
Response time in games:
Requirements and improvements

Kjetil Raaen

Abstract

Many computer games, both modern and historical, focus on action. Success in these games
relies on hand-eye coordination and fast reaction time. However, the player’s reactions are not
the only reactions that need to be fast. The computer and if in use, the network, should also be
fast enough not to slow down the game. If the system becomes the bottleneck for reactions in
a game, the experience for the player will degrade. Several current trends motivate this thesis.
Users want their computers to react fast. This is especially important in fast paced games.
At the same time, players want to interact with increasing numbers of others in the games.
To handle these requirements, we have increasingly parallel computers available, and cloud
services proliferate.

All current games have the ability to report network latency and frame-rate, used as a proxy
for local delay. These metrics do, however, not capture all delay experienced by the gamers.
In this thesis we measure the full delay from user input to response on screen. We develop an
external measurement setup that captures both input and output and measures the time between
them. We find that delays are highly variable, from 33 to 170 ms. While current research on the
effects of delay ignores local delay, we find that the magnitude of the local delay is significant,
and should be considered.

To assess the impact delays may have, we look at human sensitivity to delays. This has been
investigated in many ways before, but conclusions diverge. To improve the understanding of
the topic, we present a new set of basic experiments looking for the point where delay becomes
detectable to the participants. Specifically, we look at delay between a motor input by the
user and visual output on a screen. By varying the delay, we seek to determine a threshold of
consciously detectable delays. Our results show first of all a large individual difference in this
metric. Some participants can detect delays close to our lower experimental threshold of 50 ms,
while others seem unable detect delays as high as our upper experimental threshold of 500 ms.
Our questionnaire on the background of the participants does not reveal any explanation for the
individual differences. The median detectable delay is around 200 ms.

Further, we focus on important technical challenges of improving delay in games. We inves-
tigate how much delay cloud services add to a game server, because cloud services are becoming
a popular way of deploying online services. We find that the current services are not ideal for
action games, but can work well for games that are more tolerant of delays.

Some genres of games are popular because they allow large numbers of players to gather in
a shared area of the virtual world. Supporting such gatherings of players without compromising
response time requires novel server architectures. We propose and implement an architecture
that parallelises server load efficiently by relaxing some consistency requirements, in order to
increase scalability. Our proposed architecture allows large numbers of players to gather while
distributing work evenly among many CPU cores.

We hope researchers and developers working on games will benefit from the results of this
thesis. Understanding both the limitations of human perception, as well as details of software
and hardware architecture, is critical to properly address the bottlenecks of game scalability.

Acknowledgements

Completing a large work like this is not possible alone, and I have many to thank. My advi-
sors, Andreas Petlund, Pål Halvorsen and Carsten Griwodz have helped me all the way with
experience, knowledge and inspiration. These have also been co-authors of some of the papers
presented here. I would also like to thank the others I have worked with as co-authors on the
papers. They have all contributed far beyond the papers their names are on. Håvard Espeland
Håkon K. Stensland, Ragnhild Eg, Tor-Morten Grønli and Ivar Kjellmo have been excellent
teammates and have made this work feel far less lonely.

Without Westerdals – Oslo School of Arts, Communication and Technology, which was
NITH when I started I would not have gotten the opportunity at all. I would especially like to
thank Bjørn Hansen and Eivind Breivik for taking their chances with a former game programmer
who wanted to go into academia. This institution have also provided me with other colleagues
who have given support and motivation when needed. Among these I would like to mention
Trude Westby for bringing me books and Wanda Presthus for discussions and support in writing
as well as Stig Magnus Halvorsen and Marius Brendmoe for close cooperation in different
phases of the process. Simula Research Laboratories and all the colleagues there have also
been important support in the process.

Lastly, but by no means least, I would like to thank my friends and family who have sup-
ported me and kept me happy throughout all this. My parents Thoralf and Elin and their love,
support, encouragement and constant willingness to answer the question ”Hvorfor?” (”Why?”)
built the foundations for me as a person as well as for my education. My brothers, Håkon and
Gunnar give me both support as well as much needed rivalry. During the work on this thesis I
have also gained a wife and a dog, and I wold very much like to thank Sunniva and Aurora for
always being there for me with warmth and love.

Contents

I Overview 1

1 Introduction 3
1.1 Motivating trends . 3

1.1.1 Responsiveness in interactions . 4
1.1.2 Action games . 4
1.1.3 Massive games . 5
1.1.4 The growth of parallelism . 5
1.1.5 Cloud computing . 6

1.2 Problem statement . 6
1.3 Research method . 7

1.3.1 Literature survey . 7
1.3.2 Natural science in information technology 7
1.3.3 Design science in information technology 8
1.3.4 Perceptual psychology . 8

1.4 Main Contributions . 8
1.5 Outline . 9

2 Games and response time 11
2.1 The importance of delay . 11
2.2 Genres of games . 12

2.2.1 Gameplay style . 12
2.2.2 Massive Multiplayer Online Games 13

2.3 Scaling games . 13
2.4 Game communication modes . 14

2.4.1 Local games . 14
2.4.2 Client-Server games . 15
2.4.3 Cloud gaming . 15
2.4.4 Game servers in the cloud . 16

2.5 Types of delay . 17
2.6 Virtual reality . 17
2.7 Summary . 17

3 Measuring delay in games 19
3.1 Related work . 19

3.1.1 Measuring local delay . 20

iii

3.1.2 Measured delay in cloud gaming . 21
3.2 Important components in local delay . 21

3.2.1 Display devices . 22
3.2.2 Graphics hardware . 23
3.2.3 Input device latency . 23

3.3 Experiments . 24
3.3.1 Mouse click . 24
3.3.2 Virtual reality headset rotation . 25

3.4 Results . 29
3.4.1 Mouse click . 29
3.4.2 Virtual reality headset movement . 31

3.5 Discussion . 32
3.6 Summary . 33

4 Limits for observable delay 35
4.1 Related work . 35

4.1.1 Controlled studies . 35
4.1.2 Observational Studies . 37
4.1.3 Cloud Gaming . 39
4.1.4 Results from psychophysics . 39
4.1.5 Limitations of existing work . 40
4.1.6 Summary . 42

4.2 Method . 42
4.2.1 Experiment design . 43
4.2.2 Adjustment task . 44
4.2.3 Discrimination task . 45

4.3 Limitations . 46
4.4 Results . 46

4.4.1 Results from adjustment task . 46
4.4.2 Results from the discrimination task 49
4.4.3 Comparison of experimental methodologies 52
4.4.4 Gaming experience . 53
4.4.5 Music experience . 53

4.5 Discussion . 54
4.5.1 Motor-visual temporal interactions . 54
4.5.2 Perception of delay in games . 55
4.5.3 Perceptible delays compared to measured delays 56
4.5.4 Latency compensation . 56

4.6 Summary . 56

5 Game servers in the cloud 57
5.1 Related work . 57
5.2 Experiment Design . 58
5.3 Evaluation . 60

iv

5.3.1 Amazon EC2 . 60
5.3.2 Microsoft Azure . 61
5.3.3 Time series . 62
5.3.4 Overview . 63

5.4 Summary . 64

6 Parallelising game servers 67
6.1 Motivation . 67
6.2 Related work . 68

6.2.1 Binary Space Partitioning between threads 68
6.2.2 Transactional approaches . 69
6.2.3 Improved Partitioning . 69
6.2.4 Databases as game servers . 69

6.3 Concept for parallelising game servers . 70
6.3.1 Traditional approach . 70
6.3.2 Relaxed constraints . 71
6.3.3 Limitations of our approach . 72

6.4 LEARS Design and Implementation . 72
6.4.1 Thread-pool . 72
6.4.2 Blocking queues . 73
6.4.3 Our implementation . 73

6.5 Evaluation . 76
6.5.1 Response latency . 76
6.5.2 Resource consumption . 78
6.5.3 Effects of thread-pool size . 78

6.6 Discussion . 81
6.7 Summary . 82

7 Paper and author’s contributions 83
7.1 Paper I: Latency thresholds for usability in games: A survey 83
7.2 Paper II: How much delay is there really in current games? 84
7.3 Paper III: Measuring Latency in Virtual Reality Systems 84
7.4 Paper IV: Can gamers detect cloud delay? . 85
7.5 Paper V: Instantaneous human-computer interactions: Button causes and screen

effects . 86
7.6 Paper VI: Is todays public cloud suited to deploy hardcore realtime services? . 87
7.7 Paper VII: LEARS: A Lockless, relaxed-atomicity state model for parallel exe-

cution of a game server partition . 87
7.8 Other Publications . 88

8 Conclusion 91
8.1 Summary . 91
8.2 Main contributions . 92
8.3 Future work . 94
8.4 Applying our conclusions in practice . 95

v

Bibliography 96

II Research Papers 105

I Latency thresholds for usability in games: A survey 107

II How much delay is there really in current games? 121

III Measuring Latency in Virtual Reality Systems 127

IV Can gamers detect cloud delay? 135

V Instantaneous human-computer interactions: Button causes and screen effects 141

VI Is todays public cloud suited to deploy hardcore realtime services? 155

VIILEARS: A Lockless, relaxed-atomicity state model for parallel execution of a game
server partition 167

vi

List of Figures

1.1 Potential sources of delay. 5

2.1 Path of information in local games. 14
2.2 Path of information in cloud games. 16

3.1 Delay added by network as part of the full chain of delay. 20
3.2 Timeline for events with double buffering. 23
3.3 The setup used to measure delay in games. 25
3.4 Capture of delayed event. 26
3.5 The Physical setup. 27
3.6 The virtual scene setup. 28
3.7 Response time in the various mouse click configurations. 30
3.8 Average response time in the various VR configurations. 31

4.1 Experiment setup for investigating sensitivity to delay. 43
4.2 Adjustment experiment timeline . 45
4.3 Individual adjusted delay scores . 48
4.4 Density plot of each participant’s median accepted delay. 49
4.5 Density plot of each participant’s median accepted delay. 49
4.6 Individual participants’ results from the discrimination experiment. 50
4.7 Results from discrimination task. 51
4.8 Density plot of each participant’s sensory threshold in the discrimination task. . 52
4.9 Discrimination task vs adjustment task for moving stimuli. 53

5.1 Amazon EC2 CPU Steal histograms. 61
5.2 Amazon EC2: Histogram of benchmark runtimes. 62
5.3 Microsoft Azure: Histograms of benchmark runtimes. 63
5.4 Time series of Amazon EC2 Medium High CPU. 64
5.5 Summary of benchmarks for the different systems. 65

6.1 Design of the Game Server . 74
6.2 Screen shot of a game with six players. 75
6.3 Response time for single- and multi-threaded servers 77
6.4 CDF of response time . 79
6.5 CPU load and response time over time . 80
6.6 Response time for 700 concurrent clients . 80

vii

List of Tables

3.1 Some monitors and their response time. 22
3.2 Results from mouse click delay measurements. 29
3.3 Results from virtual reality headset movement delay measurements. 31

5.1 Technical specifications from Amazon. 59
5.2 Technical specifications from Microsoft. 59

ix

Part I

Overview

1

Chapter 1

Introduction

Running through the damp, dark tunnel you know the enemy is not far behind. If you can
just get through that old door over there, you will be safe for now. You pull the door open
carefully, making sure your gun goes first. Suddenly, a massive spider drops down from the
mouldy ceiling. You pull the trigger, but nothing happens, not even a click. Then, the spider is
upon you. By the time the gun goes off, you are already eaten.

Fortunately, this was only a game. But in games, a delay of even a fraction of a second can
make the difference between winning and losing. This work investigates how small the delay
needs to be to avoid such situations, as well as how to make it shorter. We have worked on
how to parallelise game servers more efficiently and investigated whether the cloud services
and large non-uniform memory access systems can be used for running servers.

This chapter defines the work in more detail by presenting the motivation and detailing the
questions we have asked, as well as the scientific methods used to answer them.

1.1 Motivating trends

Computer games are maturing as a cultural expression. Real-time games can be traced all the
way back to the forties when radar developers first started playing with their screens (Gold-
smith and Ray, 1948). In the early seventies, games became a commercial product starting with
the famous game Pong from Atari (Mennie, 1976). In the more than forty years since then,
games have become an important form of culture, for fun and even serious artistic expression.
The technology involved has developed from circuits containing a few transistors to relying on
multiple components with billions of transistors in each. The graphics quality of games is ap-
proaching photorealistic, while scenes and stories have become huge and increasingly complex.

Such increasing complexity naturally introduce problems and challenges. We focus on the
challenge of how to keep interactions responsive despite the increasing complexity. This is
especially relevant in fast paced action games. This difficulty is exacerbated by game designers’
desire to scale these games to what they call massively multiplayer, providing simultaneous
support for thousands of players. The main opportunity we study to meet these challenges is
the steadily increasing levels of parallelism available in computer systems.

While games are the original motivation and central theme of this thesis, the results and
conclusions can be applied in a much wider context of realtime human-computer interactions.

3

Among others, cooperative work environments on the Internet and teleconferences both deal
with similar challenges.

1.1.1 Responsiveness in interactions

Engineering practice since the early days of motion pictures assume that less than 50 frames per
second is enough for motion to appear fluid. Cinema projections still use 24 frames per second.
At the same time, many who play action games are convinced that they need much higher frame
rates to be competitive in games. Some players tune their games to barely acceptable visual
quality working towards hundreds of frames per second. To understand the differences between
frame-rate in motion pictures and in games, we need to look at the concept of responsiveness.

When interacting with computers, users expect the system to respond within some limited
time. Exactly zero delay is computationally impossible, so users have to accept some delay.
How much delay is acceptable depends on the nature of the task. If the task is downloading
a software suite from the Internet, most accept minutes, even hours of delay provided some
feedback on the progress of the operation. At the other extreme, a player firing a gun in a
fast-paced action game is much less patient, expecting a response within a fraction of a second.

As computers become more powerful, the added power is utilised to improve quality and
increase the complexity of all software, and games are no exception. However, this added
complexity does have some downsides. Adding network communication as well as improving
graphical quality could introduce more delay than the improved performance of the hardware
subtracts, resulting in a slower overall experience. Figure 1.11 shows the most relevant sources
of delay in user interaction. These include input-output units such as screens, mice and key-
boards, as well as software components, such as operating systems, drivers and the application
itself. If the game is networked, network infrastructure adds another series of delays.

1.1.2 Action games

Some aspects of the earliest games are still present in many modern games. Among these are
the reliance on the player’s reaction time and motor skills. Games where this is an important
aspect are often simply referred to as action games (Egenfeldt-Nielsen et al., 2009).

Action games rely heavily on reaction time, creating a unique challenge in engineering:
While most software only need to respond before the user gets impatient, action games need to
be able to respond before users even notice any delay at all. If a system require fast responses
from the players, but players notice that the system does not respond immediately to their com-
mands, they could feel that the game does not work well or is unfair. Some have even found
indications that delays in games affect players even when it is lower than what they are con-
sciously aware of (Chen and Lei, 2012). These results should all be considered when building
and deploying games.

Thus, action games create unique challenges. Clients, networks and servers all need to
respond very quickly to avoid long delays. Games are also complex systems which without
careful optimisation can easily become slow.

1Illustration by Ivar Kjellmo.

4

Figure 1.1: Potential sources of delay. Not all of these are relevant in all interactions.

1.1.3 Massive games

For a while now, a class of games called Massively Multiplayer Online (MMO) games have been
popular. This expression seems to have no generally accepted definition, despite its frequent
use. For the purpose of this work, we define an MMO as follows any game that fulfil the
following criteria:

• The game allows at least a thousand players to be online at the same time, sharing the
same world.

• The game supports at least a million players over time.

• The game has a centralised server architecture.

• Each player has one or more avatars saved on the centralised server.

Games with these properties present a unique set of technical challenges. The large total
number of players requires large and sophisticated architectures to handle. However, this is not
unique, many other server applications face similar problems. However, most other applications
do not allow clients to communicate in realtime on a many-to-many basis. The requirement
that all users, or at least a large proportion, should be able to communicate with each other in
realtime while running heavy individual calculations creates some unique challenges.

1.1.4 The growth of parallelism

Software developers have adapted to and come to expect exponential growth in computing
power over the last few decades. This growth has led to a long series of innovations that, in
many ways, have changed the world. The exponential growth of circuit complexity was first

5

described by Moore (1965) while working on early integrated circuits and has continued since.
A common misunderstanding of Moore’s law is that it describes growth in performance. Moore
only refers to growth in complexity. This distinction is important; translating increased transis-
tor count to increased actual performance is difficult. Recently, the growth in single-threaded
performance has more or less levelled off. Now, most performance gains are based on increas-
ing the number of processor cores in a chip (Dally, 2009).

Utilising these cores requires deep changes in how we make the software. Amdahl’s law (Am-
dahl, 1967) states that the speedup achieved by parallel processing is limited by the time needed
for the sequential fraction of the program. Reducing this sequential fraction is one of the main
challenges to continued performance improvements. In games, this often requires rethinking ar-
chitectures at a fundamental level. However, even a parallel algorithm requires synchronisation
to access memory, caches and input/output devices, again reducing performance.

1.1.5 Cloud computing

Heavily influenced by earlier concepts such as grid computing and utility computing (Foster
et al., 2008), cloud computing (Vaquero et al., 2009) is a relatively recent paradigm for com-
puting architecture. Instead of owning servers and other infrastructure, or renting them on long
term contracts, cloud computing allows clients to rent infrastructure on a hour-by-hour basis.
Cloud services provide APIs that allow the software itself to add or remove capacity as needed.
This gives much better flexibility to clients than ownership or long-term rents. Providers of
online games could benefit from this, but it is not clear if the infrastructure is suitable for appli-
cations sensitive to delay and jitter (Barker and Shenoy, 2010).

1.2 Problem statement

From section 1.1, we identify a need for more knowledge about latency in games. This question
has many aspects, including technical, perceptual and even artistic. The technical questions
formed the original motivation for this work; however, some steps are needed to work effectively
on improving technology. Hence, we address the following questions:

1. “How much delay is there currently in games?”

Maybe somewhat surprisingly, the actual amount of delay present in current games and
systems is not well known. Developers focus on the application layer while many other
sources of delay are possible in a computing system. Without such knowledge results
from user tests can not be compared across studies. Hence, measuring and understanding
the full delay is important to evaluate both previous research and our own results.

2. “How fast should game systems respond to avoid deterioration of player experience?”

This question is not a question of technology, but rather of perception. However, it is
closely tied to technology. Different games might lead to different perception of delay,
and even within one game there might be different types of delay. Motivated by action
games, we are particularly interested in the lower limits of perception of delay. Answering
this question is important as a benchmark for technical improvements. A system that

6

can consistently be faster than the users require can be considered good under the tested
conditions. Previous work give conflicting results, and rarely investigates the participants’
background.

3. “Are cloud services responsive enough to run game servers?”

Currently, cloud services are considered the ideal for deploying most new services. How-
ever, games have different characteristics than other server loads, especially regarding
response time. Because cloud services in general run on virtual machines, performance
characteristics might not be the same as native servers. Using these for game services is
only viable if response time can be kept low.

4. “How can parallelism be better utilised in game servers for massive multiplayer?”

Games can scale in many dimensions. For massive multiplayer games, one of the most
important dimension is player density: The number of players that can fit into a given area
of the game world without compromising performance. Such scaling is also technolog-
ically challenging. Utilising parallelism is necessary to go beyond current densities, but
it creates many challenges. In dense gatherings, all participants need to be continuously
updated with information about what all others do.

1.3 Research method

In this section, we introduce the methodologies we chose to address the questions presented
above.

1.3.1 Literature survey

When gathering information about a new field, reviewing existing research is crucial. A system-
atic literature survey might also be of interest to others. Three basic steps are part of a literature
review. First, we identify relevant literature. Second, we summarise the work and identify com-
mon trends. Last, we discuss the content and attempt to draw conclusions. The paper presented
in appendix I uses this method to investigate how fast game systems should respond.

1.3.2 Natural science in information technology

Not all knowledge about computers and the software running on them can be gained by study-
ing their design. Multiple factors contribute to this. The massive complexity of current systems
is one, and trade secrets is another. More fundamentally, a computer that interacts with external
processes during processing cannot be modelled using traditional algorithmic concepts (Weg-
ner, 1995).

Natural science seeks to explain how things are. The term natural science does not preclude
studying artificial phenomena. The methods of natural science are used to study how organi-
sations work or the properties of synthetic compounds (March and Smith, 1995). We use the
same methods for studying computer systems. Accordingly, when we investigate how much de-
lay there is in current systems, we employ experimental natural science on computer systems.

7

By running a system under controlled conditions and systematically recording results we get
information about the behaviour of the system that would otherwise be unavailable.

1.3.3 Design science in information technology

Where natural science aims at producing theoretical knowledge, design science aims at produc-
ing useful artefacts. Such artefacts are then assessed to see if they work and are improvements
on current technology. The ACM refers to this type of science as the design paradigm of com-
puter science (Denning et al., 1989).

Much work in design science can be evaluated on relatively simple, objective metrics, and
we can create these using simulations or emulation. We applied this concept when we worked
on new concepts for improving games servers.

1.3.4 Perceptual psychology

To investigate the impact and effects of delay on users and players we need empirical data from
human participants. The discipline of psychophysics, as described in “Psychophysics: The fun-
damentals” (Gescheider (1976)), focuses on measuring the relationships between psychological
sensations and physical stimuli. A central concept in this discipline is the sensory threshold,
defined as the minimum magnitude of a stimulus needed to produce a sensation. Usually, this
threshold refers to a measurable physical property that varies in intensity. While we want to
measure time intervals, the analogy to a sensory threshold is good; we measure the sensory
threshold for the sensation of time. Of the standard experiment types from psychophysics, we
have used the method of constant stimuli and an adapted version of the method of adjustment.

Applied to games, this sensory threshold determines if the players notice the delay. The
wider question about what delays actually influence players need a different methodology, and
is outside the scope of this thesis.

1.4 Main Contributions

This work presents multiple contributions all focused on the same goal of improving delay
conditions in games. This section refers to the research questions described in section 1.2.

To answer question 1, we present work on measuring how much delay is present in current
games. It turns out that traditional metrics such as frames per second or internal timings are not
enough to get a complete picture of the delays present. From the time a player clicks a button to
fire until the weapon goes off on the screen, multiple things have to happen; only some of those
are under the control of the game software itself. Reported performance metrics in this situation
are frame-rate and in the case of networked games, network latency. These do not capture all
delays. Components of hardware and software not under the control of the programmer add
delays which are impossible to capture in software. These delays are also heavily dependent on
the exact system and configuration the game is running on.

To get around this limitation, we built an external setup to measure these delays. This setup
is itself a contribution because previous systems to measure delay have been more complicated
or less accurate. Using this setup we gathered data from different systems. In general, our

8

results show that local delays are longer than traditionally assumed. For realistic situations, we
see local delays ranging from 30 ms best case all the way to 200 ms. If the game is networked,
network communication adds additional delays.

Regarding question 2, we investigated how short delays had to be to not affect the expe-
rience of players. Previous research on effects of delay in games focused mainly on network
latency and other sources of delay are mostly ignored. From our work on actual delay in games,
we know that other sources of delay can often be as long if not longer than network laten-
cies. Therefore, we investigated perception of delays in very simple interactions, hoping to find
some basic perceptual limits and eliminating many error sources from the system compared to
previous research.

We found that results are highly individual. It seems that some people can detect delay
well below 100 ms while others barely notice three times this value. Somewhat surprisingly,
we found no correlation between experience in playing computer games and the threshold for
detecting delays. There is a significant overlap between delays that are detectable by players and
actual delay present in games: Some players can easily notice delays of many game systems.
This situation is not ideal because it impacts the quality of experience of the players as well as
their performance in the game.

Cloud services are becoming the norm for deploying servers for any project. To answer
question 3, we investigated if these have the characteristics needed to deploy game servers.
Particularly, we looked at how stable performance the cloud services delivered at millisecond
resolutions. Our results indicate that cloud servers are not yet ready for hosting games with
realtime requirements, because the performance is not predictable enough.

Massive multiplayer games, as described in question 4, allow potentially thousands of play-
ers to play in a shared world. In reality, only relatively few players can actually interact with
each other at any one time. In real game implementations, players are split by artificial barriers
to allow load distribution among servers. We propose a game server architecture that alleviates
these limitations. By relaxing some consistency constraints and splitting the work into small
tasks, we are able to run some hundred players without artificial partitioning.

1.5 Outline

The rest of this text is organised as follows:

Chapter 2, Games and response time: Defines relevant terms and describes the context this
work builds on.

Chapter 3, Measuring delay in games: Introduces a system for measuring actual delay in
computer systems used to play games, as well as some data gathered using the setup.
Further, it discusses some consequences of these delays.

Chapter 4, Limits for observable delay: Presents a series of experiments to establish how
long delays from input to result can be before users notice, and compares them to in-
formation gained in the previous chapter.

Chapter 5, Game servers in the cloud: Investigates if cloud services are suited for game servers.

9

Chapter 6, Parallelising game servers: Describes a novel architecture for a parallel game server
to minimise delays under high load.

Chapter 7, Paper and author’s contributions: Describes each paper included in this thesis
along with lessons learned and the author’s contributions to this paper.

Chapter 8, Conclusion: Summarises and concludes this work and presents ideas and concepts
for further study.

After these chapters, all papers are included as section 2.

10

Chapter 2

Games and response time

When working on response time in games, whether with the aim to measure it or improve it, we
need some terminology and clear definitions of terms. This chapter aims to introduce important
background regarding the concept of delay in games, and how it might affect players.

2.1 The importance of delay

Modern computing systems are used interactively. However, there is always a delay between the
time the user sends input and the result appearing on the screen. This delay is commonly termed
lag. In the field of human-computer interaction, Seow (2008) defines instantaneous response
as the system responding fast enough that the user is not aware of any delay. For graphical
controls and other interactions that mimic the physical world, Seow recommends instantaneous
response time. In games, most interactions either mimic the physical world or are graphical
in nature, indicating that responses should be instantaneous. Also, delays annoy players and
thereby give a negative impression of a game. If the players are not aware of delays, they will
likely not be annoyed. While delays shorter than this may be imperceptible, they can still affect
user performance, for instance through increased stress levels (Chen and Lei, 2012).

Response time is considered a critical factor for the Quality of Experience (QoE) in net-
worked games. For local games, on the other hand, this metric is often ignored. Achieving
sufficiently low local response time has rarely been considered a problem. The dominating
factor of response time in networked games and interactive worlds is traditionally assumed to
be network latency; hence, earlier work is mostly focused on network metrics. Conversely in
local games, lacking any communication, response time is only bound by computation, which is
considered a known factor when creating the game and can thus be compensated for. However,
there is very little evidence for this assumption, and if it does not hold, much research will have
to be reevaluated.

During optimisation and quality control of a game, developers currently rely on subjective
tests of the current game, as well as some rules-of-thumb. If developers had a table of delay
based on empirical data from different games, they could look up the game that most closely
matches their game and use that result as their design goal. This would save time and effort
because long delays could be diagnosed by simple technical measurements rather than being
discovered in much later user testing.

11

2.2 Genres of games

When working on and discussing responsiveness in games, it is important to be aware of clas-
sifications of games. A clear classification allows comparing similar games. Most individual
contributions on response time in games focus on a specific class, or genere, of game, which
is likely to give more consistent results. Conversely, numbers from one genre might not be
applicable to a game from another genre. Therefore, we introduce one of the most widespread
classifications of games, which we use in this work.

2.2.1 Gameplay style

Claypool and Claypool (2006) describe a whole set of game types and situations and recom-
mend latency limits, dividing games into three broad categories. It is assumed that each of these
classes of games has different latency requirements. However, there are large variations within
each genre. Even individual games may have very varied content and interactions.

First Person Avatar

This term describes games where the player controls an avatar, and the game is displayed from
the point of view of that avatar as if the player sees through the eyes of the avatar. Input directly
controls what the character does, such as moving or steering. The most common variants of this
genre of games are the racing games and first person shooter (FPS).

In racing games, the player controls cars or other vehicles and tries to win a race. The
screen usually shows the controls of the vehicle and the track as seen through the window of
the vehicle. Well known examples are the “Need for Speed” (Electronic Arts, 1994) series and
the “Forza Motorsport” (Microsoft Studios, 2005) series.

First person shooters focus, as the name implies, on shooting. The screen shows the world as
seen from the point of view of the player characters combined with the weapons in their hands.
Some attempt to be realistic combat simulations, such as the “Medal of Honor”(Electronic Arts,
1999) series, while others have a looser base in reality such as the “Unreal Tournament” (Epic
Games, 1999) series. Some first person shooters support enough simultaneous players to be
termed Massive Multiplayer First Person Shooter (MMOFPS).

Claypool and Claypool consider first person avatar games to be the most demanding in terms
of latency requirements, recommending total latencies less than 100 ms.

Third Person Avatar

These games are also based on a single avatar controlled by the player, but the avatar is seen
from the outside. Input often gives characters instructions, such as move there or attack this
rather than direct control. The camera usually follows the avatar. Some games can switch
between first and third person view to accommodate player preferences. Popular examples
include “The Elder Scrolls” (Bethesda Softworks, 1994) series and the “Diablo” (Blizzard En-
tertainment, 1996) series.

The most studied variant in this group is the Massively Multiplayer Online Role Playing
Game (MMORPG) game. Among these, the best known is “World of Warcraft” (Blizzard

12

Entertainment, 2004).
Claypool and Claypool consider third person avatar to have intermediate latency require-

ments, and recommends latencies lower than 500 ms.

Omnipresent

In these games, the player does not control a specific avatar, rather multiple elements in a large
game world. The player can look at any part of the game world at any time. The most popular
variant of this is the Real Time Strategy (RTS) game, with well known examples such as the
“Starcraft” (Blizzard Entertainment, 1998) series and the “Command & Conquer” (Electronic
Arts, 1995) series. Other variants include turn based strategy games, including the famous
“Civilization” (MicroProse et al., 1991) series of games.

Claypool and Claypool claim these games have very lax latency requirements, with up to
1000 ms acceptable latency.

2.2.2 Massive Multiplayer Online Games

Massive Multiplayer Online Games is a catch-all term for games supporting hundreds of con-
current players. We use the definition described in section 1.1.3. MMOGs are particularly
interesting cases, and the games themselves, as well as the technology behind them, have re-
ceived significant attention from computer scientists. In addition to the requirements regarding
latency, these also need to support large numbers of players. Yahyavi and Kemme (2013) put it
this way: “One of the main attractions of these games lies in the number of players that partic-
ipate in the game. The more players that are in the game world, the more interactive, complex
and attractive the game environment will become.”

