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Abstract

One type of Internet services that have recently gained much attention are services that enable

people around the world to communicate in real-time. Such services of real-time interaction are

offered by applications most commonly referred to as distributed interactive applications. Con-

crete examples of distributed interactive applications are multiplayer online games, audio/video

conferencing, and many virtual-reality applications linked to education, entertainment, military,

etc. A time-dependent requirement generally applies to all distributed interactive applications

that aim to support real-time interaction, and is usually in terms of a few hundred milliseconds.

The latency requirements are manifested in terms of event-distribution, group membership man-

agement, group dynamics, etc., far exceeding the requirements of many other applications.

One general focal point in this thesis is to enable scalable group communication for man-

aging dynamic groups of clients that interact in real-time. By doing this, we want to enable

people around the world to dynamically join networks of participants and interact with them in

real-time. The main contributions of the thesis are a number of investigations of a wide variety

of group communication techniques. The results from the investigations form a foundation to

identify the techniques that are particularly suitable for distributed interactive applications.

We investigated membership management techniques, and evaluated both centralized and

distributed approaches through empirical and experimental studies on PlanetLab. We proposed

3 membership management techniques and found that a centralized membership management

approach is particularly fast and consistent when there are multiple dynamic groups.

We also aimed to identify well-placed nodes in the application network that yield low pair-

wise latencies to groups of clients. These may, for example, be used for membership managing

tasks. We evaluated 5 core-node selection algorithms through group communication simula-

tions and experiments on PlanetLab. From these evaluations we found that there exist core-node

selection algorithms that are able to find sufficiently well-placed nodes.

We considered overlay network multicast as the better option to distribute time-dependent

events in groups, and found that centralized graph algorithms are suited to meet the latency

requirements put on the overlay constructions and reconfigurations. We evaluated a variety

of centralized overlay construction algorithms that aim to build low-latency overlay networks.

Through rather comprehensive analyses we identified suitable algorithms in the investigations.

Finally, we investigated whether it is possible to obtain accurate all-to-all path latencies to

i



be used by the centralized graph algorithms. For this, we evaluated 2 latency estimation tech-

niques and measured their accuracy by comparing the estimates to all-to-all ping measurements.

For the evaluation, we implemented a real-world system and performed group communication

experiments on PlanetLab. We found that when latency estimates are used by core-node selec-

tion algorithms and overlay construction algorithms, they are sufficiently accurate such that the

graph algorithms still find solutions that are close to the real-world.
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Chapter 1

Introduction

The first decade of this millennium has been a time of globalization, where people take for

granted the fact that we can communicate throughout the world using the Internet. But, it hasn’t

always been like this. In fact, as late as in the early 1990s the Internet was a rather slow network

that was not widely accessible. Now that the first decade of the new millenium has almost come

to an end, the Internet is generally available and is becoming a natural part of peoples lives.

The current Internet has a huge amount of different services, many that are important in

regular people’s everyday affairs, but also many that go on unnoticed until they disappear. A

few of the current popular Internet services include online searches using Google, instant text

messaging on MSN Chat, IP phone technology on Skype, social networking tools like Face-

book, video streaming from various TV-channels, multiplayer online games like the recent Age

of Conan, and the list goes on. To an untrained eye, it certainly looks like there are enough

services to cover any need that people may have. But, it is clear that many Internet services

are yet to be deployed and even discovered, and that these services are going to cover everyday

needs that most people today don’t realize they have. As a humorous example, figure 1.1 gives

a prediction to which services Google may possibly include in the year 2084.

One type of Internet services that have recently gained much attention are services that enable

people around the world to communicate in real-time.

Such services of real-time interaction are offered by applications most commonly referred to

as distributed interactive applications. These applications typically support group communica-

tion functionalities, in which clients can communicate and interact with each other over large

distances. However, distributed interactive applications currently have multiple unsolved issues

that prevent them from easy and cheap deployment.

In the course of the thesis, we investigate a wide range of group communication techniques that

are intended to enable a broader range of distributed interactive applications. And, as such,

make it easier for developers to create distributed interactive applications.

1
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Figure 1.1: What types of Internet services will be available in 2084?

In the following sections, we introduce distributed interactive applications, and highlight their

challenges, which are especially linked to achieving sufficiently low latencies between interact-

ing parties to enable real-time interaction. We also discuss the latency and bandwidth limitations

that are present in the Internet, which make it hard to support real-time interaction. These In-

ternet limitations must be handled by advanced group communication techniques that are able

to identify the opportunities that the Internet does provide. From these observations, we define

4 specific goals for the thesis, and then give a brief summary of our contributions.

1.1 Distributed interactive applications

The target applications for the work done in the thesis are distributed interactive applications.

Distributed interactivce applications aim to offer real-time interaction between multiple partic-

ipants over the Internet.

Concrete examples of distributed interactive applications are multiplayer online games, au-

dio/video conferencing, and many virtual-reality applications linked to education, entertain-

ment, military, etc. Figure 1.2 includes screen-shots from a few distributed interactive appli-
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Figure 1.2: Some examples of interactive applications.

cations. The differences between such real-time interactive applications and other less time-

dependent Internet communication, can be highlighted by comparing video-conferencing to

video-streaming.

Applications that support audio/video streaming of live events typically buffer the stream

at the client for a number of seconds before it is played out. This is done because it is more

important that the audio/video stream runs smoothly during playback, than that the audio/video

is "exactly" live and appears jittery. For video-conferencing applications it is not an option to

buffer video for multiple seconds, because this makes it very hard to achieve smooth interaction

when there are many active participants discussing. Rather, the audio/video streams are strictly

time-dependent and must be distributed very fast among the participants and then played out

live as quick as possible on each of them.

A time-dependent requirement generally applies to all distributed interactive applications that

aim to support real-time interaction, and is usually in terms of a few hundred milliseconds.
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1.2 Emerging real-time interaction services in the Internet

Real-time interaction yields strict latency requirements in any setting, and supporting it across

the Internet is currently a challenge due to the rather high end-to-end path latencies. This is

also one of the reasons why there are rather few distributed interactive applications, and such

services of real-time interaction. However, we envision that real-time interaction services on

the Internet are emerging services that are expected to become easier to develop and more

accessible to the general public within a few years (see figure 1.3). In this context -

We characterize real-time interaction services in the Internet to be services that enable people

around the world to dynamically join networks of participants, and then instantly interact with

them in real-time.

One example of a real-time interaction service may be a social network of people that share

common interests. Such a service exists in the format of text messaging where participants

may join an Internet relay channel (IRC) to text message about some topic of interest, be it

politics, sports, relationships, etc. Although IRC applications are not within the scope of the

thesis, their basic functionality is desirable for distributed interactive applications. However, it

is much harder to achieve this for audio, video and virtual reality.

In the Internet today, there are few distributed interactive applications that let participants

freely join dynamic social networks using audio, video and virtual reality.

Existing applications that do support audio and video, for example Skype, only let participants

talk in rather small non-dynamic networks of people you have to search for explicitly. Appli-

cations that include interactive virtual reality, such as online games, are centrally managed in

which the participants are kept in closed groups that require subscription to access. Generally,

these applications 1) have static user groups, 2) are costly to deploy, and 3) suffer in their scala-

bility. Solving these issues is important to enable cheap deployment of high-quality distributed

interactive applications that support time-dependent interactive multimedia (rich media) in the

Internet.

Time-dependent rich-media data streams require sufficiently low-latency paths such that they

can be delivered on time to the clients that interact.

Time-dependent rich-media streams include audio/video, 3D streams, instant text messages

(chat), position updates in online games, etc. The challenge of distributing such time-dependent

rich-media is linked to both latency requirements and the bandwidth they require. For example,

audio and video streams require more bandwidth than streams of position updates that determine

the movement of characters in online games. From these observations, it is clear that group

communication techniques should be available to address both the latency and the bandwidth

requirements of rich-media streams.
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Figure 1.3: It is expected that the demand for interaction services in the Internet increases. Therefore,
the demand for an Internet with low end-to-end latencies will also increase.

1.3 Achieving group communication in the Internet

The status of the current group communication techniques available for enabling distributed

interactive applications for real-time interaction services is poor. One reason is that group com-

munication across the Internet was for a long time hard to achieve because of the rather low

throughput, which again was very much due to the low bandwidths that marred average clients

on the Internet. Therefore, the group communication research has been delayed and is still in

its infancy.

The challenges of achieving group communication in the Internet are especially related to

asymmetry, heterogeneity, resource availability and latency issues in the Internet. Distributed

interactive applications have strict latency requirements in order to achieve real-time interaction.

These latency requirements are manifested in terms of event-distribution, group membership

management, group dynamics, etc, far exceeding the requirements of many other applications.

One general observation regarding real-time (live) interaction and latency is:

To achieve real-time interaction across the Internet requires sufficiently low latencies between

the interacting participants.

Hence, the path latencies between the interacting parties must be bounded sufficiently (see fig-

ure 1.4). This is difficult to achieve for all participants, because they may be located throughout

the world, for example, in areas where the bandwidth capacities of the Internet connections are
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Figure 1.4: Distributed interaction yields strict latency demands that the Internet must handle.

very limited. Therefore, the most important reason for why it is difficult to achieve support for

real-time interaction across the Internet is that:

Rich-media are time-dependent and often bandwidth-intensive data streams that have hard-to-

meet requirements, which are difficult to support by the current Internet.

It is quite clear that we have to accept that the current Internet has limitations, which often result

in too large end-to-end path latencies. However, in the course of the thesis, we shall investigate

group communication techniques that try to handle these latency limitations in the best possible

manner, and take advantage of the possibilities that the Internet does provide. To this date, the

Internet is the only option if we want to communicate in groups throughout the world in an

interactive timely manner.

1.4 The main goals of the thesis

The goals of the thesis are very much tied to investigating multiple group communication tech-

niques and then finding the ones that are suitable for distributed interactive applications. In that

respect, it is clear from the application scenarios we have described that the clients in these

applications should have the possibility of joining and leaving an ongoing session of real-time
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interaction. Therefore, one general focal point in the thesis is to:

Enable scalable group communication for managing dynamic groups of clients that interact in

real-time.

By doing this, we want to enable people around the world to dynamically join networks of

participants and interact with them in real-time.

1.4.1 Observations that define the goals

An application that is to support instantaneous interaction must use a distributed system that

handles the interactivity and dynamicity of clients. Generally, such systems must have basic

mechanisms that support interactivity and dynamicity, such that:

When clients join and leave an ongoing session of real-time interaction, mechanisms should

ensure that the service to the remaining clients is not disrupted, and the new clients should be

included such that they, in a timely fashion, can interact with the clients online.

Parts of this functionality should be enabled by a membership management that handles incom-

ing join and leave requests. Furthermore, when clients have joined and started the real-time in-

teraction, these client-interactions must be enabled by distributing the application events across

the Internet. In other words, the application events that occur on each client, and are vital for

the interaction, must be distributed to all the clients that need them. Many of these applica-

tion events are time-dependent, therefore they must also be distributed such that the real-time

interaction is continuous (without glitches).

1.4.2 The four main goals

The previous observations are summarized to four specific goals that we aim to address in the

thesis. For each of the goals, we give some motivation to why we believe the goal is important

and what the benefits are of reaching the goal.

1) Identify techniques that enable an efficient and timely membership management of multiple

dynamic subgroups of clients.

Generally, clients in distributed interactive applications generate events that need to be shared

with others. However, in large-scale applications with hundreds or even thousands of clients, it

is unlikely that all the events that occur are important for everybody. The reason is that many

of the clients in such large-scale applications are not interacting. Rather, only sub-sets of the

clients are interacting and need to share their events with each-other. Therefore, distributed

interactive applications should support multiple dynamic subgroups because it is likely that it

will make them more scalable, compared to just having a single flat group of clients, in which

all clients receive every event.
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Based on these observations, we want to identify a membership management that enables

dynamic sub-groups to form based on incoming join and leave requests. By doing this, the

fundament is laid for letting clients join and leave onging sessions of real-time interaction.

2) Identify techniques that enable a resource management to identify nodes in the (application)

network that yield low pair-wise latencies to groups of clients.

Well-placed nodes that yield low latencies to groups of clients are a resource for distributed

interactive applications because they can be used to execute time-dependent management tasks.

When multiple dynamic sub-groups are allowed to form, these groups must be updated suffi-

ciently fast to enable the real-time interaction to continue.

Based on these observations, we want to identify nodes in the application network that

yield low latencies to the clients that are interacting to enable them to execute a membership

management for sub-groups of clients, or centralized graph algorithms that create and update

overlay networks for event-distribution.

3) Identify techniques that find Internet paths with low pair-wise latencies among clients in a

group, and configure them for event-distribution of real-time client interaction.

We mentioned previously that clients in distributed interactive applications generate time-dependent

events that have strict latency requirements often in terms of a few hundred milliseconds. There-

fore, it is important that clients who are interacting are connected through Internet paths that

yield sufficiently low latencies. Multicast is a way of achieving scalable group communication

in the Internet and can be achieved both on the network layer and the application layer. Network

layer IP Multicast is currently not available throughout the Internet, and has unsolved scalability

problems. Therefore, we consider application layer overlay multicast as an appropriate way of

distributing time-dependent events.

Based on these observations, we want to identify techniques that construct low latency over-

lay networks to multicast application events. The overlay construction techniques must consider

the time-dependent requirements both in terms of construction time, and the pair-wise latencies

in the overlay network that is configured. In a scenario with dynamically changing sub-groups,

the overlay construction techniques must also be able to update overlay networks sufficiently

fast based on incoming join and leave requests.

4) Identify techniques that are able to obtain accurate all-to-all Internet path latencies.

In the thesis, we consider latency as the most important metric to evaluate in order to achieve

real-time interaction. By retrieveing all-to-all path latencies we aim to enable graph algorithmic

techniques to find both well-placed nodes (goal number 2), and also construct overlay networks

for event-distribution (goal number 3). In addition, the all-to-all path latencies must be available

sufficiently such that they enable graph algorithmic techniques to quickly configure dynamically

changing sub-groups of clients.
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Based on these observations, we want to obtain accurate all-to-all Internet path latencies by

using latency estimation techniques. The latency estimation techniques must be both accurate

and make the estimates quickly available.

1.5 Thesis contributions

The four goals from section 1.4 are all addressed in the course of the thesis, and for each of

them, we give rather comprehensive studies. The general focus was to compare multiple group

communication techniques through simulations and experiments, and then come to a conclusion

to which techniques would be better to enable group communication applications that support

real-time interaction. Many of the evaluations are published in top peer reviewed conferences

and journals [131, 130, 125, 127, 128, 129, 60, 17, 126]. We re-state the goals from section 1.4.2

for the sake of convenience.

1) Identify techniques that enable an efficient and timely membership management of multiple

dynamic subgroups of clients.

To reach this goal, we evaluated both centralized and distributed approaches through empirical

and experimental studies on PlanetLab. We proposed 3 membership management techniques

that are all evaluated towards the membership change execution latency and the consistency

they yield.

Among the 3 evaluated membership management approaches, we found that a centralized

architecture is a fitting approach that yields the consistency desired for such managment. A

centralized architecture is also able to execute a membership change request sufficiently fast,

but the location of the node (central entity) that executes the membership management influ-

ences the latency in a membership change request. Therefore, we found that in a centralized

architecture, the central entity should always yield low latencies to the groups it is managing.

2) Identify techniques that enable a resource management to identify nodes in the (application)

network that yield low pair-wise latencies to groups of clients.

We addressed the goal by evaluating 5 core-node selection algorithms through group commu-

nication simulations and experiments on PlanetLab. Core-node selection algorithms are algo-

rithms that aim to select nodes in a network that yield a desired property, which in our case is

low pair-wise latencies to groups of clients.

We evaluated the 5 core-node selection algorithms towards how how well the algorithms

could identify well-placed core-nodes in the network that yield low latencies to certain groups

of clients. In addition, we tried to estimate how many such core-nodes are needed to be available

for management tasks to reduce the management latencies sufficiently for all groups. We found

that when core-node selection algorithms are applied, only a limited set of core-nodes is needed

to sufficiently bound the management latencies [17].
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3) Identify techniques that find Internet paths with low pair-wise latencies among clients in a

group, and configure them for event-distribution of real-time client interaction.

We considered overlay network multicast as the way to distribute time-dependent events in

groups, and found that centralized graph algorithms are most suited to meet the latency require-

ments that is put on the overlay construction and reconfigurations. Therefore, we evaluated a

wide range of centralized overlay construction algorithms that aim for low-latency overlay net-

works. Many of the algorithms are developed by the author of the thesis [131,130,125,127,128,

129]. The algorithms we evaluated are 12 spanning-tree algorithms, 25 Steiner-tree algorithms

and 12 Subgraph algorithms. In addition, we evaluated dynamic algorithms that insert and re-

move single nodes from overlay networks. In the dynamic tree algorithm studies, we evaluated

8 insert and 11 remove strategies, where one insert and one remove strategy forms a dynamic

tree algorithm. Similarly, we evaluated 3 insert and 11 remove strategies for dynamic subgraph

algorithms. Finally, we proposed 2 reconfiguration algorithms, one for trees and one for sub-

graphs, that take as input a dynamic overlay algorithm and an overlay construction algorithm.

All of the algorithms are evaluated in a group communication simulator we implemented

and in a real-world system that we test on PlanetLab. Both the simulator and the real-world

system mimic group communication in which clients join and leave groups throughout the ex-

periment.

The general findings were that when there are dynamic groups of clients, the dynamic

algorithms should be used [125]. This is because they are designed to insert and remove

single nodes from an existing group’s overlay network. However, these dynamic algorithms

are often simplistic and may result in group overlays that have too large maximum latencies

between the nodes. Therefore, we found solutions where a total reconfiguration is initiated

based on an upper bound on the maximum latency using spanning or Steiner overlay algo-

rithms [127, 131, 130, 129]. This ensured that the overlay networks were close-to-optimal.

4) Identify techniques that are able to obtain accurate all-to-all Internet path latencies.

The goal of retrieving all-to-all path latencies is motivated by the fact that centralized graph

algorithms are suitable for achieving the latency bounds of real-time interaction. The centralized

graph algorithms that we investigate use path latencies to find well-placed nodes or construct

overlay networks.

To reach the goal, we evaluated 2 latency estimation techniques and measured their accuracy

by comparing the estimates to all-to-all ping measurements. For the evaluation, we implemented

a real-world system and performed group communication experiments on PlanetLab.

We found that when latency estimates are used by core-node selection algorithms and over-

lay construction algorithms, they are sufficiently accurate such that the graph algorithms still

find solutions that are close to the real-world [126].
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1.6 Thesis outline

The rest of the thesis introduces the background and related-work and then the work that was

performed in order to achieve the goals listed in section 1.4. The organization of the chapters is

as follows:

Chapter 2, Distributed interactive applications: Background and Motivation, presents the

background for the research and introduces the specific research goals that we address in

the thesis. A general goal is to identify network-related group communication techniques

that enable real-time interaction between multiple participants across the Internet.

Chapter 3, Group communication: State-of-the-art and related work, presents a summmary

of the related work we found in related research areas, and we identify that our research

goals have not been properly addressed in existing literature. Some of the research areas

are: Overlay multicast, core-node selection algorithms, overlay construction algorithms

and latency estimation techniques.

Chapter 4, Overlay network design: Problems in graph theory, introduces graph theoreti-

cal performance metrics and network design problems found in graph theory. In addition,

we provide some background to the algorithmic foundations that are used when graph

theoretical problems are addressed.

Chapter 5, Distributed interactive system: Group management techniques, presents how we

attempt to address the research goals that are identified in chapter 2. We identify what

techniques should be researched in the three main research areas: resource management,

membership management, overlay network management and network information man-

agment.

Chapter 6, Characteristics of overlay networks: Latency estimation techniques, introduces

and evaluates two latency estimation techniques, Netvigator and Vivaldi, in terms of their

ability of retrieving accurate all-to-all path latencies. The latency estimates are later on

evaluated in terms of their usability for centralized graph algorithms (chapter 7 and 15).

Chapter 7, Managers in overlay networks: Core-node selection algorithms, introduces and

evaluates 5 of core-node selection algorithms, in terms of their ability of finding well-

placed core-nodes that yield low pair-wise latencies to groups of clients. In addition,

we evaluate how the latency estimates from chapter 6 can be applied to the evaluated

(centralized) core-node selection algorithms.
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Chapter 8, Group specific enhancements: Graph manipulation algorithms, introduces and

evaluates a number of graph manipulation algorithms whose goal is to manipulate a

group’s complete graph such that it enables an overlay construction algorithm to execute

fast and build desirable overlay networks.

Chapter 9, Overlay construction techniques: Spanning-tree algorithms, introduces and eval-

uates 13 spanning-tree algorithms with the goal of identifying those that yield low latency

spanning-trees. More specifically, the goal is to find algorithms that construct spanning-

trees with a low diameter, within a resonable time that do not add unreasonable stress to

nodes in the tree.

Chapter 10, Overlay construction techniques: Steiner-tree algorithms, introduces and eval-

uates 25 Steiner-tree algorithms and compares their performance. The focal point is to

identify those algorithms that within a reasonable time construct Steiner-trees of a low

diameter that do not add unreasonable stress to nodes in the tree.

Chapter 11, Overlay construction techniques: Connected subgraph algorithms, introduces

and evalutes 13 subgraph construction algorithms that construct connected subgraphs.

We evaluate both spanning-subgraph and Steiner-subgraph algorithms, and compare their

performance in terms of their ability to construct subgraphs of low pair-wise latencies

within a reasonable time, that have controlled stress-levels on the nodes.

Chapter 12, Overlay construction techniques: Dynamic tree algorithms, introduces a range

of dynamic tree algorithms that are able to insert and remove nodes from existing trees.

Most of the dynamic tree algorithms are able to include Steiner-points to the trees, which

yield lower diameter trees. The evaluation focuses on identifying fast dynamic tree algo-

rithms that are able to maintain trees of a consistently low diameter.

Chapter 13, Overlay construction techniques: Dynamic subgraph algorithms, introduces a

range of dynamic subgraph algorithms that also insert and remove nodes, but from con-

nected subgraphs rather than trees. The evaluations are similar to dynamic tree algo-

rithms, and aim to identify fast dynamic subgraph algorithms that are able to maintain

subgraphs of a consistently low diameter, but also lower pair-wise latencies.

Chapter 14, Overlay construction techniques: Combining overlay construction algorithms,

introduces 2 reconfiguration algorithms, one for tree algorithms and one for subgraph

algorithms. The focus is to achieve the close-to-optimal overlays from Steiner-tree or

Steiner-subgraph algorithms, but use the quickness of dynamic tree and subgraph algo-

rithms as often as possible.
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Chapter 15, Group communication experiments: Overlay construction algorithms, finalizes

the evaluation of the latency estimates from chapter 6 when they are applied to var-

ious overlay construction algorithms, including spanning-tree and dynamic-tree algo-

rithms. The evaluation measures the penalty of applying latency estimates that may be

in-accurate, to centralized overlay construction algorithms.

Chapter 16, Distributed interactive application scenarios: Applying the research, gives dis-

cussions to how the research conducted in the thesis can be applied to different application

scenarios. Specifically, we give examples to how developers of distributed interactive ap-

plications can approach basic design issues by using the techniques we identified.

Chapter 17, Conclusions and future work, concludes the thesis with a summary of the main

points and a review of the contributions of the thesis. We also provide a critical assessment

of the research where we discuss certain limitations in the experiments and how they may

be addressed. Finally, we identify sources for future work and give some final remarks to

conclude the thesis.





Chapter 2

Distributed interactive applications:

Background and motivation

The background and motivation chapter introduces the target applications for the work done in

the thesis: distributed interactive applications. Their functionality can be summarized such:

Distributed interactive applications aim to offer real-time interaction between multiple partici-

pants over the Internet.

Concrete examples of distributed interactive applications are multiplayer online games, au-

dio/video conferences, and many virtual-reality applications linked to education, entertainment,

etc. Recently, they have become very popular and increased in size and complexity, in particu-

lar, multiplayer on-line games. However, many research challenges remain unsolved.

In the thesis, we discuss network-related group communication challenges, especially linked

to handling the rather large end-to-end latencies in the current Internet. One general observation

regarding real-time (live) interaction and latency is:

To achieve real-time interaction across the Internet requires sufficiently low latencies between

the interacting participants.

Therefore, the path latencies between the interacting parties must be bounded sufficiently.

Moreover, we discuss how distributed interactive applications can be made more scalable than

today. The scalability problems are especially linked to the requirements of low-latency and

bandwidth demanding interactive multimedia (rich-media) streams. Due to these scalability

problems, real-time interaction between more than a dozen participants across the Internet of-

ten requires specialized equipment to work.

The rest of the chapter is organized in the following manner. Section 2.1 introduces a few

of the current types of distributed interactive applications, how they are applied, and some of

their benefits. Section 2.2 introduces the application massively multiplayer online games, with

a wide range of their specific research challenges and open issues. Section 2.3 generalizes the

15
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requirements of distributed interactive applications, and has initial discussions on how they can

be achieved. Section 2.4 discusses research approaches to study techniques and algorithms for

use on the Internet. In particular, how to identify techniques that are suitable for distributed

interactive applications. Section 2.5 discusses specific system design issues and states the goals

that we want to achieve by the work done in the thesis. Section 2.6 presents the methods we

used to evaluate and identify group communication techniques. Finally, section 2.7 concludes

the background chapter by summarizing the main observations and the goals we address.

2.1 Examples of distributed interactive applications

As mentioned, a few of the more well-known examples of distributed interactive applications are

virtual-reality applications linked to education, entertainment, etc, multiplayer online games,

and finally audio/video conferences.

In virtual-reality applications, a participant controls an avatar that interacts with a virtual

world (hence the name, virtual-reality). Virtual-reality applications and multiplayer online

games are very similar, but virtual-reality applications are recoginzed by the fact that they aim

to simulate a real-world situation through a virtual-reality. Examples are combat-, flight- and

boat-simulators, virtual museums, shopping malls etc. It is the game companies and the military

that are the driving forces for improving virtual-reality applications. For example, it is estimated

that the US army spend millions of dollars to develop realistic virtual-reality simulators [141].

Multiplayer online games have received the most attention recently, where the most com-

mon game-categories are first-person shooter games, role playing games and real-time strategy

games. These game categories are introduced in more details in section 2.2.1. Large-scale mul-

tiplayer online games are often referred to as massively multiplayer online games (MMOGs),

because they allow thousands of users to interact concurrently in a persistent virtual environ-

ment. Today, MMOGs are the largest and most complex distributed interactive applications.

They often take several years to develop, and game-companies spend millions of dollars during

the development. One recent example is Age of Conan, which was created by Funcom [56] and

released in May 2008. Funcom started the development in 2004, and it is estimated that they

spent more than 40 million dollars to develop it. Section 2.2 discusses MMOGs further.

Audio/video conference applications differ from the virtual-reality and games applications,

in that they are rather used to set up real-world meetings between participants that are geograph-

ically separated. For example, many multinational companies use video conference systems

to avoid travel expenses and increase the availability of people. Currently, these audio/video

conference systems are not readily available for the general public, but rather need additional

equipment to work. Tandberg is a multinational company that specializes in providing video-

conferencing systems and services [121].
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Figure 2.1: The real-world proximity of the clients is different from the virtual-world proximity of the
avatars they are controlling.

From these example applications, we delve into some of the challenges and properties of

MMOGs. We present further details regarding MMOG game types, their communication archi-

tectures, and their issues.

2.2 Scenario: Massively multiplayer online games

MMOG is a game genre that is typically played in a persistent game world. This game-world is

almost exclusively a 3-dimensional virtual-world where players control avatars, where an avatar

is a fictional in-game character.

Due to the size and complexity of MMOGs, they yield strict requirements, in terms of low-

latency, consistency, etc. Therefore, they are important case studies and the current standard

to what is achievable by distributed interactive applications. Figure 2.1 illustrates how the

real-world proximity of the clients differ in comparison to the virtual-world proximity of the

avatars they are controlling. It is this physical separation and virtual closeness that yield great

challenges for MMOGs that support such distributed interaction.

2.2.1 Game types and their properties

As mentioned previously, the most popular multiplayer online game types are role-playing

games, first-person shooter games and real-time strategy games. Figure 2.2 has some screen-
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Figure 2.2: Screenshots from FPS, RTS and MMOGs (RPGs) games.

shots from these game types.

• Role-playing games (RPG) are often open-ended and based on each player acquiring the

"role" of one in-game character (or team), and in the process gain experience, power and

possessions through trade and combat. Poupular RPG games are World of Warcraft and

Age of Conan [54]. Among RPG games we find the most successful MMOG games in

the history of multiplayer online games. It is these RGP games that today are referred to

as MMOGs, because they allow thousands of users to interact concurrently.

• Real-time strategy games (RTS) have a gameplay that often follow a general pattern to

i) build up your base and forces, ii) acquire more resources, iii) attack the enemy, and

attempt to deprive him of resources and destroy his infrastructure. The gameplay in RTS

games progresses in "real-time", that is, it is continuous. Popular RTS games include

Command and Conquer, Starcraft and Warcraft [53].

• First-person shooter games (FPS) involve high-speed combat situations with a signif-

icant amount of simultaneous application events. In many FPS games, players either

operate by themselves or in teams that attempt to wipe each-other out. Popular examples

of FPS games are Doom, Quake and Unreal [51].

The network requirements of FPS, RTS and RPG games vary because of their character-

istics. FPS games require fast distribution of events, such that the perceived quality does not
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Figure 2.3: Most games today employ a rather simple client/server architecture.

suffer. This is due to many high-speed combat situations in the gameplay. RTS games do not

have such stringent latency requirements, but rather need stronger synchronization techniques

to handle inconsistencies in the distributed game state. RPGs often have a gameplay that is

a mixture between combat situations and slower strategy sequences. Therefore, RPGs yield

network requirements that vary depending on the current gameplay.

2.2.2 Basic requirements of user perception and the area-of-interest

MMOGs have many special properties and requirements due to their size and complexity. For

example, players in the game should be able to move around, observe other players and interact

with them, seemingly as if they were physically next to each other. Since there are so many

players interacting in a large environment, it is especially important to distribute the game events

efficiently. One important reason is to ensure that the perceived game quality is good for all

players regardless of the underlying system capacity, geographical distance, etc.

Most current MMOGs have few, if any, mechanisms to optimize event distribution. Cen-

tralized architectures are typical, where the entire game state is stored on a central server (see

figure 2.3). To improve these gaming scenarios, it is possible to use application layer multicast

and group communication algorithms to enable efficient event distribution. Furthermore, it is

also possible to distribute partial game state using proxy technology to achieve better scalability

and reduce the latency.

Giving all the players a perfectly consistent view of the virtual world, at all times, is close to

impossible [99], due to relatively large end-to-end latencies in the Internet. Rather, the perceived

game quality should be the focus. Improving the perceived game quality in MMOGs is tightly

linked to reducing the event distribution latency, in addition to making better use of available

resources in general.

For example, many players in MMOGs are unaware of each other, because they are virtually
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far apart or their views are blocked by obstacles. Thus, players do not need to receive all

transient events, for example, position updates of other players that are currently out of sight.

Restrictions in player awareness are handled by area-of-interest management [5], where one

typical area-of-interest is the field of vision of a player. Here, the distance between the players

is an important factor. Players far apart, but still within the field of vision, may not need such

a consistent view of one another, and the level of detail may be reduced. In addition, there

might be other events outside the field of vision, such as sounds from objects (enemies), that

are important for a player’s reactions.

Area of interest management enables virtual area-of-interest regions within the MMOG vir-

tual game world. Such virtual regions provide the opportunity to organize players into groups.

Group communication should be applied to distribute the events within the group efficiently,

that is, using the physical and virtual location of the players. Furthermore, having divided the

game into virtual area-of-interest regions it is possible to achieve partial game state distribution.

A distributed architecture should be used to exploit these observations.

2.2.3 Basic architectures for managing the application state

As mentioned, most MMOGs use a client/server architecture where every packet flows via a

centralized server (cluster). Such a client/server model makes it easy to manage the global game

state, and to prevent cheaters. In addition, a centralized architecture makes it easy for the game-

companies to charge fees for playing their MMOG, enabling a business model. The drawbacks

are that the server is a potential bottleneck, both in terms of computing and bandwidth capacity,

and that the latency heavily depends on the physical distance from each individual client to the

server. Proxy technology and peer-to-peer technology are distributed options.

Proxy technology has an infrastructure consisting of a centralized server and a set of dis-

tributed proxy servers. The proxies are usually physically closer to the clients, and may, for

example, hold partial game state copies of the virtual game regions needed by the clients con-

nected to it [17]. The proxies can be organized hierarchically, each responsible for a fixed set of

clients based on location, or, in a proxy pool fashion, where clients connect to the proxies that

are best suited in a given situation.

A flat peer-to-peer architecture distributes the game state among peers. It has no central

server, which makes it very hard to administrate the game state such that it is consistent. Cur-

rently, there are no MMOGs that solely use such a peer-to-peer architecture because it is harder

to base a business model on it. It is also possible to apply a peer-to-peer architecture where

the game-state is stored centrally at a few selected peers, while applying both peer-to-peer

and client/server communication. Such a mix of client/server and peer-to-peer communication

styles can be applicable to MMOGs, because it is likely that it enables a business model.

We observe that the advantage of distributed architectures is that they distribute the load
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among multiple network nodes. This distributed architecture may therefore be used to increase

the scalability of distributed interactive applications, especially when bandwidth intensive mul-

timedia audio/video streams are applied.

2.2.4 Traffic types and their properties

MMOGs may have multiple traffic types, such as, several kinds of events, video streams and

instant text messages (chat), all having different characteristics. However, the majority of the

traffic flows consist of small packets carrying event information like a position update, where

latency is the main issue. In addition, some events are more critical for correct gameplay than

others. A level of consistency should be associated with an event to help distinguish and dis-

tribute them employing different distribution models.

The distinct properties of the traffic types should be considered when selecting the architec-

ture and communication model. For example, position updates triggered by a player moving,

are typical events that require a varying degree of consistency, and will benefit from a dis-

tributed architecture like proxy technology. Such events typically require limited distribution

within player groups in virtual regions. Events that do not affect the game state and have no

particular flow requirements, such as chat messages, could use peer-to-peer communication be-

cause it achieves the shortest average latency when events are small. On the other hand, an

event type with high consistency requirements affecting a vital part of the game state, that is,

changing a global condition, should typically use client to server-side communication. This en-

ables a server/proxy to do necessary checks, for example, to prevent cheats and inconsistencies,

before the event is put into action.

2.2.5 Game state distribution using proxy technology

In MMOGs, there are potentially hundreds of simultaneous events, and sending every event to

a central server is not very efficient. Proxy technology and area-of-interest management are

options to optimize the event distribution in MMOGs. Area-of-interest management enables

the formation of dynamic client groups, which again provides an opportunity to distribute par-

tial game state. Proxy technology may be an excellent platform for distributing partial game

state closer to the physical location of the players. It also provides load distribution and reduces

the average latency. Proxies can also save network resources by aggregating flows within the

back-bone of the proxies. In addition, distribution of partial game state using proxies can be

used to increase the MMOG scalability, but it requires consistency mechanisms and more ad-

vanced cheat prevention. In a proxy technology approach, partial game state may be copied

to the proxies. However, the approach differs depending on the proxy model: proxy pool or

hierarchical [128].



22
Chapter 2. Distributed interactive applications:

Background and motivation

A proxy pool partitions the load by uniquely assigning parts of the virtual world (virtual

game regions) to single proxies. A proxy has complete control over the virtual game regions

it is assigned. A proxy pool increases the importance of the physical location of the proxy,

because each client is connected to a single proxy, and clients can be located throughout the

world. The physical location of the proxy and clients within a game region must be taken into

account before assigning a copy of the partial game state to a proxy.

In a hierarchical proxy approach the load is partitioned by uniquely assigning parts of the

physical world to single proxies. For example, clients in Europe are assigned to one proxy,

clients in North-America to another, etc. A proxy acts as a distributed server for all of its

connected clients, and also holds a copy of the virtual regions that its clients are currently

playing in. How many virtual regions a proxy controls depend on the virtual locations of the

clients connected to it. Generally, a hierarchical proxy approach requires extra consistency

mechanisms, compared to a proxy pool, because there may be multiple copies of the same

region among the proxies.

In the following sections, we further investigate the requirements that distributed interactive

applications yield, and refine the scenario of MMOGs to apply generally for all distributed

interactive applications.

2.3 Problem area of distributed interactive applications

Distributed interactive applications belong to a relatively new application area that have multiple

system design issues that require discussion, and open research questions that need answers. In

the following we highlight some application characteristics and the challenges they pose. In

addition, we discuss some research areas that are important for the further enhancement of

distributed interactive applications.

It is apparent from the interactive application scenario described in the previous sections that

the clients in these applications should have the possibility of joining and leaving an ongoing

session of real-time interaction. Therefore, one focal point is to:

Enable people around the world to dynamically join networks of participants and interact with

them in real-time.

From this general and basic focal point we now identify more specific requirements and then

give some background and motivation for these.
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2.3.1 Instant interaction in groups

It is a major challenge to enable people around the world to dynamically join networks of

participants, and then instantly interact with them in real-time. An application that is to support

such instantaneous interaction must use a distributed system that handles the interactivity and

dynamicity of clients. Currently, such systems do not work out of the box, but rather are costly

to deploy and suffer in their scalability. As mentioned, pure client/server architectures are

typical where the server needs to be scaled very much for the application to work, which is the

case for every current massively multiplayer online game. Generally, such systems must have

basic mechanisms that support interactivity and dynamicity, such that:

When clients join and leave an ongoing session of real-time interaction, mechanisms should

ensure that the service to the remaining clients is not disrupted, and the new clients should be

included such that they, in a timely fashion, can interact with the clients online.

These straight-forward requirements of interactivity and dynamicity together form great chal-

lenges that must be enabled by basic mechanisms and then adapted to a specific system’s design.

The interactivity poses requirements to the latency, and the dynamics pose requirements to the

configuration of the event-distribution paths. Together, the interactivity and dynamics should be

handled by a system that supports configuration of low-latency networks for event-distribution.

In other words, the clients should be within a latency bound to each other in the member net-

work. The system support for interactivity and dynamics must be enabled by basic mechanisms

for network configurations and management. These mechanisms can be summarized into five

basic requirements:

• Join and leave groups of clients: Joining and removing clients from distributed interac-

tive applications require timely mechanisms that execute the requests.

• Application event distribution: Application events that occur on each client, and are vital

for the interaction, must be distributed to all the clients that need them.

• Time-dependent application events: A time-dependent application event must be dis-

tributed in a timely manner, such that the interaction can continue in real-time.

• Low-latency requirements: Time-dependent application events have low-latency require-

ments to deliver them on time to all parties.

• Internet resources: Scarce Internet resources calls for an event-distribution that limits

the resource consumption.

The following sections discuss each of these five requirements.
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2.3.2 Join and leave groups of clients

Distributed interactive applications should have the functionality of joining clients to an ongo-

ing session of real-time interaction, and also removing clients without disrupting the interaction.

Parts of this functionality should be enabled by a membership management that handle incom-

ing join and leave requests. The requirements to the membership management in distributed

interactive applications is likely to vary depending on the number of client groups and their

dynamics (client churn).

Managing one group of clients, where all clients receive the same events, is less complicated.

In this flat group situation it suffices to form low-latency event-distribution paths in which all

clients are reachable. In this case, a membership management system is enabled by distributed

mechanisms for handling client churn [57].

The draw-back of a flat group is that each client in the network receives every event, even

though a client may not be interested in large portions of these events. This consumes unnec-

essary link bandwidth in the client network. The membership management should therefore

be enhanced such that it is able to divide the clients into subgroups, where each group has its

own low-latency network for the events that they are interested in. When multiple dynamic

subgroups are used to distribute events in an application, the approach poses membership man-

agement challenges related to how the groups are updated.

The membership management should be enhanced to include mechanisms that can search

for and elect nodes to administrate clients that join and leave subgroups. Membership updates

are achievable in a dynamic scenario, when a limited set of nodes handles the membership

management. Enabling distributed interactive applications with multiple subgroups of clients

require techniques for resilient and timely membership management.

2.3.3 Techniques for distributing application events

Due to the group communication features of distributed interactive applications, there is a need

for distributing application events efficiently within client groups. Multicast is a mechanism

that is designed to enable cost efficient and timely group communication. Enabling such cost

efficient and timely group communication over large areas is important if distributed interactive

applications are to become scalable and cheaper to deploy.

One implementation of multicast is IP Multicast. It can be used for distributed interactive

applications, but it is not fully deployed in the Internet, and lacks features like address filtering

and group membership control. The alternative is application layer multicast. It adds group

membership control, and makes it easy to support high level functionalities. Compared to IP

Multicast, application layer multicast is necessarily less efficient in terms of latency but is easier

to deploy. Application layer multicast uses an overlay network of the clients and distributes

messages much the same way as in IP Multicast, but on the application layer.
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2.3.4 Time-dependent application events

Distributed interactive applications generate many time-dependent application events. One scal-

able approach to distribute such events, is through overlay networks using application layer

multicast. Due to the time-dependent events, the overlay networks need to be constructed such

that events can be efficiently distributed among groups of clients. The algorithms that construct

the overlay networks should also be able to interpret specific event requirements.

Events may differ in terms of latency and consistency requirements; urgency and impor-

tance, where urgent events require low-latency delivery, and important events require delivery

guarantees. Urgent events may benefit from a shallow low-latency overlay network, while less

urgent events allow overlay optimization to save network cost, for example, to reduce the band-

width consumption. The importance of an event is related to how critical it is for the participants

to receive an event. Furthermore, the groups that are created may vary in life expectancy and

group membership. It might be the case that a group is transient, but, in the other extreme,

some groups may last for a very long time. Thus, distributed interactive applications need one

or more algorithms supporting such requirements, e.g., provide overlays with resource efficient

routes, optimized for single- or multiple sources and handle fast dynamic overlay updates.

2.3.5 Low-latency requirements

The latency requirements in distributed interactive applications are generally very strict com-

pared to most other applications. One application-type with less strict latency requirements

are applications that support audio/video streaming of live events. They typically buffer the

stream for thirty seconds (or more) because it is more important that the audio/video stream runs

smoothly, than if the audio/video is "exactly" live and appears jittery. For a video-conference

application, on the other hand, it is not an option to buffer video for multiple seconds because

this makes it very hard to achieve smooth interaction when there are many active participants

discussing. Rather, the audio/video streams are strictly time-dependent and must be distributed

among the participants through low-latency paths. This time-dependent requirement generally

applies to all distributed interactive applications.

Obtaining the exact latency requirements in distributed interactive applications is a very

hard problem, and has been generalized to obtaining approximate latency bounds based on

user satisfaction. For example, in audio/video conferencing and voice over IP (VoIP) with

real-time delivery of voice data, users start to become dissatisfied when the latency exceeds

150-200 milliseconds, although 400 milliseconds is acceptable in most situations [70]. The

latency requirements of game traffic [27] were measured to be approximately 100 milliseconds

for first-person shooter games, 500 milliseconds for role-playing games and 1000 milliseconds

for real-time strategy games. Virtual-reality applications have latency requirements that fall into

one or more multiplayer online game categories [27].
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2.3.6 Resource management of data flows

It is envisioned that distributed interactive applications will support multiple traffic types, such

as, several kinds of events, audio/video or 3D streams and instant text messages (chat). Many

of these traffic types are bandwidth intensive data streams, therefore, it is vital that there are

techniques enabling efficient dynamic resource management which is scalable.

Traffic flows in interactive virtual-reality applications may consist of small packets carrying

event information like an avatar’s position update, where latency is the main issue [27]. How-

ever, the same applications may support audio and video, and these traffic flows have high band-

width and low-latency requirements, making it vital to apply efficient transcoding to compress

the multimedia streams that require lots of resources. It is also important to enable efficient re-

source management by applying intelligent dynamic mechanisms that identify participants with

high computational power. Current solutions for resource management of bandwidth-intensive

environments are non-dynamic and rely on servers provided by a third party.

When the number of clients connected to a distributed interactive application increases, it is

important for scalability reasons to apply some interest management to intelligently distribute

application data to the clients that need it. The interest management in distributed interactive

applications should adopt resource optimization techniques that reduces the bandwidth con-

sumption both on the client and server side.

2.4 Research approaches and Internet characteristics

It is valuable at the start of a project to state precise research goals. However, there are also

many important questions related to how the research goals are met, that is:

Which research approach should be used to find out what the better techniques are?

In the area of distributed interactive applications, it is natural to try to identify techniques

through studies that take the current Internet as the starting point. And in the following sec-

tions, we introduce well-known research approaches for studying techniques or algorithms that

are meant to be applied on the Internet, and explain their positive and negative sides. It is typical

that such algorithms are evaluated with the basis in a few very basic Internet metrics. There-

fore, the link latency, link bandwidth, and throughput metrics are also introduced. Then, we

introduce the BRITE topology generator and a Zipfian distribution model for group dynamics.

These are applied when simulation studies of distributed interactive applications are performed

later in the thesis.
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2.4.1 Studying algorithms for the Internet

Studying the main network characteristics in the Internet is important in order to improve the

performance of Internet protocols and applications. Modeling and analysis of the Internet is a

fundamental problem, and is attracting the attention of researchers and businesses world-wide.

There are three main approaches to studying the Internet characteristics and effects, which are

all important to improve the performance of Internet protocols and applications.

• Theoretical studies of algorithms often based in graph theory.

• Simulation studies of algorithms run on single computers.

• Experimental studies of algorithms in real networks.

In the theoretical approach it is likely that simplifying assumptions are made, and the Inter-

net is studied through graph theory, mathemathics, etc. For these reasons, it is hard to capture

the real-world cumulative or sporadic effects that occur in the Internet. Theoretical studies are

often used for protocol and algorithmic verification, for example, proving that an algorithm

never dead-locks, theoretical performance evaluations, etc.

The simulation-based approaches simulate Internet traffic on top of an Internet topology.

The Internet-traffic is often generated using a discrete event simulator and the Internet topology

is, for example, an undirected graph with vertices, and edges that have link latencies associated.

Such simulation studies are cheap and they accelerate the studies, because they are typically

performed on one machine. However, simulations of algorithms still cannot guarantee that

the real-world properties are captured. For example, for mobile ad-hoc networks it is a hard

problem to simulate the wireless-signals such that they act as the real thing.

Conducting real-world experiments in the Internet enhances the validity of the results. It

is through Internet experimentation that algorithms and protocols are verified for performance.

However, one problem is that Internet experiments require equipment, which in turn costs large

sums of money. Mainly for this reason, PlanetLab was established as an alternative for research

institutions around the world to conduct experiments across the Internet. PlanetLab has about

400 computers spread around the globe that are inter-connected through the Internet. Users

are allowed to install their own software and conduct experiments using as many of the Planet-

Lab nodes they require. However, regardless of PlanetLab, there are certain problems that are

almost impossible to study through real-world experiments, due to their immense complexity.

For example, it is a hard problem to study large-scale MMOG games, their group dynamics

and multicast algorithms, through real-world experiments. This is mainly because they have

thousands of concurrent players in a highly complex virtual world.

All of these approaches study Internet characteristics in some form, and three of the most

important and most studied Internet metrics are link latency, bandwidth and throughput. The

following sections introduce these metrics and how they are measured in the Internet.
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2.4.2 Link latency in the Internet

When data is transferred across the Internet it is delayed due to the complex infrastructure of

the Internet. An example of a route is typically from the wireless local area network (LAN) at a

client, through Internet name-servers, gateways, routers, many types of physical links, and then

perhaps through the wireless LAN at the destination. The latency in this route is determined by

the time it takes from the initial data is sent until it is received. Latency is an additive metric,

and such metrics are measurable by tools that only need to be executed at the end-points, and

not at every single hop across the Internet.

The latency in data-transfers across the Internet has been studied for many years, and many

metrics are derived from such network latencies. For example, the end-to-end latency is the

time it takes to transfer data from one end-point to the other end-point. What the end-to-end

latency is, depends on how the end-point is defined. Therefore, it is typical to use round trip

time, and one-way transmit time:

• The round-trip time (RTT) is the time it takes to transfer data from the source to the

destination and then back again. The RTT is often used in the study of reliable transfer

protocols, where the most typical is the transmission control protocol (TCP).

• The one-way transmit time (OWT) is the time it takes to transfer data from the source to

the destination. The OWT is often used when studying unreliable transfer protocols, for

example, the user datagram protocol (UDP).

There are readily available tools that measure a link’s RTT, for example, ping and tracer-

oute [74]. Tools for measuring OWT are also available, but they require access to both end-

points [70].

2.4.3 Link bandwidth in the Internet

A fundamental property of an Internet connection is the bandwidth, which is a measure for the

amount of data that a link is able to send in a time-slot, for example, bits-per-second (bps).

Bandwidth is referred to as a min-max or concave metric [138], because the bandwidth of a

given Internet route is determined by the network-hop that has the lowest bandwidth. The link

bandwidth is essentially calculated in two different manners, the bottleneck bandwidth and the

available bandwidth:

• The bottleneck bandwidth of an Internet connection is the maximum number of bits-per-

second that the path can digest from source to destination, when there is no other traffic

in the path. The bottleneck bandwidth is a static measure and assumes perfect conditions

along the Internet route.
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• The available bandwidth is the maximum rate that an Internet route can provide to a

flow without reducing the rate of the cross-traffic. The cross-traffic on a route is traffic

that originates from other sources and uses the available bandwidth on the links. The

available bandwidth is dynamically changing depending on the amount of cross-traffic,

and is important because it gives an image of the status of an Internet route.

There are many tools for measuring the bandwidth, and a few of them include one-packet

technique, packet pair technique, and packet train technique [48].

2.4.4 Throughput in the Internet

The throughput is the average rate of successful message delivery over a communcation chan-

nel. On an Internet path, the throughput is usually meausured in terms of the number of bits-

per-second or TCP/IP packets per time-slot that are successfully delivered. The bottleneck and

available bandwidth on an Internet path, influences the throughput. However, it is also influ-

enced by other factors such as link or router failure, choice of transport protocol, packet loss,

etc. The throughput metric is used to research techniques on all layers in the OSI stack [122].

The throughput of an Internet path can be calculated in many different manners. The most

common ones are maximum throughput and average throughput [74].

2.5 Thesis goals and target metrics

Section 2.2 and 2.3 introduced a range of requirements that distributed interactive applications

have. Many of these requirements are now formulated into more specific research goals that the

thesis tries to address. First, we define four research areas with one particular goal statement for

each of them. Then the four research areas are discussed briefly along with the most important

metrics for each of them.

2.5.1 Introducing the specific goals

The basic requirements to achieve a system that supports interactivity and dynamicity of clients

from section 2.3 can be summarized as such: "Joining and removing clients from groups should

be done within real-time latency bounds and not disrupt the service. Application events must

be distributed to all clients such that their latency bounds are met. Internet resources are scarce,

therefore, the events must also be distributed efficiently and cost-effective [131, 130, 125, 127,

128, 129, 60, 17, 126]."
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The thesis aims to address these requirements through studies of network-related group

communication techniques. A general goal of the thesis is therefore to:

Investigate multiple network-related group communication techniques with the goal of identify-

ing those that enable distributed interactive applications, in which clients are able to join and

leave ongoing sessions of real-time interaction.

This goal is very general and applies to very many research areas. Therefore, we subdivide this

general goal into four specific reasearch goals that we aim to address through simulations and

experimental studies in the course of the thesis. Before we state the research goals, we present

the research areas:

• A membership management must ensure that clients are able to join and leave ongoing

sessions of real-time interaction, in a timely fashion.

• A resource management must ensure that well-placed nodes are found that yield low

latencies to groups of clients, such that they are available for management tasks.

• An overlay network management must ensure that clients are configured in overlay net-

works that yield sufficiently low-latencies for real-time interaction.

• A network information management must ensure that Internet path latencies between

the interacting clients are available and sufficiently accurate.

These four research areas are now briefly presented, and a research goal is stated for each of

them. In addition, specific performance metrics are introduced in some detail and then linked

to the research goal.

2.5.2 Membership management

The membership management in a distributed interactive application must be able to join and

remove clients from ongoing sessions of real-time interaction. The memebership management

must carry mechanisms that support the management of a highly dynamic client base, where

multiple subgroups are dynamically forming and changing. The concrete goal is therefore:

1) Identify techniques that enable an efficient and timely membership management of multiple

dynamic subgroups of clients.

Generally, the membership management must have mechanisms that can execute incoming mes-

sages from clients that request to join and leave sub-groups of clients engaging in real-time in-

teraction. The consistency in the membership management system must be at a level that enable

any frequency of dynamically changing subgroups of clients.
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It is important that the time it takes to execute a membership change request is sufficiently

low to seemlessly update the sub-groups of clients. An important metric is therefore the mem-

bership change execution latency, which is the time it takes for a membership change request

to complete. This latency should be bound sufficiently such that real-time membership changes

are enabled.

2.5.3 Resource management

The resource management in a distributed application must enable the search for nodes in the

network that yield a desirable property. Therefore, the resource management should include

algorithms that are able to search for such nodes. In the thesis, the specific goal for enabling a

desirable resource management is:

2) Identify techniques that enable a resource management to identify nodes in the (application)

network that yield low pair-wise latencies to groups of clients.

Such nodes may be any node in the application network (server, proxy, member-node, etc),

and is often referred to as core-nodes. When the resource management has identified such

core-nodes, it is possible to appoint and execute management tasks on them. In particular, it is

possible to execute the membership management from section 2.5.2.

As mentioned, a core-node should yield low pair-wise latencies to groups of clients. More

specifically, a core-node should have a low maximum one-way latency to nodes in its group of

clients. This is because, if a core-node executes management tasks, a low maximum one-way

latency ensures that the group-nodes can communicate with the core-node through low latency

paths. In addition, the execution time of the techniques that identify the nodes should be low to

enable real-time search for core-nodes and appointing of management tasks.

2.5.4 Overlay network management

A distributed interactive application has events that occur on each client, and these events must

be shared with the remaining clients that take part in the real-time interaction. Therefore, there

is a need for techniques that configure event-distribution networks such that they are able to

share time-dependent communication among multiple participants. In the thesis we want to

enable an efficient event-distribution network management. Therefore, there is a need to:

3) Identify techniques that find Internet paths with low pair-wise latencies among clients in a

group, and configure them for event-distribution of real-time client interaction.

A focal point of the thesis is to use application layer overlay multicast to distribute events among

interacting clients. The main reason for this is that network layer multicast is not fully deployed

in the Internet, and have a range of unsolved problems (section 3.2.2).
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The overlay networks that are used to multicast events must be constructed by algorithms

that take into account the pair-wise latencies among the clients. In particular, it is the maximum

pair-wise latency that needs to be bounded, if all the clients are to achieve real-time interaction

with a certain user satisfaction. The maximum pair-wise latency in an overlay network is de-

fined by the longest shortest path. Furthermore, when nodes join and leave groups of clients, the

overlay networks must be reconfigured such that the current member-nodes are still able to en-

gage in real-time interaction. Therefore, the overlay network must be reconfigured such that the

reconfiguration time is minimal. Moreover, the overlay should be reconfigured in a manner that

minimizes the disruption to the active communication paths. Therefore, the stability of the over-

lay network across each reconfiguration should be acceptable. The stability can be measured in

terms of the number of edge changes that occur across overlay network reconfigurations due to

nodes changing groups. Average clients on the Internet currently have rather limited capacities,

although this has improved significantly in recent years. Therefore, the overlay network should

not contain nodes that have an unreasonble high stress level. The stress on a node is measurable

in terms of how much resources it expends when distributing and forwarding application events

in the overlay network. Finally, the overlay network should not add an unreasonable cost to the

network. The cost may, for example, be in terms of the total bandwidth consumed. Therefore,

the total cost of the overlay network should be bounded within reason. The previous metrics

can be summarized to this goal:

Identify techniques that in a timely fashion can configure overlay networks for event-distribution

based on incoming join and leave requests, such that the overlay:

1) yields a low maximum pair-wise latency,

2) yields a low average pair-wise latency,

3) does not add unreasonable cost to the network,

4) is reconfigured such that its stability is acceptable,

5) does not contain nodes with an unreasonable high stress level.

2.5.5 Network information management

The network information management in a distributed interactive application should be able to

obtain sufficiently accurate Internet path characteristics among the application clients. These

path characteristics may be used by the resource management in the search for nodes that have

low pair-wise latencies to groups of clients, and also the application network management in

the search for low-latency event distribution paths that inter-connect the clients. The goal is

therefore to:
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4) Identify techniques that are able to obtain accurate all-to-all Internet path latencies.

The network information management should contain techniques that obtain path latencies

through active measurements, but also techniques that are able to estimate path latencies based

on partial network information. In the case of active network monitoring, the scalability is very

much a question as long as all-to-all Internet path latencies are required. Further, in the case

of latency estimation techniques, the latency estimates’ accuracy is a very important metric to

determine their usability.

2.6 Evaluation methods

The previous goals may be studied in many different ways, but choices have to be made in

order to study and compare group communication techniques properly. The following sections

highlight how we approached the goals in the thesis.

2.6.1 Methods to reach the goals

In our research, we aim to study and identify techniques for a membership management, re-

source management, overlay network management and network information management. How-

ever, it is a hard problem to study such techniques through real-world experiments, when the

context is large-scale distributed interactive applications. Nevertheless, in the thesis, we do

study such techniques both through simulations and real-world experiments.

The real-world experiments are conducted on PlanetLab. However, PlanetLab currently only

has a rather limited number of nodes available (much fewer nodes than in current MMOGs).

Therefore, we mainly use the PlanetLab experiments to study whether it is possible to retrieve

accurate all-to-all path latencies.

The simulations are performed using a group communication simulator (section 2.6.4) we

developed. For the simulations, we used the BRITE tool (section 2.6.2) to generate Internet

topologies, and the group dynamic model we used, was based on a Zipfian distribution model

(section 2.6.3). These are now introduced in some detail.

2.6.2 BRITE Internet topology generator

When simulation studies of the Internet are performed, Internet topology generators are of-

ten used to generate close-to-real networks [73, 66]. These generated networks should include

the most necessary information about Internet characteristics and its infrastructure: router in-

formation, link latency and bandwidth, authoritative system (AS) information, etc. The main

motivation for using topology generators is due to the fact that the performance of a network
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protocol can be heavily influenced by the network topology. This may be the case even when a

network protocol is independent of the underlying network topology [66].

Many topology generators exist [73, 148, 91] and their characteristics and topology gener-

ating models are outside the scope of the thesis. However, it has been argued that the topology

generator BRITE [91] generates Internet-like topologies [73, 66]. Therefore, we used BRITE

for the simulation studies in the thesis.

BRITE supports two basic models for topology generations: The Waxman model [139], and

the Barabasi-Albert model [15]. Both models are commonly used in the literature, and more

information regarding the pros and cons about these models can be found here [66]. In addition,

BRITE can produce both flat router graphs, and hierarchical AS topologies, in which the node

placement can be either random or heavy tailed.

2.6.3 Group dynamics and a Zipfian distribution model

Group dynamics is the study of groups, where a group is defined by two or more parties (nodes,

clients, etc) that are connected to each other by some relationships [15]. Group dynamics are

studied in many different fields, such as phsychology, sociology, and communication studies.

In the context of the thesis, we use group dynamic models to study client dynamics and group

communication in distributed interactive applications. Group dynamic models are also applied

to other areas, for example, in mobile ad-hoc network studies to simulate mobile nodes that are

roaming around and communicating through wireless links [132].

A group dynamics model for a distributed interactive application must consider many is-

sues. For example, the groups that are available to join may vary depending on a user’s current

group. If the group dynamics in an MMOG is simulated, it is often the case that each group

represents a virtual area in the game, which was previously defined as an area-of-interest (sec-

tion 2.2.2). Therefore, a user controlling an avatar in the virtual world only has a number of

adjacent virtual areas-of-interests ("next-group" options) it can direct the avatar to. Further-

more, the popularity of the groups in an application may also differ significantly, and depends

on a number of application-related factors. For example, what services the group has to offer,

where it is located in a virtual world, how it is accessed, etc.

There are a range of existing group dynamic models, where two common approaches are a

random walk model and a Zipfian distribution model. A random walk model is the simplest. In

this model users are randomly choosing a next group of users to join, based on its current. In the

thesis we use a Zipfian distribution model for group dynamics, which is a model that follows

Zipf’s law [20]. Zipf’s law states [55]: "Given some corpus of natural language utterances, the

frequency of any word is inversely proportional to its rank in the frequency table. Thus the

most frequent word will occur approximately twice as often as the second most frequent word,

which occurs twice as often as the third most frequent word, etc." Similarly, we use Zipf’s law
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Figure 2.4: Illustration of the simulation layout used in the group communication simulator. Each circle
is a client and each client can communicate with every other client through application layer overlay
links (invisible in the figure).

to achieve a Zipfian distribution of the group popularity. We explain this further in section 2.6.4.

2.6.4 Group communication simulator

The group communication simulator we developed uses a fully meshed (complete) shortest-path

graph to simulate group communication on the application layer, where all nodes are clients.

For our experiments, we used BRITE to generate flat undirected Waxman topologies [139]

with 1000 routers. The router placement was random in a plane of size 100×100 milliseconds.

The placement in the plane is used by BRITE to calculate the edge weights between the routers.

The BRITE network graph is translated into an undirected fully meshed shortest-path graph on

the application layer, where each router has exactly one client connected to it.

The nodes in the shortest-path graph are now clients, and the edges are shortest paths con-

necting each client pair. These shortest paths between clients include a varying number of

routers that are invisible from the application layer. Figure 2.4 illustrates how the simulation

layout appears from the application layer. In the figure, each circle is a client and each client

can communicate with every other client through application layer overlay links (invisible in

the figure).
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Each edge in the shortest-path graph has two cost values associated to it. One is the edge

latency, the other is the network layer hop-count. They are both calculated from the BRITE

router network graph, by adding the edge weights on the shortest paths, and the resulting hop

count. As mentioned, each router in the BRITE network graph was transformed to a client in

the shortest-path graph.

Relaying packets through intermediate nodes contributes to the end-to-end delay. However,

in our investigation we do not add relay penalties, because such penalties may vary very much

depending on a node’s computational power, traffic type, etc. In our studies, we rather highlight

the hop-counts and from them it is straight forward to observe how a relay penalty will add to

the latencies.

We assume that all of the clients are part-taking in a distributed interactive application, in

which they are continuously changing groups. For example, each client may be controlling

an avatar in an MMOG. These avatars roam in a virtual world, in which they enter and leave

area-of-interests. The area-of-interests and the avatar dynamics are simulated using a Zipfian

distribution model on a torus. The torus is divided into 1000 squares, one for each client, where

each square represents an area-of-interest. At the start of a simulation, each area-of-interest

contains one avatar.

In our simulations, the number of clients is fixed, while an MMOG has a varying number

of clients playing at any given time. However, we still have unpredictable dynamics in group

membership, and it is this group dynamics that we are aiming to simulate.

2.7 Conclusions and the research goals in summary

The previous sections introduced distributed interactive applications, in terms of their research

challenges and specific requirements. Specifically, we presented a range of research challenges

for MMOGs. Then, we discussed five basic requirements to distributed interactive applications.

These requirements can be summarized as such: "Joining and removing clients from groups

should be done within real-time latency bounds and not disrupt the service. Application events

must be distributed to all clients such that their latency bounds are met. Internet resources are

scarce, therefore, the events must also be distributed efficiently and cost-effective." From these

requirements we defined a general research goal:

Investigate multiple network-related group communication techniques with the goal of identify-

ing those that enable distributed interactive applications, in which clients are able to join and

leave ongoing sessions of real-time interaction.

From these straight-forward requirements of interactivity and dynamicity we managed to de-

scribe more specific goals for the research in the thesis. These were four goals that are:
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1) Identify techniques that enable an efficient and timely membership management of multiple

dynamic subgroups of clients.

2) Identify techniques that enable a resource management to identify nodes in the (application)

network that yield low pair-wise latencies to groups of clients.

3) Identify techniques that find Internet paths with low pair-wise latencies among clients in a

group, and configure them for event-distribution of real-time client interaction.

4) Identify techniques that are able to obtain accurate all-to-all Internet path latencies.

Each of these goals are addressed later in the thesis. The first goal is addressed mainly in

chapter 5. The second goal is mainly addressed in chapter 7. The third goal is addressed in

chapters 8 through 14. Finally, the fourth goal is addressed in chapters 6, 7 and 15.

In the investigations we aim to research and identify techniques for each of these goals.

However, it is a hard problem to study such techniques through real-world experiments when

the context is large-scale distributed interactive applications. Nevertheless, in the thesis, we do

study such techniques both through simulations and real-world experiments.

The real-world experiments are conducted on PlanetLab. However, PlanetLab currently only

has a rather limited number of nodes available (much fewer nodes than in current MMOGs).

Therefore, we mainly use the PlanetLab experiments to study whether it is possible to retrieve

accurate all-to-all path latencies.

The simulations are performed using a group communication simulator (section 2.6.4) we

developed. For the simulations, we used the BRITE tool (section 2.6.2) to generate Internet

topologies, and the group dynamic model we used, was based on a Zipfian distribution model

(section 2.6.3).

Both the experiments on PlanetLab and the group communication simulations were applied

with the aim of identifying techniques that properly address our goals. We also study graph

theoretical problems related to overlay network design, and the algorithms we tested were put

through some theoretical scrutiny.
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The background and motivation chapter identified a range of research questions that need to be

answered, and also introduced the concrete research goals that are important to achieve for the

further development of distributed interactive applications. In the following sections we link

the research goals to specific research areas. These research areas are briefly surveyed with a

particular focus on identifying techniques and algorithms appropriate for distributed interactive

applications.

In section 3.1, we discuss group communication and how low-latency overlay networks

are investigated in different scenarios. We identify that overlay multicast is suited for content

and event distribution through a network, and briefly highlight existing approaches to investi-

gate overlay construction. We conclude that a distributed interactive application scenario needs

overlays that are built such that all the clients can communicate through paths that have a suffi-

ciently low maximum pair-wise latency (longest shortest path).

Section 3.2 introduces multicast in the Internet and many of its challenges. A thorough sur-

vey is given of a wide range of multicast approaches and protocols. Many of their properties

are highlighted and critisized in terms of their applicability to distributed interactive applica-

tions. The survey concludes that no existing multicast protocol have all the properties that are

required; support for constructing low-latency overlays and handling multiple dynamic sub-

groups of clients.

Section 3.3 introduces core-node selection algorithms as a way of identifying well-placed

nodes in a network that yield low pair-wise latencies to groups of clients. We found that there

are existing algorithms that are promising, but that needs further investigation in a dynamic

scenario to verify their efficiency.

Section 3.4 surveys the area of spanning-tree algorithms, with the intention of highlight-

ing existing work for creating low-latency overlay networks. We found that there are existing

39
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spanning-tree algorithms that construct desirable low-latency networks, but they have not been

thoroughly examined and compared. It is especially uncertain how their behavior is in an envi-

ronment of multiple dynamically changing subgroups. We do similar related-work surveys for

Steiner-tree algorithms in section 3.6, and also subgraph (mesh) algorithms in section 3.7.

Section 3.5 surveys dynamic tree algorithms, which are algorithms that can insert and re-

move single nodes from existing trees. This property is desirable for distributed interactive ap-

plications, because they may have potentially many dynamically changing subgroups of clients.

The survey highlights approaches that are suitable, but we did not find any study of these al-

gorithms applied to an application scenario to investigate their cumulative effect on maximum

pair-wise latencies in trees.

Section 3.8 presents some related-work for latency estimation techniques. We want to iden-

tify approaches that are able to obtain all-to-all link latencies, with the intention of building a

graph such that graph algorithms can build low-latency overlay networks, and search for core-

nodes. The survey concluded that there are existing techniques that are suited for all-to-all path

measurements.

First up are introductions to group communication in the Internet and how low-latency over-

lay networks may be obtained and studied.

3.1 Low-latency overlay networks

Group communication in the Internet poses challenges related to asymmetry, heterogeneity, re-

source availability and latency. One way of modelling some of these challenges is to apply graph

theory. In graph theory, a network may be modelled as a directed or undirected graph. Directed

edges (arcs) allow asymmetric links, while undirected edges are symmetric. Currently, asym-

metric links are the most common situation for clients in the Internet. However, the symmetric

link assumption of undirected graphs is only considered unrealistic in highly asymmetric net-

works, and in applications that require high bandwidth and low latencies. Current multi-player

online games support few if any such flows of content or events, rather, the streams are relatively

thin [59].

It is possible to use overlay multicast to accomplish content and event distribution through

a network. And, in that respect, we found in [127] that a connected acyclic graph (tree) has

several advantages over a connected cyclic graph (mesh).A tree has small routing tables and

saves network bandwidth. In addition, it has low administration costs when the membership is

dynamic. However, the pair-wise latencies do increase, and if a non-leaf node is disconnected

from a tree, the tree is also disconnected resulting in two subtrees. A mesh increases the node

failure tolerance of the graph, because multiple paths to a node exist. Unless some path routing

is applied to a mesh it introduces data redundancy because some nodes receive two copies of
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the same data. Multiple paths are also valuable in cases of fluctuating link costs and to reduce

the pair-wise latencies. Generally, there are two main directions of mesh and tree (overlay)

construction related to group communication in networks; overlays that are constructed for a

single source and for multiple sources. However, a mesh is not used for single source scenarios

unless data redundancy is necessary due to unstable network nodes and/or links, rather, a mesh

is mostly used in a multiple source scenario.

For single source situations, a shortest-path tree [58] is often used. A shortest-path tree

gives minimum latency routes between a pre-chosen source and all destinations. However,

shortest-path trees are costly because they consume much of the network resources. Especially

forwarding nodes close to the source may experience massive stress issues because they have

a high degree, where the degree of a node is the number edges it is connected to in a graph.

Alternatively, a minimum-cost spanning-tree [58] may be used. A minimum-cost spanning-tree

is constructed such that the total cost is minimized, i.e., the sum of the edge weights. However,

the latencies between the source node and destinations are higher than in shortest-path trees.

Clearly, there is a tradeoff between the source destination latencies and the total cost of a tree.

Shallow-light trees [80] are trees with a single source that simultaneously approximate well both

a minimum-coast spanning-tree and a shortest-path tree. A shallow-light algorithm computes a

tree that is at most a constant times heavier than the minimum-cost spanning-tree, and with the

property that the diameter of the tree is at most a constant times the diameter of the input graph.

For multiple source situations, it is vital to reduce the pair-wise latency, such that every

source is within a constant latency bound of every destination. That is, the eccentricity of the

destinations should be minimized, where the eccentricity of a node is defined as the maximum

pair-wise latency from the node to its farthest destination. In our group communication sce-

nario, every node in the network is a source that distributes data. In situations where all nodes

are sources, the overlay should be constructed as a shared-overlay. For such a shared-overlay

scenario, it is not enough to only consider an overlay viewed from a single source or a set

of sources. Every node is both a source and a receiver, thus the worst case eccentricity in a

shared-overlay equals the diameter. Therefore, in a shared-overlay scenario, the diameter is a

very important metric. One example of such overlay algorithms are minimum-diameter tree-

algorithms, which aim to build a tree on an input graph that yield the minimum diameter [116].

Ho, Lee, Chang and Wong [68] proved that a minimum-diameter tree is achievable in polyno-

mial time. Another example are bounded-diameter minimum-cost tree-algorithms, which aim to

build a tree on an input graph that yield the minimum-diameter within a total cost bound [145].

This problem is N P-complete, but there are several polynomial time heuristics that approximate

close-to-optimal solutions [131].

These and other algorithms are surveyed in more details in the following sections. First, we

introduce a range of multicast protocols that exist in the literature.
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Figure 3.1: Unicast, multicast and broadcast.

3.2 Multicast communication in the Internet

The following sections survey the area of multicast communication in the Internet, with a range

of existing approaches and protocols. We discuss general requirements to multicast protocols,

and what specific types that have been developed. However, the focus is especially on identify-

ing existing protocols that satisfy the strict requirements that distributed interactive applications

have, for example, low-latency event distribution networks, low join latency and support for

group membership dynamics.

3.2.1 Network communication in the Internet

Network communication is the act of transmitting data from one network entity to another,

where a network entity may be a client’s computer, a network layer router, etc. Generally,

network communication across the Internet may be achieved in essentially three different ways 1

(see figure 3.1):

• Unicast is a one-to-one communication, where each packet is addressed to a single re-

ceiver.

• Broadcast is a one-to-all transmission. A broadcast packet is received by every participant

of a network.

• Multicast is a one-to-many or many-to-many (selected nodes) transmission, where a mul-

ticast group receives the data.

1Other variations of these communication methods do exist; anycast, geocast, etc.
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Figure 3.2: Application layer overlay multicast compared to network layer IP Multicast.

A client on the Internet has the option of using unicast and multicast, while broadcast cannot

be used mainly due to security reasons. Unicast is by far the most common way of communicat-

ing across the Internet. However, in recent years, the number of applications that would benefit

from using multicast has grown. This is mainly due to the increased bandwidth capacities and

consequently increased throughput in the Internet. Figure 3.1 illustrates the differences between

unicast, multicast and broadcast communication.

The target applications for the thesis are distributed interactive applications. These applica-

tions typically need to share events in order to achieve live interaction across the Internet, and

multicast is a way of sharing events among groups of clients in an efficient manner. It is com-

mon to say that multicast is a way of achieving group communication in the Internet. There are

interactive applications that are already using multicast, for example, video-conference systems

and tele-education. However, the use is rather limited at present.

In the Internet today, multicast services may be available on the network layer and applica-

tion layer:

• IP Multicast is offered at the network layer, but it is not widely deployed.

• Application layer multicast is end-system overlay multicast, which must be supported by

the application.

Figure 3.2 illustrates the differences between IP Multicast on the network layer and appli-

cation layer multicast. Network layer and application layer multicast are now introduced as

options for achieving group communication in the Internet.
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3.2.2 Network layer multicast

The network layer multicast protocol is called IP Multicast [19, 119, 40, 37], and is not widely

deployed in the Internet today. IP Multicast is based on an open service model, which means

that no mechanisms restrict the hosts or users from creating a multicast group, receiving data

from a group, or sending data to a group [40]. Hosts join a multicast group by contacting

their local router using the Internet Group Management Protocol [46] (IGMP). The multicast

distribution tree between the routers is built and maintained by a multicast routing protocol, for

example, DVMRP [135], MOSPF [94], CBT [12, 11] and PIM DM/SM [43, 2]. IP Multicast

was heavily researched in the mid nineties, but it has not been the anticipated success. Today,

IP Multicast is mostly used by educational institutions and commercial networks, for example,

TV operators delivering high-speed video on-campus, and financial stock-ticker.

In summary, some of the issues in IPv4 Multicast are that it 1) is not supported by all

Internet service providers, 2) cannot be used efficiently with TCP (which is frequently used by,

for example, online games), 3) does not easily support frequent membership change, 4) cannot

prevent snooping, and 5) has a rather limited address space available.

3.2.3 Application layer multicast

Multicast on the application layer is a less complex and cheaper alternative to multicast on the

network layer [137]. Various names are given to multicast services at the application layer, for

example, application layer multicast, overlay multicast and end-host/end-system multicast [26,

14]. We use these terms interchangeably.

Application layer multicast avoids the IP Multicast issues, mainly, because it is user man-

aged and not network dependent. The data replication, multicast routing, group management,

and other functions are all achieved at the application layer and implemented at the end-host.

The multicast functionality is software based and often embedded in the application. Peer-to-

peer applications are typical applications that use application layer multicast [124].

In application layer multicast the group members form an application layer multicast topol-

ogy. The links in the multicast topology connect group members, and create an overlay where

the network layer is invisible. The group members act as relay agents, and multicast is achieved

through message forwarding among the members of the overlay using unicast across the under-

lying network (Internet). Therefore, application layer multicast incurs some delay and band-

width penalties, furthermore, it is less stable (more prone to failure) because fault prone clients

are replicating the data. Despite these drawbacks, application layer multicast is a more attractive

(read: cheap) multicast approach than IP Multicast, until the issues in IP Multicast are solved

(section 3.2.2).

Today, two general approaches are used to accomplish application layer multicast. One is

peer-to-peer networks that are designed for file and information sharing, for example, BitTor-
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rent [28] and Gnutella [29]. The peer-to-peer topology tends to be more random to the under-

lying physical topology which affects the service as the latency can be very high. The second

approach focuses on improving the application layer multicast and providing group communi-

cations. Many of these application layer multicast protocols are topology aware and designed

to achieve a lower latency and better bandwidth usage [83, 9].

3.2.4 Overlay multicast properties

Many overlay multicast protocols have been proposed [30, 116, 44, 32, 107, 35, 146, 124, 33,

39, 97, 85], but there is still much research that needs to be done, especially in the areas of

supporting dynamically changing sub-groups of clients, and the subsequent reconfiguration of

multicast topologies. Currently, there are two classes of overlay multicast techniques: Fixed

nodes based multicast, and dynamic nodes based multicast.

Fixed nodes based multicast places a number of nodes strategically around the Internet.

Then, according to the applications’ requirements, these nodes autonomously form overlay

multicast trees to provide multicast services [30]. Fixed nodes based multicast is stable, but

it is not flexible, and needs ISP support. Furthermore, the fixed nodes are potential bottlenecks,

such that some quality of service flow management may be necessary. Figure 3.3 illustrates a

fixed nodes based multicast tree.

Dynamic nodes based multicast approaches work such that the nodes self-organize into an

overlay multicast tree. Data duplication, multicast data forwarding, and group membership

management and other functions are all achieved at the client side. Figure 3.2 b) illustrates

a dynamic nodes based multicast tree. Dynamic nodes based multicast has two subclasses:

Structured and unstructured overlay multicast.

Structured overlay multicast approaches typically impose constraints both on the topology

of the overlay and on the data placement. Both of these constraints are applied to enable

efficient discovery of data. Structured overlay multicast protocols are characterized by self-

organization and fault-tolerance capabilities, where examples include CAN [105], SkipNet [63],

Chord [118], Pastry [109], and Tapestry [149]. These systems provide an addressing scheme,

which is independent of the actual network addresses, and is used to implement scalable and

efficient application-level routing mechanisms that are adaptive to node joins and leaves. The

addressing scheme is commonly implemeneted using distributed hash tables (DHTs). Many

publish-subscribe systems are built on top of structured networks, where two examples are

Scribe [23] and Bayeux [151]. However, due to the complicated structures in the DHTs, these

systems are not easy to deploy in a heterogeneous network environment. Overlay protocols that

use DHTs are appropriate for file sharing applications, but to this date, none of them fit to event

sharing applications because they do not consider pair-wise latency requirements.
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Figure 3.3: Fixed nodes based multicast has dedicated forwarding nodes.

Unstructured overlay multicast approaches incur looser constraints in the topology building

and maintenance. The overlays are often created ad-hoc, and may also be created completely

random in the extreme case, although this has become less common. There are two main strate-

gies in the creation of unstructured overlays: Mesh-first and tree-first multicast protocols.

Mesh-first multicast approaches build overlays that have more than one path between the

pair of nodes. After creating a mesh, the members often participate in a routing algorithm on

the mesh topology. This is the case for both Narada [49] and Scattercast [25]. Because mesh-

first overlay multicast protocols build such cyclic meshes that have multiple paths between

participants, they yield a level of node failure resilience. While the advantage of having a

mesh is resilience, the downside is that it may be necessary to run a routing algorithm for

construction of loop free forwarding paths between the members. Another option, is to add a

sequence number to the packets and broadcast them through the overlay.

Tree-first multicast approaches directly construct an overlay tree topology for data delivery.

Examples of such approaches include Yoid [50], Overcast [71], and ALMI [101]. Trees have

only a single path between any pair of nodes, and are thus sensitive to partitioning because

they are acyclic graphs. For example, if any non-leaf member disconnects from the tree, the

overlay is partitioned (broken). That is why tree-first overlay protocols often provide additional

control links to allow quick recovery from member failures, which is the case for the centralized
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Topology Routing Node Topology Group Membership Quality of

construction algorithm join/leave constraints size management Service

Narada mesh-first DVMRP random/time-out e2e del small distributed -
Yoid tree-first root based reconstruction - medium rendevouz point partition discovery
ALMI mesh-first MST centralized e2e del small sess. controller neighbor latency
NICE hierarchical implicit min-cost/new center e2e del large rendevouz point leader heart beat
Bullet mesh-first any root based (N/A) e2e bw large distributed -
Tmesh mesh-first root based partition recovery e2e del large distributed tree shortcuts
TAG tree-first root based min-cost/(N/A) hop cnt large root controls topology aware
BTP tree-first spanning/root (N/A) e2e del large distributed switch tree
AMcast tree-first MDDL-heurist. (N/A) e2e del large distributed -

Table 3.1: Overlay multicast table

ALMI [101]. However, for the reason of being an acyclic graph, tree overlays have no routing

loops and do not need a routing algorithm other than neighbor information. Tree-first based

overlay multicast protocols include approaches that construct source trees, spanning trees, core

based trees, etc [130].

Hybrid mesh and tree multicast approaches first construct a mesh topology, and then use

standard shortest path tree algorithms to establish a minimum distribution tree/mesh. Such

approaches typically include many of the mesh-first multicast approaches (mentioned above),

where one example include Narada [49]. Tmesh [137] is another example that first builds a tree,

and then enhances the tree with a number of single edges to reduce the pair-wise lantecies.

Topology aware multicast approaches construct overlays based on knowledge of the un-

derlying Internet topology. As mentioned previously, overlay networks are built from the ap-

plication layer. Therefore, data may traverse the IP network quite inefficiently if the overlay

multicast protocol is unaware of the Internet topology. Topology aware overlay multicast proto-

cols aim to improve the data delivery efficiency in terms of reduced latency and resource usage

(network cost, bandwidth) [83, 9].

3.2.5 Group management techniques

Group management of dynamically changing sub-groups of clients is important to enable a

variety of scalable distributed interactive applications. Essentially, there are three different ap-

proaches to group management; centralized, distributed and a hybrid approach named hierachi-

cal management. Which to choose is an important design choice, and influences the target

applications, in terms of their scalability, robustness, etc.

In a centralized approach, a node is assigned to control the membership information, and

assist the application’s group members to form an overlay multicast topology. ALMI [101]

is a centrally managed application-level group communication middleware, tailored towards

the support of relatively small multicast groups with many-to-many semantics. Centralized ap-

proaches avoid many consistency issues, but the scalability may suffer. Other typical centralized

issues are, single point of failure, potential bottleneck problems and resulting slower manage-
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ment. However, a multitude of fault tolerance and quality of service mechanisms are available

that reduces the chance of loosing valuable data [149].

