrointestinal (GI) tract by cap-
turing images or recording video using a small swallowed pill-like disposable capsule equipped
with one or more cameras, a small processing device, memory or wireless transmitter and a
battery. There are two main types of VCE capsules: Transmitting VCE (T-VCE) and Recording
VCE (R-VCE).

The T-VCE capsule, also sometimes called Wireless Capsular Endoscope and Wireless
Video Capsular Endoscope, performs capturing of images and immediately transmits video
wirelessly from a capsule to a data recorder device worn by the patient. The T-VCE capsule is
fully disposable and follows the swallow-and-forget concept that is convenient for both patient
and doctor. The data captured becomes available for analysis and downloading almost instantly
after activating and swallowing of the T-VCE capsule.

The R-VCE capsule performs capturing of images and stores the data on an onboard flash
memory chip that eliminates the needs for a piece of additional external equipment on the
patient’s body. Instead, the R-VCE capsule requires recovering of the capsule from the patient’s
stool.

Both technologies have different pros and cons that make them suitable for different di-
agnostic and screening scenarios depending on the requirements in each specific case. Here,
we describe them in short to demonstrate the potential of these technologies for the future
discomfort-less examinations and national-wide screening programs.

The T-VCE equipment is often called Wireless Capsule System (WCS). It consists of 3 main
components:

• a swallowed transmitting capsule endoscope device;

• a receiving and sensing system for receiving a data stream from the capsule, sensing pads
or a sensing belt attached to the patient body, a data recording storage, and a battery pack;

• a workstation or personal computer with proprietary software installed and the interfaces
to on-body module hardware.

All T-VCE capsule endoscope devices have similar components: a disposable plastic cap-
sule, a complementary metal oxide semiconductor (CMOS) or high-resolution charge-coupled
device (CCD) image capture system, a compact lens, a signal processing device, a wireless
transmitter, white-light-emitting diode illumination sources, and an internal battery. Some mod-
ern capsules use magnetic and acceleration sensors to provide advanced localization informa-
tion. The latest controllable capsules contain a magnet used to steer the capsule from outside of
the patient’s body.
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Figure 2.1: The internal components of wireless video capsule endoscope

The mode of data transmission is either via ultra-high frequency band radio telemetry or
human body communications. The latter technology [77] uses the capsule itself to generate an
electrical field that uses human tissue as the conductor for data transmission.

The first capsule model for the small intestine was approved by the US’s Food and Drug
Administration (FDA) in 2001. Over subsequent years, this technology has been refined to
provide superior resolution, increased battery life, and capabilities to view different parts of the
GI tract. Different producers provide a number of different T-VCE devices designed to be used
for different parts of the GI tract, namely: small-bowel only, esophageal imaging and colon
imaging.

Figure 2.1 shows the sample of the inner element of the T-VCE. This particular device
is pill shaped (26mm×11mm), consists of light sources, a short focal length CCD camera,
a transmitter of radio frequency and a few other electronic components. Once the capsule is
swallowed by a patient, the WCE begins capturing images with 2-4 frame per second (fps) and
sends them wirelessly to the recorder unit. This process produces between 50,000 and 80,000
images for each patient before the pill’s battery is exhausted.

The R-VCE equipment is often called Storable Capsule Endoscope System (SCES). It con-
sists of 3 main components:

• a swallowed recording capsule endoscope device;

• a data extraction system for obtaining recorded data from the capsule;

• a workstation or personal computer with proprietary software installed and the interfaces
to the data extraction module hardware.

All R-VCE capsule endoscope devices have similar components: a disposable plastic cap-
sule, a CMOS or CCD image capture system, a compact lens, a signal processing device, a large
capacity onboard storage medium (several GB and more), white-light-emitting diode illumina-
tion sources, and an internal battery.
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The recorded and compressed data is stored on the integrated storage medium, which can be
done with a lower power consumption per recorded frame compared to wireless data transmis-
sion. This enables higher frame rates, better image resolution and longer recording time within
capsules of the same size.

The main advantage of R-VCE is that patients do not need to wear an image recorder after
swallowing the capsule, and they only need to be aware of the time of expelling the capsule from
the body and collecting it. Currently [77], all R-VCE capsules require the excavation from the
fecal masses, cleaning and the use of specialized communication module to extract the recorded
data from the capsule. Nevertheless, compared to T-VCEs, screening using R-VCE devices can
be performed virtually at any place (at home, at remote sites and on moving facilities, like
ships and oil platforms), because only the capsule and simple and cheap disposable support
equipment is required for the procedure.

After the data extraction, proprietary software is used to process and display the images in
single or multiple views at any desired rates for R-VCEs and at rates of 5 to 40 frames per
second for T-VCEs. Representative images and video clips can be annotated and saved. Most
versions of available software have the ability to identify red pixels to facilitate detection of
bleeding lesions. Localization of the capsule and monitoring of its movement through GI-tract
are implemented for T-VCEs, but not yet for R-VCEs. Additional features include quick ref-
erence image atlases, and report generation capabilities. Different producers provide a number
of different R-VCE devices designed to be used for different parts of the GI tract, namely:
esophageal imaging, stomach imaging, small-bowel and colon imaging.

2.1.2 Medical Data

All described endoscopic devices generate a lot of multimedia data including still images, video
streams, sensors and positioning data, etc. Some of this data is used only to provide real-time
visual feedback to a doctor, some can be recorded locally or in hospital information systems for
future use and reporting purposes. The access to such recorded data is strictly regulated by ethic
and privacy grounds. From our experience, one of the most important challenges we meet dur-
ing the development of the medical multimedia system is medical data availability and usability.
Hospitals record, store and process a significant amount of data during routine procedures and
patients’ checks. This data contains information that is necessary for both efficient patient care
and case investigation, and for educational and training purposes. However, the collected data
is not used efficiently. This data holds much potential, for example, by using it for efficient and
accurate automatic analysis or by researching and developing live computer-assisted diagnosis
based on these generated data. Medical datasets also have the challenge that they usually con-
tain many true negative examples, but not so many true positives. Furthermore, generalization
is a vital ability for computer-assisted diagnostic systems that must be able to process data from
different type of equipment (endoscope) used. Thus, a very important open question is how
generalizable the proposed methods are.

During our research, we discovered only a few publicly and restrictively available datasets,
which form a small set of reference images and video data can be used for the direct perfor-
mance comparison of different approaches. Table 2.1 depicts the details of these datasets. As
one can see, the available amount of data is relatively small, especially for the proper evaluation
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Dataset Name Data source Frames contains example of Dataset Size Status Description
CVC-ClinicDB [2] Colonoscopy Polyps 612 still images from 29 different

sequences with polyp mask
Available From 29 different sequences with

polyp mask (ground truth)
ASU-Mayo Clinic
Colonoscopy Video
(c) Database [1]

Colonoscopy Polyps Training: 20 different videos Test-
ing: 18 videos

Copyrighted 10 videos with polyps detections,
10 videos without polyps, GT avail-
able

CVC colon DB [3] Colonoscopy Polyps 300 frames with ROI By explicit per-
mission

15 short colonoscopy sequences
(different studies)

ETIS-Larib Polyp
DB [4]

Colonoscopy Polyps 196 images By request 196 images with GT

GI Lesions in Reg-
ular Colonoscopy
Data Set [6]

Colonoscopy GI lesions 76 instances Available 15 serrated adenomas, 21 hyper-
plastic lesions, 40 adenomas

GastroAtlas [5] Endoscopy GI lesions 5,029 video clips Available Low-quality videos
The Atlas of
Gastrointestinal
Endoscopy [9]

Endoscopy GI lesions 1295 images Available Esophagus, Stomach, Duodenum
and Ampulla, Capsule Endoscopy,
Inflammatory Bowel Disease,
Colon and Ileum and some Miscel-
laneous

WEO Clinical En-
doscopy Atlas [10]

Endoscopy GI lesions 152 images By explicit per-
mission

One image per lesion

GASTROLAB [7] Endoscopy GI lesions Several hundreds of images and
several tenths of videos

Discontinued Partially damaged/unavailable
dataset

KID [8] VCE GI lesions 2,448 images and three videos Discontinued, by
request

Dataset access issues

Kvasir [95] Various GI lesions & landmarks 8,000 images, 8 classes, 1,000 im-
ages per class

Available, public,
free for research
and educational
purposes

Our dataset. See section 3.1 for the
description.

Nerthus [94] Colonoscopy GI findings 5,525 frames extracted from the 21
videos, 4 classes, from 500 to 2,700
frames per class

Available, public,
free for research
and educational
purposes

Our dataset. See section 3.1 for the
description.

Medico [100] Various GI lesions, landmarks and
findings

14,033 images, 16 classes, from 4
to 2,331 images per class

Available, public,
free for research
and educational
purposes

Our dataset. See section 3.1 for the
description.

Table 2.1: Existing endoscopic image and video datasets

of the newly developed methods designed for real clinical setups. Also ground truth (GT) data
for the available datasets is often missing or not accurate enough. Thus, in this research, we
address this issue by introducing several new open-sourced and publicly available datasets.

2.2 Medical Image Analysis

The next naturally following question is how to use the endoscopic data efficiently both dur-
ing live examinations to assist doctors, and later for automated diagnosis system development
and medical personnel training. Widely used computer vision-based automatic visual data pro-
cessing methods are designed for different use-cases and data types. Medical multimedia data
analysis introduces a broad range of challenges mostly caused by the nature of the GI tract and
nuances of the lesions that need to be detected, localized and assessed.

2.2.1 Challenges of Automatic Diseases Detection

Traditional colonoscopy and modern VCE offer an internal view of the digestive tract via non-
surgical endoscopy technology. Following the progress in object recognition in the last few
decades, computer-aided lesion detection methods have been in development with the ultimate
goal of assisting doctors during routine procedures and lowering the lesion miss rate. How-
ever, automated lesion detection in live and recorded endoscopic video data is quite challenging
because of the variation of polyps and other lesions inside the GI tract. GI tract findings can
have color, texture and shape properties similar for different diseases and different for similar
diseases in various stages of development. Findings can be covered by biological substances,
such as seeds or stool, and lighted by direct and reflected light. Moreover, image coming from
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the endoscopic equipment can be interleaved, noisy, blurry because of lens defocus and camera
motion, over- or under-exposed, it can contain static artifacts caused by lens contamination,
borders, sub-images and a lot of specular reflections caused by the endoscope’s light source.
The GI tract can potentially have a wide range of lesions visible in endoscopy, as well as find-
ings associated with benign/normal or man-made lesions. This phenomenon leads to a need
for distinguishing between multiple classes of findings, including such with high level of visual
similarity. In this scenario, both high precision and recall are of crucial importance, but also the
frequently ignored system performance to provide live feedback because medical personal is
assisted most efficiently while they perform the examination. Currently, there is no computer-
assisted diagnosis or object recognition functionality implemented in endoscopic equipment for
live examinations.

Modern VCE that has many advantages comparing to traditional push enteroscopy, require
further improvement of the technology. Currently, clinicians must inspect 50,000 and more
VCE images from between 4 and 12 hours of video footage to locate the diseases, which is
a difficult task. They might miss the disease at an early stage due to visual fatigue or con-
centration loss. Moreover, VCEs do not have optimum lightning, making it more challenging
to detect endoscopic findings in captured images than in images from traditional endoscopes.
Also, during VCE procedures, the intestine is not inflated by injecting a small amount of low-
pressurized gas into the GI tract via a endoscope, unlike in conventional endoscopy, where the
expansion allows for precise and non-obfuscated images of the intestine walls. Nevertheless,
ongoing research focuses at enhancing VCEs’ hardware capabilities and at upgrading the tech-
niques and algorithms developed for colonoscopies to work also for VCEs. While software
developed by Given Imaging for VCE exists [74] and can detect active bleeding automatically,
the sensitivity and specificity is very low, and no detection is implemented for other diseases
at the moment. Moreover, the modern trends in multi-sensor VCE system design aims at the
use-case where individuals can buy VCEs at the pharmacy and convey the video stream from
the GI tract to the phone over a wireless connection. The video footage can be preprocessed on
the mobile phone, in order to perform an initial analysis before the video footage is delivered
to a processing back-end. In the best instance, the first screening results are accessible within
eight hours after swallowing the VCE, which is the time taken by the camera to traverse the
GI tract. Thus, the ability to execute and perform mass-screening of the GI tract relies on two
fundamental research areas. First, it requires the improvement of a new generation of VCEs
with better picture quality and the capacity to communicate with widely used mobile phones.
Second, mass-screening demands a new generation of lesion detection algorithms able to pro-
cess the captured GI tract multimedia data and video footage. Here, a preliminary analysis and
task-oriented compressing of captured video footage before uploading into the cloud is of great
significant because of the huge amount of data generated by VCEs.

2.2.2 State of the Art in GI Tract Lesion Detection

Early research on lesions detection in the human GI tract was mostly focused on polyp detec-
tion. The approach by Wang et al. [144, 145] was the most recent and best-working complete
polyp detection system in the field of polyp detection when we started our system design and
development. The system called Polyp-Alert employs edge-cross-section visual features and
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Kang et al.[71] 2019 polyp / CNN 76.25 – 77.92 – – – – 1187

Mori et al.[82] 2019 polyp / CNN 94 40 – – – – 10 135

Byrne et al.[32] 2019 polyp / CNN 98 83 90 94 – – 20 60,089

Urban et al.[139] 2018 polyp / CNN 96.8 95 – 96.4 – – 98 8,641

Mori et al.[83] 2018 polyp / color, texture 92.7 89.8 93.7 – – – 2.5 61,925

Wang et al. [145] 2015 polyp / edge, texture 97.70 – – 95.70 – – 10 1.8m

Wang et al. [144] 2014 polyp / shape, color, texture 81.4 – – – – – 0.14 1,513

Mamonov et al. [81] 2014 polyp / shape 47 90 – – – – – 18,738

Zhou et al. [149] 2014 polyp / intensity 75 95.92 – 90.77 – – – –

Li and Meng [75] 2012 tumor / textural pattern 88.6 96.2 – 92.4 – – – –

Ameling et al. [20] 2009 polyp / texture 95 – – – – – – 1,736

Cheng et al. [39] 2008 polyp / texture, color 86.2 – – – – – 0.076 74

Hwang et al. [66] 2007 polyp / shape 96 – 83 – – – 15 8,621

Alexandre et al. [18] 2007 polyp / color pattern 93.69 76.89 – – – – – 35

Kang et al. [70] 2003 polyp / shape, color – – – – – – 1 –

Riegler et al. [112] 2017 multi-class / global features 98.5 72.49 93.88 87.7 – – 300 18,781

Table 2.2: A performance comparison of GI findings detection approaches. Not all performance
measurements are available for all methods, but including all available information gives an idea
about each method’s performance. Also there are many done and ongoing research in the field,
and this table present a selection of the most representative and recent results

a rule-based classifier to detect an edge along the contour of a polyp. The technique employs
tracking of detected polyp edges to group a sequence of images in order to be able to detect
the same polyp’s appearances as one polyp event. The best achieved sensitivity of 97.70% and
accuracy of 95.70% together with the relatively high processing speed measured as 10 FPS en-
abled initial clinical trials. We joined our research efforts recently resulting in the co-authored
work [115]. However, the Polyp-Alert system is limited to the polyp use-case and it also does
not provide low enough processing latency necessary for the live colonoscopies support.

Mamonov et al. [81] presented a simple polyp presence detection algorithm based on the
geometrical shape of polyps and on the assumption that polyps often are hill-shaped objects
bumped out of the surrounding tissue. With the main goal of reducing the number of frames that
need to be manually inspected, the algorithm reached a sensitivity of 81.25% and a specificity of
90% for a per-polyp measure. For a per-frame measure only a sensitivity of 47% was reached
with the specificity of 90.2%, which makes this detection algorithm not precise enough for
real-time feedback generation.

Hwang et al. [66] developed a similar shape-based approach assuming that polyps are spher-
ical or hemispherical geometric elevations on the surrounding mucosa. The method relies on a
watershed-based image segmentation algorithm. Then ellipses are fitted into the segments by
constructing a binary edge map for each segmented region using a least square fitting method.
After the coarse size-based filtration, ellipses are further evaluated for matching of curve di-
rection, curvature, edge distance and intensity. The interesting part of this approach is that
after the first frame a potential polyp was detected, subsequent frames are also searched for
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the same characteristics using a mutual and information-based image registration technique.
The method’s evaluation showed reasonably high sensitivity and precision of 96% and 83%,
respectively, achieving, at the same time, promising 15 FPS processing speed. Nevertheless,
this and other shape-oriented approaches are strictly limited to polyp detection and cannot be
easily extended to other flat or non-shaped diseases, e.g. bleeding, angioectasia, ulcers, etc.

The most recent works mostly incorporate modern CNN architectures as the detection and
localization subsystems’ basis. Mori et al. [82, 83] presented two complete polyp detection
systems that were tested in real clinical trials. The first [83] system’s detection algorithm is
based on custom color and texture features extracted from every frame being processed with a
following classification using a traditional ML-based SVM classifier. The system is able to pro-
cess input frames at a rate of 2.5 FPS and has a corresponding sensitivity of 92.7%, specificity
of 89.8% and precision of 93.7%. Despite the relatively high system performance, the overall
data processing speed is not enough for convenient system use, due to an often limited polyp
appearance time (a polyp can sometimes be clearly visible on one single frame in a 30 FPS
video stream). The second [82] proposed detection system is based on a custom CNN architec-
ture especially designed to work with a combination of traditional, magnified and narrow-band
imaging (NBI) frames captured by a modern endoscopic system from Olympus. The developed
system achieved a sensitivity of 94% and a specificity of 40% reaching near-real-time pro-
cessing speed. Compared to many others, actual testing of this approach with real endoscopic
equipment confirms the high quality of the designed software and the corresponding algorithmic
base. Nevertheless, a test dataset with limited size was used for the system evaluation, rising
the question of system’s flexibility and ability to act in the different conditions. Moreover, the
processing speed of 10 FPS is not enough for high-quality support during live colonoscopies.
Moreover, both systems [83, 82] do not provide any localization information and are not able
to highlight the polyp on a live view screen.

Byrne et al. [32] described an interesting Inception-based CNN architecture designed for
NBI colonoscope imaging mode. With the ultimate goal of polyp detection, the detection al-
gorithm provides a sub-class classification (hyperplastic polyp or conventional adenoma) of the
found polyps. The performance numbers achieved on the validation set sized 18% of training
set, are reported as a sensitivity of 98%, specificity of 83%, precision of 90%, and accuracy
of 94%. The high measured method accuracy in conjunction with a relatively high processing
speed of 20 FPS forms a solid basement for a complete detection system. However, the pro-
posed detection method is suitable for NBI images only, which are normally used only after
the actual polyp recognition by the performing endoscopist. Thus the method itself cannot be
directly involved in a holistic polyp detection system.

Kang et al. [71] developed a novel approach based on two joint Mask R-CNNs based on
the pre-trained ResNet50 and ResNet101 models. A bit-wise combination of the output masks
used to enhance the segmentation performance of the proposed method is able to provide not
only detection output, but also a precise polyp localization mask within an input image. With the
pixel-wise sensitivity of 76.25% and precision of 77.92% this method demonstrates a promising
potential for future complete lesion detection, but it requires significantly wider evaluation on
the various datasets, as well as the corresponding processing speed testing.

Urban et al. [139] presented a set of custom CNN architectures especially designed for
the dual binary detection and regression localization modes. The primary polyp recognition
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is implemented by a combined CNN model performing the optimization of the polyp size and
location with mean-squared error loss; optimizing the overlap between the predicted bounding
box and the ground truth; and a variation of the “you only look once” (YOLO) algorithm, in
which the CNN produces and aggregates multiple individual weighted predictions of polyp size
and location in a single forward pass. Authors tested randomly initialized and well-known
ImageNet-pre-trained models. The best performing model incorporates initial weights from
the ResNet50 network, and was able to reach an accuracy of 96.4%, sensitivity of 96.8% and
specificity of 95%. The top processing speed was measured as 98 FPS on a high-end consumer-
grade PC equipped with the recent GPU. However, the stated higher-than-real-time processing
speed was reached for low-resolution 224x224 pixels input images and can potentially lead to
a high miss rate for small polyps.

All-in-all, the state of the art methods and existing complete systems show the great potential
of computer-based lesions detection in the human GI tract. Existing solutions can not only
reach high performance in terms of accuracy, sensitivity, specificity and precision, but also
demonstrate real-time or near-to-real-time data processing capabilities. However, despite the
achievements of the different research teams in the last 5 years, there is still a lack of a complete
holistic automated computer-assisted decision-making-support system that can perform well
both during live endoscopic procedures and a posteriori VCE-captured imaging data analysis.
Moreover, none of the existing complete systems can detect multiple diseases simultaneously
and provide a live feedback to the endoscopists with both multi-class detection and detected
lesion localization. With the work conducted in this thesis, we have beaten the mentioned
problems and provided the medical society with a ready-to-use solution for GI-tract abnormality
detection and localization.

2.2.3 Basic EIR System: The Proof-of-Concept

Our first EIR polyp-only detection system presented in Riegler et al. [112] is based on non-
CNN image processing principles. The detection subsystem analyzes multimedia data, such
as videos and images. All the frames processed by the detection subsystem are separated into
two positive and negative classes. Two sets containing example images for abnormalities and
images without any abnormality are used as the model for the disease detector. Global im-
age features from Lire [79] library are used to compare images in the search-based two-class
classification algorithm. The basic localization subsystem implements a model for polyp lo-
calization using a hand-crafted object localization method, based on the geometrical shape of
polyps. We evaluated our first version of the EIR system using publicly available datasets. The
experimental evaluation showed EIR’s promising detection efficiency with the following per-
formance metrics: a sensitivity of 98.5%, a specificity of 72.49%, a precision of 93.88% and
a accuracy of 87.7%. Polyp localization performance evaluation showed a precision of 28.7%
and a sensitivity of 76.1%.

2.3 Summary

It seems that despite of a rapid development of the new medical devices, complete medical
multimedia systems are not in focus of active research, nor main-stream development. Most
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medicine-oriented research is now focused on algorithms, especially deep-learning-based, for
the detection of diseases, not on complete medical systems design and implementation. Even
further, the widely presented different lesion recognition approaches that are positioned as hav-
ing a high performance properties are, in fact, very narrow and focused on one exact lesion or
have been trained and evaluated using small private datasets preventing any reproducibility and
cross-evaluation attempts. The only few examples that focus on more than one component seem
to ignore data processing speed and real-time performance problems, or do not reach the use-
case-dictated performance requirements. Most of the modern approaches incorporate various
deep learning techniques, which is a hot and promising direction in the field of medical image
processing, but requires a large amount of well-annotated training data that can be problematic
in the highly-privacy-restricted medical scenarios.

To address these problems, in 2015, the development of a complete medical multimedia sys-
tem with real-time and applied use-cases in-mind was started. The very first version of the EIR
system incorporates our search-based classification approach that was presented by Michael
Riegler in his PhD thesis [112], which demonstrated promising results and promised further
potential for our use-case of disease detection in the GI tract. This thesis presents a further de-
velopment of the complete EIR system, introducing new algorithmic and deep-learning-based
detection, localization and segmentation approaches. Together with the newly collected and
published open-source datasets, developed annotation, visualization and high-performance pro-
cessing subsystems, the new DeepEIR system reaches the goal of a holistic medical decision-
support system. To the best of our knowledge, the medical multimedia system developed and
described in this thesis is the first system that reaches total flexibility and extendability in terms
of diseases and objects that can be detected, localized and segmented, and, at the same time,
provides the outstanding data processing performance with a proper and comparable evaluation
of its performance with newly collected, annotated and published datasets.

In the next chapters, we present our holistic and complete medical multimedia system and
all the sub-components. We also present our open-source datasets. Furthermore, we show a
complete evaluation of the system performance in terms of accuracy with different GI tract
findings and data processing speed including our heterogeneous and distributed improvements
of EIR system.
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Chapter 3

The DeepEIR System

Our primary practical objective is to develop a system that will support doctors in GI tract dis-
ease detection during both traditional live endoscopies and modern VCE procedures including
home- and hospital-based wide population screening. Thus, the system must:

• be easy to use and less invasive for the patients than existing methods;

• support multiple classes of detected GI diseases, objects and landmarks;

• be easy to extend to new diseases and findings;

• handle multimedia content in real-time and process at least 30 FPS for Full HD videos;

• be designed and tested for live real-time computer-aided diagnosis;

• achieve high classification performance with minimal false-negative classification results;

• have a low computational resource consumption;

• be able to process huge amounts of pre-captured data;

• support scaling, parallel and distributed processing.

Implementation of these properties provide an efficient system allowing for a reduced num-
ber of specialists required for a larger population coverage with GI tract investigation, and
dramatically increased number of users potentially willing to be screened.

The second extended and improved version of EIR system is called DeepEIR (see figure 3.1)
and was designed with all mentioned properties in mind. It consists of three main parts: the
data acquisition, preparation and annotation subsystem, the automatic analysis subsystem and
the visualization and computer-aided diagnosis subsystem. The main DeepEIR’s "brain" - the
analysis subsystems is designed in a modular way to be easily extended to new diseases or sub-
categories of diseases, as well as for other not-implemented-yet tasks like size determination,
3D shape recognition, etc. Currently, we have implemented two types of analysis subsystems:
the detection subsystem that detects different irregularities in video frames and images, and the
localization subsystem that localizes the exact position of the disease within the frame. The de-
tection subsystem is designed to only determine the presence of an irregularity within the frame.
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Figure 3.1: A complete overview of the DeepEIR system. The system consists of data acquisi-
tion, preparation and annotation, automatic analysis and visualization subsystems.

The exact position of the detected object is determined by the localization subsystem. Each de-
tection subsystem therefore can be accompanied by the corresponding localization subsystem.
The localization subsystem can be also implemented in two different ways. One uses the output
of the detection system as input and processes only frames marked as containing a localizable
disease. Another can act as the primary analysis agent and can perform frame segmentation
with a following localization and detection-via-localization operations.

3.1 Data Collection

Despite automatic detection of diseases by use of computers is a life-saving area of applied
science, it is still an under-explored field of research not only because of the absence of the
well-performing algorithms and analytical models, but also because of a significant lack of
data available for analysis, training and evaluation of the automatic methods being developed.
Datasets containing medical images are hardly available, making reproducibility and compari-
son of approaches almost impossible. Thus, as a vital part of our research, we aimed also at the
collection and annotation of an adequate and big enough dataset that can be used not only in this
particular research, but that can also contribute to the research community and positively im-
pact the current research comparability. We achieve this by collecting medical data, sorting and
annotating it, publishing related papers with suggested common metrics, and the preliminary
evaluation of results of the different classification methods, and, finally, making the datasets
publicly available and free for non-commercial, educational and research purposes. Our public
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datasets contain images from inside the GI tract, and by providing them, we hope to invite and
enable multimedia researchers into the medical domain of detection and retrieval. Moreover, by
our public datasets, we especially address the common problem of research comparison when
the results are hard to reproduce due to a lack of publicly available medical data.

3.1.1 Privacy, Legal and Ethics Issues

It is almost impossible to just obtain medical data from relevant medical institutions and hos-
pitals for research purposes. All medical data is considered personal data and, therefore, is
strongly protected from unauthorized use and distribution. That is most probably the main rea-
son of lack of datasets that are publicly available, compared to traditional computer vision and
information retrieval tasks. During this research, as a first and the most important challenge,
we solved this problem by entering into a wide collaboration with a number of Norwegian hos-
pitals and research teams working there. In order to get permission to download, process and
publish the medical data, particularly image data from GI tract, we performed a detailed inves-
tigation into current Norwegian regulations concerning medical data privacy and possible ways
to obtain a massive amount of data with respect to the data protection laws. As the result of
these activities, we entered into an agreement with Vestre Viken Hospital Trust, allowing our
research team to download anonymized data from hospital information systems and transfer it
using secure media to our research facility. Than, we performed an additional data check and
purification in order to fully remove any data can be used for potential patient tracking and
deanonymization including removal of time stamps and EXIF information from the media files.
As a negative consequence caused by the full data anonymization, we have lost all information
that can help us to automatically classify the obtained raw data into relevant classes. Thus,
next, we performed sorting and classification of the raw data. Due to a significant shortage of
free time among the collaborating medical personnel, we decided to focus first on still images,
leaving the captured video clips for the next project stages. The GI tract images were carefully
annotated by one or more medical experts from Vestre Viken Hospital Trust and the Cancer
Registry of Norway. In addition, a subset of the colorectal videos was annotated by a number
of medical experts from Norway, Sweden, UK, US and Canada through a web based system.
All the annotated images and videos will be released as an addition to the already published
datasets regarding the specific use-cases assessments.

3.1.2 Sources of the Data

The raw data itself is collected using endoscopic equipment at Norwegian Vestre Viken Hospital
Trust, which consists of 4 hospitals and provides health care to 470.000 people. One of these
hospitals (the Bærum Hospital) has a large gastroenterology department from where training
data have been collected and will be provided, making the dataset larger in the future. The
Cancer Registry of Norway provides new knowledge about cancer through research. It is part of
South-Eastern Norway Regional Health Authority and is organized as an independent institution
under Oslo University Hospital Trust. The Cancer Registry of Norway is responsible for the
national cancer screening programmes with the goal of preventing cancer death by discovering
cancers or pre-cancerous lesions as early as possible.
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3.1.3 Created Datasets and Reproducibility

We published three medical datasets called Kvasir, Nerthus and Medico, and a number of sub-
versions. Kvasir and Nerthus are general-purpose datasets that can be directly used for building
and evaluation of medical image recognition, information retrieval, single- and multi-class clas-
sification algorithms. Medico is a special-purpose dataset built based on Kvasir, and it is used
in our Medico: The Multimedia for Medicine Task, which is part of a wider MediaEval Bench-
marking Initiative for Multimedia Evaluation. All the datasets are publicly available online, and
we evolve them constantly by adding new images and image classes.

3.1.3.1 Kvasir

The Kvasir dataset is our main contributing dataset representing a collection of images from
different parts of the human GI tract. It consists of images, annotated and verified by medical
doctors (experienced endoscopists), including several classes showing anatomical landmarks,
pathological findings or endoscopic procedures in the GI tract. It contains hundreds of images
for each class. The number of images is sufficient for different tasks, e.g., image retrieval,
machine learning, deep learning and transfer learning, etc. The dataset is made up of the images
of anatomical landmarks, pathological findings (lesions) and their removal procedures as well as
a variety of normal GI findings. The anatomical landmarks include Z-line, pylorus and cecum,
while the pathological findings include esophagitis, polyps, ulcerative colitis. In addition, we
provide several set of images related to the removal of lesions, e.g., "dyed and lifted polyp", the
"dyed resection margins", etc. The normal findings include various types of normal colon wall
tissue and a variety of stool and food leftovers that can be observed during colonoscopies.

The dataset consists of images with resolution from 720x576 to 1920x1072 pixels and is
organized in a way where images are sorted in separate folders named accord to their content.
Some of the included classes of images have a green picture in picture illustrating the position
and configuration of the endoscope inside the bowel, by use of an electromagnetic imaging
system (ScopeGuide, Olympus Europe) that may support the interpretation of the image. This
type of information may be important for later investigations and it is thus included, but it must
be handled with care for the detection of the endoscopic findings.

Lesions
A pathological finding (lesion) in this context is an abnormal feature within the gastrointesti-

nal tract. From the endoscopic point of view, it is visible as a damage or change in the normal
mucosa. Finding may be a sign for an ongoing disease or a precursor to cancer. Detection and
classification of pathology is important in order to initiate correct treatment and/or follow-up of
the patient. The most common and dangerous findings include colon polyps, colorectal cancer,
gastrointestinal bleedings, angioectasia, esophagitis, and ulcerative colitis.

Colon Polyps
Polyps are lesions within the bowel that are detectable as mucosal outgrows. An example

of a typical polyp is shown in figure 3.2(a). The polyps are either flat, elevated or pedunculated,
and can be distinguished from normal mucosa by color and surface pattern. Most bowel polyps
are harmless, but some have the potential to grow into cancer. Detection and removal of polyps

34



are therefore important to prevent the development of colorectal cancer. Since polyps may be
overlooked by doctors, automatic detection would most likely improve examination quality.
The green boxes within the image show an illustration of the endoscope configuration. In live
endoscopy, this helps to determine the current localisation of the endoscope-tip (and thereby
also the polyp site) within the length of the bowel. Automatic computer-aided detection of
polyps would be valuable both for diagnosis, assessment and reporting.

Polyp Removal
Polyps in the large bowel may be precursors of cancer and are therefore removed during

endoscopy if possible. One of the polyp removal techniques is called endoscopic mucosal
resection. This includes injection of a liquid underneath the polyp, lifting the polyp from the
underlying tissue. The polyp is then captured and removed by use of a snare. Lifting minimizes
risk of mechanical or electrocautery damage to the deeper layers of the GI wall. Staining dye
(i.e., diluted indigo carmine) is added to facilitate accurate identification of the polyp margins.
Computer detection of dyed polyps and the site of resection would be important in order to
generate computer aided reporting systems for the future.

Figure 3.2(b) shows an example of a polyp lifted by injection of saline and indigocarmine.
The light blue polyp margins are clearly visible against the darker normal mucosa. Additional
valuable information related to automatic reporting may involve successfulness of the lifting
and eventual presence of nonlifted areas that might indicate malignancy.

The after-removal resection margins are important in order to evaluate whether the polyp
is completely removed or not. Residual polyp tissue may lead to continued growth and in the
worst case malignancy development. Figure 3.2(c) illustrates the resection site after removal of
a polyp. Automatic recognition of the site of polyp removals is of value for automatic reporting
systems and for computer aided assessment on the completeness of the polyp removal.

Esophagitis
Esophagitis is an inflammation of the esophagus that is visible as a break in the esophageal

mucosa in relation to the Z-line. Figure 3.2(d) shows an example with red mucosal tongues pro-
jecting up into the white esophageal lining. The grade of inflammation is defined by the length
of the mucosal breaks and proportion of the circumference involved. This is most commonly
caused by conditions where gastric acid flows back into the esophagus as gastroesophageal re-
flux, vomiting or hernia. Clinically, detection is necessary for initiating treatment to relieve
symptoms and prevent further development of possible complications. Computer detection
would be of special value in assessing the severity and for automatic reporting.

Ulcerative colitis
Ulcerative colitis is a chronic inflammatory disease affecting the large bowel. The disease

may have a large impact on the quality of life, and diagnosis is mainly based on colonoscopic
findings. The degree of inflammation varies from none, mild and moderate to severe, all with
different endoscopic aspects. For example, in a mild disease, the mucosa appears swollen and
red, while in moderate cases, ulcerations are prominent. Figure 3.2(e) shows an example of ul-
cerative colitis with bleeding, swelling and ulceration of the mucosa. The white coating visible
in the illustration is fibrin covering the wounds. As mentioned earlier, an automatic computer
aided assessment system will contribute to more accurate grading of the disease severity.
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(a) Colon Polyp (b) Inked and lifted polyp (c) Polyp removal resection

(d) Esophagitis (e) Ulcerative colitis

Figure 3.2: Sample images of the GI tract lesions included in the Kvasir dataset.

Anatomical Landmarks
An anatomical landmark is a recognizable feature within the GI tract that is easily visible

through the endoscope. Landmarks are essential for navigation and as a reference point for
describing the location of a given finding. The landmarks are also be typical sites for pathology
like ulcers or inflammation. A complete endoscopic rapport should preferably contain both
brief descriptions and image documentation of the most important anatomical landmarks [111].

Z-line
The Z-line marks the transition site between the esophagus and the stomach. Endoscop-

ically, it is visible as a clear border where the white mucosa in the esophagus meets the red
gastric mucosa. An example of the Z-line is shown in figure 3.3(a). Recognition and assess-
ment of the Z-line is important in order to determine whether a disease is present or not. For
example, this is the area where signs of gastro-esophageal reflux may appear. The Z-line is also
useful as a reference point when describing pathology in the esophagus.

Pylorus
The pylorus is defined as the area around the opening from the stomach into the first part of

the small bowel (duodenum). The opening contains circumferential muscles that regulates the
movement of food from the stomach. The identification of pylorus is necessary for endoscopic
instrumentation to the duodenum, one of the challenging maneuvers within gastroscopy. A
complete gastroscopy includes inspection on both sides of the pyloric opening to reveal findings
like ulcerations, erosions or stenosis. Figure 3.3(b) shows an endoscopic image of a normal
pylorus viewed from inside the stomach. Here, the smooth, round opening is visible as a dark
circle surrounded by homogeneous pink stomach mucosa.
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(a) Z-line (b) Pylorus (c) Cecum

Figure 3.3: Sample images of the GI tract landmarks included in the Kvasir dataset.

Cecum
The cecum is the most proximal part of the large bowel. Reaching the cecum is the proof

for a complete colonoscopy [21]. Therefore, recognition and documentation of the cecum is
important. One of the characteristic hallmarks of the cecum is the appendiceal orifice. This,
combined with a typical configuration on the electromagnetic scope tracking system, may be
used as proof for cecum intubation when named or photo-documented in the reports [110, 140].
Figure 3.3(c) shows an example of the appendiceal orifice visible as a crescent-shaped slit, and
the green picture in picture shows the scope configuration for the cecal position.

3.1.3.2 Nerthus

The Nerthus dataset is an auxiliary dataset addressing an important problem of adequate GI tract
preparation which is a required pre-condition for the successful colon investigation and treat-
ment. Traditionally, the bowel preparation quality has been categorized as poor, adequate or
good. Such classification of bowel cleanliness often lacks clear definitions, and the judgement
on quality tends to be subjective. This may result in significant inter-observer variation. To
minimize the inter-endoscopist variation, new score-based methods of assessing bowel clean-
liness have been introduced during the last decade. The state-of-the-art scoring system that is
probably the best validated and most frequently used scoring system in both routine clinic and
screening settings today is called the Boston bowel preparation scale (BBPS). It divides the
bowel into three sections (right, middle and left) and scores the bowel cleansing within each
section according to a defined numeric scale. It uses only a four-point scoring system (ranges
from 0 to 3). Despite a promising standardization potential, there is no publicly available dataset
can be used as a gold standard and a reference set for medical personnel training.

The Nerthus dataset consists of 21 videos with a resolution of 720x576 with a total number
of 5, 525 frames, annotated and verified by medical doctors (experienced endoscopists), cover-
ing 4 classes that show the four-score BBPS-defined bowel-preparation qualities. The number
of videos per class varies from 1 to 10. The number of frames per class varies from 500 to
2, 700. The number of videos and frames is sufficient to be used for different tasks, e.g., image
retrieval, machine learning, deep learning and transfer learning, etc. The videos are sorted into
separate folders named according to their BBPS-bowel preparation quality score (see figure 3.4
for the examples). Most of the included videos and images have a green picture in each frame,
illustrating the position and configuration of the endoscope inside the bowel. This is obtained
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(a) BBPS 0 (from splenic flexure) (b) BBPS 1 (from descending colon)

(c) BBPS 2 (from sigmoid colon) (d) BBPS 3 (from rectum)

Figure 3.4: Sample images for each bowel preparation ("cleanliness") score according to BBPS.

from an electromagnetic imaging system (ScopeGuide, Olympus Europe) and may support the
interpretation of the image. This type of information may be important for later investigations
on segmental position within the bowel.

3.1.3.3 Medico Task

The Medico: Multimedia for Medicine Task is an image recognition and classification challenge
running for the several years as a part of MediaEval Benchmarking Initiative for Multimedia
Evaluation. It focuses on detecting abnormalities, diseases, anatomical landmarks and other
findings in images captured by medical devices in the GI tract. The task provides to the par-
ticipants a detailed use-case description, including its importance and related challenges, the
dataset with the ground truth, the description of the required runs and the evaluation metrics.
The task introduces a lot of challenges related to correct medical image classification as well
as the related lesion localization and differentiation. The task has repeatedly used the latest
version of the task’s dataset, now consisting of more than 10, 000 images, which are annotated
and verified by experienced endoscopists.

The whole dataset is split into two equally sized development and test datasets. Pre-extracted
visual features for all the data are also provided. The ground truth for the data is collected from
the medical experts annotations. Both the development and the test datasets consist of images
sorted into classes with different numbers of images in each class stored in two archives: image
archive and features archive.

The image archive contains raw images sorted into classes with different number of images
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per each class. In the development dataset, the images are stored in separate folders named
according to the name of the class images that belongs to. In the test dataset, all the images are
stored in one folder. The images of the dataset come from equipment installed in Norwegian
hospitals with resolutions from 720x576 to 1920x1072 pixels and encoded using JPEG com-
pression. The encoding settings can vary across the dataset and they reflect the a priori unknown
endoscopic equipment settings. The extension of the image files is ".jpg".

The feature archive contains the extracted visual feature descriptors for all the images from
the images archive. The extracted visual features are stored in the text files placed in separate
folders and files are named according to the name and the path of the corresponding image files.
The extracted visual features are the global image features, namely: Joint Composite Descriptor
(JCD) [148], Tamura [134], MPEG-7 [35] features (ColorLayout and EdgeHistogram), Auto
Color Correlogram [65] and Pyramid Histogram of Oriented Gradients (PHOG) [42]. Each
feature vector consists of a number of floating point values. The size of the vector depends on
the feature. The sizes of the feature vectors are: 168 (JCD), 18 (Tamura), 33 (ColorLayout), 80
(EdgeHistogram), 256 (AutoColorCorrelogram) and 630 (PHOG) floating point numbers. Each
feature file consists of eight lines, one line per feature. Each line consists of a feature name
separated by the feature vector by a colon. Each feature vector consists of a corresponding
number of floating point values separated by commas. The extension of each extracted visual
feature file is ".features".

In total, the Medico dataset includes 16 classes showing anatomical landmarks, phatological
findings or endoscopic procedures in the GI tract. The anatomical landmarks are Z-line, pylorus
and cecum, while the pathological findings include esophagitis, polyps and ulcerative colitis. In
addition, we provide two set of images related to the removal of polyps, the "dyed and lifted
polyp" and the "dyed resection margins". The dataset includes parts of the Kvasir and Nerthus
datasets, but also adds new classes of findings.

Clear Colon
This class represents the samples of normal tissue that can be observed during colonoscopies

(see figure 3.5(a) for an example). Comparing to abnormalities, there is no interest in detecting
this type of image during live colonoscopies. However, we think that this class can be used for
the opposite detection task when the detection algorithm can signal in case of detecting anything
that is not normal. This can with a proper implementation and training potentially increase the
accuracy for the detection of all other classes.

Stool
Stool is the normal content of the GI tract, consisting of fecal masses and food left-overs.

Any fecal mass should be removed before performing colonoscopies and, especially, inter-GI
surgical procedures. Despite being a common finding, it is important to be able to detect it be-
cause this is a direct indicator of the GI tract preparation quality, which matters for endoscopic
procedures’ effectiveness. Detected stool masses, even in small pieces, can be considered as
a compromising factor to the prior GI tract preparation quality. They can hide small appear-
ances of a very dangerous lesions, e.g. polyps potentially developing into cancer and colon
wall penetrations, making stool detection an important task. Moreover, the quality of bowel
preparation is considered a key quality indicator for colonoscopy, while directly affecting ade-
noma detection and decisions on screening and follow-up intervals. Thus, an objective and
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(a) Clear colon, no stool masses (b) Inclusions of stool

(c) Medium amount of stool (d) Significant amount of stool

Figure 3.5: The example images depicting different amount of stool masses in the colon.

accurate interpretation of the bowel cleanliness is important and, therefore, we added a two new
classes, both containing different amounts of stool masses (see figure 3.5 for the examples of
stool inclusions 3.5(b), medium 3.5(c) and significant 3.5(d) amounts of stool).

Instruments
Instruments are artificial objects that can normally be observed in the GI tract during en-

doscopic procedures. They can be separate auxiliary tools, e.g. expansion nets, balloons, etc.,
as well as special surgical devices used for interventions and procedures inside GI tract. The
detection of instruments during live endoscopies is not a vital task, however it is important to
support the reporting process and for the a posteriori analysis of captured data and procedure
quality assessment. Moreover, instrument detection and recognition is important for the anno-
tation of the available anonymized datasets. Therefore, in the Medico dataset we introduced
three new classes: one depicts different samples of instruments and two others show so-called
retroflex vision images. Retroflexing is a special procedure used to get an observation of tissue
that is hidden from the doctor’s eye during straight-forward endoscope movement. Apart of tis-
sue surface analysis, information extracted from this type of frames can be used as an auxiliary
input for precise endoscopy and lesion position localization using the distance marks found on
the endoscope’s tube. Figure 3.6 depicts examples of the instruments in the Medico dataset.

Auxiliary classes
We also added two auxiliary classes represent images that are useless for lesion detection,

but are often appear in non-filtered data captured during routine procedures: blurry frames
without any significant content and out-of-patient images that are captured before or after an
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(a) Endoscopic surgical snare (b) Endoscopic syringe

(c) Retroflex of rectum (d) Retroflex of stomach

Figure 3.6: Images depicting various instruments including manipulating devices (a) and (b),
and endoscope itself captured via retroflex action (c) and (d).

endoscopic procedure (see figure 3.7). Out-of-patient images can also be used for detection the
begin and end of endoscopic procedure, which is important for automated reporting generation.

3.1.3.4 Further Dataset Development

The Kvasir, Nerthus and Medico datasets became quite popular open datasets for the research
community. We plan to further improve the quality and the size of the datasets by adding new
classes of findings, introducing detailed ground truth masks showing the exact location of the
findings in each frame, and extending the datasets with VCE-captured frames and videos. The
upcoming important classes include colorectal cancer, GI tract bleeding and angioectasia lesion.

Colorectal Cancer
CRC is the development of cancer from the colon or rectum, which are parts of the large

intestine. In the same way as other types of cancer, CRC is the abnormal growth of cells
that have the ability to invade or spread to other parts of the body. CRC is a major health
issue world-wide. It has one of the highest incidences and mortality of the diseases in the GI
tract (see figure 3.8(a) for an example), early detection is essential for a good prognosis and
treatment [115]. Several screening methods for CRC exist, e.g., fecal immunochemical tests
(FITs), sigmoidoscopy screening, computed tomography (CT) scans and, the most reliable one,
traditional colonoscopy.

41



(a) Blurry frame (b) Out-of-patient

Figure 3.7: Images depicting auxiliary image classes: (a) blurry frames without any recogniz-
able content, and (b) out of the patient images.

(a) Colorectal Cancer (colonoscopy) (b) GI Bleeding (VCE) (c) Angioectasia (VCE)

Figure 3.8: Images depicting various classes will be added to our open datasets in the near
future

Gastrointestinal Bleedings
Gastrointestinal bleeding, also known as gastrointestinal hemorrhage, covers all forms of

bleeding in the GI tract. It can range from small and hard-to-notice spots without any symptoms
to significant blood loss over a short time (see figure 3.8(b) for an example), including symptoms
like vomiting red blood, vomiting black blood, bloody stool, or black stool. The bleeding is
mostly caused by severe gastric diseases like infections, cancers, vascular disorders, adverse
effects of medications, and blood clotting disorders. Common diagnostic procedures include
stool sampling, fecal bio-markers analysis, traditional push and modern VCE endoscopy.

Angiectasia
Angiectasia, formerly called angiodysplasia, is one of the most frequent vascular lesions. It

is a small vascular malformation of the gastrointestinal wall (see figure 3.8(c) for an example).
It is a common cause of otherwise unexplained gastrointestinal bleeding and anemia, and often
a source of gastrointestinal bleedings. Lesions are often occur in groups, and they do frequently
involve the cecum or ascending colon, although they can occur at other places. The diagnosis
of angiectasia is usually performed with push enteroscopy. The lesions can be notoriously hard
to find and can be located in hard-to-reach regions of GI tract, eg. the small bowel.
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3.1.3.5 Application of the Datasets

Our vision is that the available data may eventually help researchers to develop systems that im-
prove the health-care system in the context of disease detection in videos of the GI tract. Such a
system may automate video analysis and endoscopic finding detection in the esophagus, stom-
ach, bowel and rectum. Important results include higher detection accuracies, reduced manual
labor for medical personnel, reduced average cost, less patient discomfort and possibly an in-
creased willingness to undertake the examination. With respect to the direct use in multimedia
research, the main application area of Kvasir is automatic detection, classification and localiza-
tion of endoscopic pathological findings in an image captured in the GI tract. Thus, the provided
dataset can be used in several scenarios where the aim is to develop and evaluate algorithmic
analysis of images. Using the same collection of data, researchers can compare approaches and
experimental results directly, and results can easily be reproduced. In particular in the area of
image retrieval and object detection, Kvasir will play an important initial role, where the image
collection can be divided into training and test sets for the development of various image re-
trieval and object localization methods including search-based systems, neural-networks, video
analysis, information retrieval, machine learning, object detection, deep learning, computer vi-
sion, data fusion and big data processing.

Our vision is that the available data may eventually help researchers to develop systems
that improve health-care in the context of the GI tract endoscopic diagnosis. Adequate bowel
preparation (cleansing) is required to achieve high quality colonoscopy examinations. We invite
multimedia researchers to contribute to the medical field by making systems that automatically
and consistently can evaluate the quality of bowel cleansing. Innovations in this area that con-
tribute computer-aided assessment and automatic reporting may potentially improve the medical
field of GI endoscopy. In the end, the improved quality of GI tract investigations will probably
significantly reduce mortality and the number of luminal GI disease incidents.

3.2 Data Exploration, Annotation and Visualization Subsys-
tem

User-guided interactive exploration of big image collections is an important task in many sci-
entific and applied domains. Examples include medical, satellite and industrial image analysis,
security, social media and news analysis, and personal photos. Despite the many new and pow-
erful automated image analysis and clustering software, the human eye remains the most impor-
tant analytic instrument. Research on the topic of interactive image database visualization [103]
confirms the importance of human-accessible representation in combination with image clus-
tering, annotation and tagging. Existing image processing tools and frameworks demonstrate
interesting and promising approaches, and they give wide opportunities for image browsing,
content analysis and performing various data analytic tasks. However, there is still a lack of
tools that implement both fast and efficient image collection visualization together with image
content analysis and annotation. Moreover, in the medical field, the amount of time experts can
use for data annotation is quite limited. This is primarily because of high every-day workloads
for doctors. Even further, the annotation of images and videos itself is very time-consuming,
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and the quality of annotations depends on the experience and concentration of the doctors [53].
For example, in a VCE procedure, a video containing around 216, 000 - 1, 000, 000 frames per
examination is produced. An experienced endoscopist usually needs from one to two hours to
only view and analyze all the video data without performing detailed annotation [76]. There-
fore, we developed the automated data exploration, visualization and annotation subsystem is
able to reduce annotation workload.

Our approach to efficient data exploration and annotation is based on content-based image
retrieval [43] and utilizes number of different techniques and methods for interactive visualiza-
tion and clustering for unsupervised knowledge discovery in the various image analysis domains
providing the outstanding visualization performance for vast collections of images. The devel-
oped software made as the universal solution and it is usable not only for medical, but for any
use case that involves interactive browsing, visual analysis and annotation of a large amount of
image or video data.

3.2.1 Hyperbolic-Tree-Based Visualization and Clustering

Our software for complex image collection analysis is an explorative hyperbolic-tree-based
clustering tool for unsupervised knowledge discovery. The software implements a complete
prototype of five-stage information visualization including:

• Raw image and video frames data indexing and loading.

• Analytical abstraction generation via image feature descriptors.

• Visualization abstraction generation via clustering, centroids and distance values compu-
tation.

• User-view generation via interactive hyperbolic tree.

• Metadata generation during interactive clusters exploration.

The software is written in Java and uses two open-source libraries, LIRE and WEKA1 [58]
for image features extraction and clusterization. LIRE is a library that supports multiple global
and local image features out of the box. Here we use Color and Edge Directivity Descriptor
(CEDD) [37], Joint Composite Descriptor (JCD) [148], Fuzzy Color and Texture Histogram
(FCTH) [38], Tamura [134], Pyramid Histogram of Oriented Gradients (PHOG) [42], Auto
Color Correlogram [65], Local Binary Patterns [57], and MPEG-7 [35] features including Edge
Histogram, Color Layout and Scalable Color. WEKA is a collection of tools for machine learn-
ing and data mining. It can be directly combined with the LIRE code for easy integration. Here
we use X-means, K-means and hierarchical clustering algorithms.

Initially, the prototype was designed as an interactive demo with a live and responsive view
that allowed users to interact with the created clusters and their hyper-tree representation. Clus-
tering performed using image features and folder structure if desired. We used two datasets: one
with still pictures showing disease symptoms in a medical scenario, another with pictures of the

1http://www.cs.waikato.ac.nz/ml/weka/
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Figure 3.9: Hyper-tree based visualization, clustering and annotation system.

same tagging categories in a social image collection. Despite the initial demo-development
purposes, our prototype showed great potential and not restricted to a specific domain.

Figure 3.9 shows a screen shot of the demo application. Users can interactively perform the
following operations:

• Select the folder containing the image collection.

• Select Clustering algorithm and its parameters.

• Choose one or several different image features. If more than one feature is picked, they
will be combined using early fusion.

• Initiate features extraction and clusterization process.

• Interact with the hyper-tree by zooming and turning it into different angles.

• Inspect cluster and individual image properties and name/tag the images and clusters.

Practical usage experience by domain experts who used this hyperbolic-tree-based visual-
ization approach confirmed the importance of the unsupervised clustering algorithms to explore
image and video data collections that do not contain meta-data. Our clustering methodology
leads to good annotation results, and therefore, provides a good method for the abstraction
stages. However, as a result of a successful collaboration with Norwegian hospitals, we have
collected a large dataset consisting of more than 77.000 images and 600 videos from medical
procedures. The size of this unannotated data collection was too big for efficient processing
with this first application due to memory constrains and drawing performance issues. Thus, we
continued our development focusing on support for handling big data collections.
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Figure 3.10: Structure of the visualization and user interface engine of the presented ClusterTag
application. A number of caching and intermediate data processing routines are used to make it
possible to perform real-time visualization and interaction with huge image collections.

3.2.2 Cluster-Based Visualization and Annotation (ClusterTag)

To solve the visualization performance issues that we met during the use of the hyper-tree-
based visualization and provide more efficient solution for visualization and annotation, we
performed a software structure redesign involving a set of modifications and improvements to
extend the tool to make it universal and usable for any use case involving interactive browsing,
visual analysis and the annotation of a large amounts of image or video data. As a result, the
redesigned software named ClusterTag [98] does now have the following advanced properties:

• It allows users to investigate and analyze vast collections of images by providing a con-
figurable focus and context view based on similarity of frames.

• It provides a focus and context view for annotation and tagging of the dataset, making it
more accessible for complementary information systems.

• The tool structure is flexible and it can be easily adapted to different use cases and ex-
tended with new image processing algorithms.

• It supports real-time, interactive viewing, analysis and modifications of the dataset, giving
new opportunities for on-line-like data analytics.

One of the main features of our ClusterTag application is interactivity with a visual collec-
tion representation. Users interact with the images and the created or already defined clusters.
In this application, we use LIRE and WEKA for image features and clustering support, respec-
tively. Additionally, ClusterTag is build in a modular way allowing for easy replacement of
WEKA and LIRE by other machine-learning or feature-extraction libraries if desired.

To be able to implement a visualization tool for a virtually unlimited number of images
simultaneously in real-time and give the user the ability to interact with them, we developed an
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optimized visualization engine written in Java. The overall structure of the software is depicted
in figure 3.10. It consist of the following sub-modules:

• The initial analyzer of the image collection file and folder structure. The initial folder
structure is used to form the initial image clusters.

• The painter module used to draw the user interface and the visual representations of the
cluster hierarchical structure.

• The image-oriented in-memory database and the image cache, implementing the opti-
mized image preloading, rescaling and drawing.

• Off-line on-disk mirror copy updater and annotation meta-data saver responsible for up-
dating the collection’s file structure on the disk after any modification done to the clusters
by the user or by the clustering procedure.

We have designed and implemented several additional optimization techniques to allow real-
time handling of huge image collections. The most important are a database of ready-to-draw
pre-processed images, caching of raw image visual representation, painting of adaptive image
spatial resolution, interaction with partially processed collections, multi-scale image painting,
multi-threaded image processing and feature extraction (see figure 3.10 for an overview). Even
further, to speed-up and smoothe the annotation process, we provide the ability to start exploring
the image collection immediately regardless of the image pre-processing and feature extraction
progress. In case of a newly opened collection, a visual representation becomes available im-
mediately after the initial directory structure listing and the visual representation is updated in
correspondence with the collection processing progress.

The ClusterTag application, first, allows users to choose the folder containing the image
collection. Immediately after listing the files of a new image collection, it appears in the main
window as it was organized in the folder structure, and the user can immediately start exploring
the collection. Figure 3.11(a) shows a visualization of an unsorted collection of 36, 476 medical
images. The user can navigate through the collection’s view using the mouse to move, zoom
into and zoom out of the field of view (see figure 3.11(b)). To perform clustering, the user
can select a desired clustering algorithm, its parameters and several different image features. If
more than one feature is selected, they will be combined using early fusion. After selecting all
the parameters, the user can apply clustering to the dataset creating the clusters. Figure 3.11(c)
shows a visualization of the collection of medical images clustered using the JCD and Tamura
global image features, which produces a number of dense clusters representing visually sim-
ilar images in the same clusters. The zoomed view of the clustered collection is depicted in
figure 3.11(d). The cluster leaves are represented using the image that is closest to the clus-
ter center, i.e., the cluster medoid. Individual images and image groups can be dragged and
dropped between different clusters reflecting changes to the file structure of the collection. It is
possible to name/tag the clusters and individual images.

The ClusterTag tool was intensively used during the Kvasir and Nerthus dataset creation
and annotation. It already demonstrated a great potential for big image processing and was
evaluated with different end-users and domain experts including experienced medical doctors.
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(a) Unsorted collection of images. (b) Zoomed view of the unsorted collection.

(c) Clustered collection of images. (d) Zoomed view of the clustered collection.

Figure 3.11: Examples of visual representations of an image collection containing 36, 476 un-
sorted medical images generated by the ClusterTag application. The initial view of the loaded
collection shows all the images in one big cluster. After the clustering, using the JCD and
Tamura global image features, the software generates a number of dense clusters representing
visually similar images in the same clusters.

3.3 Detection Subsystem

The detection subsystem performs lesion or object recognition and classification. It is in-
tended for abnormality- or object-presence detection without searching for their precise po-
sition. The detection is performed using various computer vision, visual similarity finding,
deep- and machine-learning-based techniques. For each lesion that has to be detected, we use a
set of reference frames that contains examples of this lesion occurring in different parts of the
GI tract. This set can be seen as the model of the specific disease. We also use sets of frames
containing examples of all kinds of healthy tissue, normal findings like stool, food, liquids, etc.
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The final goals of the detection subsystem is to decide if this a particular analyzed frame con-
tains any lesion (detectable object) or not, and to detect the exact type of the lesion (detectable
object). The detection system is designed in a modular way and can easily be extended with
new diseases. This would, for example, allow not only to detect a polyp, but to distinguish
between a polyp with low or high risk for developing CRC [96].

3.3.1 Single-Class Global-Feature-based Detection

In our previous work [112], we presented our basic EIR system [101, 116, 117] that implements
a single-class global-feature-based detector able to recognize the abnormalities in a given video
frame. Global image features were chosen, because they are easy and fast to calculate [79],
and the exact lesion’s position is not needed for detection, i.e., identifying frames that contain
a disease. We showed [97] that the global features we chose [114] can indeed outperform or at
least reach the same results as local features [112].

The basic algorithm is based on an improved version of a search-based method for image
classification. The overall structure and the data flow in the basic EIR system is depicted in
figure 3.12. First, we create the index containing the visual features extracted from the training
images and videos, which can be seen as a model of the diseases and normal tissue. The index
also contains information about the presence and type of the disease in the particular frame.
The resulting size of the index is determined by the feature vector sizes and the number of
required training samples, which is rather low compared to other methods. Thus, the size of the
index is relatively small compared to the size of the training data, and it can easily fit into the
main memory on a modern computer. Next, during the classification stage, a classifier performs
a search of the index for the frames that are visually most similar to a given input frame (see
section 3.3.2 for a detailed description of the method). The whole basic detector is implemented
as two separate tools, an indexer and a classifier. We have released the indexer and the classifier
as an open-source project called OpenSea2 [90].

The indexer is implemented as a batch-processing tool. Creating the models for the classifier
does not influence the real-time capability of the system and can be done off-line, because it
is only done once when the training data is first inserted into the system. Visual features to
calculate and store in the indexes are chosen based on the type of the disease because different
sets of features or combinations of features are suitable for different types of diseases. For
example, bleeding is easier to detect using color features, whereas polyps require shape and
texture information.

The classifier can be used to classify video frames from an input video into as many classes
as the detection subsystem model consists of. The classifier uses indexes generated by the
indexer. In contrast to other classifiers that are commonly used, this classifier is not trained in
a separate learning step. Instead, the classifier searches previously generated indexes, which
can be seen as the model, for similar visual features. The output is weighted based on the
ranked list of the search results. Based on this, a decision is made. The classifier is parallelized
and can utilize multiple CPU cores for the extraction of features and the searching in indexes.
To increase performance even more, we implemented the most compute intensive parts of the
system with GPU computation support.

2https://bitbucket.org/mpg_projects/opensea
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Figure 3.12: Detailed steps for the multi-class global-feature-based detection implementation

3.3.2 Multi-Class Global-Feature-based Detection

The multi-class global-feature-based detector is based on our search-based classification algo-
rithm that is used to create a classifier for each disease that we want to classify. Figure 3.12
gives a detailed overview of the classifier’s pipeline for the global-feature-based implementa-
tion of the detection. The difference to the basic EIR version is that the ranked lists of each
search-based classifier are then used in an additional classification step to determine the final
class.

For feature extraction in the detection step and for the training procedure, the indexing is
performed using the basic EIR indexer implementation [101, 117]. The same set of two global
features, namely Tamura and JCD, is used. These features were selected using a simple feature
efficiency estimation by testing different combinations of features on smaller reference datasets
to find the best combinations in terms of processing speed and classification accuracy. The
selected features can be combined in two ways. The first is called feature value fusion or early
fusion, and it basically combines the feature value vectors of the different features into a single
representation before they are used in a decision-making step. The second one is called decision
fusion or late fusion and the features are combined after a decision-making step. Our multi-class
global-feature-based approach implements feature combination using the late fusion.

During the detection step, a term-based query from the hashed feature values of the query
image is created for each image, and a comparison with all images in the index is performed, re-
sulting in a ranked list of similar images. The ranked list is sorted by a distance or dissimilarity
function associated with the low-level features. This is done by computing the distance between
the query image and all images in the index. The distance function for our ranking is the Tan-
imoto distance [135]. A smaller distance between an image in the index and the query image
means a better rank [135]. The final ranked list is used in the classification step, which imple-
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ments a simple k-nearest neighbors algorithm [19]. This algorithm can be used for supervised
and unsupervised learning, two or multi-class classification and different types of input data
ranging from features extracted from images to videos to meta-data. Its main advantages are
its simplicity, that it achieves state-of-the-art classification results and that it is computationally
very cheap.

For the final classification, we use the random forest classifier [29], an ensemble learning
method for classification that operates by constructing a multitude of decision trees at training
time and outputs the class that is the mode of the classes of the individual trees. A decision
tree can be seen as a classifier, which basically performs decision-based classification on the
given data. To get the final class, the classifier combines decision trees into a final decision
implementing a late fusion for the multi-class classification. The advantage of the random
forest algorithm is that the training of the classifier is very fast because the classification steps
can be parallelized since each tree is processed separately. Additionally, it is shown [141] that
the random forest is very efficient for large datasets due to the ability to find distinctive classes
in the dataset and also to detect the correlation between these classes. The disadvantage is that
the training time increases linearly with the number of trees. However, this is not a problem for
our use-case since the training is done offline, where time is less critical. Our implementation
of the random forest classifier uses the version provided by WEKA. It is important to point out
that for this step, another classification algorithm can also be used.

3.3.3 Deep-Learning-based Detection

The neural network version of EIR called Deep-EIR is based on a pre-trained convolutional
neural network architecture and transfer learning [33]. We trained a model based on the Incep-
tionV3 architecture [131] using the ImageNet dataset [44] and then re-trained and fine-tuned
the last layers. We did not perform complex data augmentation at this point and only relied on
transfer learning for now. For future work, we will also look into data augmentation and train-
ing a network from scratch using the newly collected data, which might lead to better results
than transfer learning.

Figure 3.13 gives a detailed overview of the complete pipeline for the neural network-based
implementation of the detection based on multi-class image classification.

InceptionV3 achieves good results regarding single-frame classification and has reasonable
computational resource consumption. It is built on top of Google’s Tensorflow [12], which
provide a framework for numerical computations using graphs, especially neural network-based
architectures. We used a pre-trained InceptionV3 model [131] with the following retraining
step. For retraining, we follow the approach presented in [46]. Basically, we froze all the
basic convolutional layers of the network and only retrained the two top fully connected layers.
The fully connected layers were retrained using the RMSprop [138] optimizer that allows an
adaptive learning rate during the training process. After 1,000 epochs, we stopped the retraining
of the FC layers and started fine-tuning the two top convolutional layers. This step finalizes the
transfer-learning scenario and performs an additional tuning of all the NNs layers according to
our dataset. For this training step, we used a stochastic gradient descent method with a low
learning rate of 10−4 to achieve the best effect in terms of speed and accuracy [85]. This comes
with the advantage that little training data is needed to train the network, which is an advantage
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for our medical use case. Additionally, it is fast, requiring just about one day to retrain the
model. Our re-trainer is based on an open-source implementation3. To increase the number of
training samples and reduce overfitting of the model, we also performed distortion operations
on the images. Specifically, we performed random cropping, random rescaling and random
change of brightness. The grade of distortion was set to 25% per image. After the model has
been retrained, we use it for a multi-class classifier that provides the top five classes based on
probability for each class.

Figure 3.13: Multi-class deep-learning-based detection pipeline

3.3.4 Deep-Feature-based Detection

Our deep-feature-based detection (see figure 3.14) approach is designed using different well-
known-working deep learning architectures to extract either the features directly or to clas-
sify the images using the whole range of concepts and their probabilities as input for the var-
ious machine-learning-based classifiers. The architectures that we used are ResNet50 [59],
VGG19 [124], InceptionV3 [132] and Xception [40].

Here, we use only pre-trained models of the mentioned architectures in two main modes:
deep-feature and deep-concept extraction. Deep feature is the vector of floating point numbers
that represents an output of the pre-top-layer of the deep convolutional neural network (DCNN)
architecture. Normally, this vector is used as an input to the top fully connected layers of the
DCNN, thus it represents the highest-possible vector of the image features used for the final
image classification on the top layers. In case of already pre-trained an DCNN, the deep feature
vector contain information about all the image’s high-level features in a compact form. For
the used architectures, the size of the vector with deep features is pre-defined [93] and it does
neither depend on its single- or multi-class nature, nor on the number of classes supported
by the specific DCNN. In contrast, deep concept is an output of the top layer of the multi-
class classification DCNN. That is a vector of floating point numbers with the size equal to
the number of classes for that this particular DCNN. The deep concept vector represents the
detection probabilities of the each and every DCNN-supported concept. Here, the meaning
of concept is equal to the meaning of class for multi-class classification problems. The main
difference is that in our approach the concepts’ probabilities are not the final output of the
detector, but they are used as a feature vector in the further stages of detection.

3https://github.com/eldor4do/Tensorflow-Examples/blob/master/
retraining-example.py
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The DCNN models are used as is without any additional retraining, and we rely on the
transfer learning methodology for the final detection. After extracting the corresponding deep
features or/and concepts, they are used as the input to the classical machine-learning-based
multi-class classifiers. We use Random Tree [28], Random Forest [29] and Logistic Model
Tree [129] classifiers that were proven to perform efficiently and are able to process the feature
vectors at a reasonable speed.

Figure 3.14: DCNN concepts- and deep-features-based detection pipeline

3.4 Localization Subsystem

The localization subsystem is intended for finding the exact positioning of a lesion, which is
used to show markers or areas in the frame containing the disease. This information is then used
by the visualization subsystem. The localization subsystems can be used in combination with
multiple analytic modules designed for various diseases and different localization precision. All
modules are divided into two main classes depending on the input data requirements: position
finders and complete localizers. The position finders require preliminary frames’ processing
by the corresponding detection subsystem and process only frames marked as positive by the
detection subsystem. Complete localizers provide the integral solution to the disease finding
problem. First, they process the whole frame and perform its fine or/and coarse segmentation
with box- or pixel-wise granularity. Then, this segmentation information is used for both ex-
act lesion position marking and disease presence detection. Therefore the complete localizers
do not require preliminary frames’ processing by the corresponding detection subsystem and,
despite they higher complexity, can even perform faster in terms of the overall detection plus
localization performance.

3.4.1 Hand-Crafted Local-Feature-based Position Finder

The local-feature-based position finder is designed as a pipelined frame processor that utilizes
several hand-crafted local image features in order to perform localization of polyps. Processing
is implemented as a sequence of intra-frame pre- and main-filters. Pre-filtering is required
because we use local image features to find the exact position of objects in the frames, and these
features can be affected by pixel noise and local color defects. In general, lesion objects or areas
can have different shapes, textures, colors and orientations. They can be located anywhere in
the frame and can also be partially hidden and covered by biological substances, like seeds or
stool, and lighted by direct light. The image itself can be interlaced, noisy, blurry and over- or
under-exposed, and it can contain borders and sub-images. Images can have various resolutions
depending on the type of endoscopy equipment used. Endoscopic images usually have a lot
of flares and flashes caused by a light source located close to the camera. All these nuances
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Figure 3.15: Detailed steps of the hand-crafted local-feature-based localization algorithm im-
plementation

affect the local feature-based localization methods negatively and have to be specially treated
to reduce localization precision impact. In our case, several sequentially applied filters are used
to prepare raw input images for the following analysis. These filters are border and sub-image
removal, flare masking and low-pass filtering. After pre-filtering, the images are ready to be
used for further analysis.

The main localization algorithm able to spot colon polyps using our hand-crafted approach
is based on several local image features [115]. The main idea of the localization algorithm is to
use the polyp’s physical shape to find the exact position in the frame. In most cases, the polyps
have the shape of a hill located on a relatively flat underlying surface or the shape of a more
or less round rock connected to an underlying surface with stalks of varying thickness. These
polyps can be approximated with an elliptically shaped region consist of local features that dif-
fer from the surrounding tissue. To detect these types of objects, we process frames marked
by the detection subsystem as containing polyps by a sequence of various image processing
procedures, resulting in a set of possible abnormality coordinates within each frame. Figure
3.15 gives a detailed overview of a localization pipeline. The pipeline consists of the follow-
ing steps: non-local means de-noising [31]; 2D Gaussian blur and 2D image gradient vector
extraction; border extraction by gradient vector threshold binarization; border line isolated bi-
nary noise removal; estimation of ellipse locations; ellipse size estimation by analyzing border
pixel distribution; ellipse fitting to extracted border pixels; selection of a predefined number of
non-overlapping local peaks and outputting their coordinates as possible polyp locations. For
the possible locations of ellipses, we use the coordinates of local maxima in the insensitivity
image, created by additive drawing of straight lines starting at each border pixel in the direction
of its gradient vector. Ellipse fitting is then performed using an ellipse fitting function [49].

3.4.2 Deep-Learning-based Region Localizers

Despite the promising performance shown by the hand-crafted polyp finder, it is limited to
polyps and is hard to extend toward other flat lesions or findings that can vary in shape and
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properties, like, eg., ulcer lesion and Z-line landmark. The next generation of complete local-
izers used in DeepEIR system are deep-learning-based region localizers. The idea of utilizing
deep-learning-based methods for the localization tasks appeared in connection with the need
to simplify support for adding different diseases by implementation of lesion-specific shape,
color and texture detection, which requires a lot of manual work and experimental studies for
each new type of abnormality. In order to reduce the system improvement costs, we performed
an evaluation of two universal deep-learning-based object localization approaches that were
adapted to fit the processing requirements of medical imaging. The first is TensorBox4 [127],
which extends Google’s Tensorflow DCNN reference implementation [12]. The second ap-
proach is based on the Darknet [105] open-source deep learning neural network implementa-
tion called YOLO5 [106]. Both of these frameworks are designed to provide not only object
detection, but also object localization inside frames.

The TensorBox approach introduces an end-to-end algorithm for detecting objects in im-
ages. As input, it accepts images and generates a set of object bounding boxes as output. The
main advantage of the algorithm is its capability of avoiding multiple detections of the same
object by using a recurrent neural network (RNN) with long short-term memory (LSTM) units
together with fine-tuned image features from the implementation of a CNN for visual object
classification and detection called GoogLeNet [130].

The Darknet-YOLO approach introduces a custom CNN, designed to simultaneously pre-
dict multiple bounding boxes and class probabilities for these boxes within each input frame.
The main advantage of the algorithm is that the CNN sees the entire image during the training
process, so it implicitly encodes contextual information about classes as well as their appear-
ance, resulting in a better generalization of objects’ representation. The custom CNN in this
approach is also inspired by the GoogLeNet [130] model.

As initial models for both approaches, we used database models pre-trained on ImageNet [68].
Our custom training and testing data for the algorithms consists of frames and corresponding
text files describing ground truth data with defined rectangular areas around objects: a JSON
file for TensorBox and one text file per frame for Darknet-YOLO. Ground truth data was gen-
erated using a binary-masked frame set (example shown in figure 3.16). Both frameworks were
trained using the same training dataset, where all frames contained one or more visible polyps.
No special filtering or data preprocessing was used, thus the training dataset contained high
quality and clearly visible polyp areas as well as blurry, noisy, over-exposed frames and par-
tially visible polyps. The models were trained from scratch using corresponding default-model
training settings [106, 127]. After the training, the test dataset was processed by both neural
networks in testing mode. As a result, the frameworks output JSON (TensorBox) and plain-text
(Darknet-YOLO) files containing sets of rectangles, one set per frame, marking possible polyp
locations with corresponding location confidence values. These results have been processed
using our localization algorithms.

4https://github.com/Russell91/TensorBox
5https://github.com/pjreddie/darknet
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(a) Frame with polyp (b) Polyp ground truth

Figure 3.16: Example frames showing polyp and its body ground truth area. This is an example
of polyps localization task complexity. Polyp body has the same color, texture properties and
light flares as surrounding normal mucosa

3.4.3 Deep-Feature-based Region Localization

The deep-feature-based complete region localization approach is our attempt to utilize our
frame-wise deep-feature-based detection algorithm for localization purposes. We have applied
the RT-D method to the set of sub-frames generated from the training and test sets. Sub-frames
(blocks) are generated using sliding square window with 66% overlap with the neighboring sub-
frames. We have tested different window sizes from 64x64 to 128x128 pixels. The best results
were obtained using 128x128 windows size. The generated sub-frames are fed into the RT-D
detection algorithm, and then, the processed sub-frames are grouped back into the frame. This
results in a coarse localization map which is then used for frame-wise detection. The detection
is achieved by applying a simple threshold activation function, and we evaluated the activation
thresholds ranging from 1 block to 50% of the frame blocks. The best detection results were
achieved with a threshold value of 2 blocks.

3.4.4 GAN-based Segmentation, Localization and Detection

The most advanced GAN-based complete segmentation localizer provides a fine pixel-wise
marking of the frames with the lesion-occupied areas. It shows not only the location of lesions
on the generated segmentation maps, but also provides a probability for each pixel of input
image to belong to the lesion area, enabling the efficient and flexible detection-via-localization
post-processing of segmentation data. Moreover, this localizer can be easily to various types of
lesions regardless of their properties. At the moment we have implemented this localization and
the corresponding detection-via-localization for polyps, angiectasia lesion, bleeding and even
for non-GI-tract- and non-medical-related objects like spermatozoons, flooded areas, etc.

The proposed segmentation approach (see figure 3.17) is able to mark the object in the
given frame with pixel accuracy. To achieve this, we use GAN to perform the segmentation.
GANs [54] are machine learning algorithms that are usually used in unsupervised learning and
are implemented by using two neural networks competing with each other in a zero-sum game.
Modern architectures of GANs have been shown to achieve promising results in terms of per-
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Figure 3.17: GAN-based segmentation and localization pipeline

formance and data processing speed in various image segmentation tasks. They not only can
efficiently extract and summarize the local texture and shape properties of the target objects
using relatively small training sets, but also can resist the various image property variations,
like change of noise level, slight color and luminosity shifts, etc. We use a GAN model initially
developed for retinal vessel segmentation in fundoscopic images, called V-GAN. We choose
V-GAN as the basis for our polyp segmentation approach development because it demon-
strated [126] the good segmentation performance for the retinal images that have the visual
properties comparable to the GI tract images. The V-GAN architecture [126] is designed for
RGB images and provides a per-pixel image segmentation as output. To be able to use the GAN
architecture in our segmentation approach, we added an additional output layer to the generator
network that implements an activation layer with a step function that must generate the binary
segmentation output. Furthermore, we added support for gray-scale and RGB color space data
shapes for the input layers of the generator and discriminator networks including an additional
color space conversion step. Gray-scale support was added to be able to use a single value per
pixel input in order to reduce the network architecture complexity, to speed up the model train-
ing and data processing parts, and also to implement the processing of modern narrow-band
images generated by some types of endoscopic devices.

In the same way as all the machine- and deep-learning-based approaches, the proposed lo-
calizer requires preliminary training using an appropriate training set consisting of pixel-wise
annotated images. The images used in this research are obtained from standard endoscopic
equipment and can contain some additional information fields related to the endoscopic proce-
dure. Some types of the field (see Figure 3.18), integrated into resulting frames shown to the
doctor and captured by the recording system, can confuse detection and localization approaches,
and lead to frame misclassification (green navigation box) or false positive detection (captured
frame with polyp). We have implemented a simple frame preparation procedure that consists of
three independent steps: black border removal (including patient-related text fields), navigation
localizer map masking and captured still frame masking. All the removed and masked regions
are excluded from further frame analysis.
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Another problem we meet during the development of this advanced localizer is the lack
of well-annotated training samples with detailed ground truth masks. To reduce the impact
of the limited training sets, we implemented a data augmentation scheme used in the training
process of the GAN. The data augmentation scheme implements image rotation in the range
of ±180°, horizontal and vertical flipping of frames and image insensitivity alteration in the
range of ±40%. These augmentation parameter values were selected during the initial approach
development and preliminary evaluation on the reduced training and validation sets.