2.3 Scaling games

We saw in section 2.2.2 that scaling games to allow larger numbers of players is interesting
from the game developer perspective. Müller and Gorlatch (2007) identify what they term
scalability dimensions. These are different dimensions games can scale along. They identify
three important ways in which large-scale online games can scale.

• Overall number of simultaneously active users needs to scale while all these users should
be able to interact.

• Game world size should scale. This increases memory requirement to store the larger
areas, as well as processing power required to run all automatic activity in the areas.

• Player density should scale. Players are often drawn to already existing action, creating
an escalating spiral of increased player density, which servers ideally should support.

(Müller and Gorlatch, 2007, p. 82)

The importance of the third dimension is underlined by Chen and Lei (2006). While in-
vestigating player movements, they find that players tend to clump together rather than spread

13

out evenly across the game map. They conclude: “The analysis reveals that the dispersion of
players in a virtual world is heavy-tailed, which implies that static and fixed-size partitioning of
game worlds is inadequate.” (Chen and Lei (2006))

This tendency of players to gather in small spaces limits the effectiveness of any implemen-
tation relying purely on spatial partitioning. Thus, we need to find a solution that allows players
in the same area, even at the same exact point, to use different processing resources.

2.4 Game communication modes

In addition to the genre of the game itself, it is important to distinguish how games utilise
networks. Currently, three models are actively in use: local games, client-server games and
cloud gaming. A fourth, peer-to-peer games has received some academic attention, but it is not
widely used because the challenges, especially in security, have never been solved.

2.4.1 Local games

The simplest way to make games is for each player to play alone on their own computer. While
variations of cooperation or competition currently are common in games, players sometimes
still play alone on their own computers or game consoles. In terms of delay, single player games
are predictable and easy to analyse. However, even in these games, information has to travel
through multiple steps between input and output, as shown in figure 2.1. Signals from input
devices go to through drivers, then to the operating system before being sent to the application.
Output signals follow a similar path.

Figure 2.1: Path of information in local games.

14

2.4.2 Client-Server games

Conceptually, a client-server architecture means that the client transfers data to the server;
the server does necessary processing and sends back the result. The client then renders and
displays the scene using parameters received from the server. However, in order to alleviate
latency issues and network load, strict adherence to the client-server pattern is rare except in
purely experimental games.

Client-server games are all designed from the ground up to handle network latency, devia-
tion or displacement in timing and jitter (defined as variations in delay). By employing various
prediction techniques and allowing a looser state consistency between different players, games
are able to alleviate, or in some cases completely isolate, the players from the effects of network
and server latency. These techniques include allowing the client to do some calculations locally,
thus making feedback much quicker. Usually referred to as client-side prediction (Bernier,
2001), this solution will, at its simplest, run exactly the same code on the client as would run
on the server. Whenever an update is received from the server, the client state is reverted to
conform to this data. Furthermore, instant effects, such as weapons firing, are executed imme-
diately on the local client to give the player a feeling of responsiveness. To allow players to
hit where they aim, and other quasi-immediate effects, the system needs to predict where other
players are at a given moment, increasing the complexity of the system.

2.4.3 Cloud gaming

The concept of cloud gaming represents Software as a Service (Vaquero et al., 2009) where the
software is a game. Delivering games in this way presents some unique challenges, possibly in-
cluding different requirements on the network latency. The cloud, or remote server, performs all
game logic and rendering tasks and generates the output to display in a video. The client closely
resembles a traditional thin client, which simply forwards commands from the user to the server,
and displays video from the server. In this scenario, requirements on client hardware is very low.
As a tradeoff, the requirements on the network link are significantly higher. There are at least
two clear reasons for this. First, transferring high definition video requires significantly higher
throughput than simple control signals. Client-server games require 10 - 60 kbps (Petlund,
2009, p.10), while high resolution video streaming requires 2 - 8 Mbps Pourazad et al. (2012).
That is, approximately a factor of a hundred higher network throughput. Secondly, none of the
techniques to alleviate network delay described above can be applied.

Figure 2.2 shows the path for information from user input to screen in cloud gaming. Here,
in addition to the steps needed in a local system, signals have to pass through network hardware,
network software as well as the server before results are visible to the player. Services such as
Nvidia Grid (Nvidia, 2015) provide a wide array of games in all generes using this type of
infrastructure.

Latency compensation is more difficult in this scenario, because such techniques require
local computing power, which is exactly the requirement cloud gaming aims to avoid. Recent
work has shown that latency compensation in cloud gaming is possible, at the cost of increased
bandwidth usage. Lee et al. (2014) suggest that the server sends the results of multiple user
actions simultaneously, and the client chooses which to display based on user actions. Thus,
for every frame, the server renders one where the player has fired a gun, and one where the

15

gun is not fired. The client displays the frame with the correct outcome based on wether the
player pushed the trigger button. Although the authors suggest various improved compression
schemes for this system, bandwidth requirements are still significant.

Figure 2.2: Path of information in cloud games.

2.4.4 Game servers in the cloud

Cloud gaming, as described in section 2.4.3, means that the game clients run in the cloud. An al-
ternative utilisation of cloud computing is using general-purpose public clouds to run traditional
game servers, serving fully featured game clients. This configuration can be described as online
games using cloud infrastructure. Time-dependent applications, like networked games, usually
need to be custom-made, and can rarely be built upon typical web- or enterprise frameworks.
Hence we need the kind of cloud service known as Infrastructure as a Service (IaaS)(Vaquero
et al., 2009). This allows the developers to access complete virtual machines, with full access
privileges, allowing them to run their fully customised programs in the cloud.

A game company planning to deploy an online game traditionally face huge costs for data
centre space and bandwidth capacity. Because it is hard to predict a game’s popularity before it
is launched, the game provider is prone to choose over-provisioning in order to meet potential
high demands. Over-provisioning boosts the costs of deployment further. Cloud computing is
a popular way for other application areas to address this problem. Here, the customer is billed
based on the resources used, and can scale resources dynamically. Game companies have,
however, been reluctant to place their game servers in a virtualised cloud environment. This
reluctance is mainly due to the highly time-dependent nature of games. Since providers must
allow for normal network latencies in addition to processing time, any significant proportion of
this delay incurred by overhead due to the cloud infrastructure should be noted.

16

2.5 Types of delay

While local games and cloud games use very different infrastructure, from the point of view
of the user, delay works exactly the same way in both cases. All information follows the same
path, and all delays work the same. We term this delay interface delay. For client-server games
on the other hand, the situation is more complicated. Because of client-side prediction, some
results are presented to the user after going through only the steps described in section 2.4.1,
while other results have to go through the network and a server as described in section 2.4.3. In
client server games, this extra delay is the sum of network latency and server processing delay.

2.6 Virtual reality

Regardless of the game genre or the delivery method, games are played on some sort of screen.
Mostly the screen is something standing in front of the user. An alternative that has been worked
on intermittently for many years is to attach the screen to the user’s head. Combined with a
system to track head movements, this can potentially allow for a much more immersive virtual
world. If the user sees only computer generated content, such systems are called Virtual Reality
(VR) systems; if the user sees virtual content superimposed on the real world, the system is
called Augmented Reality (AR). Providing a stereoscopic view that moves with their head gives
users an unprecedented visual immersion in the computer generated world.

The last years have seen a great increase in interest and popularity of VR solutions. Some
are dedicated hardware made specifically for VR, such as Oculus Rift. Simultaneously, manu-
facturers of smartphones noticed that their hardware had all important components of a virtual
reality display, such as a screen, motion and rotation sensors as well as decent 3D graphics
rendering capabilities (Olson et al., 2011). Thus, they released mobile VR solutions which are
essentially smartphones strapped to a headset. Among these are Samsung’s Gear VR, HTC and
Valves’ new Steam VR and even the simplified solution Google Cardboard.

However, these systems all have the same potential problems when it comes to motion sick-
ness and discomfort when using the VR solutions. Davis et al. (2014) investigated a condition
they term cybersickness in analogy to motion sickness. They consider a range of options for the
cause of these problems, delay among them. However, they do not quantify delay that might
lead to symptoms. Latency, delay and frame-rate are only some of the issues that might create
discomfort and motion sickness while using VR systems. Other potential sources of sickness
are beyond the scope of this thesis. These include technical aspects of VR content such as
lighting 3D scenes, camera animations, acceleration, position tracking accuracy and more.

2.7 Summary

Games are diverse, and commonly grouped into genres. We assume different genres, and even
different games within the same genre, have different requirements for delay. Further, the tech-
nical architecture of the game might influence delay requirements because processing on the
client can give responses faster than server processing. A local game only has local delay, while
a remote game exhibits both local as well as network and server delay. We want to measure

17

delays in existing systems, both using mouse input and virtual reality systems.
Because games often mimic physical interactions, and always are interactive, we also focus

on establishing empirical values for how fast a response is required for an interaction to be
perceived as instantaneous. This does not set a firm requirement on how fast responses are
required, but is a relevant design goal for most games.

Technically, two trends are also apparent. First, computers are becoming increasingly par-
allel, and second, many services are moving into the cloud. Thus, we want to create new game
architectures that utilise these trends.

18

Chapter 3

Measuring delay in games

While developing games and other interactive applications, it is common to measure delays.
Mostly, applications are instrumented to report various performance metrics, including response
time. However, these measurements cannot capture the full delay. An application knows about
input when it has received an input event, and considers the response completed when it has
sent the result to the operating system. However, there are other sources of delay. Hardware,
operating systems and drivers all may spend some time passing an event from the user to the
application and again spend time passing the results from the application through the output
device to the user.

Thus, to measure total delay in an interactive system, we could theoretically instrument
every element between user interface input and the experienced result, which is near-impossible.
As an alternative, we will employ external measurements. In our research, we look at two
situations where local delay is important. One is a traditional user interface, where the users
push a button and results appear on screen. The second scenario is virtual reality. In this
scenario, the users turns their heads, and the scene on the display follows.

This chapter aims to answer question 1 of section 1.2: “How much delay is there currently in
games?” and is based on work presented in “How much delay is there really in current games?”
(Paper II, p. 121) and “Measuring latency in virtual reality systems” (Paper III, p. 127).

3.1 Related work

A surprising amount of research exists on the effects of delay in games that does not report
actual delay from the time when the user pushes a button until the results appear on screen
(Claypool and Claypool, 2006; Pantel and Wolf, 2002; Beigbeder et al., 2004; Claypool, 2005;
Claypool and Claypool, 2010; Nichols and Claypool, 2004; Quax et al., 2004; Chen et al.,
2006; Quax et al., 2004; Armitage, 2003; Claypool and Finkel, 2014; Amin et al., 2013). All
reported numbers are about added delay, usually delay added by networks, but sometimes also
delay added by processing on the server, as illustrated in 3.1a. Delays that occur locally on the
client are, however, consistently ignored. To make the following discussion clearer, we need
some terminology. Total delay refers to the duration from a user sends input to the results are
available to the users. In a networked game this includes all the steps shown in figure 3.1b.
Because the game itself does not have full control of input and output devices, this delay must

19

(a) Added delay, the fraction of delay reoported
in most literature.

(b) Total delay for networked games.

Figure 3.1: Delay added by network as part of the full chain of delay.

be measured by equipment external to the system running the game. Network delay refers to
the duration from an when event is sent from the local machine, to the server and back. This is
distinct from network latency, because it includes processing time on the server. Local delay is
the total delay minus the network delay and server delay. In local games, local delay and total
delay are equivalent.

3.1.1 Measuring local delay

Previous work on button clicks and response time has used a consumer camera, which was
configured to run at high frame capture speed, and film button clicks along with their results
on screen. This is an imprecise and labour-intensive approach, because it relies on manually
counting frames from seeing the button pushed until the results appear on screen. It is also
limited in resolution to the frame-rate of the camera. However, it does give reasonable estimates
for local delay. Renderingpipeline (2013) finds values between 76 ms and 112 ms for the game
Half Life 2 depending on how the game is configured. BlurBusters (2014) tests multiple games,
getting results of 72–77 ms for Battlefield 4, 52–59 ms for Crysis 3 and 22–40 ms for Counter
Strike: Global Offense. Note that these results are from online sources. To the best of our
knowledge, local delay after button clicks has not been described in recent, peer-reviewed work.
These sources do, however, thoroughly describe their methodology and procedures, and the
numbers are averaged across repeated measurements. This indicates that local delay constitutes
a significant part of the total delay, at least in some hardware and software configurations.
Therefore, knowledge about both network and local delays are important for a proper analysis
of the effect of one of the components of user experience.

These numbers indicate that different games handle input in very different ways. Also, we
know that network delays as low as 50 ms may affect player performance in some games (Dick
et al., 2005; Jota et al., 2013). It is therefore important to investigate how player performance is
affected by local delays of similar magnitudes.

The virtual reality scenario is better studied. Virtual reality involves head-mounted displays
and motion trackers and allows users to rotate their head to see different parts of a virtual re-
ality scene. These interactions are particularly latency sensitive, and various approaches have
been suggested for measuring latency in such setups. Virtual reality was first studied for mil-
itary applications, particularly flight simulators. Platt (1990) describes a full setup using head

20

mounted displays available at the time, and claims they were fast enough that delays were only
noticeable during fast head movements. However, he does not report measurements on how
long the delay actually is. Civilian work has used cameras (Kijima and Ojika, 2002) or light
sensors (Swindells et al., 2000). What they all have in common is that they rely on a continuous,
smooth movement of the tested devices. Di Luca (2010) summarised a series of them, and sug-
gested a new approach, the most elegant we have found so far. Using a screen with a brightness
gradient in front of the virtual reality headset displaying a duplicated virtual scene, he rotated
the headset back and forth in a continuous movement. He then compared the phase difference
of brightness values from light sensors on the display and in front of the headset. This setup
seems to work well, though it is quite complicated to replicate. In addition, it is only able to
measure delay in continuous movement. Further, this paper is some years old and hardware has
advanced significantly since its publication.

3.1.2 Measured delay in cloud gaming

With the rise of cloud gaming, the awareness of total delay has increased somewhat. Chen et al.
(2011) studied a cloud gaming system. They described the components of delay and present
ways to measure each component. The components they describe are the following:

• “Network delay (ND): the time required to deliver a players command to the server and
return a game screen to the client. It is usually referred to as the network round-trip time
(RTT).”

• “Processing delay (PD): the difference between the time the server receives a players
command (from the client) and the time it responds with a corresponding frame after
processing the command.”

• “Playout delay (OD): the difference between the time the client receives the encoded form
of a frame and the time the frame is decoded and presented on the screen.”

Chen et al. measured network delay using ICMP pings. The other components are measured
using software hooks that are triggered by input and output events. Using this setup, they find
that different cloud gaming providers have highly variable processing delays from 135 ms for
the best cases to 500 ms for the worst cases. These numbers do not include network latency.
This work suffers from one of the same limitations as previously mentioned in section 3.1:
Ignoring delays produced outside the client application, such as drivers and screens.

3.2 Important components in local delay

Even in a local game without networking, some delay is unavoidable. This section discusses
the parts of the pipeline that add most to the response delay in the local system. Components in
a system, from user input to screen responses are to a large degree black boxes; documentation
about how they work is often lacking, and details are considered trade secrets. Thus, the only
way to evaluate these delays is by measuring.

21

Table 3.1: Some monitors and their response time.

Brand Type Response time
Apple Thunderbolt Display 12 ms (Apple, 2015)
Dell UltraSharp 24 8 ms (Dell, 2015)
Asus ROG SWIFT PG278Q 1 ms (Asus, 2015)

3.2.1 Display devices

Display devices add delay, some of this delay is mentioned in the devices’ specifications, but not
all. Various types of display devices are in use. Monitors are the most common type of display
device. These are specifically designed to be connected to interactive computers; some are
even designed for gaming purposes with a focus on low delay. Other players use TV-screens or
projectors, which are generally designed for movie and TV content. Virtual reality systems use
either dedicated virtual reality displays or smartphones attached to the head using a simple rig.
The reminder of this section discusses the different contributions to delay by display devices.

Update rate

Display devices receive and display updated images at a fixed rate. This rate is termed screen
refresh rate. Most modern screens update at 60 frames per second (FPS), or every 16.7 ms.
Some screens specialised for gaming or other response critical applications can update much
faster, currently up to about 140Hz (BlurBusters, 2015). A new frame is read from a buffer and
appears on screen after at least one such interval.

Response time

Response time denotes the time display panels take to change from one shade of grey to another,
after the update has been sent from the computer. The exact procedure and colour values for this
test are not standardised, and it is reasonable to assume that manufacturers choose the conditions
most favourable to their product. Monitors vary wildly in this metric, from 1 ms for screens
designed for gaming, to 12 ms for typical office screens, see table 3.1 for some examples. For
TVs and projectors these values are generally not mentioned in the specifications. Because these
devices are not designed for time-critical content, we can assume that numbers are towards the
slower end of the range found for computer monitors. However, some modern TVs support
game settings designed to lower delay.

Buffering and processing in display devices

Gaming consoles such as PlayStation and Xbox are usually connected to TV-screens or projec-
tors rather than purpose-built monitors. These are not designed for time-critical content, but for
high visual quality and the ability to adapt to a wide range of encodings, environmental con-
ditions and user preferences. Thus, they perform internal processing, which requires internal
buffering. Such processing and associated buffering adds delay, however we found no mention
of such delays in manufacturer specifications.

22

Frame&0 Frame&1& Frame&2&

Event&triggered& Results&rendering& Results&to&screen&

Figure 3.2: Timeline for events with double buffering.

3.2.2 Graphics hardware

A frame buffer is memory used for holding a rendered frame about to be displayed on the
monitor. Modern games use at least two frame buffers. To avoid showing unfinished frames on
the screen, drawing happens to one buffer while the other is being displayed. This practice is
termed double buffering. Further, to avoid showing parts of two different buffers, it is common
to wait for the next screen refresh before swapping. The terms vertical synchronisation or vsync
are used, because historically the swap was performed when the electron beam was returned to
the start of the frame, a period of time called the vertical blanking interval. Disabling vsync is
possible, but introduces an artefact called tearing when the camera pans or objects in the scene
move vertically. By showing the upper part of one frame and the lower part of the next, the
boundary between the frames is visible as a horizontal line through the picture.

When double buffering is used, rendering follows the sequence, as shown in figure 3.2:
Assume frame 0 is the frame during which an event from an input device is registered. Frame 1
contains the result of the event, and at the time of frame 2 the result is sent to screen. This gives
a minimum of 1 full frame time from input event to result on screen. At 60 FPS this adds up
to a minimum of one frame delay (17 ms) to a maximum of two frames (33 ms) delay. Many
games have a target frame-rate of only 30 FPS. At this rate, the delay from screen refresh and
frame buffer pipeline is 33 - 67 ms. Further, not all hardware is capable of keeping up with the
target frame-rate at all times. Slow hardware leads to significantly longer delays.

An increased number of frame buffers in the pipeline increases this delay, because more
steps are added between rendering and displaying data. High system load from the game itself
or external tasks can lead to lower frame-rate, and thus add to this number.

3.2.3 Input device latency

The best gaming equipment has tailor-made drivers that have been tweaked for low latency
performance. A good gaming mouse may add ∼2 ms (Renderingpipeline, 2013) to the latency.
Devices that are not made for gaming may add more, but manufacturers do not document delay
for such products. Delays from input devices are not only introduced in the device itself; drivers,
operating systems — particularly time-slicing — and the applications themselves may add extra
delay to the processing of an external event.

Dedicated virtual reality equipment has tailor-made hardware and drivers that have been

23

tweaked for low latency performance. The gyros of smartphones, on the other hand, are mainly
intended for navigation or keeping the screen rotated the correct way, neither of which require
fast response time or high accuracy, making these somewhat unreliable for use in virtual reality
applications.

3.3 Experiments

To measure total delay from user input and screen output, we set up two experiments. Measuring
delays between input and output accurately requires purpose-built setups. We run two different
experiments, one measuring response time after a mouse click, and another measuring response
time after an abrupt movement of a virtual reality device. These two experiments use the same
system to capture output and measure durations, but require different equipment to capture
input.

3.3.1 Mouse click

We designed a setup to measure the delay after a mouse click independent of the hardware
and software used to play the game. This allows us to test real, commercial games on several
different computers and screens, without modifying software or hardware. Results represent the
sum of all delays present in the game. Delay from the input device, the game software, graphics
card drivers, the graphics card itself or the screen are all added up along with any unknown
sources of delay in the pipeline. Investigating how much delay each part of the test system
introduces requires modifying the test system itself, locking the experiment to one pre-modified
testbed rig. We want to be able to test the delay of a wide range of setups. Thus, a requirement
to modify each system would defeat the purpose.

Previously, only hardware benchmarking sites and blogs have studied this issue, as described
in section 3.1. BlurBusters (2014); Renderingpipeline (2013) measured delay by filming the
screen and a button with a high-speed camera while pushing the button repeatedly. This ap-
proach has some limitations. First, it is limited to the capture rate of the camera. Secondly, it
is difficult to judge exactly when the button was pushed, and lastly, it requires tedious manual
work to analyse the videos.

To get more exact results, we used an oscilloscope to measure the timing difference in a
setup shown as shown in figure 3.3b. We soldered a wire to the left mouse button switch, giving
us direct access to the output from the physical device, bypassing any processing. This wire
was connected to one channel of the oscilloscope. To measure the output, we used a sensor
measuring light from the screen. Output from the light sensor would be proportional to the
light emitted by the screen. We measured the internal delay in this setup by connecting one
channel of the oscilloscope to a butten which simultaneously triggered an LED, which activated
the light sensor connected to the other channel. This showed internal delays multiple orders of
magnitude lower than those we are interested in.

To be able to measure a specific combination of computer, screen and game, we found a
dark place in the game. There, we triggered an in-game effect that lit up the screen fast. It is
important to keep in mind that not all actions in-game are meant to be immediate, but firing a
weapon will in most games be. Many actions in-game use what in the art of animation is called

24

(a) Sketch of the setup used to measure delay in games.

(b) Photograph of the setup in practice. The mouse (A) triggers a shoot-
ing action in the game. The photosensor on the screen (B) captures the
flash from the shooting effect. The PC (C) renders the game while the
oscilloscope captures the events and measures the time between them.

Figure 3.3: The setup used to measure delay in games, shown schematically and as a photo-
graph.

anticipation, meaning that part of the animation happens before the actual effect triggers. We
wanted to measure delays added by technological limitations, not those that are deliberately
added by designers.

We could thus measure and log the delay between the click of the mouse button and the
resulting brightening of the screen, by comparing the flank representing the mouse click (yellow
on figure 3.4) with the flank representing change in light from the screen (blue on figure 3.4).
Results obtained using this setup are reported in section 3.4.1.

3.3.2 Virtual reality headset rotation

As mentioned in section 2.6, virtual reality systems are rising in popularity as devices to interact
with games. Manufacturers are marketing both dedicated systems and simple rigs that let users
convert their smartphones to virtual reality displays. As with traditional input methods, response
time is an important metric in the performance of these displays. Hence, we extended our

25

Figure 3.4: Capture of delayed event. Yellow line represent output from the mouse, blue line
represents output from the light sensor. Both are active low. The difference in time between the
two flanks is shown in green in the bottom-left corner of the oscilloscope screen.

experiment to measure response time in such systems.

Virtual reality systems may utilise motion prediction algorithms, and games contain many
abrupt movements. Thus, experiments measuring delay only in predictable movements will not
give the full picture. For the virtual reality headset, we are interested in the elapsed time from
the rotation of the headset until the resulting change is visible on the display. We want to look at
response time for abrupt rotations, in contrast to previous work, which has looked at continuous
predictable movement patterns.

To measure response time after abrupt movements, we need the virtual reality device to run
a program that detects a small rotation and as fast as possible change the displayed picture. A
simple program that detects rotation and changes the displayed picture would solve this prob-
lem. However, we are interested in delays from actual 3D virtual reality software. Therefore,
we used a popular game engine, Unity 3D1, and created a scene that creates abrupt changes
based on headset movement.

The virtual reality setup works with any virtual reality device. However it requires purpose-
made software, because it is very difficult to set up a real game so that the screen is consistently
black while even a small movement of the display device will turn it white or vice versa.

We tested multiple virtual reality devices. Oculus Rift is a dedicated virtual reality display
solution, designed for this purpose. The other systems are smartphones, which developers have
discovered have all the required hardware to run virtual reality application and at the same time
function as headsets.

26

(a) Schematic drawing

(b) Photograph

Figure 3.5: The Physical setup with the Oscilloscope (A), light sensor (B) attached to Virtual
device, Laser pen (C) and light sensor (D) picking up the laser.

27

Physical setup

The physical setup consists of the virtual reality device (Oculus Rift, Smartphone etc.) mounted
on a camera tripod. One light sensor is attached to the screen of the virtual reality device to
register the virtual scene shifting from white to black. A laser pen is also attached to the virtual
device pointing at another light sensor approximately one meter from the tripod setup. Both
light sensors are connected to an oscilloscope. When we move the virtual reality device by
turning the tripod, the light sensor illuminated by the laser pen registers the disappearance of
the light. When the movement is detected, the light sensor connected to the virtual device screen
measures the light shift from the white plane disappearing in the virtual scene.

Virtual setup

Figure 3.6: The virtual scene setup. The camera is zoomed far in and looking at a black plane
against a white background far away. This geometry means that a very small movement of the
head mounted display will change the scene from black to white.

The virtual setup running on the virtual reality device is a simple completely black virtual 3D
scene with a white self-illuminated plane and a virtual stereo camera, as shown in figure 3.6. The
virtual camera is set up with normal virtual reality movement controllers. For the mobile phone
setup, the Durovis Dive SDK2 was used while for the Oculus rift setup the Oculus Rift SDK3

was used. We set up a virtual reality scene with an absolute minimum of content optimised for
the highest possible frame-rate, giving consistent values around 3000 frames per second and to
use the build in VR movement controllers. The OculusRift devices were connected to a fast
laptop4.

The scene shown in figure 3.6 consists of a white plane on a black background. The camera
faces the white plane from a large distance and is set to a very narrow field of view. The scene

1http://unity3d.com/
2http://www.durovis.com/sdk.html
3https://developer.oculus.com/
4Windows 7, Intel i7 - 3740 QM CPU @ 2,70 ghz, NVIDIA Quadro K2000M - 2048 mb DDR3

28

http://unity3d.com/
http://www.durovis.com/sdk.html
https://developer.oculus.com/

Table 3.2: Results from mouse click delay measurements. Details of the various systems are in
text and footnotes.

Experiment System OS Avg. Min. Max.
UT3, default, vsync on MacBook Pro Win 7 95 ms 79 ms 102 ms
UT3, default, vsync off MacBook Pro Win 7 58 ms 52 ms 66 ms
UT3, optimised, vsync off MacBook Pro Win 7 33 ms 23 ms 38 ms
UT3, default, vsync on Gaming PC & TV Win 7 172 ms 167 ms 181 ms
UT3, default, vsync off Gaming PC & TV Win 7 128 ms 120 ms 138 ms
UT3, optimised, vsync off Gaming PC & TV Win 7 103 ms 93 ms 113 ms
UT3, default, vsync on Gaming PC & Monitor Win 7 112 ms 85 ms 127 ms
UT3, default, vsync off Gaming PC & Monitor Win 7 48 ms 35 ms 54 ms

is tweaked so that the display is completely white initially. Because of a narrow field of view,
the camera is very sensitive to rotation. This means that even a small rotation in the headset
leads to the screen changing colour from white to black, a change picked up by the light sensor.

3.4 Results

We report results from the two experiments are separately before discussing and comparing
them.

3.4.1 Mouse click

Using the setup mentioned above, we first measured the delay of a small test application, before
moving to real games. For each condition we repeated the test 10 times, reporting minimum,
maximum and average results. We have tested one laptop and a PC with two different displays.
The two systems were a MacBook Pro5 and a powerful gaming PC connected to a large TV6

screen. We also connected the same gaming PC to a monitor7. We ran the game Unreal Tour-
nament 3 (UT3) and timed a basic pistol shot, an event that is supposed to be immediate and
produces a muzzle flash effect. For this game, we tested using different conditions. Firstly, we
tested default settings. These had vsync off and a resolution of 1024 by 768. At these settings,
the game ran at about 60 FPS. Then, we turned on vertical synchronisation and ran the exper-
iment again. Lastly, we ran without vsync and with all settings optimised for fastest possible
frame-rate. These kinds of tweaks are popular among professional gamers. With these settings
frame-rates are highly variable, averaging around 300 FPS on the MacBook and 1000 FPS on
the gaming PC.

As we see in figure 3.7 and detailed in table 3.2, response time is highly variable, even in
the same game running on the same setup. Average delays in UT3 on the MacBook vary from
33 ms to 95 ms depending on the settings. The gaming PC and TV combination gave delays

5Retina, 15-inch, Early 2013, 2.4 GHz Intel Core i7, 16 GB 1600 MHz DDR3, NVIDIA GeForce GT 650M
6LG 84 inch TV model no. 84UB980V-ZA, 4.0 GHz Intel Core i7-4790K, 16 GB 1600 MHz DDR3, 2 x

NVIDIA GeForce GTX 980
7Dell E248WFP

29

v−sync ON
v−sync OFF

D
el

ay
 (

m
s)

0

50

100

150

200

Rectangle test
MacBook Pro

UT3
MacBook Pro

UT3 Gaming PC &
TV

UT3 Gaming PC
Monitor

Figure 3.7: Average response time in the various mouse click configurations. Whiskers repre-
sent maximum and minimum measurements.

30

Table 3.3: Results from virtual reality headset movement delay measurements.

VR Display Avg. Min. Max.
Oculus Rift dev kit 1, v-sync ON 63 ms 58 ms 70 ms
Oculus Rift dev kit 1, v-sync OFF 14 ms 2 ms 22 ms
Oculus Rift dev kit 2, v-sync ON 41 ms 35 ms 45 ms
Oculus Rift dev kit 2, v-sync OFF 4 ms 2 ms 5 ms
Samsung Galaxy S4(GT-I9505) 96 ms 75 ms 111 ms
Samsung Galaxy S5 46 ms 37 ms 54 ms
iPhone 5s 78 ms 59 ms 96 ms
iPhone 6 78 ms 65 ms 91 ms

between 103 ms and 181 ms, considerably slower. Connecting that same PC to a monitor gave
better results, from 48 ms to 112 ms.