In a distributed approach the overlay and membership information is dynamically dis-

tributed to the members. Many file-sharing and video-streaming peer-to-peer applications use

this distributed approach [124, 33, 39, 97, 85]. However, these applications do not support in-

teractivity, and due to this there is no need to create sub-groups of clients. Generally, such

completely distributed overlay applications are scalable, but they do have inherent consistency

issues that must be handled in order to support interactivity.

A hierarchical approach aims to address the centralized scalability issues, and distributed

consistency issues. In a hierarchical approach the members form a hierarchical structure and

assign specific tasks/roles to the group members. This way, the group management is distributed

among a few nodes, which effectively decreases the multicast tree control traffic. AMcast [115]

is such an approach, which uses a set of distributed multicast service nodes (MSN). The authors

focus on optimizing the access bandwidth of the MSN’s interfaces and end-to-end delay, and

propose several new centralized tree algorithms, for example, the compact-tree and bounded

compact-tree algorithm. These spanning-tree algorithms are evaluated in chapter 9.

3.2.6 Overlay multicast protocols

The following includes a more in-depth introduction to a number of overlay multicast protocols

that exist in the literature. These were found to have interesting properties that are useful in

interactive settings, although none of them address more than a small sub-set of the requirements

(of distributed interactive applications). In the presentations we try to answer:

Do the protocols have support for constructing low-latency overlays and handling multiple

dynamic sub-groups of clients?

We list the strengths and weaknesses of the overlay multicast protocols in terms of this question.

End-system multicast (Narada) is one of the early proposed overlay multicast protocols, and

was designed for small to medium sized groups [26]. Narada [49] is the distributed protocol,

by which the multicast group members self-organize into an overlay structure.

Narada is a mesh-first protocol and uses a two step process to build and refine a source-

specific multicast tree. First, it distributedly constructs a mesh while it tries to ensure that the

mesh has low pair-wise latencies. Second, reverse shortest paths between each recipient and

the source are created, using the DVMRP algorithm [135]. The efficiency of the resulting tree

depends on the quality of the mesh (from step one).

Group dynamics are addressed as each member maintains a list of all other members in the

group and periodically shares its group information with neighbor nodes in the mesh. However,

the overhead of such a protocol is tremendeous for larger dynamic groups. A new member joins
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the mesh by randomly selecting peers from a list of connected members obtained through an

out-of-band mechanism and requests to be their neighbors. A leaving member is removed by an

approach similar to detecting a node failure: When a host stops receiving refresh messages from

a neighbor, it probes the neighbor, and if the neighbor is dead, it propagates this information

through the mesh.

Banana Tree Protocol (BTP) [67] is a tree-first protocol, which was designed especially for

peer-to-peer applications.

BTP supports source and spanning tree optimizations, and uses reconfigure and optimiza-

tion algorithms, called switch-tree algorithms, to improve the tree. The switch-tree algorithms

allow any node to switch parent to its nearby sibling or grandparent, to reduce the tree cost or

latency. The switch-tree algorithms obey a user-set degree constraint. BTP avoids tree loops

by applying two basic switching rules: 1) the potential parent can not simultaneously attempt a

switch, 2) the potential parent is still the node’s sibling or grandparent.

Group dynamics are not addressed by the authors.

Your Own Internet Distribution (Yoid) [50] is a DARPA-sponsored general overlay network

based content distribution toolkit. It addresses applications like netnews, streaming broadcasts,

and bulk email distribution. Yoid includes a full framework for overlay multicast implementa-

tion, where the main goal is to address all the aspects of multi-peer transmissions (connectivity,

flow-control, reliability, etc.).

Yoid distributedly and separately constructs two topologies that are a mesh and a tree. The

tree is optimized for efficiency (cost or low-latency), the mesh for robustness. The mesh topol-

ogy is mainly used for control messages, tree-partition discovery and recovery, etc.

Group dynamics are addressed such that each group has one or more rendevouz-points as-

sociated. When a host wants to join a group, it contacts its rendevouz-point and receives an ID

and a list of some of the current members. The node chooses one of the members and connects.

Node liveness is explicitly checked by the rendevouz-point. When needed, the tree is refined

for improved latency and loss rate.

NICE (is the Internet Cooperative Environment) [13] is a cooperative framework to scale

multi-party applications.

NICE is based upon a hierarchical clustering of the members and can be used to produce a

number of different data delivery trees. The members are self-organized into a layered topology,

with nodes organized at each layer into clusters. Only the leader of each cluster is part of the

next layer (also organized in clusters). Layer 0 contains all the nodes, while the last layer

contains only one host, the rendevouz-point. For any host wishing to send data, its delivery path

is a source-specific tree implicitly defined by forwarding each message to all other members
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of the cluster(s) it belongs to, except to the host the message was received from. The layered

design helps it scale better, with a worst-case state and control overhead for any member of

O(logN).

Group dynamics are handled, such that each host maintains soft state about the other mem-

bers of the cluster(s) it belongs to. A new member joins the group by, first, contacting the

rendevouz-point, which replies with a list of the members that are part of the highest layer of

the hierarchy. The joining host probes each of them, and selects the "closest" one in terms of

latency. It contacts this host which replies with a list of the nodes in its cluster. This process

repeats until the joining node finds the closest node to connect to. Slight modifications and

improvements to this procedure are suggested. When a node leaves or fails, each of the remain-

ing members of the cluster independently selects a new leader, based on a core-node selection

algorithm [75].

Application Level Multicast Infrastructure (ALMI) [101] is a centralized overlay multicast

protocol targeted for applications with a large number of groups, each with relatively few mem-

bers.

ALMI uses a rendevouz-point or session controller to calculate a minimum spanning tree.

It ensures the efficiency of the multicast tree by periodically calculating a minimum spanning

tree based on the measurement updates received from the members. These measurements are

performed by members that each monitor a set of other members and report back to the session

controller.

Group dynamics are handled by the session controller, which controls the member registra-

tion and maintains the multicast tree. A node that wishes to join, contacts the session controller

and receives the address of the parent node in the tree. Similarly, when a node leaves it contacts

the session controller. Node failure is not discussed.

Bullet [81] is a multicast protocol designed for peer-to-peer streaming applications of audio and

video.

Bullet constructs a source-specific mesh-first based data dissemination overlay. The authors

argue that tree-based dissemination overlays may not be the best when high bandwidth is de-

sired. Overlay trees limit the bandwidth, are hard to optimize and lead to high overhead due

to probing. Therefore, Bullet uses a mesh instead of a tree. Bullet starts with any root-based

overlay tree. The sender selects a (pseudo) random subset of its children and transmit disjoint

data sets to them. The same process is done by the children as the data propagates down the

tree. Nodes then obtain the missing parts of the data from other peers. Bullet only works when

the transport protocol is TCP-friendly.

Group dynamics are not addressed.



3.2. Multicast communication in the Internet 51

Topology Aware Grouping (TAG) [83] is a distributed overlay multicast protocol targeted for

applications with a large number of members. The authors state that TAG works best with

applications which regard delay as a primary performance metric and bandwidth as a secondary

metric.

TAG is source-specific and a tree-first multicast protocol, which aims to construct trees that

are optimized for network delay with loose bandwidth constraints. Furthermore, it is topology

aware and contains algorithms that detect the underlying router topology, and the multicast-tree

is optimized with this in mind.

Group dynamics are handled by fairly naive mechanisms. Each new member determines the

path from the root of the session to itself, and uses path overlap information to determine its

parent and children. Whenever a node leaves or fails, this information is used to re-connect the

tree.

Tmesh [137] is a distributed overlay multicast protocol that adds a level of resilience to the

overlays it creates. The applications Tmesh targets are latency sensitive applications that require

low pair-wise latencies.

Tmesh is a tree-first protocol and uses the source-specific Dijkstra’s shortest path algorithm

to discover shortcuts and add edges to the tree, which is then transformed to a mesh. The

shortcuts are chosen to reduce the relative delay penalty and also the average pair-wise latencies.

In addition, Tmesh yield a configurable level of resilience to the meshes.

Group dynamics is not discussed in a large extent. However, Tmesh uses a mesh to distribute

events, and needs only recover from mesh partitions, but the authors do not address the mesh

partitioning problem.

AMcast [116,115] uses and assumes that it has a set of distributed multicast service nodes. The

paper focuses on optimizing the access bandwidth of the multicast service node’s interfaces and

end-to-end delay, and proposes several new tree algorithms.

The tree algorithm types AMCast introduces are: 1) The compact tree algorithm is a mini-

mum diameter degree limited spanning tree heuristic. 2) The balanced compact tree algorithm

is a limited diameter residual balanced spanning tree heuristic, and is a slight adjustment of the

compact tree algorithm. 3) The paper also introduces several algorithms to achieve best possible

residual degree balance.

The proposed algorithms perform well in terms of creating low-latency overlay networks,

but suffer due to somewhat high time complexity. The algorithms are implemented as central-

ized algorithms, and the paper does not discuss how they can be distributed.

Group dynamics are not addressed.
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3.2.7 Conclusions, findings and shortcomings

These proposed multicast protocols are starting points, but they use overlay network construc-

tion algorithms that are either shortest-path or minimum-spanning trees. Hence, it is not suffi-

cient to address the latency demands in distributed interactive applications.

One exception is AMcast [116,115], which (as mentioned) uses a set of distributed multicast

service nodes. In addition, they propose two diameter optimizing tree algorithms, compact tree

and balanced compact tree that are both evaluated in chapter 9. Furthermore, the multicast

service node placement problem is strongly linked to selecting core-nodes using a core-node

selection algorithm, which is evaluated in chapter 7. Another exception is Tmesh [137], which

adds shortcut edges to pre-constructed trees. Chapter 11 evaluates a range of such shortcut

selection strategies.

Furthermore, few, if any, protocols are able to maintain subsets of a larger set of nodes.

An approach that looks at the maintenance of subgroups within a larger set of overlay nodes is

PartyPeer [87]. This system creates subgroups by forming overlay multicast groups as subtrees

of a tree that covers the entire set. However, the approach taken results in poorer performance,

because subgroups are always created as subtrees of a single tree for the entire application.

Some of the multicast protocols support dynamic tree manipulations [145]. Typical opera-

tions include insert and remove, and some allow online rearrangement of the multicast tree [86].

An insert operation is typically performed using the shortest path [16, 4], or the delay con-

strained minimum cost path [103,6]. This is cheaper than tearing down the tree and re-building

it from scratch, but it will probably lead to a larger tree diameter. Chapter 12 investigates a wide

range of such insert and remove (dynamic) tree algorithms.

ACTIVE is a system [86] that distinguishes between clients that are actively interacting and

those who are passive spectators. The ACTIVE system uses tree structures for communication

among peer nodes, where the communication structure adapts itself depending on how active

a peer is. For example, active clients that communicate have a smaller latency between each

other than passive spectators that do not communicate. If a peer changes from an active client

to a passive spectator role and back again, it also means a reconfiguration of the communication

structure.

In summary, there is a considerable body of work on overlay multicast protocols and effi-

cient tree construction and maintenance. However, current approaches do not address frequent

group membership changes and resource limitations of a node (degree) while at the same time

minimizing the diameter for latency-bound communication.
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3.3 Core-node selection algorithms

An important group management technique is to elect one or more nodes to administrate clients

that join and leave groups. When a limited set of nodes handles the membership management,

it simplifies membership updates, and applications that have highly dynamic groups require

fast and simple group management. Names given to such nodes include leaders, core-nodes or

rendevouz-points [123]. Typically, the core-node of a group is contacted for each membership

change, such that it always has the up-to-date (membership) information. Protocols with core-

nodes are often defined as core-based multicast protocols [75, 47].

Core-based multicast protocols work on the assumption that one or more core-nodes are

selected as group management and forwarding nodes. These protocols need some core-node

selection algorithms to select the core-nodes. Several core-node selection algorithms have been

proposed, and a comprehensive study is given by Karaman and Hassanein [75]. An overall goal

is to select core-nodes on the basis of certain node properties, such as, bandwidth and compu-

tational power. Distributed interactive applications benefit particularly on core-node selection

algorithms that consider latency, but also the degree limitations of the available core nodes.

There are existing core-node algorithms that find well-placed nodes in networks that yield

low pair-wise latencies among some set of target-nodes [17]. However, we have not found any

study that investigates their efficiency in a dynamic scenario, where sub-groups of clients are

dynamically changing.

3.4 Spanning-tree algorithms

Spanning-tree algorithms build trees that span all the nodes in a network. A tree is a connected

acyclic network, typically built on top of a larger network. A spanning-tree is a sub-network of

the larger network that spans all the nodes. The advantages of a tree are that it has small routing

tables and saves network bandwidth. In addition, it yields low administration costs when the

membership is dynamic. However, the pair-wise latencies do increase, and if a non-leaf node is

disconnected from a tree, the tree is also disconnected resulting in two subtrees.

The most famous and oldest spanning-tree algorithms are the shortest path tree (SPT) and

minimum spanning tree (MST) algorithms. An SPT algorithm constructs a tree that has p short-

est paths from a given source node to the destinations, where p is the number of destinations.

The most famous SPT algorithm is the O(n2)Dijkstra’s SPT algorithm [58]. An MST algorithm

constructs a tree of minimum total cost, where the total cost is the sum of all the link weights

in the tree. MST algorithms are proposed by Prim, Kruskal and Sollin [58,93], all of which are

O(n2). Figure 3.4 A) and B) illustrates an SPT and an MST on a network. A more recent algo-

rithm is the minimum diameter spanning tree (MDST) algorithm. An MDST algorithm builds

a spanning-tree in which the diameter is minimized, where the diameter is the longest shortest



54
Chapter 3. Group communication:

State-of-the-art and related work

Figure 3.4: Examples of a shortest path tree, minimum-cost spanning tree and a Steiner minimum-cost
tree.

path in the tree, also called the maximum pair-wise latency. Ho, Lee, Chang and Wong [68]

proved that an optimal MDST has one or two nodes that are connected to the remaining nodes.

Many spanning tree algorithms add constraints to the tree construction [144], where the most

common constraints are variations of delay bounds and degree limitations [80, 64]. The delay

bounds are typically added in algorithms that optimize for the total cost [110,78,77]. The delay

bounds may be from a given source, in which case, the tree is considered a source-tree [80,64].

The delay bound may also express the maximum allowed diameter in the tree [116]. Degree

limitations are added to bound the (forwarding) stress on each node in the tree [95].

The constraints are important to control and tune the tree construction. For example, a delay

bound ensures that the latencies are controlled while the total cost is minimized, and degree

limitations ensure a controlled stress level on each node. However, generally the constraints

make the tree construction harder to solve, such that the tree construction takes longer. Many

constrained tree construction problems are N P-complete [131].

From these algorithms wee observe that there are existing spanning-tree algorithms that con-

struct desirable low-latency networks, but they have not been thoroughly examined and com-

pared. It is especially uncertain how their behavior is in an environment of multiple dynamically

changing subgroups.

3.4.1 Degree limited algorithms

The degree limited algorithms limit the number of incident edges to a node. Finding an optimal

degree limited tree is N P-complete for both MST and SPT. Hence, polynomial time heuristics

are needed for practical implementations. d-MST algorithms found in the literature often em-

ploy Prim’s algorithm as the algorithm base. Knowles and Corne [79] listed three methods that

Prim’s algorithm could be used: 1) Use an alteration of Prim’s algorithm so that it does not add
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edges that violate the degree constraint, 2) A dual simplex approach, begin with an MST and

alternate until there are no degree violations, 3) Perturb Prim’s algorithm through the use of an

input solution vector, so that it does not always choose the minimum weight edge.

3.4.2 Delay constrained algorithms

The delay constrained algorithms optimize the network hop-count, and search for source-destination

paths within the input delay limit. A delay constrained path may not always exist if the delay

constraint is too strict/stringent. Three main solutions can be found in the literature today: 1)

Renegotiate delay constraint, and rebuild tree, 2) Iteratively increase delay constraint until all

nodes are covered, 3) Include uncovered nodes using unconstrained paths.

1 and 2 do not guarantee a solution on the first delay constraint increase. Solution 1 rebuilds

the tree for each increase, hence, it may be forced to rebuild several times. Solution 2 is much

faster, it increases the delay constraint and continues to build the tree. However, solution 3 is

the fastest, because it includes all uncovered nodes using unconstrained paths.

3.5 Dynamic tree algorithms

The client dynamics in distributed interactive applications require algorithms that support online

configurations of event distribution paths. Dynamic tree algorithms comprise such algorithms

that reconfigure an existing tree by inserting and removing nodes [145], and also algorithms that

only reconfigure the tree. Waxman and Imase were the first to address the problem of updating

a multicast tree online, and referred to the problem as the online multicast tree problem [140].

The main goals of the dynamic tree algorithms in distributed interactive applications are to

reduce the tree reconfiguration time, ensure that few links are changed during a tree update, and

ensure that the latency requirements are met.

In the literature an insert operation is typically performed using the shortest path [44, 18,

16, 4] or the delay constrained minimum cost path [6, 103, 8]. A leaf node is trivially removed,

and deleting a node with a degree of 2 results in two subtrees that may be reconnected using

the least cost path [140] or the least cost delay bounded path [6]. Existing literature has not, in

any particular degree, addressed the removal of nodes with a degree > 2. Such nodes are often

kept in the tree for routing purposes, however, this may degrade the trees [60]. Furthermore, it

is critical that tree reconfiguration is fast, in particular node insert operations, because all nodes

must receive the data on time. It is also vital that remove operations keep the multicast tree

intact for all remaining nodes [103]. Rearranging the tree while the data is flowing may cause

members to loose data if the operation is not handled appropriately.

Many of these dynamic-tree algorithms have not been properly compared against each other.

In adddition, as far as we can see there are no study that investigates the long-term effects
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of applying dynamic-tree algorithms to a scenario in which there are multiple dynamically

changing subgroups of clients.

3.6 Steiner-tree algorithms

Section 3.4 introduced spanning-tree algorithms to be algorithms that build trees that span all

the nodes in the network. Steiner-tree algorithms, on the other hand, applies two alternative

node-states to the nodes in the network. The node-states have been given different names in

the literature. For example, if a node is taking part in a multicast session, the node has one of

these states: terminal, member or z-node. If it is not in the multicast session, it has one of these

states: non-terminal, non-member or Steiner point. The Steiner-points in a network are nodes

that forward data without reading it or contributing with new data. They are there to help the

Steiner-tree algorithm achieve its optimization goal. For example, the Steiner minimum-cost

tree (SMT) algorithms aim to reduce the total cost of the network. Hence, an SMT algorithm

differs from an MST algorithm in that it can choose to use Steiner-points in the networks to

minimize the total cost of the tree. Figure 3.4 C) illustrates an SMT on a network.

3.6.1 Steiner minimum-cost tree in networks

The problem of finding a Steiner minimum-cost tree in networks (SMT) is an N P-complete

problem that was originally formulated independently by Hakimi and Levin [142] in 1971.

Several exact algorithms and heuristic have been suggested, implemented and compared [134,

69]. In the following we introduce four Steiner-tree heuristic classes called spanning-heuristics,

path-heuristics, tree-heuristics and vertex-heuristics [142].

The simplest SMT-heuristics are the spanning-heuristics [36]. They apply an MST algo-

rithm on a network, and then remove (prune) Steiner-points with degree one (leaves). The MST

algorithm generates a minimum-cost spanning tree of a network graph, spanning all the nodes.

An approximate Steiner-tree is then obtained by removing subtrees containing only Steiner-

points, from the MST.

A Steiner-tree path-heuristic starts from a pre-chosen source and includes the member-

nodes one by one, until the tree spans all member-nodes. Typically, the tree grows based on

the addition of (shortest) paths between member-nodes in the tree and member-nodes not yet in

the tree. SPH is an SMT path-heuristic and was suggested by Takahashi and Matsuyama [120].

The Steiner-tree tree-heuristics are based on the idea of constructing an initial tree that

spans all member-nodes, and then optimizing it towards a close-to-optimal SMT. Commonly, a

minimum spanning tree variant is used to obtain the initial tree. DNH is an SMT tree-heuristic

and was suggested, among others, by Kou, Markowsky and Berman [82].
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The general idea behind Steiner-tree vertex-heuristics is to identify "good" non-member-

nodes (Steiner points). It has been shown [142] that one big difficulty of the SMT problem is to

identify non-member-nodes that belong to an SMT. Once the Steiner points are given, the SMT

is an MST for the subnetwork induced by the member-nodes and selected Steiner points [142].

ADH is an SMT vertex-heuristic and was suggested by Rayward-Smith [106].

3.6.2 Steiner-tree algorithm variations

In the literature, there are numerous Steiner-tree heuristics that are only slight variations of the

SMT heuristics presented in section 3.6.1. Generally, the SMT-heuristics [82, 106, 120] do not

meet the latency requirements of distributed interactive applications. However, many similar

heuristic variations exist that obey a latency bound from a given source, while optimizing for

the total cost [45,72,103,100,145,7,10,16,102]. These variations often base the edge selection

on a mix between path latency from the source and minimum cost edges.

Few [16, 111] of these proposals discuss how the source trees are to be applied in an in-

teractive application. One way is to have one source-tree for each source, which increases the

network cost, another, is to create a tree as a shared-tree that is shared by all the nodes to both

send and receive data. A few proposals have addressed the requirements of a shared-tree. These

heuristics have attempted to reduce the diameter in trees, where the diameter expresses the max-

imum path latency [65, 3, 150, 21]. The proposals use Steiner-tree heuristics that uses shortest

paths between the nodes. However, they do not take into account the inherent fully meshed

application layer network made of shortest paths.

3.7 Mesh-construction algorithms

A mesh construction algorithm differs from a tree construction algorithm in that it is not bound

to constructing a tree, it is rather allowed to produce a connected cyclic graph (mesh). Compared

to a tree, a mesh increases the node failure tolerance of the graph, because multiple paths to a

node exist [90]. Unless some path routing is applied to a mesh it introduces data redundancy

because some nodes receive two copies of the same data. Multiple paths are also valuable in

cases of fluctuating link costs and to reduce the pair-wise latencies.

A mesh is mostly used in a multiple source scenario. For a single source scenario a mesh is

only used if data redundancy is necessary because of unstable network nodes and/or links.

Existing mesh construction algorithms focus on reducing the pair-wise latencies by adding

a configurable amount of edges to the mesh. The mesh construction algorithms can be divided

into the three categories: A) Interleaved-trees, B) Enhanced tree, and C) Edge pruning (removal

and addition) algorithms.
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Interleaved-trees algorithms compute multiple connected trees and merge them into one

mesh. The interleaved-trees algorithms may also be referred to as k-trees algorithms. Young

et al. [147] described such an algorithm called k-MST, which computes k minimum spanning

trees that are merged into one mesh.

Enhanced tree algorithms apply a tree algorithm to an input graph, and then add single edges

to the tree based on some criteria. Wang et al. [137] described such strategies, and proposed an

overlay protocol called Tmesh, which adds "short-cut" edges to a pre-constructed tree. There

are also edge-selection strategies that aim at reducing the pair-wise distances in an overlay. The

average pair-wise distance of a node is the sum of the shortest path distances between it and

every other node, divided by the number of nodes. Both Narada [49] and Tmesh [137] focus on

reducing a node’s pair-wise distance.

Edge pruning algorithms include strategies that remove edges from an input graph based

on some goal, and also algorithms that pick single edges from an input graph and constructs a

mesh. These two approaches are essentially different, however, the algorithms share the same

goal. Consequently, we call all of them edge pruning algorithms. The simplest edge pruning

algorithm is to add a number of edges randomly to the mesh. Yoid [50] applies this method, with

the added step of applying a routing protocol atop of the mesh. In the Narada [49] protocol a

node joins a random peer and then slowly moves to more favorable peers as they are discovered.

Although there are many approaches that use meshes, especially multicast protocols. There

are few studies that focus on algorithmic properties of mesh construction, and how to efficiently

construct meshes of low diameters, while still preserve a low network cost of the mesh. In

addition, we did not find a complete comparison of such algorithms in a dynamic scenario.

3.8 Latency estimation techniques

The round trip times (RTTs) between hosts in the Internet may be obtained by using readily

available tools like Ping and Traceroute. These tools estimate a single path’s end-to-end latency,

and are well-suited for smaller groups of hosts. However, an all-to-all measurement incurs an

O(n2) traffic growth [9], and in our target applications this poses a scalability problem because

the number of clients participating may be in the thousands. The clients in these applications

may form dynamic subgroups, which makes it important to retrieve the link latencies among

the clients, in order to organize the subgroups intelligently in an overlay network.

In such scenarios, it is currently not scalable to use Ping or Traceroute for active probing of

link latencies. Instead, latency estimation techniques that reduce the probing overhead may be

applied. Estimation techniques have been classified into three classes in [42], 1) Landmarks-

based latency estimation, 2) Multidimensional-scaling based latency estimation and 3) Dis-

tributed network latency database.
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Landmarks-based latency estimation techniques give each client a point in a metric space,

and aim to predict the latency between any two clients. They use landmark nodes, which are

a set of nodes used by the remaining nodes as measurement references for their relative posi-

tion in the network. Such techniques include Netvigator [113], NetForecast, Global Network

Positioning (GNP) and Practical Internet Coordinates [41].

Multidimensional-scaling based latency estimation techniques do not involve landmark nodes.

They use statistical techniques for exploring similarities and dissimilarities in data. For ex-

ample, a matrix of item-item similarities is used to assign a location for each item in a low-

dimensional space [31]. Examples of such techniques include Vivaldi [34] and Big Bang Sim-

ulation technique [41].

Distributed network latency database techniques use active measurements to build a knowl-

edge base about the underlying network. These approaches have been designed to efficiently

answer queries of the form: Who is the closest neighbor to node A in the network? Since these

schemes are based on direct measurements they have better accuracy, however they do also

inject more traffic into the network compared to the landmarks-based and multidimensional-

scaling based techniques. Meridian [143] is such a technique.

Among these techniques we find that the landmarks-based and multidimensional-scaling

based latency estimation techniques are approprite for finding all-to-all path latencies. Dis-

tributed network latency database techniques, on the other hand, are not desirable for our target

area, because they are not designed to retrieve all-to-all link latencies. They are, however, de-

sirable for leader election scenarios, and discovering the closest neighbor for a node.

3.9 Summary of the main points

The previous surveys aimed at identifying existing work that address some or preferrably all of

the problems in distributed interactiv applications. To do this we surveyed a range of research

areas and brief conclusions were given for each survey.

We found that in the area of overlay multicast protocols there are many approaches that

have interesting ideas that are worth adopting and investigating in a dynamic application sce-

nario. For example, two latency optimizing spanning-tree algorithms from the authors of AM-

cast [116, 115], compact tree and balanced compact tree, are both evaluated in chapter 9.

Furthermore, ideas from Tmesh [137], which investigated including shortcut edges to pre-

constructed trees, are evaluated in chapter 11. The group management approach from the cen-

tralized ALMI [101] may also prove valuable in a scenario with multiple dynamically changing

subgroups, and chapter 5 evaluates similar group management approaches through empirical

studies and experiments.
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For an overlay network construction we found several suitable spanning-tree and Steiner-

tree algorithms [116, 100, 16]. However, we were unable to find large comparative studies that

identified algorithms that are suitable for distributed interactive applications. Although Shi et

al. [116] did propose and study some spanning-tree algorithms that are likely to be suitable, they

did not fully study the effects in a dynamic application scenario. Chapter 9 and 10, respectively,

give comparative studies of a wide range of spanning-tree and Steiner-tree algorithms. A similar

study for subgraph (mesh) construction algorithms is conducted in chapter 11.

We also found several dynamic-tree algorithms that support dynamic tree manipulations [145],

where typical operations included insert and remove of single nodes, and also online rearrange-

ment of multicast trees [86]. This functionality is exactly what is needed in a dynamic ap-

plication scenario. However, we did not find studies that investigated how the dynamic tree

algorithms perform when the group sizes vary and multiple reconfigurations are conducted.

Chapter 12 performs such a study and includes a wide range of dynamic tree algorithms, and

chapter 13 investigates dynamic subgraph algorithms. Furthermore, chapter 14 investigates

algorithms for online rearrangements that combine dynamic tree algorithms and Steiner-tree

algorithms, and also dynamic subgraph algorithms and Steiner subgraph algorithms.

Furthermore, to retrieve all-to-all path latencies we need measurement or estimation tech-

niques, and in our survey we found such latency estimation techniques [113, 34]. Evaluations

are found in chapter 6. However, we did not find any work that investigates the interoperability

between latency estimation techniques and a centralized group communication approach that

includes core-node selection algorithms and spanning-tree and dynamic tree algorithms. Chap-

ter 7 and 15 aims to highlight some of the unanswered questions regarding their cooperation.

In summary, the main drawback of existing related work is the lack of large comparative

studies that investigate the effects of algorithms in a dynamic application scenario. In addition,

many studies do not take into account all the necessary performance measurements in order to

quantify their results sufficiently. This thesis aims to present such comparative studies using the

performance measurements that are necessary for a sufficient study.

Before the comparative studies, we present a wide range of graph theoretical overlay net-

work design problems, and also some algorithmic terms and performance measures.



Chapter 4

Overlay network design:

Problems in graph theory

Chapter 2 introduced the interactivity and dynamicity as features of distributed interactive appli-

cations that require low-latency networks for application-specific event distribution. The prob-

lem of constructing such low-latency networks has been studied for many years using graph

theory.

Graph theory is the study of graphs, which are mathematical structures that consist of objects

from a given collection and their relational characteristics.

The origin of graph theory can be traced back to Euler’s work on the Konigsberg-bridges prob-

lem (1735), which subsequently led to the concept of an Eulerian graph [52]. The concept of

a tree, a connected graph without cycles, appeared implicitly in the work of Gustav Kirchhoff

(1824-87), who employed graph-theoretical ideas in the calculation of currents in electrical net-

works or circuits. Later, Arthur Cayley (1821-95), James J. Sylvester (1806-97), George Polya

(1887-1985), and others use ’tree’ to enumerate chemical molecules.

In our work, we use low-latency overlay networks to multicast application events through.

Therefore, we introduce a range of overlay network design problems found in graph theory that

address low-latency issues. Generally, graph theoretical problems are used to formally describe

problems that are applicable to real-world issues. The problem-area in the thesis is distributed

interactive applications for real-time interaction, but graph theory can be used in many other

application settings.

There are many advantages by formally describing real-world problems using graph theory.

One advantage is that it makes it easier to discuss and compare algorithms when they can be

linked to specific graph theoretical problems that are independent of the algorithms solving it.

In addition, many graph theoretical problems are N P-complete, that is, no polynomial time

algorithm exists. Therefore, it is important to identify these inherently difficult problems, such

that alogrithm designers can focus on solving them approximately.

61
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These observations are the motivation for why we present the overlay network design prob-

lems in this chapter. They can be used by overlay network designers that are interested in

identifying how hard their problems are, and whether there are similar problems that are sim-

pler to solve or approximate. In the context of the thesis, we use the overlay network design

problems to discuss and compare the algorithms we evaluate in later chapters.

The rest of the chapter is organized in the following manner. Section 4.1 introduces the

graph theoretical terms and symbols that we use in the thesis. Section 4.2 presents relevant al-

gorithmic terms and a few graph algorithmic metrics. Section 4.3 introduces some of the most

basic graph algorithms for graph search and overlay construction, namely, depth-first search,

breadth-first search, Dijkstra’s shortest-path tree and Prim’s minimum-cost spanning-tree. Sec-

tion 4.4 introduces a range of graph search problems found in graph theory. Then, we introduce

a wide range of graph theoretical overlay network design problems from section 4.5 to 4.12.

The focus is particularly on graph theory problems for constructing trees and subgraphs that are

optimized for minimum cost and latency. The problem areas are spanning-tree and -subgraph

problems, Steiner-tree and -subgraph problems, dynamic-tree and -subgraph problems and var-

ious other graph theory problems that address overlay network design issues.

4.1 Graph theoretical terms and symbols

Graph theoretical terms and symbols are introduced in the following. The terms and symbols

are used in later chapters to introduce specific algorithms, and explain their behavior.

4.1.1 The graph structure

Graph theoretical algorithms operate on a graph structure G holding a set of nodes (vertices) V

and links (edges) E. The graph structure may, for example, be a virtual picture of a network,

with vertices scattered around and edges connecting them.

Definition 1 Graph structure: A graph G = (V, E) contains a finite non-empty set V of vertices

and a set E of unordered pairs of distinct vertices of G called edges. An edge e ∈ E which holds

the vertex pair u, v ∈ V makes e = (u, v).

A graph G can be either directed or undirected. If G is directed it is common to refer to E as a

set of arcs, where an arc is an edge with a single direction. If G is undirected the set E contains

a set of undirected edges, which is equal to each edge being bi-directional (goes both ways).

Definition 2 Vertex degree: The degree, deg(v), of a vertex v ∈ V is the number of graph

edges e ∈ E that touch v. deg(v) = |Esub|, where Esub holds the edges e = (v, u) ∈ E that

includes v ∈ V .
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Figure 4.1: A graph structure G = (V, E, c), and examples of degree, walk, path and cycle.

Two vertices are adjacent if they share a common edge, for example, u, v ∈ V are adjacent if

e = (u, v) ∈ E. The set of neighbours, N(v), of a vertex v is the set of vertices which are

adjacent to v. The degree of a vertex is also the cardinality of its neighbour set.

Definition 3 Walk, trail, path and cycle: A walk in a graph G = (V, E) is a sequence of vertices

v0, v1, . . . vn, 0< i < n, such that (vi, vi+1) are all edges in G. The length l of a walk is l = n−1.

A trail is a walk in which no edge is repeated. A path is a walk in which no vertex is repeated.

A cycle is a walk in which v0 = vn and no other vertex is repeated.

A walk is an alternating sequence of vertices and edges, with each edge being incident (attached)

to the vertices immediately preceeding and succeeding it in the sequence. A trail is a walk with

no repeated edges. A path is a walk with no repeated vertices. A walk is closed if the initial

vertex is also the terminal vertex. A cycle is a closed trail with at least one edge and with no

repeated vertices except that the initial vertex is the terminal vertex. The length of a walk is the

number of edges in the sequence defining the walk. Thus, the length of a path or cycle is also

the number of edges in the path or cycle.

Definition 4 Weighted graph structure: A weighted graph G = (V, E, c), contains a set V of

vertices, a set E of edges, and an edge cost function c : E → R
+ (only positive reals are used

throughout the thesis). Each edge e ∈ E, has an associated cost c(e).

Figure 4.1 shows a graph G = (V, E, c) and illustrates what G consists of. In addition, the figure

has a few examples of degree, walk, path and cycle.
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4.1.2 Graph distances and locations

There are many different ways for defining distances, locations, costs, etc, in graphs. The next

descriptions are formal definitions of the ones that are used in the thesis.

Definition 5 Total (graph) cost: The cost of a weighted graph G is the sum of all the edge-costs

in the graph, cost(G) =
∑

e∈E
c(e).

Definition 6 Distance: The distance between u ∈ V and v ∈ V is denoted dist(u, v), and is

the minimum cost of any path from u to v.

Definition 7 Average (pair-wise) distance: The average (pair-wise) distance is given by the

arithmetic mean of all distances in the graph average(G) = 1

(|V |2−|V |)
×
∑

u6=v∈V
dist(u, v).

Definition 8 Eccentricity: The eccentricity of u ∈ V is the maximum value of dist(u, v), for

all v ∈ V , and it is defined ecc(u) = max{dist(u, v) : v ∈ V}.

Definition 9 Radius: The radius of G is the minimum eccentricity among the vertices of G, and

it is defined radius(G) = min{ecc(u) : u ∈ V }.

Definition 10 Diameter: The diameter of G is the maximum eccentricity among the vertices of

G, and it is defined diameter(G) = max{ecc(u) : u ∈ V}.

Definition 11 Center: The center of G is the set of vertices of eccentricity equal to the radius,

and it is defined center(G) = {u ∈ V : ecc(u) = radius(G)}.

For any graph G the diameter is at least the radius, and at most double the radius.

A tree has a center set of size one or two. If it contains one vertex, the tree is called monopo-

lar or central. If it has two vertices, the tree is called dipolar or bicentral. For a general graph,

there may be several centers and a center is not necessarily on a diameter.

Definition 12 Absolute 1-center: The absolute 1-center of G is the point u minimizing the

function f (x) = maxv∈V dist(u, v).

The absolute 1-center may be any point in the graph. Different from the graph model usually

used, any interior point in addition to the two endpoints (vertices) of an edge is referred to as a

point in the graph.

Definition 13 Median: The median vertex of G is the vertex with minimum total distance to all

vertices. The median vertex minimizes the function f (v) =
∑

u∈V
dist(v, u).

Figure 4.2 illustrates some examples of distances, locations, costs, etc, for an example graph

G = (V, E, c).
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Figure 4.2: A graph structure G = (V, E, c), and examples of distances.

4.1.3 Graph connectivity and topologies

Graph connectivity is one of the basic concepts of graph theory, and is closely related to the

theory of network flow problems [136]. A graph’s connectivity is an important measure of its

robustness as a network.

Definition 14 Connected vertices: Two vertices u, v ∈ V are connected if there is a path from

u to v in G.

Definition 15 Connected graph: A graph is connected if every pair of distinct vertices in G

are connected.

Definition 16 Connected acyclic graph: A connected acyclic graph is a connected graph in

which there are no cycles.

Definition 17 Connected cyclic graph: A connected cyclic graph is a connected graph in

which there are cycles.

Definition 18 Vertex-cut and vertex-connectivity: A vertex cut of a graph G = (V, E) is a set

of vertices whose removal renders G disconnected. The vertex-connectivity KV (G) is the size of

a smallest vertex cut.

Definition 19 Edge-cut and edge-connectivity: An edge cut of a graph G = (V, E) is a set

of edges whose removal renders G disconnected. The edge-connectivity KE(G) is the size of a

smallest edge cut.
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Figure 4.3: A graph structure G = (V, E, c), and examples of connectivity.

Definition 20 Connected spanning subgraph: A connected spanning subgraph G′ = (V, E′)

on G = (V, E) is a connected graph in which there is a minimum of one path between all v ∈ V ,

and E′ ⊆ E.

Definition 21 Connected spanning tree: A connected spanning tree T = (V, E′) on G = (V, E)

is a connected acyclic graph in which there is exactly one path between all v ∈ V , and |E′| =

|V | − 1.

Definition 22 Connected spanning mesh: A connected spanning mesh M = (V, E′) on G =

(V, E) is a connected cyclic graph, in which there are paths between all v ∈ V , and E′ ⊆ E.

Definition 23 Complete graph: A graph G is a complete graph (also called clique, and a full

mesh) if every pair of vertices in V are adjacent.

Definition 24 k-Connected graph: A graph G is k-connected if for every proper subset Y of V

with fewer than k elements, G − Y is connected.

A connected graph G has connectivity k if G is k-connected but not (k + 1)-connected. A

complete graph on k+ 1 vertices is defined to have connectivity k. A connected spanning tree

is a 1-connected graph, in which the removal of any single inner node disconnects the graph.

It is common to use the terms sparse and dense when describing the connectivity of a graph.

For example, a connected acyclic graph is the most sparse graph possible, similarly, a complete

graph graph is the most dense graph possible.

Figure 4.3 illustrates some examples of connectivity, etc, for the graph G = (V, E, c) from

figure 4.1.
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4.2 Graph algorithmic terms and symbols

The performance of an algorithm A can be measured in terms of the quality of the outcome

(result), the time it took and the space that was used. The performance of an algorithm is heavily

dependent on its complexity in relation to the problem it is aiming to solve.

4.2.1 Algorithm complexity

The complexity of an algorithmA is an important indication of its execution costs, and includes

time and space complexity. The time complexity is, for example, the number of steps n it takes

to solve an instance of a problem as a function of the size of the input, using the most efficient

algorithm. The space complexity is, for example, the amount of memory (space) the algorithm

requires to finish.

Generally, a Big O notation is used to describe the upper-bound of the complexity, for ex-

ample, O(n), O(n2), O(n3), etc. For a specific algorithm, the Big O notation is often said to de-

scribe its worst-case complexity. In addition to the upper-bound, there is also the lower-bound,

Big Ω notation, and the tight-bound, Big Θ notation. The lower-bound, Big Ω, is often used in

theoretical studies of algorithms. It signifies the absolute lowest complexity that an algorithm

can have in order to solve a given problem. However, this does not mean that such an algorithm

exists. The tight-bound, Big Θ, is used to describe how the complexity will "normally" be. It

is often used to describe how the complexity of an algorithm is in the average-case. When all

of the complexity bounds are well-defined for a given algorithm, it is clearer how the algorithm

behaves, and the algorithm is said to have tight behavioral bounds. If, for example, only the

worst-case behavior is defined, the algorithm is defined with a loose behavioral bound.

The two most famous complexity classes are P and N P. If a problem is in P it is also in N P,

but problems in N P are not always in P. Generally the relation is considered to be P ⊆ N P, but,

one of the most famous open problems is whether P = N P. A problem belonging to complexity

class P is solved in polynomial time, that is, an efficient algorithm exists. The complexity class

N P-complete is a subset of N P. An N P-complete problem is considered to be a tough problem

to solve, but it can be verified quickly. For example, an N P-complete problem is said to be

solvable by a non-deterministic machine in polynomial time, in addition to being verifiable in

polynomial time. Problems that are in N P but not in P, are yet to be solved by a polynomial time

algorithm, but rather have exponential time complexity, that is, only inefficient algorithms exist.

Heuristics are algorithms that are generally used to approximate close-to-optimal solutions for

problems that are in N P but not in P.
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4.2.2 Algorithm types

A deterministic algorithm is an algorithm for which every step of the algorithm, the next step can

be deterministically predicted. A non-deterministic algorithm is an algorithm for which every

step of the algorithm, multiple different next steps may be taken, and no exact specification for

which one to take exists. Non-deterministic algorithms are often used in theoretical algorithm

design as specifications for algorithms that do not care how they get to a valid solution, as long

as they get there. Deterministic algorithms are often the practical implementations of problem

specifications. However, exceptions do exist, for example, genetic algorithms [108].

Centralized algorithms are algorithms that run on a single entity, and the execution does

not rely on cooperating with other entities to complete. For example, the single entity may be

a computer that run and complete the algorithm "stand alone". Distributed algorithms, on the

other hand, are run on multiple entities and must cooperate with other entities to complete.

For example, distributed algorithms are often run on each (entity) computer in a computer

network. Typically, the computers are triggered to start in an initial state and then each of them

compute sub-solutions that are exchanged with their neighbors. The state of the sub-solution

evolves based on the information in incoming messages and how the algorithm continues the

calculation.

Both centralized and distributed algorithms may be implemented as a sequential or a paral-

lel algorithm. Sequential algorithms are run in sequence such that the sub-solutions are merged

deterministically as the algorithm evolves. Parallel algorithms run in parallel on multiple en-

tities such that the sub-solutions are potentially merged non-deterministically as the algorithm

evolves.

4.2.3 Algorithm choices

A graph algorithm makes choices at each step of the algorithm. The choices may, for example,

be based on some calculated values from the current sub-solution.

Random algorithms do not calculate anything from the sub-solutions, they only base the

decisions on the validity of the next step. There may be algorithms that are pseudo-random, in

the sense that they have sub-routines that are random, and others that do some calculations to

increase the probability for the random sub-routines to randomly choose a "good" next step.

Greedy algorithms always choose the local-optimum to be the next sub-solution. Greedy

algorithms are fast and works well both as centralized and distributed algorithms. The property

of choosing the local-optimum often lends itself to finding the global-optimum, for example, the

well known tree problems minimum-cost spanning tree problem, and shortest-path tree problem

(see section 4.5).

Dynamic programming algorithms break the problem into smaller subproblems, and solve

these problems optimally, and then construct an optimal solution from the original problem.
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These algorithms are often quite complex, because, figuratively, they calculate every local-

optimum to retrieve the global-optimum.

4.2.4 Algorithm performance metrics

If an algorithm always solves a given problem, it is considered to be exact. However, many

problems are very hard to solve, such that algorithms solve a problem approximately. Graph

algorithms that return optimal solutions, given a problem, are only comparable by time and

space complexity, because the solutions have identical properties. The algorithm performance

metrics related to time and space complexity are described as:

• The execution time of an algorithm is the time it takes before a solution is available. It is

important in time-dependant situations.

• The execution space of an algorithm is the space it requires to reach a solution. It is

important when algorithms are executed in entities with limited memory.

Approximation algorithms are often called heuristics of a given problem, and are compa-

rable in terms of the quality of the result. The competetive ratio CR is a measure to how well

a heuristic performs in terms of any given metric, in comparison to the optimal solution. For

example, given an optimal solution TOPT and a sub-optimal solution T , then the competetive

ratio is CR = T/TOPT .

It is also common to compare the solutions of algorithms that address slightly different but

related problems. For example, tree algorithms produce a tree from an input graph, but there are

many different tree algorithm problems, thus, the resulting trees vary in terms of graph metrics.

There are quite a few performance metrics for graphs, where the most common are related

to cost and degree. Cost is a collective (abstract) term used for edge weights in a graph G =

(V, E, c). It is often mapped from network latency or bandwidth, hop-count and euclidian-

length. The cost term in graphs is mostly related to spanning-costs or path-costs.

• Spanning-cost: A spanning-cost is a graph metric which is calculated by summarizing

edge-weights in no relative order, and are typically related to the graph cost.

• Path-cost: A path-cost is a graph metric which is calculated by summarizing edge-

weights in a relative order, and are typically certain paths in a graph that exhibit a property.

Many common graph performance metrics are categorized as either a path-cost or a spanning-

cost metric. In the following, we introduce many of the graph performance metrics that are

addressed in the thesis.

• The total cost of a graph is the sum of all the edge weights. It is a spanning-cost and is

used as a metric in algorithms that aim to minimize the network costs.
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• The diameter of a graph is the maximum pair-wise cost between any two vertices. It is a

path-cost and is used as a metric in algorithms that aim to minimize the network latencies.

• The radius of a graph is the minimum pair-wise cost between any two vertices. It is a

path-cost and is used as a metric in algorithms that aim to minimize the source destination

latencies/costs.

• The average pair-wise cost of a graph is the is the sum of all shortest paths among the

nodes in a graph, divided by the number of nodes. It is a path-cost and is used as a metric

in algorithms that aim to minimize the pair-wise latencies.

• The shortest-path cost is the shortest possible path between two vertices in a graph. It

is a path-cost and is used as a metric in algorithms that minimize the source destination

latencies/costs.

• The relative delay penalty is the cost/latency penalty of a sub-optimal path compared to

the optimal path. Relative delay penalty is a path-cost metric and is common in routing

problems, and subgraph problems.

• The stress (degree) of a vertex is the number of edges to or from a single vertex. It

is common to measure the average degree of non-leaf nodes in a graph, and also the

maximum degree of any node in a graph.

Algorithms that address problems of evolving graphs based on node- and edge-addition/removal

have other metrics specifically related to the problems. For example, upon node- or edge-

addition/removal the total cost of the graph changes.

• The stability in a graph is the number of edge changes that occur across node- and edge-

addition/removal. It is used as a metric in scenarios in which there is client dynamics

(churn).

• The degradation of a graph is related to the competetive ratio, and is how much a given

graph metric differs from the optimal. It is used as a metric to study non-optimal heuris-

tics.

4.2.5 Algorithm optimization goals

Graph algorithms take is input a graph G, does computation on it and tries to optimize to-

wards a given algorithm optimization goal. A graph algorithm that construct a subgraph on a

graph G often optimizes towards a minimum-cost subgraph, a shortest-path-cost subgraph, or

a minimum-diameter subgraph. The problem of computing a minimum-cost subgraph is well

known and one of the oldest problems in graph theory. One example is the compuation of
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minimum-cost spanning tree. Computing a shortest-path-cost subgraph is similarly well known

and old, where one example is the computation of a shortest-path-cost tree. Other optimization

goals include a minimization of distances between different sets of nodes in a graph. Later in the

chapter, we introduce a wide range of graph theory problems that define specific optimization

goals that must be addressed by algorithms.

4.2.6 Algorithm constraints

Algorithms that take several optimization metrics into account often do this by choosing one

metric as its optimization goal, and then address the remaining metrics by adding constraints.

In general, adding constraints to an algorithm increases the algorithm complexity if an opti-

mal solution is targeted. The most common constraints for subgraph construction are degree,

spanning-cost, and path-cost constraints:

• A degree constraint is related to how many edges a vertex is allowed to have attached to

it in a graph.

• A spanning-cost constraint is related to how high a spanning-cost (for example, total cost)

is allowed to become in a graph.

• A path-cost constraint is related to how high a path-cost (for example, diameter) in a

graph is allowed to become.

A degree limited subgraph algorithm should build subgraphs where all vertices have a de-

gree of less than or equal to its degree limit. Path-cost constraints are, for example, diameter and

radius, while, spanning-cost constraints mostly is the total cost. When degree, spanning-cost

and path-cost constraints are combined in one algorithm, it makes it complicated for an algo-

rithm to find a solution that does not violate the constraints. For example, many constrained

subgraph heuristics cannot guarantee that a constrained subgraph is found.

The success rate of an algorithm is the rate of which it is able to solve a problem given a

graph instance. The success rate of an algorithm depends on the constraint and the input graph.

If the constraints are strict, it is harder to solve a given problem, than if the constraints are loose.

For some constraints, it is even impossible to solve a problem, for example, finding a spanning

subgraph G′ on a graph G such that the diam(G′) < diam(G) is impossible. Therefore, one

major problem related to any constrained overlay network design problem is how the constraints

are determined.
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4.3 Basic graph algorithms

There are graph algorithms that are fundamental in their behavior, and have been sources of

influence and adaptation through many years. The next few sections introduce some basic

graph search algorithms and subgraph construction algorithms that are among the most basic

graph algorithms in the literature.

4.3.1 Basic algorithms for graph search

The standard and most basic graph search algorithms are depth first search and breadth first

search. Many other graph search and tree algorithms extend these algorithms.

Breadth first search (BFS) is an algorithm for traversing a graph G = (V, E). Informally, the

algorithm starts from a single source vertex s ∈ V and explores the neighbors. Then for each

neighbor, it explores the unexplored neighbors. The algorithm terminates when every reachable

vertex in G from v has been explored. The time complexity of BFS is also O(|V |+ |E|). The

breadth-first search algorithm is so named because it discovers all vertices at distance k from

the source vertex s before discovering any vertices at distance k+ 1.

The BFS algorithm is usually employed to find shortest paths and distances from a given

source, but only in graphs with uniform edge weights. BFS disregards graph edge weights, but

rather treats every edge as a single hop. Hence, it finds the shortest paths in terms of hops. The

BFS algorithm also finds the hop-eccentricity of a node, and if BFS is executed from each node,

it finds the hop-diameter.

Depth first search (DFS) is an algorithm for traversing a graph G = (V, E). Informally, the

algorithm starts from a single source vertex s ∈ V and explores as far as possible along each

branch, before backtracking. The algorithm terminates when every reachable vertex from in G

from v has been explored. The time complexity of DFS is O(|V |+ |E|).

The DFS algorithm is usually employed as sub-routines in another algorithm. For example,

the DFS is very efficient for finding the maximum shortest-path and distance (eccentricity) of

a node in acyclic graphs (trees). Other applications, include topological sorting for directed

graphs and finding strongly connected components in a graph [58].

Diameter search algorithm in graphs (cyclic and acyclic)

Algorithms that search for the diameter in graphs differ depending on whether the graph is

cyclic or acyclic (mesh or tree). If the graph is cyclic, a diameter algorithm is more complex

than if the graph is acyclic, that is, a tree. For cyclic graphs the diameter may be obtained by

running Dijkstra’s SPT from each node. For acyclic graphs the diameter is obtained by, first,

finding the eccentricity path (longest shortest path) of a random node v ∈ V using DFS, then,
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DFS is started from the node u that is farthest away from v. The eccentricity of u is equal to the

diameter of the tree [144]. Algorithm 1 presents the algorithm for finding the diameter of trees.

Algorithm 1 TREE-DIAMETER(T ):
In: A tree Tr = (V, E, c) rooted at r.
Out: The diameter of T .

1: Root T at an arbitrary vertex r.
2: Use DFS to find the vertex v farthest from r. {eccentricity-path’s end-point}
3: Root T at v.
4: Use DFS to find the eccentricity of v.
5: return eccentricity of v; {as the diameter of T .}

4.3.2 Basic algorithms for overlay construction

Overlay construction algorithms build a subgraph on an input graph that contain a subset of the

edges and vertices of the input graph. Most overlay construction algorithms are based on one

or more fundamental graph algorithms, for example, breadth first search, that are adapted and

given some additional logic. The following algorithms are presented because they are the the

algorithmic foundation for the evaluated overlay construction algorithms in the thesis.

Three basic spanning-tree algorithms are Prim’s minimum-cost spanning-tree (MST) algo-

rithm, Kruskal’s MST algorithm, and Dijkstra’s shortest-path tree (SPT) algorithm [58]. These

algorithms are the foundations of a wide range of subgraph construction algorithms. Prim’s

MST builds the tree starting from a given source, and for each iteration, it connects a ver-

tex through the minimum cost path to the tree. Algorithm 2 presents an algorithm for Prim’s

MST. Dijkstra’s SPT works similarly, it builds a shortest-path tree from a given source, and

adds the next vertex that has the shortest path to the source. Algorithm 4 presents an algorithm

for Dijkstra’s SPT. Prim’s MST algorithm and Dijkstra’s SPT algorithm [58] use similar ideas

to breadth first search. Kruskal’s MST algorithm starts with a forest of trees that are merged

through minimum-cost edges until there is only one left. Algorithm 3 presents an algorithm for

Kruskal’s MST. Chapter 9 introduces many spanning-tree algorithms that are based on ideas

from Prim’s, Dijkstra’s and Kruskal’s algorithms.

4.4 Graph search problems

A graph search problem typically includes a search criterion that should be fulfilled by search-

ing in a graph G. The search criterion may be to search for one or more nodes or paths that

exhibit certain properties, for example, return the graph diameter, return the node with lowest

eccentricity, etc. Graph search problems are important in the search for well-placed nodes in
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Algorithm 2 PRIM-MINIMUM-SPANNING-TREE(G, s):
In: A connected graph G = (V, E, c), and a source s ∈ V .
Out: A connected spanning-tree T = (V, E′).

1: for each u ∈ V do

2: distance[u] = infinity
3: parent[u] = NIL
4: end for

5: distance[s] = 0
6: Q = V (G) {Minimum priority queue}
7: while Q 6= ; do

8: u = ExtractMin(Q)
9: for each v ∈ V adjacent to u do

10: if v ∈ Q and dist(u, v) < distance[v] then

11: parent[v] = u

12: distance[v] = dist(u, v)

13: end if

14: end for

15: end while

16: return createTree(G, parent, distance)

Algorithm 3 KRUSKAL-MINIMUM-SPANNING-TREE(G):
In: A connected graph G = (V, E, c).
Out: A connected spanning-tree T = (V, E′).

1: E′ = ;

2: for each u ∈ V do

3: Make-Set(u)
4: end for

5: sort the edges e ∈ E into nondecreasing order by weight c(e)

6: for each edge e = (u, v) ∈ E, taken in nondecreasing order by weight c(e) do

7: if Find-Set(u) 6= Find-Set(v) then
8: E′ = E′ ∪ {u, v} {only merge disjoint sets}
9: end if

10: end for

11: return T

overlay networks. Several core-node selection algorithms that address these problems are in-

troduced and evaluated in chapter 7. The core-nodes in that chapter are used as administrators

for groups of clients. Therefore, it is important to reduce the latencies from the clients to the

core-nodes. The following graph search problems are related to vertex search in graphs.

Definition 25 Minimum k-center problem: Given a weighted graph G = (V, E, c), and a k > 0.

Find a k-center set, which is a subset C ⊆ V with |C |= k, such that the maximum distance from

a vertex to its nearest center max
v∈V

min
u∈C

dist(v, u) is minimized.
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Algorithm 4 DIJKSTRA-SHORTEST-PATH-TREE(G, s):
In: A connected graph G = (V, E, c), and a source s ∈ V .
Out: A connected spanning-tree T = (V, E′).

1: for each u ∈ V do

2: distance[u] = infinity
3: parent[u] = NIL
4: end for

5: distance[s] = 0
6: Q = V (G) {Minimum priority queue}
7: while Q 6= ; do

8: u = ExtractMin(Q)
9: for each v ∈ V adjacent to u do

10: if v ∈ Q and distance[u] + dist(u, v) < distance[v] then

11: parent[v] = u

12: distance[v] = distance[u] + dist(u, v)

13: end if

14: end for

15: end while

16: return createTree(G, parent, distance)

The N P-complete minimum k-center problem, is the problem of finding a subset C ⊆ V of k

vertices, such that the maximum distance from any remaining vertex in V − C to a node in C is

minimized. The problem is applicable to settings in which it is important to reduce the latency

from application clients to, for example, a back-bone of core-nodes that are inter-connected

with high-capacity links.

Definition 26 Minimum k-median problem: Given a weighted graph G = (V, E, c), and an

integer k > 0. Find a k-median set, which is a subset V ′ ⊆ V with |V ′| = k, such that the sum

of the distances from each vertex to its nearest median
∑

v∈V
minw∈V ′ dist(v, w) is minimized.

The N P-complete minimum k-median problem, is similar to the minimum k-center problem,

and is the problem of finding a subset V ′ ⊆ V of k vertices, such that the sum of the distances

from each vertex v ∈ V to to its nearest median vertex w ∈ V ′ is minimized.

Definition 27 k-minimum-eccentricity problem: Given a weighted graph G = (V, E, c), and

an integer 0 < k < |V |. Find a set D ⊂ V of size k, such that the sum of the eccentricities

yielded by the vertices v ∈ D is the smallest.

The k-minimum-eccentricity problem is the problem of finding a vertex set D ⊂ V of size k,

such that these nodes d ∈ D have the lowest eccentricities among the vertices v ∈ V . The

problem differs from the minimum k-center and k-median problems, in that the core-node set

D is not chosen such that a non-core-node is close to one core-node. The core-node set is rather

chosen such that all core-nodes are within minimum distances to the non-core-nodes.



76
Chapter 4. Overlay network design:

Problems in graph theory

Definition 28 k-minimum-pairwise problem: Given a weighted graph G = (V, E, c), and an

integer 0 < k < |V |. Find a set D ⊂ V of size k, such that the sum of the distances from the

vertices u ∈ D to all nodes v ∈ V is the smallest.

The k-minimum-pairwise problem, is similar to the k-minimum-eccentricity problem, and is

the problem of finding a subset D ⊂ V of k vertices, such that the average pair-wise distances

from the vertices u ∈ D are the smallest of all the nodes v ∈ V .

4.5 Spanning-tree problems

A spanning-tree is applicable to many scenarios, and in the distributed interactive applications

the intention is to use the spanning-tree as an overlay network and multicast events in the over-

lay tree. Chapter 3.4 gave some background and advances in spanning-tree algorithms, and

chapter 9 evaluates a wide range of spanning-tree algorithms that address the spanning-tree

problems that are introduced in the following.

Definition 29 Spanning-tree problem: Given a connected undirected weighted graph G =

(V, E, c), where V is the set of vertices, E is the set of edges, and c : E → R is the edge cost

function. Find a connected undirected subgraph (tree) T = (V, ET ), without cycles.

The basic spanning-tree problem requires that an acyclic graph (tree) is constructed that covers

all the vertices in a given input graph. However, this basic spanning-tree problem lacks a cost-

related optimization goal, and is therefore rarely used. One typical optimization goal is to

construct a minimum-cost spanning-tree.

The following spanning-tree problems address various low-latency and low-cost require-

ments, and the ultimate goal is to try and identify problem that fit the application requirements

identified in chapter 2.3. First, spanning-tree problems that require minimum total-cost solu-

tions are introduced. The total-cost of T is the sum of the edge weights in T . Secondly, a

range of spanning-tree problems are introduced that address diameter requirements in T . The

diameter of T is defined as the longest of the paths in T among all the pairs of nodes in V .

Finally, spanning-tree problems that address the radius are given. The radius is the minimum

eccentricity in T and is associated to one node. The radius problems are used as source-tree

problems, such that, the radius is the maximum shortest path from a given source node. Next,

the introduction of the spanning-tree problems.

4.5.1 Spanning-tree problems and the minimum-cost

The spanning-tree problems that require minimum-cost spanning-trees are among the oldest

spanning-tree problems. The minimum-cost requirement is important to reduce the network
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Figure 4.4: The minimum-cost spanning-tree of G = (V, E, c).

cost, and fits for application types that do not yield stringent latency requirements. Chapter 2.5

includes a discussion of the minimum-cost metric.

Definition 30 Minimum-cost spanning-tree problem (MST): Given G, find a spanning-tree

T = (V, ET ), where the
∑

e∈ET
c(e) is minimized.

Informally, an MST algorithm computes a tree that contains the least cost edges in E connecting

every vertex in V , definition 30. MST was first discovered by Boruvka [58], and later refined or

rediscovered by several authors, most famously, Prim, Kruskal and Sollin [58, 93]. Figure 4.4

illustrates the minimum-cost spanning-tree of an example G.

Definition 31 Degree-limited minimum-cost spanning-tree problem (d-MST): Given G, a de-

gree bound deg(v) ∈ N for each vertex v ∈ V ; find a spanning-tree T , where the
∑

e∈ET
c(e) is

minimized, subject to the constraint that degT (v)≤ deg(v).

A d-MST algorithm builds a minimum-spanning-tree T in which each vertex is subject to a

degree limit. d-MST heuristics found in the literature often employ Prim’s MST algorithm. We

have implemented a d-MST heuristic that we call dl-MST [95] (chapter 9).

4.5.2 Spanning-tree problems and the diameter

Spanning-tree problems that address diameter requirements are important to applications that

require low-latency networks for distribution of data. The diameter-reducing spanning-tree

problems are many and they are typically some combination of diameter, total-cost and degree

requirements and constraints. Many of them (diameter-reducing spanning-tree problems) are
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Figure 4.5: The minimum diameter spanning-tree of G = (V, E, c).

also N P-complete, such that there are no polynomial time algorithm that solve the problems

exact. Chapter 9 include polynomial time heuristics that address the following diameter-related

spanning-tree problems.

Definition 32 Minimum diameter spanning-tree problem (MDST): Given G, find a spanning-

tree T of G such that the maximum weight shortest path p ∈ T ,
∑

e∈p
W (e) is minimized.

An MDST-algorithm builds a tree of minimum diameter, and is solvable in polynomial time.

Figure 4.5 illustrates a minimum diameter spanning-tree. Ho, Lee, Chang and Wong [68] con-

sidered the case in which the graph G is a complete Euclidian graph induced by a set of points

in the Euclidian plane. They call this special case the geometric MDST problem. They prove

that there is an optimal tree in which either one or two vertices in V are connected to the remain-

ing vertices. The result extends to any complete graph whose edge lengths satisfy the triangle

inequality, which holds for overlay networks that are built from shortest path links from the

network layer.

For general graphs, a Steiner minimum diameter tree algorithm is to search for the absolute

1-center of a graph (chapter 4.1.1) and connect the nodes to that point. The absolute 1-center

is the one point that may be located at any point in the graph (including edges), that has the

lowest radius. For a complete graph, finding a simple heuristic for building a close-to-optimal

MDST reduces to finding a single node located close to the center of the graph that connects to

the remaining nodes through shortest paths (direct links). The topology of the resulting tree T

is that of a star. Consequently, the work-load (stress) of the center node becomes significant as

the degree increases. The degree is the number of incident edges a node has. Thus, a solution

is not viable unless the center node has a considerable amount of resources.
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Definition 33 Bounded diameter minimum-cost spanning-tree problem (BDMST): Given G,

and a bound D > 0. Find a minimum-cost spanning-tree T on G, where
∑

e∈ET
c(e) is minimized

and the diameter of which does not exeed D.

A BDMST-algorithm builds a tree of minimum total cost within a diameter bound. An advan-

tage of the N P-complete BDMST problem over MDST is that it is possible to tune the tree

diameter while minimizing the total cost. However, one problem with BDMST remains the po-

tentially high node degree of central nodes in the tree when the diameter bound D is stringent.

Definition 34 Minimum diameter degree-limited spanning-tree problem (MDDL): Given G,

a degree bound deg(v) ∈ N for each vertex v ∈ V ; find a spanning-tree T of G of minimum

diameter, subject to the constraint that degT (v) ≤ deg(v).

An MDDL-algorithm builds a tree of minimum diameter while obeying the degree limits.

MDDL is N P-complete, nevertheless, it is relevant because it avoids the problems with stress

that beset spanning tree problems that do not have limitations on degree. One issue with the

MDDL problem is that it is a minimization of the maximum diameter within a degree limit,

which increases the complexity of a heuristic.

Definition 35 Bounded diameter degree-limited minimum-cost spanning-tree problem (BD-

DLMST): Given G, a diameter bound D > 0, and a degree bound deg(v) ∈ N for each v ∈ V ;

Find a minimum-cost spanning-tree T on G, where
∑

e∈ET
c(e) is minimized, subject to the con-

straint that the diameter does not exceed D, and degT (v) ≤ deg(v).

The N P-complete BDDLMST problem is identical to BDMST, but with degree limits for each

vertex. A BDDLMST-heuristic is able to produce trees with a diameter that is in accordance

with the diameter bound it received. This property is vital in cases of lighter application require-

ments, because the time complexity of the BDDLMST-heuristic decreases with looser diameter

bounds.

Definition 36 Bounded diameter residual balanced tree problem (BDRB): Given an undi-

rected weighted graph G, a degree bound deg(v) ∈ N for each vertex v ∈ V , and a diameter

bound D ∈ R; Find a spanning-tree T of G with diameter ≤ D that maximizes resT (v) =

deg(v)− degT (v), subject to the constraint that degT (v)≤ deg(v).

A BDRB-algorithm builds the "most balanced" tree that satisfies an upper bound on the diame-

ter. The most balanced tree is any tree that maximizes the smallest residual degree. However, a

balanced tree does not have an optimal diameter, instead, all nodes suffer.
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4.5.3 Spanning-tree problems and the radius

Spanning-tree problems that consider the radius of trees are similar to their diameter counter-

parts. These radius problems do not explicitly consider the diameter, but are often approximable

using faster spanning-tree heuristics.

Definition 37 Shortest-path tree problem (SPT): Given a weighted graph G, find a spanning-

tree T = (V, ET ), starting from a root node s ∈ V , where, for each v ∈ V − s the path p =

(v, . . . , s) minimizes
∑

vi∈p
c(e(vi, vi+1)), where e ∈ ET .

Informally, an SPT algorithm computes a tree that contains the shortest paths from a single

vertex v ∈ V to V − v, definition 37. The most famous algorithm solving SPT was proposed

by Dijkstra [58]. It was solved by Dijkstra and has a worst-case time complexity of O(n2). A

shortest-path tree is actually a simple MDST heuristic if the source vertex is selected on the

basis of its location in relation to the other nodes. Remember that in a complete graph, the

topology of a close-to-optimal MDST is a star, where the issue was the degree (stress) on the

center vertex. Hence, a degree limit is needed when using a shortest-path tree.

The following spanning-tree radius problems are used as source specific problems, such

that, the radius is the maximum shortest path from a given source node.

Definition 38 Minimum radius spanning-tree problem (MRST): Given G, a source s, find a

spanning-tree T of G such that the eccentricity of s is minimized.

The SPT problem can also be written as the MRST problem and solves the exact same problem.

Definition 39 Bounded radius minimum-cost spanning-tree problem (BRMST): Given G, a

source s, and a bound R > 0. Find a minimum-cost spanning-tree T on G, where
∑

e∈ET
c(e) is

minimized and the radius of which does not exeed R.

A BRMST-algorithm builds a tree of minimum total cost within a radius bound. BRMST is an

N P-complete problem. An advantage of BRMST over MRST is that it is possible to tune the

tree radius while minimizing the total cost. However, one problem with BRMST remains the

potentially high node degree of central nodes in the tree when the radius bound D is stringent.

If the source s is close to the center of G, a BRMST-algorithm is approximating the BDMST-

problem.

Definition 40 Degree-limited shortest-path tree problem (d-SPT): Given G, a degree bound

deg(v) ∈ N for each vertex v ∈ V ; find a spanning-tree T , starting from a root node s ∈ V ,

where, for each v ∈ V the path p = (v, . . . , s) minimizes
∑

pi∈p
c(pi). subject to the constraint

that degT (v) ≤ deg(v).
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A d-SPT algorithm builds a shortest-path tree in which each vertex is subject to a degree limit.

A d-SPT algorithm combined with a centrally located source-node is able to compete with an

MDDL algorithm.

Definition 41 Minimum radius degree-limited spanning-tree problem (MRDL): Given G, a

source s, and a degree bound deg(v) ∈ N for each vertex v ∈ V ; find a spanning-tree T of G

such that the eccentricity of s is minimized, subject to the constraint that degT (v) ≤ deg(v).

The d-SPT problem is identical to the MRDL-problem. An MRDL-algorithm builds a tree of

minimum radius while obeying the degree limits. MRDL is N P-complete, nevertheless, it is

relevant because it avoids the problems with stress that beset spanning tree problems that do

not have limitations on degree. If the source s is close to the center of G, a MRDL-algorithm is

approximating the MDDL-problem.

Definition 42 Bounded radius degree-limitedminimum-cost spanning-tree problem (BRDLMST) :

Given G, a source s, a radius bound R > 0, and a degree bound deg(v) ∈ N for each vertex

v ∈ V ; Find a minimum-cost spanning-tree T on G, where
∑

e∈ET
c(e) is minimized, subject to

the constraint that the radius does not exceed R, and degT (v)≤ deg(v).

The N P-complete BRDLMST problem is identical to BRMST, but with degree limits for each

vertex. A BRDLMST-heuristic is able to produce trees with a radius that is in accordance

with the radius bound it received. This property is vital in cases of lighter application require-

ments, because the time complexity of the BRDLMST-heuristic decreases with looser radius

bounds. If the source s is close to the center of G, a BRDLMST-algorithm is approximating the

BDDLMST-problem.

4.6 Steiner-tree problems

A Steiner-tree differs from a spanning-tree in that it may use non-member-nodes (Steiner-

points) to enhance the efficiency of the tree. A Steiner-tree is applicable to similar scenarios as

a spanning-tree, and the intention is to use Steiner-trees as overlay networks to multicast appli-

cation events. In an application layer multicast scenario, the Steiner points may, for example,

be application-provided proxies or servers.

Section 3.6 gave some background material and recent advances in Steiner-tree algorithms.

In chapter 10, a wide range of Steiner-tree heuristics are introduced and then evaluated. The

evaluated Steiner-tree heuristics address the Steiner-tree problems that are formally introduced

in the following.
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Figure 4.6: The Steiner minimum-cost tree on G = (V, E, c).

Definition 43 Steiner-tree problem: Given a connected undirected weighted graph G = (V, E, c),

where V is the set of vertices, E is the set of edges, and c : E → R is the edge cost function,

and there is a set Z ⊂ V of member-nodes. Find a connected undirected tree TZ = (VZ , EZ)

of G, where VZ ⊆ V , Z ⊆ VZ and EZ ⊆ E, such that there is a path between every pair of

member-nodes.

A Steiner-tree T on a graph G spans all the member-nodes (terminals) in G, and may also span

non-member-nodes (non-terminals), which are called Steiner-points in the literature. Typically,

a Steiner-tree algorithm includes non-member nodes, if they help achieve an optimization goal.

The next sections introduce Steiner-tree problems that optimize for minimum-cost, diameter

and radius while applying various constraints.

4.6.1 Steiner-tree problems and the minimum-cost

The problem of finding a Steiner minimum-cost tree in networks (SMT) is an N P-complete

problem that was originally formulated independently by Hakimi and Levin [142] in 1971.

Several exact algorithms and heuristic have been suggested, implemented and compared [134].

Definition 44 Steiner minimum-cost tree in networks (SMT): Given an undirected weighted

graph G, and a subset Z ⊆ V of member-nodes. Find a connected undirected tree TZ , such that

there is a path between every pair of member-nodes, and
∑

e∈EZ
c(e) is minimized.

An SMT-algorithm finds a least cost tree connecting a set of member nodes (Z ⊆ V ). The tree

may contain a subset (V − Z) of non-member-nodes (Steiner points) that reduces the cost of the

tree. SMT-heuristics are often applied to network layer multicast, where the routers are Steiner
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points and the clients are member-nodes. Figure 4.6 illustrates a Steiner minimum-cost tree on

an example graph G.

Definition 45 Degree limited Steiner minimum-cost tree in networks (d-SMT): Given G and

Z , a degree bound deg(v) ∈ N for each vertex v ∈ V ; Find an SMT TZ of G and Z of minimum

total cost, subject to the constraint that dTZ
(v) ≤ deg(v).

A d-SMT-algorithm finds a least cost tree (like SMT-algorithms), where each node obeys a

given degree limit. The degree limit provides a degree or stress control to the nodes. The d-

SMT problem has been studied by, for example, Bauer and Varma [16]. They introduced several

heuristics that are directly derived from SMT heuristics.

From these Steiner-tree problems that yield least cost trees, many other Steiner-tree prob-

lems have been derived. The next sections focuses particularly on Steiner-tree problems that

construct low-latency overlays.

4.6.2 Steiner-tree problems and the diameter

The following gives an introduction to Steiner-tree problems that address diameter requirements

in Steiner-trees. The diameter of TZ is defined as the longest of the paths in TZ among all the

pairs of nodes in VZ . The study also includes Steiner-tree problems that optimize for the total-

cost, that is, the sum of the edge weights in TZ , while obeying a given diameter bound. Other

studies of similar problems can be found in [65, 3, 150, 21].

Most Steiner-tree problems are N P-complete, and such are also many of the diameter-

related Steiner problems. Algorithms that solve N P-complete problems are exponential time

algorithms, and not practical if time is important. Chapter 10 introduces a range of polynomial

time Steiner-tree heuristics that address the following Steiner-tree problems.

Definition 46 Steiner minimum diameter spanning-tree problem (Steiner-MDST): Given G

and Z; Find a Steiner spanning-tree TZ of G and Z such that the maximum weight shortest path

(diameter) p ∈ T ,
∑

e∈p
W (e) is minimized.

A Steiner-MDST algorithm builds a tree of minimum diameter. Ho, Lee, Chang and Wong [68]

considered the case in which the graph G is a complete Euclidian graph induced by a set of

points in the Euclidian plane. They call this special case the geometric Steiner-MDST problem.

They prove that there is an optimal tree in which a single Steiner-point is connected to all the

vertices in Z , and that it is solvable in polynomial time. The result extends to any complete

graph whose edge lengths satisfy the triangle inequality,

Hence, for a complete graph, a simple heuristic for building a close-to-optimal Steiner-

MDST is to find a single node located close to the center of the graph that connects to the

remaining nodes through shortest paths. The topology of the resulting tree TZ is that of a
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star. Consequently, the work-load (stress) of the center node becomes significant as the degree

increases. Thus, a solution is not viable unless the center node has a considerable amount of

resources.

Definition 47 Bounded diameter Steiner minimum-cost tree problem (BDSMT):Given G and

Z , and a diameter bound D ∈ R; Find a Steiner minimum-cost tree TZ on G and Z , where
∑

e∈ETZ

c(e) is minimized and whose diameter does not exeed D.

A BDSMT-algorithm builds a tree of minimum total cost within a diameter bound. An ad-

vantage of BDSMT over Steiner-MDST is that it is possible to tune the tree diameter while

minimizing the total cost. This property is vital in cases of lighter application requirements,

because the time complexity of the BDSMT-heuristic decreases with looser diameter bounds.

However, one problem with BDSMT remains the potentially high node degree of central nodes

in the tree when the diameter bound D is stringent.

Definition 48 Steiner minimum diameter degree limited spanning-tree problem (Steiner-MDDL):

Given G and Z , a degree bound deg(v) ∈ N for each vertex v ∈ V ; Find a Steiner-tree TZ of G

and Z of minimum diameter, subject to the constraint that dTZ
(v)≤ deg(v).

A Steiner-MDDL-algorithm builds a tree of minimum diameter while obeying the degree lim-

its. The Steiner-MDDL problem avoids the stress issue that beset spanning-tree problems that

do not have limitations on degree. One issue with the Steiner-MDDL problem is that it is a

minimization of the maximum eccentricity (diameter) within a degree limit, which increases

the complexity of a heuristic.

Definition 49 Bounded diameter degree limited Steiner minimum-cost tree problem (BD-

DLSMT): Given G and Z , a diameter bound D ∈ R, and a degree bound deg(v) ∈ N for each

vertex v ∈ V ; Find a Steiner minimum-cost tree TZ on G and Z , where
∑

e∈ETZ

c(e) is minimized,

subject to constraints that the diameter does not exeed D, and dTZ
(v)≤ deg(v).

A BDDLSMT-algorithm builds a tree of minimum total cost within a diameter bound, subject to

a degree limit. Like the BDSMT heuristics, a BDDLSMT-heuristic is able to produce trees with

a diameter that is in accordance with the diameter bound it received. In addition, the BDDLSMT

problem solves the stress issues of BDSMT by using degree limits for each vertex. However,

the added degree constraint makes BDDLSMT a harder problem to solve than BDSMT.

4.6.3 Steiner-tree problems and the radius

In the following, we introduce problems that bound the radius of TZ , where the radius is defined

as the longest of the paths to a pre-defined source node in V . We believe that heuristics of the

following problems combined with a well-placed source (core) node may be able to compete

with Steiner-tree problems that explicitly consider the diameter.
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Definition 50 Steiner minimum radius spanning-tree problem (Steiner-MRST): Given G and

Z; Find a Steiner-tree TZ on G and Z , starting from a root node s ∈ V , where, for each z ∈ Z

the path p = (z, . . . , s) minimizes
∑

vi∈p
c(e(vi, vi+1)), where e ∈ ETZ

.

A Steiner-MRST algorithm builds a tree of minimum radius and is solvable in polynomial time.

The optimal Steiner-MRST-algorithm is equal to connecting the root node s ∈ V to the member-

nodes in Z through shortest-paths. If the root node s ∈ Z , and the input graph is a full mesh of

shortest paths, the optimal Steiner-MRST is always Dijkstra’s SPT. In addition, if the root node

s is located close to the center of G, a Steiner-MRST heuristic and a Steiner-MDST heuristic

would produce trees with similar diameter and radius.

Definition 51 Bounded radius Steiner minimum-cost tree problem (BRSMT): Given G and

Z , a root node s ∈ V and a radius bound R ∈ R. Find a Steiner minimum-cost tree TZ on G,

where, for each z ∈ Z the path p = (z, . . . , s), with weight
∑

pi∈p
c(pi) ≤ R.

A BRSMT-algorithm builds a tree of minimum total cost within a radius bound from a given

root node s to all destinations. The BRSMT-problem is N P-complete, and is similar to the

shallow-light tree problem (section 3.1). It is applicable to a shared-tree environment if the root

node s is close to the center of G, since it is then approximating a BDSMT.

Definition 52 Steiner minimum radius degree limited spanning-tree problem (Steiner-MRDL):

Given G and Z , a degree bound deg(v) ∈ N for each vertex v ∈ V ; find a Steiner-tree TZ on

G and Z , starting from a root node s ∈ V , where, for each z ∈ Z the path p = (z, . . . , s) has

minimum cost and is subject to the constraint that dTZ
(v) ≤ deg(v).

A Steiner-MRDL algorithm builds a Steiner-tree of minimum radius in which each vertex is

subject to a degree limit. The Steiner-MRDL problem is N P-complete. One Steiner-MRDL-

heuristic is to connect the root node s ∈ V to the member-nodes in Z through shortest paths.

If the root node s is located close to the center of G, a Steiner-MRDL heuristic and a Steiner-

MDDL heuristic would produce trees with similar diameter and radius.

Definition 53 Bounded radius degree limited Steiner minimum-cost tree problem (BRDLSMT):

Given G and Z , a root node s ∈ V , a radius bound R ∈ R. and a degree bound deg(v) ∈ N for

each vertex v ∈ V ; Find a Steiner minimum-cost tree TZ on G, where, for each z ∈ Z the path

p = (z, . . . , s), with weight
∑

pi∈p
c(pi) ≤ R, and dTZ

(v) ≤ deg(v).

Like the BRSMT-algorithm, a BRDLSMT-algorithm builds a tree of minimum total cost within

a radius bound from a given source to all destinations. The BRDLSMT problem is N P-

complete, and solves the stress issues of BRSMT by using degree limits for each vertex. BRDLSMT

is approximating a BDDLSMT when the root node s is close to the center of G. The advantage

is that a BRDLSMT-heuristic is often less complex than a BDDLSMT-heuristic.



86
Chapter 4. Overlay network design:

Problems in graph theory

4.6.4 Miscellaneous Steiner-tree problems

There are many different Steiner-tree problems in the literature that address slightly different

problems than the ones introduced before. Here are two Steiner-tree problems that are of rele-

vance for our application scenario.

Definition 54 Terminal Steiner-tree problem: Given an undirected weighted graph G = (V, E, c),

and a subset Z ⊆ V of member-nodes. Find a connected undirected tree TZ , such that every

member-node is a leaf and there is a path between every pair of member-nodes.

The objective of the terminal Steiner-tree problem is to find a subtree of G in which every

member-node is a leaf-node. This problem has importance when member-nodes are not allowed

to, or cannot communicate directly with each other.

Some distributed interactive applications may face consistency issues, cheating problems,

etc, such that the application-provider needs to control the application data in its back-bone

infrastructure of servers and proxies. The terminal Steiner-tree problem is easily re-defined to

address minimum-cost, minimum-diameter, minimum-radius, etc.

Chapter 8 introduces graph reduction algorithms that force the member-nodes to be leaf-

nodes. Similarly, in the cases of degree-limited Steiner-tree heuristics, it is possible to reduce

the degree-limits to one on each member-node. Chapter 10.3 includes an evaluation of the graph

reduction algorithms.

Definition 55 Group Steiner-tree problem: Given an undirected weighted graph G = (V, E, c),

and subsets of vertices that are called groups g1, g2 . . . gk ∈ V . Find a connected undirected

tree T = (V ′, E′, c), such that V ′ ∩ gi 6= for all i ∈ 1 . . . k.

The objective of the group Steiner-tree problem is to find a subtree of G that contains at least

one vertex from each given group. This problem is important in cases when groups of clients in

a distributed interactive application are merged to one group. For example, instead of merging

k groups to one group and then rebuild the merged group from scratch, it is possible to connect

the k groups through single edges to form one merged group. The group Steiner-tree problem

is easily re-defined to address minimum-cost, minimum-diameter, minimum-radius, etc [88].

Chapter 12 introduces dynamic tree algorithms for removal of nodes in trees. When a non-

leaf node v ∈ V is removed from a tree T , the tree is disconnected creating degT (v) subtrees,

which are equal to the groups in the group Steiner-tree problem. The reconnection of the subtree

groups is exactly the group Steiner-tree problem.