(a) Navigation (b) Captured frame (c) Patient information

Figure 3.18: Examples of the different auxiliary information fields integrated into recorded
frame: a colonoscope navigation localizer (a), a captured still frame (b) and a patient-related
information (c). Images taken from CVC-968 [23] and Kvasir [95].

The GAN-based detection-via-localization approach (see figure 3.19) utilizes a simple thresh-
old activation function, which takes the number of positively marked pixels in the frame as
input. In the validation experiments performed using different datasets, we evaluated the ac-
tivation thresholds from one pixel to a quarter of the frame. The best detection results were
achieved with a threshold value of 50 pixels [92], which has been used for the detection experi-
ments.

Figure 3.19: GAN-based detection-via-localization pipeline
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3.5 Visualization and Results Representation Subsystem

The visualization concepts of the EIR system include multiple different visual data representa-
tion strategies. The first-stage data visualization modules were implemented during annotation
and visualization subsystem development (see section 3.2). The developed hyperbolic-tree- and
cluster-based visualization and clustering approaches demonstrated [119] their great potential
for data analysis and were widely used for our own dataset preparation [94, 95, 100]. Further de-
velopment of the visualization system was necessary for the efficient support of the EIR system
user-level task and include both still image (frame) visualization and video stream handling.

3.5.1 Online Global-Feature-Based Visual Similarity Search Tool

In order to validate our global-feature-based similarity search methodology used in the detection
system implementation, we designed and developed an image retrieval and result browsing
application, while succeed our previous search-based classifier and visualizer [112]. It utilizes
the core strengths of global features: small footprint, high computing and search speed. The tool
is unique in its combination of image browsing and searching, where users implicitly select the
image features that match their sense of similarity best. At the start, the user provides a query
image. Then, the search engine retrieves results using different pre-selected global features.
After the users picked the features and used the query image to get the first results, they can
explore the available results in four partitions, each representing the results for one feature.
Figure 3.20 shows the application’s user interface. The query image is shown in the center, lines
in the background of the results show the partitions. Users can navigate the search selecting the
desired image as the new query image. Therefore, users can browse the data set based on
different features. The tool’s UI is implemented using the non-commercial open-source version
of the QT development library. Feature extraction is implemented via a C++ wrapper for the
LIRE library Java API. The tool is cross-platform and can be used from desktop and mobile
platforms.

This search and visualization tool allowed us to verify our global-feature-based image match-
ing methodology and demonstrated the validity of the desired approach. The tool was described
in [80], presented for the first time at the 7th International Conference on Multimedia Systems,
and received positive feedback from the multimedia information retrieval community. Using the
experience obtained during this tool development, we designed and developed the visualization
module for our GF-based frames classifier and polyp detector.

3.5.2 Visualization Module for Polyp Detection and Spotting

The visualization module for real-time polyp detection and spotting is designed to be integrated
into the complete live EIR system pipeline. The primary aim of the EIR system is to provide
live feedback to doctors, i.e., a computer-aided diagnosis in real-time. Thus, while the endo-
scopist performs the colonoscopy, the system analyzes the video frames that are captured by
the colonoscope. In this visualization module, we combine the visual information from the
endoscope with our marks to provide helpful information for the operating doctor. For the de-
tection, we alter the frame borders and show the name of the detected finding in the auxiliary
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(a) (b)

Figure 3.20: Online global-feature-based visual similarity search tool usage examples. The
image in the center is the query image. The first six results of four queries based on four three
global and one local features are shown around the query image.

area of the endoscope device monitor. For the implemented lesion localization spotting, we
draw a cross on top of the localized findings (polyps in this system version). Additionally, we
plot in the lower part of module’s UI display additional information about the lesion detection
performance including the polyp localization ground truth, per-frame polyp detection indicator
and, most important for the visual detection performance verification, event recorder that de-
picts detection events, e.g., true positive (TP), false positive (FP), false negative (FN) and true
negative (TN), for each and every processed frame. The visualization module together with the
underlying detection and localization (spotting for polyps) subsystems is able to process a Full
HD video stream with 30 FPS that meets our in real-time goal. An example of the graphical
output of the live system is depicted in figure 3.21. The visualization module is implemented in
C++ using the OpenCV library for video stream handling, and it is cross-platform supporting
the Windows and Linux operating systems.

For the deep-learning-based detector, we implemented an additional visualization module
especially designed to provide efficient integration with the Python-based DL subsystems. The
designed Python wrapper provides seamless video frame import in a separate worker thread,
execution of various TensorFlow-based lesion detectors and drawing of the detection results
together with the input video frames in unified UI (see Figure 3.22). In this module, we put
most of the efforts into making our TensorFlow detection code work in parallel with the visual
data input and output (I/O), to be able to utilize simultaneously CPU and GPU resources for
data I/O and analysis, respectively.

3.5.3 Visualization Module for Lesions Detection and Localization

Our most recent visualization module for real-time polyp detection and localization is designed
in tight collaboration with experienced endoscopists with the primary aim of enabling integra-
tion with real endoscopic equipment installed in the hospitals’ examination rooms. Despite
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Figure 3.21: The visualization module for real-time polyp detection and spotting build upon
our global-feature-based detection and hand-crafted local-feature-based polyp position finder
approaches. It is able to process both recorded and live Full HD video stream from traditional
colonoscope, highlight frames containing polyps and mark the recognized polyp location with a
cross mark. The pink surrounding frame shows a positive detection. Plot in the lower part of UI
shows the per-frame polyp presence ground truth, polyp detection indicator and TP/FP/FN/TN
events recorder.

Figure 3.22: The visualization module for our deep-feature-based real-time polyp detection ap-
proaches. It is able to process Full HD live-captured video stream from traditional colonoscope
and highlight frames containing detected lesions. The plot in the lower part of UI show the
per-video-frame lesion detection probability.

visual feedback simplicity (see figure 3.23), its architecture supports input from Full HD live
video endoscope sources and provides as low latency as possible in order to minimize the overall
pipeline execution time for individual video frames. This is especially important for live exam-
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inations when endoscope and instrument movements are precisely controlled by only visual
feedback on the primary operational display. During the initial clinical trials, we will display
the visual detection and localization output on the auxiliary screen to avoid possibility of the
video footage interruptions, thus the initial latency requirements are not as strict as they will
be for the main trials with only one primary display with the integrated lesion detection and
localization marking. Thus, for this EIR system version, we do not define the target process-
ing latency, rather we set the minimum frame processing rate of the 15 FPS as enough for the
initial live detection and localization system implementation. Nevertheless, this relatively low
target processing speed is enough for live system evaluation in real-world conditions. On the
other hand, it is not reducing system benefits for off-line endoscopy data processing, due to its
independent processing of frames. For post-procedure or VCE data processing, the analysis is
easily parallelized, resulting in a high EIR system scalability [96, 101].

Figure 3.23: Near-to-real-time polyp detection and localization demo build upon our GAN-
based detection and localization approach. The software processes recorded Full HD video
stream from traditional colonoscope and highlights the exact polyp location in the particular
frame. The marking is implemented as as a bounding box rectangle drawing over the source
video frame. The achieved processing speed is in between 5 and 10 FPS depending on the used
GPU acceleration hardware.

3.6 System Evaluation

In this section, we present the experiments that we conducted on the DeepEIR system. We
tested the whole system and its individual subsystems in terms of usability, accuracy and data
processing performance. The requirements of the system that we are evaluating are: (i) abil-
ity to handle big amounts of data during data collection and annotation phases; (ii) reaching
real-time performance (being able to process 25-30 frames per second); (iii) achieving high de-
tection and localization accuracy (at least equal to the best related approaches in table 2.2); and
ability to visualize detection and localization results in a convenient way. All the experiments
except for the shared GPU and extreme multi-core CPU-efficiency testing were conducted us-
ing consumer-grade computation equipment and general-purpose GPUs without utilization of
specialized CNN-oriented accelerators.
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3.6.1 Annotation Subsystem

We evaluated performance and usability of the annotation system during the exploration and
annotation of our two datasets Kvasir and Nerthus. In the initial stages of the project, we mostly
were processing and sorting the raw anonymized data received from hospitals’ information
systems manually. Despite the fact that it is not possible to fully avoid any manual annotation
work during the dataset preparation and verification, the amount of work was tremendous, and
it took several weeks to prepare the very first pre-version of the Kvasir dataset.

As the initial annotation-automation approach, we implemented a visual-feature-based sort-
ing algorithm. First, we used our OpenSea tool to extract global image features from all the
unsorted images. Next, we used the K-Means clustering algorithm from WEKA to build a set
of clusters containing visually similar images in the different clusters. Finally, generated clus-
ters were processed manually in order to select a small set of relevant images for the classes
of diseases. This intermediate solution was, next, evolved into the hyperbolic-tree-based visu-
alization and clustering tool. This tool was used for the further raw dataset exploration. The
hyper-tree-based representation significantly improved our ability to explore the data collection,
however, the graphical view’s drawing performance was not sufficient to process the larger col-
lections containing thousands of images. Thus, we continued to evolve the tool.

The resulting ClusterTag cluster-based visualization and annotation tool was especially de-
signed with the big data collections in mind. The annotation automation was improved by
introducing classification-based clustering capability. The user can easily improve the quality
of clusterization by using a set of pre-selected images for each defined image class. The pre-
selected (seed) images are then used as a training set for our classification methodology intro-
duced in our OpenSea classifier. After model training, the remaining raw images are classified
by OpenSea, and the classification results then used to make new clusters of pre-annotated im-
ages. This resulted in better cluster density, significantly reducing the amount of manual work
required for dataset annotation.

To solve the issue of drawing performance, we used a set of techniques to support low-
latency visual representation and give the best possible user-friendly experience to the annota-
tors. The ClusterTag tool itself, as well as all the used libraries, is written in Java and, thus,
it is a cross-platform solution that can be easily deployed on Windows, Linux and macOS.
The drawing constrains introduced because of Java’s cross-platform nature were resolved using
the platform-targeted Lightweight Java Game Library, which is using OpenGL for hardware-
accelerated painting. The access performance of the storage used for drawing data was im-
proved by developing a high-speed custom image caching technique and background database
update strategy. All together, our efforts to implement real-time drawing of big image collec-
tions resulted in an efficient visual core implementation. The screen update and redraw latency
of 100 millisecond and less was measured for the big collection of 200.000 images of different
resolution varying from QCIF up to Full HD. Further improvement of drawing performance can
be achieved by porting the drawing core to C++ and implementing sub-scale images caching in
GPU memory.
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True False False F1
Participant Positive Positive Negative Precision Recall score
UNS-UCLAN 48 481 148 9.07 24.49 18.28
CuMedVis 31 167 165 15.75 15.81 15.77
CVC 33 163 163 16.84 16.84 16.84
Our EIR System 46 723 150 5.98 23.47 14.81
RUS 65 1558 131 4.00 33.16 13.50
SNU 8 188 188 4.08 4.08 4.08

Table 3.1: Results of the MICCAI 2015 polyp localization challenge [25].

3.6.2 Detection and Localization Subsystems

3.6.2.1 Evaluation Metrics

For the performance evaluation experiments, we used the following metrics precision (PREC),
recall/sensitivity (SENS), specificity (SPEC), accuracy (ACC), F1 score (F1) and Matthew cor-
relation coefficient (MCC). A detailed description and reasoning for the used metrics is given
in paper XII. The detection performance metrics are computed frame-wise. The localization
performance metrics are computed pixel- and block-wise depending on the approach being
evaluated using the provided binary masks of the ground truth.

The data processing speed is measured in number of frames per second (FPS). For all the
approaches we use the margin of 25 FPS as a border-line for the algorithm to be considered
real-time-capable.

3.6.2.2 Polyps

The very first evaluation of our polyp detection and localization approach was performed by
participating in the MICCAI 2015 Grand Challenge [25]. It this challenge, three different
databases were used. Two publicly available databases were proposed for still-frame analysis,
CVC-CLINIC and ETIS-LARIB. CVC-CLINIC [24] contains 612 SD frames and comprises 31
different polyps from 31 sequences. ETIS-LARIB [4] contains 196 HD frames and comprises
44 different polyps from 34 sequences. All the images contain at least one polyp. The ground
truth consists of the polyp masks annotated by qualified endoscopists from the corresponding
clinical institution. The last one is the closed and copyrighted ASU-Mayo Clinic Colonoscopy
Video Database [1], which comprises a set of short and long colonoscopy videos, col- lected
at the Department of Gastroenterology at Mayo Clinic, Arizona. This database consists of 38
different, fully annotated videos including frames with and without polyps.

The challenge consisted of two sub-tasks: polyp localization and polyp low-latency detec-
tion. The polyp localization sub-task is designed to find out if the proposed method can cope
with variability of polyp appearance within a captured video-frame and, therefore, accurately
determine the location of a polyp in the frame. The low-latency detection checks it the proposed
method can detect a polyp in the frame and determine the delay from the first appearance of the
polyp to the moment when it is detected.

Table 3.1 depicts the result for the polyp localization part based on the CVC-ClinicDB
dataset. EIR was on the fourth place out of six. Based on the fact that our system is not
built for only polyp detection, the achieved results were promising. It is also important to
point out that the first three participants were organizers of the challenge and involved in the
dataset collection. Table 3.2 gives an overview of the results for the detection latency part.
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Participant Latency in ms F1
CuMedVis 6.66 26.40
Our EIR System 21 13.27
SNU 43.33 6.13
CVC 44.60 22.78
Rustad 235 11.47
ASU 417.5 20.84
UNS-UCLAN 0 0

Table 3.2: Results of the MICCAI polyp detection challenge. The table shows the detection
latency in milliseconds and F1 score [25].

Figure 3.24: Polyp localization results generated by our first polyp localization and detection
approach on the MICCAI 2015 dataset [25]. Light green ellipses depicts the polyp localization
ground truth masks. Green and red crosses show the true positive and false positive polyp
localization results, respectively. The localization algorithm was tuned to output exact four
possible polyp locations per frame.

For the latency, EIR performed second best out of all participants. This is a very good result,
and a positive confirmation of the real-time performance capability of EIR. It should also be
mentioned that the approach of UNS-UCLAN is not able to distinguish between a frame with
or without polyp.

Overall, the results of the challenge were positive for a system that is designed to be ex-
pandable with different diseases and use cases. We proved that we were able to compete and
outperform other state-of-the-art approaches, which are designed for the specific problems of
the challenge, without applying any adaptations or modifications to EIR or tuning our detection
for the given dataset [25]. It is also important to point out that we participated in the MICCAI
2015 challenge at the early stage of EIR system development in order to validate our approaches
under real-world conditions.

In the following stages of our work, polyp detection and localization were the main focus
of this research, and the performance of polyp detection and localization has been gradually
increased. The recent and most promising results were reached via our latest approach which
uses a combined algorithm to address both polyp detection and localization at the same time.
However, to be properly trained, the method requires the detailed ground truth masks for each
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and every training image used. Thus, to assess the method’s performance, we used another
publicly available dataset apart of our Kvasir and Nerthus datasets. This additional dataset is a
part of MICCAI 2017 Grand Challenge [23] and it is publicly available for research purposes.

All-in-all, for the performance evaluation experiments, we use combinations of six differ-
ent datasets, namely CVC-356 [23], CVC-612 [24], CVC-968, CVC-12k [23], Kvasir [95] and
parts of Nerthus as the source of normal mucosa frames [94] (see Table 3.3 and Paper XV for
the detailed datasets overview). The CVC-356 and CVC-612 datasets consist of 356 and 612
video frames, respectively. CVC-968 is a direct combination of CVC-356 and CVC-612. In
these datasets, each frame that contains a polyp comes along with pixel-wise annotations. All
three small CVC datasets are used for both training and testing the localization performance-
evaluation experiments, and for the training only in the detection experiments. For all frame-
wise polyp detection approaches, except for the GAN-based approach, we also added the 1, 350
frames of normal mucosa from the Nerthus dataset since normal mucosa examples for the neg-
ative class are required for our GF- and DF-based detection algorithms. The big CVC-12k
dataset contains 11, 954 frames extracted from different videos, 10, 025 of them contain a polyp
and 1, 929 show only normal mucosa. The polyps are not precisely annotated pixel-wise, but
with an oval shape covering the approximated polyp body region (approximated annotation).
For the Kvasir dataset, we included all the classes except for the dyed classes (in a real world
scenario something dyed is already easily detected by the doctor) leading to a frame-wise anno-
tated dataset containing 1, 000 frames with polyps, and 5, 000 without. The CVC-12k dataset is
used as the test set for block- and frame-wise detection and the Kvasir dataset - for frame-wise
detection approach evaluation.

All the images and video frames used in polyp localization and detection evaluation experi-
ments are captured from standard endoscopic equipment and can contain some additional infor-
mation fields related to the endoscopic procedure. Some types of the fields (see Paper XV for
the details) integrated into resulting endoscopic frames can confuse detection and localization
approaches, and lead to frame misclassification or false positive detection (captured frame with
a polyp). To avoid these problems, we have implemented a simple frame preparation procedure
that consists of three independent steps: a black border removal (including patient-related text
fields), a green navigation localizer map masking and a captured still frame masking. All the
removed and masked regions were excluded from further frame analysis. Moreover, due to a
limited number of available frames with detailed ground truth masks, we implemented a data
augmentation scheme used in the training procedure for the GAN-based approaches. For the
presented evaluation, we used only rotation and flipping of frames. Rotation was performed in-
dependently with 20° steps. Together with the in-horizontal-direction-flipped frames, we added
35 new frames complementary to each original one.

Table 3.4 depicts the performance evaluation results for the GAN-based pixel-wise polyp
segmentation approach. The best performance is achieved using the CVC-612 dataset for train-
ing, which means, more training data improves the final results. An interesting observation is
that the precision is higher with CVC-356 as training data. This might be an indicator that more
training data makes the model more general, but less accurate. All in all, the validation using
these datasets indicates that the approach works well, and the proposed localization algorithm
can perform efficiently even with a low number of available training samples. This is impor-
tant for our medical use-case scenario with a high diversity of objects and a limited amount of
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Dataset Training Test # Frames # Polyp frames # Normal frames
CVC-356 X X 1,706 356 1,350
CVC-612 X X 1.962 612 1,350
CVC-968 X X 2.318 968 1,350
CVC-12k - X 11,954 10,025 1,929
Kvasir - X 6,000 1,000 5,000
Nerthus X - 1,350 - 1,350

Table 3.3: Overview of the datasets used in the experiments. Kvasir and Nerthus are our own
public datasets. CVC-968 is a combined dataset consist of CVC-356 and CVC-612 sets.

Test set Run Train set PREC SENS SPEC ACC F1 MCC

CVC-612 LOC-356 CVC-356 0.819 0.619 0.984 0.946 0.706 0.684

CVC-356 LOC-612 CVC-612 0.723 0.735 0.981 0.965 0.729 0.710

Table 3.4: Validation results of the in-frame pixel-wise polyp areas segmentation (localization)
approach evaluated using different combinations of the CVC-356 and CVC-612 sets for training
and testing.

Run PREC SENS SPEC ACC F1 MCC

LOC-Xception 0.584 0.257 0.972 0.880 0.357 0.333

LOC-VGG19 0.232 0.406 0.800 0.750 0.295 0.166

LOC-ResNet50 0.536 0.248 0.968 0.875 0.340 0.306

Table 3.5: Performance of the block-wise polyp localization (LOC) via detection approaches
reported per method and used training data. Training and testing are performed using the CVC-
968 and CVC-12k datasets, respectively. See Paper XV for the detailed results.

annotated data available.
The results for the block-wise polyp location approaches are presented in Table 3.5. The

performance results obtained are especially interesting since all the approaches presented are
trained with small amounts of training data without any negative examples (no normal mucosa
frames at all). Furthermore, the CVC-12K dataset is heavily imbalanced, which makes it harder
to achieve good results. For block-wise location via detection, the LOC-Xcept approach per-
forms best for all the different training set sizes. It also indicates that a larger training dataset
can lead to better results. The results for the LOC-ResNe approach confirm this with significant
improvements when the training dataset size is increased. This is something that should be
investigated in the future. Additionally, the algorithm used to combine the results on different
sub-frames into one can be improved by, for example, using another machine learning algorithm
to learn the best combinations.

The frame-wise polyp detection results can be found in Table 3.6. All approaches are trained
on CVC-356, CVC-612 and CVC-968 training datasets and tested on the CVC-12k and Kvasir
datasets. All in all, the GAN approach performs best on both datasets and within all variations of
training datasets. The performance on the Kvasir dataset is better than on the CVC-12k dataset
which is surprising since the Kvasir data is completely different from the CVC training data.
Moreover, frames in the Kvasir dataset are captured using different and various hardware. This
is a strong indicator that the approach is able to create a general model that is not just working
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Test

set
Run PREC SENS SPEC ACC F1 MCC

K
va

si
r

GAND-Kvasir 0.736 0.746 0.946 0.913 0.741 0.689

GFD-Kvasir 0.225 0.859 0.409 0.484 0.357 0.208

RTD-Xception-Kvasir 0.459 0.256 0.939 0.825 0.328 0.251

RTD-VGG19-Kvasir 0.231 0.320 0.842 0.774 0.268 0.142

RTD-ResNet50-Kvasir 0.248 0.877 0.469 0.537 0.387 0.262

YOLOD-Kvasir 0.530 0.559 0.901 0.844 0.544 0.450
C

V
C

-1
2k

GAND-CVC-12k 0.906 0.912 0.510 0.847 0.909 0.428

GFD-CVC-12k 0.835 0.854 0.125 0.737 0.845 -0.020

RTD-Xception-CVC-12k 0.899 0.690 0.600 0.676 0.781 0.224

RTD-VGG19-CVC-12k 0.232 0.406 0.800 0.750 0.295 0.166

RTD-ResNet50-CVC-12k 0.870 0.303 0.766 0.378 0.450 0.057

YOLOD-CVC-12k 0.932 0.641 0.757 0.660 0.759 0.296

Table 3.6: Results for the frame-wise polyp detection approaches, namely multi-class global-
feature-based (GFD), deep-learning-based with random tree (RTD) final classifier, GAN-based
(GAND) and YOLOv2-based (YOLOD). We used the CVC-12k and Kvasir dataset as indepen-
dent test sets. Training of all the approaches is performed using the combined CVC-968 dataset
consist of CVC-356 and CVC-612 sets. See Paper XV for the detailed results.

well on the given data and that the CVC-12k dataset is very challenging. Some of the difficulties
we could observe are for example screens in screens that show different parts of the colon, out of
focus, frame blur, contamination, etc. (see for example Figures 3.18 and 3.26). From the RTD
approaches, Xception-based has the best overall performance, and it performs best on the CVC-
12k dataset. The ResNet50-based method reaches best performance for the Kvasir dataset, but
is still far away from the GAN approach (MCC 0.262 versus 0.689). The GFD approach did not
perform well on the CVC-12k dataset and could not make sense of the data. This is indicated
by only negative MCC values which basically means no agreement. On the Kvasir dataset, it
performed much better and could even outperform RTD VGG19-based approach. Overall, the
RTD approaches with VGG19 performed worse than all other approaches. The reason could be
that the general hyper-parameters that we collected using optimization did not work well for the
VGG19 architecture.

In order to compare our detection approaches to the state-of-the-art, we also evaluated one
of the recent and promising object detection CNNs called YOLOv2 [107]. The YOLOv2 model
is able to detect objects within a frame and to provide an object’s localization box and a prob-
ability value for the object detection. We trained YOLOv2 with the CVC-968 dataset using an
appropriate conversion from ground truth masks to surrounding object boxes, as required by
YOLOv2. The training was performed from scratch with the default model parameters. The
trained YOLOv2 model showed relatively high performance with an MCC value of 0.450 and
0.296 for the Kvasir and CVC-12k sets, respectively, and was able to outperform all tested
approaches except for the GAN-based solution. Nevertheless, the performance of the well-
developed and already fine-tuned YOLOv2 model is significantly lower than our new GAN-
based detection-via-localization approach.

68



Table 3.7 depicts the performance evaluation results for the GAN-based pixel-wise localiza-
tion (segmentation) approach using two polyp datasets with detailed ground truth masks avail-
able: CVC-356 and CVC-612. In this experiment, we performed a cross-validation using these
two datasets. The best performance is achieved (as it was expected), using the bigger CVC-612
dataset for training. Here, we achieved a well-balanced localization performance with the high
overall measures F1 of 0.729 and MCC of 0.710. An interesting discovery of this experiment is
that our localization algorithm can still perform very efficiently (F1 of 0.706 and MCC of 0.684)
even when trained using the small amount of training data (CVC-365 contains only 356 images
of polyps). This is a vital property for our medical use-case scenario with a high diversity of
objects and a limited amount of annotated data available. Figure 3.25 shows the representative
example of the polyp localizer output. The pixel-wise probability mask shows the possible lo-
calization of the polyp body’s pixels and it conforms well with the ground truth. Comparing to
our initial polyp localization, the GAN-based approach can easily distinguish between normal
intestinal folds and polyp-affected tissue by learning the tiny local image features and shape
properties.

Another experiment shows our approach to the common case of coarse ground truth avail-
able for the data. Here we use our block-wise location via detection approach. The performance
results presented in table 3.8. The best performance with F1 score of 0.357 and MCC of 0.333
was achieved using the CVC-968 dataset. The interesting insight is that the algorithm was

Test set Run Train set PREC SENS SPEC ACC F1 MCC
CVC-612 LOC-356 CVC-356 0.819 0.619 0.984 0.946 0.706 0.684
CVC-356 LOC-612 CVC-612 0.723 0.735 0.981 0.965 0.729 0.710

Table 3.7: This table depicts performance of the in-frame pixel-wise polyp localization (seg-
mentation) approach evaluated using different combinations of the CVC-356 and CVC-612
datasets for training and testing.

(a) Input image (b) Ground truth mask (c) Polyp localization probability
mask

Figure 3.25: The example ot the polyp localization mask generated by our GAN-based polyp
localization approach. The base polyp localizer generates the pixels-wise probability mask
shows the possible localization of the polyp body’s pixels. The green ellipse highlights the
polyp body for illustration purposes only. The resulting localization mask conforms good with
the ground truth.
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Training set PREC SENS SPEC ACC F1 MCC
CVC-356 0.475 0.203 0.966 0.868 0.285 0.250
CVC-612 0.528 0.289 0.961 0.874 0.374 0.328
CVC-968 0.584 0.257 0.972 0.880 0.357 0.333

Table 3.8: This table depicts performance of the block-wise localization via detection approach
for the CVC-12K dataset reported for different training data used.

Test
set

Training
set PREC SENS SPEC ACC F1 MCC

K
va

si
r CVC-356 0.715 0.751 0.940 0.909 0.732 0.677

CVC-612 0.595 0.803 0.891 0.876 0.684 0.619
CVC-968 0.736 0.746 0.946 0.913 0.741 0.689

C
V

C
12

k

CVC-356 0.967 0.624 0.888 0.667 0.758 0.378
CVC-612 0.934 0.609 0.778 0.636 0.737 0.286
CVC-968 0.906 0.912 0.510 0.847 0.909 0.428

Table 3.9: This table depicts performance of the frame-wise polyp detection approach. We used
different small training sets and the CVC-12k and Kvasir dataset as independent test sets.

trained with a small amount of training data without any negative samples (no normal mucosa
frames is presented). Furthermore, the CVC-12K dataset is heavily imbalanced which also
makes it harder to achieve good results.

The frame-wise detection results can be observed in Table 3.9. All approaches are trained
on CVC-356, CVC-612 and CVC-968 training datasets and tested on the CVC-12k and Kvasir
datasets. We reached an F1 score of 0.741 and an MCC score of 0.689 for the Kvasir test dataset.
For the CVC-12k test set, we reached an F1 score of 0.909 and an MCC score of 0.428.

(a) Overlay image (b) Blurry frame (c) Colors shift (d) Lens contamination

Figure 3.26: Example of difficult images in the test dataset: a significant frame blur caused by
camera motion (a), a color components shift caused by the temporary signal failure (b) and an
out-of-focus frame contains also contamination on the camera lens (c). Images taken from the
CVC-12k [23].

3.6.2.3 Angiectasia

After a successful evaluation of the GAN-based polyp detection and localization approach, we
decided to check whether is it flexible enough and how it can be extended to other GI tract
lesions. To test as meaning as possible, we chose the angiectasia lesion in a combination with
the VCE-based diagnostic method. In contrast to polyps, angiectasia is a flat mucosa lesion.
The main feature differentiating it from the surrounding normal tissue is color. However, the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.27: Examples of the detection and in-frame localization of the different polyps in the
video frames captured by various vendors’ traditional colonoscopy equipment. Green contour
depicts the detected polyp and the localized main polyp body area.

size of angiectasia-affected mucosa areas can be rather small and they still need to be detected
and localized.

The data used for all the angiectasia detection and localization experiments is from the
GIANA 2017 challenge [22], and it is publicly available for research purposes. The data consists
of training (development) and test frame sets. The training set consists of 600 fully annotated
frames from VCEs (300 with angiectasia and 300 without). The frames with angiectasia also
have a pixel-wise ground truth (GT) mask depicting the exact lesion location inside each frame
that allows both pixel-wise localization and frame-wise detection experiments. The test set
consists of 600 unannotated frames. In order to perform validation and performance evaluation
of the developed detection algorithm, we annotated the test set frame-wise with the help of an
experienced researcher with a background in medical pathology diagnosis. The 600 frames
from the development set are used for training and the 600 frames (300 with angiectasia and
300 normal) from the test set for verification. The advantages of the used dataset are (i) the
number of images (compared to related work, this is the largest one for VCEs), (ii) the even
split between positive and negative examples and (iii) that it is publicly available making it easy
to compare different approaches.

Table 3.10 shows the results for the GAN localization algorithm (see figure 3.28(b) and
3.28(c) for a comparison between the GT and the output of the GAN). The localization metrics
are calculated pixel-wise using the provided GT masks. On average, sensitivity and specificity
are above the 85% margin recommended for a real clinical settings. This can be seen as very
good results since we perform pixel-wise evaluation. The processing speed for the GAN ap-
proach is 1.5 FPS.

The frame-wise detection performance of the GAN approach for the development set is

71



(a) Input frame (b) Ground truth mask (c) Segmentation mask

Figure 3.28: Example of an angiectasia lesion marked with a green circle (a), a corresponding
ground truth mask (b) and a segmentation mask generated using our GAN-based approach (c).
Image taken from the GIANA dataset [22].

PREC SENS SPEC ACC F1 MCC
0.859
±0.020

0.880
±0.018

0.999
±0.001

0.999
±0.001

0.869
±0.015

0.869
±0.015

Table 3.10: This table depicts ten-fold cross-validation results of the pixel-wise GAN-based
angiectasia localization approach (the 95% confidence intervals are reported). See Paper XIV
for the detailed results.

PREC SENS SPEC ACC F1 MCC
1.000
±0

0.987
±0.011

1.000
±0

0.993
±0.005

0.993
±0.005

0.987
±0.011

Table 3.11: This table depicts ten-fold cross-validation results of the angiectasia frame-wise
detection using the GAN approach (the 95% confidence intervals are reported). See Paper XIV
for the detailed results.

presented in Table 3.11. The detection outperforms significantly the 85% requirements. Both
result sets are strong indicators that our GAN approach performs well for the tasks of angiectasia
localization and detection.

Finally, in Table 3.12, we report the frame-wise detection performance on the test set for
all our runs. All tested approaches outperform the ZeroR baseline, but most of them do not
even come close to the 85% margin for clinical use. The handcrafted features outperform the
VGG19 and InceptionV3 approaches but not the RestNet50. Of the classifiers, LMT performs
best most of the time, followed by RF. The best performing not-GAN approach is AUG DF
ResNet50 FEA + LMT. The GAN approach achieves superior performance compared to all
other detection methods for the frame-wise detection with a sensitivity of 98% and a specificity
of 100%.

The best processing speed is reached by the GF approach using RT. In terms of fastest
speed and best classification performance, AUG DF ResNet50 CON + RF performs best with a
sensitivity of 78.7% , a specificity of 78.7% and a processing speed of 78 FPS. The processing
speed of the GAN method for detection is the lowest with 1.5 FPS.
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Approach PREC SENS SPEC ACC F1 MCC FPS
GF+LMT 0.695 0.680 0.680 0.680 0.674 0.375 80
DF ResNet50 CON+LMT 0.734 0.732 0.732 0.732 0.731 0.465 53
DF ResNet50 FEA+LMT 0.748 0.738 0.738 0.738 0.736 0.486 46
DF VGG19 CON+LMT 0.545 0.545 0.545 0.545 0.544 0.090 32
DF VGG19 FEA+LMT 0.525 0.525 0.525 0.525 0.525 0.050 29
DF InceptionV3 CON+LMT 0.663 0.663 0.663 0.663 0.663 0.327 37
DF InceptionV3 FEA+LMT 0.533 0.533 0.533 0.533 0.533 0.067 30
AUG GF+LMT 0.627 0.625 0.625 0.625 0.624 0.252 80
AUG DF ResNet50 CON+LMT 0.765 0.763 0.763 0.763 0.763 0.529 53
AUG DF ResNet50 FEA+LMT 0.797 0.788 0.788 0.788 0.787 0.585 46
GAN 1.000 0.980 1.000 0.990 0.990 0.980 1.5
Baseline (ZeroR) 0.250 0.500 0.500 0.500 0.333 0.000 -

Table 3.12: Results for the angiectasia frame-wise detection approaches evaluated with the
annotated test set. See Paper XIV for the detailed results.

(a) Input VCE-frame (b) Localization result (c) Input VCE-frame (d) Localization result

Figure 3.29: Examples of the detection and in-frame localization of the clearly visible angiec-
tasia areas.

(a) Input VCE-frame (b) Localization result (c) Input VCE-frame (d) Localization result

(e) Input VCE-frame (f) Localization result (g) Input VCE-frame (h) Localization result

Figure 3.30: Examples of the detection and in-frame localization of the partially obscured, tiny
and hard-to-spot angiectasia areas.
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Detected class

Blurry Cecum Normal Polyps Tumor Z-line

A
ct

ua
lc

la
ss

Blurry 250 0 0 0 0 0

Cecum 0 183 64 3 0 0

Normal 0 34 197 19 0 0

Polyps 1 17 45 183 4 0

Tumor 0 0 1 4 245 0

Z-line 0 0 0 0 0 250

Table 3.13: A confusion matrix for the six-classes detection performance evaluation for the
Deep-EIR detection subsystem

3.6.2.4 Multi-Class Detection

Multi-class evaluation of our detection approach was performed using two different datasets.
The first one is Kvasir, which we consider as a core detection performance evaluator. The
second one is Medico, which introduces more classes of findings comparing to Kvasir and
represents the real-world use-case scenario in terms of data amount and imbalance.

Kvasir dataset
We performed the core multi-class detection performance evaluation based on the first ver-

sion of our public dataset Kvasir. From the whole dataset, we randomly selected 50 different
frames of 6 different classes (see See Paper XI for the details): blurry frames, cecum, normal
colon mucosa, polyps, tumor, and Z-line. The selected frames were used to create 10 sepa-
rate datasets, each containing training and test subsets with equal numbers of images. Training
and test subsets were created by equally splitting random-ordered frame sets for each of the
6 classes. The total number of frames used in this evaluation is 300: 150 in the training sub-
sets and 150 in the test subsets. Each training and test subset contains 25 images per class.
Multi-class classification is then performed on all 10 splits and then combined and averaged.
Following this strategy, an accurate enough estimation about the performance can be made even
with a smaller number of images.

First, we evaluated Deep-EIR that implements the deep learning neural network multi-class
detection approach. Table 3.13 shows the resulting confusion matrix. The detailed performance
metrics presented in table 3.14 and the results can be considered as good, they confirm that
Deep-EIR performs well. All blurry and Z-line frames were classified correctly. Cecum and
normal colon mucosa were often cross-mis-classified, which is a normal behavior, because from
a medical point of view, normal colon mucosa is part of the cecum, and under real-world cir-
cumstances, this would not be a relevant mistake. Interesting polyps and tumors were detected
correctly in most cases, as well as the Z-line landmark, which is important for our medical use
case.

Second, we performed an evaluation of the multi-class global-feature-based EIR, which im-
plements a global-feature multi-class detection approach. The multi-class global-feature-based
EIR classifier allows us to use a number of different global image features for the classification.
The more image features we use, the more precise the classification becomes. We generated
indexes containing all possible image features for all frames of all different classes of findings
from our training and test dataset. These indexes were used for multi-class classification, differ-
ent performance measurements and also for leave-one-out cross-validation. Using our detection
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True

Pos.

True

Neg.

False

Pos.

False

Neg.

Recall

(Sensitivity)
Precision Specificity Accuracy F1 score

Blurry 250 1249 1 0 100.0% 99.6% 99.9% 99.9% 99.8%

Cecum 183 1199 51 67 73.2% 78.2% 95.9% 92.1% 75.6%

Normal 197 1140 110 53 78.8% 64.2% 91.2% 89.1% 70.7%

Polyps 183 1224 26 67 73.2% 87.6% 97.9% 93.8% 79.7%

Tumor 245 1246 4 5 98.0% 98.4% 99.7% 99.4% 98.2%

Z-line 250 1250 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

Overall 1308 7308 192 192 87.2% 87.2% 97.4% 95.7% 87.2%

Table 3.14: Performance evaluation of the six-classes detection for the Deep-EIR detection
subsystem

Detected class

Blurry Cecum Normal Polyps Tumor Z-line

A
ct

ua
lc

la
ss

Blurry 250 0 0 0 0 0

Cecum 0 226 21 3 0 0

Normal 0 85 165 0 0 0

Polyps 0 10 8 226 6 0

Tumor 0 0 0 8 242 0

Z-line 0 0 0 0 0 250

Table 3.15: A confusion matrix for the six-classes detection performance evaluation for the
multi-class global-feature-based EIR detection subsystem

True

Pos.

True

Neg.

False

Pos.

False

Neg.

Recall

(Sensitivity)
Precision Specificity Accuracy F1 score

Blurry 250 1250 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

Cecum 226 1155 95 24 90.4% 70.4% 92.4% 92.1% 79.2%

Normal 165 1221 29 85 66.0% 85.1% 97.7% 92.4% 74.3%

Polyps 226 1239 11 24 90.4% 95.4% 99.1% 97.7% 92.8%

Tumor 242 1244 6 8 96.8% 97.6% 99.5% 99.1% 97.2%

Z-line 250 1250 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

Overall 1359 7359 141 141 90.6% 90.6% 98.1% 96.9% 90.6%

Table 3.16: Performance evaluation of the six classes detection for the multi-class global-
feature-based EIR detection subsystem

system, the built-in metric functionality can provide information on the different performance
metrics for benchmarking. Further, it provides us with the late fusion of all the selected im-
age features and performs the selection of the exact class for each frame in test dataset. Table
3.15 shows the resulting confusion matrix, which shows, like the Deep-EIR results, that the
global feature-based detection approach performs well, too. Again, all blurry and Z-line frames
were classified correctly. Cecum and normal colon mucosa were sometimes cross-misclassified.
Polyps and tumors were detected correctly in most cases. The detailed performance metrics are
presented in table 3.16 and can also be considered as good.

The comparison of these two approaches shows that both approaches have an equal excellent
overall F1 score of 100% in Z-line detection. The global-feature approach with the 100% F1
score outperforms the neural network approach by a small margin in blurry frame detection.
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The neural network F1 score detection for tumors is 98.2%, which is 1% better than the global-
feature approach. Detection of other classes is better for the global-feature approach, giving
the F1 scores of 79.2% and 74.3% for cecum and normal mucosa. Most importantly for our
case study, polyp detection performed much better using the global-feature approach, giving
the 92.8% F1 score (13.1% better than the neural network approach).

The performance evaluation of the cross-validation for both multi-class classification ap-
proaches (see table 3.17) confirms the high stability of the models used for the classification.

Our experimental comparison of the Deep-EIR and the global-feature-based EIR of the de-
tection system shows clearly that the global-feature approach outperforms the deep learning
neural network approach and gives better accuracy for almost all target detection classes (ex-
cept several cases of misclassification of tumors) in conjunction with high 92.8% and 97.2% F1
scores for the most important findings: polyps and tumors. Moreover, when a sufficiently large
training dataset covering all possible detectable lesions of the GI tract is used, the proposed
global-feature approach for multi-class detection requires relatively little time for training [115]
compared to days and weeks for the deep learning neural network approach. However, this con-
clusion is valid only for a well-balanced datasets which contain a fairly high amount of training
data for each class and has clearly visually distinguishable classes, e.g. landmarks, fecal con-
tent, cancer, etc. Thus, our GF-based detection approach can be used as a fast-to-compute
pre-classifier which allows the further selection of more precise, but slower classification algo-
rithms.

Medico dataset
The dataset used for the further evaluation of multi-class detection algorithms consists of

14, 033 GI tract images with different resolutions (from 720x576 up to 1920x1072 pixels) that
are annotated and verified by experienced medical doctors (endoscopists) for the ground truth.
It includes 16 classes, showing anatomical landmarks, pathological and normal findings or en-
doscopic procedures in the GI tract, with different numbers of images for each class, split into
development (training) and testing sets. The anatomical landmarks are normal-z-line, normal-
pylorus, normal-cecum, retroflex-rectum, retroflex-stomach, while the pathological findings in-
clude esophagitis, polyps and ulcerative-colitis. The pre-, under- and post-surgery findings
are the dyed-lifted-polyps, the dyed-resection-margins and the instruments. Additional classes
include normal tissue with or without stool contamination, namely the colon-clear, the stool-
inclusions and the stool-plenty, as well as some image classes that are not usable for diagnosis,
namely the blurry-nothing and the out-of-patient.

For our experiments, we divided all the data onto development and test datasets consisting
of 5, 293 images and 8, 740 images, respectively. We decided for an unequal split to reflect the

Approach
Mean absolute

error

Root mean

squared error

Relative absolute

error, %

Root relative

squared error, %

Deep-EIR 0.07284 0.20574 26.21936 55.21434

Multi-class

global-feature-

based EIR

0.09242 0.19644 33.2672 52.7148

Table 3.17: Performance evaluation of the cross-validation for the Deep-EIR and the multi-class
global-feature-based EIR detection subsystems
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Class Training samples Testing samples
blurry-nothing 176 37
colon-clear 267 1065
dyed-lifted-polyps 457 556
dyed-resection-margins 416 564
esophagitis 444 556
instruments 36 273
normal-cecum 416 584
normal-pylorus 439 561
normal-z-line 437 563
out-of-patient 4 5
polyps 613 374
retroflex-rectum 237 192
retroflex-stomach 398 397
stool-inclusions 130 506
stool-plenty 366 1965
ulcerative-colitis 457 524

Table 3.18: The per-class-contents of the training and test dataset used for the multi-class de-
tection algorithms evaluation. This dataset was used for the Medico task at MediaEval 2018
contest [100].

real-world conditions in the medical use-case area where the amount of training data is typically
less than the data forming the real examinations. Also both datasets are heavily unbalanced in
terms of number of samples per class, which reflects the real practice in hospitals while doctors
tend to collect only selected classes of images, where giving no attention to, for example, normal
findings and routine objects like stool. Thus, the number of images per class in the sets can vary
from a few to thousands of images (see Table 3.18 for the details).

The initial experimental studies showed that the our detection model is able to efficiently
extract high-level features from the given medical images, and it converges quickly during the
retraining process with sufficient classification performance. However, due to a heavily im-
balanced training dataset and despite training data augmentation, the detection performance
of some classes was not good enough. To solve this, we implemented an additional training
dataset balancing procedure that performs equalization of the training set by extensive random
augmentation of the training samples for the under-filled classes, like instruments, blurry, etc.
This nearly doubled the number of training samples allowing for better classification perfor-
mance for the classes with a low number of images provided. An additional classifier output
post-processing step was implemented in order to address the different importance of the dif-
ferent classes as it was stated in the Medico task dataset description [100]. Specifically, we
performed the prioritized selection of the resulting output class for each image based of the
model’s probability output. This was implemented as the selection of the first class with the
detection probability higher than a set threshold from the array of classes sorted in order of
their importance.

For the final evaluation of our detection approach on the Medico dataset, we used two sep-
arate models trained on the different datasets. The first model was trained on the training set
created from the development set using the common rotation-scale-shift data augmentation pro-
cedure. The trained model was used to process the task’s test set, and the classification output
was post-processed using the prioritized classification selector with four different probability
threshold settings from 0.75 to 0.1, resulting in the runs #2 - #5. For run #1, we used the
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Run TP TN FP FN REC SPE PRE ACC F1 MCC RK
A1 474 8122 72 72 0.824 0.991 0.828 0.984 0.815 0.812 0.854
A2 474 8122 72 72 0.823 0.991 0.828 0.984 0.814 0.811 0.854
A3 470 8117 76 76 0.817 0.991 0.819 0.983 0.807 0.803 0.845
A4 440 8087 107 107 0.774 0.987 0.771 0.976 0.756 0.752 0.786
A5 333 7981 213 213 0.664 0.974 0.646 0.951 0.601 0.605 0.582

E1 469 8117 77 77 0.765 0.991 0.729 0.982 0.743 0.737 0.844
E2 469 8117 77 77 0.765 0.991 0.728 0.982 0.743 0.737 0.844
E3 465 8112 82 82 0.758 0.990 0.722 0.981 0.736 0.729 0.835
E4 430 8077 117 117 0.709 0.986 0.677 0.973 0.679 0.674 0.766
E5 313 7960 233 233 0.546 0.971 0.607 0.947 0.504 0.510 0.544

ZR 34 7681 512 512 0.063 0.938 0.004 0.883 0.007 0.0 0.0
RD 35 7682 511 511 0.057 0.938 0.064 0.883 0.055 0.001 0.002
TR 546 8193 0 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 3.19: Classification performance evaluation for the detection models, trained using the
augmented (A) and size-equalized (E) training sets including ZeroR (ZR), Random (RD) and
True (TR) baseline classifiers. Runs #1 corresponds to the non-prioritized classification, while
runs #2 - #5 corresponds to the 0.75 to 0.1 classification probability threshold level.

max-probability selector without class prioritization. The results using the first model were
considered as speed runs. The second model was trained using the equalized training set, and
the same rules for the five run generation were considered as the detection run.

The computed performance numbers are depicted in table 3.19. All the runs significantly
outperform the ZeroR and Random baselines and show good classification performance. All the
runs that utilize the equalized training set have slightly better classification performance. Sur-
prisingly, the introduced prioritized classification method did not result in improved detection
performance, neither for the original nor for the equalized training sets. With the threshold of
0.75, the classification performance is equal to the non-prioritized runs. It means that the trained
classifier is performing as well as it can, and additional re-classification using the class priorities
does not make sense for this particular dataset. However, it still can be potentially interesting
for bigger datasets or a higher number of classes. The best performing run was the detection run
#1 generated using the equalized training set and non-prioritized classifier with the classifica-
tion performance of 0.854 for Rk statistic (MCC for k different classes). The confusion matrix
for this run is depicted in table 3.20, and the class imbalance and corresponding training and
classification challenges can be easily observed. The most challenging class was Instruments.
That is mostly caused by the different shapes, positions and visibilities of the instruments in the
images. There was also a number of misclassification cases for the Dyed classes as well as for
Esophagitis and Normal Z-line classes.

3.6.3 Detection Subsystem Processing Speed Optimization

Despite the demonstrated high lesion detection performance, the overall data processing speed
of the complete EIR system pipeline was not enough for both implementation of simultaneous
detection and localization of multiple diseases, and not for implementation of population-wide
mass-screening of GI tract diseases, either. In our research, we target a general well-scalable
system for automatic analysis of GI tract videos with high detection accuracy, abnormality
localization in the video frames and better than real-time performance, thus it is important to
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Detected class
A B C D E F G H I J K L M N O P

A
ct

ua
lc

la
ss

A 459 2 1 1 5 0 1 0 54 0 13 13 1 7 0 7
B 2 388 77 0 0 0 0 0 0 0 0 0 0 0 0 0
C 0 145 451 0 0 0 4 0 0 0 1 0 0 0 0 0
D 0 0 0 406 81 0 0 0 1 0 4 0 0 0 0 26
E 0 0 0 115 462 0 0 0 0 0 0 1 1 1 0 17
F 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0
G 3 18 27 0 0 0 548 0 0 0 2 0 2 1 4 1
H 10 1 0 5 2 0 0 498 98 0 3 1 24 0 0 6
I 14 0 0 5 1 0 0 0 1771 0 5 2 1 3 0 7
J 2 0 0 0 0 3 0 1 7 37 0 0 2 1 0 0
K 22 1 6 17 2 0 7 1 8 0 316 14 1 9 0 64
L 19 0 0 2 6 0 1 0 16 0 22 551 8 3 0 4
M 3 0 1 1 0 0 0 6 4 0 5 1 1025 1 0 6
N 8 0 0 3 4 0 0 0 3 0 2 1 0 160 4 8
O 0 1 0 0 0 0 0 0 2 0 0 0 0 5 387 1
P 0 0 0 1 0 0 0 0 1 0 1 0 0 1 2 126

Table 3.20: Confusion matrix for the run A1 depicted in table 3.19. The classes are Ulcerative
Colitis (A), Esophagitis (B), Normal Z-line (C), Dyed and Lifted Polyps (D), Dyed Resection
Margins (E), Out of Patient images (F), Normal Pylorus (G), Stool Inclusions (H), Stool Plenty
(I), Blurry Nothing of value (J), Polyps (K), Normal Cecum (L), Colon Clear (M), Retroflex
Rectum (N), Retroflex Stomach (O) and Instruments (P).

have an architecture that allows easy extension and widening of the system. To achieve this, we
put especial focus on achieving outstanding processing speed without sacrificing high detection
accuracy.

From the speed optimization point of view, our system consists of three main parts. The first
is a feature extraction module. It is responsible for handling input data, e.g., videos, images and
sensor data, and extracting and providing corresponding features extracted from such the data.
The most time-consuming aspect here is the extraction of information from the video frames and
images. The second part comprises the analysis and decision making algorithms that implement
disease detection and localization functions. The last part is the visualization subsystem. It
presents the output of the real-time analysis to the endoscopist. The most challenging aspect
here is that the visualization should not introduce any delays, which would make the system
unsuitable for live examinations.

In order to create the proper optimization strategy we did the preliminary analysis of these
three main system parts, resulting in the following optimization steps. The visualization sub-
system is implemented using the modern UI handling frameworks and SDKs, and it already
utilizes the benefits of the available hardware accelerated I/O and graphics drawing. Addi-
tional hardware-oriented optimization of the visualization subsystem is an installation-specific
task and should be performed for each specific hospital environment and medical hardware
used, thus we consider it to be outside of this research scope. Next, the feature-based decision-
making algorithm for the detection subsystem implements already well-optimized classification
algorithms efficiently executed on modern CPUs. In the same way, the localization subsystem
was implemented with heterogeneous resource utilization in mind from the very beginning, and
it did not require deep optimization until we add support for more complex lesion localizers in
our system. Finally, we realized that the most time-consuming computation part in our system
is the feature extraction module. To achieve mass-screening capabilities and multi-disease de-
tection, the feature extraction architecture had to be improved. We chose to do this by applying
heterogeneous processing elements using GPUs.
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Figure 3.31: The main processing application consisting of the indexing and classification parts
uses the GPU-accelerated image processing subsystem. This subsystem provides feature ex-
traction and image filtering algorithms. The most compute-intensive procedures are executed
on a stand-alone CUDA-enabled processing server. The interaction between application and
server is done via a GPU CLib shared library, which is responsible for maintaining connections
and streaming data to and from the CUDA-server.

3.6.3.1 Heterogeneous Architecture

To improve the performance of our feature extraction subsystem, we re-implemented the most
compute-intensive parts in CUDA. CUDA is a commonly used GPU processing framework for
nVidia graphic cards. We designed the new feature extraction architecture with a heterogeneous
processing module as depicted in figure 3.31.

We implemented GPU-accelerated extraction for a number of features (JCD, which in-
cludes FCTH and CEDD, and Tamura) for feature-descriptor extraction, as well as for a number
of feature-extraction-related procedures, e.g., color space conversion, image resizing and pre-
filtering.

In our architecture, as it is shown in figure 3.31, a main processing application interacts with
a modular image-processing subsystem. Both are implemented in Java. The image-processing
subsystem uses a multi-threaded architecture to handle multiple image processing and feature
extraction requests at the same time. All compute-intensive functions are implemented in Java
to be able to compare performance with the heterogeneous implementation, which is transpar-
ently accessible from Java code through a GPU CLib wrapper. The JNA API is used to access
the GPU CLib API directly from the image processing subsystem. The GPU CLib is imple-
mented in C++ as a Linux shared library that connects to a stand-alone processing server and
pipes data streams for handling by CUDA implementations. Shared memory is used to avoid
the performance penalty of data copying. Local UNIX sockets are used to send requests and
receive status responses from the CUDA server because they can be integrated asynchronously
on the JNI side than shared-memory semaphores. The CUDA server is implemented in C++ and
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Figure 3.32: GPU-acceleration is used to extract various features from input frames. The figure
shows an example of our FCTH feature implementation. The input frame is split into a number
of non-overlapping blocks. Each of them is processed separately by two GPU-threads. The
main processing steps include color space conversion, size reduction, shape detection and fuzzy
logic computations.

uses CUDA SDK to perform computations on GPU. The CUDA server and all heterogeneous-
support subsystems are built with distributed processing in mind, and can easily be extended
with multiple CUDA servers running locally or on several remote servers.

The processing server can be extended with new feature extractors and advanced image
processing algorithms. It enables the utilization of multi-core CPU and GPU resources. As an
example, the structure of the FCTH feature extractor implementation is depicted in figure 3.32.
It shows that for image features, all pixel-related calculations are executed on the GPU. In case
of the FCTH feature, this includes also the processing of a multi-threaded shape detector and
fuzzy logic algorithms.

To achieve better performance, a heterogeneous processing subsystem provides the trans-
parent caching of input and intermediate data, which reduces the CPU-GPU bandwidth usage
and eliminates redundant data copy operations during image processing.

3.6.3.2 Processing Speed Evaluation

Non-Optimized Architecture
The performance results of the EIR system with non-optimized multi-core CPU-only archi-

tecture are depicted in figure 3.33. For all the tests, we used 3 videos from 3 different endoscopic
devices and different resolutions. We used three videos of different frame size that are common
to widely used endoscopic equipment. These videos are wp_4 with 1, 920× 1, 080, wp_52 with
856×480 and np_9 with 712×480 frame size, respectively. We chose these videos to show the
performance under the different requirements that the system will have to face when in practical
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Figure 3.33: The detection performs efficiently and the required frame rate is reached with
12 GB of memory and 16 CPU cores used in parallel on cluster-based computation platform
without utilizing heterogeneous architecture.

use. The computer used was a Linux server with 32 AMD CPUs and 128 GB memory. The
figures show, that the non-optimized system was able to reach real-time performance for full
HD videos using a minimum of 16 CPU cores and at least 12 GB of memory. This has the huge
disadvantage that real-time speed is only achieved on expensive highly parallelized multi-CPU
systems. In terms of memory, tests showed that the system has rather small requirements. This
is beneficial, since it means that memory consumption is not a bottleneck to scalability, and that
we can keep this question outside of the optimization process for now.

Heterogeneous Optimized Architecture
The videos used to evaluate the system performance have different resolutions. The resolu-

tions are full HD (1920×1080), WVGA1 (856×480), WVGA2 (712×480) and CIF (384×288).
They are labeled correspondingly in figures 3.34, 3.35, 3.36 and 3.37. A framerate of 30 frames
per second (FPS) was assumed, and consequently, 33.3 milliseconds processing time per frame
was considered real-time speed. Our results for the heterogeneous architecture were obtained
using a conventional desktop computer with an Intel Core i7 3.20GHz CPU, 8 GB RAM and
a GeForce GTX 460 GPU. To be able to compare the basic and improved systems directly,
the same Java source code from the basic system was used to collect the evaluation metrics.
In the figures, the basic system’s results are labelled as Java. The improved system’s results
with disabled GPU-acceleration are labelled as C. Finally, the improved system’s run in the
heterogeneous mode with enabled GPU-acceleration is labelled as GPU.

The performance evaluation shows that the non-optimized architecture can process full HD
frames using all 8 available CPU cores and up to 4 GB of memory at 6.5 FPS for Java and 13.8

FPS for the C implementations (see figure 3.34) with corresponding frame processing times of
154ms and 72ms, respectively (see figure 3.36). For the smaller frame sizes, real-time speed
was reached at 4 CPU cores and 4 GB of memory. The maximum frame rates that were reached
were 49 FPS, 51 FPS and 66 FPS for WVGA1, WVGA2 and CIF frame sizes, respectively (see
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Figure 3.34: The improved GPU-enabled heterogeneous algorithm reaches real-time perfor-
mance (RT line) with 30 frames per second for full HD (1920× 1080) videos on a desktop PC
using only 4 CPU cores and 5 Gb of memory. The maximum frame rate is around 36 FPS using
8 CPU cores. The Java and C implementations cannot reach real-time performance on the used
hardware.

Figure 3.35: The smaller WVGA1 (856 × 480), WVGA2 (712 × 480) and CIF (384 × 288)
videos can be processed by the improved GPU-enabled heterogeneous algorithm in real-time
using only 1 CPU core. The maximum frame processing rate reaches more than 200 FPS. These
results can be improved by putting all feature-related computations on the GPU.

figure 3.35 and figure 3.37).

The evaluation of the improved heterogeneous system shows that the GPU-enabled archi-
tecture can easily process full HD frames using only 4 CPU cores (see figure 3.34) and up to 5

Gb of memory with a frame processing time of 32.6ms (see figure 3.36). The maximum frame
rate for full HD frames was 36 FPS using all 8 CPU cores. For the smaller frame sizes, the
real-time requirements were reached with only 1 CPU core and up to 4.5 GB of memory. The
maximum frame rate that we achieved was around 200 FPS (see figure 3.35 and figure 3.37).
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Figure 3.36: The processing time for the GPU-accelerated algorithm decreases slightly with
increasing number of used CPU cores for a single full HD frame. This happens due to the CPU-
parallel implementation of feature comparison and search algorithms which are not as compute
intensive as feature extraction. The Java and C implementations reach the minimum frame
processing time with 4 used CPU cores. The reason is that the used CPU has 4 real cores with
hyper-threading feature enabled and it cannot handle CPU-intensive calculations efficiently for
all 8 (real plus virtual) cores.

The results show clearly that the given hardware system with the basic architecture cannot
reach real-time performance for full HD videos even using all available CPU cores, and only for
the low-resolution WVGA videos, real-time can be reached. For the improved heterogeneous
system, the real-time performance for full HD videos is easily reached using only 4 CPU cores
and one outdated GPU. The smaller videos can be processed utilizing only one CPU core plus
GPU. Memory size is not a limiting factor and the system can be deployed even on desktop PCs
with a general-purpose GPU as an accelerator.

These quantitative results illustrate that using a heterogeneous architecture is key to real-
time performance and parallel analysis of videos with different approaches. Furthermore, the
improved heterogeneous system has significant over-performance in terms of real-time video
processing. This makes it possible to implement more feature extractors, classifiers and many
other image processing algorithms to increase the number of detectable diseases by our system
while keeping the real-time capability.

3.6.3.3 Distributed Heterogeneous Architecture

The achieved detection performance of 200 frames per seconds is superior with respect to video
stream processing time and the ability to provide real-time automatic feedback during live en-
doscopies. And, even though real-time performance for multiple diseases can be reached by
using multiple GPUs in one sufficiently powerful desktop machine, placing such noisy and
costly machines in the examination rooms of a hospital is impractical. A more realistic scenario
is therefore to have or to use already installed smaller machines in each room, implementing
a widely used distributed data processing to use more computation resources whenever more
resources are needed. There are many different distributed computation support architectures,
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Figure 3.37: For the smaller frame sizes the GPU-accelerated algorithm results in a processing
time far below the real-time margin. The minimum is reached with 5 milliseconds using 8 CPU
cores. This is a prove for the high system performance and ability to be extended by additional
features or to process several video streams at the same time on a conventional desktop PC.

Figure 3.38: Pooling of devices attached in the PCIe network in the experimental setup.

frameworks and SDKs available world-wide, however only few of them are designed with the
lowest possible data latency in mind, which is a crucial factor for our real-time-oriented system.
Here, the recently developed Device Lending is the best candidate for satisfying our needs to
use remote resources locally.

Device Lending is a concept where computers interconnected in a PCI Express [89] network
can share devices. It provides transparent, low-latency cross-machine PCIe device sharing (see
figure 3.38) without any need to implement application-specific distribution mechanisms or
modify native device drivers. The system can allocate and de-allocate additional remote re-
sources, providing dynamic performance management that is able handle workload complexity
increases or decreases. It is, therefore, a high-throughput solution can be used for distributed
computing, utilizing common hardware already present in all modern computers and requiring
little additional interconnection hardware. Device Lending is implemented [73] using Dolphin
Interconnect Solutions NTB hardware [11].

For the EIR system, Device Lending enables the combination of multiple GPUs through
CUDA’s own peer-to-peer communication model, instead of either writing a distributed system,
using rCUDA [48] or MPI [86].

To evaluate the performance of the distributed multi-GPU version of our system and also to
show that Device Lending in our scenario works as intended, we performed 4 different experi-
ment sets. An overview of the hardware used and the experiments performed can be found in
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(a) Frame processing time for several full HD streams in parallel.

(b) Overall system performance for multiple full HD steams in parallel.

Figure 3.39: System performance evaluation in terms of processing time per frame and maxi-
mum performance using 4 different configurations described in table 3.21. Each video stream
is a full HD video.
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Device Type E1 E2 E3 E4
GPU1 Nvidia Tesla K40c * * * *
GPU2 Nvidia Quadro K2200 * * *
GPU3 Nvidia GeForce GTX 750 * *
GPU4 Nvidia Tesla K40c *

Table 3.21: This table shows the used hardware combinations of the different experiments. GPU
1 to 3 are local GPUs. GPU4 is lend via Device Lending.

table 3.21. For all configurations, we used the same CPU (Intel Core i7-4820K 3.7GHz) and
RAM (16GB Quad Channel DDR3). The test setup consists of 2 computers (Machine A and B,
see figure 3.38), where the host code of the tests runs on one of them. The second one lends a
GPU to it. Experiment E1 uses one local GPU, E2 uses two local GPUs and E3 uses three local
GPUs. In E4, we borrowed one GPU from the second computer in addition to three local GPUs.
Using these hardware configurations, we performed polyp classification and real-time feedback
on the video for up to 16 parallel video streams. All video streams are full HD (1920x1080)
videos from colonoscopies. We measured the delay from capturing a video frame to showing
the output on the screen. The complete evaluation is shown in figure 3.39.

Figure 3.39(a) shows the performance in terms of processing time per frame for all streams
simultaneously. The results reveal that for up to 7 parallel full HD streams, the 3 local GPUs are
fast enough. For more than 7 streams, GPU lending is required. The graph shows that the more
parallel streams are processed, the better is the performance gain from the borrowed GPU. This
is due to the overhead for transferring small amount of data, which hinders Device Lending to
reach its full potential. This becomes less important when we have more parallel streams, when
Device Lending can indeed improve performance.

The plot in figure 3.39(b) shows the overall system performance. The maximum overall
frames per second we reach when using 4 GPUs at the same time is 30 fps for 9 parallel full HD
streams, which is equivalent to 270 fps for a single video stream. Further, this graph shows that
the borrowed GPU does not increase the performance for a smaller number of videos, but for 5
and more videos the increase is higher. Thus, the larger amount of data discovers the benefits of
the distributed GPU performance boost and, therefore, perfectly fits the multi-auditory exami-
nation scenario, while hardware resources are shared within one hospital structure, allowing for
mass-screening programs with reduced implementation costs.

3.6.4 System Extensibility Test

For the final system evaluation, we decided to verify our initial claim of easy system exten-
sibility in terms of detected lesions and findings. To perform this, we tested the flexibility of
our system using the medical challenges from different application areas that are not directly
related to GI tract data analysis, namely bladder cancer cells detection and localization, and
spermatozoon localization and segmentation. Both of this two challenges require precise image
analysis and introduce additional challenges for the analysis algorithms due to their localization
and segmentation nature.
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3.6.4.1 Bladder Cancer Cells Detection and Localization

Bladder cancer is the fourth most common cancer and the eighth most common cause of cancer-
related mortality in men from the United States [123]. In 2016, roughly 79,030 new cases
were diagnosed including 4.6% of all new cancer cases, and 16,870 deaths in the USA were
recorded,equating to 2.8% of all cancer deaths [123]. Therefore, initial-stage discovery of
bladder cancer is important to reduce risk. The current standard for diagnosis is white-light
cystoscopy (WLC) and urine cytology. Complete visualization of the entire bladder and re-
section of all visible tumors is recommended as a gold treatment standard [36]. Despite its
efficiency, the main limitation of WLC is difficulty in identifying all, especially small, areas of
malignancy. Current data shows that insufficient detection quality may lead to recurrence of
the disease [60]. In contrast, modern blue light cystoscopy (BLC), which is implemented using
hexaminolevulinate (named HAL, Cysview or Hexvix) is the most validated technique used to-
day to improve tumor detection. Several prospective trials have shown that HAL-assisted BLC
significantly improves the detection of tumors [60]. HAL was approved in EU and US for the

(a) WLC image of an bladder wall area. (b) BLC image of the same bladder wall area shows a
clearly visible tumor cells cluster.

(c) BLC image depicts less visible tumor cells clusters
partially be hidden by the interference with blood vessels.

(d) BLC image depicts badly visible tumor cells cluster
partially obscured by the resection-remaining tissue.

Figure 3.40: The examples of WLC (a) and BLC (b) frame of our dataset used for the exper-
imental evaluation of the EIR system flexibility and extendability. Images (a) and (b) contain
the instrument tip visible in the image top-right corner. Tumor cells clusters are colored by pink
color and located in the middle (b), in the middle and top-center (c), and around of the middle
(d) of the images.
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detection of non–muscle-invasive papillary cancer in patients with suspected bladder lesions.
Still, the BLC detection method suffers from limitations in terms of patient population cover-
age and high miss-rate for small-tumor-cell groups, resulting in around 32% recurrent cancer
cases for the BLC-guided examinations [146].

Despite a number of well-developed BLC diagnostic equipment [51], there is a lack of a
complete computer-aided bladder cancer cell detection systems. Thus, we selected this use-case
as a problem area for verification of our detection and localization subsystems’ flexibility and
extensibility properties. We adapted our EIR system and in order to provide bladder cancer cell
detection and highlighting functionality. To achieve this, we acquired a sample BLC-captured
dataset from a Norwegian hospital. The obtained a dataset containing 6, 841 WLC and 7, 310

BLC unannotated and anonymized frames (see figure 3.40 for the example images). The size
and variety of our sample dataset does not matter because the goal of this trial with the EIR
system is to prove the concept and EIR system flexibility, and not to perform full system training
and evaluation. In the following trial run, we used only BLC frames split on the training and test
sets. For the training set, we randomly selected 10 BLC images and manually annotated them,

(a) (b)

(c) (d)

Figure 3.41: The examples of the localized clusters of the bladder cancer cells. The green
boxes in the images mark the successfully recognized tumors’ locations including ones on the
side of the field of view (c), bedly visible in the dark areas (a), located on the blood vessels
(b) and partially covered by the tissue (d). One tiny group of cells is missed (e, top-center)
probably because of bad input image quality caused by strong video encoding. Constantly
visible similarly colored not detected objects are the standard instrument tips.
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marking the areas showing the tumor cells. Using such a tiny training set allowed us to also test
how our EIR system can deal with a new problem area with few annotated data samples, which
is especially important for rare but still dangerous diseases.

Using the manually annotated training set, we performed the training of our GAN-based
detection and localization approach. The bladder tumor cells have different color and texture
properties compared to GI-tract angiectasia lesions, but from the detection and localization
point of view, they are similar-looking objects, thus we decided not to perform any fine-tuning
on the network or augmentation parameters and used the EIR system as it is. After training, we
processed all the training data with the trained model and performed visual performance estima-
tion. The sample detection and localization results are shown in figure 3.41. Without a properly
annotated test dataset, it was not possible to evaluate the performance, but the manual inspection
of the generated tumor localization boxes confirmed the high quality of the cancer cell cluster
marking. The algorithm was able to correctly localize not only clearly visible malignant cell
clusters, but also successfully identified clusters that are partially hidden, reside in darkness, are
located on the side of the field-of-view or blurred because of camera motions. Moreover, these
promising results were obtained using low-quality video footage. With better image quality,
we can expect a bladder tumor detection and localization performance as outstanding as we
achieved for angiectasia lesion.

3.6.4.2 Spermatozoon Localization and Segmentation

Semen analysis is routinely used in the fertilization field of applied medicine to evaluate the
male partner in infertile couples and to assess the reproductive toxicity of environmental or
therapeutic agents [56]. One of the most important factors of sperm quality that can be di-
rectly measured is spermatozoons’ motility. The estimation of sperm motion parameters using
computer-aided sperm analysis improves the objectivity, precision, and reproducibility of the
values measured and quantitative motion parameters, such as sperm velocity, and characteris-
tics of track direction can be determined. Computer-aided sperm analysis (CASA) variables,
such as progressive motility, linearity, curvilinear velocity, and average path velocity, may serve
as prognostic indicators for the fertilization potential of sperm. The measurement of quantita-
tive motility and sperm concentration using CASA is of significant clinical value in predicting
the ability of a given ejaculate to achieve successful fertilization and pregnancy in vivo without
interventions [47]. Thus, the main goal of a CASA system development is to provide a new
methods for automatically detecting and predicting different aspects of human fertility includ-
ing predicting the motility and morphology of sperms that will lead to a significant reduction
of a doctor’s workload. Motility and morphology are key attributes [47] for determining the
quality of a given sperm sample. Motility is estimated by the individual movement of each
spermatozoon, while morphology investigates the shape and form of the sperm cells. Beside
the overall sperm quality assessment, another potential use-case is tracking individual sperma-
tozoons in real-time. Thus, the main goals of this preliminary evaluation is to test if the EIR
system can be used for this use-case out-of-the-box without any significant modifications.

The crucial factor to the motility and morphology attribute measurement is the spermato-
zoon localization and morphological segmentation. For the morphology analysis, in the context
of semen, doctors often examine the three parts that make up a spermatozoon. These include the
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(a) Input microscopic image. (b) Ground truth mask for heads.

(c) Ground truth mask for acrosomes. (d) Ground truth mask for nucleuses.

Figure 3.42: The example images of the spermatozoon localization and segmentation dataset
used for the experimental evaluation of the EIR system with the different use-case study. First
image (a) depicts the source microscopic image in RGB color space. Three other images (b-d)
represent the ground truth masks for the different morphological parts of the spermatozoons
shown on the image (a).

head (a whole spermatozoon body without a tail), the acrosome (a front-piece of spermatozoon
head) and the nucleus (a middle part of a whole spermatozoon in between a acrosome and a tail,
rear-piece of spermatozoon head). For the motility estimation, frame-by-frame tracking of the
spermatozoons’ heads and acrosome positions gives enough information for the travel direction
and speed estimation. To the best of our knowledge, there is no a complete CASA system that
can solve this semen analysis tasks at once. Collecting a sperm-related dataset and applying
our developed detection and localization approaches is our first step in the direction of CASA
system development.

The dataset we used in the spermatozoon localization and segmentation experiment consists
of 20 RGB frames recorded during a normal sperm microscopy procedure (see figure 3.42 for
an example). Each microscopic frame comes along with three different ground truth masks for
the different morphological parts of spermatozoon: head, acrosome and nucleus. We split the
whole dataset half-and-half into training and testing sets. Than we trained our GAN-based de-
tection, localization and segmentation approach using the corresponding training data. In total,
we trained three different independent models for head, acrosome and nucleus. To test the ex-
tensibility of our approach, we did not alter any of the training and processing parameters of our
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(a) Input microscopic image.

(b) Ground truth mask for heads. (c) Head segmentation results.

(d) Ground truth mask for acrosomes. (e) Acrosome segmentation results.

(f) Ground truth mask for nucleuses. (g) Nucleus segmentation results.

Figure 3.43: The comparison of the ground truth segmentation masks with the output generated
segmentation masks of the different morphological parts of the spermatozoons.
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networks and used those that were successful for polyp detection and localization. Next, using
the trained models, we processed the test dataset in order to generate segmentation masks for
the corresponding spermatozoon parts. The example of the three model runs for head, acrosome
and nucleus are depicted in figure 3.43. We have not computed any of performance numbers
because of a very limited dataset size and because of the incompleteness of the annotation data.
For example, figure 3.42(a) shows a clearly visible spermatozoon in the top-left corner, while
ground truth data does not have any corresponding markings for this particular object. The same
can be observed for two spermatozoons in figure 3.43(a) in the bottom-right corner. Counting
the fact that our approach was able to correctly recognize the spermatozoons in this cases, we
can state that our approach works well for this use-case. And, as one can see, the generated
segmentation masks fit nicely the ground truth, confirming that our polyp-oriented approach
can be efficiently retrained to process not only new classes of human tissue lesions, but also
perform well for data from different use-case.

3.7 Summary

In this section, we presented our approach for a holistic and complete medical multimedia
system called DeepEIR targeted to detect, localize and highlight diseases in the GI tract. The
DeepEIR system consists of the complete pipeline from annotation, over detection, localization,
segmentation and automatic analysis to visualization. We demonstrated that all parts of the
system are important by themselves, and together form a complete system.

We started the DeepEIR system development with the collection of data, training and evalu-
ation of the system performance. We investigated the privacy and legal issues and made agree-
ments with the partner hospitals in Norway to obtain and publish the medial data. We created
and published [94, 95, 100] three multi-disease multi-class datasets as open-access resources.
There have already received a lot of attention in the research community. We started the medical
data analysis competition within the bigger multimedia evaluation benchmark workshop, and
we are running it already for three years in row [61, 100, 118].

The data exploration and annotation subsystem is an essential part of the DeepEIR system,
because without properly annotated data, it is not possible to train, verify and validate the whole
system and its separate components. Moreover, the annotation subsystem allows us literally to
transfer medical knowledge data into the IT domain in order to understand and solve the com-
plex and often unexplored multimedia challenges of the medical field without having a deeply
specialized medical background and education. It is a well-known fact that medical experts are
always very busy. In our annotation subsystem, we tried to address this by introducing an easy-
to-understand and use set of tools for data annotation. We developed several annotation tools
for medical experts and performed research on these tools to find ones that are better usable and
acceptable for the doctors [98, 119].

Next, we developed several modules for the detection subsystem based on different im-
age processing methodologies. First, we extended our single-class global-feature-based de-
tector [97, 114] with new features and classification algorithms [115, 116]. We also made
the search-based classification subsystem open source [90], and contributed to the open-source
library LIRE, which is used for global features extraction [80]. Than we extended our global-
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feature-based detector to multi-class use-cases, which allowed us to perform multi-class evalua-
tion experiments with our newly collected multi-disease and multi-object dataset [95]. As a nat-
ural step forward, we designed and implemented deep-learning-based [116] and deep-feature-
based [87] single- and multi-class classifiers for the detection subsystem, and evaluated and
compared them with global-feature-based classifiers [99]. We demonstrated that our detection
system can reach a detection performance comparable with state-of-the-art polyp detection ap-
proaches, while providing higher processing speeds and reaching our real-time goals [91, 118].

Then, we designed and developed our own hand-crafted local-feature-based polyp local-
ization approach, which is able to spot polyp locations within video frames using polyp color,
texture and shape properties. With this spot localizer and our detection subsystem, we success-
fully participated in the MICCAI challenge [25] for polyp detection and localization. In this
challenge, while competing with the research teams working on the polyp recognition for many
years, we managed to reach the middle of the overall score for the detection and localization
sub-challenges, and we were the second best participant in the detection latency part [25].

The localization subsystem was further extended with new sub-region-based polyp localiza-
tion modules, each implemented on top of our deep-learning- and deep-feature-based detectors.
Here we used splitting of images into smaller, overlapping sub-images with a subsequent de-
tection and detection-result integration to achieve location-based polyp presence estimation and
detection [92]. Finally, we implemented universal GAN-based localization-via-segmentation
and detection-via-localization modules, which allowed us to achieve both frame- and pixel-wise
high-precision polyp detection and localization [92]. We later extended this approach to bleed-
ing [128] and angiectasia [93] lesions, which resulted in outstanding detection and localization
performance, which is to our best knowledge, better than the state-of-the-art in angiectasia de-
tection and localization.

To meet real-time speed for Full HD frames, we investigated performance-related issues and
evaluated performance of the complete DeepEIR pipeline on different hardware resources. We
showed that not all developed subsystems can be executed within real-time constraints using
only CPU resources. Therefore, we implemented, presented and evaluated an improved version
of the DeepEIR system, which uses a heterogeneous architecture utilizing GPU-acceleration [101].
Even further, we implemented and evaluated distributed workload processing using Device
Lending of remote GPUs [102]. The comprehensive results demonstrate that using of het-
erogeneous resources is the key to real-time performance, and parallel and distributed anal-
ysis of multimedia data is a gateway to massive data analysis, which can enable national-
wide screening. The developed resource-sharing approach also enables in-hospital hardware
resources re-utilization, which leads to reduced installation costs of computer lesion detection
systems [117, 120]. We demonstrated that the improved DeepEIR system reaches the outstand-
ing better-than-real-time processing performance of 300 FPS for Full HD video frames, making
it possible to implement massive data processing services or add more preprocessors, global-
and deep-feature extractors, classifiers, localizers and complex image analysis and processing
algorithms to increase the number of detectable diseases by our system while keeping the real-
time capability [116, 117].

For the visualization subsystem, we presented three different solutions that can be used by
medical experts. These are an online web-based visualization and search tool [80, 90], a real-
time polyps detection and spotting tool [91, 96] and a real-time universal lesion detection and
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localization software. We evaluated the developed visualization subsystem for the real-world
use-cases and set the goals for further improved interaction between doctors and computer-aided
support systems [115, 116].

Based on the different datasets, including three of our own, we showed that the DeepEIR
system can achieve very good results for polyp and other lesion detection and localization while
providing real-time feedback to medical doctors while they are performing colonoscopies [91].
We showed that the detection and localization subsystem can reach and for some use-cases
outperform state-of-the-art algorithm performance [96, 116]. The whole system was tested by
our collaborating medical doctors and was found promising and ready for clinical prototype
development [91, 116]. At the moment, DeepEIR is only tested with visual information, but it
is built in a way that it can easily be extended to other multimedia data such as sensor or patient
data.