3.4.2 Virtual reality headset movement

O
R

1,
 v

−
sy

nc
 O

N

O
R

1,
 v

−
sy

nc
 O

F
F

O
R

2,
 v

−
sy

nc
 O

N

O
R

2,
 v

−
sy

nc
 O

F
F

G
al

ax
y

 S
4

G
al

ax
y

 S
5

iP
ho

ne
 5

s

iP
ho

ne
 6

D
el

ay
 (

m
s)

0

20

40

60

80

100

120

Figure 3.8: Response time in the various VR configurations. Whiskers represent maximum and
minimum measurements.

Using the setup described, we measured the delay of multiple VR systems in two main
categories, dedicated VR hardware and smartphones. Figure 3.8 shows the results from the
systems we tested, detailed in table 3.3.

31

We tested two versions of OculusRift development kit, version 18 and version 29. Regard-
ing both these products, the developer provides sparse specifications, only claiming “a low-
persistence OLED display and low-latency positional head tracking”. For these, V-sync has a
large effect on total delay. With V-sync off, the frame-rate in the application was as high as
3000 fps, while V-sync on forces the frame-rate to precisely 60 fps. Turning off this feature
introduces visual artefacts, but reduces the delay significantly. With vertical synchronisation,
Oculus Dev kit 1 had an average response time of 63 ms, while the newer Oculus Dev kit 2
averaged 41ms. Without vertical synchronisation, these dedicated virtual reality headsets can
react very fast, Oculus Dev kit 1 averaging 14 ms while Oculus Dev kit 2 responded in 4 ms.

We also tested four different smartphones. These do not allow control of vertical synchroni-
sation. They are much slower than the dedicated VR hardware, with delays close to 100 ms for
most models. The exception is the Samsung S5, which has a delay less than 50ms. This result
is similar to the Oculus Dev kit 2 with V-sync on. The screen in the Samsung S5 is actually the
same as in the Oculus Dev kit 2, and the result confirms the similarity between the two devices
and implies that the phones operate with V-sync on.

3.5 Discussion

The results from this research were quite surprising. Measured delays are considerably longer
than can be expected from summing up reasonable estimates for delays described in section
3.2. Especially the setup using a TV as display is slow to respond. Why are these delays so
long? Apart from the causes mentioned in section 3.2, it is difficult to draw clear conclusions. It
seems that devices, such as graphics cards and even displays, buffer from one to several frames.

These results come with some uncertainties. Despite our efforts, the rendered scene might
not turn instantly from white to black between one frame and the next. Intermediate frames
should show up as plateaus in the oscilloscope output, but we cannot be completely sure that
the animated movement did not pass through intermediate frames between white and black.
However, consistent results indicate that this is unlikely. The measurement of the Oculus dev
kit 2 without V-sync showed almost no measurable latency. Further, the Oculus Rift dev kit 2
screen flickered at 75Hz, creating a jagged curve on the oscilloscope display. This jaggedness
made it difficult to measure the actual delay before the screen started to turn darker, hence our
results from this equipment have an uncertainty of ≈5 ms.

For virtual reality, unsurprisingly, the dedicated hardware has much faster response rate.
Further, the smartphones do not give developers access to control the vertical synchronisation
setting, and it seems from the numbers that it is always on.

Because frame-rate is an easily accessible metric available in all games, this has become
the focus of attention for anybody who are interested in how games perform. Consequently,
players seek high frame-rate with more detailed graphics, and developers comply. The increased
complexity in the hardware might have made additional buffers necessary, to merge data and
synchronise different parts of the architecture. If a frame has to travel through multiple buffers
the frame-rate must increase even further to get information through the pipeline. Total time

8https://www1.oculus.com/order/dk1/
9https://www1.oculus.com/order/

32

https://www1.oculus.com/order/dk1/
https://www1.oculus.com/order/

from input through the pipeline to screen is, as we have measured and reported here, likely
more important to the users’ experience than frame-rate, assuming the frame-rate is high enough
for motion to appear fluid. Probable reasons for focusing on frames per second are a lack of
awareness of the problem and difficulty in measuring total delay.

With the Oculus Rift we seem to see more focus on response time: This product is optimised
for response time, and is the only system that allows delays to reach single-digit milliseconds.

Our observations in this chapter are relevant for interpreting the results in the research pre-
sented in section 3.1; none of those papers report or discuss local delay. It seems implicit form
these papers that local delay is either insignificant compared to the delay values they are us-
ing. This chapter, conversely, shows that local delays are significant. For example, Amin et al.
(2013) test perceived quality of experience in Call of Duty: Modern Warfare 2. They conclude
that the experience is impaired for expert players by 100 ms network latency. However, the
paper does not report how much local latency is present, neither details of the systems used
in the experiment. If the local latency was 50 ms, the measured impairment would occur at
150 ms total latency. Conversely, if the local latency was 150 ms, the measured impairment
would occur at 250 ms total latency. Because the paper does not report local latency, both of
these options are equally likely. Further, there is no indication that network latency by itself is
the cause of the measured impairments rather than total delay. Thus the results are difficult to
interpret.

We have measured only a few systems for delay. This is enough to show the typical order of
magnitude of delays as well as a range of possible values. The number of potential combinations
of hardware and software is huge and new versions are released constantly. Thus, attempting to
make a comprehensive list of systems and their delay is infeasible. Further, modern commercial
software developers rarely allow users access to older versions of their products, making it
impossible to recreate exactly an earlier experimental setup. Instead, we suggest research on
delay in games measure and report the actual delay rather than going to great lengths to specify
the details of the systems used.

3.6 Summary

In this chapter, we have described a system to measure response time between user input and
screen response for two different kinds of input, a mouse click and rotation of a virtual reality
headset. Further, we investigated response time in various systems. Results are highly variable
depending on system. In many cases we found delays that are higher than expected from sum-
ming up known sources of delay. We see that the numbers are large enough to influence the
conclusions of much previous research.

However, an important question is how users perceive the quality of the gaming experience.
When is the delay between action and response noticeable, and when do users get annoyed?
There exists work that partly answer these questions, but based on those experiments it is unclear
if the conclusions are reliable. Next, we therefore perform thorough experiments to see where
users can observe delay in such systems.

33

Chapter 4

Limits for observable delay

When working to improve time-sensitive interactive applications, it is not only important to
know the actual delays and their sources, but also the amount of delay that is acceptable to the
users for any given design. This criterion should be based on empirical, real world data. For any
proposed architecture or optimisation, the criteria for success must be based on studies on how
users react to variations in experience. A central question then is “How fast must an application
respond to user input?” While this depends on many details of the application some general
guidelines might be possible. By looking at this, more basic question, this chapter builds the
foundation for our technological studies.

This chapter investigates how short delays between user input and system reaction must be
to remain undetectable to humans. In other words, we attempt to empirically establish how fast
reactions have to follow actions to be perceived as instantaneous, as defined in section 2.1. This
might, however, not be sufficient; imperceptible delays might influence users subconsciously.
If not handled correctly, delays and variations in delay might also affect fairness in a game. We
explored subjective sensitivity to temporal delays between motor inputs and visual outputs in
three repeated-measures experiments, using two slightly different methodologies.

This chapter aims to answer question 2 from section 1.2: “How fast should game systems
respond to avoid deterioration of player experience?” The related work section of this chapter
is based on sections from “Latency Thresholds for Usability in Games: A Survey” (Paper I, p.
107) and updated with newer sources. The rest of this chapter is based on “Can gamers detect
cloud delay?” (Paper IV, p. 135) and “Instantaneous human-computer interactions: Button
causes and screen effects” (Paper V, p. 141).

4.1 Related work

Data on acceptable latency in games, or on how player performance correlates with latency is
relatively sparse in current literature. In some cases, multiple papers cite the same few sources
of empirical data.

4.1.1 Controlled studies

Allowing participants to play games in laboratory settings with controlled latency is a natural
approach to investigating the effects of latency. It gives the researcher control over all parame-

35

ters when the game is played. On the other hand, gathering datasets from a significant number
of players requires significant time and effort.

Pantel and Wolf (2002) claim racing games to be the most sensitive class of game. Using a
setup with two identical machines, with controlled latency between them, the authors run two
very different experiments. First, they set up an identical starting position and perform identical
actions on both sides, observing discrepancies. In the games studied, this leads to both players
seeing themselves in the lead at the same time, even at the lowest tested latency of 100 ms. Next,
they allow players to play actual games under varying latencies to the server. They find that the
average player’s performance deteriorates first, at their lowest tested latency of 50 ms. The
beginners drive too slowly to notice this delay, while excellent players are able to compensate
for more latency. Performances of the excellent drivers degrade sharply at 150 ms.

A much cited paper on this topic is Claypool and Claypool (2006). Most authors citing this
paper simply use it as an explanation for setting acceptable limits to response times from the
system they are evaluating. The value 100ms is frequently quoted.

However, Claypool’s work and conclusions are much more nuanced, categorising games
based on how they interact with the player as described in section 2.2. The paper describes a
whole set of game types and situations and recommends latency limits. These limits are es-
timated at 100ms for first person avatar games, 500 ms for third person avatar games, and
1000 ms for omnipresent games. Further, the authors analyse different actions within each type
of game. For each of these items, they have used empirical studies showing how player perfor-
mance varies with network latency. The commonly quoted 100 ms figure is based on shooting
accuracy in a first person avatar game, the most latency-sensitive class of games according to
Claypool and Claypool (2006). It is important to notice that 100ms represents a point where
player performance already has dropped off sharply from the previous data point 75 ms, shown
in Claypool and Claypool (2006), figure 2. Because systems should be designed to withstand
worst-case scenarios, the design goal should be below 75 ms. Claypool and Claypool (2006) is,
however, mostly a secondary source, citing data from earlier work, which will be described in
the next paragraphs.

The 100ms estimate for first person avatar is from Beigbeder et al. (2004). They set players
in front of computers running the game Unreal Tournament 2003, and give them a set of tasks,
such as moving in a specified pattern and shooting at moving targets. The widely quoted number
seems to originate in an experiment where shooting precision was tested. The experiment was
run three times by two different players at each latency level. Results from such an experiment
are not sufficient to draw any clear conclusions. Other factors were also analysed in this work,
but are of little statistical relevance due to the extremely low number of participants. Other
numbers cited in Claypool and Claypool (2006) are similarly from studies using an extremely
low number of participants.

For omnipresent games, the most relevant data comes from Claypool (2005), which in turn
uses most of the data from Sheldon et al. (2003). The papers do not establish any clear threshold
for latency in such games, simply concluding that 1000ms should be completely safe. Splitting
the games into different types of interaction receives significant focus, but differences in skill
levels of players are not evaluated. Only two players participate in either study. For the last
category of game, third person avatar, the data comes from Fritsch et al. (2005), which evaluate
the performance of two players playing the game Everquest 2 under different conditions.

36

Claypool and Claypool (2010) further elaborate on the categories of games and actions.
Each action is described by two parameters; deadline and precision. Deadline is the time an
action takes to complete, and precision is the accuracy needed by the player.

To investigate how sensitivity to latency varies with these two parameters, the authors mod-
ified a game, Battle Zone capture the flag (BZFlag), so these parameters could be controlled
directly. Each scenario was then played out using computer controlled player avatars called
bots. They do not clearly justify that bots are an accurate model for how human players react
to latency; neither do they cite any research indicating that this is the case. The hypothesis of a
correlation between each of the variables and latency sensitivity was supported, but not strongly.

Team sports games are played in a somewhat different manner to the others mentioned here.
Usually you have control of one character at a time, as in a third person avatar game, but you
switch character often, depending on who is most involved in the action, as if in an omnipresent
game. Nichols and Claypool (2004) study the sports game Madden NFL Football, and conclude
that latencies as high as 500 ms are not noticeable.

Quax et al. (2004), set up a 12-player match of Unreal Tournament 2003 in a controlled
environment. Each player is assigned a specific amount of latency and jitter for the duration
of the match. After the match, the players answer a questionnaire about their experience in the
game. This study still uses relatively few players, but they are able to conclude that 60ms of
latency noticeably reduces both performance and experience of this game. They did not find
any effect of jitter.

Amin et al. (2013) also run controlled experiments, but use subjective measures on the FPS
game Call of Duty Modern Warfare 2. Further, they graded participants according to gaming
experience. They conclude that the most experienced users are not satisfied with latencies above
100 ms.

To simplify the gaming scenario, Stuckel and Gutwin (2008) used a rudimentary cooperative
game. In their study, they define the concept tightly coupled interaction as “shared work in
which each person’s actions immediately and continuously influences the actions of others”.
Such interactions are a cornerstone of games, whether co-operative or adversarial. Evaluating
user performance under different delay situations, they conclude that local delay is actually
preferable to delay hidden by the system, since it allows users to compensate.

In summary, controlled experiments show clearly that performance decreases as delay in-
creases above a threshold. It is, however, not clear what this threshold is for all types of games.
These papers also in general include relatively few subjects and repetitions.

4.1.2 Observational Studies

To avoid the limitations of controlled studies, others have taken different approaches to de-
termining acceptable latency for games. To get around the primary limitation of controlled
experiments, the resources and time required to gather data, some researchers choose to gather
data from games as they are being played across the net. This gives access to large amounts of
data, but the researcher must rely on random variation in conditions.

Henderson (2001) wrote the oldest paper we found on this topic, and it is still relevant.
Running an FPS game-server open to the Internet, the authors observe player behaviour and
how this is affected by network delay. Most players connecting to their server had network

37

latencies in the interval 50 ms to 300 ms. Beyond this, their only result relevant here is that
players with delays over 400 ms seem much more likely to leave immediately.

Armitage (2003) set up two different servers for the game Quake 3 and monitored the laten-
cies experienced by the players joining the servers. They assume that players only join servers
that have acceptable latency. Henderson (2001) contest this assumption, finding no correlation
between delay and players joining or leaving game servers in a similar game. This methodology
should give insight as to how much latency players think is acceptable. However, the study does
not take into account which other servers are available, so the results could be influenced by the
presence of lower latency servers or lack thereof. Additionally, the latencies players think are
acceptable might not be the same as the limit where their performance degrades.

Another interesting approach is that of Chen et al. (2006). They examine an online RPG,
ShenZhou Online. By Claypool’s classification, this game would be a third person avatar game,
and hence be less sensitive to latency than the games discussed earlier. Instead of using a con-
trolled lab environment, the authors chose to analyse network traces from an existing, running
game. They asked the question: “Does network QoS influence the duration of play sessions?”
(Chen et al. (2006)) The Quality of Service (QoS) factors they examined were packet loss,
latency and jitter. Their hypothesis was that if the underlying network conditions affect the
players negatively, it should show up in the players’ enjoyment of the game, and hence their
motivation to keep playing. Between 45 and 75 ms RTT, the authors find a linear correlation
between increased latency and decreased game session length. For standard deviation of la-
tency, a measure of jitter, the correlation is even stronger. A finding which contrasts directly
with Quax et al. (2004), who find no effects of jitter. The most probable explanation for this
is that jitter is handled better in that game. At extreme RTT values or extreme jitter, the trend
is reversed though, and the authors surmise that there is a group of players who are used to
bad connections, and another group of players who keep the game on while not really paying
attention. These results indicate negative impact of latencies much lower than the 100ms men-
tioned in earlier literature. Session length as indicator for player satisfaction is an ingenious
approach, but the chain of effect from network latency to session length is complicated, and
there is significant room for hidden variables.

Dick et al. (2005) use two separate methods to investigate how latency affect players. Using
International Telecommunication Union’s impairment scale (International Telecommunication
Union (ITU-T), 2014), which defines a rating called Mean Opinion Score (MOS) ratings, they
ran an online survey asking people how much delay would cause each level of impairment.
Players reported they could play unimpaired at up to about 80 ms, and tolerable at 120 ms for
most games. Further, the authors ran a controlled experiment testing different latencies. Their
results show large differences between games, with the most sensitive game Need for Speed
Underground 2 showing impairment even at the lowest tested delay of 50 ms.

In summary, while details vary, these observational studies draw similar conclusions to the
controlled studies described in section 4.1.1. Latency affects gaming experience; but the exact
values required for this effect is unclear.

38

4.1.3 Cloud Gaming

As described in section 2.4.3, cloud gaming changes how delays are exposed to players. So
far, cloud gaming mostly eliminates the possibility of client side prediction and smoothing, thus
presenting all delay directly to the users. Thus, this scenario must be studied separately from
the ones discussed above.

Latency in cloud gaming is much less studied than for client-server games. Jarschel et al.
(2011) test players’ subjective experience of varying network latencies and amount of packet
loss in cloud gaming. Using a setup where the gameplay was transferred over a network mim-
icking the cloud scenario, the authors introduced varying Quality of Service (QoS) parameters
and asked their 48 participants how they liked the service in each scenario. They concluded
that a latency of 80ms was noticeable in the fastest-paced game. In all games, packet loss in the
stream from server to client was extremely detrimental to the experience. Because their setup
used UDP/RTP for all communication, packet loss would result in reduced video quality. How-
ever, their conclusion can only be used to put an upper bound on latency sensitivity in cloud
gaming, because they conducted no experiments between latencies of 0ms and 80ms.

Claypool and Finkel (2014) use both subjective and objective measures to investigate delay
in cloud gaming. Testing one racing game and one puzzle game based on physics simulations,
the authors induce varying degrees of delay to running game sessions. For subjective experi-
ence, the paper uses a self-reported Quality of Experience metric. As an objective measure the
authors use actual player performance as measured by points in the games. They conclude that
100ms delay degrade performance up to 25%.

4.1.4 Results from psychophysics

The question about how much delay affects users in games is part of the larger question of
how delay affects humans in general. The discipline of psychophysics studies human senses
in general. One concept they study is sensory threshold, the magnitude that a signal needs to
have to be perceived, which is analogous to the question of how long a delay needs to be before
humans perceive it.

Humans are very adept at handling and acting on objects, facilitated by both the motoric and
the visual systems, along with other inputs. Sense of agency refers to the experience of being
the direct cause of an event, and this term encompasses the expected delays that follow many
actions (Haggard and Chambon, 2012). Indeed, one study found that participants maintained
the sense of agency from a joystick controlling the movements of an image for intervals as long
as 700 ms (Ebert and Wegner, 2010). At the same time, these participants were clearly aware
of the delays much lower than this, though the authors do not draw any conclusions about how
short delays are noticeable.

This scale of delays can approximate those that follow real physical events, where conse-
quences are stalled by the time taken to traverse a distance. However, many human-computer
interactions involve series of inputs and outputs and these require far more speedy reactions.
Whether typing in text, shooting at moving targets, or moving a cursor across the screen, most
users expect instantaneous responses from the system. The higher demand for this type of
human-computer interaction is emphasised by the findings of an experiment that compare the
temporal boundaries for the sense of agency and the sense of simultaneity (Rohde et al., 2014).

39

Participants were asked to push a virtual button and watch for a visual flash, then make a judge-
ment on the simultaneity of the events, or on the event serving as the agent. Ingeniously, the
virtual button was implemented using a haptic feedback device that allowed tracking the par-
ticipants’ movements well before they pushed the button. Because movements leading up to a
button-push are predictable, the researchers could trigger the flash before users believed they
had pressed the button. On average, the button-push was perceived as the agent as long as the
visual flash did not lag by more than ≈400 ms; conversely, the two events were judged as simul-
taneous, at greater than chance rates, when the flash delay stayed below ≈250 ms. Interestingly,
events were also judged simultaneous when the flash happened up to 50 ms before the push.

Jota et al. (2013) examined users’ sensitivity to delay in touch interfaces. They constructed
a touch-sensitive screen with the ability to display extremely fast responses (down to 1 ms).
Participants were asked to drag an object to a target using a touch gesture. The researchers
used time taken to complete this task as a measure of user performance. Users were sensitive
to temporal delays for actions that require pointing and dragging. The authors found significant
decrease in task performance for delays delay down to ≈25 ms. Pointing and dragging in
touch-sensitive displays introduces some caveats though. If the user drags an object at constant
velocity across the screen, temporal delay appears to the user as spatial offset from the finger to
the object, and it is possible that the measured effect is due to this spatial offset rather than the
temporal delay.

Still, humans are capable of adapting to fairly long temporal delays (235 ms) between move-
ments of a mouse and movements on a screen, although this becomes increasingly difficult as
the visual task speeds up (Cunningham et al., 2001). Clearly, instantaneous and simultane-
ous are not synonymous with zero delay, a computational impossibility. Yet, these and similar
human-computer interactions place strong demands for speedy responses on a system. More-
over, studies on multi-sensory and sensorimotor processes have demonstrated that the human
perceptual system is adaptable and quite capable of compensating for short temporal offsets
between corresponding signals (Rohde et al., 2014; Fujisaki and Nishida, 2009; Heron et al.,
2009; Occelli et al., 2011).

These results are immediately relevant to real-time games; a delay that people notice in
such simplified interactions would be detrimental to gaming experience. However, the research
described in this section is based on interactions that do not map clearly to how players interact
with games.

4.1.5 Limitations of existing work

Although we have found a substantial amount of research into how latency and delay affect
interactions both in general and in games, not all questions have clear answers yet. Many
interesting questions remain in this area. We chose to focus on the effects of delay in simplified
interactions modelled after interactions in real games, while also gathering information on the
participants’ experience in playing games.

40

Unclear classification

The game classification described in section 2.2 does not reflect the full spectrum of games,
as games of each type can have significantly different latency requirements. In the research
summarised in this article, conclusions about noticeable latency in third person avatar games
range from 45 ms (Chen et al., 2006) to over 500 ms (Claypool and Claypool, 2006). Different
games in the same category have very different modes of interaction. Third person avatar games
can have very different ways of interacting with the environment. Some are 3D graphical rep-
resentations of very abstract game mechanics, where relative positions and timing are almost
irrelevant, while others are highly detailed simulations of realistic physics where small changes
in position and timing make for large changes in the outcome of actions.

For first person avatar games, the differences often lie in playing style. Some games focus
on tactical movement and cover (for example Metal Gear Solid), while others rely purely on
reaction time and precision motor skills (for example Unreal Tournament). It is likely that the
last category has stricter latency requirement than the first. No studies found in this survey
address these questions.

The distinction between these types of games is also blurred by the fact that many games
allow multiple points of view. Role playing games and racing games commonly support both
first person and third person view modes for the same game; leaving it up to the user to decide.

Even the status of omnipresent games is not entirely clear. Some are clearly slow-paced and
highly strategic, but not all. The well-known game Star Craft is one of the most popular games
in this category. The papers cited here all seem to agree that this means it should not have
strict latency requirements. However, this game is played as a professional sport in parts of the
world. In these matches players take around 400 individual actions per minute. This equates to
150 ms per action (Lewis et al., 2011). It would be interesting to investigate if players playing
on this level require latencies at least lower than the time between actions. We have not had the
opportunity to work on that in this thesis.

Participant and controlled environments

From all these studies there are no clear, consistent results available, and the diversity in game
scenarios make comparisons challenging. Studies suffer from uncontrolled environments or
very limited numbers of participants. Studies using both a controlled environment and a number
of participants that is large enough to do statistical analysis would do a lot to clarify the situation,
but we have not found any. Further, information on the background of the participants would
help interpreting the results, yet is only mentioned in a few of the studies. While designing
a game aiming at a specific audience, the designers should have data available that is relevant
for that target audience. The results from psychophysics similarly employ experimental setups
that are difficult to relate to games. We attempt to use the psychophysical approach using
experimental setups that are closer to a gaming situation, and gather data on how much prior
experience playing computer games participants have.

41

Correcting for local delay

Lacking in all publications referenced in sections 4.1.1, 4.1.2 and 4.1.3 is a consideration of the
local system delay. All of these studies report network latency. The network latency studied
may be from actual network conditions or artificially induced. What is missing from the latency
analysis is reports on how much local delay is present in the test setup. Local delay describes the
time from a users sends an input until the result is visible on screen, for actions that do not need
to traverse a network. Discussions on the influence of local latency for the player tolerance and
experience are also missing. Such local latency can constitute a large part of the total latency
and vary considerably depending on the hardware used and software configurations. Therefore,
knowing what share the network and local delays constitute is important for a proper analysis of
the effect of one of the components on user experience. Our research measures and compensates
for local delay.

4.1.6 Summary

We started this chapter by asking how much delay is acceptable to players. Despite much
research into the topic, we have found no clear answers. Results vary based on experimental
methodology. While we have numbers as low as 25 ms (Jota et al., 2013), we also have numbers
up to 250 ms (Rohde et al., 2014). Different genres of games clearly require different response
times, but the literature does not agree on which games are the most sensitive. For cloud gaming,
the amount of research done so far is too limited to draw conclusions, but it seems numbers fall
into the same range as for client-server games.

4.2 Method

We know from section 4.1 that there is a limit to how long delay we may have in a game before
the quality of experience or the players’ ability to succeed in the game deteriorates. Previous
work is however not conclusive, with two clear limitations. Firstly, most of the previous research
has focused on network latency, rather than local delay or total delay. Secondly, working on
real games introduces many confounding variables that are difficult to correct for. Further,
real games are unpredictable and need long experiment runs in order to give statistically valid
results.

To extend the existing research, we decided to experiment on simplified interactions. Simple
interactions have some advantages compared to studying real games. First of all, we can create
a consistent environment for all iterations, making analysis simpler. Secondly, investigating
simple interactions allows us to use many more iterations, giving the results more statistical
weight. It also allows us to focus more closely on human capabilities, without considering the
effects of game design and implementations.

Simplifying interactions in this way also has some disadvantages. The clearest disadvantage
is that results become more difficult to relate to actual games. When presented with a simple
experimental setup, a user may concentrate fully on the one interaction being studied, while a
player of a game usually has to process a continuous stream of complex stimuli. Such distrac-
tions could lead to less sensitivity to delay. On the other hand, the entertainment, immersion and

42

competitiveness of a game could lead to deeper focus and thus make distractions such as delay
more. Further, when not using an actual game, we can not directly measure how much delay
affects game performance. Instead, we measure how much delay users can notice. A conclusion
about how short delays participants notice in such an artificial setting might thus not apply to a
any actual game, but does give indications that are relevant. Because the delays we add are not
linked to any technical source, but introduced artificially, we use the term motor-visual delays
for the delay between the input, that is motor, action and the visual output being produced on
screen.

4.2.1 Experiment design

Figure 4.1: Experiment setup for investigating sensitivity to delay. The screen presents stimuli
while the button receives input.

In order to investigate sensitivity to delay using simplified interactions, we designed two
different experiments, or from the point of view of our participants, tasks. Both used the same
setup, illustrated in figure 4.1. The first experiment we call the adjustment task, and the second
experiment introduced a variation of the more common simultaneity judgement task (Rohde
et al., 2014; Occelli et al., 2011; Fujisaki and Nishida, 2009) we call discrimination task. We
ran the first experiment separately and published the results (paperIV) before continuing to the
next two experiments (paper V). Both sessions happened in a computer lab at Westerdals – Oslo
School of Arts, Communication and Technology, Campus Galleriet.

For the first experiment, we recruited 13 female and 28 male volunteers to participate in the
experiment. They were aged between 19 and 43 years. We ran the next two experiments over
one session. To minimise the potential learning effects across the experiments, we reversed the
order of them after half the participants. For this experiment we recruited 10 female and 41
male participants, aged between 19 and 33 years. All experiments used Griffin click+spin USB
controllers1, to register participants’ adjustments and responses. These are simple controllers

1http:/store.griffintechnology.com/powermate

43

http:/store.griffintechnology.com/powermate

often known as jog-shuttles, comprised of a big click-button that also serves a rotating wheel.
The rest of the experimental equipment unfortunately had to be changed between the experiment
runs, as the computers used for the first run were scrapped before we started on the second run
of experiments.

In addition to the two experimental procedures, we designed two simple types of stimuli,
a static type and a rotating type. These static visual stimuli consisted of black discs on a
white background. When the user pushes the button, the disc either appears or disappears
alternately. The delay of this change is the experimental variable. We included two disc sizes,
with diameters of 20 and 200 pixels. At a viewing distance of 60 cm, these disc sizes correspond
to visual angles of 5.6◦ and 0.56◦, respectively.

The rotating stimuli were simply discs moving in continuous circles. The disc rotated either
slowly or quickly (0.2 or 1 revolution/second), with the speed of rotation varying randomly from
trial to trial; the initial direction of rotation was also randomised across trials. When the users
pushed the button, the rotation would change direction after a delay, the experimental variable.

A questionnaire handed out prior to the experiment, assessed participants’ gaming experi-
ence, specifically, how many years they had played and the average number of hours played
during a week. Because music is a time critical activity somewhat related to playing computer
games, we also asked about musical experience. For the experiment using moving stimuli, we
also asked about a list of game genres.

The two different types stimuli, static and rotating, were combined with two different exper-
imental procedures for a total of four combinations. Due to the evolving nature of our research
we did not test one of them, the combination of static stimulus with the discrimination task.

4.2.2 Adjustment task

For the adjustment experiment, each trial commenced with an initial delay (100, 200, 300, or
400 ms). Participants were instructed to push the button on the jog-shuttle to trigger the visual
stimulus and turn the wheel to adjust the delay between their push and the visual change. Due
to the lack of reference points, participants were always unaware of the physical value of the
delay. Values for delay could be adjusted from 0 to 500 ms; if adjusted past these extremes, the
values would gradually decrease or increase away from the extreme. If a participant made an
adjustment from 200 ms to 100 ms, another identical adjustment would set the delay to 0. From
there, the next identical adjustment would take the delay back up to 100 ms. This ensured that
participants could not simply rotate the wheel to the end-point to achieve zero delay.

Because the controller itself has no indication of how far you have moved it, or how much
it has affected the delay, each attempt would essentially be a shot in the dark, and finding a
spot where the participant does not notice the delay can take a very long time. Thus, a visual
guideline in the form of a simplified clock face helped participants keep track of rotations made
with the USB controller. We encouraged participants to use the clock face to keep track of their
adjustments and the temporal granularity; one full rotation of the circle represented one full
adjustment round, bringing participants back to the initial delay.

Participants were allowed to spend as long as they wanted on each trial, but for the moving
stimuli they had to make a minimum of five button-clicks before proceeding to the next trial.
Each trial therefore involved a series of wheel rotations and button-clicks before reaching the

44

point of no delay, in a sequence illustrated in figure 4.2. With four levels of initial delay, two
levels of rotation speed and two levels of rotation direction, along with two repetitions of all
conditions, the full adjustment experiment included 32 trials and took approximately 10 minutes
to complete.