4.7 Dynamic tree problems

Dynamic tree problems address the client dynamicity that is a part of the application scenario

outlined in chapter 2. The dynamic-tree problems define requirements to situations where single
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Figure 4.7: Examples of tree dynamics, when nodes join a tree.

Figure 4.8: Examples of tree dynamics, when nodes leave a tree.

nodes are inserted and removed from an existing tree, based on incoming insert and remove

requests. It is very relevant for dynamic group communication where clients may join and leave

ongoing sessions of real-time interaction. Figure 4.7 illustrates an example where nodes join an

existing tree. Similarly, figure 4.8 illustrates an example where nodes leave an existing tree.

Chapter 12 introduces and evaluates a range of dynamic tree algorithms for inserting and

removing nodes from trees. Dynamic tree problems are introduced next, specifically dynamic

Steiner-tree problems, and dynamic spanning-tree problems.

4.7.1 Dynamic Steiner-tree problems

Definition 56 Dynamic Steiner-tree problem (DST): An instance of DST includes a graph

G = (V, E, c), a set Zi ⊆ V , and a queue of requests Q r = {r0, ri, . . . , rk}, where each ri is a

pair (vi,ρi), vi ∈ V , ρi ∈ {insert,remove}. The set Zi = {v|(v,insert) = r j for some j, 0 ≤ j ≤ i

and (v,remove) 6= rl for all l, j < l ≤ i}, where Zi is the terminal set at step i which are to be

connected with a Steiner-tree after request ri.

The dynamic Steiner-tree (DST) problem was first introduced by Waxman and Imase [140].

An instance of DST includes a series of requests ri that contains a node vi to be inserted or
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removed from Zi. A DST algorithm finds a Steiner-tree connecting each terminal set Zi without

knowledge of request r j for any j > i. The optimization goal of the original DST problem was

minimum-cost, but it is applicable to most optimization goals.

This basic DST problem formulation is equivalent to a Steiner-tree problem for each request

ri, therefore the DST problem must be extended with some conditional restrictions for it to be

of practical significance.

Definition 57 Non-reconfigurable dynamic Steiner-tree problem (N-DST): Given an instance

I = (G,,cost,Q r), find a sequence of trees {T1, T2, . . . , Tk} satisfying the following conditions

CN and minimizing a function of {cost(Ti)|i = 1, 2 . . . k}. CN = { 1. Each Ti spans Zi , 2. If ri is

an insert request, Ti includes Ti−1 as a subgraph, and 3. If ri is a remove request, Ti−1 includes

Ti as a subgraph. }.

The N-DST [140] problem is a special case of the DST problem. Conditions 2 and 3 in CN

imply that edges and nodes are inserted to a tree only for an insert request, and removed only

for a remove request. In practice it means that, upon an insert request a node is added to the

tree as a leaf-node, and a non-leaf node cannot be removed, but rather remains in the tree as a

Steiner point until it is a leaf node (possibly never).

It is evident that the N-DST problem results in tree degradation in cases where many Steiner-

points remain in the Steiner-tree forever. The conditions CN , although practical and simplistic,

are unrealistic in a real application where clients join and leave applications continuously.

Definition 58 Reconfigurable dynamic Steiner-tree problem (R-DST): Given an instance

I = (G,,cost,Q r), find a sequence of trees {T1, T2, . . . , Tk} where each Ti spans Zi and mini-

mizes a function of {cost(Ti)|i ≤ k}. while not exceeding an upper bound B on the number of

rearrangments.

The R-DST [140] problem allows reconfigurations to the edge and node sets, regardless of

ri being an insert or remove request. However, if the number of reconfigurations allowed is

unlimited, the R-DST is equivalent to the Steiner-tree problem for each instance (G,cost, Zi).

Therefore, a bound B is defined to limit the number of rearrangements that are allowed for each

request ri .

The R-DST problem fits an application scenario in which trees may experience frequent

insert and remove requests. Tree stability then becomes important, and the bound B sets a

worst-case limit to the number of rearrangements. One issue of the R-DST problem is that it

does not consider the degradation of the Steiner-tree. Rather, the problem is satisfied as long as

the number of rearrangments is equal to or below B.
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Definition 59 Minimum-reconfiguration dynamic Steiner-tree problem (M-DST) 1: Given

an instance I = (G,,cost,Q r), find a sequence of trees {T1, T2, . . . , Tk} where each Ti spans Zi

and minimizes the number of rearrangements, while not violating the cost function {cost(Ti)|i ≤

k}.

The M-DST problem minimizes the number of rearrangements needed to fulfill a given opti-

mization goal. The optimization goal may, for example, provide an upper bound to the diameter

of the tree Ti.

Chapter 2 introduced the stringent latency requirements of different distributed interactive

applications. In these cases, the M-DST problem requires that the maximum effort is done to

meet the latency requirements. One issue is that in the worst case, the optimization goal cannot

be met, and a complete reconfiguration is conducted.

4.7.2 Dynamic spanning-tree problems

Definition 60 Dynamic spanning-tree problem 2: An instance of the dynamic spanning-tree

problem includes a graph G = (V, E, c), and a queue of requests Q r = {r0, ri, . . . , rk}, where

each ri is a pair (vi,ρi), vi ∈ V , ρi ∈ {insert,remove}. There is a subgraph Gi = (Vi, Ei, c), in

which Vi = {v ∈ V |(v,insert) = r j for some j, 0≤ j ≤ i and (v,remove) 6= rl for all l, j < l ≤ i},

where Vi is the node set after step i, and Ei = {e ∈ E|e = (u, v), such that u ∈ Vi, v ∈ Vi}, where

Ei interconnects all nodes in Vi . For each request ri, construct a spanning-tree Ti on Gi.

The dynamic spanning-tree problem is similar to the dynamic Steiner-tree problem. Only, in

the dynamic spanning-tree problem a tree Ti cannot include nodes that are Steiner-points (non-

member nodes, non-terminals). This influences the problem definition in the cases where the re-

quest ri is a remove request and the node v (to be removed) is a non-leaf node. These cases force

a reconfiguration to the tree Ti. Therefore, the dynamic spanning-tree problem does not have a

non-reconfigurable dynamic spanning-tree problem. Rather, dynamic spanning-tree problems

must be defined such that any node can be removed regardless of its degree in Ti.

Definition 61 Restricted reconfigurable dynamic spanning-tree problem (RR-DST): Given

an instance I = (G,,cost,Q r), find a sequence of trees {T1, T2, . . . , Tk} where each Ti spans Vi

and minimizes a function of {cost(Ti)|i ≤ k}, while not exceeding an upper bound Bi on the

number of rearrangments. Bi is determined such that if ri is an insert request then Bi = 1, if ri

is a remove request then Bi = (|dTi
(vi)| ∗ 2)− 1.

The restricted reconfigurable dynamic spanning-tree problem minimizes the number of rear-

rangements of Ti to a minimum for each ri. For each insert request, a node is added to the

1Not found in the literature
2Not found in the literature
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tree through a single edge, and for each remove request, the neighbors of the removed node are

reconnected. Note that, when a node vi ∈ Ti has been removed and created degTi
(vi) subtrees,

the reconnection of these subtrees is equivalent to the group Steiner-tree problem that was in-

troduced in definition 55. The RR-DST problem requires that the tree remains a spanning-tree

of member-nodes, and that the reconfigurations are minimum upon insert and remove requests.

Definition 62 Reconfigurable dynamic spanning-tree problem: Given an instance I = (G,,cost,Q r),

find a sequence of trees {T1, T2, . . . , Tk} where each Ti spans Vi and minimizes a function of

{cost(Ti)|i ≤ k}, while not exceeding an upper bound Bi on the number of rearrangments. Bi

is determined such that if ri is an insert request then (trivially) Bi ≥ 1, if ri is a remove request

then Bi ≥ (|dTi
(vi)| ∗ 2)− 1.

The reconfigurable dynamic spanning-tree problem allows reconfigurations to Ti bounded by

an integer Bi . If the bound Bi > |Vi| ∗ 2 the reconfigurable dynamic spanning-tree problem is

equivalent to the spanning-tree problem (definition 29) for each instance (G,cost, Zi). Further-

more, for a remove request, if the bound Bi < (|dTi
(vi)| ∗ 2)− 1, then a solution does not exist.

Therefore, the bound Bi must be determined for each request ri, such that, for a remove request,

it is greater than the degree of vi in Ti.

The reconfigurable dynamic spanning-tree problem requires that the number of rearrange-

ments of the Steiner-tree is ≤ Bi when a request ri has been completed. However, it may be

difficult to determine this bound Bi for each request ri. In practice, it may be wise to use a

percentage of additional reconfigurations above the necessary.

Definition 63 Minimum-reconfiguration dynamic spanning-tree problem: Given an instance

I = (G,,cost,Q r), find a sequence of trees {T1, T2, . . . , Tk} where each Ti spans Vi and minimizes

the number of rearrangements, while not violating the cost function {cost(Ti)|i ≤ k}.

The minimum-reconfiguration dynamic spanning-tree problem minimizes the number of rear-

rangments needed to achieve a given cost function. The cost function may, for example, provide

an upper bound to the diameter of the tree Ti.

4.8 Dynamic tree insert- and remove-node problems

The dynamic-tree problems introduced in section 4.7 defined requirements to tree-updates when

single nodes are inserted and removed, for example, concerning bounds on the number of rear-

rangments, bounds on the cost of the tree, etc. In practice, a dynamic tree algorithm is comprised

of one insert-strategy, which inserts a node into a tree, and one remove-strategy, which removes

a node from a tree. The strategies must be paired to create one dynamic tree algorithm to ad-

dress the dynamic-tree problems. However, one issue is that the insert and remove strategy may
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belong in different dynamic tree problems. Existing dynamic tree problem definitions do not

take these situations into account. This is a drawback when dynamic tree algorithms are ana-

lyzed, because the dynamic tree problems are too general and inaccurate. The goal is therefore

to:

Define formal insert and remove-node problems that more accurately categorizes the insert and

remove strategies that are needed to address the dynamic tree problems.

In this regard, it is especially the number of rearrangements that are allowed upon inserting

or removing a node that influences an algorithm’s performance and defines a tree’s stability.

For example, a remove strategy that is only allowed to change one edge, only removes leaf-

nodes, and is therefore fast and keeps trees stable, but may suffer in regards to many other

graph performance metrics. Moreover, if there is no bound, the remove-node operation may

then be performed by simply removing a node from the input graph, and running a Steiner-tree

or spanning-tree algorithm on it, which results in an optimal tree but the tree stability is less.

However, even though a complete reconfiguration has a worst-case situation of exchanging

every edge, it may still perform much better on average. But, it is obvious that the execution-

time is much larger in a complete reconfiguration, than simply removing leaf-nodes.

By defining accurate bounds on the number of rearrangements that are allowed, we aim to

categorize the insert and remove strategies such that it is clearer to see which strategies require

more logic to complete, and which do not.

The observation is that more algorithmic logic very often leads to a larger execution time, and

bounding the execution time is important for time-dependent applications. In conclusion, the

ultimate goal is to identify insert and remove strategies that are stable and fast.

Following are definitions of a wide range of insert-node to tree and remove-node from tree

problems that exhibit the accuracy that is desirable for describing the insert and remove strate-

gies in dynamic tree algorithms.

4.8.1 Insert-node to tree problems

Insert strategies insert a new member m to a tree and assure that m is connected. Formally, an

insert strategy works like this:

Given G = (V, E, c), a tree T = (VT , ET ), a set of members ZT ⊆ VT , and a new member m ∈ V .

Update T , such that ZT ∪ {m} are connected.

The new member m may be inserted into T in many different manners. We have devised

several insert strategies that bound the size of the reconfiguration set R. The reconfiguration set

R contains the edges that are changed between reconfigurations of a tree. It is possible to insert

m to T through a single edge, while other strategies use the degree limit as a bound.
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Definition 64 Insert vertex edge-addition: Given G, a connected tree T , and a joining member

m ∈ V , Update T , such that ZT ∪ {m} are connected, and |R|= 1.

The insert vertex edge-addition problem connects (inserts) a node m to the tree using a single

edge. Insert strategies belonging to this problem typically search for the one edge that, for

example, is the minimum-cost edge, or the edge that results in the minimum eccentricity of the

inserted node.

Definition 65 Insert vertex and degree limited reconfiguration set: Given G, a connected tree

T , and a joining member m ∈ V , Update T , such that ZT ∪ {m} are connected, and |R| ≤

deg(m) ∗ 2.

The insert vertex and degree-limited reconfiguration set restricts the size of the reconfiguration

set R to be less than the double the current degree-limit of m. This allows for an insert strategy

to, for example, connect m to T as an intersection node and then ensure that T is acyclic by

removing unwanted edges.

Definition 66 Insert vertex and unlimited reconfiguration set: Given G, a connected tree T ,

and a joining member m ∈ V , Update T , such that ZT ∪{m} are connected, and |R| ≤ |ET | ∗2.

The insert vertex and unlimited reconfiguration set problem put no restrictions on the size of the

reconfiguration set R upon connecting m to T . If an insert strategy fits to this insert problem,

it is clear that its worst-case behavior is that every edge in T is exchanged when m is inserted.

However, the insert strategy may still not be equal to a Steiner-tree or spanning-tree algorithm

if the average-case size of R is rather small.

4.8.2 Remove-node from tree problems

Remove strategies remove a member m from the multicast tree while assuring that the members

stay connected. Formally, a remove strategy works like this:

Given G = (V, E, c), a tree T = (VT , ET ), a set of members ZT ⊆ VT , and a member m ∈ V .

Update T , such that ZT \ {m} are connected.

The number of direct neighbor nodes of m (its degree) in T influences the necessary actions.

If the degree degT (m) = 1, m is a leaf that is simply removed along with the edge to its only

neighbor. If it is greater than 1, a removal of m partitions the tree if no additional steps are taken,

and degT (m) unconnected subtrees would be the result. The basic goal of remove strategies is

the reconnection of subtrees into a single tree when degT (m)≥ 2.

Similar to the insert strategies, we divide the remove strategies into the worst case sizes of

the reconfiguration set R. The minimum reconfiguration set when removing m consists of its
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immediate neighbors in T . We have a number of remove strategies that bound the size of the

reconfiguration set to the worst case number of edges it may change when disconnecting and

reconnecting the neighbors of m. Moreover, it is possible to reconfigure a larger portion of T

while removing m, and we also include such remove strategies.

Definition 67 Remove vertex and edge-removal: Given G, a connected tree T , and a leaving

member m ∈ V , Update T , such that ZT \ {m} are connected, and |R| ≤ 1.

The remove vertex and edge-removal is the most restricted remove problem, and only allows

the removal of leaf non-member nodes. All other non-member-nodes are kept in the tree until

they are leaf nodes.

Definition 68 Remove vertex and degree limited reconfiguration set: Given G, a connected

tree T , and a leaving member m ∈ V , Update T , such that ZT \ {m} are connected, and |R| ≤

deg(m) ∗ 2.

The remove vertex and degree-limited reconfiguration set bounds the size of the reconfiguration

set to include, for example, a disconnection of m and then reconnecting the neighbors of m. It

is also possible, for a remove strategy to include a Steiner-point to reconnect the neighbors of

m. More advanced reconfigurations are also possible that does not include exchanging edges

near m, but these are not addressed in the thesis.

Definition 69 Remove vertex and unlimited reconfiguration set: Given G, a connected tree T ,

and a leaving member m ∈ V , Update T , such that ZT \ {m} are connected, and |R| ≤ |ET | ∗2.

The remove vertex and unlimited reconfiguration set problem put no restrictions on the size of

the reconfiguration set R upon disconnecting m from T , and then reconnecting T . If a remove

strategy fits to this remove problem, it is clear that its worst-case behavior is that every edge in

T is exchanged when m is removed. However, the remove strategy may still not be equal to a

Steiner-tree or spanning-tree algorithm if the average-case size of R is rather small.

4.9 Spanning subgraph problems

Definition 20 defined a connected spanning subgraph G′ = (V, E′) on G to be a connected

graph in which there is a minimum of one path between all nodes v ∈ V . By this definition

a connected spanning-tree and a connected spanning-mesh are both defined to be a connected

spanning subgraph. (definition 21 and 22). Therefore, a connected spanning subgraph may be

both cyclic and acyclic (tree and mesh). A cyclic graph may be advantegous to increase the

resilience in fault prone networks and reduce the pair-wise distances, however, it does inflict a
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higher network cost, for example, increased bandwidth consumption. An acyclic graph yield

on average lower network costs, but is more fault prone and generally has higher pair-wise dis-

tances. Chapter 11 introduces and evaluates a range of practical spanning subgraph algorithms,

especially towards the graph metrics, diameter, pair-wise distances and total-cost.

In the following, the class of spanning subgraph problems are formally introduced using

definitions and explanations.

Definition 70 k-vertex connected spanning subgraph problem: Given G = (V, E, c), and an

integer 0 < k < |V |. Find a k-vertex connected spanning subgraph M = (V, EM ) in which a

removal of any k− 1 nodes leaves the subgraph in a connected state.

The N P-complete k-vertex connected spanning subgraph problem requires that a spanning sub-

graph is built in which the removal of any k−1 nodes leaves the subgraph in a connected state,

and such that there are at least k− 1 paths between the remaining nodes.

k-vertex connected spanning subgraphs are desirable for the targeted application scenarios,

in which fault prone clients dynamically join and leave applications. The problem ensures a

configurable level of resilience in the computed subgraph, defined by an input integer k > 0.

Definition 71 k-edge connected spanning subgraph problem: Given G = (V, E, c), and an

integer k > 0. Find a k-edge connected spanning subgraph M = (V, EM ) of G, such that M is

not disconnected by removing k− 1 edges.

The N P-complete k-edge connected spanning subgraph problem requires that a spanning sub-

graph is built in which the removal of any k−1 edges leaves the subgraph in a connected state,

and such that there are at least k − 1 paths between the remaining nodes. It is similar to the

k-vertex connected spanning subgraph problem (definition 70).

k-edge connected spanning subgraphs are important in fault prone networks in which pairs

of clients often loose their connection. k-edge connectivity ensures a configurable level of link

resilience in the computed subgraph, defined by an input integer k > 0.

On the Internet, the network layer address the link resilience (k-edge connectivity) is-

sues, while the client crashes must be handled by the application. Therefore, the following

k-connected problem definitions address k-vertex connectivity. Figure 4.9 has an example of a

spanning subgraph and its properties.

4.9.1 Spanning subgraph problems and the minimum-cost

The minimum-cost requirement to subgraphs is introduced to minimize the network cost, for

example, bandwidth consumption. It is very relevant when bandwidth intensive traffic flows

like audio/video are distributed in a network.
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Figure 4.9: Graph G = (V, E, c) and spanning subgraph properties.

Definition 72 k-connected minimum-cost spanning subgraph problem: Given G, and an in-

teger k > 0. Find a k-connected spanning subgraph M = (V, EM ) of minimum cost.

The k-connected minimum-cost spanning subgraph problem is N P-complete for k ≥ 2 for

any graph [76]. There has been a lot of work on designing approximation algorithms for the

k-connectivity minimum-cost problem. Most of these algorithms are centralized algorithms

which are quite sophisticated and their main goal is to obtain polynomial time algorithms with

the best possible approximation ratio.

Definition 73 k-connected degree-limited minimum-cost spanning subgraph problem: Given

G, and an integer k > 0. Find a k-connected spanning subgraph M = (V, EM ) of minimum cost,

where each vertex v ∈ V does not violate a degree bound deg(v) ∈ N.

The k-connected degree-limited minimum-cost spanning subgraph problem is N P-complete

for k ≥ 1 for any graph [76]. The added degree-limits makes the problem more configurable in

terms of node-stress, but it also enhances the complexity of finding an optimal solution. Few

approximation algorithms have been proposed to address this problem.

4.9.2 Spanning subgraph problems and the diameter

The spanning-tree problems that address the diameter are similar to the spanning subgraph

problems that address the diameter. However, a connected spanning subgraph is allowed to

include as many edges as possible. Therefore, a minimum-diameter spanning subgraph problem

without constraints does not make sense. A bound on the network cost is necessary, and the

diameter should be minimized in the subgraph while not violating this cost bound [96].
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Definition 74 Minimum diameter spanning subgraph problem: Given G, and a cost bound

B > 0. Find a connected spanning subgraph M = (V, EM ) such that the diameter(M) =

diameter(G), subject to the constraint that the total cost
∑

e∈ET
c(e) is below B.

The objective of the N P-complete minimum diameter spanning subgraph problem is to find a

subgraph M on G, that has a diameter equal to that of G. In this process the subgraph M must

not violate a total cost bound B. This problem is desirable because it does add resilience to

the computed subgraph, and the total cost is monitored. Two problems related to any overlay

network design problem are, first, how the total cost bound is obtained, and second, when it is

determined, can a subgraph be found that does not violate it.

Definition 75 Minimum average pair-wise latency spanning subgraph problem: Given G,

and a cost bound B > 0. Find a connected spanning subgraph M = (V, EM ) such that the

average-pairwise-latency(M) = average-pairwise-latency(G), subject to the constraint that the

total cost
∑

e∈ET
c(e) is below B.

The N P-complete minimum average pair-wise latency spanning subgraph problem is a variation

that does not address a minimization of the maximum path latency, which is the diameter.

The objective is rather to find a subgraph that minimizes the average pair-wise latency, which

includes every node in the computed subgraph and not only the endpoints on the diameter path.

Definition 76 k-connected minimum-diameter spanning subgraph problem: Given G, an in-

teger k > 0, and a total cost bound B > 0. Find a k-connected spanning subgraph M = (V, EM )

of G such that the diameter(M) = diameter(G), subject to the constraint that the total cost
∑

e∈ET
c(e) is below B.

The N P-complete k-connected minimum diameter spanning subgraph problem is similar to the

minimum-diameter spanning subgraph problem. However, the objective is here to ensure k-

connectivity and minimum diameter within a total cost bound. Hence, a level of resilience is

required for it be a solution. The resilience level is configurable by an integer k > 0.

Definition 77 Minimum diameter degree-limited spanning subgraph problem: Given G, a

degree bound deg(v) ∈ N for each vertex v ∈ V , and a cost bound B > 0. Find a connected

spanning subgraph M = (V, EM ) such that the diameter(M) = diameter(G), subject to the

constraint that degT (v)≤ deg(v), and the total cost
∑

e∈ET
c(e) is below B.

The objective of the N P-complete minimum diameter degree-limited spanning subgraph prob-

lem is to find a subgraph M on G, that has a diameter equal to that of G. In this process the

subgraph M must not violate a total cost bound, and each vertex v ∈ V must not violate a degree

limitation. This problem avoids the stress issue of the minimum diameter spanning subgraph

problem (definition 74), and exhibit similar benefits and drawbacks; a subgraph that has added

resilience, but is hard to compute.
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Definition 78 k-connected minimum-diameter degree-limited spanning subgraph problem:

Given G, an integer k > 0, and a total cost bound B > 0. Find a k-connected spanning

subgraph M = (V, EM ) of G such that the diameter(M) = diameter(G), subject to the constraint

that degT (v)≤ deg(v), and the total cost
∑

e∈ET
c(e) is below B.

The N P-complete k-connected minimum diameter degree-limited spanning subgraph problem

adds degree limitations to the stress beset k-connected minimum-diameter spanning subgraph

problem. The benefit is still a configurable level of resilience, which is defined by an integer

k > 0. But, one drawback is that it is a hard problem to approximate.

4.10 Steiner subgraph problems

A sub-class of the spanning subgraph problems from section 4.9 are the Steiner subgraph prob-

lems. Steiner-subgraph problems allow non-member-nodes (Steiner points) in their computed

Steiner-subgraph A Steiner-tree is also a Steiner subgraph, the difference is that the Steiner

subgraph problems consider graphs with cycles as valid solutions, if the other requirements are

met. A cyclic connected graph may be advantegous to increase a network’s resilience in fault

prone networks. The drawback is that it does inflict a higher network cost, for example, through

an increased bandwidth consumption.

Chapter 11 introduces and evaluates a range of practical Steiner subgraph algorithms. In the

following, the class of Steiner subgraph problems are formally introduced.

Definition 79 k-vertex connected Steiner subgraph problem: Given G, a set Z ⊂ V of member-

nodes, and an integer 0 < k < |V |. Find a k-vertex connected Steiner subgraph MZ = (VZ , EZ)

where VZ ⊆ V , Z ⊆ VZ and EZ ⊆ E, in which a removal of any k− 1 nodes leaves the subgraph

MZ in a connected state.

The N P-complete k-vertex connected Steiner subgraph problem requires that a Steiner subgraph

is built that exhibits the property of being k-vertex connected among the nodes in Z . This means

that the removal of any k− 1 nodes leaves the subgraph in a connected state, in which there is

at least k− 1 paths between the remaining Z nodes.

This problem is important for the targeted application scenarios, in which fault prone clients

dynamically join and leave applications. The reason is that the problem ensures a configurable

level of resilience in the computed subgraph, defined by an input integer k > 0.

Definition 80 k-edge connected Steiner subgraph problem: Given G, a set Z ⊂ V of member-

nodes, and an integer 0 < k < |V |. Find a k-edge connected Steiner subgraph MZ = (VZ , EZ)

where VZ ⊆ V , Z ⊆ VZ and EZ ⊆ E, in which a removal of any k− 1 edges leaves the subgraph

MZ in a connected state.
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Figure 4.10: Graph G = (V, E, c) and Steiner-subgraph properties.

The N P-complete k-edge connected Steiner subgraph problem requires that a Steiner subgraph

is built that exhibits the property of being k-edge connected among the nodes in Z . This means

that the removal of any k−1 edges leaves the subgraph in a connected state, in which there is at

least k− 1 paths between the remaining Z nodes. It is similar to the k-vertex connected Steiner

subgraph problem (definition 79).

This problem is important for applications that are executed in fault prone networks in which

pairs of clients often loose their connection. k-edge connectivity ensures a configurable level of

link resilience in the computed subgraph, defined by an input integer k > 0.

On the Internet, the network layer address the link resilience (k-edge connectivity) is-

sues, while the client crashes must be handled by the application. Therefore, the following

k-connected problem definitions address k-vertex connectivity. Figure 4.10 has an example of a

Steiner subgraph and its properties.

4.10.1 Steiner subgraph problems and the minimum-cost

The minimum-cost requirement to subgraphs is introduced to minimize the network cost, for

example, bandwidth consumption. It is very relevant when bandwidth intensive traffic flows

like audio/video are distributed in a network.

Definition 81 k-connected minimum-cost Steiner subgraph problem: Given G, and an integer

k > 0. Find a k-connected Steiner subgraph MZ = (VZ , EZ) of minimum cost (theorem 24).

The k-connected minimum-cost Steiner subgraph problem is N P-complete for k ≥ 2 for any

graph [76]. There has been a lot of work on designing approximation algorithms for the k-

connectivity problem. Most of these algorithms are centralized algorithms which are quite
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sophisticated and their main goal is to obtain polynomial time algorithms with the best possible

approximation ratio.

Definition 82 k-connected degree-limited minimum-cost Steiner subgraph problem: Given

G, and an integer k > 0. Find a k-connected Steiner subgraph MZ = (VZ , EZ) of minimum cost,

where each vertex v ∈ V does not violate a degree bound deg(v) ∈ N.

The k-connected degree-limited minimum-cost Steiner subgraph problem is N P-complete for

k ≥ 1 for any graph [76]. The added degree-limitations makes it more configurable in terms of

node-stress, but it also increases the complexity of finding an optimal solution. Few approxi-

mation algorithms have been proposed to address this problem.

4.10.2 Steiner subgraph problems and the diameter

The Steiner-tree problems that address the diameter are similar to the Steiner subgraph problems

that address the diameter. However, a connected Steiner subgraph is allowed to include as

many edges as possible. Therefore, a minimum-diameter Steiner subgraph problem without

constraints does not make sense. A bound on the network cost is necessary, and the diameter

should be minimized in the subgraph while not violating this cost bound [96].

Definition 83 Minimum diameter Steiner subgraph problem: Given G, and a cost bound

B > 0. Find a connected Steiner subgraph MZ = (VZ , EZ) such that the diameter(MZ) =

diameter(G), subject to the constraint that the total cost
∑

e∈ET
c(e) is below B.

The objective of the N P-complete minimum diameter Steiner subgraph problem is to find a

subgraph MZ on G, that has a diameter equal to that of G. In this process the subgraph MZ

must not violate a total cost bound. This problem is desirable because it does add resilience to

the computed subgraph, and the total cost is monitored. Two problems related to any overlay

network design problem are how the total cost bound is obtained, and when it is determined,

can a subgraph be found that does not violate it.

Definition 84 Minimum average pair-wise latency Steiner subgraph problem: Given G, and

a cost bound B > 0. Find a connected Steiner subgraph MZ = (VZ , EZ) such that the average-

pairwise-latency(MZ) = average-pairwise-latency(G), subject to the constraint that the total

cost
∑

e∈ET
c(e) is below B.

The N P-complete minimum average pair-wise latency Steiner subgraph problem is a variation

that does not address a minimization of the maximum path latency, which is the diameter.

The objective is rather to find a subgraph that minimizes the average pair-wise latency, which

includes every node in the computed subgraph and not only the endpoints on the diameter path.
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Definition 85 k-connected minimum-diameter Steiner subgraph problem: Given G, an inte-

ger k > 0, and a total cost bound B > 0. Find a k-connected Steiner subgraph MZ = (VZ , EZ)

of G such that the diameter(M) = diameter(G), subject to the constraint that the total cost
∑

e∈ET
c(e) is below B.

The N P-complete k-connected minimum diameter Steiner subgraph problem is similar to the

minimum-diameter Steiner subgraph problem. However, the objective is here to ensure k-

connectivity and minimum diameter within a total cost bound. Hence, a level of resilience

is required for it be a solution. The resilience level is configurable by an integer k > 0.

Definition 86 Minimum diameter degree-limited Steiner subgraph problem: Given G, a de-

gree bound deg(v) ∈ N for each vertex v ∈ V , and a cost bound B > 0. Find a connected

Steiner subgraph MZ = (VZ , EZ) such that the diameter(M) = diameter(G), subject to the con-

straint that degT (v)≤ deg(v), and the total cost
∑

e∈ET
c(e) is below B.

The objective of the N P-complete minimum diameter degree-limited Steiner subgraph problem

is to find a subgraph M on G, that has a diameter equal to that of G. In this process the

subgraph M must not violate a total cost bound, and each vertex v ∈ V must not violate a degree

limitation. This problem avoids the stress issue of the minimum diameter Steiner subgraph

problem (definition 74), and exhibit similar benefits and drawbacks. A computer subgraph that

has added resilience, but is hard to compute.

Definition 87 k-connected minimum-diameter degree-limited Steiner subgraph problem: Given

G, an integer k > 0, and a total cost bound B > 0. Find a k-connected Steiner subgraph

MZ = (VZ , EZ) of G such that the diameter(M) = diameter(G), subject to the constraint that

degT (v) ≤ deg(v), and the total cost
∑

e∈ET
c(e) is below B.

The N P-complete k-connected minimum diameter degree-limited Steiner subgraph problem

adds degree limitations to the stress beset k-connected minimum-diameter Steiner subgraph

problem. The benefit is still a configurable level of resilience, which is defined by an integer

k > 0. But, one drawback is that it is a hard problem to approximate.

4.10.3 Miscellaneous Steiner-subgraph problems

There are many different Steiner-subgraph problems in the literature that address slightly dif-

ferent problems than the ones introduced before. Here are two Steiner-subgraph problems that

are of relevance for our application scenario.

Definition 88 Terminal Steiner subgraph in networks problem: Given an undirected weighted

graph G = (V, E, c), and a subset Z ⊆ V of member-nodes. Find a connected undirected

subgraph MZ , such that every member-node is a leaf and there is a path between every pair of

member-nodes.
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The objective of the terminal Steiner-subgraph problem is to find a subgraph of G in which

every member-node is a leaf-node. This problem has importance when member-nodes are not

allowed to, or cannot communicate directly with each other.

Some distributed interactive applications may face consistency issues, cheating problems,

etc, such that the application-provider needs to control the application data in its back-bone in-

frastructure of servers and proxies. The terminal Steiner-subgraph problem is easily re-defined

to address k-connectivity problems of minimum-cost and minimum-diameter.

Chapter 8 introduces graph reduction algorithms that force the member-nodes to be leaf-

nodes. Similarly, in the cases of degree-limited Steiner-subgraph heuristics, it is possible to

reduce the degree-limits to one on each member-node. Chapter 11.3 includes an evaluation of

the graph reduction algorithms.

Definition 89 Group Steiner subgraph in networks problem: Given an undirected weighted

graph G = (V, E, c), and subsets of vertices, which are called groups g1, g2 . . . gk ∈ V . Find a

connected undirected subgraph M = (V ′, E′, c), such that V ′ ∩ gi 6= for all i ∈ 1 . . . k.

The objective of the group Steiner-subgraph problem is to find a subgraph of G that contains

at least one vertex from each given group. This problem is important in cases when groups of

clients in a distributed interactive application are merged to one group. For example, instead of

merging k groups to one group and then rebuild the merged group from scratch, it is possible

to connect the k groups through single edges to form one merged group. The group Steiner-

subgraph problem is easily re-defined to address k-connectivity problems of minimum-cost and

minimum-diameter.

Chapter 13 introduces and evaluates dynamic subgraph algorithms for removal of nodes in

subgraphs. When a non-leaf node v ∈ V is removed from a subgraph T , the subgraph is discon-

nected creating degT (v) subgraphs, which are equal to the groups in the group Steiner subgraph

problem. The reconnection of the subgraph groups is exactly the group Steiner-subgraph prob-

lem.

4.11 Dynamic subgraph problems

Dynamic subgraph problems address the client dynamicity that is a part of the application sce-

nario outlined in chapter 2. The dynamic-subgraph problems define requirements to situations

where single nodes are inserted and removed from an existing subgraph, based on incoming

insert and remove requests. The dynamics subgraph problems are a refinement of the dynamic

tree problems (section 4.7), and allow both cyclic and acyclic connected graphs. Cyclic graphs

add a level of resilience to the connected subgraph, but the drawback is added network cost, for

example, increased bandwidth consumption. The problems are very relevant for dynamic group
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communication scenarios where fault-prone clients join and leave ongoing sessions of real-time

interaction.

Chapter 13 introduces and evaluates a range of dynamic subgraph algorithms for inserting

and removing nodes from subgraphs. Dynamic subgraph problems are introduced next, specif-

ically dynamic Steiner-subgraph problems, and dynamic spanning-subgraph problems.

4.11.1 Dynamic Steiner subgraph problems

Definition 90 Dynamic Steiner-subgraph problem 3: An instance of the dynamic Steiner-

subgraph problem includes a graph G = (V, E, c), a set Zi ⊆ V , and a queue of requests

Q r = {r0, ri, . . . , rk}, where each ri is a pair (vi,ρi), vi ∈ V , ρi ∈ {insert,remove}. The set

Zi = {v|(v,insert) = r j for some j, 0 ≤ j ≤ i and (v,remove) 6= rl for all l, j < l ≤ i}, where Zi

is the terminal set at step i which are to be connected with a Steiner-subgraph after request ri.

An instance of the dynamic Steiner subgraph problem includes a series of requests ri that con-

tains a node vi to be inserted or removed from Zi. A dynamic Steiner subgraph algorithm finds a

Steiner-subgraph connecting each terminal set Zi without knowledge of request r j for any j > i.

The dynamic Steiner subgraph problem is applicable to most optimization goals.

This basic dynamic Steiner subgraph problem formulation is equivalent to a Steiner-subgraph

problem for each request ri, therefore the dynamic Steiner subgraph problem must be extended

with some conditional restrictions for it to be of practical significance.

Definition 91 Non-reconfigurable dynamic Steiner-subgraph problem: Given an instance

I = (G,,cost,Q r), find a sequence of subgraphs {M1, M2, . . . , Mk} satisfying the following con-

ditions CN and minimizing a function of {cost(Mi)|i = 1, 2 . . . k}. CN = { 1. Each Mi spans Zi,

2. If ri is an insert request, Mi includes Mi−1 as a subgraph, and 3. If ri is a remove request,

Mi−1 includes Mi as a subgraph. }.

The non-reconfigurable dynamic Steiner subgraph problem is a special case of the dynamic

Steiner subgraph problem. Conditions 2 and 3 in CN imply that edges and nodes are inserted

to a subgraph only for an insert request, and removed only for a remove request. In practice it

means that, upon an insert request a node is added to the subgraph as a leaf-node, and a non-leaf

node cannot be removed, but rather remains in the subgraph as a Steiner point until it is a leaf

node (possibly never).

It is evident that the non-reconfigurable dynamic Steiner subgraph problem face problems

of subgraph degradation in cases where many Steiner-points remain in the Steiner-subgraph

forever. The conditions CN , although practical and simplistic, are unrealistic in a real application

where clients join and leave continuously.

3Not found in the literature
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Definition 92 Reconfigurable dynamic Steiner subgraph problem: Given an instance I =

(G,,cost,Q r), find a sequence of subgraphs {M1, M2, . . . , Mk} where each Mi spans Zi and min-

imizes a function of {cost(Mi)|i ≤ k}. while not exceeding an upper bound B on the number of

rearrangments.

The reconfigurable dynamic Steiner subgraph problem allows reconfigurations to the edge and

node sets, regardless of ri being an insert or remove request. However, if the number of re-

configurations allowed is unlimited the reconfigurable dynamic Steiner subgraph problem is

equivalent to the Steiner-subgraph problem for each instance (G,cost, Zi). Therefore, a bound

B is defined to limit the number of rearrangements allowed for each request ri.

The reconfigurable dynamic Steiner subgraph problem problem fits an application scenario

in which subgraphs may experience frequent insert and remove requests. Tree stability then

becomes important, and the bound B sets a worst-case limit to the number of rearrangements.

One issue of the reconfigurable dynamic Steiner subgraph problem problem is that it does not

consider the quality of the Steiner-subgraph when the number of rearrangments has equalled B.

Definition 93 Minimum-reconfiguration dynamic Steiner subgraph problem: Given an in-

stance I = (G,,cost,Q r), find a sequence of subgraphs {M1, M2, . . . , Mk} where each Mi spans

Zi and minimizes the number of rearrangements, while not violating the cost function {cost(Mi)|i ≤

k}.

The minimum-reconfiguration dynamic Steiner subgraph problem minimizes the number of

rearrangments needed to fulfill a given optimization goal. The optimization goal may, for ex-

ample, provide an upper bound to the diameter of the subgraph Mi .

Chapter 2 introduced the stringent latency requirements of different distributed interactive

applications. In these cases, the minimum-reconfiguration dynamic Steiner subgraph problem

problem ensures that the maximum effort is done to meet the latency requirements. One draw-

back is that in the worst case, the optimization goal cannot be met, and a complete reconfigura-

tion is conducted.

4.11.2 Dynamic spanning-subgraph problems

Definition 94 Dynamic spanning-subgraph problem: An instance of the dynamic spanning-

subgraph problem includes a graph G = (V, E, c), and a queue of requests Q r = {r0, ri, . . . , rk},

where each ri is a pair (vi,ρi), vi ∈ V , ρi ∈ {insert,remove}. There is a subgraph Gi =

(Vi, Ei, c), in which Vi = {v ∈ V |(v,insert) = r j for some j, 0 ≤ j ≤ i and (v,remove) 6= rl for

all l, j < l ≤ i}, where Vi is the node set after step i, and Ei = {e ∈ E|e = (u, v), such that

u ∈ Vi, v ∈ Vi}, where Ei interconnects all nodes in Vi . For each request ri, construct a spanning

subgraph Mi on Gi.
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The dynamic spanning-subgraph problem is similar to the dynamic Steiner-subgraph problem.

Only, in the dynamic spanning-subgraph problem a subgraph Mi cannot include nodes that are

Steiner-points (non-member nodes, non-terminals). This influences the problem definition in

the cases where the request ri is a remove request and the node v (to be removed) is a non-

leaf node. These cases force a reconfiguration to the subgraph Mi . Therefore, the dynamic

spanning-subgraph problem does not have a non-reconfigurable dynamic spanning-subgraph

problem. Rather, dynamic spanning-subgraph problems must be defined such that any node can

be removed regardless of its degree in Mi .

Definition 95 Restricted reconfigurable dynamic spanning-subgraph problem: Given an in-

stance I = (G,,cost,Q r), find a sequence of subgraphs {M1, M2, . . . , Mk} where each Mi spans

Vi and minimizes a function of {cost(Mi)|i ≤ k}, while not exceeding an upper bound Bi on the

number of rearrangments. Bi is determined such that if ri is an insert request then Bi = 1, if ri

is a remove request then Bi = (|dMi
(vi)| ∗ 2)− 1.

The restricted reconfigurable dynamic spanning-subgraph problem minimizes the number of

rearrangements of Mi to a minimum for each ri . For each insert request, a node is added to the

subgraph through a single edge, and for each remove request, the neighbors of the removed node

are reconnected. Note that, when a node vi ∈ Mi has been removed and created degMi
(vi) sub-

subgraphs, the reconnection of these sub-subgraphs is equivalent to the group Steiner-subgraph

problem that was introduced in definition 89. The restricted reconfigurable dynamic spanning-

subgraph problem requires that the subgraph remains a spanning-subgraph of member-nodes,

and that the reconfigurations are minimum upon insert and remove requests.

Definition 96 Reconfigurable dynamic spanning-subgraph problem: Given an instance I =

(G,,cost,Q r), find a sequence of subgraphs {M1, M2, . . . , Mk} where each Mi spans Vi and min-

imizes a function of {cost(Mi)|i ≤ k}, while not exceeding an upper bound Bi on the number of

rearrangments. Bi is determined such that if ri is an insert request then (trivially) Bi ≥ 1, if ri

is a remove request then Bi ≥ (|dMi
(vi)| ∗ 2)− 1.

The reconfigurable dynamic spanning-subgraph problem allows reconfigurations to Mi bounded

by an integer Bi . If the bound Bi > |Vi| ∗2 the reconfigurable dynamic spanning-subgraph prob-

lem is equivalent to the spanning-subgraph problem (definition 20) for each instance (G,cost, Zi).

Furthermore, for a remove request, if the bound Bi < (|dMi
(vi)|∗2)−1, then a solution does not

exist. Therefore, the bound Bi must be determined for each request ri , such that, for a remove

request, it is greater than the degree of vi in Mi.

The reconfigurable dynamic spanning-subgraph problem requires that the number of rear-

rangements of the Steiner-subgraph is ≤ Bi when a request ri has been completed. However, it

may be difficult to determine this bound Bi for each request ri. In practice, it may be wise to

use a percentage of additional reconfigurations above the necessary.
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Definition 97 Minimum-reconfiguration dynamic spanning-subgraph problem: Given an

instance I = (G,,cost,Q r), find a sequence of subgraphs {M1, M2, . . . , Mk} where each Mi

spans Vi and minimizes the number of rearrangements, while not violating the cost function

{cost(Mi)|i ≤ k}.

The minimum-reconfiguration dynamic spanning-subgraph problem minimizes the number of

rearrangments needed to achieve a given cost function. The cost function may, for example,

provide an upper bound to the diameter of the subgraph Mi.

4.12 Dynamic subgraph insert- and remove-node problems

The dynamic-subgraph problems introduced in section 4.11 defined requirements to subgraph-

updates when single nodes are inserted and removed, for example, concerning bounds on the

number of rearrangments, bounds on the cost of the subgraph, etc. Like a dynamic-tree algo-

rithm, a dynamic subgraph algorithm is also comprised of one insert-strategy, which inserts a

node into a subgraph, and one remove-strategy, which removes a node from a subgraph. The

strategies must be paired to create one dynamic subgraph algorithm to address the dynamic-

subgraph problems. However, one issue is that the insert and remove strategy may belong

in different dynamic subgraph problems. Therefore, similar to dynamic-tree algorithms (sec-

tion 4.8) we:

Define formal insert and remove-node problems that more accurately categorizes the insert and

remove strategies that are needed to address the dynamic subgraph problems.

In this regard, it is especially the number of rearrangements that are allowed upon inserting or

removing a node that influences an algorithm’s performance and defines a subgraph’s stability.

Following are definitions of a wide range of insert-node to subgraph and remove-node from

subgraph problems that exhibit the accuracy that is desirable for describing the insert and re-

move strategies in dynamic subgraph algorithms.

4.12.1 Insert-node to subgraph problems

Insert strategies insert a new member m to a subgraph and assure that m is connected. Formally,

an insert strategy works like this:

Given G = (V, E, c), a subgraph M = (VM , EM), a set of members ZM ⊆ VM , and a new member

m ∈ V . Update M , such that ZM ∪ {m} are connected.

The new member m may be inserted into M in many different manners. We have devised

several insert strategies that bound the size of the reconfiguration set R. The reconfiguration set

R contains the edges that are changed between reconfigurations of a subgraph. It is possible to

insert m to M through a single edge, while other strategies use the degree limit as a bound.
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Definition 98 Insert vertex edge-additions: Given G, a connected subgraph M , an integer

k > 0, and a joining member m ∈ V , Update M , such that ZM ∪ {m} are connected, and

|R|= k.

The insert vertex edge-additions problem connects (inserts) a node m to the subgraph using

k edges. Insert strategies belonging to this problem typically search for the k edges that, for

example, are the minimum-cost edges, or the edges that results in the least eccentricity for the

inserted node.

Definition 99 Insert vertex and limited reconfiguration set: Given G, a connected subgraph

M , an integer k > 0, and a joining member m ∈ V , Update M , such that ZM ∪ {m} are

connected, and |R| ≤ deg(m) ∗ (2+ k).

The insert vertex and limited reconfiguration set restricts the size of the reconfiguration set R to

be less than the k+ 2 times the current degree-limit of m. This allows for an insert strategy to,

for example, connect m to M as an intersection node and then re-connect using k edges from

m.

Definition 100 Insert vertex and unlimited reconfiguration set: Given G, a connected sub-

graph M , and a joining member m ∈ V , Update M , such that ZM ∪ {m} are connected, and

|R| ≤ |EM | ∗ 2.

The insert vertex and unlimited reconfiguration set problem put no restrictions on the size of the

reconfiguration set R upon connecting m to M . If an insert strategy fits to this insert problem,

it is clear that its worst-case behavior is that every edge in M is exchanged when m is inserted.

However, the insert strategy may still not be equal to a Steiner-subgraph or spanning-subgraph

algorithm if the average-case size of R is rather small.

4.12.2 Remove-node from subgraph problems

Remove strategies remove a member m from the multicast subgraph while assuring that the

members stay connected. Formally, a remove strategy works like this:

Given G = (V, E, c), a subgraph M = (VM , EM ), a set of members ZM ⊆ VM , and a member

m ∈ V . Update M , such that ZM \ {m} are connected.

The number of direct neighbor nodes of m (its degree) in M influences the necessary actions.

If the degree degM (m) = 1, m is a leaf that is simply removed along with the edge to its only

neighbor. If it is greater than 1, a removal of m partitions the subgraph if no additional steps are

taken, and degM (m) unconnected subsubgraphs would be the result. The basic goal of remove

strategies is the reconnection of subsubgraphs into a single subgraph when degM (m) ≥ 2.
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Similar to the insert strategies, we divide the remove strategies into the worst case sizes of

the reconfiguration set R. The minimum reconfiguration set when removing m consists of its

immediate neighbors in M . We have a number of remove strategies that bound the size of the

reconfiguration set to the worst case number of edges it may change when disconnecting and

reconnecting the neighbors of m. Moreover, it is possible to reconfigure a larger portion of M

while removing m, and we also include such remove strategies.

Definition 101 Remove vertex and edge-removal: Given G, a connected subgraph M , and a

leaving member m ∈ V , Update M , such that ZM \ {m} are connected, and |R| ≤ 1.

The remove vertex and edge-removal is the most restricted remove problem, and only allows

the removal of leaf non-member nodes. All other non-member-nodes are kept in the subgraph

until they are leaf nodes. In highly connected subgraphs, there are few leaf-nodes, such that,

an algorithm of this problem is not able to remove non-member-nodes, which results in higly

degraded graphs.

Definition 102 Remove vertex and degree limited reconfiguration set: Given G, a connected

subgraph M , and a leaving member m ∈ V , Update M , such that ZM \ {m} are connected, and

|R| ≤ deg(m) ∗ 2.

The remove vertex and degree-limited reconfiguration set bounds the size of the reconfiguration

set to include, for example, a disconnection of m and then reconnecting the neighbors of m. It

is also possible, for a remove strategy to include a Steiner-point to reconnect the neighbors of

m. More advanced reconfigurations are also possible that does not include exchanging edges

near m, but these are not addressed in the thesis.

Definition 103 Remove vertex and unlimited reconfiguration set: Given G, a connected sub-

graph M , and a leaving member m ∈ V , Update M , such that ZM \ {m} are connected, and

|R| ≤ |EM | ∗ 2.

The remove vertex and unlimited reconfiguration set problem put no restrictions on the size of

the reconfiguration set R upon disconnecting m from M , and then reconnecting M . If a remove

strategy fits to this remove problem, it is clear that its worst-case behavior is that every edge in

M is exchanged when m is removed. However, the remove strategy may still not be equal to a

Steiner-subgraph or spanning-subgraph algorithm if the average-case size of R is rather small.

4.13 Summary of the main points

The chapter introduced the research area of overlay network design. The motivation was to

introduce relevant graph theory problems that address the issues faced by developers of dis-

tributed interactive applications. We also use the formal definitions of the problems when we

introduce and evaluate algorithms in later chapters.
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More specifically, we presented the graph theoretical terms and symbols that are addressed

during the research in the thesis. Moreover, we gave a brief introduction to a few important

graph algorithmic terms related to graph algorithm complexity, algorithm types and some of the

metrics that are typically addressed by graph algorithms. We identified the overlay construction

algorithms that often are the algorithmic foundation for other more recent algorithms: Dijkstra’s

SPT, Prim’s MST and Kruskal’s MST.

A wide range of graph theoretical problems related to graph search and overlay construction

were also presented. It is clear that not all of the graph theoretical problems are equally relevant.

However, we do believe that by providing such a comprehensive study it will make it easier to

distinguish and identify the more relevant problems for specific applications. In the course of

the thesis, we shall evaluate algorithms that address almost every graph theoretical problem. By

doing this and also by providing references to the problems the algorithms address, we hope it

will make it more clear how the algorithms behave.



Chapter 5

Distributed interactive system:

Group management techniques

The motivation for this chapter is found in chapter 2, which introduced a range of requirements

and design issues for distributed interactive applications. There it was identified that clients in

these applications should have the possibility of joining and leaving an ongoing session of real-

time interaction. When clients join and leave, the real-time interaction must not be disrupted,

and the joining clients must be included to the applicaction in a timely fashion such that they

can start interacting instantaneously. From these motivational points, it is clear that:

If a distributed interactive application is to support real-time interactivity and group dynamics,

it yields great challenges to the distributed interactive system’s design.

The following sections introduce specific requirements to distributed interactive systems, and

also 4 proposed sub-systems: membership management, resource management, overlay net-

work management and network information management. These sub-systems include different

techniques and algorithms, many of which were surveyed in the state-of-the-art and related

work in chapter 3. The goal of the chapter is to address the requirements and design issues

motivated by chapter 2, and describe specific teqhniques and algorithms that together are able

to adress them.

More specifically, we evaluated 3 membership management variations theoretically and

through experiments on PlanetLab. From these observations, we concluded that a centralized

approach is most fitting in a dynamic and interactive scenario. Moreover, we proposed that the

resource management should use core-node selection algorithms, to find nodes in the network

that yield low pair-wise latencies to groups of clients (chapter 7). Furthermore, we proposed

that the overlay network management consists of graph manipulation algorithms that both en-

hance and reduce complete group graphs, and also overlay construction algorithms that use the

group graphs to build low-latency overlay networks for event distribution. Generally, we de-

duced that distributed interactive applications have such strict lantency requirements that the

109
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resource and overlay management should mainly consist of centralized graph algorithms. The

graph theoretical problems for all of these graph algorithms are found in chapter 4. Finally, we

proposed that a network information management should contain latency estimation techniques

that obtain accurate all-to-all path latencies such that centralized graph algorithms can use them.

The rest of the chapter is organized in the following manner. Section 5.1 introduces a few of

the requirements that a distributed interactive system has and also the specific research areas that

are the focus of the thesis: resource management, membership management, overlay network

management and network information management. Section 5.2 evaluates 3 approaches for

membership management in distributed interactive applications. Section 5.3 introduces the re-

source management techniques that are evaluated in chapter 6 and 7. Section 5.4 introduces the

overlay management techniques that are evaluated in chapter 8 through chapter 14. Section 5.5

briefly introduces the network information management, along with the latency estimation tech-

niques. They are evaluated later in chapter 6. Finally, section 5.6 gives a brief summary of the

main points.

5.1 Requirements to a distributed interactive system

We discussed in chapter 2 that an application that is to support distributed real-time interaction

must use a distributed system that handles the interactivity and dynamics of clients. An applica-

tion developer requires a range of basic techniques and algorithms to enable a distributed system

that supports clients to join and leave ongoing sessions of real-time interaction. Generally, we

observed that:

When clients join and leave, efficient mechanisms should ensure that the service to the remain-

ing clients is not disrupted, and that the joining clients are included such that they, in a timely

fashion, can start the real-time interaction with the clients online.

These straight-forward requirements of interactivity and dynamics together impose great chal-

lenges that must be enabled by basic mechanisms and then adapted to a specific system’s design.

The interactivity poses requirements to the latency, and the dynamics pose requirements to the

configuration of the event-distribution paths. Together, the interactivity and dynamics should be

handled by a system that support configuration of low-latency networks for event-distribution.

In other words, the clients should be within a latency bound to each other in the member net-

work. The system support for interactivity and dynamics must be enabled by basic mechanisms

for network configurations and management.

Section 2.5 introduced 4 specific research areas and goal statements that we intend to ad-

dress in the thesis. In the following, we re-state the 4 identified research areas and then delve

into the techniques and algorithms that are required to address them.
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• A membership management must ensure that clients are able to join and leave ongoing

sessions of real-time interaction, in a timely fashion (section 5.2).

• A resource management must ensure that well-placed nodes are found that yield low

latencies to groups of clients, such that they are available for management tasks (sec-

tion 5.3).

• An overlay network management must ensure that clients are configured in overlay net-

works that yield sufficiently low-latencies for real-time interaction (section 5.4).

• A network information management must ensure that Internet path latencies between

the interacting clients are available and sufficiently accurate (section 5.5).

These approaches are now introduced and put in the right context with references to the

algorithms and techniques evalutated in the thesis.

5.2 Membership management

In section 2.5.2, we described the goal for the membership management to be:

1) Identify techniques that enable an efficient and timely membership management of multiple

dynamic subgroups of clients.

To achieve this goal, the membership management must include efficient techniques that can

process incoming join and leave requests. Such requests are sent from interacting clients in the

application, and their functionality can be summarized such:

A join request is sent by a client that wishes to join a group of clients and interact with them,

and a leave request is sent by a client that wishes to leave a group of clients and stop interacting

with them.

After processing the requests, the membership management must then be in a state where the

membership views in the network are sufficiently consistent, such that it is able to continuously

service join and leave request in a timely manner.

5.2.1 Requirements to the membership management

The requirements to the membership management in distributed interactive applications vary

depending on the number of groups and their dynamics (client churn). However, the require-

ments and complexity of the methods for such membership management systems is envisioned

to vary especially depending on the number of active groups in the application.



112
Chapter 5. Distributed interactive system:

Group management techniques

• Single group interactive applications exhibit looser requirements to the membership man-

agement.

• Multiple subgroups of interacting clients in an application exhibit stricter requirement to

the membership management.

In a single (flat) group situation it suffices to form low-latency event-distribution paths in

which all clients are reachable. A membership management system is therefore enabled by

efficient distributed mechanisms for handling client churn. The drawback of having a single flat

group is that every client in the network receive every event, even though a client may not be

interested in large portions of these events. This consumes unnecessary link bandwidth in the

client network. The distributed interactive system should therefore be enhanced such that it is

enabled to divide the clients into subgroups, where each group has its own low-latency network

for the events they are interested in.

Applying multiple subgroups to distribute events in an application, pose membership manage-

ment challenges related to how the groups are updated and how the event distribution overlays

are constructed.

The distributed interactive system should be enhanced to include mechanisms that can search

for and elect nodes to administrate clients that join and leave subgroups. In that respect, the

resource management (section 5.3) has methods to identify well-placed core-nodes that may be

elected to administrate and execute the membership management. Having a limited set of nodes

to handle the membership management, makes membership updates achievable in a dynamic

scenario.

5.2.2 Membership management techniques

Group management of dynamically changing sub-groups of clients is important to enable a

variety of scalable distributed interactive applications. Essentially, there are three different ap-

proaches to group management; centralized, distributed and a hybrid approach named hierachi-

cal management. Which to choose is an important design choice, and influences the target

applications, in terms of their scalability, robustness, etc.

In a centralized approach, a node is assigned to control the membership information, and

assist the application’s group members to form an overlay multicast topology. ALMI [101]

is a centrally managed application-level group communication middleware, tailored towards

the support of relatively small multicast groups with many-to-many semantics. Centralized ap-

proaches avoid many consistency issues, but the scalability may suffer. Other typical centralized

issues are, single point of failure, potential bottleneck problems and resulting slower manage-

ment. However, a multitude of fault tolerance and quality of service mechanisms are available

that reduces the chance of loosing valuable data [149].
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In a distributed approach the overlay and membership information is dynamically dis-

tributed to the members. Many file-sharing and video-streaming peer-to-peer applications use

this distributed approach [124, 33, 39, 97, 85]. However, these applications do not support in-

teractivity, and due to this there is no need to create sub-groups of clients. Generally, such

completely distributed overlay applications are scalable, but they do have inherent consistency

issues that must be handled in order to support interactivity.

A hierarchical approach aims to address the centralized scalability issues, and distributed

consistency issues. In a hierarchical approach the members form a hierarchical structure and

assign specific tasks/roles to the group members. This way, the group management is dis-

tributed among a few nodes, which effectively decreases the overlay network control traffic.

AMcast [115] is such an approach, which uses a set of distributed multicast service nodes.

The membership management architecture in the thesis is not linked explicitly to any archi-

tecture, but it does rely on having a membership manager that is in charge of a group’s member-

ship management. The membership manager executes join and leave requests and updates the

group view accordingly. It is also possible to elect multiple managers, and dynamically migrate

tasks between the managers [17].

5.2.3 Membership management variations

There are many possible membership management variations that are based on appointing tasks

to single nodes for each group. Following are some variations of membership management ar-

chitectures that are envisioned to fit particularly well to enable support for dynamically chang-

ing subgroups of clients. In all of the variations, a manager-node has been appointed to service

incoming join and leave requests from a group of clients.

Membership management actions

For interactive applications that enable multiple sub-groups of clients, it is envisioned that join

and leave requests often are coupled to one membership-change request. The result of the

membership-change request is that a client is removed (left-out) from a group, and joined to

another. Upon reception of a membership-change request the membership management must

act such that the affected groups of clients are updated.

There are a number of actions that need to be taken to service a membership-change re-

quest. The sequence of these actions depend on the system, but the actions themselves share

important commonalities. The basic sequence of actions that occur when a manager recieves a

membership-change request are that:

The membership-change request should be accepted by the membership management before it

is initiated, and at the end, the membership management should be notified upon completion.
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Dependent sequential network phases

N
e
tw

o
rk

 l
a

te
n
c
y

M
em

be
rs

hi
p

m
an

ag
em

en
t l

at
en

cy

Figure 5.1: The membership management latency is influenced by the number of dependent sequential
network phases (steps).

In the following, three membership management variations are presented with the purpose of

evaluating their applicability for use in diststributed interactive applications. For each of them,

the membership consistency between the manager and the group members is discussed in some

detail. Furthermore, the number of required steps in a system influences the latency of each

successful completion of a request, and this is put in context with each of the membership

management variations. Figure 5.1 illustrates how the membership management latency is in-

fluenced by the number of dependent sequential network phases (steps). For example, two

dependent sequential network steps occur when a client sends a membership change request to

the manager, who accepts it and sends a reply back.

A) Distributed sequential membership management

The distributed sequential management (Figure 5.2 A) is an architecture in which each client

pulls membership data from the server when it requires to change a group. The clients then use

this membership information to complete the membership change request, and reports the result

back to the server. It is an architecture that may be implemented using a release consistency

model [122]. A system that is implementable using release consistency requires synchronized

read and write operations on shared data.

In more details, clients in the distributed sequential membership management sends a mem-

bership change request to a manager, in which it is entered into a request queue. The request

queue may be implemented in several different manners, but it must follow these rules:



5.2. Membership management 115

Figure 5.2: Group management techniques with control and data paths

Each request from a single source must be accepted in the order they were received, and each

request on a group must be completed such that the membership view on the server is consistent

with the sub-view on the clients.

Upon servicing a membership change request in the queue, the server sends an accept message

to the client, which contains the latest data on a specific group’s membership that is available

on the server. Upon reception of the accept message, the client initiates the membership change

by updating the membership data. The client should now inform the group members that it has

entered, while it in parallel notifies the server that it has completed the membership change.

The system has three steps that are executed sequentially and require cooperation over an

overlay network link in the Internet. These steps are: 1) client sends membership change request

to the server, 2) server sends accept back to the client, 3) client sends request completed to the

server and the group members. The drawback and latency bottleneck of this approach lies in

these three network steps and that there is a potential of delayed requests due to the consistency

requirements. There is actually no computation on membership data in the first two steps of a

membership change. It is in step three that the group membership data is being updated. The

upside is the consistency and the load balancing the system yields.

B) Distributed parallel membership management

The distributed parallel membership management (Figure 5.2 B) is an architecture in which

each client pushes membership updates to the server when it has already decided to change

its group. Therefore, all clients should have sufficient global knowledge of the current group

memberships, such that each client can change memberships on their own (without consulting

a server). One way to achieve this, is that the server continouosly pushes its entire membership

database to every member in all groups for each group update it receives. This is an architecture

that most likely may be implementable using a weak consistency model [122]. In a system

implemented using a weak consistency model, the shared-state can only be counted on to be

consistent after a synchronization is done. The membership views on the server and the clients

do not have to be consistent with each other as long as each client can join the group it requires
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in a timely fashion.

In more details, a client in the distributed parallel system changes its group by sending a

membership change request to a manager, and at the same time initiate the membership change

by using its latest group membership data (assumed to be present). The server executes the

membership change request upon reception and sends an accept to the client (regardless). In

parallell, the client notifies the server when it has completed the membership change.

This system only requires one connect step to enter a group if the membership database

on the client is up-to-date. Unfortunately, it is expected that the membership database may

be out-dated and additional steps may be needed. However, this does depend on two factors:

frequency of group changes (dynamics) and the number of dynamically changing groups in

the system. If the group dynamics is very low, the distributed parallel approach is expected to

perform well. If it is high, the performance may suffer due to potential inconsistencies, and

the number of membership database messages propagated to the clients in the network also

escalates. Therefore, a distributed parallel membership management does most likely fit small

to medium sized distributed interactive applications with fairly static groups.

C) Centralized sequential membership management

The centralized sequential membership management (Figure 5.2 C) is an architecture in which

each client sends a request to the server that executes it locally and then pushes the membership

updates to the affected clients. This is a typical centralized architecture that may be imple-

mented straight forward using a release consistency model. The membership database on the

server is the only copy being updated, and these updates are pushed to the clients that accept

the latest received update as the current.

In more details, clients in the centralized sequential system send a membership change re-

quest to a manager, in which the request is entered into a request queue. The request queue

may be parallelized to any extent, as long as it follows the rules introduced in the distributed se-

quential membership management paragraph. The server accepts and initiates the membership

change locally, and notifies the affected clients upon completion.

This centralized approach requires two steps accross overlay network links to complete

a membership change request, which is the minimum of any centralized system. A typical

drawback of centralized systems is the added load on the server that executes every incoming

request locally. It is also a single point of failure, but fairly simple fault tolerance mechanisms

may be added to increase the resilience, where one approach is to replicate data to other servers.

To the best of our knowledge, a centralized architecture is the most common approach to be used

by current distributed interactive applications (section 5.2.2).
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Figure 5.3: The execution latency of a single membership change request for the membership manage-
ment variations. The execution latencies are based on average PlanetLab link latencies.

5.2.4 Membership management evaluations and experiments

The 3 membership management variations are now evaluated theoretically and through exper-

iments conducted on PlanetLab. The evaluation results in a choice being made upon which

membership management variation is better suited for distributed interactive applications.

Membership management goals and metrics

A membership management should handle dynamically changing sub-groups of clients, and en-

able them to communicate in the sub-groups. Therefore, a membership change request should

be executed in a timely manner, while leaving the memberhip database on the manager suffi-

ciently consistent with the sub-views on the clients. The most important important metric is

the membership change execution latency, which is the time it takes for a membership change

request to complete. The membership change execution latency may be influenced by the mem-

bership change frequency, if the system variation employs a request queue.

Membership change execution latency of a single request

Through experiments on PlanetLab we found an average link latency of approximately 100 mil-

liseconds. We use this average link latency to estimate the average membership change execu-

tion latency for each membership management variation. This is possible because each of the

3 evaluated variations has a fixed number of control messages exchanged through overlay links

for each membership change request. Distributed sequential has 3 control messages, centralized

sequential has 2 control messages, and distributed parallel has only 1 control message. Hence,
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Figure 5.4: Distributed sequential variation: The worst-case queue-latency for one membership change
request, when a number of non-parallelizable membership change requests are received at one instance.
The execution latencies are based on average PlanetLab link latencies.

on PlanetLab these membership variations finish, on average, one membership change request

respectively in 300 milliseconds, 200 milliseconds and 100 milliseconds. Figure 5.3 illustrates

the average execution latency for each variation, based on an average link latency on PlanetLab.

Membership change frequency and the execution latency

Studying figure 5.3 it looks like the difference in the membership change execution latency

between the 3 variations is fairly marginal. However, one factor that may affect this, is the

membership change frequency.

For the latency, the most critical step in the membership management is the accept and

initiate steps. If the execution of these two steps are seperated by a large delay, the membership

management may suffer in cases of frequent membership changes. Such a large delay is present

in the distributed sequential membership management, in which the accept and initiate steps are

seperated by two overlay links (average latency of 200 milliseconds). The distributed sequential

approach uses a request queue to ensure consistency in the system. When the membership

change frequency is high, the request queue is likely to grow. Hence, this puts extra importance

on handling the request queue in an extremely parallel manner.

Figure 5.4 shows how the worst-case queue-latency for distributed sequential membership

management is affected by how many non-parallelizable requests are received at one time. For

example, if 6 non-paralellizable requests are received at one time, the worst-case queue-latency

is 1 second for one of the requests. It takes 300 milliseconds to complete a membership change

request with no queue-latency. Therefore, we observe that the this variation cannot receive more

than one membership change request every 300 milliseconds if it is to avoid queue-latency.
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Figure 5.5: Average membership management times for the centralized sequential management. The
central entity (manager) was chosen by a core-selection algorithm (topology center) in the resource
management, and compared to worst case manager selection.

In the distributed parallel variation, the accept and initiate steps are concurrent, and it is as-

sumed that each client can change membership and connect to a group based on its own mem-

bership database. However, the distributed parallel variation cannot guarantee that a client’s

membership database is up to date. Therefore, it cannot ensure that the membership request

is completed in one step. For this reason, the distributed parallel variation is not reliable in

situations where the membership change frequency is high.

In the centralized sequential variation, the accept and initiate steps are executed locally on

the manager. Therefore, the membership execution time is more dependent on the manager’s

computational capacity. Based on the previous observations, the choice is made to use the

centralized sequential membership management.

Centralized membership management experiments

The advantage of a centralized approach is the consistency it gives. However, the drawback

may lie in the administration latencies involved in membership and group updates. Especially

the membership change execution latency has been identified as an issue. Figure 5.5 shows the

average membership change execution latencies for the centralized sequential variation. The

experiments included 100 PlanetLab nodes that dynamically changed groups by contacting a

membership manager node. The latencies are consistently just below 200 milliseconds, and
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Figure 5.6: Round trip times obtained by King. Measuring all-to-all path latencies between 1740 name
servers.

confirm the observations made in the previous sections regarding membership change latency.

In the experiments, the resource management (section 5.3) has used a core-node selection

algorithm (chapter 7) and chosen a well-placed central entity (manager) to handle the mem-

bership management. It is quite clear that the core-node selection strategy (topology center)

ensures that a central entity is chosen that has low pair-wise latencies to the clients in the mem-

ber network. The worst case central entity placement may be a valid situation in cases where

a game provider has a static central entity that serves the entire world. A static central entity

cannot be in the current topological center at all times, because as the night and day passes the

clients in a game dynamically shift from continent to continent.

King round-trip time measurements

It is clear that the average link latency of 100 milliseconds on PlanetLab may not be the general

average in the Internet. Figure 5.6 plots the cumulative distribution function (CDF) of the

round-trip times (RTTs) between 1740 Internet name servers. The plot is obtained from the

publicly available P2PSim King data set [98], which are all-to-all measurements as obtained

by King [61]. From the plot we see that the average RTT is about 100 milliseconds, which is

about half of what we found in our PlanetLab measurements. The larger PlanetLab latencies are

likely due to heavily loaded PlanetLab nodes, and that PlanetLab measurements are application
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Management Group Number of Network
Technique dynamics groups Consistency steps Drawback Upside

Distributed parallel low low low or none 1 step network cost fast
Centralized sequential high high achieved 2 steps server load medium fast
Distributed sequential low high achieved 3 steps slow load balancing

Table 5.1: Properties of the membership management systems.

layer latencies. The King measurements, on the other hand, are network layer latencies between

name servers that are by en large very well connected.

It is expected that application layer latencies are larger than network layer latencies [24].

Although 50 milliseconds may seem like too big a difference, it does not change our conclusions

pertaining the centralized membership management system.

Conclusions and relevance

Empirical results and experiments on PlanetLab show that the centralized sequential variation

is a very good approach for membership management of multiple dynamically changing sub-

groups of clients. An average membership execution latency of just below 200 milliseconds

on PlanetLab is acceptable. However, we also observed that a bad choice of manager increases

the membership execution latency significantly. Therefore, it is clear that a resource manage-

ment (section 5.3) that finds well-placed managers must be present for membership manage-

ment systems that rely on manager nodes. Table 5.1 summarizes the observations regarding the

membership management variations.

5.3 Resource management

In section 2.5.3, we described the goal for the resource management to be:

2) Identify techniques that enable a resource management to identify nodes in the (application)

network that yield low pair-wise latencies to groups of clients.

Such nodes are often referred to as core-nodes, where, essentially, a core-node may be any node

in the application network (server, proxy, member-node, etc). Once the resource management

has identified well-placed core-nodes, it is possible to appoint and execute management tasks

on them. Therefore, one application area for well-placed core-nodes is to use them to execute

parts of a distributed interactive system and as such act as a manager for groups of clients.

Low-latency paths to a core-node is the paramount requirement if the core-node is used for

management tasks that are time-dependent. A secondary goal is to identify core-nodes that have

high computational power and bandwidth capacity, in addition to low pair-wise latencies. Band-

width capacity is especially important if a distributed interactive application supports bandwidth
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intensive streams, because the core-nodes may be used to forward such data-streams. However,

in the thesis, the focus is on achieving the primary goal: low pair-wise latencies to a selected

group of clients. Therefore, the resource management consists of:

Core-node selection techniques that use all-to-all path latencies to search for core-nodes in the

network that yield low pair-wise latencies to selected groups of clients.

It is the network information management (section 5.5) that provides the all-to-all path laten-

cies. The evaluated core-node selection techniques in the thesis, are 5 core-node selection

algorithms, which are are thoroughly introduced in chapter 7. These algorithms address the

graph theoretical problems introduced in section 4.4.

5.4 Overlay network management

In section 2.5.4, we described the goal for the overlay network management to be:

3) Identify techniques that find Internet paths with low pair-wise latencies among clients in a

group, and configure them for event-distribution of real-time client interaction.

In the thesis, we use application layer overlay multicast to distribute events among interacting

clients. Therefore, overlay network construction techniques are needed to configure efficient

multicast overlays. The overlay network construction is assisted by many different types of

graph algorithms, many of which are presented in the state-of-the-art and related work (chap-

ter 3). The proposed overlay network management consists of these techniques:

Graph manipulation techniques that reduce and enhance complete group graphs such that the

overlay construction techniques build desirable low-latency overlays.

Overlay construction techniques that use the group graphs to construct low-latency overlay

networks for event distribution.

5.4.1 Overlay management and the techniques

The graph manipulation techniques consist of graph algorithms whose primary task is to ma-

nipulate a group’s complete graph such that it enables the overlay construction algorithm to

execute fast and build desirable overlay networks. Application layer overlay networks are in-

herently complete graphs (fully meshed), and such complete overlay networks can be manipu-

lated and optimized in terms of identifying well-placed nodes and reducing the number of links

that are available to an overlay algorithm. Chapter 8 introduces and evaluates a range of graph

manipulation algorithms.

The overlay construction techniques consist of overlay construction algorithms whose main

task is to construct overlay networks for distribution of application events. An overlay construc-
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tion algorithm takes as input a group graph and constructs a subgraph on it that is especially

designed for timely event distribution. Overlay networks should meet the event distribution

requirements, which is especially related to creating low-latency overlay networks. The over-

lay construction algorithms that are evaluated are spanning-tree and Steiner-tree algorithms,

spanning-subgraph and Steiner-subgraph algorithms, and dynamic-tree and -subgraph algo-

rithms. These algorithms are introduced and evaluated from chapter 9 through 14, and the

graph theoretical problems they adress are described in chapter 4.

Both the graph manipulation techniques and the overlay construction techniques use all-to-

all path latencies, which are obtained by the network information management (section 5.5).

5.4.2 Centralized overlay management

If a centralized architecture is used, the overlay network management is run on a manager

node along with the centralized membership management. Each time the centralized member-

ship management receives a membership change request the overlay management is initiated

to perform the necessary overlay construction work for a group. Therefore, the efficiency of a

centralized group management approach heavily relies on the efficiency of the overlay manage-

ment.

Section 5.2 identified that the centralized sequential membership management is the most

suitable approach due to the low average latency in a membership execution and the achieved

consistency. During the evaluation, the latency of the overlay network management was ne-

glected, but we shall see that in most cases, centralized graph algorithms are still the preferred

choice. The graph algorithms use the all-to-all link latencies from the network information

management in the search for low-latency overlay networks.

If a graph algorithm is distributed and requires more than 4 steps on a single node to com-

plete, where each step requires communication across overlay links, it is already too much

for distributed interactive applications. In the case of 4 sequential steps, it adds up to at least

400 milliseconds for the overlay construction. With the added 200 milliseconds in the mem-

bership management it takes at least 600 milliseconds to complete the membership change

request. However, for distributed interactive applications, the latency requirement are often

below this (chapter 2). For many online games, the latency requirements are less than 400 mil-

liseconds [70]. Therefore, the only distributed graph algorithms for overlay construction that

may be evaluated are algorithms that require less than 2 sequential overlay network steps to

complete. However, every known distributed graph algorithm for overlay construction have a

worst case message complexity that vastly supercedes this number. Studies have shown that

distributed overlay construction algorithms may use up to 30 seconds to build a spanning-tree

with 50 nodes [147]. This is not acceptable for the time-dependent event distribution scenarios

that are considered. Figure 5.7 illustrates the overlay construction latencies of distributed al-
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Figure 5.7: Overlay construction latency of distributed overlay construction algorithms in terms of the
worst case sequential steps of a distributed algorithm on a single node (each step requires communication
across overlay links). The overlay construction latencies are based on average PlanetLab link latencies
(100 milliseconds).

gorithms in terms of their number of sequential steps over overlay links on PlanetLab (average

100 millisecond links).

Many graph theoretical problems that address the construction of low-latency networks are

also inherently difficult to solve. In chapter 4 we introduced many such problems, and we found

that problems addressing pair-wise latencies and have constraints on the node-degree, total-cost,

etc, are for the most part N P-complete. Such problems are hard to approximate distributedly,

and often rely on sequential algorithms, which suffer from large construction latencies [22]. To

the best of our knowledge, there are few if any distributed parallell algorithms for constructing

low-latency overlay networks.

On the basis of these observations, we decide to use centralized graph algorithms in the

remainder of the thesis. Many of centralized graph algorithms we evaluate are approximation

algorithms for the graph theoretical overlay construction problems in chapter 4. Generally, all

of the algorithms need all-to-all path latencies to be available, and the network information

management provides these (section 5.5).

5.4.3 Types of evaluated overlay construction algorithms

The overlay construction algorithms that are chosen for the investigation have desirable prop-

erties for the target applications. The investigation include algorithms that are pseudo-random,

greedy and based on dynamic programming (see section 4.2.3 for a brief introduction). Pseudo-

random algorithms are very fast, but the quality of the solution often suffers. Greedy algorithms

are also fast, but many N P-complete problems are still too hard to approximate well using
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greedy choices. The algorithms that use dynamic programming are slower, but the solutions are

often considerably better than pseudo-random and greedy approaches.

5.4.4 Algorithm constraints and dynamic relaxation

Section 2.5.4 introduced the target metrics that overlay construction algorithms should address.

Generally, overlay construction algorithms that take several target metrics into account often do

this by choosing one metric as its optimization goal, and then address the remaining metrics

by adding constraints. Many constrained overlay construction heuristics cannot guarante that

a constrained overlay is found. Tree heuristics with degree limits as only constraint, always

find a tree when given a fully meshed graph and a degree limit > 1. A tree has a minimum

of two leaf nodes at all times, therefore, in a fully meshed graph, the leaf node always has an

available degree and a link to all the other member-nodes. Heuristics with latency bounds, on

the other hand, do face situations in which it is impossible to find a tree within the bound. When

a heuristic fails to find a constrained overlay, the options are to:

1) rebuild the overlay from scratch with relaxed constraints.

2) abandon the constraints and add the remaining member-nodes through some shortest paths.

3) relax the constraints dynamically while building the overlay.

In our application scenario it is not an option to rebuild the overlay from scratch, as it may

potentially take a very long time. Furthermore, we do not want to completely abandon the

constraints, because they are among our target metrics. Rather, we relax the constraints dynam-

ically whenever a heuristic cannot continue the overlay construction process. Section 10.3.2

introduces these constraints issues applied to Steiner-tree heuristics.

Algorithm 5 OVERLAY-CONSTRUCTION(G):
In: A graph G = (V, E, c).
Out: An overlay G′ = (V, E′).

1: VertexSet constraintIsViolated
2: Start:
3: for each v ∈ V /∈ G′ do

4: Try to add edge (u, v) to G′, where u ∈ V , such that a constraint cost c(G,u, v) is not violated
5: Add vertices u or v for which the constraint cost is violated to constraintIsViolated
6: end for

7: if V (G′) 6= V (G) then

8: Relax constraints of vertices in constraintIsViolated
9: Goto Start:

10: end if

Algorithm 5 describes a general overlay construction algorithm, with dynamic relaxation

of some generic constraints. If the overlay construction algorithm cannot add a vertex to the

overlay, due to the constraints are violated, the algorithm relaxes the constraints for the selected
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vertices and tries to continue the construction. The algorithm ensures that the overlay construc-

tion finishes with a connected overlay, and in the process gracefully relaxes the constraints. The

constraints may be degree-limits, latency bounds, total cost bounds, etc.

5.5 Network information management

In section 2.5.5, we described the goal for the network information management to be:

4) Identify techniques that are able to obtain accurate all-to-all Internet path latencies.

In general, a network information management should retrieve any network-related metric that

is useful for centralized algorithms. For a resource management that identifies nodes, this may

be metrics describing a node’s bandwidth, computational powers, etc. In an overlay network

management that constructs overlay networks for event-distribution, it may be similar, but also

other metrics like packet-loss, throughput, etc. The network information techniques that are

addressed in the thesis are:

Latency estimation techniques that identify all-to-all overlay link latencies to construct a com-

plete graph of the application’s members.

This complete graph of the member network have nodes (vertices) that are the clients, and links

(edges) that are overlay connections with the estimated or measured latency. These latencies

assist the core-node selection techniques (section 5.3) to find well-placed nodes. Moreover,

they assist the graph manipulation techniques and overlay construction techniques to construct

low-latency overlay networks for event distribution.

Chapter 6 presents and evaluates 2 latency estimation techniques through experiments on

PlanetLab.

5.6 Summary of the main points

We proposed a group management approach that consists of 4 main parts: membership man-

agement, resource management, overlay network management and network information man-

agement.

We evaluated 3 membership managment variations towards expected latency in a member-

ship change request, and the expected consistency of the variation. We deduced that a central-

ized membership management approach is most fitting to a scenario in which there are multiple

dynamic subgroups of clients. The distributed variations (parallel and sequential) may be ap-

plicable, but they have drawbacks related to consistency (parallel) and latency (sequential) (see

table 5.1).
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control path

data path

user nodes

central entity

Figure 5.8: Central entity executes the group management teqhniques (resource management, member-
ship management and overlay management).

The resource management consists of core-node selection techniques for identifying well-

placed core-nodes that yield low pair-wise latencies to the clients in the application. Such well-

placed core-nodes are typically suitable for time-dependent management tasks. The core-node

selection techniques are evaluated chapter 7.

The overlay network management consists of graph manipulation teqhniques that operate on

complete group graphs to reduce the overlay construction time and generally assist the overlay

construction techniques (chapter 8). The group graphs are used by overlay construction teqh-

niques to construct overlay networks for event distribution (chapter 9 through 14). We found

that centralized overlay construction algorithms are most likely better suited for distributed

interactive applications than distributed algorithms. This is mainly due to the large overlay

construction time of distributed algorithms.

The network information management has latency estimation techniques for identifying all-

to-all link latencies in the application’s member network (chapter 6). These all-to-all latencies

assist the centralized graph algorithms in the resource management and overlay network man-

agement.

From these observations, we choose a centralized approach to the group management. A

central entity executes the group management, and the control-messages are sent to the central

entity. The data-paths, on the other hand, are overlay networks in which the application data is

multicast among groups of clients (figure 5.8).





Chapter 6

Characteristics of overlay networks:

Latency estimation techniques

The investigation in the thesis includes many centralized graph algorithms that operate on com-

plete application layer overlay networks. For example, the resource management and overlay

management introduced in chapter 5, apply centralized algorithms for finding core-nodes (chap-

ter 7) and constructing low-latency overlay networks (chapter 9 through chapter 14). Such cen-

tralized graph algorithms require network characteristics to be available at the executing node,

and the focus in this thesis is on link latency as the most important network characteristic.