Finally, we stress-tested the DeepEIR system for its flexibility and extensibility by running
a short successful trial with diseases from different use-case areas, namely bladder cancer cells
detection and spermatozoon localization and segmentation. Additionally, we modified and ap-
plied our GAN-based localization module to satellite imagery analysis [13, 16, 121], which
allowed us to achieve the best flooding areas segmentation performance in the relevant chal-
lenges [14, 15].

Thus, in summary, DeepEIR fulfills the requirements set in section 1.2. It is a significant
step towards a clinical-ready medical multimedia system that can really help the medical sector
in detection, localization, treatment and prevention of some of the most lethal diseases and their
short- and long-term consequences, and directly improve the health care system for the whole
human society.
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Chapter 4

Conclusion

Researching and developing a holistic multimedia medical-purpose-oriented system that can be
used for the GI tract disease detection and localization is a complex and multi-disciplinary task
requiring investigations in many different problem areas. The work described in this thesis em-
ploys both newly developed and state-of-the-art information processing and analysis methods
in order to achieve a superior detection and localization performance for the different lesion and
ordinary objects of the human GI tract with an outstanding data processing speed and real-time
capabilities.

4.1 Summary and Contributions

In this thesis, we presented our experiences with researching and developing a complete holistic
medical multimedia system for GI tract disease detection and localization. To stay in the scope
of the thesis, we focused on the use case of GI disease and object detection and localization us-
ing videos and images. We aimed and were able to build a system that is flexible, generalizable,
adaptable, efficient and accurate. As a result, the most important outcome of this work is the
DeepEIR system, which reaches high accuracy for lesion and object detection and localization.
DeepEIR is easily expandable with new use-cases and data types, runs in real-time, and at the
moment the complete system is being tested by medical experts for real clinical studies and
trials.

This thesis contributes to several areas of multimedia research. We contributed by research-
ing and developing a medical multimedia system called DeepEIR including data collection,
annotation, detection, localization and visualization tools that demonstrates the potential of
multimedia research for the health care system.

We started our research from the deep analysis of human GI tract lesion and abnormalities
detection needs. We investigated the medical field challenges, with a special focus on the data
acquisition and use. We discovered the existing lesion detection and localization approaches,
as well as the existing relevant datasets. We made agreements with the collaborating medical
institutions and managed to download fully anonymized data for our research purposes.

We collected, annotated and published several new medical datasets freely available under
an open-source licenses for research and educational purposes. We researched and developed an
efficient set of generalizable and multi-purpose visual-representation-based methods to process
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and analyze multimedia data. Further, we improved the implementation of methods to achieve
real-time and better processing performance and also contributed by researching how distributed
processing can be utilized to achieve real-time performance for medical multimedia workload
processing. Moreover, we showed some of the privacy and legal issues related to medical
multimedia research, demonstrated why the multimedia community should apply their research
in medicine, and illustrated how advanced multimedia technology and methods can be used in
the medical field to improve workflows, patient care and, most important, potentially save lives.
Next, we implemented a set of tools that can be useful for dataset creation regardless of the
application area and made the most recent one open source. We implemented and presented
several different prototypes and demos of the whole system and various subsystems, and made
the detection part of the system open source. Furthermore, we demonstrated that our system
is not limited by the primary goal of GI tract inspection, but flexible enough for other types
of objects and applications related to visual information analysis. Finally, we contributed by
writing and publishing several research papers about our findings and experiences, which we
shared with the multimedia research community. We shared our experience regarding how
multimedia researchers can apply their knowledge in the medical field and published the article
in the ACM multimedia Brave New Idea track [115]. In addition to the DeepEIR system [25,
26, 61, 62, 63, 64, 80, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 114, 116, 117,
118, 119, 120, 128] and side applications of its subsystems [13, 14, 15, 16, 55, 84, 113, 121],
this can be seen as an important contribution of this thesis to the research society.

The work presented in this thesis is a continued and extended research on the broad and
complex topic of automated lesion detection in the human GI tract. The basic version of the
EIR system was jointly developed by Michael Riegler and Konstantin Pogorelov, the author of
this thesis. The basic EIR system was described in Riegler’s thesis [112]. The second extended
and improved version of the EIR system called DeepEIR is presented in this thesis. Both theses
include the description of the background, motivation, problem, related work, algorithms and
results obtained by Riegler and Pogorelov. The individual author’s contributions are explained
in chapter 5 and section 1.6.

All main contributions of the thesis are supported by publications in top tier conferences
and journals. The contributions to the objectives defined in section 1.2 of the thesis are:

• Contributions to the main objective: We developed DeepEIR (the second version
of the EIR system) for automatic detection and in-screen localization of lesions in the
GI tract, which is capable of giving real-time visual feedback during live colonoscopies
using traditional endoscopic equipment as well as of processing huge amount of data for
population mass screening using VCEs. The second version of the system consists of
an annotation, a detection, a localization and visualization subsystems. The DeepEIR
system has been researched and developed with the help of medical experts in our partner
hospitals in Norway, Sweden, USA and Austria. The medical experts helped by giving
feedback, explaining their field, testing the system and providing data [101, 102, 116,
117, 120].

Using the ASU Mayo dataset [133], we showed that the detection subsystem of DeepEIR
reaches high performance in terms of accuracy and processing. We can report a sensitivity
of almost 98% and a precision of almost 94%. This means that DeepEIR is able to find

98



polyps in almost all cases with high precision. This can help the medical experts to save
time and lives [101, 102, 116, 117, 120].

Using the recent public Hospital Clinic of Barcelona dataset [23, 24] and our public
datasets [94, 95], we showed that the detection subsystem of DeepEIR can reach high
frame-wise classification performance in terms of accuracy with the detection speci-
ficity of 94% and accuracy of 90.9%. With the same datasets, the localization subsys-
tem reaches the specificity and accuracy of 98.4% and 94.6%, respectively. The result-
ing performance of our detection and localization approaches is significantly higher than
competing global-feature- and deep-learning-based approaches including the most recent
real-time YOLOv2 CNN network [107].

Using the angiecstasia segmentation public dataset [23], we showed that the detection
and the localization subsystems of DeepEIR can reach outstanding performance that ex-
ceeds clinical requirements (sensitivity and specificity higher than 85%). We achieved a
sensitivity of 88% and a specificity of 99.9% for pixel-wise angiectasia localization, and
a sensitivity of 98% and a specificity of 100% for frame-wise angiectasia detection.

Moreover, we compared DeepEIR with other systems and participated in a classification
challenge where we could show that we outperform or reach at least same performance
in accuracy as state-of-the-art methods and that we are leading in terms of processing
performance [102, 116, 120].

For each part of the DeepEIR system, we developed working prototypes and demo appli-
cations. These prototypes and demo applications have been presented at conferences [17,
102, 116, 120].

For the real-time processing challenge, we showed that DeepEIR can process at least 300
FPS for polyp detection, which is a good indicator that we created a scalable medical
multimedia system able to process data in real-time [116]. We researched and imple-
mented different ways of distributed and parallel processing using different architectures
to improve the performance of the DeepEIR system. One of the methods that we re-
searched is the distribution of the detection and localization part on graphics processing
units (GPUs) [101, 120]. Another method that we researched was to distribute the Deep-
EIR workloads via Device Lending [72, 102]. Both methods improved the processing
performance significantly [72, 102].

We showed the potential of multimedia research in the medical field and showed possi-
ble further directions and research topics using the DeepEIR system as an example use
case [115].

We contributed to two open source projects: LIRE, in the field of content-based image
retrieval [80], and OpenVQ, on video quality [125]. We also released the global-feature-
based detection algorithm of DeepEIR as an open source project called Opensea [90].

Finally and most important for us, we contributed with a medical multimedia system for
GI examinations that will in the future help medical doctors to save lives.

• Contributions to sub-objective 1: For the annotation subsystem of DeepEIR, together
with our partner doctors, we did an extensive research in order to make the process of
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medical knowledge transfer into our system easy and efficient for the medical experts. We
explored and developed semi-supervised and cluster-based annotation tools [90, 98, 119].

For the medical data collection and publishing, we researched the ethical and legal aspects
of the medical data use within our research process. We contacted several Norwegian hos-
pitals and established relations with the data storage managing personnel. With the help of
our medical-side collaborators, we made the agreements allowing us to extract and use the
fully anonymized data from the hospital medical information systems. Using these data,
we created two datasets (called Kvasir and Nerthus) and published them online freely
accessible for educational and research purposes [94, 95]. We used the published datasets
for organizing Medico: The 2018 Multimedia for Medicine Task challenge within Medi-
aEval Benchmarking Initiative for Multimedia Evaluation [61, 100, 118]. The public and
the research community accepted our Medico challenge. The independent researchers
deeply evaluated the datasets and they are already used widely around the world. We also
did our evaluation of the datasets to give the baseline for other researchers [87, 99].

• Contributions to sub-objective 2: As a basis for the detection subsystem, we developed
a search-based classification algorithm that uses global image features, reaches good clas-
sification performance and is very fast at the same time [90]. As a basis for the localization
subsystem, we developed a polyp localization algorithm based on hand-crafted local fea-
tures and global heat map post-processing, that is able to reach a good polyp localization
precision with a low false-alert rate [25].

We researched the problem of bleeding detection for VCE-captured videos and developed
the basic bleeding detection and localization algorithm for the DeepEIR system [128].

We implemented the multi-class global-feature- and deep-learning-based classifiers that
are able to handle multiple lesions, landmarks and normal findings of the GI tract for the
detection subsystem, researched its efficiency both in terms of accuracy and processing
speed and compared it with existing competitors [91, 96]. This formed the basis for the
DeepEIR system development into the holistic system that is usable and helpful in the
real-world conditions.

In order to extend the lesion detection capabilities of the DeepEIR system, we researched
and developed a GAN-based detection and localization approach for the angiectasia GI
tract lesion [93]. Also, inspired by the great success of our angiectasia detection ap-
proach, we researched and developed a GAN-based polyp detection and localization ap-
proach [92].

We researched the topic of deep neural networks understanding for better medical image
classification and classification understanding [62]. We researched the tradeoffs using
binary versus multi-class neural network classification for medical multi-disease detec-
tion [26].

Based on the use cases addressed in the thesis and the DeepEIR system itself, we showed
that the global- and local-feature-based algorithms together with deep-learning-based ap-
proaches can form a strong basis for a multi-lesion detection system. We showed that
local hand-crafted features together with GAN-based approaches can provide a good lo-
calization performance for the challenging lesions that are hard to see even for humans.
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In total, we proved that the developed algorithms are well suited to be applied to several
different use cases that involve image classification and analysis problems [91, 92, 93, 99,
101, 102, 115, 116, 117, 120].

• Contributions to sub-objective 3: We researched different types of visualization for
the output of the DeepEIR system. We developed the specific HTML visualization output
generation application for research and medical experts [90] and its easier-to-use web-
based version [120]. We developed an initial visualization approach that is able to visual-
ize all outputs of the DeepEIR system [116], which was later involved in the live system
output visualization application [96]. We researched the problems of an automatic re-
porting and decision reasoning system for deep-learning-based analysis in the medical
domain [63, 64]

Apart from the main contributions, we also contributed to other multimedia research relevant
topics:

Using our GAN-based approach, we researched and developed an approach to the flooding
detection on the satellite images that showed promising results [14, 15, 121] and built a unique
system for collecting information and monitoring natural disasters by linking social media with
satellite imagery can potentially save lives [13, 16].

We researched how the context (a certain watching situation) influences the quality of ex-
perience for users when they are watching videos using watching videos during a flight as
a use-case. We hosted a MediaEval benchmark task [97] about this topic and published a
dataset [114].

We developed a system for efficient live and on-demand tiled HEVC 360 VR video stream-
ing and researched its performance in real use-case scenarios [55].

We researched and developed the new top-down saliency detection approach driven by vi-
sual classification showed promising performance on common saliency detection evaluation
datasets [84].

In addition to the above contributions, the author also supervised several master students,
organized workshops and was part of program committees or conferences.

In summary, we were able to follow a promising and for the society important path by
researching and developing a complete medical multimedia system. During this process, we
touched and contributed to several areas of multimedia research (annotation, automatic analy-
sis, processing and visualization). We were also able to establish collaborations with several
hospitals, which gave us a lot of insight into the medical field and their problems and needs,
but also domain knowledge that is needed for creating a useful system. Thus, this work builds
a solid basis for future collaboration and work in the field of medical multimedia systems.

4.2 Future Work

For future work, the EIR system can be improved and extended in several ways with new tech-
nologies and methods like long short-term memory (LTSM) deep learning approaches for time-
based video sequences analysis, advanced pre-processing of images and videos in order to im-
prove detection and localization accuracy, and including more sources of data such as medical
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sensor data, patient records and audio input from examination rooms. Another important im-
provement can be a broader comparison of our system with the existing industrial-grade medical
systems for GI tract applications in terms of accuracy and usability.

Further widening of the detection and localization capabilities requires the collection of
more training data in the various medical fields. The extension of the datasets that have been
collected, annotated and published during this work will allow solving even more challenges and
will open new possibilities for future research and experiments. Nevertheless, the annotation
process of this data is depending on the medical experts and takes a lot of time and effort, and
therefore, the collaboration with medical institutions need to be further developed.

The analytical part of the system can be further extended not only with new detectable
and localizable diseases and findings, but also with the 3D spatial position localization of the
instrument in the whole GI tract using combined motion and landmark analysis. Here, further
improvements are also achievable by implementing the 3D reconstruction of the GI tract. A
3D representation of the GI tract could make it easier to detect and localize diseases, position
the instrument precisely, and it would also enable lesion size estimation, which is important
information for doctors.

The output of an automatic system like DeepEIR also opens many possibilities for visual-
ization, automated reporting and computer-aided diagnosis application scenarios. The automat-
ically selected most-representative samples can be used to add decision-supporting information
to patient records such as images of the found diseases or video clips. Moreover, automatic
report creation after the examination could help medical doctors to reduce the amount of time
spend on reporting. The saved time could then be used to perform additional examinations.

4.3 Final Remarks

Our future research in medical multimedia systems is financially supported by several projects,
successfully applied and funded by the Norwegian research council and Oslo Metropolitan
University. Within these projects, four PhD students with computer science background and a
joint IT-medical PhD student are working jointly to continue this research and enable full-scale
clinical trials. The future plan is to make the medical multimedia data and medical expertise
publicly available and introduce a ready-to-use system as a routine medical service. This system
will be based on our current version of the DeepEIR system and there are a lot of system
research and challenges to tackle, i.e., it has to work unattended, preserve privacy, be fault
tolerant and well-logged. We fulfilled all research goals that we specified for this thesis and
created a holistic system that can be used as a strong basis for future research and applied
implementations, and, most important, has the potential to improve the health-care system and
actually save lives.
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Chapter 5

Papers and Author’s Contributions

General overview and discussion of the authors contributions and how the papers contributed
to the objectives defined in section 1.2 for each main paper of the thesis. A diagram that also
depicts each papers contributions can be found in figure 1.5.

5.1 Paper I: LIRE - Open Source Visual Information Re-
trieval

Authors: Mathias Lux, Michael Riegler, Pål Halvorsen, Konstantin Pogorelov, Nektarios Anag-
nostopoulos

Abstract: With an annual growth rate of 16.2% of taken photos a year, researchers predict an
almost unbelievable number of 4.9 trillion stored images in 2017. Nearly 80% of these
photos in 2017 will be taken with mobile phones1. To be able to cope with this immense
amount of visual data in a fast and accurate way, a visual information retrieval systems are
needed for various domains and applications. Lire, short for Luce- ne Image Retrieval,
is a light weight and easy to use Java library for visual information retrieval. It allows
developers and researchers to integrate common content based image retrieval approaches
in their applications and research projects. Lire supports global and local image features
and can cope with millions of images using approximate search and distributing indexes
on the cloud. In this demo we present a novel tool called F-search that emphasize the core
strengths of Lire: lightness, speed and accuracy.

Author’s contributions: Pogorelov developed and evaluated the sample (demo) application
built on top of LIRE. This application is used in his thesis as the basis for further an-
notation and visualization tools development. He contributed to the LIRE library code
development and did additional performance measurements regarding the search based
algorithm. He contributed to all paper sections.

Published in: ACM Multimedia Systems Conference (MMSys), 2016.

Contributed to: Main Objective, Sub-objective 1

See page: 133
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5.2 Paper II: OpenSea - Open Search Based Classification
Tool

Authors: Konstantin Pogorelov, Zeno Albisser, Olga Ostroukhova, Mathias Lux, Dag Johansen,
Pål Halvorsen, Michael Riegler

Abstract: This paper presents an open-source classification tool for image and video frame
classification. The classification takes a search-based approach and relies on global and
local image features. It has been shown to work with images as well as videos, and is able
to perform the classification of video frames in real-time so that the output can be used
while the video is recorded, playing, or streamed. OpenSea has been proven to perform
comparable to state-of-the-art methods such as deep learning, at the same time performing
much faster in terms of processing speed, and can be therefore seen as an easy to get and
hard to beat baseline. We present a detailed description of the software, its installation
and use. As a use case, we demonstrate the classification of polyps in colonoscopy videos
based on a publicly available dataset. We conduct leave-one-out- cross-validation to show
the potential of the software in terms of classification time and accuracy.

Author’s contributions: Pogorelov was coordinating the writing and submission process. He
was responsible for the classification tool testing under different conditions and datasets
within the EIR system development and the other side projects. Pogorelov developed
an updated version of the OpenSea tool using the updated LIRE library. He conducted
a set of experiments with different own and other publicly available datasets in order to
validate the tool and approach in general. He wrote the use-case chapter and contributed
to other chapters. He prepared and published the open-source repository with the tool for
this paper.

Published in: ACM Multimedia Systems Conference (MMSys), 2018.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 3

See page: 139

5.3 Paper III: Explorative Hyperbolic-Tree-Based Cluster-
ing Tool for Unsupervised Knowledge Discovery

Authors: Michael Riegler, Konstantin Pogorelov, Mathias Lux, Pål Halvorsen, Carsten Gri-
wodz

Abstract: Exploring and annotating collections of images without meta-data is a laborious
task. Visual analytics and information visualization can help users by providing inter-
faces for exploration and annotation. In this paper, we show a prototype application that
allows users from the medical domain to use feature-based clustering to perform explo-
rative browsing and annotation in an unsupervised manner. For this, we utilize global im-
age feature extraction, different unsupervised clustering algorithms and hyperbolic tree

104



representation. First, the prototype application extracts features from images or video
frames, and then, one or multiple features at the same time can be used to perform clus-
tering. The clusters are presented to the users as a hyperbolic tree for visual analysis and
annotation.

Author’s contributions: Pogorelov developed the demo application and the tree-based repre-
sentation of the clustering output and the annotation part of it. He contributed to the
experiments to evaluate the performance of the clustering approach and evaluated the
demo application on the medical data. He coded the fast image tree drawing algorithm
and optimized the features extraction and clusterization code. He wrote the prototype
and demo description section and also contributed to the text in all other sections and the
results of these experiments discussion.

Published in: International Workshop on Content-based Multimedia Indexing (CBMI), 2016.

Contributed to: Main Objective, Sub-objective 3

See page: 147

5.4 Paper IV: ClusterTag: Interactive Visualization, Cluster-
ing and Tagging Tool for Big Image Collections

Authors: Konstantin Pogorelov, Michael Riegler, Pål Halvorsen, Carsten Griwodz

Abstract: Exploring and annotating collections of images without meta-data is a complex task
which requires convenient ways of presenting datasets to a user. Visual analytics and
information visualization can help users by providing interfaces, and in this paper, we
present an open source application that allows users from any domain to use feature-based
clustering of large image collections to perform explorative browsing and annotation.
For this, we use various image feature extraction mechanisms, different unsupervised
clustering algorithms and hierarchical image collection visualization. The performance
of the presented open source software allows users to process and display thousands of
images at the same time by utilizing GPU resources and different optimization techniques.

Author’s contributions: Pogorelov had the idea for the paper. He had the overall responsibil-
ity for writing and wrote most of the text in clustering, visualization and the project de-
scription sections and contributed to all other sections. He developed the efficient feature
extraction, clusterization, real-time database and high-performance drawing algorithms.
Pogorelov developed the whole interactive visualization, clustering and tagging tool and
performed all the experiments. He did the tool’s extensive performance analysis and de-
veloped several real-time-oriented caching and on-fly data processing subsystems.

Published in: ACM International Conference on Multimedia Retrieval (ICMR), 2017.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 3

See page: 153
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5.5 Paper V: EIR - Efficient Computer Aided Diagnosis Frame-
work for Gastrointestinal Endoscopies

Authors: Michael Riegler, Konstantin Pogorelov, Pål Halvorsen, Thomas de Lange, Carsten
Griwodz, Peter Thelin Schmidt, Sigrun Losada Eskeland, Dag Johansen

Abstract: Analysis of medical videos for detection of abnormalities like lesions and diseases
requires both high precision and recall but also real-time processing for live feedback dur-
ing standard colonoscopies and scalability for massive population based screening, which
can be done using a capsular video endoscope. Existing related work in this field does
not provide the necessary combination of detection accuracy and performance. In this
paper, a multimedia system is presented where the aim is to tackle automatic analysis of
videos from the human gastrointestinal (GI) tract. The system includes the whole pipeline
from data collection, processing and analysis, to visualization. The system combines fil-
ters using machine learning, image recognition and extraction of global and local image
features, and it is built in a modular way, so that it can easily be extended. At the same
time, it is developed for efficient processing in order to provide real-time feedback to the
doctor. Initial experiments show that our system has detection and localisation accuracy
at least as good as existing systems, but it stands out in terms of real-time performance
and low resource consumption for scalability.

Author’s contributions: Pogorelov designed and developed a localization approach and the
corresponding subsystem. He performed implementation and speed improvements of the
detection, analysis and visualization subsystems. He designed and developed experiments
for the localization part of the system and contributed to the experiments for the detection
part of the system. Pogorelov conducted experiments on the multi-core server and sug-
gested the use of GPU-enabled computations to increase the processing speed and bring
real-time capabilities to the EIR system. He contributed to the writing of all the paper’s
sections.

Published in: International Workshop on Content-based Multimedia Indexing (CBMI), 2016.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3

See page: 161

5.6 Paper VI: From Annotation to Computer-Aided Diagno-
sis: Detailed Evaluation of a Medical Multimedia System

Authors: Michael Riegler, Konstantin Pogorelov, Sigrun L. Eskeland, Peter T. Schmidt, Zeno
Albisser, Dag Johansen, Carsten Griwodz, Pål Halvorsen, Thomas de Lange

Abstract: In many hospitals, the potential value of multimedia data collected through routine
examinations is not recognized. Also, the availability of the data is limited, as the health
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care personnel have no direct access to the databases where data is stored. However, med-
ical specialists interact with the multimedia content daily through their everyday work and
have an increasing interest in finding ways to use it to facilitate their work-processes. In
this paper, we present a multimedia system aiming to tackle automatic analysis of video
from gastrointestinal (GI) endoscopy. The proposed system includes the whole pipeline
from data collection, processing and analysis, to visualization, and it combines filters
using machine learning, image recognition and extraction of global and local image fea-
tures. We built it in a modular way so we can easily extend it to analyze various abnor-
malities.We also developed it to be efficient enough to run in real-time. The conducted
experimental evaluation proves that the detection and localization accuracy reaches at
least as good as existing systems’ performance, but it is leading in terms of real-time
performance and efficient resource consumption.

Author’s contributions: Pogorelov contributed to all the development- and evaluation-related
sections of the paper. He designed and developed GPU-accelerated detection subsystem,
performed and discussed all the detailed performance evaluation experiments in terms
of speed and memory consumption for the detection part. He designed and developed
the new localization subsystem and its GPU-accelerated implementation, performed the
experiments and discussed the results. Pogorelov designed and developed the initial ver-
sion of the localization subsystem in order to participate MICCAI challenge on polyp
detection and localization, and performed all the challenge-related experiments. He also
contributed to the real-world use-case and related work sections.

Submitted to: ACM Journal Transactions on Multimedia (ToMM), 2016.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3
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5.7 Paper VII: Multimedia and Medicine: Teammates for
Better Disease Detection and Survival

Authors: Michael Riegler, Mathias Lux, Carsten Griwodz, Concetto Spampinato, Thomas
de Lange, Sigrun L. Eskeland, Konstantin Pogorelov, Wallapak Tavanapong, Peter T.
Schmidt, Cathal Gurrin, Dag Johansen, Håvard Johansen, Pål Halvorsen

Abstract: Health care has a long history of adopting technology to save lives and improve
the quality of living. Visual information is frequently applied for disease detection and
assessment, and the established fields of computer vision and medical imaging provide
essential tools. It is, however, a misconception that disease detection and assessment are
provided exclusively by these fields and that they provide the solution for all challenges.
Integration and analysis of data from several sources, real-time processing, and the as-
sessment of usefulness for end-users are core competences of the multimedia community
and are required for the successful improvement of health care systems. For the benefit of
society, the multimedia community should recognize the challenges of the medical world
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that they are uniquely qualified to address. We have conducted initial investigations into
two use cases surrounding diseases of the gastrointestinal (GI) tract, where the detection
of abnormalities provides the largest chance of successful treatment if the initial obser-
vation of disease indicators occurs before the patient notices any symptoms. Although
such detection is typically provided visually by applying an endoscope, we are facing
a multitude of new multimedia challenges that differ between use cases. In real-time
assistance for colonoscopy, we combine sensor information about camera position and
direction to aid in detecting, investigate means for providing support to doctors in unob-
trusive ways, and assist in reporting. In the area of large-scale capsular endoscopy, we
investigate questions of scalability, performance and energy efficiency for the recording
phase, and combine video summarization and retrieval questions for analysis.

Author’s contributions: Pogorelov contributed to the showcase and preliminary results sec-
tions writing. He designed and implemented the improved GPU-accelerated implementa-
tion of the detection and localization subsystems. He contributed to the complete system
design description. Pogorelov was responsible for the real-time requirements fulfillment
and discussion in the paper. He conducted the performance-related experiments and wrote
experiments description and discussion section of the paper. He also contributed to the
use-case discussion, did whole paper proof-reading and addressed reviewers’ comments.

Published in: ACM Multimedia Conference (MM), 2017.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3
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5.8 Paper VIII: A Holistic Multimedia System for Gastroin-
testinal Tract Disease Detection

Authors: Konstantin Pogorelov, Sigrun L. Eskeland, Thomas de Lange, Carsten Griwodz,
Kristin R. Randel, Håkon K. Stensland, Duc-Tien Dang-Nguyen, Concetto Spampinato,
Dag Johansen, Michael Riegler, Pål Halvorsen

Abstract: Analysis of medical videos for detection of abnormalities and diseases requires both
high precision and recall, but also real-time processing for live feedback and scalability
for massive screening of entire populations. Existing work on this field does not provide
the necessary combination of retrieval accuracy and performance. In this paper, a multi-
media system is presented where the aim is to tackle automatic analysis of videos from
the human gastrointestinal (GI) tract. The system includes the whole pipeline from data
collection, processing and analysis, to visualization. The system combines filters using
machine learning, image recognition and extraction of global and local image features.
Furthermore, it is built in a modular way so that it can easily be extended. At the same
time, it is developed for efficient processing in order to provide real-time feedback to the
doctors. Our experimental evaluation proves that our system has detection and locali-
sation accuracy at least as good as existing systems for polyp detection, it is capable of
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detecting a wider range of diseases, it can analyze video in real-time, and it has a low
resource consumption for scalability.

Author’s contributions: Pogorelov was the coordinator of the paper and contributed to all
parts of the paper. Pogorelov designed and developed the first version of the multi-class
classifier for the DeepEIR system. He implemented global-features- and deep-feature-
based classification subsystems integrated them into DeepEIR and described in the paper.
Pogorelov was deeply involved in multi-class data collection for the new medical dataset
together with doctors from Vestre Viken Hospital Trust and Cancer Registry of Norway.
He performed most of the experiments for system evaluation section, described and dis-
cussed the results. He also wrote most of the text for the real-world use cases section. As
a result, the paper got an additional ACM Artifact Available label.

Published in: ACM International Conference on Multimedia System (MMSys), 2017.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3

See page: 209

5.9 Paper IX: GPU-accelerated Real-time Gastrointestinal Dis-
eases Detection

Authors: Konstantin Pogorelov, Michael Riegler, Pål Halvorsen, Thomas de Lange, Peter The-
lin Smidt, Sigrun Losada Eskeland, Carsten Griwodz, Dag Johansen

Abstract: The process of finding diseases and abnormalities during live medical examinations
has for a long time depended mostly on the medical personnel with some sort of not opti-
mal computer support. However, computer-based medical systems are currently emerging
in domains like endoscopies of the gastrointestinal (GI) tract. In this context, we aim for
a system that enable automatic analysis of endoscopy videos, where one use case is live
computer assisted endoscopies enabling higher disease and abnormality detection rates.
In this paper, a system that tackles live automatic analysis of endoscopy videos is pre-
sented with a particular focus on the system’s capability to perform realtime feedback.
The presented system utilizes different parts of a heterogeneous architectures and can be
used for automatically analysis of high definition colonoscopy videos (and a fully auto-
mated analysis of video from capsular endoscopy devices like pillsized cameras). We
describe our implementation and system performance of a GPU-based processing frame-
work. In summary, the experimental results show real-time stream processing and low
resource consumption, at a detection precision and recall level at least as good as existing
related work.

Author’s contributions: Pogorelov introduced the idea of GPU-assisted acceleration of the
different parts of the EIR and DeepEIR systems. He designed and implemented GPU-
accelerated image and video processing algorithms for the detection subsystem. He did
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C++ and CUDA-based implementations of the most compute-intensive blocks of the sys-
tem. Pogorelov designed, performed and described the experiments in the heterogeneous
computational environment. He contributed to all sections of the paper.

Published in: IEEE Computer Based Multimedia System Symposium (CBMS), 2016.

Contributed to: Main Objective, Sub-objective 2

See page: 223

5.10 Paper X: Efficient Processing of Videos in a Multi-Auditory
Environment Using Device Lending of GPUs

Authors: Konstantin Pogorelov, Michael Riegler, Jonas Markussen, Håkon Kvale Stensland,
Pål Halvorsen, Carsten Griwodz, Sigrun Losada Eskeland, Thomas de Lange

Abstract: In this paper, we present a demo that utilizes Device Lending via PCI Express
(PCIe) in the context of a multi-auditory environment. Device Lending is a transpar-
ent, low-latency cross-machine PCIe device sharing mechanism without any the need
for implementing application-specific distribution mechanisms. As workload, we use a
computer-aided diagnosis system that is used to automatically find polyps and mark them
for medical doctors during a colonoscopy. We choose this scenario because one of the
main requirements is to perform the analysis in real-time. The demonstration consists of
a setup of two computers that demonstrates how Device Lending can be used to improve
performance, as well as its effect of providing the performance needed for real-time feed-
back. We also present a performance evaluation that shows its real-time capabilities of
it.

Author’s contributions: Pogorelov introduced the idea of using device landing for data pro-
cessing speed improvement of the detection subsystem. He analyzed the possible uti-
lization of device lending for the system speed-up. Pogorelov designed, developed and
described distributed and parallel implementation of the algorithms of the detection sub-
system. He created the experimental setup, conducted the experiments and analyzed the
results. He also contributed to all the sections writing.

Published in: ACM Multimedia Systems Conference (MMSys), 2016.

Contributed to: Main Objective, Sub-objective 2

See page: 231

5.11 Paper XI: Efficient disease detection in gastrointestinal
videos - global features versus neural networks

Authors: Konstantin Pogorelov, Michael Riegler, Sigrun Losada Eskeland, Thomas de Lange,
Dag Johansen, Carsten Griwodz, Peter Thelin Schmidt, Pål Halvorsen
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Abstract: Analysis of medical videos from the human gastrointestinal (GI) tract for detection
and localization of abnormalities like lesions and diseases requires both high precision
and recall. Additionally, it is important to support efficient, real-time processing for live
feedback during (i) standard colonoscopies and (ii) scalability for massive population-
based screening, which we conjecture can be done using a wireless video capsule endo-
scope (camera-pill). Existing related work in this field does neither provide the necessary
combination of accuracy and performance for detecting multiple classes of abnormali-
ties simultaneously nor for particular disease localization tasks. In this paper, a complete
end-to-end multimedia system is presented where the aim is to tackle automatic analysis
of GI tract videos. The system includes an entire pipeline ranging from data collection,
processing and analysis, to visualization. The system combines deep learning neural net-
works, information retrieval, and analysis of global and local image features in order to
implement multi-class classification, detection and localization. Furthermore, it is built
in a modular way, so that it can be easily extended to deal with other types of abnormali-
ties. Simultaneously, the system is developed for efficient processing in order to provide
real-time feedback to the doctors and for scalability reasons when potentially applied for
massive population-based algorithmic screenings in the future. Initial experiments show
that our system has multi-class detection accuracy and polyp localization precision at
least as good as state-of-the-art systems, and provides additional novelty in terms of real-
time performance, low resource consumption and ability to extend with support for new
classes of diseases.

Author’s contributions: Pogorelov was responsible for the whole paper contents and wrote
most of the chapters. He designed, developed and implemented a novel local-feature-
based polyp localization algorithm. Pogorelov contributed to the multi-class features-
and deep-learning-based classification algorithms for DeepEIR detection subsystem and
developed GPU-based features extraction code. He conducted a full set of experiments
for this paper and performed the performance evaluation and analysis of all the presented
approaches. For the first time for DeepEIR system, Pogorelov performed deep analysis
of the localization performance and conducted a localization performance comparison to
the modern deep-learning-based object localization approaches. He designed, developed
and implemented a real-time live polyps detection and localization software.

Published in: Multimedia Tools and Applications (MTAP), 2017.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3
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5.12 Paper XII: Kvasir: A Multi-Class Image Dataset for
Computer Aided Gastrointestinal Disease Detection

Authors: Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz, Sigrun Losada Es-
keland, Thomas de Lange, Dag Johansen, Concetto Spampinato, Duc-Tien Dang-Nguyen,
Mathias Lux, Peter Thelin Schmidt, Michael Riegler, Pål Halvorsen
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Abstract: Automatic detection of diseases by use of computers is an important, but still unex-
plored field of research. Such innovations may improve medical practice and refine health
care systems all over the world. However, datasets containing medical images are hardly
available, making reproducibility and comparison of approaches almost impossible. In
this paper, we present Kvasir, a dataset containing images from inside the gastrointesti-
nal (GI) tract. The collection of images are classified into three important anatomical
landmarks and three clinically significant findings. In addition, it contains two categories
of images related to endoscopic polyp removal. Sorting and annotation of the dataset
is performed by medical doctors (experienced endoscopists). In this respect, Kvasir is
important for research on both single- and multi-disease computer aided detection. By
providing it, we invite and enable multimedia researcher into the medical domain of de-
tection and retrieval.

Author’s contributions: Pogorelov contributed to all the chapters. He did related work re-
search and analyzed all the relevant publicly available datasets. He was closely involved
in the dataset analysis and annotation. He designed and conducted the set of experiments
for the reference multi-class classification evaluation using the algorithms from DeepEIR
system. He summarized the experimental results. Pogorelov created a website for the
dataset and published the dataset with the detailed description online. As a result, the
paper got an additional ACM Artifact Available label.

Published in: ACM Multimedia Systems Conference (MMSys), 2017.

Contributed to: Main Objective, Sub-objective 1

See page: 273

5.13 Paper XIII: Nerthus: A Bowel Preparation Quality Video
Dataset

Authors: Konstantin Pogorelov, Kristin Ranheim Randel, Thomas de Lange, Sigrun Losada
Eskeland, Carsten Griwodz, Dag Johansen, Concetto Spampinato, Mario Taschwer, Math-
ias Lux, Peter Thelin Schmidt, Michael Riegler, Pål Halvorsen

Abstract: Bowel preparation (cleansing) is considered to be a key precondition for success-
ful colonoscopy (endoscopic examination of the bowel). The degree of bowel cleansing
directly affects the possibility to detect diseases and may influence decisions on screen-
ing and follow-up examination intervals. An accurate assessment of bowel preparation
quality is therefore important. Despite the use of reliable and validated bowel preparation
scales, the grading may vary from one doctor to another. An objective and automated
assessment of bowel cleansing would contribute to reduce such inequalities and optimize
use of medical resources. This would also be a valuable feature for automatic endoscopy
reporting in the future. In this paper, we present Nerthus, a dataset containing videos
from inside the gastrointestinal (GI) tract, showing different degrees of bowel cleansing.
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By providing this dataset, we invite multimedia researchers to contribute in the medi-
cal field by making systems automatically evaluate the quality of bowel cleansing for
colonoscopy. Such innovations would probably contribute to improve the medical field
of GI endoscopy.

Author’s contributions: Pogorelov was responsible for the paper writing and submission. He
contributed with the dataset creation and anonymized the data before publication. Pogorelov
planned, performed and described the basic classification experiments with the dataset.
He wrote data collection, dataset details and performance sections. Pogorelov created a
website for the dataset and published the dataset with the detailed description online. To-
gether with Riegler, he also was developing and running the web-based two-phase bowel
preparation quality assessment survey. The paper got an additional ACM Artifact Avail-
able label.

Published in: ACM Multimedia Systems Conference (MMSys), 2017.

Contributed to: Main Objective, Sub-objective 1
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5.14 Paper XIV: Deep Learning and Handcrafted Feature
Based Approaches for Automatic Detection of Angiec-
tasia

Authors: Konstantin Pogorelov, Olga Ostroukhova, Andreas Petlund, Pål Halvorsen, Thomas
de Lange, Håvard Nygaard Espeland, Tomas Kupka, Carsten Griwodz, Michael Riegler

Abstract: Angiectasia, formerly called angiodysplasia, is one of the most frequent vascular
lesions and often the cause of gastrointestinal bleedings. Medical specialists assessing
videos or images of examinations reach a detection performance of 16% for the detection
of bleeding to 69% for the detection of angiectasia. This shows that automatic detection to
support medical experts can be useful. In this paper, we present several machine learning-
based approaches for angiectasia detection in wireless video capsule endoscopy frames.
In summary, the most promising results for pixel-wise localization and frame-wise de-
tection are obtained by the proposed deep learning method using generative adversarial
networks (GANs). Using this approach, we achieve a sensitivity of 88% and specificity of
99.9% for pixel-wise localization, and a sensitivity of 98% and a specificity of 100% for
frame-wise detection. Thus, the results demonstrate the capability of using deep learning
for automatic angiectasia detection in real clinical settings.

Author’s contributions: Pogorelov had the initial idea of the paper. He introduced the idea
of the paper. He designed and developed a GAN-based segmentation and detection ap-
proach for angiectasia lesion, adding a new lesion segmentation functionality to the Deep-
EIR system. He planned and performed a set of experiments providing a comprehensive
comparison between the GAN-based and deep- and global-feature-based approaches for
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angiectasia detection. He did a set of cross-validation experiments proving the localiza-
tion performance efficiency. Pogorelov also was responsible for the paper writing and
contributed to all sections.

Published in: IEEE Biomedical and Health Informatics Conference (BHI), 2018.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3

See page: 289

5.15 Paper XV: Deep Learning and Hand-crafted Feature
Based Approaches for Polyp Detection in Medical Videos

Authors: Konstantin Pogorelov, Olga Ostroukhova, Mattis Jeppsson, Håvard Espeland, Carsten
Griwodz, Thomas de Lange, Dag Johansen, Michael Riegler, Pål Halvorsen

Abstract: Video analysis including classification, segmentation or tagging is one of the most
challenging but also interesting topics multimedia research currently try to tackle. This
is often related to videos from surveillance cameras or social media. In the last years,
also medical institutions produce more and more video and image content. Some ar-
eas of medical image analysis, like radiology or brain scans, are well covered, but there
is a much broader potential of medical multimedia content analysis. For example, in
colonoscopy, 20% of polyps are missed or incompletely removed on average. Thus, au-
tomatic detection to support medical experts can be useful. In this paper, we present
and evaluate several machine learning-based approaches for real-time polyp detection for
live colonoscopy. We propose pixel-wise localization and frame-wise detection methods
which include both handcrafted and deep learning based approaches. The experimental
results demonstrate the capability of analyzing multimedia content in real clinical set-
tings, the optimization of the work flow and better detection rates for medical experts.

Author’s contributions: Pogorelov introduced the idea of the paper. He designed and devel-
oped a combined GAN-based algorithm suitable for implementation of detection, local-
ization and detection-via-localization approaches for DeepEIR system. He tuned his al-
gorithm for the polyp detection and localization use-case and performed the initial proof-
of-concept set of experiments. Further, Pogorelov planned designed and performed a set
of experiments for through validation of the approach and a comprehensive comparison to
the global-features- and deep-learning-based detection approaches. He created and pre-
pared the datasets were used for the experiments. Pogorelov wrote the methodology and
experiments sections were also responsible for the whole paper writing and contributed
to the paper’s text. As a result, the paper got the Best Paper Award from the 2018 IEEE
Computer-Based Medical Systems Symposium.

Published in: IEEE Computer-Based Medical Systems Symposium (CBMS), 2018.

Contributed to: Main Objective, Sub-objective 1, Sub-objective 2, Sub-objective 3
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ABSTRACT
With an annual growth rate of 16.2% of taken photos a ye-
ar, researchers predict an almost unbelievable number of 4.9
trillion stored images in 2017. Nearly 80% of these photos in
2017 will be taken with mobile phones1. To be able to cope
with this immense amount of visual data in a fast and accu-
rate way, a visual information retrieval systems are needed
for various domains and applications. LIRE, short for Luce-
ne Image Retrieval, is a light weight and easy to use Java
library for visual information retrieval. It allows developers
and researchers to integrate common content based image
retrieval approaches in their applications and research pro-
jects. LIRE supports global and local image features and can
cope with millions of images using approximate search and
distributing indexes on the cloud. In this demo we present a
novel tool called F-search that emphasize the core strengths
of LIRE: lightness, speed and accuracy.

CCS Concepts
•Information systems→Multimedia information sys-
tems; Image search;

Keywords
Visual Information Retrieval; Search Engine

1. INTRODUCTION
Visual information retrieval and content based image re-

trieval have been around for years. In academia, it has be-
en extensively reviewed (cp. [9]) and a lot of different ap-
proaches have been developed. However, early commercial
software did not result in a broad application of visual in-
formation retrieval. Newer visual search engines took other
approaches, like TinEye2 with providing visual information

1http://goo.gl/nJz8gJ
2http://tineye.com
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Figure 1: Sample application built on LIRE. The
image in the center is the query, the first six results
of four queries based on four different features, three
global, one local one, are shown around the query.

retrieval technology as a service, or LegalZoom3, which does
a search for similar visual trademarks for the clients. Others
focused on specific domains, like copyright infringement, me-
dical retrieval, or near duplicate detection.

However, nowadays, visual information retrieval builds on
the academic achievements of successful research and a lot
of different approaches, techniques and methods are availa-
ble. Applied research then adapts the methods to new data
and new domains. For this, it is crucial to have a common
foundation that agrees upon algorithms and software imple-
mentations. Such a foundation can prevent developers and
researchers alike from re-developing well-known approaches.
A common, free and easy to access knowledge base is the
main goal of LIRE.

LIRE provides the most common and well working ap-
proaches to content based image retrieval. Implemented as
a Java library, it allows easy integration in existing softwa-
re environments. LIRE builds on Lucene4, which is a well-
known and well maintained text search engine. Furthermore,

3https://www.legalzoom.com
4https://lucene.apache.org/



Figure 2: A screenshot of the UN WIPO Global
Brand DB. The image filtering option is implemen-
ted using LIRE.

LIRE is the result of ongoing work of numerous contributors
since February 2006. Since then, it is available as open source
software under the GNU Public License. It has been hosted
on sourceforge.net, Google Code and is currently maintai-
ned on Github5. Pre-compiled versions have been downloa-
ded more than 51,000 times in 2015 alone. Major milestones
were the release of the LIRE Solr Plugin in 2013 [16] and
the version 1.0 beta release in 2015.

LIRE has been employed in academic research, teaching
and real world scenarios alike. One major installation is at
the UN headquarters in Geneve, Switzerland, running the vi-
sual trademark search at the World Intellectual Property Or-
ganization6. Fig. 2 shows a screen shot of the WIPO’s Global
Brand DB. There, a textual search for the term “clouds” is
combined with a visual re-ranking based on a query image
using PHOG [3]. Besides visual trademark search, LIRE has
been employed for instance in asset management, copyright
violation detection, and media monitoring. In the academic
world, LIRE is used for feature extraction for classificati-
on, as base line for retrieval evaluation, for video search
and summarization and as library providing image search
for user interface and knowledge discovery projects.

2. LIRE
LIRE aims to be easy to use as well as easy to built new

services on. If for instance new features are to be tested, de-
velopers and researchers only need to implement the feature
interface including the serialization and extraction. Every-
thing else then is done by LIRE, including parallel indexing,
local feature aggregation, hashing, as well as approximate
and linear search. This allows researchers and developers to
focus on their features instead of having to implement the
whole search engine.

LIRE supports multiple global and local features out of
the box, to allow for easy comparison of new features to
existing and well-known ones. Most notable global ones are
CEDD [6] as well as the related features JCD [7] and FCTH
[5], PHOG [3], the Auto Color Correlogram [11], Local Bina-
ry Patterns [18], CENTRIST [23], and the MPEG-7 features
[4] Edge Histogram, Color Layout and Scalable Color.

5https://github.com/dermotte/lire
6http://www.wipo.int/branddb/en/

Local features are based on the OpenCV implementations
of SIFT [15] and SURF [2]. For retrieval the bag of visual
words approach [21] as well as VLAD aggregation of local
features [14] are supported. In addition to that, LIRE ful-
ly implements the SIMPLE [12] approach to using global
features on local image patches with configurable key point
detectors.

For indexing, LIRE supports linear search as well as loca-
lity sensitive hashing [8] with a specific implementation of
bit sampling. In addition to that, LIRE supports a permu-
tation based approach called metric index [1], which adapts
to image domains better than the hashing based approaches
and employs inverted files for indexing [10].

3. PERFORMANCE
There are two main performance indicators for a image re-

trieval runtime: (i) performance on a single machine and (ii)
scalability. For indexing, there are two main entry points.
One is at the level of feature extraction, where indexing has
to be handled by the users of LIRE. The more convenient ap-
proach is to use the parallel indexing routine provided by LI-
RE. It is configurable by supporting custom pre-processors,
making use of multiple cores, and producing a Lucene index,
which can easily be merged with indexes built with the same
parameters. Thus, indexing is fully scalable.

For linear search, three optimizations are supported. The-
se are, (i) memory cached search, where all image feature
data is stored in memory, (ii) multi-core-search, where the
search is run in parallel over index partitions, and (iii) DocVa-
lues based search using a mechanism of Lucene, where RAM
and disk serialization are heavily optimized. With a GPU
based approach, which is currently under development for
indexing and searching video streams, indexes with up to
one million images can be queried in 3ms for a resoluti-
on of 856x480, and 18ms for images with a resolution of
1920x1080. For more than a million images, LIRE provi-
des approximate search techniques based on hashing [8] and
permutation indexes [10]. Moreover, the index can be parti-
tioned and search results can be merged to get more accurate
results and at the same time increase speed [19].

Retrieval performance is shown in Table 3. The employed
data sets are SIMPLIcity data set [22], the UKBench Reco-
gnition Benchmark Images data set [17], the Uncompressed
Colour Image Database (UCID) [20], and the INRIA Holi-
days dataset [13]. While not being able to publish all possi-
ble feature and aggregation combinations, we aimed to give
an overview on the performance. Retrieval features marked
with a (G) in the Table 3 are global ones, i.e., Auto Color
Correlogram, CEDD, Color Layout, Edge Histogram, JCD,
Local Binary Patterns and Scalable Color. Global features
marked with an (SB) are used on local image patches by
employing the SIMPLE approach [12] with a bag of visu-
al words aggregation. The number complementing the SB
gives the number of visual words for this particular test.
CVSIFT and CVSURF are the SIFT and SURF implemen-
tations from OpenCV, respectively. The (B) with the num-
ber indicates the use of the bag of visual words aggregation
with the given number of visual words. (V) and (SV) de-
notes the use of the VLAD aggregation techniques for local
and global features. In the latter case, the SIMPLE approach
has been used to create local features first. The number of
visual words is a lot smaller due to the VLAD aggregation.



SIMPLICity [22] UKBench [17] UCID [20] Holidays [13]
MAP P@10 MAP P@10 MAP P@10 MAP P@10

Auto Color Correlogram (SB, 128) 0.5380 0.7687 0.9082 0.3680 0.7752 0.2584 0.7914 0.2328
Auto Color Correlogram (G) 0.5099 0.7765 0.9253 0.3736 0.7488 0.2427 0.7986 0.2360
Auto Color Correlogram (SV, 16) 0.3920 0.7242 0.9009 0.3660 0.7513 0.2511 0.7602 0.2266
CEDD (SB, 2048) 0.5222 0.8030 0.8917 0.3596 0.7869 0.2611 0.7779 0.2284
CEDD (G) 0.5040 0.7410 0.8055 0.3324 0.6740 0.2229 0.7263 0.2114
CEDD (SV, 16) 0.4488 0.7333 0.8557 0.3504 0.7704 0.2542 0.7377 0.2154
CL (SB, 2048) 0.5211 0.7644 0.8399 0.3436 0.7079 0.2328 0.7385 0.2150
CL (G) 0.4506 0.6574 0.7035 0.2900 0.5675 0.1824 0.6480 0.1852
CL (SV, 64) 0.3747 0.6961 0.7844 0.3268 0.7068 0.2305 0.7060 0.2080
CVSIFT (B, 512) 0.3756 0.5620 0.6847 0.2808 0.6085 0.1954 0.6914 0.2016
CVSIFT (V, 64) 0.4489 0.6247 0.8047 0.3324 0.6933 0.2302 0.7581 0.2202
CVSURF (B, 2048) 0.3801 0.5555 0.6253 0.2644 0.5852 0.1885 0.6777 0.1954
CVSURF (V, 64) 0.4370 0.6111 0.6681 0.2900 0.6441 0.2145 0.7169 0.2092
Edge Histogram (G) 0.3454 0.5538 0.4832 0.2056 0.5019 0.1588 0.5551 0.1594
JCD (G) 0.5140 0.7498 0.8480 0.3464 0.6945 0.2279 0.7351 0.2162
Local Binary Patterns (G) 0.3699 0.6356 0.5302 0.2228 0.5325 0.1641 0.5575 0.1578
Scalable Color (G) 0.5222 0.7692 0.8990 0.3672 0.7116 0.2309 0.7454 0.2186

Table 1: Feature performance on four data sets. The X in (X) denotes: G for global, B for bag of visual words
and V for VLAD aggregation. S for Simple, SB and SV denote bag of visual words or VLAD aggregation.

Figure 3: Sample application built on LIRE showing
results for a different query image than Fig. 1.

4. DEMO
To show some of the aspects of LIRE, we present here

a novel image retrieval and result browsing application. It
utilizes the core strengths of LIRE: small footprint and mi-
nimal API, speed and accuracy. The difference to common
image retrieval search engines is that it is a combination
of browsing and searching, where users implicitly select the
image features that match their sense of similarity best. At
the start, the user provides a query image. Then, the search
engine retrieves results using different pre-selected features.
If users are for instance interested in similar colors and sha-
pes, they can pre-select four different features that represent

these attributes. After the users picked the features and used
the query image to get the first results, they can explore the
available results in four partitions, each representing the re-
sults for one feature. Fig. 1 and Fig. 3 show the desktop
application. The query image is shown in the center, lines
in the background of the results show the partitions. Users
can navigate in the images and selecting an image results
in a new search using the selected image as query. There-
fore, users can browse the data set based on four different
features. Artists and photographers for instance could find
and browse images that share a either similar composition
or color distribution at the same time. For example in Fig. 1
CEDD and SIMPLE CEDD give color based results with the
latter providing different results as it is a localized version
of CEDD, whereas PHOG and Edge Histogram (EH) ba-
sed searches are returning images with similar composition.
Fig. 3 shows the same composition of features for a different
query image.

Moreover, we are testing the demo in a medical setting
where it can help gastroenterologist (medical doctors spe-
cialized on the gastrointestinal tract of the human body)
finding similar cases in their image databases. This is im-
portant since doctors are not likely to recall when and whe-
re a similar case happened, but they usually know if there
was something similar in the past and how it approximately
looked. The demo application is available for the desktop
application written in Processing 3 as well as for Android
mobile phones and tablets.
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ABSTRACT
This paper presents an open-source classification tool for image
and video frame classification. The classification takes a search-
based approach and relies on global and local image features. It has
been shown to work with images as well as videos, and is able to
perform the classification of video frames in real-time so that the
output can be used while the video is recorded, playing, or streamed.
OpenSea has been proven to perform comparable to state-of-the-art
methods such as deep learning, at the same time performing much
faster in terms of processing speed, and can be therefore seen as
an easy to get and hard to beat baseline. We present a detailed
description of the software, its installation and use. As a use case,
we demonstrate the classification of polyps in colonoscopy videos
based on a publicly available dataset. We conduct leave-one-out-
cross-validation to show the potential of the software in terms of
classification time and accuracy.
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1 INTRODUCTION
In the last years, multimedia data has become increasingly popular
and important. More recently, big data is now a buzzword in the
community related to the massive amount of multimedia data that
becomes available because every user can create their own con-
tent and share it. However, also in other fields like medicine, the
use of multimedia data, especially videos and images, has gained
importance. This leads to a need for software and methods that
make possible to search, categorize and classify this data efficiently
based on content and not just based on metadata. Without such
methods, the data available cannot be used efficiently. An example
that leads to a lot of video data generation in the medical field is
the use of camera pills (wireless video capsules), which traverse a
patient’s gastrointestinal (GI) tract. For a single patient, a camera
pill collects between 4 and 12 hours of video material. Since medical
experts are already overloaded, they do not have time to watch all
the videos when the use of camera pills increases. Furthermore,
batch processing of a huge amount of data costs resources and
time, which are not always available. For cancer patients, it can be
life-saving if their data is processed faster.

Therefore, we present an open-source system that provides a
fast and easy way of classifying videos or images. It allows to
easily create search-based classifiers that use global content features
describing the image or frame as a whole. The OpenSea software
contains a pipeline that allows the extraction of global features,
creates indexes that are used as models for the classifier, classifies
images and videos, and outputs the results in a format that can
easily be used in a lot of various scenarios and applications by
different users. Apart from that, OpenSea can also beat state-of-
the-art methods such as convolutional neural networks (CNNs) in
some use cases which makes it an easy to get and relatively hard
to beat baseline for evaluation of approaches [6–8, 14]. It is also
much faster compared to deep learning approaches [9]. Therefore,
we believe that our tool is very useful for:
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• Researchers who are not very familiar with classification,
indexing or global features, but who want to use such
methods.

• Researchers that develop state-of-the-art methods like deep
learning architectures andwant to benchmark theirmethod
with an easy to get and hard to beat baseline.

• Content managers and experts like medical doctors who
want to use classification to learn from their data or un-
derstand their data better without going into technical
details.

In addition, it can be useful for researchers who:
• Need a fast and reliable classification method that is easy

to modify.
• Need just parts of the system like extraction of features,

classification, etc.
• Want to evaluate their own classification methods based on

comparison with our tool as an alternative to for example
random baseline, etc.

• Work with big data and classification and segmentation
problems.

In the remainder of the paper, we present the tool and how it
can be used. We then present it in a medical use case to show its
practical applicability.

2 THE SYSTEM
The tool that we have built consists of two separate parts, an Indexer
and a Classifier, both parts are written in Java. To be able to extract
image features from the content, we use the well known libraries
OpenCV1, Apache Lucene2 and LIRE3. The Indexer can be used to
create an index of images contained in a directory. The Classifier
is able to read and process videos and images, and it uses feature
similarities to perform a binary classification of frames in video or
images in an index. The classification is done by identifying the
most similar images in ground-truth indexes, which are provided
as command line arguments.

2.1 Indexing and Training
The classifier uses indexes containing image descriptors of posi-
tive and negative examples as a model. Therefore, the classifier
is trained by simply dividing negative and positive examples into
the respective indexes. The Indexer accepts a list of directories as
input in the command line. Each of the provided directories is then
searched for image files, and an index of all the images contained
in a directory is created. The index of all the images contained in
a single directory is stored in a subdirectory called index in the
form of Lucene-based indexes. The index can store multiple LIRE-
feature-values per image, and the list of feature-values to store is
provided in the command line. The supported features are all the
features supported by LIRE [4] library. It is also built in a way that
it can easily be extended in the case that one of the used libraries
provides new features.

The usage of Lucene-based indexes has several advantages. These
indexes are easy to compute and do not require a lot of storage
space. Further, the indexes are optimized for search operations and
1http://opencv.org/ [last visited, Feb. 10, 2018]
2http://lucene.apache.org/ [last visited, Feb. 10, 2018]
3http://www.lire-project.net/ [last visited, Feb. 10, 2018]

can therefore be accessed efficiently. To increase the efficiency and
the processing speed of our Indexer further, we have parallelized
the indexing process. We create multiple threads that read image
files from disk and calculate global image features concurrently.
The results are then combined in a single index. The threads share
the same list of files, but as the number of threads is fixed and
known to each thread, we can split each video frame or image file
statically. Every thread starts reading with an offset into one file
and continues reading at offsets depending on its own thread ID.
This allows us to implement reading without explicit locking of
the input file list. Moreover, assuming that all images are of the
same size, the workload is spread evenly across all threads. The
actual number of threads used depends on the available processors
reported by the Java Virtual Machine (JVM).

2.2 Classification of Video and Images
The classification of each video frame or image is based on the anal-
ysis of search results for a given query picture. The classification
algorithm is a modified K-Nearest-Neighbor algorithm (k-NN). K-
NN is a non-parametric algorithm, which means that the algorithm
uses the rank of the values rather then the parameters of each frame.
The frame classification is based on its k nearest neighbors by a
majority decision. The classification algorithm used in the system
differs in some points from the original k-NN algorithm. The first
difference is that the algorithm is based on a ranked list of search
results, which can be generated in real-time or pre-indexed for each
query frame of the video. The second is that weighted values are
used for generating a decision antithetical to the non-parametric
behavior of the k-NN. The weights are based on the search result’s
ranked list. This part is designed in a way that it can easily be re-
placed with other different methods (for example visual page rank,
etc.).

As mentioned before, the classification tool is implemented as
a search for similar images in indexes that are generated off-line
or on-the-fly, based on single or multiple image features. For every
image in the input index or video, it searches the provided classifier
indexes and finds the images with the most similar image features,
whereas similarity is determined based on the low level features and
their associated distance (in this case Tanimoto distance). Based on
the class of the similar images retrieved from the index, the input
image is classified. The result for every single image feature, as
well as the result of late fusion for all the selected image features
is displayed on-screen. Late fusion means that each feature has
an own classification step that is combined with other classifiers’
output for the final result. When classifying previously indexed
images, an HTML page is created with a visual representation of all
the classified images. When classifying a video sequence, the results
are stored to a file in JSON format instead. The classification tool
also determines the performance of the classification and calculates
several evaluation scores such as precision, recall, weighted f1-score,
etc.. For this to work, the input data must be labeled correctly before
it is classified. This can either be done by prefixing the filenames
of the files in the test index with ’p’ or ’n’ for positive and negative
samples, respectively, or by supplying separate test indexes with
the command line options for the input data.
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3 INSTALLATION AND LICENSE
OpenSea is licensed under the terms of the GNU General Public
License (GPL) version 3, as published by the Free Software Foun-
dation. OpenSea depends on LIRE, which is licensed under GPL
version 2, and OpenCV, which is licensed under a BSD license.

We have tested our software on Linux, Mac OS X and Windows.
For simplicity, we provide installation instructions forUbuntu Linux.
All the required files from stable LIRE version 0.9.5 and Apache
Lucene distribution are already included into the OpenSea distribu-
tion. The following installation and build instructions were tested
with Ubuntu 16.04:

• Download and install the Java SE Development Kit 8 from
http://www.oracle.com.

• Make sure to have the directory containing the java com-
piler in your PATH environment variable.

• Install OpenCV-Java and Apache ant:
sudo apt-get install libopencv2.4-java ant

• Clone the OpenSea repository:
git clone \

https://github.com/acmmmsys/2018-OpenSea
• Build OpenSea using ant as command line arguments.

ant dist

Once building finished, you should find the two files clas-
sifier.jar and indexer.jar in the subdirectory dist.

• To make sure the OpenCV-Java native libraries are found
at runtime, it is further necessary to add the path to li-
bopencv_java249.so to LD_LIBRARY_PATH.
export LD_LIBRARY_PATH=/usr/lib/jni

If another versions of LIRE is required, the following additional
steps are required:

• Download Lire from http://www.lire-project.net/.
• Unzip Lire to a directory of your choice. We will refer to

this location as Lire directory.
• Make sure your LIRE directory contains the file lire.jar.
• Build OpenSea using ant, passing your Lire directory and

the corresponding OpenCV-Java directory as command line
arguments. The OpenCV-Java directory is where your java
bindings for OpenCV were installed (used by both LIRE
and OpenSea). It must contain the file opencv-249.jar, or
any later version.
ant -Dlire=/home/me/Lire \

-Dopencv=/usr/share/OpenCV/java dist

Once building finished, you should find the two files clas-
sifier.jar and indexer.jar in the subdirectory dist.

4 USAGE INSTRUCTIONS AND EXAMPLE
To show how to use OpenSea, we provide the usage instructions
and a few command line examples.

4.1 Indexing
The indexer can be started as follows:
java \

-jar [/path/to/jar/file/] indexer.jar
[-f feature]
/dir/with/images
[/dir/with/more/images]

Indexer support multiple features set by -f command line argument
as well as multiple directories with images or frames extracted from
video.

Usage example:
java \

-jar indexer.jar -f JCD -f FCTH \
/home/user/dataset/train/pos \
/home/user/dataset/train/neg \
/home/user/dataset/test

This creates the two indexes containing the global image features
Joint Composite Descriptor (JCD) and Fuzzy Color and Texture His-
togram (FCTH) of the images in the /home/user/dataset/train/pos,
/home/user/dataset/train/neg /home/user/dataset/test directories and
stores the indexes in /home/user/dataset/train/pos/index, /home/user/-
dataset/train/neg/index and /home/user/dataset/test/index directories
respectively. If the index target directories contain any previously
extracted features they will be replaced.

4.2 Classification
The classifier can be started as follows:
java \

[-Djava.library.path=/path/to/opencv/for/
java]

-jar [/path/to/jar/file/] classifier.jar
[-f feature]
[-c /dir/with/training/index]
[-p /dir/with/training/positive/index]
[-n /dir/with/training/negative/index]
[-i /dir/with/test/index]
[-P /dir/with/test/positive/index]
[-N /dir/with/test/negative/index]
[-v /path/to/video/file]

Classifier support multiple features set by -f command line argu-
ment. Training and test datasets are expected to be supplied in the
indexes previously extracted by Indexed. Indexes can be either joint
or separated sets of positive and negative samples. For the joined
sets file names must start with ’p’ for positive sample and with ’n’
for negative samples, with corresponding -c and -i command line
arguments for training and test sets respectively. For the separated
sets positive and negative samples must be provided in the separate
indexes, with corresponding pairs -p, -n and -P, -N of command
line arguments for training and test sets respectively. Classifying
of video frames is implemented via -v command line arguments
which is mutually exclusive with test set arguments.

Usage example:
java \

-Djava.library.path=/usr/lib/jni \
-jar classifier.jar \
-f JCD -f FCTH -f Tamura \

-p /home/user/dataset/train/pos/index \
-n /home/user/dataset/train/neg/index \
-i /home/user/dataset/test/index

This example shows how to classify images from the index /home-
/user/dataset/test/index using the image features JCD and FCTH, by
finding the most similar images among the positive samples from
/home/user/dataset/train/pos/index and the negative samples from
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/home/user/dataset/train/neg/index. For the calculation of the evalu-
ation metrics, it is required that the images indexed in /home/user/-
dataset/test/index have names starting with ’p’ or ’n’ for positive or
negative samples, respectively. This generates visual classification
output in HTML format. Example of generated HTML is depicted
in figure 1.
java \

-Djava.library.path=/usr/lib/jni \
-jar classifier.jar \
-f JCD \

-p /home/user/dataset/train/pos/index \
-n /home/user/dataset/train/neg/index \
-P /home/user/dataset/test/pos/index \
-N /home/user/dataset/test/neg/index \
-f JCD

The second example uses samples from the positive index /home-
/user/dataset/test/pos/index and negative samples from the negative
index /home/user/dataset/test/neg/index, which are classified using
the image feature JCD. The previously known classification is only
used for evaluating the results of the classifier.
java \

-Djava.library.path=/usr/lib/jni \
-jar classifier.jar \
-f JCD \

-p /home/user/dataset/train/pos/index \
-n /home/user/dataset/train/neg/index \
-v /home/user/dataset/testvideo.avi

In our last example, a video file is supplied as input to the classifier.
All video frames of this input video /home/user/dataset/testvideo.avi
are classified by searching the most similar images among the
positive samples from /home/user/dataset/train/pos/index and the
negative samples from /home/user/dataset/train/neg/index using the
global image feature JCD. In addition to the on-screen output (see
figure 2 for an example), a JSON file is generated, which contains a
list of all the positive frames and a list of all the negative ones.

To process videos in real-time, we have also parallelized the
classifier. Again, the number of threads created depends on the
number of processors reported by the JVM. Each thread holds a
separate instance of the classifier indexes, but all threads share the
same queue for the input data to be classified. Therefore, every
image or video frame is only loaded once, it is then processed by a
single thread, and the result is written to a shared data structure.
This allows for all threads to operate independently, with only two
critical sections, i.e., one for dequeuing the next input image and
one for writing to the shared result data structure. When processing
a video as input data, an additional thread is created for reading the
video from a file and filling the input frame queue. The Classifier
tool further provides different options for weighting the count or
distance score of similarity results. The different weighting methods
can be chosen by adding the flag −m followed by the rank method
that should be applied to the command. As default mode, no weight
is set and the classifier uses only the count per class. At the mo-
ment, we support 3 additional weighting methods: (i) weighted by
rank position, i.e., the weight is computing from the position in
the returned ranked list, (ii) weighted by distance, which uses the
Tanimoto distance from the search as weight and (iii) weighted by
average distance, which uses the average distance of all returned

Figure 1: Example of a generates visual classification output
in HTML format. Images with green borders correspond to
true positive and true negative samples. Imageswith red bor-
ders correspond to false positive and false negative samples.

Figure 2: Example of a classifier on-screen output. The out-
put contains classification results for each used feature and
features’ late fusion, as well as the corresponding perfor-
mance metrics.

documents in the ranked list instead of the number of documents
to calculate the weight. Moreover, various different combinations
of global image features can be evaluated separately or combined
in late fusion. This makes the tool ideal for experimenting with
different approaches and finding an optimal set of features to use
for a specific use case.
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4.3 Metrics
In our performance evaluation, several specific metrics are imple-
mented and can be calculated for the test data T . All metrics are
calculated based on true positives (tp), false positives (f p), true
negatives (tn), false negatives (f n) values per class c ∈ T . The most
important metrics are precision, recall, F1 score and Weighted F1
score. A common and often used metric to calculate the quality
of a classifier that considers both measures, precision and recall ,
is the F1 score. It is the harmonic mean (mean value of a number
of values) of precision and recall . One problem with the standard
F1 score is that a low value is not always an indicator of a badly
performing classifier or retrieval system if the classes in the test
dataset are not normally distributed [13]. To solve this problem, the
weighted F1 score (WF1) can be used. This score takes both, the
negative and the positive class results, into account and calculates
a more accurate and robust measure.WF1 score is known to be
more reliable to evaluate the performance of a classifier or retrieval
system than the standard F1 score. Apart from F1 andWF1, the
tool also provides true negative rate, false positive rate, accuracy
and the Matthews correlation coefficient [5].

All of these metrics are suitable for showing the performance
of binary (two classes) and multi-class classifiers (more than two
classes) and should be a valuable set of instruments for users of the
tool to evaluate their classifiers.

5 USE CASE
To show how the system works, we performed two experiments
using two different pairs of training and test sets. For the first
experiment, we used the ASU-Mayo Clinic polyp database [2]. It
is at the moment one of the largest publicly available dataset of
colonoscopy videos. The dataset comes with a ground truth that
indicates if a frame of a video contains a polyp in the colon or not.
The dataset consist of 20 videos. 10 videos do not contain polyps at
all, and 10 of them contain polyps in the whole video or parts of it.

First, we split the dataset into test and training sets. The test
set contained two separate videos that are not used in the training
dataset. To measure the performance, we used the well known
metrics precision and recall. All the tests were conducted without
a weighting method (default mode). In this first test, we achieved
a precision of 0.903, a recall of 0.919. For these results, we used
a fusion of the features JCD and OpponentHistogram, which we
found to perform best in small tests before [15]. The number of
visual neighbors (size of the rank list returned by the search part of
the classifier) was 71. The majority class baseline (all negative) is
0, 683 for precision, 0, 683 for recall.

To evaluate the robustness of the classifier, and to check if the
good results were not just overfitting, we decided to perform a leave-
one-out-cross-validation (LOOC) with all 20 videos of the dataset.
In LOOC, all videos of the dataset are used to train the model expect
for one that is used as the test example. This is repeated, so that
all the sample videos are excluded once. To be able to recreate
the experiments and test the software, we added the indexes to
the official repository. We used the same features and number of
visual neighbours as in the test before. For LOOC, the average
precision is 0, 895, the average recall is 0.903. In comparison to the
LOOC for the majority class baseline (all negative) which reaches a

Table 1: A performance comparison of deep-learning and global
features based GI findings detection approaches [9]

Global-features-based EIR Deep-EIR
Detection Type polyps / 30 features abnormalities / neural network
Recall (Sensitivity) 98.50% 87.20%
Precision 93.88% 87.20%
Specificity 72.49% 97.40%
Accuracy 87.70% 97.50%
FPS 300 30

precision of 0.636, recall of 0.636. It is important to point out that
we choose the class with the highest number for the majority vote
baseline against the common practice to decide for the positive one.
This makes it harder to outperform the baseline, but it also shows
the real performance of the classifier. The results shows that our
system performs well in cross validation and that it is robust and
not overfitted for the dataset. We also want to point out that the
classification time is very low. For a single frame, the time is around
30 milliseconds. To be able to do it in real time for videos with 30
frames per second, 33, 3 milliseconds is the deadline. In the best
case, if we use a single feature, we can even get a classification time
of around 10 milliseconds. The parallelization is not yet optimized,
and we have some ideas that can make the system even faster, but
this is out of scope for this paper.

For the second experiment, we use combinations of four differ-
ent, publicly available datasets, namely CVC-356 [2], CVC-612 [1],
Kvasir [8] and parts of Nerthus [7]. The CVC-356 and CVC-612
datasets consist of 356 and 612 video frames, respectively. Each
frame that contains a polyp comes with pixel-wise annotations in
the CVC-356 and CVC-612 datasets. They both are used for training
only in our polyp detection experiments. The fames from those
datasets were renamed adding ’n’ or ’p’ prefix to reflect actual polyp
presence in frames according to the existing pixel-wise annotations.
For the testing we used Kvasir and Nerthus. For the Kvasir dataset,
we included all classes except for the dyed classes (in a real world
scenario something dyed is already detected by the doctor) leading
to a dataset containing 1,000 frames with polyps, 5,000 without. We
also added the 1,350 of class three frames with normal mucosa from
the Nerthus dataset.

For this experiment we performed training and polyp detection
using the described sets with two different detection approaches: the
proposed OpenSea system and a deep-learning based abnormality
detection approach [9]. The comparison of performance and data
processing speed is depicted in table 1. As one can see, the OpenSea
(global-features-based EIR) approach can perform as good in terms
of detection performance as deep-learning based, but OpenSea
system perform ten times faster in terms of processing speed. This
results showing a promising nature of global features and their
ability to perform fast and efficiently even across the different
datasets.

The problem of polyp detection in GI videos is one of the most
important problems in modern medical endoscopic imaging analy-
sis [6]. Our efforts in this field includes not only development of
the new lesion recognition methods [9], but also include a creation
of open and publicly available datasets. We are working intensively
on extending our own datasets which contain another diseases and
findings [7, 8]. The proposed OpenSea system can easily be extend
to different diseases by simply using a separate classifier for each
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category which will make it easy to run in parallel and more accu-
rate (since it is late fusion and late fusion has been proved as being
more accurate [3]). The preliminary results of such a multi-class
classification can be found in [10].

It is important to point out that with our method the adjustment
of precision and recall is very easy. We can easily increase the recall
by using more visual neighbors. This makes it very interesting for
the medical use case, because we can get a recall of 1 so that doctors
can be sure that we do not miss a true positive example, while still
saving them working time because the high precision allows to
remove a considerable number of fames.

Possible ways to use the output of the classification tool are
presented in the following papers. Here, we use it in a system
that allows computer-aided diagnosis. It helps medical experts to
find polyps in colonoscopies and also to save medical personnel’s
working time because they do not have to analyze the whole video.
OpenSea has been also used for a system called EIR. This system is
built to automatically detect different disease during colonoscopies
and capsular endoscopies. The more detailed description of the
system can be found in [9, 11, 15]. Different demos of this system
have been presented in [12, 16].

Comparing to another existing classification-related software
(e.g. Weka4, a collection of machine learning algorithms for data
mining tasks), OpenSea provides not only classification capabilities,
but integrates themwith feature extraction process. This integration
and the simplified data annotation mechanism make the OpenSea
tool easy-to-use for all user categories including non-expert users
and professionals.

6 CONCLUSION
We presented an easy to use open-source software named OpenSea
for image and video classification and showed that the performance
regarding processing time and detection accuracy is promising.
By making the tool open-source, we hope that we can help other
researchers to compare their systems and develop better methods
by being able to use it as an easy to get but hard to beat baseline.
Moreover, due to the easy way to train the classifier, we hope that
also non-experts can use it, especially in the medical use case that
we presented. For the future project development, we plan to inte-
grate OpenSea with the latest version of LIRE, speed-up the features
extraction process [11], add more features and metrics, integrate
custom weights and extend the report generation capabilities.
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Abstract—Exploring and annotating collections of images with-
out meta-data is a laborious task. Visual analytics and infor-
mation visualization can help users by providing interfaces for
exploration and annotation. In this paper, we show a prototype
application that allows users from the medical domain to use
feature-based clustering to perform explorative browsing and
annotation in an unsupervised manner. For this, we utilize global
image feature extraction, different unsupervised clustering algo-
rithms and hyperbolic tree representation. First, the prototype
application extracts features from images or video frames, and
then, one or multiple features at the same time can be used to
perform clustering. The clusters are presented to the users as a
hyperbolic tree for visual analysis and annotation.

I. INTRODUCTION

Content-based image retrieval has been an important area
of research for quite some time now [1]. A lot of different
techniques and methods have been created, and the approaches
have become more and more sophisticated. However, there is
no one-fits-all approach, and the tools often must be adapted
to a particular use-case.

One of the domains we are focusing on is medical images
from the human gastrointestinal tract, taken with an endoscope
camera inside the body to detect diseases. Even though these
images are coming from a particular patient and have been
annotated by a particular endoscopist, the domain is not as
meta-data rich as intuitively anticipated. Highly trained and
specialized medical personnel are scarce human resources,
and their priority is on performing medical examinations,
not annotating or giving sense to images and videos [2],
[3]. Moreover, if videos and frames are shared, the patients
personalized information has to be purged from this data or
anonymized to ensure privacy of the patients, and especially, in
case of shared videos and frames from endoscopic procedures,
meta-data is a rare commodity. Therefore, a lot of videos and
video frames remain only loosely annotated, and retrieving the
images later based on available information is hard.

In this context, we present a prototype mainly designed
for visual analysis and annotation of endoscopic images. The
prototype application has two main benefits. First, it allows
clinical personnel to investigate and analyze vast collections
of frames from endoscopic procedures by providing a con-
figurable focus and context view based on frame similarity.

Second, it allows for utilizing the focus and context view
for annotation and tagging of the dataset, making it more
accessible for complementary information systems. While we
developed this prototype application for a medical scenario,
we strongly believe, and will also show in the evaluation,
that it is usable for other scenarios involving interactive
browsing, visual analysis or annotation of image or video data.
We first investigate the relation between focus and context
views and content-based image similarity, as well as discuss
the underlying frameworks of the application. We then pick
two diverse datasets, one from the medical domain and one
from social image collections, to investigate if the proposed
abstraction and clustering of the images is applicable through
an evaluation. Then, we describe our prototype and show how
it can be used to support professional users in the domain
of analysis of endoscopic video frames in their daily work
routine. Finally, we discuss the contribution of the application
and further work on the topic.

II. RELATED WORK

Chi [4] defines information visualization in four stages
(Table I). First, raw data is transformed into an analytical
abstraction, which is transformed into a visualization abstrac-
tion, which itself then is presented in a view. As indicated in
Table I, the data we operate on is images, and for the view
stage, we chose a hyperbolic tree visualization.

TABLE I
PROTOTYPE STAGES OF VISUALIZATION AND CORRESPONDENCE.

Stage In our prototype
1 Raw data Images/ Video frames
2 Analytical abstraction Image feature descriptors
3 Visualization abstraction Clusters, centroids and distance values
4 View Hyperbolic tree

One of the first and most prominent of these approaches
was the hyperbolic browser by Lamping, Rao and Pirolli [5].
The underlying idea is, that the visualization abstraction is
based on a hierarchy, i.e., a directed tree. In a typical view,
the objects would be arranged in a certainly, with those in
focus being larger and closer to the center, while those not in
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focus, i.e., the ones being the context, are pushed to the rim
of the circle. A hyperbolic view on a hierarchical structure is
best described with a fish eye view on a particular tree branch
or leaf, with the rest being visible, but out of focus.