To get participants acquainted with the task, they were first presented with two practice
trials, from which data was discarded. Then they were given the opportunity to ask questions,
before they completed the full experiment at their own pace.

Click button to
change direction
of rotation

Observe the
rotating disc Evaluate delay

between click and
rotation change

Twist button to
adjust delay

Experimental task:
Continue with

adjustments, button-
clicks and assessments
until delay cannot be

detected. Accept current
delay and proceed to

next trial.
	

(t)

Evaluate delay

Twist button to
adjust delay

Observe disc

Observe disc

Click button to
change direction
of rotation

(t)

Figure 4.2: Circular timeline illustrating the experimental procedure for the adjustment experi-
ment. The experiment starts with an initial push of the button and a delayed change in rotation
direction and it continues for as long as it takes the participant to adjust the delay down to an
imperceptible level.

4.2.3 Discrimination task

In the discrimination experiment, each trial involved a single button-click with a corresponding
change in the direction of rotation. The delay between the click and the directional change
varied randomly between 11 pre-established values (0, 20, 40, 60, 80, 100, 140, 180, 220, 260,
and 300 ms). We asked participants to click the button and pay close attention to the visual
change. They were thereafter prompted for a judgement on the simultaneity of the motor and
the visual events. Participants provided their responses by turning the wheel left or right to
choose either the immediate or the delayed response options. We included four repetitions of

45

all delay, direction and speed conditions, making a total of 176 experimental trials. Again we
present the participants with practice trails and gave them the opportunity to ask questions. With
these short trial presentations, the experiment duration was on average 12 minutes.

4.3 Limitations

No computer system can respond without delay. Any delay inherent in the experiment setup
must be considered when reporting results from participants. Even when we attempt to intro-
duce 0 ms delay, the system delay is present. Using the setup described in section 3.3.1, we
measured the average system delay of the experiment setup to 51 ms.

In the adjustment experiments, when accepting a value, participants only know that they did
not perceive any delay. Accepted values might not correspond to the exact minimum threshold
for detection, rather any point below that threshold. Our collected data may therefore be uni-
formly distributed over a region of imperceptible delays. This concern introduces inaccuracies
in the results. These are all considered when we interpret the data.

In the static stimulus adjustment experiment, we allowed participants to accept the current
delay at any time, even before they had experienced the experiment. Therefore, any initial
delay value that participants accepted without at least five adjustments was categorised as an
accidental accept; accidental accepts were labelled as missing values and treated like such for
the main analyses. For the moving stimulus adjustment experiment, we were aware of this
problem and did not allow participants to accept any values before they had clicked at least five
times.

Lastly, for the static stimulus experiment, the knobs adjusted delays in increments of 25 ms.
This issue was fixed before the moving stimulus experiment, when the resolution of the knob
was improved to 5 ms.

4.4 Results

Because we have results from the adjustment task from both types of stimuli, and these are
directly comparable, we present these results side by side. First, we look at the visual factors in
each study, then we compare the studies.

4.4.1 Results from adjustment task

In addition to the question of how much delay is noticeable, we also looked for variables that
could influence the temporal sensitivity to motor-visual delays. We explored factors relating
directly to the visual presentations. There is no reason to expect our data to follow the normal
distribution; because values can not be lower than 0, we only have one tail. Therefore, we run
non-parametric tests.

Static stimuli

We applied the Wilcoxon signed rank-sum test (Wilcoxon, 1946), a non-parametric hypothesis
test, when we compared the related samples from a variable with two levels, and the Friedman

46

test (Friedman, 1937), a similar multi-variable test, for variables with three levels. The initially
presented delay between the first button-click and disc-flash varied randomly between 200, 300,
and 400 ms. However, when running a Friedman test, we found no indications that the initial
delay influenced the final accepted delay (χ2(2) = 0.79, p > .6). Furthermore, the flashing disc
also varied randomly in size. Still, the Wilcoxon test revealed no significant difference between
the 20 pixel and the 200 pixel discs (W = 660, p > .5). Because none of these factors were
significant, we collapsed the data and established a median of 36 ms for adjusted delays.

Dynamic stimuli

We ran two Wilcoxon signed rank-sum tests to investigate potential variations in delay sensi-
tivity between the two initial disc rotation directions (W = 338137.5, p > .5) and the two disc
rotation speeds (W = 326454, p > .4), we also ran a Friedman test to explore differences due
to the initial delay values (χ2(2) = 2.348, p > .5). None of the tests revealed significant differ-
ences between the conditions. Following this, we collapsed scores across presentation modes
and established the overall median for adjusted delays to 40 ms.

To establish detection thresholds for motor-visual temporal delays, we plotted an empirical
cumulative density distribution with all delay scores. From this distribution, we derived the 25th,
50th, and 75th percentiles. The distributions and percentiles are portrayed in figure 4.3. When
interpreting these results, keep in mind the limitations outlined in section 4.3, primarily local
delay and the possibility of accepting delays well below what participants can detect. Also note
that the steps of figure 4.3a are an artefact of the limited resolution available for adjustment in
this experiment.

For a closer look at these distributions we present density plots in figure 4.4 of each partici-
pant’s median accepted value. From these distributions, we found that the mode falls very close
to 32 ms for both experiments, a lower value than the median. Furthermore, we observed an
asymmetrical distribution, where the majority of scores centred on the mode, but a long tail of
delay scores extended close to 400 ms. The dynamic stimulus produces a longer tail.

Participants were encouraged to spend as much time as they needed on the experimental
task. Because participants can gradually work towards lower delay in this experiment, using
more time and effort on the task may allow them to get closer to their sensory threshold. We
observed great variations in task effort between individuals. During each trial, participants
adjusted and tested the motor-visual delay by turning and clicking the knob, as outlined in
figure 4.2. We used the number of clicks made by a participant during one trial as an estimate
for the number of adjustments made, and in turn the effort put into the task. From this, we
examined if the number of adjustments affected the final, accepted value.

When running a linear regression with a inverse proportional fit, we found a small but
significant relationship between clicks and accepted delays (Static stimuli: accepted delay
= 40.5 + 300.7/x,R2 = 0.03474, p < .001 Dynamic stimuli: accepted delay = 29.5 +

579.6/x,R2 = 0.1058, p < .001). In other words, higher numbers of adjustments were as-
sociated with lower accepted delay values. Figure 4.5 includes a scatterplot to illustrate this
interaction, where the visible horizontal bands in the data can be attributed to the limited tem-
poral resolution of the adjustment knob. The curve represent the regression line. We see that for
few clicks, accepted delays range far up, while when the number of clicks increase we, accepted

47

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative density

Accepted delay(ms)

D
el

ay
 s

co
re

 d
en

si
ty

●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●
●
●
●

●
●●●
●●
●●

● ●●●●
●●●
● ●●●●●

● ●●●
● ●●●●

● ●●●●● ●● ●● ● ● ●

25 percentile = 5.00

median = 36.00

75 percentile = 71.00

(a) Static stimuli

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative density

Accepted delay(ms)

D
el

ay
 s

co
re

 d
en

si
ty

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●●

25 percentile = 15.00

median = 40.00

75 percentile = 90.00

(b) Dynamic stimuli

Figure 4.3: Individual adjusted delay scores plotted as an empirical cumulative density distri-
bution. The x-axis shows participants’ final accepted delay score, and the y-axis corresponds to
the proportion of scores that fall within defined range.

48

0 100 200 300 400 500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Static stimuli

Delay (ms)

D
en

si
ty

32.12

(a) Static stimuli

0 100 200 300 400 500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Dynamic stimuli

Delay (ms)

D
en

si
ty

29.95

(b) Dynamic stimuli

Figure 4.4: Density plot of each participant’s median accepted delay.

values converge to a lower value.

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●

●● ●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●
● ●

●

● ●

●

● ● ●

●

●●

●
●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

● ●

●●
●

●

●

●

●
●●

●

●
●

● ●● ●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

● ●●

●

●●

●

●

● ●●

● ●

●

●

●

●

●

●

●

●

● ●●●

●

● ●
●

●

●●

●

●

● ●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●
●

●● ●

●●●

●

●

● ●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

● ●

●

●

●● ●

●

●

●

●

●●●

●

●
●●

●

●

●

●

● ●●

●
●

●

● ●

● ●

●

●

●

●●

● ●

●● ●

●

●● ●● ● ●● ● ●

●

●

●

●● ●

●

●

●● ●

●
●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

● ●
● ●

●● ●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●
● ●

● ●

●●
●

●● ●

●●

●

●

●

●

● ●●

●

● ● ●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●● ●

●

●

● ●● ●

●
●

●

●

● ● ●

●

●●

●
●

●

●

●
●●

●

● ●

●

●

●

●

●

●●
●

●

●

●●

●

● ●●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

● ● ●

●

● ●

●

● ●

●
●

● ●

●
●

●

●

●
●

●

●

●

● ●

● ●
●

●● ●

●
●

●

●

●

●

●

● ●

●● ●

●

●

●

●

●

●● ●

●●

●

● ●

●

●●

●

●
●

●●
●

●●

●

●

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0

Static stimuli

Number of clicks

A
cc

ep
te

d
de

la
y

(a) Static stimuli

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●● ●

●

●

● ● ●

●
● ●

●

●
●●

●

●

●● ●● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
● ●

●

●

●
●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

● ●

●
● ●

●
●

●

●

●

●

●

●

●● ●●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●●
●

●● ●

●

●

●●

●

●

● ●

●●●

●

●●

●

●

● ●

●

●●●

● ●●

●

●
●●

●● ● ●

●

●●

●

●
●

●

●

●
●

●

●

●
● ●●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
● ●

● ●● ●●

●

● ●

●

●

●

●●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●●●
●

●

●●

●
●

●

● ● ●

●

●●
●

●

●
●

●

●

●

●

●● ● ●

●

● ●

●

●

●●●

●

● ●●●

●

● ●

●

●●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●●●

●●
●●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●
●

●

●

● ●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

● ●

●

●●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●● ●

●●

●●

● ●●

●

●

●●● ●

●

●

●

●

●

●
●

●
●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●●
●

●

●

●
●

●

●

●

●●

●

●● ●

●

●●

●

●●

● ●● ●

●

● ●
●●

●

●
● ●●

●

●●

● ●

●

●

● ●

●

●

●

●

●● ●

●
●

● ●

●

●

●
●

●

●

●

●

●●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●●

● ●

● ●● ●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●
● ●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

● ●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●● ●●

● ●

● ●

●

● ●●
●
● ● ●

●

●● ●

● ●

●

●

● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●
●

●
●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●

●

●● ●

●

●

● ●

●
●●

●●

●

●

●

●●
●

● ●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
● ●●

●

●

●

●

●
●

●●

● ●

●

●

●●

●●●

●
●

●

● ●

●

●●●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

● ●●
● ●

● ●
●

●●

●

●

● ●●
●●

●

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0

Dynamic stimuli

Number of clicks

A
cc

ep
te

d
de

la
y

(b) Dynamic stimuli

Figure 4.5: Density plot of each participant’s median accepted delay.

4.4.2 Results from the discrimination task

The discrimination experiment uses what Gescheider (1976, pp. 46-50) describes as the method
of constant stimuli. The data is a list of presented delays paired with responses of simultaneous
or delayed. Ideally, a participant would answer only simultaneous for low delay values, some
ambiguity in a small range until they clearly notice the delay and consistently answer simultane-
ous. The method of constant stimuli results in an s-shaped curve. We chose to use the sigmoid
function, an s-shaped curve that can be fitted to the data using regression. Gescheider defines

49

the threshold as the delay where the participant would be equally likely to answer both options.
While most participants’ results fit with this model, there are some results that do not.

● ● ●

●

●

●

●

●

●

●

●

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction reporting immediate response

Presented delay (ms)

R
el

at
iv

e
fr

eq
ue

nc
y

● Empirical datapoints
Logistic regression

(a) Participant 1

● ●

●

●

●

●

● ● ● ● ●

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction reporting immediate response

Presented delay (ms)
R

el
at

iv
e

fr
eq

ue
nc

y

● Empirical datapoints
Logistic regression

(b) Participant 2

●

●

● ●

●

● ●

●

●

●

●

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction reporting immediate response

Presented delay (ms)

R
el

at
iv

e
fr

eq
ue

nc
y

● Empirical datapoints
Logistic regression

(c) Participant 3

●

●

● ●

●

●

●

● ●

●

●

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction reporting immediate response

Presented delay (ms)

R
el

at
iv

e
fr

eq
ue

nc
y

● Empirical datapoints
Logistic regression

(d) Participant 4

Figure 4.6: Individual participants’ results from the discrimination experiment with logistic
regression fit. We see clear differences in how participants handle the task. Participants 1 and 2
show a clear crossover from noticing to not noticing when delay increases. Participant 3 on the
other hand seem unable to notice any of the delays we presented. Lastly, participant 4 seems to
have answered more or less randomly.

To clarify this situation, we have plotted four individual participants’ results in figure 4.6.
Figure 4.6a shows a clear example of the expected situation, and the data fits very well with the
logistic distribution (r2 = 0.92). Next, figure 4.6b shows data from a participant who seems
very sensitive. There is no initial plateau, which would probably be in the range of the system
delay, but the rest of the curve fits nicely (r2 = 0.97). On the other hand, we have participants
such as the one whose data is plotted in figure 4.6c. It seems quite clear that this participant does
not notice delays before we approach the highest presented values. We do not have data above

50

300 ms, but extrapolating the logistic regression gives us a threshold of 442 ms (r2 = .34). We
kept this and similar data in the set for further analysis; it is difficult to come up with a clear
criterion for which individuals to exclude. Lastly, we have the result shown in figure 4.6d. The
responses here seem more or less distributed around equal probability for both answers for all
delays, and the regression line (r2 = 0.44) actually has a positive slope, giving a negative value
for the threshold. We assume this participant has answered randomly and exclude the data.

For the discrimination scores, we derived a best-fit logistic regression model, see figure 4.7
(r2 = 0.46). Running another two Wilcoxon signed rank-sum tests, we found no significant
differences between the rotation directions and the rotation speeds. Hence, we collapsed scores
across presentation modes and established the discrimination threshold from the mid-point be-
tween immediate and delayed responses, at 148 ms. As before, we established the mode value
for the discrimination mid-points from their density plot, which is illustrated in figure 4.8. Again
the mode yielded a lower value than the median, this time it approximated 116 ms. The distri-
bution showed a wide dispersion of scores around the mode, along with a long tail that ran to
the beyond the experimental range of 300 ms.

●

●
●

●

●

●

●

●

●

●

●

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction reporting immediate response

Presented delay (ms)

R
el

at
iv

e
fr

eq
ue

nc
y

● Empirical datapoints
Logistic regression

148.26

Figure 4.7: Results from discrimination task. The best-fitting logistic regression line with the
proportion of participants’ immediate responses plotted as a function of presented motor-visual
delays.

51

0 100 200 300 400 500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Discrimination task

Delay (ms)

D
en

si
ty

115.95

Figure 4.8: Density plot of each participant’s sensory threshold in the discrimination task.

4.4.3 Comparison of experimental methodologies

This work includes two experimental methodologies to investigate the same issue: Human sen-
sory threshold for delays between motoric output and visual input.

The adjustment task asks participants to adjust delay until they no longer notice it. The me-
dian result for this task is 40 ms and the mode is 30 ms.

The discrimination task presents participants with different delays and asks them if they no-
ticed delay. The median result for this task is 148 ms and the mode is 121 ms.

Running a Wilcoxon signed rank-sum test, we settled that the striking difference between
the mid-point thresholds established from the two methodologies is statistically significant
(W (49) = 1871, p < 0.001). Furthermore, scores varied greatly across participants in both ex-
periments. Yet, the wider dispersion of the density plot for discrimination mid-points suggests
more individual variation for this task compared to the adjustment task. While the adjustment
tasks allow participants to retry until they are satisfied, the discrimination task relies on partici-
pants paying close attention to individual presentations, which could explain the differences in
variation.

For the moving stimulus, where the same participants participated in both experimental pro-
cedures, there is a clear correlation between individual participants’ result in the two different
experiments. Figure 4.9 shows a scatterplot of the two experiments and a linear regression line
(r2 = 0.46).

52

●
●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

30
0

Task vs task

Adjustment task

D
is

cr
im

in
at

io
n

ta
sk

Figure 4.9: Discrimination task vs adjustment task for moving stimuli.

4.4.4 Gaming experience

From our motivation to explore individual differences, we collected data on participants’ fa-
miliarity with gaming to explore possible correlations between their experience and temporal
delay sensitivity. From these results, we divided participants into a high-experience and a low-
experience group. Using the Wilcoxon test, we found no significant correlation between gaming
experience and delay sensitivity in the adjustment task, for neither type of stimuli. (static stim-
uli: W = 189, p > .3, dynamic stimuli: W = 183.5, p > .4).

In the discrimination experiment on the other hand, results were indicative of a difference
(W = 127, p < 0.05), with median threshold for the experienced group at 123 ms versus
206 ms for the inexperienced group. Investigating the individual game categories, we found
that experience with first person shooters, massive multiplayer online games and multiplayer
online battle arenas all indicate lower thresholds with p-values less than 0.1. The other game
generes show no relation to delay detection thresholds.

4.4.5 Music experience

Another background detail we asked about was music experience. We asked the participants to
name instruments and not how many years they had practiced music. Because we had relatively
few participants very experienced in music, we divided them into groups with no experience and
any experience. Using this division, we found significant differences for the moving stimulus
experiments (discrimination task: W = 405, p < 0.05 location difference=48, adjustment task

53

task: W = 372, p < 0.05 ,location difference=20). The static stimulus experiments had a
different set of participants, which did not show this correlation.

4.5 Discussion

The presented delay thresholds derive from our experiment on the interplay between human
actions and screen responses. We highlight the applicability of these thresholds by relating
them to relevant development of games.

4.5.1 Motor-visual temporal interactions

Several studies have already looked into the tolerance to motor-visual delays from an applied
perspective, using full games, as we have seen in section 4.1. Others have studied the basic
human ability to perceive delay. We are working towards unifying the two approaches. In this
chapter, we set out to explore the detectability of these delays under the most ideal conditions,
using simple, isolated stimuli. None of our experimental variables affected results significantly.
These variables are initial delay, size of the disc, speed of rotation or direction of rotation.

All data presented in the section 4.4 represents delay deliberately added by the experiment
software. This makes the numbers roughly comparable to numbers reported in earlier research
on delay in computer games, such as that described in sections 4.1.1, 4.1.2 and 4.1.3. In psy-
chophysics, researchers consistently report delays including inherent delay in the experimental
setup or they build custom equipment that minimises delays. This means that to compare our
numbers to numbers from 4.1.4 we need to add the delay introduced by our setup, as described
in 4.3, measured to 51 ms.

For the adjustment task, the numbers represent the recorded delay duration at the moment of
a participant’s acceptance. So far, we have used median value as representative of these results,
but is this the best quantifiable results of these responses? We can consider an ideal participant:
One who consistently adjusts if a presented delay is above their threshold and consistently
accepts if a presented delay is below their threshold. This ideal participant would not accept
any delays above their detection threshold, but would accept any delay below this value. Hence,
the highest value recorded should be the one closest to this hypothetical participant’s threshold.
Assuming each adjustment is of random size, accepted values would be distributed uniformly
from 0 to the ideal participant’s threshold, implying that the median value would be half. A real
participant would not have such a stark cutoff point, but it is reasonable to assume that their
median would be lower than their threshold. For the discrimination experiment, the numbers
represent the presented delay, and no such effect can occur.

When incorporating these limitations into our motor-visual delay thresholds, we find that
in the adjustment experiment, median accepted delay for the static stimulus to be 174 ms and
for the dynamic stimulus it is 182 ms. In contrast, for the discrimination experiment we find
a median threshold of 199 ms. If we based the results on mode values rather than medians
the corresponding numbers would be 166 ms, 162 ms and 167 ms respectively. Taking these
limitations into account, the striking difference between the two methodologies disappear, and
a Wilcoxon test now reveals no difference (W = 1000, p > 0.6).

54

Although these thresholds allow room for uncertainty, they serve as guidelines to the sen-
sitivity of the human perceptual system when encountering motor-visual delays. Considering
the numbers reported above represent when a majority of our participants could detect delays
a value well below this should be chosen as a design goal. The 25th percentile of both experi-
ments is at 152 ms for detected delay, including system delay, and could possibly form a basis
for developing guidelines. For the purposes of the rest of this thesis, we round this number to
150 ms. This number includes all sources of delay in a system: input devices, drivers, operating
system, application, graphics card and display.

4.5.2 Perception of delay in games

As discussed in sections 2.1 and 4.1, delays can have serious impact on user experience in
games. When optimising games, developers need a clear boundary on much delay they can
accept. Traditionally, these boundaries have been defined by subjective tests initiated by the
developer, or from rules-of-thumb based on experience. The current situation can certainly
benefit from empirical findings on acceptable motor-visual delays. The presented work does
not derive from a game, but from an extremely simplified user interaction. How does this
interaction relate to games? At the most abstract level, games can be considered a series of user
interactions. Much content in fast-paced games requires speedy reactions to the game world,
but equally important are the immediate game responses that convey the results of an action. By
establishing a lower bound for perceptible delay, game developers can instead rely on tested-
and-tried thresholds. This introduces a level of confidence in the development stage, stating
that shorter delays are unlikely to affect the conscious game experience. Although users will
not be consciously aware of delays lower than 150 ms, actual gaming performance may still be
negatively affected by imperceptible delays, an issue we have not investigated.

In cloud gaming scenarios, all network latency appears as interface latency. This means all
actions are delayed by the network latency in addition to local delays. These can easily add
up to more than the delays many of our participants detected, thus degrading the experience.
This makes the presented experiment a good representation of current technological challenges.
The most pronounced difference between real-life cloud games and our experimental scenario
lies in the nature of the stimuli. In games, many tasks require reactions to moving objects and
changing directions. Despite the contrast with our isolated disc presentation, we consider our
results indicative of the shortest delays that would be noticeable in cloud gaming scenarios.

Client-server games behave quite differently. The difference arises mainly from the delay
compensation techniques, which means that these games have two types of delay: Local in-
terface delay and client-server delay. A player’s actions do not need to be sent through the
network, so the immediate effects of these come through with only local delay. In many cases
the consequences of the actions are delayed by the full round-trip delay. This means that if you
shoot, the muzzle-flash and recoil animation trigger after only local delay, while the effects on
the target are delayed one full network roundtrip plus interface delay. Because of the additional
complication in client-server games, our result do not apply directly to such games.

55

4.5.3 Perceptible delays compared to measured delays

In chapter 3, we measured how much delay there is between input and output in some current
systems and found delays varying from 5 ms to 172 ms depending on hardware and software
configuration. How do these delays compare to the observable delays?

Using the value 150 ms from section 4.5.1 as a reasonable estimate for detectable delays,
we see that some combinations of system and settings produce delays that, according to our
research, are long enough to be detected by players. Especially, the TV-screen can be considered
too slow to use for many games. Note that this does not mean all TVs are too slow, some have
game modes. Further, even if the local delays themselves are not long enough to be a problem,
these delays add to any other delays, potentially pushing total delay above the threshold.

Interestingly, previous work does not discuss local delay in the way we do. None of the
papers from the field of gaming cited in section 4.1 mention actual delay present in their setup,
only delay added by their experimental conditions. This makes it very difficult to compare
results between studies, because for a given experimental condition, we can not assume that
total delay is equal. This would not be a problem if the measured local delays were insignificant
compared to the delays introduced in the experimental setups. However, the values we have
found for local delays indicate that these are at the same order of magnitude as the delays added
in the experiments, sometimes even larger.

4.5.4 Latency compensation

Network latency can to a certain degree be compensated for, as described in section 2.4.2.
Our experiments introduce uncompensated delay, and thus do not investigate how effective
these techniques are. However, none of these techniques can compensate for local delay, which
chapter 3 shows can be significant. Our results can be directly compared to measured delay in a
local game to estimate if delay will be noticeable. For latency compensated client-server games,
the situation is more complex. Delay in tese games consist of two components: uncompensated
local delay and compensated network delay. Adding to the complexity is that commercial games
use many distinct, often undocumented forms of latency compensation. Consequently, much
work remains to determine the interaction between uncompensated delay, compensated delay
and various forms of delay compensation.

4.6 Summary

In this chapter we have looked at how humans perceive delays in interactions with computers.
Specifically we focused on how short delays were consciously noticeable in simplified interac-
tions. Using two different methodologies we found a threshold of about 150 ms, but also large
individual variations.

With these numbers in hand, a natural next step is to look to technical improvements to
allow more complex games to achieve the target delay numbers.

56

Chapter 5

Game servers in the cloud

Having investigated how much delay players tolerate as well as how much delay is added lo-
cally we look at an important trend in game technology: Owning or renting servers on long-
time contracts has more and more come to be considered a liability. Cloud computing, which
allow renting of computing resources on an hourly, daily or monthly rate and very quick up-
and downscaling is advertised as a solution to these problems. Microsoft1 deliver their newest
console with a cloud offering for developers. High-profile games such as Titanfall2 and Forza
Motorsport 53 already utilise this offer. This chapter attempts to answer question three from
section 1.2: “Are cloud services responsive enough to run game servers?” and is based on work
presented in “Is todays public cloud suited to deploy hardcore real-time services?” (Paper VI,
p.155).

5.1 Related work

Service providers rarely control their own infrastructure, and finding the right offer among the
various providers is difficult. Traditional offers usually include long contract terms, limiting
flexibility. This creates a dilemma where on one side, under-provisioning is safer in case the
product does not sell as well as expected but limits the potential income from a successful
release. Over-provisioning, on the other hand, allows full utilisation of a success but leaves
providers with a huge amount of expensive infrastructure in case of lower sales. Cloud com-
puting is a relatively recent concept for alleviating these issues. Clouds, however, give clients
significantly less control over the running environment. Machines are mostly virtual, as op-
posed to earlier offerings where clients could get full access to physical machines. This makes
clouds a challenging new environment for running interactive, response-time sensitive appli-
cations. Work on performance in clouds has so far focused on the typical large, bulk jobs of
scientific computing or web servers. Scientific computing requires high performance averaged
over timespans in minutes and hours. Web-servers need to serve as many request as possible
during a given time, but each individual request has a relatively loose time constraint. Con-
versely, games require consistent response time in milliseconds. Even quite rare events with

1http://www.wired.com/2013/05/xbox-one
2http://www.engadget.com/2014/03/10/titanfall-cloud-explained/
3http://www.engadget.com/2013/05/21/forza-5-coming-to-xbox-one-at-launch/

57

http://www.wired.com/2013/05/xbox-one
http://www.engadget.com/2014/03/10/titanfall-cloud-explained/
http://www.engadget.com/2013/05/21/forza-5-coming-to-xbox-one-at-launch/

slow response time might significantly affect perceived quality. Web servers need consistent
response time, but the deadlines are considerably looser than for games.

Schad et al. (2010) analysed the Amazon EC2 cloud using a standard suite of standard
benchmarks examining all aspects of the platform. Each time a benchmark was run, it started
on a fresh virtual machine instance, allowing sampling of the instance pool. This benchmark
ran every half-hour for a month. These showed a considerable variation in performance within
the same instance type and location, as well as variations by day of the week. Ostermann
et al. (2010) tested a somewhat larger suits of instance types, using typical scientific workloads.
Their conclusions were much the same: Reliability was not sufficient for any configuration.
El-Khamra et al. (2010) find significantly less variation using single core instances, but the
variation grows with the number of cores. This discrepancy might be explained with the differ-
ent types of workloads.

Closer to the topic of this chapter, Barker and Shenoy (2010) experimented on Amazon
EC2 with what they termed microbenchmarks, benchmarks taking a few hundred milliseconds
to run, and examined them for variations in runtime. First, they ran a CPU only benchmark. This
showed a base runtime for the benchmark, representing the time it took to complete with full
CPU access. Other samples were however much slower. Their results showed: “While most of
the tests completed in roughly 500 ms, there was frequent variations between 400 and 600 and
many outliers taking significantly longer; a few even took more than an entire second.” These
variations in runtime represent CPU availability, jitter, at a scale more than enough to disturb
any game. Hard drive access times were even more variable and also showed the clear division
in performance between undisturbed samples and shared resource samples. For networking, the
results were less clear. Further, the authors compared these results with results from a laboratory
setup using the Xen hypervisor. Lastly, they ran an actual game server, Doom 3, on the cloud
computer instance, which resulted in very unpredictable performance.

What do we know about the usefulness of cloud services for interactive applications? Barker
and Shenoy (2010) shows performance stability issues in Amazon EC2, though the details could
be explored further. We can find no data from other cloud providers to draw any clear conclu-
sions. Thus, we decided to investigate further.

5.2 Experiment Design

Barker and Shenoy (2010) proposed an experiment to evaluate how suitable cloud services are
for time-sensitive applications such as games. However, they only investigated a single offering
from one provider, and did not report detailed statistics. We decided to expand on this work,
adding more offerings from more providers. Further, we report more detailed statistics. Our
work isolates CPU performance, leaving network and other subsystems for further work. We
compare response time stability, with respect to processor availability, between cloud services
and natively running software, as well as between two different cloud providers. The result is a
recommendation for services providers.

Our question does not focus on the absolute performance of different cloud service levels.
Generally, costumers can buy the performance they need for their applications. However, sta-
bility of performance is not specified in the contracts and costumers who depended on stable

58

performance, such as game providers, need to get this information from other sources. Hence,
the absolute average values of the benchmark runtime are not important, and we are only inter-
ested in the stability of the result. Neither does the load need to behave like any specific realistic
load. This evaluation is only concerned with the actual availability of computing resources on
a fine-grained time resolution.

With this in mind, the benchmark was designed as a small loop using array lookups and
arithmetic, where the array is sized to be significantly larger than the cache size, this allows us
to load both the CPU and the memory system. The purpose of this benchmark is not to evaluate
the performance of the systems, but rather detect if the hypervisor stalls our virtual machine at
any point in time. We examined the memory subsystem and the CPU performance in isolation,
ignoring external I/O to limit the scope of the work. The tight loop of the benchmark is designed
as a worst case load scenario for a virtual machine. Each machine was tested with a number of
threads equal to the number of cores available to the virtual machine. Note that each instance
of the benchmark is single-threaded and does not show better results by increasing the number
of cores. For these reasons, the most relevant single metric is the coefficient of variation. This
value is defined as cv = σ

µ
, where σ is the standard deviation and µ is the mean.