Link latencies may be obtained through active probing and monitoring of the entire appli-

cation network, however, this is not scalable due to a quadratic traffic growth. Instead, latency

estimation techniques that reduce the probing overhead are applicable. Such techniques do not

perform all-to-all measurements, but rather they do measurements on a sub-set of the links,

and then estimate the remaining links based on the measurements. Though such techniques are

scalable, the penalty lies in their latency estimation accuracy, which is likely to suffer because

less measurements are performed. This chapter evaluates two latency estimation techniques,

Vivaldi [34] and Netvigator [113], towards their accuracy and applicability to distributed inter-

active applications. The results showed that Netvigator yields accurate latency estimtates, while

Vivaldi is more inaccurate but still usable. Netvigator is harder to setup than Vivaldi, but they

are both likely candidates for use in distributed interactive applications.

The rest of the chapter is organized in the following manner. Section 6.1 introduces sev-

eral latency estimation techniques along with a few requirements of distributed interactive ap-

plications. Section 6.2 describes the latecy estimation techniques that are evaluated. These

are latency estimation techniques that, in our scenario, are applicable to estimate the link la-

tency between clients currently participating in a distributed interactive application. Section 6.3

presents several real-world experiments that were performed on PlanetLab using the latency

measurement tool ping, and the latency estimation techniques Vivaldi and Netvigator.

129
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6.1 Obtaining overlay network latencies

Chapter 2 discussed the strict latency requirements that distributed interactive applications have.

It was identified that centralized graph algorithms are desirable and necessary to meet these la-

tency requirements. Centralized graph algorithms that require link latencies to work, motivates

the need for accurate latency estimation techniques and measurement tools. From the observa-

tions a goal was formulated:

4) Identify techniques that are able to obtain accurate all-to-all Internet path latencies.

The following sections have brief introductions to latency estimation techniques and measure-

ment tools, and discusses them in terms of ther applicablity to estimate all-to-all path latencies.

6.1.1 Latency measurement tools

It is straight forward to obtain a link’s round-trip-time (RTT) in the Internet using measurement

tools like ping and traceroute.

Ping works by sending ICMP "echo request" packets to the target host and listening for

ICMP "echo response" replies. Ping estimates the round-trip time (milliseconds), records any

packet loss, and prints a statistical summary when it is done.

Traceroute works by increasing the time-to-live (TTL) value of each successive batch of

packets sent. The first packets sent have a TTL value of one (implying that they are not for-

warded by the next router and make only a single hop), the second TTL value of two, the

third three, and so on. When a packet passes through a router, the router decrements the TTL

value, and forwards the packet to the next router. When a packet with a TTL of one reaches a

router, the router discards the packet and sends an ICMP time exceeded packet to the sender.

Traceroute uses these returning packets to produce a list of traversed routers in the route to the

destination. The timestamp values returned for each router along the path are the latency values

(milliseconds) for each packet in the batch.

The drawback with Ping, is that it does not return any measurements if the target host is

unreachable. Traceroute, on the other hand, returns latency measurements for each hop in the

route, as far as it gets. This may be valuable for some latency estimation techniques if they

control network routers, and if the end-to-end reachability is limited.

6.1.2 Latency estimation techniques

Application layer overlay networks are complete graphs (full meshes) for which the number

of links increases exponentially when nodes are added. Therefore, all-to-all measurements in

overlay networks that may hold hundreds or thousands of clients participating in a distributed

interactive application, incur a massive overhead [9]. Achieving full, up-to-date knowledge
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of the network requires monitoring and is not scalable for a large number of nodes because

the monitoring traffic grows quadratically with the number of nodes. This scalability problem

is addressed by techniques that estimate link latencies, but the trade-off is their accuracy. In

general, a latency estimation technique probes a number of links using a measurement tool (or

real traffic) to retrieve their link latencies, and then attempts to estimate the remaining links

based on these probes. For example, by using network coordinate systems to place the network

nodes relative to each other.

There are a multitude of latency estimation techniques. King [61] is a tool that enables a

node A to retrieve a latency estimate between two arbitrary hosts in the Internet, for example,

B and C. King works by estimating the latency between B’s authoritative name server and C’s

authoritative name server. The assumption is that both B and C are close to their respective

authoritative name server. Recently, an improved King was proposed that reduced the error

that this assumption may incur [84]. Some latency estimation techniques rely on landmark

nodes. Such techniques include Netvigator, NetForecast, Global Network Positioning (GNP)

and Practical Internet Coordinates [41]. Other latency estimtion techniques do not need any

infrastructure and works in any distributed setting, for example, peer-to-peer. Such techniques

include Vivaldi [34] and Big Bang Simulation technique [41]. Many of the latency estimation

techniques are likely to be usable in a distributed interactive application setting. However, the

main comparative metric is whether or not the estimations are accurate enough.

We find that in the scenarios of large-scale distributed interactive applications, it is currently

not scalable to use measurement tools like ping or traceroute to actively monitor entire applica-

tion layer overlay networks for their link latencies. Instead, latency estimation techniques that

reduce the probing overhead should be applied. Such estimation techniques may be classified

into three classes [42]:

• Landmarks-based latency estimation techniques assigns each node a point in a metric

space, and aim to predict the latency between any two nodes. They use landmark nodes,

which are a set of nodes used by the remaining nodes as measurement references for their

relative position in the network. Netvigator [113] is such a technique.

• Multidimensional-scaling based latency estimation techniques do not involve landmark

nodes. They use statistical techniques for exploring similarities and dissimilarities in data.

For example, a matrix of item-item similarities is used to assign a location for each item

in a low-dimensional space [31]. Vivaldi [34] is an example of such a technique.

• Distributed network latency database techniques use active measurements to build a

knowledge base about the underlying network. These approaches have been designed to

efficiently answer queries of the form: Who is the closest neighbor to node A in the net-

work? Since these schemes are based on direct measurements they have better accuracy,
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Measurement Churn Infrastructure
Technique Overhead Requires recovery dependability

Vivaldi O(g ∗ N + N) Inter-nodes traffic yes no
Netvigator O(L ∗ N + N) Traceroute no yes

Table 6.1: Properties of the latency estimation techniques.

however they do also inject more traffic into the network compared to the landmarks-

based and multidimensional-scaling based techniques. Meridian [143] is a technique that

uses a distributed network latency database.

From these observations we deduce that distributed network latency database techniques are

not desirable for our target area, because they are not designed to retrieve all-to-all link latencies.

They are, however, desirable for leader election scenarios, and discovering the closest neighbor

for a node. Instead, we focus on landmarks-based and multidimensional-scaling based latency

estimation techniques, and evaluate Netvigator and Vivaldi as valid representatives.

6.2 Evaluated latency estimation techniques

Netvigator [113] is a landmarks based estimation technique, where a set of landmark nodes L

are probed asynchronously by N nodes using Traceroute (L*N probes). Each node reports its

measurements to a repository (typically a server node), which estimates a global graph with

latencies. Netvigator was originally designed for proximity estimation, that is, to rank nodes

according to proximity to any given node.

Vivaldi [34] is a multidimensional scaling technique and is based on spring embedding,

which models network nodes as masses connected by springs (links) and then relaxes the spring

length (energy) in an iterative manner to reach the minimum energy state for the system. All

nodes N joining the system are placed at the origin, and starts sharing Vivaldi information

among a selected group g of nodes, for example, piggybacked on application level data. The

Vivaldi information includes its coordinates, confidence estimations and the measured latency.

If a global graph is desired, each node can report its Vivaldi information to a repository that does

some calculations and inserts the node in a tow-dimensional plane where the euclidian distance

equals the estimated latencies.

Several others latency estimation techniques have been proposed and evaluated [42]. How-

ever, Netvigator and Vivaldi are two highly valued techniques in their respective latency estima-

tion technique classes [42]. Vivaldi has the advantage that it recovers from node churn (nodes

joining and leaving), and does not depend on any infrastructure. Netvigator, on the other hand,

needs landmark nodes and does not (easily) recover from churn. Table 6.1 summarizes the

comparisons.
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(a) Nodes in North-America.

(b) Nodes in Europe.

Figure 6.1: A few selected PlanetLab nodes and their location.
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Figure 6.2: Measurement overhead in terms of the number of probes of Netvigator (L=20) and Vivaldi
(g=8) compared to all-to-all measurements.

Figure 6.2 visualizes the measurement overhead that Netvigator and Vivaldi incur on the

network, compared to all-to-all measurements. We observe that, when the number of application

members reaches 1000, the overhead of the all-to-all measurements is 1 million probes. It is

quite clear that performing all-to-all measurements in large-scale applications is not a scalable

approach.

6.3 PlanetLab experiments

PlanetLab was used to measure the accuracy of the latency estimation techniques Netvigator

and Vivaldi. Their accuracy is determined by comparing the estimates to real all-to-all ping

measurements. In the following, the latency estimation metrics, experiment configurations and

results are presented.

6.3.1 Experiment configurations

To study the performance of Vivaldi and Netvigator, we performed latency estimation experi-

ments repeatedly over a period of 10 days and included 215 PlanetLab nodes (the total number

of nodes we were able to access). Figure 6.1 shows a few selected nodes and their locations.
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Descriptions Configurations

Group sizes g = 4, 8, 12 clients
RTT measures tcpinfo, ping
Packet rates high (100 packets/sec.), low (2 packets/sec.)
Log times t = 4, 8, 12, 16, 20 minutes

Table 6.2: Vivaldi experiment configurations.

The plots, in the following, represent the results from applying Netvigator and Vivaldi using the

same nodes over the same time interval. The RTTs that are used by Netvigator and Vivaldi are

obtained both from ping and tcpinfo. The reference for our latency estimations was established

by measuring latencies between all pairs of nodes using ping once per minute.

For the Netvigator experiments, we used publicly available estimates performed on Plan-

etLab. Netvigator is currently a running PlanetLab service that estimates the link latencies

between nearly every PlanetLab node. The results of the measurements are available from the

S3 website1, which is updated every four hours with the most recent estimations. We used these

measurements in our experiments. However, the Netvigator configuration is currently a black

box for us.

For the Vivaldi experiments, we used a wide variety of configurations, investigating all

combinations of the parameters in table 6.2. To clarify what is actually happening in the Vivaldi

experiments we give an example. A PlanetLab node is assigned to a random group of nodes of

size g. Then the PlanetLab node starts performing RTT measurements to the g − 1 neighbor

nodes, while sharing its own Vivaldi coordinates. Upon reception of a neighboring node’s Vi-

valdi coordinates and the links RTT measurement, it updates its own Vivaldi coordinates. Then,

in certain timed intervals t the PlanetLab nodes log their current (Vivaldi) network coordinates

to a central entity that estimates a complete graph with link latencies.

We varied the Vivaldi configurations, and used group sizes up to 12 nodes (more neighbors

makes more measurements and better estimations [34]). Groups are created to limit the amount

of measurements done in the network. The RTT measurements were obtained in two different

manners. Once from the tcpinfo structure, which is updated for each open TCP connection and

that can be used easily in passive measurements. Then by active measurements using ping.

The packet rate was varied because a higher rate follows the actual latency development more

closely, while it is also consuming more bandwidth itself, at least in the active measurements.

The log times (t) parameter determined for how long the Vivaldi information was collected until

its estimations were used for identification decisions.

1http://networking.hpl.hp.com/cgi-bin/scubePL.cgi
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6.3.2 Latency estimation metrics

The evaluation includes a number of metrics to measure the performance of Vivaldi and Netvi-

gator [42]:

• The relative error measures the difference between the real network latency from all-to-

all ping measurements, and the estimated latency, for each pair of PlanetLab nodes.

• The directed relative error measures the directed difference between the real network

latency from all-to-all ping measurements, and the estimated latency for each pair of

PlanetLab nodes.

• Relative rank loss (RRL) [89] expresses how well the relative closeness of the PlanetLab

nodes is maintained when latency estimates are used instead of all-to-all ping measure-

ments. Each PlanetLab node checks if its relative rank is preserved in the latency esti-

mates by checking every pair of (neighboring) PlanetLab nodes, and then compare the

latency estimates and the all-to-all ping measurements. For example, if A is closer to B

(than C) in the all-to-all ping measurements, then A should be closer to B in the latency

estimates. RRL is computed for every PlanetLab node.

• Closest neighbor loss significance (CNLS) [42] is calculated for each PlanetLab node.

Conceptually, a PlanetLab node first checks if its closest neighbor in the all-to-all ping

measurements is still the closest neighbor in the latency estimates. If yes, then the CNLS

is zero. If no, it means a different PlanetLab node is the closest in the latency estimates.

Exemplified, the CNLS is computed as the absolute difference between the distance A to

the estimated closest neighbor C, divided by the absolute distance between A and the real

closest neighbor B (in the ping measurements).

6.3.3 Experiment results

Figure 6.3 visualizes the discrepancy between ping-measured latency and the estimated laten-

cies in greater detail. It is a scatterplot of all pairs of nodes that compares the absolute measured

RTT with the absolute estimated RTT 2. Measurements are sorted by ping-measured RTTs on

the X-axis, the latency estimates for the same pairs of nodes are Y-values (the ideal line is

y = x). Vivaldi results are shown for two configurations to see the effects of the packet rate.

The figures show that Netvigator is very accurate in its estimations, closely following the ideal

line whereas Vivaldi estimates has more variation. They also show that Vivaldi, and to some

degree also Netvigator, overestimates RTTs for the smaller actual RTTs, while it underestimates

2Note that there are several points in the plots that have 0-values. This is due to the fact that not all of the 215
nodes could communicate with each other, and the reason why we use only those 100 nodes in chapter 7 and 15.
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(a) Vivaldi, ping, low packet rate

(b) Vivaldi, ping, high packet rate.

(c) Netvigator.

Figure 6.3: Real versus estimated latency.
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(a) Vivaldi, tcpinfo, low packet rate.

(b) Vivaldi, tcpinfo, high packet rate.

(c) Netvigator.

Figure 6.4: Directed relative error of latency.
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longer distances. When the actual RTTs are very small, the overestimations are relatively high,

but the absolute deviation may still be acceptable for many applications.

Figure 6.4 is a scatterplot of the the directed relative error of the ping-measured RTTs com-

pared to Netvigator and Vivaldi latency estimates. In the figures, Vivaldi uses tcpinfo RTTs

with high and low packet rates. The figures show that Vivaldi yields more inaccurate latency es-

timates than Netvigator. We also see that a high packet rate yields better estimations for Vivaldi

after 4 minutes. The difference between tcpinfo RTTs and Ping RTTs is not very visible.

Figure 6.5(a) plots the CDF of the relative error of the estimated latencies. We observe that

Netvigator is the best, and yields 80 % of the estimations within a 15 % relative error. Vivaldi

using RTT from pings and a high packet rate is the best among the Vivaldi configurations. This

configuration yields 80 % of the estimations within a 50 % relative error after 4 minutes. RTTs

from tcpinfo only performs slightly worse than ping RTTs, and a lower packet rate requires

more time to reduce the relative error satisfactory.

Figure 6.5(b) plots the CDF of the RRL in the estimates. Netvigator has the lowest RRL,

where 80 % of the estimates have a relative rank loss of 15 %. The Vivaldi configurations

perform very similar with regards to RRL with the exception of group sizes. Intuitively, larger

group sizes should produce a lower relative rank loss. However, a group size of 8 actually

performs better than a group size of 12. We suspect this is due to the lack of computational

power on PlanetLab nodes, because they cannot handle the traffic. However, identifying the

main reason remains for future work.

Figure 6.6 plots the CDF of the CNLS. Netvigator outperforms Vivaldi on this metric. The

authors of Netvigator listed proximity estimation (i.e., rank nodes according to proximity to any

given node) as the prime focus of Netvigator, and the results from CNLS shows that it works

very well.

To summarize, Netvigator yields better estimations, but is difficult to set up due to its depen-

dance on landmark nodes. Vivaldi performs worse, but has the advantage of easy deployment

and churn recovery. For Vivaldi, the best configuration was a group size of 8 (and above) and

high packet rates. A low packet rate reduces the estimation accuracy, and requires 8 minutes to

stabilize in contrast to 4 minutes at high packet rates. Finally, RTTs from ping-based estima-

tions performed slightly better than tcpinfo-based ones.

6.4 Summary of the main points

The chapter motivated the need for retrieving all-to-all link latencies in the context of cen-

tralized graph algorithms that operate on complete application layer overlay networks. The

difference between latency monitoring and estimation is scalability, because achieving full, up-

to-date knowledge of the link latencies in an overlay network requires continuous monitoring,
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Figure 6.5: CDFs of Netvigator and Vivaldi performance. Vivaldi plots with different configurations.
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Figure 6.6: CDFs of closest neighbor loss significance (CNLS) for Vivaldi and Netvigator.

for which the number of probes grows quadratically with the number of nodes. This scala-

bility problem is addressed by techniques that estimate link latencies, but the trade-off is their

accuracy, which again can dramatically reduce the correctness of centralized graph algorithms

that use the estimates. Chapter 7 and 15 evaluates the influence the latency estimates have on

centralized graph algorithms.

We performed an experimental analysis of the latency estimation techniques Vivaldi and

Netvigator. We evaluated the latency estimation quality and found that Netvigator yields esti-

mations that are very close to optimal. The estimations from Vivaldi were not as good, but we

found them to be usable in our application scenario. Vivaldi’s advantages are that it is very easy

to deploy in a peer-to-peer fashion and it handles membership dynamics. Netvigator, on the

other hand, needs an infrastructure (landmark nodes). However, a game provider that controls

a number of proxies could use Netvigator as it is the better alternative.





Chapter 7

Managers in overlay networks:

Core-node selection algorithms

We have previously identified that managing multiple dynamic subgroups makes the group

management hard, especially in time-dependent distributed interactive applications (chapter 2).

Therefore, an important problem for distributed interactive applications is to identify nodes in

the network that have desirable properties that make them suitable for some managing respon-

sibility. In this chapter, we are considering core-node selection algorithms to find nodes in the

network that yield low pair-wise latencies to groups of clients.

In the group management discussions in chapter 5 we identified that a centralized member-

ship management is fitting to distributed interactive applications. A centralized membership

management is dependent on appointing management tasks to a limited set of nodes. Hence,

one important problem is to identify nodes that are suitable for group management. It is the re-

source management (section 5.3) that is responsible for identifying core-nodes. The core-node

identification techniques discussed in the thesis include a class of algorithms called core-node

selection algorithms [75,47]. These algorithms use the all-to-all latency esitmates and measure-

ments from chapter 6 to search for well-placed core nodes that yield low pair-wise latencies to

subgroups of clients in the application.

An overall goal is to select core-nodes on the basis of certain node properties, such as,

bandwidth and computational power. However, a prime consideration is the minimization of

the group management time, which is heavily reliant on the location of the group’s manager

node. Hence, the goal is to minimize the group management time by minimizing the latency to

the group’s manager. To address this goal, the observations from section 4.4 are used. There,

several graph theoretical problems were identified as being relevant for our scenario, namely,

searching for well-placed core-nodes.

The following introduces some basic core-node selection algorithm choices and also a range

of core-node selection algorithms for single core-node and multiple core-node selections. We

143
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evaluate both the multiple and single core-node selection algorithms in terms of their ability to

find well-placed core nodes that yield low pair-wise latencies to groups of nodes. The results

clearly show that core-node selection algorithms are able to do this.

The chapter is organized in the following manner. Section 7.1 introduces the goal that we ad-

dress in the chapter. Section 7.2 provides explanations to the workings of a core-node selection

algorithm. Section 7.3 introduces the evaluated multiple core-node selection algorithms. Sec-

tion 7.4 introduces the evaluated single core-node selection algorithms. Section 7.5 evaluates

the core-node selection algorithms through simulations and experiments. Section 7.6 applies

the core-node selection algorithms to a multiplayer online game scenario. Section 7.7 evaluates

the usability of the all-to-all latency estimates from chapter 6 when they are used by a core-node

selection algorithm. Finally, section 7.8 gives a brief summary of the main points.

7.1 Core-node selection algorithm goals

There are many different core-node selection algorithms, and they may have very different

goals. However, the functionality may be stated such:

A core-node selection algorithm should identify one or more nodes in a network that yield a

desired property.

The desired property that the core-node selection algorithms search for in this investigation, are

core-nodes that yield low pair-wise latencies to groups of clients. The main reason for this is

that we aim to execute the centralized group management from chapter 5 on the core-nodes. It

is therefore important that clients in the application have low average pair-wise latencies to the

core-nodes. In that respect, section 2.5.3 introduced the resource management and formulated

a goal of the thesis:

2) Identify techniques that enable a resource management to identify nodes in the (application)

network that yield low pair-wise latencies to groups of clients.

To achieve this goal, we use core-node selection algorithms that consider relational latencies in

a network of nodes to establish which core-nodes are desirable. Generally, such core-node se-

lection algorithms may be implemented as centralized or distributed algorithms (see section 4.2

for a brief introduction).

A centralized core-node selection algorithm requires that the overlay network link latencies

are available at the executing node. The link latencies may be found by the latency estimation

techniques from chapter 6, and are then used by the core-node selection algorithm as search

metrics to find well-placed core-nodes. A distributed core-node selection algorithm solves the

core-node selection distributedly in the application’s client network. Network characteristics

are still required, and the execution time is generally very much higher than centralized algo-

rithms [75].
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In our time-dependent application scenario it is desirable that the core-node selection al-

gorithm returns a solution swiftly. Centralized algorithms are therefore the natural choice for

the core-node selection algorithms. As mentioned, centralized algorithms require that a node is

appointed to execute the algorithm, which may simply be a server given by the service provider.

Nodes that appoint a centralized execution may also be identified by a core-node selection algo-

rithm. In many peer-to-peer scenarios it is common to use boot-strapping methods [75] that are

spontaniously initiated to find client nodes that may act as, for example, super-nodes because

they have high bandwidth capacity. Such boot strapping algorithms are often distributed in

peer-to-peer applications. In this chapter, we assume that some initial boot-strapping algorithm

has found a server that executes a centralized core-node selection algorithm.

7.2 Core-node selection sets

In the context of this chapter, the main task of a core-node selection algorithm is to identify

k core-nodes that are to act as group manager(s) for groups of member-nodes (clients). These

core-nodes should be well-placed in the proximity of the member-nodes. To achieve this task,

a core-node selection algorithm must consider the core-node set and the member-node set:

• Core-node set: The set of nodes that are available for core-node selection. They may be

found among the application members or application-provided proxies/servers.

• Member-node set: The set of nodes that require a core-node to manage the dynamic

group membership. They are the active application members.

The core-node(s) may be found among the member-nodes (clients) that are currently participat-

ing in the application, or among servers and proxies in a back-bone architecture administrated

by the application provider. It is possible to only search for core-nodes among member-nodes

in specific groups. However, the group membership may be highly dynamic, and may force

frequent core-node switches. Appointing a new core-node is time-consuming and should be

avoided if it is not necessary.

A core-node must be able to execute the group management techniques from chapter 5,

and manage the group dynamics for a group of member-nodes. During core-node selection the

member-nodes are used as the "reference" nodes for the core-node selection algorithm. The

core-node selection algorithm chooses a core-node from the core-node set that is most fitting to

be a manager for the member-node set, that is, a core-node with low pair-wise latencies to the

member-nodes.

Core-node selection algorithms differ by the number of core-nodes they are trying to find.

Single core-node selection algorithms are generally easier than multiple core-node selections. A
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wide range of multiple core-node selection problems were introduced in section 4.4, and iden-

tified to be N P-complete. In the following, both the multiple core-node and single core-node

graph theoretical problems are addressed and linked to the scenario of distributed interactive

applications. In this scenario, the core-node selection is divided into two separate steps:

First, the group managers (core-nodes) are identified by a multiple core-node selection al-

gorithm. Second, a group manager is selected for a group of clients by a single core-node

selection algorithm.

7.3 Multiple core-node selection algorithms

The group managers in an application must be identified by some multiple core-node selection

algorithm that take into account a manager’s placement in relation to the member-nodes. It is

possible for the core-node selection to be a continuous process, in which group managers are

gradually identified and entered as available group managers (core-nodes). If there are servers

or proxies available, it is natural that these are made available as group managers straight away.

In a peer-to-peer setting, it is more likely that the group manager set is dynamically changing

(due to churn). However, it is certainly possible that an application may have both a static set

and a dynamically changing set of group managers. On the basis of these observations, the

multiple core-node selection raises a question:

Where should the group managers be placed, such that the network latency to it, is minimized

for all members?

It is important that group manager-nodes yield low pair-wise latencies to groups of clients. Fur-

ther, the group manager-nodes should also be spread out such that they may serve a dynamically

changing client base. Chapter 4.4 introduced several problems that address these issues. For

example, the minimum k-center and minimum k-median problem (definitions 25 and 26) aim

to find k core-nodes, such that the distance from each member-node to an available core-node

is minimized. Two related problems were also introduced, namely the k-minimum-eccentricity

and the k-minimium-pairwise problem (definitions 27 and 28). They take a slightly different

approach to the problem and, loosely translated, aim to minimize the sum of distances from

the core-node set to the member-nodes. The effect is that the core-node sets (for these) contain

nodes that are more centrally located than in the minimum k-center and minimum k-median

problems.

The following sections introduce a number of multiple core-node selection algorithms that

aim to find k core-nodes from a larger set of candidate nodes. These multiple core-node selec-

tion algorithms are divided into two categories:
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• Full-network core-node selection algorithms use the full network to find the core-nodes.

• Split-network core-node selection algorithms split the network into more and more pieces

and finds a number of core-nodes for each piece.

7.3.1 Full-network core-node selection algorithms

The full-network core-node selection algorithms base the core-node selection on path and node

characteristics from the perspective of the entire network. The selected core-nodes typically ex-

hibit certain path-related properties, where typical examples are minimum eccentricity (radius),

median vertex, center vertex, etc (section 4.1.1). Algorithms in this category may, for example,

address the k-minimum eccentricity and k-minimum pairwise problems.

Following are two algorithms that fit to this category. They are algorithms of the minimum

k-minimum pairwise problems and k-minimum eccentricity (definitions 28 and 27).

k-Center core-node selection algorithm

The k-Center core-node selection algorithm finds k core-nodes that are the k nodes with the

lowest maximum distance (eccentricity) to a node in the member-node set Z . It solves the

k-minimum-eccentricity problem as defined in definition 27. The k-Center algorithm has a

time-complexity of O(n2), when run on a complete graph. Algorithm 6 gives the pseudo-code.

Algorithm 6 k-CENTER(G):
In: An integer k > 0, a graph G = (V, E, c). Sets Z ⊂ V and X ⊂ V .
Out: A set C ∈ X of core-nodes.

1: map<id, eccentricity> mapIdEcc
2: for each x ∈ X do

3: T = ShortestPathTree(x , G)
4: v = maxEccentricityNode(T , Z)
5: ecc = getEccentricity(v, T , Z)
6: mapIdEcc.insert(x, ecc)
7: end for

8: C = kLowestEccentricities(mapIdEcc)

k-Median core-node selection algorithm

The k-Median core-node selection algorithm finds k core-nodes that are the k nodes with the

lowest average pair-wise distances to the nodes in the member-node set. The algorithm solves

the k-minimum-pairwise problem from definition 28 Algorithm 7 gives the pseudo-code for the

k-Median algorithm, which has a time-complexity of O(n2) on any graph.
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Algorithm 7 k-MEDIAN(G):
In: An integer k > 0, a graph G = (V, E, c). Sets Z ⊂ V and X ⊂ V .
Out: A set C ∈ X of core-nodes.

1: map<id, pair-wise> mapIdPairwise
2: for each x ∈ X do

3: T = ShortestPathTree(x , G)
4: v = maxEccentricityNode(T , Z)
5: pairwise = getPairwiseDistances(x, T )
6: mapIdPairwise.insert(x, pairwise)
7: end for

8: C = kLowestPairwise(mapIdPairwise)

7.3.2 Split-network core-selection algorithms

Split-network core-node selection algorithms split the network into more and more pieces and

finds a number of core-nodes for each piece. It is typical that split-network algorithms use a

full-network core-node selection algorithm to find core-nodes inside one network piece. Al-

gorithms in this category may, for example, address the minimum k-median and minimum

k-center problems.

Following are three algorithms that fit inside this category. They are heuristics of the mini-

mum k-median and minimum k-center problems (definitions 26 and 25).

k-Tailed core-node selection algorithm

The k-Tailed core-node selection algorithm is a heuristic of the minimum k-median and min-

imum k-center problems. It bases the core-node selection on using node-coordinates in a

euclidian space (for example, 2-dimensional (x , y) coordinates). The node-coordinates may

be obtained by, for example, using the latency estimation techniques introduced in chapter 6.

The algorithm continuously divides the euclidian space into smaller and smaller rectangles and

chooses a core-node to be the one closest to the middle of the current most populated rectangle

(algorithm 8). The k-Tailed algorithm has a time-complexity of O(n2), on any graph.

k-Broadcast-Walk core-node selection algorithm

The k-Broadcast-Walk core-node selection algorithm is a heuristic of the minimum k-median

problem. It does a semi-random walk through a network of nodes and divides the network

into smaller pieces to find appropriate core-nodes. The algorithm iterates k times, and each

iteration starts off from an unvisited node s in the network. s sends out a broadcast message

that traverses (walks) the network until a number w of unvisited nodes are covered and entered

to member-node set W . Then, a single core-node is found using this subnetwork W of nodes

as the member-node set (introduced above). The algorithm that finds the single core-node is k-
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Algorithm 8 k-TAILED(G):
In: An integer k > 0, a graph G = (V, E, c), where each v ∈ V has an (x , y) coordinate. Sets

Z ⊂ V and X ⊂ V .
Out: A set C ∈ X of core-nodes.

1: enum Direction {X = 0, Y}
2: struct Rect { (x,y), (x,y), (Z′ = ;) }
3: multimap<int, Rect> mapRect
4: mapRect.insert( sizeof(Z), Rect( (maxXpos(Z), 0), (0, maxYpos(Z)), Z) )
5: Direction Dir(X = 0)
6: for i = 0; i < k; i++ do

7: Rect maxRect = mapRect.end() {maxRect has largest node set size}
8: c = findNodeClosestToCenter(maxRect, Dir, C)
9: Rect newRect = split(maxRect at c)

10: mapRect.insert(sizeof(newRect.Z′), newRect)
11: Dir = (Dir + 1 mod 2) {Dir is alternating between X- and Y-direction}
12: end for

Median(k = 1). The nodes in the member-node set W are then marked as visited (algorithm 9).

The k-Broadcast-Walk algorithm has a time-complexity of O(n3), on any graph.

Algorithm 9 k-BROADCAST-WALK(G):
In: An integer k > 0, a graph G = (V, E, c). Sets Z ⊂ V and X ⊂ V .
Out: A set C ∈ X of core-nodes.

1: w = |Z |/k {Subnetwork size}
2: M = ; { M contains the visited nodes }
3: for i = 0; i < k; i++ do

4: s = findStartNode(Z - M)
5: broadcast-network G from s and insert unvisited neighbors to W until |W | ≥ w

6: M = M + W

7: k-Median(G,k = 1, W , C)
8: end for

k-Unicast-walk core-node selection algorithm

The k-Unicast-Walk core-node selection algorithm is almost identical to the k-broadcast-walk

(introduced above). It too does a semi-random walk through a network of nodes and divides

the network into smaller pieces to find appropriate core-nodes. The algorithm iterates k times,

and each iteration starts off from an unvisited node s in the network. s now sends out a unicast

message that traverses (walks) the network until a number w of unvisited nodes W are covered.

The unicast message may, for example, be sent to a random neighbor, or the closest neighbor,

etc. Then, (like k-broadcast-walk) a single core-node is found using this subnetwork W of

nodes as the member-node set (introduced above). The algorithm that finds the single core-

node is k-Median(k = 1). The nodes in the member-node set W are then marked as visited
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(algorithm 10). The k-unicast-walk algorithm lends itself to a distributed implementation quite

easily. The k-Unicast-Walk algorithm has a time-complexity of O(n3), on any graph.

Algorithm 10 k-UNICAST-WALK(G):
In: An integer k > 0, a graph G = (V, E, c). Sets Z ⊂ V and X ⊂ V .
Out: A set C ∈ X of core-nodes.

1: w = |Z |/k {Subnetwork size}
2: M = ; { M contains the visited nodes }
3: for i = 0; i < k; i++ do

4: s = findStartNode(Z - W)
5: unicast-network G from s and insert unvisited neighbors to W until |W| ≥ w
6: M = M + W
7: k-Median(G,k = 1, W , C)
8: end for

7.4 Single core-node selection algorithms

The group manager of a single node must be identified by a single core-node selection algo-

rithm, that take into account the pair-wise latencies from the manager to the group of clients. A

group’s core-node should be dynamically selected based on the current locations of the group

nodes. However, some tradeoff between frequency of core-node switching should be included,

for example, core-node latency bound.

In the context of the thesis, a group manager is assigned to run the group management

system from chapter 5. A core-node may be assigned as a group manager for one or several

groups. As mentioned, a group manager may be statically assigned to a group, or it may dy-

namically change along with the group dynamics. If the group manager is statically assigned,

it is very much similar to a centralized architecture in which a server manages the participants.

This architecture is straight forward to setup, but does probably increase the group manage-

ment latencies. In a dynamic approach, a group manager is assigned to a group based on the

current distances (latencies) to the group members. This approach reduces the group manage-

ment latency, but it does require more advanced mechanisms, for example, state migration and

consistency mechanisms to avoid inconsistent membership views.

A single core-node selection algorithm searches for a single node in the network that ex-

hibit a desirable property. Following is a brief introduction of the single core-node selection

algorithms:

• Median vertex algorithm: Returns a core-node that has the lowest average pair-wise

distances to the nodes in the member-node set [75]. The algorithm is identical to running

k-Median(k=1) (see algorithm 7).
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Algorithm Optimization Complexity Problem

k-Center eccentricity O(n2) k-minimum-eccentricity, definition 27
k-Median average pair-wise latency O(n2) k-minimum-pairwise, definition 28
k-Tailed coordinates O(n2) minimum k-center, definition 25
k-Broadcast-Walk average pair-wise latency O(n3) minimum k-median, definitions 26
k-Unicast-Walk average pair-wise latency O(n3) minimum k-median, definitions 26

Table 7.1: Core-node selection algorithms.

• Center vertex algorithm: Returns a core-node that has the lowest maximum distance

(eccentricity) to a node in the member-node set [75]. The algorithm is identical to running

k-Center(k=1) (see algorithm 6).

7.5 Core-node selection simulations and experiments

Core-node selection simulations and experiments were conducted to evaluate the core-node

selection algorithms that have been introduced. Table 7.1 summarizes the core-node selection

algorithms.

7.5.1 Group communication simulator

We implemented the core-node selection algorithms in a simulator that mimics group commu-

nication in a distributed interactive application using a preselected central entity to handle the

core-node selection. In the experiments, we assume that some latency estimation technique

from chapter 6 identifies a complete graph (full mesh) graph where all edges have an associated

latency.

The BRITE [91] topology generator was used to generate Internet-like router networks. We

simulated an application layer overlay network, so the network graph was translated into an

undirected fully-meshed shortest-path graph, where each router had one client associated to it.

Furthermore, the central entity dynamically divides the users into groups, such that each group

has a fully meshed group graph. We here present results from simulations using networks with

1000 nodes. The network layout is a square world with sides equal to 100 milli-seconds, which

corresponds to a geographical area of approximately Europe.

In the simulations, a multiple core-node selection algorithm identifies a set of suitable core-

nodes among the 1000 nodes. All the nodes join and leave groups throughout the simulation,

causing group membership to be dynamic. When a join or leave request is received by the

central entity, a single core-node selection algorithm then identifies a suitable core-node that

handles the group management for the groups. The group popularity is distributed according to

a Zipf distribution [20].

For a real-world reference, we also performed similar group communication experiments
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on 100 PlanetLab nodes. During the experiments, the network was monitored by active all-to-

all ping measurements, once each second. The RTT measurements were reported back to the

central entity that built a fully meshed application layer graph. The remaining configuration

was identical to the group communication simulations.

7.5.2 Target metrics

A multiple core-node selection algorithm is considered good if it is able to find a number of

well placed core-nodes in the member network. These core-nodes must be placed such that a

single core-node selection algorithm is able to find one core-node among them that yield low

pair-wise latencies to a group of clients. These groups of clients are dynamically changing,

therefore, the core-nodes that are made available by the multiple core-node selection algorithm

should be placed out among the member-nodes.

We evaluate multiple core-node selection algorithm in terms of their ability to find core-

nodes that are spread out such that the average maximum one-way latency from a client to a

core-node is low. Similarly, a single-core is also evaluated in terms of their ability to find one

core-node that minimizes the maximum one-way latency to the core-node.

7.5.3 Multiple core-node selection algorithms

Figure 7.1 illustrates the core-node selection done by the multiple core-node selection algo-

rithms from section 7.3. From looking at the pictures, it may look as if the k-Tailed algorithm

manages to choose the better selection, as they are spread fairly evenly out. The remaining

algorithms look to miss certain areas of the canvas. However, the main optimization goal is

latency in relation to the member-nodes that are to be managed, and the following results reveal

which core-node selection algorithms actually find well-placed nodes.

Figure 7.2(a) plots the CDF of the average maximum latency from a client in the applica-

tion to one of k = 32 core-nodes selected by a multiple core-node selection algorithm. We

observe that k-Unicast-Walk and k-Tailed are the ones that yield the highest maximum latency

to one core-node (among the k core-nodes). k-Unicast-Walk does a pseudo-random unicast

walk in a network to find core-nodes, while the k-Tailed algorithm divides the network into

more and more squares to find core-nodes based on their global coordinates, and not based on

relative node proximity. k-Median, k-Broadcast-Walk and k-Center do all perform very simi-

larly. Figure 7.2(b) evaluates k-Median and k-Center for k = 4, 8, 16 and 32. We observe that

the maximum one-way latency does decrease step by step as the k is increased. k-Median and

k-Center do perform very similarly, regardless of size of k. However, we observe that k-Center

yield a smaller fraction of larger latencies, while k-Medien yield a larger fraction of smaller

latencies. Figure 7.3 plots the CDF of the average maximum latency from a PlanetLab node to
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(a) k-Unicast-Walk (b) k-Broadcast-Walk

(c) k-Median (d) k-Center

(e) k-Tailed

Figure 7.1: 16 core-nodes as selected by the multiple core-node selection algorithms. 16 black squares
are the core-nodes, white circles are the member-nodes.
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Figure 7.2: Group communication simulations: Average maximum latency from a client to one core-
node among k core-nodes, selected by a multiple core-node selection algorithm.
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Figure 7.3: PlanetLab group communication experiments: Average maximum latency from a node to
one core-node among k core-nodes, selected by k-Median.

one PlanetLab core-node. k-Median is used to find the core-nodes, with k = 4, 8 and 16. We

observe that a similar pattern and performance emerges on these real-world measurements.

From these results, we see that the multiple core-node selection algorithms are able to select

core-nodes that are well-placed and distributed across the network. The maximum one-way

latency to one core-node among the k core-nodes is relatively low, and the latency decreases

with an increased k.

7.5.4 Combining multiple and single core-node selection algorithms

The following results are from applying a single core-node selection algorithm (k = 1) to

select one core-node among the k ≥ 1 core-nodes selected by the multiple core-node selection

algorithms. For these results, we measure the maximum one-way latency to this single core-

node.

Figure 7.4 plots the maximum one-way latency from a group member-node to its core-

node selected by the single core-node selection algorithm k-Median. Different multiple core-

node selection algorithms are used to identify the available core-nodes in the network, and

there is an increasing number of core-nodes to choose from. It is quite clear that the k-Tailed

algorithm suffers because it does not consider the actual latencies on the core-nodes it picks as



156
Chapter 7. Managers in overlay networks:

Core-node selection algorithms

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

1-
C

or
e

2-
C

or
es

4-
C

or
es

8-
C

or
es

16
-C

or
es

32
-C

or
es

64
-C

or
es

12
8-

C
or

es

on
e-

w
ay

 la
te

nc
y 

to
 c

or
e-

no
de

 (
se

co
nd

s) k-Tailed
k-Center

k-Median
k-Broadcast-Walk

k-Unicast-Walk

 0.14

 0.15

 0.16

 0.17

 0.18

 0.19

1-
C

or
e

2-
C

or
es

4-
C

or
es

8-
C

or
es

16
-C

or
es

32
-C

or
es

64
-C

or
es

12
8-

C
or

es

on
e-

w
ay

 la
te

nc
y 

to
 c

or
e-

no
de

 (
se

co
nd

s) k-Tailed
k-Center

k-Median
k-Broadcast-Walk

k-Unicast-Walk

Figure 7.4: Group communication simulations: Average maximum latency from a member-node in a
group, to the group’s selected core-node (manager-node) as selected by a single core-node selection
algorithm. The core-node set is selected by the multiple core-node selection algorithms, with different
core-node set sizes.

manager-nodes. The remaining multiple core-node selection algorithms perform very similarly.

However, the tendency is in favor of k-Center, which consistently yield the lowest latency.

As mentioned, the k-Center is a heuristic of the minimum k-center problem (definition 25),

and finds the core-nodes with minimum longest shortest path (minimum eccentricity) to the

member nodes in the network. While, the k-Median is a heuristic of the minimum k-median

problem (definition 26), and finds the core-nodes with minimum average pair-wise latencies to

the member nodes in the network. These two goals are somewhat similar, but for the group

communication simulations k-Center performs better because it finds the core-node with a min-

imum maximum latency. The k-Unicast-Walk and k-Broadcast-Walk perform very similar to

k-Median. These two split the network in k smaller pieces and run k-Median(k = 1) for each

identified network piece. The split-network heuristics (k-Unicast-Walk, k-Broadcast-Walk and

k-Tailed) do not perform as good in this scenario because the group communication simula-

tions do not address the change in user mass as the day shifts to night across the real world.

Generally, a different group dynamics model may have an impact on the performance of the

core-node selection algorithms.

Figure 7.5(b) plots the maximum latency to a group’s core-node (manager) selected by the
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Figure 7.5: Group communication simulations: Maximum one-way latency from a member-node in a
group, to the group’s selected core-node, selected by k-Median(k = 1).
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Figure 7.6: Group communication experiments on PlanetLab and single core-node selection: Maximum
one-way latency to a core-node selected by a single core-node selection algorithm. The core-nodes are
chosen freely from 100 PlanetLab nodes.

k-Center(k = 1). The core-nodes are selected using the multiple core-node k-Center with

different set sizes (k = 1, 2, 4, 8, 16, 32, 64, 128). It is clear that more available core-nodes

enables the single core-node selection algorithm k-Center to find more well-placed manager

nodes, which reduces the maximum latency to the member-nodes. However, the one way gain

is only about 15 milliseconds from 1 core-node to 32 core-nodes, and is about 10 milliseconds

from 1 core-node to 8 core-nodes. It is clear that only a few available core-nodes are necessary

to reduce the maximum one-way latency to a group’s manager-node.

Figure 7.5(a) compares the k-Center and k-Median algorithms with k = 1, 4 and 8. The

results show that the k-Center algorithm struggles when k = 1, but performs better for k > 1.

The results also show that k-Median is not able to perform better when the core-node set is≥ 8.

While, the k-Center algorithm continues to improve the maximum one-way latencies, the k-

Median cannot. From these observations, the conclusion is that k-Center selection is the better

alternative to identify the set of available core-nodes (managers) in a network (k > 1).
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7.5.5 Results from single core-node selection algorithms

As mentioned, a single core-node selection algorithms should select a core-node that is well-

placed related to a group of clients. The k-Median(k = 1) and k-Center(k = 1) are the two

single core-node selection algorithms that are evaluted. The k-Median choose a core-node

that has lowest average pair-wise latencies to a group of nodes, while the k-Center choose a

core-node that has the minimum eccentricity (radius) between it and the nodes in the group.

Figure 7.6 plots the maximum latency from a member-node to the core-node, selected by k-

Median and k-Center selection algorithms. The worst-case is plotted as a reference point. The

results are obtained from group communication experiments performed on PlanetLab, where

the central entity continuously executed the single core-node selection algorithm to identify the

group’s manger-node. We observe that the single core-node selection algorithms perform very

similarly. Their complexities are both O(n2), hence, they are both good alternatives for finding

single well-placed core-nodes. But, the k-Median does perform slightly better, as was also

observed in figure 7.5(a).

The worst case central entity placement may be a valid situation in cases where an applica-

tion has a static central entity that serves the entire world. A static central entity cannot be in

the current topological center at all times, because as the night and day passes the clients in a

game dynamically shifts from continent to continent.

7.6 Managers in massively multiplayer online games

The previous evaluations focused on a fairly general scenario in which the goal was to find

well-placed core-nodes for groups of clients. In the following, we highlight how the core-

node selection algorithms are applicable for use in a distributed interactive application type

called massively multiplayer online games (MMOGs). In this scenario, the core-node selection

algorithms are used to select well-placed proxies to migrate game-state to.

Most current MMOGs rely on a centralized architecture, where the entire game state is

stored on a central server. Such a client/server model makes it easy to manage the global game

state, but it has drawbacks. The server is a potential bottleneck, both in terms of computing

and bandwidth capacity, and the latency heavily depends on the physical distance from each

individual client to the server. Figure 7.7(a) illustrates an example where a centralized server

stores the game state and clients located anywhere in the world have to communicate through

the server. Clearly, there is a latency penalty.

To improve these gaming scenarios, the previous core-node selection algorithms are used

in combination with proxy technology to achieve better scalability and reduce the pair-wise

latencies among interacting clients. The pair-wise latencies may be reduced by migrating game

state to an appropriate proxy-server (core-node), that yield lower pair-wise latencies to a given
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(a) Centralized architecture.

(b) Proxy architecture

Figure 7.7: Importance of server location: Centralized architecture vs. proxy architecture.

group of players (see chapter 2 for an introduction to proxy technology). Figure 7.7(b) gives an

example where a central server has migrated game state to a proxy that is closer to a group of

clients. Clearly, the latency is reduced.

7.6.1 Core-node selection in a proxy architecture

In this scenario, we evaluate proxy technology because it allows a trade-off between client/server

and peer-to-peer advantages and disadvantages. However, a mix of client/server and peer-to-

peer communication styles may be used for different traffic types fitting to these models.

In the group communication simulations, the k-Median core-node selection is used to select

single core-nodes and k-Center to find the set of core-nodes (proxies) in the game network. The

core-node selection algorithms use these defined approaches to search for core-nodes:

• Topology Center: k-Median(k = 1) finds a (static) central entity (server) that yields the

lowest pair-wise latency to all the clients in the application. The topology center server

never changes regardless of group.

• Group Center: k-Median(k = 1) finds a (dynamically changing) manager (core-node)

for a group that yields the lowest pair-wise latency to the clients in the group. The group

center dynamically changes depending on the group.
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Figure 7.8: Group communication simulations: Diameter (seconds) of groups using a proxy architecture
with different k number of proxies.

These simple approaches form powerful techniques in the search for suitable core-nodes

that yield low pair-wise latencies.

7.6.2 Simulations and experiments

The goal is to illustrate the significance of server location and how it influences the latencies.

Having a proxy architecture with a limited amount of proxies can dramatically reduce the overall

latencies. The group’s diameter expresses the worst-case pair-wise latency between two clients

in a group, and it is desirable that the group diameter is as low as possible.

Figure 7.8 plots the average group diameter for which a single core-node selection algorithm

have chosen a manager-node as the root of the group tree (all communication flows via the root).

We see that choosing the manager-node (server) to be in the topology center does significantly

reduce the group diameter. It is also clear that having a limited amount of proxies placed around

the world can reduce the group diameter. And as expected, increasing the number of proxies

does incrementally decrease the diameter. The worst-case placement of a server is not an invalid

situation, because if a single server administrates the entire world the worst-case placement of

a server will happen for large amounts of the clients as the day passes.

Figure 7.9 plots the group tree diameter based on experiments done on 100 Planetlab nodes.

We observe similar results as from the group communication simulations that were based on
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Figure 7.9: PlanetLab experiments: Diameter (seconds) of groups using a single core-node selection
algorithm.

BRITE [91] generated graphs. The conclusion is that the core-node selection algorithms do

work in practice, and they are able to identify nodes in the network that yield low pair-wise

latencies to groups of clients.

7.7 PlanetLab experiments: Latency estimates applied to core-

node selection

Chapter 6 introduced the latency estimation techniques Vivaldi and Netvigator. These tech-

niques were evaluated in terms of their latency estimation accuracy in comparison to the real

all-to-all ping measurements. It was observed from the results that Netvigator yields the better

latency estimates. Vivaldi is less accurate, but the implementation lends itself more easily to a

peer-to-peer setting.

One important issue related to centralized core-node selection algorithms is that they need

all the required network information to be available at the executing node. Therefore, latency

estimation techniques are important to enable centralized core-node selection algorithms in

large-scale applications. When latency estimates are available, the issue then becomes how

these latency estimates affect the performance of the core-node selection algorithms.

The following results are from applying the Netvigator and Vivaldi latency estimates to the
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Descriptions Configurations

Group sizes g = 4, 8, 12 clients
RTT measures tcpinfo, ping
Packet rates high (100 packets/sec.), low (2 packets/sec.)
Log times t = 4, 8, 12, 16, 20 minutes

Table 7.2: Vivaldi experiment configurations.

core-node selection algorithm k-Median. For comparison to the close-to-real latencies, the real

all-to-all ping measurements are applied to k-Median as the point of reference.

7.7.1 Group communication experiment configurations

For the group communication experiments on PlanetLab, we used 100 nodes. This limited

number was due to many unstable PlanetLab nodes and end-to-end reachability issues. The 100

nodes dynamically joined and left groups throughout the experiments by sending membership

change (join and leave) requests to a central entity, which was chosen using the topology center

heuristic (section 7.6.1).

The central entity applied the multiple core-node selection algorithm k-Median to find k

core-nodes that are made available as well-placed manager-nodes. The algorithm used a com-

plete graph of the application network, which was built using the latency estimation techniques

introduced previously in chapter 6. We also used all-to-all ping measurements for comparison.

The group popularity was distributed according to a Zipf distribution. For the Vivaldi estimates,

we allowed a period of 4 minutes to let the node coordinates stabilize. The tests were run each

day for a 10 day period. Table 7.2 gives the Vivaldi configurations.

7.7.2 Core-node selection metrics

We use the following metrics to highlight the quality of Netvigator and Vivaldi estimations

when used for core-node search:

• The core-node selection hit ratio measures the ratio of optimal core-node selection hits

when using estimated link latencies. In the context of the experiments, a core-node "hit"

occurs for each time the k-Median finds the same core-node using first the estimated

latencies and then the real all-to-all ping measurements.

• The core-node density is a measure for the maximum latency (eccentricity) between the

core-nodes. The maximum-latency is obtained by applying the core-nodes found using

the latency estimates to the all-to-all ping measurements. The core-node density value is

the real eccentricity latency from the all-to-all ping measurments.
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• The minimum core-node error (min) is the minimum latency between the core-node found

using the estimated latencies, and the core-node found using the real all-to-all ping mea-

surements. In the context of the experiments, the core-node error is zero if the k-Median

algorithm found the same core-node using first the latency estimates and then the real

all-to-all ping measurements.

• The maximum core-node error (ecc) is the maximum latency between a core-node found

using the estimated latencies, and the core-node found using the real all-to-all ping mea-

surements. In the context of the experiments, the maximum core-node error is used to

highlight the maximum latencies (eccentricities) between the core-nodes found using the

latency estimates, and the core-nodes found using the all-to-all ping measurements.

In addition, we measure the relative error and directed relative error of the one-way latencies

(eccentricities) between the core-nodes and the group members. The eccentricity of a core-node

is the maximum one-way latency (shortest path) to a group member. To avoid confusion, we

define reported eccentricity, real eccentricity and optimal eccentricity:

• The reported eccentricity is the core-node eccentricity obtained when k-Median uses the

estimated latencies to find cores-nodes.

• The real eccentricity is obtained when the core-nodes that k-Median found using the

estimated latencies are applied to the all-to-all ping measurements.

• The optimal eccentricity is the core-node eccentricity obtained when k-Median uses the

real all-to-all ping measurements to find core-nodes.

From an application point of view that uses a latency estimation technique, the reported

eccentricity is what the application is reported the core-node eccentricities to be, based on the

latency estimates. The real eccentricity, on the other hand, represents the real-world core-node

eccentricities based on measured network latency (which the application does not know). The

optimal eccentricity is only obtained if the application uses latency measurement tools (ping

and traceroute), to do all-to-all measurements.

7.7.3 Group communication experiment results

We evaluate the core-node selection results towards the metrics introduced previously. The k-

Median algorithm searches for 0 < k ≤ 25 nodes among the 100 PlanetLab nodes that yield

the smallest average pair-wise latencies.

Figure 7.10 plots the core-node selection hit ratio when k-Median is applied to Netvigator

and Vivaldi (ping RTT, low packet rate, g=8), and k varies between 1 and 25. It is clear that
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Figure 7.10: Ratio of optimal core hits when k-Median is applied to Vivaldi and Netvigator estimates.

Netvigator yields better estimates for use in core-node search, and stabilizes around 80 % core-

node selection hit ratio quickly. The hit-ratio is much lower when the k-Median algorithm is

applied to Vivaldi estimates, especially when the number of core-nodes k < 10.

The core-node density, plotted in figure 7.11(a), compares the optimal eccentricity and the

real eccentricity between the core-nodes found using k-Median. We see that Netvigator yields

the best latency estimates, where the core-node eccentricities are very close to the optimal

eccentricity (obtained from all-to-all ping measurements). The Vivaldi estimates are not as

good, but still most of the core-nodes are within 20 milliseconds of the optimal core-nodes.

We observed that Vivaldi struggled to find the optimal core-nodes compared to Netvigator.

Figure 7.11(b) plots the CDF of the minimum (min) core-node error between the core-nodes

found using latency estimates and the (optimal) core-nodes found using the real all-to-all ping

measurements. If the core-node error is zero, the k-Median algorithm found the same core-

nodes. As expected, k-Median is most accurate when it uses Netvigator, with 95 % of the core-

nodes within 10 milliseconds of an optimal core-node. The Vivaldi estimates makes k-Median

return more inaccurate results, with 85 % of the core-nodes within 10 milliseconds of an optimal

core-node. Figure 7.11(b) also plots the CDF of the maximum latency (ecc) between the core-

nodes found using latency estimates and the (optimal) core-nodes found using the real all-to-all

ping measurements. Both the minimum (min) core-node error and the maximum latency (ecc)

illustrates that although Vivaldi yield poorer estimates for use in core-node selection, the k-

Median is still able to find core-nodes that are close-to-optimal.
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(a) CDFs of core density. Eccentricity between cores.
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Figure 7.11: Netvigator and Vivaldi performance in core selection. Searching entire network.
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Similar to section 6.3.3, we visualize the discrepancy between the reported eccentricities

and the real eccentricities in figure 7.12. Vivaldi uses ping RTTs, and we see that a low packet

rate provides poorer estimates than a high packet rate (after 4 minutes). Netvigator is clearly the

best, and has a performance very close to the real eccentricity. Further, figure 7.13 visualizes

the eccentricity discrepancy in terms of the directed relative error. Vivaldi now uses tcpinfo

RTTs, and a similar pattern can be observed. A low packet rate gives poorer estimates than a

high packet rate, and Netvigator is best.

In summary, k-Median is able to find close-to-optimal core-nodes when applied to both

Netvigator and Vivaldi latency estimates. However, it is clear that Netvigator estimates enables

the core-node selection algorithm to return the more optimal core-nodes.

7.8 Summary of the main points

The need to identify well-placed core-nodes that yield low pair-wise latencies to groups of

clients is motivated by the desire to enable distributed interactive applications that support mul-

tiple dynamic sub-groups of clients. The chapter has introduced and evaluated several core-node

selection algorithms that used latency to search for well-placed core-nodes. These core-nodes

were to act as manager-nodes for groups of clients and execute the centralized group manage-

ment techniques from chapter 5.

The evaluations were based on results from a group communication simulator and also

group communication experiments performed on PlanetLab. We found that the k-Center al-

gorithm was the best among the tested algorithms, and is fitting to identify multiple core-nodes

in a network. These core-nodes are made available for single core-node selection algorithms

that select a manager-node for a group of clients. For single core-node selection, we found that

k-Median(k = 1) was the algorithm that found core-nodes that yielded the lowest maximum

one-way latencies to clients in its group.

The core-node selection algorithms that were tested are all centralized algorithms, which is

due to the strict latency requirements in distributed interactive applications. One issue with cen-

tralized algorithms is that all the neccessary node and link information must be available at the

executing node. Therefore, we wanted to measure the penalties involved when latency estimates

are used by the core-node selection algorithms to find well-placed core-nodes. The experiments

were performed on PlanetLab and the latency estimates were from Vivaldi and Netvigator that

are both evaluated in chapter 6. The results showed that when Netvigator’s latency estimates

are used, the k-Median algorithm finds close-to-optimal core-nodes. Vivaldi’s latency estimates

did not enable k-Median to find the optimal core-nodes; however, we found the core-nodes it

found to be sufficiently well-placed. The main conclusion was that both Vivaldi and Netvigator

provide good enough latency estimates to be used for core-node search.
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(a) Vivaldi, ping, low packet rate.

(b) Vivaldi, ping, high packet rate.

(c) Netvigator.

Figure 7.12: Reported eccentricity vs. real eccentricity from cores to group members.
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(a) Vivaldi, tcpinfo, low packet rate.

(b) Vivaldi, tcpinfo, high packet rate.

(c) Netvigator.

Figure 7.13: Directed relative error of the reported eccentricity to the real eccentricity from cores to
group members.





Chapter 8

Group specific enhancements:

Graph manipulation algorithms

Chapter 5 introduced a centralized group management approach, which is a focal point of the

thesis. This centralized group management includes overlay construction techniques whose

main task it is to construct low-latency overlay networks for event distribution. To achieve this

goal, the overlay management contains graph manipulation algorithms that operate on complete

group graphs. A complete graph is a graph in which all nodes have a link to all other nodes, and

is also commonly referred to as a full mesh. Each complete group graph consists of member-

nodes that are the clients in the application who are grouped by the membership management

(section 5.2), and graph edges that are overlay links with an associated link latency, which is

determined by a latency estimation technique (chapter 6).

In this context, the main task for a graph manipulation algorithm should be to manipulate a

group’s complete graph such that it enables the overlay construction algorithm to execute fast

and build desirable low-latency overlay networks.

One example is to reduce the complete group graphs to only include the better links such that

the overlay construction executes faster. Another example is to identify well-placed core-nodes

in the application network that may be used as Steiner-points (non-member-nodes) in the group

graphs for Steiner-tree or Steiner-subgraph algorithms.

A group graph is used as the input graph to an overlay construction algorithm, which creates

an overlay network for event distribution. It is therefore in the overlay construction that we can

measure the effect of the graph manipulation algorithms. Hence, the evaluation focuses on how

the graph manipulation algorithms alter the behavior of the overlay construction algorithms.

The results show how a few selected overlay construction algorithms build overlay networks

that exhibit varying properties depending on which graph manipulation algorithm is applied to

manipulate the complete group graphs. In that respect, we are focusing on two main metrics,

execution time of the overlay construction and the success rate of the overlay construction.

171
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We use two overlay construction algorithms from section 9 and 10 to highlight the importance

of the graph manipulation algorithms. The main conclusion from the evaluation is that some

graph manipulation algorithms do reduce the execution time of selected overlay construction

algorithms, and other graph manipulation algorithms enable the overlay construction algorithm

to construct overlays with lower pair-wise latencies.

The rest of the chapter is organized in the following manner. Section 8.1 introduces the

goal of the chapter in terms of what type of graph manipulation algorithms are targeted. Sec-

tion 8.2 presents the background and motivation for reducing the number of edges in a complete

graph. Similarly, section 8.3 presents the background and motivation for including well-placed

Steiner-points to complete graphs. Section 8.4 introduces two edge-pruning algorithms and one

algorithm for including Steiner-points to complete graphs. Section 8.5 evaluates a range of is-

sues related to the execution time of overlay construction and the influence of Steiner-points in

complete graphs. Finally, section 8.7 gives a brief summary of the main points.

8.1 Graph manipulation algorithm goals

Graph manipulation algorithms may have very different tasks and properties, many of which

are outside the scope of the thesis. In the thesis, our main desire is to:

Identify graph manipulation algorithms that manipulate a group’s complete graph such that

it enables the overlay construction algorithm to execute fast and build desirable low-latency

overlay networks.

One vital consideration of the overlay management is the time it takes to execute the overlay

construction. Distributed interactive applications require timely overlay management, such that

every membership change of online sessions must be very fast, including the overlay construc-

tion algorithms.

Another consideration is the quality of the overlay network that is built by the overlay con-

struction algorithms. Distributed interactive applications require low-latency overlay networks

for event distribution. Therefore, an overlay construction algorithm should be given as input

a group graph, which is manipulated such that the algorithms’s chance of constructing low-

latency overlays is increased. These observations result in two main algorithm goals:

• Reduced overlay construction time: A graph manipulation algorithm should be available,

which reduces the number of edges in the otherwise complete group graphs such that the

execution time of the overlay construction algorithm is reduced.

• Increased overlay construction quality: A graph manipulation algorithm should be avail-

able, which manipulates the group graph such that overlay construction algorithms pro-

duce low-latency overlay networks.
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The overlay construction time is directly linked to the time complexity of the overlay con-

struction algorithm. An algorithm’s time complexity is often dependent on the size of the input

graph, that is, its vertex-set size and edge-set size. The vertex-set size is already bounded to

group membership by the membership management. The edge-set size, on the other hand, is

very large in a complete graph, which is the case for the group graphs. Overlay application layer

networks are always complete graphs (fully meshed), therefore, the edge-set size may severly

increase the overlay construction time. As mentioned, a complete graph is a graph in which all

nodes have a link to all other nodes.

The overlay construction quality is related to the probability the overlay construction algo-

rithm has to construct overlay networks that yield sufficiently low pair-wise latencies. The pair-

wise latencies may be addressed by overlay construction algorithms as a constraint; however,

such a constraint makes it hard to solve the overlay construction. Many constrained overlay

construction problems are only solvable by exponential time algorithms and belong to graph

theoretical problems that are N P-complete.

Chapter 4 introduced a wide range of N P-complete constrained overlay network design

problems. The constraints were, for example, degree-limitations, total cost bounds, diameter

bounds and radius bounds. Overlay construction algorithms that solve N P-complete problems

have non-polynomial time complexities. Therefore, the focus is rather on evaluating overlay

construction heuristics that cannot guarantee an optimal solution. The ultimate goal is to enable

these non-optimal heuristics to construct low-latency overlay networks.

8.2 Reducing the overlay construction time

The overlay construction time is heavily influenced by the time complexity of the overlay con-

struction algorithm that executes it. Reducing or bounding this execution time is important for

time-dependent distributed interactive applications that is to support clients joining and leaving

ongoing group sessions (chapter 2). Therefore, we apply three methods to reduce the overlay

construction time and still enable the overlay construction algorithm to construct low-latency

overlays:

• Algorithm time complexity: Apply algorithms with time complexities that are dependent

on the edge-set size.

• Edge-pruning: Reduce the number of edges in the otherwise complete input graph, by

applying edge-pruning strategies.

• Core-node selection: Leave the edges in the group graph that connect centrally placed

nodes to more deserted nodes to achieve a low-latency reduced graph.
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8.2.1 Algorithm time complexity

One way to reduce the overlay construction time, is to reduce the time complexity of the ex-

ecuting algorithm. It is, however, difficult to reduce the time complexity of an algorithm, and

at the same time enable it to construct overlays with low pair-wise latencies. However, overlay

construction algorithms do all examine graphs, and therefore the execution time is also depen-

dent on the size of this graph. An application layer overlay network is a complete graph (full

mesh) of shortest paths. Therefore, the number of edges in a group graph grows exponentially

when new clients are connected. Hence, if an overlay construction algorithm operates such that

it examines all of the edges in the input graph, its execution time is dependent on the number of

edges. Thus, if the number of edges in the graph decreases, the execution time of the algorithm

also decreases.

Many of the overlay construction algorithms considered in chapter 9 through 14 have a time

complexity, which is dependent on the number of edges the input graph has. A group graph

with a reduced number of edges may significantly decrease the execution time of such overlay

construction algorithms, but the reduced graph must exhibit qualities that enables the overlay

construction algorithm to create overlay networks with low pair-wise latencies.

When core-node selection algorithms are used to identify well-placed group members, and

edge-pruning algorithms, are used to identify good links, a reduced graph may be produced

that yield qualities enabling the overlay construction algorithm to still construct low-latency

overlays.

8.2.2 Edge-pruning algorithms: Search for quality edges

Edge-pruning algorithms are subgraph algorithms, and they typically compute a connected

mesh on an input graph by applying, often configurable, edge-selection strategies. A connected

mesh is defined here as a connected cyclic subgraph, which connects all the nodes in the in-

put graph. Edge-pruning algorithms include strategies for removing edges from an input graph

based on some goal, and also algorithms that pick single edges from an input graph and con-

structs a mesh. These two approaches are essentially different; however, the algorithms share

the same goal. Consequently, we call all of them edge-pruning algorithms.

The goal of applying edge-pruning algorithms on complete group graphs is to reduce the

number of edges, such that the overlay construction algorithm finishes faster. However, the

reduced group graph must include enough "good" the edges to enable the overlay construction

algorithm to construct the desired overlays. There are two basic edge-types to search for:

• Low-cost edges: Edges that reduce the total-cost of the subgraph.

• Low-latency edges: Edges that reduce the diameter of the subgraph.
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Edges that reduce the total cost of the subgraph are easy to include, because each node’s

minimum-cost edges are a part of a minimum-cost spanning subgraph. Therefore, each node

may trivially include its least cost edges to a subgraph to construct the least cost subgraph.

Edges that reduce the diameter of a subgraph is harder to find, because they rely on path

properties (section 4.2). Hence, it is not enough to only consider single edges when creating a

subgraph to reduce the diameter. The entire path including edges and nodes must be considered.

The diameter path in a subgraph is likely to include nodes that are centrally located (well-

placed) among the group nodes. Therefore, these well-placed nodes are searchable using core-

node selection algorithms.

8.2.3 Core-node selection: Search for well-placed nodes

A group graph has nodes that are more centrally located than others, for example, a node with

the lowest eccentricity or the lowest pair-wise latency. When a low diameter subgraph is desired,

it is these well-placed nodes that should be connected to the nodes with higher eccentricities or

pair-wise latencies. This way, the reduced graph is ensured to have a low diameter, and an

overlay construction algorithm is therefore able to build low-latency overlays.

The well-placed nodes may be found using, for example, the core-node selection algorithms

k-Center and k-Median. These algorithms were introduced and evaluated in chapter 7, where

they were found to be the better performing core-node selection algorithms. When the well-

placed nodes are identified, one option is to inter-connect them with the more "badly-placed"

nodes, and add the edges to the reduced graph.

Section 8.4 introduces two subgraph construction algorithms that apply edge-pruning and

core-node selection to reduce the size of the complete group graph’s edge-set and still enable

the overlay construction algorithm to build low-latency overlays.

8.3 Increased overlay construction quality

Each group graph contains member-nodes that are clients in the application. These clients are,

for example, interacting among each other and sharing events. Next, we introduce a particular

class of overlay construction algorithms that know the difference between member-nodes and

non-member-nodes, namely Steiner algorithms (section 4.6).

A Steiner algorithm typically constructs a connected subgraph, in which each member-

node is reachable from every other member-node. The connected subgraph may also include

non-member-nodes (Steiner-points) if they help the Steiner algorithm achieve its optimization

goal. It has been proven that Steiner algorithms yield (on average) better subgraphs (trees and

meshes) than non-Steiner algorithms [69]. However, Steiner algorithms are only usable if the
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input graph includes non-member-nodes, therefore we apply two steps to take advantage of

Steiner-algorithms:

• Identify super-nodes, and make them available as Steiner-points for Steiner algorithms.

• Identify Steiner-points, and include them to a specific group’s input graph.

8.3.1 Core-node selection: Search for super-nodes

Distributed interactive applications consists of clients who are currently interacting, and most

likely application provided servers and proxies. It is from these network nodes that well-placed

Steiner-points should be identified and then made available to a Steiner algorithm. Steiner-

points are also found in today’s peer-to-peer applications. They are often referred to as super-

nodes, core-nodes or relay-nodes, and are used to relay data without reading it. The super-

nodes are typically selected because they have some feature capacity, which is desirable for that

specific application type. In distributed interactive applications it is low pair-wise latencies that

is the most desired super-node metric.

Based on these observations, we apply core-node selection algorithms to identify well-

placed super-nodes that yield low pair-wise latencies to the clients in the application network.

These super-nodes are then made available as Steiner-points that can be added into a specific

group’s complete graph.

8.3.2 Core-node selection: Search for Steiner-points

When Steiner algorithms are used, they need Steiner points to be present in the input graph,

otherwise they are reduced to spanning algorithms [131]. These Steiner points may be included

randomly from the application network, but this is obviously not a good approach. Instead, a

sub-set of the previously identified super-nodes can be included as Steiner points in a specific

group’s graph. Steiner algorithms must be able to use the Steiner-points, therefore it is vital

that the identified Steiner-points are located in the close vicinity of the member-nodes. Hence,

a group’s Steiner points can be identified with a core-node selection algorithm.

In our investigations, we evaluate many Steiner algorithms that build subgraphs while being

subject to degree limits and a bounded diameter. The degree limit is important to limit the stress

on overlay nodes, in terms of bandwidth consumption, forwarding stress, etc. The bounded

diameter ensures that the constructed subgraph has a maximum pair-wise latency within the

application requirements, which is 200 milliseconds for first person shooter games (chapter 2).

However, finding a subgraph that yields a diameter below the bound, and node degrees below

(or on) the degree limits, is an N P-complete problem. Therefore, due to the time-critical overlay

construction requirements, we apply non-optimal polynomial time Steiner heuristics. However,

these heuristics cannot guarantee that a solution is found.
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Due to the non-optimality of the evaluated Steiner-heuristics, their performance is heavily

influenced by which Steiner-points are included to the complete group graph. In general, the

Steiner-points should assist the Steiner-heuristics in the overlay construction, and therefore be

well-placed to increase the chance of finding a subgraph that obeys the given constraints. Low

pair-wise latencies is a target metric, and therefore Steiner points should be identified by core-

node selection algorithms considering pair-wise latencies.

Another issue pertains to how many Steiner points that should be included. This is an

open question, and we investigate this issue along with the previous mentioned issues later in

section 8.5.4.

8.4 Complete group graph manipulation algorithms

We devised three graph manipulation algorithms that address the previous observations regard-

ing reduced overlay construction time, and increased overlay construction quality for Steiner

algorithms. All of them take as input a complete group graph.

8.4.1 Edge-pruning algorithms

We propose 2 algorithms that take as input a complete group graph and then constructs a new

group graph with a smaller edge-set that still yields low pair-wise latencies. This reduced group

graph is then used as input to an overlay construction algorithm. The complete evaluation of

these 2 algorithms is later in chapter 9 and 10. There, the edge-pruning algorithms are also

applied to complete graphs, and the reduced graphs are used as input graphs to spanning-tree

and Steiner-tree algorithms. However, later in this chapter, we also provide examples on how a

reduced edge-set influences the execution times of a few selected spanning-tree algorithms.

The goal of the following algorithms is to create a new reduced graph with a smaller edge-

set, where a set of core nodes is connected to the remaining nodes. The core nodes are identified

using a core-node selection algorithm and may consist of member-nodes and/or Steiner-points,

depending on if the overlay construction algorithm is a spanning-tree or a Steiner-tree algorithm.

add Core Links(k, O) (aCL) takes as input a complete graph G and a core-node set O ⊂ V

that was identified by a core-node selection algorithm. First, each non-core-node in V (not

in O) includes its k minimum-cost edges to non core-nodes, to the subgraph M . Then, each

core-node in O includes edges to every other node in V into M (including core-nodes). The

well-placed core-nodes are connected to the remaining nodes, to ensure low pair-wise latencies

in M . aCL produces a graph with |E|= k ∗ |V −O|+ |O| ∗ |V |. After applying aCL, the reduced

graph M forms, conceptually, a two-layer graph, where the core nodes are fully meshed and

the remaining nodes have a degree that is limited by k+ |O|. Algorithm 11 illustrates the aCL
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user nodes

selected core nodes

links included if k = 0

links included if k = 1

Figure 8.1: Pruned graph using add Core Links Optimized.

algorithm when equation 8.1 (section 8.5.4) is used to determine the number of core-nodes,

and k-Median identifies these core-nodes among the member-nodes. The algorithm has a time

complexity of O(n2).

Algorithm 11 add-CORE-LINKS
In: A complete graph G = (V, E, c), and an integer k ≥ 0.
Out: A connected subgraph M = (V, EM), where EM ⊂ E.
1: O = k-Median(G, l)

{find l core-nodes among V , l is obtained from equation 8.1}
2: For each node m ∈ (V \O), include its k minimum-cost edges to EM ⊂ E.
3: For each core node o ∈ O, include an edge to every node v ∈ V .

add-Core-Links-Optimized(k, O) (aCLO) takes as input a complete graph G, an integer k ≥ 0,

and a set O ⊂ V , which may be identified by a multiple core-node selection algorithm. In

aCLO, each non-core-node (not in O) includes its k minimum-cost edges to the mesh. Then,

aCLO builds a full mesh of the nodes in O, and includes to the mesh. Further, aCLO lets each

core-node o add a number s = |V − O|/|O| of (disjoint) edges to the non-core-nodes. After

these steps, the constructed mesh forms, conceptually, a two-layer graph. Figure 8.1 illustrates

a mesh generated by aCLO. Algorithm 12 illustrates the aCLO algorithm when equation 8.1

(section 8.5.4) is used to determine the number of core-nodes, and k-Median identifies these

core-nodes among the member-nodes. The algorithm has a time complexity of O(n2) (algo-

rithm 12).

Algorithm 12 add-CORE-LINKS-OPTIMIZED
In: A complete graph G = (V, E, c), and an integer k ≥ 0.
Out: A connected subgraph M = (V, EM), where EM ⊂ E.
1: O = k-Median(G, l)

{find l core-nodes among V , l is obtained from equation 8.1 in section 8.5.4}
2: For each node m ∈ (V \O), include its k minimum-cost edges to EM ⊂ E.
3: For each core node o ∈ O, include an edge to every other node v ∈ O.
4: For each core-node o ∈ O disjointly connect to l = |V \ O|/|O| nodes v ∈ (V \ O) through minimum-cost

edges.
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8.4.2 Steiner-point insertion algorithm

The goal of the following algorithm is simply to add a number of Steiner points to a complete

group graph, and return a complete graph with added Steiner-points.

add-SteinerPoints(k, S) takes as input a global graph G = (V, E, c), a complete group graph

Gg = (Vg , E), an integer k ≥ 1, and a set S ⊂ V of super-nodes that have been previously

identified to be well-placed and made available as Steiner points. First, k Steiner-points are

selected from S. The Steiner points are then connected to the group graph, such that it is a

complete graph of member-nodes and Steiner-points.

Algorithm 13 shows an add-SteinerPoints algorithm in which k Steiner-points are included

to the complete group graph. k-Median identifies the Steiner-points among the set of super-

nodes. The algorithm has a time complexity of O(n2).

Algorithm 13 add-STEINER-POINTS
In: A global complete graph G = (V, E, c), a complete group graph Gg = (Vg , E), a set S of super-nodes, an integer

k ≥ 1, and degree bounds deg(v) ∈ N for each v ∈ V

Out: An updated complete group graph Gg = (V
′, E′), where there is a set O ⊂ V ′ of Steiner-points.

1: O = k-Median(V , S, k)
{finds k Steiner points among S}

2: Vg = Vg +O

3: For each Steiner point o ∈ O, include edges to to every other node v ∈ Vg

8.5 Graph manipulation experiments

Graph manipulation experiments were conducted to highlight the influence of graph manipula-

tion on overlay construction algorithms.

8.5.1 Group communication simulator

We have implemented the core-node selection algorithms, graph manipulation algorithms and

the spanning-tree and Steiner-tree algorithms in a simulator that mimics group communication

in a distributed interactive application. A preselected central entity is used to execute the group

management. In the experiments, we assume that some latency estimation technique from chap-

ter 6 identifies a complete graph (full mesh) graph where all edges have an associated latency.

The network was generated by BRITE [91] topology generator that generate Internet-like

router networks. We simulated an application layer overlay network, therefore the network

graph was translated into an undirected complete (fully-meshed) shortest-path graph, where

each router had one client associated to it. Furthermore, the central entity dynamically divides

the users into groups such that each group has a complete group graph. We here present results
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Description Parameter

Placement grid 100× 100 milliseconds
Number of nodes in the network 1000

Super-nodes found by k-Center(k) k = 100

Table 8.1: Experiment configuration.

from simulations using networks with 1000 nodes. The network layout is a square world with

sides equal to 100 milli-seconds.

All the nodes join and leave groups throughout the simulation, causing group membership to

be dynamic. When a join or leave request is received by the central entity, a graph manipulation

algorithm manipulates the complete group graph. The group graph is then used as the input

graph to an overlay construction algorithm that builds an overlay network for event distribution.

The group popularity is distributed according to a Zipf distribution [20].

For the Steiner-tree simulations, a core-node selection algorithm identifies 100 well-placed

super-nodes among the 1000 nodes. These super-nodes are the available Steiner-points in the

simulations. Table 8.1 briefly summarizes the experiment configurations.

8.5.2 Target metrics

Overlay construction is time-dependent in distributed interactive applications, therefore, we

want to identify graph manipulation algorithms that reduce the execution time of overlay con-

struction algorithms.

In a time-dependent scenario it is practical to use fast overlay construction algorithms that

approximate close-to-optimal solutions. However, their drawback is that they cannot guarantee

a solution if the input constraints are hard. For these reasons, we also want to identify graph

manipulation algorithms that increase the chance for the overlay construction algorithm to suc-

cessfully complete an overlay construction. The rate of successfull completion is referred to as

the algorithm’s success rate (section 4.2.6).

In summary, the graph manipulation algorithms are evaluated towards two metrics: execu-

tion time and success rate. The execution time is the time it takes for an overlay construction

algorithm to complete, and graph manipulation algorithms should reduce it. The success rate

of an overlay construction algorithm, is how often it is able to complete the construction given

some constraints. The constraints considered here are degree limits (dl) and a bounded diameter

(bd).

8.5.3 Results from edge-pruning

First, we evaluate the possibility of reducing the execution time of two spanning-tree algorithms.

The first spanning-tree algorithm is the O(V ∗ E) degree-limited shortest path tree (dl-SPT). dl-
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SPT is a heuristic of the degree-limited shortest-path spanning-tree problem (definition 40).

The second algorithm is the O(V 3) compact tree (CT) spannning tree algorithm, which is a

heuristic of the minimum diameter degree limited spanning-tree problem (definition 34). The

next execution times are from running the two spanning-tree algorithms on a complete group

graph, and then a few reduced group graphs that are produced by aCL and aCLO. All of these

algorithms are thoroughly evaluated for tree related metrics in section 9.

Figure 8.2(a) plots different overlay construction times for the spanning-tree algorithm dl-

SPT. dl-SPT is given an input graph that has varying number of edges, and we observe that the

execution time is influenced by it. The reason is that dl-SPT has a time complexity, O(V ∗ E),

which is dependent on the number of edges in the input graph. The reduction in execution time

is 80 % when the edge-set is reduced by 60 %.

Figure 8.2(b) plots different overlay construction times for the spanning-tree algorithm CT.

CT has a time complexity of O(V 3), and we observe that its execution time is not very influenced

by pruning the edge-set. The reason is that the CT algorithm contains routines that is more

influenced by the vertex-set size, than the edge-set size.

From these observations, we conclude that edge-pruning complete group graphs should, in

general, only be applied when the overlay algorithm has a time complexity, which is dependent

on the edge-set size. Edge-pruning should not be applied to an algorithm that has a complexity

who is dependent on the vertex-set size. Generally, when edge-pruning algorithms are used to

manipulate input graphs, the quality of the trees from the tree algorithms suffer somewhat. For

example, it typically results in a slightly increased tree-diameter. Chapter 9 further investigates

the influence of edge-pruning on the quality of a constructed spanning-tree. In the investigations

the subgraph construction algorithms aCL and aCLO are used to reduce a complete group

graph, and tree construction algorithms use these as input graphs.

8.5.4 Results from super-node and Steiner-point selections

The following results highlight the importance of identifying well-placed super-nodes and adding

them as Steiner points to a complete group-graph of member-nodes. We evaluate this by show-

ing the effect the Steiner points have on the overlay construction from the Steiner-tree algo-

rithms sdl-OTTC and smddl-OTTC.

sdl-OTTC is the Steiner degree-limited one-time tree-construction algorithm, which is a

Steiner-tree heuristic of the bounded diameter degree limited Steiner minimum-cost tree prob-

lem (definition 49). smddl-OTTC is the Steiner minimum-diameter degree-limited one-time

tree-construction algorithm, which is a Steiner-tree heuristic of the Steiner minimum diameter

degree limited Steiner-tree problem (definition 48).

All of the core-node selection algorithms that are used in the evaluations are thoroughly

introduced and evaluated in chapter 7. That investigation revealed several core-node selection
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algorithms to be suitable for finding core-nodes in the application network that yield low pair-

wise latencies to groups of clients.

Selecting well-placed super-nodes

Figure 8.3 and 8.4 are cumulative distribution function (CDF) plots of the achieved tree diam-

eters (seconds) as produced by smddl-OTTC when given complete group graphs with Steiner-

points.

In figure 8.3, the 100 super-nodes are identified by different core-node selection algorithms,

and k-Median is used to identify Steiner-points to include to the complete group graph. We

observe that when k-Tailed is used to find the super-nodes, smddl-OTTC builds group-trees

with a significantly higher diameter than if the super-nodes are found by k-Median or k-Center.

smddl-OTTC achieves the lowest group-tree diameter when k-Center is used, but for k-Median

it is only slightly higher. The main reasons for this is that k-Tailed chooses super-nodes based on

their euclidian coordinates (for example, (x,y) coordinates) and does not take into account the

actual latencies between the nodes. k-Median chooses the k super-nodes with the lowest average

pair-wise latencies, while k-Center chooses the k super-nodes with the lowest eccentricities.

In figure 8.4 k-Center is used to find the super-nodes (k = 50, 100, 150, 200, 300), and

k-Median is still used to identify Steiner-points to include to the complete group graph. We
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observe that there is little to gain in the group-tree diameters when there are more than 100

super-nodes in the network.

From these results, we conclude that k-Center is the better core-node selection algorithm

to find super-nodes in the application network, and make them available as Steiner-points to

Steiner-tree algorithms. Therefore, we continue to use k-Center to identify super-nodes in

the following. We also deduce that 100 super-nodes is a fitting number, and use this number

throughout the thesis.

Selecting well-placed Steiner points among the super-nodes

The next results are from running sdl-OTTC on a complete group graph with Steiner-points.