The hyperbolic tree visualization is a graph based informa-
tion visualization strategy [6], which has been applied mostly
to data that already closely resembles a tree structure or a
directed graph from which a tree can be abstracted including
hypertext collections like the WWW, social networks, ontolo-
gies and other data where transformation between raw data and
abstraction remains on a low complexity level. One of the few
examples, where image collections are interpreted as graph
structure based on their content, is presented in [7], where the
authors employ a force directed placement algorithm to display
images on a large video wall. Without the focus and context
view, however, the authors are limited by the size of the video
wall. Other work of the same authors focuses on displaying
images based on content based similarity in a Treemap [8].
The PhotoTOC project [9], on the other hand, used clustering
to create an overview+detail view by clustering images based
on color histograms and then presenting the clusters by their
medoids. In [10], images are displayed based on their distance
with respect to two shape and texture features. Clustering does
not take place, but the focus of the visualization lies on the
query image and the k nearest neighbors. The rest of the result
list is pushed to the outer rim of the visualization providing a
context.

III. ANALYTICAL AND VISUAL ABSTRACTION

The features for clustering, i.e., the analytical abstraction
as defined in Table I, are extracted with LIRE (latest modified
version1). LIRE supports multiple global and local features
out of the box, to allow for easy integration of features
in arbitrary applications. Most notable global ones are the
Color and Edge Directivity Descriptor (CEDD) [11] as well as
the related features including the Joint Composite Descriptor
(JCD) [12], the Fuzzy Color and Texture Histogram (FCTH)
[13], the Pyramid Histogram of Oriented Gradients (PHOG)
[14], the Auto Color Correlogram [15], Local Binary Patterns
[16], CENTRIST [17]. Additionally, it includes the MPEG-
7 features [18] Edge Histogram, Color Layout and Scalable
Color. A detailed description of the extraction process and the
features can be found in [19].

For the visualization abstraction stage (see table I), we use
WEKA [20]. WEKA is a collection of tools for machine
learning and data mining providing also a Java library, which
can be directly combined with the LIRE code for our pro-
totype. In the fusion between these two frameworks, LIRE
is responsible for the feature extraction and also for the main
program logic calling the required functions from WEKA. The
coupling allows for optional change of the employed clustering
routine. For the experiment described in this paper, the X-
means clustering algorithm [21] is used, because X-means
determines the number of the clusters automatically, which is

1https://github.com/dermotte/lire, last visited 2016-03-08

an important part of the experiment. Our demo also supports
K-means and hierarchical clustering [22].

One of the main aspects of our demo is interactivity with the
view, i.e., users interact with the created clusters. Clustering,
being a well-known technique in machine learning, is used
to group entities based on a similarity metric. For instance,
images can be group-based on image features (e.g., grouping
those with similar colors), or textual user comments can be
clustered based on the nouns they contain. For our demo,
we use two datasets. One to group pictures showing disease
symptoms in a medical scenario, the other to group pictures
of the same tagging categories in a social image collection.
With visual analysis, these clusters can be investigated by users
with domain knowledge about the images content to confirm
or reject the grouping within an annotation process.

While being developed for a medical scenario, our prototype
is not restricted to a specific domain. Taking advantage of
this, we first investigate the appropriateness of the analytical
abstraction stage, i.e., the selection of features, as well as the
visualization abstraction stage, i.e., the clustering, using two
very different publicly available datasets. The first one is the
intent dataset of Lux et al. [23]. This dataset contains 1, 310
images crawled from Flickr as well as results from a survey
regarding the intentions of the photographers and responses
from the photographers as well as crowd-workers judging the
images and annotations. The intent categories, from which
the users had to choose, are (i) preserve a good feeling, (ii)
preserve a bad feeling, (iii) show it to family and friends, (iv)
publish it on-line, (v) support a task of mine and (vi) recall
a specific situation. For this dataset, the experiment is done
for single global features as well as for feature fusions. The
second dataset is the ASU-Mayo Clinic polyp dataset which
is the biggest publicly available dataset for polyp detection in
medical images consisting of 20 videos, with a total number
of 18, 781 image frames [24].

On both datasets, we conducted two-step experiments which
are slightly different in their final evaluation metric. The first
step is clustering the images with our tool based on their global
features. The number of clusters is not predetermined, but
suggested by X-means. This step is identical for both datasets.
For the intent dataset, the mean squared error is then calculated
per cluster. In our evaluation, the correlation between the
users’ feedback and the mean square error of the clusters is
computed for the intent dataset. If the correlation coefficient
ρ is low, i.e., close to −1, we assume that the method works
well, as inter-user-agreement is high while mean square error
is low, or the other way around. ρ around 0 or a positive ρ near
1 would indicate that mean square error and user agreement are
either not correlated or correlated in the wrong way, implying
that the clustering does not work. The intent dataset contains
votes of three different users for each category. The users
indicates on a 5-point Likert scale how representative an image
is for a given category (1, strongly disagree, to 5, strongly
agree). For all user votes, the majority vote is calculated and
all of them are averaged and normalized.

For the ASU dataset, we can not calculate the mean squared



Fig. 1. Demo system: The left part contains the settings for the users, and the right part shows the output of the clustering as a hyperbolic tree.

error because it contains only binary classification for each
frame: a polyp is visible in the image or not. Instead, we
calculated the purity of the clusters based on the ground truth
provided with the dataset. Furthermore, while we used single
global features for the intent dataset, which have been report
to work well, we used a combination of the JCD and Tamura
features for the ASU dataset. These have been found to work
best for this dataset based on an information gain analysis.

Table II shows the results of the experiment based on the
intent dataset. As expected, a negative correlation is observed,
which means that the clustering results correlate with manual
annotations to a degree indicated by the absolute value of ρ.
At first, it shows that some global features are more suitable
to create clusters that are similar with user judgments than
others. For example, FCTH is the best feature for detecting
a publish on-line intent for an image. A closer look at the
clusters generated by FCTH shows that this feature can very
well detect if persons are shown in an image, and it seems that
most images used for on-line publishing contain one or more

TABLE II
CORRELATION ρ BETWEEN MEAN SQUARED ERROR AND USER VOTES FOR

DIFFERENT GLOBAL FEATURES OF THE INTENT DATASET [23].

Feature recall preserve publish show support preserve
good bad

CEDD 0,165 0,194 0,205 0,285 0,213 -0,05
FCTH 0,085 -0,11 -0,70 -0,32 0,298 -0,27
Gabor -0,50 -0,40 -0,03 -0,15 -0,08 0,254
Tamura -0,77 -0,24 0,050 -0,55 0,241 0,517
Luminance Layout 0,060 -0,32 -0,15 -0,30 0,002 0,248
Scaleable Color 0,126 0,295 -0,02 0,060 -0,05 0,094
Opponent Histogram 0,107 -0,07 -0,10 -0,03 0,085 -0,003
AutoColor Correlogram 0,691 0,609 0,739 0,779 -0,47 -0,67
JPEG Coefficent -0,10 0,006 -0,26 -0,04 -0,48 0,107
Edge Histogram -0,17 0,643 -0,26 -0,06 -0,51 -0,04
PHOG -0,52 0,225 0,024 -0,42 0,187 -0,06
JCD 0,168 0,288 0,227 0,193 0,275 -0,26
JointHistogram 0,408 0,262 0,447 0,238 0,396 -0,40
12 Features Combined -0,14 0,469 -0,11 -0,17 0,215 0,735

persons. Another interesting insight is that semantically similar
clusters are also correlated similar to the same feature, e.g.,
Gabor features for recall situation and preserve good feeling.
This is also an indication that a combination of features is more
suitable to provide clusters that are consistent with with user
judgments. The last important insight, which is given by this
first experiment, is that a simple combination of all features
does not automatically lead to better correlation. This indicates
that the right choice of feature combinations is important for
clustering and that a metric like information gain can give
an idea about what features to combine, which we also used
in our next experiment. The second experiment with the ASU
dataset revealed something similar to the previous experiment.
First, we performed information gain analysis to identify the
two best features for this dataset. This led us to the features
JCD and Tamura, which we combined using early fusion.
Based on these features, we performed 4 different tests with
different numbers of clusters. We used X-means to determine
four clusterings of the dataset. We let X-means determine the
number of clusters c for one experiment, then we clustered
with c ∈ {2, 4, 100}. Based on the created clusters, we
calculated the average purity (precision based on the majority
class for each cluster). For c equals 2, 4 and 100, we got a
purity of 77%, 97% and 95%, respectively. For c = 234, the
c proposed by the X-means algorithm, the purity is 97%. This
indicates that the clustering leads to meaningful results also
for the ASU dataset and therefore supports our approach for
analytical and visualization abstraction.

IV. PROTOTYPE AND DEMO

Our prototype application combines content-based simi-
larity, unsupervised classification and focus/context views to
provide a way to easily explore, analyze and annotate a vast
number of video frames or images. Figure 1 shows a screen



shot of the demo application. On the upper left side, users can
choose the folder containing the image collection. Below that,
the clustering algorithm can be selected. At the moment, we
support 3 different algorithms (K-means, X-means and hier-
archical clustering). After selecting the clustering algorithm,
the application allows to choose one or several different image
features. For the screen shot, we limited the list, but the final
demo will contain all of the image features provided by LIRE.
If more than one feature is picked, they will be combined
using early fusion. The final options allow the user to specify
the clustering parameters. As a default, we use the values
recommended by WEKA. After the users choose the images
and all the options, a click on Apply creates the clusters and
presents them as a hyperbolic tree on the right site. The cluster
leaves are represented using the image that is closest to the
cluster center, i.e., the cluster medoid. It is possible to interact
with the tree by zooming and turning it into different angles.
Furthermore, the user can double click on images, which will
open the folder containing all images in the selected cluster.
A right click on the cluster images allows the user to see
information like the cluster center and the purity of the cluster
based on the distances. Finally, the users can name/tag the
clusters, which adds the tag to the name of the images in the
cluster (in this format _"your tag".filetype). For the demo, we
will present how our tool works on the two different datasets
that we tested here, but we will also have a new large dataset
of different endoscopic findings that we will use during the
demo presentation.

V. CONCLUSION

In this paper, we presented a demo application that enables
domain experts to use unsupervised clustering algorithms to
explore image and video data collections that do not contain
meta-data. In the information visualization model of the four
stages, the analytical abstraction stage and the visualization
abstraction stage correspond to the selection and extraction
of image features and the clustering of the feature vectors.
We have shown – based on two different datasets – that the
clustering leads to good results which correspond to user
judgments or ground truth of the datasets, and therefore,
provide good candidate methods for the abstraction stages.

For future work, we plan to test the application with
domain experts. In our case, endoscopists from two different
Norwegian Hospitals. For this test, we already collected a
large dataset (200.000 images and 600 videos) from medical
procedures. Focus of this user study will be the usefulness of
the focus+context view as well as the perceived complexity
of the user interface, i.e., the selection of image features and
clustering algorithms.
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ABSTRACT
Exploring and annotating collections of images without meta-data
is a complex task which requires convenient ways of presenting
datasets to a user. Visual analytics and information visualization can
help users by providing interfaces, and in this paper, we present
an open source application that allows users from any domain
to use feature-based clustering of large image collections to per-
form explorative browsing and annotation. For this, we use various
image feature extraction mechanisms, different unsupervised clus-
tering algorithms and hierarchical image collection visualization.
The performance of the presented open source software allows
users to process and display thousands of images at the same time
by utilizing heterogeneous resources such as GPUs and different
optimization techniques.
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1 INTRODUCTION
User-guided interactive exploration of big image collections is an
important task in many scientific and applied domains. Examples
include medical, satellite and industrial image analysis, security,
social media and news analysis, and personal photos. Despite the
many new and powerful automated image analysis and clustering
softwares, the human eye remains the most important analytic
instrument. Research on the topic of interactive image database
visualization [8] confirms the importance of human-accessible rep-
resentation in combination with image clustering, annotation and
tagging. Existing image processing tools and frameworks demon-
strate interesting and promising approaches, and they give wide
opportunities for image browsing, content analysis and perform-
ing various data analytic tasks. However, there is a lack of tools
that implement both fast and efficient image collection visualiza-
tion together with image content analysis and annotation. In our
previous research, we showed [11] the importance of interactive
visualization and clustering for unsupervised knowledge discovery
in the medical image analysis domain, and we developed the initial
application for a medical scenario [6, 12].

To solve the visualization performance issue and provide an effi-
cient solution for visualization and annotation, we continued the
development of our tool. We made all necessary modifications and
improvements to extend the tool to make it universal and usable
for any use case involving interactive browsing, visual analysis and
annotation of a large amount of image or video data. In this paper,
we present our open source version of the ClusterTag application
that we designed for interactive exploration and labeling of big im-
age collections in conjunction with unsupervised image clustering,
annotation and tagging.

The proposed software has four main benefits. First, it allows
users to investigate and analyze vast collections of images by pro-
viding a configurable focus and context view based on similarity
of frames. Second, it provides a focus and context view for anno-
tation and tagging of the dataset, making it more accessible for
complementary information systems. Third, it supports real-time,
interactive viewing, analysis and modifications of the dataset, giv-
ing new opportunities for data analytics. Fourth, the tool structure
is flexible and it can be easily adapted to different use cases and
extended with new image processing algorithms.

In this paper, we first investigate the state of the art for visual-
ization of big image collection. Next, we describe the clustering
methodology, the structure of our system and the optimization ap-
proaches implemented in ClusterTag. Then, we describe the open
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source software project, its installation requirements, and provide
the overall usage instructions. Finally, we discuss the contribution
of the application and further work.

2 RELATEDWORK
The problem of efficient visual representation of big collections of
clustered data is well known. One of the first and most prominent
implementations was the hyperbolic browser [3], with the visu-
alization abstraction based on a hierarchy, i.e., a directed tree. A
hyperbolic view on a hierarchical structure is best described with
a fish eye view on a particular tree branch or leaf, with the rest
being visible, but out of focus. A more recent implementation of
this approach is presented in [1], where the authors employ a force-
directed placement algorithm to display images on a large video
wall, showing good performance for a dataset of limited size.

Another promising method for visualization is based on visual
similarity of images. In this approach, a combination of automated
image content analysis and image cluster visualization is used for
building an easy-to-analyze plain representation of an image set.
Treemap [14] and Semantic Image Browser (SIB) [15] implement ef-
ficient visualization and search in large image databases according
to semantic content of images together with the ability to evaluate
image annotations through interactive visual exploration of image
collections. The disadvantage of Treemap is that it does not support
interactive collection browsing. In contrast, SIB does support inter-
active browsing, but without support for a hierarchical collection
structure, which is important for tag-based dataset creation. The
approach presented in [7] adds a new visualization scheme that
implements a representation of images as various 3D shapes, e.g.,
a cube or a cone, but without any analyzing, clustering and tag-
ging abilities. The PhotoTOC project [5] uses clustering to create
dataset overview and a detailed view representation by clustering
images based on color histogram, and then present the clusters us-
ing medoids. So far, the PhotoTOC does not provide any collection
manipulation functionality. In [13], images are displayed based on
their distance with respect to texture features resulting in a 2D
dense-visual-representation. Nevertheless, the visualization system
does not support both hierarchical structures and multiple clusters
within one collection.

Despite the good overall visual representation and easy browsing,
methods based on hyperbolic tree visualization are only suitable for
small image collections or strictly hierarchical collections with an
emphasized tree-structure. For large structured image collections,
e.g., in medical image analysis, a different visualization approach is
required. Cluster-based image collection representation methods
show good browsing capabilities and convenient dataset structure
representation together with an additional featured analysis. Never-
theless, the performance of the current implementations of feature
extraction, analysis and visualization in the existing frameworks is
not good enough to be able to handle large databases containing
thousands of images.

3 CLUSTERING
One of the main features of our ClusterTag application is inter-
activity with a visual collection representation, i.e., users interact

with the images and the created or already defined clusters. Clus-
tering, being a well-known technique in machine learning, is used
to group entities based on a similarity metric. For instance, textual
user comments can be clustered based on the nouns they contain,
or images can be grouped based on image features (e.g., grouping
those with similar colors).

To help the user in building clusters, we use WEKA1[2], a collec-
tion of algorithms for machine learning and data mining released
as open source software under the GNU General Public License.
Clustering algorithms provided by WEKA require the analytical ab-
straction of image contents. In our approach, we use global features
describing image contents in terms of different overall attributes,
such as sharpness, color distribution, histogram of brightness, etc.
For feature extraction, we use Lucene Image Retrieval (LIRE)2[4],
which supports extraction and comparison of multiple global and
local features out-of-the-box, and allows integration of feature ex-
tractors in arbitrary applications. In the fusion between these two
frameworks, LIRE is responsible for the feature extraction and pro-
cessing. WEKA is responsible for unsupervised clustering of images
based the extracted features. A detailed description of used global
features, corresponding clustering algorithm and clustering perfor-
mance metrics can be found in [12]. Both the WEKA and LIRE can
be easily replaced by other machine learning or feature extraction
libraries if desired.

4 VISUALIZATION
To be able to implement a visualization tool for thousands of images
simultaneously in real-time and give the user the ability to interact
with them, we developed an optimized and highly efficient visual-
ization engine. It is written in Java and uses a number of libraries,
enabling high-performance image processing and a real-time image
cluster representation.

An overall structure of the software is depicted in figure 1. First,
we perform an initial analysis of the image collection file structure.
This is the only synchronous operation in the tool, and after it is
completed, the user is able to start working with the collection. All
other operations on the dataset are asynchronous and implemented
as the background threads. The observed initial folder structure is
then used in the user interface to draw the visual representations
via a painter module. The painter reads the cluster hierarchical
structure and interacts with the image in-memory database and
the image cache in order to perform an optimized image preload-
ing, rescaling and drawing. This is performed using the hardware
accelerated image handler. The database interface performs the
in-memory image database synchronization with an on-disk mirror
copy. The folder structure update module is responsible for updat-
ing the collection’s file structure on the disk after any modification
done to the clusters by the user or by the clustering procedure.

For the image processing tasks, namely loading, saving, rescaling,
rotating, masking operations and drawing on top of images, we
use the Java bindings of the Open Source Computer Vision Library
(OpenCV)3. The library provides large number of common and state-
of-the-art functions for image processing, with possible acceleration

1http://www.cs.waikato.ac.nz/ml/weka/ Accessed: 2017-04-19
2http://www.lire-project.net/ Accessed: 2017-04-19
3http://opencv.org/ Accessed: 2017-04-19
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Figure 1: Structure of the visualization and user interface engine of the presented ClusterTag application. A number of caching
and intermediate data processing routines are used tomake it possible to perform real-time visualization and interaction with
huge image collections.

on GPUs. The library is cross-platform and free for use under the
open source BSD license.

Real-time drawing of hierarchical representation of the image
clusters is implemented using the Lightweight Java Game Library
(LWJGL)4, an open source BSD licensed Java software library for
video game developers. It exposes high performance cross-platform
libraries, such as OpenGL, Vulkan, OpenAL and OpenCL, and pro-
vides a way to get access to high-performance computer resources
from Java code.

Regardless of high drawing and image handling performance
provided by the OpenCV and LWJGL libraries, several additional
optimization techniques have been implemented in the ClusterTag
application to allow real-time handling of large image collections.
The most important are a database of ready-to-draw pre-processed
images, raw image visual representation caching, adaptive image
spatial resolution painting, interaction with partially processed
collections, multi-threaded image processing and feature extraction
(see figure 1 for an overview).

The database of pre-processed images is implemented as a cus-
tom binary record storage with a separate index, which allows
dynamic database updates with effortless seeking and simultane-
ous retrieval of multiple records. This is useful for multi-threaded
drawing and update of the collection’s content at the same time.

The raw image visual representation cache is implemented using
concurrent hash maps in conjunction with a custom memory man-
agement strategy and is designed to hold the last images used for
visual-representation drawing in the memory. Caching is required
due to inability to load all the images of the big collection into the
4http://lwjgl.org/ Accessed: 2017-04-19

system memory. The implemented raw image cache allows fast and
smooth image collection browsing without putting the enormous
task of image loading and decoding on the CPU.

Our painting engine uses multiple image scales to accelerate the
visual-representation drawing. To determine the resolution of the
scaled images, we divide the width and height of the original images
by power-of-two numbers. The different scaled versions are used
depending of the current zoom level of the image collection’s field
of view. This optimized painting scheme significantly increases the
application frame rate, reduces the GPU load and decreases overall
system load. All rescaled versions of the image are stored in the
database of pre-processed images.

To solve the common slow loading problem of big data collec-
tions, we use multiple different techniques in several parts of the
system. The main focus is put on the ability to start exploring
the image collection as soon as possible regardless of the image
pre-processing and feature extraction progress. In case of a newly
opened collection, a visual representation becomes available imme-
diately after the initial directory structure listing. Image loading,
pre-processing and feature extraction are performed in the back-
ground while the user begins to explore the collection and performs
fine tuning of the clustering parameters. The visual representation
is updated at every screen redraw to reflect the current stage of the
collection analysis. All resulting information is immediately stored
in the database of pre-processed images and gives the opportunity
to continue pre-processing and analyzing the collection at next
application startup from the same point.

Oral Open Software ICMR’17, June 6–9, 2017, Bucharest, Romania

114



ICMR ’17, June 6–9, 2017, Bucharest, Romania K. Pogorelov et al.

(a) Unsorted collection of images. (b) Zoomed view of the unsorted collection. (c) Clustered collection of images. (d) Zoomed view of the clustered collection.

Figure 2: Examples of visual representations of an image collection containing 36, 476 unsorted medical images generated
by the ClusterTag application. The initial view of the loaded collection shows all the images in one big cluster. After the
clustering, using the JCD and Tamura global image features, the software generates a number of dense clusters representing
visually similar images in the same clusters.

5 THE CLUSTERTAG PROJECT
The ClusterTag software is an open source project5 and can be
used, modified and distributed under GNU General Public License
Version 3. The application has been tested successfully and used
with large image collections containing up to 36, 476 images [9, 10].

5.1 Installation
We have tested our software on the Linux, Mac OS X and Win-
dows operating systems. ClusterTag has the following dependen-
cies which have to be downloaded and installed before compilation
of the ClusterTag source code: Oracle Java SE Development Kit 8,
IntelliJ IDEA 2016.3.4, OpenCV 2.4.13, LIRE 0.9.5 and LWJGL 2.9.3.
The detailed compilation and installation instructions can be found
on the project’s web-page.

5.2 Usage
Our open-source application combines content-based similarity,
unsupervised classification and focus/context views to provide a
way to easily explore, analyze and annotate a vast number of im-
ages or video frames. The application allows users to choose the
folder containing the image collection. Immediately after listing the
files of a new image collection, it appears in the main window as
it was organized in folder structure, and the user can immediately
start exploring the collection. Figure 2(a) shows a visualization of
an unsorted collection of 36, 476 medical images. The user can nav-
igate through the collection’s view using the mouse to move, zoom
into and zoom out of the field of view (see figure 2(b)). To perform
clustering, the user can select a desired clustering algorithm, its
parameters and several different image features. If more than one
feature is selected, they will be combined using early fusion. Af-
ter selecting all the parameters, the user can apply clustering to
the dataset creating the clusters. Figure 2(c) shows a visualization
of the collection of medical images clustered using the JCD and
Tamura global image features, which produce a number of dense
clusters representing visually similar images in the same clusters.
The zoomed view of the clustered collection is depicted in figure 2(d).

5https://bitbucket.org/mpg_projects/clustertag Accessed: 2017-04-19

The cluster leaves are represented using the image that is closest to
the cluster center, i.e., the cluster medoid. It is possible to interact
with the view and the clusters by zooming and turning them in
different angles. The user can select multiple images to perform
grouping. Individual images and image groups can be dragged and
dropped between different clusters. The corresponding changes to
the file structure of the collection are made in the background. The
user can double click on clusters, which opens the folder containing
all images in the selected cluster. A right click on the clusters allows
the user to see information like the cluster center and the purity of
the cluster. Finally, the user can name/tag the clusters, which adds
the tag to the name of the images in the cluster. The detailed usage
instructions can be found on the project’s web-page.

6 CONCLUSION
In this paper, we presented an open source application called Clus-
terTag which enables users and domain experts to explore, cluster,
annotate and tag collections of thousands of images in real-time us-
ing an optimized and easy visual representation. We also presented
an example of how to use the software with the dataset containing
almost 37, 000 medical images.

For future work, we plan to test the application with end users
and domain experts. In particular, we will use the application to
process an unannotated dataset of endoscopic images from two dif-
ferent Norwegian Hospitals that contains more than 200.000 images
and 600 videos. The focus of this user study will be the usefulness
of the visual representation, and the perceived complexity of the
user interface, i.e., the selection of image features and clustering
algorithms as well as performance of our visualization engine. The
next development steps for this project will focus on efficient video
handling, representation and processing, implementing a plug-in-
like feature extraction and clusterisation subsystems, adding new
clustering algorithms and unsupervised collection annotation based
on preselected image sets.
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Abstract—Analysis of medical videos for detection of abnor-
malities like lesions and diseases requires both high precision
and recall but also real-time processing for live feedback during
standard colonoscopies and scalability for massive population
based screening, which can be done using a capsular video
endoscope. Existing related work in this field does not provide the
necessary combination of detection accuracy and performance.
In this paper, a multimedia system is presented where the
aim is to tackle automatic analysis of videos from the human
gastrointestinal (GI) tract. The system includes the whole pipeline
from data collection, processing and analysis, to visualization. The
system combines filters using machine learning, image recognition
and extraction of global and local image features, and it is built
in a modular way, so that it can easily be extended. At the same
time, it is developed for efficient processing in order to provide
real-time feedback to the doctor. Initial experiments show that
our system has detection and localisation accuracy at least as
good as existing systems, but it stands out in terms of real-time
performance and low resource consumption for scalability.

I. INTRODUCTION

During the last decades, we have witnessed a paradigm shift
where computers and sensors move spatially closer and closer
to the user, and we are in the process of moving devices inside
the body. In this respect, our scenario is at the intersection
of computer science and pathological medicine, where we
target a scalable, real-time disease detection system for the
gastrointestinal (GI) tract as it is depicted in figure 1. First,
we study possible cancer precursors, e.g., polyps, and early
cancer detection. Here, we develop both a computer-aided, live
analysis system of endoscopy videos and a scalable detection
system for screening systems using a wireless video capsule
endoscope (VCE), i.e., a small capsule with an image sensor.

In the context of object or pattern detection and tracking
in general images and videos, a lot of research has been
performed, and current systems are good at detecting human
faces, cars, logos, etc. However, detecting diseases in the
GI tract is very different from detecting objects like cars.
The GI tract can potentially be affected by a wide range of
diseases with lesions visible in endoscopy, but findings may
also include benign/normal or man-made lesions. The most
common diseases are gastric and colorectal cancer (CRC),
which are lethal when detected in a late stage (the 5-year
survival rate ranges from 93% in stage I to 8% in stage IV [1]).

Fig. 1. The gastroin-
testinal (GI) tract (Image:
kaulitzki/shutterstock.com).

Consequently, early detection is cru-
cial. There are several ways of de-
tecting pathology in the GI tract, but
systematic population-wide screen-
ing is the most important tool for
early detection. However, current
methods have limitations regarding
sensitivity, specificity, access to qual-
ified medical staff and overall cost.

In this scenario, both high preci-
sion and recall are of crucial im-
portance, but so is the frequently
ignored system performance that can
provide feedback in real time. The
most recent and most complete re-
lated work is the polyp detection
system Polyp-Alert [2], which can
provide near real-time feedback dur-
ing colonoscopies. However, it is limited to polyp detection,
and it is not fast enough for live examinations. To further aid
and scale such examinations, we present EIR1, an efficient and
scalable automatic analysis and feedback system for medical
data like videos and images. The system supports endoscopists
in the detection and interpretation of diseases in the GI tract.
EIR has initially been tested in scenarios supporting endo-
scopists in detection and interpretation of potential diseases
in lower portions of the GI tract (large bowel). However,
the main objective is to automatically detect abnormalities in
the whole GI tract. Therefore, the aim is to develop both (i)
a live system assisting the visual detection of, for example,
polyps during colonoscopies and (ii) a future fully automated
screening of the GI tract using VCEs. Both aims impose strict
requirements on the accuracy of the detection to avoid false
negative examinations (overlooking a disease) as well as low
resource consumption. The live-assisted system also introduces
a real-time processing requirement (defined as being able to
process at least 30 frames or images per second). In this paper,
the initial framework of our complete system is presented.
To detect mucosal lesions in the colon, we built a system

1In Scandinavian mythology, EIR is a goddess with medical skill.
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combining filters using machine learning, image recognition
and extraction and comparison of global and local image
features. Furthermore, it is easy to add new filters or other
types of data, such as patient records or sensor data, to increase
accuracy or enable detection of other pathologies. Moreover,
we evaluate our prototype by training classifiers that are based
on different image recognition approaches. It is important to
point out that these classifiers can also process other input
like sensor data. We also test the generated classifiers with
different data and thereby evaluate the different approaches
for feasibility of colonic polyp recognition and localisation.
The initial results from our experimental evaluation show
that, (i) the detection and localisation accuracy can reach the
same performance or outperform other current state-of-the-art
methods and (ii) the system performance can reach real-time
in terms of video processing up to high definition resolutions.
Additionally, it is extensible with more data and diseases
thorough parallel detection at run time. The rest of the paper is
organized as follows: Firstly, in section II, we briefly introduce
our medical case study. Next, we present related work in the
field and compare it to the presented system in section III. This
is followed by presenting the complete system in section IV.
After that we, present an evaluation of the system in section V,
and in section VI we discuss two cases where our system will
be used in two medical examinations by our collaborators.
Finally, we conclude with section VII.

II. GASTROINTESTINAL ENDOSCOPY

Fig. 2. Colorectal cancer
that can be found using
colonoscopy.

The GI tract illustrated in figure 1
can potentially be affected by vari-
ous abnormalities and diseases, e.g.,
CRC, a major health issue world
wide. Early detection of CRC or
polyps as predecessors of CRC is
crucial for survival, and several stud-
ies demonstrate that a population-
wide screening program improves
the prognosis and can even reduce
the incidences of CRC [3]. As a consequence, in current
European Union guidelines, screening for colorectal cancer is
recommended for the age group over 50 [4]. Colonoscopy,
a common medical examination and the gold standard for
visualizing the mucosa and the lumen of the entire colon,
may be used either as a primary screening tool or in a second
step after positive screening tests [5]. However, endoscopies
are invasive procedures and may lead to great discomfort
for patients. Extensive training of physicians or nurses is
required to perform the examination. They are performed in
real-time and therefore challenging to scale to a large popula-
tion. Additionally, the procedure is expensive. In the US, for
example, colonoscopy is the most expensive cancer screening
process, with annual costs of 10 billion dollars (1, 100$-
6, 000$/person) [6], and with a time consumption of about one
medical-doctor-hour and two nurse-hours per examination. As
a first step, we target the detection of colorectal polyps, which
are known precursors of CRC (see for example figure 2).

The reason for starting with this scenario is that most colon
cancers arise from benign, adenomatous polyps (around 20%)
containing dysplastic cells, which may progress to cancer.
Detection and removal of polyps prevents the development of
cancer and the risk of getting CRC in the following 60 months
after a colonoscopy depend largely on the endoscopist’s ability
to detect polyps [7]. Nevertheless, our system will be extended
to support detection of multiple abnormalities and diseases of
the GI tract by training the classifiers using different datasets.

III. RELATED WORK

Detection of diseases in the GI tract has mostly focused on
polyps. This is most probably due to the lack of data in the
medical field and polyps being a condition with at least some
data available. However, none of the related work is able to
do real-time detection or support doctors by computer-aided
diagnosis during colonoscopies in real-time. Furthermore, all
of them are limited to a very specific use case, which in the
most cases is polyp detection for a specific type of camera.
Table I gives an overview of the best working methods.

As one can see in Table I, several algorithms, methods
and partial systems have been proposed and have, at first
glance, achieved promising results in their respective testing
environment. However, in some cases, it is unclear how well
the approach would perform as a real system used in hospitals.
Most of the research conducted in this field uses rather small
amounts of training and testing data, making it difficult to
generalize the methods beyond the specific dataset and test
scenarios. Therefore, overfitting for the specific datasets can
be a problem and can lead to unreliable results.

The first approach from Wang et al. [2] is the most recent
and best-working one in the field of polyp detection. A list of
more related work can be found in their paper. Polyp-Alert [2]
is able to give near real-time feedback during colonoscopies.
The system can process 10 frames per second and uses
visual features and a rule-based classifier to detect the edges
of polyps. Further, Polyp-Alert distinguishes between clear
frames and polyp frames in its detection. The researchers
report a performance of 97.7% correctly detected polyps,
based on their dataset, which consists of 52 videos taken
from different colonoscopes. Unfortunately, the dataset is not
publicly available, and therefore, a detection performance
comparison is not possible. Since neural networks (NN) are
commonly used nowadays, they are also discussed in relation
to the GI tract analysis. We identified two main points that
make NNs less useful for our use case [17]. Firstly, (i) their
training requires a lot of good training data, which is a big a
problem in the medical field [18], and (ii) NNs are not easy to
design for probabilistic results, which is important to support
medical doctors during decision making [19].

In summary, a lot of good related work with interesting
approaches for polyp detection exists. However, existing sys-
tems are either (i) too narrow for a flexible, multi-disease
detection system; (ii) have been tested on limited datasets
too small to show whether the method would work in a real



TABLE I
A PERFORMANCE COMPARISON OF POLYP DETECTION APPROACHES. NOT ALL PERFORMANCE MEASUREMENTS ARE AVAILABLE FOR

ALL METHODS, BUT INCLUDING ALL AVAILABLE INFORMATION GIVES AN IDEA ABOUT EACH METHOD’S PERFORMANCE.

Publ./System Detection Type Recall / Sensitivity Precision Specificity Accuracy FPS Dataset Size

Wang et al. [2] polyp / edge, texture 97.70% – – 95.70% 10 1.8m frames
Wang et al. [8] polyp / shape, color, texture 81.4% – – – 0.14 1, 513 images
Mamonov et al. [9] polyp / shape 47% – 90% – – 18, 738 frames
Hwang et al. [10] polyp / shape 96% 83% – – 15 8, 621 frames
Li and Meng [11] tumor / textural pattern 88.6% – 96.2% 92.4% – –
Zhou et al. [12] polyp / intensity 75% – 95.92% 90.77% – –
Alexandre et al. [13] polyp / color pattern 93.69% – 76.89% – – 35 images
Kang et al. [14] polyp / shape, color – – – – 1 –
Cheng et al. [15] polyp / texture, color 86.2% – – – 0.076 74 images
Ameling et al. [16] polyp / texture AUC=95% – – – – 1, 736 images

EIR-system abnormalities/30 features 98.50% 93.88% 72.49% 87.70% 30-65 18, 781 frames

scenario and; (iii) provide a performance too low for a real-
time system or ignore the system performance entirely. Last,
but not least, we are targeting a holistic end-to-end system
where a VCE that traverses the entire tract with its video
signals is algorithmically analyzed.

IV. EIR BASIC IDEA

Our objective is to develop a system that supports doctors
in disease detection in the GI tract. The system must (i) be
easy to use and less invasive for the patient that existing
methods, (ii) be easy to extend to different diseases, (iii) handle
of multimedia content in real time, (iv) be usable for real-
time computer-aided diagnosis, (v) achieve high classification
performance with minimal false-negative classification results
and (vi) have a low resource consumption. These properties
potentially provide a scalable system with regard to cost, med-
ical specialists required for a larger population, and number
of users potentially willing to be screened. Therefore, EIR
consists of three parts: The annotation subsystem, the detection
and automatic analysis subsystem and the visualization and
computer-aided diagnosis subsystem.

A. Annotation Subsystem

The purpose of the annotation subsystem is the efficient
collection of training data for the detection and automatic
analysis subsystem. It is well known that training data is very
important for a good classification system. Nevertheless, in the
medical field, the time of the experts and access to multimedia
data are two resources that are quite limited. This is primarily
because of high everyday workload for physicians, but also due
to legal issues. For each image or video, patient consent has
to be collected before research can be done, making it a very
cumbersome task. Moreover, the annotation of videos itself is
very time-consuming, and the quality of annotations depends
on the experience and concentration of the physicians [20].
For example, in a VCE procedure, there are about 216, 000
images per examination, and a very experienced endoscopist
needs at least 60 minutes to view and analyse all the video
data [21]. Due to this limitation, it is important to develop
automatic methods that can reduce the burden on physicians
and speed up the screening process. We therefore developed
an efficient semi-automatic annotation subsystem [22]. This
annotation system is the entry point into our whole system.

Since the medical doctor is usually located in a hospital with
restrictions to data security, the implementation of the software
is done with standard web technologies, which do not require
any installation on the hospital’s systems. This includes the
storing of all information on the system-side and moves the
responsibility of maintaining the system and the data integrity
from the user to the system. Besides getting data for the
EIR system to enable automatic screening, the annotation
subsystem makes it possible to use the annotated videos in a
medical video archive for documentation or teaching purposes.

B. Detection and Automatic Analysis Subsystem

These subsystems for algorithmic analysis are designed in a
modular way, so that they can be extended to different diseases
or subcategories of disease, as well as other tasks like size
determination, etc. At the moment, this subsystem consists of
two parts, the detection subsystem that detects irregularities
in video frames and images and the localisation subsystem
that localizes the exact position of the disease. The detection
can not determine the location of the found irregularity. The
location determination is done by the localisation subsystem.
The localisation subsystem uses the output of the detection
system as input.

1) Detection Subsystem: This part of the system is not
designed to detect the precise position of an abnormality like
a polyp or bleeding, but rather to detect whether there is
something in the current frame of the video or not. All the
frames that we process can be separated into two disjoint
sets which can also be seen as the model for the detector.
These two sets contain example images for abnormalities and
images without any abnormality. Each of these sets can be
seen as the model for a specific disease. The detection system
is built in a modular way and can easily be extended with new
models. This would for example allow to first detect a polyp
and then to distinguish between a polyp with low or high risk
to developing into CRC by using the NICE classification2.
To compare and determine the abnormalities in a given video
frame, we use global image features, i.e., because they are easy
and fast to calculate, and because the exact position is at this
point of the system not needed. In previous work, we showed
that global features can indeed outperform or at least reach
the same results as local features [23]. The basic idea is based

2http://www.wipo.int/classifications/nice/en/



on an improved version of a search based method for image
classification presented in [23]. We create the indexes from
visual features extracted from video frames or images. How-
ever, the number of needed examples is rather low compared
to other methods. The index also contains information about
the presence and type of any disease in the frame or image.
A classifier can then search the index for the frames that are
most similar to a given input frame. Based on the classification
of the results, the detection subsystem then decides which
abnormality the input frame belongs to. The whole detector is
realised with two separate tools, an indexer and a classifier. We
have released the indexer and the classifier as a separate project
called OpenSea3. The computational nature of the indexing
part is similar to what we know as batch processing. Therefore,
creating the models for the classifier could be done off-line,
and it is not influencing the real-time capability of the system,
because it is only done once at the very first time when the
training data is inserted into the system. Visual features to
calculate and store in the indexes can be chosen based on the
abnormality because, for different types of disease different set
of features or combinations are better. For example, bleeding
is easier to detect using color features, whereas polyps require
shape and texture information.

The classifier can be used to classify video frames from an
input video into as many classes as the detection subsystems
model consists of. The classifier uses indexes generated by the
indexer described before. In contrast to other classifiers that
are commonly used, this classifier is not trained in a separate
learning step. Instead, the classifier searches previously gen-
erated indexes, which can be seen as the model, for similar
visual features. The output is weighted based on the ranked
list of the search results. Based on this, a decision is made.
The classifier is parallelized and allows to choose how many
CPU cores are used. Ongoing work includes to port parts of
the system to GPUs to further increase the performance.

2) Localisation Subsystem: The localisation subsystem is
intended for exact positioning of a lesion, which is used to
show markers on the frame or image containing the disease.
This information is then used in the visualization subsystem.
All images that we process during the localisation step come
from the positive frames list generated by the detection subsys-
tem. Processing of the images is implemented as a sequence
of intraframe pre- and main-filters. Pre-filtering is needed
because we use local image features to find the exact position
of objects in the frames. Lesion objects or areas itself can
have different shapes, textures, colors and orientations. They
can be located anywhere in the frame and also partially be
hidden and covered by biological substances, like seeds or
stool, and lighted by direct and ambient light. Moreover, the
image itself can be interleaved, noisy, blurry and over or under
exposed, and it can contain borders and subimages. Apart from
that, it can have various resolutions depending on the type of
endoscopy equipment used. Endoscopic images usually have
a lot of flares and flashes caused by high power light source

3https://bitbucket.org/mpg_projects/opensea

located close to the camera. All these nuances affect the local
features detection methods negatively and have to be specially
treated to reduce localisation precision impact. In our case,
several, sequentially applied filters are used to prepare raw
input images for the following analysis. These analyses are
RGB to YCbCr color space conversion, borders and subimages
removing, flares masking and low-pass filtering. After the pre-
filtering, the images are used for further analysis.

At the moment, we have implemented the detection of colon
polyps using our local features approach. The main idea of this
localisation algorithm is to use the polyps’ physical shape to
find the exact position in the frame. In most cases, the polyps
have the shape of a hill located on relatively flat underlying
surface or the shape of a more or less round rock connected to
an underlying surface with stalks of varying thickness. These
polyps can be approximated with an elliptically shaped region
consisting of local features that differ from the surrounding
tissue with high probability. To detect those types of objects,
we use the following sequence of filters: binary noise reduction
filter, 2D-gradient filter, threshold borders detection filter and
binary noise removing filter. The next step creates a filtered
binary image approximated by a set of ellipses from which we
build energy maps based on the ellipse’s size and border points
precision approximation and matching. The final coordinates
of one or more polyps in the frame are chosen by looking for
the maximum in the energy map.

C. Visualization and Computer Aided Diagnosis Subsystem

This subsystem has two main purposes. First, it should help
in evaluating the performance of the system and get insights
into why things work well or not. Second, it can be used
as a computer-aided diagnostic system for medical experts.
Therefore, we have the TagAndTrack subsystem [22] that can
be used for visualization and computer-aided diagnosis. We
developed a web technology-based visualization that can be
used to support medical experts while being very easy to
use and distribute. This tool simply takes the output of the
systems detection and localisation part and creates a web-
based visualization, which can then be combined with a video
sharing platform where doctors are able to watch, archive,
annotate and share information.

V. EVALUATION

For all of the subsequent measurements, we used the same
computer (32 AMD CPU cores Linux server, 128GB ram). It
is important to point out that the used hardware is quite old
(ca. 4 years). Newer hardware would most probably lead to
better performance for all the tests, but the evaluation shows
that even on old hardware the system performs as intended.
For all experiments, we used the ASU-Mayo Clinic polyp
database4. This is currently the biggest publicly available
dataset consisting of 20 videos from standard colonoscopies
(converted from WMV to MPEG-4 for the experiments) with
a total of 18, 781 frames and different resolution up to full

4http://polyp.grand-challenge.org/



HD [24]. For the detection and localisation accuracy, we used
the common standard metrics precision, recall/sensitivity and
F1 score. We conducted a leave-one-out cross-validation to
evaluate this part of the system, which is a method that
assesses the generalization of a predictive model. In our case,
it describes the process where the training and testing datasets
are rotated, leaving out a single different non-overlapping
item or portion for testing, and using the remaining items for
training. This process is repeated until every item or portion
has been used for testing exactly once [25].

EIR allows us to use several different global image features
for the classification. The more image features we use, the
more computationally expensive the classification becomes.
Further, not all image features are equally important or provide
equally good results for our purpose. As a first step, we
therefore need to find out which image features we want to use
for classification. In order to understand which image features
provide the best results, we generated indexes containing all
possible image features for all frames of all video sequences
from the ASU-Mayo Clinic database. These indexes can be
used for several different measurements and also for leave-one-
out cross-validation. Using our detection system, the built-in
metrics functionality can provide information on the perfor-
mance of different image features for benchmarking. Further,
it provides us with separate information for every single image
feature, as well as the late fusion of all the selected image
features. All used features are described in detail in [26].

Accuracy. Based on the evaluation of different combi-
nations of image features using 30 different features and
information gain analysis, the image features JCD and Tamura
were identified to be the best ones for polyp detection. The
last row of table I shows our approaches’ performance to give
a comparison. We achieve an average precision of 0.9388, an
average recall of 0.9850, and an average F1 score value of
0.9613. In other words, the results mean that we can detect
polyps with a precision of almost 94%, and we detect almost
99% of all polyp containing frames. If we compare this to the
best performing system in table I, it seems that Polyp-Alert
reaches slightly higher detection accuracy. But, our system is
faster and can detect polyps in real-time. Furthermore, our
system is not designed and restricted to detect only polyps,
and can be expanded to any possible disease if we have
the correct training data.To evaluate the performance of the
localisation subsystem we used the exact positions of the
polyps as provided in the ASU-Mayo clinic polyp database
as ground truth. Overall, we reached for the localisation an
average precision of 0.3207, a recall of 0.3183 and a F1 score
of 0.3195.

Speed. We also performed some initial system performance
tests. For all these tests, we used 3 videos from 3 different
endoscopic devices and different resolutions. The three videos
have the resolutions 1, 920x1, 080, 856x480 and 712x480. We
chose these videos to show the performance under different
requirements that the system will have to face when it is used.
As figure 3 shows, EIR reaches the required 30 frames per
second with 16-26 CPUs. This is true for all three videos that

Fig. 3. Processing performance in frames per second.

we used. For the future an implementation using GPUs will
be important to cope with the high number of needed cores.

VI. REAL WORLD USE CASES

In this section, we will describe two real world use cases
where the presented system can be used. The first one is a live
system that will support medical doctors during endoscopies.
Currently, we are working on setting it up in one of our partner
hospitals. The second one is a system that will automatically
analyse videos captured by VCEs. Several hospitals all over
Europe and US are involved in this part, and currently, we are
collecting data. The first use case requires fast and reliable
processing, and the second requires a system that is able to
process a large amount of data in a reliable and scalable way.

Live System. Endoscopy is a common gastrointestinal
examination and is essential for the diagnosis of most mucosal
diseases in the gastrointestinal tract, particularly diagnosis of
CRC and its precursors. Previous studies have demonstrated
that a major challenge is the detection rate of lesions [27].
The aim of the live system is to provide live feedback to the
doctors, i.e., a computer aided diagnosis in real-time. While
the endoscopist performs the colonoscopy, the system analyses
the video frames that are recorded by the colonoscope. At
the beginning, we plan to optically show the physician (for
example with a red or green frame around the video) when
the system detects something abnormal in the actual frame or
not. This can also be extended to the determination of what
disease the system most probably detected and provide this
information to the doctor. Apart from supporting the medical
expert during the colonoscopy, the system can also be used to
document the procedure. After the colonoscopy, an overview
can be given to the doctors where they can make changes or
corrections, and add additional information. This can then be
stored for later purposes or used as a written endoscopy report.
A demo of the live system is presented and described in [28]

Wireless Video Capsule Endoscope. The present VCEs
have a resolution of around 256x256 with 3-35 frames per
second (adaptive frame rate with a feedback loop from the re-
ceiver to the transmitter). They do not have optimum lighting,
making it difficult use the images. Nevertheless ongoing work
tries to improve the state-of-the-art technology which will
make it possible to use the methods and algorithms developed
for colonoscopies also for VCEs [29]. The multi-sensor VCE



is swallowed in order to visualize the GI tract for subsequent
diagnosis and detection of GI diseases. Thus, people may be
able to buy VCEs at the pharmacy, and connect and deliver the
video stream from the GI tract to the phone over a wireless
network. The video footage can be processed in the phone
or delivered to our system, which finally analyses the video
automatically. In the best case, the first screening results are
available within eight hours after swallowing the VCE, which
is the time the camera typically spends traversing the GI tract.

VII. CONCLUSION

In this paper, a multimedia system for disease detection and
classification in the GI tract has been presented. We briefly
described the whole pipeline of the system from annotation
(data collection for system learning) to visualization (doctor
feedback). A detailed evaluation in terms of detection and
localisation accuracy and system performance has been per-
formed. These experiments showed that the proposed system
can achieve equal results to state-of-the-art methods in terms
of detection accuracy for state-of-the-art endoscopic data.
Further, we showed that the system outperforms state-of-the-
art systems in terms of system performance, that it scales in
terms of data throughput and that it can be used in a real-time
scenario. We also presented automatic analysis of VCE videos
and live support of colonoscopies as two real-world use cases
that will benefit from the proposed system and will actually
be tested and used in our partner hospitals. For future work,
we plan to improve the detection and localisation accuracy of
the system and include more different abnormalities to detect.
Presently, we are working with medical experts to collect
more training data. Additionally, we currently work on the
set-up of the real-world use cases in the hospitals. Finally, to
further improve the performance of the system, we work on
an extension that allows the system to use GPUs to further
utilize the parallelization potential of the workload [30].
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1. INTRODUCTION

Devices such as sensors and cameras have become much smaller in the last years.
Literally, some of the devices, like cameras, have been moved inside the human body.
Thus, there has for some time been a move toward an interdisciplinary research area
that combines the medical and multimedia research fields [10, 22, 58]. In particular,
for reasons like disease severity, cost, personnel time consumption, and examination
scalability, there is a need to develop a real-time and scalable abnormality detection
system for videos from gastrointestinal (GI) endoscopy examinations. In this respect,
one should target an analysis system for endoscopies that can be used for both a live
computer-aided diagnosis system and a scalable detection system for a novel in-line
screening system using wireless video capsule endoscopes (VCEs).

The GI tract can potentially be affected by a wide range of diseases. For example,
three of the six most common cancer types are located in the GI tract, with about
2.8 million new luminal GI cancers (esophagus, stomach, colorectal) yearly and a mor-
tality of about 65% [64]. These diseases, as well as benign findings or man-made (iatro-
genic) lesions are frequently visualized with endoscopes. Gastric- and colorectal cancer
are the most common cancers and lethal when detected in late stages. Consequently,
early detection is crucial. There are several ways of detecting pathology in the GI tract,
and regular systematic screening of the population cohort (everyone above 50 years)
is the most important tool for early detection and even cancer prevention. However,
current methods have limitations regarding sensitivity, specificity, access to qualified
medical staff and overall cost.

To aid and scale endoscopic examinations, we have developed EIR, named after a
Goddess with medical skills in Scandinavian mythology. EIR is an end-to-end efficient
and scalable information retrieval system for medical data like videos and images, sen-
sor data, and patient records, i.e., EIR combines a content-based similarity search with
statistical classifiers from the training data. The system supports endoscopists in the
detection and interpretation of diseases in the GI tract but can basically be expanded to
any other use-case. The main objective is to automatically detect abnormalities in the
whole GI tract. Therefore, the aim is to develop both (i) a live system assisting the visual
detection of, for example, polyps during colonoscopies and (ii) a future fully automated
first line screening for GI diseases using VCEs. Both aims pose strict requirements for
the accuracy of the detection in order to avoid false-negative findings (missing a disease)
as well as low resource consumption. The live assisted system also introduces a real-
time processing requirement. In this article, following some of ACM multimedia (MM)
brave new ideas [44], we extend our initial work on EIR [45] to include a more detailed
description of our improved sub-systems. Therefore, the main contributions are pre-
senting the copious improvements of the different sub-systems, an in-depth evaluation
of global features’ detection accuracy, and a new extensive performance evaluation an-
alyzing system execution time and memory consumption. Furthermore, we provide an
evaluation of the effect of the amount of available training data and an accuracy perfor-
mance comparison with other systems - both at a grand challenge for endoscopic video
analysis and against systems found in literature. An important design decision has
been to build on state-of-the-art sub-component solutions in our quest to find an opti-
mal complete end-to-end system meeting both accuracy and performance requirements.
Thus, our focus has not been on improving sub-components in isolation, but rather pro-
viding an integrated system that more or less can be put to good use in the next phase.

Although our system is not limited to one single disease, detecting abnormalities and
diseases in the GI tract is very different from detecting objects like, for example, cars,
people, or buildings, which have been the focus for most existing research. Our initial
experiments target a scenario where we detect colorectal polyps, a potential precursor
for colorectal cancer (CRC). Statistics show that the lifetime risk of getting CRC, the
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Fig. 1. An inconclusive list of abnormalities that can be found using colonoscopy.

second most common cancer for both genders, is 6% [15], and a previous trial has shown
that CRC may be prevented by polyp removal [47]. Obviously, both high precision and
recall are of crucial importance, but so is the often ignored system performance in
order to provide live feedback and support large-scale, population-wide screening. In
fact, no such system exists today despite the potential impact. The most recent and most
complete related work is the polyp detection system Polyp-Alert [62], which can provide
near real-time feedback during colonoscopies. However, it is limited to polyp detection,
and it is not fast enough in the case of live examinations. To detect mucosal lesions in the
colon, we built a system combining filters using machine learning, image recognition,
and extraction and comparison of global and local image features. Furthermore, it is
easy to add new filters or other types of data, for example, patient records or sensor
data, to increase accuracy or enable detection of other pathologies. As a first step, we
evaluate our prototype by training classifiers that are based on the different image
recognition approaches. It is important to point out that these classifiers can also
process other input, for example, sensor data. One example of experiments we are
performing is for longitudinal GI of the patient being screened, one where previous
abnormality data is pulled from the patient’s journal and aligned algorithmically with
current abnormalities. The goal of this is the ability to visualize and capture the
development of individual abnormalities over time.

We also test the generated classifiers with different data and thereby evaluate the dif-
ferent approaches for feasibility of colonic polyp recognition and localization. The initial
results from our experimental evaluation show that (i) the detection and localization
accuracy can reach the same performance or outperform other current state-of-the-art
methods, (ii) the system performance reaches real time in terms of video processing up
to high-definition resolutions, and finally, (iii) that our system is using an acceptable
amount of resources regarding memory consumption and CPU. This latter property
makes our system potentially scalable with more data and different diseases to detect
in parallel at runtime. This is an important requirement if, as we plan next, to put it
to real use in a more clinical context.

The rest of the article is organized as follows: In Section 2, we briefly introduce
our medical case study. This is followed by a presentation of the complete system
in Section 3. Subsequently, we present a detailed evaluation of the whole system in
Section 4, and in Section 5, we discuss two cases where our system will be used in
two medical examinations. We present related work in the field and compare it to the
presented system in Section 6. Finally, we draw conclusions in Section 7.

2. GASTROINTESTINAL ENDOSCOPY

The complex GI system can be affected by various diseases; CRC is one of the major
health issues world wide. Some examples of these diseases and their complexity can
be seen in Figure 1. If CRC is detected at an early stage, the prognosis is substantially
improved, from a 90% 5-year survival probability in the early stage 1 to only 5–10%
5-year survival probability in the latest stage 4 [5]. Several studies have shown that
large population-based screening programs improve the prognosis and even reduce
incidences of CRC [19], and the European Union guidelines recommend screening for
CRC for all persons older than 50 years [56].
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GI endoscopies are common medical examinations where the lumen and the mucosa
of the entire GI tract are visualized to diagnose diseases [34]. The endoscopic system
is made of an endoscope, a flexible tube with a charge couple device (CCD) chip and
two bundles of optical fibers at the tip. The endoscope is connected to a video processor
and a light source, and the video signals are transferred to a screen for the doctor
to analyze. The common gold standard GI endoscopic examinations are gastroscopy
and colonoscopy. However, such endoscopies are demanding and invasive procedures,
and can be of great discomfort for patients. They are performed by medical experts
(endoscopists), have to be performed in real time, and do not scale well to larger
populations due to labor-intensive expert involvement. Additionally, the procedure is
expensive. In the US, for example, colonoscopy is the most expensive cancer screening
process with annual costs of 10 billion US dollars (USD 1,100/person) [55], with a
time consumption of about 1 medical-doctor-hour and 2 nurse-hours, per examination.
Furthermore, colonoscopy is not the ideal screening test; many polyps are hard to detect
(Figure 1(f)), and in average, 20% of polyps are missed or incompletely removed, i.e.,
the risk of getting CRC later on largely depends on the endoscopist’s ability to detect
polyps [23]. We therefore aim for a system that detects mucosal pathologies in videos
of the GI tract where the goal is to assist endoscopists during live examinations.

Once a polyp is detected, the morphology needs to be assessed to determine whether
or not the polyp has a risk of malignant transformation. There exist mainly three clas-
sification systems for polyp assessment, two for characterization of the surface and
one for the shape. The Kudo and the Nice-classification are both used to characterize
the surface structure of the polyp. The Kudo-classification [27] is based upon chro-
moscopy requiring supplementary staining of the mucosa with a colorant, while the
Nice-classification [38] is based on electronic color filter on the scope. The Paris clas-
sification is used to describe the shape of the polyp [21]. Despite these classifications,
endoscopists assess polyps quite differently, and a standard computer algorithm for
interpretation may therefore reduce the differences in the assessment [12].

Moreover, alternatives to traditional endoscopic examinations have recently emerged
with the development of non-invasive VCEs. A pill-sized camera (available from ven-
dors such as Given and Olympus) is swallowed and next records a video of the entire
GI tract. The challenge in this context, at least if the examinations should be scaled
to everyone above 50, is that endoscopists still need to analyze the videos. This cre-
ates an impractical scaling problem due to a limited number of endoscopists, which is
one important motivation for developing our EIR system. Thus, in the VCE context,
EIR is built for first-order, large-scale screening to determine whether a traditional
endoscopic examination is needed or not, i.e., limiting and reducing the traditional
endoscopy examinations to patients with positive findings from the VCE examination.

Consequently, we aim for a multimedia analysis system that can be used both as a live
computer aided diagnostic system and as an automatic detection system for screening
systems using VCEs. As a first step, we target detection of colorectal polyps (see, for
example, Figure 1(a)). The reason for starting with this scenario is that most CRCs
arise from benign, adenomatous polyps containing dysplastic cells, and detection and
removal of such polyps prevents the development of cancer. Nevertheless, our system
will be extended to support detection of multiple abnormalities and diseases of the GI
tract by training the classifiers using different datasets.

3. EIR ARCHITECTURE

Based on the two target use-cases, the main objectives of the EIR system are (i) easy to
use, (ii) easy to extend to different diseases, (iii) real-time handling of multimedia con-
tent, (iv) being able to be used as a live system, and (v) high classification performance
with minimal false-negative classification results. It can be split into three main parts:
the annotation sub-system, the detection and automatic analysis sub-system, and the
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visualization and computer-aided diagnosis sub-system. All three parts are important
to achieve a holistic system that can support doctors in disease detection and diagnosis
in the GI tract.

3.1. Annotation Sub-system

The main purpose of the annotation sub-system is to collect training data for the
detection and automatic analysis sub-system. This type of data can only be collected
with the help of medical experts. To make the collection process easier for the doctors
and as efficient as possible, we combine manual annotations with automatic methods. It
is well known that training data is an important key factor to create a good classification
system. Nevertheless, in the medical field, the number of available experts and the
multimedia data are two resources that are quite limited. This is primarily because of
a high every-day workload for doctors, but also due to legal issues. In many countries,
patient consent has to be collected before images or videos can be used, making it a very
cumbersome task. Moreover, the annotation of videos itself is very time-consuming,
and the quality of annotations depends on the experience and concentration of the
doctors [18]. For example, in a VCE procedure, depending on the time the capsule needs
through the GI tract, there are, on average, about 216,000 images per examination,
and an endoscopist frequently needs 60 minutes and even up to 2 hours to view and
analyze all the video data [29]. Therefore, besides getting data for the EIR system to
enable automatic screening, the annotation sub-system also makes it possible to use the
annotated videos in a medical video archive for procedure documentation or teaching
purposes. The current version of the annotation part consists of the semi-supervised
annotation tool presented in the work of Albisser et al. [2] and the new cluster-based
annotation tool.

Semi-supervised annotation tool. Using the semi-supervised tool [2], the doctors
only have to provide annotations in a single frame of the video or image to reduce the
time they need to spend on the whole process. The specialist’s knowledge is ideally
only required for the first very basic identification of abnormalities and to tag them
accordingly. This manual step is done by selecting any regions of interest in a video
or image sequence. The automatic step uses this information to track the regions of
interest on previous and subsequent frames automatically. There is still a fair amount
of manual work involved. However, using a suitable tracking algorithm substantially
reduces the time needed to create a complete dataset. Moreover, a lot of annotation
work can be performed without the specialist being present all the time. The output
generated by the tool is a list of frames for a certain disease including rectangles for
every previously marked region within the frame. This data is especially helpful for
training and development of localization and tracking algorithms.

Cluster-based annotation tool. To extended the annotation tool, we implemented
an extension that allows the doctors to utilize global features-based clustering to tag
a large number of images in a short time. The clusters are created based on visual
global image features that are also used in our classification sub-system, and the doc-
tors can subsequently drag and drop images between different automatically created
clusters and also annotate complete clusters. This application has two main advan-
tages. First, it allows medical doctors to investigate and analyze vast collections of
frames from endoscopic procedures by providing a configurable focus and context view
based on frame similarity. Second, it grants for utilizing the focus and context view for
annotation and tagging of the dataset, making it more accessible for complimentary
information systems. The clustering annotation tool combines content-based similarity,
unsupervised clustering (x-means), supervised clustering (k-means), and focus/context
views. Figure 2 shows the interface of the clustering annotation tool. On the upper
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Fig. 2. Feature-based clustering annotation.

left side, users can choose the folder containing the image collection. The clustering
algorithm can be selected in the setting below. For the clustering algorithm, several
different image features can be chosen. If more than one feature is selected, they are
combined using early fusion. The bottom options allow the user to specify the cluster-
ing parameters. These settings are set to default values recommended by literature.
A click on the apply button creates the clusters and presents them on the right site.
The cluster circles are represented using the image that is closest to the cluster center,
i.e., the cluster medoid followed by the next closest and so on. The user can interact
with the visual presentation by zooming and turning it into different angles. Further-
more, the user can double-click on clusters, which will open the folder containing all
images in the selected cluster. The images can be dragged and dropped between differ-
ent cluster circles, and with a right-click on the clusters, the user can see information
like the cluster center and the purity of the cluster based on the distances. Finally, the
medical experts can tag the clusters, which adds the tag to the name of the images in
the cluster. The output of the clustering annotation tool is mainly used to identify and
tag frames or images that contain abnormalities for the classification sub-system. Its
output can also be used in the previous presented annotation tool to mark the exact
position of abnormalities in the images.

3.2. Detection and Automatic Analysis Sub-system

Detection sub-system. The detection sub-system analyzes multimedia data, such as
videos, images, and sensor measurements, to identify if there is anything abnormal
to be found in the colon. All frames processed by this sub-system can be separated
into two disjoint sets (positive and negative) which can also be seen as the model
for the disease and abnormality detector. These two sets contain example images for
abnormalities and images without any abnormality. The detection system is built
in a modular way and can easily be extended with new models or sub-models. To
compare and determine the abnormalities in a given video frame (or image), we use
global image features, because they are easy and fast to calculate. We are not (yet)
interested in the exact position for the detection sub-system. In previous work, we
showed that global features indeed can outperform or at least reach the same results
as local features [42]. EIR uses the Lire [32] open source library for content-based
image retrieval. This library provides a comprehensive set of already implemented and
tested algorithms to extract different types of global image features. This allows us to
experiment with a whole set of global image features for detecting or clustering video
frames from colonoscopy or VCE videos. Again, we do not claim novelty associated
with individual algorithms and sub-components. Indeed, we carefully select and build
on state-of-the-art technologies to get the optimal integrated holistic solution.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 13, No. 3, Article 26, Publication date: May 2017.



From Annotation to Computer-Aided Diagnosis 26:7

The indexing function is an extension of the indexing function used by Lire and
provided by Lucene, modified with a hashing function which performs hashing on the
given features and stores the hash values in the index. Lire uses Lucene inverted
indexes for storing and searching image features data. Indexes are created using a
merge-based data structure (k-way merge). The segments of the indexes are sorted in
memory and then merged. Each newly added document (in our case, image) adds a
new segment and is merged with the existing segments. This leads to average b× log N
indexes that are fast to update and also not too slow to search [17, 26, 48]. Furthermore,
the structure of the index is field- and row-based where each row is defined by its
fields. Example fields are image, binary values for the features or the hash value of the
feature, and so on. The number of fields is variable depending on the number of used
image features or metadata. The features are stored as a byte representation and as
a text field containing hash values from a random projection hashing approach. The
hashing is based on locality sensitive hashing (LSH). We use multiple random hash
functions to hash the values of the features, which results in similar images getting
the same hash values. Similar images are then hashed in the same hash bucket by a
linear projection in random directions of the hash functions in the feature space of the
image. Possible drawbacks of this method are that very ineffective hash codes can be
created and a large number of hash tables is needed to achieve a reasonable search
quality. Nevertheless, these drawbacks are acceptable compared to the increased speed
of the search algorithm [50]. The used hash function h(v) ∈ {0, 1} for a histogram v is
defined as h(v) = sgn(v · r), whereas r is a random vector with evenly distributed
elements ri ∈ [−w,w]. n hash functions, then, are represented as one single hash value
H(v) < 2n combined as a bit string. For indexing m hash values Hj(v), j ∈ [0, m〉 hash
values are generated. The used parameters for the hashing are w = 2, n = 12, and
m = 150, which leads to a good tradeoff between search time and precision based on
an evaluation of 100,000 test images.

The basic algorithm of our detection sub-system is based on an improved version
of a search-based method for image classification presented in Riegler et al. [42]. The
algorithm is basically a simple K-Nearest-Neighbor algorithm (k-NN). Normally, k-
NN is a non-parametric algorithm, which means that the rank of the values are used
rather than the parameters of each object. The classification is based on its k numbers
of nearest neighbors by a majority decision. The differences to our used algorithm
is that it is based on a ranked list of a search result, which is generated in real
time for each query frame or image and that weighted values are used for finding
a decision antithetical to the non-parametric-behavior of the standard k-NN. For the
classification, three parts of a standard ranked search result list are used, i.e., the
belonging class of each image in the list, the number of the occurrences of each class,
and the position of the image in the ranked list as a weight. The algorithm is then
defined as the following:

c = arg max
c∈C

⎧⎨
⎩ClassScore(c) = |c|

∑
Ii∈{Ii |Class(Ii )=c}

1
RankScore(Ii)

⎫⎬
⎭ .

Class c is the class with the highest weighted ClassScore of all classes c ∈ C, and
ClassScore is calculated by summing up the occurrences of each class c and multiplying
it with the summed WeightedRankScore. RankScore per class is calculated by dividing
one by the rank for each search query. The WeightedRankScore is the sum of all
RankScore in the rank list.

We create the indexes of as many example frames as we can get, but it is important
to point out, as the experiments showed, that the detection indeed needs good training
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data. However, the number of needed examples is rather low compared to other meth-
ods, for example, deep learning, which is known for its need for large and well-labeled
datasets. The index also contains information about the presence and type of any dis-
ease in the frame or image. A classifier can then search the index for the frames that
are most similar to a given input frame. Based on the classification of the results, the
detection sub-system then decides which abnormality the input frame belongs to. The
whole detection is realized with two separate tools, an indexer and a classifier. We have
released the indexer and the classifier as a separate project called OpenSea.1

The purpose of the global image feature indexer is to extract visual features from
input videos or images, and store these in the index. These indexes are used as input
data for the search-based classifier. The indexer is created as a separate tool and in a
way so that it is easy to distribute it over different nodes, using, for example, Apache
Storm. The computational nature of the indexing part is similar to batch processing.
Therefore, creating the models for the classifier could be done offline, and it is not
influencing the real-time capability of the system because it is only done once at the
very first time when the training data is inserted into the system. It creates indexes
for all directories passed on from the system. The visual features to calculate and
store in the indexes can be chosen based on the abnormality, because different types
of diseases require different sets of features or combinations. For example, bleeding is
easier to detect using color features, whereas polyps also require shape and texture
information. The indexer processes all the frames in a given directory. It stores the
generated indexes in a sub-directory inside the indexed directory. If multiple directories
are passed for indexing, it creates a separate index for each directory. The classifier
can be used to classify video frames from an input video into as many classes as
the detection sub-systems model consists of. In contrast to other classifiers that are
commonly used, this classifier is not trained in a separate learning step. Instead, the
classifier searches previously generated indexes, which can be seen as the model for
similar visual features. The output is weighted based on the ranked list of the search
results, and based on this, a decision is made. We refer to these previously generated
indexes, which are searched for similar image features, as classifier indexes or indexes
containing training data. The classifier expects at least one classifier index and an
input source. The input source can either be a video, an image, or another previously
generated index. The classifier is parallelized, and it can choose how many CPU cores
to use or if GPUs should be used to improve the performance even more.

Localization sub-system. The detection sub-system cannot determine the location
of the detected irregularity in a frame. This is the task of the localization sub-system
which determines the exact position of the disease or abnormality (Figure 3). The
localization sub-system analyzes video frames already marked to contain abnormali-
ties by the detection sub-system, and these frames are then preprocessed by a sequence
of various image processing procedures, resulting in a set of possible abnormality co-
ordinates within each frame. Currently, the sub-system implements a model for polyp
localization using a hand-crafted object localization method, based on the geometri-
cal shape of polyps. The sub-system is written in C++, and it uses the OpenCV open
source library for routine image contents manipulation and the CUDA framework for
GPU computation support. The localization sub-system consists of two independent
image processing pipelines: an image rectification and an abnormality localization
pipeline. All the processed frames sequentially go through both pipelines. To evalu-
ate the performance, both the image rectification and the polyp localization pipelines

1https://bitbucket.org/mpg_projects/opensea, released under GPLv3 (http://www.gnu.org/licenses/gpl-3.0.en.
html).
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Fig. 3. The localization sub-system marks the possible locations of polyps. The first four show an exact
match (ground truth marked with blue ellipses), but the last two are misses.

were implemented in two versions: a reference C++ code and a GPU-accelerated C++
code, with re-implementation of the most compute-intensive image processing steps as
CUDA-kernels.

The image rectification pipeline uses pixel-level image processing in order to improve
the overall image quality for the processing steps. Detected lesion objects can have
different shapes, textures, colors, and orientations. They can be located anywhere in
the frame and can also be partially hidden and covered by biological substances, for
example, seeds or stool, and lighted by direct light. Moreover, the image itself can
be interleaved, noisy, blurry, and over-/under-exposed, and it can contain borders and
sub-images. The images can also have various resolutions depending on the type of
endoscopy equipment or VCE used. Endoscopic images usually have a lot of flares
and flashes caused by high-power light sources located close to the camera. All these
nuances negatively affect the local feature detection methods and have to be treated
specially to reduce localization precision impact. In our case, we have used several
sequentially applied filters to prepare raw input images for the following analysis by
removing all the noisy artifacts. In particular, the current version of the system removes
image borders, patients’ data fields, imaging device state messages, embedded images,
over- and under-exposed areas, and glare reflections.

The localization pipeline processes the rectified frames, and multiple pipelines for
different abnormalities can run in parallel. The main idea of our localization algorithm
is to use the polyps’ physical shape to find the exact position in the frame. In most cases,
the polyps have the shape of a hill located on relatively flat underlying surface or the
shape of a more or less round rock connected to an underlying surface with a stalk
varying in their thickness. These polyps can be approximated with an elliptical shape
region that differs from the surrounding tissue. The polyp localization pipeline imple-
ments an image processing algorithm that performs, in sequence, the following steps:
non-local means de-noising [6]; 2D Gaussian blur and 2D image gradient vectors ex-
traction; border extraction by gradient vectors simple threshold binarization; removal
of borders’ isolated binary noise; possible location of ellipses focus estimation; ellipses
size estimation by analyzing border pixels distribution; ellipses matching to extracted
border pixels; selection of predefined number of non-overlapping local maximums and
outputting their coordinates as possible polyp locations. For the possible locations of
ellipses, we use the coordinates of local maximums in the insensitivity image, created
by additive drawing of straight lines starting at each border pixel in the direction of
its gradient vector. Ellipse matching is then performed using an ellipse fitting function
[16].

All the constants and thresholds used in the image rectification and polyp localization
algorithms are empirically selected from experimental studies and reflect nuances of
the used data. They can be easily adjusted for different datasets, e.g., from another type
of endoscope. The image rectification algorithm performs well for all medical imaging
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artifacts lying outside the main image area. However, it should be improved to be able
to detect and remove all pixels that belong to embedded images located anywhere in
the frame. This is important for reducing the probability of false positive locations
of findings inside of such embedded image regions. The polyp localization algorithm
performs well for the used dataset and does not require training data for the detection.
An example for the localization output with one possible polyp location is shown in
Figure 3.

3.3. Visualization and Computer-Aided Diagnosis Sub-System

After the automatic detection and analysis of the content, the output has to be pre-
sented in a meaningful way to the medical expert. The visualization has to be reliable,
robust, and easy to understand under stressful situations that can occur during a
live examination. Furthermore, it has to support easy searches and browsing through
large amounts of data. This is especially important for the VCE examinations due
to the large amount of video material collected through such an examination (up to
12 hours). In general, the visualization sub-system has two main purposes. First, it
should help in evaluating the performance of the system and get better insights into
why things work well or not. Second, it can be used as a computer-aided diagnosis
system for medical experts. In this context, we have the TagAndTrack tool [2] that
can be used as a visualization and computer-aided diagnostic system. Furthermore,
we developed a web technology-based visualization that is easy to use and distribute,
and can be used to support medical experts during endoscopies. This tool simply takes
the output of the detection and localization part and creates a web-based visualization,
which is then combined with a video sharing platform where doctors are able to watch,
archive, annotate, and share information. The information collected can later also be
used for reinforcement learning in the detection and automatic analysis sub-systems.

4. SYSTEM EVALUATION

We have tested the system in terms of detection accuracy and system performance, and
we also participated in a polyp detection challenge. All experiments are conducted on
the same Linux machine with a dual 2.40GHz Intel Xeon CPUs (E5-2630), 16 physical
CPU cores (32 with hyper-threading), 32GB of RAM, dual NVIDIA Corporation GM200
GeForce GTX TITAN X GPUs, a 256GB SSD and Ubuntu Linux. Furthermore, we used
the ASU-Mayo Clinic polyp database as training and test data.2 This dataset is the
largest publicly available polyp dataset consisting of 20 videos, converted from WMV to
MPEG-4 for the experiments, with a total number of 18,781 frames with 1,920 × 1,080
pixels resolution [52].

4.1. Detection Accuracy

For all detection and localization accuracy experiments, we used the common standard
metrics precision, recall, and F1 score calculated on a per frame basis. This makes it
more difficult for our algorithm to achieve good results, but it shows that the system
works well. Furthermore, we decided to use leave-one-out cross-validation to evaluate
this part of the system. Leave-one-out cross-validation is well-suited to show gener-
alization potential and robustness of a predictive model. Therefore, the training and
testing datasets are rotated, leaving out a single different non-overlapping video for
testing, and using the remaining videos for training the model [13].

The developed system allows us to use several different global image features for the
classification. The more image features we use, the more computationally expensive the
classification becomes. Further, not all image features are equally important or provide

2http://polyp.grand-challenge.org/site/Polyp/AsuMayo/.
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Table I. Leave-One-Out Cross-Evaluation Combined For All Supported Features

True True False False F1
Feature Pos. Neg. Pos. Neg. Prec. Recall score

JointHist. 3,369 13,826 1,085 511 0.7563 0.8682 0.8084
JpegCoefficientHist. 3,224 13,772 1,139 656 0.7389 0.8309 0.7822
Tamura 3,392 13,861 1,050 488 0.7636 0.8742 0.8151
FuzzyOpponentHist. 3,341 13,552 1,359 539 0.7108 0.8610 0.7787
SimpleColorHist. 2,736 13,563 1,348 1,144 0.6699 0.7051 0.6870
JCD 3,556 13,777 1,134 324 0.7582 0.9164 0.8298
FuzzyColorHist. 2,708 13,243 1,668 1,172 0.6188 0.6979 0.6560
RotationInvariantLlBP 3,479 13,829 1,082 401 0.7627 0.8966 0.8243
FCTH 2,846 13,671 1,240 1,034 0.6965 0.7335 0.7145
LocalBinaryPatterns-AndOpponent 2,412 13,349 1,562 1,468 0.6069 0.6216 0.6142
PHOG 2,879 13,806 1,105 1,001 0.7226 0.7420 0.7321
RankAndOpponent 2,527 13,553 1,358 1,353 0.6504 0.6512 0.6508
ColorLayout 2,702 14,018 893 1,178 0.7515 0.6963 0.7229
CEDD 3,705 13796 1,115 175 0.7686 0.9548 0.8517
Gabor 1,849 10,643 4,268 2,031 0.3022 0.4765 0.3699
OpponentHist. 2,246 14,157 754 1,634 0.7486 0.5788 0.6529
EdgeHist. 3,548 13,737 1,174 332 0.7513 0.9144 0.8249
ScalableColor 3,231 13,684 1,227 649 0.7247 0.8327 0.7750
Late Fusion 3,710 13,894 1,017 170 0.7848 0.9561 0.8620

equally good results for our purpose. As a first step, we therefore need to determine
which image features we want to use for classification. In order to understand which
image features provide the best results, we generated indexes containing all possible
image features for all frames of all video sequences from the test database. We can
use these indexes for several different measurements and also for leave-one-out cross-
validation. Using our detection system, the built-in metrics functionality can provide
information on the performance of different image features for benchmarking. Further,
it provides us with separate information for every single image feature, as well as the
late fusion of all the selected image features. Moreover, literature indicates that late
fusion approaches lead to a better performance than early fusion approaches [30, 49].
Escalante et al. [14], who came to the same conclusion, showed in their paper that late
fusion performs well for multimedia retrieval tasks. They fused multiple heterogeneous
image retrieval techniques developed for annotated collections. To perform late fusion,
they used ranked lists created by search queries in their system to combine features.
Based on the indication that late fusion is better suited for multimedia data, we use
it for feature combination. Therefore, we classify each feature that we use separately,
and combine them afterward using a majority decision weighted by the ranked score
(an image class in a higher position in the ranked list gets a higher weight).