In addition to the benchmark code, the utility mpstat was run in the background. Mpstat
gives us % steal, a metric that reports how much of the physical CPU is unavailable to the
current OS instance because the hypervisor has assigned it to other instances.

Although our concern is to investigate the variance in execution time for the benchmark,
a by-product is that we get an indication of the processing power provided by the different
providers/service levels. This may also be of interest to game providers considering cloud
deployment.

The benchmark was run on three different instances in Amazon EC2, in the zone us-east-1d
(Table 5.1), as well as three different instances in Windows Azure (Table 5.2).

Micro
Instance

613 MiB memory Up to 2 EC2 Compute Units (for short
periodic bursts) I/O Performance: Low

USD 0.020
per Hour

Medium
Instance

3.75 GiB memory 2 EC2 Compute Unit (1 virtual core with
2 EC2 Compute Unit) I/O Performance: Moderate

USD 0.120
per Hour

High-CPU
Medium
Instance

1.7 GiB of memory 5 EC2 Compute Units (2 virtual cores
with 2.5 EC2 Compute Units each) I/O Performance: Mod-
erate

USD 0.145
per Hour

Table 5.1: Technical specifications from Amazon (Amazon, 2013).

Extra small instance 768 MiB memory 1 shared core USD 0.020 per Hour
Small Instance 1.75 GiB memory 1 CPU Core USD 0.085 per Hour
Medium Instance 3.5 GiB memory 2 CPU Cores USD 0.160 per Hour

Table 5.2: Technical specifications from Microsoft (Microsoft, 2013).

To compare the different instances, the benchmarks were run for 18 hours each under the
configurations shown in tables 5.1 and 5.2. To create a baseline for comparing the cloud ser-
vices with native dedicated hardware, the same benchmark was run on a reference system, a

59

standalone PC 4 without any virtualisation, chosen to be approximately the same class of per-
formance as the cloud computers.

Schad et al. (2010) suggest that there might be differences in performance of the cloud sys-
tems based on when the benchmark is run, either by time of day or day of week. To investigate
this, we ran the benchmark described above for three minutes every half hour for a week (the
week of 27th of May 2013). Between each run, we stopped the instance and started it again
before the next run. According to Schad et al., this should allow us to get a different physical
machine every time. If instances of the same category have different properties, this allows us
get a somewhat random distribution of instances.

The Linux kernel reports a metric called CPU steal. This represent the proportion of CPU
cycles that the hypervisor reserves for other instances running on the same CPU. A large CPU
steal number indicates that less processing is available for the current operating system, and
impacts performance. We recorded this number for all experiments.

5.3 Evaluation

To show the baseline of consistency we can expect from this benchmark while running natively,
we included a reference system. Deviations from this baseline can be assumed to result from
the hypervisor or other aspects of the cloud system. In this system, the benchmark reports very
consistent results. The average runtime is 71.8 ms with a standard deviation of 1.52, giving a
coefficient of variation (cv) of 0.02.

5.3.1 Amazon EC2

The CPU steal metric is only sampled once a second, and so has a low resolution, but with
sufficient samples, we build up a picture of how much CPU is allocated to each instance, as
well as the distribution over time.

The first thing to note in this data (figure 5.1) is the fact that all the instance types have
a significant number of samples where the current instance has full use of the CPU. These
situations pull the average CPU availability significantly up, allowing the provider to fulfil their
obligations despite other samples with much less available resources.

The next point standing out is the medium instance. According to the pricing information,
the available CPU resources on this instance type equal to exactly one core of the current hard-
ware. This seems to create a situation where our instance gets full use of the core most of the
time, with very little steal. Increasing the available CPU power to the high cpu instance adds
another core, making two cores available for the virtual machine to use. However, the instance
only has access to part of this core and the CPU steal value increases again.

To visualise the results, we plotted benchmark run-times as histograms in figure 5.2. These
show several interesting values. First of all, for both the micro as well as the medium, high-CPU
instance, there are two clear peaks. This matches the CPU-steal data, where the low values
represent the situations where our instance got full use of the CPU, and the high run-times are
the result of periods of higher CPU-steal. Again we see the advantage of the medium instance,

4Intel Core 2 Duo CPU E7500 @ 2.93GHz, 4GB RAM

60

0 20 40 60 80 100

0
5
0
0
0

1
0
0
0
0

2
0
0
0
0

Fr
e

q
u

e
n

c
y

% CPU steal

(a) EC2 Micro

0 2 4 6 8 10

0
2
0
0
0
0

4
0
0
0
0

6
0
0
0
0

Fr
e

q
u

e
n

c
y

% CPU steal

(b) EC2 Medium

0 20 40 60

0
1
0
0
0
0

3
0
0
0
0

5
0
0
0
0

Fr
e

q
u

e
n

c
y

% CPU steal

(c) EC2 Medium High CPU

Figure 5.1: CPU Steal histograms. Samples every second.

in that it has a much more stable runtime, with cv equal to 0.04. This more stable instance type
depends on the fact that it allocates exactly one core to the instance. As the processing power
granted each instance type is defined by an abstract, hardware independent metric, clients have
no guarantee that this situation will continue indefinitely. Rather, when the underlying hardware
is upgraded, it is very likely that each core will provide more power, and the currently stable
instance type will become unstable.

5.3.2 Microsoft Azure

On the Microsoft Azure Virtual Machine cloud, the operating system always reports zero CPU
steal, as if it was running on its own dedicated machine. This implies either that the hypervisor
hides these details from the operating system, or that our instance actually has a dedicated CPU
resource.

61

Benchmark runtime (ms)

R
e

la
ti

v
e

 f
re

q
u

e
n

cy

0 500 1000 2000

0
.0

0
0

0
.0

0
4

0
.0

0
8

Cv = 0.448

= 698

(a) EC2 Micro

Benchmark runtime (ms)

R
e

la
ti

v
e

 r
e

q
u

e
n

cy

0 200 400 600 800

0
.0

0
0

.0
2

0
.0

4

Cv = 0.0394

= 8.91

(b) EC2 Medium

Benchmark runtime (ms)

R
e

la
ti

v
e

 f
re

q
u

e
n

cy

0 200 400 600 800

0
.0

0
0

.0
2

0
.0

4

Cv = 0.192

= 18

(c) EC2 Medium High CPU

Figure 5.2: Amazon EC2: Histogram of benchmark runtimes. Note different scale on the axis
of 5.2a.

Compared to the Amazon case, access to the CPU is significantly more stable in the Azure
cloud (figure 5.3). Regardless of instance type, the runtime of the benchmark is almost com-
pletely predictable and stable, cv is 0.05 for all instance types. The deviation is however twice
that of the reference case. Depending on the exact level of time-sensitivity of the load, and its
computational cost, this could be acceptable or not. The single-threaded nature of the bench-
mark explains that the small and medium show almost identical results.

5.3.3 Time series

Figure 5.4 shows the results of running the benchmark repeatedly over a week on an EC2
Medium High CPU instance. Three bands of performance are visible throughout the week, and
there is no clear difference based on weekday or time of day. About the reasons for these bands

62

Benchmark runtime

F
re

q
u
e
n
c
y

0 200 400 600 800

0
.0

0
0

0
.0

1
0

0
.0

2
0

Cv = 0.0501

σ = 34.4

(a) Azure Extra Small

Benchmark runtime

F
re

q
u
e
n
c
y

0 200 400 600 800

0
.0

0
0

0
.0

1
0

0
.0

2
0 Cv = 0.0478

σ = 30.3

(b) Azure Small

Benchmark runtime

F
re

q
u
e
n
c
y

0 200 400 600 800

0
.0

0
0
.0

2
0
.0

4
0
.0

6

Cv = 0.0466

σ = 14.6

(c) Azure Medium

Figure 5.3: Microsoft Azure: Histograms of benchmark runtimes.

we can only speculate. They possibly represent our load being swapped out an integer number
of times before completing.

5.3.4 Overview

Putting it all together, figure 5.5 shows some differences between the providers. The low-end
instance from Amazon has variations far above the acceptable level for any time-sensitive ap-
plication. If a server needs 20 ms on average for processing a player client, this time would
occasionally increase to 10 times that value, exceeding acceptable latency for most games as
described in chapter 4. Interestingly the Amazon EC2 Medium High CPU is also quite unpre-
dictable, though this configuration is sold as higher performing than the Medium type. Among
the Amazon offerings examined only the Medium instance type is near acceptable. From Mi-
crosoft Azure, all instance types are reasonably stable in performance. All show variations

63

Monday:00:05 Monday:22:05 Tuesday:20:35 Wednesday:21:05 Thursday:23:05 Friday:20:35 Saturday:18:05 Sunday:16:05

0
10

0
20

0
30

0
40

0

Experiment time

B
en

ch
m

ar
k

ru
nt

im
e(

m
s)

Figure 5.4: Time series of Amazon EC2 Medium High CPU.

above our native machine reference. The significance of these variations depends on the re-
quirements of the application. They are small enough that they should only interfere with very
demanding games.

5.4 Summary

A current trend is to put all services in the cloud, and games are no exception. In this context,
we found that cloud services are convenient and in many cases cost-effective for running game
servers. However, they are not yet stable enough for fast paced games. We see random glitches
in performance where the servers seem to hang for hundreds of milliseconds. As we found in
chapter 4, delays of more than 150 ms are detectable by players. Note that we have only tested
two cloud providers, and the numbers are somewhat outdated. Cloud providers have increased
their priority on games as a class of application, and new classes of service specifically focused
on games are on their way.

Although cloud computing is sold as a new concept, at the core, it still uses traditional server
parks. Large numbers of servers connected to a network run an even larger number of virtual
machine instances. Each of these instances is not usually very powerful. For really heavy loads,
this might not be ideal. A large game world hosting hundreds if not thousands of players could
benefit from a more powerful integrated server architecture.

Next, we will look at how to implement such a large-scale software architecture.

64

C
o
e
ff
ic
ie
n
t
o
f
v
a
ri
a
ti
o
n
,
b
e
n
c
h
m
a
rk
 r
u
n
ti
m
e

0
.0

0
.1

0
.2

0
.3

0
.4

R
e
fe
re
n
c
e
 S
y
s
te
m

E
C
2
 M
ic
ro

E
C
2
 S
m
a
ll

E
C
2
 M
e
d
iu
m
 H
ig
h
 C
P
U

A
z
u
re
 E
x
tr
a
 S
m
a
ll

A
z
u
re
 S
m
a
ll

A
z
u
re
 M
e
d
iu
m

Figure 5.5: Summary of benchmarks for the different systems.

65

Chapter 6

Parallelising game servers

In chapter 3, we measured how much delay there is in computer games, and in chapter 4, we in-
vestigated how much delay players may tolerate. Most of the delay measured arises in hardware
and drivers, outside the control of developers, making this a difficult target for improvement.
Others have looked at optimising networks for games (Petlund, 2009; Hayes et al., 2015). To
expand on the previous knowledge, we focus on the server side of the game pipeline.

Many server loads, such as web servers, are inherently parallel: Each user can be served
independently of the others. Game servers, on the other hand, are designed to allow realtime
interaction between clients. To implement this important feature, a game server needs updated
information about many clients simultaneously. Thus, the standard paradigm of assigning an
independent thread on the server to each client can not be used for game servers without ex-
tensive synchronisation and locking. This chapter suggests one possible answer to question 4
asked in section 1.2: “How can parallelism be better utilised in game servers for massive mul-
tiplayer games?” and is based on work presented in “LEARS: A Lockless, relaxed-atomicity
state model for parallel execution of a game server partition” (Paper VII, p.167).

6.1 Motivation

Current Massively Multi-player On-line Games, described in section 2.2.2, allow about a hun-
dred people to congregate in one area. World of Warcraft for example allows two teams of 80
players to compete in a single battle1. Simulation of interactions between these players requires
large amounts of processing. In the future, the number of concurrent players might be much
greater, and the simulation will be more detailed and sophisticated. To make these develop-
ments preform acceptably to the players, the simulation has to be updated frequently and at
a consistent rate. This means that developers have to deal with deadlines as well as process-
ing requirements. As described in section 1.1.4, to utilise modern hardware in scaling games,
developers have to take advantage of the highly parallel nature of modern systems.

Currently many servers utilise a single loop to handle all clients in one area. The loop
reads updates from all players, processes their actions and sends the results to each participant.
Different areas can be processed by different threads, but clients cannot interact with those
processed in another thread.

1http://us.battle.net/wow/en/game/pvp/battlegrounds/tol-barad

67

http://us.battle.net/wow/en/game/pvp/battlegrounds/tol-barad

One major goal for large game providers is to support as many concurrent players in a
game-world as possible while preserving the strict latency requirements in order for the players
to have an acceptable quality of experience (QoE). To achieve this, game-worlds are typically
partitioned into areas-of-interest to minimise message passing between players with no inter-
action and to allow the game-world to be divided between servers. This approach is however
limited by the distribution of players in the game-world.

To extend such servers beyond what a single thread can handle, many developers rely on
sharding. Sharding involves making a new copy of an area of a game, where players in different
copies are unable to interact. This approach eliminates most requirements for communication
between the processes running individual shards. Chu (2008) investigated the possibilities and
limitations of this approach, which is widely used in current games.

By the classification in section 2.3, partitioning games into areas-of-interest or shards only
allows scaling of the overall number of simultaneously active users. Our goal is to improve the
third, and most important class of scalability, player density, or the number of people who can
directly interact simultaneously.

Different benchmarks can be employed to measure how successful an implementation of a
game server architecture is. We focus on how the system copes with increased player density
by measuring latency. The accumulated latency of network transmission, server processing and
client processing adds up to the latencies that the user is experiencing, and reducing any of these
latencies improves user experience.

6.2 Related work

For many traditional online games, distribution of work is simple. If there are too many players
for the hardware to handle, the provider or players themselves can set up a new server, allowing
new players to connect there. Players on the different servers are in this scenario unable to
interact. Workarounds exist, such as transparent shifting of players between servers or the
ability for simple cross-server communication such as chat, but fundamentally, these are the
same design. For many modern games, this approach is not acceptable. Game designers and
players want more users interacting in increasingly complex ways.

6.2.1 Binary Space Partitioning between threads

Abdelkhalek and Bilas (2004a) suggested a significant improvement to the traditional approach.
They assigned each player to a separate thread on the server, optimally allowing parallelism to
scale with the number of players. To test large numbers of simultaneous players they used au-
tomated players, bots. For interactions between players, or players and the world, this approach
requires synchronisation. Because the server splits the world in smaller partitions for other rea-
sons, the system locks only the partitions affected by the action. These partitions are created
using the Binary Space Partitioning (BSP) algorithm, which divides each section of the world
in two pieces every time the section gets too crowded. This synchronisation is also the major
bottleneck of the system. From the conclusion:

However, the game processing component of the request processing phase incurs

68

high synchronisation overheads, mainly due to lock contention for shared game
objects. Locking overhead is up to 35% of total execution time.Abdelkhalek and
Bilas (2004a, p. 10)

6.2.2 Transactional approaches

Building on a binary space partitioning, Gajinov et al. (2009) implemented a version of the
Quake server based on transactional memory, which allows code do be marked as transactions
and run speculatively. Both these systems were experimental at the time of writing. If there
is a conflict, the transaction was automatically rolled back. This paradigm requires hardware
support, as well as support from compilers. Using a heavily modified game server as a sugges-
tion for using transactional memory, the authors showed that some concepts were considerably
easier to express with transaction semantics than traditional locks. Actual performance, how-
ever, was hampered by frequent rollbacks, as well as the experimental nature of the underlying
technology.

The Red Dwarf project, the community-based successor to Project Darkstar by Sun Mi-
crosystems and investigated by Waldo (2008), is another good example of a parallel approach
to game server design. Here, response time is considered one of the most important metrics for
game server performance, and uses a parallel approach for scaling. The described system uses
transactions for all updates to world state, including player position.

6.2.3 Improved Partitioning

Beskow et al. (2009) investigated partitioning and migration of game servers. Their approach
used core selection algorithms to locate the most optimal server.

Abdelkhalek and Bilas (2004a) discussed the behaviour and performance of multi-player
game servers. They found that in terms of benchmarking methodology, game servers were
very different from other scientific workloads. Most of the sequentially implemented game
servers could only support a limited numbers of players, and the bottlenecks in the servers were
both game-related and network-related. Abdelkhalek and Bilas (2004b) extended their earlier
work and use the computer game Quake to study the behaviour of the game. When running on a
server with up to eight processing cores the game suffers because of lock synchronisation during
request processing. High wait times due to workload imbalances at global synchronisation
points were also a challenge.

As we see here, some research exist on how to partition the server and to scale the number
of players by offloading to several servers. Modern game servers have also been parallelised to
scale with more processors. However, a large amount of processing time is still wasted on lock
synchronisation, or the scaling is limited by partitioning requirements.

6.2.4 Databases as game servers

Researchers from the field of databases are also studying parallelising and optimising computer
games. This perspective is very different from the ones mentioned previously. White et al.

69

(2007) propose implementing artificial intelligence scripts using a relational language. This
description can then be processed using techniques from relational database optimisation.

This group also introduces the concept state-effect pattern in White et al. (2008). They
test this and other parallel concepts using a simulated actor interaction model, in contrast to
the practical approach of evaluating a running prototype of a working game under realistic
conditions.

Treating games as a data management problem has some limitations though. Scripting is
limited to a special purpose programming language that does, for instance, not support loops
and has a both syntax and semantics unfamiliar to most game scripters. Further, the proposed
approach is evaluated and recommended in situations where there are only a few different pat-
terns of behaviour, but many units following each. It is not tested and seems tricky for situations
with highly individualised behaviours.

6.3 Concept for parallelising game servers

As described in section 6.2, previous work has focused on splitting the load between multiple
servers. All these approaches have the disadvantage of scaling mainly if players can be isolated
in some way. Many production games simply isolate players completely from players in other
areas. If too many players gather in one spot, either performance degrades, or the system
splits the game world in separate instances. These are independent copies of the area, where
nothing happening in one instance can affect the others. Both industry and researchers have
analysed this scenario thoroughly. In contrast, we want to improve player density as defined in
section 2.3. Thus, our work focuses on situations where every player can interact with every
other player at any time. Restricting the case in these ways makes for a worst case scenario for
game servers, a situation that has not been thoroughly studied.

6.3.1 Traditional approach

Traditionally, game servers are based around a main loop, which updates every dynamic entity
in the game. These are entities in the game world that can perform actions independently.
Dynamic entities include projectiles, player characters and non-player AI controlled opponents
(hereafter referred to as NPCs for Non-Player Character). The simulated world has a list of
all the dynamic entities in the game and typically calls an update method on each element,
allowing it to perform its tasks. Simulated time is kept constant throughout each iteration of the
loop so that all elements get updates at the same points in simulated time. This point in time
is referred to as a tick. Since only one element updates at a time, no actual race conditions are
possible. Thus, the traditional game server is a classical discrete-event simulation as defined in
Jain (1991).

However, this does not mean that all issues of ordering are solved. Consider a shooting
game. Player A and player B fire at a target simultaneously. Only one player can get points
for this target. Who gets the point? Network latency is in most cases the dominating factor
determining this. If the latency of one player delays their message so it arrives one tick later,
the player with the lower latency gets the point. In many implementations, another influencing

70

factor is the order in which the players are processed. Assuming both packets arrive simulta-
neously, the player processed first wins. This is accepted and tolerated, and we consider this
system to be the baseline from which to construct a new approach.

Further, single-threaded approaches make no attempt at keeping state consistent throughout
an update. In the single-threaded main-loop approach, every update is allowed to change any
part of the simulation state at any time. In such a scenario, the state at a given time is a com-
bination of values from two different points in time, current and previous. Like the arbitrary
ordering, this is accepted, and we consider this part of the baseline from which to proceed.

6.3.2 Relaxed constraints

Our concept is an extension of a concept proposed by White et al. (2008). They describe a
model they call a state-effect pattern. Based on the observation that changes in a large, actor-
based simulation are happening simultaneously, they separate read and write operations. Read
operations work on a consistent previous state, and all write operations are batched and executed
to produce the state for the next tick. This means that the ordering of events scheduled to execute
at a tick does not need to be considered or enforced.

Our concept is based on this idea. However, because many aspects of game servers do not
need to be deterministic, we remove three requirements on ordering and atomicity.

• We remove the requirement for batching of write operations, allowing these to happen
anytime during the tick. The rationale for this relaxation is found in the way traditional
game servers work. As mentioned in section 6.3.1, existing game servers make no effort
to enforce separation between current and previous state.

• We note that execution order is already arbitrary, determined by factors outside the control
of the game provider, so we see no need to enforce strict ordering internally.

• Further, we relax the requirements that game state updates must be atomic.

The fine granularity of games creates a need for significant communication between threads
to avoid problematic lock contentions. However, game servers are not accurate simulators, and
again, depending on the game design, some transient errors are acceptable without violating
game state consistency. Consider the following example: Character A moves while character B
attacks. If only the X coordinate of character A is updated at the point in time when the attack
is executed, the attack sees character A at a position with the new X coordinate and the old Y
coordinate. This position is within the accuracy of the simulation, which in any case is no better
than the distance an entity can move within one tick.

We allow any dynamic entity to read the state of any other without locking. To update the
state of other dynamic elements, they have to send messages. Such messages can only contain
relative information and not absolute values. For example, if a projectile needs to tell a player
character that it took damage, it should only inform the player character about the amount of
damage, not the new health total. All changes to one dynamic entity are put in the same queue,
and the one thread processes the entire queue. Thus, all updates are based on up-to-date data.
This form of communication is extremely fast. Our current design is restricted to symmetric

71

multiprocessor machines, and all threads share the same memory. Thus, all communication
between dynamic entities go through memory.

These relaxations allow actions to be performed on entities in any order without global
locking while still retaining consistency for most game actions. This includes actions such as
moving, shooting, spells and so forth. Consider player A shooting at player B: A subtracts
her ammunition state, and send bullets in B’s general direction by spawning bullet entities. The
bullet entities run as independent work units, and if one of them hits player B, it sends a message
to player B. When reading this message, player B subtracts his health and sends a message to
player A if it reaches zero. Player A then updates her statistics when she receives player B’s
message. This series of events can be time critical at certain points. The most important point
is deciding if the bullet hits player B. If player B is moving, the order of updates can be critical
in deciding if the bullet hits or misses. In the case where the bullet moves first, the player does
not get a chance to move out of the way. This inconsistency is, however, not a product of our
approach. Game servers, in general, insert dynamic elements into their loops in an arbitrary
fashion, and there is no rule to state which order is correct.

6.3.3 Limitations of our approach

While this system usually does not need transactions, they can be included, should a game
include some actions where atomicity and ordering are critical. Examples of this include trading
between players. Fortunately, as we have seen, most common game actions do not require
transactions. The concept is also limited to symmetric multiprocessing systems. We make the
assumption that any entity is able to read the state of any other entity without overhead.

The end result of our proposed design philosophy is that there is no synchronisation in the
server under normal running conditions. Since there are cases where transactions are required,
they can be implemented outside the main event handler and run as transactions requiring lock-
ing. We call this concept a lockless, relaxed atomicity state model for parallel execution in
game servers abbreviated LEARS.

6.4 LEARS Design and Implementation

As a proof-of-concept of the described design philosophy we implement and test a simple game-
server. The main concept is to split the game server executable into lightweight threads at the
finest possible granularity. Each update of every player character, AI opponent and projectile
runs as an independent work unit.

In our experimental prototype implementation of the LEARS concept, the parallel approach
is realised using thread-pools and blocking queues. From traditional game server architectures,
we retain the concept of dynamic elements as described in section 6.3.1, but now allow any
dynamic elements to run concurrently.

6.4.1 Thread-pool

Creation and deletion of threads some incur overheads and context switching is an expensive
operation. These overheads constrain how a system can be designed. Threads should be kept as

72

long as possible, and the number of threads should not grow unbounded. We use a thread-pool
pattern to work around these constraints, and a thread-pool executor to maintain the pool of
threads and a queue of tasks. When a thread is available, the executor picks a task from the
queue and executes it. The thread pool system itself is not pre-emptive, so the thread runs each
task until it is done. This means that in contrast to normal threading, each task should be as
small as possible, and larger units of work should be split up into several sub-tasks.

The thread-pool is a good way to balance the number of threads when the work is split into
extremely small units. When a dynamic entity is created in the virtual world, the thread-pool
executor schedules it for execution, and the dynamic entity updates its state exactly as in the
single threaded case. Furthermore, our thread-pool supports the concept of delayed execution.
This means that tasks can be put into the work queue for execution at a time specified in the
future. When the task is finished for one time-slot, it can reschedule itself for the next slot,
delayed by a specified time. This allows dynamic entities to have any lifetime from one-shot
executions to the duration of the program. It also allows different entities to be updated at
different rates depending on the requirements of the game developer.

The same thread-pool executes all work, including the slower I/O operations. This is a
consistent and clear approach, but it does mean that game updates could be stuck waiting for
I/O if there are not enough threads available.

6.4.2 Blocking queues

The thread-pool executor used as described above does not constrain which tasks are executed
in parallel. All systems elements must therefore allow any of the other elements to execute
concurrently.

To enable a fast communication between threads with shared memory, we allow each thread
to read freely from any data. For updates, we use blocking queues, which are message queues
synchronised separately at each end. This means that messages can be removed from and added
to the queue simultaneously, and since each of these operations is extremely fast, the probability
of blocking is low. In our design, all dynamic entities can potentially communicate with all
others. Thus, these queues allow information to be passed between dynamic elements. Each
dynamic entity has a blocking queue of messages. During its update, it reads and processes the
pending messages from its queue. Messages are processed in the order they were put in the
queue and each queue is processed in one thread. This ensures that updates are always based
on updated data.

6.4.3 Our implementation

To demonstrate LEARS, we have implemented a prototype game containing all the basic el-
ements of a full MMOG with the exception of persistent state. The basic architecture of the
game server is described in figure 6.1. The thread pool size can be configured, and executes the
different workloads on the CPU cores. The workloads include processing of network messages,
moving computer controlled elements (in this prototype only projectiles) checking for collisions
between players and hits by projectiles before sending outgoing network messages.

Persistent state does introduce some complications, but as database transactions are often

73

Position

Update
Cone

Attack

Projectile

Attack

Character

Update

Execute

Workload

Network

Worker

Network

Selector

Thread Pool

Dispatch

C
P

U
 1

Figure 6.1: Design of the Game Server

not time critical and can usually be scheduled outside peak load situations, we leave this to
future work.

The game is an extended, multiplayer version of Pacman. In this game, each player controls
a small circle representing the character with an indicator for which direction they are heading
as shown in figure 6.2. Pressing keyboard buttons moves the characters around. They also have
two types of attack, one projectile and one instant area of effect attack. Both attacks are aimed
straight ahead. If an attack hits another player character, the attacker gets a positive point, and
the character that was hit gets a negative point. The game provides examples of all the elements
of the design described above:

• The player character is a long-lifetime dynamic entity. It processes messages from clients,
updates states and potentially produces other dynamic entities such as attacks. In addition
to position, which all entities have, the player also has information about how many times
it has been hit and how many times it has hit others. The player character also has a
message queue to receive messages from other dynamic entity. At the end of its update,
it enqueues itself for the next update unless the client it represents has disconnected.

• The frontal cone attack is a one-shot task that finds player characters in its designated
area and sends messages to those hit so they can update their counters, as well as back to
the attacking player informing about how many were hit.

• The projectile is a short lifetime active entity that moves in the world, checks if it has hit
anything and reschedules itself for another update, unless it has hit something or ran to
the end of its range. The projectile can only hit one target.

74

Figure 6.2: Screen shot of a game with six players. The size of the wold can be adjusted, and
any number of players can join until the server is overloaded.

75

To simulate an MMOG workload that grows linearly with number of players, especially
collision checks with the ground and other static entities, we have included a synthetic load,
which emulates collision detection with a high-resolution terrain mesh. The synthetic load
ensures that the cache is regularly flushed to enhance the realism of our game server prototype
compared to a large-scale game server.

The game used in these experiments is simple, but it contains examples of all elements
typically available in the action-based parts of a typical MMO-like game.

The system described here is implemented in Java. This programming language has strong
support for multi-threading and has well-tested implementations of all the required compo-
nents. The absolute values resulting from these experiments depend strongly on the complexity
of the game, as a more complex game would require more processing. In addition, the absolute
values depend on the runtime environment, especially the server hardware, and the choice of
programming language also influence absolute results from the experiments. However, in the
focus of this work are the relative results, as we are interested in comparing scalability of the
multi-threaded solution with a single-threaded approach and whether the multi-threaded imple-
mentation can handle the quadratic increase in traffic as new players join and all players talk to
everyone else.

6.5 Evaluation

To have a realistic behaviour of the game clients, the game was run with 5 human players play-
ing the game with a game update frequency of 10 Hz. The network input to the server from this
session was recorded with a timestamp for each message. The recorded game interactions were
then played back enough times in parallel to simulate the desired number of clients. To ensure
that client performance is not a bottleneck, the simulated clients were distributed among multi-
ple physical machines. We monitored memory, CPU and network utilisation in these machines
and made sure none of them were heavily loaded. Furthermore, as an average client generates
2.6 kbps network traffic, the 1 Gbps local network interface that was used for the experiments
did not limit the performance. The game server was run on a server machine containing a 4
Dual-Core AMD Opteron 8218 (2600 MHz) with 16 GB RAM. To ensure comparable num-
bers, the server software was restarted between each test run.

6.5.1 Response latency

The most important performance metric for client-server games is response latency from the
server. From a player perspective, latency is only visible when it exceeds a certain threshold.
Individual peaks in response time are obvious to the players and have the most impact on the
Quality of Experience (QoOE), hence we focus on peak values as well as averages in the eval-
uation.