The Steiner points are selected by the k-Median algorithm from a super-node set of 100 nodes,

that are identified by k-Center.

Figure 8.5 shows the success rates for the Steiner-tree heuristic sdl-OTTC. sdl-OTTC tries

to construct Steiner-trees subject to degree limits (dl) and a bounded diameter (bd); however,

sdl-OTTC is a heuristic and cannot guarantee that it finds a solution. A solution is found if sdl-

OTTC builds a tree in which each member-node is reachable from all other member-nodes. The

figure plots the success rates of sdl-OTTC when it is subject to a fairly loose degree-limit of 10

and a bounded diameter limit of 0.5 seconds. We observe that the success rate of sdl-OTTC gets
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Figure 8.5: Success rates of diameter bounded and degree-limited heuristics. sdl-OTTC is given a
complete group graph with Steiner-points identified by k-Median, dl-OTTC is given a complete group
graph.

increasingly higher the more Steiner points are added to the input graph. When no Steiner-points

are included, the sdl-OTTC reduces to a spanning-tree heuristic, and the success rate drops to

around 60 %. 2 Steiner points around 80 %, 4 Steiner points between 80-85 %, and 8 Steiner

points varies between 85-90 %. These fixed numbers of Steiner points increase the success rate,

but the added number of Steiner points should be made dynamic. More specifically, we want it

to vary depending on the current number of group members and the current degree-limitations.

Therefore, we propose the following function to find a "good" number of Steiner-points to

include to a complete group graph G = (V, E, c):

f (x) =
|V |

(
∑

v∈V d(v)

|V |
)

(8.1)

d(v) is the degree limit for a vertex v ∈ V , and f (x) is the number of Steiner-points to be

included to graph G. From figure 8.5 we see results from using equation 8.1 to find the number

of Steiner points to include. The results show a very consistent success rate of around 98 %.

Equation 8.1 is further used in section 10.3 and 11.3 to find the number of Steiner-points to

be included to group-graphs such that a Steiner tree or subgraph algorithm increases its success
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rate. The same equation is also used to find the number of core-nodes to be included to aCL and

aCLO subgraph construction algorithms (section 8.4), such that a tree-construction algorithm

increases its success rate.

Figure 8.6 plots the CDF of the success rate for the tree-construction algorithm sdl-OTTC,

given varying degree-limits and a bounded diameter of 0.5 seconds. The sdl-OTTC algorithm

constructs the tree on a complete group graph enhanced with a number s of Steiner points, found

with equation 8.1, or no Steiner points. For a degree limit of 3, the success rate of sdl-OTTC

given no Steiner points is only 47 %, while it is 82 % with Steiner points. A degree limit of

5 yields 82 % success rate for no Steiner point, and 95 % with Steiner points. A degree limit

of 10 only shows a minor difference. These results show that low degree limits and a feasible

diameter bound, increases the importance of including well-placed Steiner points to the input

graph.

The diameter bound must be feasible, otherwise an overlay construction algorithm cannot

find a solution. Figure 8.7 plots the average success rates of sdl-OTTC for group tree construc-

tion given varying degree limits and diameter bounds. We observe that a strict diameter bound

of 0.25 seconds drops the success rate for sdl-OTTC pretty much to nil, even though the degree

limit is high (10). A diameter bound of 0.75 seconds yields continuous overlay construction
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success for sdl-OTTC.

The reason for why the success rates vary in the group size range (10− 160) is that in the

simulations, nodes are changing groups all the time. Therefore, there is a great chance that

some of the group tree-diameters suffer because the member-nodes are very spread out. This

makes it hard for an algorithm to find a valid tree, and the success rate drops.

In summary, we deduce that including well-placed Steiner points to a complete group graph,

increases the success rate of degree limited diameter bounded Steiner tree heuristics. However,

it also suggests that degree limited Steiner tree heuristics aiming for a minimum diameter are

able to construct Steiner-trees of a smaller diameter because of the added Steiner points. Chap-

ter 10.3 further investigates and confirms these observations in terms of several tree-related

metrics.

8.5.5 Steiner-points and group graph churn

In our group communication scenario the group membership is dynamic; there are nodes that

join and leave groups continuously. An important question then relates to how a complete group

graph is reconfigured due to membership churn:
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If Steiner-points were found and included to a group’s overlay network, should these Steiner-

points be kept in the complete group graph across reconfigurations?

When Steiner-points are kept across reconfigurations, the following happens. Equation 8.1 is

still used to return the number s of Steiner-points to add to the complete group graph. The

Steiner-points already present in the group’s overlay network are substracted from s, and only

the remainder is used to find new Steiner points. The following investigates how keeping

Steiner-points across reconfigurations affects the tree that smddl-OTTC builds.

Figure 8.8(a) is a CDF of the achieved group-tree diameter (seconds). It compares keeping

Steiner-points across reconfigurations, and selecting all new Steiner-points for each reconfigu-

ration, using different core-node selection algorithms to find the super-nodes. We see that there

is no real difference in the group-tree diameters between keeping Steiner-points and finding all

new Steiner-points.

Another consideration is the stability of the overlay networks when there is client churn.

This may be measured by the number of edges that change in the overlay networks across

reconfigurations. Figure 8.8(b) is a CDF of the number of edge-changes that occur across

reconfigurations. We see that keeping Steiner-points across reconfigurations has a positive effect

on the stability, and reduces the number of edge-changes.

From these results we decide to keep Steiner-points across reconfigurations because it has

no noticable negative effect, and increases the stability of the overlay networks when there is

client churn.

8.5.6 Influence of source selection on the tree diameter

Many overlay construction algorithms start building overlays from a given source, which is

oftencase input to the algorithm. Choosing a source that enables the tree algorithm to con-

struct low-latency overlays is important. In this respect, figure 8.9 plots the diameter (seconds)

achieved by a few selected tree algorithms.

The degree-limited minimum-cost spanning-tree (dl-MST) algorithm is a O(V ∗ E) heuristic

of the degree-limited minimum-cost spanning tree problem (definition 31). The minimum-

diameter degree-limited one-time tree-construction (mddl-OTTC) algorithm is a O(n3) heuris-

tic of the minimum-diameter degree-limited spanning-tree problem (definition 34). And, as

mentioned previously, the dl-SPT is a heuristic of degree-limited shortest-path tree problem

(definition 40). These are all thoroughly introduced in chapter 9.

We observe from the plot that both dl-SPT and mddl-OTTC produce group-trees with a

much lower diameter when the source is selected using k-Median(k = 1) from the input graph,

compared to the source with the worst average pair-wise distance. Between the two, it is the

tree-diameter from dl-SPT that increases the most when the source is not well-placed. This is

mainly because dl-SPT is a source-specific tree algorithm and aims to build trees that minimize
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Figure 8.9: Influence of source selection on the tree diameter, for a few selected tree algorithms.

the distance to the given source. mddl-OTTC, on the other hand, is a minimum-diameter degree-

limited heuristic (definition 34), and aims to reduce the tree-diameter. However, we do see that

mddl-OTTC also produces trees with a significantly higher diameter when the source is not

well-placed. dl-MST is a minimum-cost algorithm, and does not care about the tree-diameter,

and therefore constructs similar trees regardless of the source.

We deduce that non-optimal diameter-reducing tree-heuristics that start constructing from

one source, construct trees of a lower diameter when the given source is well-placed. Therefore,

we continue to choose the source with k-Median(k = 1) from the input graph, throughout the

thesis.

8.6 Graph manipulation process

The graph manipulation algorithms are themselves algorithms that take time to execute. It is

obvious that to speed up the overlay construction process, the graph manipulation algorithms

and the construction algorithms should not be run sequentially. The graph manipulation should

be performed in a seperate process that is run in parallel with the overlay construction. The

graph manipulation algorithms should then continuously operate on the complete group graphs,

and the overlay construction algorithm uses the latest available group graph from the graph
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manipulation process. The only requirement for the graph manipulation process, is that the

group graph includes all the current members of the group.

8.7 Summary of the main points

The graph manipulation techniques take part in the overlay network management that was in-

troduced in section 5.4. The main task of the graph manipulation algorithms is to speed up the

overlay construction and increase the quality of the constructed overlay.

The evaluations of the graph manipulation algorithms highlighted the influence of edge-

pruning. Edge-pruning significantly reduced the execution time of the tree-heuristic dl-SPT,

because its time complexity O(V ∗ E) is dependent on the edge-set size (figure 8.2(a)). The

tree-heuristic CT did not reduce its execution time, mainly, because its time complexity O(V 3)

is more dependent on vertex-set size (figure 8.2(b)). The evaluations also showed the major

influence that well-placed Steiner points have when they are included to complete group graphs.

The degree limited and diameter bounded Steiner tree heuristic sdl-OTTTC increased its success

rate quite significantly when Steiner points were included. Equation 8.1 was used to find a

"good" amount of Steiner points to include to group graphs, based on the number of group

members and the current degree limitations. The results showed that the equation increased the

success rate substantially (figure 8.5), especially when the degree-limits and diameter bounds

were made stricter.

The subgraph construction algorithms aCL and aCLO combine the advantages of edge-

pruning and vertex search. Figure 8.10 is a preview of aCL and aCLO’s influence on the tree-

diameter as constructed by dl-SPT. We observe that the tree-diameter does not increase by more

then 10 milliseconds, while the execution time of dl-SPT (figure 8.2) is down by more than 80

%. A thorough evaluation of aCL and aCLO, and their influence on overlay constrution is given

in section 9.3 and 10.3. In addition, the subgraph construction algorithm aCLO is considered as

an alternative for constructing cyclic subgraphs for multicasting events. Evaluations are given

in section 11.2 and 11.3.

In summary, the main results we take away from this chapter and that we are going to use

in later chapters are:

• Super-nodes: We deduced that it is advantageous to search for super-nodes and make

them available as Steiner-points for Steiner-tree and -subgraph algorithms. Furthermore,

we found that 100 super-nodes among 1000 nodes was a fitting number using a 100×

100 milliseconds BRITE graph layout.

• Group-graph churn: We found that it is advantageous to keep Steiner-points across

overlay network reconfigurations when there are membership changes, because it has no
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noticable negative effect. It does have a positive effect on the stability of the overlay

networks, where the stability is measured in terms of the number of edges that change in

each reconfiguration.

• Source-node for overlay network construction: We found that for non-optimal diameter-

reducing tree-heuristics that start constructing from one source, it is advantageous to con-

struct trees from a source with low pair-wise latencies. These tree-heuristics construct

trees of a lower diameter when the given source is found using k-Median(k = 1).

• Overlay construction time: We found that edge-pruning algorithms generally should

be applied to algorithms that have time complexities dependent on the edge-set. In such

cases, the edge-pruning did reduce the overlay construction time. However, further stud-

ies are needed to see the effect of edge-pruning on the pair-wise latencies. Such studies

are performed in the following chapter, where we observe this and other effects on various

spanning-tree algorithms.



Chapter 9

Overlay construction techniques:

Spanning-tree algorithms

The overlay network management introduced in section 5.4 includes overlay construction tech-

niques whose task is to construct low-latency overlay networks for distribution of time-dependent

events. In that respect, we are evaluating a class of overlay construction techniques that are

called spanning-tree algorithms.

Spanning-tree algorithms build a spanning-tree on an input graph, where a spanning-tree is

a connected acyclic subgraph (tree) that connects all the vertices [144]. A spanning-tree may

be useful in many situations, for example, to connect a set of terminals in a cheap and efficient

manner. The terminals may be just about anything: computers, phones, cities, train-stations,

factories, etc. In this chapter, we evaluate a number of spanning-tree algorithms in terms of

their applicability to distributed interactive applications. By doing this we address a goal of the

thesis, which was to:

3) Identify techniques that find Internet paths with low pair-wise latencies among clients in a

group, and configure them for event-distribution of real-time client interaction.

The investigation includes many spanning-tree algorithms with the particular focus on reducing

the diameter of a spanning-tree, that is, the maximum pair-wise latency between users. In

addition, we focus on reducing the time it takes to execute membership changes. In that context,

we use the core-node selection algorithm k-Median to find well-placed group nodes, and the

edge-pruning algorithms aCL and aCLO to reduce the number of edges in an otherwise fully

meshed overlay. Our edge-pruning algorithms strongly connect well-placed group nodes to

the remaining group members, to create new and pruned group graphs, such that, when a tree

algorithm is applied to a pruned group graph, it is manipulated into creating trees with a small

diameter.

We implemented and analyzed a wide range of spanning-tree algorithms, core-node selec-

tion algorithms and edge-pruning algorithms. The evaluations were conducted using a group

193
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communication simulator we implemented (section 2.6.4). In our investigation, we were able

to identify 4 spanning-tree algorithms that meet our goals of constructing low-latency over-

lays sufficiently fast. One general observation was that faster heuristics that do not explicitly

optimize the diameter are able to compete with slower heuristics that do optimize it.

The rest of the chapter is organized in the following manner. Section 9.1 introduces some ba-

sic spanning-tree algorithm types. Section 9.2 introduces the evaluated and proposed spanning-

tree algorithms. Section 9.3 provides group communication simulation results and evaluates the

spanning-tree algorithms. Finally, a summary of the main points is given in section 9.4.

9.1 Spanning-tree algorithm types

Chapter 4.5 introduced a wide range of spanning-tree problems, related to total tree-cost, diam-

eter and radius. These graph theoretical problems are addressed by spanning-tree algorithms

that try to solve them. Many spanning-tree algorithms have been developed over the years, and

the following introduces some of the most basic spanning-tree algorithms.

9.1.1 Minimum-cost spanning-tree algorithms

The minimum-cost spanning-tree on a graph is the acyclic spanning-graph that has least cost

(definition 30). An MST algorithm constructs a tree of minimum total cost, where the total

cost is the sum of all the link weights in the tree. MST algorithms were first proposed semi-

independently by Boruvka, Jarnik and Kruskal [92], then Jarnik’s algorithm was rediscovered

by Prim and Dijkstra [58], and Boruvka’s algorithm rediscovered by Sollin. Essentially, there

are three MST algorithms that we shall refer to as Boruvka’s MST, Prim’s (Jarnik’s) MST and

Kruskal’s MST. The MST algorithms are all considered to have a time complexity of O(E log V )

(G = (E, V )). Boruvka’s MST algorithm was discovered as early as 1926, and is considered to

be the first MST algorithm. It starts by electing leaders among the components in a graph, each

component then adds a safe-edge (lowest-cost edge) to the MST. The leaders are found using

a depth-first search (chapter 4). Components are merged until there is only one left; the MST.

Prim’s MST builds the tree starting from a given source, and for each iteration, it connects a

vertex through the minimum cost path to the tree, until all nodes are spanned. Kruskal’s MST

algorithm starts with a forest of trees that are merged through minimum-cost edges until there

is only one left. MSTs have many applications related to computer networks, for example,

minimizing the consumed bandwidth in a given network.
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9.1.2 Shortest path spanning-tree algorithms

The shortest path spanning-tree on a graph is the acyclic graph that have shortest paths from

a given source to all target nodes (definition 37). A shortest path tree (SPT) algorithm con-

structs a tree that has p shortest paths from a given source node to the destinations, where p

is the number of destinations. The most famous SPT algorithm is the O(E + V log V ) Dijk-

stra’s SPT algorithm [58]. Dijkstra’s SPT builds an SPT from a given source, and adds the

next vertex through the edge that results in the shortest path to the source. Another SPT al-

gorithm is Shimbel’s SPT algorithm [136], most commonly referred to as the Bellman-Ford’s

SPT algorithm [136]. It has a worst case running time of O(V × E), and has the advantage

(opposed to Dijkstra’s SPT) that it can discover negative cycles in graphs. SPT algorithms are

often employed in the Internet to find the shortest-paths between communicating computers.

9.1.3 Minimum-diameter spanning-tree algorithms

Another spanning-tree variant is a minimum-diameter spanning-tree. A minimum-diameter

spanning-tree of a graph is the tree that has the shortest diameter of all possible spanning-trees,

where the diameter is the longest shortest-path (definition 32). Ho, Lee, Chang and Wong [68]

proved that an optimal minimum diameter spanning-tree has one or two nodes that are con-

nected through shortest paths to the remaining nodes. For a complete graph (definition 23), the

resulting tree is actually a star topology.

A recent algorithm that solves the minimum diameter spanning-tree problem is the O(n3)

algorithm [22] proposed by Bui et al. Their algorithm is a distributed implementation, but it

is easily transformed to a centralized algorithm. The algorithm finds the absolute 1-center of

a graph (definition 12), and builds a shortest-path tree from that point. Minimum-diameter

spanning-trees are applicable to event-distribution for time-sensitive distributed interactive ap-

plications.

9.1.4 Constrained spanning-tree algorithms

Many spanning-tree algorithms add constraints to the tree construction [144], where the most

common constraints are variations of delay bounds and degree limitations [80, 64]. The delay

bounds are typically added in algorithms that optimize for the total cost [110,78,77]. The delay

bounds may be from a given source, in which case, the tree is considered a source-tree [80,64].

The delay bound may also express the maximum allowed diameter in the tree [116]. Degree

limitations are added to bound the (forwarding) stress on each node in the tree [95], where the

stress is mainly linked to bandwidth consumption.

The constraints are important to control and tune the tree construction. For example, a

delay bound ensures that the latencies are controlled while the total cost is minimized, and
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degree limitations ensure a controlled stress level on each node. However, generally the con-

straints make the tree construction harder to solve, such that the tree construction takes longer.

Many constrained tree construction problems are N P-complete [131], such that polynomial

time heuristics are required to approximate solutions.

9.2 Evaluated spanning-tree algorithms

The following sections introduce the spanning-tree algorithms that are evaluated in the thesis.

Among these spanning-tree algorithms there are algorithms that consider the minimum-cost, the

diameter and the radius. In addition, the spanning-tree algorithms are subject to constraints, for

example, degree-limits, bounded diameter, bounded radius, and bounded total cost. Some of the

spanning-tree algorithms exist in the literature, however, most of the presented algorithms are

variations of existing spanning-tree algorithms, that are tuned to target the timely requirements

of distributed interactive applications. Table 9.1 provides an overview of all the spanning-tree

algorithms in the thesis.

Formally, a spanning-tree algorithm AT takes as input a connected undirected weighted

graph G = (V, E, c), where V is the set of vertices, E is the set of edges, and c : E → R

is the edge cost function. n = |V | is the number of nodes in the graph G. The spanning-

tree algorithm AT then constructs a connected acyclic graph (tree) T = (VT , ET ) on G, where

VT = V (definition 29).

9.2.1 Tree heuristics considering the minimum-cost

Among the evaluated spanning-tree algorithms that consider minimum-cost, there are two minimum-

cost spanning-tree (MST) algorithms. One is Prim’s MST and the other is a degree-limited

MST (dl-MST) algorithm based on ideas from Narula and Ho’s algorithms [95]. The proposed

dl-MST algorithm addresses the drawback of the Narula and Ho’s dl-MST and suggests an

improvement.

Minimum-spanning-tree (MST) [58] is Prim’s minimum-spanning-tree algorithm. Prim’s MST

has been empirically shown to be the fastest MST algorithm for large dense-graphs [93]. Prim’s

MST builds the tree starting from a given source, and for each iteration, it connects a vertex

through the minimum cost path to the tree. Prim’s MST has a best-case time complexity of

O(E log V ), but is interchangeably also referred to as a O(n2) algorithm in the thesis.

Degree-limited minimum-spanning-tree (dl-MST) is a O(V × E) heuristic of the d-MST prob-

lem (definition 31), and is a modification of Prim’s MST algorithm. dl-MST greedily adds

a vertex to the tree through the minimum weight edge, while obeying the degree constraints.
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Algorithm 14 presents the algorithm details of dl-MST. The data structures particular for the

dl-MST implementation are:

• edges(u): contains all the out edges u has, sorted by increasing edge weight.

• undiscovered(u): is the number of undiscovered edges from u.

• outdegreeT (u): is the current out-degree in the partially made tree.

The proposed dl-MST algorithm starts by sorting the out edges for each node u ∈ V by

increasing edge weight and stores the order in the edges(u) structure. Moreover, the structure

undiscovered(u), is initialized to the current undiscovered neighbors of u, which is the number

of edges(u). The outdegreeT (u) is the current out-degree in the partially discovered tree, and is

initialized to zero. dl-MST then continues like Prim’s MST and inserts the given source node

to a minimum-heap.

For each iteration, a tree-node u, attached to the tree through the least-cost edge, is popped

from the minimum-heap and iterates through its edges(u). If u discovers a node v ∈ V that u

has a lower cost edge to, and v is currently not in the tree, then the algorithm changes parent(v)

to u, but only if u has an available degree. The "old" parent(v) p ∈ V is reinserted to the

minimum-heap if p has undiscovered(p) neighbors (> 0). The reason is that p now has an

available degree, and the greediness of the algorithm combined with degree-limitations makes

it possible for "old" parents to still have least-cost edges to undiscovered neighbors not yet in

the tree. The algorithms terminates when all neighbors of all nodes are discovered.

The complexity of dl-MST is higher than Prim’s MST, because as long as a tree-node u

has undiscovered edges it is re-inserted into the minimum-heap. This is an attempt to avoid

that the greediness of the original Prim’s MST puts the partially made tree in a bad situation.

Bad situations may happen if nodes have filled their degree through relatively high-cost edges

because of the greedy first-come first-connect principle of Prim’s MST. Then, later on, parents

change and the available degree on the "old" parent is not discovered and taken advantage of

unless it is re-inserted to the minimum-heap. The Narula and Ho’s [95] dl-MST suffered from

this problem.

If the dl-MST algorithm finishes the main loop (line 15) without spanning all the nodes, then

it is due to the degree-limitations (if the input graph is connected). In this case, the algorithm

was not able to finish a tree that spans all the vertices, therefore, it is necessary to relax the de-

gree limitations on the nodes that are adjacent to the nodes that are not spanned yet. This routine

is only necessary if the input graph G is not a complete graph, because the dl-MST algorithm

never fails on complete graphs. In a complete graph all nodes are directly connected to each

other, hence, the leaf nodes in the tree are always connected to uncovered nodes (section 10.3).
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Algorithm 14 DL-MINIMUM-SPANNING-TREE
In: G = (V, E, c), a source node s ∈ V , degree bound deg(v) ∈ N for each v ∈ V

Out: Spanning Tree T = (VT , ET )

1: SortedNodeWeightMap edges
2: Vector undiscovered
3: FibonacciHeap heap
4: color = enum Color {WHITE, GRAY, BLACK}
5: for all nodes v ∈ V do

6: parent(v) = v; distance(v) = infinity; outdegreeT(v) = 0; color(v) = WHITE
7: undiscovered(v) = sizeof(out-edges(v))
8: for all out-edges(v) e ∈ E do

9: edges(v).insert(weight(e), target(e)) {sorted according to (min) weight}
10: end for

11: end for

12: distance(s) = 0; color(s) = GRAY
13: heap.insert(s, 0)
14: BuildTree:
15: while heap is not empty do

16: u = heap.getMinimum()
17: for nodes v in edges(u) do
18: if weight(u,v)< distance(v) and outdegreeT (u) < deg(u) and color(v) != BLACK then

19: p = parent(v)
20: outdegreeT(p)- -; outdegreeT(v) = max(0, outdegreeT(v)- -)

{"old" parent p has available degree, reinsert it to heap if undiscovered neighbors}
21: if undiscovered(p)> 0 then

22: heap.insert(p, infinity)
23: end if

24: undiscovered(u)- -; undiscovered(v)- -
25: outdegreeT(u)+ +; outdegreeT (v)+ +
26: distance(v) = weight(u,v); parent(v) = u
27: if color(v) == WHITE then

28: color(v) = GRAY; heap.insert(v, distance[v])
29: else if color(v) == GRAY then

30: heap.decreaseKey(v, distance[v])
31: end if

32: else if weight(u,v)< distance(v) and color(v) != BLACK then

33: undiscovered(u)- -; undiscovered(v)- -
34: end if

35: color(u) = BLACK
36: end for

37: end while

{relax degree bounds if all nodes are not included}
38: if V 6= VT then

39: for all nodes v not in VT do

40: for all out-edges(v) e ∈ E do

41: if u = target(v) not yet seen then

42: RelaxDegree(u)
43: heap.insert(u, distance(u))
44: end if

45: end for

46: end for

47: goto BuildTree

48: end if
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9.2.2 Tree heuristics considering the diameter

The diameter of a tree T is defined as the longest of the paths in T among all the pairs of nodes

in V (section 4.1.1). The thesis evaluates a number of spanning-tree heuristics that consider

the diameter of trees. Detailed descriptions of these spanning-tree heuristics are given in the

following and in table 9.1).

One-time tree construction (OTTC) [1, 38] is a O(n3) heuristic of the bounded diameter

minimum spanning-tree (BDMST) problem [131] (definition 33). The N P-complete BDMST-

problem optimizes for the total cost while obeying an upper bound diameter constraint. OTTC

is a modification of Prim’s minimum spanning-tree (MST) algorithm to accommodate the di-

ameter bound. It maintains the node eccentricities as the tree is built and (if possible) adds the

minimum weight edges that result in node eccentricities below the diameter bound.

Degree-limited one-time tree construction (dl-OTTC) [131] is a O(n3) heuristic of the bounded

diameter degree limited (BDDLMST) problem [68] (definition 35). The N P-complete BDDLMST-

problem is identical to the BDMST-problem, except it adds degree limits on each node. The

dl-OTTC heuristic is proposed by the thesis and builds the tree in the same way as OTTC, while

obeying given degree limits. The dl-OTTC is described in algorithm 15, in which each node

u ∈ V maintains the following information [38]:

• near(u) is the node in the tree nearest to the non-tree node u.

• wnear(u) is the weight of edge (u, near(u)).

• dist(u, 1 . . . n) is the distance (unweighted path length) from u to every other node in the

tree if u is in the tree, and is set to −1 if u is not yet in the tree.

• ecc(u) is the eccentricity of node u, (the distance in the tree from u to the farthest node)

if u is in the tree, and is set to −1 if u is not yet in the tree.

To update near(u) and wnear(u), dl-OTTC determines the edges that connect u to the partially-

formed tree T without increasing the diameter (as the first criterion) and among all such edges

dl-OTTC chooses the one with minimum weight. This is done efficiently, without having to

recompute the tree diameter for each edge addition. Code segment 1 of the dl-OTTC algorithm,

sets the dist(v) and ecc(v) values for node v by copying from its parent node near(v). Code

segment 2, updates the values of dist and ecc for the parent node in n steps. Code segment

3, updates the values of dist and ecc for other nodes. Code segment 4 updates the near and

wnear values for nodes not currently in the partial tree T . Code segment 5 finds the next node

v to be added to the partial tree T . It includes a dynamic relaxation method that relaxes the

diameter-bound and degree-limts if a next node cannot be found.
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Algorithm 15 DL-ONE-TIME-TREE-CONSTRUCTION
In: G = (V, E, c), diameter-bound≥ 0, degree bound deg(v) ∈ N for each v ∈ V

Out: Spanning Tree T = (VT , ET )

1: select a root node v0 to be included in VT

2: initialize near(u) := v0 and wnear(u) := weight(u,v0), for every u ∈ V

3: compute a next-nearest-node v ∈ V such that: wnear(v) = MINu{wnear(u)}
4: select the node v with the smallest value of wnear(v)
5: while |ET | < (n - 1) do
6: set VT := VT ∪ {v} and ET := ET ∪ {(v,near(v))}

{1. set dist(v,u) and ecc(v)}
7: for u = 1 to n do

8: if dist(near(v),u)> âĹŠ1 then

9: dist(v,u) := weight(v, near(v)) + dist(near(v),u)
10: end if

11: end for

12: dist(v, v) := 0
13: ecc(v) := weight(v, near(v)) + ecc(near(v))

{2. update dist(near(v),u) and ecc(near(v))}
14: dist(near(v),v) = weight(v, near(v))
15: if ecc(near(v))< 1 then

16: ecc(near(v)) = weight(v, near(v))
17: end if

{3. update other nodes’ values of dist and ecc}
18: for each tree node u other than v or near(v) do
19: dist(u,v) = weight(v, near(v)) + dist(u,near(v))
20: ecc(u) = MAX{ecc(u),dist(u,v)}
21: end for

{4. update the near and wnear values for other nodes in G}
22: for each node u not in the tree do
23: if weight(u, near(u)) + ecc(near(u))> diameter-bound or degT (v) ≥ deg(v) then

24: for each node w in T do

25: if weight(u, near(u)) + ecc(near(u))> ecc(w) + weight(u, w) and degT (w) < deg(w)a then

26: near[u] = w, wnear[u] = weight(u,w) + ecc(w)
27: end if

28: end for

29: else

30: if weight(u,v)< weight(u, near[u]) then
31: near[u] = v, wnear[u] = weight(u,v) + ecc(v)
32: end if

33: end if

34: end for

{5. find next node v, relax constraints if necessary}
35: while not found next node v do

36: try to find the node v with the smallest value of wnear(v)
37: if failed to find v due to diameter-bound violation then

38: Relax(diameter-bound)
39: end if

40: if failed to find v due to degree bound violation then

41: Relax(degT(v)) for each node v ∈ VT

42: end if

43: end while

44: end while
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Minimum diameter one-time tree construction (md-OTTC) [131] is a O(n3) heuristic of the

minimum diameter spanning-tree (MDST) problem [68] (definition 32). The MDST-problem is

to find a spanning-tree of a graph such that the diameter is minimized. MDST-algorithms that

operate on complete graphs often construct a star-shaped tree, where the work-load (stress) of

the central nodes is high. The algorithm md-OTTC is another alteration of the BDMST-heuristic

OTTC [1] proposed by the thesis. Instead of minimizing the total cost within a diameter bound,

md-OTTC always adds the vertex that minimizes the diameter of the partially made tree.

Minimum diameter degree-limited one-time tree construction (mddl-OTTC) [131] is a proposed

O(n3) heuristic of the minimum diameter spanning-tree (MDDL) problem [114] (definition 34).

The N P-complete MDDL-problem introduces degree limits to solve the stress issues of the

MDST. mddl-OTTC works as md-OTTC while obeying the degree limits. The algorithm of

mddl-OTTC is identical to dl-OTTC if the algorithmic details inside the for loop on line 22 is

changed to pick the edge that minimizes the diameter of the partially built tree.

Randomized greedy heuristic (RGH) [104] is a fast O(n2) heuristic of the BDMST problem

(definition 33) and was originally designed to be used on complete graphs. However, with slight

adjustments RGH works for general graphs as well. RGH is given as input a graph G, and starts

off by choosing and adding to the spanning-tree one or two center nodes from V , depending

on whether |V | is even or odd. When extending the spanning-tree, it chooses the next vertex to

add to the tree at random and connects it via the lowest weight edge that maintains the diameter

constraint. The diameter constraint is only maintained towards the source.

The original RGH did not specify how the center nodes are chosen. If they are randomly

chosen, the resulting spanning-tree will suffer from this. In our algorithm, the center nodes are

chosen using a core-node selection algorithm, for example, the algorithm k-Median (chapter 7).

The core-node selection algorithm ensures that center nodes are chosen that are well-placed.

For example, k-Median ensures that the source is the node with the minimum average pair-wise

latency (section 4.2). The added time-complexity is minor compared to the benefit.

Degree-limited randomized greedy heuristic (dl-RGH) [131] is a O(n2) heuristic of the BD-

DLMST problem. Algorithm 16 presents the pseudo-code of dl-RGH as implemented by the

author of the thesis. The dl-RGH heuristic builds the spanning-tree much the same way as RGH,

the major difference is that dl-RGH obeys given degree-limits for each node. Both for RGH and

dl-RGH there is a chance that a constrained tree cannot be found. Therefore, a relaxation pro-

cedure is added that relaxes the diameter-bound (for RGH) and degree limits if necessary.

Compact-tree heuristic (CT) [115] is a O(n3) heuristic of the MDDL problem, and is based

on Prim’s MST algorithm. It builds a tree with close to minimum diameter while obeying the

degree limits. It works similarly to OTTC, and adds the next node to the tree that results in

the close-to-minimum diameter of the partially made tree. Algorithm 17 presents the pseudo-
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Algorithm 16 DL-RANDOMIZED-GREEDY-HEURISTIC
In: G = (V, E, c), diameter-bound≥ 0, degree bound deg(v) ∈ N for each v ∈ V

Out: Spanning Tree T = (VT , ET )

1: k = 1
2: if |V | is odd then

3: k = 2
4: end if

5: C = k-MEDIAN-SELECTION(G, k) {select core node set}
6: connect C to tree T

7: initialize depth(u) = 0, for every u ∈ V

8: while |ET | < (|V | - 1) do
9: choose first node v with edge(v,c) c ∈ C , where degT (c) < deg(c)

{success, then connect v to core node set}
10: if found node v then

11: add edge(v,c) to T

12: depth(v) = depth(c) + weight(edge(v,c))
13: if depth(v) ≤ diameter-bound/2 then

14: C ∪ v

15: end if

{failed, then relax constraints}
16: else

17: if failed to find v due to degree bound violation then

18: Relax(degT(c)) for each node c ∈ C

19: end if

20: Relax(diameter-bound)
21: for nodes v ∈ VT not in C do

22: if depth(v)≤ diameter-bound/2 then

23: C ∪ v

24: end if

25: end for

26: end if

27: end while

code from the implementation of CT done by the author.It adds the functionality of relaxing the

degree limits whenever the tree construction cannot continue. In the evaluations of section 9.3,

the results reveal that CT is quite time-consuming in its tree construction.

Bounded compact-tree (BCT) [115] is a generalization of the CT algorithm. It is a O(n3) heuris-

tic of the bounded diameter residual balanced tree problem (definition 36). It uses a balancing

factor M , when searching for the next node to be included in the tree. It selects the node with

the largest available degree among the M nodes with lowest diameter. The authors of [115]

found that M = 4 fits best.

9.2.3 Tree heuristics considering the radius (shortest-path)

The radius of a tree T is defined to be the smallest eccentricity among the nodes v ∈ V (sec-

tion 4.1.1). A spanning-tree algorithm that considers the shortest-paths from a given source

is also a spanning-tree algorithm that minimizes the radius if the source node is located close

to the center of the input graph. From section 4.5 it was identified that in a complete graph,
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Algorithm 17 COMPACT-TREE-HEURISTIC
In: G = (V, E, c), degree bound deg(v) ∈ N for each v ∈ V

Out: Spanning Tree T = (VT , ET )

1: choose source s and include to T

2: for all nodes v ∈ V do

3: if edge(v,s) exist then parent(v) = s and distance(v) = weight(s, v)
4: end for

5: let u ∈ V − VT be the vertex with smallest distance(u)
6: while VT 6= V do

7: include edge(u,parent(u)) to T

8: for v ∈ V − u do

9: distance(v) = MAX{distance(v),distT(u,v)}
10: end for

11: for v ∈ V − VT do

12: distance(v) = infinity
13: for q ∈ VT do

14: if degT (q)< deg(q) and weight(v,q) + distance(q) < distance(v) then
15: distance(v) = weight(v,q) + distance(q)
16: parent(v) = q
17: end if

18: end for

19: end for

{Find next node to add, if failed then relax degree bounds}
20: FIND-NEXT:
21: let u ∈ V − VT be the vertex with smallest distance(u)
22: if distance(u) == infinity then

23: Relax(degT(v)) for each node v ∈ VT

24: update distance and parent for each node v ∈ VT

25: goto FIND-NEXT
26: end if

27: end while

the topology of a close-to-optimal minimum-diameter spanning-tree is a star. The shortest-path

spanning-tree algorithms do not explicitly consider the diameter, but are cheaper in terms of the

execution time. For example, a shortest-path tree (SPT) is a source specific tree in which all

nodes have a shortest-path to the source. It was solved by Dijkstra [58] and has a worst-case

time complexity of O(n2).

Dijkstra’s shortest path tree (SPT) algorithm constructs a tree that has p shortest paths from a

given source node to the destinations (definition 37), where p is the number of destinations [58].

Dijkstra’s SPT is the most famous SPT algorithm and is solved in O(E + V log V ). Dijkstra’s

SPT builds an SPT from a given source, and adds the next vertex that has the shortest path to

the source. A shortest-path tree is actually a simple MDST heuristic (definition 32) if the source

vertex is centrally located in the input graph. The source node may, for example, be selected by

the single core-node selection algorithm k-Median(k = 1) (chapter 7).

Degree-limited shortest-path tree (dl-SPT) is a proposed O(V × E) heuristic of the degree-

limited shortest-path tree (d-SPT) problem (definition 40). The N P-complete d-SPT problem
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is to find a spanning-tree from a given source such that the source destination distance is min-

imized. The dl-SPT algorithm is designed exactly like dl-MST (introduce previously), except,

dl-SPT minimizes the path-length from a predefined source to each destination, while obey-

ing the degree-limitations on each node. Therefore, the implementation of dl-SPT follows the

pseudo-code of dl-MST, with the exception of line numbers 18 and 25, that needs to be changed

to address the shortest-path length, rather than edge-cost.

Bounded radius minimum spanning-tree (br-MST) is a O(n2) heuristic of the BRMST problem

(definition 39). It adds a radius bound and dynamic relaxation of the radius bound to the dl-MST

algorithm, but otherwise works in the same fashion.

Bounded radius degree-limited minimum spanning-tree (brdl-MST) is a O(n2) heuristic of the

BRDLMST problem (definition 42). It adds a radius bound and degree limits, and then a dy-

namic relaxation of the radius bound to the dl-MST algorithm, but otherwise they work in the

same fashion.

9.3 Group communication simulations of spanning tree algo-

rithms

We evaluate the previously introduced spanning-tree algorithms through group communication

simulations. The simulator is thoroughly introduced in chapter 2.6.4. Table 9.1 provides an

overview of all the evaluated spanning-tree algorithms.

9.3.1 Experiment configurations

In the experiments, we use different input graphs to the tree algorithms: complete graphs and

reduced graphs. To reduce the complete group graphs, we use the edge-pruning algorithms aCL

and aCLO that both were introduced in section 8.4. The reason we apply these edge-pruning

algorithms is to reduce the execution time of the spanning-tree algorithms.

For the tests that apply aCL and aCLO , the core node set (O) is found among the group’s

member-nodes using the k-Median(k) core-node selection algorithm (chapter 7). The core-

node set size k is found applying equation 8.1. More specifically, the size of the core node set

O is found using the degree limit d in the current experiment and the current group size |V |:

k = (|V |/d). The function approximates the number of core nodes that is needed to ensure that

the constrained tree algorithms are still able to build a tree (section 8.5).

Chapter 8 introduced and evaluated the problems that constrained overlay construction

heuristics have in finding a solution, especially when the constraints are strict. That is also

the case with the constrained spanning-tree heuristics evaluated here. The success rate of the

algorithms depend on the constraint and the input graph. We use dynamic relaxation on the
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Description Parameter

Placement grid 100× 100 milliseconds
Number of nodes in the network 1000

Degree limits 3,5 and 10

Diameter bound 250 milliseconds
Core node set size (group-size/degree-limit)

Table 9.2: Experiment configuration.

degree-limits and the diameter bounds whenever a tree heuristic cannot continue the tree con-

struction.

A low diameter is a target metric, such that in our simulations we use a strict diameter bound

of 0.250 to the diameter bounded algorithms. The heuristics are then frequently forced to relax

the bound. The experiment configurations are summarized in table 9.2.

9.3.2 Target metrics

A spanning tree algorithm is considered good if it can produce overlays with a low diameter,

within a reasonable time. In the evaluations, we therefore consider two metrics to address the

application requirements: diameter and execution time. The diameter expresses the worst-case

latency between any pair of group members. The execution time or reconfiguration time of an

algorithm is the time that is required to execute a group membership change. In addition, a

degree-unlimited algorithm is not desirable if the constructed tree has a very high maximum

degree. Many of the tree algorithms in our investigation use a constraint on the degree-limit.

In the following, we evaluate the results from our group communication simulations. In

the evaluation, we focus on the target metrics and also evaluate the different spanning tree

algorithms against each other.

9.3.3 Fully meshed results

We here present results from using a fully meshed input graph to every tree algorithm. The

diameter achieved, with degree limit 10, is plotted in figure 9.1. As expected, MST constructs

trees with high diameter, because it optimizes for the total cost. dl-MST performs similarly to

MST but is not plotted. Hence, we can safely disregard MST and dl-MST. SPT performs best,

and constructs trees with a diameter close to 0.3 regardless of group size. The source of SPT

is chosen by the k-Median(k = 1) algorithm to be in the group center, hence, the combination

results in an MDST-heuristic (problem 32). We do not plot all the algorithms because many of

them construct trees with very similar diameter. In fact, all remaining algorithms construct trees

with a diameter between 0.3 and 0.4 seconds.

In figure 9.2, the diameters with degree limits 3, 5 and 10 are plotted. When the degree limit

is 3, the degree-limited algorithms struggle to find trees with a diameter below 0.6 seconds. A
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Figure 9.1: Diameter of fully meshed graph (degree limit=10).

degree limit of 5 reduces the diameter to 0.5, while a degree limit of 10 further lowers it to 0.4.

We deduce that the degree limit can not be stringent if a low diameter is the desired goal. Thus,

henceforth, we use a degree limit of 10 in all our plots.

The execution time of selected algorithms is plotted in figure 9.3. CT and BCT clearly

perform worst (only CT is plotted). In fact, during frequent group tree updates they are almost

useless for larger group sizes. The remaining algorithms are considerably faster, with RGH/dl-

RGH being the fastest. An SPT algorithm on a fully meshed application layer graph reduces

the complexity to O(1), because the input mesh contains all the shortest paths from the source

to any destination.

Figure 9.4 plots the maximum degree in the group trees. From the results we see that SPT,

md-OTTC, OTTC and RGH all have maximum degrees that would not be tolerated by average

users of distributed interactive applications. Especially, since the trees are considered to be

shared-trees, it adds a significant load on the nodes with high degrees.

To summarize, MST and dl-MST produce trees with too high diameter. CT and BCT are

too slow to handle frequent tree updates. SPT, md-OTTC, OTTC and RGH all have a maximum

degree above acceptable. Hence, these are all poor alternatives in the tree construction. The

better alternatives are dl-SPT, mddl-OTTC, dl-OTTC and dl-RGH. Table 9.3 gives an overview

of some pros and cons of the algorithms. In the following, we consider only the diameter,

reconfiguration time and maximum degree.
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Figure 9.2: Diameter of trees with 100 nodes (degree limits 3,5 and 10).

9.3.4 Reduced Graphs

Here, we present results from combining a core selection heuristic and edge-pruning with tree

algorithms. We use aCL and aCLO (k = 2, 1, 0) to reduce the input graph size, and the k-

Median core-node selection algorithm to find the core nodes, that is, well located group nodes.

All the remaining plots are of 100 nodes with a degree limit of 10.

Figure 9.5 plots the diameter when using a fully meshed input graph and aCL. Overall, the

algorithms produce the lowest diameter when using a fully meshed input graph. However, when

aCL is used, the diameter suffers on average only 15 % even when k = 0, and the edge set is

reduced with 80 %, compared to the fully meshed graph.

Figure 9.6 plots the diameter for aCLO as well. We observe that the diameter suffers on

average just below 20 % when aCLO is used, instead of the full mesh. aCLO with k = 0

reduces the edge set by 95 %, and the construction results are still competitive.

The reconfiguration times of the construction algorithms applied to the full mesh and aCL/aCLO

graphs are plotted in figure 9.7. The tendency is very clear. When the edge set is pruned the

reconfiguration time is substantially reduced. However, CT (and BCT) continue to be very slow

regardless of edge-pruning, because its execution time is dependant on the node set size.

We expect the maximum degree to decrease for the algorithms without degree limits when

applying aCL and aCLO, see figure 9.8. We observe that the maximum degree is reduced to
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Algorithm Diameter Time Degree Rank

MST – + + –
SPT + + – –
md-OTTC + + – –
OTTC + + – –
RGH + + – –
CT + – + –
mddl-OTTC + + + +
dl-OTTC + + + +
dl-RGH + + + +
BCT + – + –
dl-SPT + + + +
dl-MST – + + –

Table 9.3: Tree algorithm characteristics using full mesh.
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Figure 9.5: Diameter for full mesh and aCL.

about 20 when aCLO is used. Hence, degree unlimited algorithms are an option for very low

bandwidth streams, but, only if aCLO and a core-node selection algorithm are used to manipu-

late the input graph, such that the the node-degree is bounded. However, the degree-unlimited

algorithms all have (almost) equally fast algorithm versions with degree limits. Table 9.4 gives

an overview.



9.3. Group communication simulations of spanning tree algorithms 211

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

dl
-R

G
H

 

dl
-O

T
T

C
 

R
G

H
 

O
T

T
C

 

m
dd

l-
O

T
T

C
 

C
T

 

dl
-S

PT
 

m
d-

O
T

T
C

 

SP
T

 

di
am

et
er

 (
se

co
nd

s)
full mesh

aCL=2
aCL=1
aCL=0

aCLO=2
aCLO=1
aCLO=0

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

dl
-R

G
H

 

dl
-O

T
T

C
 

R
G

H
 

O
T

T
C

 

m
dd

l-
O

T
T

C
 

C
T

 

dl
-S

PT
 

m
d-

O
T

T
C

 

SP
T

 

di
am

et
er

 (
se

co
nd

s)
full mesh

aCL=2
aCL=1
aCL=0

aCLO=2
aCLO=1
aCLO=0

Figure 9.6: Diameter for full mesh, aCL and aCLO.
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Algorithm Diameter Time Degree Rank

SPT + + + +
md-OTTC + + + +
OTTC + + + +
RGH + + + +
dl-SPT + + + +
mddl-OTTC + + + +
dl-OTTC + + + +
dl-RGH + + + +

Table 9.4: Tree algorithm characteristics using aCLO.
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Figure 9.8: Maximum degree for full mesh, aCL and aCLO.

9.3.5 Discussions on the results

A tree algorithm for our construction process should produce trees with a low diameter, keep

the reconfiguration time fast and be able to obey degree limits. We have seen that CT is the

best algorithm when only the diameter and maximum degree are considered. However, the

reconfiguration time when using CT is very high, even with a pruned edge set. Remember, low

reconfiguration time is particularly desirable during frequent tree updates, which is often the

case for our target applications.

The algorithms that have all the properties that our target applications want are listed in

table 9.5. dl-RGH is the fastest algorithm, and still manages to produce low diameter trees

within the degree limits. mddl-OTTC and dl-OTTC are similar to each other, but mddl-OTTC
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Algorithm Diameter Time Degree Rank

dl-OTTC +++ ++ + ++++
mddl-OTTC ++++ + + +++
dl-SPT ++ +++ + ++
dl-RGH + ++++ + +

Table 9.5: Final tree algorithm ranking.

is slightly slower and does not have the flexibility of a bounded diameter algorithm. dl-SPT was

a surprisingly good alternative, and is a good algorithm for a source-based tree.

Our ranking is subjective and not related to specific application needs. All the algorithms

fit different needs, because they vary in performance between diameter and reconfiguration

time, see figure 9.9. dl-RGH is a fast O(n2)-heuristic. When extending the tree, it chooses the

next vertex at random and connects it via the lowest weight edge that maintains the diameter

constraint. The diameter constraint is only maintained towards the source, and is actually the

radius. The algorithm works surprisingly well to produce trees with a small diameter. dl-OTTC

extends the tree through the minimum weight edge that obeys the diameter bound. It is slower

because it has a more time consuming maintenance of the diameter, but it produces trees with

smaller diameter than dl-RGH. mddl-OTTC always minimizes the maximum diameter, and is

slightly slower because of that. However, mddl-OTTC is much faster than CT, and constructs

trees with almost the same small diameter. dl-SPT avoids diameter bounds, that may not be

available, and minimum diameter goals, that may not be desirable in many applications. It

rather optimizes for source destination cost, which is often desired by streaming applications.

9.4 Summary of the main points

We have investigated a wide range of spanning-tree algorithms, where the particular goal was to

identify those that quickly produce spanning-trees of a low diameter. In addition, the spanning-

tree should not have nodes with an unreasonable stress level, which is measured in terms of the

maximum degree. All the spanning-tree algorithms were evaluated through group communica-

tion simulations.

From the results, we found that the fairly simple degree-limited heuristics dl-RGH, dl-

OTTC, mddl-OTTC and dl-SPT all produce trees with small diameters. These 4 heuristics

are also fast, which is important in highly dynamic distributed applications. The heuristics CT

and BCT were found to be too slow, although they otherwise met our requirements. However,

further verification of our algorithm implementation is needed to be absolutely certain of this

result.

We also investigated algorithms for reducing the time it takes to execute membership changes.

We found that the edge-pruning algorithms aCL and aCLO are powerful means that generally
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Figure 9.9: Diameter and reconfiguration time for complete, aCL and aCLO.

reduce the time a tree algorithm needs to construct a spanning-tree. The penalty lies in the

diameter of the spanning-trees, which are slightly higher. Nevertheless, we found that most

spanning-tree algorithms still produce competitive results.



Chapter 10

Overlay construction techniques:

Steiner-tree algorithms

The overlay network management introduced in section 5.4 includes overlay construction tech-

niques whose task is to construct low-latency overlay networks for distribution of time-dependent

events. In that respect, we continue our evaluation of overlay construction techniques and eval-

uate Steiner-tree algorithms. By doing this we address a goal of the thesis, which was to:

3) Identify techniques that find Internet paths with low pair-wise latencies among clients in a

group, and configure them for event-distribution of real-time client interaction.

Steiner-tree algorithms have the important property that they can distinguish between member-

nodes and non-member-nodes (definition 43). Therefore, the main difference between a Steiner-

tree and a spanning-tree is that a Steiner-tree is only required to span the member-nodes. Se-

lected non-member-nodes (Steiner points) may be used in the Steiner-tree as relay nodes to

reach the member-nodes. A Steiner-tree algorithm, typically, only includes Steiner points to the

Steiner-tree if they help the algorithm optimize the tree. The Steiner-points in real networks are

often nodes that forward data without reading it or contributing with new data. They are there

to help the Steiner-tree algorithm achieve its optimization goal.

In our studies, we develop a range of Steiner-tree heursitics and evaluate them in terms of

how well they reduce the diameter. We used algorithm ideas from the well-known minimum-

cost Steiner-tree heuristics shortest-path heuristic (SPH) [120], distance-network heuristic (DNH) [82]

and average-distance heuristic (ADH) [106]. From these algorithms we devised Steiner-tree

heuristics that reduce the diameter. The algorithms SPH and DNH are themselves based on

ideas from Prim’s minimum spanning tree (MST) and Dijkstra’s shortest path tree (SPT), while

ADH is based on Kruskal’s MST [58]. We also used ideas from existing spanning tree algo-

rithms on how to keep track of the pair-wise latencies in a graph [1].

All the algorithms are implemented, and the performance is analyzed using experiments.

We found that a full-mesh of shortest paths makes it difficult for Steiner-tree heuristics to find

215
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better trees than spanning tree algorithms. In this case, many of the Steiner-tree heuristics only

has a best-case (and worst-case) performance equal to an MST. The network seen from the

application layer is in fact a full mesh of shortest paths. Therefore, these Steiner-tree heuristics

should not be used when a full mesh of shortest paths is the input graph. We also reduced

the full mesh using pruning algorithms and used the pruned graph as input to the Steiner-tree

heuristics. However, we still found that faster Steiner-tree heuristics that do not use shortest

path information and do not explicitly optimize the diameter are able to compete with slower

heuristics that do.

The rest of the chapter is organized in the following manner. Section 10.1 introduces a

few of the most common Steiner-tree algorithm types. Section 10.2 presents the Steiner-tree

algorithms that we evaluate. Many of these algorithms are contributions by the thesis. Sec-

tion 10.3 evaluates every Steiner-tree algorithm in a group communication simulator. Finally,

section 10.4 provides a brief summary of the main points.

10.1 Steiner-tree algorithm types

Chapter 4.6 introduced a wide range of Steiner-tree problems found in graph theory. The follow-

ing sections introduce Steiner-tree algorithms for finding Steiner-trees of minimum or bounded

cost, diameter and radius.

10.1.1 Minimum-cost Steiner-tree algorithms

A minimum-cost Steiner-tree is the least cost tree that spans all the member-nodes of a graph.

The problem of finding a minimum-cost Steiner-tree in networks (SMT) is an N P-complete

problem (definition 44) that was originally formulated independently by Hakimi and Levin [142]

in 1971. Several exact algorithms and heuristic have been suggested, implemented and com-

pared [134,69]. In the following we introduce four Steiner-tree heuristic classes called spanning-

heuristics, path-heuristics, tree-heuristics and vertex-heuristics [142]. From the four heuristic

classes we, respectively, give the algorithm details of the four SMT-heuristics pruned mini-

mum spanning tree, shortest path heuristic (SPH), distance network heuristic (DNH) and aver-

age distance heuristic (ADH). From these SMT-heuristics, we have proposed new Steiner-tree

heuristic variations (section 10.2) that address the diameter and reconfiguration time issues

faced by distributed interactive applications.

Spanning-heuristic: Pruned minimum spanning tree heuristic

The simplest SMT-heuristics are the spanning-heuristics [36]. They apply an MST algorithm

on a network, and then remove (prune) Steiner-points with degree one (leaves). The MST
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algorithm generates a minimum-cost spanning tree of a network graph, spanning all the nodes.

An approximate Steiner-tree is then obtained by removing, from the MST, subtrees containing

only Steiner-points. A further enhancement, is to remove Steiner-points with degree two, as

they are only forwarding nodes. Prim’s and Kruskal’s MST algorithms [58] are two types

of MST algorithms that are commonly used (chapter 9). The main drawback of a spanning-

heuristic is that, potentially, all the nodes in the network are involved in the execution of the

MST algorithms, hence, some membership management should be applied that limit the number

of Steiner-points. A spanning-heuristic is a fairly naive approach to solve the SMT problem and

algorithm 18 describes a generic algorithm for a spanning-heuristic. The generic spanning-

heuristic algorithm takes as input a spanning tree algorithmAT , which is executed to construct

a tree that is pruned for leaf Steiner points.

Algorithm 18 GENERIC-SPANNING-HEURISTIC
In: G = (V, E, c), a set Z ⊂ V , and a spanning tree algorithmAT .
Out: Steiner Tree TZ = (VT , ET )

1: TZ =AT (G)

2: Delete all leaf Steiner points from TZ .

Path-heuristic: Shortest path heuristic

A Steiner-tree path-heuristic starts from a pre-chosen source and includes the member-nodes

one by one, until the tree spans all member-nodes. Typically, the tree grows based on the ad-

dition of (shortest) paths between member-nodes in the tree and member-nodes not yet in the

tree. SPH is an SMT path-heuristic and was suggested by Takahashi and Matsuyama [120].

SPH runs an SPT algorithm |Z |= p times (once for each member-node), and stores the shortest

path information. Next, it builds the tree starting from a given source, and for each iteration, it

connects a member-node through the minimum cost path to the tree. SPH is implemented by a

straight forward modification of Prim’s MST algorithm [58]. We can see that the bottleneck of

SPH is the determination of the shortest paths. Consequently, the SPH has a time complexity

of O(pn2) (|V | = n) since shortest paths from each member-node can be determined by for

example Dijkstra’s SPT algorithm [58] in O(n2). SPH is sensitive to the choice of the source

node from which the tree is constructed. Variations include running SPH more than once, each

time from a different source. These repetetive SPH variations yield better solutions, but the

execution time is increased. For the simulations in section 10.3, the source is selected using

the core-node selection algorithm k-Median(k = 1), and every SPH variation is run only once.

Algorithm 19 describes a generic path-heuristic algorithm, which is also how SPH works. Sec-

tion 10.3 discusses SPH’s limitations, especially when applied to complete graphs, for example,

application layer overlay networks.
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Algorithm 19 GENERIC-PATH-HEURISTIC
In: G = (V, E, c), a set Z ⊂ V

Out: Steiner Tree TZ = (VZ , EZ)

1: for each v ∈ Z run SHORTEST-PATH-TREE(G, v) and store shortest paths
2: choose a source node s ∈ Z and include to TZ

3: while all nodes in Z not in VZ do

4: find the node u optimizing a cost function together with a node v in the current TZ

5: add edge (u, v) to TZ

6: end while

Tree-heuristic: Distance network heuristic

The Steiner-tree tree-heuristics are based on the idea of constructing an initial tree that spans all

member-nodes, and then optimize it towards a close-to-optimal SMT. Commonly, a minimum

spanning tree variant is used to obtain the initial tree. DNH is an SMT tree-heuristic and was

suggested, among others, by Kou, Markowsky and Berman [82]. DNH (like SPH) runs an SPT

algorithm for each member node, and stores the shortest path information. Then, it builds a

distance network graph using only the member nodes, that is, a complete graph with |Z | = p

vertices and edge weights equal to the shortest path lengths. It then replaces the individual edges

in the distance network graph with the original paths in the input graph. Finally, an MST is run

from a given source to find the SMT. As in SPH, the bottleneck of DNH is the determination of

the shortest paths. Consequently, the time complexity of DNH is also O(pn2). The error bound

for DNH is the same as SPH, but, SPH often produces better solutions [140]. Moreover, it has

been shown that the time complexity of DNH can be reduced by growing shortest path trees

from each member-node simultaneously. However, the cost is more complex data structures.

For the simulations in section 10.3, an optimized DNH is not used. Algorithm 20 describes the

approach of a generic tree-heuristic. The algorithm is identical to DNH if the input spanning

tree algorithmAT is an MST algorithm. Although DNH is considered an efficient Steiner-tree

algorithm, it does not perform well on complete graphs made out of shortest pahts, as discussed

in section 10.3

Algorithm 20 GENERIC-TREE-HEURISTIC
In: G = (V, E, c), a set Z ⊂ V , and a spanning tree algorithmAT .
Out: Steiner Tree TZ = (VZ , EZ)

1: Construct distance network graph Gdn solving |Z| shortest paths
2: Tdn =AT (Gdn)
3: Construct Tsn of Tdn where each edge in Tdn is replaced by the corresponding shortest path in G

4: Construct a distance network graph Gsn of Tsn, excluding unused Steiner points
5: TZ =AT (Gsn)

6: Delete all leaf Steiner points from TZ



10.1. Steiner-tree algorithm types 219

Vertex-heuristic: Average distance heuristic

The general idea behind Steiner-tree vertex-heuristics is to identify "good" non-member-nodes

(Steiner points). It has been shown [142] that one big difficulty of the SMT problem is to

identify non-member-nodes that belong to an SMT. Once the Steiner points are given, the SMT

is an MST for the subnetwork induced by the member-nodes and selected Steiner points [142].

ADH is an SMT vertex-heuristic and was suggested by Rayward-Smith [106]. It is based on

Kruskal’s MST algorithm [58]. The idea is to connect already constructed subtrees of a solution

by shortest paths through some centrally located vertex. ADH computes the shortest paths

between all pairs of vertices, which is O(n3) (for example, Floyd Warshall’s algorithm [58]),

and stores the shortest path information. ADH starts with a forest of trees, where each tree

contains only a single member-node. A value f (v) is determined for each v ∈ V , and the vertex

m with the smallest f -value is chosen. The m vertex connects a number r of trees that are

closest to m, where r is decided when computing the f -value. The worst-case time complexity

of ADH is dominated by the computation of all-pairs shortest paths and is O(n3). On average,

ADH does perform better than SPH and DNH in terms of total cost, but at the expence of

increased worst-case time complexity. Algorithm 21 describes a generic ADH implementation,

for which the function f (v) must be determined by the programmer. Chapter 10.3 evaluates

ADH and its ability to include Steiner-points in complete graphs built out of shortest paths.

However, it is also found that adapting ADH to reduce the diameter in trees is harder, and left

for future work.

Algorithm 21 GENERIC-AVERAGE-DISTANCE-HEURISTIC
In: G = (V, E, c), a set Z ⊂ V

Out: Steiner Tree TZ = (VT , ET )

1: For each iteration examine a list L = {T1, T2, · · ·, Tk} of trees which will be subtrees of the final tree, initially
L consists of isolated Z-vertices.

2: Use a heuristic function, f : V → R, to choose which two subtrees are selected and joined by a minimum cost
path in G, such that for each iteration the tree is expanded with one Ti . The function f (i) gives a measure of
the least average distance (via i) from a tree closest to i (denoted T1) to subsets {T1}, {T1, T2} , · · ·,{T1, T2,
T3, · · ·, Tk}.

3: After p− 1 iterations, L is one tree spanning all Z-vertices.

10.1.2 Shortest path Steiner-tree algorithms

The shortest path Steiner-tree on a graph is the acyclic graph (tree) that has shortest paths from

a given source to all member nodes (definition 50). Chapter 4.6.3 introduces many shortest

path Steiner-tree problems. There, they are introduced as problems that minimize the radius,

where the radius is defined as the longest shortest path from a member-node to the source-

node. A shortest path Steiner-tree algorithm constructs a tree that has p shortest paths from a

given source node to the destinations, where p is the number of destinations. A shortest path
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Steiner-tree may be found by the O(n2) algorithm Dijkstra’s SPT (section 9.1.2). Many shortest

path Steiner-tree heuristic variations exist that obey a latency bound from a given source, while

optimizing for the total cost [45, 72, 103, 100, 145, 7, 10, 16, 102]. These variations often base

the edge selection on a mix between path latency from the source and minimum cost edges.

10.1.3 Minimum diameter Steiner-tree algorithms

A minimum-diameter Steiner-tree on a graph is the acyclic graph (tree) that exhibits the lowest

diameter among the member-nodes in the tree (definition 46). The diameter is the maximum

length shortest path in a tree (section 4.1.1). A minimum-diameter Steiner-tree may be found in

polynomial time, as shown by Ho, Lee, Chang and Wong [68]. They prove that for a complete

graph, there is an optimal tree in which either one or two vertices in V are connected to the

remaining vertices. A range of graph theory problems related to constructing Steiner-trees of

minimum and bounded diameter are introduced in section 4.6.2.

For general graphs, one minimum diameter Steiner-tree algorithm is to find the absolute

1-center of a graph (section 4.1.1) and connect the member-nodes through shortest-paths to that

center-point. The absolute 1-center is the one point that may be located at any point in the graph

(including edges), that has lowest radius. For a complete graph, a similar but simpler heuristic

for building a close-to-optimal MDST is to find a single node located close to the center of the

graph that connects to the remaining nodes through shortest paths (direct links). The topology

of the resulting tree T is that of a star.

There are some heuristics that have attempted to reduce the diameter in trees [65,3,150,21].

These proposals typically pre-compute the shortest paths between the nodes, and use them when

selecting paths to add to the minimum diameter Steiner-tree. However, these heuristics do not

take into account the inherent fully meshed application layer network made of shortest paths.

10.2 Evaluated Steiner-tree algorithms

The Steiner-tree algorithms evaluated by the thesis include algorithms that optimize for mini-

mum cost, minimum diameter and minimum radius. In addition, they include algorithms that

use cost as a constraint, while trying to minimize the diameter and radius, and many of them

also obeying degree limitations. Some of the evaluated Steiner-tree algorithms exist in the lit-

erature; however, the thesis proposes many variations that are believed to be evaluated for the

first time. Every Steiner-tree algorithm in the thesis are listed in table 10.1.

Formally, a Steiner-tree algorithmAS takes as input a connected undirected weighted graph

G = (V, E, c), where V is the set of vertices, E is the set of edges, and c : E→ R is the edge cost

function. In addition, there is a set of member nodes Z ⊂ V . The Steiner-tree algorithm AS
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constructs a connected acyclic graph (tree) TZ = (VT , ET ) on G, where VT ⊇ Z (definition 43).

In other words, the Steiner-tree TZ is required to span every member-node z ∈ Z .

10.2.1 Variations of the shortest-path heuristic

Steiner-tree path-heuristics were introduced previously in section 10.1.1 with an example of a

generic path-heuristic algorithm (algorithm 19). This generic path-heuristic algorithm is the

basis for the proposed path-heuristic variations in the thesis. Every proposed path-heuristic

builds the tree incrementally, and is based on the SPH path-heuristic with added functionality

such that the diameter is reduced. The added functionality is based on ideas from the bounded

diameter spanning tree algorithms OTTC and RGH (section 9). In particular, OTTC’s approach

of keeping track of the node eccentricities, while constructing trees, and RGH’s randomized

approach choosing a random next vertex and connect it to well-placed nodes. The path-heuristic

variations we have implemented and tested are described below and listed in table 10.1.

Bounded diameter degree-limited optimized shortest-path heurisitic (bddlo-SPH) is a heuristic

of the Steiner-BDDLSMT-problem (definition 49). Each round adds the node that minimizes

the total cost of the tree, within a given diameter bound, and given degree limits. bddlo-SPH

keeps track of the eccentricities like OTTC [1]. A somewhat similar heuristic was proposed by

Aggarwal et al. [3].

Algorithm 22 describes the general implementation for bddlo-SPH. It is worth noticing that

the algorithm is basically the generic path-heuristic (algorithm 19) including OTTC’s approach

of keeping track of the eccentricities while building the tree (section 9.2). The time complexity

of bddlo-SPH is O(n3), and not O(pn2) like SPH (p = |Z |). This is mainly because updating the

eccentricities and connecting new nodes through degree-limited paths, require all-to-all shortest

path information, which is determined by n shortest path computations O(n2). bddlo-SPH also

has a dynamic relaxation step, in case the diameter bounds or degree limits cannot be met.

Algorithm 22 BDDLO-SHORTEST-PATH-HEURISTIC
In: G = (V, E, c), diameter-bound≥ 0, degree bound deg(v) ∈ N for each v ∈ V

Out: Steiner Tree T = (VZ , EZ)

1: for each v ∈ Z run SHORTEST-PATH-TREE(G, v) and store shortest paths
2: choose a source node s ∈ Z and include to TZ

3: initialize distance structures {same as DL-ONE-TIME-TREE-CONSTRUCTION}
4: while all nodes in Z not in VZ do

5: if find a node u with minimum-cost distance to v ∈ VZ , obey diameter-bound and degree limits then
6: add edge (u, v) to TZ

7: else

8: relax diameter-bound and degree-limits
9: end if

10: update distance structures {DL-ONE-TIME-TREE-CONSTRUCTION with shortest paths}

11: end while



222
Chapter 10. Overlay construction techniques:

Steiner-tree algorithms

The other variations of SPH and OTTC are briefly described below. The implementation

of these algorithms follow the algorithmic details of bddlo-SPH, but with different constraints.

The adaptation from bddlo-SPH to these algorithms is straight forward.

Minimum diameter shortest-path heuristic (md-SPH) is a heuristic of the Steiner-MDST-problem

(definition 46). In each round, a node is added to the tree that minimizes its eccentricity. md-

SPH keeps track of the eccentricities like one-time tree-construction (OTTC) spanning tree

algorithm [1]. A similar heuristic was proposed by Brosh et al. [21].

Bounded diameter optimized shortest-path heuristic (bdo-SPH) is a heuristic of the Steiner-

BDSMT-problem (definition 47). Each round adds the node that minimizes the total cost of the

tree, within a given diameter bound. bdo-SPH keeps track of the eccentricities like OTTC [1].

A similar heuristic was proposed by Aggarwal et al. [3].

Minimum diameter degree limited shortest-path heuristic (mddl-SPH) is a heuristic of the Steiner-

MDDL-problem (definition 48). mddl-SPH is identical to md-SPH but obeys the degree limits

on each node much like mddl-OTTC [131].

The next path-heuristic variations combine ideas between SPH and the randomized bounded

diameter spanning-tree algorithm RGH. RGH was introduced in detail in section 9.2.

Bounded diameter degree-limited randomized shortest-path heuristic (bddlr-SPH) is a heuris-

tic of the Steiner-BDDLSMT-problem (definition 49). In each round, a member-node is ran-

domly selected and added to the tree through the minimum cost edge within a given diameter

bound. bddlr-SPH is an adaptation of randomized greedy heuristic (RGH) [1] to the Steiner-

BDDLSMT-problem.

Algorithm 23 describes the general implementation for bddlr-SPH. The algorithm is in short,

the dl-RGH algorithm (algorithm 16 in section 9.2) enhanced to use shortest path information

when selecting new random vertices to add to the tree. The time complexity of bddlr-SPH is

increased to O(n3) (from O(n2)) because of n shortest path computations in O(n2). However,

the randomized features of bddlr-SPH makes it significantly faster than bddlo-SPH, but also

more unpredictable in its behavior.

The thesis also evaluates one SPH/RGH variation that does not consider the degree-limits.

It is directly implementable by using bddlr-SPH’s algorithm, and then exclude the degree-

limitation checks.

Bounded diameter randomized shortest-path heuristic (bdr-SPH) is a heuristic of the Steiner-

BDSMT-problem (definition 47). In each round, a member-node is randomly selected and

added to the tree through the minimum cost edge within a given diameter bound. bdr-SPH is an

adaptation of randomized greedy heuristic (RGH) [1] to the Steiner-BDSMT-problem.



10.2. Evaluated Steiner-tree algorithms 223

Algorithm 23 BDDLR-SHORTEST-PATH-HEURISTIC
In: G = (V, E, c), diameter-bound≥ 0, degree bound deg(v) ∈ N for each v ∈ V

Out: Steiner Tree T = (VZ , EZ)

1: for each v ∈ Z run SHORTEST-PATH-TREE(G, v) and store shortest paths
{refer to DL-RANDOMIZED-GREEDY-HEURISTIC}

2: choose a core node set C ⊂ Z and include to TZ

3: initialize distance structures
4: while all nodes in Z not in VZ do

5: choose first node v with path(v,c) c ∈ C , where degT (c)< deg(c)

{success, then connect v to core node set}
6: if found node v then

7: add weight-path(v,c) to T

8: update distance structures
{failed, then relax constraints}

9: else

10: if diameter-bound or degree bound violation then

11: Relax diameter-bound and degree bound
12: end if

13: for nodes v ∈ VT not in C do

14: if depth(v) ≤ diameter-bound/2 then

15: C ∪ v

16: end if

17: end for

18: end if

19: end while

10.2.2 Variations of the distance network heuristic

Steiner-tree tree-heuristics were introduced in section 10.1.1 with a generic tree-heuristic (algo-

rithm 20) algorithm and an example heuristic; DNH. This generic tree-heuristic algorithm is the

basis for the proposed tree-heuristic variations in the thesis. Each of the proposed tree-heuristic

variations use the generic tree-heuristic variation but with different spanning tree algorithmAT
as input.

The tree-heuristics we implemented and tested are described below and listed in Table 10.1.

Every heuristic is based on the idea of DNH, and the only difference is the spanning tree algo-

rithm AT used to create the final tree on the distance network graph. DNH uses MST, but we

test many different spanning tree algorithms found in the literature.

One example is algorithm 24, which shows the algorithm of bounded diameter degree-

limited DNH (bddl-DNH). It uses the dl-OTTC algorithm (chapter 9) to construct spanning

trees at lines 2 and 5.

The remaining tree-heuristics use variations of OTTC, RGH and MST as the input spanning

tree algorithmAT . Chapter 10.3 evaluates the performance of these variations:

• Minimum diameter distance network heuristic (md-DNH) uses md-OTTC [131] to create

the final tree on the distance network graph.

• Bounded diameter optimized distance network heuristic (bdo-DNH) uses OTTC [1] to
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Algorithm 24 BDDLO-DISTANCE-NETWORK-HEURISTIC
In: G = (V, E, c), a set Z ⊂ V , diameter-bound≥ 0, degree bound deg(v) ∈ N for each v ∈ V

Out: Steiner Tree TZ = (VZ , EZ)

1: Construct distance network graph Gdn solving |Z| shortest paths
2: Tdn = DL-ONE-TIME-TREE-CONSTRUCTION(Gdn, diameter-bound)
3: Construct Tsn of Tdn where each edge in Tdn is replaced by the corresponding shortest path in G

4: Construct a distance network graph Gsn of Tsn, excluding unused Steiner points
5: TZ = DL-ONE-TIME-TREE-CONSTRUCTION(Gsn, diameter-bound)

6: Delete all leaf Steiner points from TZ

create the final tree on the distance network graph.

• Bounded diameter randomized distance network heuristic (bdr-DNH) uses RGH [1] to

create the final tree on the distance network graph.

• Minimum diameter degree limited distance network heuristic (mddl-DNH) uses mddl-

OTTC [131] to create the final tree on the distance network graph.

• Bounded diameter degree limited optimized distance network heuristic (bddlo-DNH) uses

dl-OTTC [131] to create the final tree on the distance network graph.

• Bounded diameter degree limited randomized distance network heuristic (bddlr-DNH)

uses dl-RGH [1] to create the final tree on the distance network graph.

• Degree-limited distance network heuristic (dl-DNH) uses dl-MST to create the final tree

on the distance network graph.

• Bounded radius distance network heuristic (br-DNH) is a heuristic of the Steiner-BRSMT-

problem, and uses br-MST to create the final tree on the distance network graph.

• Bounded radius degree limited distance network heuristic (brdl-DNH) is a heuristic of

the Steiner-BRDLSMT-problem, and uses br-MST to create the final tree on the distance

network graph.

10.2.3 Variations of spanning-heuristic algorithms

Steiner-tree spanning-heuristics were introduced in section 10.1.1 along with a generic spanning-

heuristic algorithm (algorithm 18). It is this generic spanning-heuristic algorithm that is the

foundation of the spanning-heuristic algorithms in the thesis. The proposed spanning-heuristic

algorithms use the generic spanning-heuristic with different input spanning tree algorithmAT .

Every spanning tree algorithm that are used as input are evaluated in section 9.3, where they

are considered to be the better of the algorithms. We apply these degree limited spanning tree

algorithms to see the effect of adding Steiner points to the input graph.
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One example is algorithm 25, which is the Steiner dl-OTTC algorithm. It uses dl-OTTC to

construct a spanning-tree. A spanning tree algorithm spans every node in the input graph in its

tree, therefore, the constructed spanning-tree is pruned for leaf Steiner points.

Algorithm 25 SDL-ONE-TIME-TREE-CONSTRUCTION
In: G = (V, E, c), a set Z ⊂ V , diameter-bound≥ 0, degree bound deg(v) ∈ N for each v ∈ V

Out: Steiner Tree TZ = (VZ , EZ)

1: TZ = DL-ONE-TIME-TREE-CONSTRUCTION(G, diameter-bound)

2: Delete all leaf Steiner points from TZ .

The spanning-heuristic variations in the thesis use dl-OTTC, dl-RGH, mddl-OTTC and dl-

SPT as the input spanning tree algorithm AT . Chapter 9 describes all of these spanning tree

algorithms in detail. The spanning-heuristic variations are briefly described next.

• Steiner degree limited one-time tree construction (sdl-OTTC) is a spanning tree heuris-

tic that addresses the BDDLSMT problem in this paper. sdl-OTTC is exactly dl-OTTC

presented in [131] which is a modified OTTC [1].

• Steiner degree limited randomized greedy heuristic (sdl-RGH) is a spanning tree heuris-

tic that addresses the BDDLSMT problem in this paper. sdl-RGH is exactly dl-RGH

prestended in [131] which is a modified RGH [104].

• Steiner minimum diameter degree-limited one-time tree construction (smddl-OTTC) is a

spanning tree heuristic that addresses the Steiner-MDDL problem in this paper. smddl-

OTTC is exactly mddl-OTTC presented in [131] which is a modified OTTC [1].

• Steiner degree-limited shortest-path tree (sdl-SPT) [95] is a spanning tree heuristic that

addresses the Steiner-MRDL problem in this paper.

10.3 Group communication simulations of Steiner tree algo-

rithms

From the spanning-tree algorithms in chapter 9.3 we now investigate the Steiner-tree algorithms

that were rigorously introduced in the previous sections. Table 10.1 provides brief and tabulated

information regarding the Steiner-tree heuristic that are evaluated.

10.3.1 Target metrics

A Steiner tree algorithm is considered good if it can produce overlays with a low diameter,

within a reasonable time. In the evaluations, we therefore investigate the diameter, which ex-

presses the worst-case latency between any pair of group members. In addition, we investigate
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Figure 10.1: Success rate of constrained algorithms subject to varying degree limits and diameter
bounds.

the execution time of an algorithm, which is the time that is required to execute a group member-

ship change. It must be low such that a centralized group manager can handle group dynamics

and reconfigure a group tree quickly. In addition, we address client side stress issues, which in

our graph theory approach is the degree in a constructed tree. We investigate graph algorithms

that can limit the degree of clients in a tree structure.

10.3.2 Algorithm constraints

Algorithms that take several target metrics into account often do this by choosing one metric as

its optimization goal, and then address the remaining metrics by adding constraints. In general,

adding constraints to an algorithm increases the algorithm complexity if an optimal solution is

targeted. Many constrained tree heuristics cannot guarantee that a constrained tree is found.

That is also the case with the constrained tree heuristics in this paper. The success rate of an

algorithm depends on the constraint and the input graph. For example, it is more difficult to find

a degree limited tree in a sparse graph than in a dense one.

Figure 10.1 plots the success rates of selected Steiner tree heuristics given a fully meshed

graph. The heuristics are subject to varying degree limits (dl) and diameter bounds (db). Heuris-

tics with degree limits as only constraint, always find a tree when given a fully meshed graph
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and a degree limit > 1. A tree has a minimum of two leaf nodes at all times, in case of the tree

being a snake. Therefore, in a fully meshed graph, the leaf node always has an available degree

and a link to all other member-nodes, such that it can continue building the tree. As expected,

we see that the success rate for the Steiner-MDDL heuristic mddl-SPH is 100 % for degree

limit 3.

Heuristics with diameter bounds do face situations in which it is impossible to find a tree

within the diameter bound, even when given a fully meshed graph. The worst-case edge in a

fully meshed graph is an approximation to the lowest diameter bound possible for any diameter

bounded heuristic. We can see from figure 10.1 that when the diameter bound is 0.250 second

the success rate of the BDSMT heuristic bdo-SPH is pretty much 0 % for group sizes above

40. While, a diameter bound of 0.750 gives a success rate of 100 % for the same heuristic.

When degree limits are added to the diameter bounds, we expect the success rate to drop. We

see that for the BDDLSMT heuristic bddlo-SPH, a degree limit of 10 and a diameter bound of

0.750 still gives a success rate of 100 %. However, when the diameter bound is dropped to

0.500 second failures do occur, and the success rate is on average 95 %. When degree limits

are added the success rate continues to drop.

To summarize, the Steiner-MDDL heuristics always find a tree when given a full mesh. But,

the diameter bounded heuristics fail when given a diameter bound that is less than the worst-

case edge in the input graph. For diameter bounded and degree limited heuristics it is even

more difficult to find a constrained tree. When a heuristic fails to find a constrained tree, the

options are to i) rebuild the tree from scratch with relaxed constraints, ii) abandon the constraints

and add the remaining member-nodes through some shortest paths, or iii) relax the constraints

dynamically while building the tree.

In our application scenario it is not an option to rebuild the tree from scratch, as it may

potentially take a very long time. Furthermore, we do not want to completely abandon the

constraints, because they are among our target metrics. Rather, we relax the constraints dy-

namically whenever a heuristic cannot continue the tree construction process. A low diameter

is a target metric, such that in our simulations we use a strict diameter bound of 0.250 to the

diameter bounded algorithms. The heuristics are then frequently forced to relax the bound.

When a degree unlimited Steiner-MDST algorithm is applied to a full mesh made of shortest

paths, the algorithm includes at most one Steiner point in the Steiner-tree, i.e., the Steiner point

that is closest to the center. However, for a Steiner-MDDL algorithm the number of Steiner

points added to the tree depends on the degree limits. Hence, given a full mesh of shortest

paths, it is enough for a Steiner-MDST algorithm to find the one node that is closest to the

center and connect it to the remaining member-nodes. While, for a Steiner-MDDL algorithm

the number of Steiner points that is included in the input graph is a function of the degree limits.
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Description Parameter

Placement grid 100× 100 milliseconds
Number of nodes in the network 1000

Degree limits 3,5 and 10

Super-nodes found by k-Center(k) k = 100

Diameter bound 250 milliseconds
Core node set size (group-size/degree-limit)

Table 10.2: Experiment configuration.

10.3.3 Experiment configurations

In the experiments, the complete group-graphs and the pruned group graphs include k Steiner-

points. The aCL and aCLO algorithms are given a core node set of k Steiner points to create

pruned group graphs. The Steiner-points are added to the input graph to enable the Steiner tree

algorithms to reduce the diameter and increase their success rate. We use equation 8.1 to cal-

culate the number of Steiner-points to include. More specifically, we use the degree limit d in

the current experiment and the current group size |V |: |O|= |V |/d. The function approximates

the number of Steiner-points that are needed to ensure that the degree-limited tree algorithms

are able to build a tree. The k Steiner points are chosen by k-Median(k) from 100 Steiner-

points (super-nodes) that are identified at the beginning among the 1000 nodes in the overlay

network. These well-placed super-nodes (chapter 8) are found by the multiple core-node selec-

tion algorithm k-Center(k = 100). If not otherwise noted, we use k-Median(k = 1) to select a

source node for every Steiner-tree heuristic (see chapter 7.6.1). The experiment configurations

are summarized in table 10.2.

10.3.4 Steiner tree heuristic limitations on a full mesh

In a full mesh that is built as a shortest path graph, the shortest paths in the graph are all direct

links. Running SPH and DNH on a full mesh of shortest paths has a major impact on their

performance. Both heuristics run Dijkstra’s SPT for each member node (z ∈ Z) and use the

shortest path information when they build a tree. The only way of including a Steiner point is if

the shortest path information contains one. In a full mesh built of shortest paths it is impossible

for the shortest path information to contain anything other than a single hop, as long as ties are

broken to the smaller number of hops. Therefore, SPH and DNH fail as Steiner tree heuristics

when the input graph is a full mesh built of shortest paths. The shortest path information is

available in O(1), and removes the p SPT computations in SPH and DNH. Further, the final

trees in both SPH and DNH are built exactly like Prim’s MST, which is O(n2). Hence, in a full

mesh SPH and DNH are reduced to an MST algorithm. In fact, any Steiner tree path-heuristic

and tree-heuristic that solely uses shortest path information fails to be Steiner point aware when

the input graph is a full mesh built of shortest paths.
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From these observation we can deduce that it is incomplete to only consider shortest paths in

a fully meshed shortest path graph. Rather, a Steiner tree heuristic must consider triangulation

properties when building the Steiner tree, such that it is possible to add a Steiner point. The

vertex-heuristics, for example ADH, typically consider the location of each node in the graph,

including the Steiner points, in relation to other member-nodes. That way, centrally located

Steiner points may be included in a tree. When ADH is run on a full mesh built of shortest

paths the computation of all-pairs shortest paths (O(n3)) is avoided. Therefore, the worst-case

time complexity of ADH is reduced to O(n2 ∗ log(n)). Figure 10.2 illustrates an example in

which SPH and DNH find the MST and ADH the SMT.