For our first experiment, we ran the detection with all possible image features
selected, leaving out one video at the time, repeating the procedure until each video had
been left out once. This is essentially the procedure for leave-one-out cross-validation.
We then combined the reported values for true positives, true negatives, false positives,
and false negatives for all the runs, and calculated the metrics for the combined values.
The results of this first experiment are presented in Table I. All features used here are
described in detail in the work of Lux [2013]. The single image feature that generally
achieves the best score is Color and Edge Directivity Descriptor (CEDD). Further, the
image features Joint Composite Descriptor (JCD), EdgeHistogram, Rotation Invariant
Local Binary Patterns, Tamura, and Joint Histogram achieve promising results. The
late fusion of all the image features achieves slightly better results. However, it is
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Table II. Top 20 Feature Combinations Using Two Image Features for the Video wp_61,
Sorted by F1 Score

True True False False F1
Feature combinations Pos. Neg. Pos. Neg. Prec. Recall score

Rot.Inv.LBP/Tamura 162 22 153 0 0.5142 1 0.6792
PHOG/Tamura 161 23 152 1 0.5143 0.9938 0.6778
JpegCoeff.Hist./Tamura 162 21 154 0 0.5126 1 0.6778
Gabor/Tamura 162 20 155 0 0.5110 1 0.6764
FuzzyColorHist./Tamura 162 18 157 0 0.5078 1 0.6735
FuzzyOpp.Hist./FuzzyColorHist. 160 17 158 2 0.5031 0.9876 0.6666
JCD/Opp.Hist. 135 67 108 27 0.5555 0.8333 0.6666
JointHist./JpegCoeff.Hist. 162 12 163 0 0.4984 1 0.6652
ColorLayout /FuzzyColorHist. 162 11 164 0 0.4969 1 0.6639
FuzzyColorHist./JointHist. 162 11 164 0 0.4969 1 0.6639
FuzzyOpp.Hist./JointHist. 162 11 164 0 0.4969 1 0.6639
FuzzyOpp.Hist./SimpleColorHist. 162 11 164 0 0.4969 1 0.6639
JointHist./Rotat.Inv.LBP 162 11 164 0 0.4969 1 0.6639
JointHist./SimpleColorHist. 162 11 164 0 0.4969 1 0.6639
FuzzyOpp.Hist./Gabor 161 13 162 1 0.4984 0.9938 0.6639
JCD/JpegCoeff.Hist. 161 13 162 1 0.4984 0.9938 0.6639
CEDD/FuzzyColorHist. 159 17 158 3 0.5015 0.9814 0.6638
JpegCoeff.Hist./Rot.Inv.LBP 152 31 144 10 0.5135 0.9382 0.6637
JCD/Tamura 162 10 165 0 0.4954 1 0.6625
CEDD/Tamura 162 10 165 0 0.4954 1 0.6625

impractical to do a late fusion of all these image features as the calculation, indexing,
and searching of all image features are computationally expensive. Therefore, we want
to find a small sub-set of two image features, which provides optimal results despite
minimizing the computational effort. Based on the evaluation results of different
combinations of global features (Table II) using one video from the dataset, we decided
that the image features JCD and Tamura seem to be the best combination for our
performance measurements. The reason for this decision is because they have a good
precision and recall, but at the same time, the computation time is low. We conducted
this experiment only on one video to avoid optimizing our system on the used dataset,
which could lead to results that do not really represent the true performance of the
detection sub-system.

In these experiments, we also experienced that the only key parameter that influ-
ences the results in our classifier is the length of the ranked list. This has been set to
77 images based on the experiments because this is the value that gives a good tradeoff
between precision and recall. A lower number of images in the ranked list leads to a
higher precision, but a lower recall and vice versa.

To assess the actual performance of the classifier using these two image features, we
again conducted a leave-one-out cross-validation with all available video sequences.
The results are presented in Table III. With these settings, we achieve an average
precision of 0.889, an average recall of 0.964, and an average F1 score value of 0.916.
The problem with this average calculation is that different video sequences contribute
values based on different numbers of video frames. If we weight the values contributed
by every single video sequence with the number of frames in the sequence, we achieve
an average precision of 0.9388, an average recall of 0.9850, and an average F1 score
value of 0.9613. In other words, the results show that it is possible to detect polyps with
a precision of almost 94%, and we detect almost 99% of all polyp containing frames.
The results of these first experiments look very promising. Nevertheless, practical
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Table III. Leave-One-Out Cross-Validation Using JCD and Tamura Features

True True False False F1
Video Pos. Neg. Pos. Neg. Prec. Recall score

np_5 1 680 0 0 1 1 1
np_6 1 836 0 0 1 1 1
np_7 1 767 0 0 1 1 1
np_8 1 710 0 0 1 1 1
np_9 1 1,841 0 0 1 1 1
np_10 1 1,923 0 0 1 1 1
np_11 1 1,548 0 0 1 1 1
np_12 1 1,738 0 0 1 1 1
np_13 1 1,800 0 0 1 1 1
np_14 1 1,637 0 0 1 1 1
wp_2 140 9 20 70 0.875 0.6666 0.7567
wp_4 908 1 0 0 1 1 1
wp_24 310 68 127 12 0.7093 0.9627 0.8168
wp_49 421 12 62 4 0.8716 0.9905 0.9273
wp_52 688 101 284 31 0.7078 0.9568 0.8137
wp_61 162 10 165 0 0.4954 1 0.6625
wp_66 223 12 165 16 0.5747 0.9330 0.7113
wp_68 172 51 20 14 0.8958 0.9247 0.9100
wp_69 265 185 138 26 0.6575 0.9106 0.7636
wp_70 379 1 0 29 1 0.9289 0.9631

Average: 0.8890 0.9640 0.9160
Weighted average: 0.9388 0.9850 0.9613

suitability during live examinations comes with some difficulties. For example, during
a live examination a lot of noise can occur, for example, instruments used, stool, and
different lighting conditions. This is something that we want to explore in future work.
To be able to do that, we collected a larger dataset that contains several different full-
length procedures. We are currently working on the annotation of these videos. As soon
as this is finished, more detailed and closer to real-world scenarios experiments will be
conducted. We could also observe some variation in the precision and recall for some
of the videos. A detailed investigation reveals that the detection part seems to be very
accurate in detecting if a polyp is not there, but it is more difficult to find the correct
frames that contain polyps based on the ground truth. Further investigations revealed
that this is influenced by two aspects. First, because we use frame-based precision
and recall, it is harder for the detection sub-system to achieve a high precision and
recall. Second, because of the nature of the videos, the frames are often blurry (because
of the motion blur), and it is hard to determine, even for a human observer, if the
frame contains a polyp or not. A possible solution to solve this problem is to use time
information of the videos to improve the classification performance, for example, by
using the classification output of previous or next frames in the video to create an even
more accurate classification output.

4.2. Localization Accuracy

We also used the common standard metrics precision, recall, and F1 score calculated
on a per-frame basis for the localization accuracy experiments. It is important to point
out that our localization algorithm does not require training like traditional learning-
based algorithms. Therefore, all video segments were included in the experiments. As
described previously, the localization sub-system is designed to process only frames that
are marked to contain polyps by the detection sub-system. To evaluate the performance
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Table IV. Performance of the Localization (Four Possible Polyp
Locations Per Frame)

True False False F1
Data set Pos. Pos. Neg. Prec. Recall score

CVC-ClinicDB 397 215 249 0.6487 0.6146 0.6312
ASUMayo 2 1 244 244 0.0041 0.0041 0.0041
ASUMayo 4 443 467 467 0.4868 0.4868 0.4868
ASUMayo 24 74 300 300 0.1979 0.1979 0.1979
ASUMayo 49 36 355 355 0.0921 0.0921 0.0921
ASUMayo 52 194 490 490 0.2836 0.2836 0.2836
ASUMayo 61 129 80 80 0.6172 0.6172 0.6172
ASUMayo 66 92 142 142 0.3932 0.3932 0.3932
ASUMayo 68 63 126 126 0.3333 0.3333 0.3333
ASUMayo 69 0 235 235 0.0000 0.0000 0.0000
ASUMayo 70 4 381 381 0.0104 0.0104 0.0104

Average: 0.3207 0.3183 0.3195

of the localization system itself, we created a perfect-detection-dataset from the ASU-
Mayo Clinic polyp database and the ground truth for polyp locations provided by it.
The ground truth data is encoded as a set of images with the entire polyp area marked
as a white pixel area on black background, one per original frame. A small amount
of frames also contain more than one isolated polyp, which are counted as separate
polyps. During the polyp location validation, we count each computed polyp location
as true positive if the ground truth image has a pixel at the corresponding coordinates
that is part of a polyp. Table IV presents the performance of the localization sub-system
evaluation, with the output of four possible polyp locations per frame. The sub-system
has a precision of 0.3207, a recall of 0.3183, and a F1 score of 0.3195. These results
indicate that the localization part works as intended, but not perfectly. One reason
that we identified for the sub-optimal performance of our algorithm is that it produces
four possible disease locations per frame. Selection of multiple possible locations per
frame is reasonable for the current localization sub-system version due to the lack of
a tissue texture identification algorithm. It is not possible to distinguish between hill-
shaped polyps and normal colon mucosa without corresponding textural analysis. Thus,
multiple points finding increases the probability of hitting the polyp by, at least, one
point out of four. For the evaluation, all points were included in the calculations, which
influences the performance metrics negatively due to a high number of false positives.
Regardless of the relatively low overall localization performance, the results of these
first experiments look very promising. Nevertheless, the accuracy of the localization
should be improved to make it suitable for practical use. We are currently working on
an improved version of the algorithm that will include advanced shape and texture
detection techniques together with inter-frame video sequence analysis.

4.3. MICCAI Challenge

To compare our method to other state-of-the-art methods, we participated in the En-
dovis Automatic Polyp Detection in Colonoscopy Grand Challenge3 at the 2015 Interna-
tional Conference on Medical Image Computing and Computer Assisted Intervention
(MICCAI). The challenge was divided into two parts. The first part was the polyp local-
ization, where the question was whether the method could cope with important polyp
appearance variability and, therefore, accurately determine the location of the polyp

3http://polyp.grand-challenge.org/.
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Table V. MICCAI Polyp localization Challenge

True False False F1
Participant Pos. Pos. Neg. Prec. Recall score

UNS-UCLAN 48 481 148 9.07 24.49 18.28
CuMedVis 31 167 165 15.75 15.81 15.77
CVC 33 163 163 16.84 16.84 16.84
Our EIR System 46 723 150 5.98 23.47 14.81
RUS 65 1,558 131 4.00 33.16 13.50
SNU 8 188 188 4.08 4.08 4.08

Table VI. MICCAI Polyp Detection
Latency Challenge

Participant Latency (ms) F1

CuMedVis 6.66 26.40
Our EIR System 21 13.27
SNU 43.33 6.13
CVC 44.60 22.78
Rustad 235 11.47
ASU 417.5 20.84
UNS-UCLAN 0 0

in a frame. The second part was whether the method could detect a polyp in the frame
or not, and how long the delay was from the first appearance of the polyp to when our
system could detect it. In general, we did not expect very good results compared to the
other specialized systems. Other participants used a wide range of different methods to
detect polyps. These methods ranged from hand-crafted features, like contour or shape-
based detection over machine learning approaches to neural networks. We identified
several problem areas during the challenge such as blurry images due to camera
motion, size differences, lighting, and objects that look like polyps, but are not, like
contaminants.

Table V shows the result for the polyp localization part based on the CVC-ClinicDB
dataset containing 612 still images from 29 different sequences. Our system is on the
fourth place out of six. Details about the implementation of the first three methods are
not available, but almost all of them used deep learning. Based on the fact that our
system is not built for only polyp detection, the results are still very satisfactory. It
is also important to point out that the first three participants were organizers of the
challenge and involved in the dataset collection, and so on. Table VI shows the results of
the detection latency part. For the latency, our system could perform second best of all
participants. This is a very good result and a positive confirmation about the real-time
performance compatibility of our system. The approach of UNS-UCLAN is not able
to distinguish between a frame with or without a polyp. All in all, the results of the
challenge are positive for a system that is designed to be extendible and refinable for
different diseases. We showed that we can compete and outperform other state-of-the-
art approaches, which are designed for the specific problem of the challenge, without
applying any adaptations to our system.

4.4. System Performance

A fundamental requirement of EIR is scalability and performance. The idea is to use the
system for mass-screening for lesions in the GI tract, using video sequences recorded
live with colonoscopy or VCEs, as well as a real-time diseases detection system that
can be used during live endoscopy procedures. For the performance evaluation, we
used the configuration of the system with best accuracy. This is rather obvious given
our quest for a system that can be put to real use in clinical settings. Therefore, it is
important to reach real-time performance in terms of processing a video and several
other input signals at the same time and reach a frame rate of not less than 30 frames
per second (FPS), which is the output of current endoscopes. For all the experiments,
we used 20 videos from three different endoscopic devices and different resolutions,
i.e., 1920 × 1080 (6 videos), 856 × 480 (4 videos), and 712 × 480 (10 videos).

4.4.1. Processing. To evaluate our detection sub-system, we first measured the index-
ing that creates the model later used by the classifier. This process does not need
real-time performance and can be seen as batch processing, but it should at least be
scalable for larger datasets.
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Table VII. Indexing Performance of Four Different Datasets
to Show the Scaling

Index Frames Total time in seconds Time per frame in ms
D1 3,871 89.78 23.1
D2 14,909 178.55 11.9
D3 29,818 231.75 7.7
D4 100,000 782.351 7.8

Fig. 4. The detection sub-system performance in terms of FPS depends on the number of CPU cores, the
resolution of the videos, and the detection algorithm implementation.

Extracting two features and indexing them for the entire dataset take, on average,
5.2 milliseconds per frame. There is no big difference between the indexing time of dif-
ferent resolutions. We tested the scaling potential by indexing different datasets. The
first dataset (D1) contains 3,871 frames, the second one (D2) contains 14,909 frames,
the third one (D3) contains 29,818 frames, and the last one (D4) with 100,000 frames.
Table VII shows the overall results. We discovered that a larger dataset leads to a
faster indexing time per frame. We conjecture that this is due to reducing average
per-frame processing overhead caused by GPU initialization and kernels loading into
the GPUs. Furthermore, we did not find a significant increase after more than 30,000
frames in the dataset. The limiting factor is the I/O, since increasing the number of
cores did not increase performance. All in all, our experiments show that the indexer is
scalable in terms of larger datasets, and it should meet all requirements of the system
for future tasks. The performance of the detection is also important, since the system
should provide a result as fast as possible and not slower than 30FPS, making it us-
able for live applications. Again, we used the 20 different videos previously described.
Figure 4(a) shows the detection sub-system performance in terms of FPS for the high-
est video resolution of 1920 × 1080. It depicts performance for all different detection
algorithm implementations (Java, C++, and GPU) and different combinations of uti-
lized hardware resources (from 1 to 32CPU cores and none, 1, or 2GPUs). For the full
HD videos, the required frame rate of 30FPS is reached using 8, 5, and 1CPU cores in
parallel for the Java, the C++, and the GPU implementations. Increasing the number
of used CPU cores also increases the performance for all implementations, and the
system reaches the maximum performance of 330FPS with 2GPUs and 25CPU cores.
A slight decrease of the performance can be observed for a high number of used CPU
cores. This is caused by an increased overhead for context switching and competition
for resource. Figures 4(b) and (c) show the detection sub-system performance in terms
of FPS for the videos with smaller resolution. The maximum performance of 430 (for
856 × 480 resolution) and 453 (for 712 × 480 resolution) FPS is reached using 2GPUs
and 18 and 16CPU cores.

Figure 5(a) depicts the localization sub-system performance in terms of FPS for the
highest quality video with a resolution of 1920 × 1080. Both the localization algorithm
implementations (C++ and GPU) and different combinations of used hardware re-
sources (from 1 to 32CPU cores and none, 1, or 2GPUs) are presented. For these videos,
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Fig. 5. The localization sub-system performance in terms of FPS depends on the number of CPU cores, the
resolution of the videos, and the localization algorithm implementation.

the required frame rate of 30FPS is reached using 8 and 1CPU cores in parallel for the
C++ and the GPU implementation. As expected, increasing the number of used CPU
cores increases the FPS performance for both implementations and peaks at the max-
imum performance of 129FPS with 2GPUs and 15CPU cores. A slight decrease of the
performance for a large number of used CPU cores caused by increasing overhead for
context switching and resources competition happens also for the detection sub-system.
Finally, Figures 5(b) and (c) show results for the videos with the smaller resolution. The
peak performance of 246 (for 856 × 480 resolution) and 283 (for 856 × 480 resolution)
FPS is reached using 2GPUs and 32 and 11CPU cores. The maximum GPU hardware
utilization measured during our experimental studies was around 80% for both, us-
ing 1 or 2GPUs. The reason for the GPUs under-utilization is the implementation of
some video frames processing algorithm steps on the CPU, namely the ellipse-shape
detector, fuzzy logic for feature extractors, and building of frame features joint vector.
This causes a large number of CPU-GPU data transfer and unavoidable GPU idling,
required for the synchronization in multi-thread environments. Further implementa-
tions of other processing steps on heterogeneous architectures, such as GPUs, will lead
to an increased performance and reduced utilization of the CPU resources. The outcome
of these experiments clearly shows that our system can reach real-time requirements
for the video processing and still has processing power left, which can be used to process
other input data at the same time, for example, sensor data or patient records data.
A number of complex features can be added into the detection and the localization
sub-systems. This will increase the system’s detection and localization accuracy and at
the same time keep its ability to perform in real time. Moreover, it can also be used to
process several data streams simultaneously in real time and significantly reduce the
examination time of doctors. The time reduction lies around 5-10 times depending on
the type of input data, like video resolution, framerate, and sensors used. Our evalua-
tion also shows that this is a very complex topic and requires methods and technologies
from several different multimedia research directions (signal processing, multimedia
systems, information retrieval, deep learning, etc).

4.4.2. Data Handling. Figures 6(a) and (b) show the memory usage for both sub-systems.
In the Java and the C++ implementations of the detection sub-system, as well as in the
C++ implementation of the localization sub-system, the memory consumption behaves
normally and shows that both sub-systems are scalable in terms of memory. The GPU
implementations of both systems show an almost constant memory increase, which is
caused by the used frame-by-frame processing scheme on the GPU devices. The results
of the memory usage measurements for the various hardware configurations and video
resolutions show that the maximum memory usage is less than 4.5GB for the detection
and 6GB for the localization sub-system. This proves that the sub-systems consume
a reasonable amount of memory, and therefore, memory is not a bottleneck for the
scaling potential of the system.
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Fig. 6. Overall memory consumption (resident set size).

Fig. 7. Performance influence of different training data sizes for 1/2 and 1/3 of the original size.

A final question that we wanted to answer is if the size of the used classification
indexes influences the detection accuracy or system performance. Figure 7 shows the
system performance in terms of detection accuracy and FPS for three different training
data sizes. The exception here was that smaller indexes would lead to a higher FPS
throughput, but with a loss of classification performance. The experiment showed that
the index size did not have a significant influence on the FPS output of the detection
system. Another positive aspect is that the classification performance does not decrease
with smaller indexes. The average F1 score for all three index sizes in this experiment
increases with a decreasing index size. The index with the full training set reaches
0.938, the index that contains half of the training data (0.94) and the smallest index
that only contains one third of the training data reaches an average F1 score of 0.946.
This reveals that the detection sub-system also performs very well with a smaller
amount of training data, which is a very positive point for the medical domain because
of the lack of training data.

4.4.3. Distributed Processing Experiments. To investigate the performance on distributed
hardware for the detection sub-system, some initial experiments on Amazon AWS EC2
instances were conducted. On a c4.8xlarge instance (Intel Xeon E5-2666 with 36 virtual
CPUs), we were able to classify a video (MPEG-4) with 1,924 frames and a resolution
of 1920 × 1080 using the JCD and Tamura features in 29.377 seconds with 65.5 FPS.
When classifying data from a raw video file, the processing time increased to 39.599
seconds with 48.6FPS. When reading the data from a Windows media video (wmv)
file, the processing time increased to 40.452 seconds with 47.6FPS. The c4.8xlarge
instance is the most powerful instance offered by Amazon. Therefore, we conducted the
same experiments on a less powerful c4.4xlarge instance (Intel Xeon E5-2666 with 16
virtual CPUs). Using this instance, we were able to process the MPEG-4 video data in
60.19 seconds with 31.97FPS, the wmv file in 81.17 seconds with 23.7FPS and the raw
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video file in 79.718 seconds with 24.14FPS. This experiment shows that our system
can be distributed, but using the given Amazon hardware, it did not really improve
the performance when distributing the workload between several nodes. On the other
hand, the performance using only local heterogeneous architectures easily meets the
requirements, reducing the need for multi-machine distribution (for now).

5. REAL-WORLD USE-CASES

We are currently working on two different real-world use-cases with our partner hos-
pitals. The first one is a live system intended to support and assist endoscopists while
they perform live examinations. The second one has as a goal to automatically analyze
videos captured by VCEs. The live system requires fast and reliable processing, and
the VCE video analysis needs a system that is able to process a large amount of data
fast, reliable, and in a scalable manner.

5.1. Live System

The live system is intended for the use-case where the endoscopist performs a routine
examination. One screen shows the output of the colonoscope without the systems
output. A second screen presents, in real time, the results of the algorithmic analysis
to the doctor. In future clinical trials, we will evaluate and compare the current two-
screen solution with a single screen combination. Previous studies have demonstrated
that the detection rate of lesions is a major challenge [11, 54]. The aim of the live
system is to use it as a visual recommendation toolkit for the human visual perception,
much like a third, automatic eye with high-lighted sections to investigate/inspect more
carefully by the doctor during the examination to improve the detection rate. While the
endoscopist performs the colonoscopy, the system analyzes the video frames recorded
by the colonoscope. At the beginning, we plan to show the physician optically (for
example, with a red or green frame around the video) when the system detects a
lesion in the actual frame or not. This can also be extended to the determination of
what disease the system most probably detected and provide this information to the
endoscopist. Apart from supporting the endoscopist during the colonoscopy, the system
can also be used to document the procedure. After the colonoscopy, an overview can be
given to the doctors where they can make changes or corrections, and add information.
This can then be stored for later purposes or used as a written endoscopy report.
Uninteresting parts of the video could be stored in a higher compressed way than
important segments with the benefit of less storage space needed. Further, it would
be practical to store high quality images of the most important parts. As de Lange
et al. [11] show, single images can be an efficient way to store important findings
from an examination. Another important part of computer aided live colonoscopies is
the potential for temporal analysis when videos are captured multiple times from the
same patient. Over the patient’s medical history, analytics run on the same spatial colon
parts to determine deltas (how development occurs) would be a meaningful addition to
the now available standards and most probably improve the patients care and survival
rate.

5.2. Wireless VCE

The multi-sensor VCE is swallowed in order to visualize the GI tract for subsequent
detection and diagnosis of GI diseases. Thus, in the future, people may be able to
buy VCEs at the pharmacy, and connect and deliver the video stream from the GI
tract to the phone over a wireless network. The video footage can be processed in the
phone or delivered to our system, which finally analyzes the video automatically. In
the best case, the first screening results are available within 8 hours after swallowing
the VCE, which is the time the camera typically spends traversing the GI tract. The

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 13, No. 3, Article 26, Publication date: May 2017.



26:20 M. Riegler et al.

current VCEs have a low resolution of 256 × 256 with 3-30FPS (adaptive frame rate
with a feedback loop from the receiver to the transmitter). They do not have optimum
lighting, making it more challenging to analyze small details in the images. Neverthe-
less, ongoing work tries to improve the state-of-the-art technology, which will make it
possible to use the methods and algorithms developed for colonoscopes also for VCEs
[25]. In the case of the colon, accuracy of existing methods is far below the required
precision and recall, and the processing of the algorithms does not scale in terms of
high-volume data. Each type of disease or irregularity requires interaction between
medical researchers dictating what the system must learn to detect, image processing
researchers investigating detection or summarization algorithms, hardware developers
to develop/produce/research sensors, and distributed processing researchers in order
to scale the data analytics of the sensor data. For other scenarios, like in the upper part
of the GI tract, there will be similar challenges and corresponding interaction between
research disciplines. There are large challenges with respect to accuracy (precision
and recall), scale of the processing, and hardware data quality because of different
manufacturers (Olympus and Given are the market leaders). The aim is to be a major
contributor in the area of medical imaging and sensor processing in the GI tract, as
well as storing, processing, and analyzing this type of data.

6. RELATED WORK

A system aiming to analyze the whole GI tract needs to fulfill several requirements such
as being able to process large amounts of data efficiently in real-time, while also being
complete and practically applicable so that it can support doctors during colonoscopies
or help analyzing data from VCEs. All requirements touch different areas of related
work. In the following, we will discuss the most relevant works for our EIR system.
Notice that no known existing complete algorithmic system is available, so we have to
relate our work with others at the sub-component level.

Annotation. Liu et al. [31] describe a very advanced annotation tool called Arthemis.
Arthemis is part of an integrated capturing and analysis system for colonoscopy, called
Endoscopic Multimedia Information System (EMIS). EMIS provides functionality for
collecting and archiving endoscopy videos. The use of an annotation tool for endoscopy
videos is further researched by Lux and Riegler [33]. This demo paper focuses on
common interaction methods for experts to annotate videos by recording speech and
drawing onto the video. The paper aims at gathering information about the recorded
videos in an easy and simple way, so that the annotation effort is minimally invasive
for the daily routine of the experts. The related work in the field of annotation shows
that it is crucial to integrate the annotation tool in a minimally invasive way within
the environment of the experts. It is very important to provide them with a solution,
which is very easy to use, and, at the same time, very easy to deploy in a restrictive
medical environment. The annotation sub-system in EIR builds up on technologies and
methods from the authors in Riegler et al. [43] and Lux [33].

Automatic analysis systems for the GI tract. Detection of diseases in the GI tract
has mostly focused on polyps. This is most probably due to the lack of data in the
medical field and polyps being a condition with at least some data available. Auto-
matic analysis of polyps in colonoscopies has attracted research attention for a long
time and several studies have been published [59, 60, 63]. However, there is a need
for complete scalable real-time detection systems, both for computer aided diagnosis
during colonoscopy examinations and for analysis of huge amounts of data from VCEs.
Furthermore, all of the related works are limited to a very specific use-case, which in
most cases is polyp detection for a specific type of camera. Several algorithms, methods,
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Table VIII. Performance Comparison of Polyp Detection of State-of-the-Art Systems

Publication/System What/Detection Types Recall/Sensitivity Precision Specificity Accuracy FPS Dataset Size

Wang et al. [62] polyp/edge, texture 0.977∗ – 0.957 – 10 1.8m frames
Tajbakhsh et al. [53] polyp/shape, color, texture 0.5 – – – – 35,000 frames
Park et al. [39] polyp/shape, color, texture 0.828 0.658 – – – 62 images
Wang et al. [61] polyp/shape, color, texture 0.814 – – – 0.14 1,513 images
Mamonov et al. [35] polyp/shape 0.47 – 0.90 – – 18,738 frames
Hwang et al. [20] polyp/shape 0.96 0.83 – – 15 8,621 frames
Li and Meng [28] tumor/textural pattern 0.886 – 0.963 0.924 – –
Zhou et al. [65] polyp/intensity 0.75 – 0.959 0.908 – –
Alexandre et al. [3] polyp/color pattern 0.937 – 0.769 – – 35 images
Kang et al. [24] polyp/shape, color – – – – 1 –
Cheng et al. [7] polyp/texture, color 0.862 – – – 0.08 74 images
Ameling et al. [4] polyp/texture AUC=0.95† – – – – 1,736 images

EIR extendible/multiple 0.985% 0.939% 0.725 0.877 ∼ 75‡ 18,781 frames
∗The sensitivity is based on the number of detected polyps; other papers use per frame detection.
†Reported only area under the curve (AUC) instead of sensitivity.
‡Detection and localization performed together. Detection performance alone is around 300FPS and for
localization around 100FPS.

and partial systems have been proposed and have achieved, at first glance, promising
results in their respective testing environments. However, in some cases, it is unclear
how well the approach would perform as a real system used in hospitals. Most of the
research conducted in this field uses rather small amounts of training and testing
data, making it difficult to generalize the methods beyond the specific dataset and test
scenarios. Therefore, overfitting for the specific datasets can be a problem and can lead
to unreliable results. Table VIII presents a summary of the most relevant approaches
in colonoscopies and polyp detection. The last row of the table shows our approaches’
performance to give a comparison. The first approach from Wang et al. [62] is the most
recent and best working one in the field of polyp detection. A list of more related work
can be found in their paper. As one can see in Table VIII, different methods provide
different metrics for measuring the performance and use different datasets for training
and testing. Moreover, almost all of them focus on polyp detection. Mamonov et al. [35]
presented an algorithm for a binary classifier to detect polyps in the colon. The method
is called binary classification with pre-selection, and it aims at reducing the amount
of frames that need to be manually inspected. The sensitivity of the algorithm with
regards to single input frames is significantly lower and only reaches 47%. A similar
approach is presented by Hwang et al. [20]. This approach also focuses on shape, in
particular on ellipses, which is a common shape for a polyp. Using this method, a frame
is first segmented into regions by a watershed-based image segmentation algorithm.
This algorithm is based on the observation that polyps are spherical or hemispherical
geometric elevations on the surrounding mucosa. Similar to Mamonov et al. [35], they
assume that multiple frames are available for one polyp and that a certain number
of false negatives is acceptable in order to balance the number of false positives. The
correctness of this assumption depends strongly on the frame rate of the camera that
is used for recording the video. As mentioned in the introduction, the best working and
complete system in the well-researched polyp detection field is Polyp-Alert [62], which
is able to give near real-time feedback during colonoscopies. This approach is also listed
as number one in Table VIII. The system can process 10 frames per second and uses
visual features and a rule-based classifier to detect the edges of polyps. Further, they
distinguish between clear frames and polyp frames in their detection. The researchers
report a performance of 97.7% correctly detected polyps based on their dataset, which
consists of 52 videos recorded using different colonoscopes. Unfortunately, the dataset
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is not publicly available, and therefore, an exact detection performance comparison
is not possible. Compared to our system, this system seems to reach higher detection
accuracy, but it appears that our system is faster in terms of processing time per frame
and can therefore detect polyps in real time. A comparison using the same hardware
and full-length videos is currently to be carried out together with the developers of
Polyp-Alert. Furthermore, our system is not designed and restricted to detect only
polyps, and can be expanded to any possible disease if we have the correct training
data. Another recent approach not limited to polyps is presented by Nawarathna et al.
[36] describing a method to detect bleeding, but also polyps in colonoscopy videos.

Deep Learning. Deep learning is probably the most promising approach we need to
explore further in EIR, and it is already very relevant for similar problems detecting,
for instance, breast cancer [57], polyp detection [53], or lung cancer [9]. Nevertheless,
such approaches are challenging to use in our use-case [8]. First, training is very com-
plicated and time consuming. Our system has to be fast and understandable since we
deal with patient data, where the outcome can differentiate between life and death.
This can lead to serious problems in the medical field since it is very difficult to evalu-
ate them properly [37]. Furthermore, one of the biggest challenges is that they require,
most of the time, a lot of training data. In the medical field, this is a very impor-
tant issue since it is hard to get data due to the lack of experts’ time (doctors have a
very high workload), and legal and ethical issues. Some common conditions, like colon
polyps, may reach the required amount of training data for deep learning, while other
endoscopic findings, like tattoos from previous endoscopic procedures (black colored
parts of the mucosa), are not that well documented, but still interesting to detect [46].
Nevertheless, for certain use-cases, such as presented in the work of Wang et al. [57], a
small amount of training data can lead to reasonable results. As shown in Table VIII,
recent neural network-based approaches for polyp detection are able to achieve inter-
esting results, but still use relatively small labeled datasets in terms of the number
of images or videos. Tajbakhsh et al. [53] presented a combined algorithm for a bi-
nary classifier to detect polyps in the colon, which was trained and tested on a 35,000
frames dataset with only 20 different polyps. The proposed polyp detection method
first selects multiple possible polyp locations in a frame using machine learning of
local polyp features such as color, texture, shape, and temporal information in multi-
ple scales. A generated set of locations is then processed by a number of convolution
feature-specialized neural networks and followed by results aggregation and frame
binary classification. The detection performance of the method is 0.002 false positive
per input frame at 50% sensitivity. A similar work is presented by Park et al. [39].
This approach focuses on shape detection via scale-invariant learning of hierarchical
features using convolutional neural networks. Experimental results presented in the
paper show that the method’s sensitivity reaches around 83% with 66% precision on
a 62 images dataset. Finally, it should be mentioned that neural networks are not
easy to design for obtaining results that are explainable to a doctor. In a multi-class
decision-based system, which is built to support medical doctors in decision-making,
the fact why the system made certain decisions is important information. Approaches
with a better understanding of the problem give a better explainable output that can
be directly translated to the real-world scenario [51]. To test our assumptions about
deep learning, we started conducting some experiments comparing deep learning ap-
proaches with our system. Initial experiments, based on implementations in Google
Tensorflow [1] for the classification part and the YOLO [41] and Tensorbox4 tracking
algorithms for the localization part, revealed that our system can outperform or, at

4https://github.com/Russell91/TensorBox.
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least, reach the same single- and multi-class classification and detection performance
as these systems, and that it is faster in training and new data processing if run on
the same hardware configuration. We proved that our system can be easily extended
adding new types of abnormalities. For the ASU-Mayo polyp dataset, the global feature
approach reached a F1 score of 0.961 and the deep learning–based approach of 0.936.
For our own created multi-disease dataset (which will be public available and share-
able in the future), the global feature approach reached a F1 score of 0.909 compared
to 0.875 for the deep learning approach. In the case of reduced amount of training
data, our system seems to perform better, which is an important factor in the medical
field. We conjecture that a combination of both approaches might be the best solution
for future extensions of EIR, and detailed experiments are presented in the work of
Pogorelov et al. [40].

7. CONCLUSION

In this article, a complete multimedia system for annotation, automatic disease de-
tection, and visualization in context of the GI tract has been presented. Architecting
the end-to-end EIR system has been largely motivated by the rapidly developing GI
problems in the medical domain, combined with our bold idea that future GI screening
can be performed relatively non-invasively at a scale where those interested can afford
to be screened regularly, and it does nor require a quadrupling or so in number of GI
specialists. An algorithmic end-to-end approach is a practical solution, and our EIR
system is the first end-to-end multimedia GI system that is both accurate enough, and
performs at a level where it can be used in real time. We described the whole system in
detail from the annotation, automatic analysis, and detection to visualization. Further,
we presented a detailed evaluation of the performance of the system in the area of
detection accuracy, processing time, and scalability. The evaluation showed that the
system achieves equal or better results than state-of-the-art in terms of accuracy, i.e.,
reaching a detection accuracy for polyps of more than 90% using the largest available
dataset today (the ASU-Mayo clinic polyp dataset). On the other hand, our system
outperforms other proposed systems when it comes to system performance. We showed
that it is capable of scaling to fulfill big data requirements and that it can be used in
real-time scenarios, i.e., in our live colonoscopy scenario, EIR processes HD resolution
videos at about 300FPS. Moreover, we participated in a grand challenge to compare
the system to other methods and could achieve good results for a very specific use-case
with a system that is able to be used for many different use-cases at the same time.
Additionally, we presented a real clinical setting implementation and use-case of our
system that is currently being built with our hospital partners. For future work, we
plan to include different abnormalities to detect and to even further improve the detec-
tion and localization accuracy. We are also collecting more training data and knowledge
for the system with the help of medical experts from different collaborating hospitals
in Sweden, Norway, Spain, Italy, and Japan. It is important to get data from different
hospitals to be able to build a general system that is not shaped on a specific camera
type or setup.
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ABSTRACT
Health care has a long history of adopting technology to save lives
and improve the quality of living. Visual information is frequently
applied for disease detection and assessment, and the established
fields of computer vision and medical imaging provide essential
tools. It is, however, a misconception that disease detection and
assessment are provided exclusively by these fields and that they
provide the solution for all challenges. Integration and analysis of
data from several sources, real-time processing, and the assessment
of usefulness for end-users are core competences of the multime-
dia community and are required for the successful improvement
of health care systems. For the benefit of society, the multimedia
community should recognize the challenges of the medical world
that they are uniquely qualified to address. We have conducted
initial investigations into two use cases surrounding diseases of
the gastrointestinal (GI) tract, where the detection of abnormali-
ties provides the largest chance of successful treatment if the initial
observation of disease indicators occurs before the patient notices
any symptoms. Although such detection is typically provided vi-
sually by applying an endoscope, we are facing a multitude of new
multimedia challenges that differ between use cases. In real-time
assistance for colonoscopy, we combine sensor information about
camera position and direction to aid in detecting, investigate means
for providing support to doctors in unobtrusive ways, and assist in
reporting. In the area of large-scale capsular endoscopy, we inves-
tigate questions of scalability, performance and energy efficiency
for the recording phase, and combine video summarization and re-
trieval questions for analysis.

CCS Concepts
•Information systems→Multimedia information systems; •Applied
computing→ Health care information systems;

Keywords
Multimedia; Medical; Multimedia System

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MM ’16, October 15 - 19, 2016, Amsterdam, Netherlands
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3603-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2964284.2976760

1. INTRODUCTION

Figure 1: GI tract
(shutterstock.com)

It is a typical assumption that visual
analysis as it is already provided by
the computer vision and medical image
processing communities today is suffi-
cient to solve health care multimedia
challenges. Although we concede that
computer vision and medical imaging
methods are indeed essential contribu-
tors to promising approaches, we have
come to the understanding that analyz-
ing images and videos alone do not
solve the challenges in medical fields such as endoscopy or ultra-
sound. Existing computer vision approaches do not make serious
use of the multitude of additional information sources including
sensors, temporal and users information.

Multimedia approaches are able to go beyond visual signals and
also make use of heterogeneous sources including, e.g., the posi-
tion sensors or fiber length measurement. Instead of considering
the potential weakness of such signals as a nuisance, multimedia
researchers are able to find ways to exploit them in combination
to achieve the best possible results given the information available.
Last but not least, multimedia cares first and foremost about the hu-
man user and assesses the feasibility of the resulting system. Cor-
rect and accurate diagnosis, efficient examinations and scalability
are all critical for a health care system.

On the basis of these considerations, it is clear that we need to
work on the challenge of realizing medical multimedia systems,
which we define as follows: a medical multimedia system is an
interactive system, which provides support for diagnostics, exam-
ination, surgery, reporting and teaching in a medical setting by
combining all available information sources and putting them in
the hands of medical professionals or patients. We note that some
medical information systems may be fully automatic, but we still
consider them to be at some level interactive, since a medical pro-
fessional and/or a patient must be in the loop to interpret and act on
the results.

In some areas of the human body, such as the gastrointestinal
(GI) tract – our focus in this paper – the detection of abnormalities
and diseases directly improves the chance of successful treatment,
if the initial observation of disease indicators can be made visually,
and also before the patient notices any symptoms. The GI tract is
important since it is the site of many common diseases with high
mortality rates. For example, three of the six most common cancer
types are located in the GI tract (Figure 1), with a large number of
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cancers detected yearly and with a high mortality rate [41]. Sec-
tion 2 provides more details about diseases of the GI tract and their
relevance, but clearly, early detection is important for patient sur-
vival. Currently, the recommended procedure for disease detection
is gastrointestinal flexible endoscopy, i.e., the use of a flexible tube
containing a lens system (cf. Figure 2(a).) Early detection and re-
moval of cancer precursors to reduce cancer incidence makes regu-
lar screening of defined cohorts of the population necessary. Its im-
plementation is obstructed by low willingness to undertake the un-
pleasant procedure, but also by inhibitive resource consumptions,
and particular in terms of time required from the limited number of
qualified medical staff. Alleviating these two limitations is essen-
tial and demands research into less intrusive detection procedures
and an increased automatization of both detection and analysis of
abnormalities.

There is a multitude of different use cases for automated di-
agnosis support, even within the limited field of GI tract inspec-
tion, which provide different opportunities beyond image analy-
sis, and which require different kinds of assistance for medical ex-
perts. In our case, the use cases range from training support through
archival, retrieval, and summarization for offline analysis to real-
time annotation during endoscopy. The following quote from one
of our discussions with medical specialists in endoscopy is bound
to trigger the imagination of multimedia researchers with its hints
for potential use cases:

"I am performing thousands of endoscopies, but I still miss ab-
normalities and have difficulties to analyze what I see. I would
have liked more assisted examinations, and there is no possibili-
ties to share these data with my colleagues or retrieve them when
needed. It is just stored on a computer somewhere. I don’t know
where, and I don’t think the IT support knows either... Sadly, we
are collecting a lot of data, but we do not benefit from it at all. Do
you have any idea what we can do with such data? I would be for
example really nice if I could search for similar cases in our image
database or use it to create automatic report. Reporting steals a lot
of our time every day." – A Norwegian doctor, September 2015.

This quote directly reveals the need for real-time video analy-
sis, storage, indexing, sharing and retrieval, audio transcripts, auto-
matic annotation, action recognition, and probably more. After lis-
tening to this and many similar statements about insufficient time
for manual analysis and unused multimedia data, we teamed up
with specialists in the area of GI diseases to investigate how multi-
media research can improve medical systems and patient treatment.

To aid and expand GI tract examinations, we have started the
development of a multimedia system, which is called EIR after the
Norse goddess of medical skills. It supports endoscopists in the
detection and interpretation of diseases in the entire GI tract. Our
aim is to develop both, (i) a live system assisting the detection and
analysis of irregularities during colonoscopies and (ii) a future fully
automated screening for the GI tract using a wireless video capsule
endoscope (VCE).

In the first use case, we consider the provision of live assistance
during classical colonoscopy. To support live colonoscopy while
the procedure is running, the live-assisted system must process the
input video stream from the endoscope (shown in Figure 2(a)) in
real-time, and indicate automatically detected polyp candidates on
a live video feed from the endoscope.

This approach is not meant to reduce the attention that medi-
cal doctors (endoscopists) performing a colonoscopy have to pay
to the endoscopic video. It is rather meant to reduce the number
of overlooked abnormalities and assist in the assessment of ab-
normalities, for example by providing size estimates and surface
structure analysis to ease the distinction of polyps and regions that

(a) Colonoscopy equipment (b) VCE capsule (camera pill)

Figure 2: Endoscopy vs. wireless capsule endoscopy (VCE).

should raise concern from those that are better ignored. Obviously,
live assistance has in the past been inhibited by excessive hardware
costs, which prevented the creation and deployment of system that
could perform in real-time. Our experimental prototype described
in Section 4 makes use of modern parallel hardware, and shows
very promising results, although we have only scratched the sur-
face of the problem.

Our second use case is relevant in scaling GI tract examination
to population-wide screening. This use case imposes strict require-
ments on the accuracy of the detection to avoid false negative find-
ings (overlooking a disease). It is also challenging in terms of re-
source consumption, but the most precious resource in this case is
the time required of endoscopists.

We believe that screening can become feasible through the use
of VCEs (shown in Figure 2(b)), which can reduce several of the
inconveniences and burdens of flexible endoscopy, although its cur-
rent technical restrictions limit its usefulness. Nevertheless, while
VCEs that could provide sufficient information were out of reach
just a few years ago, it is now up to us to investigate the appropri-
ate trade-off decisions on the recording side, which must consider
frame rate, frame rate variability, scene lighting, storage space,
resolution, quantization, energy consumption, detection rate and
more. When we solve this challenge, VCEs become useful for the
physician if the six to eight hours long video of the VCE’s travel
through the human GI tract can be summarized automatically in
less than an hour. Such summarization is dominated by the chal-
lenges of unsupervised recording and the subsequent need to avoid
false negatives.

We hope that our paper encourages the multimedia community to
help improving the health care system by applying their knowledge
and methods to reach the next level of computer and multimedia
assisted diagnosis, detection and interpretation of abnormalities. In
this area, computer vision and medical imaging have created visual
representations of the interior of a body. To automatically detect
and locate abnormalities, visual representations are not sufficient.
There is a need for image and video processing, analysis, infor-
mation search and retrieval, combination with other sensor data,
assistance by medical experts, etc. – clearly multimedia – and it all
needs integration and efficient processing. Therefore, in this paper,
we look beyond computer vision and medical imaging and show the
potential of multimedia research and that it goes far beyond well-
known scenarios like analysis of content on YouTube and Flickr.

The paper is structured as follows. First we give an overview
of health care multimedia challenges focusing on the field of GI
endoscopy as an example of a medical field. That is followed by
an overview of related work and current technologies. After that
we present a showcase for a multimedia system for GI endoscopies
to discuss the complexity and possibilities of medicine teamed up
with multimedia. This part is underlined by a preliminary results
section that should give an idea how such a multimedia application
can be evaluated and what is important. Finally and most important
we give an outlook and a summary including detailed description
of how multimedia can be applied and what is needed.
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(a) Colon polyp (b) Colorectal cancer (c) Crohn’s disease (d) Diverticulosis (e) Bleeding (f) Anastomosis

Figure 3: A non-exhaustive set of examples of abnormalities that can be diagnosed using colonoscopy.

2. HEALTH MULTIMEDIA CHALLENGES
There are large societal challenges in the health care systems

worldwide. If we look at our GI tract case study, about 2.8 millions
of new luminal GI cancers (esophagus, stomach, colorectal) are de-
tected yearly in the world, and the mortality is about 65% [41]. In
addition to these cancers, numerous other chronic diseases (see Fig-
ure 3) affect the human GI tract. The most common ones include
gastroesophageal reflux disease, peptic ulcer disease, inflammatory
bowel disease, celiac disease and chronic infections. All have a
significant impact on the patients’ health-related quality of life [7]
and gastroenterology is one of the largest medical branches.

Nevertheless, there are unmet needs and potentials for improve-
ments, which can be remedied by introducing better and more effi-
cient digital medical systems. For colorectal cancer (CRC), which
has one of the highest incidences and mortality of the diseases in
the GI tract, early detection is essential for a good prognosis and
treatment. Minimally invasive endoscopic and surgical treatment
is most often curative in early stages (I-II) with a 5-year survival
probability of more than 90%, but in advanced stages (III-IV), ra-
diation and/or chemotherapy is often required, and it has a 5-year
survival of only 10-30% [6].

The current European Union guidelines therefore recommend
screening for CRC [36]. Several screening methods exist, e.g., fe-
cal immunochemical tests (FITs), sigmoidoscopy screening, com-
puted tomography (CT) scans and colonoscopy. However, in ran-
domized trials, only endoscopic methods have shown a reduced
CRC incidence. However, it is not the ideal screening test, for a
number of reasons. Each examination demands a significant amount
of time from a medical professional and the procedure is unpleas-
ant and can cause great discomfort for the patient [35] (Figure 2(a)).
Moreover, on average, 20% of polyps, precursors of CRC, are missed
or incompletely removed, i.e., the risk of getting CRC depends
largely on the endoscopist’s ability to detect polyps [15].

Furthermore, there are high costs related to these procedures. In
the US, colonoscopy is the most expensive cancer screening pro-
cess with an annual cost of $10 billion dollars, i.e., an average of
$1,100 per examination (up to $6,000 in New York) [32, 33]. In the
United Kingdom, the costs are around $2,700 per examination [29].
To meet the need for cost-effectiveness, improved diagnostics and
enhanced efficiency in health care systems, the proposed techni-
cal solution targets ground-breaking research and innovation for
global major health issues like colorectal, gastric and stomach can-
cer worldwide. By developing and studying an automatic system
for a VCE (Figure 2(b)), the aim is to make these examinations
more easily accessible for patients and participants in screening
programs, i.e., making the public health care system more scalable
and cost-effective. It is also important that multimedia researchers
address some of the challenges identified in the EU health policy,
implemented through the Health Strategy, specially in the topics
of prevention, health care access equalization, maintaining health
into old age, and dynamic health systems incorporating new tech-
nologies. The optimal goal is to contribute in the area of medical
multimedia for analysis as well as storage and processing of this
type of data. Such next-generation big data applications, especially

in the area of medicine, are frontiers for innovation, competition
and productivity [20], where there are large initiatives both in the
EU [1] and the US [21, 2].

3. RELATED WORK AND NEW TRENDS
To the best of our knowledge, currently, no start-to-end interac-

tive medical multimedia system for annotating and analyzing data
and computer aided diagnosis for the medical field exists. If one
takes a closer look into the work of computer vision or medical
image processing, it becomes clear that the complete loop is not
their main research interest. A complete medical multimedia sys-
tem including different multimedia applications that can fulfill the
visions and objectives of the medical field must (i) have high detec-
tion accuracy (sensitivity, recall, precision), (ii) have an extensible
and adaptable processing pipeline, (iv) support real-time process-
ing to provide live feedback during for example endoscopy exam-
inations, (v) support large-scale batch processing of, for example,
VCE videos, (vi) be privacy-preserving, and (vii) visualize detec-
tion feedback to medical personnel. Several generally relevant sys-
tems fulfilling parts of the requirement list exist, but very few target
medical scenarios, and no existing multimedia system matches all
these requirements.

3.1 GI Tract Endoscopy Technology
There are several providers of endoscopy systems and VCE de-

vices. Last generation equipment for manual procedures like colono-
scopy and gastroscopy provides video with high resolution and
high frame rates. There is, however, no computer-aided diagnos-
tic feedback. In this respect, Polyp-Alert [40] is the most promis-
ing with polyp detection capabilities, but with the main purpose
of evaluating how well the procedures are performed. For live
analysis of endoscopy videos, our target system aims to go far be-
yond the currently existing systems. The other approach to record
videos of the GI tract is VCEs using a small capsule type device
(a 11mm×25mm pill), which has at least one image sensor, an-
tenna, battery, light source and wireless transceiver. The capsule
is swallowed to record the GI tract. There are several vendors
providing such capsules, like IntroMedic, CapsoVision, Medtronic
(Given) and Olympus. The current VCEs often have a variable
framerate (increasing the framerate to about 30-35 FPS when en-
tering the small intestine), but a rather low resolution ranging from
256 × 256 to 400 × 600. One of the main challenges for use of
VCEs is man-hours of medical staff required for analysis. There
are about 216,000 images per examination, and a very experienced
endoscopist needs at least 30 to 60 minutes to process the video
and possible sensor data. Therefore, it is important to develop au-
tomatic methods that can reduce the burden on medical staff and
speed up the analysis of the videos. Currently, the software can
segment the videos and can allow endoscopists to fast forward and
look at multiple videos at the same time (probably affecting the
detection accuracy). Moreover, some software includes small de-
tection components that provides only vague “hints", for example
about the detection of the color red, which may indicate bleeding.
Other main limitations with VCEs are that the lack of means for
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cleaning particles (food/stool) in the bowels, and their uncontrolled
forward movement through the bowel that cannot be guided to take
a close-up picture or a tissue sample from detected lesions.

Compared to traditional endoscopy examinations, with VCE, pa-
tient discomfort is decreased, and the size of the examined co-
hort may be increased. However, the analysis still requires a huge
amount of manual labor and the image quality is substantially lower.
Our research targets a system providing a far more advanced computer-
assisted disease detection in general, detecting endoscopic findings
with high accuracy, with reduced compute-resource consumption,
to increase the number of screened people without spending huge
amounts of time on manual analysis.

Current systems use mainly video and images for analysis. How-
ever, there is a large potential for adding more information. For
example, knowing the position of the camera (either VCE or endo-
scope may narrow down the search for endoscopic findings). Fur-
thermore, the VCEs and endoscopes will in the future be equipped
with new sensors for biomarkers (bacteria, DNA, RNA. . . ) and pH-
meters (acid) [12], and research introduces the idea of VCEs with
“legs” for controlled movement and “arms” for taking samples and
injecting medication locally [34].

3.2 Abnormality Detection
As described above, we target detection of abnormalities in the

entire GI tract. Currently, most existing systems mainly aim for de-
tection of polyps in the colon. The main reason is the high clinical
relevance and prevalence of CRC. Several studies have been pub-
lished, e.g., [10, 11, 14, 19, 22, 23, 24, 25, 37, 38]. These related
papers address polyp detection in several different ways. For exam-
ple by using neural networks or handcrafted features like detection
of round or ellipse shapes [14, 19], and by detecting the circular
content areas [22, 23]. In Table 1, we compare the most promising
and relevant systems according to reported performance (though
not tested on the same dataset, and not all report the same met-
rics). The most recent and complete system for polyp detection is
Polyp-Alert [40], which is able to give near real-time feedback dur-
ing colonoscopies (10 FPS) with a very high accuracy. However,
not many complete multimedia systems exist, and none of them is
able to do real-time detection for use as a live support system dur-
ing procedures. This means that endoscopists have to re-visit the
videos after procedures, adding to the typically already crowded
schedule of medical experts. Furthermore, all of them are limited
to a very specific use case, and they all fail in one or more of the
requirements of a future automatic system. Thus, there are a lot
of open challenges that can be addressed by the multimedia com-
munity. With EIR, as a first step, we already perform at the level
of state-of-the-art systems (last row of Table 1). Our ambitions are
(i) to extend and improve our prototype far beyond both the cur-
rent version of EIR and state-of-the-art, but more importantly, (ii)
to inspire other multimedia researchers to explore the medical field.

4. SHOWCASE FOR HOW-TO
MULTIMEDIA IN MEDICINE

To show how complex the medical field is and why multimedia
research is needed, we developed the EIR multimedia system for
automatic disease detection in the GI tract. We target the entire
GI tract because not just the colon (the focus of most of the com-
puter vision and medical image processing community) can contain
diseases that should be detected. Figure 4 gives an overview of this
system. The main requirements of such a system are (i) ease of use,
(ii) ease of extending to different diseases, (iii) efficient real-time
handling of multimedia content for both scale (VCEs) and support

Publication/ What/ Recall/ Dataset
System Detection Types Sensitivity Precision Specificity Accuracy FPS Size

Wang et al. [40] polyp/edge, texture 97.7%∗ – 95.7% – 10 1.8m frames

Wang et al. [39] polyp/shape,color,texture 81.4% – – – 0.14 1, 513 images

Mamonov et al. [19] polyp/shape 47% – 90% – – 18, 738 frames

Hwang et al. [14] polyp/shape 96% 83% – – 15 8, 621 frames

Li and Meng [17] tumor/textural pattern 88.6% – 96.3% 92.4% – –

Zhou et al. [42] polyp/intensity 75% – 95.92% 90.8% – –

Alexandre et al. [4] polyp/color pattern 93.7% – 76.9% – – 35 images

Kang et al. [16] polyp/shape,color – – – – 1 –

Cheng et al. [9] polyp/texture,color 86.2% – – – 0.08 74 images

Ameling et al. [5] polyp/texture AUC=95% – – – – 1, 736 images

EIR extendible/multiple 98.5% 93.88% 72.5% 87.7% ∼300 18, 781 frames
∗ The sensitivity is based on the number of detected polyps, other papers use per frame detection.

Table 1: Performance comparison of polyp detection ap-
proaches of state-of-the-art systems. Not all performance mea-
surements are available ("–").

Figure 4: EIR system: annotation and knowledge transfer, de-
tection and automatic analysis and computer aided diagnosis.

for live examinations, and (iv) high classification performance with
minimal false negative classification results. To satisfy these re-
quirements, the system has three main parts: The annotation and
knowledge transfer sub-system, the detection and automatic analy-
sis sub-system, and the visualization and computer aided diagnosis
sub-system.

4.1 Annotation and Knowledge Transfer
The purpose of the annotation and knowledge transfer sub-system

is to efficiently collect training data for the detection and automatic
analysis sub-system. It is well known that training data is very im-
portant to make a good classification system. Additionally, in the
medical field, the time of experts and annotated data are two very
scarce resources. This is primarily because of high every-day work-
load for physicians, but also due to medical-legal issues. In terms
of colonoscopy videos, the objective would be training a classifier
for automatically detecting CRC, or its precursor lesions, colorectal
polyps in multimedia data such as videos, sensor data and images.
In our example system, we therefore developed an efficient semi-
automatic annotation and knowledge transfer sub-system [3]. With
a focus on ease of use and the minimal time requirements for anno-
tation, our prototype was designed with a minimal level of required
interaction.

The specialist’s knowledge is only needed for the first identifica-
tion of abnormalities and to tag them accordingly. This step is done
manually by selecting any regions of interest in a video or image
sequence and by annotation, i.e., providing information about im-
portance and indicators for sensor data and patient records. After
the manual annotation our prototype application uses object track-
ing to suggest annotations in further video frames by adjusting po-
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sition and size of regions of interest as well as by automatically
extending the annotation throughout a videos timeline. This data
is then used in the analysis and detection sub-system. What we
also have to learn from the medical doctors is how to interpret the
various different data input sources, e.g., how to interpret the sen-
sor data in the future, the significance of different pH (acidity) or
biomarkers. It is important that multimedia researchers work hand
in hand with the medical experts to gain this knowledge. With-
out efficient data collection tools, this will be an impossible task
because of the time restrictions of medical personnel.

4.2 Detection and Automatic Analysis
The sub-system for detection and automatic analysis is designed

in a modular way, making it possible to easily extend it to sup-
port different disease detectors, as well as other tasks like size de-
termination and recognition of anatomical landmarks. Currently,
it consists of two parts: (i) the detection sub-system that detects
irregularities in video frames and images, and (ii) the localization
sub-system that localizes the exact position of an abnormality in the
frame. This part of the system is designed to detect whether there
is something abnormal in a frame of the video (or image) or not.
All the data that we process can be separated into two disjoint sets.
These two sets contain example images, sensor data (temperature,
blood, etc.) and other information that is useful for endoscopic
findings, and images without any abnormality. It is important to
point out, that the content based information images must be ex-
tended with other data like sensor output or information extracted
from patient records to reach optimal results which makes it not a
pure computer vision task. Each of these sets can be seen as the
model for a specific disease. The modularity makes it possible to
create a pipeline to for example first detect a polyp and then distin-
guish between a polyp with low or high risk of becoming a CRC
by using for example the NICE classification1. To compare and de-
termine the endoscopic findings in a given video frame, we use as
a first approach global image features, i.e., because they are easy
and fast to calculate, and at this stage, we do not need the exact
position.

The basic idea is based on an improved version of a search-based
method for image classification [27]. We chose this method be-
cause it is easy to implement and understand, and it gives us a
first insight of the problem. Our experiments show that the detec-
tion needs good training data. However, the number of examples
needed is rather low compared to other methods like deep learning.
This is an important advantage at this point since there is not much
data available. The classifier2 tries to identify the frames that most
probably contain a certain abnormality. Based on the classification
of the results, the detection sub-system decides which endoscopic
finding the input frame belongs to. This is done using late fusion of
different classifiers. At the moment, we have one classifier for each
global image feature. It is important to point out that the system
will be expanded with other classifiers for sensor and audio data.

In contrast to other classifiers that are commonly used, this clas-
sifier is not trained in a separate learning step. Instead, the classifier
searches previously generated Lucene indexes, which can be seen
as the model, for similar visual features. The output is weighted
based on the ranked list of the search results. Lucene indexes can
contain all the information for one data point in one record (global
features, sensor data, patient data, etc.). The system also includes
a benchmarking function that will output evaluation information,
and an HTML page with a visual representation of the results. For

1http://www.wipo.int/classifications/nice/en/
2To invite others to the area, we have released the basic algorithm as open source:
OpenSea: https://bitbucket.org/mpg_projects/opensea.

all video frames, we also can perform a localization. This is a pure
computer vision problem and therefore we will not go in detail. It
uses the information from the detection sub-system as a starting
point, which means that it only processes frames that are already
classified to contain an endoscopic finding. The processing of the
images is implemented as a sequence of intra-frame pre- and main-
filters. The output of this system can then further be used in for
example a computer aided diagnosis program to help the doctor
determining the size of a polyp or for reporting purposes.

4.3 Visualization and Diagnosis
One of the critical parts of each examination is the process of

analyzing, reporting, facilitating and using multimedia to prepare
the final result, i.e., the diagnosis and the report on the procedure.
Medical doctors invest a significant part of their time on this task,
and they are therefore in need of multimedia systems that help min-
imizing errors and increase the efficiency in this process.

For our experiments, we developed a web based visualization
and annotation application to support medical experts with the goal
of creating software that is easy to use and where it is easy to share
data amongst participating medical experts. Our prototype facili-
tates the output of systems detection and localization part and cre-
ates a web based visualization which will be combined with a video
sharing platform [13] where doctors are able to watch, archive, an-
notate and share information. We chose to use a centralized system
based on web technologies to (i) minimize the necessary installs on
client computers (with the current approach, a modern web browser
is the only requirement), (ii) to allow for comfortable sharing of re-
sults and content with other experts, and (iii) to not duplicate data
but use a centralized storage for multimedia data and annotations.
This of course opens up questions about serving sensitive patient
data over IP networks and leads to interesting research and orga-
nizational questions how to solve the data security problem, which
is also an emerging field for the multimedia community, but data
security is for now beyond the scope of the first EIR prototype.

While our first prototype is working as intended, the interplay
between manually created content and automatically created con-
tent can still be improved. For example, applying object tracking
algorithms is very difficult and often requires manual corrections.
Most of the work in this step is done by the software end-users
still need to navigate to the previously marked irregularities and
playback the video from that point for the software to track the
marked region on subsequent frames. Depending on the quality
of the video and the speed of camera movement, user interven-
tion is needed to assure a high quality of tracking. One can see,
that there is still a fair amount of manual work involved, which
makes it not really useful for medical experts. However, using a
specialized – yet to be improved – tracking algorithm substantially
reduces the time needed to, for example, create training videos or
even datasets. Moreover, medical expert skills are maybe no longer
necessarily required as the task of annotation correction is about
tracking regions and adjusting rectangular dimensions rather than
actually detecting or recognizing irregularities. This task could for
example be outsourced using crowdsourcing. Our prototype visu-
alization and annotation tool might be considered very basic, and
there are tools resulting from multimedia research in existence that
can be utilized for being a computer aided diagnosis system, but our
approach already led to a benefit for the medical experts, allowing
them to annotate and share data with other experts. Another area
of multimedia, namely text-to-speech and text processing, could
lead to great improvements in the reporting. When the endoscopic
examination is completed the doctors have to transcribe what they
visually observed into a written report following a standard proto-
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col and using an internationally defined minimal standard termi-
nology. This is a time consuming task and important information
is sometimes forgotten or omitted. Consequently, computer based
automatic transcription of audio information and combination of it
with visual information in to a written patient record will probably
increase the quality of the report and would substantially reduce
the doctors workload. This will also make it possible to translate
difficult medical terms into a report for the patient. Finally, not just
the applications are important but also an understanding of how hu-
mans perceive multimedia content and how different aspects of the
content influence them differently.

5. PRELIMINARY RESULTS
If multimedia researchers decide to work in the field of medicine

we also have to make sure that our systems and applications are
useful and accurate enough and achieve the required performance.
Therefore, we tested our preliminary prototype in terms of accu-
racy and system performance. We used a computer with a dual
2.40GHz Intel Xeon CPUs (E5-2630), 16 physical CPU cores (32
with hyper-threading), 32GB of RAM, dual NVIDIA Corporation
GM200 GeForce GTX TITAN X GPUs, a 256GB SSD and Ubuntu
Linux. Moreover, we used the ASU-Mayo Clinic polyp database3

which currently is the largest publicly available dataset consisting
of 20 videos with a total of 18, 781 frames and different resolutions
up to full HD [31]. In these experiments, we implemented the sys-
tem in Java, C++ and CUDA (for GPUs). We did not include any
other data apart from the visual information, such as sensor data,
etc., but this will be an important step for the future. For example,
using results from a fecal blood test or temperature data will most
probably increase the classification performance.
1) Detection Accuracy. To evaluate detection accuracy, we used
the common standard metrics precision, recall and F1 score. We
conducted a leave-one-out cross-validation to evaluate the system
which is a method that assesses the generalization of a predictive
model.

The system that we have developed allows us to use several dif-
ferent global image features for the classification. The more image
features we use, the more computationally expensive the classifi-
cation becomes. Also, not all image features are equally impor-
tant or provide equally good results for our purpose. As a first
step, we therefore need to find out which image features we want
to use for classification. In order to understand which image fea-
tures provide the best results, we generated indexes containing all
possible features provided by LIRE [18]. These indexes were used
for several different measurements and also for the leave-one-out
cross-validation. Using our detection system, the built-in metrics
functionality can provide information on the performance of differ-
ent image features for benchmarking. Further, it provides us with
separate information for every single image feature, as well as the
late fusion of all the selected image features.

For our first test, we ran the detection with all possible image
features selected. We then combined the reported values for true-
positives, true-negatives, false-positives and false-negatives for all
the runs, and calculated the metrics for the combined values. The
single image feature that generally achieves the best score is CEDD,
which is discussed in detail in [8]. Further, also the image features
JCD, Edge Histogram, Rotation Invariant Local Binary Patterns,
Tamura and Joint Histogram achieve very good values. The late fu-
sion of all the image features even achieves slightly better results.
However, it is impractical to do a late fusion of all these image
features as the calculation, indexing and searching of all image fea-

3http://polyp.grand-challenge.org/site/Polyp/AsuMayo/

tures is computationally expensive. Therefore, we want to find a
small subset of two image features, which provides optimal results
despite minimizing the computational effort.

Based on the evaluation of different combinations of image fea-
tures the image features JCD and Tamura seemed to be the best
ones for our performance measurements. To assess the actual per-
formance of the classifier combining these two image features, we
ran the leave-one-out cross-validation over all available video se-
quences. With these settings, we achieve an average precision of
0.889, an average recall of 0.964 and an average F1 score value of
0.916. The problem with this average calculation is that different
video sequences contribute values based on different numbers of
video frames. If we weight the values contributed by every sin-
gle video sequence with the number of frames in the sequence,
we achieved an average precision of 0.9388, an average recall of
0.9850, and an average F1 score value of 0.9613. In other words,
these results mean that we can detect polyps with a precision of
almost 94%, and we detect almost 99% of all frames containing
polyps. The detailed results compared to state-of-the-art systems
are presented in Table 1. Furthermore, for the localization of the
polyps in the frames, we reached an average precision of 0.3207, a
recall of 0.3183 and a F1 score of 0.3195. These values are low in
absolute terms and show how complex and difficult it is to make a
multimedia system that is really useful for the medical doctors.

Obviously, more research is needed such as neural networks,
more data, different classifiers, include humans in the loop, and
methods have to be developed that can help to measure if perfor-
mance is sufficient compared to the user needs. However, the mul-
timedia community has to be aware that we cannot just apply our
methods that we are used to use in this new field. Stated plainly,
detecting cars or cats is not the same as detecting polyps or bleed-
ings. For example, neural networks are conceptually easy to un-
derstand and lately large amount of academic research has been
done on them. Results recently reported on for example the Ima-
geNet dataset look quite promising [11]. Nevertheless, they have
some negative aspects that make them less useful for the medical
field [10]. First, training is very complicated and takes a long time.
Our system has to be fast and understandable since we deal with
patient data, and the outcome can differentiate between life and
death. Therefore, a black box approach, that has difficulties to ex-
plain certain decision made, seems to be the second best way to
solve a problem that has to be understood very well by all users.
This can lead to serious problems in the medical field since it is
not possible to evaluate them properly, and there will always be a
chance that they completely fail without being aware of it [26]. The
best way is still to understand the problem and then solve it. This of
course comes with a challenge for the multimedia community. We
have to test our current methods and most probably develop new,
handcrafted algorithms and tools from scratch for this new field.
A further problem of neural networks is that they require a lot of
training data. In the medical field, this is a very important issue
since it is hard to get data due to the lack of experts time (doctors
have a very high workload) and legal and ethical issues for being
able to share data among countries or even hospitals in the same
country. Some common conditions, like colon polyps, may reach
the required amount of training data for a neural network while
other endoscopic findings, like for example tattoos from previous
endoscopic procedures (black colored parts of the mucosa), are not
that well documented, but still important to detect [28]. Finally,
neural networks are not easy to design for probabilistic results. In
a multi class decision based system, that is built to support medical
doctors in decision making, the probability is an important informa-
tion. Approaches with a better understanding of the problem will
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give a much more accurate probabilistic score that can be directly
translated to the real world scenario [30].
2) Real-Time System Performance. One further requirement for
the system and the medical field in general is scalability and execu-
tion performance. This requirement comes with some challenges
like for example lack of actual hardware (it is in general hard to
replace hardware or operating systems in hospitals due to security
and system restrictions), not being able to use distributed systems
and lack of funding for new hardware (e.g., Norwegian hospitals
in 2016 still use Windows XP and Internet Explorer 6 even though
funding is good). These restrictions makes it very challenging for
researchers to develop efficient algorithms that are also scale able
on the large amount of data that they will have to process. There-
fore sophisticated methods are needed that run efficient in terms of
speed and hardware need but at the same time achieve good per-
formance. Based on our example system we present a experiment
that shows how this challenges can be solved using multimedia sys-
tems knowledge and methods. For the experiments, we decided to
use the configuration of the system that performed best in the ac-
curacy experiment. In our use case of supporting doctors during
live colonoscopies, it is important to reach real-time performance
in terms of processing a video and several other input signal at the
same time and reach a frame rate of not less than 30 FPS (output
rate of current endoscopes). The performance of the detection is
important, since the system should provide a result as fast as pos-
sible and not slower than 30 FPS making it usable for live appli-
cations. Figure 5(a) shows the detection sub-system performance
in terms of FPS for the highest video resolution of 1920 × 1080.
It depicts performance for all different detection algorithm imple-
mentations (Java, C++ and GPU) and different combinations of uti-
lized hardware resources (from 1 to 32 CPU cores and none, 1 or 2
GPUs). For the full HD videos, the required frame rate of 30 FPS is
reached using 8, 5 and 1 CPU cores in parallel for the Java, the C++
and the GPU implementations, respectively. Increasing the number
of used CPU cores also increases the performance for all imple-
mentations, and the system reaches the maximum performance of
330 FPS with 2 GPUs and 25 CPU cores. A slight decrease of
the performance can be observed for a high number of used CPU
cores. This is caused by an increased overhead for context switch-
ing and competition for resource. Figures 5(b) and 5(c) show the
detection sub-system performance in terms of FPS for the videos
with smaller resolution. The maximum performance of 430 (for
856 × 480 resolution) and 453 (for 712 × 480 resolution) FPS is
reached using 2 GPUs and 18 and 16 CPU cores. For localization
which is more computationally expensive (plots not shown), the
maximum performances observed are 129, 246 and 283 FPS for
1920× 1080, 856× 480 and 712× 480 resolutions, respectively.

The outcome of these experiments clearly shows that our system
can reach real-time requirements for the video processing and still
has processing power left which can be used to process other input
data at the same time, for example, sensor or patient records data,
etc. A number of complex features can be added into the detection
and the localization sub-systems. This will increase the system’s
detection and localization accuracy, and at the same time, keep its
ability to perform in real-time. Moreover, it can also be used to
process several data streams simultaneously in real-time and sig-
nificantly reduce the examination time of the VCE videos for the
medical experts. The time reduction lies around 5-10 times de-
pending on type of input data like for example video resolution,
frame rate and sensors used. Our evaluation also shows, that this is
a very complex topic and requires methods and technologies from
several different multimedia research directions, e.g., signal pro-
cessing, multimedia systems, information retrieval, etc.

6. OUTLOOK AND CHALLENGES
With 2.8 million cancer cases diagnosed in the GI system per

year with a mortality rate of about 65%, we have the best motiva-
tion to perform research in the proposed area. The GI example that
we used in this paper is only the tip of the iceberg of unsolved prob-
lems in the health care sector. By exposing more unexplored mul-
timedia research questions, researchers can reveal a huge potential
to save lives by combining the medical and multimedia research
areas. Our aim is to raise awareness that (i) multimedia research
can do a lot for and learn a lot from the field of minimally invasive
medicine, (ii) interdisciplinary research in this field leads to imme-
diate benefits, and (iii) we have only scratched the surface with our
efforts.

In our experience, medical experts are open to new multimedia
applications in their fields. We experienced that doctors are willing
to spend a lot of time and effort into supporting such research, as
it ultimately has the potential to make their daily routine more effi-
cient, and they will have more time to focus on the patients them-
selves. Especially, since we live in a time where handling multi-
media is part of everyone’s lives, medical experts wonder why the
same functionality that they can use in YouTube, Flickr and Twitter
cannot be applied to their own medical field. The main reasons that
we identified are that first of all the computer vision and medical
imaging community that work mainly on this problems is not in-
terested in the whole multimedia life cycle from start to end, i.e.,
from the content creation, analysis to content usage by the actual
users. Second and most important, it is a problem within our own
community. It is much more convenient to download pictures from
Flickr or videos from YouTube and categorize and use them in re-
search, especially as many can identify themselves as social media
users. However, working with medical data involves organizational
challenges like seeking and maintaining contact with medical ex-
perts, understanding their problems, as well as getting used to often
unpleasant or even content that causes a disgust response until a re-
searcher is habituated in working in the area. Nevertheless, if we
– the multimedia community as a whole – would be more brave to
tackle these problems, we could actually help to save lives, make
patient examinations less uncomfortable and help to save money
and time spent in the health care system for daily routines instead
of research. These are possibilities for societal impact that surely
are appealing for both, researchers as well as global citizens. Last
but not least, being able to look back seeing that our multimedia re-
search helped to save lives is bearing more weight than being able
to say we can classify cats, cars or beautiful holiday pictures.

6.1 Open Challenges
Our EIR system has preliminarily shown how multimedia tools

can impact greatly health care systems. Nevertheless, there are still
many open challenges that need to be faced through a multidisci-
plinary approach where multimedia methods will have to play a key
role. Challenges include but are not limited to:
1) Exploiting domain expert knowledge to improve automated
methods performance. Most of the methods (including the ones
described in this paper) devised for supporting medical investiga-
tions in analysing visual data content are still predominantly based
on learning distributions of low-level and middle-level (recently
using deep learning approaches) visual features. While this has
proved to achieve good performance in many computer vision ap-
plications, there are cases, especially in the medical domain, where
relying on visual appearance might fail since processing visual data
content requires specific expertise. This is the case of endoscopy
videos where the reliability of the outcome mainly depends on
the examiner’s expertise. Our hypothesis is that, for a real break-
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(a) Videos with a resolution of 1920 × 1080. (b) Videos with a resolution of 856 × 480. (c) Videos with a resolution of 712 × 480.

Figure 5: The performance of the detection sub-system in terms of FPS varying the number of CPU cores, the resolution of the
videos and the detection algorithm. The maximum performances observed are 330, 430 and 453 FPS for 1920×1080, 856×480 and
712× 480 resolutions.

through in medical image analysis, automated methods need to ex-
ploit jointly perceptive elements (visual features) and semantic fac-
tors (domain knowledge). This explains why in the medical domain
relying only on image processing and computer vision methods will
lead to a dead end. Instead, a multidisciplinary approach operat-
ing on multimodal data is necessary. Nevertheless, exploiting high
level knowledge in computer vision methods poses several chal-
lenges from how to extract and model effectively domain expert
knowledge to how to include such semantics into machine learning
methods.
2) Automated report systems. A significant part of a medical pro-
fessional’s time is spent for preparing reports after procedures and
examinations. Multimedia research can significantly support this
phase by collecting all patient and examination data and by pro-
viding automatically summaries able to convey key information of
the performed procedures including media fragments, e.g., video
frames with detected objects, audio speeches describing colon vi-
sual features, etc. Such distilled media needs also to be interlinked
with detailed information on treatments, medication for a holis-
tic view of patients. These report will also be extremely useful
for training medical experts: through multimedia enriched reports,
medical doctors in training can learn based on real data according
to case-based teaching and problem-based learning strategies. The
multimedia field has tackled over the years, the problem of multi-
media summarization for automated report generation, but such re-
search is still at its infancy since methods developed so far are able
to process only one type of media at a time (hence do not take full
advantages from the richness of multimodal data). However, the
most important limitation of multimedia research in this direction
is the lack of generalization capabilities; in fact, most approaches
cannot be applied to domains different from the ones they were
devised for. To overcome these limitations, one solution we be-
lieve is worthwhile to investigate is to build automated multimedia
summarization methods with a semantic nature exploiting domain
ontologies, which can play an important role in the medical multi-
media analysis where the data complexity and heterogeneity make
the task very challenging.
3) Integration and fusion of unstructured and heterogeneous
data. Beside visual data, other (equally important) information
(e.g., blood pressure, temperature, breathing, oxygen levels) are
recorded during examinations, which, if suitably fused to visual
data content may significantly enhance procedures’ outcome. An
additional, and semantically rich, data source that can be exploited
is recordings of medical experts spoken comments during exami-
nations. Indeed, surgeons often describe verbally the procedure by
giving details on what they see to other doctors and to issue com-
mands and requests to the medical team. Although audio gener-
ated during procedures is a valuable source of information to train
both automated methods and young doctors, it is rather unstruc-

tured and noisy and, as such, it demands for specific text mining
methods approaches to distill the key information and to map it to
a structured data form. Under this scenario, the semantic web may
be a powerful tool for integration of such heterogeneous multime-
dia data. Once, heterogeneous data are all modeled using a shared
formalism, visualization approaches are envisaged to present fused
information in order to support medical staff, by enhancing the ex-
amination experience, for diagnosis.
4) Patient context information. Typically, health issues affect
patients beyond their immediate treatment, and there are very of-
ten preceding correlated events before treatment is necessary or a
health related issue is diagnosed. Therefore, health issues do not
appear suddenly or as isolated events, but come in a rich context,
which is largely exploited by medical doctors for diagnosis and
treatment. Such context includes patients’ mobility, eating habits
and changes, etc. To this end, multimedia research can play an
important part in developing smart wearable body sensors (and al-
gorithms to analyze their data) that can collect routinely all such
information and share with medical staff.
5) Building a knowledge base. A large collection of multime-
dia including videos, audio streams, sensor readings and patient
records will represent a priceless knowledge base for approaches
like case based reasoning and/or large empirical studies on treat-
ments. Nevertheless, sharing such knowledge base opens up issues
in privacy and data security, that, if successfully addressed, will
enable the increase of such knowledge base (since many medical
people will share their data), thus leading to large scale benefits in
health care. To effectively address protection and reliability issues,
multimedia researchers should investigate secure communications
and processing through a deep interaction between signal process-
ing, networking, and cryptography.
6) Interlinking information from different modalities. Besides
endoscopic and minimally invasive surgery, there are other diag-
nosis systems like X-Ray, ultrasonic or MRT data from patients.
Surgeons would greatly benefit from synchronized spatial informa-
tion on multiple modalities to be able to investigate abnormalities
from different angles. Now, all interlinking of diagnostic data from
multiple modalities has to be done manually. This shows that there
exists a huge need for algorithms and applications that can combine
these different types of media automatically and efficient. For ex-
ample, the information collected from a standard colonoscopy with
a video from a capsular colonoscopy and CT colonography (vir-
tual colonoscopy that uses special X-ray equipment) could lead to
a higher detection rates and better patient survival probabilities.
7) Simplifying handling of multimedia. With today’s tools, ev-
eryone is used to access multimedia everywhere and manipulate
and share multimedia data with the tip of a finger. In the medical
domain, software systems have a comparably long life span, and
it has to be thoroughly tested before they can be applied in a hos-
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pital setting. Therefore, we need sustainable interactive tools and
ways of interactivity that do not wear off as fast as they did in the
last decade. Multimedia researchers have the knowledge and are
needed to help creating such systems that fulfill the user needs but
also to develop the algorithms that are the basis of such systems
such as content retrieval, etc. This is especially important since
most of the standard algorithms for object or concept detection will
most probably not work in the medical field, which we experienced
in the begin of our research when we tested a lot of state-of-the-
art methods like for example histogram of oriented gradients or
structured output tracking with kernels, etc. We believe that this
is mainly caused by differences in the multimedia data provided
(videos and images show completely different content, quality of
the data, needs of the users, etc.).
8) Test data sets and challenges. There are already workshops,
challenges and whole conferences dedicated to the topics of med-
ical information and multimedia systems. However, just like in
the multimedia community, we have to move forward to build and
maintain an over-critical mass of test data including ground truth
and annotations, and usage scenarios that are recent enough, i.e.,
recorded with up-to-date sensors and annotated thoroughly based
on current medical standards and state-of-the-art. This is not only
a research, but also a legal and societal, challenge as medical data
is always personal and especially if it includes a patient context
or long term records it is hard to anonymize. This requires not
only sophisticated annotation systems, but also algorithms for un-
supervised and semi-supervised learning. Furthermore, algorithms
that can help to anonymize or watermark content to protect data
are needed. Apart from the algorithms to analyze the data this part
also needs motivated and dedicated people that contact hospital key
personnel and doctors, and play a pioneering role in establishing a
good data basis by collecting, annotate and make data public avail-
able.
9) Acting in concert. The greatest challenge of all, however, is
to act in concert, as an interdisciplinary community. Medical ex-
perts bring in the data as well as the domain knowledge. Legal
experts find ways how to deal with privacy and data security as-
pects from a legal and societal point of view. Companies supplying
medical equipment must open up for collaboration and research be-
yond their own research departments. Last but not least, the multi-
media community must bring in its knowledge as a core discipline,
but also as a research field which historically involved other disci-
plines like computer vision, machine learning, interactive systems,
networking, data warehousing, speech recognition, information re-
trieval, data mining and software engineering. The biggest task that
the multimedia community faces is most probably to break the ice.
Medical experts often do not know what is even possible with the
data they have. Therefore, the responsibility lies in the hands of the
multimedia researchers to build bridges. For example, we went to
hospitals and asked for meetings with doctors to show them what
we can do. Once they saw the possibilities, they were willing and
very motivated to contribute with knowledge, data and new ideas.
To address all these challenges, an interdisciplinary team is neces-
sary as the problems goes far beyond visual analysis, information
retrieval and annotation. It is also a multimedia area where it is
essential to involve researchers from different areas like interactive
system, multimedia systems and speech recognition in a special-
ized domain, ontologies, data mining and machine learning, sensor
fusion, and synchronization of data from different modalities.