The experiments ran with client numbers ranging from 40 to 800 in increments of 40, where
the goal was to keep server response time close to 100 ms. This would allow for 50 ms net-
work latency and client response time while still responding within the 150 ms we found as a
threshold for response time in section 4.5.1. We ran one experiment using a pool of 48 worker
threads. We chose 48 threads, or 6 threads per core because this should be enough to keep the

76

0
50

0
10

00
15

00
20

00
25

00

Number of concurrent clients

D
el

ay
 p

er
 s

ch
ed

ul
ed

 r
un

 (
m

s)

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800

(a) Single-threaded server

0
50

0
10

00
15

00
20

00
25

00

Number of concurrent clients

D
el

ay
 p

er
 s

ch
ed

ul
ed

 r
un

 (
m

s)

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800

(b) Multi-threaded server

Figure 6.3: Response time for single- and multi-threaded servers (dotted line is the 100 ms
threshold).

77

cores busy without excessive switching. Later, we will get back to this choice. For comparison,
we ran a single-threaded version.

From figure 6.3a, we can see that the single-threaded implementation is struggling to support
280 players at an average latency close to 100 ms. The median response time was 299 ms, and it
already has extreme values all the way to 860 ms, exceeding the threshold for acceptable QoE.
The multi-threaded server in figure 6.3a, on the other hand, is handling the players well up to
640 players where we are getting samples above 1 second, and the median is at 149 ms.

These statistics are somewhat influenced by the fact that the number of samples is pro-
portional to the update frequency. This means that long update cycles to a certain degree get
artificially lower weight.

Figure 6.4 shows details of two interesting cases. In figure 6.4a, the single-threaded server
is missing all its deadlines with 400 concurrent players while the multi-threaded version is
processing almost everything on time. At 800 players (figure 6.4b), the outliers are going much
further for both cases. Here, even the multi-threaded implementation is struggling to keep up
though it is still handling the load significantly better than the single-threaded version, which is
generally unplayable.

6.5.2 Resource consumption

We have investigated the resource consumption when players connect, with 30 ms intervalls to
the multi-threaded server as shown in figure 6.5. We present the results for 620 players, as this
is the highest number of simultaneous players the server handles before any significant degra-
dation in performance, as shown in figure 6.3b. The mean response time is 133 ms, above the
ideal delay of 100 ms. Still, the server is able to keep the update rate smooth, without signif-
icant spikes. The CPU utilisation grows while the clients are logging on, and then stabilises at
an almost full CPU utilisation for the rest of the run. The two spikes in response time happen
while new players log in to the server at a very fast rate. Receiving a new player requires a lock
in the server; hence this operation is, to a certain degree, serial.

6.5.3 Effects of thread-pool size

To investigate the effects of the number of threads in the thread-pool, we performed an experi-
ment where we kept the number of clients constant while varying the number of threads in the
pool. 700 clients were chosen, as this number slightly overloads the server. The number of
threads in the pool was increased in increments of 2 from 2 to 256. In figure 6.6, we see clearly
that the system utilises more than 4 cores efficiently, as the 4 thread version shows significantly
higher response times. At one thread per core or more, the numbers are relatively stable, with
a tendency towards more consistent low response times with more available threads, to about
40 threads. In our design, the dynamic entities responsible for client avatars are responsible
for communicating with their respective clients. This could mean that threads are occasionally
waiting for I/O operations. Since thread-pools are not pre-emptive, such situations would lead
to one core going idle if there are no other available threads. Too many threads, on the other
hand, could lead to excessive context switch overhead. The results show that the average is
slowly increasing after about 50 threads, though the 95-percentile is still decreasing with in-

78

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Delay for each scheduled run (ms)

C
D

F

Multithreaded

Single threaded

x

x

x

x

x x

x x

x x x

o

o

o

o

o o o

o o

(a) 400 concurrent clients

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Delay for each scheduled run (ms)

C
D

F

Multithreaded

Single threaded

x

x

x

x

x
x x x

o

o

o

o

o

o

o o

x x

(b) 800 concurrent clients

Figure 6.4: CDF of response time for single- and multi-threaded servers with 400 and 800
concurrent clients.

79

20
0

40
0

60
0

80
0

C
P

U
 lo

ad
 (

%
)

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Seconds since start of test

R
es

po
ns

e
tim

e
(s

)

Figure 6.5: CPU load and response time over time for 620 concurrent clients on the multi-
threaded server.

0 50 100 150 200 250

0
50

0
10

00
15

00
20

00
25

00

Number of threads in threadpool

D
el

ay
 p

er
 s

ch
ed

ul
ed

 r
un

 (
m

s)

Figure 6.6: Response time for 700 concurrent clients using varying number of threads. Shaded
area from 5 to 95 percentiles.

80

creased number of threads, up to about 100. From then on the best case is worsening again
most likely due to context switching overhead.

A game developer needs to consider this trade-off when tuning the parameters for a specific
game.

6.6 Discussion

Because game servers deliver entertainment, no requirement is absolute: Games can always
be designed to take advantage of more computing, or restricted to require less. Competitive
pressure, however, works towards heavier computations while still requiring fast response times.

Most approaches to multi-threaded game server implementations in the literature, such as
Abdelkhalek and Bilas (2004b), use some form of spatial partitioning to lock geographical
region in the game world while allowing separate regions to run in parallel. Spatial partitioning
is also used in other situations to limit workload. The number of players that game designers can
allow in one area in a game server is limited by the worst-case scenario. The worst-case scenario
for a spatially partitioned game world is when everybody moves to the same point, where spatial
partitioning still ends up with everybody in the same partition regardless of granularity. Our
approach allows distribution of load independent of the distribution of the players.

We have worked to increase the player density as defined in section 2.3, or the number of
players that can continually interact directly. Our approach can be combined with traditional
approaches such as sharding to scale other dimensions such as total number of players. Instead
of partitioning players to achieve parallelism, we relax constraints on deterministic execution
order. This allows more fine-grained distribution of processing. The LEARS approach does
have limitations and is, for example, not suitable if the outcome of a message puts restrictions
on an object’s state. This is mainly a game design issue, but doing full transactions can accom-
modate situations such as trades. Because game servers generally are backed by databases these
could be used to enforce atomicity of such transactions.

Moreover, the design also adds some overhead in that the code is somewhat more com-
plex, because all communication between elements in the system needs to go through message
queues. The same issue also creates some runtime overhead, but our results still demonstrate a
significant benefit in terms of the supported number of clients.

Tasks in a thread-pool can not be pre-empted, but the threads used for execution can. This
distinction creates an interesting look into the performance trade-off of pre-emption. If the
number of threads in the thread-pool is equal to the number of CPU cores, we have a fully co-
operative multitasking system. Increasing the number of threads allows for more pre-emption,
but introduces context-switching overhead.

The next logical step in scaling would be to move to multiple physical machines communi-
cating across a network. Such an approach could give us even more processing power for each
player, allowing more detailed simulation. This could be applied to more detailed physics or
more complex artificial intelligence. However, because our design generally does not partition
any way, all threads have an equal probability of communicating with any other thread. Thus,
if the server was distributed across a network, it is possible that the communication overhead
would overwhelm any gains in performance from added processing power. The effectiveness

81

of such a design depends on how much communication there is relative to computation. If each
player is computationally expensive, a server cluster architecture could be viable. Evaluating
the merits of such an approach requires further experiments. Otherwise, a hybrid approach
would be ideal. An architecture similar to LEARS could be used to increase player density
scaling, while traditional approaches, such as spatial partitioning, could be employed to utilise
multiple machines.

Further, our absolute numbers are difficult to relate to real games. Computing power re-
quired for each client varies widely between games. We have shown that using the LEARS
design can increase the scalability of a game server, but exactly how effective it is depends on
the game and the system running the server.

Our design seems best suited for games where interaction between a large number of players
at the same time is important. At the same time, only relatively fast-paced games can utilise
the increased availability of computing power for each client. From these criteria, traditional
MMO-RPGs as well as MMO-FPSes, as defined in section 1.1 are ideally suited.

6.7 Summary

This chapter has looked at a novel approach to building parallel game servers. Game servers
are an interesting workload with an otherwise rare combination of requirements. Because this
approach requires a complete redesign of the game server architecture, we made our own proof-
of-concept game server that achieves improved scaling by relaxing ordering constraints. We
found that this server allowed good scaling of player density with number of threads. However,
our experiment used a simplified experimental system benchmark, and more work is required
to determine how the system performs in a fully realistic setting.

82

Chapter 7

Paper and author’s contributions

The PhD period started with a motivation to work on aspects of delay in games. My papers re-
flect a large variation in approaches to this central theme. Because the approaches are so varied,
I cooperated with many different people who brought a diverse set of skills and knowledge to
the research. One paper (Raaen and Grønli, 2014) describes a survey of existing work on how
delay affects gameplay. The next two papers (Raaen and Petlund, 2015; Raaen and Kjellmo,
2015) look at user interface delays in different types of gaming setups. Further, we present two
papers (Raaen et al., 2014; Raaen and Eg, 2015) on how users perceive delay in user interfaces.
Then, we include one paper (Raaen et al., 2014) measuring how cloud infrastructure can be
utilised for game servers. The last paper (Raaen et al., 2012) propose a novel approach to paral-
lelising workloads of a typical game server. Because work on the different questions proceeded
in parallel, the papers are presented in a logical order rather then chronologically.

7.1 Paper I: Latency thresholds for usability in games: A
survey

Kjetil Raaen and Tor-Morten Grønli

Abstract User interactions in interactive applications are time critical operations; late response
will degrade the experience. Sensitivity to delay does however vary greatly with between
games. This paper surveys existing literature on the specifics of this limitation. We find
a classification where games are grouped with others of roughly the same requirements.
In addition we find some numbers on how long latency is acceptable. These numbers
are however inconsistent between studies, indicating inconsistent methodology or insuf-
ficient classification of games and interactions. To improve classification, we suggest
some changes. In general, research is too sparse to draw any strong or statistically signif-
icant conclusions. In some of the most time critical games, latency seems to degrade the
experience at about 50 ms.

Lessons learned In this paper, we worked through existing material on how delay affects
games. We discovered that almost all existing work focused on network latency in client-
server games. We also found that very few authors had looked for correlations between

83

the skill of the player and effects of delay. Further, different authors use different classi-
fication for games, making it unclear how existing conclusions apply to new games.

Author’s contributions Raaen did the bulk of the work on this paper, both gathering data and
writing. The co-author provided guidance regarding methodology and collaborated on
the writing.

Published in Norsk Informatikkonferanse (NIK) 2015

ISSN 1892-0713

7.2 Paper II: How much delay is there really in current games?

Kjetil Raaen and Andreas Petlund

Abstract All computer games present some delay between human input and results being dis-
played on the screen, even when no networking is involved. A well-balanced discussion
of delay-tolerance levels in computer games requires an understanding of how much de-
lay is added locally, as well as in the network. This demonstration uses a typical gaming
setup wired to an oscilloscope to show how long the total, local delay is. Participants may
also bring their own computers and games so they can measure delays in the games or
other software.

Results show that local delays constitute such a large share of the total delay that that it
should be considered when studying the effects of delay in games, often far exceeding the
network delay evaluated.

Lessons learned For this paper, we designed and run an experiment to determine exact delay
from user input to screen output in games. We found that local delays in gaming systems
can be significant compared to network delays. Because earlier work has ignored local
delay, this finding significantly changes how we interpret their results. It also shows
that we need to be careful to include local delay in our own work when examining how
humans handle delay.

Author’s contributions Raaen designed, built and conducted the experiment. Co-authors con-
tributed to writing, but here, too Raaen had overall responsibility.

Published in ACM Multimedia Systems (MMSys), ACM 2015

DOI 10.1145/2713168.2713188

7.3 Paper III: Measuring Latency in Virtual Reality Systems

Kjetil Raaen and Ivar Kjellmo

Abstract Virtual Reality (VR) systems have the potential to revolutionise how we interact with
computers. However motion sickness and discomfort are currently severely impeding

84

the adoption. Traditionally the focus of optimising VR systems have been on frame-
rate. Delay and frame-rate are however not equivalent. Latency may occur in several
steps in image processing, and a frame-rate measure only picks up some of them. We
have made an experimental setup to physically measure the actual delay from the user
moves the head until the screen of the VR device is updated. Our results show that while
dedicated VR-equipment had very low delay, smartphones are in general not ready for
VR-applications.

Lessons learned For this paper, we designed and ran an experiment to measure exact time de-
lay between rotating a VR headset and the screen updating. We found that dedicated
virtual reality hardware had very low delays. Conversely, the current trend of using
smartphones as virtual reality displays seems premature, because current phones respond
slowly.

Author’s contributions Raaen designed the physical side of the experiment, while the co-
authors designed the virtual setup. We gathered the data in close cooperation and split the
work on writing between the two authors, with Raaen taking final responsibility.

Published in International Conference on Entertainment Computing 2015, Springer 2015

DOI 10.1007/978-3-319-24589-8_40

7.4 Paper IV: Can gamers detect cloud delay?

Kjetil Raaen, Ragnhild Eg and Carsten Griwodz

Abstract In many games, a win or a loss is not only contingent on the speedy reaction of the
players, but also on how fast the game can react to them. From our ongoing project, we
aim at establishing perceptual thresholds for visual delays that follow user actions. In
this first user study, we eliminated the complexities of a real game and asked participants
to adjust the delay between the push of a button and a simple visual presentation. At
the most sensitive, our findings reveal that some perceive delays below 40 ms. However,
the median threshold suggests that motor-visual delays are more likely than not to go
undetected below 51-90 ms. These results can in future investigations be compared to
thresholds for more complex visual stimuli, and to thresholds established from different
experimental approaches.

Lessons learned This is our first experiment seeking to measure human sensitivity to delays.
First, we see that this sensitivity is highly individual. Next, we find no correlation between
gaming experience and sensitivity to delays. We have later reevaluated the findings in this
paper in light of new data, but the general conclusions hold.

Author’s contributions This paper is the result of cooperation between Eg and Raaen. All
the way from designing the experiment to the writing we worked together. Raaen im-
plemented the experiment software and wrote the parts of background related to gaming,
while Eg designed the protocol and wrote the background from cognitive psychology.
Griwodz consulted and worked on the analysis and text.

85

Published in The 13th Annual Workshop on Network and Systems Support for Games (NetGames),
ACM 2014

DOI 10.1109/NetGames.2014.7008962

7.5 Paper V: Instantaneous human-computer interactions:
Button causes and screen effects

Kjetil Raaen and Ragnhild Eg

Abstract Many human-computer interactions are highly time-dependent, which means that an
effect should follow a cause without delay. In this work, we explore how much time
can pass between a cause and its effect without jeopardising the subjective perception of
instantaneity. We ran two experiments that involve the same simple interaction: A click
of a button causes a spinning disc to change its direction of rotation, following a variable
delay. In our adjustment experiment, we asked participants to adjust the delay directly,
but without numerical references, using repeated attempts to achieve a value as close to
zero as possible. In the discrimination task, participants made judgements on whether
the single rotation change happened immediately following the button-click, or after a
delay. The derived thresholds revealed a marked difference between the two experimental
approaches, participants could adjust delays down to a median of 40 ms, whereas the
discrimination mid-point corresponded to 148 ms. This difference could possibly be an
artefact of separate strategies adapted by participants for the two tasks. Alternatively,
repeated presentations may make people more sensitive to delays, or provide them with
additional information to base their judgements on. In either case, we have found that
humans are capable of perceiving very short temporal delays, and these empirical results
provide useful guidelines for future designs of time-critical interactions.

Lessons learned Here we changed the nature of the stimulus presented in the previous paper,
using a moving stimulus. We also extend the experiment to include a new mechanism to
record perceived delays. This new mechanism allows only one exposure to a given delay
level before being asked if it was delayed. We found a large discrepancy between the
mechanisms, and hypothesised that multiple exposures to delay makes it easier to detect.

Author’s contributions This is the second product of the cooperation between Eg and Raaen.
Again we worked together from designing the experiment to writing. Raaen implemented
the experiment software and wrote the parts of background related to gaming, while Eg
designed the protocol and wrote the background from cognitive psychology.

Published in International Conference on Human-Computer Interaction 2015, Springer 2015

DOI 10.1007/978-3-319-21006-3_47

86

7.6 Paper VI: Is todays public cloud suited to deploy hard-
core realtime services?

Kjetil Raaen, Andreas Petlund and Pål Halvorsen

Abstract Cloud computing is a popular way for application providers to obtain a flexible server
and network infrastructure. Providers deploying applications with tight response time re-
quirements such as games, are reluctant to use clouds. An important reason is the lack
of real-time guarantees. This paper evaluates the actual, practical soft real-time CPU per-
formance of current cloud services, with a special focus on online games. To perform
this evaluation, we created a small benchmark and calibrated it to take a few milliseconds
to run (often referred to as a microbenchmrak). Repeating this benchmark at a high fre-
quency gives an overview of available resources over time. From the experimental results,
we find that public cloud services deliver performance mostly within the requirements of
popular online games, where Microsoft Azure Virtual machines give a significantly more
stable performance than Amazon EC2.

Lessons learned This paper looked at cloud computing services and investigated if their per-
formance characteristics are suitable for running workloads typical of game servers. Some-
what surprisingly, we found highly fluctuating performance in the cloud services we
tested. Some servers seemed to stall for long enough that it would be noticeable for play-
ers. From this, we decided not to go on and design game server architectures specialised
for cloud distribution.

Author’s contributions Raaen gathered data and wrote much of the text in this paper. The
coauthors contributed writing and evaluation.

Published in Second Workshop on Large Scale Distributed Virtual Environments on Clouds
and P2P (LSDVE) – Euro-Par 2013: Parallel Processing Workshops, Springer, 2013

DOI 10.1007/978-3-642-54420-0_34

7.7 Paper VII: LEARS: A Lockless, relaxed-atomicity state
model for parallel execution of a game server partition

Kjetil Raaen, Havard Espeland, Hakon K. Stensland, Andreas Petlund, Pal Halvorsen and
Carsten Griwodz

Abstract Supporting thousands of interacting players in a virtual world poses huge challenges
with respect to processing. Existing work that addresses the challenge utilizes a variety
of spatial partitioning algorithms to distribute the load. If, however, a large number of
players needs to interact tightly across an area of the game world, spatial partitioning
cannot subdivide this area without incurring massive communication costs, latency or
inconsistency. It is a major challenge of game engines to scale such areas to the largest

87

number of players possible; in a deviation from earlier thinking, parallelism on multi-
core architectures is applied to increase scalability. In this paper, we evaluate the design
and implementation of our game server architecture, called LEARS, which allows for
lock-free parallel processing of a single spatial partition by considering every game cycle
an atomic tick. Our prototype is evaluated using traces from live game sessions where
we measure the server response time for all objects that need timely updates. We also
measure how the response time for the multi-threaded implementation varies with the
number of threads used. Our results show that the challenge of scaling up a game-server
can be an embarrassingly parallel problem.

Lessons learned We searched for better ways of utilising parallelism for keeping response-
times low with increasing numbers of players in massively multiplayer games. Our so-
lution involves relaxing some requirements of atomicity and ordering. Because games
are in nature not deterministic, it is not critical that the server is deterministic. We found
that by relaxing these requirements we could improve parallelism in a simulated server
environment.

Author’s contributions Raaen brought the original idea and implemented the experiment soft-
ware. He also led and contributed to the writing process with the other authors.

Published in Proceedings of the International Workshop on Scheduling and Resource Man-
agement for Parallel and Distributed Systems (SRMPDS) – The 2012 International Con-
ference on Parallel Processing Workshops, IEEE, 2012.

DOI 10.1109/ICPPW.2012.55

7.8 Other Publications

The author contributed to several other publications during the PhD period that did not fit into
the scope of this thesis. Instead we provide a short summary of each.

Demonstrating Hundreds of AIs in One Scene An extension of the work presented in pa-
per VII, this demo shows how the LEARS architecture handles AI loads, specifically
pathfinding (Raaen and Petlund, 2013).

Games for Research: A Comparative Study of Open Source Game Projects Going through
literature on how to optimise game infrastructure, we find that most use either purpose-
built prototypes or work on games that are not popular (Halvorsen and Raaen, 2014a).
The main problem here is finding a game that is representative of popular games and also
open source so it can be modified to test the hypothesis the researcher is working on.
As part of his Master Thesis Stig Halvorsen created a list of requirements and a list of
potential games, and together we wrote a paper on the results.

Implementing Virtual Clients in Quake III Arena As part of his master thesis Stig Halvorsen
created a system for load testing a game server with realistic loads (Halvorsen and Raaen,
2014b). To achieve this, he moved the code for computer controlled opponents in the

88

open source game Quake 3 Arena to the clients. This allows the server to see the computer
controlled players as real clients and respond accordingly. This setup allows researchers
working on networks or server infrastructure to create loads corresponding to any num-
ber of players without actual people. While Halvorsen did most of the technical work, we
cooperated on writing the paper.

89

Chapter 8

Conclusion

This thesis looks for answers to the questions described in section 1.2 about latency in games.
Solving this problem requires answers to multiple questions. We identified some of the impor-
tant questions and have worked towards answers. Each question required a different approach,
but they all come together to illuminate the main question.

8.1 Summary

How much delay is there really in current games? Question 1 from section 1.2 is the focus
of chapter 3. Suspecting that measurements of delay in software do not capture the full
delay, we decided to use a measurement device external to the system being measured.
This allows us to measure total delay from an input is sent to the system until the results
are visible on screen. We performed two such experiments, one where the input was a
mouse click, and another where the input was a rotation of a virtual reality display. We
did not measure a large number of systems and software, but those few we do measure
show large differences.

How fast should game systems respond to avoid deterioration of player experience? In chap-
ter 4, we looked into question 2 from section 1.2. We found that measuring a player’s
sensitivity to motor-visual delays is not a straightforward endeavour. We approached the
matter by asking our participants to evaluate if a computer’s reactions immediately fol-
lowed their actions. They manipulated the delay directly, but without feedback, in an
experiment designed to assess human sensitivity to motor-visual delays, over a series of
trials. The experiment included several conditions that also explored possible interacting
factors, visual stimulus size and delay, as well as previous gaming experience. Due to the
repetitive nature of the experiment, we saw that the assigned task challenged the patience
of some participants. In turn, our results initially showed a large influence from those
who did not take the task seriously and accepted far higher delay values than the majority.

This approach is limited by the simple nature of the interaction as well as only investigat-
ing if the users are aware of a delay.

Are cloud services responsive enough to run game servers? To investigate question 3 from
section1.2, we measured delays inherent in public cloud services and compared them

91

to acceptable delays. In chapter 5, we used a microbenchmark to measure the stability
of CPU performance in three service classes from each of two providers. While not a
comprehensive list of services, these results give us an indication of the state of cloud
computing for games. It seems that performance stability is not consistent enough for
fast-paced games at the moment.

How can parallelism be better utilised in game servers for massive multiplayer games? In
chapter 6, we suggest one possible appraoch solving to question 4 from section 1.2.
Firstly, we identified a clear distinction between scaling absolute number of player and
scaling player density, and decided to focus on the latter. We have shown that we can
improve resource utilisation by distributing load across multiple CPUs in a unified mem-
ory multi-processor system. This distribution is made possible by relaxing constraints
to the ordering and atomicity of events. The system scales well, even in the case where
all players must be aware of all other players and their actions. The thread pool system
balances load well between the cores, and its queue-based nature means that no task is
starved unless the entire system lacks resources. Message passing through the blocking
queue allows objects to communicate intensively without blocking each other.

8.2 Main contributions

While working on these questions, we find various individual results that contribute to answer-
ing the overall question, but also bring interesting results on their own.

We suggest a simple and reliable method to measure actual delays in typical gaming se-
tups. This setup is independent of both hardware and software and only requires access to the
initial signal from the user to the system. Using this setup allows developers and researchers
to accurately measure total delay in their interactive systems. Our results show that internal
measures of delay are insufficient, and that peripheral devices add significant delay. For the
mouse click, delays vary from 60 to 170 ms in the tested setups, but can also be reduced to
30 ms by sacrificing visual quality. The virtual reality systems designed for this purpose were
extremely fast, with the best reacting in less than 5 ms. Improvised virtual reality solutions
based on smartphones are at the moment too slow for the purpose.

It seems that awareness of total delay is limited both in scientific work and in the computer
games industry, except for the specialised case of virtual reality. Often, frame-rate is used as a
proxy for delay. Local delay is rarely reported in works on delay in general, possibly because
it is considered insignificant in comparison to the values measured, such as network latency.
While players and game journalists to some degree seem aware of these delays, scientific work
on delay in games does in general not take this into account.

In virtual reality interactions, delays are better understood. Various methods to measure
these delays have been proposed previously. Our solution is simpler and easier to use. We also
provide measurements on some modern virtual reality systems, showing that dedicated systems
have delays of 4 to 63 ms. Smartphones, sometimes used as cheap alternative VR-displays on
the other hand have delays of 46 to 96 ms.

With these conclusions in mind, we present work on how much delay can be present in
a system before users notice. This question turns out to be more complicated than it seems

92

on the surface. Going through existing work, we find two different fields that touch upon the
subject. Work specifically on games tends to ignore local delays. Experimental conditions were
also very difficult to replicate. The field of psychophysics does take local delay into account
and often describe repeatable experiment conditions, but their experiments are difficult to relate
directly to games.

To evaluate sensitivity to delay in scenarios closer to games, we conduct an experiment on
actual people. We let participants trigger actions and apply various delays to this interaction.
Measurements rely on participants’ self-reported experience of delay. From this, we notice large
individual variations. This means that testing on a few people is not enough to know that delays
will go unnoticed. Further, we have indications that numbers of repetitions influence detection
thresholds, with more repetitions giving lower thresholds. Many users can consistently detect
delays around 150 ms, and there is a long tail of users who seem to notice even shorter delays.
This means there is a significant overlap between delays detectable by users, and delays actually
present in many systems today.

Having established some benchmarks, we investigate how stable CPU response is in cloud
services. CPU stalls usually translate to delay that would be added by hosting game servers in
public clouds. It seems the conclusions about CPU usage from (Barker and Shenoy, 2010) still
hold for Amazon EC2. We find that the cheap instance from Amazon EC2 are not good enough
(cv = 0.45), but it is better at the higher service levels (cv = 0.039 and cv = 0.19 respectively).
Variance at all levels is larger than for Azure. An important element to keep in mind for Amazon
EC2 is that migrating to a different instance is necessary if a change in service level is needed.
For the more time sensitive class of games, these delays can add up with network latency to
unacceptable levels. Even for less sensitive applications there are some caveats. We do get rare
samples where the CPU seems to have stalled for multiple seconds, which could discourage
users.

Microsoft Azure Virtual machines seem to give more stable performance than Amazon EC2,
without the extreme latency peaks (cv = 0.050, cv = 0.048 and cv = 0.047 respectively). Util-
ising these results can allow providers of interactive online services to be more agile and react
faster to changes in demand. Although it gives less processor speed for the same price, it is more
reliable for planning stability, reducing the need for a specialised service for managing changes
between service levels. If a change in service level is needed, Azure allows for dynamic changes
without the need to migrate the virtual machine. Infrastructure of cloud providers changes fast;
our numbers might already be outdated. However, awareness of potential performance stability
in cloud services is important to developers who consider deploying their real-time products to
the cloud.

To improve server processing delays, we chose to work on server backends for massive
multiplayer games. Games can scale in many dimensions. For massive multiplayer games, one
of the most important dimensions is player density: The number of players that can fit into a
given area of the game world and interact. Such interactions create a complex computational
problem. By making a simplified game utilising parallelism, we attempted to improve the state
of the art. A significant difficulty in parallel games is synchronisation. When multiple things
are happening at the same time, all entities that might potentially be affected must be locked to
ensure complete consistency. By taking advantage of the fact that ordering in games is arbitrary
anyway, we were able to relax some consistency constraints and increasing parallelism. Thus,

93

we are able to challenge the traditional sequential game loop.
Implementing this system and running on a powerful multi-CPU system can allow many

hundreds of players gathering in the same location before server response rates become un-
acceptable. Our results indicate that it is possible to design an embarrassingly parallel game
server. We also observe that the implementation is able to handle a quadratic increase of in-
server communication when many players interact in a game-world hotspot. Scaling game
servers is a varied task. We have focused on improving the density of players supported. For
improvements in metrics such as world size and total number of players, our solution should be
combined with other, improvements such as spatial partitioning.

8.3 Future work

Because this work has a wide focus, it presents a whole range of new opportunities for research.
Each area we have worked on has produced its own unique questions.

From the work on total delay in games, it is clear that delays are much longer than those
under the control of the programmer. Which components add this delay? Are there ways to
minimise this delay? Some of this information might be available in documentation for the
hardware. However, because this documentation is often lacking, and there are many trade
secrets in the pipeline, answers might be hidden in blackboxes, and thus need to be answered
empirically by conducting more experiments and measurements.

Our work on virtual reality systems shows that some of these provide very fast response,
and earlier work has shown that delay might be a factor in motion sickness triggered by virtual
reality. Further empirical work is needed to conclude how long delays can be without degrading
user experience. An investigation into which other factors contribute to cybersickness and how
to alleviate this would be interesting.

We found some answers on the impact of delay on human-computer interactions, but much
work is still left. So far, we have worked on general limits for sensitivity to delays, finding
that this sensitivity varies greatly between individuals. In the future, we would like to look for
patterns in who are the most and least sensitive individuals. Can we find something to predict
sensitivity to delays? Because games are very different in how fast reactions are required to
play the game effectively, we need different values for different games. Thus, we would like to
find reasonable estimates for acceptable delay in various types of games.

By starting with the very simplest interactions, we are not sure how the complexities of real
interactions affect results. Conversely, traditional work has started with real games, including
all their randomness, and multiple things happening at the same time. Finding a middle ground
between the two methods, with simplified but not trivial games, would give opportunities for
more detailed and general conclusions.

Our work on responsiveness of cloud services is already two years old, and these services
change fast. A new look would be useful. More service providers should also be included, as
well as metrics for input-output operations.

The extension of game server architectures could also be taken further. Our work so far used
a very simplified game as a proof of concept. Ideally, the approach should be implemented in a
full, complete massive multiplayer game. This should give results that are more realistic, at least

94

with respect to this specific game. To investigate the performance of such an implementation
supporting thousands of players, computer controlled players, bots could be used (Halvorsen
and Raaen, 2014b).

The work also focuses only on a single, shared memory machine. A good goal would be
to move on to distributed architectures. This could be achieved by implementing cross-server
communication directly in the server code, or by using existing technology that makes cluster
behave like shared memory machines.

8.4 Applying our conclusions in practice

Going back to the original question, we now have at least some answers.

• Make sure to measure total delay in the game. This metric will be an important quality
metric for a game. Do not trust internal measurements of such delay. Values above 150 ms
will be consciously noticed by many players. If the game includes fast paced action
elements, consider aiming for even faster response times to appease the most sensitive
individuals and account for potential subconscious effects of delay.