Figure 10.3 plots the average number of Steiner points in the group trees when a fully

meshed graph is input. We found that no Steiner tree heuristic derived from SPH and DNH
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Full mesh Reduced mesh

Algorithm Complexity Performance Complexity Performance

SPH O(n2) Ω(MST) O(pn2) Ω(SMT)
DNH O(n2) Ω(MST) O(pn2) Ω(SMT)
ADH O(n2 ∗ log(n)) Ω(SMT) O(n3) Ω(SMT)

Table 10.3: Algorithm performance.

finds a Steiner point to include in the tree. We can conclude that our previous observations are

correct, and that it is useless to apply Steiner tree heuristics derived from SPH and DNH to a

fully meshed graph built from shortest paths. The only Steiner tree heuristic that finds Steiner

points is ADH. As previously described, ADH optimizes for the total cost and is based on

Kruskal’s MST algorithm. Tree algorithms that are based on Kruskal’s MST start with a forest

of trees and connect them until there is only one left. For algorithms that aim at a low or bounded

diameter it is not possible to use algorithms based on Kruskal’s MST unless there is some global

knowledge, or some reference points between the subtrees while they are built. Every diameter

reducing tree algorithm that the authors of this paper are aware of, starts from a given source

and builds one tree sequentially using data structures that update the current diameter, radius

and/or eccentricities. Based on these observations we conclude that ADH can not be adapted

to reduce the diameter in its current form. The other algorithm that includes Steiner points to

the tree is sdl-SPT, which is merely a dl-SPT algorithm that uses an input graph that includes

Steiner points. Therefore, one approach may be to use conventional spanning tree algorithms,

add Steiner points to the input graph and remove the Steiner points with degree one (leaves)

from the tree. Table 10.3 summarizes our performance observations regarding SPH, DNH and

ADH on a full mesh built of shortest paths compared to a reduced mesh.

10.3.5 Fully meshed results

We have seen that the diameter heuristics derived from SPH and DNH cannot include Steiner

points, hence they cannot perform better than the spanning tree algorithms they use as algorithm

base. In the following, we present results from some selected spanning tree algorithms that are

given a fully meshed input graph. Figure 10.4 plots the diameter of trees using sdl-SPT and

dl-SPT with varying degree limits. The only difference is the input graphs, where sdl-SPT

was given a number of Steiner points. We can see that sdl-SPT performs better than dl-SPT.

The reasons are that, first of all, in our experiments the Steiner points that are added to the

input graph are selected using the k-Median(k) algorithm from the group-center (see chapter 7).

Hence, if a Steiner point is added to the tree it is most likely located somewhere in the group

center. Secondly, the added Steiner points increases the degree capacity centrally. Finally, the

combination of Steiner point location and capacity helps sdl-SPT to create trees with lower

diameter than the dl-SPT with no Steiner points. The remaining spanning tree algorithms are
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plotted in figure 10.5. We observe the same tendency for all of the spanning tree algorithms.

Figure 10.6 plots the hop-diameter, and we can see that the number of hops does increase

slightly as a result of adding Steiner points to the input graph. This is to be expected when more

nodes are included in a tree. Figure 10.7 plots the average number of Steiner points in the trees

for sdl-SPT and smddl-OTTC and varying degree limits. The number of Steiner points is quite

high when the degree limit is 3, but, as we saw above, is actually reducing the diameter.

The main observation is that the spanning tree algorithms produce trees with lower diameter

(seconds) when given a set of Steiner points in the input graph, while the hop-diameter increases

slightly. It follows from the geometric version of the Steiner-MDDL and Steiner-MDST, that

if we had an infinite amount of Steiner points located close to the group center the degree-

limited heuristics would perform as well as their degree-unlimited versions. In fact, as long as

the diameter among the Steiner points is less than the diameter among the member-nodes, new

Steiner points can be added without increasing the member-node diameter. Of course, we can

not assume that we have that many Steiner points available. It is inevitable that new Steiner

tree heuristics must be designed for the degree-limited diameter- and radius-related Steiner tree

problems listed in section 4.6.

Figure 10.9 plots the execution time of the selected algorithms. The execution times are

lowest for sdl-SPT and highest for smddl-OTTC. However, they are all faster than 10 milli-

seconds for group sizes up to 120 member-nodes (see figure 10.8). The added Steiner points
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do not significantly increase the execution times of the algorithms. Hence, we can add Steiner

points without noticable penalties to our target metrics.

To summarize, the Steiner tree heuristics derived from SPH and DNH should not be used

on a full mesh of shortest paths because they do not perform better than any given spanning

tree algorithm. The spanning tree algorithms we tested instead achieve smaller diameters with

slightly increased hop-diameters when Steiner points are added to the input graph. The main

reasons for this improvement are that Steiner points are found using the k-Median(k) core-node

selection algorithm and that they increase the degree capacity centrally. We also observed that

the execution time does not suffer noticably when the number of edges and nodes in the input

graph is increased.

10.3.6 Discussions for fully meshed results

The spanning tree algorithms that we tested are evaluated with respect to our target metrics

in table 10.4. sdl-RGH is the fastest algorithm, but produces trees with the highest diameter.

smddl-OTTC and sdl-OTTC are similar to each other, but smddl-OTTC is slightly slower and

does not have the flexibility of a bounded-diameter algorithm. sdl-SPT was a surprisingly good

alternative. It is a good algorithm for a source-based tree, and when the source is located in the

group center sdl-SPT builds good shared trees as well.
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Algorithm Diameter Time Degree Rank

sdl-OTTC +++ ++ + ++++
sdl-SPT ++ +++ + +++
smddl-OTTC ++++ + + ++
sdl-RGH + ++++ + +

Table 10.4: Tree algorithm characteristics using full mesh.

Our ranking is subjective and not related to specific application needs. All the algorithms

fit different needs, and figure 10.9 shows that they vary in performance between diameter and

reconfiguration time. sdl-RGH is a fast O(n2)-heuristic. When extending the tree, it chooses the

next vertex at random and connects it via the lowest-weight edge that maintains the diameter

constraint. The diameter constraint is only maintained towards the source, and is actually the

radius. The algorithm works surprisingly well to produce trees with a relatively small diameter.

sdl-OTTC extends the tree through the minimum-weight edge that obeys the diameter bound. It

is slower than sdl-RGH because it performs a more time consuming maintenance of the diame-

ter, but it produces trees with smaller diameter. smddl-OTTC always minimizes the maximum

diameter, and is therefore even slower. sdl-SPT avoids diameter bounds and doesn’t minimize

the diameter, either. For many applications a bound may not be known, and minimization may

not be necessary. sdl-SPT rather searches for source destination shortest paths, which is often

desired by streaming applications.
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Figure 10.9: Diameter and execution time with degree limits 3, 5 and 10.

10.3.7 Reduced graphs results

We pointed out in chapter 8 that graph manipulation can save time in the construction. In the

following, we present results from combining the k-Median core-node selection algorithm and

edge-pruning with tree algorithms. In this section, we use aCL and aCLO (k = 2, 1, 0) to reduce

the input graph size, and the k-Median core-node selection algorithm (see chapter 7.6.1) to find

the Steiner points. All the plots use a group size of 120 nodes with a degree limit of 10. We

have included results from using a full mesh as a reference point. s-SPT and sdl-SPT are used

as the representative spanning tree algorithms.

Figure 10.10 compares the diameter achieved, as applied to a fully meshed graph and aCL.

As expected, SPH, DNH, dl-SPH and dl-DNH all produce trees with high diameter because

they optimize the total cost. However, we see that for aCL with k = 0 all the algorithms pro-

duce trees with a lower diameter, and the total cost algorithms are down to a diameter of around

0.500 seconds. The algorithms that produce the lowest diameter are the degree-unlimited al-

gorithms bdo-DNH, md-DNH and s-SPT. Among the degree-limited algorithms bddlo-DNH,

bddlr-SPH, mddl-DNH and sdl-SPT produce the lowest diameter trees. Overall, the diameter

related heuristics produce the lowest diameter when using a fully meshed input graph. How-

ever, when aCL is used, the diameter suffers on average only 15 % even when k = 0, and the
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Figure 10.10: Diameter (seconds) for aCL.

edge set is reduced with 80 %, compared to the fully meshed graph.

Figure 10.11 plots the maximum degree in the trees when using aCL to reduce the graph.

We observe that the algorithms with a high maximum degree do all produce trees with very low

diameter. s-SPT constructs the trees with the lowest diameter. We observe that it consistently

constructs trees that resemble a star because the maximum degree is approximately the group

size. Furthermore, the degree-limited algorithms do all construct trees within the maximum

degree limit of the core nodes (Steiner points). From these observations, we deduce that a

Steiner tree heuristic that optimizes the diameter must be able to exploit the degree capacity

of centrally located nodes. However, in our application scenario the degree capacity is often

limited, such that the degree-unlimited algorithms with low diameter and high maximum degree

are not really an alternative. From figure 10.12 we see the average number of leaf nodes when

using aCL. We observe that that when k = 0 every member-node is forced to be a leaf node,

regardless of location. Hence, the degree of the member nodes is one, and the stronger core

nodes (Steiner points) is higher.

Figure 10.13 plots the diameter for aCLO as well. We observe that the diameter suffers

on average just below 20 % when aCLO is used, instead of the full mesh. aCLO with k = 0

reduces the edge set by 95 %, and the construction results are still competitive. Furthermore,

figure 10.14 shows the hop-diameter. It is interesting that the hop-diameter is, on average,

reduced when aCLO is applied. A low hop-diameter is often desirable in peer-to-peer file

sharing applications.
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Figure 10.11: Maximum degree when using full mesh and aCL.

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

bd
dl

o-
SP

H
 

bd
dl

o-
D

N
H

 

bd
dl

r-
SP

H
 

bd
dl

r-
D

N
H

 

br
-S

PH
 

br
dl

-S
PH

 

m
d-

SP
H

 

m
d-

D
N

H
 

m
dd

l-
SP

H
 

m
dd

l-
D

N
H

 

s-
SP

T
 

sd
l-

SP
T

 

le
af

 n
od

es

full mesh
aCL=2
aCL=1
aCL=0

Figure 10.12: Average number of leaves (member-nodes) when using aCL.
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Figure 10.13: Diameter (seconds) for aCL and aCLO.
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Figure 10.15: Diameter and execution time with the overhead of computing the shortest paths (grey
scale), for full mesh, aCL and aCLO.

The diameter and the reconfiguration times of the construction algorithms applied to aCL

and aCLO graphs are plotted in figure 10.15. The time that is consumed by the p SPT com-

putations are highlighted in grey scale for each execution time bar. Generally, the pruning al-

gorithms have a marginally positive effect on the reconfiguration time. As expected, the fastest

algorithms are the spanning tree algorithms, here represented by s-SPT and sdl-SPT, both of

which execute in O(n2). Among the Steiner heuristics, the fastest are the randomized heuristics

bddlr-SPH and bddlr-DNH that both use dl-RGH as their algorithm base. The reconfiguration

times for these randomized SPH and DNH variations are overshadowed by the computation of

the p SPTs. The remaining algorithms are comparatively quite slow and all have a complexity

of O(n3). It is intersting that there is no clear correlation between high reconfiguration time

and low diameter. However, mddl-DNH does produce the lowest diameter at the price of high

execution time.

We expect the maximum degree to decrease for the algorithms without degree limits when

applying aCL and aCLO. In figure 10.16 we observe that the maximum degree is reduced to

about 20 when aCLO is used. Hence, degree-unlimited algorithms are an option for very low

bandwidth streams, but only if aCLO and the group-center heuristic are used to manipulate the

input graph. However, for all of the degree-unlimited algorithms there are (almost) equally fast

algorithm versions with degree limits.
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Figure 10.16: Maximum degree for full mesh, aCL and aCLO.

10.3.8 Discussions for reduced graphs results

The Steiner tree heuristics are applied to reduced graphs because we want to see the effect

on the diameter and reconfiguration time. The reduced graphs are built by combining the k-

Median algorithm, which found the Steiner points, and the pruning algorithms aCL and aCLO

, which created a reduced group graph. The results from the reduced graphs showed that the

SPH and DNH based Steiner tree heuristics cannot outperform the naive approach of running

a spanning tree algorithm on the same input graphs (with Steiner points). Among the degree-

unlimited algorithms, s-SPT outperformed the minimum-diameter algorithms (md-DNH and

md-SPH) both in terms of diameter achieved and reconfiguration time. Furthermore, among the

degree-limited algorithms, the sdl-SPT algorithm performed similarly to the minimum-diameter

degree-limited algorithm (mddl-DNH and mddl-SPH) but sdl-SPT is much faster.

We expected the reconfiguration times to decrease when aCL and aCLO were used, but

the reduction was limited to about 30 %. However, if the shortest paths are precomputed the

randomized algorithms based on RGH proved to be very fast. Table 10.5 gives an overview of

the Steiner tree heuristics performances when the shortest path information is available.

aCLO reduced the maximum degree and allowed thereby the feasible use of the degree-

unlimited algorithms. Table 10.6 gives an overview. The pruning algorithms bound the stress

on the member-nodes. For example, when k = 0 for aCL and aCLO, every group member is
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Algorithm Diameter Time Degree Rank

md-SPH + − + −

bdo-SPH + − + −

bdr-SPH + + + +

br-SPH + − + −

mddl-SPH + − + −

bddlo-SPH + − + −

bddlr-SPH + + + +

brdl-SPH + − + −

md-DNH + − + −

bdo-DNH + − + −

bdr-DNH + + + +

br-DNH + − + −

mddl-DNH + − + −

bddlo-DNH + − + −

bddlr-DNH + + + +

Table 10.5: Steiner tree heuristic characteristics assuming shortest path information.

a leaf node (degree one), and all the stress is put on the core nodes (Steiner points) that are

assumed to have a higher capacity.

10.3.9 Discussions for all results

A tree algorithm for our construction process should produce trees with low diameter, keep the

reconfiguration time fast and be able to obey degree limits. We have seen that the mddl-DNH

algorithm produces trees with low diameter within the degree limits. However, the reconfigura-

tion time is very high compared to the simple but efficient sdl-SPT algorithm. Remember, low

reconfiguration time is particularly desirable during frequent tree updates, which is often the

case for our target applications.

The common denominator for every SPH and DNH based Steiner tree heuristic we tested

is the high reconfiguration time, which is largely due to their shortest path computations and

the increased complexity of the data structures. For the full mesh, the shortest paths are given

but the Steiner tree heuristics failed to include any Steiner points. The Steiner tree heuristics

did work when applied to reduced graphs, but then the shortest paths must be computed. In

a centralized approach to group membership management the central entity has access to the

global graph and every group graph. It is therefore possible for the central entity to pre-compute

the shortest paths, which would reduce the reconfiguration time for the Steiner tree heuristics

quite significantly.

The Steiner tree heuristics in this paper have been derived from the SPH path-heuristic or the

DNH tree-heuristic. Similar algorithms addressing the same Steiner tree problems have been

derived from both heuristics. Overall, we saw a tendency favoring DNH as the most suitable

algorithm base of the two. The DNH-based heuristics produced trees with a lower diameter,

whereas the degree and reconfiguration time are all similar to the SPH-based heuristics.
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Algorithm Diameter Time Degree Rank

md-SPH + − + −

bdo-SPH + − + −

bdr-SPH + + + +

br-SPH + − + −

mddl-SPH + − + −

bddlo-SPH + − + −

bddlr-SPH + + + +

brdl-SPH + − + −

md-DNH + − + −

bdo-DNH + − + −

bdr-DNH + + + +

mddl-DNH + − + −

bddlo-DNH + − + −

bddlr-DNH + + + +

s-SPT + + + +

sdl-SPT + + + +

sdl-OTTC + + + +

sdl-RGH + + + +

smddl-OTTC + + + +

Table 10.6: Tree algorithm characteristics assuming shortest path information and using aCLO.

To summarize our observations, none of the SPH and DNH based Steiner tree heuristics

in this paper work as Steiner tree heuristics on fully meshed shortest path graphs. We saw

that the spanning tree algorithms sdl-SPT and smddl-OTTC are very good alternatives when

applied to a full mesh. When the input graphs are reduced using aCL and aCLO, the DNH-

based heuristics performed better than the SPH-based heuristics. Overall, we deduce that DNH

is better suited for adaptation to reduce the diameter than SPH. The main drawback of every

SPH and DNH based Steiner tree heuristic on a reduced mesh is the necessity of computing the

shortest paths and the increased complexity of the data structures that this implies. The shortest

path computation is time-consuming and increases the reconfiguration time. Figure 10.17 shows

the diameter (seconds) and execution time (seconds) for selected Steiner tree heuristics and

spanning tree algorithms. We observe that their diameter is similar; however, the execution

times of the Steiner tree heuristics are clearly higher. Our main conclusion is that the Steiner tree

heuristics based on SPH and DNH are only suited for our application scenario if the membership

dynamics is medium to low, and if the shortest path information is pre-computed and available

on the server.

10.4 Summary of the main points

We have investigated group communication in relation to distributed interactive applications.

Our investigation involved experiments with many Steiner tree heuristics, where our main tar-

get metric was a low tree diameter. We applied the heuristics to an application layer overlay
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Figure 10.17: Diameter and execution time with the overhead of computing the shortest paths (grey
scale), for full mesh, aCL and aCLO.

network where the network is always a full mesh. This should give a tree algorithm the optimal

conditions for finding the best tree. However, we observed that the Steiner tree heuristics that

should be aware of Steiner points and add the ones that help optimize the tree, failed to do so on

a full mesh made of shortest paths. We then tested the spanning tree algorithms sdl-RGH, sdl-

OTTC, smddl-OTTC and sdl-SPT using input graphs that included Steiner points. The results

showed that these algorithms produced trees with a smaller diameter when Steiner points were

included. Moreover, the heuristics are fast, which is important in highly dynamic distributed

applications. However, a Steiner-heuristic that uses a spanning tree algorithm and then prunes

leaf Steiner points is a naive heuristic and a simplistic approach to addressing the diameter re-

lated Steiner tree problems. Better Steiner tree heuristics should be designed that work on fully

meshed graphs [62].

In addition, we investigated algorithms for reducing the time it takes to execute membership

changes. We found that the k-Median core node selection algorithm, and the edge-pruning

algorithms aCL and aCLO are powerful means to manipulate the input graph. However, the

Steiner tree heuristics only reduced their execution time slightly even though the edge set was

reduced by 95 % in the most extreme case. But, every Steiner tree heuristic and spanning tree

algorithm still performed comparatively well in terms of the diameter.
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In our simulations, the node layout was a square world with sides equal to 100 milli-seconds

(approximately Europe). The diameter that the best Steiner-tree heuristics yielded was below

400 milli-seconds for tree sizes up to 160 and a degree-limit of 10. This is outside the require-

ments for first-person shooter games, but is just inside for most distributed interactive applica-

tions (see chapter 2). When the degree limit is less than or equal to 5 the latency requirements

are not met. A degree limit above 5 is not a problem for multi-player online games, because the

data streams are very thin [59]. However, for video/audio conferences it may be an issue due to

somewhat limited bandwidth capacity on average clients in the Internet.





Chapter 11

Overlay construction techniques:

Connected subgraph algorithms

The overlay network management introduced in section 5.4 includes overlay construction tech-

niques whose task is to construct low-latency overlay networks for distribution of time-dependent

events. In that respect, we continue our evaluation of overlay construction techniques and eval-

uate connected subgraph algorithms. By doing this we address a goal of the thesis:

3) Identify techniques that find Internet paths with low pair-wise latencies among clients in a

group, and configure them for event-distribution of real-time client interaction.

A connected subgraph is a subgraph of a given graph, in which each vertex is connected with

at least one path (definition 22). A subgraph may therefore be either acyclic (tree) or cyclic

(mesh). The advantage of subgraph algorithms over tree algorithms is that they are not bound

to create an acyclic subgraph, but are rather more "free" in the subgraph construction. However,

in cases of highly connected subgraphs, the main drawback is the added cost to the network,

which typically results in an increased bandwidth consumption.

We have implemented and experimentally analyzed tree heuristics and mesh construction

heuristics, and compared their performance and applicability to distributed interactive applica-

tions [127]. Due to this time-dependent application scenario, we concentrate particularly on

heuristics that minimize the pair-wise latency in overlays. The maximum pair-wise latency in

an overlay is known as the diameter.

Our results show that trees can compete with meshes when it comes to computing low diam-

eter overlays; however, the average pair-wise latency in meshes is lower. Generally, we found

that trees are faster to construct and save considerable amounts of resources in the network.

Meshes, on the other hand, increase the fault tolerance, but at the expense of increased resource

consumption. Furthermore, we show that both mesh and tree heuristics yield vital properties

for use in distributed interactive applications.

A connected subgraph algorithm belongs to the graph theoretical problems of connected

247



248
Chapter 11. Overlay construction techniques:

Connected subgraph algorithms

subgraphs, which are thoroughly introduced in section 4.9 and 4.10. In this chapter, we intro-

duce connected subgraph algorithms that address these spanning subgraph and Steiner subgraph

problems. However, our focus is not on solving them exactly, since many of the problems are

N P-complete. Rather, we focus on subgraph heuristics that approximate a solution which is

good enough to be used by distributed interactive applications.

The rest of the chapter is organized in the following manner. Section 11.1 introduces

the evaluated spanning-subgraph and Steiner-subgraph algorithms. Section 11.2 evaluates the

spanning-subgraph algorithms through group communication simulations. Section 11.3 evalu-

ates the Steiner-subgraph algorithms also through group communication simulations. Finally,

section 11.4 gives a summary of the main points.

11.1 Spanning subgraph and Steiner subgraph algorithms

The main difference between a spanning and a Steiner subgraph is that a spanning subgraph

of an input graph spans all the vertices of the input graph [144], while a Steiner subgraph

of an input graph spans all the member-nodes of the input graph [90]. A Steiner subgraph

may also include a number of Steiner points (see chapter 10 for Steiner-tree algorithms). In

a group communication scenario, Steiner points are non-member-nodes that are not actively

participating in the group defined by the membership management (section 5.2).

The following sections refer interchangeably to a connected subgraph as a subgraph or a

mesh. As described in section 3.1, a cyclic mesh increases the node failure tolerance compared

to a tree, because multiple paths to a node exist. However, unless some path routing is applied

to a mesh it also introduces data redundancy because some nodes receive two copies of the same

data. Data redundancy due to multiple paths may be valuable in cases of fluctuating link costs

and to reduce the pair-wise latencies among the nodes.

Formally, a mesh algorithm AM takes as input a connected undirected weighted graph G,

and constructs a connected undirected graph (mesh) M = (VM , EM) on G, where VM = V .

Observe that a mesh can be constructed M = G directly from the input graph. However, an ap-

plication layer overlay network graph G is a complete graph (fully meshed), therefore, this is not

a viable solution because the total cost of the mesh would be tremendous. The mesh algorithms

should rather construct the mesh using the application’s requirements, without being bound to

the requirement of constructing a tree. The requirements of a distributed interactive application

are especially linked to low pair-wise latencies (chapter 2). The following investigated mesh

algorithms can be divided into the three categories:

• Interleaved-trees algorithms are introduced in section 11.1.1

• Enhanced tree algorithms are introduced in section 11.1.2

• Edge pruning (removal and addition) algorithms are introduced in section 11.1.3
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For each category, we present algorithms found in the literature, but also propose new mesh

algorithm variations based on ideas from these (see table 11.1). Many of the following mesh

algorithms are applicable both as spanning and Steiner subgraph algorithms. The reason is that

those algorithms take as input a tree algorithm AT and a configurable integer k > 0. The

tree algorithms are, in this investigation, selected among the spanning-tree and Steiner-tree

algorithms presented in chapter 9 and 10.

11.1.1 Interleaved-trees subgraph algorithms

Interleaved-trees algorithms are subgraph algorithms that typically compute multiple connected

trees on an input graph, and then merge the trees to one mesh (subgraph). The mesh is the sum

of all the computed trees. One advantage of interleaved-trees algorithms is their simplicity,

however, a drawback is that their execution time is dependent on the time complexity of the tree

algorithms that compute the trees (see table 11.1).

Interleaved-trees algorithms may compute trees sequentially or in parallel. The sequential

approach is round-based, where one tree is computed and merged with the previous trees in each

round, and the previously chosen tree edges are excluded from the input graph. In the parallel

approach, the trees are computed concurrently and possibly independantly of each other and

then merged at the end.

The interleaved-trees algorithms may also be referred to as k-trees algorithms. Formally,

a sequential k-trees algorithm comprises a tree algorithm AT that constructs k trees, where

Ti is the ith tree. For each round i ≥ 1 an input graph Gi = G − Mi−1 is created, where

Mi = T1 ∪ . . . ∪ Ti, and i ≤ k. The graph Gi is then input to the tree algorithmAT to produce

Ti+1. Young et al. [147] described such an algorithm called k-MST, which computes k minimum

spanning trees that are merged into one mesh.

The k-trees algorithms construct meshes that include the "best" edges given the optimization

goal of the tree algorithm. For example, the k-MST algorithm ensures that the k minimum

weight links of every node are included in the graph [147]. A k-trees algorithm does also

produce an approximate k-connected graph (section 4.9). A k-connected graph is a graph in

which the removal of any k− 1 nodes does not disconnect the graph (a 1-connected graph is a

tree). Informally, there are at least k independent paths from any vertex to any other vertex. A

related graph-theoretic problem is a k-connected minimum weight subgraph (definition 72), for

which several approximation algorithms have been proposed [78]. However, these heuristics do

not take degree constraints into account, and do not opt for a reduced diameter.

The following interleaved-trees algorithms take as input a tree algorithmAT and a config-

urable integer k > 0. The tree algorithms may, for example, be selected among the spanning-

tree and Steiner-tree algorithms presented in chapter 9 and 10.
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k-Iterative Tree-construction(AT ,k) (kIT) takes as input a tree algorithm AT and an integer

k > 0. kIT then sequentially executes the tree algorithmAT k times on an input graph, which

produces k trees that are merged to a mesh (see algorithm 26). In each round, the current input

graph is updated such that the previously chosen tree-edges are excluded. For the degree-limited

algorithms the current available degree on each node is reduced according to the previously

chosen tree-edges.

Algorithm 26 k-ITERATIVE-TREE-CONSTRUCTION
In: G = (V, E, c), a k > 0, a tree algorithmAT
Out: Connected subgraph M = (VM , EM)

1: for i = 0; i < k; i++ do

2: call algorithmAT (G,Mi)
3: M ∪Mi {update the mesh}
4: E = E - EM {update the input graph}
5: updateDegreeLimits(M , G)

6: end for

k-Iterative Combined-tree-construction(AT ,k) (kICT) takes as input a set of tree algorithms

A = { AT 1 . . .AT k } and an integer k > 0. kICT sequentially executes each AT i, i ≤ k,

which computes a tree on an input graph. These trees are merged to a mesh (see algorithm 27).

In each round, the current input graph is updated such that the previously chosen tree-edges

are excluded. For the degree-limited algorithms the current available degree on each node is

reduced according to the previously chosen tree-edges.

Algorithm 27 k-ITERATIVE-COMBINED-TREE-CONSTRUCTION
In: G = (V, E, c), a k = |A |, a set of tree algorithmsA = {AT 1 . . .AT k }.
Out: Connected subgraph M = (VM , EM)

1: for allAT i ∈A do

2: call algorithmAT i(G,Mi)
3: M ∪Mi {update the mesh}
4: E = E - EM {update the input graph}
5: updateDegreeLimits(M , G)

6: end for

k-Parallel Tree-construction(AT ,k) (kPT) takes as input a tree algorithmAT and an integer k >

0. kPT then concurrently forks k executions of the tree algorithmAT on an input graph. kPT

waits until all k executions are done and merges the trees to one mesh (see algorithm 28). It is

optional if the previously chosen tree-edges are excluded among the k executing tree algorithms.

For degree-limited algorithms the current available degree may also be reduced according to the

previously chosen tree-edges. However, these optional features increases the complexity of the

kPT implementation.
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Algorithm 28 k-PARALLEL-TREE-CONSTRUCTION
In: G = (V, E, c), a k > 0, a tree algorithmAT
Out: Connected subgraph M = (VM , EM)

1: for i = 0; i < k; i++ do

2: fork algorithmAT (G,Mi) and continue
3: end for

4: wait until k algorithms have completed

5: M ∪ {M1, . . . , Mk} {update the mesh}

k-Parallel Combined-tree-construction(AT ,k) (kPCT) takes as input a set of tree algorithms

A = { AT 1 . . .AT k }, and an integer k > 0. kPCT then concurrently forks k executions, that

is, eachAT i, i ≤ k, on an input graph. Similar to kPT, kPCT also waits until all k executions are

done and merges the trees to one mesh (see algorithm 29). It is optional if the previously chosen

tree-edges are excluded among the k executing tree algorithms. For degree-limited algorithms

the current available degree may also be reduced according to the previously chosen tree-edges.

However, these optional features increases the complexity of the kPCT implementation.

Algorithm 29 k-PARALLEL-COMBINED-TREE-CONSTRUCTION
In: G = (V, E, c), a k = |A |, a set of tree algorithmsA = {AT 1 . . .AT k }.
Out: Connected subgraph M = (VM , EM)

1: for i = 0; i < k; i++ do

2: fork algorithmAT i(G,Mi) and continue
3: end for

4: wait until k algorithms have completed

5: M ∪ {M1, . . . , Mk} {update the mesh}

11.1.2 Enhanced tree subgraph algorithms

Enhanced tree algorithms are subgraph algorithms that typically compute a single connected

tree on an input graph, and then add single edges to this tree based on some optimization goal.

The optimization goal may, for example, be to reduce the pair-wise latencies, or perhaps the

failure tolerance of the subgraph. Wang et al. [137] described enhanced tree algorithms, and

proposed an overlay multicast protocol called Tmesh, which adds "short-cut" edges to a pre-

constructed tree.

An enhanced tree algorithm comprises a tree algorithm AT that produces a tree T , and

an edge-selection algorithm that adds edges to the graph T such that it is transformed into a

mesh M (cyclic subgraph). The number of edges that are added may be a predefined integer

k, or based on some optimization goal, for example, a mesh-diameter below a given bound

D. The most common edge-selection strategies add edges that reduce a node’s eccentricity

or the mesh’s diameter. Notice that in a shared-overlay the maximum eccentricity equals the

diameter, such that reducing the maximum eccentricity does in effect reduce the diameter of the
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mesh. Therefore, a strategy for reducing both is to always pick the nodes with the maximum

eccentricity (= diameter) and try to reduce their eccentricity.

There are also edge-selection strategies that aim at reducing the pair-wise latencies in an

overlay. The average pair-wise latency of a node is the sum of the shortest path latencies

between it and every other node, divided by the number of nodes. Both Narada [49] and

Tmesh [137] focus on reducing a node’s pair-wise latency. Reducing the pair-wise latency

or the diameter are very much similar goals. If the diameter is reduced, the pair-wise latency is

also reduced, however, if the pair-wise latency is reduced it does not automatically reduce the

diameter. In a shared-overlay it is more important to reduce the diameter.

The following interleaved-trees algorithms take as input a tree algorithmAT and a config-

urable integer k > 0, which defines the number of edges to add to the constructed tree such that

it becomes a mesh.

k-Diameter-Links(AT ,k) (kDL) executes the tree algorithm AT to produce a tree T , and then

adds k diameter links to T to produce a mesh M . For k rounds, the edge-selection strategy

in kDL tries to reduce the diameter of the mesh M by adding a shortest-path edge between

two nodes in the current diameter path (see algorithm 30 for more details). Ties are broken

arbitrarily.

Algorithm 30 k-DIAMETER-LINKS
In: G = (V, E, c), a k > 0, a tree algorithmAT
Out: Connected subgraph M = (VM , EM)

1: call algorithmAT (G,M)
2: for i = 0; i < k; i++ do

3: find diameter path P = (u1, . . . ,un), where ui ∈ VM

4: find an edge e ∈ (E − EM) between two nodes u, v ∈ P

5: M ∪ {e = (u, v)} {update the mesh}

6: end for

k-Long-Links(AT ,k) (kLL) executes the tree algorithmAT to produce a tree T , and then adds k

long links to T to produce a mesh M . For k rounds, the edge-selection strategy in kLL chooses

the node with the lowest degree in M and adds the longest shortest-path edge to an overlay-node

(see algorithm 31 for more details). Ties are broken arbitrarily.

Algorithm 31 k-LONG-LINKS
In: G = (V, E, c), a k > 0, a tree algorithmAT
Out: Connected subgraph M = (VM , EM)

1: call algorithmAT (G,M)
2: for i = 0; i < k; i++ do

3: find node v ∈ VM with lowest degree degM(v)

4: find the longest edge e ∈ (E− EM) to a node u ∈ VM

5: M ∪ {e} {update the mesh}

6: end for
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k-Core-Links(AT ,k) (kCL) executes the tree algorithmAT to produce a tree T , and then adds

k core links to T to produce a mesh M . kCL finds k core-nodes C from M using the core-

node selection algorithm k-Median (chapter 7), and then the k nodes W from M that have the

largest pair-wise latencies. Then, for k rounds, the edge-selection strategy in kCL finds an edge

connecting a core-node c ∈ C with a node w ∈W (see algorithm 32 for more details).

Algorithm 32 k-CORE-LINKS
In: G = (V, E, c), a k > 0, a tree algorithmAT
Out: Connected subgraph M = (VM , EM)

1: call algorithmAT (G,M)
2: C = k-MEDIAN-CORE-SELECTION(G,M , k) {sorted set}
3: W = k-WORST-CORE-SELECTION(G,M , k) {sorted set}
4: for each w ∈W do

5: while available degree on w or some maximum n< k do

6: find edge e ∈ (E − EM) between w and best c ∈ C

7: M ∪ {e} {update the mesh}
8: end while

9: end for

11.1.3 Edge pruning subgraph algorithms

Edge pruning algorithms are subgraph algorithms that typically compute a connected mesh on

an input graph by applying one or several edge-selection strategies that may be configurable.

Edge pruning algorithms include strategies that remove edges from an input graph G based on

some goal, and also algorithms that pick single edges from an input graph and constructs a mesh

M . These two approaches are essentially different, however, the algorithms share the same goal.

Consequently, we call all of them edge pruning algorithms.

The simplest edge pruning algorithm is to add a number of edges randomly to the mesh.

Yoid [50] applies this method, with the added step of applying a routing protocol atop of the

mesh. In the Narada [49] protocol a node joins a random peer and then slowly moves to more fa-

vorable peers as they are discovered. Although random edge pruning algorithms are in use, they

are the most naive edge pruning algorithms and we disregard them from this investigation [76].

Minimum-cost Greedy Reconnect Graph heuristic: Some edge pruning algorithms cannot guar-

antee that a connected subgraph is found. Therefore, a fast procedure for identifying the dis-

connected groups (subgraph forests) is needed. Identifying one (partitioned) forest can be done

by using depth first search (DFS) with running time O(V + E) (section 4.4). Furthermore, con-

necting two forests through a greedy minimum-cost edge is a O(n2) procedure, for example,

using a minimum-cost algorithm from chapter 12.

One heuristic that connects disconnected graphs through some low-cost edges has a time-

complexity of O(n3). This is the group Steiner-tree heurisic k-mcReconnectTreeHeuristic,
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which is introduced in chapter 12. This tree-heuristic is adjustable to a group Steiner-subgraph

heuristic (section 4.10 introduces the Steiner-subgraph problem formally).

Instead, we introduce the following greedy algorithm 33, which is also a Steiner-subgraph-

heuristic, except the groups (forests) are discovered dynamically inside the procedure, and then

the groups are greedily connected through some low-cost edges. The greediness reduces the

time-complexity to O(n2), with the cost of potentially adding higher-cost edges. However, the

greedy draw-back is very limited since the edge-pruning algorithms produce subgraps with a

small number of subgraph forests.

Algorithm 33 MC-GREEDY-RECONNECT-GRAPH-HEURISTIC
In: G = (V, E, c), a disconnected subgraph M = (V, EM)

Out: Connected subgraph M = (V, EM)

1: while M is disconnected do

2: P = find a partition in M using DEPTH-FIRST-SEARCH(M)
3: choose one vertex p ∈ P and connect p to v ∈ (VM − P) using minimum-cost edge e ∈ E

4: end while

The following edge pruning algorithms take as input a configurable integer k ∈ N, which

defines the number of edges the edge-selection strategy should add, for example, for each node.

k-Best-Links(k) (kBL) is an edge pruning algorithm that lets each node autonomously add its k

minimum weight (best) edges to the mesh (algorithm 34). In kBL, pairs of nodes independently

include each other into the mesh, such that the resulting mesh may have only (k∗n)/2 edges (at

most k ∗n). Because of this, kBL has a higher chance of producing a disconnected graph [147].

This is the main reason that few if any protocols use kBL as described.

Algorithm 34 k-BEST-LINKS
In: A connected graph G = (V, E, c), and an integer k > 0.
Out: A connected subgraph M = (V, EM), where EM ⊂ E.
1: For each node v ∈ V , include its k minimum-cost edges to EM ⊂ E.
2: if M is not connected then

3: call mcGreedyReconnectGraphHeuristic(G,M)
4: end if

Degree-limited-Best-Links (dlBL) is an edge pruning algorithm, which is a special case of kBL.

In dlBL each node autonomously add minimum-weight edges to the mesh until its degree-limit

is reached. We propose dlBL such that the node-degree is limited but also exploited to the

maximum on each node (algorithm 35).

We have also introduced an edge pruning algorithm [130] that builds meshes that include

low weight links and higher weight longer links to a set of pre-selected core-nodes, selected

using a multiple core-node selection algorithm (chapter 7). The number of core-nodes to choose

is defined by equation 8.1 (chapter 8). Young et al. [147] have described similar randomized



11.1. Spanning subgraph and Steiner subgraph algorithms 255

Algorithm 35 dl-BEST-LINKS
In: A connected graph G = (V, E, c) and a degree-limit d(v) for each v ∈ V .
Out: A connected subgraph M = (V, EM), where EM ⊂ E.
1: For each node v ∈ V , accept and include d(v) minimum-cost edges to EM ⊂ E.
2: if M is not connected then

3: call mcGreedyReconnectGraphHeuristic(G,M)
4: end if

user nodes

selected core nodes

links included if k = 0

links included if k = 1

Figure 11.1: A mesh produced by add-Core-Links-Optimized.

approaches as short-long strategies. Informally, the next edge-pruning algorithms use a kBL

approach and then shortest path links to connect core-nodes to the remaining nodes.

add-Core-Links-Optimized(k, O) (aCLO) takes as input a complete graph G, an integer k ≥ 0,

and a set O ⊂ V , which may be identified by a multiple core-node selection algorithm. In

aCLO, each non-core-node (not in O) includes its k minimum-cost edges to the mesh. Then,

aCLO builds a full mesh of the nodes in O, and includes to the mesh. Further, aCLO lets

each core-node o add a number s = |V − O|/|O| of (disjoint) edges to the non-core-nodes.

After these steps, the constructed mesh forms, conceptually, a two-layer graph. Figure 11.1

illustrates a mesh generated by aCLO. Algorithm 36 is the aCLO algorithm when equation 8.1

(section 8.5.4) is used to determine the number of core-nodes, and k-Median identifies these

core-nodes among the member-nodes. The algorithm has a time complexity of O(n2).

Algorithm 36 add-CORE-LINKS-OPTIMIZED
In: A complete graph G = (V, E, c), and an integer k ≥ 0.
Out: A connected subgraph M = (V, EM), where EM ⊂ E.
1: O = k-Median(G, l)

{find l core-nodes among V , l is obtained from equation 8.1 in section 8.5.4}
2: For each node m ∈ (V \O), include its k minimum-cost edges to EM ⊂ E.
3: For each core node o ∈ O, include an edge to every other node v ∈ O.
4: For each core-node o ∈ O disjointly connect to l = |V \ O|/|O| nodes v ∈ (V \ O) through minimum-cost

edges.

degree-limited add-Core-Links-Optimized(k,O) (dl-aCLO) is a degree-limited version of aCLO.

dl-aCLO works much the same way, but the core-nodes O do not form a full mesh of shortest

paths. Instead, the core-nodes should be "meshified" using only a certain percentage of their

full degree-capacity to connect to other core-nodes. Then, the core-nodes use their remaining
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degree-capacity to connect to the non-core-nodes. dl-aCLO sometimes produces a disconnected

subgraph, therefore, algorithm 33 is used to connect it. Algorithm 37 is an example of the dl-

aCLO used in the simulations.

Algorithm 37 dl-add-CORE-LINKS-OPTIMIZED
In: A graph G = (V, E, c), an integer k ≥ 0, and for each v ∈ V there is a degree limit deg(v)> 0.
Out: A connected subgraph M = (V, EM), where EM ⊂ E, and for each v ∈ V the degM ≤ deg(v).
1: O = k-Median-Selection(G)

{find l core-nodes among V , l is obtained from equation 8.1}
2: For each node m ∈ (V −O), include its k minimum-cost edges to EM ⊂ E. {kBL}
3: For each core node o ∈ O, connect to d = d(o) ∗ 0.33) nodes in v ∈ O, and add edges to EM .
4: For each core node o ∈ O disjointly connect to d = d(o) ∗ 0.67 nodes in v ∈ (V −O), and add edges to EM .
5: if M is not connected then

6: call mcGreedyReconnectGraphHeuristic(G,M)
7: end if

The spanning subgraph variations of aCLO and dl-aCLO use member-nodes as the core-

nodes, while, the Steiner subgraph variations use Steiner points as the core-nodes. The Steiner

subgraph variatons are actually approximating a Terminal Steiner-subgraph (definition 88), in

which, all member-nodes are leaf-nodes when k = 0.

11.2 Group communication simulations of spanning subgraph

algorithms

The following evaluations are of the results obtained from group communication simulations

using the spanning subgraph algorithms to build overlay networks for event distribution. Ta-

ble 11.1 introduces the basics of each spanning subgraph algorithm.

The spanning-tree algorithmsAT that are used as input to the spanning subgraph algorithms

AM are introduced in section 9.2, and were found to be the better of them in the evaluations in

section 9.3. A summary of their algorithm details is given in table 11.2.

11.2.1 Experiment configurations

In the experiments, we use complete group graphs as input graphs to the subgraph algorithms.

Chapter 8 introduced and evaluated the problems that constrained overlay construction heuris-

tics have in finding a solution, especially when the constraints are strict. That is also the case

with the constrained spanning-tree heuristics evaluated here. The success rate of the algorithms

depend on the constraint and the input graph. We use dynamic relaxation on the degree-limits

and the diameter bounds whenever a tree heuristic cannot continue the tree construction.

A low diameter is a target metric, such that in our simulations we use a strict diameter bound

of 0.250 to the diameter bounded algorithms. The heuristics are then frequently forced to relax
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Algorithm Meaning Optimization Constraints Complexity Problem Reference

MST Prim’s minimum-spanning tree total cost - O(n2) MST [58]
SPT Dijkstra’s shortest-path tree core/destination cost - O(n2) SPT [58]
md-OTTC Minimum diameter one-time tree construction diameter - O(n3) MDST [131]
OTTC One-time tree construction total cost diameter O(n3) BDMST [1]
RGH Randomized greedy heuristic total cost diameter O(n2) BDMST [104]
mddl-OTTC Minimum diameter degree-limited one-time tree construction diameter degree O(n3) MDDL [131]
dl-OTTC Degree-limited one-time tree construction total cost diameter and degree O(n3) BDDLMST [131]
dl-RGH Degree-limited randomized greedy heuristic total cost diameter and degree O(n2) BDDLMST [131]
dl-SPT Degree-limited Dijkstra’s shortest-path tree core/destination cost degree O(n2) d-SPT [95]
dl-MST Degree-limited Prim’s minimum-spanning tree total cost degree O(n2) d-MST [95]

Table 11.2: Tree construction algorithms (AT ).

Description Parameter

Placement grid 100x100 milliseconds
Number of nodes in the network 1000

Degree limit 5 and 10

Diameter bound 250 milliseconds

Table 11.3: Spanning subgraph experiment configuration.

the bound. The experiment configuraions are listed in table 11.3.

11.2.2 Evaluated target metrics

A spanning subgraph algorithm is considered good if it can produce overlays with a low diam-

eter, a low average pair-wise distance, within a reasonable time that does not add unreasonable

cost to the network. For our evaluation of the overlays and algorithms, we therefore consider

four metrics to be very important: overlay diameter, average pair-wise distance, algorithm exe-

cution time, and total network cost. In addition, given the fairly limited resources available on

average clients in the Internet, the algorithm should obey degree-limitations such that the stress

on each node in the overlay is bounded.

In the following, we evaluate the results from our simulations. In the evaluation, we focus

on the target metrics and also evaluate the different spanning subgraph algorithms against each

other.

11.2.3 Results from one group size range

Our main plots are figure 11.2 and 11.3, which includes a complete comparison of the tree

and mesh construction algorithms evaluated towards our target metrics. It includes statistics

from overlays of sizes between 100 and 120. The tree-heuristics are plotted as interleaved tree

algorithms with k = 1.

We observe that the best tree-heuristics achieve a diameter of around 0.3 seconds, while the

degree-limited tree-heuristics achieve 0.5 seconds. For the degree-unlimited algorithms there

is almost no gain in going from a tree to a mesh. For the degree-limited algorithms we can see

a larger reduction in the diameter, but even here it is not significant. Among the enhanced-tree
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algorithms we see that kDL reduces the diameter more than kLL. Comparatively, we see that it is

only the mesh algorithms that use MST or dl-MST as input that reduce the diameter significantly

in a mesh (compared to a tree). When these minimum-cost overlays are transformed from a tree

to a mesh, they become more competetive with the close-to-minimal diameter overlays. The

edge pruning algorithms all produce low diameter meshes, with the exception of kBL(k < 3).

We observe similar trends for the average pair-wise distance (seconds).

When we analyze the total cost of the overlays it is clear that the mesh algorithms build more

costly overlays compared to the tree construction algorithms. The enhanced-tree algorithms

only slightly increases the total cost of the overlays, due to the rather small k we used. The

edge pruning algorithms kBL and dl-aCLO also yield a reasonable total cost. We see that

the interleaved tree algorithms kIT(dl-MST,k) and kIT(dl-SPT,k) construct overlays with a low

total cost. However, this is due to the fact that dl-MST and dl-SPT often fail to construct degree-

limited trees in sparse graphs [130].

The edge count is the number of links in an overlay, and the plots confirm this observation.

We see that the edge-count for the kIT(dl-MST,2) and kIT(dl-SPT,2) overlays are much lower

than the remaining interleaved trees algorithms. The edge pruning algorithm aCLO clearly adds

too many edges to the overlay. For the interleaved-trees algorithms we can see that the edge-

count increases in certain intervals for each k increase. The degree-unlimited algorithms merge

a new full tree for each round, whereas, the degree-limited algorithms are not able to construct

a full spanning tree for each round, in particular when k > 2. For example, in the kIT algorithm

the already chosen tree-edges are excluded from the input graph, and the available degree is

reduced accordingly. This is the main reason why the degree-limited algorithms increasingly

fail to construct full spanning trees.

The execution time shows that the degree-limited interleaved-tree algorithms struggle to find

trees when the k increases. The kDL algorithm is quite time-consuming when k > 40; however,

our implementation may be sub-optimal for kDL. The fastest algorithms are the edge-pruning

algorithms, which are barely visible in the graphs.

11.2.4 Results with varying group sizes

The group size may influence the performance of an overlay construction algorithm. In fig-

ure 11.4, 11.5 and 11.6 we plot the diameter and pair-wise latencies and hop-count, then the

total cost and overlay edge count for selected algorithms with group sizes between 10 and

150. We include results from the interleaved- and enhanced-trees algorithms using the tree

algorithms dl-MST and mddl-OTTC as input.

The diameter achieved is plotted in figure 11.4(a). We observe that the reduction in the

diameter between mddl-OTTC and kIT(mddl-OTTC,2), is very small. The other mddl-OTTC

mesh algorithm variations perform very similar. dl-MST is not plotted but produces a diameter
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Figure 11.2: Comparison of all spanning-tree and mesh algorithms.
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Figure 11.3: Comparison of all spanning-tree and mesh algorithms.
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which is 30 % higher than kIT(dl-MST,2), and for k = 3 the reduction is only about 5 %.

kLL(dl-MST,80) yields overlays with a lower diameter than kIT(dl-MST,2) for group sizes

< 110, while kDL(dl-MST,80) achieves about 25 % better throughout our group size range.

Among all the subgraph algorithms, it was kICT(dl-MST/dl-RGH,2) and kDL(mddl-OTTC,80)

that yield the lowest diameter. We observed very similar trends for the average pair-wise latency

in figure 11.5(a).

The hop-diameter achieved by the algorithms is plotted in figure 11.4(b). The hop-diameter

reduction between mddl-OTTC and kIT(mddl-OTTC,2) is about 25 %. kDL(mddl-OTTC,80)

does not reduce the hop-diameter much, although it reduces the diameter quite significantly.

kLL(mddl-OTTC,80) and kLL(dl-MST,80) yield similar hop-diameter with group sizes < 80,

and are both better than kIT(mddl-OTTC,2) in that group range. For group sizes> 60, kCIT(dl-

MST/dl-RGH,2) is the better, with kIT(mddl-OTTC,2) only slightly higher. We observed very

similar trends for the average pair-wise hop-count in figure 11.5(b).

For the total cost plot in figure 11.6(b) wee see that the enhanced-trees algorithm KLL con-

structs the most expensive overlays. kIT(mddl-OTTC,2) builds overlays that are slightly more

expensive than kIT(dl-MST,2). The kDL(mddl-OTTC,80) is not able to add 80 links to each

overlay, therefore its total cost is lower than expected. Not surprisingly, the trees constructed

by dl-MST and mddl-OTTC are the cheapest.

The edge count in figure 11.6(a) confirms that kDL(mddl-OTTC,80) fails to add 80 links,

due to the degree-limitation, but rather only manages to add about 15 links before it gives up.

kDL(dl-MST, 80), on the other hand, has a much higher success rate in adding links. Close-

to-minimum diameter trees are more star shaped (leafy trees), where inner nodes have a high

degree. Therefore, kDL struggles to add edges to the diameter path because the degree capacity

quickly gets exhausted. kICT(dl-MST/dl-RGH,2), on the other hand, is able to include two full

trees in the entire group range.

We observed from the results that many of the subgraph algorithms struggled to include

edges due to the rather strict degree-limit of 5. In the following, we include and evaluate results

from using a higher degree-limit of 10.

11.2.5 Results with varying group sizes and degree-limits

The previous evaluation used a static degree-limit of 5 to analyze the results. Here, we use

degree limits of 5 and 10 to see the effect on the subgraph algorithms and the constructed

subgraphs.

The diameter (seconds) of the subgraphs is plotted in figure 11.7(a). The plotted subgraph

algorithms were found to perform the best in the previous evaluation. It is quite clear that the

doubled degree capacity has enabled the subgraph algorithms to decrease the diameter of the

subgraphs quite significantly. The diameter reduction is consistently 90 milliseconds among the
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algorithms. However, kICT(dl-MST/dl-RGH,2) does not reduce the diameter with more than

50 milliseconds when the degree capacity is doubled. When the degree-limit was 5, the ran-

domized dl-RGH still managed to complete its construction, while the other subgraph algorithm

combinations struggled to complete (please preview figure 11.8(a) for edge-count). The higher

degree-limits enable almost every subgraph algorithm combination to complete their construc-

tion (that is, for the evaluated k-values). Therefore, the combinations kIT(mddl-OTTC,2) and

kDL(mddl-OTTC,80) are the ones that yield the lowest diameter when the degree limit is 10.

The diameter (hop-count) of the subgraphs is plotted in figure 11.7(b). Similar tendencies

are revealed, and we see that kDL(mddl-OTTC,80) and mddl-OTTC reduce the hop-diameter

by about 25 % with a doubled degree capacity. kIT(mddl-OTTC,2) reduces the hop-diameter

by 15 %, while kICT(dl-MST/dl-RGH) only marginally reduces it.

The subgraph edge-count is plotted in figure 11.8(a). We observe that when the degree limit

is 10, the subgraph algorithms manage to complete their construction. However, kDL(mddl-

OTTC,80) is still not able to enhance the tree with 80 edges, but rather it only manages to add

50 edges. But, we observed from figure 11.7(a) and 11.7(b) that kDL(mddl-OTTC,80) yield a

significantly lower diameter (seconds and hop-count) with a doubled degree capacity.

The total cost of the subgraphs is plotted in figure 11.8(b). The increased success rate of

kDL(mddl-OTTC,80) when the degree-limit is 10 is noticable in the total cost, and is consis-

tently very costly. Among the remaining subgraph algorithms there is only a marginal total cost

increase.

To summarize, we found that doubling the degree-limit from 5 to 10, enabled the subgraph

algorithms to construct subgraphs with a lower diameter. The main reason for this is that their

success rates were increased, and the increased degree capacity enabled the degree-limited al-

gorithms to add more edges adjacent to centrally located (well-placed) nodes (see chapter 9).

Chapter 8 introduced the success rate to be the rate of which a constrained algorithm success-

fully completes, for example, an overlay construction.

11.2.6 Discussions on spanning-subgraph algorithms

From our results we see that a tree is able to compete with a mesh when it comes to the la-

tency diameter in an overlay. However, a mesh does have advantages in the hop-diameter. The

main drawback of meshes is the added cost they incur, whereas the upside is the added failure

tolerance. A tree is much cheaper, but is more failure prone.

Multicasting shared events in a tree is cheaper than multicasting events in a mesh. The extra

bandwidth consumption in a mesh is not desirable, and may force some packet-routing on top

of the mesh. In such cases it may be just as well to use a source-based tree for each client.

Among the mesh algorithms that use tree algorithms as input it is the dl-MST algorithm that

has the largest diameter reduction. Furthermore, the edge pruning algorithm dl-aCLO produces



11.2. Group communication simulations of spanning subgraph algorithms 267

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 20  40  60  80  100  120  140

di
am

et
er

 (
se

co
nd

s)

group size

mddl-OTTC, dl=5
kIT(mddl-OTTC, k=2), dl=5

kDL(mddl-OTTC, k=80), dl=5
kICT(dl-MST/dl-RGH, k=2), dl=5

kICT(dl-MST/dl-RGH, k=2), dl=10
mddl-OTTC, dl=10

kIT(mddl-OTTC, k=2), dl=10
kDL(mddl-OTTC, k=80), dl=10

(a) Diameter (seconds)

 0

 2

 4

 6

 8

 10

 20  40  60  80  100  120  140

di
am

et
er

 (
ho

p-
co

un
t)

group size

mddl-OTTC, dl=5
kIT(mddl-OTTC, k=2), dl=5

kDL(mddl-OTTC, k=80), dl=5
kICT(dl-MST/dl-RGH, k=2), dl=5

kICT(dl-MST/dl-RGH, k=2), dl=10
mddl-OTTC, dl=10

kIT(mddl-OTTC, k=2), dl=10
kDL(mddl-OTTC, k=80), dl=10

(b) Diameter (hops)
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meshes with a low diameter and total cost, and is very fast; however, it cannot be configured

into a tree structure.

Table 11.4 illustrates our subjective opinions on how to configure some selected mesh al-

gorithms with the optimal k value. For each target metric an optimal k value is listed. These

are averaged into the proposed k, which is what we consider the better way to configure the

mesh algorithm. The mesh algorithm combinations with mddl-OTTC and dl-SPT use very low

k-values, whereas the dl-MST combinations use higher k-values. The difference between dl-

MST, dl-SPT and mddl-OTTC mesh algorithm combinations is reduced significantly with these

configurations. For example, in the kIT algorithms, a tree structure is what we consider the

most optimal for dl-SPT and mddl-OTTC.

Algorithm

Optimal k

Pr
op

os
ed

k

T
o
ta
l
co
st

D
ia
m
et
er

H
o
p
-d
ia
m
.

Mesh Tree k-range

mddl-OTTC [1,4] 1 2 2 1

kIT dl-SPT [1,4] 1 2 2 1

dl-MST [1,4] 1 3 3 2

mddl-OTTC [0,80] 0 15 15 7

kDL dl-SPT [0,80] 0 15 15 7

dl-MST [0,80] 0 80 80 40

mddl-OTTC [0,80] 0 40 40 20

kLL dl-SPT [0,80] 0 40 40 20

dl-MST [0,80] 0 80 80 40

kBL [1,5] 1 5 5 3

dl-aCLO [0,5] 0 4 4 2

Table 11.4: Proposed k-configurations for a few selected algorithms, with degree-limit 5.

11.3 Group communication simulations of Steiner subgraph

algorithms

The following evaluations are of the results obtained from group communication simulations

using the Steiner subgraph algorithms to build overlay networks for event distribution.

We evaluated Steiner-tree algorithms in section 10.3 and found that Steiner-tree spanning-

heuristics can be efficiently used to find close-to-optimal Steiner-trees of minimum diameter.

We also showed that many existing Steiner tree heuristics that only consider shortest paths as

a way to include Steiner points, do not work on a complete graph (full mesh) made of shortest

paths. Therefore, the following experiments do not use such Steiner tree heuristics, but rather

uses the Steiner tree spanning-heuristics.
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Steiner-tree spanning-heuristics are regular spanning-tree algorithms that construct a spanning-

tree on an input graph that includes Steiner points, and then removes leaf Steiner points. Ta-

ble 11.5 summarizes the algorithm details for the Steiner-tree spanning-heuristics that are used

in the group communication exeperiments on Steiner subgraph algorithms.

Algorithm Meaning Optimization Constraints Complexity Problem Reference

smddl-OTTC Steiner minimum diameter degree-limited OTTC diameter degree O(n3) Steiner-MDDL [131]
sdl-OTTC Steiner degree-limited OTTC total cost diameter and degree O(n3) BDDLSMT [131]
sdl-RGH Steiner degree-limited RGH total cost diameter and degree O(n2) BDDLSMT [131]
sdl-SPT Steiner degree-limited Dijkstra’s SPT core/destination cost degree O(n2) Steiner-MRDL [95]
sdl-MST Steiner degree-limited Prim’s MST total cost degree O(n2) d-SMT [95]

Table 11.5: Steiner tree construction algorithms (AT ).

11.3.1 Experiment configurations

In the experiments, the complete group-graphs include k Steiner-points. The Steiner-points are

added to the input graph to enable the Steiner subgraph algorithms to reduce the diameter and

increase their success rate. We use equation 8.1 to calculate the number of Steiner-points to

include. More specifically, we use the degree limit d in the current experiment and the current

group size |V |: |O| = |V |/d. The function approximates the number of Steiner-points that

are needed to ensure that the degree-limited subgraph algorithms are able to build a subgraph.

The k Steiner points are chosen by k-Median(k) from 100 Steiner-points (super-nodes) that are

identified at the beginning among the 1000 nodes in the overlay network. These well-placed

super-nodes (chapter 8) are found by the multiple core-node selection algorithm k-Center(k =

100). If not otherwise noted, we use k-Median(k = 1) to select a source node for every Steiner-

tree and subgraph heuristic (see chapter 7.6.1).

A low diameter is a target metric, such that in our simulations we use a strict diameter bound

of 0.250 to the diameter bounded algorithms. The heuristics are then frequently forced to relax

the bound. Table 11.6 summarizes the experiment parameters.

Description Parameter

Placement grid 100x100 milli-seconds
Number of nodes in the network 1000

Degree limit 5 and 10

Diameter bound 250 milli-seconds
Super-nodes found by k-Center-Selection(k) k = 100

Steiner-point size (group-size/degree-limit)

Table 11.6: Experiment configuration.
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11.3.2 Evaluated target metrics

A Steiner subgraph algorithm is considered good if it can produce overlays with a low diameter,

a low average pair-wise distance, within a reasonable time that does not add unreasonable cost to

the network. For the evaluation of the overlays and algorithms, there are four metrics considered

to be very important: overlay diameter, average pair-wise distance, algorithm execution time,

and total network cost. In addition, given the fairly limited resources available to average clients

in the Internet, the algorithm should obey degree-limitations such that the stress on each node

in the overlay is bounded.

11.3.3 Comparison of spanning- and Steiner-subgraph algorithms

Chapter 11.2 evaluated spanning-subgraph algorithms and it was found that with a fairly limited

amount of added edges (from a tree) the subgraph has a close-to-optimal diameter and pair-wise

latency. In the following, the evaluation include the same subgraph algorithms, only applied to

a Steiner subgraph scenario. The major difference is that these Steiner subgraph algorithms

include Steiner points to the input graph.

The following sections first compare spanning- and Steiner-subgraph algorithms using a

static degree-limit of 5, then we add a degree-limit of 10 and observe the results.

Comparisons with a degree-limit of 5

Figure 11.9(a) plots the diameter (seconds) for some selected spanning-subgraph and Steiner-

subgraph algorithms. It is evident that both tree-algorithms dl-MST and Steiner dl-MST (sdl-

MST) produce trees with too high diameter. The main observation, is that the diameter is

lower for Steiner-subgraph algorithms than spanning-subgraph algorithms. It is interesting that

Steiner mddl-OTTC (smddl-OTTC) produce subgraphs with a lower diameter than spanning-

subgraph kIT(mddl-OTTC,2) and almost as low as Steiner-subgraph kIT(smddl-OTTC,2). Fig-

ure 11.9(b) further compares the diameter (seconds) for the top performing spanning subgraph

and Steiner subgraph algorithms. It is quite clear that all the Steiner subgraph algorithms per-

form better than spanning-subgraph algorithms. The main reason for this is the increased degree

capacity available among the Steiner points.

Figure 11.11(a) and 11.11(b) compares the diameter (hop-count), corresponding to Fig-

ure 11.9(a) and 11.9(b). From these figures we see that the hop-count diameter suffers when

Steiner points are added to the input graph. However, it is the tree-algorithms that suffer most,

for the Steiner subgraph algorithms kIT and kDL there is only a slight difference.

Figure 11.12(a) and 11.12(b) compares the total cost of the subgraphs (corresponding to

previous figures). We see that adding Steiner points to the input graph does not significantly

add to the total cost of the subgraph. We see that smddl-OTTC produce very low cost trees
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Figure 11.9: Spanning-subgraph and Steiner subgraph algorithms (diameter (seconds)).
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Figure 11.10: Spanning-subgraph and Steiner subgraph algorithms (pair-wise (seconds)).
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Figure 11.11: Spanning-subgraph and Steiner subgraph algorithms (diameter (hop-count)).
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Figure 11.12: Spanning-subgraph and Steiner subgraph algorithms (total cost).
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Figure 11.13: Spanning-subgraph and Steiner subgraph algorithms (edge-count).



11.3. Group communication simulations of Steiner subgraph algorithms 277

 5

 10

 15

 20

 25

 30

 35

 20  40  60  80  100  120  140

St
ei

ne
r 

po
in

ts

group size

kIT(sdl-MST, k=3)
kIT(smddl-OTTC, k=3)

kIT(sdl-MST, k=2)
kICT(sdl-MST/sdl-RGH, k=2)

kIT(smddl-OTTC, k=2)
sdl-MST

smddl-OTTC

Figure 11.14: Spanning-subgraph and Steiner subgraph algorithms (Steiner points).

compared to kIT(smddl-OTTC, 2). From figure 11.9(a) it was identified that smddl-OTTC only

produced subgraphs (trees) with slightly higher diameter than kIT(smddl-OTTC, 2). Hence,

this means that smddl-OTTC is a better alternative, even if the total cost is unimportant.

Figure 11.13(b) compares the number of edges the spanning-subgraph and Steiner-subgraph

algorithms are able to include. On average, the Steiner-subgraph algorithms manage to include

more edges during overlay construction, which is due to the increased degree capacity from the

Steiner points. Figure 11.14 plots the number of Steiner points selected to be in the subgraphs

for the Steiner-subgraph algorithms. It is the minimum-cost algorithm sdl-MST that includes

the most Steiner points, regardless of Steiner subgraph algorithm (kIT, kLL or kDL). smddl-

OTTC has a lower number of Steiner points.

Comparisons with degree-limits 5 and 10

In the previous results the degree-limit was set to 5, the following includes a comparison of the

results when a degree-limit of 10 is used.

The subgraph diameter (seconds) as produced by selected subgraph algorithms is plotted in

figure 11.15(a) and 11.15(b). We observe that the behavior of the subgraph algorithms is fairly

predictable. A higher degree-limit enables the subgraph algorithms to construct subgraphs of

lower diameter, and we observe that an increased degree capacity has the most influence on
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reducing the subgraph diameter. Adding Steiner-points to the input graph has the second most

influence on reducing the subgraph diameter. These Steiner-points enable subgraph algorithms

to add adjacent edges to centrally located nodes. Then, thirdly, letting the diameter-reducing

tree-heuristics (for example, smddl-OTTC) include more edges to the graph, also has a positive

effect and reduces the diameter. The combined, a higher degree-limit, Steiner-points in the

input graph and more subgraph edges, yield the best results and the subgraphs with the lowest

diameters.

The subgraph hop-diameter as produced by selected subgraph algorithms is plotted in fig-

ure 11.16(a) and 11.16(b). Generally, we see that an increased degree-limit and more edges to

the subgraph reduces the hop-diameter. However, it is the increased degree-limit that has the

most effect on reducing the hop-diameter. Adding Steiner-points increases the hop-diameter, as

was also found in chapter 10, where Steiner-tree algorithms were evaluated.

The subgraph edge-count in figure 11.17 confirms our previous observations in that a higher

degree-limit and added Steiner-points increases the success-rates of the subgraph algorithms.

The subgraph algorithms are able to included more edges due to this (higher degree-limit and

added Steiner points) and a lower diameter is the result. We also see this from the number of

steiner-points in the subgraphs (figure 11.18).

11.3.4 Results from one group size range

Similarly to section 11.2, we evaluate the results from our simulations on Steiner subgraph algo-

rithms. The main plot is figure 11.19, which includes a complete comparison of predominantly

degree-limited (dl = 5) Steiner-tree and Steiner-mesh algorithms evaluated towards our target

metrics. It includes statistics from overlays of sizes between 100 and 120. The Steiner-tree

spanning-heuristics are plotted as interleaved tree algorithms with k = 1.

We observe that the better Steiner-tree spanning-heuristics achieve a diameter of around

0.5 seconds. For the degree-limited algorithms we can see a larger reduction in the diameter,

but even here it is not significant. Among the enhanced-tree algorithms we see that it is only

variations with sdl-MST that reduces the diameter, and applying smddl-OTTC to kLL and kDL

has little or no effect in this group size range (100-120). The kICT and kPCT Steiner subgraph

variations construct subgraphs with the lowest diameter and pair-wise latency. These (kICT

and kPCT) combine a diameter-reducing Steiner-tree spanning-heuristic with the minimum-

cost Steiner-tree spanning-heuristic sdl-MST. The combination low-cost and low-diameter al-

gorithm fit especially well together because they pick very different tree-edges. Low-cost algo-

rithms minimize the cost between nodes that are close in the input graph, while low-diameter

algorithms reduce the maximum-distance between nodes in the input graph. The result is a sub-

graph that exhibits low pair-wise latency and low diameter. sdl-aCLO is an attempt to automate

this process in terms of execution time, both kICT and kPCT are dependent on the complexities
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Figure 11.15: Spanning-subgraph and Steiner subgraph algorithms (diameter (seconds)).
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Figure 11.17: Spanning-subgraph and Steiner subgraph algorithms (edge-count).

 0

 5

 10

 15

 20

 25

 30

 20  40  60  80  100  120  140

St
ei

ne
r 

po
in

ts

group size

smddl-OTTC, dl=5
kIT(smddl-OTTC, k=2), dl=5

kICT(sdl-MST/sdl-RGH, k=2), dl=5
kICT(sdl-MST/sdl-RGH, k=2), dl=10

smddl-OTTC, dl=10
kIT(smddl-OTTC, k=2), dl=10

Figure 11.18: Spanning-subgraph and Steiner subgraph algorithms (Steiner points).



282
Chapter 11. Overlay construction techniques:

Connected subgraph algorithms

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

k
IT

(s
d
l-

M
S

T
,k

)

k
IT

(s
d
l-

S
P

T
,k

)

k
IT

(s
m

d
d
l-

O
T

T
C

,k
)

k
IT

(s
d
l-

R
G

H
,k

)

d
ia

m
e
te

r 
(s

e
c
.)

k
IC

T
(s

d
l-

M
S

T
/s

m
d
d
l-

O
T

T
C

,k
)

k
IC

T
(s

d
l-

M
S

T
/s

d
l-

R
G

H
,k

)

k
P

C
T

(s
d
l-

M
S

T
/s

m
d
d
l-

O
T

T
C

,k
)

k
P

C
T

(s
d
l-

M
S

T
/s

d
l-

R
G

H
,k

)

k
L

L
(s

d
l-

M
S

T
,k

)

k
L

L
(s

m
d
d
l-

O
T

T
C

,k
)

k
D

L
(s

d
l-

M
S

T
,k

)

k
D

L
(s

m
d
d
l-

O
T

T
C

,k
)

s
-k

B
L

(k
)

s
-a

C
L

O
(k

)

s
d
l-

A
C

L
O

(k
)

 0
 0.04

 0.08
 0.12

 0.16
 0.2

p
a
ir

-w
is

e
 (

s
e
c
.)

 0

 10

 20

 30

to
ta

l 
c
o

s
t

 0
 100
 200
 300
 400
 500

e
d

g
e
 c

o
u

n
t

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

e
x

e
c
. 

ti
m

e
 (

s
e
c
.) k=1

k=2
k=3
k=4

k=2
k=3
k=4

k=10
k=20
k=40
k=80

k=0
k=1
k=2
k=3
k=4
k=5

Figure 11.19: Comparison of all tree and mesh algorithms.
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of the input algorihtms. Steiner-subgraph sdl-aCLO differs from spanning-subgraph dl-aCLO

in that all the core nodes in the sdl-aCLO are Steiner points. We observe similar trends for the

average pair-wise distance (seconds).

When we analyze the total cost of the overlays it is clear that the mesh algorithms build more

costly overlays compared to the tree construction algorithms. The enhanced-tree algorithms

only slightly increase the total cost of the overlays, due to the rather small k used (maximum

80). The edge pruning algorithms s-kBL and sdl-aCLO also yield a reasonable total cost. We

see that the interleaved tree algorithms kIT(sdl-MST,k) and kIT(sdl-SPT,k) construct overlays

with a low total cost. However, this is due to the fact that sdl-MST and sdl-SPT often fail to

construct degree-limited trees in sparse graphs [130].

The edge count is the number of links in an overlay, and the plots confirm this observation.

We see that the edge-count for the kIT(sdl-MST,2) and kIT(sdl-SPT,2) overlays are much lower

than the remaining interleaved trees algorithms. The edge pruning algorithm s-aCLO clearly

adds too many edges to the overlay. For the interleaved-trees algorithms we can see that the

edge-count increases in certain intervals for each k increase. The degree-unlimited algorithms

merge a new full tree for each round, whereas, the degree-limited algorithms are not able to

construct a full spanning tree for each round, in particular when k > 2.

The execution time shows that the degree-limited interleaved-tree algorithms struggle to find

trees when the k increases. The kDL algorithm is quite time-consuming when k > 40; however,

our implementation may be sub-optimal for kDL. The fastest algorithms are the edge-pruning

algorithms, which are barely visible in the graphs.

11.3.5 Results with varying group sizes

We saw in section 11.2 from the spanning-subgraph algorithms that the group size may influence

the performance of an overlay construction algorithm. In figure 11.20 and 11.21, we plot the

diameter, total cost, and overlay edge count for selected algorithms with group sizes between

10 and 150. We include selected results from the interleaved- and enhanced-trees algorithms

using the tree algorithms sdl-MST, sdl-RGH and mddl-OTTC as input.

The diameter achieved is plotted in figure 11.20(a). We observe that among the plotted

subgraph-variations the diameter varies between 0.4 and 0.5 seconds. The variation kICT(sdl-

MST/sdl-RGH,2) produces the subgraph with lowest diameter, actually slightly under 0.4 sec-

onds. The randomized bounded-diameter sdl-RGH and the sdl-MST match particularly well for

producing low-diameter overlays. This is surprising, since the remaining sdl-RGH variations

produce rather high diameters. It is probably because the randomized edge-selection in sdl-

RGH picks vastly different edges than dl-MST, enabling the combination to complete 2 overlay

constructions using the low degree-limit of 5. The kDL(smddl-OTTC,80) performs second

best, and is a good alternative for producing low-diameter subgraphs. Further, wee see that the
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Figure 11.20: Selected overlay construction algorithms (diameter (seconds and hop-count)).
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Figure 11.21: Selected overlay construction algorithms (total cost and edge-count).
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reduction in the diameter between smddl-OTTC and kIT(smddl-OTTC,2), is very small. The

reamining subgraph construction algorithms combined with smddl-OTTC produce very similar

diameter (just above 0.4 seconds). sdl-MST is not plotted but produces a diameter which is

around 50 % higher than kIT(sdl-MST,2).

The hop-diameter achieved by the algorithms is plotted in figure 11.20(b). Only a few

selected subgraph algorithms are plotted, because they all produce very similar hop-diameter.

The hop-diameter reduction between sdl-RGH and kIT(sdl-RGH,2) is about 25 % (similarly for

smddl-OTTC). It is the kICT(sdl-MST/smddl-OTTC,2) that construct overlays with the lowest

hop-diameter, with the remaining variations within firing range. Overall, the hop-diameter stays

between 6-9 for group-sizes up to 150, which must be considered good for degree-limited

subgraph algorithms.

For the total cost plot in figure 11.21(b) wee see that the enhanced-trees algorithm KLL

constructs the most expensive overlays. kIT(smddl-OTTC,2) build overlays that are slightly

more expensive than kCIT(sdl-MST/sdl-RGH,2). The kDL(smddl-OTTC,80) is not able to add

80 links to each overlay, therefore its total cost is lower than expected. Not surprisingly, the

trees constructed by sdl-MST and smddl-OTTC are the cheapest.

The edge count in figure 11.21(a) confirms that kDL(mddl-OTTC,80) fails to add 80 links,

due to the degree-limitation, but rather only manages to add about 15 links before it gives up.

kDL(dl-MST, 80), on the other hand, has a much higher success rate in adding links. Close-

to-minimum diameter trees are more star shaped (leafy trees), where inner nodes have a high

degree. Therefore, kDL struggles to add edges to the diameter path because the degree capacity

quickly gets exhausted.

11.3.6 Discussions on spanning- and Steiner-subgraph results

Chapter 10.3 discussed and compared spanning-tree algorithms and Steiner-tree algorithms,

and found that the added Steiner points in the input graph are important for degree-limited

algorithms that aim for a low diameter. The added degree capacity in the input graph, helps the

degree-limited algorithms to find alternative paths to the member-nodes (targets).

A very similar trend was observed among the evaluated spanning- and Steiner-subgraph

algorithms. In this case the trend is also that the added Steiner-points, combined with the

Steiner-tree spanning-heuristic smddl-OTTC, minimize the advantage of adding extra edges to

reduce the diameter further. The penalty of the added Steiner-points is a slightly increasing hop-

diameter. The tree-structures have a higher hop-diameter than the Steiner-subgraph algorithms;

however, the difference stays within a couple of hops. The major advantage of tree-structures

over cyclic subgraphs is the low cost of trees, which is important in todays bandwidth limited

Internet.
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Similar to table 11.4, table 11.7 also illustrates our subjective opinions on how to configure

some selected mesh algorithms with the optimal k value. For each target metric an optimal k

value is listed. These are averaged into the proposed k, which is what we consider the better

way to configure the mesh algorithm. However, unlike table 11.4, we here list configurations

when the degree-limit is 10. We choose the same low k-values for the the mesh algorithm

combinations with smddl-OTTC and sdl-SPT, and also the sdl-MST combinations, which uses

a higher k-values. The difference between sdl-MST, sdl-SPT and smddl-OTTC mesh algorithm

combinations is reduced significantly with these configurations. However, the enhanced tree

algorithm kDL is able to add more edges to the tree when the degree-limit is 10. Therefore, we

choose a larger k-value of 20.
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Mesh Tree k-range

smddl-OTTC [1,4] 1 2 2 1

kIT sdl-SPT [1,4] 1 2 2 1

sdl-MST [1,4] 1 3 3 2

smddl-OTTC [0,80] 0 40 40 20

kDL sdl-SPT [0,80] 0 40 40 20

sdl-MST [0,80] 0 80 80 40

smddl-OTTC [0,80] 0 40 40 20

kLL sdl-SPT [0,80] 0 40 40 20

sdl-MST [0,80] 0 80 80 40

kBL [1,5] 1 5 5 3

dl-aCLO [0,5] 0 4 4 2

Table 11.7: Proposed k-configurations for a few selected algorithms, with degree-limit 10.

11.4 Summary of the main points

We have compared a range of tree and mesh construction algorithms, and evaluated their ap-

plicability to distributed interactive applications. Our investigation focused on quickly con-

structing overlays with a low diameter and pair-wise distance. The results revealed that tree

structures are cheaper than meshes and also yield a competetive diameter when diameter reduc-

ing tree heuristics are used. However, with a fairly limited number of added links, a tree may

be optimized to be quite a lot better, especially for algorithms such as the MST.

We also compared spanning-subgraph and Steiner-subgraph algorithms, and found that

Steiner-points are important for both tree and subgraph algorithms to reduce the diameter. How-

ever, from figure 11.15 we observed that a doubled degree-limit from 5 to 10 helps reduce the

diameter the most. When the degree-limit is the same, it is the Steiner-points that reduce the
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diameter the most. And, generally, when Steiner-points are available, an increased number of

edges does reduce the diameter even more.

From these observations, we deduce that the following 3 properties are important for a

diameter-reducing heuristic, to enable it to find a subgraph of a lower diameter (most important

first):

1. A high degree-limit helps reduce the diameter signficantly compared to a low degree-

limit.

2. Having centrally located Steiner points is important to reduce the diameter even more,

especially when the degree-limits are in the low range.

3. Adding more edges to a subgraph does in effect reduce the average pair-wise latency, but

does not automatically reduce the diameter.



Chapter 12

Overlay construction techniques:

Dynamic tree algorithms

The overlay network management from section 5.4 includes overlay construction techniques

whose task is to construct low-latency overlay networks for distribution of time-dependent

events. In that respect, we continue our evaluation of overlay construction techniques and eval-

uate dynamic tree algorithms. By doing this we address a goal of the thesis:

3) Identify techniques that find Internet paths with low pair-wise latencies among clients in a

group, and configure them for event-distribution of real-time client interaction.

Enabling clients to join and leave ongoing sessions of real-time interaction is also a goal of the

thesis, and dynamic tree algorithms address such client dynamicity. A dynamic tree algorithm

belongs to the class of dynamic tree problems, as introduced in section 4.7. Generally, dynamic

tree algorithms support incoming requests of these two types:

Insert node m to the tree T , such that m can communicate with the nodes in VT .

Remove node m from the tree T , such that the nodes in VT can still communicate.

Based on these two request types (insert and remove) we identify that each dynamic algorithm

is comprised of one insert and one remove strategy. Algorithm 38 shows a generic dynamic tree

algorithm, in which an incoming insert or remove request is handled by different strategies.

Algorithm 38 GENERIC-DYNAMIC-TREE-ALGORITHM
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , and a request ρ
Out: Updated tree TZ = (VT , ET )

1: if ρ = {remove, m} then

2: REMOVE-TREE-NODE-ALGORITHM(G,TZ,m)
3: else if ρ = {inser t, m} then

4: INSERT-TREE-NODE-ALGORITHM(G,TZ,m)

5: end if

289
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The chapter introduces many insert and remove strategies that are paired as dynamic-tree

algorithms. The strategies include approaches that optimize towards minimum-cost, minimum-

radius (shortest-path) and minimum-diameter trees. We evaluate all combinations of insert and

remove strategies through group communication simulations, in which dynamic tree algorithms

are used to update the overlay networks that are used for event distribution. From the results

we found that selected dynamic tree algorithms are able to construct trees with a low diame-

ter, comparable to those obtained from Steiner-tree algorithms that recompute the entire tree

for each insert and remove. However, the dynamic tree algorithms are in general not able to

maintain trees with a low diameter for larger group sizes. The main advantages of dynamic

tree algorithms are the increased tree stability and reduced execution time, where the stability

is measured in terms of the number of edges that change across reconfigurations.

The rest of the chapter is organized in the following manner. Section 12.1 introduces some

existing dynamic tree algorthm types in the literature. Section 12.2 introduces basic algorithms

that are the components in many of the evaluated dynamic tree algorithms. Section 12.3 presents

the insert and remove strategies that are evaluated. Section 12.4 presents and discusses the re-

sults when the dynamic tree algorithms are used in group communication simulations. Sec-

tion 12.5 gives a brief summary of the main points.

12.1 Dynamic tree algorithm types

Following are some brief and basic introductions to minimum-cost, minimum-diameter and

shortest-path dynamic tree algorithms.

12.1.1 Minimum-cost dynamic tree algorithms

A minimum-cost tree is the tree of least cost on an input graph that, for Steiner-trees, span

all member-nodes, and spanning-trees, span all nodes (chapter 10 and 9). Bharath-Kumar and

Jaffe [18] (probably) proposed the first minimum-cost dynamic tree algorithm for an insert-

only scenario (removal is not allowed). Later on, Waxman and Imase [140] proposed a similar

minimum-cost dynamic tree algorithm that allowed insert and remove. The algorithm was

called Greedy (algorithm 39). Given a request to insert node m to T , Greedy adds m through

the minimum-cost edge to a node in VT . Upon a remove request of node m from T , Greedy only

removes m if it is a leaf node, and prunes leaf non-member-nodes. The Greedy algorithm was

also studied by Faloutsos [44] on directed graphs.

Waxman and Imase have also proposed an algorithm called Edge Bounded Algorithm (EBA).

EBA works as Greedy when node m is inserted to TZ . In addition, EBA finds the maximum-

cost edge (u, v) in TZ between the two subtrees connected by (u, v). EBA, then checks whether

there is an edge (u′, v′) that is a constant factor B cheaper than (u, v). A remove request re-
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moves m if the degree < 3, and also ensures that non-member nodes in TZ have a degree >

2. The insert strategy of EBA addresses the minimum-reconfiguration dynamic tree problem in

definitions 59 and 63, while the remove strategy does not. Hence, the dynamic-tree algorithm

actually addresses the reconfigurable dynamic tree problem in definition 58 and 62.