6.1.1 Possible Research Projects
We encourage the multimedia community to be open minded and

help to tackle the challenges in this new field. It is important to be

aware that we cannot just keep on annotating social videos, and
then expect that medical technology companies can transfer these
technologies to the medical use case. Therefore we need specific
approaches for the field of medical multimedia.

In the sense of getting more into detail, we want to point out the
more immediate and concrete challenges in this field by proposing
three different research project topics and relevant research ques-
tions making for multiple challenging and interesting PhDs.
1) How can we identify and track abnormalities in a live en-
doscopic video? While our prototype did experiments on doing
exactly that, there are fields beyond polyps as well as an opportu-
nity to reduce manual input. Going beyond polyps would mean to
identify cancerous tissue, inner injuries, bleeding, scars, fractures,
and so on. This goes well with finding the current position and
rotation of the camera within a patients body, i.e., by sensor fu-
sion and asks for new and multimodal tracking algorithms taking
camera movement into account. Medicine needs very high recall,
but false alarms can be very costly not to mention extremely upset-
ting for the patients. Multimedia that detects concepts or events in
YouTube videos is just not held to these kinds of standards.
2) How can we pre-prepare the final report on the surgery? As
reporting takes a lot of a surgeons time, any step in this direction
would be immediately beneficial for medical experts and patients
alike. This actually involves several multimedia disciplines. Many
surgeons direct and inform their team during a surgery by short,
spoken announcements like “Here, we’ve got the first polyp.”, “Elec-
tro scalpel!” or “This one looks particularly odd.”. With speech
recognition and synchronization with a video stream, the video can
be segmented, relevant parts can be found and media for a final re-
port can be suggested in addition with recommending relevant text
passages from earlier reports of similar cases. The systems need to
be able to optimize not for correct predictions, but for what humans
need to know in order to make decisions. One approach is to fuse
many slightly different algorithms so that the typical mistakes of
one algorithm do not accidentally dominate.
3) How can we share, annotate and educate? While of course
many would like to see a YouTube or Flickr like social media net-
work for medical experts, it is simple not possible as the number of
experts is limited and not everyone can be expected to be an active
contributor to such a network. However, especially senior surgeons
are skilled in creating videos, books or training materials and com-
municating them to trainees or colleagues to exchange knowledge.
Still they lack tools for that. Critical for such a venture would be
interdisciplinary work in (i) interactive multimedia like annotation,
share, and interlinking of content, (ii) security and encryption for
making sure the data stays safe, (iii) knowledge based systems as
ontologies and structured knowledge plays a huge part in that, and
(iv) multimedia systems, as all the data has to be handled, trans-
ferred, streamed, encoded etc.

6.1.2 First Steps
While we stressed the fact that working with medical data and

medical experts is crucial for moving forward with research in the
medical domain, we also acknowledge that interdisciplinary work
is hard to start. What we found most important in our project is
to build a working relationship with medical doctors who are per-
sonally interested in making things better. The VIPs for such inter-
disciplinary projects are senior surgeons, who are actively training
new surgeons, as they (i) have experience in sharing knowledge,
(ii) have access to a lot of data, (iii) are extremely good in speci-
fying problems and very competent in working out solutions, and
(iv) have influence in terms of the hospital organization.

In our experience, it takes some time for PhD students to build
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awareness of the field to a level, where we could work efficiently
on the problem. At the begin, we organized that the PhD students
attended live surgeries, watched and discussed surgery videos and
reports with senior surgeons as well as trainees, and participated
in regular meetings for questions and answers that were raised in
this learning period. Within this starting period, in parallel with
building up the knowledge, it is in general a good idea to expand
the data available throughout the research project. Besides building
on public data sets like the ASU-Mayo Clinic polyp database [31],
we suggest to work out a scheme to obtain recent multimedia data
from the before mentioned necessary contacts. This typically in-
volves legal and organizational issues including but not limited to
(i) a mutually agreed upon anonymization routine for the data, (ii)
a non disclosure agreement of the participating organizations and
involved people, as well as (iii) a specialized setup to make sure the
data stays safe and protected during transport and in storage at the
research institution.
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ABSTRACT
Analysis of medical videos for detection of abnormalities and dis-
eases requires both high precision and recall, but also real-time
processing for live feedback and scalability for massive screening
of entire populations. Existing work on this field does not provide
the necessary combination of retrieval accuracy and performance.

In this paper, a multimedia system is presented where the aim is
to tackle automatic analysis of videos from the human gastrointesti-
nal (GI) tract. The system includes the whole pipeline from data
collection, processing and analysis, to visualization. The system
combines filters using machine learning, image recognition and
extraction of global and local image features. Furthermore, it is built
in a modular way so that it can easily be extended. At the same time,
it is developed for efficient processing in order to provide real-time
feedback to the doctors. Our experimental evaluation proves that
our system has detection and localisation accuracy at least as good
as existing systems for polyp detection, it is capable of detecting
a wider range of diseases, it can analyze video in real-time, and it
has a low resource consumption for scalability.
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1 INTRODUCTION
The human gastrointestinal (GI) tract can potentially be affected
by various abnormalities and diseases, including colorectal cancer
(CRC) which is a major health issue world wide. For the case of
CRC, an early detection is crucial for survival, and several studies
demonstrate that a population-wide screening program improves
the prognosis and even reduce the incidence of CRC [23]. As a con-
sequence, in the current European Union guidelines, screening for
CRC is recommended for the population over 50 years of age [57].

Colonoscopy, a common medical examination and the gold stan-
dard for visualizing the mucosa and the lumen of the entire colon,
may be used either as a primary screening tool or as a work-up tool
after other positive screening tests [33]. However, endoscopies are
invasive procedures and may be of great discomfort for patients.
Long-lasting training of physicians or nurses is required to perform
the examinations. They are performed in real-time and are chal-
lenging to scale to a larger population. Additionally, the procedure
is expensive. In the US, for example, the colonoscopy is the most
expensive cancer screening process with annual costs of 10 billion
dollars ($1100/person) [55], and with a time consumption of about
one medical-doctor-hour and two nurse-hours, per examination.

In this respect, we propose a scalable, real-time disease-detection
system for the GI tract. The idea is to assist endoscopists (physi-
cians highly trained in the procedure) during live examinations.
Additionally, alternatives to traditional endoscopy examinations
have recently emerged with the development of non-invasive en-
doscopy capsules (WVCs). The idea is a pill-sized camera (available
from vendors such as Given and Olympus), that is swallowed and
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then records a video of the entire GI tract. The challenge in this
context today is that medical experts still need to view the video in
a non-scalable way. Our system should provide a scalable system
that can be used as a first-order population screening system where
the WVC-recorded video is used to determine whether a traditional
endoscopic examination is needed or not.

The system presented in this paper is designed to support detec-
tion of a wide range of diseases, but our initial focus is on colorectal
polyps and a small subset of other diseases. Polyps are specifically
relevant because they are known precursors of CRC (see for exam-
ple figure 2 and 3). The reason for starting with this scenario is that
most colon cancers arise from benign, adenomatous polyps con-
taining dysplastic cells that may progress to cancer. Detection and
removal of such polyps prevents the development of cancer. Thus,
the risk of getting CRC the following 60 months after a colonoscopy
depends largely on the endoscopists ability to detect polyps [25].

In the context of object or pattern detection and tracking in
images and videos, there has been a lot of research, and current
systems are good at detecting human faces, cars, logos, etc. However,
detecting diseases in the GI tract is very different from detecting
objects like logos or cars. The GI tract can potentially have a wide
range of lesions visible on endoscopy, as well as findings associated
with benign/normal or man-made lesions. This leads to necessity
of distinguishing between multiple classes of diseases, including
findings with high level of visual similarity. In this scenario, both
high precision and recall are of crucial importance, but also is
the often ignored system performance in order to provide live
feedback because medical personal is assisted most efficiently while
they perform the examination. The most recent and most complete
related work is the polyp detection system Polyp-Alert [61], which
can provide near real-time feedback during colonoscopies. However,
it is limited to polyp detection, and it is not fast enough in the case
of live examinations.

To further aid and scale such examinations, we have developed
EIR [47], an efficient and scalable information retrieval system for
medical data like videos and images. The system supports endo-
scopists in the detection and interpretation of diseases in the GI
tract. In this paper, we provide more detailed description of our EIR
system, we greatly extend the evaluation, and we also introduce
localization. The main objective of the system is to develop both
(i) a live-system assisting the visual detection of diseases during
colonoscopies, and (ii) a future fully automated first line screening
for CRC using WVCs. Both goals pose strict requirements for the
accuracy of the detection in order to avoid false negative findings
(overlooking a disease) as well as low resource consumption. The
live assisted system also introduces a real-time processing require-
ment (defined as being able to at least process 25 frames or images
per second). In this paper, the initial prototype of our system is
presented. This is built by combining filters using machine learn-
ing, image recognition and extraction and comparison of global
and local image features. The system will be extended to support
detection of multiple abnormalities and diseases of the GI tract by
training the classifiers using different datasets. We evaluate our
prototype by training classifiers that are based on the different im-
age recognition approaches. It is important to point out that these
classifiers can also process other input like for example sensor data.

We also test the generated classifiers with different diseases and
thereby evaluate the different approaches for feasibility of colonic
polyp recognition and localisation.

The initial results from our experimental evaluation show that:
(i) the detection and localisation accuracy can reach the same per-
formance or outperform other current state of the art methods,
(ii) the system performance reaches real-time in terms of video
processing up to high definition resolutions.

The rest of the paper is organized as follows: we present related
work in section 2. This is followed by a description of the complete
system in section 3. After that, we present a detailed evaluation
of the whole system in section 4, and we discuss in section 5 two
cases where our system will be used in two medical examinations.
Finally, we draw the conclusion in section 6.

2 RELATEDWORK
To the best of our knowledge, no related work that presents a
complete multimedia system for analysing the whole GI tract in
real-time exists. The complete system covers the entire pipeline
from data capture to live detection feedback, and has to fulfill many
requirements. These requirements include (i) high detection ac-
curacy, (ii) real-time processing to support live examinations like
colonoscopies, (iii) efficient resource utilization to allow massive
scale using WVCs, and (iv) expandability to allow the system to
support new diseases.

Detection of diseases in the GI tract has mostly focused on polyps.
This is most probably due to the lack of data in the medical field
and polyps being a condition with at least some data available [30].
Automatic analysis of polyps in colonoscopies has been in the
focus of researchers for a long time and several studies have been
published [58, 59, 62]. However, not many systems are able to do
real-time detection or support doctors by computer aided diagnosis
during colonoscopies in real-time. Furthermore, all of them are
limited to a very specific use case, which in the most cases is polyp
detection for a specific type of camera.

Several algorithms, methods and partial systems have been pro-
posed and have achieved results in their respective testing envi-
ronment that are promising. However, most of the research con-
ducted in this field uses a rather small amount of training and
testing data, making it difficult to generalize the methods beyond
the specific dataset and test scenarios. In the [47] paper, we pre-
sented a summary of the detection performance and speed proper-
ties of the most relevant approaches in colonoscopy and polyp
detection. The conducted search through the relevant publica-
tions [3, 4, 9, 24, 26, 28, 34, 60, 61, 63] showed that different re-
searchers provide different metrics for measuring the performance
and use different datasets for training and testing. Moreover, almost
all of the researches focus on polyps only.

The Polyp-Alert approach from Wang et al. [61] is the most re-
cent, most complete and best working in the field of polyp detection.
It is able to give near real-time feedback during colonoscopies. The
system can process 10 frames per second and uses visual features
and a rule-based classifier to detect the edges of polyps. Further,
they distinguish between clear frames and polyp frames in their
detection. The researchers report a performance of 97.7% correctly
detected polyps, based on their dataset which consists of 52 videos
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taken from different colonoscopes. Unfortunately, the dataset is not
publicly available and therefore a detection performance compari-
son is not possible.

Mamonov et al. [34] presented an algorithm for a binary classifier
with pre-selection to detect polyps in the colon. The used assump-
tion is that polyps can be generalized as protrusions (something
that bumps out) that are mostly round in shape. The researchers
report a sensitivity of 81.25% per polyp at a specificity of 90%. The
sensitivity of the algorithm with regards to single input frames
is significantly lower and only reaches 47%. The length of an in-
put sequence varied between 2 and 32 frames and a total of 16
sequences were tested. The false positive rate on the total of 18, 738
frames not containing a polyp was 9.8%. Assuming that it is usual
to have multiple frames available for a single polyp, these numbers
seem quite promising. With this method, the time a specialist has
to spend on evaluating video data could be reduced by about 90%.

A similar approach is presented by Hwang et al. [24]. This ap-
proach also focuses on shape, in particular on ellipses, which is a
common shape for a polyp. Using this method, a frame is first seg-
mented into elliptical regions by a watershed-based image segmen-
tation algorithm. These regions and corresponding ellipse edges
are then evaluated for matching of curve direction, curvature, edge
distance and intensity. After the first frame a potential polyp was
detected, subsequent frames are also searched for the same charac-
teristics using a mutual and information based image registration
technique. To evaluate the method, a video sequence with a frame
rate of 15 fps has been processed. Out of 27 available polyp shots
(frames containing a polyp), 26 were detected correctly with a total
of 5 false-positives. Similar to [34], the authors assume that multiple
frames are available for one polyp and that a certain number of
false-negatives is acceptable in order to balance the number of false-
positives. The correctness of this assumption depends strongly on
the frame rate of the camera that is used for recording the video.

Another recent approach related to our approach and not limited
to polyps is presented by Nawarathna et al. [39]. In the paper, the
authors describe a method to detect abnormalities like bleeding,
but also polyps in colonoscopy videos. The authors use a texton
histogram of an image block. The authors report a 91% recall and a
90.8% specificity for colonoscopy images.

Other papers that discuss how to improve performance of endo-
scopic surgeries in general (not colonoscopy) are for example [36–
38]. In these papers, the authors report their method for detecting
the circular content area that is typical in endoscopic videos. Fur-
thermore, they present their method for relevance segmentation in
endoscopic videos. The methods seem to be very useful in terms of
archiving and saving storage space.

Since neural networks (NNs) are commonly used nowadays, they
are also discussed for automatic analysis of GI tract videos. NNs are
conceptually easy to understand and lately large amounts of aca-
demic research has been done on them. Results recently reported
on, for example, the ImageNet dataset look quite promising [13].
Nevertheless, they have some negative aspects that make them less
useful for our use case [10]. First, NNs are a blackbox approach.
This can lead to serious problems in the medical field since it is
not possible to evaluate them properly, and there will always be a

Figure 1: System overview with the three main subsystems:
annotation, detection and automatic analysis and visualiza-
tion.

chance that they completely fail without being aware of it [40]. Fur-
ther, training of NNs is complicated, takes a long time and requires
a lot of training data. In the medical field, this can be a challenge
since it is hard to get data due to the lack of experts’ time and
because of legal and ethical issues. Some common conditions such
as colon polyps may reach the required amount of training data for
a NNs while other findings, like tattoos from previous endoscopic
procedures, are not that well documented but still interesting to
detect [48]. Finally, NNs are not easy to design for probabilistic re-
sults. In a multi-class decision-based system that is built to support
medical doctors in decision making, the probability is an important
information to help them finding a decision. Approaches with a
better understanding of the problem give a much more accurate
probabilistic score that can be directly translated to the real world
scenario [50].

In summary, a lot of related work with many interesting ap-
proaches for polyp detection exists. However, they (i) are either too
narrow for a flexible, multi-disease detection system, (ii) have been
tested on a too limited datasets not showing if the methods would
work in a real scenario, or (iii) provide a too low performance for a
real-time system or authors have ignored the system performance
aspect in their evaluations altogether. To the best of our knowledge,
our system is the first that aims at total flexibility in terms of dis-
eases that can be detected, and at the same, time focuses on the
performance and the evaluation of it.

3 BASIC IDEA OF THE SYSTEM
The objective of the system is to support doctors in GI tract disease
detection, both as a live examination system and as an offline system
for WVCs. Its main requirements are already listed in section 2,
but it also has to be easy to use. Figure 1 gives an overview of
the whole system. It consists of three main parts: the annotation
subsystem, the detection and automatic analysis subsystem and the
visualization and computer aided diagnosis subsystem.

3.1 Annotation Subsystem
It is well known that training data is very important for a classifi-
cation system that relies on machine learning techniques. In the
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medical field, both the time of the experts and available data are
very limited. Even when experts’ time can be acquired, the quality
of annotations depends on their experience and concentration [17].
For each image or video, a patient consent has to be collected before
research can be done, making it a very cumbersome task. The pur-
pose of the annotation subsystem is therefore to efficiently collect
training data for the detection and automatic analysis subsystem.

For example, in a singleWVCprocedure, there are several 100, 000
images per examination, and a very experienced endoscopist needs
between one and several hours to view and analyze all the video
data [29]. Due to this, it is important to develop automatic meth-
ods that can reduce the burden on physicians and speed up the
process of video analysis. We therefore also developed an efficient
semi-automatic annotation subsystem [2]. This tool makes it easy
for doctors to annotate and provide data to the system. The man-
ual annotations of the doctors are combined with semi-automatic
methods that extend the provided data. Our semi-automatic process
reduces the time that time physicians spend on annotating. Instead
of annotating every frame, they can provide annotations on a single
frame of an image series or video. They identify abnormalities, mark
a region of interest and tag it accordingly. The automatic step [2]
uses this information to track the regions of interest on subsequent
as well as previous frames. Due to the fact that the medical doctor
is usually located in a hospital with security restrictions, the imple-
mentation of the software is done with standard web technologies
which do not require any installation at the hospitals systems. This
also includes the storing of all information on the systems side
and moves the responsibility of maintaining the system and data
integrity from the user to the system. Besides getting data for the
system to enable automatic screening, the annotation subsystem
makes it possible to use the annotated videos in a medical video
archive for surgical documentation or teaching purposes.

3.2 Automatic Detection Subsystem
The subsystem for detection and automatic analysis is designed in a
modular manner, so that it can be easily extended to additional dis-
eases, to new subcategories of a disease, as well as newly requested
information, such as determining a polyp’s size. At the moment,
the subsystem consists of two parts, the detection subsystem that
detects frames containing irregularities, and the localisation subsys-
tem that localises the position of the irregularity within a detected
frame.

3.2.1 Detection Subsystem. The detection subsystem detects
whether a frame contains an irregularity, without any indication of
a position of this irregularity in the frame. The detection of specific
abnormality type can be performed after the initial training of the
detection subsystem using previously collected training frames set.
All frames that are used in training are divided into two disjoint
sets. These two sets contain example images for abnormalities and
images without any abnormality. Each of these sets can be seen as
the model for a specific disease.

The detection subsystem supports a hierarchical concept of mod-
els and sub-models. This does allow it to, for example, first detect a
polyp and then distinguish between a polyp posing a low or high
risk of developing into CRC using the NICE classification [22]. To
compare and determine the abnormalities in a given frame, we use

global image features. In previous work [45], we showed that, in
case of only detecting whether a frame contains an irregularity
or not, global features can outperform local features, i.e., at least
reach the same results with respect to detection and significantly
outperform local features in terms of processing speed.

The whole system is built using the Lire [31] open source library
for content-based image retrieval, written in Java. This library
provides a comprehensive set of tested algorithms to extract a
variety of global image features. It allows us to experiment with
a wide range of global image features for detecting or clustering
video frames from colonoscopy or WVC videos. Lire uses Lucene
indexes [16] for storing and searching image feature data.
Indexing. The index structure is field- and row-based. Each row is
defined by its fields, e.g., the image path, the binary values for the
feature or the hash representation of the feature, etc. The number
of fields and their size are variable depending on the number or
type of feature. All feature values are stored as byte representation
of the respective feature vector as well as a text field containing
hash values from a random projection hashing [31] approach.

The hashing approach is based on locality sensitive hashing [31]
(LSH). The main idea is to use multiple random hash functions to
hash the values of the features giving the same hash values for the
similar images. This is done by a linear projection in random direc-
tions of the hash functions in the feature space of the image. The
created hash codes are ineffective and a large number of hash tables
is needed to achieve a reasonable search quality, but compared to
the increased speed of the algorithm these are minor disadvantages
that can be ignored [49].

We use a hash function h(v) ∈ {0, 1}, which is defined for a
histogram v as h(v) = sдn(v · r ), where sдn is the sign function
(extracts the sign of a real number) and r is a random vector with
uniformly distributed elements ri with −w ≤ ri ≤ w . n hash
functions are combined as a bit string in one single hash value
H (v) < 2n . For indexingm hash values,m functions Hj (v), 0 ≤ j <
m are generated.

The parameters for the hashing-based approximate indexing are
chosen based on evaluations on an image dataset consisting of 105
images. To achieve a good performance for precision and search
time, the parameters have been set as following:w = 2, n = 12, and
m = 150. This leads to a significant speed-up and at the same time,
to a good trade-off between search time and precision.
Search. The search for an image that we use in our search-based
algorithm is performed on the fly on the previously created indexes.
For each image, a term-based query from the hashed feature values
of the query image is created, and a comparison with all images in
the index is performed resulting in a ranked list of similar images.
The ranked list is sorted by a distance or dissimilarity function
associated with the low level features. This is done by computing
the distance between the query image and all images in the index.
The distance function for our ranking is the Tanimoto distance [54],
which is computed by taking the ratio of the number of elements
that intersect and the union of the elements:

f (A,B) : [0, 1]nx[0, 1]n → N = A · B
|A|2 + |B |2 −A · B

A smaller distance between an image in the index and the query
image means a better rank [54]. The final ranked list is used in the
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classification step. To be able to classify an image efficiently, two
important aspects have to be considered: the selected features and
the feature combination.
Feature Selection. Different features have different properties,
and they are therefore useful in different scenarios. To make the
search-based classifier fast and accurate, we have to decide which
features we want to use for a specific use case, because a random
selection of global features and random combinations of feature can
lead to negative results for the classification or search task. Badly
chosen feature combinations can introduce noise (if too many fea-
tures are combined and some of them do not add any information
to the classification problem) or make the search slow (if the in-
dex is very big because of too many used global features). A lot
of work has been performed in the field of feature selection, and
different machine learning techniques were utilized for it [35]. For
example, an information gain (IG) attribute evaluation, which com-
putes the information gain of a given feature with respect to the
classification problem to determine which feature gives the most
information [12]. Another example is the SVM attribute evaluation,
which ranks the variables of the features using a weight assigned
from a support vector machine [19]. Furthermore, Guldogan and
Gabbouj [18] tried to utilize standard feature selection algorithms,
like IG, to measure a features performance for a given task. Based
on these measurements they applied majority voting to produce
a ranked list of features further used to select the best working
ones. Their evaluation results demonstrate that this method can
improve the classification performance and at the same time reduce
the computation time.

Currently, we perform a simple feature selection by testing dif-
ferent combinations of features on smaller reference datasets to
find the best combinations in terms of processing speed and clas-
sification accuracy. For the further system improvement, we will
implement several advanced features selection algorithm and will
perform a comparison in order to select the best for our use case.
Feature Combination. Features can be combined in two different
ways. The first is called feature values fusion or early fusion, and it
basically fuses values of different features into a single represen-
tation before they are used in a decision-making step. The second
one is called decision fusion or late fusion where the features are
combined after a decision-making step. Our system implements
feature combination using the late fusion approach.
Search-based Classification. The search-based algorithm devel-
oped in this work has been implemented using Lire. Since Lire is
based on the Lucene indexes [16], it also allowed us to create an
algorithm that is able to include any type of multimedia data if
needed. Lucene inverted indexes are created using k-way merge [16].
The index segments are sorted in memory and then merged. Each
newly added data element is treated as a new segment and added
to existing segments. These indexes have the advantage that they
are fast to update and reasonably fast to search. The indexes are
field-based and the number of fields is variable depending on the
number of used features. The fields are stored using LSH as de-
scribed before. The algorithm is basically a simple K-NN algorithm,
which defines classes c as:

c = argmax
ĉ ∈C

{ClassScore(ĉ)}

ClassScore is calculated by summing up the occurrences of each
class c and multiplying it with the summedWeiдhtedRankScore .
RankScore per class is calculated by dividing 1 by the rank for each
search query.

ClassScore(c) = |c |
∑

Ii ∈{Ii |Class(Ii )=c }
RankScore(Ii )−1

TheWeiдhtedRankScore is the sum of all RankScores in the rank
list. This algorithm can be used for supervised and unsupervised
learning, two or multi-class classification and different types of
input data ranging from features extracted from images to videos
to meta data. Its main advantages are its simplicity, that it achieves
state-of-the-art classification results and that it is very fast in terms
of processing time. The latter is demonstrated by applying it to
different use cases described in the following section.
Implementation Details. The indexer is created as a separate
tool and in a way that it is easy to distribute over different nodes
using, for example, Apache Storm. Indexing is performed when
the training data is inserted into the system and is suited for batch
processing. Creating the models for the classifier can be done off-
line and does not influence the real-time capability of the system
because it is only done once at the very first time when the training
data is inserted into the system. It creates indexes for all directories
passed on from the system. The visual features to calculate and store
in the indexes can be chosen based on the abnormality because, for
different types of diseases, different set of features or combinations
are better. For example, bleeding is easier to detect using color
features, whereas polyps require also shape and texture information.
The indexer stores the generated indexes in a subdirectory inside
the indexed directory. If multiple directories are passed for indexing,
it creates a separate index for each directory.

The classifier can be used to classify video frames from an in-
put video into as many classes as the detection subsystem model
consists of. The classifier uses indexes generated by the indexer as
described before. In contrast to other classifiers that are commonly
used, this classifier is not trained in a separate learning step. In-
stead, the classifier searches previously generated indexes, which
can be seen as the model, for similar visual features. The output
is weighted based on the ranked list of the search results. Based
on this, a decision is made. We refer to these previously generated
indexes, which are searched for similar image features, as classifier
indexes or indexes containing training data. The classifier expects
at least one classifier index and an input source. The input source
can either be a video, an image or another previously generated
index. The classifier also includes a benchmarking function that will
output the evaluation information and an HTML page with a visual
representation of the results, once the processing is finished. The
classifier is parallelized and allows to choose how many CPU cores
are used to process the data. In the future, a GPU implementation
will be supported, because our previous research [44, 46] showed
that it can significantly improve the performance.

We have released the source code of the detection subsystem
as an open-source project called OpenSea1, under the terms of the
GPL version 32.

1https://bitbucket.org/mpg_projects/opensea
2http://www.gnu.org/licenses/gpl-3.0.en.html
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3.2.2 Multi-disease Classification. Previously, we claimed that
one major difference between our system and related approaches
is that it can easily be extended to detect other endoscopic find-
ings (abnormalities, diseases, anatomic landmark or other relevant
events during the examination of a patient). To prove that our sys-
tem is able to perform multi-class classification for diseases beyond
polyps, we developed a detection prototype that implements two
approaches: global-feature-based and deep-learning-based. Both ap-
proaches are tested on a dataset collected from the Bærum Hospital
in Norway, one of our collaborators. The amount of data that has
been annotated to evaluate the multi-class classification is rather
limited so far, and consequently, these results are preliminary.
Multi-class global-feature-based approach (GF-classifier). The
basic search-based classification part of the system is used to create
a separate classifier for each disease that we want to classify. The
difference to the initial version of the detection part is that the
ranked lists of each search-based classifier are used in an additional
added classification step to determine the final class. For the final
classification, we use the random forest classifier (RFC) [7]. It is
important to point out that other classification algorithm could be
used, and that we choose the random forest approach because it is
fast while achieving good results [56].

The RFC creates a forest of classification trees. Each tree is a deci-
sion tree that makes, at each of its inner nodes, a branching decision
based on one or more feature dimensions. The conditions for these
branching decisions are randomly created at the time of the tree’s
creation, and applied deterministically afterwards. Thus, classes
are randomly defined, but features are deterministically classified.
To determine the final class, the classifier combines all decisions
trees into a final decision using the same late fusion technique used
for the features in the standard search-based classifier.

RFC allows parallel classification for each of the separate random
trees of the forest. Apart from that the parallel step does also allow
for very fast training. Further, the RFC is very efficient for large
datasets because of the ability to find distinctive classes in the
dataset and also to detect the correlation between these classes.
The disadvantage is that training time increases linearly with the
number of trees. However, this is not a problem for our use case
since training time is not critical. We use the RFC implementation
provided by the Weka machine learning library [20].
Multi-class deep-learning-based approach (Deep-classifier).
The deep-learning-based classification approach is implemented
using Google Tensorflow [1]. As a basis for the deep learning net-
work architecture, we use Inception v3 [52], which is a modern
neural network designed for image classification tasks. The Incep-
tion v3 model is pre-trained on the ImageNet dataset [13]. From the
Inception v3 model, we removed the last layer and retrained it with
our medical image classes following the approach presented in [14].
This makes it possible to reuse visual concepts learned from the
ImageNet dataset to perform the learning on a smaller dataset.

After removing the final layer from the model, we insert a ran-
domly initialized fully connected layer and retrain the final layer
from scratch. All the other layers do not change. This comes with
the advantages that not so much training data is needed to train the
network, which is a benefit for our medical scenario where lack of
good data is a common problem, and that it is faster. Its takes around

one day with our settings to retrain the model. The re-trainer is
based on an open source implementation [1] of Tensorflow.

At first, we calculate for each image the values for the second
last layer (also called bottleneck), which can be seen as kind of
features representing the images. These features are then used to
retrain the final layer of the network based on the new classes using
a softmax function [5]. For the retraining, we run 10, 000 training
steps. Each step takes 20 random images in their pre-extracted
feature representation to retrain the layer. Because of the small
amount of training data, we also perform distortion operations on
the images, which is required to avoid network overfitting. In more
detail, we perform random cropping, random rescaling and random
change of brightness. The grade of distortion is set to 25% per
image. In the case of polyp detection, distortions will not destroy
the meaning of the image (like it would do if someone, for example,
wants to detect letters). After the model has been retrained, it is
used as a multi-class classifier that provides the top five classes
based on probability for each class.

3.2.3 Localisation Subsystem. The localisation subsystem is in-
tended for finding the exact position of irregularities, which is used
to show markers on the disease in the visualization subsystem. All
images that we process during the localisation step come from the
positive frames list generated by the detection subsystem. The pro-
cessing of the images is implemented as a sequence of intraframe
pre- and main-filters.

Pre-filtering is needed because we use local image features to
find the exact position of objects in the frames. Irregularities can
have different shapes, textures, colors and orientations. They can
be located anywhere in the frame and also partially be hidden and
covered by biological substances, like for example seeds or stool,
and lighted by direct and reflected light. Moreover, the image itself
can be interleaved, noisy, blurry and over- or under-exposed, and
it can contain borders, subimages and a lot of specular reflections
(flares) caused by endoscope’s light source. Images can have also
various resolutions depending on the type of endoscopy equipment
used. All these nuances negatively affect the local features detec-
tion methods and have to be specially treated to reduce localisation
precision impact. In our case, sequence of filters are used to pre-
pare raw input images for the following analysis. These processing
steps are border and subimage removal, flare masking and low-pass
filtering. After pre-filtering, the images are used for the following
local features analysis.

At the moment, we have only implemented localisation of colon
polyps using our local feature approach. For future work, we aiming
to also localize other irregularities like cancer, bleeding, parasites,
etc. The main idea of the localisation algorithm is to use the polyps’
physical shape to find the exact position in the frame. In most
cases, the polyps have the shape of a hill located on a relatively flat
underlying surface, or the shape of a round rock connected to an
underlying surface with legs varying in thickness. These polyps
can be approximated by an elliptically shaped region that consists
of local features that differ from the surrounding tissue.

To detect polyps, we use the following sequence of filters: binary
noise reduction filter, 2D-gradient filter, threshold border detection
filter and binary noise removal filter. The next step creates a fil-
tered binary contour image approximated by a set of ellipses. The
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precision of contours approximation via ellipses is measured as
distance from ellipses’ borders to contours’ pixels, which results in
an energy map. The final coordinates of one or more polyps in the
frame are chosen by looking for maxima in the energy map. For
performance reasons, the localiser is implemented in C/C++ and
uses OpenCV [6]. An example of the output is shown in figure 2.

Figure 2: Output of the localisation subsystem marking the
possible locations of polyps. The first 4 frames show an ex-
act match, the last two show false positives.

3.3 Visualization and Computer
Aided Diagnosis Subsystem

This subsystem has two main purposes. Firstly, it should help in
evaluating the performance of the system and get better insights
into reason for successes and failures. Secondly, it can be used as a
computer-aided diagnosis system for medical experts.

First, we have the TagAndTrack subsystem [2] that can be used
as a visualisation and computer-aided diagnosis system. Second,
we developed an open-source application ClusterTag [43] designed
for interactive exploration and labeling of big image collections
in conjunction with semi-automatic image clustering, annotation
and tagging. Third, we developed a web-based visualization that
can also be used to support medical experts and is easy to use
and distribute. It takes the output of the detection and localisation
subsystems and creates a web based visualisation, which later may
be combined with a video sharing platform [21, 51], where doctors
are able to watch, archive, annotate and share information.

4 SYSTEM EVALUATION
We tested the whole system in terms of accuracy and system per-
formance. For all measurements, we used the same computer (32
cores AMD Opteron 8218 Linux server, 128GB RAM, from 2006).
For all experiments, we used the ASU Mayo Clinic polyp database3.
This is currently the biggest publicly available dataset consisting of
20 videos (converted from WMV to MPEG-4 for the experiments)
with a total of 18, 781 frames and different resolution up to full HD
(1920x1080) [53].

4.1 Detection and Localisation Accuracy
For detection and localisation accuracy, we used the common met-
rics, precision, recall and F1 score. All experiments have been con-
ducted on the complete ASU Mayo Clinic polyp database and each
subsystem has been evaluated separately.

3https://polyp.grand-challenge.org/site/Polyp/AsuMayo/

4.1.1 Detection Accuracy. We conducted a leave-one-out cross-
validation to evaluate the detection subsystem. This is a method
that assesses the generalization of a predictive model. In our case,
it describes the process where the training and testing datasets
are rotated, leaving out a single different non-overlapping item
or portion for testing, and using the remaining items for training.
This process is repeated until every item or portion has been used
for testing exactly once [15]. Our system allows us to use several
different global image features for the classification. The more
image features we use, the more computationally expensive the
classification becomes. Further, not all image features are equally
important or provide equally good results for our purpose. As a
first step, we therefore needed to find out which image features
we want to use for classification, and we ran the detection with
all possible image features in Lire [32] selected on a dataset. Based
on this evaluation, feature extractors and descriptors according
to Joint Composite Descriptor (JCD) [32] and Tamura [32] (in the
following simply called features for brevity) were chosen for our
measurements due to their promising performance.

To assess the actual performance of the classifier using these
two features, we conducted a leave-one-out cross-validation with
all available video sequences. With these settings, we achieved an
average precision of 0.889, an average recall of 0.964 and an average
F1 score value of 0.916. The problem with this average calculation is
that different video sequences contribute values based on different
numbers of video frames. If we weight the values contributed by
every single video sequence with the amount of frames in the
sequence, we achieve an average precision of 0.9388, an average
recall of 0.9850, and an average F1 score value of 0.9613. In other
words, the results mean that we can detect polyps with a precision
of almost 94% and we detect almost 99% of all polyp-containing
frames. The evaluation is presented in table 1.

Table 1: Performance evaluation by leave-one-out cross-
validation for all available videos, using JCD and Tamura
features.

Video True
positive

True
negative

False
positive

False
negative Precision Recall F1

score
np_5 1 680 0 0 1 1 1
np_6 1 836 0 0 1 1 1
np_7 1 767 0 0 1 1 1
np_8 1 710 0 0 1 1 1
np_9 1 1,841 0 0 1 1 1
np_10 1 1,923 0 0 1 1 1
np_11 1 1,548 0 0 1 1 1
np_12 1 1,738 0 0 1 1 1
np_13 1 1,800 0 0 1 1 1
np_14 1 1,637 0 0 1 1 1
wp_2 140 9 20 70 0.875 0.6666 0.7567
wp_4 908 1 0 0 1 1 1
wp_24 310 68 127 12 0.7093 0.9627 0.8168
wp_49 421 12 62 4 0.8716 0.9905 0.9273
wp_52 688 101 284 31 0.7078 0.9568 0.8137
wp_61 162 10 165 0 0.4954 1 0.6625
wp_66 223 12 165 16 0.5747 0.9330 0.7113
wp_68 172 51 20 14 0.8958 0.9247 0.9100
wp_69 265 185 138 26 0.6575 0.9106 0.7636
wp_70 379 1 0 29 1 0.9289 0.9631
Weighted average: 0.9388 0.9850 0.9613

4.1.2 Multi-class Classification Accuracy. To evaluate the multi-
class classifiers, we collected a new dataset from one of our partner
hospitals. The dataset contains six different endoscopic findings that
can occur during a colonoscopy with 50 images each, which leads to
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(a) Blurry frame (b) Cecum (c) Normal colon mucosa (d) Polyp (e) Tumor (f) Z-line

Figure 3: Example for anatomic findings (classes) in the multi-class dataset.

a total number of 300 images4. The classes in the dataset are blurry
frames, cecum (pouch that is the beginning of the large intestine),
normal colon mucosa (healthy colon wall), polyp, tumor, and Z-
line (an anatomic landmark in the colon than can help doctors to
orientate). Figure 3 shows one example for each class in the dataset.
Because of the small number of images in the dataset, we performed
cross-validation. For the cross-validation, we randomly separated
the images into 10 different sets of training and test data. Each
training and test subset contains 25 images per class. Multi-class
classification is then performed on all 10 splits and then combined
and averaged. Following this strategy even with a smaller number
of images, a quite accurate estimation about the performance can
be made.

Table 2 shows the confusion matrix (a standard tool for evalu-
ating multi-class classifiers showing the actual class compared to
the detected class) for the GF-classifier. The results are a clear indi-
cation that this approach performs well. An interesting insight is
that normal colon mucosa is often miss-classified as cecum (cecum
is also sometimes miss-classified as normal colon mucosa). The
example images for cecum (figure 3(b)) and normal colon mucosa
(figure 3(c)) reveal that this is not very surprising since it is even
hard for a human observer to make a clear decision. Furthermore,
from a medical point of view, normal colon mucosa are part of the
cecum and under real-world circumstances, this would not be a
relevant mistake.

Table 2: Confusion matrix and standard metrics for the six-class
classification performance for themulti-class global-features-based
approach. The classes are Blurry frames (A), Cecum (B), Normal
colon mucosa (C), Polyps (D), Tumor (E), Z-line (F).

Detected class Metrics

A B C D E F Precision Recall
Sensitivity F1-score

A
ct
ua

lc
la
ss

A 250 0 0 0 0 0 1.0 1.0 1.0
B 0 226 21 3 0 0 0.704 0.904 0.791
C 0 85 165 0 0 0 0.85 0.66 0.743
D 0 10 8 226 6 0 0.953 0.904 0.928
E 0 0 0 8 242 0 0.975 0.968 0.971
F 0 0 0 0 0 250 1.0 1.0 1.0

Average 0.914 0.906 0.91

The performance of Deep-classifier, which is presented in table 3
can also be considered as good. This approach confuses the classes
polyp and cecum more than the GF-classifier, but it is better in
detecting normal colon mucosa. For detecting blurry frames and
Z-lines, it performs at the same level as the GF-classifier. Based
on the confusion matrix for both approaches, we can see that for
some classes, the GF-classifier is better and for other classes the
Deep-classifier.

4The dataset that we could collect in the given time frame with the help of our medical
partners is rather small, but it is large enough for a proof-of-concept in combination
with cross validation.

Table 3: Confusion matrix and standard metrics for the six-classes
detection performance evaluation for the deep-learning-based ap-
proach.

Detected class Metrics

A B C D E F Precision Recall
Sensitivity F1-score

A
ct
ua

lc
la
ss

A 250 0 0 0 0 0 1.0 1.0 1.0
B 0 183 64 3 0 0 0.782 0.732 0.756
C 0 34 197 19 0 0 0.641 0.788 0.707
D 1 17 45 183 4 0 0.875 0.732 0.797
E 0 0 1 4 245 0 0.983 0.98 0.981
F 0 0 0 0 0 250 1.0 1.0 1.0

Average 0.879 0.872 0.876

Comparison of the GF- and the Deep-classifiers using the stan-
dard metrics including precision, recall/sensitivity and F1-score
reveals that the GF-classifier outperforms Deep-classifier signifi-
cantly with a precision of 0, 914, a recall of 0, 906 and a F1-score of
0.91 for the GF-classifier compared to a precision of 0, 879, a recall
of 0, 872 and a F1-score of 0.876 for the Deep-classifier.

4.1.3 Localisation Accuracy. Table 4 shows the performance of
the localisation subsystem. As ground truth, we used the exact
positions of the polyps as provided in the ASU Mayo clinic polyp
database. Overall, we reached an average precision of 0.3207, a recall
of 0.3183 and an F1 score of 0.3195. The values seem to be rather
low, but it is important to point out, that the current localisation
algorithm outputs four possible locations per frame. Currently, we
are working on an implementation that will be able to output only
one location per frame.

Table 4: Performance evaluation of the localisation algo-
rithm in terms of accuracy.

Dataset True
positive

False
positive

False
negative Precision Recall F1

score
CVC-ClinicDB 397 215 249 0.6487 0.6146 0.6312
ASUMayo 2 1 244 244 0.0041 0.0041 0.0041
ASUMayo 4 443 467 467 0.4868 0.4868 0.4868
ASUMayo 24 74 300 300 0.1979 0.1979 0.1979
ASUMayo 49 36 355 355 0.0921 0.0921 0.0921
ASUMayo 52 194 490 490 0.2836 0.2836 0.2836
ASUMayo 61 129 80 80 0.6172 0.6172 0.6172
ASUMayo 66 92 142 142 0.3932 0.3932 0.3932
ASUMayo 68 63 126 126 0.3333 0.3333 0.3333
ASUMayo 69 0 235 235 0.0000 0.0000 0.0000
ASUMayo 70 4 381 381 0.0104 0.0104 0.0104
Average: 0.3207 0.3183 0.3195

4.2 System Performance
One further requirement for the system is performance. The idea is,
as mentioned before, to use the system during live colonoscopies
and for mass screening for irregularities in the GI tract, using video
sequences, recorded by colonoscopes or WVCs.

For the evaluation, we decided to use the configuration of the
system that performed best in the accuracy experiment, because
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this scenario will be used in the live system setup, i.e., the global-
feature-based version. To enable live assistance for endoscopies, we
must reach a frame rate of at least 25 frames per second. For all tests,
we used three videos from three different endoscopic devices and
different resolutions. The three videos are wp_4 with 1, 920x1, 080
and 910 frames, wp_52 with 856x480 and 1, 106 frames and np_9
with 712x480 and 1, 843. We chose these three videos because they
provide representative examples of the video resolution variations
for different types of endoscopic devices.

4.2.1 CPU Processing. For the detection approach, we first mea-
sured the indexing part that creates the model that is later on used
by the classifier. This process has no real-time requirement and
can be seen as batch processing, but it should be feasible for larger
datasets. Extracting two features and indexing them for the whole
ASUMayo dataset takes on average 8milliseconds per frame. There
is no big difference between the indexing time of different resolu-
tions. We tested the scaling potential by indexing different datasets.
The first dataset D1 contains 3, 871 frames, the second one D2 con-
tains 14, 909 frames, the third one D3 contains 29, 818 frames and
the last one D4 with 100, 000 frames. Table 5 shows the overall re-
sults. We found that a larger dataset leads to a faster indexing time
per frame, that is caused by runtime Java code optimizer. Further-
more, we did not find a processing speed increase after more than
30, 000 frames in the dataset. Further processing speed increase is
limited by the I/O bottleneck since increasing the number of cores
did not increase performance. All in all, our experiments show that
the indexer is scalable, can be used with big datasets and it should
meet all requirements of the system for future tasks.

Table 5: Performance evaluation of the indexing part. 4 dif-
ferent datasets with different sizes have been tested to show
the scaling capability of the indexing part.

Index frames total time in seconds time per frame in ms
D1 3, 871 89.78 23.1
D2 14, 909 178.55 11.9
D3 29, 818 231.75 7.7
D4 100, 000 782.351 7.8

The performance of the detection is more important, since the
system should process frames at 25 fps or better to make it usable
for live applications. For all tests, we used the 3 different videos
described before. Figure 4(a) shows the detection subsystem’s per-
formance for the tested videos. The required frames per second for
all three resolutions are reached with 16 CPU cores.

Figure 4(b) shows the localisation subsystem’s performance for
all videos. The required frame rate is not reached for the highest
resolution and the best result is 7.9 frames per second. The same is
true for the resolution of 856× 480. The required frames per second
for the lowest resolution are reached with 19 CPU cores used in
parallel. The outcome of these experiments clearly shows that our
system also can reach real-time requirements for the localisation
subsystem but that we need to improve the performance for higher
resolutions.

4.2.2 Memory. Figure 5(a) and figure 5(b) show the memory
usage for both subsystems. In the localisation, the memory usage
behaves normally and shows that the localisation is scalable in
terms of memory. For the detection subsystem, the memory usage

(a) The detection subsystem FPS.

(b) The localisation subsystem FPS.

Figure 4: System performance in terms of frames per second
(FPS) depending on the number of CPU cores and the reso-
lution of the videos.

shows an interesting behavior after a certain number of used CPU
cores. Therefore, a closer look into it was necessary.

Figure 5(c) depicts this closer look into the detection subsystem
memory performance. We tested different memory sizes used for
the detection starting from 1GB up to 32GB. This shows that the
available memory for the detection part does not influence the
frames per second performance. The Java memory scheduler uses as
much memory as it can get, but it also performs well with only 1GB.
This proves that the detection part does not depend on memory,
and therefore, memory is not a bottleneck for scaling.

4.2.3 Size of the Index. A final question that we wanted to an-
swer is if the size of the used classification indexes (number of
indexed examples) influences the detection accuracy or system
performance. Figure 6 shows the system performance in terms of
detection accuracy (F1 score) and frames per second for 3 different
training data sizes. The expectation was that smaller indexes would
lead to a higher frames per second throughput but with a loss of
classification performance. The experiment showed that the index
size did not have a significant influence on the number of frames
per second output of the detection system. It is possible that an
index with several hundred thousand of frames will most proba-
bly lead to a lower frames per second output. But, in the intended
medical field, a lack of training data is normal. Therefore, this will
not influence our system. Another positive aspect is that the clas-
sification performance does not decrease with smaller indexes. It
is even the opposite, because for wp_52, the F1 score increased
slightly compared to the full training data. This shows that the
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(a) Memory consumption in the detection part. (b) Memory consumption in the localisation part. (c) Memory consumption versus heap size.

Figure 5: System benchmarks of memory usage.

Figure 6: This chart shows how the amount of training data
influences the performance of the detection subsystem in
terms of frames per second output. The training data has
been reduced to 1/2 of the original size (ca. 8, 800 frames) and
1/3 (ca. 5, 800 frames).

detection subsystem also performs very well with a smaller amount
of training data matching well our medical scenario.

4.2.4 Initial Cloud Experiments. To investigate what the perfor-
mance would be on actual hardware for the detection subsystem,
some initial tests on Amazon AWS EC2 instances were conducted.
On a c4.8xlarge instance (Intel Xeon E5-2666-V2 with 36 virtual
CPU cores), we were able to classify a video (MPEG-4) with 1, 924
frames and a resolution of 1, 920 × 1, 080 with the features JCD and
Tamura, in 29.377 seconds with 65.5 fps. When classifying data
from a raw video file the processing time increased to 39.599 sec-
onds with 48.6 fps. When reading the data from a Windows media
video (wmv) file, the processing time increased to 40.452 seconds
with 47.6 fps. The c4.8xlarge instance is the most powerful instance
offered by Amazon. We therefore conducted the same tests also on
a less powerful c4.4xlarge instance (Intel Xeon E5-2666-V2 with 16
virtual CPU cores). Using this instance, we were able to process the
MPEG-4 video data in 60.19 seconds with 31.97 fps, the wmv file in
81.17 seconds with 23.7 fps and the raw video file in 79.718 seconds
with 24.14 fps. This shows that on newer hardware an even better
performance can be achieved.

5 REAL WORLD USE CASES
In this section, we will describe two real world use cases where
the presented system can be used. The first one is a live system
that will support medical doctors during endoscopies. Currently,
we are working on setting it up in one of our partner hospitals.
The second one is a system that will automatically analyse videos
captured by WVCs. Several hospitals all over Europe and US are
involved in this part, and currently, we are collecting data. The

Figure 7: The planned structure of the live system. Themed-
ical expert doing a normal examination is assisted in real-
time with the results of the video analysis displayed on the
auxiliary screen.

first use case requires fast and reliable processing, and the second
requires a system that is able to process a large amount of data in a
reliable and scalable way.

5.1 Live System
Figure 7 gives an overview of the proposed live system. Live en-
doscopy is a common GI examination and is essential for the diag-
nosis of most mucosal diseases in the gastrointestinal tract, particu-
larly diagnosis of CRC and its precursors. The aim of the live system
is to put it between the screen of the doctor and the endoscopy pro-
cessor. While the endoscopist performs the colonoscopy, the system
analyses the video frames that are recorded by the colonoscope.
First, we planed to optically show the physician (for example with
a red or green frame around the video) when the system detects
something abnormal in the actual frame. This can also be extended
to determine which disease that the system most probably detected
and provide this information to the doctor. Apart from support-
ing the medical expert during the colonoscopy, the system can
also be used to document the procedure. After the colonoscopy, an
overview can be given to the doctors where they can make changes
or corrections, and add additional information. This can then be
stored for later purposes or used in a written endoscopy report.
Further, it would be practical to store high quality images of the
most important parts. As paper [11] shows, single images can be
an efficient way to store important findings from an examination.

5.2 Wireless Video Capsule Endoscope
The present WVCs have a resolution of 256x256 with 3-10 frames
per second (adaptive frame rate with a feedback loop from the
receiver to the transmitter). They do not have optimum lighting,
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making it difficult use the images. Nevertheless, ongoing work tries
to improve the state-of-the-art technology, which will make it possi-
ble to use the methods and algorithms developed for colonoscopies
also for WVCs [8, 27].

The multi-sensor WVC is swallowed in order to visualize the GI
tract for subsequent diagnosis and detection of GI diseases. Thus,
people will be able to buy WVCs at the pharmacy, and connect
and deliver the video stream from the GI tract to the phone over a
wireless network. The video footage can be processed in the phone
or delivered to our system, which finally analyses the video auto-
matically. In the best case, the first screening results are available
within eight hours after swallowing the WVC, which is the time
the camera typically spends traversing the GI tract.

In order to develop such a system, many unsolved tasks need to
be addressed through (interdisciplinary) research and development.
For example, the training and learning step that allows the system
to detect different disease in the GI tract. In the case of the colon,
accuracy of existing methods is far below the required precision
and recall, and the processing of the algorithms does not scale in
terms of big data. Each type of disease or irregularity requires in-
teraction between medical researchers dictating what the system
must learn to detect, image processing researchers investigating
detection or summarization algorithms, hardware developers to de-
velop/produce/research sensors, distributed processing researchers
in order to scale and distribute the (big data) analytics and process-
ing of the sensor data. For other scenarios, like in the upper part
of the GI tract, there will be similar challenges and corresponding
interaction between research disciplines.

Obviously, the project has high and ambitious goals in developing
an end-to-end solution where data recorded by next generation
camera and WVCs automatically are processed and algorithmically
analyzed for potential pathology in the GI tract. There are large
challenges with respect to accuracy (precision and recall), scale
of the processing and hardware data quality because of different
manufacturers (Olympus and Given are the biggest ones). The aim
is to be a leading contributor in the area of medical imaging and
sensor processing in the GI tract as well as storing, processing
and analysing this type of data. Such next-generation big data
applications in the area of medicine are frontiers for innovation
and productivity in health systems where there are currently large
initiatives both in the EU and the US.

6 CONCLUSION
In this paper, a multimedia system for disease detection and clas-
sification in the GI tract has been presented. We briefly described
the whole pipeline of the system from annotation (data collection
for system learning) to visualisation (doctor feedback). We intro-
duced two new multi-class classification methods, based on global
image features and deep learning neural networks. The novelty
of the research includes the implementation of a whole system
pipeline as a combination of many existing components, as well
as several new ones. A detailed evaluation in terms of detection
and localisation accuracy and system performance has been per-
formed, and we meet the requirements listed in section 2: (i) high
detection accuracy with an F1 score of 96% for polyps, (ii) real-time
processing to support live examinations like colonoscopies with

a frame rate between 30-65 on the given hardware, (iii) efficient
resource utilization to allow massive scale using WVCs shown by
both the real-time processing and the low memory consumption,
and (iv) expandability to allow the system to support new diseases
as shown by the high accuracy multi-disease detection experiment.
Our experiments show that the proposed system can achieve equal
results to state-of-the-art methods in terms of detection accuracy.
Further, we showed that the system outperforms state-of-the-art
systems in terms of system performance, that it scales in terms of
data throughput and that it can be used in a real-time scenario. We
also presented automatic analysis of WVC videos and live support
of colonoscopies as two real world use cases that will benefit from
the proposed system and will actually be tested and used in our
partner hospitals.

For future work, we plan to improve the detection and locali-
sation accuracy of the system, including even more different ab-
normalities to detect and work on the localization of irregularities
beyond polyps. Presently, we are working with medical experts to
collect more training data. As a first result, we just finished two new
datasets: an extended multi-class image-dataset for computer aided
GI disease detection called Kvasir [42] and a new bowel (colon)
preparation quality video dataset called Nerthus [41]. Both datasets
are released under open-source and can be used by the community.
Additionally, we work on the set-up of the real world use case in the
hospitals. Finally, to further improve the performance of the system,
we work on an extension that allows the system to use GPUs to
further utilize the parallelization potential of the workload.
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Abstract—The process of finding diseases and abnormalities
during live medical examinations has for a long time depended
mostly on the medical personnel, with a limited amount of
computer support. However, computer-based medical systems are
currently emerging in domains like endoscopies of the gastroin-
testinal (GI) tract. In this context, we aim for a system that en-
ables automatic analysis of endoscopy videos, where one use case
is live computer-assisted endoscopy that increases disease- and
abnormality-detection rates. In this paper, a system that tackles
live automatic analysis of endoscopy videos is presented with a
particular focus on the system’s ability to perform in real time.
The presented system utilizes different parts of a heterogeneous
architecture and can be used for automatic analysis of high-
definition colonoscopy videos (and a fully automated analysis
of video from capsular endoscopy devices). We describe our
implementation and report the system performance of our GPU-
based processing framework. The experimental results show real-
time stream processing and low resource consumption, and a
detection precision and recall level at least as good as existing
related work.

Index Terms—medical; multimedia; information; systems;
classification

I. INTRODUCTION

With the rapid developments in technology that allow minia-
turization of cameras and sensors for moving them through the
human body, there is an increasing need for real-time medical
systems. These improvements lead to a lot of advantages for
both patients and doctors, but also challenges for the computer
science community. A system supports humans in a critical
field like medicine has to fulfill several requirements, including
fault tolerance, data security and privacy. Additionally, to
support real-time detection of diseases in medical images and
videos, the system must exhibit high performance and low
resource usage.

In this paper, we describe an new version of system called
EIR [1] that provides real-time support for medical image
and video data analysis, and we enhance the system with
GPU acceleration support. Our goal is to provide an effi-
cient, flexible and scalable analysis and support system for
endoscopy of GI tract (see figure 1). It should be applicable
both for supporting traditional live endoscopies by giving real-
time support and for offline processing of videos generated
by wireless capsule endoscopes that are used in large-scale

screening. At this time, our system detects abnormalities like
those shown in figure 2, in videos of the colon. It does this
through a combination of filters using machine learning, image
recognition and extraction of global and local image features.
However, our system is not limited to this use case, but can
be extended to cover analysis of the entire GI tract. Therefore,
we developed a live system that can be utilized as a computer-
aided diagnostic system and a scalable detection system.

Fig. 1. Our system targets the whole GI
tract (Image: kaulitzki/shutterstock.com).

In the scenario of medical
image processing
and computer-aided
diagnosis, high precision
and recall are important
and the object of many
studies. Our system must
therefore both provide
an accurate detection
and analysis of the
data, and address the
often ignored processing
performance at the same
time. This is important
for live feedback during
examinations.

A closer look at the
most recent and com-
plete related work, Polyp-
Alert [2], reveals that
real-time speeds are not achieved by the current existing sys-
tems. To tackle this problem, we have extended and improved
the EIR system [3], [4], focusing on the speed of detection.
Speedup is gained by applying heterogeneous technologies,
in particular graphical processing units (GPUs), where we
distribute the workload on a large number of processing cores.
The initial results from our experimental evaluation show real-
time stream processing and low resource consumption, with a
precision and recall of detection at least as good as existing
related systems. Compared to existing systems, it is more
efficient, scales better with more data at higher resolutions
and, it is designed to support different diseases in parallel at
run time.



(a) Colon Polyp (b) Colorectal Cancer (c) Ulcerative Colitis (d) Crohn’s Disease (e) Diverticulosis

Fig. 2. Some examples of abnormalities that can be found using colonoscopy (images are from Wikimedia Commons).

The rest of the paper is organized as follows. First, we
present related work in section II. Then, in section III-A, we
briefly describe the base system architecture. This is followed
by a presentation of the improved system in section III-B.
Next, we present the performance of the system in section IV
with polyp detection as a use case. Finally, we draw conclu-
sions in section V.

II. RELATED WORK

Research on automatic detection of abnormalities in the GI
tract is usually focused and limited to a very specific disease
or abnormality. Most existing work targets detection of polyps
in the colon with a specific type of camera, both due to lack
of available test data, but also since it is easier to narrow the
focus and create more specialized solutions. Systems aimed
at polyp detection [5], [6], [7] are promising, but there is a
lack of systems that are able to perform their analysis in real-
time, which is required to support doctors with computer-aided
diagnosis during colonoscopies.

In terms of detection performance, several systems and
algorithms have been presented in literature with promising
performance. The most recent and also best-performing one is
the polyp-detection system of Wang et al. [2]. The presented
Polyp-Alert system is able to provide near real-time feedback
during colonoscopies. Near real-time in this context is defined
as being able to process 10 frames per second. This is
done by using visual features and a rule-based classifier to
detect the edges of polyps. The system reaches an impressive
performance of 97.7% correctly detected polyps. The dataset
that has been used for this tests contains 52 videos taken
from different colonoscopies. The dataset is not available and
a direct comparison is therefore not possible. Polyp-Alert is
at the moment limited to polyp detection and does not give
real-time feedback for current 25 fps colonoscopy systems.

Nawarathna et al. [8] presented an approach that is not
limited to polyp detection in colonoscopy videos. It is also
able to detect abnormalities like bleeding. To achieve this, a
texton histogram of an image block is used. Nevertheless, this
system does not reach real-time performance.

A possible solution to achieve real-time instead of near real-
time performance is the SAPPHIRE middleware and software
development kit for medical video analysis [9]. The toolkit
has been used to built the EM-Automated-RT software [10].
EM-Automated-RT does real-time video analysis to determine
the quality of a colonoscopy procedure, and it is able to give

visual feedback to the endoscopist performing the procedure.
This is done to achieve optimal accuracy of the inspection
of the colon during the procedure. Nevertheless, it is limited
to the assessment of the endoscopist’s quality, and does not
automatize disease detection itself.

A dominant trend to speed up processing of CPU-intensive
tasks is to offload processing tasks to GPUs. Stanek et al. [9],
[10] indicate that utilizing a GPU and program it using
either CUDA1 or OpenCL2 can be the right way to achieve
real-time performance. In other areas this has already been
explored to a certain extent. For example, we applied it in
sport technology [11], [12], where GPUs were used to improve
the video processing performance to achieve live, interactive
panning and zooming in panorama video.

In summary, actual computer-aided diagnostic systems for
the GI tract do not provide real-time performance in com-
bination with a sufficient detection or localisation accuracy.
Therefore, we present a system focusing on both high accuracy
detection and real-time performance. Additionally, the aim is
to provide flexibility for other diseases that can be detected.

III. SYSTEM

In our research, we target a general system for automatic
analysis of GI tract videos with high detection accuracy, abnor-
mality localisation in the video frames, real-time performance
and an architecture that allows easy extensions of the system.
In this paper, we focus on achieving real-time performance
without sacrificing high detection accuracy.

A. Basic Architecture

Our system consists of three main parts. The first is feature
extraction. It is responsible for handling input data such as
videos, images and sensor data, and extracting and providing
features from it. The most time-consuming aspect here is the
extraction of information from the video frames and images.

The second part is the analysis system. Currently, a search-
based classifier that is similar to a K-nearest-neighbour ap-
proach [13] is implemented. The search-based classifier use
more than 20 different global image features and combinations
of them for the classification. In our use case of polyp
detection, we used an information gain analysis [14] to identify
a combination of the features Joint Composite Descriptor
(JCD) (which is a combination of Fuzzy Color and Texture

1http://www.nvidia.com/object/cuda_home_new.html
2http://developer.amd.com/tools-and-sdks/opencl-zone/



Histogram (FCTH) and Color and Edge Directivity Descriptor
(CEDD)) and Tamura as the best working ones. The features
mainly focus on texture and color, and a detailed description
can be found in [15]. Additionally, a localisation algorithm
for polyp localisation is supported. The implementation of
this part is modular and can be extended with additional
diseases, classifiers or algorithms as needed. Of course, adding
additional modules will require more computing power to keep
the systems real-time ability. We address this by designing a
heterogeneous architecture.

The last part is the presentation system. It presents the
output of the real-time analysis to the endoscopist. The most
challenging aspect here is that the presentation should not
introduce any delays, which would make the system unsuitable
for live examinations. The presentation of the results is imple-
mented in a light-weight way using web technologies. The
advantage is that it does not require additional installations,
which sometimes can be problematic in a hospital environment
and due to its simplicity it does not consume relevant amounts
of resources.

The first version of our system worked on at most two image
features at a time, it was restricted to a single computer, and
the localisation part did not achieve real-time speed for full
high-definition videos. Its performance is given for comparison
in section IV-B.

To acheive real-time speed, the architecture had to be
improved. We chose to do this by applying heterogeneous
processing elements. As discussed in the related work, the
most promising approach is the utilization of GPUs.

B. Heterogeneous Architecture Improvement

To improve the performance of our initial basic system
architecture, we re-implemented most compute-intensive parts
in CUDA. CUDA is a commonly used GPU processing frame-
work for Nvidia graphic cards. We designed an architecture
with a heterogeneous processing subsystem as depicted in
figure 3.

At the moment, GPU-accelerated processing is implemented
for a number of features (JCD, which includes FCTH and
CEDD, and Tamura) for the feature descriptor extraction, color
space conversion, image resizing and prefiltering.

In our architecture, a main processing application interacts
with a modular image-processing subsystem both implemented
in Java. The image-processing subsystem uses a multi-threaded
architecture to handle multiple image processing and feature
extraction requests at the same time. All compute-intensive
functions are implementated in Java to be able to compare
performance with the heterogeneous implementation, which is
transparently accessible from Java code through a GPU CLib
wrapper. The JNA API is used to access the GPU CLib API
directly from the image processing subsystem. The GPU CLib
is implemented in C++ as a Linux shared library that connects
to a stand-alone processing server and pipes data streams for
handling by CUDA implementations. Shared memory is used
to avoid the performance penalty of data copying. Local UNIX
sockets are used to send requests and receive status responses

Fig. 3. The main processing application consisting of the indexing and
classification parts uses the GPU-accelerated image processing subsystem.
This subsystem provides feature extraction and image filtering algorithms.
The most compute-intensive procedures are executed on a stand-alone CUDA-
enabled processing server. The interaction between application and server is
done via a GPU CLib shared library, which is responsible for maintaining
connections and streaming data to and from the CUDA-server.

from the CUDA server because they can be integrated more
easily with asynchronous on the JNI side then shared-memory
semaphores. The CUDA server is implemented in C++ and
uses CUDA SDK to perform computations on GPU. The
CUDA server and all heterogeneous-support subsystems are
built with distributed processing in mind, and can easily be
extended with multiple CUDA servers running locally or on
several remote servers.

The processing server can be extended with new feature
extractors and advanced image processing algorithms. It en-
ables the utilization of multi-core CPU and GPU resources.
As an example, the structure of the FCTH feature extractor
implementation is depicted in figure 4. It shows that for the
image features, all pixel-related calculations are executed on
the GPU. In the case of the FCTH feature, this includes also
the processing of a multi-threaded shape detector and fuzzy
logic algorithms.

To achieve better performance, a heterogeneous processing
subsystem provides the transparent caching of input and inter-
mediate data, which reduces the CPU-GPU bandwidth usage
and eliminates redundant data copy operations during image
processing.

IV. EVALUATION

To evaluate our system, we use colorectal polyp detection
as a case study. As test data, the ASU-Mayo Clinic polyp
database3 has been used. This dataset is the largest publicly
available dataset consisting of 20 videos. We converted the
videos from WMV to MPEG-4 for the experiments. The 20
videos have a total number of 18.781 frames with a maximum
resolution of 1920 × 1080 pixels (full high definition) [16].
Further, we concentrate the experiment on the detection part.

3http://polyp.grand-challenge.org/site/Polyp/AsuMayo/



Fig. 4. GPU-acceleration is used to extract various features from input
frames. The figure shows an example of our FCTH feature implementation.
The input frame is split into a number of non-overlapping blocks. Each of
them is processed separately by two GPU-threads. The main processing steps
include color space conversion, size reduction, shape detection and fuzzy logic
computations.

Localisation of the polyp in the frame is also implemented
and optimized, but due to space restrictions, it is not included
here.

A. Polyp Detection

In terms of detection performance, we reach acceptable
results, as illustrated in table I. The actual performance of
the system has been assessed using a combination of JCD and
Tamura features. For a robust and representative evaluation, we
conducted a leave-one-out cross-validation with all available
video sequences. The training of the system using 19 videos
takes around 2 minutes. Due to the problem that different
video sequences contribute values based on different numbers
of video frames, we weighted the values contributed by every
single video sequence with the overall number of frames in
the sequence. This led to an average precision of 0.9388, an
average recall of 0.9850, and an average F1 score value of
0.9613. That means that the system can find polyps with a
precision of almost 94% and detect almost 99% of all frames
that contain a polyp.

These results demonstrate that the system is able to reach
high detection accuracy and also, that it can compete with
other state-of-the-art systems. For example, Wang et al. [2]
reach with their system a recall of 97.70% while our system
reaches 98.50%. Hwang et al. [17] report a precision of
83.00% while we achieve 93.88%. In terms of sensitivity, we
reach 96.37% compared to Wang et al. [18] with 81.40%,
Alexandre et al. [19] with 96.69% and Cheng et al. [20]
with 86.20%. Thus, our system performs at the high level
of precision compared to the best related systems. However,
more important in this paper is the comparison of our own
basic architecture with the improve heterogeneous approach
in terms of their time-performance.

TABLE I
LEAVE-ONE-OUT CROSS-VALIDATION FOR 20 VIDEOS IN THE USED

DATASET. THE TABLE DEPICTS TP (TRUE POSITIVES), TN (TRUE
NEGATIVES), FP (FALSE POSITIVES), FN (FALSE NEGATIVES) AND THE

METRICS PRECISION, RECALL AND F1 SCORE.

Video TP TN FP FN Precision Recall F1
np_5 1 680 0 0 1 1 1
np_6 1 836 0 0 1 1 1
np_7 1 767 0 0 1 1 1
np_8 1 710 0 0 1 1 1
np_9 1 1,841 0 0 1 1 1
np_10 1 1,923 0 0 1 1 1
np_11 1 1,548 0 0 1 1 1
np_12 1 1,738 0 0 1 1 1
np_13 1 1,800 0 0 1 1 1
np_14 1 1,637 0 0 1 1 1
wp_2 140 9 20 70 0.875 0.6666 0.7567
wp_4 908 1 0 0 1 1 1
wp_24 310 68 127 12 0.7093 0.9627 0.8168
wp_49 421 12 62 4 0.8716 0.9905 0.9273
wp_52 688 101 284 31 0.7078 0.9568 0.8137
wp_61 162 10 165 0 0.4954 1 0.6625
wp_66 223 12 165 16 0.5747 0.9330 0.7113
wp_68 172 51 20 14 0.8958 0.9247 0.9100
wp_69 265 185 138 26 0.6575 0.9106 0.7636
wp_70 379 1 0 29 1 0.9289 0.9631

Weighted average: 0.9388 0.9850 0.9613

B. Live Analysis in Real-time

Basic Architecture. The basic multi-core CPU-only archi-
tecture performance results are depicted in figure 5. For all the
tests, we used 3 videos from 3 different endoscopic devices
and different resolutions. The three videos are wp_4 with
1, 920×1, 080, wp_52 with 856×480 and np_9 with 712×480.
We chose these videos to show the performance under the
different requirements that the system will have to face when
in practical use. The computer used was a Linux server with
32 AMD CPUs and 128 GB memory. The figures show, that
the basic system was able to reach real-time performance for
full HD videos using a minimum of 16 CPU cores and at least
12 GB of memory. This has the huge disadvantage that real-
time speed is only achieved on expensive multi-CPU systems.
In terms of memory, tests showed that the system has rather
small requirement. This is good, since it means that memory
consumption is not a bottleneck to scalability, and that we can
ignore it for now.

Heterogeneous Architecture. The videos used to evaluate
the system performance have different resolutions. The res-
olutions are full HD (1920 × 1080), WVGA1 (856 × 480),
WVGA2 (712 × 480) and CIF (384 × 288). They are labelled
correspondingly in figures 6, 7, 8 and 9. A framerate of 30
frames per second (FPS) was assumed, and consequently, 33.3
milliseconds processing time per frame was considered real-
time speed. Our results for the heterogeneous architecture were
obtained using a conventional desktop computer with an Intel
Core i7 3.20GHz CPU, 8 GB RAM and a GeForce GTX 460
GPU. To be able to compare the basic and improved systems
directly, the same Java source code from the basic system
was used to collect the evaluation metrics. In the figures,
the basic system’s results are labelled as Java. The improved



Fig. 5. The detection performs efficiently and the required frame rate is
reached with 12 GB of memory and 16 CPU cores used in parallel on cluster-
based computation platform without utilizing heterogeneous architecture.

system’s results with disabled GPU-acceleration are labelled
as C. Finally, the improved system’s run in the heterogeneous
mode with enabled GPU-acceleration is labelled as GPU.

The performance evaluation shows, that the basic archi-
tecture can process full HD frames using all 8 available
CPU cores and up to 4 GB of memory at 6.5 FPS for Java
and 13.8 FPS for the C implementations (see figure 6) with
corresponding frame processing times of 154ms and 72ms,
respectively (see figure 8). For the smaller frame sizes, real-
time speed was reached at most 4 CPU cores and at most 4 GB
of memory. The maximum frame rates that were be reached
were 49 FPS, 51 FPS and 66 FPS for WVGA1, WVGA2 and
CIF frame sizes, respectively (see figure 7 and figure 9).

The evaluation of the improved heterogeneous system shows
that the GPU-enabled architecture can easily process full HD
frames using only 4 CPU cores (see figure 6) and up to 5
Gb of memory with a frame processing time of 32.6ms (see
figure 8). The maximum frame rate for full HD frames was 36
FPS using all 8 CPU cores. For the smaller frame sizes, the
real-time requirements were reached with only 1 CPU core
and up to 4.5 GB of memory. The maximum frame rate that
we achieved was around 200 FPS (see figure 7 and figure 9).

The results show clearly, that the given hardware system
with the basic architecture cannot reach real-time performance
for full HD videos even using all available CPU cores, and
only for the low-resolution WVGA videos, real-time can be
reached. For the improved heterogeneous system, the real-time
performance for full HD videos is easily reached using only 4
CPU cores and one outdated GPU. The smaller videos can be
processed utilizing only one CPU core plus GPU. Memory size
is not a limiting factor and the system can be deployed even
on desktop PCs with a general-purpose GPU as an accelerator.

These quantitative results illustrate, that using a hetero-
geneous architecture is key to real-time performance and
parallel analysis of videos with different approaches. Fur-
thermore, the improved heterogeneous system has significant
over-performance in terms of real-time video processing. This

Fig. 6. The improved GPU-enabled heterogeneous algorithm reaches real-time
performance (RT line) with 30 frames per second for full HD (1920×1080)
videos on a desktop PC using only 4 CPU cores and 5 Gb of memory. The
maximum frame rate is around 36 FPS using 8 CPU cores. The Java and C
implementations cannot reach real-time performance on the used hardware.

Fig. 7. The smaller WVGA1 (856 × 480), WVGA2 (712 × 480) and
CIF (384 × 288) videos can be processed by the improved GPU-enabled
heterogeneous algorithm in real-time using only 1 CPU core. The maximum
frame processing rate reaches more than 200 FPS. These results can be
improved by putting all feature-related computations on the GPU.

makes it possible to implement more feature extractors, classi-
fiers and many other image processing algorithms to increase
the number of detectable diseases by our system while keeping
the real-time capability.

V. CONCLUSION

Efficient and fast data analysis of medical video data is im-
portant for to several reasons, including real-time feedback and
increased system scalability. In this paper, we have presented
a computer-based medical systems that tackles live automatic
analysis of endoscopy videos. The presented system utilizes
different parts of heterogeneous architectures and will soon
be tested in a clinical trial with high definition colonoscopy
videos. Compared to existing systems, our system provides
an abnormality detection precision and recall level at least
as good as existing related work. However, with an achieved



Fig. 8. The processing time for the GPU-accelerated algorithm decreases
slightly with increasing number of used CPU cores for a single full HD frame.
This happens due to the CPU-parallel implementation of feature comparison
and search algorithms which are not as compute intensive as feature extraction.
The Java and C implementations reach the minimum frame processing time
with 4 used CPU cores. The reason is that the used CPU has 4 real cores
with hyper-threading feature enabled and it cannot handle CPU-intensive
calculations efficiently for all 8 (real plus virtual) cores.

Fig. 9. For the smaller frame sizes the GPU-accelerated algorithm results in
a processing time far below the real-time margin. The minimum is reached
with 5 milliseconds using 8 CPU cores. This is a prove for the high system
performance and ability to be extended by additional features or to process
several video streams at the same time on a conventional desktop PC.

performance of 200 frames per seconds, it is superior with
respect to video stream processing time and the ability to
provide real-time automatic feedback during live endoscopies.

We continue to optimize and improve our implementation
of the detection system. Ongoing work includes moving the
localisation to the GPU, and we are in the process of extending
the number of diseases detected. Our current performance
easily allows for this, and our future multi-disease detection
system will be distributed on several computers.
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ABSTRACT
In this paper, we present a demo that utilizes Device Lend-
ing via PCI Express (PCIe) in the context of a multi-auditory
environment. Device Lending is a transparent, low-latency
cross-machine PCIe device sharing mechanism without any
the need for implementing application-specific distribution
mechanisms. As workload, we use a computer-aided diag-
nosis system that is used to automatically find polyps and
mark them for medical doctors during a colonoscopy. We
choose this scenario because one of the main requirements
is to perform the analysis in real-time. The demonstration
consists of a setup of two computers that demonstrates how
Device Lending can be used to improve performance, as well
as its effect of providing the performance needed for real-
time feedback. We also present a performance evaluation
that shows its real-time capabilities of it.

CCS Concepts
•Information systems→ Information retrieval; Mul-
timedia and multimodal retrieval;

Keywords
Medical Multimedia; Information Systems; Classification

1. INTRODUCTION
Colonoscopy is a medical procedure, during which spe-

cialists in bowel diseases (gastroenterologists), investigate
and operate on the colon through minimally invasive surgery
by using flexible endoscopes. These examinations are usu-
ally done in a special examination room as depicted in fig-
ure 1(a). A standard hospital normally has several of these
rooms in their gastroenterology department. These rooms
contain screens for the doctors that show the video stream
from the camera, a bed for the patient, the endoscopic pro-
cessor, a desktop computer for reporting and some medical
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(a) The examination room where
the endoscopies are performed. A
usuall hospital has several of these
rooms.