• Be aware of the potential performance stability issues in virtualised cloud servers. For a
response-time critical application clouds might not provide the stable, fast response-times
needed.

• Make highly parallel code for the server, and carefully evaluate all consistency require-
ments. Remember that the application is a game. Strict ordering of events might not be
necessary. Position information does not need to be strictly consistent. Any such relax-
ation can give large performance bonuses.

Maybe if we, in the future, keep these and many other results in mind when making games,
future players can only blame themselves if their avatars are eaten by spiders.

95

96

Bibliography

Abdelkhalek, A. and A. Bilas (2004a). Parallelization and performance of interactive
multiplayer game servers. In Proceedings 18th International Parallel and Distributed
Processing Symposium, 72–81.

Abdelkhalek, A. and A. Bilas (2004b). Parallelization and performance of interactive
multiplayer game servers. In Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS), pp. 72.

Amazon (2013). Amazon ec2 instance types. http://aws.amazon.com/ec2/instance-types/.

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large scale
computing capabilities. American Federation of Information Processing Societies
Conference Proceedings.

Amin, R., F. Jackson, J. Gilbert, J. Martin, and T. Shaw (2013). Assessing the impact of
latency and jitter on the perceived quality of call of duty modern warfare 2. In M. Kurosu
(Ed.), Human-Computer Interaction. Users and Contexts of Use, Volume 8006 of Lecture
Notes in Computer Science, pp. 97–106. Springer Berlin Heidelberg.

Apple (2015). Apple thunderbolt display. https://www.apple.com/displays/specs.html.

Armitage, G. (2003). An experimental estimation of latency sensitivity in multiplayer quake 3.
In The 11th IEEE International Conference on Networks 2003 ICON2003, pp. 137–141.
IEEE.

Asus (2015). Asus rog swift pg278q. http://www.asus.com/Monitors/
ROG_SWIFT_PG278Q/specifications/.

Barker, S. K. and P. Shenoy (2010). Empirical evaluation of latency-sensitive application
performance in the cloud. In Proceedings of the first annual ACM SIGMM conference on
Multimedia systems, MMSys ’10, New York, NY, USA, pp. 35–46. ACM.

Beigbeder, T., R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and M. Claypool (2004). The
effects of loss and latency on user performance in unreal tournament 2003. In Proceedings
of 3rd Workshop on Network and system support for games (NetGames), NetGames ’04,
New York, NY, USA, pp. 144–151. ACM.

Bernier, Y. (2001). Latency compensating methods in client/server in-game protocol design
and optimization. Game Developers Conference.

97

Beskow, P. B., G. A. Erikstad, P. Halvorsen, and C. Griwodz (2009). Evaluating ginnungagap:
a middleware for migration of partial game-state utilizing core-selection for latency
reduction. In Proceedings of the 8th Annual Workshop on Network and Systems Support for
Games (NetGames), pp. 10:1—-10:6.

Bethesda Softworks (1994). Elder scrolls.

Blizzard Entertainment (1996). Diablo.

Blizzard Entertainment (1998). Starcraft.

Blizzard Entertainment (2004). World of warcraft.

BlurBusters (2014). Preview of nvidia g-sync. http://www.blurbusters.com/gsync/preview2/.

BlurBusters (2015). List of 120hz monitors includes 144hz, 240hz.
http://www.blurbusters.com/faq/120hz-monitors/.

Chen, K.-T., Y.-C. Chang, and P.-H. Tseng (2011). Measuring the latency of cloud gaming
systems. MM ’11 Proceedings of the 19th ACM international conference on Multimedia,
1269–1272.

Chen, K.-t., P. Huang, G.-s. Wang, C.-y. Huang, and C.-l. Lei (2006). On the sensitivity of
online game playing time to network qos. Proceedings of IEEE INFOCOM 00(c).

Chen, K.-T. and C.-L. Lei (2006). Network game design: Hints and implications of player
interaction. In Proceedings of 5th Workshop on Network and System Support for Games
(NetGames), NetGames ’06, New York, NY, USA. ACM.

Chen, K.-T. and C.-L. Lei (2012). Are all games equally cloud-gaming-friendly? an
electromyographic approach. 11th Annual Workshop on Network and Systems Support for
Games (NetGames), 1–6.

Chu, H. S. (2008). Building a simple yet powerful mmo game architecture.
http://www.ibm.com/developerworks/architecture/library/ar-powerup1/.

Claypool, M. (2005). The effect of latency on user performance in real-time strategy games.
Computer Networks 49(1), 52–70.

Claypool, M. and K. Claypool (2006). Latency and player interaction in online games.
Communications of the ACM 49(11), 40–45.

Claypool, M. and K. Claypool (2010). Latency can kill : Precision and deadline in online
games. Proceedings of the First ACM Multimedia Systems Conference.

Claypool, M. and D. Finkel (2014). The effects of latency on player performance in
cloud-based games. 13th Annual Workshop on Network and Systems Support for Games
(NetGames).

Cunningham, D. W., V. A. Billock, and B. H. Tsou (2001). Sensorimotor adaptation to
violations of temporal contiguity. Psychological Science 12(6), 532–535.

98

Dally, B. (2009). The end of denial architecture and the rise of throughput computing. Keynote
speech at Desgin Automation Conference.

Davis, S., K. Nesbitt, and E. Nalivaiko (2014). A systematic review of cybersickness. In
Proceedings of the Conference on Interactive Entertainment, New York, NY, USA. ACM.

Dell (2015). Dell ultrasharp 24 ultra hd monitor.
http://accessories.us.dell.com/sna/productdetail.aspx?sku=860-BBCD.

Denning, P. J., D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R. Young
(1989). Computing as a discipline. Communications of the ACM 32(1), 9–23.

Di Luca, M. (2010). New method to measure end-to-end delay of virtual reality. Presence:
Teleoperators and Virtual Environments 19(6), 569–584.

Dick, M., O. Wellnitz, and L. Wolf (2005). Analysis of factors affecting players’ performance
and perception in multiplayer games. In Proceedings of 4th Workshop on Network and
System Support for Games (NetGames), NetGames ’05, New York, NY, USA, pp. 1–7.
ACM.

Ebert, J. P. and D. M. Wegner (2010). Time warp: authorship shapes the perceived timing of
actions and events. Consciousness and Cognition 19(1), 481–489.

Egenfeldt-Nielsen, S., J. H. Smith, and S. P. Tosca (2009). Understanding Video Games: The
Essential Introduction. Taylor & Francis.

El-Khamra, Y., H. Kim, S. Jha, and M. Parashar (2010). Exploring the performance
fluctuations of hpc workloads on clouds. 2010 IEEE Second International Conference on
Cloud Computing Technology and Science, 383–387.

Electronic Arts (1994). Need for speed.

Electronic Arts (1995). Command & conquer.

Electronic Arts (1999). Medal of honor.

Epic Games (1999). Unreal tournament.

Foster, I., Y. Zhao, I. Raicu, and S. Lu (2008). Cloud computing and grid computing
360-degree compared. Grid Computing Environments Workshop, 1–10.

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the American Statistical Association 32(200), pp. 675–701.

Fritsch, T., H. Ritter, and J. Schiller (2005). The effect of latency and network limitations on
mmorpgs: a field study of everquest2. Proceedings of 4th workshop on Network and system
support for games (NetGames).

Fujisaki, W. and S. Nishida (2009). Audiotactile superiority over visuotactile and audiovisual
combinations in the temporal resolution of synchrony perception. Experimental Brain
Research 198(2-3), 245–259.

99

Gajinov, V., O. S. Unsal, E. Ayguad, and T. Harris (2009). Atomic quake: using transactional
memory in an interactive multiplayer game server. Proceedings of the 14th ACM SIGPLAN
symposium on Principles and practice of parallel programming, 25–34.

Gescheider, G. A. (1976). Psychophysics: The Fundamentals (3rd ed.). Psychology Press.

Goldsmith, J. T. T. and M. E. Ray (1948). Cathode-ray tube amusement device.

Haggard, P. and V. Chambon (2012). Sense of agency. Current Biology 22(10), R390—-R392.

Halvorsen, S. and K. Raaen (2014a). Games for research: A comparative study of open source
game projects. In Euro-Par Parallel Processing Workshops, Volume 8374 of Lecture Notes
in Computer Science, pp. 353–362. Springer Berlin Heidelberg.

Halvorsen, S. M. and K. Raaen (2014b). Implementing virtual clients in quake iii arena. In
Entertainment Computing-ICEC 2014: 13th International Conference, Volume 8770, pp.
232. Springer.

Hayes, D. A., I.-J. Tsang, D. Ros, A. Petlund, and B. Briscoe (2015). Internet latency: Causes,
solutions and trade-offs. In EuCNC Special session on latency.

Henderson, T. (2001). Latency and user behaviour on a multiplayer game server. In
J. Crowcroft and M. Hofmann (Eds.), Networked Group Communication, Volume 2233 of
Lecture Notes in Computer Science, pp. 1–13. Springer Berlin Heidelberg.

Heron, J., J. V. M. Hanson, and D. Whitaker (2009). Effect before cause: Supramodal
recalibration of sensorimotor timing. PLoS ONE 4(11), e7681.

International Telecommunication Union (ITU-T) (2014). Methods for the subjective
assessment of small impairments in audio systems bs series. Recommendation BS.1116-2 2.

Jain, R. (1991). The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley.

Jarschel, M., D. Schlosser, S. Scheuring, and T. Hoßfeld (2011). An evaluation of qoe in cloud
gaming based on subjective tests. 2011 Fifth International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing, 330–335.

Jota, R., A. Ng, P. Dietz, and D. Wigdor (2013). How fast is fast enough? a study of the effects
of latency in direct-touch pointing tasks. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, Paris, pp. 2291–2300.

Kijima, R. and T. Ojika (2002). Reflex hmd to compensate lag and correction of derivative
deformation. Proceedings IEEE Virtual Reality.

Lee, K., D. Chu, E. Cuervo, A. Wolman, and J. Flinn (2014). Outatime: using speculation to
enable low-latency continuous interaction for mobile cloud gaming. Proceedings of the 12th
annual international conference on Mobile systems, applications, and services - MobiSys
’14, 347–347.

100

Lewis, J., P. Trinh, and D. Kirsh (2011). A corpus analysis of strategy video game play in
starcraft: Brood war. Proceedings of the 33rd annual conference of the cognitive science
society., 687–692.

March, S. T. and G. F. Smith (1995). Design and natural science research on information
technology. Decision Support Systems 15(4), 251–266.

Mennie, D. (1976). Consumer electronics electronic gamesmanship. Spectrum,
IEEE 13(December), 27–30.

MicroProse, Activision, Infogrames Entertainment, and 2K Games (1991). Civilization.

Microsoft (2013). Microsoft azure pricing details.
ttp://www.windowsazure.com/en-us/pricing/details/.

Microsoft Studios (2005). Forza motorsport.

Moore, G. (1965). Cramming more components onto integrated circuits. Electronics 38(8).

Müller, J. and S. Gorlatch (2007). Enhancing online computer games for grids. In
V. Malyshkin (Ed.), Parallel Computing Technologies, Volume 4671 of Lecture Notes in
Computer Science, pp. 80–95. Springer Berlin / Heidelberg.

Nichols, J. and M. Claypool (2004). The effects of latency on online madden nfl football. In
Proceedings of the 14th International Workshop on Network and Operating Systems Support
for Digital Audio and Video, NOSSDAV ’04, New York, NY, USA, pp. 146–151. ACM.

Nvidia (2015). Nvidia grid. http://shield.nvidia.com/grid-game-streaming.

Occelli, V., C. Spence, and M. Zampini (2011). Audiotactile interactions in temporal
perception. Psychonomic Bulletin & Review 18(3), 429–454.

Olson, J. L., D. M. Krum, E. a. Suma, and M. Bolas (2011). A design for a smartphone-based
head mounted display. Proceedings - IEEE Virtual Reality, 233–234.

Ostermann, S., A. Iosup, and N. Yigitbasi (2010). A performance analysis of ec2 cloud
computing services for scientific computing. Cloud Computing, 115–131.

Pantel, L. and L. C. Wolf (2002). On the impact of delay on real-time multiplayer games. In
Proceedings of the 12th International Workshop on Network and Operating Systems Support
for Digital Audio and Video, NOSSDAV ’02, New York, NY, USA, pp. 23–29. ACM.

Petlund, A. (2009). Improving latency for interactive, thin-stream applications over reliable
transport. Phd thesis, Simula Research Laboratory / University of Oslo, Unipub, Oslo,
Norway.

Platt, P. A. (1990). Real-Time Flight Simulation and Head-Mounted Display - An Inexpensive
Approach to Military Pilot Training. Ph. D. thesis, Air Force Institute of Technology.

101

Pourazad, M., C. Doutre, M. Azimi, and P. Nasiopoulos (2012). Hevc: The new gold standard
for video compression: How does hevc compare with h.264/avc? IEEE Consumer
Electronics Magazine 1(3), 36–46.

Quax, P., P. Monsieurs, W. Lamotte, D. De Vleeschauwer, and N. Degrande (2004). Objective
and subjective evaluation of the influence of small amounts of delay and jitter on a recent
first person shooter game. In Proceedings of 3rd Workshop on Network and system support
for games (NetGames), NetGames ’04, New York, NY, USA, pp. 152–156. ACM.

Raaen, K. and R. Eg (2015). Instantaneous human-computer interactions : Button causes and
screen effects. International Conference on Human-Computer Interaction 2015, 1–12.

Raaen, K., R. Eg, and C. Griwodz (2014). Can gamers detect cloud delay ? 2014 13th Annual
Workshop on Network and Systems Support for Games (NetGames) 200, 7–9.

Raaen, K., H. Espeland, H. K. Stensland, A. Petlund, P. Halvorsen, and C. Griwodz (2012).
Lears: A lockless, relaxed-atomicity state model for parallel execution of a game server
partition. In 2012 41st International Conference on Parallel Processing Workshops, pp.
382–389. IEEE.

Raaen, K. and T.-M. Grønli (2014). Latency thresholds for usability in games : A survey.
Norsk Informatikkonferanse.

Raaen, K. and I. Kjellmo (2015). Measuring latency in virtual reality systems. International
Conference on Entertainment Computing, 1–6.

Raaen, K. and A. Petlund (2013). Demonstrating hundreds of ais in one scene. Entertainment
Computing ICEC 2013, 195–199.

Raaen, K. and A. Petlund (2015). How much delay is there really in current games?
Proceedings of the 6th ACM Multimedia Systems Conference, 2–5.

Raaen, K., A. Petlund, and P. Halvorsen (2014). Is today’s public cloud suited to deploy
hardcore realtime services? In Euro-Par: Parallel Processing Workshops, Lecture Notes in
Computer Science. Springer Berlin Heidelberg.

Renderingpipeline (2013). Measuring input latency.
http://renderingpipeline.com/2013/09/measuring-input-latency/.

Rohde, M., M. Scheller, and M. O. Ernst (2014). Effects can precede their cause in the sense
of agency. Neuropsychologia 65, 191–196.

Schad, J., J. Dittrich, and J. Quiané-Ruiz (2010). Runtime measurements in the cloud:
observing, analyzing, and reducing variance. Proceedings of the VLDB Endowment 3(1).

Seow, S. C. (2008). Designing and Engineering Time. Addison-Wesley.

Sheldon, N., E. Girard, S. Borg, M. Claypool, and E. Agu (2003). The effect of latency on user
performance in warcraft iii. In Proceedings of the 2nd Workshop on Network and System
Support for Games (NetGames), NetGames ’03, New York, NY, USA, pp. 3–14. ACM.

102

Stuckel, D. and C. Gutwin (2008). The effects of local lag on tightly-coupled interaction in
distributed groupware.

Swindells, C., J. Dill, and K. Booth (2000). System lag tests for augmented and virtual
environments. Proceedings of the 13th annual ACM symposium on User interface software
and technology. 2, 161–170.

Vaquero, L. M., L. Rodero-merino, J. Caceres, and M. Lindner (2009). A break in the clouds :
Towards a cloud definition. Computer Communication Review 39(1), 50–55.

Waldo, J. (2008). Scaling in games and virtual worlds. Commun. ACM 51(8), 38–44.

Wegner, P. (1995). Interaction as a basis for empirical computer science. ACM Computing
Surveys 27(1), 45–48.

White, W., A. Demers, C. Koch, J. Gehrke, and R. Rajagopalan (2007). Scaling games to epic
proportions. Proceedings of the ACM SIGMOD international conference on Management of
data, 31.

White, W., B. Sowell, J. Gehrke, and A. Demers (2008). Declarative processing for computer
games. In Proceedings of the ACM SIGGRAPH symposium on Video games, pp. 23–30.

Wilcoxon, F. (1946). Individual comparisons of grouped data by ranking methods. Journal of
economic entomology 39(6), 269.

Yahyavi, A. and B. Kemme (2013). Peer-to-peer architectures for massively multiplayer online
games. ACM Computing Surveys 46(1), 1–51.

103

Part II

Research Papers

105

Paper I

Latency thresholds for usability in games:
A survey

107

Latency Thresholds for Usability in Games:
A Survey

Kjetil Raaen
Westerdals Oslo School of Art, Communication and Technology

Faculty of Technology
University of Oslo, Institute for Informatics

Simula Research Laboratory

Tor-Morten Grønli
Westerdals Oslo School of Art, Communication and Technology

Faculty of Technology

Abstract
User interactions in interactive applications are time critical operations;
late response will degrade the experience. Sensitivity to delay does
however vary greatly with between games. This paper surveys existing
literature on the specifics of this limitation. We find a classification
where games are grouped with others of roughly the same requirements.
In addition we find some numbers on how long latency is acceptable.
These numbers are however inconsistent between studies, indicating
inconsistent methodology or insufficient classification of games and
interactions. To improve classification, we suggest some changes.

In general, research is too sparse to draw any strong or statistically
significant conclusions. In some of the most time critical games, latency
seems to degrade the experience at about 50 ms.

1 Introduction
Whenever a human interacts with a computer, the computer could be said to run
an ”interactive application”. A user enters some input and the computer responds.
Word processors, spreadsheets and web-browsers are based on a workflow where the
user continuously enters input, and the system responds immediately. Conversely,
not all applications have this interaction as its central function. Simulations running
on supercomputers spend very little time interacting with the user, and most of
its time is spent doing calculations; these applications are often said to do ”batch
processing”.

Games are a class of applications that commonly requires significant amounts of
relatively fast interactions. They are also among the few applications where users
regularly measure and worry about latency since this has a high impact on gameplay.

This paper was presented at the NIK-2015 conference; see http://www.nik.no/.

This make games one of the most interesting categories of applications for studies
on delays.

Research has often focused on response time as a critical factor for quality of
experience (QoE) in networked games. This metric is equally relevant for local
games, but achieving sufficient response time is rarely a problem in this class of
applications. The dominating factor of response time in networked games and
interactive worlds are usually network latency; hence earlier work is mostly focused
on network metrics. Conversely in local games, lacking any communication, response
time is only bound by computation, which is a known factor when creating the game
and can thus be compensated for.

Data on acceptable latency in games, or on how player performance correlates
with latency is sparse in current literature. In some cases multiple papers cite the
same few sources of empirical data.

Work on improving latency of games often quote 100ms as acceptable latency
for fast-paced games, for example Raaen et al. 2012 [19]. Other types of games
are quoted with more lax latency requirements. Our goal is finding if this is
reasonable, or if there are other, better estimates. Games are very different in
how fast reactions are necessary to play the game effectively. It is reasonable to
assume that the response time they require depends on the speed of gameplay. The
primary goal of this paper is to investigate the field of latency in games through
a survey of existing literature. This will contribute to defining latency thresholds
from a theoretical perspective and can further be used in research projects aiming
to improve interactive applications.

2 Background
In any interactive application, there will be a delay between the time the user sends
input and the result appearing on screen. This delay is commonly termed ”input
lag”. If the computer communicates through a network, any communication over
this network takes time, called ”network latency” or simply ”latency”. Most players
typically use the term ”lag” for both types of delay. This can make complaints from
users somewhat ambiguous.

Types of Games
”Latency and player interaction in online games” [8] by Mark Claypool and Kajal
Claypool 2006), describes a whole set of game types and situations and recommend
latency limits, dividing games into three broad categories:

First Person Avatar Describes games where the player controls an avatar, and
the game is displayed from the point of view of that avatar, as if the player
sees ”through the eyes” of the avatar. The most common variant of this class
of game is the First Person Shooter (FPS)

Third Person Avatar These games are also based on a single avatar controlled by
the player, but the avatar is seen from the outside. The most studied variant
in this group is the Massive Multiplayer Online(MMO) game.

Omnipresent In these games, the player does not control a specific avatar, rather
multiple elements in a large game world. The most popular variant of this is
the Real Time Strategy (RTS) game.

It is assumed that each of these classes of games has different latency requirements.
The MMO genre is a particularly interesting case, and the games themselves as well
as the technology behind them have received significant attention from computer
scientists.

One of the main attractions of these games lies in the number of
players that participate in the game. The more players that are in
the game world, the more interactive, complex and attractive the game
environment will become. [22]

Though MMOs are technically the most technologically demanding, Claypool
does not place them in the most latency sensitive category.

Cloud Gaming vs. Client-Server
client-server games are all designed from the ground up to handle network latency,
deviation or displacement in phase timing and jitter (understood as irregular
variation). By employing various prediction techniques and allowing a looser
consistency in state between different players, these games will be able to alleviate,
or in some cases completely isolate, the players from the effects of latency. Some of
the most ubiquitous techniques are described in Bernier [4].

Initially, this paper describes the basic client-server case, where the client
transfers data to the server; the server does necessary processing and sends back
the result, which the client renders. However, strict adherence to the client-server
pattern is rare except in purely experimental games. By allowing the client to do
some calculations locally, feedback can be much quicker. Usually referred to as Client
Side prediction, this solution will, at its simplest, run exactly the same code on the
client as would run on the server. Whenever an update is received from the server,
client state is reverted to conform to this data. Furthermore, instant effects, such
as weapons firing, are executed immediately on the local client to give the player a
feeling of responsiveness. To allow players to hit where they aim, the system needs
to predict where other players are at a given moment, increasing complexity of the
system even further.

The emerging concept of cloud gaming represents ”Software as a Service” [21]
where the software is a game. Delivering games this way presents some unique
challenges, possibly including different requirements on the network latency. Latency
in a cloud gaming scenario will work differently than latency in a traditional client-
server game. Here, the client more closely resembles a traditional ”thin client”, which
simply forwards commands from the user to the server, and displays video from the
server. The cloud, or remote server, performs all game logic and rendering tasks.
In this scenario, requirements on client hardware will be very low. As tradeoff, the
requirements on the network link are significantly stricter. There are at least two
clear reasons for this. First, transferring high definition video requires significantly
higher throughput than simple control signals; secondly, none of the techniques
to alleviate network delay described above can be applied. Evaluations on these
requirements are scarce at the moment.

3 Findings
The goals of this study is to investigate the issue of latency in games based on
previous work and identify potential avenues for further empirical research on this
topic. In order to do this we surveyed the area, searching IEEE, ACM and Springer
databases, and selected papers were the title, keywords and abstract implied that
the research focused on acceptable latency limits. Further, we traced the actual data
presented in each paper to its original sources and included this paper. Filtering
of relevant papers were based on the criterion on empirical data about how players
react to latency in games. Table 1 list main contributors to the area. These are
further presented in the rest of this section.

Controlled Studies
The oldest paper in this survey [12] dates back to 2001. Running a FPS game-server
open to the Internet, the authors observe player behaviour and how this is affected
by network delay. Most players connecting to their server fall into the interval 50 ms
to 300 ms. Beyond this their only result relevant here is that players with delays
over 400 ms seem much more likely to leave immediately.

Panthel and Wolf [17] study racing games, claiming this to be the most sensitive
class of game. Using a setup with two identical machines, with controlled latency
between them, the authors run two very different experiments. First they set up
an identical starting position and perform identical actions on both sides, observing
discrepancies. In the games studied, this leads to both players seeing themselves
in the lead at the same time, even at the lowest tested latency of 100 ms. Next,
they allow players to play actual games under varying latencies to the server. They
find that the average player’s performance deteriorates first, at their lowest tested
latency of 50 ms. The beginners drive too slowly to notice this delay, while excellent
players are able to compensate for more latency. Performance of the excellent drivers
degrade sharply at 150 ms.

Perhaps the most cited paper in this study is ”Latency and player interaction in
online games” [8] by Claypool and Claypool. Most authors citing this paper simply
uses it as an explanation for setting acceptable limits to response times from the
system they are evaluating. The value 100ms is frequently quoted. Among these
are [6] which we discuss elsewhere in the literature review.

However, Claypool’s work and conclusions are much more nuanced, categorising
games based on how they interact with the player. The paper describes a whole set of
game types and situations and recommend latency limits. These limits are estimated
at 100ms for ”first person avatar” games, 500ms for ”third person avatar” games,
and 1000ms for ”omnipresent” games. Further, the authors analyse different actions
within each type of game. For each of these items, they have used empirical studies
showing how player performance varies with network latency. The commonly quoted
100ms figure is based on multiple types of actions in a first person avatar game, the
most latency-sensitive class of games according to this paper. It is important to
notice that 100ms represents a point where player performance already has dropped
off sharply from the previous data point 75ms. Because systems should be designed
to withstand worst-case scenarios, the design goal should be below 75 ms. This
paper is however mostly a secondary source, citing data from earlier work.

Though the 100ms estimate for ”first person avatar” games is usually given with
reference to [8], that study actually cites results from a paper by Beigbeder et al.

Table 1: Papers included in this study, the type of game studied and type of study.
Authors/Year Title Game Type Study Type
Henderson
2001 [12]

Latency and user behaviour on
a multiplayer game server.

FPS semi-
controlled
experiment

Panthel and
Wolf 2002 [17]

On the Impact of Delay on
Real-time Multiplayer Games

Racing
Game1

controlled
experiment

Armitage 2003
[2]

An experimental estimation
of latency sensitivity in
multiplayer Quake 3.

FPS observational
study

Sheldon et al.
2003 [20]

The effect of latency on user
performance in Warcraft III

RTS controlled
experiment

Beigbeder et al.
2004 [3]

The effects of loss and latency
on user performance in unreal
tournament 2003.

FPS controlled
experiment

Nicholas and
Claypool 2004
[16]

The Effects of Latency on
Online Madden NFL Football

Sports
game2

controlled
experiment

Quax et al.
2004 [18]

Objective and subjective
evaluation of the influence of
small amounts of delay and
jitter on a recent first person
shooter game.

FPS controlled
experiment

Fritch et al.
2005 [11]

The Effect of Latency and
Network Limitations on
MMORPGs

various semi-
controlled
experiment

Dick 2005 [10] Analysis of factors affecting
players’ performance and
perception in multiplayer
games.

MMO observational
study, con-
trolled
experiment

Claypool 2005
[7]

The effect of latency on user
performance in Real-Time
Strategy games

RTS controlled
experiment

Chen et al.
2006 [5]

On the Sensitivity of Online
Game Playing Time to Network
QoS.

MMO observational
study

Claypool and
Claypool 2010
[9]

Latency Can Kill: Precision
and Deadline in Online Games.

various controlled
experiment

Jarschel et al.
2011 [14]

An Evaluation of QoE in Cloud
Gaming Based on Subjective
Tests.

Cloud
Gaming

controlled
experiment

Amin et al.
2013 [1]

Assessing the impact of latency
and jitter on the perceived
quality of call of duty modern
warfare 2

FPS controlled
experiment

1 Racing games can be categorised as both first and third person avatar games.
2 Sports games are difficult to classify in Claypool’s model. Madden NFL Football

can be classified as third person avatar or omnipresent.

2004 [3], and the 2006 paper adds no new data, only analysis. Players are set in
front of computers running the game ”Unreal Tournament 2003” and given a set
of tasks. The widely quoted number seems to originate in an experiment where
shooting precision was tested. The experiment was run three times by two different
players at each latency level. Results from such an experiment are not sufficient to
draw any clear conclusions. Other factors were also analysed in this work, but are
of little statistical relevance due to the extremely low number of participants. Other
numbers cited in [8] are similarly from studies using an extremely low number of
participants.

For ”omnipresent” games, the most relevant data comes from ”The effect of
latency on user performance in Real-Time Strategy games”. Claypool [7], which in
turn uses most of the data from Sheldon et al. [20]. The papers do not establish any
clear threshold for latency in such games, simply concluding that 1000ms should
be completely safe. Splitting the games in different types of interaction receives
significant focus, but differences in skill levels of players are completely ignored. Only
two players participate in either study. For the last category of game, third person
avatar, the data comes from Fritch et al. [11], which evaluates the performance of
two players playing the game Everquest 2 under different conditions.

In ”Latency Can Kill: Precision and Deadline in Online Games” [9], Claypool
further elaborates on the categories of games and actions. Each action is described
by two parameters; deadline and precision. Deadline is the time an action takes
to complete, and precision is the accuracy needed by the player. To investigate
how sensitivity to latency varies with these two parameters, the authors modified a
game, Battle Zone capture the flag (BZFlag), so these parameters could be controlled
directly. Each scenario was then played out using computer controlled player avatars
called bots. They do not clearly justify that bots are an accurate model for how
human players react to latency, neither do they cite any research indicating that
this is the case. The hypothesis of a correlation between each of the variables and
latency sensitivity was supported, but not strongly.

Team sports games are played in a somewhat different manner to the others
mentioned here. Usually you have control of one character at a time, as in a third
person avatar game, but you switch character often, depending on who is most
involved in the action, as if in an omnipresent game. Nichols and Claypool [16]
study the sports game Madden NFL Football, and conclude that latencies as high
as 500 ms are not noticeable.

In [18], the authors set up a 12 player match of Unreal Tournament 2003 in
a controlled environment. Each player is assigned a specific amount of latency
and jitter for the duration of the match. After the match, the players answer a
questionnaire about their experience in the game. This study still uses relatively
few players, but they are able to conclude that 60ms of latency noticeably reduces
both performance and experience of this game. In contrast to [5], [18] finds no effects
of jitter. The most probable explanation for this is that jitter is handled well in this
game.

Amin et al. [1] also run controlled experiments, but use subjective measures on
the FPS game ”Call of Duty Modern Warfare 2”. Further, they graded participants
according to gaming experience. They conclude that the most experienced users are
not satisfied with latencies above 100 ms.