Algorithm 39 GREEDY-DYNAMIC-TREE-ALGORITHM
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , and a request ρ
Out: Updated tree TZ = (VT , ET )

1: if ρ = {remove, m} then

2: Remove m from Z if it is a leaf
3: Remove leaf non-member-nodes v /∈ Z

4: else if ρ = {inser t, m} then

5: add m to TZ through the minimum-cost edge to a node v ∈ VT

6: end if

12.1.2 Minimum-diameter dynamic tree algorithms

A minimum-diameter tree is the tree of minimum diameter on an input graph that, for Steiner-

trees, span all member-nodes, and spanning-trees, span all nodes (chapter 10 and 9). Bharath-

Kumar and Jaffe [18] analyzed the problem of minimizing the average pair-wise tree latency in

a dynamic tree scenario. The average pair-wise latency is the sum of all shortest paths among

the member-nodes in a tree, divided by the number of member-nodes. Minimum-diameter

dynamic tree algorithms have also been addressed in the literature [125]. A common minimum-

diameter dynamic tree algorithm is to insert a node m to TZ through the path that minimizes the

eccentricity of m in TZ (see algorithm 40). The eccentricity of a node m in a graph structure is

the length of its longest shortest path to a destination node. While, remove requests are similarly

handled as in the Greedy (minimum-cost) dynamic tree algorithm (section 12.1.1).

Algorithm 40 MINIMUM-ECCENTRICITY-DYNAMIC-TREE-ALGORITHM
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , and a request ρ
Out: Updated tree TZ = (VT , ET )

1: if ρ = {remove, m} then

2: Remove m from Z if it is a leaf
3: Remove leaf non-member-nodes v /∈ Z

4: else if ρ = {inser t, m} then

5: find node v ∈ VT that (upon a connect) minimizes the eccentricity of m

6: connect m to v ∈ VT through the shortest-path, and add to TZ .

7: end if

12.1.3 Shortest-path dynamic tree algorithms

A shortest-path tree is the tree on an input graph that has shortest paths from a source s to

a number p of destinations. A Naive shortest-path dynamic tree algorithm was studied by
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Faloutsos [44]. The Naive dynamic tree algorithm finds for each new destination m the shortest

path from the source s ∈ VT to the destination, and adds to the multicast tree TZ the part of the

path that is not already in the tree (see algorithm 41). Naive then executes a request to remove

node m, which is similar to the Greedy (minimum-cost) dynamic tree algorithm (section 12.1.1).

Algorithm 41 NAIVE-DYNAMIC-TREE-ALGORITHM
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a source-node s ∈ Z , and a request ρ
Out: Updated tree TZ = (VT , ET )

1: if ρ = {remove, m} then

2: Remove m from Z if it is a leaf
3: Remove leaf non-member-nodes v /∈ Z

4: else if ρ = {inser t, m} then

5: find shortest path from m to source-node s ∈ Z

6: connect m to s ∈ Z through the shortest-path, and add to TZ .

7: end if

12.2 Components of the dynamic tree algorithms

The following introduces a number of algorithms that are applied by the evaluated centralized

dynamic tree algorithms introdued later in section 12.3. The dynamic tree algorithms presented

there consist of insert and remove strategies that are both spanning-tree and Steiner-tree strate-

gies (section 4.7). One insert strategy and one remove strategy are paired to one dynamic tree

algorithm.

12.2.1 Strategies for identifying sub-trees for reconfiguration

There are insert and remove strategies that reconfigure parts of the tree upon execution. Several

approaches for tree-reconfiguration exist, where a general approach is to identify a part of the

existing tree (a sub-tree). This sub-tree is reconfigured based on some strategy that disconnects

the tree and then reconnects the sub-trees such that the tree is again connected. Reconnecting

the sub-trees is identical to the Group Steiner-tree problem as described by definition 55 in

section 4.6.

Two specific strategies are presented for identifying sub-trees in an existing tree TZ . The

k-Neighbor-Spanning-Subtree algorithm is given as input a tree TZ , a source-node s ∈ VT , and

an integer k ≥ 0 that determines how deep into the tree (or how large) the identified sub-tree

should be. The algorithm starts from the source node s, where s may be the node to remove.

From the source node s the sub-tree is identified by traversing k nodes along each of its out-

edges in TZ . The k-Neighbor-Steiner-Subtree is identical, except it traverses k member-nodes

along each of the out-edges from s ∈ VT .
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Algorithms 42 and 43 presents the pseudo-code of k-Neighbor-Spanning-Subtree and k-

Neighbor-Steiner-Subtree (respectively). The main difference between the two is that k-Neighbor-

Steiner-Subtree is aware of the member-nodes (and Steiner points).

Algorithm 42 k-NEIGHBOR-SPANNING-SUBTREE
In: A graph G, tree T = (VT , ET ), k ≥ 0, and a source-node s ∈ VT

Out: A sub-tree T ′ = (V ′, E′)

1: traverse k nodes v ∈ VT along each out-edge from s ∈ VT

2: include every intercepted edge to T ′

Algorithm 43 k-NEIGHBOR-STEINER-SUBTREE
In: A graph G, tree TZ = (VT , ET), k ≥ 0, a set of members Z ⊆ VT , and a source-node s ∈ VT a request ρ, and a

cost function cost → R

Out: A sub-tree T ′ = (V ′, E′)

1: traverse k member-nodes z ∈ Z along each out-edge from s ∈ VT

2: include every intercepted edge to T ′

12.2.2 Disconnect and reconnect trees

The sub-tree T ′ = (V ′, E′) identified by, for example, k-Neighbor-Spanning-Subtree, is used

further by some insert and remove strategies to reconfigure the tree TZ . The tree TZ is typically

disconnected TZ = TZ − T ′ and then reconnected by reconnecting the |V ′| sub-trees to one tree

TZ , including or excluding m. The algorithms for reconnecting sub-trees belong to the Group

Steiner-tree problem (definition 55).

Algorithm 44 gives a generic algorithm for reconnecting a disconnected tree that contains

subsets of vertices, which are the connected sub-trees. The sub-trees are reconnected through

single edges that are chosen based on some optimization goal.

Algorithm 44 GENERIC-RECONNECT-TREE-ALGORITHM
In: G = (V, E, c), a disconnected tree TZ = (VT , ET ), k connected sub-trees (groups) g1 . . . gk ∈ VT .
Out: Connected tree TZ = (VT , ET )

1: Ensure each group gi is a connected sub-tree with no overlapping edges
2: G = ;

3: for each group gi do

4: find and connect to a group g j /∈ G based on some optimization goal
5: G ∪ {gi , g j}

6: end for

12.2.3 Group Steiner-tree heuristics

The dynamic tree algorithms that disconnect the group trees during tree-updates may apply

Group Steiner-tree heuristics. Among our evaluated dynamic tree algorithms there are strategies

that apply heuristics for reconnecting sub-trees optimized for minimum-cost and -diameter.
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Algorithm 45 presents the O(n3) mddl-ReconnectTree for reconnecting sub-trees, which

aims to achieve a low diameter of the reconnected tree. The algorithm iterates through the sub-

trees gi and chooses the vertex u ∈ Vgi
, which was a neighbor of the removed node m. Then,

for each other group g j find the node v ∈ Vg j
that minimizes the function:

f (v) = MAX{(eccent rici t y(v, Vg j
) +weight(v, u)), eccent rici t y(u, Vgi

)}

where eccent rici t y(v, Vg j
) is the eccentricity of v ∈ Vg j

, weight(u, v) is the weight of the edge

to connect sub-trees gi and g j , and eccent rici t y(u, Vgi
) is the current eccentricity of u ∈ Vgi

.

The mddl-ReconnectTree does |Vg j
| depth-first searches to retrieve the eccent rici t y(v, Vg j

).

Therefore, it may prove time-consuming if the number of groups k is close to the number of

tree-vertices |VT |.

For the minimum-cost heuristicmc-ReconnectTree the function to minimize is simply f (v) =

{weight(v, u)}, that is, the minimum-cost edges. The minimum-cost Group Steiner-tree heuris-

tic is less time-consuming, and performs a O(n2) to find the minimum-cost edge to connect

groups gi and g j .

Generally, a minimum-cost goal is easier to solve than a minimum-diameter goal. This is

also the case for the Group Steiner-tree problem, and the reason why mddl-ReconnectTree is

more time-consuming. It is upon a remove request of a node with a degree > 2 that these

heuristics are natural to apply.

12.3 Evaluated dynamic tree algorithms

The following introduces a number of centralized dynamic tree algorithms that are evaluated

through simulations and experiments in section 12.4. The dynamic tree algorithms presented

here consist of insert and remove strategies that are both spanning-tree and Steiner-tree strate-

gies (section 4.7). However, we do not explicitly distinguish between the two types in the

presentation of the evaluated strategies. Rather, we observe the effects in the simulation studies

in section 12.4.

A dynamic tree algorithms consists of one insert strategy and one remove strategy. Algo-

rithmically, the dynamic tree algorithm works as such:

Dynamic-Tree-Algorithm(RD , ID) (DA) takes as input an insert strategy ID and a remove

strategy RD , and a request ρ. Furthermore, a global undirected weighted graph G = (V, E, c),

where V is the set of vertices (n = |V |), E is the set of edges, c : E→ R is the edge cost function.

Moreover, a group-tree TZ = (VT , ET ), where VT ⊂ V , and ET ⊂ E In addition, there is a set of

member-nodes Z ⊂ VT . DA executes ID upon an insert request, andRD upon a remove request

(algorithm 46), and updates the group-tree TZ accordingly.
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Algorithm 45 MDDL/MC-RECONNECT-TREE
In: G = (V, E, c), a disconnected tree TZ = (VT , ET ), k subsets of vertices, which are connected sub-trees (groups)

g1 . . . gk ∈ VT .
Out: Connected tree TZ = (VT , ET ).

1: Ensure each group gi is a connected sub-tree with no overlapping edges
2: Start:
3: for each gi , i ≤ k do

4: find a vertex u ∈ Vgi
adjacent to m {m is the node that was removed}

5: for each g j , j 6= i do

6: find the node v ∈ Vg j
that minimizes:

f (v)=MAX{eccentricity(v, Vg j
) + weight(v,u), eccentricity(u, Vgi

)} {MDDL-RECONNECT}
OR
f (v) = {weight(v,u)} {MC-RECONNECT}

7: end for

8: end for

9: if found degree-limited edge(u,v) then
10: add edge(u,v) to TZ

11: gi ∪ {gi , g j}

12: remove g j from groups
13: else

14: relaxDegree(VT)
15: end if

16: if tree TZ is not connected then

17: goto Start

18: end if

Algorithm 46 DYNAMIC-TREE-ALGORITHM
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a request ρ, one insert strategy ID and one

remove strategyRD}.
Out: Updated tree TZ = (VT , ET )

1: if ρ = {remove, m} then

2: RD(G,TZ ,m)
3: else if ρ = {inser t, m} then

4: ID(G,TZ ,m)

5: end if

Table 12.1 provides a quick overview of abbreviations and features. An algorithm is non-

member node aware if it is able to insert or remove non-member nodes from a group tree.

The reconfiguration set R contains the edges that are changed between reconfigurations of a

group tree. Furthermore, the time complexity (in big-oh notation) is the worst-case number

of computational steps of an algorithm. Following is an introduction of the insert and remove

strategies both formally and informally.
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12.3.1 Insert strategies

An insert strategy ID inserts a new member m into the group tree and assures that m can

communicate with the remaining member nodes [133]. Formally, an insert strategy works like

this:

Given G = (V, E, c), a tree T = (VT , ET ), a set of members ZT ⊆ VT , and a new member m ∈ V .

Update T , such that ZT ∪ {m} are connected.

The new member m may be inserted into T in many different manners. We have devised several

insert strategies that bound the size of the reconfiguration set R. It is possible to add m to T

through a single edge, while other strategies use the degree limit as a bound. Algorithm 47

illustrates a generic insert strategy.

Algorithm 47 GENERIC-INSERT-TREE-ALGORITHM
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a new member m

Out: Updated tree TZ = (VT , ET )

1: Find a tree node v ∈ VT optimizing some cost function

2: connect m to TZ through edge(m ,v)

Insert strategies considering the minimum-cost

The evaluated 8 insert strategies that consider the cost of a tree tries to include the node m such

that the tree’s total cost is kept low.

I-MC (minimum cost) includes the joining member m to the tree, through the minimum-cost

edge. I-MC is a O(n) algorithm and is the most common insert strategy in the literature.

Algorithm 48 INSERT-MINIMUM-COST
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a new member m

Out: Updated tree TZ = (VT , ET )

1: Find a tree node v ∈ VT with minimum-cost edge to m

2: connect m to TZ through edge(m ,v)

ITR-MC (try reconfiguration, minimum-cost) first finds the minimum-cost edge from m to a

node in the tree, e = (m, v). Then, ITR-MC checks three different choices of reconfigurations

(see figure 12.1):

1) Add m to the tree through the minimum-cost edge e = (m, v).

2) Use m as the new intersection vertex for the neighbors of the minimum-cost target node v.

3) Find a well-placed core-node c with k-Median using {m, v, neighbor(v)} as the member

node set, and then use c as the new intersection point for this member-node set.

ITR-MC chooses the reconfiguration that reduces the total cost the most. ITR-MC is a O(n2)

algorithm, and is a contribution of the thesis.
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Figure 12.1: ITR-MC configuration options when m is joining.

Algorithm 49 INSERT-TRY-RECONFIGURATION-MINIMUM-COST
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a new member m

Out: Updated tree TZ = (VT , ET )

1: find v ∈ V with minimum-cost edge to m

2: T ′ = k-Neighbor-Spanning-Subtree(TZ, v, k = 1)
3: c = k-Median(k=1, V ′(T ′)

{insert neighbors of v in TZ , pluss v, c, and m to VN }
4: VN = v + c + V ′(T ′)

{Compare: use one node VN as intersection for all member-nodes in VN .}
5: find node s ∈ VN for which the sum of edge weights to all member-nodes z ∈ VN is the minimum
6: TZ = TZ - T ′

7: reconnect TZ using s as intersection.

Insert strategies considering the diameter

We consider 4 insert strategies that aim to keep the diameter low upon inserting a new member-

node.

I-MDDL (minimum diameter degree limited) includes the new member-node m to the tree,

such that it achieves the minimum eccentricity (see algorithm 50). I-MDDL is a O(n2) algo-

rithm and uses |VT | depth-first searches to find the tree-node v ∈ VT that m can connect to, such

that its eccentricity is minimized.

Algorithm 50 INSERT-MINIMUM-DIAMETER-DL
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a new member m

Out: Updated tree TZ = (VT , ET )

1: Find an edge to a tree node v ∈ VT such that the eccentricity of m is minimized

2: connect m to TZ through edge(m ,v)

I-CN (center node) makes each group elect a center node among the nodes in the current tree.

Upon election, the center node has the smallest eccentricity related to the member nodes, and

has not reached the degree limit. A new node m is (always) connected to it. Whenever the

current center node has exhausted its degree limitation, a new one is elected (see algorithm 51).
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I-CN’s center-election is a O(n2) procedure, which applies |VT | depth-first searches to get the

node with the smallest eccentricity. The node with the smallest eccentricity is by definition 11,

the center vertex of a graph. If the center-node has already been elected, I-CN is a O(1) algo-

rithm.

Algorithm 51 INSERT-CENTER-NODE
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a new member m , a center-node c

Out: Updated tree TZ = (VT , ET )

1: if c /∈ VT or degTZ
(c)≥ deg(c) then

2: c = getNodeWithSmallestEccentricity(TZ) {elect new center-node}
3: end if

4: connect m to TZ through edge(m ,c)

IBD-MC (bounded diameter, minimum cost) inserts a new member-node m to the tree, through

a low-cost edge such that the eccentricity of m is lower than a given diameter bound (see algo-

rithm 52). IBD-MC is a O(n2) algorithm that first applies |VT | depth-first searches to retrieve

the eccentricities of all nodes v ∈ VT , then a O(n) procedure connects m to TZ through the

least cost edge that does not violate a given diameter bound B. If it is not possible, a dynamic

relaxation procedure relaxes the diameter bound B until m can be connected.

Algorithm 52 INSERT-BOUNDED-DIAMETER-MINIMUM-COST
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a new member m, and a diameter bound B ∈ R

Out: Updated tree TZ = (VT , ET )

1: Find a tree node v ∈ VT , such that it is the least cost-edge that makes the eccentricity of m ≤ to B

2: connect m to TZ through edge(m ,v)

ITR-MDDL (try reconfiguration, minimum diameter degree limited) first finds the minimum-

eccentricity edge for m to a node in the tree, e = (m, v). Then, ITR-MDDL checks three

different choices of reconfigurations:

1) Add m to the tree through the minimum-eccentricity edge e = (m, v).

2) Use m as the new intersection for the neighbors of the min-eccentricity connect node v.

3) Find a well-placed core-node c with k-Median using {m, v, neighbor(v)} as the member

node set, and then use c as the new intersection point for this member-node set.

ITR-MDDL is a O(n2) algorithm that uses |VT | depth-first searches to retrieve the eccentricites

of all nodes v ∈ VT , then it tries the three combinations and chooses the reconfiguration that

reduces the diameter the most. ITR-MDDL is a contribution of the thesis.
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Algorithm 53 INSERT-TRY-RECONFIGURATION-MDDL
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a new member m

Out: Updated tree TZ = (VT , ET )

1: find v ∈ V with minimum-eccentricity edge to m

2: T ′ = k-Neighbor-Spanning-Subtree(TZ, v, k = 1)
3: c = k-Median(k=1, V ′(T ′)

{insert neighbors of v in TZ , pluss v, c, and m to VN }
4: VN = v + c + V ′(T ′)

{Compare: use one node VN as intersection for all member-nodes in VN .}
5: find node s ∈ VN , such that when s is used to interconnect the member-nodes z ∈ VN the diameter of TZ is the

minimum
6: TZ = TZ - T ′

7: reconnect TZ using s as intersection.

Insert strategies considering the radius

We consider 2 insert strategies that consider the radius upon inserting a new member-node. The

strategies also reduce the diameter because of this.

I-MRDL (minimum radius degree limited) finds the node s in the tree that has the small-

est eccentricity and an available degree capacity, and then connects m to the tree through the

shortest-path to s (see algorithm 54). I-MRDL is a O(n2) algorithm and applies |VT | depth-first

searches to find the least eccentricity node.

Algorithm 54 INSERT-MINIMUM-RADIUS-DL
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a new member m

Out: Updated tree TZ = (VT , ET )

1: Find the node s ∈ VT with the smallest eccentricity and degTZ
(s) < deg(s).

2: connect m to TZ through edge(m ,s)

IBR-MC (bounded radius, minimum cost) finds the node s in the tree that has the smallest

eccentricity. Then it connects m to the tree through the lowest cost edge that does not violate

a radius bound to s (see algorithm 55). IBR-MC is a O(n2) algorithm that first applies |VT |

depth-first searches to retrieve the node s with the smallest eccentricity of all the nodes v ∈ VT .

Then a O(n) procedure connects m to TZ , as mentioned, through the least cost edge while not

violating the radius bound R to s. If it is not possible, a dynamic relaxation procedure relaxes

the radius bound R until m can be connected.

Algorithm 55 INSERT-BOUNDED-RADIUS-MINIMUM-COST
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a new member m, and a radius bound R ∈ R

Out: Updated tree TZ = (VT , ET )

1: Find the node s ∈ VT with the smallest eccentricity
2: Find the least cost-edge to a node v ∈ VT , such that the distance(m,s) is ≤ to R.

3: connect m to TZ through edge(m ,v)
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12.3.2 Remove strategies

A remove strategy RD removes a member m from the multicast tree and assures that the group

members are reconnected. Formally, a remove strategy works like this:

Given G = (V, E, c), a tree T = (VT , ET ), a set of members ZT ⊆ VT , and a member m ∈ V .

Update T , such that ZT \ {m} are connected.

The number of direct neighbor nodes of m (its degree) in T influences the necessary actions.

If the degree dT (m) = 1, m is a leaf, which is simply removed along with the edge to its only

neighbor. If it is greater than 1, a removal of m partitions the group if no additional steps are

taken, and dT (m) unconnected subtrees is the result. The neighbors of the leaving node are

connected directly in the simple case dT (m) = 2. The basic goal of remove strategies is the

reconnection of subtrees into a single tree when dT (m) > 2. Algorithm 56 illustrates a generic

remove strategy.

Algorithm 56 GENERIC-REMOVE-TREE-ALGORITHM
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a leaving member m

Out: Updated tree TZ = (VT , ET )

1: disconnect m from tree TZ

2: if disconnected tree TZ then

3: reconnect subtrees optimizing some cost function

4: end if

Remove strategies considering the minimum-cost

We consider 11 remove strategies that try to keep the total cost of a tree low after servicing a

remove request.

RK (keep) does not actually remove the leaving node m from the tree but requires it to forward

traffic (as a non-member node), until its degree has dropped to 2. RK is a O(1) algorithm, and

is most commonly used in the literature today. The authors have previously shown that it can

degrade for larger groups [60].

Algorithm 57 REMOVE-KEEP
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a leaving member m

Out: Updated tree TZ = (VT , ET )

1: Remove m from Z if it is a leaf

2: Remove leaf non-member-nodes v /∈ Z

R-MC (minimum-cost) removes the node m and reconnects the sub-trees using the immediate

neighbors of m, through minimum-cost edges. For this, it uses the mc-ReconnectTree Group

Steiner-tree heuristic. However, if R-MC is unable to reconnect the sub-trees due to exhausted
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Figure 12.2: RTR-MC configuration options when m is leaving.

degree-limits, R-MC then leaves m in the tree as a non-member-node. R-MC is a O(n3) al-

gorithm due to the complexity of mc-ReconnecTree. However n = |V ′|, where V ′ are the

neighbors of m. Therefore, the current degree-limit bounds the number of neighbors, and thus

the complexity of R-MC.

Algorithm 58 REMOVE-MINIMUM-COST
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a leaving member m

Out: Updated tree TZ = (VT , ET )

1: T ′ = k-Neighbor-Spanning-Subtree(TZ, m, k = 1)
2: ET \ E′ and Z \ {m}

3: if feasible to reconnect tree using V ′ then

4: mc-ReconnectTree(TZ, V ′)

5: end if

RS-MC (search minimum-cost) is identical to R-MC, except that it does not limit the recon-

nection points to the immediate neighbors of m. Rather, the sub-trees may be reconnected using

any node in the neighbor sub-trees. RS-MC is a O(n3) algorithm due to the complexity of mc-

ReconnecTree, were n = |VT |, and VT are all the nodes in the tree, except the removed node m.

Therefore, RS-MC is more time-consuming than its simpler (previous) version R-MC.

Algorithm 59 REMOVE-SEARCH-MINIMUM-COST
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a leaving member m

Out: Updated tree TZ = (VT , ET )

1: T ′(V ′, E′) = k-Neighbor-Spanning-Subtree(TZ, m, k = 1)
2: ET \ E′ and Z \ {m}

3: if feasible to reconnect tree using VT then

4: mc-ReconnectTree(TZ, VT )

5: end if
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RTR-MC (try reconfiguration, minimum-cost) is similar to ITR-MC, and also checks three

different choices of reconfigurations (see figure 12.2):

1) Leave m in the tree.

2) Use a neighbor of m as the new intersection vertex for all m’s neighbors.

3) Find a well-placed core-node c with k-Median using {neighbor(m)} as the member node

set, and then use c as the new intersection point for this member-node set.

RTR-MC chooses the reconfiguration that reduces the total cost the most. RTR-MC is a O(n2)

algorithm, and is a contribution of the thesis.

Algorithm 60 REMOVE-TRY-RECONFIGURATION-MINIMUM-COST
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a leaving member m

Out: Updated tree TZ = (VT , ET )

1: T ′ = k-Neighbor-Spanning-Subtree(TZ, m, k = 1)
2: VN = V ′(T ′)−m

3: c = k-Median(k=1,VN)
4: VN = m + c + neighbors(m,TZ)

{Compare: keep m in tree as non-MN, replace m with c, or use v ∈ VN as intersection.}
5: find node s ∈ VN for which the sum of edge weights to all member-nodes z ∈ VN is the minimum
6: TZ = TZ - T ′

7: reconnect TZ using s as intersection.

RTR-P-MC (try reconfiguration, prune, minimum-cost) tries to reduce (prune) the number of

non-member-nodes in the neighborhood of m, and then reconnect in a minimum-cost fashion.

It uses k-Neighbor-Steiner-Subtree(m,TZ ,k = 1) to identify m’s neighborhood with the

member-nodes and non-member-nodes. (The neighbors are found from all member-nodes that

are either directly connected to m or that are only separated by non-members.)

Then, RTR-P-MC calculates the minimum number K of non-member-nodes that are re-

quired to reconnect the sub-trees that are created when disconnecting m. For this, it uses equa-

tion 8.1 (section 8.5.4) to calculate the number of Steiner points.

Then, it chooses K non-member-nodes (Steiner-points) from the neighborhood of m (al-

ready in the tree). If it cannot find K nodes, it uses k-Median to find additional well-placed

core-nodes to use as Steiner-points. When all of this is done, RTR-P-MC removes m, and uses

the mc-ReconnectTree Group Steiner-tree heuristic to reconnect the tree. However, it limits the

reconnection options to be the member-nodes of m and the identified Steiner-points.

RTR-PS-MC (try reconfiguration, prune, search minimum-cost) is identical to RTR-P-MC in

all phases but one. In the reconnection of the sub-trees it does not limit the reconnection options

to the neighbors of m. Rather, RTR-PS-MC applies mc-ReconnectTree to search among every

node in the subtrees to identify low cost edges to reconnect the sub-trees to one.
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Algorithm 61 REMOVE-TRY-RECONFIGURATION-PRUNE-MINIMUM-COST
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a leaving member m

Out: Updated tree TZ = (VT , ET )

1: T ′ = k-Neighbor-Steiner-Subtree(TZ, m, k = 1)
2: K = |V ′|/deg(v′) {use equation 8.1 }
3: if number of non-member nodes in V ′ < K then

4: use k-Median(V ′) to identify more Steiner-points
5: else if number of non-member nodes in V > K then

6: identify K nodes from V ′ using k-Median
7: end if

8: TZ = TZ - T ′

9: mc-ReconnectTree(TZ, V ′)

Algorithm 62 REMOVE-TRY-RECONFIGURATION-PRUNE-SEARCH-MINIMUM-COST
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a leaving member m

Out: Updated tree TZ = (VT , ET )

1: T ′ = k-Neighbor-Steiner-Subtree(TZ, m, k = 1)
2: K = |V ′|/deg(v′) {use equation 8.1 }
3: if number of non-member nodes in V ′ < K then

4: use k-Median(V ′) to identify more Steiner-points
5: else if number of non-member nodes in V > K then

6: identify K nodes from V ′ using k-Median
7: end if

8: TZ = TZ - T ′

9: mc-ReconnectTree(TZ, VT )

Remove strategies considering the diameter

We consider 5 remove strategies that try to keep the diameter of a tree low after servicing a

remove request.

R-MDDL (minimum diameter degree limited edge reconnects) removes the node m and re-

connects the sub-trees through edges that keep the diameter of the tree low. It uses mddl-

ReconnectTree Group Steiner-tree heuristic to reconnect the sub-trees using the immediate

neighbors of m. If R-MDDL is unable to reconnect the sub-trees due to exhausted degree-limits,

R-MDDL then leaves m in the tree as a non-member-node. R-MDDL is a O(n3) algorithm due

to the complexity of mddl-ReconnecTree. However n = |V ′|, where V ′ are the neighbors of m.

Therefore, the current degree-limit bounds the number of neighbors, and thus the complexity of

R-MDDL.

Algorithm 63 REMOVE-MINIMUM-DIAMETER-DEGREE-LIMITED
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a leaving member m

Out: Updated tree TZ = (VT , ET )

1: T ′ = k-Neighbor-Spanning-Subtree(TZ, m, k = 1)
2: ET \ E′ and Z \ {m}

3: if feasible to reconnect tree using V ′ then

4: mddl-ReconnectTree(TZ, V ′)

5: end if



304
Chapter 12. Overlay construction techniques:

Dynamic tree algorithms

RS-MDDL (search for minimum diameter degree limited edges) is identical to R-MDDL,

except that it does not limit the reconnection points to the immediate neighbors of m. Rather,

the sub-trees may be reconnected using any node in the neighbor sub-trees. RS-MDDL is a

O(n3) algorithm due to the complexity of mddl-ReconnecTree, were n= |VT |, and VT are all the

nodes in the tree, except the removed node m. Therefore, RS-MDDL is more time-consuming

than its simpler (previous) version R-MDDL.

Algorithm 64 REMOVE-SEARCH-MINIMUM-DIAMETER-DEGREE-LIMITED
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a leaving member m

Out: Updated tree TZ = (VT , ET )

1: T ′ = k-Neighbor-Spanning-Subtree(TZ, m, k = 1)
2: ET \ E′ and Z \ {m}

3: if feasible to reconnect tree using V ′ then

4: mddl-ReconnectTree(TZ)

5: end if

RTR-MDDL (try reconfiguration, minimum diameter) is similar to ITR-MDDL and RTR-MC,

and also checks three different choices of reconfigurations:

1) Leave m in the tree.

2) Use a neighbor of m as the new intersection vertex for all m’s neighbors.

3) Find a well-placed core-node c with k-Median using {neighbor(m)} as the member node

set, and then use c as the new intersection point for this member-node set.

RTR-MDDL is a O(n2) algorithm that uses |VT | depth-first searches to retrieve the eccentricites

of all nodes v ∈ VT , then it tries the three combinations and chooses the reconfiguration that

reduces the diameter the most. RTR-MDDL is not found in the literature, and is a contribution

of the thesis.

Algorithm 65 REMOVE-TRY-RECONFIGURATION-MINIMUM-DIAMETER-DEGREE-
LIMITED
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a leaving member m

Out: Updated tree TZ = (VT , ET )

1: T ′ = k-Neighbor-Spanning-Subtree(TZ, m, k = 1)
2: VN = V ′(T ′)−m

3: c = k-Median(k=1,VN)
4: VN = m + c + neighbors(m,TZ)

{Compare: keep m in tree as non-MN, replace m with c, or use v ∈ VN as intersection.}
5: find node s ∈ VN that reconnects all member-nodes z ∈ VN , such that the diameter of TZ is the lowest
6: TZ = TZ - T ′

7: reconnect TZ using s as intersection.

RTR-P-MDDL (try reconfiguration, prune, minimum-diameter) tries to reduce (prune) the

number of non-member-nodes in the neighborhood of m, and then reconnect such that the tree

has a low diameter. It is identical to RTR-P-MC, except it uses mddl-ReconnectTree Group
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Steiner-tree heuristic to reconnect the neighbors of m and the identified Steiner-points such

that the tree is connected. RTR-P-MDDL is a O(n3) algorithm due to the complexity of mddl-

ReconnecTree. In RTR-P-MDDL, n = |V ′|, where V ′ are the neighbor nodes of the removed

node m.

Algorithm 66 REMOVE-TRY-RECONFIGURATION-PRUNE-MINIMUM-DIAMETER-
DEGREE-LIMITED
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a leaving member m

Out: Updated tree TZ = (VT , ET )

1: T ′ = k-Neighbor-Steiner-Subtree(TZ, m, k = 1)
2: K = |V ′|/deg(v′) {use equation 8.1 }
3: if number of non-member nodes in V ′ < K then

4: use k-Median(V ′) to identify more Steiner-points
5: else if number of non-member nodes in V > K then

6: identify K nodes from V ′ using k-Median
7: end if

8: TZ = TZ - T ′

9: mddl-ReconnectTree(TZ, V ′)

RTR-PS-MDDL (try reconfiguration, prune, search minimum-diameter) is identical to RTR-

P-MDDL in all phases but one. In the reconnection of the sub-trees it does not limit the recon-

nection options to the neighbors of m, rather, RTR-PS-MDDL searches among every node in the

subtrees to identify edges that make the reconnected tree yield a low diameter. RTR-PS-MDDL

is the most time consuming remove strategy, and is a O(n3) algorithm due to the complexity

of mddl-ReconnecTree. In RTR-PS-MDDL, n = |VT |, where VT are all the nodes in the tree,

except the removed node m.

Algorithm 67 REMOVE-TRY-RECONFIGURATION-PRUNE-SEARCH-MINIMUM-
DIAMETER-DEGREE-LIMITED
In: G = (V, E, c), a tree TZ = (VT , ET ), a set of members Z ⊆ VT , a leaving member m

Out: Updated tree TZ = (VT , ET )

1: T ′ = k-Neighbor-Steiner-Subtree(TZ, m, k = 1)
2: K = |V ′|/deg(v′) {use equation 8.1 }
3: if number of non-member nodes in V ′ < K then

4: use k-Median(V ′) to identify more Steiner-points
5: else if number of non-member nodes in V > K then

6: identify K nodes from V ′ using k-Median
7: end if

8: TZ = TZ - T ′

9: mddl-ReconnectTree(TZ, VT )

Figure 12.3 illustrates an example where m is leaving a tree, and RK, RTR-MDDL and

RTR-P-MDDL are used to reconfigure and then reconnect the tree. From the figure we observe

that the remove strategy RK converts m to a non-member node and leaves it in the tree. RTR-

MDDL reconfigures the immediate neighborhood of m and includes a well-placed core-node in
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Figure 12.3: Remove reconfiguration examples when m is leaving and RK, RTR-MDDL and RTR-P-
MDDL reconfigures.

the place of m. RTR-P-MDDL reconfigures a larger portion of the tree and reduces the number

of non-member-nodes in the tree. It is clear the RK has the least influence on the tree, while

RTR-P-MDDL has the largest.

12.4 Group communication simulations and dynamic tree al-

gorithms

Chapter 9, 10, and 11 evaluated overlay construction algorithms that construct overlay net-

works from scratch. Although these algorithms are useful in a variety of situations, including

distributed interactive applications, they do lack the option of inserting and removing single

member-nodes from an existing overlay.

As mentioned, a primary goal is to enable clients to join and leave ongoing sessions of dis-

tributed interactive applications in a timely fashion. In that respect, the dynamic tree algorithms

introduced previously are designed for the specific purpose of enabling group dynamics of on-

line sessions. Following are evaluations of the dynamic tree algorithms, table 12.1 summarizes

all insert and remove strategies with some details.

12.4.1 Experiment configurations

In the experiments, we use equation 8.1 (section 8.5.4) to approximate the number k of Steiner-

points that are needed to ensure that the degree-limited dynamic tree algorithms are able to

reconnect a group-tree. The k Steiner points are chosen by k-Median(k) from 100 Steiner-

points (super-nodes) that are identified at the beginning among the 1000 nodes in the overlay

network. These well-placed super-nodes (chapter 8) are found by the multiple core-node selec-

tion algorithm k-Center(k = 100).
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Description Parameter

Placement grid 100x100 milliseconds
Number of nodes in the network 1000

Degree limits 5 and 10

Super-nodes found by k-Center(k) k = 100

Diameter bound 250 milliseconds

Table 12.2: Experiment configuration.

12.4.2 Target metrics

A dynamic tree algorithm is considered good if it can, in a timely fashion, insert and remove

nodes from an existing overlay network such that the overlay yields a low diameter, a low

average pair-wise latency, and does not add unreasonable cost to the network. For the evaluation

of the overlays and algorithms, there are five metrics considered to be very important: overlay

diameter, average pair-wise latency, algorithm execution time, total network cost and stability.

Stability is measured in terms of how many edges it is that change in an overlay network upon

an insert or remove of a node. In addition, given the fairly limited resources available to average

clients in the Internet, the algorithm should obey degree-limitations such that the stress on each

node in the overlay is bounded.

12.4.3 Experiment results

The execution time of the dynamic tree algorithms is very low compared to the tree algorithms

from the previous chapters. Figure 12.4 plots the execution time of the fastest and best Steiner-

tree algorithms from chapter 10.3 (sdl-RGH, sdl-OTTC, smddl-OTTC and sdl-SPT), compared

to the worst-case remove strategies. In addition, the Steiner minimum-cost tree (SMT) heuristic

average-distance heuristic (ADH) is plotted as a reference 1. We observe that it is only RTR-PS-

MDDL that needs more than 0.01 seconds to finish the reconfiguration in the group-range (0-

160). The remaining insert and remove strategies executes in less than 0.002 seconds. Among

the Steiner-tree algorithms it is sdl-RGH that is the fastest (< 0.1 seconds for group-sizes up to

130), while the three others are much slower. The main reason for the fast execution times for

insert and remove strategies is the size of the reconfiguration set (see figure 12.3). Ordinary tree

algorithms rebuild the entire tree for each insert and remove, while, the dynamic algorithms

reconfigure smaller parts of the tree. Hence, the time complexity of the dynamic algorithms

does not greatly influence the execution time because the reconfiguration set size is small.

The total cost of selected dynamic-tree and Steiner-tree algorithms are plotted in figure 12.5.

We observe that the dynamic tree algorithms that yield a low diameter (combinations of RTR-

MDDL and RK) have a total cost which is twice the total cost of the tree produced from the

1The evaluation in chapter 10 identified that ADH was the only evaluated SMT heuristic that could identify
Steiner-points given a full mesh of shortest paths.
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SMT-heuristic ADH (chapter 10). Furthermore, the same dynamic tree algorithms also yield a

total cost, which is around 30 % higher than the diameter-optimizing Steiner-tree algorithms.

The cheapest dynamic tree algorithms (combinations of RTR-PS-MC) produce group trees that

are the only about 20 % more costly than ADH.

The diameter (seconds) achieved by every combination of insert and remove strategy is

plotted in figure 12.6. We observe that insert and remove strategies that optimize for minimum-

cost yield a high diameter. The diameter-optimizing remove strategies that cannot add Steiner-

points to the group-tree (R-MDDL and RS-MDDL) also perform badly. The remove strategies

that prune non-member nodes (RTR-P-MDDL, etc) also produce group-trees with large diame-

ters. The 3 remove strategies, RK, RTR-MC and RTR-MDDL, perform well with almost all the

insert strategies that consider the diameter or radius while updating group-trees. The remove

strategy RK is very naive (see chapter 12) and only removes non-member-nodes with degree

< 3 from the group-tree. RTR-MC and RTR-MDDL, on the other hand, have procedures that

check if it is beneficial for the tree-cost or -diameter (respectively) to i) keep the leaving node as

a non-member, ii) add a well-placed Steiner-point to the tree, iii) or reconnect using one neigh-

bor as intersection point. It is apparent that these remove-procedures fit diameter-optimizing

insert strategies particularly well.

Figure 12.7 and 12.8 plots the best-case dynamic tree algorithm combinations (insert,remove)

from the simulations. They are compared to the best diameter-reducing Steiner-tree algorithm

from chapter 10.3, namely, smddl-OTTC. We observe that the best dynamic algorithms (RTR-

MC,I-MDDL) and (RTR-MC,I-MRDL) produce group trees that yield a diameter, which is

30 % larger than the close-to-optimal smddl-OTTC. However, we saw above that the execution

time of smddl-OTTC quickly closes in on 100 milliseconds. The dynamic algorithms (RK,I-

MDDL) and (RK,I-MRDL) yield low diameter group-trees for small group-sizes. However, the

diameter gets up to 0.5 seconds for group sizes larger than 100. The main observation is that

the dynamic tree algorithms perform comparatively better for smaller group sizes, than larger

group sizes. In addition, from the results it is clear that the dynamic tree algorithms are more

unpredictable in their behavior. Especially, the group-tree diameter varies quite alot more than

for the Steiner-tree algorithms that reconstruct the entire tree for each membership change.

Figure 12.9 plots the diameter for selected dynamic algorithm combinations. We observe

that the dynamic algorithms (R-MDDL,I-MDDL) and (RS-MDDL,I-MDDL) that are unable

to add Steiner-points yield high diameter trees. The remove strategies with pruning (RTR-P-

MDDL and RTR-PS-MDDL) perform similarly with any of the insert strategies. Further work

is needed to adjust the aggresiveness of the pruning step. The remove strategies RK, RTR-

MDDL and RTR-MC all perform well with ITR-MDDL and I-MDDL. As noted previously,

there is a slight tendency that (RK, I-MDDL) degrades for larger groups. From the figure it

is apparent that non-member-nodes (Steiner-points) are very important for the performance of

dynamic algorithms. In particular, the remove strategies RTR-MDDL and RTR-MC looks to
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work well with I-MDDL. These remove strategies are able to choose what benefits the tree

more for each remove request.

The reason for why well placed non-member-nodes are important to let remain in the tree,

is the increased degree capacity centrally. Observe that the diameter-reducing insert strategies

ITR-MDDL, I-MDDL, and I-MRDL exhaust the degree of nodes that reduce the diameter of the

tree. Commonly, such nodes are centrally located well placed nodes. The result is that many

member nodes are leaf-nodes that have a well-placed node as a neighbor. When a centrally

located member-node, with many member-nodes attached to it, is leaving the tree, its neighbors

must be reconnected by the remove strategy. It is often the case that these neighbors have

maxed out their degree-limitations. Therefore, some neighbors are forced to reconnect to poorly

placed neighbors that results in a higher diameter. This sequence of events is mainly due to i)

degree-limitations that results in bounded capacity on well-placed nodes, ii) the goal of not

reconfiguring large portions of the tree, iii) the resulting simplicity of the remove strategies.

For the pruning strategies, the case when a node m tries to leave, is that they include many

non member nodes to the reconfiguration set and reduce the number of non members (including

well-placed nodes). Thus, a lower degree capacity is the result, which increases the diameter.

RTR-MDDL and RTR-MC do not prune non-member nodes (other than m), but may include

well-placed nodes. Thus, RTR-MDDL and RTR-MC are able to produce trees with a lower

diameter, because they have a higher degree capacity in their trees.
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To summarize, we observed that the diameter-reducing insert strategies (ITR-MDDL, I-

MDDL, I-MRDL) in combination with the remove strategies with pruning (RTR-P, etc) yield

trees with a higher diameter than the same insert strategies in combination with RK, RTR-

MDDL and RTR-MC. The pruning strategies have a powerful pruning mechanism (larger re-

configuration set) that makes the insert strategies less influential. RTR-MDDL and RTR-MC are

less influential (smaller reconfiguration set) and thus cooperates better. RK performs well com-

bined with insert strategies that optimize for the diameter, but looks to degrade when the group

sizes increase beyond 100. However, RK and ITR-MDDL couples well, and yield low diameter

trees. In this combination, the insert strategy is more powerful and ensures that well-placed

member-nodes or non-member-nodes are strongly connected upon execution.

The stability of the dynamic tree algorithms is compared with that of the Steiner-tree spanning-

heuristics sdl-RGH, sdl-OTTC, smddl-OTTC and sdl-SPT in figure 12.10. A higher stability is

indicated by a lower number of edges that are changed across reconfigurations. It is clear that

the randomized sdl-RGH is much too unstable (high number of edge changes) to be an op-

tion for dynamic scenarios. The remaining Steiner-tree spanning-heuristics are fairly stable

around 10-15 edge changes. We also see that the stability of the pruning strategies is actu-

ally worse than the best case diameter reducing Steiner-tree heuristics (for example, sdl-SPT).
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The SMT-heuristic ADH is very stable throughout the group-size range. The pruning strategies

have the lowest stability when they are combined with insert strategies that optimize for the

diamter (ITR-MDDL, I-MDDL, etc.). The reason for this is that all of these insert strategies

are biased towards making connections between well-placed nodes that are potentially non-

member-nodes. Remove strategies with pruning collapse these areas in their reconfigurations

to reduce the number of non-member-nodes. Conversely, the stability is higher for RTR-P-MC

in combination with ITR-MC and I-MC because they optimize for total cost and make few con-

nections between well-placed non-member nodes. The (RTR-MDDL,ITR-MDDL) dynamic

tree algorithm is consistenly very stable, and has an average of 3 edge changes for each config-

uration. (RTR-MC,ITR-MC) is only slightly worse, with an average of 5 edge changes. Many

of the insert strategies only change (add) one edge when joining a new node to a group-tree.

ITR-MDDL and ITR-MC have procedures that try to fit a well-placed joining node inside the

group-tree. Their number of edge-changes are comparable to that of RTR-MDDL and RTR-

MC. Figure 12.11 adds the observation that the stability of RK and RTR-MDDL is fairly unaf-

fected by group size. And that the combination (RK,I-CN) is extremely stable with a number

of edge-changes closing in to zero. Figure 12.12 shows the stability of all remove strategies

in combination with different insert strategies. It is quite clear that the remove strategies with

pruning are more unstable with diameter-optimizing insert strategies, than minimum-cost insert

strategies. Furthermore, we see that RK and RTR-MDDL are both very stable with any of the

insert strategies.

12.4.4 Discussing and comparing the results

We have tested several combinations of insert and remove strategies for efficiency, in terms of

the tree metrics introduced in chapter 12.4.2. We have also compared the dynamic tree algo-

rithms with Steiner-tree spanning-heuristics. These Steiner-tree heuristics are approximation

algorithms for the Steiner-MDDL, Steiner-MRDL and BDDLSMT problems (see chapter 4.6).

These heuristics outperform our dynamic-tree algorithms in many situations, but we saw that

their practical use is limited in a dynamic scenario, because of their high execution time (tree-

reconfiguration time) (figure 12.4). In addition, their stability is low, in that they change quite a

few edges upon a reconfiguration, which is only natural for algorithms that construct trees from

scratch (figure 12.10).

From the results we find that there are insert and remove strategies that do not fit together.

For example, an insert strategy that tries to minimize the diameter does not fit best with a

remove algorithm that reconfigures with the aim of minimizing the total cost. This effect can

be seen clearly in the figures. RTR-P-MC optimizes for total cost and we can see that the

consequence is that the combination of RTR-P-MC with I-MDDL produces trees with lower

total cost (figure 12.5) but higher diameter (figure 12.7). Additionally, RK does not include
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Figure 12.11: Selected dynamic tree algorithms and their reconfiguration stability.

well-placed non-member-nodes but leaves members with degree > 2 in the tree. We see that

RK performs better with respect to the diameter in combination with the diameter-optimizing

strategies ITR-MDDL, I-MDDL and I-MRDL. RK combined with insert strategies that are

oriented towards a low total cost, ITR-MC and I-MC, makes the group-trees degrade.

When the diameter-oriented strategy I-CN is used, it is likely that most members are either

leaves or have a higher outdegreE. This leads to a small number of edge changes when it is

combined with RK, as shown in figure 12.11. Since RK only removes a leaving group member

if it has a degree ≤ 2, it leaves inner nodes untouched. The negative effect that this has on

the diameter can be seen in figure 12.7. RTR-MDDL and RTR-MC avoid this penalty to the

diameter, because they remove poorly placed (leaving) non-member nodes with higher degree.

Figure 12.13 plots the number of non-members-nodes (Steiner points) in the trees, i.e.,

the non-member node degradation, using remove strategies RK and RTR-MDDL combined

with ITR-MDDL, I-MDDL and IBR-MC. We see that RK and RTR-MDDL combined with

IBR-MC has a higher number of Steiner points, than the reamining combinations. IBR-MC

is a bounded diameter insert strategy that choose low-cost edges if the inserted node has an

eccentricity below the diameter-bound (0.25 seconds). We also see that combinations with RK

has around 25 % more non-member-nodes than the RTR-MDDL combinations. Ths Steiner-tree

spanning-heuristics sdl-SPT and sdl-OTTC have both fairly small numbers of Steiner-points

(non-member-nodes) in their trees. Figure 12.14 plots every (remove,insert) strategies and their
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Figure 12.13: The non-member-node degradation, measured by the number of Steiner-points in a tree.

stability in terms of the number of edge changes in the tree reconfigurations. It is clear that the

RK and RTR-MDDL combinations have much larger number of Steiner-points in their group-

trees than any other combination.

Figure 12.15 plots the edge changes for selected remove strategies for each reconfiguration

as a scatter-plot (insert strategy is I-MDDL). Each point in the graph is the number of edge-

changes after a remove request and the following tree-reconfiguration. We can see that RTR-P-

MC have a much higher maximum numbers of edge changes than RTR-MC. RK is never above

three edge changes.

12.4.5 Results with varying degree limits

Figure 12.16 plots the diameter achieved by selected dynamic tree algorithms, and degree-limits

5 and 10. It is quite clear that the dynamic-tree algorithms do not perform as good when the

degree-limit is reduced to 5, compared to the close-to-optimal smddl-OTTC. The hop-diameter

and the stability, however, is not being affected, as seen in figure 12.17 and 12.18.

Figure 12.19 plots the non-member-node degradation in terms of the number of Steiner-

points in the group-trees. For larger group-sizes the number of Steiner-points increases quite

rapidly to above 30 for the dynamic-tree algorithms.

The non-member-node degradation may be a reason for why the dynamic-tree algorithms
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Figure 12.15: Scatter plot of the stability of remove strategies combined with I-MDDL. Each plot is the
number of edge-changes after a remove request and the tree-reconfiguration.

are less competetive in terms of the tree-diameter (seconds) when the degree-limit is reduced

to 5. Other reasons include the fact that dynamic tree algorithms are very simplistic in nature,

and a low degree bound is much harder to solve than higher degree bounds. It is clear that these

dynamic tree algorithms do no maintain group-trees with a sufficiently low diameter when the

degree-limit is low.

12.4.6 Discussions on a few of the better algorithms

In the previous section, we identified that there exist insert and leave strategies that do not fit

together, and some that fit especially well together. With this in mind, we have summarized all

our observations in table 12.3. In the table, every combination of insert and remove strategy as

well as the tree heuristics are evaluated towards our target metrics. The evaluation is based on

the results from our experiments, but (inevitably) it is also based on subjective opinions from

the authors. If an algorithm behaves positively towards a target metric it is represented with

a ”+ ”, correspondingly, if negatively with a ”− ”. The performance index is the sum of the

positives (”+ ”) of an algorithm, where it is possible to get a maximum performance index of 4.

(The optimization goals low total cost and small diameter are contradictory.)

Overall, we observe that RK, RTR-MC and RTR-MDDL performs well in combination
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with insert strategies that optimize for the diameter. Insert strategies that optimize for total

cost, for example I-MC, combined with these remove strategies suffer from non-member node

degradation, i.e., increasing number of non-member nodes in the trees. However, it is RK that

suffer most from non-member-node degradation. RTR-MC and RTR-MDDL are the remove

strategies that perform best with insert strategies that opt for a low diameter. The reason for

this may be that they keep the reconfiguration sets small, and, hence, does not greatly interfere

the insert strategy. Remove strategies with pruning (for example, RTR-P-MC) fit well with

insert strategies that optimize for the total cost. They also perform satisfactory combined with

the remaining insert strategies, but the diameter does not get as good as with RTR-MC and

RTR-MDDL. Most importantly, the number of edge changes is higher with RTR-P-MC. One

approach may be to run remove with pruning only periodically.

The Steiner-tree heuristics that were compared to the dynamic tree algorithms produced

trees with the lowest diameter, and did not suffer from non-member-node degradation. How-

ever, their exeuction times are much higher and their stability is not satisfactory, because the

number of edge-changes in a tree-reconfiguration is quite high. Especially the randomized sdl-

RGH had a very high number of edge-changes across tree-reconfigurations.

The best dynamic-tree algorithm are (RTR-MC,I-MRDL) and (RTR-MDDL, I-MDDL), and

they yielded tree-diameters that were about 30 % higher than the close-to-optimal smddl-OTTC

(0.45 seconds vs. 0.35 seconds) for group sizes > 80. For group sizes < 80 the difference was

around 15 % (0.40 seconds vs. 0.35 seconds). Overall we saw that dynamic-tree algorithms

have a tendency to degrade for larger group sizes.

12.5 Summary of the main points

The previous investigation evaluated dynamic tree algorithms and compared them to selected

close-to-optimal Steiner-tree heurisitc. All the tested algorithms were centralized where a given

central entity executed the group management (see chapter 5). The algorithms optimized, inde-

pendently, for total cost and diameter, under given degree limits (= 10).

The results showed that the dynamic tree algorithms have very low execution time, and that

they produce low diameter trees that can compete with the Steiner-tree heuristics smddl-OTTC,

sdl-SPT and sdl-OTTC. In addition, we were able to minimize the number of edge changes for

each reconfiguration. However, we also showed that there is still room for improvements, for

example, reducing the number of non-member nodes in a tree.

Table 12.3 highlighted that RK, RTR-MC and RTR-MDDL performed very well combined

with all of the diameter-reducing insert strategies I-MDDL, ITR-MDDL, I-MRDL and IBR-

MC. Remove strategies with pruning (for example, RTR-P-MC and RTR-P-MDDL), on the

other hand, did not yield low diameter trees with any of the insert strategies they were combined
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I-MC − − − + + 2

ITR-MC − − − + + 2

RK I-MDDL + − + + + 4

I-CN + − − + + 3

IBR-MC + − + + + 4

I-MC − + − + + 3

ITR-MC − + − + + 3

RTR-MC I-MDDL + − + + + 4

I-CN + − + + + 4

IBR-MC + − + + + 4

I-MC − − − + + 2

ITR-MC − − − + + 2

RTR-MDDL I-MDDL + − + + + 4

I-CN + − + + + 4

IBR-MC + − + + + 4

I-MC + + − + + 4

ITR-MC + + − + + 4

RTR-P-MC I-MDDL + − + − + 3

I-CN + − + − + 3

IBR-MC + − + − + 3

ADH + + − + − 3

smddl-OTTC + − + − − 2

1The member node (MN) ratio in a tree should be high,
if not it is crowded with non-member nodes and degrade.

Table 12.3: Algorithm performance.

with. However, the combination I-MC and RTR-P-MC/RTR-PS-MC produces trees with low

total cost, even compared to the close to optimal ADH. The center based insert strategies are

fast and simple, but still gave good results in terms of the diameter.

In summary, our results show that the remove strategies RK, RTR-MC and RTR-MDDL

that use smaller reconfiguration sets, fit better with insert strategies that optimize for the diame-

ter. In addition, it was apparent that non-member-nodes (Steiner-points) are very important for

the performance of the dynamic tree algorithms. The Steiner-points enabled better reconfigura-

tion options for RTR-MC and RTR-MDDL. Remove strategies with pruning use a (potentially)

larger reconfiguration set and fit best with insert strategies that optimize for the total cost. The

results also showed that the insert and remove strategies perform very differently with respect

to our target metrics.

We shall further investigate reconfigure strategies that are run independently of insert and



12.5. Summary of the main points 325

remove strategies (chapter 14). Further work is also needed for the group Steiner-tree heuristic

mddl-ReconnectTree, as we were unable to find a suitable remove strategy for it. In addition,

the pruning steps of RTR-P-MC, RTR-P-MDDL, etc, needs adjustment, and should be tested

with a less aggressive pruning approach.

The next investigation (chapter 13) is of dynamic subgraph algorithms, which are identical

to dynamic tree algorithms, except they can build cyclic connected subgraphs.





Chapter 13

Overlay construction techniques:

Dynamic subgraph algorithms

The overlay network management from section 5.4 includes overlay construction techniques

whose task is to construct low-latency overlay networks for distribution of time-dependent

events. In that respect, we continue our evaluation of overlay construction techniques and eval-

uate dynamic subgraph algorithms. By doing this we address a goal of the thesis:

3) Identify techniques that find Internet paths with low pair-wise latencies among clients in a

group, and configure them for event-distribution of real-time client interaction.

A dynamic subgraph algorithm belongs to the class of dynamic subgraph problems, as intro-

duced in section 4.11. These problems address client dynamicity, which should be supported by

distributed interactive applications (section 2.3). The dynamic subgraph algorithms introduced

in the thesis are able to handle incoming requests of type:

Insert node m to the subgraph M , such that m can communicate with the nodes in VM .

Remove node m from the subgraph M , such that the nodes in VM can still communicate.

Like the dynamic tree algorithms from chapter 12, a dynamic subgraph algorithm must sup-

port both insert and remove requests. In addition, the dynamic subgraph algorithms allows the

construction of cyclic subgraphs, which increases the failure tolerance of the subgraph. Algo-

rithm 68 shows a generic dynamic subgraph algorithm, in which an incoming insert or remove

request is handled by different strategies.

The chapter introduces a range of insert and remove strategies that are paired as dynamic-

subgraph algorithms. The strategies include approaches that optimize for minimum-cost and

minimum-diameter subgraphs. All of the combinations of insert and remove strategies are

evaluated in a group communication simulator. The results from the group communication

simulations show that remove strategies that remove non-member nodes are necessary to pre-

vent the subgraphs from non-member-node degradation. Non-member-node degradation occurs

327
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Algorithm 68 GENERIC-DYNAMIC-SUBGRAPH-ALGORITHM
In: G = (V, E, c), a connected subgraph MZ = (VM , EM), a set of members Z ⊆ VM , and a request ρ
Out: Updated connected subgraph MZ = (VM , EM)

1: if ρ = {remove, m} then

2: REMOVE-NODE-SUBGRAPH-ALGORITHM(G,MZ,m)
3: else if ρ = {inser t, m} then

4: INSERT-NODE-SUBGRAPH-ALGORITHM(G,MZ ,m)

5: end if

when too many non-member-nodes are left in the subgraphs, such that the subgraph degrades

in terms of a larger diameter, total-cost, etc. However, we found that a simple minimum-cost

insert strategy combined with a minimum-cost remove strategy with pruning are able to main-

tain a subgraph such that the subgraph diameter is consistently low throughout the evaluated

group-size range (0-170).

The rest of the chapter is organized in the following manner. Section 13.1 presents a few

common types of dynamic subgraph algorithms. Section 13.2 presents the insert and remove

strategies that are paired as dynamic subgraph algorithms. Section 13.3 evaluates the results

from the group communication simulations using the dynamic subgraph algorithms. Finally,

section 13.4 gives a brief summary of the main points.

13.1 Dynamic subgraph algorithm types

There are many possible types of dynamic subgraph algorithms, their similarity is that they

insert and remove nodes from a connected subgraph, based on incoming requests. Following,

are some examples of possible dynamic subgraph algorithms that optimize for a low-cost and

minimum-diameter subgraph.

13.1.1 Low-cost dynamic subgraph algorithms

A pure minimum-cost connected subgraph is equal to the minimum-cost connected spanning-

tree. However, a minimum-cost dynamic subgraph algorithm should exhibit some configurable

property that allows for fault tolerance in the subgraph. The dynamic subgraph algorithm should

address the dynamic subgraph problems from section 4.11, and relate the construction to the

problems of k-connectivity (section 4.9). A k-connected graph has the property that the re-

moval of any k− 1 nodes leave the subgraph in a connected state. For example, a k-connected

minimum-cost dynamic subgraph algorithm is given a sequence of insert and remove requests,

and for each request the algorithm updates the current subgraph such that it is k-connected

and has minimum-cost. However, the k-connected minimum-cost dynamic subgraph algorithm

(definition 24) is N P-complete, such that it is not a goal to solve this exactly.
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13.1.2 Minimum-diameter dynamic subgraph algorithms

A minimum-diameter dynamic subgraph algorithm may, for example, produce a minimum-

diameter subgraph within a given total cost bound. The algorithm should address the dynamic

subgraph problems (section 4.11), and relate the construction requirements to the problems

of constructing a minimum diameter spanning subgraph (definition 74) and a k-connected

minimum-diameter spanning subgraph (definition 76). However, this problem is N P-complete,

and in a dynamic scenario it is especially difficult to approximate a close-to-optimal solution,

while at the same time service incoming join and leave requests sufficiently fast.

13.2 Evaluated dynamic subgraph algorithms

The following introduces a number of centralized dynamic subgraph algorithms that are eval-

uated through simulations and experiments in section 13.3. The dynamic subgraph algorithms

presented here, consist of insert and remove strategies that are both spanning-subgraph and

Steiner-subgraph strategies (section 4.11). One insert strategy and one remove strategy are

paired to one dynamic subgraph algorithm. A dynamic subgraph algorithm works as such:

k-Dynamic-Subgraph-Algorithm(RD , ID , k) (kDA) takes as input an insert strategy ID and

a remove strategy RD , an integer k ≥ 1, and a request ρ. Furthermore, a global undirected

weighted graph G = (V, E, c), where V is the set of vertices (n = |V |), E is the set of edges,

c : E → R is the edge cost function. Moreover, a connected subgraph MZ = (VM , EM ), where

VM ⊂ V , and EM ⊂ E. In addition, there is a set of member-nodes Z ⊂ VM .

kDA executes ID upon an insert request, and RD upon a remove request, and updates the

subgraph MZ accordingly (algorithm 69). It is only the insert strategy that adds k edges to the

subgraph. The remove strategy removes m and reconnects the subgraph as if it was a tree. The

main reason for this is that we do not want to crowd the subgraph with too many costly edges.

Algorithm 69 k-DYNAMIC-SUBGRAPH-ALGORITHM
In: G = (V, E, c), a subgraph MZ = (VM , EM), a set of members Z ⊆ VM , an integer k ≥ 1, a request ρ, one insert

strategy ID and one remove strategyRD}.
Out: Updated subgraph MZ = (VM , EM)

1: if ρ = {remove, m} then

2: RD(G, MZ , m, k = 1)
3: else if ρ = {inser t, m} then

4: ID(G, MZ , m, k)

5: end if



330
Chapter 13. Overlay construction techniques:

Dynamic subgraph algorithms

13.2.1 Insert strategies

An insert strategy ID inserts a new member m into the subgraph and assures that m can com-

municate with the remaining member nodes. Formally, an insert strategy works like this:

Given G = (V, E, c), a connected subgraph M = (VM , EM), a set of members ZM ⊆ VM , and a

new member m ∈ V . Update M , such that ZM ∪ {m} are connected.

The new member m may be inserted into M in many different manners. We have devised 3

insert strategies that connect m to the subgraph using k edges. Thus, they bound the size of the

reconfiguration set R to these k edges.

I-MC(k) (minimum cost) connects m to the subgraph using the k least cost edges to nodes

in the subgraph. I-MC(k) is a O(n) algorithm that optimizes for total cost, and approximates

k-connected subgraphs of minimum-cost that resemble spanning subgraphs.

Algorithm 70 INSERT-MINIMUM-COST(k)
In: G = (V, E, c), a subgraph MZ = (VM , EM ), a set of members Z ⊆ VM , a new member m , and an integer k ≥ 1

Out: Updated subgraph MZ = (VM , EM)

1: Find k least-cost edges from m to subgraph nodes v ∈ VM

2: connect m to MZ through the k edges

I-MDDL(k) (minimum diameter degree limited) connects m to the subgraph using the k edges

that results in the lowest eccentricity to m in the subgraph. I-MDDL(k) approximates a k-

connected subgraph of minimum-diameter. I-MDDL(k) is a O(n3) algorithm and uses |VT |

Dijkstra’s shortest-path searches to find the k tree-nodes v ∈ VT that m can connect to, such that

its eccentricity is minimized.

Algorithm 71 INSERT-MINIMUM-DIAMETER-DL(k)
In: G = (V, E, c), a subgraph MZ = (VM , EM ), a set of members Z ⊆ VM , a new member m , and an integer k ≥ 1

Out: Updated subgraph MZ = (VM , EM)

1: Find k edges to subgraph nodes v ∈ VM such that the eccentricity of m is minimized

2: connect m to MZ through the k edges

I-MC-MDDL(k) (minimum-cost, minimum diameter degree limited) connects m to the sub-

graph using the minimum-cost and minimum-eccentricity edges alternately. For example, if

k = 1, it inserts m using the minimum-cost edge, if k = 2 it uses one minimum-cost edge and

one minimum-eccentricity edge, k = 3 two minimum-cost edges and one minimum-eccentricity

edge, and so on. I-MC-MDDL(k) approximates a k-connected subgraph of low-cost and low-

diameter. I-MDDL(k) is a O(n3) algorithm, because it uses |VT |Dijkstra’s shortest-path searches

to find the tree-nodes v ∈ VT that m can connect to, such that its eccentricity is minimized. The

search for the minimum-cost edge, is a cheap O(n) procedure.
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Algorithm 72 INSERT-MINIMUM-DIAMETER-DL(k)
In: G = (V, E, c), a subgraph MZ = (VM , EM), a set of members Z ⊆ VM , a new member m , and an integer k ≥ 1

Out: Updated subgraph MZ = (VM , EM)

1: Find k edges to subgraph nodes v ∈ VM such that the eccentricity of m is minimized

2: connect m to MZ through the k edges

13.2.2 Remove strategies

A remove strategy RD removes a member m from the subgraph and assures that the member-

nodes are connected. Formally, a remove strategy works like this:

Given G = (V, E, c), a connected subgraph M = (VM , EM), a set of members ZM ⊆ VM , and a

member m ∈ V . Update M , such that ZM \ {m} are connected.

The number of direct neighbor nodes of m (its degree) in M influences the necessary actions.

If the degree dM (m) = 1, m is a leaf that is simply removed along with the edge to its only

neighbor. If it is greater than 1, a removal of m may partition the subgraph, unless it is a k-

connected subgraph with k > 1. It is a hard problem to ensure that a graph stays k-connected

for k > 1. Therefore, the basic goal of the remove strategies is to ensure that the subgraphs stay

connected after removing m.

Evaluated remove strategies: In our evaluation, it is the remove strategies from chapter 12

that are paired with the subgraph insert strategies. The remove strategies are applicable to

cyclic subgraphs (meshes) as well as trees, however their performances in a mesh may be very

different from a tree. The main difference is that depth-first searches in a cyclic subgraph do

not find the longest shortest path. Instead, the remove-strategies apply shortest-path searches

using Dijkstra’s SPT approach [58]. Therefore, the time complexity of the remove-strategies for

subgraphs are all one degree higher than their correspondent remove strategy for reconnecting

trees.

For subgraphs it is expected that the number of nodes with a degree less than 3 is fairly low.

Therefore, it is very much important that the remove strategies are able to remove non-member-

nodes from the subgraph. Due to this, we regard RK as a bad alternative and do not evaluate it.

Figure 13.1 illustrates how RK, RTR-MC and RTR-P-MC reconfigure a given tree when a node

m leaves. RK only removes leaf-nodes, which may be a problem in highly connected subgraphs

because there are potentially few leaf-nodes. Moreover, RTR-MC is able to reconfigure locally,

but may face degradation issues when the group-size increases. Finally, RTR-P-MC reduces the

number of links and the number of non-member-nodes upon reconfiguration, and, as we shall

see in the following, is able to avoid the degradation issues of RK and RTR-MC.
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Figure 13.1: Remove subgraph reconfiguration examples. RTR-P-MC avoids non-member-node degra-
dation by aggressive pruning.

13.3 Group communication simulations of dynamic subgraph

algorithms

Following are evaluations of the dynamic subgraph algorithms introduced previously. They ad-

dress the graph theoretical problems from section 4.11. There are many different combinations

of insert and remove strategies possible, however, we shall focus on a few combinations that

work well, and mention the combinations that should not be used.

Before we start the evaluation, we summarize a few of the past experiences. Chapter 11

evaluated spanning subgraph algorithms and Steiner subgraph algorithms. In those evaluations,

it was identified that trees optimized for the diameter can compete with subgraphs with a rela-

tively high connectivity. It was also found that subgraph algorithms that optimize for total cost

also yield fairly low diameters and average pair-wise distances. Moreover, when Steiner points

were added to input graphs, every subgraph algorithm yielded a lower diameter than without

Steiner points.

The following evaluation of dynamic subgraph algorithms starts out from these experiences

and try to find similar approaches. Table 13.1 has tabulated information about the evaluated

dynamic subgraph algorithms.

13.3.1 Experiment configurations

In the experiments, we use equation 8.1 (section 8.5.4) to approximate the number k of Steiner-

points that are needed to ensure that the degree-limited dynamic subgraph algorithms are able to

reconnect a subgraph. The k Steiner points are chosen by k-Median(k) from 100 Steiner-points

(super-nodes) that are identified at the beginning among the 1000 nodes in the overlay net-

work. These well-placed super-nodes (chapter 8) are found by the multiple core-node selection

algorithm k-Center(k = 100).
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Description Parameter

Placement grid 100x100 milliseconds
Number of nodes in the network 1000

Degree limits 5 and 10

Super-nodes found by k-Center(k) k = 100

Diameter bound 250 milliseconds

Table 13.2: Experiment configuration.

13.3.2 Target metrics

A dynamic subgraph algorithm is considered good if it can, in a timely fashion, insert and

remove nodes from an existing overlay network such that the overlay yields a low diameter,

a low average pair-wise latency, and does not add unreasonable cost to the network. For the

evaluation of the overlays and algorithms, there are five metrics considered to be very important:

overlay diameter, average pair-wise latency, algorithm execution time, total network cost and

stability. Stability is measured in terms of how many edges change in an overlay network upon

an insert or remove of a node. In addition, given the fairly limited resources available to average

clients in the Internet, the algorithm should obey degree-limitations such that the stress on each

node in the overlay is bounded.

13.3.3 Results from group communication simulations

Figure 13.2 plots the diameter (seconds) achieved by all combinations of insert and remove

strategies that together form a single dynamic subgraph algorithm. From the figure, we see that

there is little or no improvement with a k > 2, hence, we regard these as bad choices of k for

most algorithms. In chapter 12.4 we learnt that combining insert and remove strategies that

optimize for minimum-cost yield high tree-diameters. However, we observe that when k = 2,

there are a number of combinations of I-MC that yield a low diameter. The remove strategies

that prune (RTR-P-MC and RTR-P-MDDL) are performing well with I-MC when k ≥ 2, in

contrast to when k = 1.

Figure 13.3 plots the total cost of the dynamic subgraph algorithm combinations when k =

2. From the results it is clear that the remove strategies R-MC, RTR-MC and RTR-MDDL

are not able to keep the cost of the subgraphs at a resonable level and degrade. RTR-P-MC

and RTR-P-MDDL, on the other hand, yield a reasonable cost when k = 2. We also see that

kDA(RTR-P-MC, I-MC, k = 3) yield subgraphs of reasonable total cost. kDA(RTR-P-MC,I-

MC,k = 1) is plotted as a point of reference for the algorithms. The remove with pruning

strategies remove excess non-member nodes (Steiner points) for each remove request. They

use k-Neighbor-Steiner-Subtree(k = 1) (chapter 12) to identify the reconfiguration set, and

then adds the minimum amount of Steiner points neccessary to reconnect the reconfiguration

set to the subgraph. The remaining remove strategies only consider neighboring nodes of the
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leaving node (k-Neighbor-Spanning-Subtree(k = 1)) and cannot identify whether neighbors

are Steiner-points or not. However, most importantly, they do not remove a leaving node if the

available degree is not sufficient to add the same amount of edges back to the subgraph.

Figure 13.4 highlights the reason why the remove strategies R-MC, RTR-MC and RTR-

MDDL yield such high subgraph-costs. These strategies suffer very much from non-member-

node degradation. Too many leaving member-nodes are left in the subgraphs as Steiner-points,

and the remove strategies are not able to reduce this number as the groups grow larger and

larger. Hence, there is a massive non-member-node degradation, which results in a massive

total cost of the subgraph. The figure also confirms that dynamic subgraph algorithms with

the remove strategies RTR-P-MC and RTR-P-MDDL, have a rather small amount of Steiner

points compared to the remaining dynamic subgraph algorithms. From these observation it is

concluded to disregard the remove strategies R-MC, R-MDDL, RTR-MC and RTR-MDDL as

alternatives when k > 1. We are left with the remove strategies RTR-P-MC and RTR-P-MDDL

as alternatives for k ≥ 2. The insert strategies are all performing well, since they only add k

edges to the subgraphs for each insert.

13.3.4 Discussions and comparison of best combinations

The previous results and observations concluded that it is little point in considering a k > 3

for most algorithms. For k = 2, 3, the only remove strategies that yield a reasonable total cost

without non-member-node degration were RTR-P-MC and RTR-P-MDDL. Combinations of

RTR-P-MC and RTR-P-MDDL for k > 1, performed similarly, but RTR-P-MC was always

slightly better in terms of total cost and almost identical for the diameter. Therefore, only RTR-

P-MC is plotted in the following figures. These figures consider the better dynamic subgraph

algorithm combinations.

Figure 13.5 plots the diameter (seconds) for the dynamic subgraph algorithms that per-

forms best among the evaluated algorithms. The results show that the dynamic tree algorithm

kDA(RTR-MDDL,I-MDDL,k = 1) yields subgraphs of a lower diameter (seconds) than ev-

ery other dynamic algorithm combination for smaller group sizes (< 90). kDA(RTR-P-MC,

I-MC, k = 3, 4) yields a slightly higher diameter than kDA(RTR-MDDL, I-MDDL, k = 1) for

smaller group sizes, but has a lower diameter for larger group sizes (> 90). The diameter is

consistently below 0.4 seconds for both combinations. RTR-P-MC combinations with k = 2

are also performing consistently well, and has a diameter just above 0.4 seconds. The Steiner-

tree spanning-heuristic is plotted as the reference point, and we see that it produces the lowest

diameter throughout the group-range. However, for smaller group-sizes (< 80) the dynamic

subgraph algorithm kDA(RTR-MDDL, I-MDDL, k = 1) yields almost an identical diameter to

that from smddl-OTTC. Figure 13.6 plots the hop-diameter, and shows a similar trend; however,

the better dynamic subgraph algorithms yield a lower hop-diameter or similar to smddl-OTTC.
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Figure 13.3: The total cost of the subgraphs as produced by selected dynamic subgraph algorithms.
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algorithms.
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Figure 13.5: The diameter (seconds) of the better combinations of dynamic subgraph algorithms.
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Figure 13.7: The average pair-wise latency (seconds) in the subgraphs.
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Figure 13.8: Execution time of the remove-strategy of the dynamic subgraph algorithms.
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Figure 13.9: The average number of edge changes for the remove strategies (insert strategies always
include k edges).

Figure 13.7 plots the average pair-wise latencies (seconds) achieved by the dynamic sub-

graph algorithms and smddl-OTTC. It is clear that the RTR-P-MC combinations with k > 1

produce subgraphs with the lowest pair-wise latencies. This is to be expected when multiple

paths to the destinations exist. The better dynamic tree algorithm combinations (k = 1) RTR-

MC and RTR-MDDL, have an increasingly higher average pair-wise latency when the group

size increases. The kDA(RTR-P-MC, I-MC, k = 3, 4) yields the lowest average pair-wise la-

tency, which is constistently at 0.09 seconds.

Figure 13.8 plots the execution times of the remove strategy of the dynamic subgraph al-

gorithms. The execution-time of the plotted insert strategies is always lower than the remove

strategy, due to lower algorithm complexity. It is quite clear that that dynamic subgraph algo-

rithms are extremely fast, compared to any other Steiner-subgraph algorithm.

The stability of a subgraph is measured in terms of how many edges change upon a mem-

bership change. Figure 13.9 plots the average number of edge changes upon a remove request.

We observe that the remove strategy RTR-P-MC combined with any of the insert strategies

has consistently a higher number of edge changes after a remove request has been executed.

kDA(RTR-P-MC, I-MC, k = 3) breaks an average of 10 edge changes when the group size is

> 90. However, the Steiner-tree algorithm smddl-OTTC is more unstable even though it is a

tree, which has fewer edges to change. The dynamic-tree algorithms with remove strategies
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Figure 13.10: Comparison of selected dynamic mesh algorithms (insert,remove and k=1,2).

RTR-MC and RTR-MDDL, have an average number of edge changes of less than 3.

We plotted the total cost and non-member-node degradation in terms of the number of

Steiner points in the previous (figure 13.4). Figures 13.11 and 13.10 give these results for

the better choices of dynamic subgraph algorithms. We see that the kDA(RTR-P-MC, I-MC,

k = 3) have comparatively few Steiner-points in the subgraphs compared to the dynamic tree

algorithms (k = 1) that do not apply pruning. This is also reflected in the total cost, for which

the pruning strategies manage to keep the total cost low even with a k = 3.

13.3.5 Results from varying degree-limits

The previous results used a static degree-limit of 10, the next evaluations compare the perfor-

mance of the dynamic subgraph algorithms when a degree-limit of 5 is used.

Figure 13.12 plots the subgraph diameter (seconds) as built by selected algorithms. We

observe that for the lower degree-limit of 5, the dynamic subgraph algorithm kDA(RTR-P-

MC,I-MC,k = 2) outperforms the dynamic-tree algorithm kDA(RTR-MC,I-MDDL,k = 1).

However, for a degree-limit 10 it is kDA(RTR-MC,I-MDDL,k = 1) that is the better of the two.

We also see that kDA(RTR-P-MC,I-MC,k = 3) is unstable in its performance, which is because

it struggles to reconnect the subgraphs due to the strict degree-limit combined with a subgraph

with many links.
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Figure 13.11: Comparison of selected dynamic mesh algorithms (insert,remove and k=1,2).
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Figure 13.12: The diameter (seconds) of the better combinations of dynamic subgraph algorithms.
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Figure 13.13: The diameter (hop-count) of the better combinations of dynamic subgraph algorithms.

The hop-diameter of the subgraphs is shown in figure 13.13. We observe that for kDA(RTR-

P-MC, I-MC,k = 2, 3) the hop-diameter is only slightly increased upon a lower degree-limit of

5. It also looks as though kDA(RTR-P-MC, I-MC, k = 3) with a degree-limit of 5 is forced to

keep more and more Steiner-points in the subgraph in order to reconnect the subgraphs during

remove reconfigurations.

These observations are confirmed by figure 13.14, which plots the non-member-node degra-

dation in terms of the number of Steiner-points that are in the subgraphs. A lower degree-limit

of 5 forces kDA(RTR-P-MC,I-MC,k = 2, 3) to keep more Steiner-points in the subgraphs.

The total cost of the subgraphs is shown in figure 13.15. We see that a lower degree-limit of

5 has increased the total cost slightly among the dynamic subgraph algorithms. This is mainly

due to the increased number of Steiner-points that are kept in the subgraphs.

From the previous results we observed that when the degree-limit was 5 the algorithm

kDA(RTR-P-MC, I-MC,k = 2) consistently maintained a subgraph with a lower diameter than

the better dynamic-tree algorithms (DA(RTR-MC,I-MDDL)). Therefore, in the context of our

evaluated algorithms, we conclude that when the degree-limits are low there is a need for dy-

namic subgraph algorithms, rather than dynamic tree algorithms, to keep a consistently low

diameter.
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Figure 13.14: The number of Steiner-points in the subgraphs as produced by selected dynamic subgraph
algorithms.
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Figure 13.15: The total cost of the subgraphs as produced by selected dynamic subgraph algorithms.
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Insert Remove k-range

I-MC(k) RTR-P-MC [1,4] 1 4 4 1 1 3

I-MDDL(k) RTR-MDDL [1,4] 1 2 2 1 1 1

I-MC-MDDL(k) RTR-P-MC [1,4] 1 4 4 1 1 3

Mesh Tree k-range
kIT smddl-OTTC [1,4] 1 2 2 1 1 1

kIT sdl-MST [1,4] 1 3 3 2 1 2

kCIT sdl-MST/sdl-RGH [1,4] 1 3 3 2 1 2

1The member node (MN) ratio in a tree should be high, if not it is
crowded with non-member nodes and degrade.

Table 13.3: Proposed k-configurations for a few selected algorithms.
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Remove Insert

I-MC(2) RTR-P-MC + − + + + 4

I-MDDL(1) RTR-MDDL + + + + + 5

I-MC-MDDL(2) RTR-P-MC + − + + + 4

Mesh Tree
kIT(1) smddl-OTTC + + + − − 3

kIT(2) sdl-MST + + + − − 3

kCIT(2) sdl-MST/sdl-RGH + + + − − 3

1The member node (MN) ratio in a tree should be high, if not it is
crowded with non-member nodes and degrade.

Table 13.4: Algorithm performance.

13.4 Summary of the main points

From the results we observed that dynamic subgraph algorithms must have mechanisms that

reduces the number of Steiner-points in the subgraphs, that is, the non-member-node degrada-

tion. The degradation was massive when the remove strategies R-MC, R-MDDL, RTR-MC and

RTR-MDDL were used in combination with the three insert strategies (I-MC, I-MDDL, and I-

MC-MDDL). Instead, we observed that the remove strategies that applied pruning, RTR-P-MC

and RTR-P-MDDL performed well for k= 2, and even kDA(RTR-P-MC, I-MC, k=3) yielded a

reasonable total cost. We also observed that when the degree-limits were low there was a need

for dynamic subgraph algorithms, rather than dynamic tree algorithms, to keep a consistently

low diameter.
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Table 13.3 illustrates our subjective opinions on how to configure some selected dynamic

subgraph algorithms with the optimal k value. For each target metric an optimal k value is

listed. These are averaged into the proposed k, which is what we consider the better way

to configure the dynamic subgraph algorithm. The combinations that use RTR-P-MC have a

proposed k = 3, while RTR-MDDL should use k = 1 and as such be a dynamic tree algorithm.

We also list combinations of Steiner-subgraph algorithms for comparison.

Table 13.4 further gives our subjective opinions on how subgraph algorithms perform with

regards to our target metrics. The performance index is the sum of the positives (” + ”) of

an algorithm, where it is possible to get a maximum performance index of 5. Even though

the optimization goals low total cost and small diameter are contradictory, we consider the

dynamic tree algorithm (RTR-MDDL,I-MDDL) to yield a reasonable total-cost to the network.

In general, we observe that the main difference between dynamic algorihms and the Steiner-

subgraph algorithms is the stability, which is enabled by local reconfigurations.

One issue that remains, is the fact that all of the evaluated dynamic-tree algorithms (k = 1)

are unable to maintain a consistently low diameter throughout the group-size range (0− 170).

Therefore, we shall investigate how this issue may be addressed using total reconfigurations

when the diameter increases beyond a pre-set bound.



Chapter 14

Overlay construction techniques:

Combining overlay construction

algorithms

Chapters 9 through 13 introduced and evaluated a wide range of overlay construction algorithms

with the specific goal of identifying algorithms that construct low-latency overlay networks for

distribution of events that are generated by a distributed interactive application. By doing that

we addressed a goal of the thesis:

3) Identify techniques that find Internet paths with low pair-wise latencies among clients in a

group, and configure them for event-distribution of real-time client interaction.

In the investigations we found a number of overlay construction algorithms that performed well.

However, we did not find one single algorithm that performed well for all of our target metrics

throughout the evaluated group size range (0 − 170). The goal of the next investigations is

therefore to identify algorithms that are more desirable in some group ranges than others, and

identify ways that their algorithm ideas can be combined.

The chapter recapitulates some comparisons of the better overlay construction tree and sub-

graph algorithms. Then, we introduce two reconfiguration algorithms. The first combines a

dynamic tree algorithm with a Steiner-tree algorithm, and the second combines a dynamic sub-

graph algorithm with a Steiner subgraph algorithm. The combination is not algorithmic, but

is rather to reconfigure an overlay with a Steiner-tree or Steiner-subgraph algorithm when the

overlay has degraded due to the simplicity of the dynamic tree and subgraph algorithms. We

show that a simple reconfiguration may dramatically increase the overall tree-quality. The tree-

quality is measured in terms of our overlay target metrics; tree-diameter, stability in terms of

the number of edge changes in a reconfiguration, and execution time of reconfiguration. The

conclusion was that it is a good idea to combine dynamic tree and subgraph algorithms with

Steiner-tree and subgraph algorithms to achieve all of these metrics.