(b) Different endoscopes for dif-
ferent examinations and patients.
For example the very small one is
for children.

(c) The tip of the endoscope. It is
very flexible and can be moved by
the gastroentologist in every pos-
sible direction.

(d) The controll unit of the endo-
scope the gastroentologiest uses to
controll the endoscope in terms of
zoom, rotation, etc.

Figure 1: These images show an auditorium and en-
doscopic equipment in the Bæerum Hospital in Nor-
way where our system will be used.

treatment supplies. The endoscopes can vary in their at-
tributes like the thickness of the endoscope or its length,
but also in the resolution of the videos. Figure 1(b) shows a
collection of different endoscopes. Endoscopes are frequently
moved between examination rooms to fit the requirements
of a specific examination. From the tip of the endoscope
(figure 1(c)), a video is transmitted, and the gastroenterolo-
gist relies on the video stream to diagnose disease and apply
treatments. To control the endoscope, the control unit that
is part of every endoscope is used. As one can see in fig-
ure 1(d), this is a complex mechanism that requires a lot
of concentration from the doctor during the whole proce-
dure, lasting up to 2 hours depending on the findings. The
camera can be seen as the virtual the eye of the gatroentol-
ogists, and the video stream is all they perceive. Usually,
doctors get "third eye" support from their nurses to support
them during the examinations and increase the number of
findings.
Recently, computer-aided diagnostic systems are more and

more used in gastroenterology. The most recent and best



working system is Polyp-Alert [10]. This computer-aided
diagnostic system helps to determine the quality of the colo-
noscopy during the procedure. It reaches very high accuracy
and sensitivity, but it only reaches near real-time and not
full real-time feedback. This is not optimal for live exami-
nations where the medical expert controls the camera man-
ually and cannot rely on a system that introduces delays.
Even though real-time performance can be reached by using
multiple GPUs in one sufficiently powerful desktop machine,
placing such noisy and costly machines in the examination
rooms of a hospital is impractical. A more realistic sce-
nario is therefore to have or to use already installed smaller
machines in each room and to use Device Lending when-
ever more resources are needed. Here, Device Lending is a
concept where computers interconnected in a PCI Express
network can share devices using a transparent cross-machine
device sharing system without any special effors to use re-
mote resources locally. It is a low-latency, high-throughput
solution for distributed computing, utilizing common hard-
ware already present in all modern computers and requiring
little additional interconnection hardware.
In this paper, we will present a demo that utilizes Device

Lending of GPUs in combination with our own computer-
aided diagnosis system. With this demo, we address two
main challenges. First, we will show that real-time support
is possible using this technology. Second, we demonstrate
the possibility of having one mainframe that can lend the
devices to different computers based on the computational
demands. This can be an important advantage and even re-
quired for scenarios where no room for large machines exists.
Further, it can be important for setups where the require-
ments change fast and often on the fly (e.g., an examination
room in a hospital changes the used endoscopes several times
during the day; endoscopes with a very high resolution need
more processing power than those with lower resolution).

2. REAL-TIME COMPUTER AIDED DIAG-
NOSIS SUPPORT

Automatic detection of polyps in colonoscopies has been
in focus of research for a long time [9]. However, few com-
plete systems exist that are able to do real-time detection, or
that can support endoscopists by computer-aided diagnosis
for colonoscopies in real-time and at the same time main-
tain a high detection accuracy. The most recent and best
working approach is Polyp-Alert [10] that is able to give near
real-time feedback during colonoscopies. Visual features and
a rule based classifier are used to detect the edges of polyps,
and a performance of 97.7% correctly detected polyps is re-
ported. However, real-time support is limited as they reach
only 10 frames per second.
To target the real-time performance, we have proposed

EIR [8, 7, 6] medical experts supporting system for the task
of detecting diseases and anatomical landmarks in the gas-
trointestinal (GI) tract, which used in this demo as a use
case. It has several key attributes, i.e., EIR (i) is easy to
use, (ii) is easy to extend to different diseases, (iii) can do
real time handling of multimedia content, (iv) is able to be
used as a live system and (v) has high classification per-
formance with minimal false negative classification results.
Compared to Polyp-Alert, our detection accuracy is slightly
below. The classification performance of the polyp detection
in our EIR system lies around a precision of 0.903 and a re-

call of 0.919, but it is tested on a different dataset, meaning
that the numbers are not directly comparable.
Currently, the system consists of two parts, the detection

subsystem that detects irregularities in video frames and im-
ages and the localisation subsystem that localises the exact
position of the disease. The detection can not determine the
location of the found irregularity. The location determina-
tion is done by the localisation subsystem. The localisation
subsystem uses the output of the detection system as input.
After the automatic detection and analysis of the content,
the output has to be presented in a meaningful way to the
gastroentologists. Therefore, the system has a visualisation
subsystem that is reliable, robust and easy to understand
also under stressful situations that can occur during a live
examination. Moreover, it supports easy search and brows-
ing through a large amount of data after the examination. In
this demo, we do not focus on EIR but rather using Device
Lending and how it can improve performance. EIR itself is
just a relevant use case.

2.1 GPU Implementation
Parts of EIR had to be improved and changed to run on

multiple GPUs and allow the system to perform in real-
time. Therefore, the most compute-intensive parts have
been ported to CUDA, a computation support framework
for nVidia graphic cards. To achieve this, parts of the sys-
tem had to be built as a heterogeneous processing subsys-
tem. The GPU framework supports at the moment a num-
ber of features, namely Joint Composite Descriptor (JCD),
which includes Fuzzy Color and Texture Histogram (FCTH)
and Color and Edge Directivity Descriptor (CEDD), and
Tamura, but we are working on increasing the supported
features.
A main processing application interacts with a modular

image processing subsystem. Both of these are implemented
in Java. A multi-threading architecture is used by the image
processing unit to handle multiple processing and feature ex-
traction requests at the same time. A shared library that
is responsible for maintaining connection with and stream
data to the stand-alone CUDA-enabled processing server is
implemented in C++. To ensure high data transfer per-
formance and reduce excessive data copy operations, shared
memory has been used, while sending requests and receiving
status responses uses local UNIX sockets. A CUDA server
implemented in C++ runs in the background and performs
computations on GPU. The whole system can easily be ex-
tended with multiple CUDA servers running locally or on a
number of remote servers. This is also valid for the process-
ing server, which can be extended with new feature extrac-
tors and advanced image processing algorithms, and utilize
multi-core CPU and GPU resources concurrently.

2.2 Device Lending
Device Lending is a concept where computers intercon-

nected in a PCI Express [5] network can share devices. It
provides transparent, low-latency cross-machine PCIe de-
vice sharing without any need to implement application-
specific distribution mechanisms or modify native device
drivers. As the workload increases or decreases, the system
can allocate and de-allocate additional resources.
Today, PCIe is the most common interconnection network

inside a computer, and with PCIe non-transparent bridges
(NTB) [1], it can be turned into an interconnection network



Figure 2: Pooling of devices attached in the PCIe
network in the experimental setup.

for multiple machines. In PCIe, all devices connected to the
computer are considered part of one common resource pool
(figure 2). All devices resources in PCIe are represented
by addresses that can be mapped into a remote memory
space by an NTB. Device Lending is implemented [3] using
Dolphin Interconnect Solutions NTB software [1].
For the EIR system, Device Lending enables the com-

bination of multiple GPUs through CUDA’s own peer-to-
peer communication model, instead of either writing a dis-
tributed system, using rCUDA [2] or MPI [4].

2.3 Performance Evaluation
To evaluate the performance of our system and also to

show that Device Lending in our scenario works as intended,
we performed 4 different experiment sets. An overview of
the hardware used and the performed experiments can be
found in table 1. For all configurations, we used the same
CPU (Intel Core i7-4820K 3.7GHz) and RAM (16GB Quad
Channel DDR3). The test setup consists of 2 computers
(Machine A and B, see figure 2), where the host code of the
tests runs on one of them. The second one lends a GPU to it.
Experiment E1 uses one local GPU, E2 uses two local GPUs
and E3 uses three local GPUs. In E4, we borrowed one GPU
from the second computer in addition to three local GPUs.
With the current machine setup it is not possible to lend
more that one GPU because of software limitations in the
motherboard’s BIOS.
In the experiments, we performed polyp classification and

real-time feedback on the video for up to 16 parallel video
streams. All video streams are full HD (1920x1080) videos
from colonoscopies. We measured the performance from
capturing the video up to showing the output on the screen.
The complete evaluation is shown in figure 3.
Figure 3(a) shows the performance in terms of processing

time per frame for all streams simultaneous. The results

Device Type E1 E2 E3 E4
GPU1 Nvidia Tesla K40c * * * *
GPU2 Nvidia Quadro K2200 * * *
GPU3 Nvidia GeForce GTX 750 * *
GPU4 Nvidia Tesla K40c *

Table 1: This table shows the used hardware com-
binations of the different experiments. GPU 1 to 3
are local GPUs. GPU4 is lend via Device Lending.

reveal that for up to 7 parallel full HD streams, the 3 lo-
cal GPUs are fast enough. For more than 7 streams, GPU
lending is required. The graph shows that the more par-
allel streams are processed, the better is the performance
gain from the borrowed GPU. We assume that this is due
to the excessive overhead for transferring small amount of
data, which hinders Device Lending to reach its full poten-
tial. This becomes less important when we have more par-
allel streams, and that Device Lending can indeed improve
performance.
The plot in figure 3(b) shows the overall system perfor-

mance. The evaluation shows that Device Lending can in-
deed improve the system performance. The maximum over-
all frames per second we reach when using 4 GPUs at the
same time is 30 fps for 9 parallel full HD streams, which is
equivalent to 270 fps for a single video stream. Further, this
graph shows that the borrowed GPU does not increase the
performance for a smaller number of videos, but for 5 and
more videos the increase is higher. This is another indicator
that Device Lending can increase performance a lot for large
scale processing.
All in all, the experiments showed two important things:

(i) Device Lending does not make sense for small amounts
of data, but if the data to process is large it can give a large
performance boost, and (ii) Device Lending makes sense in
a multi-auditory scenario like we present with our demo.

3. DEMONSTRATION SETUP
The above experiments show the performance of EIR on

powerful machines and that Device Lending works efficiently,
i.e., high performance and low latencies at a very low over-
head. However, placing such a setup in the many exami-
nation rooms in a hospital is impractical for a number of
reasons like high costs and noisy machines. A more real-
istic scenario is therefore to have smaller machines in each
room and use Device Lending whenever more resources are
needed.

(a) Frame processing time for several full HD streams in parallel. (b) Overall system performance for multiple full HD steams in parallel.

Figure 3: System performance evaluation in terms of processing time per frame and maximum performance
using 4 different configurations described in table 1. Each video stream is a full HD video.



Figure 4: A compete overview of the demo setup.
The demo consists of 2 computers, 1 Dolphin in-
terconnect device, 1 screen, an artificial colon and
a flexible camera. The users can use the camera
in the flexible colon and will get real-time feedback
about possible findings. Furthermore, the demo can
be switched between Device Lending on and off to
demonstrate the effect of it more clear.

To demonstrate the usefulness of Device Lending, we there-
fore use the above scenario. In the demo, users can use
a flexible camera to perform a colonoscopy in an artificial
colon, and the system will support them in real-time with
analysis and feedback. The complete demo setup is depicted
in figure 4. During the demo, the camera can be used to ex-
amine the artificial colon and the output of the system will
be shown in real-time on the screen. The demo will show
the performance increase when a GPU can is borrowed from
another machine. Therefore, the demo application can be
switched between lending and not lending a GPU. An exam-
ple of the output for detected polyps can be seen in figure 5.
This setup is similar to our real world setup of the system for
live colonoscopy with videos as shown to the doctors. Thus,
the processing will be done on a very weak computer that
is not able to perform the complicated analysis in real-time.
Therefore, it is connected to another PC via a Dolphin in-
terconnect device and uses Device Lending to allocate the
required processing power. The demo will clearly show the
visible differences when Device Lending is used and when
not. We also would like to point out, that the presented
demonstration is based on the findings in [3] which describes
the Device Lending in more detail for further reading.

4. CONCLUSION AND FUTURE WORK
In this paper, we presented a demo for Device Lending for

computer-aided diagnosis that can assist medical doctors to
analyse colonoscopy videos in a multi-auditory scenario. We
proved that we can reach high performance in terms of pro-
cessing time for several full HD video streams in parallel
which make it possible to use the proposed system during
several and parallel live colonoscopies. We showed that run-
ning multiple classifiers in parallel by offloading the process-
ing to multiple machines connected through a PCI Express
network and using GPU lending works in our scenario. This
optimized version of the application will be able to dynam-
ically allocate, distribute and release compute resources on
demand from a pool of available GPUs. For future work,
we would like to improve the scheduling of tasks within our
lending network. This would include decisions for what and
how much to lend to which part of the system using different
input information like the required support level of doctors
and the endoscope used. We also think that this idea is ap-
plicable to other scenarios like for example in cinemas where
a less powerful PC in each saloon allocates GPUs based on
the quality of the movie to show, e.g., one room shows 4k,
one 3D and another one full HD.

Figure 5: This figure shows 2 examples of what the
doctor will see on the screen and what we will show
during the demo. In both pictures, the system de-
tected polyps and marked them with a cross. If
nothing is detected, the corners of the screen are
marked green for feedback.
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Abstract Analysis of medical videos from the human gastrointestinal (GI) tract for detec-
tion and localization of abnormalities like lesions and diseases requires both high precision
and recall. Additionally, it is important to support efficient, real-time processing for live
feedback during (i) standard colonoscopies and (ii) scalability for massive population-based
screening, which we conjecture can be done using a wireless video capsule endoscope
(camera-pill). Existing related work in this field does neither provide the necessary
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combination of accuracy and performance for detecting multiple classes of abnormalities
simultaneously nor for particular disease localization tasks. In this paper, a complete end-to-
end multimedia system is presented where the aim is to tackle automatic analysis of GI tract
videos. The system includes an entire pipeline ranging from data collection, processing and
analysis, to visualization. The system combines deep learning neural networks, information
retrieval, and analysis of global and local image features in order to implement multi-class
classification, detection and localization. Furthermore, it is built in a modular way, so that
it can be easily extended to deal with other types of abnormalities. Simultaneously, the
system is developed for efficient processing in order to provide real-time feedback to the
doctors and for scalability reasons when potentially applied for massive population-based
algorithmic screenings in the future. Initial experiments show that our system has multi-
class detection accuracy and polyp localization precision at least as good as state-of-the-art
systems, and provides additional novelty in terms of real-time performance, low resource
consumption and ability to extend with support for new classes of diseases.

Keywords Medical · Automatic disease detection · Algorithmic screening · Global and
local image features · Deep learning neural networks · Information retrieval · Performance
evaluation

1 Introduction

Rapid development of technologies in areas of sensors, imaging devices and diagnostic
methods shifts the paradigm in medical diagnostic from manual analysis by trained doctors
to wide usage of automated computer-assisted diagnostic systems. In our research, we are
working at the intersection between computer science and pathological medicine, where we
target a scalable, real-time, multi-disease detection system for the gastrointestinal (GI) tract.
Our aim is to develop both a computer-aided, live analysis system of endoscopy videos and
a scalable detection system for population-wide screening using a wireless video capsule
endoscope (VCE). This small capsule with one or more image sensors is swallowed and
captures videos while it traverses the entire GI tract.

In the context of object detection, localization and tracking in images and videos, a lot
of research carried out. Particularly, current systems have been developed to detect general
objects from the surrounding world, for example human faces, cars and logos. Our research
targets a totally different domain, which is inside the body of a human being. Both the gen-
eral objects and the GI tract irregularities can have different sizes, shapes, textures, colors
and orientations, they can be located anywhere in the frame and also partially be hidden
and covered by other objects and obstacle. However, GI tract findings can also have a color,
texture and shape properties similar for the different diseases, as well as different for the
similar diseases on the various developing stages. The GI findings can be covered by the
biological substances, like for example seeds or stool, and lighted by direct and reflected
light. Moreover, the images coming from the endoscopic equipment itself can be inter-
leaved, noisy, blurry and over- or under-exposed, and it can contain borders, sub-images and
a lot of specular reflections (flares) caused by endoscope’s light source. Therefore, detect-
ing abnormalities and diseases in the GI tract is very different from detecting the objects
from the surrounding world listed above. The GI tract can potentially be affected by a wide
range of diseases with visible lesions (see Fig. 1d–e), but endoscopic findings may also
include benign (normal) or man-made lesions. The most common diseases are gastric and
colorectal cancer (CRC), which are both lethal when detected in a late stage. The 5-year
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(a) Colon mucosa (normal) (b) Cecum (landmark) (c) Z-line (landmark)

(d) Polyps (disease) (e) Tumor (disease) (f) Blurry frames (notuseful)

Fig. 1 Example frames from human colon showing normal tissue (a)–(c), abnormal findings (d)–(e) and
useless frames (f)

survival rate of CRC ranges from 93% in stage I to 8% in stage IV [29]. Consequently, early
detection is crucial. There are several ways of detecting pathology in the GI tract, but sys-
tematic population-wide screening is important. However, current methods have limitations
regarding sensitivity, specificity, access to qualified medical staff and overall cost.

In this scenario, both high precision and recall are important, but so is the frequently
ignored system performance in order to provide feedback in real-time. The most recent and
most complete related work is the Polyp-Alert polyp detection system [52], which can pro-
vide near real-time feedback during colonoscopies. However, it is limited to polyp detection,
it uses edges, colors and texture in the images, and, at the moment, it is not fast enough for
live examinations.

To further aid and scale such examinations, we have earlier presented EIR1 [32, 37],
an efficient and scalable automatic analysis and feedback system for medical videos and
images. The system is designed to support endoscopists in the detection and interpreta-
tion of diseases in the GI tract. EIR has initially been tested in video analysis of the lower
portions (large bowel) of the GI tract. However, our main objective is to automatically
detect abnormalities in the whole GI tract. Therefore, we are developing a complete sys-
tem for detection and in-frame position localization of different endoscopic findings like
polyps, tumors, diseases and landmark objects (like the Z-line and cecum). The aim is to
use next-generation-EIR for both (i) a computer assisted diagnosis tool for live endoscopic
examinations and (ii) a future fully automated and scalable screening system used together
with VCEs. These goals impose strict requirements on the accuracy of the detection to max-
imize number of true positives and to avoid false negatives (overlooking a disease), as well
as low computational resource consumption to provide massive population screening with
VCEs. The live-assisted system also introduces a real-time processing requirement defined

1In Scandinavian mythology, EIR is a goddess with medical skill.
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as being able to process at least 30 HD frames per second, i.e., a common frame rate and
resolution in modern endoscopic devices.

Our first version [32, 37] was developed for detection of polyps, i.e., possible cancer pre-
cursors, and it was built on content-based information retrieval methodology using global
image features for image content analysis. In this paper, the next generation of our system
is presented, where we extend our system using out-of-the-box and improved deep learning
neural network approaches and multi-class global-feature classification methods for detec-
tion and localization of endoscopic findings. We evaluate our prototype by training new
and improved classifiers that are based on various image-recognition approaches. We com-
pare the performance of feature-based analysis and neural network-based analysis in terms
of accuracy and real-time processing, and thereby evaluate the different approaches for
feasibility of multi-class detection and colonic polyp localization in real use-case scenarios.

The results from our experimental evaluation show that, (i) the detection and localiza-
tion accuracy can reach the same performance or outperform other current state-of-the-art
methods, (ii) the processing performance enables frame rates for real-time analysis at high
definition resolutions, (iii) the localization-system performance can be improved further
using a combination of our basic localization algorithms and neural network approaches,
(iv) in our experiments, the global-feature multi-class detection approach slightly outper-
forms the deep learning neural network approach both in training speed and detection
performance, and (v) the system proves to be easily extended by adding new types of
abnormalities. Thereby, a system based on global features seems to be preferable and gives
better performance in multi-class object detection than given existing deep learning network
approaches. For the localization, additional research is needed to achieve better performance
using a combination of local feature detection and deep learning neural networks.

The rest of the paper is organized as follows: First, in Section 2, we briefly introduce
our medical case study. Next, we present related work in the field and compare it to the
presented system in Section 3. This is followed by a presentation of the complete system in
Section 4. We present an evaluation of the system in Section 5, and in Section 6, we discuss
two cases where our system will be used in two medical examinations by medical experts.
Finally, we conclude our results in Section 7.

2 Gastrointestinal endoscopy

The GI tract can potentially be affected by various abnormalities and diseases. Some exam-
ples of possible findings are shown in Fig. 1b–e. CRC is a major health issue world-wide,
and early detection of CRC or polyps as predecessors of CRC is crucial for survival. Sev-
eral studies demonstrate that a population-wide screening program improves the prognosis
and can even reduce the incidences of CRC [17]. As a consequence, in the current Euro-
pean Union guidelines, screening for colorectal cancer is recommended for all people over
50 years old [50]. Colonoscopy, a common medical examination and the gold standard for
visualizing the mucosa and the lumen of the entire colon, may be used either as a pri-
mary screening tool or in a second step after other positive screening tests [25]. However,
traditional rectal endoscopic procedures are invasive and may lead to great discomfort for
patients, and extensive training of physicians and nurses is required to perform the exami-
nation. They are performed in real-time, and, therefore, it is challenging to scale the number
of examinations to a large population. Additionally, the classical endoscopic procedures
are expensive. In the US, for example, colonoscopy is the most expensive cancer screening
process, with an annual cost of 10 billion dollars (1,100$-6,000$/person) [47], and a time
consumption of about one medical doctor-hour and two nurse-hours per examination.
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In our research, we aim for an algorithmic system that detects multiple mucosal patholo-
gies in videos of the GI tract. The idea is to assist endoscopists (physicians, who are highly
trained in the procedure) during live examinations. Additionally, alternatives to traditional
endoscopic examinations have recently emerged with the development of non-invasive
VCEs. The GI tract is visualized using a pill-sized camera (available from vendors such as
Medtronics/Given and Olympus) that is swallowed and then records a video of the entire
GI tract. The challenge in this context is that medical experts still need to view the full-
length video. Our system should provide a scalable tool that can be used in a first-order
population screening system where the VCE-recorded video is used to determine whether
an additional traditional endoscopic examination is needed or not. As a first step, we tar-
get the detection and the localization of colorectal polyps, which are known precursors of
CRC (see for example Fig. 1d). The reason for starting with this scenario is that most colon
cancers arise from benign, adenomatous polyps (around 20%) containing dysplastic cells,
which may progress to cancer. Detection and removal of polyps prevent the development of
cancer, and the risk of getting CRC in the following 60 months after a colonoscopy depends
largely on the endoscopist’s ability to detect polyps [20]. Next, we extend our system to sup-
port detection of multiple abnormalities and diseases of the GI tract (see Fig. 1) by training
the classifiers using multi-class datasets.

3 Related work

Detection of diseases in the GI tract has so far primarily focused on polyps. This is most
probably due to the lack of alternative data in the medical field, but also that polyps are
precursors of CRC. Several algorithms, methods and partial systems have, at first glance,
achieved promising results [37] in their respective testing environment. However, none of
the related works is able to perform real-time detection or support doctors by computer-
aided diagnosis in real-time during colonoscopies. Furthermore, all of them are limited to
a very specific use case, which in most cases is polyp detection for a specific type of cam-
era [37]. Furthermore, in some cases, it is unclear how well the approach would perform as
a real system used in hospitals. Most of the research conducted in this field uses rather small
amounts of training and testing data, making it difficult to generalize the methods beyond
the specific cleansed and prepared datasets and test scenarios. Therefore, overfitting for the
specific datasets can be a problem and can lead to unreliable results.

The approach from Wang et al. [52] is the most recent and probably best-working system
in the field of polyp detection. This system, called Polyp-Alert [52], is able to give near
real-time feedback during colonoscopies. It uses an advanced edge-finding procedure to
locate visual features and a rule-based classifier to detect an edge along the contour of a
polyp. The system can recognize the same polyp across a sequence of video frames and
can process up to 10 frames per second. The researchers report a performance of 97.7%
correctly detected polyps with around 4.3% of frames incorrectly marked as containing
polyps. Their results are based on a dataset that consists of 53 videos taken from different
colonoscopes. Despite the promising polyp detection rate, the relatively high false positive
rate makes the overall system detection performance not good enough for medical use cases.
Unfortunately, the dataset used in this research is not publicly available, and therefore, a
direct detection-performance comparison with our system is not possible. Moreover, most
of the existing publications about polyp detection systems (see Tables 6 and 7 in Section 5)
report detection accuracy on a per-polyp basis, counting the fact of successfully detected
or missed polyp across the number of frames or even across the full video, which makes it
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difficult to perform a fair comparison. In our evaluation, we use a per-frame polyp detection
and localization performance measurement. This gives a more realistic and better estimation
of the performance of the developed method in the medical domain.

Other promising polyp detection approaches utilize quite old, but recently reborn neural
networks and their advanced implementation called deep learning neural networks. Neural
networks are conceptually easy to understand, and large amounts of research has been done
in this direction in the last years. Results recently reported on, for example, the ImageNet
dataset, look promising [13] in the areas of indexing, retrieving, organizing and annotating
multimedia data. Despite the fact that the neural network model training process is very
complicated and time-consuming [12], their ability to detect and localize various objects
can potentially help us to improve our system. However, such an improvement is possible
only after careful investigation, to ensure that our system will still run in real-time and be
able to deal with the required amount of lesion categories. This is important since we deal
with patient health, and the outcome can make the difference between life and death.

Most modern deep learning frameworks state that they can be used out-of-the-box for
different types of input data. This statement sounds promising, but most state-of-the-art neu-
ral networks in multimedia research are designed to process images from everyday life, like
cats, dogs, bicycles, cars, pedestrians, etc. It needs to be proven that they can be used in med-
ical domains, because it is difficult to evaluate their performance and robustness properly
[28] due to the lack of relevant training and test data. In fact, obtaining such datasets is
one of the biggest challenges related to deep learning approaches in connection with the
medical field, due to a lack of medical experts needed to annotate data, and legal and eth-
ical issues. Some common conditions, like colon polyps, may already have the number of
collected images and videos required to perform training of a neural network, while other
endoscopic findings, like tattoos from previous endoscopic procedures (black-colored parts
of the mucosa), are not that well documented, but still interesting to detect [40]. Recent
research [8] on the topic of transfer learning promises a solution for the problem of insuf-
ficient amounts of available training data. Transferring the knowledge learned by the deep
network on a large dataset, e.g. ImageNet, to train a specialized network on a small med-
ically oriented dataset, together with a saliency prediction used to emphasize key image
points, can result in better performance of the endoscopic finding detection and localiza-
tion. Thus, in this research, we perform some preliminary experiments to see how neural
networks can deal with small training datasets.

In summary, related work primarily targets specialized problems or elements of the more
general, holistic medical problem we are attempting to solve. Existing systems are either
(i) too narrow for a flexible, multi-disease detection system; (ii) have been tested on lim-
ited datasets too small to show whether the method would work in a real scenario, or; (iii)
provide a processing performance too low for a real-time system or ignore the system per-
formance entirely. Last, but not least, we are targeting a holistic end-to-end system where
a VCE that traverses the entire tract with its video signals is algorithmically analyzed. To
solve the fundamental systems problems, we are targeting and developing a close to fully
automated, accurate, low false positive, scalable, privacy-preserving and low-cost screening
system that will, if we may say so, have significant potential impact on the society.

4 The EIR system

Our objective is to develop a system that supports doctors in multi-disease detection in the
GI tract. The system must (i) be easy to use and less invasive for the patients than existing
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methods, (ii) support multiple classes of detected GI objects, (iii) be easy to extend to new
different diseases and findings, (iv) handle multimedia content in-real time (30 frames per
second or more for Full HD videos), (v) be usable for real-time computer-aided diagno-
sis, (vi) achieve high classification performance with minimal false-negative classification
results and (vii) have a low computational resource consumption. These properties poten-
tially provide a scalable system with regard to reduced number of specialists required for
a larger population, and dramatically increased number of users potentially willing to be
screened. Therefore, EIR consists of three parts: the annotation subsystem [2], the detec-
tion and automatic analysis subsystem and the visualization and computer-aided diagnosis
subsystem [35].

The subsystems for algorithmic analysis are designed in a modular way, so that they can
be extended to different diseases or subcategories of diseases, as well as other tasks like
size determination, etc. Currently, we have implemented two types of analysis subsystems:
the detection subsystem that detects different irregularities in video frames and images, and
the localization subsystem that localizes the exact position of the disease (only polyp local-
ization is supported at the moment) in the frame. The detection subsystem is not designed
to determine the location of the detected irregularity. The exact lesion position finding is
done by the localization subsystem, so that we can use the same localization subsystem for
different detection subsystems. The localization subsystem uses the output of the detection
system as input and processes only frames marked as containing a localizable disease.

4.1 Detection subsystem

The detection subsystem performs lesion recognition and classification. It is intended for
abnormality-presence detection without searching for the precise position of the lesion. The
detection is performed using various visual similarity finding techniques. For each lesion
that has to be detected, we use a set of reference frames that contains examples of this lesion
occurring in different parts of the GI tract. This set can be seen as the model of the spe-
cific disease. We also use sets of frames containing examples of all kinds of healthy tissue,
normal findings like stool, food, liquids, etc. The final goals of the detection subsystem is
to decide if this particular frame analyzed contain any lesion or not, and to detect the exact
type of the lesion. The detection system is designed in a modular way and can easily be
extended with new diseases. This would, for example, allow not only to detect a polyp, but
to distinguish between a polyp with low or high risk for developing CRC by using the NICE
classification.2

4.1.1 Basic EIR system

In our previous work, we presented our basic EIR system [32, 36, 37] that implements
a single-class global-feature-based detector able to recognize the abnormalities in a given
video frame. Global image features were chosen, because they are easy and fast to calcu-
late, and the exact lesion’s position is not needed for detection, i.e., identifying frames that
contain a disease. We showed that the global features we chose, Tamura feature [45] and
Joint Composite Descriptor (JCD) [53], which is a combination of Fuzzy Color and Texture
Histogram (FCTH) [10] and Color and Edge Directivity Descriptor (CEDD) [9], can indeed
outperform or at least reach the same results as local features.

2http://www.wipo.int/classifications/nice/en/
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Fig. 2 Detailed steps for the multi-class global-feature-based detection implementation

The basic algorithm is based on an improved version of a search-based method for image
classification. The overall structure and the data flow in the basic EIR system is depicted
in Fig. 2. First, we create the index containing the visual features extracted from the train-
ing images and videos, which can be seen as a model of the diseases and normal tissue.
The index also contains information about the presence and type of the disease in the par-
ticular frame. The resulting size of the index is determined by the feature vector sizes and
the number of required training samples, which is rather low compared to other methods.
Thus, the size of the index is relatively small compared to the size of the training data, and
it can be easily fit into main memory on a modern computer. Next, during the classifica-
tion stage, a classifier performs a search of the index for the frames that are visually most
similar to a given input frame (see Section 4.1.3 for a detailed description of the method).
The whole basic detector is implemented as two separate tools, an indexer and a classifier.
We have released the indexer and the classifier as an open-source project called OpenSea3

[37].
The indexer is implemented as a batch-processing tool. Creating the models for the clas-

sifier does not influence the real-time capability of the system and can be done off-line,
because it is only done once when the training data is first inserted into the system. Visual
features to calculate and store in the indexes are chosen based on the type of the disease
because different sets of features or combinations of features are suitable for different types

3https://bitbucket.org/mpg projects/opensea
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of diseases. For example, bleeding is easier to detect using color features, whereas polyps
require shape and texture information.

The classifier can be used to classify video frames from an input video into as many
classes as the detection subsystem model consists of. The classifier uses indexes gener-
ated by the indexer. In contrast to other classifiers that are commonly used, this classifier is
not trained in a separate learning step. Instead, the classifier searches previously generated
indexes, which can be seen as the model, for similar visual features. The output is weighted
based on the ranked list of the search results. Based on this, a decision is made. The clas-
sifier is parallelized and can utilize multiple CPU cores for the extraction of features and
the searching in indexes. To increase performance even more, we implemented the most
compute intensive parts of the system with GPU computation support.

4.1.2 Deep-EIR

The neural network version of EIR called Deep-EIR is based on a pre-trained convolutional
neural network architecture and transfer learning [8]. We trained a model based on the
Inception v3 architecture [43] using the ImageNet dataset [13] and then re-trained and fine-
tuned the last layers. We did not perform complex data augmentation at this point and only
relied on transfer learning. We are currently in the process of data collection, and for future
work, we will also look into data augmentation and training a network from scratch using the
newly collected data, which might lead to better results than transfer learning. Figure 3 gives
a detailed overview of the complete pipeline for the neural network-based implementation
of the detection.

Inception v3 achieves good results regarding single-frame classification and has reason-
able computational resource consumption. The top one result error is 21.2%, and the top
five error is 5.6% with less than 25 million parameters. The training of the Inception v3
network is performed from scratch using Google Tensorflow v1.2rc [1]. The training takes
several weeks on a single modern computer with GPU support. Tensorflow is an open source
framework that allows all kinds of numerical computations using graphs. Nodes within the
flow graphs represent mathematical operations, and the edges represent data arrays (called
tensors in Tensorflow). It is especially built to support scalable machine learning, which
includes neural network-based architectures [1].

The trained Inception v3 model is then used in a retraining step. For this step, we fol-
low the approach presented in [14]. Basically, we froze all the basic convolutional layers of

Fig. 3 Detailed steps for the neural network approach based detection implementation
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the network and only retrained the two top fully connected (FC) layers. The FC layers were
retrained using the RMSprop [48] optimizer that allows an adaptive learning rate during the
training process. After 1,000 epochs, we stopped the retraining of the FC layers and started
fine-tuning the convolutional layers. For that step, we did the analysis of the Inception v3
model layer structure and decided to apply fine-tuning on the top two convolutional layers.
This step finalizes the transfer-learning scenario and performs an additional tuning of all
the NNs layers according to our dataset. For this training step, we used a stochastic gradi-
ent descent method with a low learning rate of 10−4 to achieve the best effect in terms of
speed and accuracy [27]. This comes with the advantage that little training data is needed
to train the network, which is an advantage for our medical use case. Additionally, it is fast,
requiring just about one day to retrain the model. The re-trainer is based on an open source
implementation of Tensorflow.4 To increase the number of training samples, we also per-
formed distortion operations on the images. Specifically, we performed random cropping,
random rescaling and random change of brightness. The grade of distortion was set to 25%
per image. After the model has been retrained, we use it for a multi-class classifier that
provides the top five classes based on probability for each class.

4.1.3 Multi-class global-feature-based EIR

The new multi-class global-feature-based version of EIR is based on the initial version of
EIR with some extensions. The basic search-based classification part of EIR is used to create
a classifier for each disease that we want to classify. Figure 2 gives a detailed overview of
the classifier’s pipeline for the global-feature-based implementation of the detection. The
difference to the basic EIR version is that the ranked lists of each search-based classifier are
then used in an additional classification step to determine the final class.

For features extraction in the detection step and for the training procedure, the index-
ing is performed using the basic EIR indexer implementation [32, 37]. The same set of two
global features, namely Tamura and JCD, is used. These features were selected by a simple
features efficiency estimation by testing different combinations of features on smaller ref-
erence datasets to find the best combinations in terms of processing speed and classification
accuracy. The selected features can be combined in two different ways. The first is called
feature values fusion or early fusion, and it basically combines the feature value vectors of
the different features into a single representation before they are used in a decision-making
step. The second one is called decision fusion or late fusion where the features are combined
after a decision-making step. Our multi-class global-feature-based approach implements
feature combination using the late fusion.

During the detection step, a term-based query from the hashed feature values of the query
image is created for each image, and a comparison with all images in the index is performed,
resulting in a ranked list of similar images. The ranked list is sorted by a distance or dis-
similarity function associated with the low-level features. This is done by computing the
distance between the query image and all images in the index. The distance function for our
ranking is the Tanimoto distance [46]. A smaller distance between an image in the index and
the query image means a better rank [46]. The final ranked list is used in the classification

4https://github.com/eldor4do/Tensorflow-Examples/blob/master/retraining-example.py
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step, which implements a simple k-nearest neighbors algorithm [4]. This algorithm can be
used for supervised and unsupervised learning, two or multi-class classification and differ-
ent types of input data ranging from features extracted from images to videos to meta-data.
Its main advantages are its simplicity, that it achieves state-of-the-art classification results
and that it is very fast in terms of processing time.

For the final classification, we use the random forest classifier [6], an ensemble learn-
ing method for classification that operates by constructing a multitude of decision trees at
training time and outputting the class that is the mode of the classes of the individual trees.
A decision tree can be seen as a classifier, which basically performs decision-based classi-
fication on the given data. To get the final class, the classifier combines decision trees into
a final decision implementing a late fusion for the multi-class classification. The advantage
of the random forest algorithm is that the training of the classifier is very fast because the
classification steps can be parallelized since each tree is processed separately. Additionally,
it is shown that the random forest is very efficient for large datasets due to the ability to find
distinctive classes in the dataset and also to detect the correlation between these classes.
The disadvantage is that the training time increases linearly with the number of trees, which
means a longer training time when many trees are used at the same time. However, this is
not a problem for our use-case since the training is done offline, where time is less critical.
Our implementation of the random forest classifier uses the version provided by the Weka
machine learning library5 [16], which is a collection of algorithms for machine learning
and data mining. We chose the random forest approach, because it is fast and achieves good
results [49]. It is important to point out that for this step, another classification algorithm
can also be used.

4.2 Localization subsystem

The localization subsystem is intended for finding the exact positioning of a lesion, which
is used to show markers on the frame containing the disease. This information is then used
by the visualization subsystem. All images that we process during the localization step
come from the positive frames list generated by the detection subsystem. Processing of the
images is implemented as a sequence of intra-frame pre- and main-filters. Pre-filtering is
needed because we use local image features to find the exact position of objects in the
frames. Lesion objects or areas can have different shapes, textures, colors and orientations.
They can be located anywhere in the frame and also partially be hidden and covered by
biological substances, like seeds or stool, and lighted by direct light. Moreover, the image
itself can be interlaced, noisy, blurry and over- or under-exposed, and it can contain borders
and sub-images. Apart from that, images can have various resolutions depending on the
type of endoscopy equipment used. Endoscopic images usually have a lot of flares and
flashes caused by a light source located close to the camera. All these nuances affect the
local feature-based detection methods negatively and have to be specially treated to reduce
localization precision impact. In our case, several sequentially applied filters are used to
prepare raw input images for the following analysis. These filters are border and sub-image
removal, flare masking and low-pass filtering. After pre-filtering, the images are ready to
be used for further analysis.

5http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 4 Detailed steps of the basic EIR localization algorithm implementation

4.2.1 Basic EIR system

Previously, we have implemented the localization of colon polyps using our hand-crafted
approach based on local image features [35]. The main idea of the localization algorithm is
to use the polyp’s physical shape to find the exact position in the frame. In most cases, the
polyps have the shape of a hill located on a relatively flat underlying surface or the shape of
a more or less round rock connected to an underlying surface with stalks of varying thick-
ness. These polyps can be approximated with an elliptically shaped region consisting of
local features that differ from the surrounding tissue with high probability. To detect these
types of objects, we process the frames marked by the detection subsystem as containing
polyps by a sequence of various image processing procedures, resulting in a set of possible
abnormality coordinates within each frame. Figure 4 gives a detailed overview of a local-
ization pipeline for the basic EIR algorithm implementation. The pipeline consists of the
following steps: non-local means de-noising [7]; 2D Gaussian blur and 2D image gradient
vector extraction; border extraction by gradient vector threshold binarization; border line
isolated binary noise removal; estimation of ellipses locations; ellipse size estimation by
analyzing border pixel distribution; ellipse fitting to extracted border pixels; selection of a
predefined number of non-overlapping local peaks and outputting their coordinates as pos-
sible polyp locations. For the possible locations of ellipses, we use the coordinates of local
maxima in the insensitivity image, created by additive drawing of straight lines starting at
each border pixel in the direction of its gradient vector. Ellipse fitting is then performed
using an ellipse fitting function [15]. This version of the subsystem is implemented in C++,
and it uses the OpenCV6 open source library for routine image content manipulation and
the CUDA7 toolkit for GPU computation support.

4.2.2 Deep-EIR

The existing localization scheme can be extended to support different diseases by imple-
mentation of lesion-specific shape, color and texture detection, but such an extension

6http://opencv.org/
7http://developer.nvidia.com/cuda-toolkit
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requires experimental studies for each new type of abnormality. In order to reduce the sys-
tem improvement costs, we performed an evaluation of two universal object localization
frameworks, based on deep learning neural network approaches. First is TensorBox8 [41],
which extends Google’s reference implementation of the machine-learning framework
called Tensorflow [1]. Second approach is based on the Darknet [33] open-source deep
learning neural network implementation called YOLO9 [34]. Both of these frameworks are
designed to provide not only object detection, but also object localization inside frames.
They implement GPU-accelerated deep learning algorithms that can work with near to
real-time performance and provide the capability of locating various objects out-of-the-box.

The TensorBox approach introduces an end-to-end algorithm for detecting objects in
images. As input, it accepts images and directly generates a set of object bounding boxes
as output. The main advantage of the algorithm is the capability of avoiding multiple detec-
tions of the same object by using a recurrent neural network (RNN) with long short-term
memory (LSTM) units together with fine-tuned image features from the implementation of
a convolutional neural network (CNN) for visual objects classification and detection called
GoogLeNet [42].

The Darknet-YOLO approach introduces a custom CNN, designed to simultaneously
predict multiple bounding boxes and class probabilities for these boxes within each input
frame. The main advantage of the algorithm is that the CNN sees the entire image during
the training process, so it implicitly encodes contextual information about classes as well as
their appearance, resulting in a better generalization of objects’ representation. The custom
CNN in this approach is also inspired by the GoogLeNet [42] model.

As initial models for both approaches, we used database models pre-trained on Ima-
geNet [19] . Our custom training and testing data for the algorithms consists of frames and
corresponding text files describing ground truth data with defined rectangular areas around
objects: a JSON file for TensorBox and one text file per frame for Darknet-YOLO. Ground
truth data was generated using a binary-masked frame set (example shown in Fig. 5) by the
localization validation software used in our experimental studies. Both frameworks were
trained using the same training dataset, where all frames contained one or more visible
polyps. No special filtering or data preprocessing was used, thus the training dataset con-
tained high quality and clearly visible polyp areas as well as blurry, noisy, over-exposed
frames and partially visible polyps. The models were trained from scratch using correspond-
ing default-model training settings [34, 41]. After the training, the test dataset was processed
by both neural networks in testing mode. As a result, the frameworks output JSON (Tensor-
Box) and plain-text (Darknet-YOLO) files containing sets of rectangles, one set per frame,
marking possible polyp locations with corresponding location confidence values. These
results have been processed using our localization algorithms.

4.3 Visualization and computer aided diagnosis subsystem

The visualization subsystem is developed as a flexible multi-purpose tool. First, it should
help in evaluating the performance of the system and get insights into why things work well
or not. Second, it can be used as a computer-aided diagnostic system for medical experts.
Third, it should help us in the creation of new datasets, allow us to extend the number of
detected diseases and help doctors to create annotations in a time-saving manner. Previously,

8https://github.com/Russell91/TensorBox
9https://github.com/pjreddie/darknet
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Polyp ground truth(b)Frame with polyp(a)

Fig. 5 Example frames showing polyp and it’s body ground truth area. This is an example of polyps local-
ization task complexity. Polyp body has the same color, texture properties and light flares as surrounding
normal mucosa

we have developed the TagAndTrack subsystem [2] that can be used for visualization and
computer-aided diagnosis. We developed a web-based visualization toolkit that can be used
to support medical experts while being very easy to use and distribute. This tool takes the
output of the detection and localization subsystems and creates a web-based representation
of the detection and localization results. The web-based visualization is then combined with
a video sharing and annotating platform where doctors are able to watch, archive, annotate
and share information. To break through low availability of high quality training and testing
datasets for different GI track diseases, we developed a new ClusterTag application for
the visualization subsystem. The main purpose of ClusterTag is to provide an easy-to-use
and convenient user interface to huge image and video frame collections captured during
endoscopic procedures, including conventional colonoscopies and VCEs.

Figure 6 illustrates our ClusterTag application while processing a dataset containing
36, 476 images with the exact lesion areas marked. The application implements image and

Zooming closer to images set.(b)Main window.(a)

Fig. 6 ClusterTag application usage example. The loaded dataset contains 36, 476 images with ground truth
(marked by pink rectangles on images)
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ground truth loading and analyzing, image tagging, creation and editing of ground truth
data, global feature extraction and semi-automatic dataset clustering using our previously
developed algorithms [38]. With the main focus on the interactive visual representation of
huge image collections, the visualization module helps users create and interact with the
new or already defined clusters. We use the Weka library to help the user in building clus-
ters. For the image attribute extraction required for machine-learning-based classification
we use global image features, which are extracted using the image retrieval framework
called LIRE.10 In our approach, we use global features describing the image in terms of dif-
ferent visual attributes, such as sharpness, color distribution and histogram of brightness. A
detailed description of the used global features, the corresponding clustering algorithm and
the clustering performance metrics can be found in [38]. Both the WEKA and LIRE libraries
can be easily replaced by other machine learning or feature extraction libraries if desired.

Applying unsupervised clustering on huge unsorted and unannotated datasets signifi-
cantly reduces the amount of work required from skilled doctors during image labeling and
grouping. Together with unsupervised clustering, our application provides the users with the
ability of tagging and analyzing multiple single images at once and putting them into appro-
priate groups together. The ClusterTag application is released as open-source software11

and might help other research groups in the creation and analysis of new datasets.

5 Evaluation

For our experimental evaluation, we use two different use-cases. First, we evaluated
the performance of our multi-class classification and detection algorithms in automated
colonoscopy video processing. Here, we tested our system using six different classes of
endoscopic findings that can be found in the colon (shown in Fig. 1). The classes to be
detected are (a) frames with normal colon mucosa (healthy colon wall), (b) frames of the
cecum area which is an intraperitoneal pouch that is considered to be the beginning of the
colon (an anatomic landmark helping doctors and VCE video analysis algorithms to orien-
tate in the colon), (c) frames displaying the Z-line which is the gastroesophageal junction
that joins the esophagus to the stomach (an anatomic landmark), (d) frames containing one
or more polyps, (e) frames with visible tumor areas, and (f) useless blurry frames with-
out any visible and recognizable objects. Thus, the developed multi-class classification and
detection system should split all the video frames into six classes that can be observed in
the human GI tract. The developed method allows us to implement a new generation of
endoscopy video processing systems able to efficiently detect various lesions of the GI tract.

Second, we evaluated the performance of the state-of-the-art object localization
approaches based on deep learning algorithms, and then we compared it with our basic
polyp localization algorithm. In this use-case, we compared the ability of different methods
to find the location of polyps inside a frame. The main goal of this evaluation is to decide
if we can improve the polyp localization performance of our system using a combination of
different algorithms.

During the evaluation, wherever it was possible, we compared the performance of our
method with the best state-of-the-art competitors. Nevertheless, a direct comparison is hard

10http://www.lire-project.net/
11https://bitbucket.org/mpg projects/clustertag
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as different datasets and detection measures are used in state-of-the-art system evaluations.
Thus, we compared the metrics we found in the relevant publications.

For all of the subsequent measurements, we used the same computer. It has an Intel Core
i7-6700K CPU running at 4.00GHz, 16 GB of RAM, a GeForce GTX TITAN X GPU, and
it runs a 64-bit Ubuntu Linux v16.04.

5.1 Multi-class classification

In the multi-class classification experiments, we used cross-validation because of the rela-
tively small number of images in the annotated dataset. For the performance measurement,
we used the standard tool from WEKA for evaluating multi-class classifiers. This tool uses
the ground truth to compute a confusion matrix and the common standard metrics: recall
(sensitivity), precision, specificity, accuracy and F1 score. We created a new dataset from
colonoscopy images that we got from Vestre Viken Hospital, Norway. From the whole unan-
notated dataset, we manually selected 50 different frames of 6 different classes (described
in Section 2): blurry frames, cecum, normal colon mucosa, polyps, tumor, and Z-line. The
selected frames were used to create 10 separate datasets, each containing training and test
subsets with equal numbers of images. Training and test subsets were created by equally
splitting random-ordered frame sets for each of the 6 classes. The total number of frames
used in this evaluation is 300: 150 in the training subsets and 150 in the test subsets. Each
training and test subset contains 25 images per class. Multi-class classification is then per-
formed on all 10 splits and then combined and averaged. Following this strategy, an accurate
enough estimation about the performance can be made even with a smaller number of
images.

5.1.1 Deep-EIR

First, we performed an evaluation of Deep-EIR that implements the deep learning neural
network multi-class detection approach. Table 1 shows the resulting confusion matrix. The
detailed performance metrics presented in Table 2 and the results can be considered as good,
they confirm that Deep-EIR performs well. All blurry and Z-line frames were classified cor-
rectly. Cecum and normal colon mucosa were often cross-mis-classified, which is a normal
behavior, because from a medical point of view, normal colon mucosa is part of the cecum,
and under real-world circumstances, this would not be a relevant mistake. Interesting polyps

Table 1 A confusion matrix for the six-classes detection performance evaluation for the Deep-EIR detection
subsystem

Detected class

Blurry Cecum Normal Polyps Tumor Z-line

Actual class Blurry 250 0 0 0 0 0

Cecum 0 183 64 3 0 0

Normal 0 34 197 19 0 0

Polyps 1 17 45 183 4 0

Tumor 0 0 1 4 245 0

Z-line 0 0 0 0 0 250

Bold numbers shows the correct detection result for each class
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Table 2 Performance evaluation of the six-classes detection for the Deep-EIR detection subsystem

True
Pos.

True
Neg.

False
Pos.

False
Neg.

Recall
(Sensitivity)

Precision Specificity Accuracy F1 score

Blurry 250 1249 1 0 100.0% 99.6% 99.9% 99.9% 99.8%

Cecum 183 1199 51 67 73.2% 78.2% 95.9% 92.1% 75.6%

Normal 197 1140 110 53 78.8% 64.2% 91.2% 89.1% 70.7%

Polyps 183 1224 26 67 73.2% 87.6% 97.9% 93.8% 79.7%

Tumor 245 1246 4 5 98.0% 98.4% 99.7% 99.4% 98.2%

Z-line 250 1250 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

Overall 1308 7308 192 192 87.2% 87.2% 97.4% 95.7% 87.2%

Bold numbers shows the balanced F-score of each proposed method

and tumors were detected correctly in most cases, as well as the Z-line landmark, which is
important for our medical use case.

5.1.2 Multi-class global-feature-based EIR

Second, we performed an evaluation of the multi-class global-feature-based EIR, which
implements a global-feature multi-class detection approach. The multi-class global-feature-
based EIR classifier allows us to use a number of different global image features for the
classification. The more image features we use, the more precise the classification becomes.
We generated indexes containing all possible image features for all frames of all differ-
ent classes of findings from our training and test dataset. These indexes were used for
multi-class classification, different performance measurements and also for leave-one-out
cross-validation. Using our detection system, the built-in metrics functionality can provide
information on the different performance metrics for benchmarking. Further, it provides us
with the late fusion of all the selected image features and performs the selection of the exact
class for each frame in test dataset. All used features are described in detail in [24].

Table 3 shows the resulting confusion matrix, which shows, like the Deep-EIR results,
that the global feature-based detection approach performs well, too. Again, all blurry and
Z-line frames were classified correctly. Cecum and normal colon mucosa were sometimes

Table 3 A confusion matrix for the six-classes detection performance evaluation for the multi-class global-
feature-based EIR detection subsystem

Detected class

Blurry Cecum Normal Polyps Tumor Z-line

Actual class Blurry 250 0 0 0 0 0

Cecum 0 226 21 3 0 0

Normal 0 85 165 0 0 0

Polyps 0 10 8 226 6 0

Tumor 0 0 0 8 242 0

Z-line 0 0 0 0 0 250

Bold numbers shows the correct detection result for each class
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Table 4 Performance evaluation of the six classes detection for the multi-class global-feature-based EIR
detection subsystem

True
Pos.

True
Neg.

False
Pos.

False
Neg.

Recall
(Sensitivity)

Precision Specificity Accuracy F1 score

Blurry 250 1250 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

Cecum 226 1155 95 24 90.4% 70.4% 92.4% 92.1% 79.2%

Normal 165 1221 29 85 66.0% 85.1% 97.7% 92.4% 74.3%

Polyps 226 1239 11 24 90.4% 95.4% 99.1% 97.7% 92.8%

Tumor 242 1244 6 8 96.8% 97.6% 99.5% 99.1% 97.2%

Z-line 250 1250 0 0 100.0% 100.0% 100.0% 100.0% 100.0%

Overall 1359 7359 141 141 90.6% 90.6% 98.1% 96.9% 90.6%

Bold numbers shows the balanced F-score of each proposed method

cross-misclassified. Polyps and tumors were detected correctly in most cases. The detailed
performance metrics are presented in Table 4 and can also be considered as good.

5.1.3 Deep-EIR vs multi-class global-feature-based EIR

The comparison of these two approaches shows that both approaches have equal excellent
overall F1 score of 100% in Z-line detection. The global-feature approach with the 100% F1
score outperforms the neural network approach by a small margin in blurry frame detection.
The neural network F1 score detection for tumors is 98.2%, which is 1% better than the
global-feature approach. Detection of other classes is better for the global-feature approach,
giving the F1 scores of 79.2% and 74.3% for cecum and normal mucosa. Most importantly
for our case study, polyp detection performed much better using the global-feature approach,
giving the 92.8% F1 score (13.1% better than the neural network approach).

The performance evaluation of the cross-validation for both multi-class classification
approaches (see Table 5) confirms the high stability of the models used for the classification.

The processing performance of both Deep-EIR and global-feature-based EIR in terms of
processing speed meets real-time demands with a good margin for the real-time medical use
case. Both can process Full HD images at a frame rate of 30 frames per second.

Our experimental comparison of the Deep-EIR and the global-feature-based EIR of the
detection system shows clearly that the global-feature approach outperforms the deep learn-
ing neural network approach and gives better accuracy for almost all target detection classes
(except several cases of misclassification of tumors) in conjunction with high 92.8% and
97.2% F1 scores for the most important findings: polyps and tumors. Moreover, when a

Table 5 Performance evaluation of the cross-validation for the Deep-EIR and the multi-class global-feature-
based EIR detection subsystems

Approach Mean absolute
error

Root mean
squared error

Relative absolute
error, %

Root relative
squared error, %

Deep-EIR 0.07284 0.20574 26.21936 55.21434

Multi-class
global-feature-
based EIR

0.09242 0.19644 33.2672 52.7148
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sufficiently large training dataset covering all possible detectable lesions of the GI tract is
used, the proposed global-feature approach for multi-class detection requires relatively lit-
tle time for training [35] compared to days and weeks for the deep learning neural network
approach.

A comparison of Deep-EIR and global-feature-based EIR with existing competitive
approaches is shown in Table 6. The basic-, Deep- and multi-class global feature-based EIR
detector versions are depicted in the last table’s rows. As one can see, the global feature-
based EIR approach gives the best performance in terms of precision (90.6%), specificity
(98.1%) and accuracy (96.9%), and comparable recall/sensitivity (90.6%). In other words,
the results indicate that we can detect different classes of GI tract findings with a precision
of almost 91%. If we compare this to the best performing system in Table 6, we see that
Polyp-Alert reaches slightly higher detection accuracy on a different dataset. However, our
system is faster and can detect colonoscopic findings in real-time, and furthermore, it is not
designed and restricted to detect only polyps, it can detect multiple classes of diseases, and
EIR can further be expanded to any additional diseases if we have the correct training data.

The performance comparison of different multi-class detection and classification
approaches in terms of frame processing speed is depicted in Fig. 7. Deep-EIR, multi-class
global feature-based EIR and basic EIR perform better in terms of speed than competitors.
The single-class basic EIR detector can process up to 300 Full HD frames per second
(for a GPU-accelerated implementation) [35]. Deep- and global feature-based EIR classi-
fiers showed 30 frames per second, which fits our medical use case. For further processing
speed improvements, we plan to implement additional GPU acceleration for a random-trees

Table 6 A performance comparison of GI findings detection approaches

Publ./System Detection
Type

Recall
(Sensitivity)

Precision Specificity Accuracy FPS Dataset
Size,
images

Wang et al. [52] polyp / edge, texture 97.70% – – 95.70% 10 1.8m

Wang et al. [51] polyp / shape,
color, texture

81.4% – – – 0.14 1,513

Mamonov et al. [26] polyp / shape 47% – 90% – – 18,738

Hwang et al. [18] polyp / shape 96% 83% – – 15 8,621

Li and Meng [23] tumor / textural
pattern

88.6% – 96.2% 92.4% – –

Zhou et al. [54] polyp / intensity 75% – 95.92% 90.77% – –

Alexandre et al. [3] polyp / color pattern 93.69% – 76.89% – – 35

Kang et al. [21] polyp / shape, color – – – – 1 –

Cheng et al. [11] polyp / texture, color 86.2% – – – 0.076 74

Ameling et al. [5] polyp / texture 95% – – – – 1,736

Basic EIR [35] polyps / 30 features 98.50% 93.88% 72.49% 87.70% 300 18,781

Deep-EIR abnormalities /
neural network

87.20% 87.20% 97.40% 97.50% 30 300

Multi-class
global-feature-
based EIR

abnormalities /
30 features

90.60% 90.60% 98.10% 96.90% 30 300

Not all performance measurements are available for all methods, but including all available information gives
an idea about each method’s performance
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Fig. 7 The chart shows a comparison of different GI tract finding detection approaches. The presented
Deep-EIR and multi-class global-feature-based EIR (GFB-EIR) systems show performance of 30 frames per
second, which is higher comparing to other systems

classifier and feature index search, as we have for our initial polyp detection version of
EIR [32].

5.2 Polyp localization

The multi-class dataset from Vestre Viken Hospital does not contain the ground truth for
the localization of the findings. Therefore, in this experiment, we used the available ASU-
Mayo Clinic polyp database.12 It consists of training and test sets of images and videos with
corresponding ground truth showing the exact polyp location areas. This was the biggest
publicly available dataset (until recently, when the owners decided to withdrawn it from the
public), consisting of 20 videos from standard colonoscopies with a total of 18,781 frames
and different resolutions up to full HD [44]. For this particular evaluation, we selected
only frames containing polyps, which gave us 8,169 frames in total: 3,856 in the training
subset and 4,313 in the test subset. The frames with polyps contain various polyp types,
fully visible and particularly hidden, clearly visible and blurry, clean and covered by stool.
Figure 8 depicts variations in polyp sizes (in terms of number of pixels showing polyp bodies
within images) across the datasets. As one can see, there are huge variations in polyp sizes
in terms of video-frame pixels from very small up to one third of the full video frame size.
This reflects real colonoscopy video-capturing scenarios and introduces a big challenge for
object localization algorithms.

For the localization-performance measurement, we used the common metrics: recall
(sensitivity), precision, specificity, accuracy and F1 score. To count the corresponding local-
ization events correctly, we took into account that polyps can have different shapes, they
are often not located in compact pixel space areas (in contrast to, e.g., people faces). The

12http://polyp.grand-challenge.org/
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Fig. 8 The histogram shows huge variations in number of frame pixels, covered by polyp bodies, from very
small up to one-third of full frame size across whole ASU-Mayo Clinic polyp database

shape of the polyps is marked in the ground truth data by binary masks. Before comput-
ing the localization subsystem performance, we need to figure out how to convert output
of different localization algorithms into performance metrics. Our initial assumption (from
practical experience) was to count each of the neural networks’ location rectangles as a true
positive localization event if and only if it covers at least 10% of the corresponding ground
truth area. Otherwise, we count it as a false positive. In our use case, multiple detection of
the same polyp does not improve medical outcome. Therefore, we count multiple true pos-
itives on the same polyp ground truth area as one true positive. Polyp misses are counted
if, after processing all resulting rectangles for a particular frame, we still have one or more
ground truth areas without corresponding true positives. We count such misses as false neg-
atives. Thus, there is a possibility of multiple false negatives per one frame, in case we have
multiple lesions in the same frame. In this experiment, we process only frames that contain
one or more polyps. This means that we do not have true negatives. Therefore, specificity of
the algorithms can be assumed as 100%. To check our assumptions about minimal coverage
areas, we performed an initial performance evaluation and built a graph showing unfiltered
output from neural networks. In our EIR system, the base localization algorithm outputs
points instead of rectangular areas. Thus, we count a true positive if a point is located inside
of a polyp ground truth area, keeping other rules the same. An example of a polyp local-
ization algorithm output is depicted in Fig. 9. The polyp-location ground truth marked by
light green ellipses is computed based on the ground truth binary masks (see Fig. 5) using
the closest elliptical region approximation. Due to the limitations of the current version of
the localization algorithm, it produces four possible polyp locations per frame without any
location ranking. In this evaluation, we consider all four points as equal and always use all
of them for calculating the performance metrics. These points are marked by the green and
red crosses. The green crosses correspond to the true positive events, and the red crosses
show the false positive events.

The deep learning neural network frameworks tested in this experiment require training
before they are able to perform polyp localization. Thus, both networks were trained using
their default model training parameters. For TensorBox, the neural network model training
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Fig. 9 Example of the polyp localization algorithm output. The current version of the algorithm produces
four possible polyp locations per frame. The polyp location ground truth is marked by light green ellipses.
The green crosses correspond to the true positives, the red correspond to the false positives

took 6.5 days, and for Darknet-YOLO, we needed 5.1 days. After the training, we performed
model validation using the corresponding frameworks’ routines, and the training dataset
as input. The validation confirmed the correctness of the trained models for both Tensor-
Box and Darknet-YOLO. The deep learning approaches are capable of correctly localizing
polyps that were previously detected by the detection subsystem within the training dataset
with 98% accuracy for the TensorBox model and 95% accuracy for the Darknet-YOLO
model.

Next, we performed a main localization run of both frameworks on the test dataset and
validation using the corresponding ground truth. Both TensorBox and Darknet-YOLO can
be finely tuned by setting confidence threshold values, which limits the number of returned
location rectangles to only highly confident ones. In order to investigate how the output of
both can be affected by a confidence threshold value, it was set to zero during the first test
run, which should give us the full unfiltered localization output. The reason for studying
this dependency is that it is the only network tuning parameter in the unseen data process
mode, which can help us to maximize their localization accuracy. Figure 10 shows a his-
togram of true polyps’ area coverage by location boxes found by TensorBox. We counted
only location boxes that cover at least one pixel of a true polyp area. As one can see, the his-
togram has clearly visible maximum around 16% coverage rate, followed by an exponential
decrease to almost constant level. A comparable analysis with the same type of histogram
for the Darknet-YOLO output is depicted in Fig. 11. We observe a similar distribution for
coverage rate (higher than 10%). A much higher number of location rectangles with zero
coverage rate indicates that TensorBox implements additional localization result filtering.
Thus, the effect of the confidence threshold level adjustment cannot be as significant as
for Darknet-YOLO, which has the expected output with a high number of location boxes
covering small parts of true polyp areas. Therefore, Darknet-YOLO should show a strong
response to confidence threshold level. For the following validation and performance eval-
uation of both frameworks, we used 10% as the threshold value for the minimal required
polyp ground truth coverage for true positive events, i.e., 10% must be covered for the event
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Fig. 10 The histogram shows polyps area coverage by location boxes found by the TensorBox localization
algorithm with the maximum around 16% coverage rate with following exponential decrease to the almost
constant level. The low number of found location rectangles around zero coverage rate is an evidence of some
output results pre-filtering

to be counted. Figures 12 and 13 confirm our assumption about output result filtering in Ten-
sorBox. Its output contains a relatively small number of found locations with high number
of highly-confident locations compared to Darknet-YOLO, which has a large number of
low-confident locations, exactly as expected with the choice of a zero-confidence threshold.

Fig. 11 The histogram shows polyps area coverage by location boxes found by the Darknet-YOLO localiza-
tion algorithm with near to exponential distribution for coverage rate higher than 10%. The higher number of
found location rectangles around zero coverage rate gives clear indications that algorithm output unfiltered
results
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Fig. 12 The histogram shows confidence values for location boxes found by the TensorBox localization
algorithm. It shows the relatively low number of found locations with high number of highly-confident
locations

The performance results depending on the confidence threshold value are depicted in
Fig. 14 for TensorBox and Fig. 15 for Darknet-YOLO. As one can see, TensorBox local-
ization performance does not depend on the confidence threshold value in any significant
way. The best performance in terms of minimizing the number of false negative events with
an acceptable number of false positive events can be achieved by maximizing the algo-
rithm’s accuracy metrics. For TensorBox, the maximum accuracy reaches a level of 31.6%
for a confidence threshold value of zero with a corresponding polyp miss rate of 66.2%.
For TensorBox, this is the best value, and it cannot be improved by adjusting the confidence
threshold value. For Darknet-YOLO, maximum accuracy is reached at a 42.2% confidence

Fig. 13 The histogram shows confidence values and polyps area coverage by location boxes found by the
Darknet-YOLO localization algorithm. It shows the expected high number of low-confident locations
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Fig. 14 The graphs show TensorBox localization algorithms performance for different confidence threshold
values with no significant visible dependency. The maximum accuracy reaches level of 31.6% for zero-
confidence threshold value with the polyp miss rate of 66.2%

threshold. The accuracy is 8% with a corresponding polyp miss rate of 47.9%. Darknet-
YOLO showed more flexibility and a good response to the confidence threshold value. For
Darknet-YOLO, the polyp miss rate can be significantly reduced by decreasing the confi-
dence threshold value, but this gives a significant increase in the number of false positives,
making the whole system too noisy. Nevertheless, combining Darknet-YOLO and the basic
EIR localizer approaches can potentially give better overall system performance and better
polyp miss rate.

Fig. 15 The graphs show Darknet-YOLO localization algorithms performance for different confidence
threshold values with good response to threshold value adjusting. The maximum accuracy reaches level of
42.2% for confidence threshold value of 8% with the polyp miss rate of 47.9%
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Performing a comparison with well-known existing approaches in polyp localization is
difficult due to lack of publicly available information (see Table 7) about other researchers’
algorithms’ performance and evaluation methods, and due to prevalent non-disclosure
restrictions that prevent sharing of datasets in the research community. The available data
shows, that our EIR basic localization approach has good performance with an F1 score of
41.6%.

The performance of the TensorBox approach (see Table 7) is too low for our real-time
use-case. But, as depicted in Table 7, Darknet-YOLO performs well in terms of processing
speed and can run at 45 frames per second. Our basic approach runs at 120 frames per
second, thus a combination of both approaches can give us better localization performance
while staying within the required real-time frame rate limits.

6 Real-world use cases

In this section, we describe two real-world use cases where the presented system can be
used. The first one is a live system that will assist medical doctors during endoscopies.
Currently, we are deploying a proof-of-applicabilty prototype in one of our partner hospitals.
The second is a system that will automatically analyze videos captured by VCEs. Several
hospitals are involved in this more concrete and applied research, and currently we are
setting up the data-sharing agreements and collect the data for a new multi-disease dataset
that will be released open-source. The first use case requires fast and reliable processing,
and the second requires a system that is able to process a large amount of data in a reliable
and scalable way.

6.1 Live system

The aim of the live system is to provide live feedback to the doctors, i.e., a computer-aided
diagnosis in real-time. While the endoscopist performs the colonoscopy, the system analyzes
the video frames that are captured by the colonoscope. To provide helpful information for
the operating doctor, we combine the visual information from the endoscope with our marks.
For the detection, we alter the frame borders and show the name of the detected finding
in the auxiliary area of the endoscope device monitor. For the implemented localization
classes, we put a cross on top of the localized findings (polyps in this system version). At
the moment, we have implemented a demo version of the live system [39]. The live demo
supports detection and localization of polyps. It is able to process a FullHD video stream with 30
FPS in real-time. An example of the graphical output of the live system is depicted in Fig. 16.

Table 7 Performance comparison of polyp localization approaches

System True Pos. False Pos. False Neg. Sensitivity Precision Accuracy F1 score FPS

Basic EIR 1266 3150 398 76.1% 28.7% 26.3% 41.6% 120

TensorBox-EIR 1459 311 2854 33.8% 82.4% 31.6% 48.0% 15

Darknet-YOLO-EIR 2245 1005 2068 52.1% 69.1% 42.2% 59.4% 43

Wang et al. [52] – – – 95.7% – – 95.7% 10

Hwang et al. [18] – – – 96.0% 83.0% – – 15

Bold numbers shows the balanced F-score of each proposed method
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Fig. 16 A screenshot of the live system showing the combination of the visual information from the endo-
scope with feedback information from the detection and localization system. The pink fame surrounding
background shows a positive detection. The name of the detected finding is shown in the frame auxiliary
screen area, and the cross shows the location of the polyp

In addition to supporting the medical expert during the colonoscopy, we are working on
an extension of the system, where the system is used to document the examination proce-
dure. We will implement the generation of a document with an overview of the colonoscopic
procedure. The doctors will be able to make changes or corrections, and add additional
information to that document. The document will be stored or used as an appendix to the
written endoscopy report.

6.2 Wireless video capsule endoscope

The current existing VCEs have a resolution of around 256×256, frame rates of 3-35 frames
per second (adaptive frame rate with a feedback loop from the receiver to the transmitter).
They do not have optimum lighting, making it more difficult to detect endoscopic findings
in the captured images than in images from traditional endoscopes. Also, during VCE pro-
cedures, the intestine is not expanded, unlike in traditional endoscopy, where the expansion
allows for clear and non-obfuscated pictures of the intestine walls. Nevertheless, ongoing
research aims at improving the VCEs’ hardware capabilities and at improving the methods
and algorithms developed for colonoscopies to work also for VCEs [22]. The multi-sensor
VCE is swallowed in order to visualize the GI tract for subsequent diagnosis and detection
of GI diseases. Thus, people may in the future be able to buy VCEs at the pharmacy, and
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deliver the video stream from the GI tract to the phone over a wireless connection. In the
best case, the first screening results are available within eight hours after swallowing the
VCE, which is the time the camera typically spends traversing the GI tract. Thus, the abil-
ity to implement and perform mass-screening of the GI tract highly depends on two main
research areas. First, it requires the development of a new generation of VCEs with bet-
ter image quality and the ability to communicate with widely used mobile phones. Second,
mass-screening requires a new generation of lesion detection algorithms able to process the
captured GI tract multimedia data and video footage fully automatically in the mobile phone
with public cloud computing support. Here, a preliminary analysis and task-oriented com-
pression of a captured video footage before uploading into the cloud is important due to
huge amounts of video data generates by VCEs. In our future research for this use case, we
will work on the adaptation of the detection algorithms to the common mobile platforms.
We will create a new mobile application to demonstrate the ability of our system to perform
on hardware with the limited resources available.

7 Conclusion

In this paper, a complex automated diagnosis system built for different GI tract dis-
ease detection scenarios, colonic polyp localization and big dataset visualization has
been presented. We briefly described the whole system from data collection for medical
knowledge transfer and system learning, evaluation of the experimental results to visual-
ization of the findings. A detailed evaluation of detection of multiple endoscopic findings,
polyp-localization accuracy and system performance has been performed. We introduced
two new multi-class classification methods, one based on a deep learning neural network
approach and another new multi-class classification algorithm based on global image fea-
tures. For the localization, we evaluated existing localization approaches based on deep
learning neural networks and compared the results to our initial localization method.

The novelty of the research includes an end-to-end implementation of the whole EIR
system pipeline, from frame capture, annotation and analysis to user (doctor) feedback,
as a combination of many out-of-the-box and modified existing components, as well as
several new ones. The experiments showed that the proposed system (i.e., both the global
feature-based and the neural network-based implementations) can achieve equal results to
state-of-the-art methods in terms of detection performance for state-of-the-art endoscopic
data, and a comparable localization performance. Further, we showed that the new EIR
system outperforms state-of-the-art systems in terms of system performance, that it scales in
terms of data throughput and that it can be used in a real-time scenario. We concluded, based
on our initial experiments, that the global features multi-class detection approach slightly
outperforms the tested neural network approaches, and that the localization algorithm can
benefit from combining local features and neural network approaches. We also presented
automatic analysis of VCE videos and live support of colonoscopies as two real-world use
cases that can potentially benefit from the proposed system where clinical tests are currently
being planned in our partner hospitals. The experimental evaluation of the system as well
as dataset creation are performed in collaboration with the Cancer Registry of Norway, and
in the near future, the system will be tested in a real-world environment, i.e., it will have a
real societal impact.

For future work, we plan to further improve the multi-class detection and localization
accuracy of the system and support detection and localization of more abnormalities. In
this respect, we are currently working with medical experts to collect more training data,



Multimed Tools Appl (2017) 76:22493–22525 22521

annotate them and create new, larger training and testing datasets [30, 31]. Finally, to fur-
ther improve the performance of the system, we work on a universal system extension that
will allow the system to utilize the computing power of one or more GPUs on single or mul-
tiple nodes. Implementing such an extension will allow parallelization of the detection and
localization workloads [32], which is important in our multi-disease analysis system of GI
tract [32, 35, 37–39].
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ABSTRACT
Automatic detection of diseases by use of computers is an important,
but still unexplored field of research. Such innovations may improve
medical practice and refine health care systems all over the world.
However, datasets containing medical images are hardly available,
making reproducibility and comparison of approaches almost im-
possible. In this paper, we present Kvasir, a dataset containing
images from inside the gastrointestinal (GI) tract. The collection of
images are classified into three important anatomical landmarks
and three clinically significant findings. In addition, it contains two
categories of images related to endoscopic polyp removal. Sorting
and annotation of the dataset is performed by medical doctors (ex-
perienced endoscopists). In this respect, Kvasir is important for
research on both single- and multi-disease computer aided detec-
tion. By providing it, we invite and enable multimedia researcher
into the medical domain of detection and retrieval.
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1 INTRODUCTION
The human digestive system may be affected by several diseases.
As an example, three of the eight most common cancers overall
are located in the gastrointestinal (GI) tract (figure 1). Altogether
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Figure 1: GI tract
(shutterstock).

esophageal, stomach and colorectal cancer
accounts for about 2.8 million new cases
and 1.8 million deaths per year [40]. Endo-
scopic examinations (figures 2(a) and 2(b))
are the gold standards for investigation of
the GI tract. Gastroscopy is an examination
of the upper GI tract including esophagus,
stomach and first part of small bowel, while
colonoscopy covers the large bowel (colon)
and rectum. Both these examinations are
real-time video examinations of the inside of
the GI tract by use of digital high definition
endoscopes (figures 2(c)). Endoscopic examinations are resource
demanding and requires both expensive technical equipment and
trained personnel.

For colorectal cancer prevention, endoscopic detection and re-
moval of possible precancerous lesions are essential. Adenoma
detection is therefore considered to be an important quality indi-
cator in colorectal cancer screening. However, the ability to detect
adenomas varies between doctors, and this may eventually affect
the individuals’ risk of getting colorectal cancer [19].

Endoscopic assessment of severity and sub-classification of dif-
ferent findings may also vary from one doctor to another. Accurate
grading of diseases are important since it may influence decision-
making on treatment and follow-up [4, 11, 16]. For example, the
degree of inflammation directly affects the choice of therapy in in-
flammatory bowel diseases (IBD) [37]. An objective and automated
scoring system would therefore be highly welcomed.

Automatic detection, recognition and assessment of pathological
findings will probably contribute to reduce inequalities, improve
quality and optimize use of scarce medical resources. Furthermore,
since endoscopic examinations are real-time investigations, both
normal and abnormal findings have to be recorded and documented
within written reports. Automatic report generation would proba-
bly contribute to reduce doctors’ time required for paperwork and
thereby increase time to patient care. Reliable and careful docu-
mentation with the use of minimal standard terminology (MST) [1]
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(a) Colonoscopy (b) Gastroscopy (c) A colonoscope
Figure 2: Various types of endoscopy examinations.

may also contribute to improved patient follow-up and treatment.
To our knowledge, a standardized and automatic reporting system
that ensure high quality endoscopy reports does not exist.

In order to make the health care system more scalable and cost
effective, basic research in the intersection between computer sci-
ence and medicine must go beyond traditional medical imaging by
combining this area with multimedia data analysis and retrieval,
artificial intelligence, and distributed processing. Next-generation
medical big-data applications are a frontier for innovation, compe-
tition and productivity, where there are currently large initiatives
both in the EU [26] and the US [24]. In the area of multimedia re-
search, people are starting to see the synergies between multimedia
and medical systems [31]. For automatic algorithmic detection of
abnormalities in the GI tract, there have been many proposals from
various research communities. For example, many systems present
promising results for polyp detection [3, 5, 9, 18, 21, 23, 32, 38, 39, 41]
reaching high precision and recall scores. However, the results are
hard to reproduce due to lack of available medical data, i.e., the
work listed above all use different data sets ranging from 35 to 1.8
million images/video frames.

In our earlier work [27, 32, 33], we have used the two only usable,
publicly available GI tract datasets: the ASU-Mayo Clinic polyp data-
base [35] and the CVC-ColonDB colonoscopy video database [7].
The ASU-Mayo dataset consists of training and test sets of images
and videos with corresponding ground truth showing the exact
polyp location areas. This is currently the biggest available dataset
consisting of 20 videos from standard colonoscopies with a total
of 18, 781 frames and different resolution up to full HD. However,
the images in this dataset are very similar raising the challenge
of overfitting, and currently, the use of the dataset is restricted.
The CVC-ColonDB dataset consists of images and videos partially
covered by corresponding ground truth showing the exact polyp
location areas. This is currently the second biggest available dataset
consisting of 15 small videos from standard colonoscopies with a
total of 1, 200 frames and 300 frames with the region of interest
marked. The resolution is 500x574 pixels. Furthermore, both these
datasets contain only one endoscopic finding (polyps). In this pa-
per, we therefore publish Kvasir our multi-class dataset1 from the
Vestre Viken Health Trust (Norway) containing not only polyps,
but also two other findings, two classes related to polyp removal
and three anatomical landmarks in the GI tract.

2 DATA COLLECTION
The data is collected using equipment as shown in figure 2(c) at
Vestre Viken Health Trust (VV) in Norway. The VV consists of
4 hospitals and provides health care to 470.000 people. One of

1http://datasets.simula.no/kvasir

these hospitals (the Bærum Hospital) has a large gastroenterology
department from where training data have been collected and will
be provided, making the dataset larger in the future. Furthermore,
the images are carefully annotated by one or more medical experts
from VV and the Cancer Registry of Norway (CRN). The CRN
provides new knowledge about cancer through research on cancer.
It is part of South-Eastern Norway Regional Health Authority and
is organized as an independent institution under Oslo University
Hospital Trust. CRN is responsible for the national cancer screening
programmes with the goal to prevent cancer death by discovering
cancers or pre-cancerous lesions as early as possible.

3 DATASET DETAILS
The initial Kvasir dataset consists of 4, 000 images, annotated and
verified by medical doctors (experienced endoscopists), including
8 classes showing anatomical landmarks, phatological findings or
endoscopic procedures in the GI tract, i.e., 500 images for each
class. The number of images is sufficient to be used for different
tasks, e.g., image retrieval, machine learning, deep learning and
transfer learning, etc. [2, 12, 28]. The anatomical landmarks are
Z-line, pylorus and cecum, while the pathological finding includes
esophagitis, polyps and ulcerative colitis. In addition, we provide
two set of images related to removal of polyps, the "dyed and lifted
polyp" and the "dyed resection margins". The dataset consist of the
images with different resolution from 720x576 up to 1920x1072
pixels and organized in a way where they are sorted in separate
folders named accordingly to the content. Some of the included
classes of images have a green picture in picture illustrating the
position and configuration of the endoscope inside the bowel, by
use of an electromagnetic imaging system (ScopeGuide, Olympus
Europe) that may support the interpretation of the image. This
type of information may be important for later investigations (thus
included), but must be handled with care for the detection of the
endoscopic findings.

3.1 Anatomical Landmarks
An anatomical landmark is a recognizable feature within the GI
tract that is easily visible through the endoscope. They are essential
for navigating and as a reference point to describe the location of a
given finding. The landmarks may also be typical sites for pathology
like ulcers or inflammation. A complete endoscopic rapport should
preferably contain both brief descriptions and image documentation
of the most important anatomical landmarks [30].

Figure 3: Z-line

3.1.1 Z-line. The Z-line marks
the transition site between the
esophagus and the stomach. En-
doscopically, it is visible as a clear
border where the white mucosa in
the esophagus meets the red gas-
tric mucosa. An example of the Z-
line is shown in figure 3. Recogni-
tion and assessment of the Z-line
is important in order to determine
whether disease is present or not. For example, this is the area
where signs of gastro-esophageal reflux may appear. The Z-line is
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also useful as a reference point when describing pathology in the
esophagus.

Figure 4: Pylorus

3.1.2 Pylorus. The pylorus is
defined as the area around the
opening from the stomach into the
first part of the small bowel (duo-
denum). The opening contains cir-
cumferential muscles that regu-
lates the movement of food from
the stomach. The identification
of pylorus is necessary for endo-
scopic instrumentation to the duo-
denum, one of the challenging maneuvers within gastroscopy. A
complete gastroscopy includes inspection on both sides of the py-
loric opening to reveal findings like ulcerations, erosions or stenosis.
Figure 4 shows an endoscopic image of a normal pylorus viewed
from inside the stomach. Here, the smooth, round opening is visible
as a dark circle surrounded by homogeneous pink stomach mucosa.

Figure 5: Cecum

3.1.3 Cecum. The cecum the
most proximal part of the large
bowel. Reaching cecum is the
proof for a complete colonoscopy
and completion rate has shown
to be a valid quality indicator for
colonoscopy [6]. Therefore, recog-
nition and documentation of the
cecum is important. One of the
characteristics hallmarks of cecum
is the appendiceal orifice. This combined with a typical configura-
tion on the electromagnetic scope tracking system may be used as
proof for cecum intubation when named or photo documented in
the reports [29, 36]. Figure 5 shows an example of the appendiceal
orifice visible as a crescent shaped slit, and the green picture in
picture shows the scope configuration for cecal position.

3.2 Phatological findings
A pathological finding in this context is an abnormal feature within
the gastrointestinal tract. Endoscopically, it is visible as a damage
or change in the normal mucosa. The finding may be signs of an
ongoing disease or a precursor to for example cancer. Detection and
classification of pathology is important in order to initiate correct
treatment and/or follow-up of the patient.

Figure 6: Esophagitis

3.2.1 Esophagitis. Esophagitis
is an inflammation of the esoph-
agus visible as a break in the
esophageal mucosa in relation to
the Z-line. Figure 6 shows an exam-
ple with red mucosal tongues pro-
jecting up in the white esophageal
lining. The grade of inflammation
is defined by length of the mucosal
breaks and proportion of the cir-
cumference involved. This is most commonly caused by condi-
tions where gastric acid flows back into the esophagus as gas-
troesophageal reflux, vomiting or hernia. Clinically, detection is

necessary for treatment initiation to relieve symptoms and prevent
further development of possible complications. Computer detection
would be of special value in assessing severity and for automatic
reporting.

Figure 7: Polyp

3.2.2 Polyps. Polyps are le-
sions within the bowel detectable
as mucosal outgrows. An exam-
ple of a typical polyp is shown
in figure 7. The polyps are either
flat, elevated or pedunculated, and
can be distinguished from normal
mucosa by color and surface pat-
tern. Most bowel polyps are harm-
less, but some have the potential
to grow into cancer. Detection and removal of polyps are therefore
important to prevent development of colorectal cancer. Since polyps
may be overlooked by the doctors, automatic detection would most
likely improve examination quality. The green boxes within the
image shows an illustration of the endoscope configuration. In live
endoscopy, this helps to determine the current localisation of the
endoscope-tip (and thereby also the polyp site) within the length
of the bowel. Automatic computer aided detection of polyps would
be valuable both for diagnosis, assessment and reporting.

Figure 8: Ulcerative colitis

3.2.3 Ulcerative colitis. Ulcer-
ative colitis is a chronic inflam-
matory disease affecting the large
bowel. The disease may have a
large impact on quality of life,
and diagnosis is mainly based on
colonoscopic findings. The degree
of inflammation varies from none,
mild, moderate and severe, all with
different endoscopic aspects. For
example, in a mild disease, the mucosa appears swollen and red,
while in moderate cases, ulcerations are prominent. Figure 8 shows
an example of ulcerative colitis with bleeding, swelling and ulcer-
ation of the mucosa. The white coating visible in the illustration
is fibrin covering the wounds. As mentioned earlier, an automatic
computer aided assessment system will contribute to more accurate
grading of the disease severity.

3.3 Polyp removal
Polyps in the large bowel may be precursors of cancer and are
therefore removed during endoscopy if possible. One of the polyp
removal techniques is called endoscopic mucosal resection (EMR).
This includes injection of a liquid underneath the polyp, lifting the
polyp from the underlying tissue. The polyp is then captured and
removed by use of a snare. The lifting minimizes risk of mechanical
or electrocautery damage to the deeper layers of the GI wall. Stain-
ing dye (i.e., diluted indigo carmine) is added to facilitate accurate
identification of the polyp margins [17]. Computer detection of
dyed polyps and the site of resection would be important in order
to generate computer aided reporting systems for the future.
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Figure 9: Dyed and Lifted
Polyp

3.3.1 Dyed and Lifted Polyps.
Figure 9 shows an example of a
polyp lifted by injection of saline
and indigocarmine. The light blue
polyp margins are clearly visible
against the darker normal mucosa.
Additional valuable information
related to automatic reportingmay
involve successfulness of the lift-
ing and eventual presence of non-
lifted areas that might indicate ma-
lignancy.

Figure 10: Dyed Resection
Margin

3.3.2 Dyed Resection Margins.
The resection margins are impor-
tant in order to evaluate whether
the polyp is completely removed
or not. Residual polyp tissue may
lead to continued growth and in
worst case malignancy develop-
ment. Figure 10 illustrates the re-
section site after removal of a
polyp. Automatic recognition of
the site of polyp removals are of
value for automatic reporting sys-
tems and for computer aided assessment on completeness of the
polyp removal.

4 APPLICATIONS OF THE DATASET
Our vision is that the available data may eventually help researchers
to develop systems that improve the health-care system in the
context of disease detection in videos of the GI tract. Such a system
may automate video analysis and endoscopic findings detection
in the esophagus, stomach, bowel and rectum. Important results
will include higher detection accuracies, reduced manual labor for
medical personnel, reduced average cost, less patient discomfort
and possibly increased willingness to undertake the examination. In
the end, the improved screening will probably significantly reduce
mortality and number of luminal GI disease incidents.

With respect to direct use in the multimedia research areas, the
main application area of Kvasir is automatic detection, classifi-
cation and localization of endoscopic pathological findings in an
image captured in the GI tract. Thus, the provided dataset can be
used in several scenarios where the aim is to develop and evaluate
algoritmic analysis of images. Using the same collection of data, re-
searchers can easier compare approaches and experimental results,
and results can easier be reproduced. In particular, in the area of
image retrieval and object detection, Kvasir will play an important
initial role where the image collection can be divided into training
and test sets for developments of and experiments for various image
retrieval and object localization methods including search-based
systems, neural-networks, video analysis, information retrieval,
machine learning, object detection, deep learning, computer vision,
data fusion and big data processing.

In our work [27, 32, 33], we have for example conducted a leave-
one-out cross-validation to evaluate our system. This is a method
that assesses the generalization of a predictive model where the

training and testing datasets are rotated, i.e., leaving out a single
different non-overlapping item or portion for testing, and using
the remaining items for training. This process is repeated until
every item or portion has been used for testing exactly once [13].
Being one of the first medical multi-class datasets available to the
multimedia community, we hereby invite and enable multimedia
researcher into the medical domain of detection and retrieval.

5 SUGGESTED METRICS
Looking at the list of related work in this area, there are a lot of
different metrics used, with potentially different names when used
in the medical area and the computer science (information retrieval)
area. Here, we provide a small list of the most important metrics. For
future research, in addition to describing the dataset with respect
to total number of images, total number of images in each class and
total number of positives, it might be good to provide as many of the
metrics below as possible in order to enable an indirect comparison
with older work:
True positive (TP): The number of correctly identified samples.

The number of frames with an endoscopic finding which cor-
rectly is identified as a frame with an endoscopic finding.

True negative (TN): The number of correctly identified negative
samples, i.e., frames without an endoscopic finding which cor-
rectly is identified as a frame without an endoscopic finding.

False positive (FP): The number of wrongly identified samples,
i.e., a commonly called a "false alarm". Frames without an endo-
scopic finding which is erroneously identified as a frame with
an endoscopic finding.

False negative (FN): The number of wrongly identified negative
samples. Frames without an endoscopic finding which erro-
neously is identified as a frame with an endoscopic finding.

Recall (REC): Thismetric is also frequently called sensitivity, prob-
ability of detection and true positive rate, and it is the ratio of
samples that are correctly identified as positive among all ex-
isting positive samples:

recall =
TP

# o f all positives
=

TP

TP + FN

Precision (PREC): This metric is also frequently called the pos-
itive predictive value, and shows the ratio of samples that are
correctly identified as positive among the returned samples (the
fraction of retrieved samples that are relevant):

precision =
TP

# o f all returned samples
=

TP

TP + FP

Specificity (SPEC): This metric is frequently called the true neg-
ative rate, and shows the ratio of negatives that are correctly
identified as such (e.g., the fraction of frames without an endo-
scopic finding are correctly identified as a negative result):

speci f icity =
TN

# o f all neдatives
=

TN

FP +TN

Accuracy (ACC): The percentage of correctly identified true and
false samples:

accuracy =
TP +TN

# o f samples in total
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Matthews correlation coefficient (MCC): MCC takes into ac-
count true and false positives and negatives, and is a balanced
measure even if the classes are of very different sizes:

MCC =
TP ×TN − FP × FN√

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
F1 score (F1): A measure of a test’s accuracy by calculating the

harmonic mean of the precision and recall:

F1 score = 2 × precision × recall

precision + recall
=

2TP
2TP + FP + FN

In addition to the above metrics, system performance metrics pro-
cessing speed and resource consumption are of interest. In our
work, we have used the achieved frame-rate (FPS) as a metric as
real-time feedback is important.

6 BASELINE PERFORMANCE
We have here performed an initial multi-class detection experi-
ment on Kvasir as a baseline for future experiments. We have
experimented using various configurations of three different main
approaches, i.e., classification using global features (GF), deep learn-
ing convolutional neural networks (CNN) and transfer learning in
deep learning (TFL).

For the GF approaches, we extracted several image features for
classification using the latest version of the Lire open source soft-
ware [22], i.e., the extracted features are JCD, Tamura, Color Layout,
Edge Histogram, Auto Color Correlogram and Pyramid Histrogram
of Oriented Gradients. For the 2 GF run, we combined JCD and
Tamura resulting in a feature vector of 187. For the 6 GF run, we
combined all extracted features resulting in a feature vector of 1186.
We decided for these combinations based on our previous findings
and experiments in [32]. We performed a simple early fusion of the
features, and all extracted features are included in the dataset in the
arff file format for reuse and reproducibility. We used the Random
Forrest (RF) and Logistic Model Tree (LMT) classifiers provided in
the Weka machine learning library [15].

For all deep learning implementations, we used Keras [10] with
Google Tensorflow [2] as backend. For the two CNN runs, we
trained two different CNNs from scratch, i.e., one with three convo-
lution layers and one with six. As activation function, we used the
rectified linear unit (ReLU) [14] and for pooling maxpooling. In all
layers, we also included a 0.5 dropout, and the final classification
step was performed using two dense layers with first ReLU and
then Sigmoid as activation functions. Both networks were trained
for 200 epochs using the Adam optimizer [20].

The TFL run is based on transfer learning [8] by re-training
and fine-tuning the pre-trained Inception v3 model [34]. For the
re-training, we followed a similar approach as presented in [12].
Firstly, we locked all the basic convolutional layers of the network
and only retrained the two top dense classification layers. The dense
layers were retrained for 1, 000 epochs using the RMSprop optimizer
that allows an adaptive learning rate during the training process.
After that, fine-tuning of a subset of the convolutional layers was
performed. We decided to apply the fine-tuning on the two top
convolutional layers of the re-trained model. For this training step,
we used the SGD optimizer with a low learning rate (to achieve the
best effect in terms of speed and accuracy) [25].

Table 1: Classification performance in terms of weighted av-
erage (2-folded) using the metrics described above.

Method PREC REC SPEC ACC MCC F1 FPS
6 Layer CNN 0.661 0.640 0.953 0.914 0.602 0.651 43
3 Layer CNN 0.589 0.408 0.890 0.959 0.430 0.453 45
Inception v3 TFL 0.698 0.689 0.957 0.924 0.649 0.693 66
2 GF Random Forrest 0.713 0.715 0.959 0.928 0.672 0.711 333
2 GF Logistic Model Tree 0.706 0.707 0.958 0.926 0.664 0.705 210
6 GF Random Forrest 0.732 0.732 0.962 0.933 0.692 0.727 105
6 GF Logistic Model Tree 0.748 0.748 0.964 0.937 0.711 0.747 80
Baseline (JCD Random Forrest) 0.708 0.710 0.958 0.927 0.666 0.706 370
Baseline (Random/Majority) 0.016 0.125 0.000 0.016 0.666 0.000 -

Table 2: Confusion matrix for both cross validated folds for the 6
GF LMT experiment in table 1. The classes are Esophagitis (A), Dyed
and Lifted Polyps (B), Dyed Resection Margins (C), Cecum (D), Py-
lorus (E), Z-line (F), Polyps (G) and Ulcerative colitis (H). The test
set in each fold contains 250 images for each class.

Detected class
A B C D E F G H

A
ct
ua

lc
la
ss

A 198/177 0/0 0/0 0/0 3/8 49/64 0/1 0/0
B 0/0 139/149 104/92 4/0 0/0 1/0 1/7 1/2
C 0/0 90/100 154/148 2/0 0/0 1/0 2/1 1/1
D 0/0 0/1 0/0 214/223 0/0 0/0 30/18 6/8
E 5/3 0/0 0/0 0/0 235/227 2/8 5/12 3/0
F 64/33 0/0 0/0 0/0 6/6 180/210 0/0 0/1
G 0/0 0/0 4/1 24/26 10/2 2/2 169/178 41/41
H 1/0 2/0 1/0 18/8 3/1 1/1 32/44 192/196

The exact configurations of the CNN and TFL approaches are
included in the dataset. We did not perform any data augmentation,
such as cropping, for any of the approaches for this work. For the
experiments, we split the dataset randomly in two equally sized
subsets (training and testing) containing 250 images per class each.
We also performed two-folded cross-validation by switching the
training and testing and calculated the average. As baselines, we
provide one using the RF classifier with the JCD feature and one
based on the random/majority class.

Table 1 gives and overview of the results, and table 2 contains the
confusion matrix for the best performing approach (6 GF with LMT)
for a more detailed insight into the performance. We can see that
all approaches would outperform the random and majority class
baseline, which is presented in the last row. Our own baseline in
the second last row is only outperformed by three approaches. The
best performing approach is a combination of six global features
and the LMT classifier with an overall F1 score of 0.747 and 80
FPS. The 6 layer CNN outperforms the 3 layer CNN in terms of
detection performance but not in terms of speed. The TFL approach
outperforms the two other deep learning based approaches, which
we expected since our CNN parameters are not optimized and we
trained over a rather small number of epochs. Nevertheless, even
if we use very basic methods, the here presented results can be a
good starting point for other researchers and used as baselines to
benchmark other methods applied to the dataset. In short, we see
that multi-class detection is much more challenging than single
detection, and that some findings are harder to detect than others,
indicating that there are great potentials for improvements and
innovations in future medical multimedia research.

7 CONCLUSION
To enable (reproducible) research in the intersection between multi-
media and medicine, on analysis of images and videos of the human
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GI tract in particular, we have presented the Kvasir dataset. The
dataset has been collected during real endoscopy examinations
and sorted and analyzed by medical experts. Initially, it contains 8
classes of images of important lesions and landmarks found in the
GI tract, but it will be continuously updated. Medical datasets are
hard to find, and such a dataset enables multi-disciplinary retrieval
and detection research in order to improve health care systems all
over the world.
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ABSTRACT
Bowel preparation (cleansing) is considered to be a key precon-
dition for successful colonoscopy (endoscopic examination of the
bowel). The degree of bowel cleansing directly affects the possibility
to detect diseases and may influence decisions on screening and
follow-up examination intervals. An accurate assessment of bowel
preparation quality is therefore important. Despite the use of reli-
able and validated bowel preparation scales, the grading may vary
from one doctor to another. An objective and automated assessment
of bowel cleansing would contribute to reduce such inequalities
and optimize use of medical resources. This would also be a valu-
able feature for automatic endoscopy reporting in the future. In
this paper, we present Nerthus, a dataset containing videos from
inside the gastrointestinal (GI) tract, showing different degrees of
bowel cleansing. By providing this dataset, we invite multimedia
researchers to contribute in the medical field by making systems au-
tomatically evaluate the quality of bowel cleansing for colonoscopy.
Such innovations would probably contribute to improve themedical
field of GI endoscopy.
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1 INTRODUCTION
The large bowel (figure 1), also named colon and large intestine,
is the lower part of the human gastrointestinal (GI) tract. It may

Figure 1: The large
bowel (image: shutter-
stock.com).

be affected by severe diseases in-
cluding cancer and chronic inflam-
mations. Bowel cancer (colorec-
tal cancer) is currently the third
most common cancer worldwide, ac-
counting for nearly 1.4 million new
cases and 700 000 cancer deaths in
2012 [9, 27]. The current gold stan-
dard for diagnostic and screening
investigations of the large bowel
is colonoscopy. This is a real-time
video examination of the inside of
the large bowel by use of a digital
high definition endoscope. Such en-
doscopic examinations are resource
demanding and require both ex-
pensive technical equipment and
trained personnel.

Furthermore, the efficiency of colonoscopy depends on sufficient
bowel cleansing to visualize the gastric mucosa (a membrane that
lines the GI tract), achieved by use of oral laxatives (substances that
loosen stools and increase bowel movements) administrated prior
to the procedure. The quality of bowel preparation has shown to
influence both the colonoscopy completion rate and detection of
possible precursors of cancer (e.g., adenomas, which are the benign
tumor of epithelial tissue) [10, 26]. Adenoma detection rate (ADR),
that is inversely associated with a patient’s risk of developing col-
orectal cancer, has been proven to be dependent on quality of bowel
preparation [7, 13]. Therefore, the degree of bowel preparation is
considered to be a reliable quality measure for colonoscopy [16].

Quality of bowel preparation may also influence decisions on
screening and follow-up intervals, since low-quality bowel prepara-
tion requires repeated colonoscopy [6]. An accurate description of
the bowel cleanliness is therefore needed. Despite the use of reliable
and validated bowel preparation scales, the grading may vary from
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one doctor to another. An objective and automated assessment of
bowel cleansing may contribute to reduce such inequalities and
optimize use of medical resources. Since endoscopic examinations
are real-time investigations, both normal and abnormal findings
have to be recorded and documented within written reports. Thus,
automatic report generation will probably contribute to reduce
doctors’ time required for paperwork and thereby increase time
to patient care. To our knowledge, a standardized and automatic
reporting system that ensures high quality endoscopy reports does
not exist. Assessment of bowel cleanliness would be a valuable
feature for such automatic endoscopy reporting in the future.

In this area of research, people start to see the synergies between
multimedia and medical systems [22]. The development of real-
time classification systems is a perfect match in the intersection
of medicine, multimedia systems and image/video retrieval. Proto-
types like the EIR [23] system targeting analysis of medical videos
for detection of abnormalities may be an initial starting point. How-
ever, such systems require a lot of data for development, training
and testing. To the best of our knowledge, no medical dataset ex-
ists for this type of data. In this paper, we therefore present the
Nerthus dataset1. It contains 21 videos with a total number of
5, 525 frames annotated and verified by medical doctors (experi-
enced endoscopists). The videos are divided into four classes of
predefined bowel-preparation qualities.

Our initial experiments indicate potential for improvement. In
many cases, we are able to detect the annotated bowel cleansing
quality. However, to deliver an automatic and reliable system for the
endoscopy units, more work is needed. By providing the Nerthus
dataset, we invite researchers to contribute in order to improve
important systems for automatic assessment and reporting for GI
endoscopy.

2 BOWEL PREPARATION QUALITY
Traditionally, the bowel preparation quality has been categorized
as poor, adequate or good. Such classification of bowel cleanliness
often lacks clear definitions, and the judgement on quality tends to
be subjective. This may result in significant inter-observer varia-
tion. In addition, such a traditional categorization relies on a global
assessment of bowel cleanliness, which does not account for dif-
ferences in cleansing between bowel segments. Poor quality of
preparation in one segment may then result in low overall grad-
ing, despite an otherwise perfectly cleaned bowel. To minimize the
inter-endoscopist variation, new score-based methods of assessing
bowel cleanliness have been introduced during the last decade.

State-of-the-art scoring systems include the BBPS [3, 15] and
the Ottawa bowel preparation scale (OBPS) [24]. Both these scales
divide the bowel into three sections (right, middle and left) and
score the bowel cleansing within each section according to a defined
numeric scale. OBPS uses segmental scores ranges from 0 to 4
in addition to a global three-score fluid-quantity rating, which
requires estimation of residual liquid. In contrast, the Boston bowel
preparation scale (BBPS) [3, 15] uses only a four-point scoring
system (ranges from 0 to 3). Figure 2 illustrates the segmental
division of the large bowel used for bowel preparation assessment
according to BBPS and OBPS.

1http://datasets.simula.no/nerthus

Figure 2: The segmental division of the large bowel: the
right side includes the cecum and ascending colon, the
transverse section of the colon includes the hepatic and
splenic flexures, and the left side includes the descending
colon, sigmoid colon, and rectum (image: WikiJournal of
Medicine [2]).

In this paper, we use BBPS as this is probably best validated
and most frequently used scoring system in both routine clinic and
screening settings today [19]. The BBPS scale is tested and validated
to assess the cleanliness at withdrawal. It does not take into account
whether the endoscopist has performed any additional cleansing
maneuvers, which reflects the actual practice of colonoscopy. The
definition of the BBPS segmental scores are described in table 1.
The segmental scores ranges from 0 to 3, where 0 is worse and 3 is
the best quality of the bowel preparation [3, 15]. Examples for the
different categories are shown in figure 4.

In real colonoscopy examinations, a segmental score is applied [15]
to each of the three bowel segments and summed in a total score
ranging from 0 to 9. In the Nerthus dataset, however, all videos

Table 1: The score points used in the Boston bowel prepara-
tion scale (BBPS) [3, 15] to define the degrees of bowel clean-
liness.

Score Description
0 Unprepared colon segment with mucosa not seen because

of solid stool that cannot be cleared
1 Portion of mucosa of the colon segment seen, but other

areas of the colon segment are not well seen because of
staining, residual stool, and/or opaque liquid

2 Minor amount of residual staining, small fragments of
stool, and/or opaque liquid, but mucosa of colon segment
is seen well

3 Entiremucosa of colon segment seenwell, with no residual
staining, small fragments of stool, or opaque liquid
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are recorded in the left part of the bowel. Automatic detection of
scope position or total score calculation is thereby irrelevant for
this dataset and only quality of bowel preparation by segmental
scores are of value here. For the future development of automated
systems, detecting position and assessment of total BBPS score will
be of interest.

3 DATA COLLECTION

Figure 3: A colonoscope.

The data is collected using equip-
ment as shown in figure 3 at
Bærum hospital, Vestre Viken Hos-
pital Trust in Norway. Furthermore,
the videos are annotated by one or
more medical experts from the Can-
cer Registry of Norway. A selection
of the videos will in addition be an-
notated by several medical experts
from Norway, Sweden, UK, US and
Canada through a web based test.
These video clips will be marked as
the gold standardwithin dataset and
will be released as an addition to the Nerthus dataset with higher
quality regarding bowel preparation assessment.

4 DATASET DETAILS
The Nerthus dataset consists of 21 videos with a total number
of 5, 525 frames, annotated and verified by medical doctors (ex-
perienced endoscopists), including 4 classes showing four-score
BBPS-defined bowel-preparation quality (see figure 4). The number
of videos per class varies from 1 to 10. The number of frames per
class varies from 500 to 2, 700. The number of videos and frames is
sufficient to be used for different tasks, e.g., image retrieval, machine
learning, deep learning and transfer learning, etc. [1, 8, 21]. The
dataset consists of videos with resolution 720x576 and is organized
by sorting the videos into separate folders named according to their
BBPS-bowel preparation quality score. Most of the included videos
and images have a green picture in each frame, illustrating the po-
sition and configuration of the endoscope inside the bowel. This is
obtained by use of an electromagnetic imaging system (ScopeGuide,
Olympus Europe) and may support the interpretation of the image.
This type of information may be important for later investigations
on segmental position within the bowel, but must be handled with
care for the bowel preparation quality assessment.

5 SUGGESTED METRICS
When reviewing related work in medical and the computer science
areas, there are a lot of different metrics used, with potentially
different names when used in the medical area and the computer
science (information retrieval) area. For future research, in addition
to describing the dataset with respect to total number of images,
total number of images in each class and total number of positives,
etc., it might be good to provide as many of the recall (also known as
sensitivity and probability of detection, REC), precision (also known
as the positive predictive value, PREC), specificity (also known as
the true negative rate, SPEC), accuracy (ACC), Matthews correlation
coefficient (MCC) and the F1 score (F1) metrics [20] as possible in

order to enable a comparison with other work. In addition to the
above metrics, processing speed and resource consumption are of
interest. In our work, we have used the achieved frame-rate (FPS)
as a metric as real-time feedback is important.

6 BASELINE PERFORMANCE
We have performed an initial multi-class detection experiment on
Nerthus as a baseline for future experiments. We have experi-
mented using various configurations of three different main ap-
proaches: classification using global features (GF), deep learning
convolutional neural networks (CNN) and transfer learning in deep
learning (TFL).

For the GF approaches, we extracted several image features for
classification using the latest version of the Lire open source soft-
ware [17]. The extracted features are JCD, Tamura, Color Layout,
Edge Histogram, Auto Color Correlogram and Pyramid Histrogram
of Oriented Gradients. For a first GF run (2 GF), we combined JCD
and Tamura, resulting in a feature vector of 187. For a second GF
run (6 GF), we combined all extracted features, resulting in a feature
vector of 1186 values. The decision of these combinations was based
on our previous findings and experiments in [23]. Subsequently,
we performed a simple early fusion of the features. All extracted
features are included in the dataset in the arff file format for reuse
and reproducibility. We used the Random Forrest (RF) and Logis-
tic Model Tree (LMT) classifiers provided in the Weka machine
learning library [12].

For all deep learning implementations, we used Keras [5] with
Google Tensorflow [1] as backend. For the two CNN runs, we
trained two different CNNs from scratch, i.e., one with three con-
volution layers and one with six. As activation function, we used
the rectified linear unit (ReLU) [11], and for pooling, we used max-
pooling. In all layers, we also included a 0.5 dropout, and the final
classification step was performed using two dense layers with first
ReLU and then Sigmoid as activation functions. The networks were
trained for 200 epochs using the Adam optimizer [14].

The TFL run is based on transfer learning [4] by re-training
and fine-tuning the pre-trained Inception v3 model [25]. For the
re-training, we followed a similar approach to the one presented
in [8]. Firstly, we locked all the basic convolutional layers of the
network and only retrained the two top dense classification layers.
The dense layers were retrained for 100 epochs using the RMSprop
optimizer that allows an adaptive learning rate during the training
process. This is was done for 100 epochs. After that, fine-tuning of
a subset of the convolutional layers was performed. We decided to
apply the fine-tuning on the two top convolutional layers of the
re-trained model. For this training step, we used the SGD optimizer
with a low learning rate (to achieve the best effect in terms of speed
and accuracy) [18].

The exact configurations of the CNN and TFL approaches are
included in the dataset. We did not perform any data augmentation,
such as cropping, for any of the approaches for this work. For the ex-
periments, we first split all the dataset videos into non-overlapping
five-second-long video segments resulting in a new set of videos
consisting of 52 files. Next, we split the new set randomly into two
training and testing subsets, sized as equally as possible depending
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(a) BBPS 0 (from splenic flexure) (b) BBPS 1 (from descending colon)

(c) BBPS 2 (from sigmoid colon) (d) BBPS 3 (from rectum)

Figure 4: Sample images for each bowel preparation ("cleanliness") score according to BBPS.

on the number of videos available for each class. The subsets con-
tain 27 and 25 videos each. Then, we extracted all the frames from
the videos, which gave us two new subsets containing 2800 and
2725 frames each, and applied our algorithms to the new frame sets.
We also performed two-folded cross-validation by switching the
training and testing sets and calculated the average. As baselines,
we provide results of two runs: the RF GF-based classifier with the
JCD feature and the random/majority-based classifier.

Table 2 gives an overview of the results, and table 3 contains the
confusion matrix for the best performing approach (6 GF with LMT)
for a more detailed insight into the performance. We observe that
all approaches would outperform the random and majority class
baseline, which is presented in the last row. Our own baseline in the
second last row is only outperformed by two 6 GF-based approaches

Table 2: Classification performance in terms of weighted av-
erage (2-folded) using the metrics described above.

Method PREC REC SPEC ACC MCC F1 FPS
6 Layer CNN 0.856 0.852 0.952 0.854 0.805 0.854 42
3 Layer CNN 0.811 0.694 0.937 0.772 0.621 0.742 40
Inception v3 TFL 0.751 0.745 0.918 0.748 0.665 0.748 61
2 GF Random Forrest 0.792 0.774 0.849 0.847 0.647 0.769 310
2 GF Logistic Model Tree 0.744 0.737 0.862 0.825 0.594 0.737 200
6 GF Random Forrest 0.885 0.866 0.895 0.913 0.801 0.860 101
6 GF Logistic Model Tree 0.901 0.901 0.960 0.949 0.863 0.899 77
Baseline (JCD Random Forrest) 0.805 0.794 0.870 0.861 0.679 0.79 330
Baseline (Random/Majority) 0.240 0.489 0.512 0.652 0.000 0.322 -

and the 6 layer CNN approach. The best performing approach is a
combination of six global features and the LMT classifier with an
overall F1 score of 0.899 and 77 FPS. The 6 GF RF approach is slightly
faster, but less accurate, than 6 GF LMT. The 2 GF approaches
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Table 3: Confusion matrix for both cross validated folds for the
6 GF LMT experiment in table 2. The classes correspond to bowel-
preparation quality in BBPS score points from zero to three.

Detected class Number of images

0 1 2 3 in the test set

A
ct
ua

lc
la
ss

0 248/236 1/0 1/14 0/0 250/250

1 14/9 1186/1457 23/2 2/7 1225/1475

2 1/0 4/8 398/423 97/44 500/475

3 0/0 104/16 132/68 514/516 750/600

gives almost the same detection, while 2 GF RF-based approach
is faster and performs slightly better. The 6 layer CNN approach
performs almost as good as 6 GF RF-based approach, while it is
more than 2 times slower. The 3 layers CNN and TFL approaches
performs almost equally in terms of detection performance, while
the TFL output is slightly better balanced in terms of precision
and recall. The performance of the 2 GF approaches and 3 layers
CNN and TFL approaches is almost the same. The relatively low
performance of the deep learning based approaches is expected
since neural network parameters are not optimized and we trained
over a rather small number of epochs. Nevertheless, even if we
use very basic methods, our results can be a good starting point
for other researchers and used as baselines to benchmark other
methods applied to the dataset.

7 CONCLUSION
Adequate bowel preparation (cleansing) is required to achieve high
quality colonoscopy examinations. Despite the use of reliable and
validated bowel preparation assessment scales, the grading may
vary from one doctor to another. By providing theNerthus dataset,
we invite multimedia researchers to contribute in the medical field
by making systems that automatically and consistently can evaluate
the quality of bowel cleansing. Innovations in this area contribut-
ing with computer-aided assessment and automatic reporting may
potentially improve the medical field of GI endoscopy.
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Abstract—Angiectasia, formerly called angiodysplasia, is one
of the most frequent vascular lesions and often the cause of
gastrointestinal bleedings. Medical specialists assessing videos
or images of examinations reach a detection performance of
16% for the detection of bleeding to 69% for the detection of
angiectasia [1]. This shows that automatic detection to support
medical experts can be useful. In this paper, we present several
machine learning-based approaches for angiectasia detection
in wireless video capsule endoscopy frames. In summary, the
most promising results for pixel-wise localization and frame-
wise detection are obtained by the proposed deep learning
method using generative adversarial networks (GANs). Using
this approach, we achieve a sensitivity of 88% and specificity
of 99.9% for pixel-wise localization, and a sensitivity of 98%
and a specificity of 100% for frame-wise detection. Thus, the
results demonstrate the capability of using deep learning for
automatic angiectasia detection in real clinical settings.

Index Terms—Angiectasia, computer aided diagnosis, deep
learning, machine learning, video capsular endoscopy

I. INTRODUCTION

An obscure gastrointestinal (GI) bleeding is a com-
mon finding in the GI tract and caused by different dis-
eases/conditions. The most challenging part is to detect
the bleeding source in the small bowel either using video
capsule endoscopes (VCEs) or via very invasive enteroscopy
examinations. Superficial vascular lesions called angiectasia
(see Figure 1 for an example) represent one of the most
common source of bleeding in the small bowel and are
therefore important to detect [2].

The most common procedure to detect angiectasia is to
use VCEs. A VCE provides visualization of the GI tract
by capturing images or recording a video by swallowing
a pill-like disposable capsule equipped with one or more
cameras. The camera pill contains a small processing device,
a memory or wireless transmitter, and a battery. The VCE
is swallowed by the patient, and it traverses and visualizes
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the GI tract for subsequent diagnosis and detection of GI
diseases, such as angiectasia, by a doctor manually inspecting
the video recordings. The latest generation of VCEs supports
a maximum resolution of 520x520 pixels and is able to
collect around 60,000 images per patient. Medical specialists
assessing the images detect only around 69% of angiectasias
(16% for the detection of bleeding to 69% for the detection
of angiectasias) [1].

(a) Input frame (b) Ground truth mask (c) Segmentation mask
Fig. 1. Example of an angiectasia lesion marked with a green circle (a),
a corresponding ground truth mask (b) and a segmentation mask generated
using our GAN approach (c). Image taken from the GIANA dataset [3].

State-of-the-art software from the industry is able to reach
an automatic detection sensitivity of 41% and a specificity
of 67%. For a clinical scenario, this is clearly not reliable
enough for automatic analysis. Both, sensitivity and speci-
ficity should be as close as possible to 100%, but at least
larger than 85% for being used in a real clinical setting [1],
[4]. Automatic detection of angiectasia is not very well
researched, and there are only a few publications on the
topic using saliency detection [5], [6]. However, no work
has looked into machine learning using deep learning or
handcrafted features. In this work, we therefore test different
machine learning approaches to tackle automatic angiectasia
detection in VCE videos. Using a publicly available and
unbiased (equal number of negative and positive examples)
dataset [3], we are testing algorithms (deep learning and
handcrafted features-based) for frame-wise detection and
pixel-wise localization. The best achieved results in this
paper are a sensitivity of 88% and specificity of 99.9%
for pixel-wise localization and a sensitivity of 98% and a
specificity of 100% for frame-wise detection.

The rest of the paper is organized as follows: first, we
give an overview of the related work in the field. This is
followed by a description of our methods, which we next
experimentally evaluate. Finally, we conclude the paper and
give directions for future work.



II. RELATED WORK

To the best of our knowledge, there exists almost no
related work about automatic detection of angiectasia in VCE
images or videos. The only known work is from Deeba et al.
[5], [6] who present a saliency-based approach. The method
is two-staged and unsupervised. In the first step, a patch
distinctness (PD) map and an Index of Hemoglobin (IHb)
map are created. In the second step, the PD and IHb maps
are combined to create the final saliency map. On this final
map, a local maximum search is performed to find regions-
of-interests containing the lesions. In [5], a sensitivity of
100%, a specificity of 82.5% and an accuracy of 90.1% are
reported on a dataset containing 50 normal images and 50
images containing angiectasia. In [6], the dataset is extended
to 3,602 images with 968 containing angiectasia and 2,634
normal ones. The images are taken from 9 different videos,
whereas 5 are from wired endoscopy and 4 from VCE. For
the VCE videos, a sensitivity of 94.44% and a specificity of
83.92% are reported. The localization score is 95.04% and
measures the fraction of correctly detected regions compared
to the regions containing angiectasia.

Furthermore, since bleeding angiectasia looks quite similar
to regular GI bleeding, a very common condition, work
addressing automatic bleeding detection should be consid-
ered. For bleeding detection, a lot of related work exist,
and the main challenge is that the bleedings do not occur
in specific patterns, shapes, textures or colors, which makes
them hard to detect. Furthermore, bleeding is usually caused
by other intestinal diseases like angiectasia or cancer, etc
[7]. The main methods to detect bleeding are based on
handcrafted color and textural features. In [8], chrominance-
moments-based texture and uniform local binary patterns in
combination with a multi-layer perception neural network
classifier are used to localize the source of bleeding in the
VCE video. Methods working on pixel-level are shown to
be more accurate to distinguish between bleeding and non-
bleeding. Yuan [9] utilizes color features on pixel level
of VCE frames and thresholds the color space to segment
bleeding from normal mucosa. In [10], the authors perform
super-pixel based segmentation to reduce the computational
complexity and at the same time achieve high accuracy.
In general, pixel level methods have higher accuracy than
frame based, but are computationally more costly. This is an
important factor taking into account that usually more than
60,000 frames have to be processed for one patient.

Most recent work is focusing on deep learning for bleeding
detection by utilizing convolutional neural networks (CNN).
In [11], the authors present a bleeding detection approach
that uses CNNs. The presented CNN consists of eight
layers and is basically a simple variation of the Imagenet
architecture [12]. They report a recall/sensitivity of 99.2%,
a precision of 99.9% and F1 score of 99.55%. For the
training, 8,200 images were used, and 1,800 images were
used for the testing. Both the training and testing dataset
were biased towards the negative class. Furthermore, no cross

validation for the evaluation was performed. Therefore, it
cannot be ruled out that the almost perfect performance is
based on overfitting. This was followed by another study
using the same approach [13], but with a different dataset
and on pixel accuracy level for segmentation. As the main
metric, region intersection over union (IU) was used. For
active bleeding, an IU of 0.7750 and for inactive bleeding
an IU of 0.7524 were achieved. Another recent work that
does not use deep learning but classifier fusion is the work
by Deeba et al. [14] that combines two optimized Support
Vector Machine (SVM) classifiers to detect bleeding. The
features used by the classifiers are based on the RGB and
HSV color spaces. For parameter tuning and evaluation, a
cross validation approach is used, and they report an average
accuracy of 95%, sensitivity of 94% and specificity of 95.3%
for a dataset of 8,872 VCE frames.

The presented related work contains only two papers about
angiectasia and some related work in the field of bleeding
detection. As one can observe, even if deep learning is in the
rise, handcrafted features still achieve good performance if
used in a clever way. In the context of angiectasia, one can
see that the VCE datasets used in the related work are biased
and too small. Therefore, the goal of this work is to compare
and evaluate deep learning and hand crafted features based
approaches on a large and unbiased dataset.

III. PIXEL-WISE SEGMENTATION APPROACH

The segmentation approach presented in this paper is
able to pixel-accurate mark the angiectasia in the given
frame. Based on our previous experience [15], [16], we
decided to use generative adversarial network (GAN) to
perform the segmentation. GANs [17] are machine learning
algorithms that are usually used in unsupervised learning and
are implemented by using two neural networks competing
with each other in a zero-sum game. We used a GAN
model architecture initially developed for the retinal vessel
segmentation in fundoscopic images called V-GAN as basis
for our angiectasia segmentation approach. The V-GAN
architecture [18] is designed for RGB images and provides
a per-pixel image segmentation as output. To be able to
use the V-GAN architecture in our angiectasia segmenta-
tion approach, we added an additional output layer to the
generator network that implements an activation layer with
a step function which is required to generate the binary
segmentation output.

IV. FRAME-WISE DETECTION APPROACHES

Frame-wise detection approaches are designed to detect
angiectasia on a frame level, i.e., if there is angiectasia in the
frame or not. For frame-wise detection, we propose different
methods where we conducted experiments using various
configurations of our main methods. The main methods are
global features (GF), deep features (DF) and a variation of
our GAN approach. For the classification, we used the Ran-
dom Tree (RT), Random Forrest (RF) and Logistic Model
Tree (LMT) classifiers provided in the WEKA library [19].



Global features. For the GF method, we extracted
handcrafted global features (describing the image on a global
level, e.g., texture, color distribution, etc.) using the LIRE
framework [20]. The features are Joint Composite Descriptor,
Tamura, Color Layout, Edge Histogram, Auto Color Correl-
ogram and Pyramid Histogram of Oriented Gradients. We
performed early fusion by combining all extracted features
resulting in a feature vector with the size of 1186.

Deep features. For the DF approach, we used different
well known working deep learning architectures to extract
either the features directly (FEA) or to classify the images
and using the whole range of concepts and their probabilities
as input for the classifiers (CON). The architectures that we
used are ResNet50 [21], VGG19 [22], and InceptionV3 [23].

Data augmentation. For fair performance comparison
of the GF and DF approaches with the GAN approach, we
implemented the same data augmentation (AUG) scheme
(rotation and flipping of frames) as used in the training
process of the GAN. Rotation was performed with 20° steps
for the original and the flipped frames, resulting in 35 new
frames complementary to the original ones.

GAN. The GAN detection approach utilizes a simple
threshold activation function, which takes the number of
positively marked pixels in the frame as an input. In the
cross-validation experiments, we evaluated the activation
thresholds from one pixel to a quarter of the frame. The
best results were achieved with a threshold value of 2 pixels,
which has been used for the detection experiments.

V. EXPERIMENTS

The data used for all the experiments is from the GIANA
2017 challenge [3], and it is publicly available for research
purposes. The data consists of training (development) and
test frame sets. The training set consists of 600 fully an-
notated frames from VCEs (300 with angiectasia and 300
without). The frames with angiectasia also have a pixel-wise
ground truth (GT) mask depicting the exact lesion location
inside each frame that allows both pixel-wise localization
and frame-wise detection experiments. The test set consists
of 600 unannotated frames. In order to perform valida-
tion and performance evaluation of the developed detection
algorithm, we annotated the test set frame-wise with the
help of an experienced researcher with medical pathology
diagnosis background. The 600 frames from the development
set are used for training and the 600 frames (300 with
angiectasia and 300 normal) from the test set for verification.
The advantages of the used dataset are (i) the number of
images (compared to related work, this is the largest one
for VCEs), (ii) the even split between positive and negative
examples and (iii) that it is publicly available making it
easy to compare different approaches. For evaluation of the
experiments, we used the precision (PREC), recall/sensitivity
(SENS), specificity (SPEC), accuracy (ACC), F1 score (F1),
Matthew correlation coefficient (MCC) and processing speed
in number of frames per second (FPS) metrics. A detailed
description and reasoning for the used metrics can be found

TABLE I
TEN-FOLD CROSS-VALIDATION RESULTS OF THE PIXEL-WISE
ANGIECTASIA AREAS THE GAN SEGMENTATION APPROACH.

Fold PREC SENS SPEC ACC F1 MCC
1 0.805 0.877 0.999 0.999 0.839 0.839
2 0.893 0.908 0.999 0.999 0.901 0.900
3 0.870 0.871 0.999 0.999 0.871 0.870
4 0.808 0.884 0.999 0.998 0.844 0.844
5 0.876 0.894 0.999 0.999 0.885 0.885
6 0.838 0.849 0.999 0.998 0.843 0.842
7 0.900 0.887 0.999 0.999 0.893 0.893
8 0.863 0.900 0.999 0.999 0.881 0.880
9 0.866 0.914 0.999 0.999 0.889 0.889
10 0.873 0.817 0.999 0.999 0.844 0.844

95% CI 0.859
±0.020

0.880
±0.018

0.999
±0.001

0.999
±0.001

0.869
±0.015

0.869
±0.015

TABLE II
TEN-FOLD CROSS-VALIDATION RESULTS OF THE ANGIECTASIA

FRAME-WISE DETECTION USING THE GAN APPROACH.
Fold PREC SENS SPEC ACC F1 MCC
1 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 0.967 1.000 0.983 0.983 0.967
3 1.000 1.000 1.000 1.000 1.000 1.000
4 1.000 1.000 1.000 1.000 1.000 1.000
5 1.000 0.967 1.000 0.983 0.983 0.967
6 1.000 0.967 1.000 0.983 0.983 0.967
7 1.000 1.000 1.000 1.000 1.000 1.000
8 1.000 1.000 1.000 1.000 1.000 1.000
9 1.000 1.000 1.000 1.000 1.000 1.000
10 1.000 0.967 1.000 0.983 0.983 0.967

95% CI 1.000
±0

0.987
±0.011

1.000
±0

0.993
±0.005

0.993
±0.005

0.987
±0.011

in [24]. The localization metrics are calculated pixel-wise
using the provided GT masks. For the best working approach
(GAN), we also report detailed results for the ten-fold cross-
validation including 95% confidence intervals (CI). For the
detection part, we use a ZeroR classifier as baseline which
assigns the label from the majority class (most common label
in the dataset) to all the instances.

A. Results

Table I shows the results for the GAN localization algo-
rithm (see Figure 1(b) and 1(c) for a comparison between the
GT and the output of the GAN). On average, sensitivity and
specificity are above the 85% margin recommended for a real
clinical settings. This can be seen as very good results since
we perform pixel-wise evaluation. The processing speed for
the GAN approach is 1.5 FPS. The frame-wise detection
performance of the GAN approach for the development set is
presented in Table II. The detection outperforms significantly
the 85% requirements. Both result sets are a strong indicators
that our GAN approach performs well for the tasks of
angiectasia localization and detection. Finally, in Table III,
we report the frame-wise detection performance on the test
set for all our runs. All tested approaches outperform the
ZeroR baseline, but most of them do not even come close
to the 85% margin for clinical use. The handcrafted features
outperform the VGG19 and InceptionV3 approaches but not
the RestNet50. From the classifiers LMT performs best most
of the time, followed by RF. The best performing not-GAN
approach is AUG DF ResNet50 FEA + LMT. The GAN
approach achieves superior performance compared to all
other detection methods for the frame-wise detection with
a sensitivity of 98% and a specificity of 100%. The best



TABLE III
RESULTS FOR THE ANGIECTASIA FRAME-WISE DETECTION APPROACHES

EVALUATED WITH THE ANNOTATED TEST SET.
Approach PREC SENS SPEC ACC F1 MCC FPS
GF+RT 0.570 0.568 0.568 0.568 0.566 0.138 130
GF+RF 0.628 0.623 0.623 0.623 0.620 0.252 105
GF+LMT 0.695 0.680 0.680 0.680 0.674 0.375 80
DF ResNet50 CON+RT 0.636 0.636 0.636 0.636 0.636 0.271 88
DF ResNet50 CON+RF 0.742 0.742 0.742 0.742 0.742 0.483 78
DF ResNet50 CON+LMT 0.734 0.732 0.732 0.732 0.731 0.465 53
DF ResNet50 FEA+RT 0.558 0.557 0.557 0.557 0.554 0.114 79
DF ResNet50 FEA+RF 0.721 0.720 0.720 0.720 0.720 0.441 70
DF ResNet50 FEA+LMT 0.748 0.738 0.738 0.738 0.736 0.486 46
DF VGG19 CON+RT 0.538 0.538 0.538 0.538 0.538 0.077 60
DF VGG19 CON+RF 0.594 0.593 0.593 0.593 0.592 0.187 49
DF VGG19 CON+LMT 0.545 0.545 0.545 0.545 0.544 0.090 32
DF VGG19 FEA+RT 0.515 0.515 0.515 0.515 0.515 0.030 54
DF VGG19 FEA+RF 0.548 0.548 0.548 0.548 0.548 0.097 47
DF VGG19 FEA+LMT 0.525 0.525 0.525 0.525 0.525 0.050 29
DF InceptionV3 CON+RT 0.537 0.537 0.537 0.537 0.537 0.073 66
DF InceptionV3 CON+RF 0.617 0.617 0.617 0.617 0.617 0.233 50
DF InceptionV3 CON+LMT 0.663 0.663 0.663 0.663 0.663 0.327 37
DF InceptionV3 FEA+RT 0.515 0.515 0.515 0.515 0.513 0.030 56
DF InceptionV3 FEA+RF 0.551 0.548 0.548 0.548 0.542 0.099 43
DF InceptionV3 FEA+LMT 0.533 0.533 0.533 0.533 0.533 0.067 30
AUG GF+RT 0.545 0.545 0.545 0.545 0.544 0.090 130
AUG GF+RF 0.650 0.643 0.643 0.643 0.639 0.293 105
AUG GF+LMT 0.627 0.625 0.625 0.625 0.624 0.252 80
AUG DF ResNet50 CON+RT 0.620 0.620 0.620 0.620 0.620 0.240 88
AUG DF ResNet50 CON+RF 0.787 0.787 0.787 0.787 0.787 0.574 78
AUG DF ResNet50 CON+LMT 0.765 0.763 0.763 0.763 0.763 0.529 53
AUG DF ResNet50 FEA+RT 0.553 0.553 0.553 0.553 0.553 0.107 79
AUG DF ResNet50 FEA+RF 0.727 0.723 0.723 0.723 0.722 0.450 70
AUG DF ResNet50 FEA+LMT 0.797 0.788 0.788 0.788 0.787 0.585 46
GAN 1.000 0.980 1.000 0.990 0.990 0.980 1.5
Baseline (ZeroR) 0.250 0.500 0.500 0.500 0.333 0.000 -

processing speed is reached by the GF approach using RT.
In terms of fastest speed and best classification performance,
AUG DF ResNet50 CON + RF performs best with a sensitiv-
ity of 78.7% , a specificity of 78.7% and a processing speed
of 78 FPS. The processing speed of the GAN method for
detection is the lowest with 1.5 FPS.

B. Conclusion

In this paper, we presented hand crafted and deep learning-
based methods for automatic detection of angiectasia on a
pixel- and frame-wise level. We compared several approaches
(handcrafted and deep learning) and demonstrated, on a
public available dataset, the capability of our proposed GAN
approach to reach and exceed clinical requirements (sensi-
tivity and specificity higher than 85%) for localization and
detection performance. In summary, we achieved a sensitivity
of 88% and a specificity of 99.9% for pixel-wise localization,
and a sensitivity of 98% and a specificity of 100% for frame-
wise detection. For future work, the improvement of the
processing speed and verification with other pathologies for
our best working approach is planed.
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Abstract—Video analysis including classification, segmentation
or tagging is one of the most challenging but also interesting
topics multimedia research currently try to tackle. This is often
related to videos from surveillance cameras or social media. In
the last years, also medical institutions produce more and more
video and image content. Some areas of medical image analysis,
like radiology or brain scans, are well covered, but there is a
much broader potential of medical multimedia content analysis.
For example, in colonoscopy, 20% of polyps are missed or
incompletely removed on average [1]. Thus, automatic detection
to support medical experts can be useful. In this paper, we
present and evaluate several machine learning-based approaches
for real-time polyp detection for live colonoscopy. We propose
pixel-wise localization and frame-wise detection methods which
include both handcrafted and deep learning based approaches.
The experimental results demonstrate the capability of analyzing
multimedia content in real clinical settings, the possible improve-
ments in the work flow and the potential improved detection rates
for medical experts.

Index Terms—medical video analysis, machine learning, deep
learning, image features, performance

I. INTRODUCTION

Hospitals record and collect a huge amount of multimedia
data which needs to be stored and analyzed, both on-the-
fly and offline. One example is gastrointestinal (GI) tract
examinations where large numbers of videos are collected,
i.e., by an endoscope controlled by a medical expert. Making
the future GI examinations more efficient and cost-effective
is also a huge societal challenge as about 2.8 millions of new
esophagus, stomach and colorectal cancers are detected yearly
in the world with a mortality of about 65% [2]. All have a
significant impact on the patients’ health-related quality of life.
Consequently, gastroenterology is one of the most significant
medical branches. Colorectal cancer is the third most common
cause of cancer mortality for both women and men, and it is a
condition where early detection is important for survival. For
example, a patient is going from a low 10-30% 5-year survival
probability if detected in later stages of the disease to a high
90% survival probability in early stages [3].

Colonoscopy is considered to be the gold standard for the
examination of the colon for early detection of cancer and
precancerous pathology. However, it is not an ideal screening
test. Polyps, which are abnormal growth of tissue projecting

(a) Input frame (b) Ground truth mask (c) Segmentation mask

Fig. 1. Example of a polyp marked with a green circle (a), a corresponding
polyp localization ground truth mask (b) and our output segmentation mask
using GAN (c). Images taken from the CVC-968 [6].

from a mucous membrane (see Figure 1(a)), are often prede-
cessors of colorectal cancers, and are therefore important to
detect early. However, on average, 20% of polyps are missed
or incompletely removed, i.e., the risk of getting cancer largely
depend on the endoscopists ability to detect polyps [1]. It
is also a demanding procedure requiring a significant time
investment from the medical professional, and the procedure is
unpleasant and can cause great discomfort for the patient [4].
Furthermore, there are high costs related to the procedure.
Norway has an average cost of about $450 per examination. In
the US, colonoscopy is the most expensive cancer screening
process with an average of $1,100 per examination, i.e., an
annual cost of $10 billion dollars [5].

In the area of image analysis and object detection, machine
learning, and especially deep learning, has been very popular,
also in the field of medicine, in the recent years. Deep learning
algorithms are based on neural networks that use recently
developed training techniques to train their models. They
are basically an abstracted representation of data points. The
representation is made on a high-level, and multiple layers for
processing the networks are used to reach higher complexity.
The different layers can learn different abstraction levels of
the data using input of previous layers until they reach a
final layer, which makes the final decision for the class. The
new training techniques for deep learning were mainly made
possible because of the emergence of GPU computing, which
enables training of the networks in a reasonable amount of
time. On the other side, the disadvantages include a very long
training time, classification boundaries are hard to explain



(why one data point is put in this class), and they are very
data driven [7], [8].

Automatic detection of polyps is in general well researched,
and there are many publications on the topic. Related work
indicates with a sensitivity and specificity close to one that
the problem is solved. Nevertheless, there are still several
open challenges, e.g., the evaluation of existing approaches is
often performed on small and non-publicly available datasets.
Medical datasets also have the challenge that they usually
contain many true negative examples, but not so many true
positives. Furthermore, a very important open question is how
generalizable the proposed methods are. Generalization is a
vital ability of a model trained on a dataset from one hospital
to be applied in another hospital, e.g., using a different type
of equipment (endoscope). Therefore, in this paper, we are
addressing the challenges arising due to limited datasets and
generalizability of models which both are common problems
in medical multimedia scenarios [9].

The main contributions of this paper are proposing and
testing different approaches to overcome the problems con-
cerning generalization of models and limited datasets in terms
of size and sample equality, and to propose a best approach
for detection and localization of findings for medical image
analysis. Our best working approach outperforms by far all
our own and other tested approaches, and does at the same
time not need a large amount of training data. Furthermore, it
achieves good performance across datasets and does not need
negative examples for training. With respect to dataset size and
generalizability, we conclude that one proposed detection and
localization model can be used across different datasets and
different equipment and it is able to perform efficiently using
very low amount of training samples. With our best working
approach based on a generative adversarial network (GAN),
we reach a detection specificity of 94% and an accuracy of
90.9% with only 356 training [6] and 6000 test [10] samples
captured by different equipment.

The rest of the paper is organized as follows: first, we give
an overview of the related work in the field. This is followed
by a description of our methods, which we next experimentally
evaluate. Finally, we conclude the paper and give directions
for future work.

II. RELATED WORK

Recently, frame-wise detection and in-frame localization of
colon polyps have been picked up as a research topic by
many scientists in the medical imaging area, but lately also
in the multimedia community. Approaches in context with
automatic detection or localization of polyps in videos taken
from colonoscopies can be divided into hand-crafted feature
based, re-training or fine-tuning of existing and trained from
scratch deep learning architectures.

In hand-crafted feature based approaches for detection,
researchers extract features such as global or local image
features (texture, edge or color based) from the frames and
use them within different machine learning algorithms such as
random forest (RF) or support vector machines (SVM) [11],

[12]. The best working hand-crafted detection approaches
are [13] and [9] with both precision and recall above 90%. The
first approach [13] relies on edge and texture features whereas
the latter [9] uses several different global image features.
For localization, the best working approaches from Yuan et.
al. [14], who use a bottom-up and top-down saliency approach,
and from Wang et. al. [13], where they use edge and texture
features. Usually, localization approaches can also be used for
frame-wise detection.

Reusing already existing deep learning architectures and
pre-trained models leads to very good results in for example
the Imagenet classification tasks. Retraining architectures from
scratch in the context of colonoscopies leads to reasonable
good results, but the limited size of medical datasets is a
problem for these approaches. For pre-trained models, even
if their categories are quite different compared to the medical
use case, it has been shown that they can be used in the context
of polyp detection and localization tasks [15], [16], and that
they often outperform hand-crafted approaches [17], [18].

In [19], a 3D convolutional neural network (CNN) architec-
ture approach is presented for polyp detection. The method is
also compared to hand-crafted and 2D CNN approaches, and
it is shown that different approaches perform well for different
sub-tasks. For example, the hand-crafted feature approach is
working well for true negative detection. The best perfor-
mance is reached with a fusion of all investigated approaches.
Moreover, Pogorelov et. al. [20] and Riegler et. al. [21]
compare different localization approaches (hand-crafted and
deep learning). The conclusion is that pre-trained and fine-
tuned deep learning models outperform other approaches, but
that they are far away from being ready for clinical use (usually
a sensitivity and specificity above 85% is considered as the
borderline [22]).

In general, recent related work reports very promising re-
sults in terms of evaluation metrics, i.e., both recall (also called
sensitivity) and specificity close to one. Nevertheless, most of
the approaches are tested on small and non-publicly available
datasets. Furthermore, the problem of medical datasets is that
they usually contain many negative examples, but not so many
positives is not well researched. Another open question is how
generalizable the proposed methods are, meaning can a model
trained on a dataset from one hospital be applied in another
hospital. These are questions that we are addressing in this
paper.

III. METHODOLOGY

A. Pixel-wise segmentation/localization approach

The first presented segmentation approach is able to pixel
accurate mark the polyp in the given frame. We use generative
adversarial networks (GANs) to perform the segmentation.
GANs [23] are machine learning algorithms that are usually
used in unsupervised learning and are implemented by using
two neural networks competing with each other in a zero-sum
game. We used a GAN model architecture initially developed
for the retinal vessel segmentation in fundoscopic images,
called V-GAN, as basis for our polyp segmentation approach.



The V-GAN architecture [24] is designed for RGB images
and provides a per-pixel image segmentation as output. To be
able to use the V-GAN architecture in our polyp segmentation
approach, we added an additional output layer to the generator
network that implements an activation layer with a step
function which is required to generate the binary segmentation
output. Furthermore, we added support for gray-scale and
RGB color space data shapes for the input layers of the
generator and discriminator networks including an additional
color space conversion step. Gray-scale support was added to
be able to use a single value per pixel input in order to reduce
the network architecture complexity and to speed up the model
training and data processing parts.

Data preparation. The frames used in this research is
obtained from the standard endoscopic equipment and can
contain some additional information fields related to the endo-
scopic procedure. Some types of the fields (see Figure 2), inte-
grated into resulting frames showed to the doctor and captured
by the recording system, can confuse detection and localization
approaches, and it leads to frame miss-classification (green
navigation box) or false positive detection (captured frame
with polyp). We have implemented a simple frame preparation
procedure that consists of three independent steps: a black
border removal (including patient-related text fields), a green
navigation localizer map masking and a captured still frame
masking. All the removed and masked regions are excluded
from further frame analysis.

Data augmentation. Due to a limited number of frames
with the detailed ground truth masks, we implemented a data
augmentation scheme used in the training process of the GAN.
For the experiments presented here, we used only rotation and
flipping of frames. Rotation was performed independently with
20° steps for the original. Together with the in-horizontal-
direction-flipped frames, we added 35 new frames comple-
mentary to the original ones.

(a) Navigation (b) Captured frame (c) Patient information

Fig. 2. Examples of the different auxiliary information fields integrated into
recorded frame: a colonoscope navigation localizer (a), a captured still frame
(b) and a patient-related information (c). Images taken from CVC-968 [6] and
Kvasir [10].

B. Frame-wise detection approaches

Frame-wise detection approaches are designed to detect the
target object on a per-frame level, i.e., in our GI scenario,
detect if there is a polyp in the frame or not. For frame-
wise detection, we propose different methods. We conducted
experiments using various configurations of our main methods.
The main methods are hand-crafted global features (GF-D), re-
training and fine-tuning on existing deep learning architectures

TABLE I
ARCHITECTURES AND CONFIGURATIONS USED FOR RT-D. WE HAVE USED
THE rmsprop AND SGD OPTIMIZERS IN STEPS 1 AND 2, RESPECTIVELY, 50

EPOCHS AND A BATCH SIZE OF 32.

Method Architecture Step 2: frozen from layer Image size

RT-D-Xcept Xception [29] 26 299x299

RT-D-VGG19 VGG19 [30] 5 224x224

RT-D-ResNe ResNet50 [31] 50 224x224

(RT-D) and a variation of the GAN approach (GAN-D) that
was also used for the pixel-wise segmentation.

GF-D. For the GF method, we extracted handcrafted global
features (describing the image on a global level, e.g., texture,
color distribution, etc.) using the LIRE framework [25]. The
features that we used are Joint Composite Descriptor, Tamura,
Color Layout, Edge Histogram, Auto Color Correlogram and
Pyramid Histogram of Oriented Gradients. We performed early
fusion by combining all extracted features resulting in a feature
vector with the size of 1186. For the classification, we used a
Logistic Model Tree (LMT) classifier from the Weka machine
learning library [26].

RT-D. For the RT method, we implemented a re-training
and fine-tuning approach and used it with three well known
and working architectures. For all architectures, we used
models trained on the Imagenet dataset for starting weights.
The approach for RT-D works in two steps. First, we freeze all
layers of the architecture and train only the base layers. After
that, we unfreeze certain layers and fine-tune the network.
Which blocks are un-freezed for the second step is decided
via a Bayesian optimization algorithm [27] which runs for
20 iterations. To find good working optimizers, number of
epochs and batch sizes for the different architectures, we
also used Bayesian optimization for 20 iterations including
all architectures. This lead to values that gave good overall
results and could be used for all architectures to achieve
better comparability. Details about the exact configurations and
architectures used can be found in Table I. The dataset used
for the optimization step is public available and details can be
found in [28].

GAN. The GAN detection approach utilizes a simple
threshold activation function, which takes the number of
positively marked pixels in the frame as input. In the validation
experiments performed using different datasets, we evaluated
the activation thresholds from one pixel to a quarter of the
frame. The best detection results were achieved with a thresh-
old value of 50 pixels, which has been used for the detection
experiments for the development and test set and confirms high
performance of the GAN-based localization approach.

C. Block-wise segmentation/localization approach

The second localization approach is our attempt to utilize
frame-wise detection algorithm for localization purposes. We
have applied the RT-D method to the set of sub-frames
generated from the training and test sets. Sub-frames (blocks)
are generated using sliding square window with 66% overlap
with the neighbor sub-frames. We have tested different window



TABLE II
OVERVIEW OF THE DATASETS USED IN THE EXPERIMENTS.

Dataset Training Test # Frames # Polyp frames # Normal frames
CVC-356 X X 1,706 356 1,350
CVC-612 X X 1.962 612 1,350
CVC-968 X X 2.318 968 1,350
CVC-12k - X 11,954 10,025 1,929
Kvasir - X 6,000 1,000 5,000
Nerthus X - 1,350 - 1,350

sizes from 64x64 to 128x128 pixels. The best results were
obtained using 128x128 windows size. The generated sub-
frames are fed into the RT-D detection algorithm, and then, the
processed sub-frames are grouped back into the frame. This
results in a coarse localization map which is then used for the
frame-wise detection. The detection is achieved by applying
a simple threshold activation function, and we evaluated the
activation thresholds ranging from 1 block to 50% of the
frame blocks. The best detection results were achieved with a
threshold value of 2 blocks.

IV. EXPERIMENTS

For the experiments, we use combinations of six differ-
ent, publicly available datasets, namely CVC-356 [6], CVC-
612 [32], CVC-968, CVC-12k [6], Kvasir [10] and parts
of Nerthus [28] (see Table II for an overview). The CVC-
356 and CVC-612 consist of 356 and 612 video frames,
respectively. CVC-968 is a combination of CVC-356 and
CVC-612. Each frame that contains a polyp comes with pixel-
wise annotations in the CVC-356 and CVC-612 datasets.
They are used for both training and testing in the localization
performance evaluation experiments, and for the training only
in the detection experiments. For the frame-wise detection
approaches, except for the GAN-based approach, we also
added the 1,350 class three frames with normal mucosa from
the Nerthus dataset since normal mucosa examples for the
negative class are required for our detection algorithms. The
CVC-12k dataset contains 11,954 video frames. From these
11,954 frames, 10,025 contain a polyp and 1,929 show only
normal mucosa. The polyps are not annotated pixel-wise, but
with an oval shape covering the whole polyp (approximated
annotation). For the Kvasir dataset, we included all classes
except for the dyed classes (in a real world scenario something
dyed is already detected by the doctor) leading to a dataset
containing 1,000 frames with polyps, 5,000 without and only
frame-wise annotations. The CVC-12k dataset is used as test
set for block- and frame-wise detection and the Kvasir dataset
for frame-wise detection.

A. Evaluation Metrics

For the evaluation of the experiments, we used the met-
rics precision (PREC), recall/sensitivity (SENS), specificity
(SPEC), accuracy (ACC), F1 score (F1) and Matthew correla-
tion coefficient (MCC). A detailed description and reasoning
for the used metrics can be found in [10]. The localization

TABLE III
VALIDATION RESULTS OF THE IN-FRAME PIXEL-WISE POLYP AREAS

SEGMENTATION (LOCALIZATION) APPROACH EVALUATED USING
DIFFERENT COMBINATIONS OF THE CVC-356 AND CVC-612 SETS FOR

TRAINING AND TESTING.

Test set Run Train set PREC SENS SPEC ACC F1 MCC

CVC-612 LOC-356 CVC-356 0.819 0.619 0.984 0.946 0.706 0.684

CVC-356 LOC-612 CVC-612 0.723 0.735 0.981 0.965 0.729 0.710

metrics are calculated pixel- and block-wise using the provided
binary masks of the ground truth.

B. Results

Table III depicts the performance evaluation results for
the GAN-based pixel-wise segmentation approach. The best
performance is achieved using the CVC-612 dataset for the
training, which means, more training data improves the final
results. An interesting observation is that the precision is
higher with CVC-356 as training data. This might be an
indicator that more training data makes the model more
general, but less accurate. All in all, the validation using
different datasets indicates that the approach works well, and
the proposed localization algorithm can perform efficiently
even with a low number of training samples available. This
is important for our medical use-case scenario with a high
diversity of objects and a limited amount of annotated data
available. The initial localization experiments demonstrated
more than 50% increase in performance of the localization
using augmented training data, thus we have used augmented
training data in all the pixel-wise localization experiments.
A possible positive effect of test data augmentation with the
following aggregation of the localization results will be subject
of future research.

The results for the block-wise location approaches are
presented in Table IV. The performance results obtained are
especially interesting since all the approaches presented are
trained with small amounts of training data without any nega-
tive examples (no normal mucosa frames at all). Furthermore,
the CVC-12K dataset is heavily imbalanced which also makes
it harder to achieve good results. For block-wise location
via detection, the LOC-Xcept approach performs best for
all the different training set sizes. It also indicates that a
larger training dataset can lead to better results. The results
for the LOC-ResNe approach confirm this with significant
improvements when the training dataset size is increased.
This is something that should be investigated in the future.
Furthermore, the algorithm used to combine the results on the
different sub-frames into one can be improved by, for example,
using another machine learning algorithm to learn the best
combinations.

The frame-wise detection results can be found in Table V.
All approaches are trained on CVC-356, CVC-612 and CVC-
968 training datasets and tested on the CVC-12k and Kvasir
datasets. All in all, the GAN approach performs best on
both datasets and within all variations of training datasets.
The performance on the Kvasir dataset is better than on the



TABLE IV
PERFORMANCE OF THE BLOCK-WISE LOCALIZATION VIA DETECTION

APPROACHES REPORTED PER METHOD AND USED TRAINING DATA.

Test

set
Run

Training

set
PREC SENS SPEC ACC F1 MCC

C
V

C
-1

2k

LOC-Xcept-356 CVC-356 0.475 0.203 0.966 0.868 0.285 0.250

LOC-Xcept-612 CVC-612 0.528 0.289 0.961 0.874 0.374 0.328

LOC-Xcept-968 CVC-968 0.584 0.257 0.972 0.880 0.357 0.333

LOC-VGG19-356 CVC-356 0.257 0.292 0.874 0.799 0.273 0.158

LOC-VGG19-612 CVC-612 0.266 0.489 0.799 0.759 0.344 0.228

LOC-VGG19-968 CVC-968 0.232 0.406 0.800 0.750 0.295 0.166

LOC-ResNe-356 CVC-356 0.723 0.003 0.999 0.871 0.006 0.044

LOC-ResNe-612 CVC-612 0.469 0.054 0.990 0.869 0.098 0.125

LOC-ResNe-968 CVC-968 0.536 0.248 0.968 0.875 0.340 0.306

CVC-12k dataset which is surprising since the Kvasir data is
completely different from the CVC training data. Moreover,
frames in the Kvasir dataset are captured using different and
various hardware. This is a strong indicator that the approach
is able to create a general model that is not just working
well on the given data and that the CVC-12k dataset is very
challenging. Some of the difficulties we could observe are for
example screens in screens that show different parts of the
colon, out of focus, frame blur, contamination, etc. (see for
example Figures 2 and 3).

(a) Blurry frame (b) Colors shift (c) Lens contamination

Fig. 3. Example of difficult images in the test dataset: a significant frame
blur caused by camera motion (a), a color components shift caused by
the temporary signal failure (b) and an out-of-focus frame contains also
contamination on the camera lens (c). Images taken from the CVC-12k [6].

From the RT-D approaches, the Xcept has the best overall
performance, and it performs best on the CVC-12k dataset.
The ResNe method reaches best performance for the Kvasir
dataset, but is still far away from the GAN approach (MCC
0.262 versus 0.689).

The GF-D approach did not perform well on the CVC-
12k dataset and could not make sense of the data. This is
indicated by only negative MCC values which basically means
no agreement. On the Kvasir dataset, it performed much better
and could even outperform RT-D-VGG19. Overall, the RT-
D approaches with VGG19 performed worse than all other
approaches. The reason could be that the general hyper-
parameters that we collected using optimization did not work
well for the VGG19 architecture.

In order to compare our detection approaches to the state-
of-the-art, we also evaluated one of the recent and promising
object detection CNN called YOLOv2 [33]. The YOLOv2
model is able to detect objects within a frame and to provide an

TABLE V
RESULTS FOR THE FRAME-WISE POLYP DETECTION APPROACHES. WE

USED THE CVC-12K AND KVASIR DATASET AS INDEPENDENT TEST SETS.

Test

set
Run

Training

set
PREC SENS SPEC ACC F1 MCC

K
va

si
r

GAN-356 CVC-356 0.715 0.751 0.940 0.909 0.732 0.677

GAN-612 CVC-612 0.595 0.803 0.891 0.876 0.684 0.619

GAN-968 CVC-968 0.736 0.746 0.946 0.913 0.741 0.689

GF-D-356 CVC-356 0.171 0.109 0.894 0.763 0.133 0.004

GF-D-612 CVC-612 0.270 0.318 0.828 0.743 0.292 0.137

GF-D-968 CVC-968 0.225 0.859 0.409 0.484 0.357 0.208

RT-D-Xcept-356 CVC-356 0.358 0.259 0.907 0.799 0.300 0.190

RT-D-Xcept-612 CVC-612 0.383 0.326 0.895 0.800 0.352 0.236

RT-D-Xcept-968 CVC-968 0.459 0.256 0.939 0.825 0.328 0.251

RT-D-VGG19-356 CVC-356 0.181 0.333 0.777 0.720 0.235 0.087

RT-D-VGG19-612 CVC-612 0.213 0.583 0.682 0.669 0.313 0.186

RT-D-VGG19-968 CVC-968 0.231 0.320 0.842 0.774 0.268 0.142

RT-D-ResNe-356 CVC-356 0.236 0.178 0.885 0.767 0.203 0.070

RT-D-ResNe-612 CVC-612 0.321 0.507 0.785 0.739 0.393 0.247

RT-D-ResNe-968 CVC-968 0.248 0.877 0.469 0.537 0.387 0.262

YOLO-968 CVC-968 0.530 0.559 0.901 0.844 0.544 0.450
C

V
C

-1
2k

GAN-356 CVC-356 0.967 0.624 0.888 0.667 0.758 0.378

GAN-612 CVC-612 0.934 0.609 0.778 0.636 0.737 0.286

GAN-968 CVC-968 0.906 0.912 0.510 0.847 0.909 0.428

GF-D-356 CVC-356 0.829 0.909 0.030 0.767 0.867 -0.081

GF-D-612 CVC-612 0.809 0.383 0.530 0.407 0.520 -0.064

GF-D-968 CVC-968 0.835 0.854 0.125 0.737 0.845 -0.020

RT-D-Xcept-356 CVC-356 0.913 0.624 0.693 0.636 0.742 0.236

RT-D-Xcept-612 CVC-612 0.876 0.740 0.457 0.694 0.802 0.160

RT-D-Xcept-968 CVC-968 0.899 0.690 0.600 0.676 0.781 0.224

RT-D-VGG19-356 CVC-356 0.257 0.292 0.874 0.799 0.273 0.158

RT-D-VGG19-612 CVC-612 0.266 0.489 0.799 0.759 0.344 0.228

RT-D-VGG19-968 CVC-968 0.232 0.406 0.800 0.750 0.295 0.166

RT-D-ResNe-356 CVC-356 0.723 0.003 0.999 0.871 0.006 0.044

RT-D-ResNe-612 CVC-612 0.232 0.406 0.800 0.750 0.295 0.166

RT-D-ResNe-968 CVC-968 0.870 0.303 0.766 0.378 0.450 0.057

YOLO-968 CVC-968 0.932 0.641 0.757 0.660 0.759 0.296

object’s localization box and a probability value for the object
detection. We trained YOLOv2 with the CVC-968 dataset
using an appropriate conversion from ground truth masks
to surrounding object boxes, as required by YOLOv2. The
training was performed from scratch with the default model
parameters. The trained YOLOv2 model showed relatively
high performance with an MCC value of 0.450 and 0.296 for
the Kvasir and CVC-12k sets, respectively, and was able to
outperform all tested approaches except for the GAN-based
solution. Nevertheless, the performance of the well-developed
and already fine-tuned YOLOv2 model is significantly lower
than our new GAN-based detection-via-localization approach.

V. CONCLUSIONS

In this paper, we have presented hand crafted and deep
learning-based methods for automatic, pixel-, block- and
frame-wise detection of polyps in videos from colonoscopies.



We evaluated the performance of our methods on different
datasets. To achieve real-world comparability, we chose diffi-
cult datasets captured using different hardware equipment that
were imbalanced in terms of positive, and negative examples
and we also performed performance validation using different
datasets for training and testing. Additionally, we tried to
use as little amount of training data as possible. We showed
that our newly proposed GAN based method outperforms
handcrafted features and approaches based on well-known and
working deep learning architectures. With our best working
GAN-based approach, we reached detection specificity of 94%
and accuracy of 90.9% with only 356 training and 6,000
test samples for the data captured by different equipment in
different hospitals. The localization specificity and accuracy
for the same training set are 98.4% and 94.6% respectively.
Thus we can conclude that our approach works with a little
amount of training data and, moreover, does not require
negative examples for training, which is important to be able
to use lesion imagery, already collected in hospitals. For future
work, we plan to improve all methods presented in this paper
with the main focus on the GAN-based approach, extend the
experiments to other datasets and compare it to a broader range
of approaches including a time-series-based analysis using for
example long short-term memory.
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