347
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The rest of the chapter is organized in the following manner. Section 14.1 gives a summary

of the better tree algorithms we found in our previous investigations. Section 14.2 proposes

a reconfiguration algorithm for tree structures, and evaluates it through group communication

simulations. Section 14.3 gives a summary of the better subgraph algorithms we found in our

previous investigations. Section 14.4 proposes a similar reconfiguration algorithm for subgraph

structures, and evaluates it through group communication simulations. Finally, section 14.5

gives a brief summary of the main points.

14.1 Summary of the better tree algorithms

Chapter 9, 10 and 12 respectively investigated spanning-tree algorithms, Steiner-tree algorithms

and dynamic tree algorithms.

14.1.1 The better tree algorithms

The investigations of the spanning-tree and Steiner-tree algorithms identified that the diameter-

reducing spanning-tree algorithms yield trees with a lower diameter when Steiner points are

included to the input graph. These were referred to as Steiner-tree spanning-heuristics (sec-

tion 10.1.1).

Similar tendencies were found among the dynamic tree algorithms. It was the insert and

remove strategies that aggressively left non-member-nodes in the trees as Steiner-points and

also included additional Steiner-points that performed the best.

Algorithm Meaning Optimization Constraints Complexity Problem

smddl-OTTC Steiner minimum diameter degree-limited OTTC diameter degree O(n3) 48) Steiner-MDDL
sdl-OTTC Steiner degree-limited OTTC total cost diam./deg. O(n3) 49) BDDLSMT
sdl-SPT Steiner degree-limited Dijkstra’s SPT path cost degree O(n2) 52) Steiner-MRDL

I-MDDL Insert miminum diameter degree limited edge diameter degree O(n2) Definition 64
I-MRDL Insert miminum radius degree limited edge radius degree O(n2) Definition 64
ITR-MDDL Insert try reconfiguration and MDDL-edge diameter degree O(n2) Definition 65
RK Remove keep as non-member node shortest path degree O(1) Definition 68
RTR-MDDL Remove try reconfiguration and MDDL-edge diameter degree O(n2) Definition 68
RTR-MC Remove try reconfiguration and MC-edge total cost degree O(n2) Definition 68

Table 14.1: Steiner tree and dynamic-tree algorithms.

Table 14.1 contains the better performing Steiner-tree algorithms in our evaluations of chap-

ter 10. In addition, it contains the better performing dynamic tree algorithms in the evaluations

of chapter 12.
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Figure 14.1: Diameter (seconds) of the better tree algorithms.

14.1.2 Simulation results from the better tree algorithms

Figure 14.1 plots the diameter (seconds) of trees as produced by the tree-algorithms in ta-

ble 14.1. What is clear is that the overlays produced by dynamic-tree algorithms, degrade for

larger group sizes, which is due to the simplicity of these algorithms. The dynamic-tree algo-

rithms only do local reconfigurations and are not aware of the state of the tree, for example, the

trees current diameter. The Steiner-tree algorithms, on the other hand, produce consistent re-

sults throughout the group range, with smddl-OTTC as the one that yields trees with the lowest

diameter.

Figure 14.2 compares the stability of the tree algorithms, in terms of the number of edge

changes that are made across a reconfiguration. A reconfiguration occurs whenever a node is

inserted or removed from a tree. It is quite clear that the Steiner-tree algorithms are much more

unstable than the dynamic tree algorithms. This comes as a result of the local reconfigurations

of the dynamic tree algorithms, while the Steiner-tree algorithms recompute the entire tree for

each time a node is inserted or removed.

Figure 14.3 compares the execution times of the tree reconfigurations. Here it is also very

clear that the dynamic tree algorithms are much faster than the Steiner-tree algorithms. Which

is also due to local reconfigurations of dynamic tree algorithms, and total reconstruction of the

Steiner-tree algorithms.
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Description Parameter

Placement grid 100x100 milliseconds
Number of nodes in the network 1000

Degree limit 10

Super-nodes found by k-Center(k) k = 100

Diameter bounds 500,450,400 and 350 milliseconds

Table 14.2: Experiment configuration.

From these observations it is clear that the dynamic tree algorithms exhibit very desirable

properties when it comes to high stability and low reconfiguration time. This was measured in

terms of low number of edge changes across reconfigurations and a low execution time of a tree

reconfiguration. The dynamic tree algorithms also yield a low tree diameter for smaller group

sizes. However, for larger group sizes the dynamic tree algorithms are not able to keep the tree-

diameter low. The Steiner-tree algorithms, on the other hand, are slower and more unstable, but

they yield a tree-diameter which is consistently low. This is because they reconstruct the entire

tree for each time a node is inserted or removed.

14.2 Reconfiguration of trees

Based on the previous observations, we devised an algorithm for which the goal is to take

advantage of the stability and quickness of the dynamic tree algorithms, and the consistency of

the Steiner-tree algorithms, where the consistency is in terms of a low tree diameter.

14.2.1 Reconfigure tree algorithm

We propose a reconfiguration algorithm, in which a cost bound decides when a total reconfigu-

ration of the tree should be initiated.

Reconfigure-tree Dynamic-Algorithm(RD,ID ,AT , B) (RDA) takes as input a dynamic tree

algorithm, in terms of, a remove strategyRD and an insert strategy ID . Further, it takes as input

a tree algorithm AT and a cost related bound B, where B may, for example, define a bounded

diameter. RDA uses the insert and remove strategies to insert and remove nodes to and from a

tree. For each time a tree is reconfigured, RDA checks whether the bound B is satisfied. If B

is violated, RDA discards the current tree, and calls the tree algorithm to reconstruct the entire

tree. If B is satisfied, RDA does nothing and continues to serve insert and remove requests (see

algorithm 73).
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Algorithm 73 RECONFIGURE-TREE-DYNAMIC-TREE-ALGORITHM
In: G = (V, E, c), a tree TZ = (VT , ET), a set of members Z ⊆ VT , a request ρ, one insert strategy ID , one remove

strategyRD}, one tree algorithmAT , and an upper cost bound B.
Out: Updated tree TZ = (VT , ET )

1: if ρ = {remove, m} then

2: RD (G,TZ ,m)
3: else if ρ = {inser t, m} then

4: ID (G,TZ ,m)
5: end if

6: BTZ
= getCurrentCostOfTree(TZ)

7: if BTZ
> B then

8: Gg = createGroupGraph(G, Z)
9: TZ =AT (Gg)

10: end if

14.2.2 Experiment configurations

In the experiments, we use equation 8.1 (section 8.5.4) to approximate the number k of Steiner-

points that are needed to ensure that the degree-limited dynamic tree algorithms are able to

reconnect a tree. The k Steiner points are chosen by k-Median(k) from 100 Steiner-points

(super-nodes) that are identified at the beginning among the 1000 nodes in the overlay net-

work. These well-placed super-nodes (chapter 8) are found by the multiple core-node selection

algorithm k-Center(k = 100).

We ran the group communication simulations using the RDA algorithm. RDA was given as

input RTR-MDDL, I-MDDL, smddl-OTTC and a diameter bound B. We varied the diameter

bound B to see the effect it had on our target metrices: diameter, stability in reconfiguration and

execution time of reconfiguration. Table 14.2 summarizes the test setup.

14.2.3 Reconfigure tree results

Figure 14.4 compares the diameter achieved by the RDA algorithm given different diameter

bounds. The smddl-OTTC and DA(RTR-MC,I-MDDL) are plotted as references. It is clear that

the tree-reconfiguration in RDA prevents the tree degradation that occurs for the dynamic tree

algorithm. The RDA algorithms now perform very well, even compared to the close-to-optimal

smddl-OTTC. Figure 14.5 plots the CDF for the diameter, and we observe a similar pattern.

Figure 14.6 is a CDF of the edge-changes in the tree-reconfigurations. The smddl-OTTC

is clearly the most unstable, for which 10 % of the tree-reconfigurations have more than 15

edge changes. We observe that the RDA algorithm that use a diameter bound B = 0.400 has

a stability which is almost identical to that of DA(RTR-MC,I-MDDL). The more tight bounds

of 0.350 and 0.300 decreases the stability somewhat, and clearly illustrates that for RDA the

diameter bound has a major influence on the stability.

Figure 14.7 is a CDF of the exexution times of the tree-reconfigurations. As expected,

the DA(RTR-MC,I-MDDL) is the fastest, and smddl-OTTC is clearly the slowest. The RDA
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configuration with a diameter bound B = 0.400 is almost identical to DA(RTR-MC,I-MDDL),

while the tighter bounds increases the tree-reconfiguration times more.

In summary, we observed that RDA(RTR-MC,I-MDDL,smddl-OTTC, 0.400) yield trees

with a consistently low diameter, which is only fractions higher than the close-to-optimal smddl-

OTTC. In addition, the RDA configuration kept the stability and quickness of a dynamic tree

algorithm. However, we also observed that the initial diameter bound influences the perfor-

mance of RDA. A tight bound reduces the stability and quickness, while a loose bound removes

the advantage of a consistent low diameter.

14.3 Summary of the better subgraph algorithms

Chapter 11 and 13 respectively investigated spanning-subgraph and Steiner-subgraph algo-

rithms, and dynamic subgraph algorithms.

14.3.1 The better subgraph algorithms

The investigations of the spanning-subgraph and Steiner-subgraph algorithms identified that

the diameter-reducing subgraph algorithms were able to produce subgraphs that yielded a lower

diameter than their respective tree-algorithm counterparts could. However, the reduction in
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the diameter was only slight, with the drawback of added network cost. Among the subgraph

algorithms, it was the Steiner-subgraph algorithms that overall constructed subgraphs with the

lowest diameters.

Algorithm Meaning Optimization Input toAM Complexity Problem

kIT k-Iterative Tree constr. AT goal G, k,AT O(k ∗O(AT )) 70) k-c subgraph
kDL k-Diameter Links diameter G, k,AT O(n3 +O(AT )) 78) k-c MDDL
kDA k-Dynamic-subgraph alg. ID ,RD goal G, k, ID ,RD O(ID), O(RD ) 90) Dynamic Subgraph

kIT k-Iterative Tree constr. diameter G, 2, smddl-OTTC O(2 ∗ n3) 70) k-c subgraph
kDL k-Diameter Links diameter G, 80, smddl-OTTC O(n3 + n3) 78) k-c MDDL
kDA k-Dynamic-subgraph alg. minimum-cost G, 3, I-MC(3), RTR-P-MC O(n), O(n3) 90) Dynamic Subgraph

Table 14.3: Subgraph construction algorithms

The details of the subgraph algorithms are listed in table 14.3. For the kIT subgraph algo-

rithm, we found that the better input parameters were the Steiner-heuristic smddl-OTTC and

k = 2. Moreover, for the kDL subgraph algorithm it was also smddl-OTTC, but with a k = 80.

For the kDA algorithm, we found the remove strategy RTR-P-MC, insert strategy I-MC and

k = 3 to be the best configuration. In addition to these configurations, we found that a degree-

limit of 10, enabled the algorithms to find trees with a lower diameter.
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Figure 14.8: Diameter (seconds) of the better mesh algorithms.

14.3.2 Simulation results from the better subgraph algorithms

Figure 14.8 compares the subgraph-diameter (seconds) achieved by the better subgraph algo-

rithms found in our previous investigations. The main observation is that the diameter is not

reduced very much, when going from a tree to subgraph (cyclic graph). The best perform-

ing dynamic mesh algorithm DA(RTR-P-MC,I-MC,k = 3/4) yield a consistently low diameter

throughout the group range. However, it does not outperform the best performing dynamic tree

algorithm DA(RTR-MDDL,I-MDDL) for smaller group sizes (< 80).

Figure 14.9 compares the average pair-wise latencies in the subgraphs constructed by the

subgraph algorithms. It is expected that the subgraphs from the subgraph algorithms yield

lower pair-wise latencies than the trees constructed by the tree algorithms. Subgraphs have

more routes between the nodes, while a tree has only single routes. The kDA(RTR-P-MC,I-

MC,k = 2, 3, 4) yield a consistently low pair-wise latency throughout the group-range, while

the DA(RTR-MDDL,I-MDDL) still yield overlays that degrade for larger group-sizes (> 80)

and is fairly high for smaller group-sizes.

Figure 14.10 compares the total cost of the subgraphs. We observe that the kDA(RTR-

P-MC,I-MC,k = 2, 3, 4) yield subgraphs with a total cost which is competetive to that of

kIT(smddl-OTTC,k = 2) and kDL(smddl-OTTC,k = 80). The tree algorithms DA(RTR-

MDDL,I-MDDL) and smddl-OTTC yield, as expected, much cheaper trees. This is only nat-
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Figure 14.9: Pair-wise (seconds) of the better mesh algorithms.

ural, because trees have the minimum amount of edges possible for a group of nodes to stay

connected.

Figure 14.11 compares the stability of the subgraph algorithms, in terms of the number of

edge-changes across sugraph reconfigurations. As expected, the Steiner subgraph algorithms

have many edge changes, the dynamic subgraph algorithms have much fewer edge-changes,

and dynamic tree algorithms have the least. The main reasons are that subgraphs have more

edges than a tree, and it is only natural that the subgraph algorithms have more edge-changes.

The advantage of subgraphs is that there are potentially more than one route to each destination.

Therefore, the reconfiguration instability may not influence the overall delivery rate as much as

in a tree, for which there exist only one route to each destination.

Figure 14.12 compares the execution times of subgraph reconfigurations. It is clear that the

Steiner subgraph algorithms are very much slower than the dynamic subgraph algorithms. The

dynamic subgraph algorithms DA(RTR-P-MC,I-MC,k = 2, 3, 4) are still extremely fast, and

executes a subgraph reconfiguration in less than 4 milliseconds.

From these results and observations we see that the dynamic subgraph algorithm kDA(RTR-

P-MC,k = 2, 3, 4) is able to maintain a consistently low diameter of the subgraphs. However,

DA(RTR-MDDL,I-MDDL) yield a lower subgraph diameter for smaller group sizes (< 80).

kDA(RTR-P-MC,k = 2, 3, 4) also achieved very low pair-wise latencies in the subgraphs, even

compared to the Steiner subgraph algorithm kIT(smddl-OTTC,k = 2). Lower pair-wise laten-
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Figure 14.10: Edge changes in reconfigurations of the better mesh algorithms.

cies is the main advantage of a subgraph over a tree. Finally, kDA(RTR-P-MC,k = 2, 3, 4) was

very stable and fast compared to the Steiner subgraph algorithms.

14.4 Reconfiguration of subgraphs

Similar to the tree-algorithm reconfiguration, we devised an algorithm for which the goal is

to take advantage of the stability and quickness of the dynamic subgraph algorithms, and the

low-diameter produced by the Steiner-subgraph algorithms

14.4.1 Reconfigure subgraph algorithm

The reconfigure subgraph algorithm is almost identical to the reconfigure tree algorithm (RDA)

from section 14.2, expect there is a configurable integer k that describes the connectivity of the

subgraph.

k-Reconfigure-subgraph Dynamic-Algorithm(RD,ID ,AT , k, B) (kRDA) takes as input a dy-

namic subgraph algorithm, in terms of a remove strategyRD and an insert strategy ID . Further,

it takes as input a tree algorithmAT , a configurable integer k ≥ 1, and a cost related bound B,

where B may, for example, define a bounded diameter. kRDA uses the insert and remove strate-
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Figure 14.11: Edge changes in reconfigurations of the better mesh algorithms.
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Description Parameter

Placement grid 100x100 milliseconds
Number of nodes in the network 1000

Degree limit 10

Super-nodes found by k-Center(k) k = 100

Diameter bounds 500,450,400 and 350 milliseconds

Table 14.4: Experiment configuration.

gies to insert and remove nodes to and from a subgraph. The insert strategy includes a node m,

and adds k links from it to the subgraph. The remove strategy removes m and reconnects the

subgraph as if it was a tree. For each time a subgraph is reconfigured, kRDA checks whether the

bound B is satisfied. If B is violated, kRDA discards the current subgraph, and calls the kItera-

tiveTree (kIT) subgraph algorithm using the tree algorithmAT and k as input. If B is satisfied,

kRDA does nothing and continues to serve insert and remove requests (see algorithm 74).

Algorithm 74 k-RECONFIGURE-SUBGRAPH-DYNAMIC-SUBGRAPH-ALGORITHM
In: G = (V, E, c), a subgraph MZ = (VM , EM), a set of members Z ⊆ VM , a request ρ, one insert strategy ID , one

remove strategyRD}, one tree algorithmAT , an integer k ≥ 1, and an upper cost bound B.
Out: Updated subgraph MZ = (VM , EM)

1: if ρ = {remove, m} then

2: RD (G,MZ ,m,k = 1)
3: else if ρ = {inser t, m} then

4: ID (G,MZ ,m,k)
5: end if

6: BMZ
= getCurrentCostOfSubgraph(MZ)

7: if BMZ
> B then

8: Gg = createGroupGraph(G, Z)
9: MZ = kIT(AT , k, Gg)

10: end if

14.4.2 Experiment configurations

We ran group communication simulations using the kRDA algorithm. kRDA was given as input

RTR-P-MC, I-MC, smddl-OTTC, k = 3, and a diameter bound B. We varied the diameter bound

to see the effect it had on our target metrices: diameter, stability in reconfiguration and execution

time of reconfiguration. The remaining experiment configurations are listed in table 14.4, and

section 14.2.2 gives further details to the experiments.

14.4.3 Reconfigure subgraph results

Figure 14.13 plots the diameter (seconds) of the subgraphs. We observe for the kRDA combi-

nations that the subgraph diameter is consistently reduced step by step as the diameter bound

B is tightened. kRDA with B = 0.350 seconds is actually performing as good as kIT(smddl-
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Figure 14.13: Diameter (seconds) of subgraphs.

OTTC,k = 3), throughout the group-range. This tells that the local reconfigurations of the

dynamic subgraph algorithms is paying off, and the reconfigurations help the dynamic sub-

graph algorithms to get a "fresh" start. A similar pattern can be seen in the average pair-wise

latencies in figure 14.14. Figure 14.15 plots the CDF of the achieved diameters of the different

algorithms. The graph clearly visualize that kRDA with tighter bounds is forced to reconfigure

and thus achieves a lower subgraph diameter.

The stability is important to maintain, and figure 14.16 plots the CDF of the edge-changes in

reconfigurations. The kIT(smddl-OTTC,k = 3) is clearly the most unstable, while KDA(RTR-

P-MC,I-MC,k = 3) is the most stable. The kRDA algorithm combinations vary in their stability

depending on the diameter bound B. A lower bound yields a lower stability in terms of a larger

number of edge-changes, and a higher bound, yields a higher stability in terms of fewer number

of edge changes. Overall we see that it is possible to keep the stability using kRDA, but it

depends on the diameter bound. The CDF of the execution times (seconds) of the reconfigura-

tions is plotted in figure 14.17. We observe that a similar pattern emerge as in CDF plot for the

edge-changes (figure 14.16).

From the previous results we observed that it is possible to maintain the stability and quick-

ness of the dynamic subgraph algorithms and reduce the diameter further by reconfiguring the

subgraph occasionally. In the tests we saw that the diameter bound 0.450 seconds was the

bound that overall fit these algorithms the best. The bound, however, is hard to obtain and is
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sometimes not desirable. But, in distributed interactive applications there are often absolute

minimum requirements to the latency, hence, it is therefore possible to set a minimum latency

bound that the subgraphs must obey.

14.5 Summary of the main points

In the previous sections we gave a summary of the better performing tree and subgraph algo-

rithms that were found in our investigations in previous chapters.

We identified that dynamic-tree algorithms yield overlay trees that degrade for larger group

sizes, but that they have desirable properties linked to a high stability and low execution time.

The stability is measured in terms of the number of edge-changes in a reconfiguration. We also

found that the Steiner-tree heuristic smddl-OTTC yield trees with a consistently low diameter.

Therefore, we devised an algorithm that took as input a dynamic tree algorithm, in terms of

an insert strategy and a remove strategy, and a Steiner-tree heuristic. In addition, there was

a configurable diameter bound that decided if a tree had degraded and a total reconfiguration

using the Steiner-tree heuristic was necessary. The goal was to preserve the high stability and

low execution time of the dynamic tree algorithms, and still manage to create trees with a

consistently low diameter. The results showed that with a well-set diameter bound, we were

able achieve these target metrics.

We further investigated dynamic-subgraph algorithms and the subgraph algorithm k-Iterative

tree construction (kIT). Also here, we found that the dynamic-subgraph algorithms are stable

and fast, while the subgraph algorithms are more unstable and slower, but yield a lower diame-

ter. We devised a similar algorithm for reconfiguration of subgraphs that included a configurable

integer k, which described the connectivity of the subgraphs. The results showed that we were

able to achieve a higher stability and lower execution time, and also keep the diameter and

pair-wise latencies very low.

The main conclusion of the investigations is that dynamic algorithms are well-suited for

updating overlay networks that are used for real-time interaction, due to their stability and

quickness. However, we also found that when the trees and subgraphs degrade, it is well-

advised to reconfigure them by applying a close-to-optimal heuristic, which optimizes towards

a low-latency overlay.



Chapter 15

Group communication experiments:

Overlay construction algorithms

The group management techniques that were introduced in chapter 5 formed the foundation for

the investigations in chapters 6 through 14. These investigations identified algorithms that were

suited for the resource management and the overlay management.

In order to test the interoperability between the techniques, we implemented a group com-

munication system that we tested on PlanetLab. The evaluation of the system began in chap-

ter 6, which evaluated the latency estimation techniques Vivaldi and Netvigator in terms of

their accuracy in retrieving all-to-all path latencies. The results showed that Netvigator is the

most accurate but may be harder to setup, Vivaldi is inaccurate but easier to setup. The all-to-

all latency estimates obtained by the latency estimation techniques in the network information

mananagment, are used by centralized graph algorithms in the resource management and the

overlay network management. More specifically, they are used by core-node selection algo-

rithms (chapter 7) and overlay construction algorithms (chapter 9 through 14).

The interoperability between latency estimation techniques and the core-node selection al-

gorithms was evaluated in section 7.7. It was clear that the Netvigator estimates enabled the

core-node selection algorithm k-Median to choose core-nodes that were the close-to-optimal

ones. The more inaccurate Vivaldi estimates resulted in a penalty to the core-node selection,

and made k-Median choose non-optimal core-nodes. However, the penalty was within reason-

able bounds and the conclusion was that both Netvigator and Vivaldi yield sufficiently accurate

all-to-all latency estimates.

The following investigation evaluates the interoperability between latency estimation techniques

that obtain all-to-all latency estimates, and centralized graph algorithms in terms of core-node

selection algorithms and overlay construction algorithms.

More precisely, we apply the latency estimates from Vivaldi and Netvigator to selected spanning-

tree and dynamic-tree algorithms, and evaluate the usability of the trees. A few of the spanning-

365
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tree algorithms rely on applying the k-Median core-node selection algorithm to find the source-

node, from which the tree-construction starts. Some of the dynamic-tree algorithms also try to

identify well-placed core-nodes they can include to the tree when nodes are either inserted or

removed. Therefore, the tree-construction is also influenced by how well k-Median is able to

identify core-nodes.

The results showed that the all-to-all latency estimates from Netvigator are sufficiently ac-

curate to be used in the tree construction, compared to using all-to-all ping measurements. The

Vivaldi estimates yield a larger penalty, but were also found to be usable. However, when k-

Median was actively used by tree algorithms, the inaccuracy of the trees increased when using

Vivaldi estimates, while it remained stable when using Nevigator estimates.

The rest of the chapter is organized in the following manner. Section 15.1 introduces how the

overlay network management and network information management cooperates. Section 15.2

presents results from the PlanetLab experiments, where the latency estimates are used by the

tree algorithm dl-SPT, and we evaluate their accuracy. Section 15.3 further presents results from

the PlanetLab experiments, where the latency estimates are used by multiple tree algorithms,

and we evaluate and compare their accuracy. Finally, section 15.4 gives a brief summary of the

main points.

15.1 Centralized group communication system

The chapter addresses a goal of the thesis, stated in section 5.5, which was a goal for the network

information management:

4) Identify techniques that are able to obtain accurate all-to-all Internet path latencies.

The motivation behind this goal is that centralized graph algorithms are desirable because they

are fast, and these algorithms use latency in their search routines. Therefore, in order to prop-

erly address the goal we use the centralized group management system from chapter 5, and

implement all the techniques introduced there in a real-world system. The centralized group

management system includes techniques for membership management, resource management,

overlay network management and network information management.

The investigation started in section 7.7, which investigated the interoperability between the

network information management and the resource management, in terms of latency estimation

techniques and centralized core-node selection algorithms.

In this investigation, we only evaluate the network information management and overlay

network management. The network information management holds the latency estimation tech-

niques Vivaldi and Netvigator. The overlay network management includes graph manipulation

algorithms and overlay construction algorithms. The graph manipulation algorithm we evaluate

is the core-node selection algorithm k-Median, which finds well-placed nodes to be used in the
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control path

data path

user nodes

central entity

Figure 15.1: Central entity executes the group management teqhniques.

tree construction. The overlay construction algorithms we evaluate are selected spanning-tree

and dynamic tree algorithms, from chapter 9 and 12.

The centralized group management system is run by a central entity, and the cooperation

between the three parts of the overlay management is as follows:

1. A latency estimation technique estimates the link latencies between the clients in the

application. A latency estimation technique continuously updates the link latencies in a

global graph that holds all the current clients in the application’s network.

2. A graph manipulation algorithm uses the group information from the membership man-

agement to group the clients into complete graphs. In this complete graph, each node is

a client, and each edge holds the link latency as estimated from the latency estimation

technique. Then, it uses a core-node selection algorithm to identify well-placed nodes in

the group. This is useful for many overlay construction algorithms that are dependent on

the source-node from which it starts building the overlay. Moreover, it is also useful for

many dynamic-tree algorithms that are dependent on finding well-placed Steiner-points

to include to the trees.

3. The overlay construction technique is given as input a group graph from the graph ma-

nipulation and constructs an overlay network on it. This overlay network is to be used for

the application’s event distribution.

Of the three steps, it is the overlay construction step that actually builds the overlay net-

works, and the following investigations use selected tree algorithms to execute the overlay con-

struction. The performance of some of these tree algorithms is influenced by the initial source

node that is used to start the tree construction. In addition, we evaluate dynamic-tree algorithms

that aggressively tries to include well-placed Steiner points to the group trees. All of these

well-placed nodes are chosen by the core-node selection algorithm k-Median.

The performance of k-Median was evaluated through simulations in chapter 7, and found

to be a very good algorithm for finding well-placed nodes. Then it was used in section 7.7,
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Descriptions Configurations

Group sizes g = 4, 8, 12 clients
RTT measures tcpinfo, ping
Packet rates high (100 packets/sec.), low (2 packets/sec.)
Log times t = 4, 8, 12, 16, 20 minutes

Table 15.1: Vivaldi experiment configurations.

to evaluate whether the latency estimates from Netvigator and Vivaldi enabled k-Median to

find close-to-optimal core-nodes. The conclusion was that both yield latency estimates accurate

enough for core-node selection.

In the following investigations we wish to observe the cumulative effects that the accuracy

(or inaccuracy) of the latency estimates have on tree algorithms, many of which that rely on

core-node selection.

15.2 PlanetLab experiments: Single tree algorithm

The initial construction experiments use dl-SPT and a degree limit of 5 for all nodes, which is

due to somewhat limited client capacities in the Internet [130]. Furthermore, we use the same

100 PlanetLab nodes that were used for the core-node selection experiments in section 7.7.1.

In general, a network of 100 PlanetLab nodes and group sizes below 40 do not give a good

enough foundation for a conclusive evaluation of our tree algorithms. However, firstly we are

primarily testing the applicability of latency estimation techniques and not the performance of

our tree building algorithms. Secondly, in the previous investigations we have performed the

experiments on BRITE-generated graphs of size 1000, and the results largely correlate with our

findings on this PlanetLab network with fewer nodes.

Our distributed application mimics group communication in distributed interactive applica-

tions (e.g., online games). The 100 nodes join and leave groups dynamically throughout our

experiments by sending join and leave requests to a central entity. The group popularity is dis-

tributed according to a Zipf distribution. The central entity uses the latency measurements or

estimations to choose the most appropriate core node using the k-Median core-node selection

algorithm (chapter 7), and recomputes the multicast tree for the group whenever membership

changes. For the Vivaldi estimates, we allowed a period of 4 minutes to let the node coordi-

nates stabilize. The tests were run each day for a 10 day period. Table 15.1 gives the Vivaldi

configurations.

15.2.1 Tree experiment metrics

We evaluated the quality of the trees that were created based on estimates from Vivaldi and

Netvigator by examing the resulting diameters. The diameter expresses the worst case latency
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between any pair of group members, and is a particularly important metric when all-to-all group

communication is required by an interactive application. Since applications make decisions

based on the assumed or measured diameter, it is not only important that it is low but also that

the application can know it with a high degree of trust. We look at and compare diameters from

three different angles in our evaluation:

• The reported diameter is the tree diameter that is obtained by using the estimated latencies

in all steps. That is, by running the group manipulation and overlay construction based

on the results of the network identification phase. The value of the reported diameter is

an estimated value.

• The real diameter is the tree diameter that is obtained by applying the path of the reported

diameter on the close-to-real all-to-all ping measurements. Thus, the real diameter is

obtained by running the manipulation and construction steps based on estimation. The

value of the real diameter, however, is calculated using the close-to-real all-to-all ping

measurements on the reported diameter path.

• The optimal diameter is the tree diameter that is obtained by using the close-to-real all-

to-all ping measurements in all steps. That is, by running manipulation and construction

step based on the all-to-all ping measurements. The optimal diameter is taken from these

measurements.

It is important that an application can trust the group tree diameter it is reported. Therefore,

we measured the difference between the reported diameter from the estimates and the real

diameter from the all-to-all Ping latencies. In addition, we measured the difference between the

real diameter and the optimal diameter.

For comparison, we also measured the number of non-member-nodes that are present in the

trees, and the number of edge changes that are made upon tree reconfigurations. Finally, we

measured the tree migration time, which is the time it takes from the tree updates are sent until

every client in the tree has received it.

15.2.2 Tree experiment results

The following are evaluations of the results we got from our group communication experiments

performed on PlanetLab. Figure 15.2(a) shows the CDF of the error (in seconds) between the

reported tree diameter from the estimates and the real diameter. The group sizes were > 20

for increased confidence and we exhausted the group membership combinations possible. sdl-

SPT applied to Netvigator yields 96 % of the estimated tree diameters within a 20 milli-second

error margin from the real diameter. While, the estimates from Vivaldi with high packet rates

using tcpinfo and ping RTTs yields 85 % of the tree diameters within a 25 milli-seconds error
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Figure 15.2: Tree metrics for diameter.
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Figure 15.3: Diameter of selected tree algorithms using estimations and real latencies.

margin. Vivaldi exhibits the poorest performance with low packet rates, which yields 80 % of

the tree diameters within a 35 milli-seconds error margin. However, the discrepancy between

the reported diameter from the estimates and the real diameter is on average reasonably low for

Vivaldi.

Figure 15.2(b) shows the CDF of the error (seconds) between the real diameter and the

optimal diameter. We see that the error margin between them becomes quite high. This may be

due to a cumulative error effect when tree algorithms build a tree from the estimates.

Figure 15.3 shows the diameter (seconds) produced from the estimates compared to the real-

world for various group sizes using the tree algorithm sdl-SPT. We observe that for group size

30 the difference between the reported diameter from the estimates and the real diameter is 5

milli-seconds for Netvigator and 15 milli-seconds for Vivaldi (ping RTTs and high packet rate).

However, the difference is bigger when compared to the optimal diameter. In that case, it is 25

milli-seconds for both Netvigator and Vivaldi.

In figures 15.4 and 15.5 we complete the evaluation of the estimates and visualize the dis-

crepancy between the reported diameter and the real diameter. Not surprisingly, the same ten-

dency that we saw from the core eccentricities emerge. Netvigator performs best, Vivaldi with

high packet rates is better than with low packet rates, and ping RTTs is slightly better than

tcpinfo RTTs.
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(a) Vivaldi, ping, low packet rate.

(b) Vivaldi, ping, high packet rate.

(c) Netvigator.

Figure 15.4: Reported diameter vs. real diameter in group trees.
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(a) Vivaldi, tcpinfo, low packet rate.

(b) Vivaldi, tcpinfo, high packet rate.

(c) Netvigator.

Figure 15.5: Directed relative error of the reported diameter to the real diameter in group trees.
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15.3 PlanetLab experiments: Comparison between tree al-

gorithms

The previous results used the dl-SPT algorithm to show the penalties of using latency estimates

to construct trees. The following evaluates the penalties when the latency estimates are applied

to several tree algorithms. These tree algorithms include spanning-tree algorithms and dynamic

tree algorithms that were evaluated in chapter 9 and 12 through simulations.

Figure 15.6 and 15.7 shows the tree diameter performance of the dynamic algorithms and

the tree algorithms when applied to Netvigator and Vivaldi estimates, as well as the real all-to-

all pings. We include Dijkstra’s shortest path tree (SPT) [58] results for the sake of comparison.

Generally, we see that trees produced from Netvigator estimates have a closer to the real-world

reported diameter than those from Vivaldi. The insert and remove strategies that search for

well-placed core-nodes to use as Steiner-points (RTR-MDDL, RTR-P and ITR-MDDL) do not

perform well when applied to Vivaldi estimates. In particular, RTR-P shows a clear tendency

in disfavor of using the Vivaldi estimates, independent of the chosen insert strategy. RTR-

P aggressively prunes non-member nodes and searches for new well-placed nodes to use as

Steiner-points. We see that the lower quality latency estimates from Vivaldi have an impact on

the performance of RTR-P.

It is also important and remarkable that estimates of the diameter are in all cases lower

than the diameter that is actually achieved. More specifically, the Vivaldi reported diameter

is lower than the Vivaldi real diameter. This is supported by the observations made already

in chapter 6, that more latencies are under- than over-estimated by Vivaldi and Netvigator. It

forces applications relying on estimation techniques to make conservative assumptions about

the diameter of subgroups whenever the delay limits for the application are hard.

From figure 15.8 we see that ITR-MDDL combined with RK and RTR-MDDL suffers from

non-member node degradation, i.e., an increasing number of non-member nodes in the trees.

Figure 15.9 shows that the number of edge changes is higher with RTR-P. One approach may

be to run RTR-P only periodically. dl-SPT and mddl-OTTC both suffer from higher execution

time and more edge changes.

15.4 Summary of the main points

We conducted an experimental analysis of the latency estimation techniques Vivaldi and Netvi-

gator in the context of dynamic group communication for distributed interactive applications.

From chapter 6 we know that Netvigator yields latency estimations that are very close to opti-

mal, while the estimations from Vivaldi are not as good. Vivaldi’s advantages are that it is very

easy to deploy in a peer-to-peer fashion and it handles membership dynamics. Netvigator, on
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(b) Remove strategy is RTR-MDDL.

Figure 15.6: Comparison of reported, real and optimal diameter (group sizes 20-30).
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Figure 15.7: Comparison of reported, real and optimal diameter (group sizes 20-30).
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Figure 15.10: Tree migration times for central entity chosen by k-Median core-node selection algorithm,
compared to the worst case pair-wise.

the other hand, needs an infrastructure (Landmark nodes).

In this chapter, we experimentally tested a centralized membership management architecture

for dynamically changing subgroups in a distributed interactive application. The architecture

included latency estimation techniques, core-node selection algorithms and tree algorithms that

together made it possible to build multicast trees optimized for the tree diameter. We found that

the collection of techniques and algorithms worked very well together.

The advantage of a centralized approach is the consistency it gives, however, the drawback

is the administration latencies involved in membership and group updates. Especially the tree

migration time is an issue when multicast trees are dynamically updated. Figure 15.10 shows

the average tree migration times for different group sizes. It is quite clear that the k-Median

core-node selection algorithm ensures that a central entity is chosen that has low pair-wise

latencies to the clients in the member network. The worst case central entity placement may be

a valid situation in cases where a game provider has a static central entity that serves the entire

world. A static central entity cannot be in the current topological center at all times, because as

the night and day passes the clients in a game dynamically shifts from continent to continent.



Chapter 16

Distributed interactive application

scenarios:

Applying the research

The studies performed from chapter 5 through 15 included many different group communica-

tion techniques and algorithms that were all evaluated towards their applicability to distributed

interactive applications. The evaluations revealed several algorithms that are suitable to address

the thesis goals (described in section 2.5).

Although the main goals of the thesis focused on enabling a specific type of distributed

application, the research is applicable to very many application scenarios. It is clear that we

cannot address every possible scenario, but in this chapter, we do present a range of basic and

more advanced choices an application designer must make during development. Table 16.1

presents some of the parameters and options that are possible. In the table we highlight what

we conceive to be very important variables in terms of research categories, metrics, etc, and

then give a wide range of possible parameters and values for each of them. These are later on

used in table 16.2 to describe specific distributed interactive applications.

The discussions in this chapter are based on the results obtained through simulations and

experiments. For each discussion we suggest algorithms that are usable for selected application

scenarios. More specifically, the discussions include questions related to which architecture,

management approaches and algorithms to choose for distributed interactive applications. In

short, we found that centralized solutions are desirable because they yield lower administration

latencies than distributed options. However, we did find that the data paths should be among

interacting clients to avoid a more costly and less scalable centralized client/server communi-

cation model. Generally, the requirements in distributed interactive applications are very much

tied to link latency and bandwidth. Chapter 2 introduced several distributed interactive applica-

tions, for which one important requirement was:

379
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Variable Parameters/values

Group update static = no-updates, dynamic = updates
Application members low = [0,100], medium = [100,1000], large = [1000,∞]

Group size (nodes) low = [0,100], medium = [100,1000], large = [1000,∞]

Super nodes yes (use as Steiner-points), no

Architectures Client/server, peer-to-peer, hybrid centralized/distributed
Optimization Diameter, total-cost, reconfiguration-time, edge-changes (stability)
Constraints Bounded diameter, degree-limits, total-cost

Latency (ms) low ≤ 100, medium≤ 500, large ≤ 1000

Bandwidth (kbps) low ≤ 10, medium ≤ 100, large ≤ 500

Table 16.1: Variables and values

To achieve real-time interaction across the Internet requires sufficiently low latencies between

the interacting participants.

This is the most basic requirement for any application that aims to support real-time interaction

across the Internet. Section 2.3.5 presented specific latency requirements that were based on

user satisfaction studies. The studies revealed that the latency requirements vary depending on

the application type:

From 100 milliseconds for first-person shooter games and 150-200 milliseconds in audio/video

conferencing, to 500 milliseconds for role-playing games and 1000 milliseconds for real-time

strategy games [70, 27].

We observe that it is harder to support real-time interaction between multiple parties when the

latency requirement is 100 milliseconds, than if it is closer to 500 milliseconds. For this reason,

the first-person shooter games that exist today support rather few concurrent players. Further-

more, the audio/video conferencing applications that exist do all require extra equipment to

work when the number of participants start to exceed in numbers. This is due to the strict la-

tency requirements combined with bandwidth-demanding audio/video streams. The bandwidth

capacity on average clients in the Internet is increasing, but it is still too low to be able to

multicast many bandwidth intensive audio/video streams in an overlay network.

Table 16.2 summarizes some of the characteristics and requirements that a few existing dis-

tributed interactive applications have. In the table, we use a few of the variables and values

from table 16.1 to describe the applications. We see that most of the applications have latency

requirements that are fairly low (≤ 200). Moreover, we observe that it is expected that the ap-

plications support membership dynamics to some degree. Many of the applications, especially

the games (FPS, RTS and RPG), also divide the application members into sub-groups. This is

done mainly to achieve robustness, consistency and consequently better scalability.

The rest of the chapter is organized in the following manner. Section 16.1 briefly discusses

possible architectures of distributed interactive applications. Section 16.2 summarizes how the

membership management in application scenarios with one or multiple groups should be ap-
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proached. Section 16.3 compares some basic types of overlay networks: source overlays and

shared overlays. Section 16.4 introduces and compares static and dynamic groups. Section 16.5

and 16.6 go into more details regarding how static and dynamic groups can be treated, and

how their properties and requirements can be addressed using overlay construction algorithms.

Section 16.7 discusses what influences the performance of an overlay construction algorithm.

Finally, section 16.8 provides brief summaries of the main points.

16.1 Architecture: centralized vs. distributed

Current distributed interactive applications often employ a centralized architecture. Section 2.2

described MMOG games and how the game companies spend millions of dollars in develop-

ment, but still most of them employ a rather simplistic client/server architecture. This is likely

due to the immense complexity of the MMOGs, and the fact that large centralized server-parks

are easier to manage and control. In the thesis, we also chose a centralized architecture because

of the consistency and control it yields compared to distributed architectures, but our approach

was different from a client/server architecture.

We proposed a group management architecture that a central entity executes (chapter 5). The

architecture consists of a centralized membership management, a resource management and

an overlay management with centralized graph algorithms, and finally a network information

management to retrieve all-to-all path latencies.

We used centralized graph algorithms because distributed graph algorithms currently suffer

due to large end-to-end path latencies in the Internet. Centralized graph algorithms need link

information if they are to address latency requirements. Therefore, we used latency estimation

techniques to measure and estimate link latencies. Moreover, the client interactions should

be multicast among the clients, and we considered application layer overlay multicast as a

way of achieving group communication. An overlay network is used by interacting clients to

distribute events through it. Generally, to multicast application data through overlay networks is

efficient in terms of bandwidth consumption, but may increase the end-to-end latency compared

to a centralized server solution. However, if the centralized server is mis-placed, for example,

located far away from the interacting clients, this approach will also increase the end-to-end

latencies.

16.2 Membership: One group vs. multiple sub-groups

Section 2.3.2 discussed the difference between managing one group of clients, to having multi-

ple sub-groups of clients. We identified that when an application manages one group of clients

it suffices to form low-latency event-distribution paths in which all clients are reachable, and
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Application Membership Application Subgroup Consistency Latency Bandwidth

change members sizes requirements bound requirements

FPS high low low high 100 ms low
RTS high medium low high 1000 ms low
RPG high large low/medium high 500 ms low
Audio Conference low low - medium 200 ms medium
Video Conference low low - medium 200 ms large
Remote Operation - low - critical 100 ms medium
Military CS high large low/medium critical 100 ms medium
3D Conference low medium low/medium high 200 ms low

Table 16.2: Application table.

a membership management system is enabled by distributed mechanisms for handling client

churn.

When multiple sub-groups are used to distribute events in an application, the approach poses

membership management challenges related to how the groups are updated.

We proposed a centralized approach to the membership management for such scenarios of mul-

tiple sub-groups of clients (section 5.2). One issue with a centralized approach is the potential

large latencies from some group members to the node executing the membership management.

Therefore, a core-node selection algorithm should be used to select a well-placed node that may

execute the membership management. In the evaluations of chapter 7 we found that the core-

node selection algorithm k-Median is able to find core-nodes that yield low maximum one-way

latencies to groups of clients. Generally, a centralized membership management approach is

applicable to all the application examples in table 16.2.

16.3 Group communication: Source-overlays or shared-overlays

In the thesis, we have evaluated and discussed a wide range of overlay construction algo-

rithms. These algorithms construct two main types of overlay networks: source-trees and

shared-overlay networks.

The minimum-latency approach is to build a source-tree for each client that is interacting

and distribute the events through them. However, this is not scalable for large numbers of in-

teracting clients, mainly because application layer overlay networks are inherently complete

networks (full meshes) of shortest paths, such that a source-tree has the shape of a star. Conse-

quently, each source has to send each client one individual copy of its application events. In the

thesis:

We mainly consider shared-overlays that are used by all the members of a single group to

multicast the group’s application events. There are two main types of shared-overlays: shared-

trees and shared-subgraphs.
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A shared-tree is a connected subgraph that is acyclic (definition 21). The advantage of a shared-

tree is the reduced average stress-level on the clients that are multicasting events. However, the

drawback is that a shared-tree cannot minimize the pair-wise latencies between the clients.

Despite this drawback, a shared-tree is much more desirable than a source-tree because using

one shared-tree leads to less resources spent when the number of clients is large.

A shared-subgraph is a connected subgraph that may contain cycles (definition 20). The

assumption is that a client does not multicast previously seen events from the same source.

Such shared-subgraphs are also used to multicast events, but since they are likely to contain

loops there is an increase in the bandwidth consumption. On the other hand, a shared-subgraph

has the advantage that it decreases the average pair-wise latencies, and also provides a level of

data delivery resilience. However, in our evaluations, we found that shared-trees are able to

compete with shared-subgraphs in terms of the overlay diameter.

16.4 Group updates: Static groups vs. dynamic groups

One major difference that affects which overlay construction algorithm to choose, is whether

the client groups in the application are static or dynamic:

• Static groups are created at some point, and remain unchanged until their group-sessions

are over. Generally, a static group’s overlay network must be created by overlay construc-

tion algorithms that construct overlays from scratch.

• Dynamic groups are created at some point and may be changed continuously until their

group-sessions are over. A dynamic group’s overlay network should use overlay con-

struction algorithms that update an existing overlay based on incoming join and leave

requests.

The following sections introduce issues related to how static groups are created, and how

dynamic groups are updated. The issues are tightly linked to latency requirements, bandwidth

issues, group-sizes, etc (table 16.1). These issues are discussed and configuration options are

suggested to address them. The configurations are specific algorithms from the group commu-

nication simulations and experiments in the thesis. In principle, the algorithms used for static

groups may be applied for dynamic groups, but we only discuss the most suited algorithms that

we identified.
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16.5 Static groups of clients

Spanning or Steiner overlay algorithms should be used in scenarios of static groups of clients,

because they construct overlay networks from scratch.

This is because spanning and Steiner overlay algorithms are the two groups of algorithms that

construct overlays from scratch the best (chapter 9 , 10 , 11). Dynamic overlay algorithms are

only discussed for dynamic groups because they are not designed to create overlay networks

from scratch, but rather include or remove single nodes based on group membership.

The basic requirement to the overlay construction algorithm is to construct an overlay with

a diameter that is inside the application’s user satisfaction bounds. However, a user satisfac-

tion bound may or may not exist, depending on the appliction type. This and other issues are

addressed in the following sections. The questions that we try to address are:

• Are there hard-to-meet low-latency requirements?

• Is there a latency bound based on user satisfaction studies?

• Is there a bandwidth-intensive data-flow?

• Is there a large client-base (with super-nodes)?

For each question, we give recommendations to what algorithms should be used.

16.5.1 Hard-to-meet low-latency requirements

When there are hard-to-meet low-latency requirements, a minimum-diameter overlay should be

used to distribute the events.

As discussed in section 16.3, the minimum-latency approach is to build a source-tree for each

node. However, each source tree is now shaped as a star because application layer overlay

networks are inherently complete networks (full meshes) of shortest paths.

A minimum-diameter tree algorithm (definition 32 and 46), on the other hand, ensures that

the clients in the group are within the least possible maximum pair-wise latency possible. A

minimum-diameter tree in a complete graph made of shortest paths has the shape of a star,

where one or two nodes connect to the remaining nodes. This approach puts extra stress on

the nodes in the middle of the star. Therefore, it is only suitable if these nodes have enough

available bandwidth and computational power to multicast all the data-streams. A minimum-

diameter tree can be approximated by using Dijkstra’s SPT algorithm from the source node that

has the minimum eccentricity.

Chapter 9 also identified the close-to-optimal O(n3)mddl-OTTC and md-OTTC to be suited

spanning-tree algorithms for minimizing the diameter. mddl-OTTC has degree-limits, but is
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otherwise equal to md-OTTC. mddl-OTTC constructs a spanning-tree on a complete graph in

less than 100 milliseconds when the group size is less than 170.

The drawback of a minimum-diameter tree is that the pair-wise latencies are relatively high,

due to a star-shaped tree with long low-latency links to the middle. A minimum-diameter sub-

graph algorithm is another option (definition 83). It aims to create a subgraph that has a diameter

equal to the input graph, but has to obey a total cost bound. In the thesis, we evaluated several

configurable subgraph algorithms that approximated minimum-diameter subgraphs. For exam-

ple, kIT(mddl-OTTC,k = 2) and kDL(mddl-OTTC,k = 80) created subgraphs of a very low

diameter, which also yielded a lower average pair-wise latency.

16.5.2 User-satisfaction latency bounds

If there exist a latency bound for the application type based on user satisfaction studies, it is

possible to use a diameter bounded overlay construction algorithm.

In chapter 9, we identified the close-to-optimal O(n3) dl-OTTC and OTTC to be suited spanning-

tree algorithms that include a diameter bound. dl-OTTC is degree-limited, but when the degree-

limit is set to infinite, the dl-OTTC is equal to the OTTC algorithm. Although they are both

O(n3), they are relatively fast, and in our experiments, they constructed spanning-trees on a

complete graph in less than 50 milliseconds when the group size was less than 170. As we

can see, dl-OTTC and OTTC are slightly faster than md-OTTC and mddl-OTTC, but construct

spanning-trees of a slightly higher diameter.

A drawback with diameter bounded algorithms is that there is no guarantee that they find a

solution in which all group nodes are spanned within the bound. In our simulations, we applied

dynamic relaxation of the diameter bounds, which proved to work very well.

16.5.3 Bandwidth-intensive data-flows

The overlay construction algorithm should be degree-limited when a group is used to distribute

bandwidth-intensive flows.

The degree-limit on a given node ensures that the number of edges connected to it in the overlay,

does not increase beyond its degree-limit. The degree-limits should be calculated based on the

available bandwidths on the group nodes and the bandwidth in the flows the overlay network is

intended to distribute.

In our evaluations, we found a number of degree-limited overlay construction algorithms

that were suitable for constructing low-latency overlays. The drawback of having degree-limits

is that they lead to an increased overlay diameter, because overlay construction algorithms are

forced to use non-optimal edges during the construction. However, in our experiments, we

found that that dl-OTTC and mddl-OTTC constructed trees that could compete with degree
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unlimited algorithms when the degree-limit was uniformly set to 10 for all nodes. A degree-

limit of 5 resulted in higher overlay diameters, and made it more difficult to meet the diameter

bounds. In cases of non-uniform degree-limits, it is important that nodes located centrally

among the group members have a higher degree-limit. This is because central nodes are more

likely to be inner nodes that utilize the entire degree capacity.

16.5.4 Large client-base with super-nodes

In a scenario with a large client-base, it is advantageous to search for well-placed super-nodes

among the clients.

Super-nodes can be used as Steiner-points for Steiner-tree and -subgraph algorithms that yield

overlays of lower diameters than spanning-tree and -subgraph algorithms. In chapter 8, we

identified that we can apply the k-Median core-node selection algorithm to find super-nodes

(chapter 7). The super-nodes can be regular clients participating in the interaction, or servers

and proxies made available by the application provider. The application for super-nodes is to

add them as Steiner-points to complete group graphs, and then let Steiner-tree or -subgraph

algorithms construct overlays on the group graphs. The thesis proposed that the number of

Steiner-points to add should be determined by equation 8.1. However, the general observation

is that more is better, but the execution time increases.

In chapter 10, we identified a number of close-to-optimal Steiner-tree spanning-heuristics.

These heuristics construct a spanning-tree on the input graph, and then prune leaf Steiner-points.

In the investigations, we found that sdl-OTTC and smddl-OTTC are excellent options for con-

structing close-to-optimal Steiner-trees. sdl-OTTC is identical to dl-OTTC except for the prun-

ing of Steiner-points (similarly for smddl-OTTC and mddl-OTTC). In addition, we found that

their execution times are only slightly higher due to the added Steiner-points from equation 8.1.

16.6 Dynamic groups of clients

Dynamic overlay algorithms should be used in scenarios of dynamic groups of clients, because

they are designed to insert and remove nodes from existing overlays.

In dynamic groups, clients may freely join and leave in the course of the group’s life-time.

Hybrid cases between static and dynamic groups may also occur. For example, if a group has

an initial number of members at the time it is created (greater than one), it should be created as

a static group. Then, clients may join and leave the group, and as such be treated as a dynamic

group in the rest of the group’s life-time.

For dynamic groups, the group reconfiguration time is very important, and in that respect,

dynamic overlay algorithms are suitable because they are generally very fast and simplistic.
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However, this may lead to sub-optimal overlays that have too high diameter. In the following

sections we try to address questions regarding the performance of dynamic overlay algorithms.

Speceficially, we try to answer these questions:

• Is there a small dynamic group of clients?

• Is there a large dynamic group of clients?

• What are the effects of reconfiguring large groups?

For each question, we give recommendations to what algorithms should be used.

16.6.1 Small dynamic groups

In application scenarios in which there is a small dynamic group of clients, a dynamic overlay

algorithm should be used to create the group’s overlay network.

Chapter 12 evaluated dynamic tree algorithms, and the results (figure 12.16) showed that when

the degree limit was high (= 10), the algorithm DA(RTR-MDDL, I-MDDL) was able to com-

pete with the close-to-optimal smddl-OTTC for group sizes smaller than 80. For larger group

sizes, the dynamic-tree algorithm yielded tree-diameters that were about 30 % higher. Further-

more, when the degree-limit was decreased (= 5) they only yielded satisfactory tree-diameters

for group sizes smaller than 40. From this, we see that the evaluated dynamic-tree algorithms

are unfit when the degree-limit is low and the group size is large. However, they do work very

well with a higher degree-limit and smaller group sizes.

Chapter 13 evaluated dynamic subgraph algorithms, and we identified in figure 13.5 that

kDA(RTR-P-MC, I-MC,k = 3) yielded subgraphs of a consistently low diameter, throughout

the group-size range (< 170). The drawback is that cyclic subgraphs add more network traffic,

thus increasing the network-cost in terms of the bandwidth consumption. Figure 13.11 showed

that the added total cost was around three-fold from the close-to-optimal minimum-cost tree.

16.6.2 Large dynamic groups

In application scenarios in which there is a large dynamic group of clients, a reconfiguration

dynamic overlay algorithm should be used to create the group’s overlay network.

What a large group size is, is a source for discussion, but group sizes of more than 1000 is

quite large. Applications that have such large dynamic groups of clients are harder to achieve,

because it is hard for a dynamic overlay algorithm to maintain an overlay that yield a sufficiently

low overlay-diameter. On the one hand, the algorithms should be fast enough to enable real-

time group changes, but on the other hand, they should also have enough logic to keep the

overlay-diameter low.
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Many of the proposed dynamic-tree and subgraph algorithms are very fast because they only

consider smaller fractions of the existing group-overlay when they insert and remove nodes from

it. However, we did see that many dynamic overlay algorithms cannot maintain overlays of a

consistently low diameter when the group sizes increase.

Chapter 14 proposed two reconfiguration algorithms, one for trees (RDA) and one for sub-

graphs (kRDA). The dynamic reconfiguration tree algorithm applies a dynamic-tree algorithm

until the tree-diameter has increased beyond a user-set bound. Then, a diameter-reducing

Steiner-tree algorithm reconfigures the entire tree. In the evaluation, we showed that a total

reconfiguration is often necessary to keep a consistently low diameter when the group size

increases. Hence, for applications with dynamically changing larger groups, reconfiguration al-

gorithms are most likely necessary. Similar results were shown for the subgraph reconfiguration

algorithm.

16.6.3 Effects of reconfiguring larger groups

When very large groups are reconfigured from scratch due to broken diameter bounds, it means

that many of the existing communication paths are changed.

In the thesis, we defined the stability of the overlay network as the number of edges that change

across reconfigurations. It is not desirable to have a highly unstable overlay network in which

the communication paths change rapidly. However, it is also not desirable to have an overlay

network with a diameter larger than what is acceptable for a sufficient user satisfaction.

A valid option is to migrate the overlay network updates slowly, such that the overlay keeps

the "old" communication paths until the "new" paths are setup. Moreover, when overlay net-

works are highly unstable, it is likely that highly connected cyclic subgraphs are more suitable

to multicast the data. This is because cyclic subgraphs have multiple paths to the clients and

therefore create data redundancy, this way the reconfigurations are less likely to disrupt all the

active paths.
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16.7 Influences on the overlay construction

The performance of an overlay construction algorithm is influenced by many factors. The fol-

lowing sections discuss a few of the more important influences and how they may be addressed.

The questions we aim to answer are these:

• How is the diameter influenced by algorithms and parameters?

• How is the overlay construction time influenced by algorithms and parameters?

• What about the relay penalty in overlay networks?

Each of the questions are addressed in separate sections.

16.7.1 Influences on the diameter

How successful an overlay construction algorithm is that opts for a low diameter overlay net-

work, is influenced by:

1) the degree-limits on the centrally located nodes,

2) whether there are available Steiner-points (super-nodes),

3) the maximum number of edges it is allowed to add to the overlay.

Figure 11.9(b) evaluated how the diameter produced by mddl-OTTC and the subgraph algo-

rithm kIT varies depending on the degree-limit, the number of edges, and whether the input

graph has Steiner-points. We observed that Steiner-points are more important to obtain a low

diameter, than doubling the number of edges from a tree to a cyclic subgraph. However, the

most important factor is the degree-limit. A high degree-limit enables the diameter optimizing

heuristics to construct overlays of a smaller diameter, because the degree capacity centrally is

increased. When well-placed Steiner points are added by k-Median, this further enhances the

algorithm’s performance, also because the degree capacity centrally is increased.

From these results, we see that it is difficult to obtain a low tree-diameter when the degree-

limits are low. What a low degree-limit is, can be discussed, but in our tests we consider

a degree-limit of 5 or less, to be low. If the degree-limits have to be low, then well-placed

Steiner-points should be added to increase the degree capacity. If super-nodes are unavailable,

the last option is to add more edges and create a highly connected cyclic subgraph. However,

this may also increase the bandwidth consumption on some nodes.
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16.7.2 Influences on the overlay construction time

The overlay construction time is influenced by:

1) whether the overlay construction algorithm is centralized or distributed,

2) if the network information is available at the time of construction,

3) the overlay construction algorithm’s time complexity,

4) the size of the input graph,

5) the constraints applied to the construction.

In the thesis, we evaluated the overlay construction time for each of the overlay construction

algorithms we tested. They were tested in a group communication scenario where they con-

structed or updated a group’s overlay network whenever it was changed.

We only evaluated centralized algorithms because distributed algorithms are too slow to

handle our latency bounds. Distributed algorithms suffer mostly because the end-to-end laten-

cies in the Internet currently are very high. Moreover, the network information must be present

when the overlay construction starts. If the network information has to be gathered in parallel

or before the overlay construction, it will increase the construction time greatly.

The overlay consetruction time is heavily influenced by the time complexity of the algo-

rithm executing it. In our tests we did not apply any algorithm with a time complexity of more

than O(n3). Most of these algorithms were found to be sufficiently fast in our evaluated group

size range (0− 170). However, the size of the input graph also influences the overlay construc-

tion time. In our scenario, we use application layer graphs that are complete graphs. In such

complete graphs the number of edges quickly grows to be very many. We addressed this issue

by using edge-pruning algorithms that reduce the number of edges by carefully removing the

bad edges. Edge-pruning mainly has an effect on an algorithm that has a time complexity which

depends on the edge set size (chapter 8).

Constrained overlay construction algorithms may face situations where they are unable to

continue the construction, due to very strict constraints. In our studies, we used a dynamic re-

laxation procedure, which relaxed the constraints whenever an algorithm faced such situations.

Generally, this is a better approach than abandoning the constraints altogether, but the overlay

construction time may increase.

16.7.3 Influences of the relay penalty in overlay networks

When nodes in the network are used to relay data, it adds to the path latency.

This is especially the case if overlay multicast is used to distribute audio, video and 3D stream-

ing. These rich-media flows often require the streams to be processed on each node, for ex-

ample, synchronization and mixing of audio/video. If this processing occurs on each node in

the overlay network, it may severly increase the pair-wise latencies among the nodes. Such la-
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Application configuration Algorithm configuration
Application Membership Subgroup Latency Bandwidth Degree- Diameter Steiner-
members1 change sizes1 bound requirements Overlay construction algorithm limit bound points

– static – low low smddl-OTTC high – eq 8.1
– static – low high smddl-OTTC low – eq 8.1
– dynamic small low low DA(RTR-MDDL,I-MDDL) high – eq 8.1
– dynamic small low high kRDA(RTR-P-MC,I-MC,smddl-OTTC,k = 2,low) low low eq 8.1
– dynamic medium low low RDA(RTR-MDDL,I-MDDL,smddl-OTTC,low) high low eq 8.1
– dynamic medium low high kRDA(RTR-P-MC,I-MC,smddl-OTTC,k = 2,low) low low eq 8.1
– dynamic large low low kRDA(RTR-P-MC,I-MC,smddl-OTTC,k = 3,low) high low eq 8.1
– dynamic large low high kRDA(RTR-P-MC,I-MC,smddl-OTTC,k = 3,low) low low eq 8.1

1 "–" indicates that the application configuration is independent of the algorithm configuration.

Table 16.3: Application configuration and corresponding proposed algorithm configuration.

tencies must therefore be taken into account when overlay networks are built, by, for example,

adding a hop-based relay latency or penalty.

If each hop in an overlay network has a relay penalty, it makes the hop-diameter of an

overlay network an important metric. Diameter optimizing overlay construction algorithms that

enforce degree-limits, are likely to have a larger hop-diameter than degree unlimited algorithms.

The lower the degree-limit is, the larger the hop-diameter is. For example, if the degree-limit

is 2, the only possible shape of an overlay network is a line (snake), which has a hop-diameter

equal to the number of nodes minus one.

16.8 Summary of the main points

There are many possible application scenarios for the research done in the thesis. In this chapter,

we tried to highlight some of the options that application developers have when they design

distributed interactive applications.

The choices are more than what is covered in the thesis, but we limited the discussions to

this context. Some of the choices we discussed are related to: Centralized vs. distributed archi-

tectures and algorithms, membership management of one or multiple groups, group communi-

cation using source-overlays or shared-overlays, static or dynamic groups and which algorithms

to apply, and finally algorithmic performance and influences.

Table 16.3 summarizes a few of the configurations that we discussed, with a specific overlay

construction algorithm for each application configuration. We observe that the better algorithm

choices vary more when the membership is dynamic. Furthermore, with dynamic groups the

algorithm configurations quickly become important as the application configuration is more

demanding. We do believe that the proposed algorithm configurations are good options for

supporting applications with the given set of requirements and configurations.





Chapter 17

Conclusions and future work

Through the research in the thesis, we wanted to address many of the unsolved issues that are

found in the application-area distributed interactive applications. These applications aim to sup-

port real-time interaction across the Internet, where the main issue is related to distributing the

interactions through Internet paths with sufficiently low latencies. The studies we performed

included many different group communication techniques that were all evaluated towards their

applicability to distributed interactive applications, and the evaluations revealed several algo-

rithms that are suitable.

In the following sections, we provide brief summaries of our findings in the thesis. For

each section, we repeat the initial goals from section 1.4 and discuss what we achieved. First,

section 17.1 gives a brief summary of the thesis. Section 17.2 summarizes the contributions

within each of the four goals we presented in section 2.5. Section 17.3 contains critical assess-

ments of the research conducted in the thesis. Section 17.4 then discusses a few open issues and

proposals for future work. Finally, section 17.5 concludes the thesis with brief final remarks.

17.1 Summary of the thesis

Applications that aim to support real-time interactions between multiple clients across the In-

ternet have strict latency requirements related to distributing these client interactions. Such

distributed interactive applications are currently hard to achieve mainly due to the limitations

that the current Internet yields. The limitations are related to high end-to-end latencies and

limited bandwidth capacities. Therefore, there is a need to handle these limitations by applying

techniques that aim to identifiy Internet paths with sufficiently low latencies and sufficiently

high bandwidths such that distributed interactive applications are enabled.

A focal point of the thesis was to enable distributed interactive applications to support group

dynamics, where clients may join and leave ongoing sessions of real-time interaction. From this

basic point, we described more application specific requirements:

393
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A client must be able to join a group of clients and in a timely manner start the real-time

interaction. Joining and removing clients from groups should be done sufficiently fast to enable

continuous real-time interaction. Furthermore, application events must be distributed to all

clients such that their latency bounds are met. Finally, Internet resources are scarce, therefore,

the events must also be distributed efficiently and cost-effective.

From these requirements, we identified four main research areas that are important to address

in order to support the requirements of real-time interactions across the Internet:

• A membership management must ensure that clients are able to join and leave ongoing

sessions of real-time interaction, in a timely fashion (section 5.2).

• A resource management must ensure that well-placed nodes are found that yield low la-

tencies to groups of clients, such that they are available for management tasks (chapter 7).

• An overlay network management must ensure that clients are configured in overlay net-

works that yield sufficiently low-latencies for real-time interaction (chapter 8 to 14).

• A network information management must ensure that Internet path latencies between

the interacting clients are available and sufficiently accurate (chapter 6, section 7.7 and

chapter 15).

For each of the research areas, we evaluated different techniques that in varying degrees

addressed the problems at hand. For the evaluations, we first implemented the techniques in a

group communication simulator and also a real system for group communication that we ran on

PlanetLab. Then, through exstensive simulations and real-world experiments, we were able to

identify efficient techniques that addressed the requirements very well.

For the membership management, we identified that a centralized approach is most fitting

to scenarios of multiple dynamic sub-groups of clients. We also deduced that centralized graph

algorithms have the quickness that is desirable to identify nodes and configure Internet paths.

For the resource management, we identified suited core-node selection algorithms that find

well-placed nodes that yield low latencies to groups of clients. Moreover, quite a few overlay

construction algorithms were identified as suitable for an overlay network management. In par-

ticular, dynamic overlay algorithms that insert and remove single nodes from overlay networks.

Finally, we evaluated latency estimation techniques and found them to be accurate enough to be

used by centralized graph algorithms.

The main conclusion is that by applying the techniques we identified as suitable, they will

enable distributed interactive applications to support group dynamics. In addition, the tech-

niques we identified are able to handle the Internet path latencies in a satisfactory manner and

enable time-dependent event-distribution.
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17.2 Contributions and the four goals

The following sections provide brief summaries of our findings and contributions for each of

the goals that are summarized in section 2.7.

17.2.1 Membership management

The initial goal for the membership management in distributed interactive applications was:

1) Identify techniques that enable an efficient and timely membership management of multiple

dynamic subgroups of clients.

The need for a membership management arises when a distributed interactive application desires

to manage many dynamic groups of clients in the same application.

In section 5.2, 3 membership managment variations were evaluated towards expected la-

tency in a membership change request, and the expected consistency of the variation. We de-

duced that a centralized membership management approach is most fitting to a scenario in which

there are multiple dynamic subgroups of clients. This is mainly because a membership manage-

ment that supports real-time joining and removing of clients is hard to achieve if membership

decisions have to be made distributedly through Internet paths with rather high latencies. How-

ever, the efficiency of centralized approaches are heavily influenced by the location of the central

entity that executes the management tasks. Therefore, we found that a centralized membership

management should be executed on a node that yield low latencies to the group of clients that

is managed.

17.2.2 Resource management

The initial goal for the resource managment in distributed interactive applications was:

2) Identify techniques that enable a resource management to identify nodes in the (application)

network that yield low pair-wise latencies to groups of clients.

The need to identify well-placed core-nodes that yield low pair-wise latencies to groups of

clients is motivated by the desire to execute management tasks on them, or use them as (passive)

relay nodes that forward application events. For example, a core-node may be used to execute

the centralized membership management (section 17.2.1), which is able to manage multiple

dynamic sub-groups of clients in a timely fashion when the core-node is centrally located.

Chapter 7 introduced and evaluated several core-node selection algorithms that used latency

to search for well-placed core-nodes. We conducted both simulation studies and experiments on

PlanetLab to evaluate the performance of the algorithms. In the evaluations, we found that the

k-Center algorithm was the better among the tested algorithms, and is appropriate to identify
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multiple core-nodes in a network. These core-nodes are made available for single core-node

selection algorithms that select a core-node to be the membership manager for a group of clients.

For single core-node selection, it was found that k-Median was the algorithm that found core-

nodes that yielded the lowest maximum one-way latencies to clients in its group.

17.2.3 Overlay network management

The initial goal for the overlay network managment in distributed interactive applications was:

3) Identify techniques that find Internet paths with low pair-wise latencies among clients in a

group, and configure them for event-distribution of real-time client interaction.

In the thesis, we introduced the overlay network management to include two main types of tech-

niques: graph manipulation techniques and overlay construction techniques. These techniques

must cooperate such that an overlay is created for a group of clients that yield sufficiently low

pair-wise latencies. This overlay may then be used by the clients to multicast time-dependent

application-events.

Graph manipulation algorithms

Chapter 8 evaluated graph manipulation algorithms, and the main goal was to:

Identify graph manipulation algorithms that manipulate a group’s complete graph such that

it enables the overlay construction algorithm to execute fast and build desirable low-latency

overlay networks.

An important observation is that application layer overlay networks are complete graphs of

shortest paths. Therefore, a group of clients, defined by the membership management, is also

a complete graph. Running overlay construction algorithms on such complete graphs is poten-

tially time consuming, and very often due to the large number of edges.

In our research, we focused on two types of graph manipulation algorithms. One was to

reduce the complete group graphs to only include the better links such that the overlay con-

struction executes faster. The other was to identify well-placed core-nodes in the application

network that are used as Steiner-points (non-member-nodes) in the group graphs for Steiner-tree

or Steiner-subgraph algorithms.

For the graph reduction, we proposed two edge-pruning algorithms that take as input a

complete group graph and then constructs a new group graph with a smaller edge set that still

yield low pair-wise latencies. This reduced group graph is used as input to an overlay con-

struction algorithm. The results showed that edge-pruning significantly reduced the execution

time of tree-algorithms that have time complexities that are dependent on the edge set size (fig-

ure 8.2(a)). The penalty lies in the quality of the overlay, because the tree-algorithms produce
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the lowest diameter when using a fully meshed input graph (figure 9.5). For example, the diam-

eter suffered on average less than 20 % when edge-pruning algorithms reduced the edge set up

to 80 %, compared to a fully meshed graph (see figure 9.5).

To take advantage of Steiner overlay algorithms, we evaluated how to apply core-node se-

lection algorithms to identify well-placed super-nodes that yield low pair-wise latencies to the

clients in the application network. The evaluations in chapter 8 and also later chapters, showed

that when such super-nodes are added to input graphs as Steiner-points, they enable Steiner-

tree and -subgraph algorithms to construct overlay networks that yield a lower diameter (fig-

ure 11.15), with no particular increase in their execution time.

Overlay construction algorithms

Chapter 9 through 14 evaluated a wide range of overlay construction algorithms. The algorithms

in these chapters are very different, and they are often applied in varying application scenarios

to address specific problems. However, in an application scenario in which clients may join and

leave groups of clients that are engaging in real-time interaction, we aimed to:

Identify techniques that in a timely fashion can configure overlay networks for event-distribution

based on incoming join and leave requests, such that the overlay:

1) yields a low maximum pair-wise latency,

2) yields a low average pair-wise latency,

3) does not add unreasonable cost to the network,

4) is reconfigured such that its stability is acceptable,

5) does not contain nodes with an unreasonable high stress level.

We focused on two types of overlay construction algorithms; algorithms that construct con-

nected trees, and algorithms that construct connected subgraphs (definition 21 and 22). A

tree does not contain cycles, while a subgraph may contain cycles. We evaluated all the al-

gorithms using a simulator that mimiced group communication in which clients join and leave

groups of clients. For each join and leave request, a well-placed node (central entity) recon-

figured the overlays for the affected groups using an overlay construction algorithm. The over-

lay algorithms we evaluated were spanning-tree and -subgraph, Steiner-tree and -subgraph and

dynamic-tree and -subgraph algorithms. Dynamic algorithms insert and remove single nodes

from overlays, while the spanning and Steiner algorithms always reconfigure the entire overlay

from scratch. For each of the algorithms, we found alternatives that regulated the stress levels

on the nodes in the overlays. In addition, it was only the highly connected subgraphs that added

a high network cost.

During the evaluations of the tree algorithms, we identified that dynamic-tree algorithms are

very fast and keep the trees stable in terms of the number of edge-changes in a reconfiguration.

However, they only produce low diameter trees for smaller group sizes. For larger group sizes,
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they are not able to maintain a tree that yields a low diameter. Moreover, we found that the

Steiner-tree algorithms yield close-to-optimal diameter trees throughout the group range (0−

170) that are better than spanning-tree algorithms due to the available Steiner-points. Therefore,

we devised an algorithm that took as input a dynamic-tree algorithm, a Steiner-tree algorithm,

and a configurable upper diameter bound. If this upper diameter bound is violated, a total

reconfiguration using the Steiner-tree algorithm is initiated, otherwise it is the dynamic-tree

algorithm that inserts and removes nodes. The goal was to preserve the high stability and low

execution time of the dynamic tree algorithms, and still manage to create group-trees with a

consistently low diameter. The results showed that with a well-set diameter bound, we were

able to achieve the target metrics.

In the evaluations of the subgraph algorithms, we found that highly connected subgraphs

yield on average a lower average pair-wise latency than a connected tree. This is to be expected,

because there are several paths between the nodes in a subgraph, while in a tree there is only

one path. The diameter of the subgraphs were not reduced as much compared to a connected

tree. Among the subgraph algorithms, we found that the dynamic-subgraph algorithms are fast

and yield stable overlays (small number of edge-changes). The spanning- and Steiner-subgraph

algorithms are slower and result in more unstable overlays (high number of edge-changes), but

they yield a lower diameter. Therefore, we devised a similar algorithm for reconfiguration of

subgraphs that included a configurable integer k, which described the connectivity of the sub-

graphs. The results showed that we were able to achieve a higher stability and lower execution

time, and also keep the diameter and the average pair-wise latency very low. See chapter 9

through 14 for further details and algorithm names.

17.2.4 Network information managment

The initial goal for the network information management in distributed interactive applications

was:

4) Identify techniques that are able to obtain accurate all-to-all Internet path latencies.

We give brief summaries of our findings when we evaluated the latency estimation techniques

Vivaldi [34] and Netvigator [113]. The first evaluation focused on the accuracy of the latency

estimates compared to all-to-all ping measurements. The second evaluation investigated the

penalty of applying latency estimates to core-node selection algorithms compared to real laten-

cies. Finally, the third evaluation investigated the penalty when latency estimates are used to

construct overlay networks. All the experiments were performed on PlanetLab.

Chapter 6 evaluated the latency estimation accuracy and found that Netvigator yields esti-

mations that are very close to the real measured values. The estimations from Vivaldi were not

as good, but we still found them to be usable in our application scenario. Vivaldi’s advantages
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are that it is very easy to deploy in a peer-to-peer fashion, and it handles membership dynam-

ics. Netvigator, on the other hand, needs an infrastructure (landmark nodes). However, a game

provider that controls a number of proxies could use Netvigator as it is the better alternative.

Section 7.7 measured the penalties involved when latency estimates are used by centralized

core-node selection algorithms to find well-placed core-nodes. The results showed that when

Netvigator’s latency estimates are used, the k-Median algorithm finds close-to-optimal core-

nodes. Vivaldi’s latency estimates did not enable k-Median to find the optimal core-nodes, but

we did find the core-nodes to be sufficiently well-placed. The main conclusion was that both

Vivaldi and Netvigator provide good enough latency estimates to be used for core-node search.

Chapter 15 evaluated a centralized membership management architecture for dynamically

changing subgroups in a distributed interactive application. The architecture included latency

estimation techniques, core-node selection algorithms and tree algorithms that together made it

possible to build multicast trees optimized for the tree diameter. We found that when latency

estimates are used to create trees, this estimated diameter is in all cases lower than the diameter

that is actually achieved from all-to-all ping measurements. Applications that rely on latency

estimation techniques are forced to make conservative assumptions about a group-overlay’s

diameter whenever the diameter bounds for the application are hard.

All in all, we found that the latency estimates enabled the centralized algorithms to find suit-

able core-nodes and build overlays that were good enough to be used by a distributed interactive

application (see chapter 2 for detailed application requirements).

17.3 Critical assessments of the research

The evaluations of the techniques and algorithms in the thesis were conducted based on results

from a group communication simulator and a real-world system for group communication ex-

ecuted on PlanetLab. However, although these experiments and simulations provide a good

foundation for analysis and reaching conclusions, it is clear that there are several other ways to

perform them. In addition, it is possible to perform similar research and experiments. In this

section, we therefore critially asses our research.

17.3.1 Limitations of the PlanetLab tests

The PlanetLab tests were executed on 100 nodes. The limited number was due to end-to-end

reachability problems among the PlanetLab nodes. A network with more nodes would enhance

the credibility of the latency estimation evaluations. For example, it is unclear how well the

latency estimation techniques perform when the number of nodes increases to thousands of

nodes. Moreover, due to the small number of PlanetLab nodes, the group sizes were too small
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to come to conclusive evaluations on how the latency estimates influence the core-node selection

algorithms and the overlay construction algorithms.

We think it is likely that the small number of PlanetLab nodes enabled the latency estimation

techniques to perform better than they would with thousands of nodes.

17.3.2 Limitations of the group communication simulations

The group communication simulator used flat BRITE graphs with 1000 nodes for the tests.

These graphs were transformed to complete application layer graphs made from shortest paths.

Hierarchical graphs should also be tested to see their influence on the algorithms. The BRITE

graphs are independent of real-world size, but in our tests, we fit the network into an area of

100× 100 milliseconds. This was an attempt to simulate an area on earth that had day-light at

the same time. For example, it is likely that the size fits for Europe and North-America.

The groups in distributed interactive applications are normally defined by an area-of-interest

management. In the evaluations, the number of nodes in the application network is 1000, and

the group sizes grow to around 170. However, large-scale MMOGs today often have thousands

of clients playing their games at the same time. Therefore, the group sizes in these games are

likely to grow beyond our maximum simulated group size of 170. Larger group sizes may

influence the performance of the overlay construction algorithms. In particular, the diameter

of the overlays may increase beyond the latency bounds when the group sizes increase and

sub-optimal algorithms have to obey pre-set degree-limitations.

In chapter 8, we identified super-nodes in the application network that were made available

as Steiner-points for Steiner overlay algorithms. When Steiner-points are included to group

graphs, we do not consider the extra work-load on each of these Steiner-points, such that Steiner

points may be in several group-overlays at the same time. In a real-world system, the load on

each node should be monitored, and it is likely that more super-nodes need to be found than

what was identified in our evaluations.

17.3.3 Limitations of the group dynamics model

The group dynamic in both the PlanetLab tests and simulations was based on a Zipfian distribu-

tion (section 2.6.3) and made the nodes join and leave groups of clients continuously. Although

this is a well-known model, it is clear that other group dynamics models may influence the per-

formance of some of the algorithms. For example, a group dynamic model that may be more

fitting is one that captures the real-world passing of day and night with the consequent shift in

client mass.

We were unable to obtain a group dynamics trace from a real-world system, where one valid

system would be a large-scale MMOG. Such a trace may have influenced the performance of
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the dynamic-tree and dynamic-subgraph algorithms in chapter 12 and 13.

17.3.4 Limitations of the algorithms

All the graph algorithms were implemented in a sequential approach using C++, parts of the

standard template library (STL) [112] for C++, and the Boost graph library [117]. It is unlikely

that our implementation of the algorithms is all the way optimal, such that the execution times

are to be considered as guides and not absolute facts. In addition, it is believed that a parallel

implementation of many of the algorithms is possible and would further decrease their execution

times.

We tested a wide range of graph algorithms and came to a conclusion for each addressed

problem to which of them were the better ones. However, we do not claim that we were able to

test and identify the best possible algorithms for each problem addressed. What we do believe

is that the algorithms we identified as suitable are able to compete, to a large extent, with other

better unidentified algorithms.

17.4 Open issues and future work

Group communication research for real-time interaction is a relatively new research-area. In our

work, we addressed many different problems and identified a wide range of suitable techniques.

Nevertheless, there are still many unaddressed problems and techniques that may be better than

the ones we have identified.

17.4.1 The four research areas

In our work, we addressed 4 main research areas, and these are now discussed towards their

open issues and future work.

For the membership management, it is still not entirely clear how a centralized membership

management behaves in a real-world situation where possibly multiple nodes are membership

managers for specific groups. Additional testing on PlanetLab is likely to shed light on this

behavior, and how it affects the performance in terms of the membership execution latency and

average load.

For the resource management, there are issues related to how many core-nodes that is a

suitable number in a given network. In our evaluations, we found that a limited number in the

fifties is sufficient with a Zipfian group dynamics model, a flat BRITE network of 1000 nodes

and size 100 × 100 milliseconds. A different experiment setup in terms of group dynamics

model and network size may influence this number, and also the performance of the core-node

selection algorithms.
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In the overlay network management, we tested graph manipulation algorithms and overlay

construction algorithms. One issue that remains for future work is how the graph manipulation

algorithms and the overlay construction algorithms should cooperate, in sequence or in parallel.

The overlay construction algorithms should also be verified for performance through theoret-

ical studies. In addition, the execution times of the algorithms are a matter of discussion and

future work, due to possible sub-optimal implementations. Many of the overlay construction

algorithms are also likely to benefit from caching the node-eccentricities, diameter, etc, of the

subgraphs between reconfigurations. We expect this to reduce the execution times of several

algorithms.

In the network information management, we evaluated the impact of possibly in-accurate

latency estimates on centralized graph algorithms. One issue that is not addressed is the influ-

ence of unstable or fluctuating link latencies. Moreover, it is not clear how the overlay networks

built from latency estimates perform when they are used to multicast application events.

17.4.2 Additional testing and research

We addressed 4 specific goals and identified suitable techniques for each of the goals. Although

we performed both group communication simulations and group communication experiments

on PlanetLab, it is still unclear how our identified techniques will perform in real-world appli-

cations. Therefore, additional testing of selected techniques should be conducted in the Internet

to measure their performance.

Moreover, it is possible to use the better performing techniques and create specialized over-

lay multicast protocols that are usable in more specific application settings. Investigating spe-

cific application types and their demands, combined with specific algorithms in an overlay

multicast protocol may prove to work well.

For the research done in the thesis, the prime concern was achieving a sufficiently low

latency between the interacting parties. However, the load in a real-world system is likely

to influence the latency due to varying performance of many of the investigated techniques.

Varying the load on each node, the link bandwidth, etc, is necessary to understand how different

techniques cope with these challenges.

17.5 Final remarks

In the course of the thesis, we were able to identify suitable techniques to enable distributed in-

teractive application architectures that have multiple dynamic sub-groups of clients. We found

that centralized solutions are often desirable due to rather high end-to-end latencies in the Inter-

net. A sufficiently low latency is the paramount requirement if real-time client interactions and

group dynamics are to be supported across the Internet.
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Group communication research is a relatively new research area. Therefore, the work done

in the thesis is to be considered as a starting point for additional testing, reviews and studies.

The critical assessments and future work showed that there are still unsolved issues related to

both identifying better techniques and verifying the results through studies with larger networks

and real-world applications. Consequently, there is room for further improvements, but our

framework is already valuable for a number of areas and provides suitable starting points for

further studies.
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