Observational Studies
Others have taken different approaches to determining acceptable latency for games.
Armitage [2] set up two different servers for the game Quake 3 and monitored the
latencies experienced by the players joining the servers. They assume that players
will only join servers which have acceptable latency. This methodology might give
insight as to how much latency players think is acceptable. However, the study does
not take into account which other servers are available, so the results will be heavily
influenced by the presence of lower latency servers or lack thereof. Additionally, the
latencies players think are acceptable might not be the same as the limit where their
performance degrades.

Another interesting approach is that of Chen et al. [5]. They examine an online
RPG, ShenZhou Online. By Claypool’s classification this game wold be a third
person avatar game, and hence be less sensitive to latency than the games discussed
earlier. Instead of using a controlled lab environment the authors chose to analyse
network traces from an existing, running game. They asked the question: ”Does
network QoS influence the duration of play sessions?” The Quality of Service (QoS)
factors they examined were packet loss, latency and jitter. They hypothesis was that
if the underlying network conditions affect the players negatively, it should show up
in the players’ enjoyment of the game, and hence their motivation to keep playing.

Between 45 and 75 ms RTT, the authors find a linear correlation between
increased latency and decreased game session length. For standard deviation
of latency, which would represent ”jitter”, the correlation is even stronger. At
extreme RTT values or extreme jitter the trend is reversed though, and the authors
surmise that there is a group of players who are used to bad connections, and
another group of players who keep the game on while not really paying attention.
These results indicate negative impact of latencies much lower than the 100ms
mentioned in earlier literature. Session length as indicator for player satisfaction
is an ingenious approach, but the chain of effect from network latency to session
length is complicated, and there is significant room for hidden variables.

Dick et al. [10] uses two separate methods to investigate the question.
International Telecommunication Union defines what they call an ”impairment
scale” [13], which defines a rating called ” Using the Mean Opinion Score (MOS) [13]
ratings, they ran an online survey asking people how much delay would cause each
level of impairment. Players reported they could play ”unpaired” at up to about
80 ms, and ”tolerable” at 120 ms for most games. Further, the authors ran a
controlled experiment testing different latencies. Their results show large differences
between games, with the most sensitive game ”Need for Speed Underground 2”
showing impairment even at the lowest tested delay of 50 ms.

Cloud Gaming
Latency in cloud gaming is much less studied than for networked games. Jarschel
et al.2011 [14] test players’ subjective experience of varying network latencies and
amount of packet loss in cloud gaming. Using a setup where the gameplay was
transferred over a network mimicking the cloud scenario, the authors introduced
the varying Quality of Service (QoS) parameters and asked their 48 participants
how they liked the service in each scenario. They concluded that a latency of 80ms
was noticeable in the fastest-paced game. In all games, packet loss in the stream
from server to client was extremely detrimental to the experience. However, their

conclusion can only be used to put an upper bound on latency sensitivity in cloud
gaming, because they conducted no experiments between latencies of 0ms and 80ms.

4 Discussion
Based on our review of the field and the findings retrieved from primary sources, we
further discuss the implications and general ideas that can be gained from current
research.

Limitations in the Classification
The game classification in [8] does not reflect the full spectrum of games, as games
in each type can have significantly different latency requirements. In the research
summarised in this article, conclusions about noticeable latency in third person
avatar games range from 45 ms [5] to over 500 ms [8]. Different games in the same
category have very different modes of interaction. Third person avatar games can
have very different ways of interaction with the environment. Some are 3D graphical
representations of very abstract game mechanics, where relative positions and timing
are almost irrelevant, while others are highly detailed simulations of realistic physics
where small changes in position and timing make for large changes in the outcome
of actions.

For first person avatar games, the differences are often in playing style. Some
games focus on tactical movement and cover (for example Metal Gear Solid), while
others rely purely on reaction time and precision motor skills (for example Unreal
Tournament). It is likely that the last category has stricter latency requirement
than the first. No studies found in this survey address these questions.

The distinction between these types of games is also blurred by the fact that
many games allow multiple points of view. Role playing games and racing games
commonly support both first person and third person view modes for the same game;
leaving it up to the user to decide.

Even the status of omnipresent games is not entirely clear. Some are clearly
slow-paced and highly strategic, but not all. The well known game Star Craft is one
of the most popular games in this category. The papers cited here all seem to agree
that this means it should not have strict latency requirements. However, this game
is played as a professional sport in parts of the world. In these matches players take
around 400 individual actions per minute. This equates to 150 ms per action [15].
A hypothesis that players playing on this level require latencies at least lower than
the time between actions would be interesting to investigate.

Types of Input
Users control games in very different ways. FPS and RPG games are sometimes
controlled with a handheld controller using analogue joysticks and buttons and in
other cases with a keyboard and mouse. Many games have support for both types
of input. None of the articles we have surveyed mention which type of input is
used, though it is more than likely that this affects the sensitivity of the game.
Other games may even have specialised control hardware, such as steering wheels
for racing games or digital, or arcade style, joysticks for retro games.

Skill Level
Different players might have different requirements; more skilled players will
probably notice latency earlier than amateurs, because they will be more aware of
details of the game. On the other hand, experienced players might also have more
experience in compensating for and dealing with latency while playing. Players who
are used to low latency might react sooner than those who usually play over high-
latency links and are used to this situation. None of the studies discussed so far
supply strong support for or reject such hypothesis.

Player Assumptions
Most games report latency to players during playing, and all allow for checking
this information. Only one source [10] attempts to compare player expectations to
their actual experience in games, and finds indications that they are very different.
Among the other studies, some partly measure player expectation, such as those
that measure session length and connection numbers to a running server. Others
attempt measuring the actual effects of latency, but none make it clear how they
avoid introducing effects of player expectation.

5 Conclusions and Future Work
This paper has investigated acceptable latency for games. Current research is
mostly inconclusive about latency requirements for networked games. In general,
it seems that 60 ms [18], or even 45 ms [5] are better estimates at how much
latency is acceptable in the most fast-paced games than the traditionally quoted
100ms value. Furthermore, there are no clear, consistent results available and
the diversity in game scenarios make comparisons challenging. Studies suffer from
uncontrolled environments or very limited numbers of participants. Studies using
both a controlled environment and a number of participants that is large enough to
do statistical analysis would do a lot to clarify the situation.

Towards a New Classification
Current classification of games is based on genre distinctions used in game design and
criticism. These distinctions do not map neatly to what we need to distinguish on a
technical level. Considering the limitations of the current classification of games, it
is clear that from a technical perspective an updated classification is required. Some
factors of this classification present themselves from the work surveyed here.

• Spatial precision describes how much precision in input affects the outcome of
an action. This can be the exact angle of the joystick or the distance moved
on a mouse.

• Temporal precision describes how much timing of user actions affects the
outcome of an action.

• Input type describes how users interact with the game, both in terms of physical
devices in use and how these devices control gameplay.

These parameters are not immediately obvious from looking at the game, but they
are objective results of the game code. Further research is required to establish
testing protocols for these parameters, as well as further elaboration of the model.

Cloud Gaming
Even in the most studied case of networked applications, conclusions are highly
diverging. Cloud gaming, the newer case, has barely been studied at all. Current
work also lack input from important fields such as neuropsychology in designing
the investigations. However, the topic of latency in games is relevant and will
influence potentially all games utilising some version of network-based interaction.
Therefore we suggest this area is worthy of future pursuit. Forthcoming research
would strongly benefit from being based in concrete prototype implementations, in
order to generate datasets for more precise conclusions.

References
[1] Amin, R., Jackson, F., Gilbert, J., Martin, J., and Shaw, T. Assessing

the Impact of Latency and Jitter on the Perceived Quality of Call of Duty
Modern Warfare 2. In Human-Computer Interaction. Users and Contexts of
Use, M. Kurosu, Ed., vol. 8006 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2013, pp. 97–106.

[2] Armitage, G. An experimental estimation of latency sensitivity in multiplayer
Quake 3. In The 11th IEEE International Conference on Networks 2003
ICON2003 (2003), IEEE, pp. 137–141.

[3] Beigbeder, T., Coughlan, R., Lusher, C., Plunkett, J., Agu, E.,
and Claypool, M. The effects of loss and latency on user performance in
unreal tournament 2003. In Proceedings of 3rd ACM SIGCOMM workshop on
Network and system support for games (New York, NY, USA, 2004), NetGames
’04, ACM, pp. 144–151.

[4] Bernier, Y. Latency compensating methods in client/server in-game protocol
design and optimization. Game Developers Conference 98033, 425 (2001).

[5] Chen, K.-t., Huang, P., Wang, G.-s., Huang, C.-y., and Lei, C.-l. On
the Sensitivity of Online Game Playing Time to Network QoS. Proceedings of
IEEE INFOCOM 2006 00, c (2006).

[6] Choy, S., Wong, B., Simon, G., and Rosenberg, C. The brewing storm in
cloud gaming: A measurement study on cloud to end-user latency. 2012 11th
Annual Workshop on Network and Systems Support for Games (NetGames)
(Nov. 2012), 1–6.

[7] Claypool, M. The effect of latency on user performance in Real-Time
Strategy games. Computer Networks 49, 1 (Sept. 2005), 52–70.

[8] Claypool, M., and Claypool, K. Latency and player interaction in online
games. 40–45.

[9] Claypool, M., and Claypool, K. Latency Can Kill : Precision and
Deadline in Online Games. Proceedings of the First ACM Multimedia Systems
Conference (2010).

[10] Dick, M., Wellnitz, O., and Wolf, L. Analysis of Factors Affecting
Players’ Performance and Perception in Multiplayer Games. In Proceedings of
4th ACM SIGCOMM Workshop on Network and System Support for Games
(New York, NY, USA, 2005), NetGames ’05, ACM, pp. 1–7.

[11] Fritsch, T., Ritter, H., and Schiller, J. The effect of latency and
network limitations on MMORPGs: a field study of everquest2. . . . 4th ACM
SIGCOMM workshop on Network . . . (2005).

[12] Henderson, T. Latency and User Behaviour on a Multiplayer Game Server.
In Networked Group Communication, J. Crowcroft and M. Hofmann, Eds.,
vol. 2233 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2001, pp. 1–13.

[13] International Telecommunication Union (ITU-T). Methods for the
subjective assessment of small impairments in audio systems BS Series.
Recommendation BS.1116-2 2 (2014).

[14] Jarschel, M., Schlosser, D., Scheuring, S., and Hoß feld, T.
An Evaluation of QoE in Cloud Gaming Based on Subjective Tests. 2011
Fifth International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing (June 2011), 330–335.

[15] Lewis, J., Trinh, P., and Kirsh, D. A corpus analysis of strategy video
game play in starcraft: Brood war. . . . of the 33rd annual conference of the . . .
(2011), 687–692.

[16] Nichols, J., and Claypool, M. The Effects of Latency on Online Madden
NFL Football. In Proceedings of the 14th International Workshop on Network
and Operating Systems Support for Digital Audio and Video (New York, NY,
USA, 2004), NOSSDAV ’04, ACM, pp. 146–151.

[17] Pantel, L., and Wolf, L. C. On the Impact of Delay on Real-time
Multiplayer Games. In Proceedings of the 12th International Workshop on
Network and Operating Systems Support for Digital Audio and Video (New
York, NY, USA, 2002), NOSSDAV ’02, ACM, pp. 23–29.

[18] Quax, P., Monsieurs, P., Lamotte, W., De Vleeschauwer, D., and
Degrande, N. Objective and subjective evaluation of the influence of small
amounts of delay and jitter on a recent first person shooter game. In Proceedings
of 3rd ACM SIGCOMM workshop on Network and system support for games
(New York, NY, USA, 2004), NetGames ’04, ACM, pp. 152–156.

[19] Raaen, K., Espeland, H., Stensland, H. K., Petlund, A., Halvorsen,
P., and Griwodz, C. LEARS: A Lockless, Relaxed-Atomicity State Model
for Parallel Execution of a Game Server Partition. 2012 41st International
Conference on Parallel Processing Workshops (Sept. 2012), 382–389.

[20] Sheldon, N., Girard, E., Borg, S., Claypool, M., and Agu, E. The
Effect of Latency on User Performance in Warcraft III. In Proceedings of the
2Nd Workshop on Network and System Support for Games (New York, NY,
USA, 2003), NetGames ’03, ACM, pp. 3–14.

[21] Vaquero, L. M., Rodero-merino, L., Caceres, J., and Lindner, M. A
Break in the Clouds : Towards a Cloud Definition. Computer Communication
Review 39, 1 (2009), 50–55.

[22] Yahyavi, A., and Kemme, B. Peer-to-peer architectures for massively
multiplayer online games. ACM Computing Surveys 46, 1 (Oct. 2013), 1–51.

Paper II

How much delay is there really in current
games?

121

How Much Delay Is There Really in Current Games?

Kjetil Raaen
Westerdals — Oslo School of Arts,

Communication and Technology
1325 Lysaker, Norway

Simula Research Laboratory
University of Oslo

raakje@westerdals.no

Andreas Petlund
Simula Research Laboratory

1325 Lysaker, Norway
apetlund@simula.no

ABSTRACT
All computer games present some delay between human in-
put and results being displayed on the screen, even when no
networking is involved. A well-balanced discussion of delay-
tolerance levels in computer games requires an understand-
ing of how much delay is added locally, as well as in the
network. This demonstration uses a typical gaming setup
wired to an oscilloscope to show how long the total, local
delay is. Participants may also bring their own computers
and games so they can measure delays in the games or other
software.
Results show that local delays constitute such a large

share of the total delay that that it should be considered
when studying the effects of delay in games, often far ex-
ceeding the network delay evaluated.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Benchmarking

General Terms
Measurement, Performance

Keywords
Games, interaction, delay, lag

1. INTRODUCTION
Researchers have worked on how delay influences players

in networked games for some years now [1, 3, 5, 8, 10, 14].
This work has traditionally focused on pure network delay
in multiplayer games. In these games, latency is somewhat
alleviated by locally echoing user actions without waiting
for server confirmation, as well as dead reckoning of other
players postitions [6]. Recently there has been a trend to-
wards studying delays in cloud gaming [11,13]. These delays
are somewhat different, because they occur directly between

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for
third-party components of this work must be honored. For all other uses,
contact the Owner/Author.

http://dx.doi.org/10.1145/2713168.2713188
MMSys ’15, Mar 18-20, 2015, Portland, OR, USA
Copyright 2015 ACM 978-1-4503-3351-1/15/03 ...$15.00.

the user’s input and the observed output. No techniques are
currently implemented to hide this latency.

What is lacking from from all these publications is a con-
sideration of the local system delay. All of these studies
report network latency. The network latency studied may
be from actual network conditions or artificially induced.
What is missing from the latency analysis are reports on
how much local delay is present in the test setup. Local de-
lay describes the time from a users sends an input until the
result is visible on screen, for actions that do not need to
traverse a network. Discussions on the influence of local la-
tency for the player tolerance and experience is also missing.
Such local latency can constitute a large part of the total
latency and vary considerably depending on the hardware
used and software configurations. Therefore, knowing what
share the network and local delays constitute is important
for a proper analysis of the effect of one of the components
on user experience.

The goal of this work is to investigate and demonstrate
how much total system lag is present in current computer
systems used for gaming. We will allow participants to mea-
sure delays in their own hardware and software. Further, we
propose a method for measuring such delay in experiments
seeking to quantify individual components of gaming delay.
Lastly, we will compare this delay to a similar setup using a
cloud gaming service instead of local rendering.

2. IMPORTANT COMPONENTS IN LOCAL
DELAY

Even in a local game with no networking, there is poten-
tial for delays at levels perceptible to humans, or affecting
human task performance. This section discusses the parts
of the pipeline that add most to the response delay in the
local system. Components in the pipeline from user input
to screen respones are to a large degree black boxes; docu-
mentation about how they work is often lacking. Thus, the
only way to evaluate these delays is by measuring.

2.1 Monitors
Screens used to display output add some delay, which can

be divided into two parts.

2.1.1 Monitor update
LCD screens receive and display updated images at a fixed

rate. This rate is termed screen refresh rate. Most mod-
ern screens update at 60 frames per second (FPS), or every
16.7 ms. Some screens specialised for gaming or other re-
sponse critical applications can update much faster.

Table 1: Some monitors and their response time.
Brand Type Response time
Apple Thunderbolt Display 12 ms [2]
Dell UltraSharp 24 8 ms [12]
Asus ROG SWIFT PG278Q 1 ms [4]

Frame&1& Frame&2& Frame&3&

Event&triggered& Results&rendering& Results&to&screen&

Figure 1: Timeline for events with double buffering.

2.1.2 Monitor response time
Monitors vary wildly in response time, that is the time

they take from one shade of grey to another, from 1 ms
for screens designed for gaming, to 12 ms for typical office
screens, see table 1 for some examples. The exact procedure
and color values for this test are not standardised, and it is
reasonable to assume that manufacturers choose the condi-
tions most favorable to their product.

2.2 Frame buffers
A frame buffer is memory used for holding a rendered

frame about to be displayed on the monitor. Modern games
use at least two frame buffers. To avoid showing unfinished
frames on the screen, drawing happens in one buffer, while
the other is being displayed. This practice is termed double
buffering. Further, to avoid showing parts of two different
buffers, it is common to wait for the next screen refresh be-
fore swapping. The terms vertical synchronization or vsynch
are used, because historically the swap was performed when
the electron beam was returned to the start of the frame, a
period of time called the vertical blanking interval.
When double buffering is used, rendering follows the se-

quence: An event from an input device is registered during
frame N, frame N+1 contains the result, and at the time of
frame N+2 the result is sent to screen, as shown in figure 1.
This gives a minimum of 1 full frame time from input event
to result on screen. At 60 FPS this adds up to a total of 17
- 33 ms delay. Many games have a target framerate of only
30 FPS. At this rate, the delay from screen refresh and frame
buffer pipeline is 33 - 67 ms. Further, not all hardware is
capable of keeping up with the target framerate at all times.
Slow hardware will lead to significantly longer delays.
An increased number of frame buffers in the pipeline will

increase this delay, because more steps are added between
rendering and displaying data. High system load from the
game itself or external tasks can lead to lower frame-rate,
and thus add to this number.

2.3 Input device latency
The best gaming equipment has tailor-made drivers that

have been tweaked for low latency performance. A good
gaming mouse may add ∼2 ms [15] to the latency. Devices
that are not made for gaming may add more.

Figure 2: Sketch of demo setup.

3. DEMO SETUP
Measuring delays between input and output accurately re-

quires a purpose-built setup. Previous, informal work as de-
scribed in section 5 measured delay by filming the screen and
a button with a high-speed camera while pushing the button
repeatedly. This approach has some limitations. First, it is
limited to the capture rate of the camera. Secondly, it is
difficult to judge exactly when the button was pushed, and
lastly it requires tedious manual work to analyse the videos.

3.1 Exact measurements
To get more exact results this demonstration will use an

oscilloscope to measure the timing difference, see figure 2.
The left most button is connected directly to the oscilloscope
using an additional wire from the switch. A photosensor is
held on the screen, and gives a signal when something bright
appear. These signals are fed to the two channels of the
oscilloscope. The participants find a dark place in the game.
Then can they trigger an in-game effect that lights up the
screen fast. Firing a weapon will in most games achieve this.
Participants can thus see the delay between the two evens
with high accuracy, by comparing the flank representing the
mouse click (yellow on figure 3) with the flank representing
change in light from the screen (blue on figure 3).

Our setup is independent of the hardware and software
used to play the game. This allows testing real, commercial
games, without modifying software or hardware. Results
will represent the sum total of all delays. Delay from the
input device, the game software, graphics card drivers, the
graphics card itself or the screen are all added up. Investi-
gating how much delay each part of the test system introduce
requires modifying the test system itself locking the demo
setup to one pre-modified testbed rig. We want participants
to be able to test the delay of computers they bring to the
setup to document the differences shown by a wide range of
setups.

3.2 Cloud games
To test cloud games, we will present exactly the same

setup, but participants play the game remotely through a
commercial cloud gaming service. In parallel we will also
show the network latency to the cloud gaming provider in
realtime, so participants can see how large proportion of the
delay is due to network latency. This part is contingent on
access to cloud gaming services at the venue of the demon-
stration.

Figure 3: Capture of trigger event. Yellow line rep-
resent output from the mouse, blue line represents
output from the photosensor. Both are active low.
The difference in time between the two flanks are
shown in green in the bottom-left corner of the os-
cilloscope screen.

4. PRELIMINARY RESULTS
To evaluate how well this setup works, and highlight how

the results can be useful, we ran some preliminary experi-
ments. For each condition we repeated the test 10 times, re-
porting minimum, maximum and average results. We used
only one system for the purposes of this demo, planning
a more exhaustive analysis of a wide range of systems in
future work. This system was a MacBook Pro (Retina, 15-
inch, Early 2013)1, running OSX for the rectangle demo and
Windows 7 for the game.
First, we ran a simple program that renders a rectan-

gle in OpenGL in response to mouse-clicks. We compare
this program running with and without vertical synchronisa-
tion. With vertical synchronisation it ran at about 60 FPS,
without vsync the framerate fluctuated between 400 and
700 FPS.
Next we ran the game Unreal Tournament 3 (UT3) and

timed a basic pistol shot, an event that is supposed to be
immediate. For this game we tested using three different
conditions. Firstly, we tested using default settings. These
had vsync off and a resolution of 1024 by 768. At these set-
tings the game ran at about 60 FPS. Then we simply turned
on vertical synchronisation and ran the experiment again,
now the framerate was stable at exactly 60 FPS. Lastly we
ran without vsync and with all settings optimised for faster
framerate. These kind of tweaks are popular with profes-
sional gamers. As we see in table 2, response time is highly
variable, even in the same game running on the same setup.
Average delays in UT3 vary from 33 ms to 95 ms depending
on the settings.

5. RELATED WORK
We have not been able to find any references to scientific

publications measuring the local system latency for games.

12.4 GHz Intel Core i7, 16 GB 1600 MHz DDR3, NVIDIA
GeForce GT 650M

Table 2: Results from experiments.
Experiment Avg. Min. Max.
Rectangle, vsync on 82 ms 73 ms 102 ms
Rectangle, vsync off 27 ms 21 ms 41 ms
UT3, default, vsync off 58 ms 52 ms 66 ms
UT3, default, vsync on 95 ms 79 ms 102 ms
UT3, optimised, vsync off 33 ms 23 ms 38 ms

The community for hardware component benchmarking and
game optimisation, however, have touched on the topic on
occasion.

Rendering Pipeline [15] finds values of between 76 ms and
112 ms for the game Half Life 2 using realistic settings.
Blur Busters, test multiple games [7]. They get results of
72–77 ms for Battlefield 4, 52–59 ms for Crysis 3 and 22 ms
to 40 ms for Counter Strike: Global Offense.

These numbers indicate that different games handle input
in very different ways. Also, we know that network delays as
low as 50 ms affects player performance in some games [9]. It
is therefore important to investigate how player performance
is affected by local delays of similar magnitudes.

6. CONCLUSIONS
When evaluating the effect of latency on the perceived

performance of game systems, it is important to consider
that the network delay is added to the delay of the local
system. Preliminary results from this demo show delays of
up to 100 ms. This shows that not only is the local delay at
the same order of magnitude as network delays, it might in
many cases be larger.

When discussing the tolerance levels for latency in net-
worked games, both cloud gaming and traditional games,
care should be taken to know the local delay as it may vary
greatly between platforms depending on both hardware and
software, in addition to software configuration.

This local latency may influence the measured tolerance
levels in QoE experiments and bias the numbers reported
as tolerance levels. It is therefore important that studies
of the effects of other types of delay measure the inherent
system delay when presenting numbers on how delays affect
players. We propose using the setup presented in this demo
to calibrate such experiments. Without such measurements
it is very difficult to compare results from different studies
on response time requirements.

In the future, we would like to investigate an array of
different games and hardware under varied conditions. This
will increase our understanding of delays in local gaming
systems, and could likely be important in related fields such
as Human-Computer Interaction (HCI).

Acknowledgements
The work in this paper was part-funded by the European
Community under its Seventh Framework Programme through
the Reducing Internet Transport Latency (RITE) project
(ICT-317700) and part funded by the Research Council of
Norway under the ”TimeIn” project (No: 213265). The
views expressed are solely those of the author(s).

7. REFERENCES

[1] Amin, R., Jackson, F., Gilbert, J., Martin, J.,
and Shaw, T. Assessing the Impact of Latency and
Jitter on the Perceived Quality of Call of Duty
Modern Warfare 2. In Human-Computer Interaction.
Users and Contexts of Use, M. Kurosu, Ed., vol. 8006
of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2013, pp. 97–106.

[2] Apple. Apple Thunderbolt Display.
https://www.apple.com/displays/specs.html.

[3] Armitage, G. An experimental estimation of latency
sensitivity in multiplayer Quake 3. In The 11th IEEE
International Conference on Networks 2003
ICON2003 (2003), IEEE, pp. 137–141.

[4] Asus. Asus ROG SWIFT PG278Q. http://www.asus.
com/Monitors/ROG_SWIFT_PG278Q/specifications/.

[5] Beigbeder, T., Coughlan, R., Lusher, C.,
Plunkett, J., Agu, E., and Claypool, M. The
effects of loss and latency on user performance in
unreal tournament 2003. In Proceedings of 3rd ACM
SIGCOMM workshop on Network and system support
for games (New York, NY, USA, 2004), NetGames
’04, ACM, pp. 144–151.

[6] Bernier, Y. Latency compensating methods in
client/server in-game protocol design and
optimization. Game Developers Conference 98033, 425
(2001).

[7] BlurBusters. Preview of NVIDIA G-SYNC.
http://www.blurbusters.com/gsync/preview2/.

[8] Claypool, M. The effect of latency on user
performance in Real-Time Strategy games. Computer
Networks 49, 1 (Sept. 2005), 52–70.

[9] Claypool, M., and Claypool, K. Latency and
player interaction in online games. 40–45.

[10] Claypool, M., and Claypool, K. Latency Can Kill
: Precision and Deadline in Online Games. Proceedings
of the First ACM Multimedia Systems Conference
(2010).

[11] Claypool, M., and Finkel, D. The Effects of
Latency on Player Performance in Cloud-based
Games. In NetGames 2014(in print) (2014).

[12] Dell. Dell UltraSharp 24 Ultra HD Monitor.
http://accessories.us.dell.com/sna/

productdetail.aspx?sku=860-BBCD.

[13] Jarschel, M., Schlosser, D., Scheuring, S., and
Hoß feld, T. An Evaluation of QoE in Cloud
Gaming Based on Subjective Tests. 2011 Fifth
International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing (June
2011), 330–335.

[14] Li, S., Chen, C., and Li, L. Evaluating the Latency
of Clients by Player Behaviors in Client-Server Based
Network Games. 2008 3rd International Conference on
Innovative Computing Information and Control
(2008), 375–375.

[15] Measuring Input Latency. Measuring Input
Latency. http://renderingpipeline.com/2013/09/
measuring-input-latency/.

Paper III

Measuring Latency in Virtual Reality
Systems

127

Measuring Latency in Virtual Reality Systems

Kjetil Raaen123, Ivar Kjellmo1

1Westerdals - Oslo School of Arts, Communication and Technology, Oslo, Norway
2Simula Research Laboratory, Bærum, Norway

3University of Oslo, Oslo, Norway

Keywords: Latency, Virtual Reality, Framerate, Mixed Reality

Abstract. Virtual Reality(VR) systems have the potential to revolu-
tionise how we interact with computers. However motion sickness and
discomfort are currently severely impeding the adoption. Traditionally
the focus of optimising VR systems have been on frame-rate. Delay
and frame-rate are however not equivalent. Latency may occur in sev-
eral steps in image processing, and a frame-rate measure only picks up
some of them. We have made an experimental setup to physically mea-
sure the actual delay from the user moves the head until the screen of
the VR device is updated. Our results show that while dedicated VR-
equipment had very low delay, smartphones are in general not ready for
VR-applications.

1 Introduction

The last years have seen a great increase in interest and popularity of Virtual
Reality (VR) solutions. Some are dedicated hardware made specifically for VR,
such as Oculus Rift. Others are Mobile VR solutions such as Samsung’s Gear
VR, HTC and Valves’ new Steam VR and even the simplified solution Google
Cardboard. Providing a stereoscopic view that moves with their head, these
systems give users an unprecedented visual immersion in the computer generated
world.

However, these systems all have in common the same potential problems
when it comes to motion sickness and discomfort when using the VR solutions[2].
An important source of these problems is delay. This paper presents an apparatus
for measuring delay as well as detailed measurements of delay in some popular
VR systems.

Frame-rate is a measurement of how fast frames are sent through the ren-
dering pipeline. Delay on the other hand defines the time it takes from a user
triggers an action, such as turning the head, until results are visible on screen.
Previous work by one of us[7] has, however indicate that there is no linear rela-
tionship between frame-rate and delay in traditional computer graphics setups.
From this, we assume that frame-rate is not the best metric. If VR solutions
work like other graphics output devices, there is a significant difference between
frame-rate measured inside an application and actual update speed.

2 Kjetil Raaen, Ivar Kjellmo

By using a light sensor and an oscilloscope we hope to measure the exact
delays in VR applications. Finding out how much delay there is in virtual reality
headsets would be helpful in when investigating the causes for motion sickness
in virtual worlds, as well as providing guidance to people producing software for
these systems.

2 Background

Previous research has suggested various methods for measuring delay in VR
systems all the way back to the previous VR-hype in the early nineties. Earlier
work has used cameras [6] or light sensors [8]. What they all have in common is
that they rely on a continuous, smooth movement of the tested devices. DiLuca
et al.[3] summarise a series of them, and suggest their own approach. Their
approach is the most elegant we have found so far.

2.1 Sources of delay

This section discusses the parts of the VR-pipeline that add most to the response
delay. Components in the pipeline from the time the user moves until displays
update are in general black boxes; documentation about how they work is often
lacking. Thus, the only way to evaluate these delays is by measuring.

Screens used to display output add some delay, which can be divided into
two parts: screen refresh and response time. LCD screens used in VR displays
receive and display updated images at a fixed rate. This rate is termed screen
refresh rate. Most modern screens update at 60 frames per second (FPS), or
every 16.7 ms. Response time denotes the time the physical pixels take to change
colour.

A frame buffer is memory used for holding a rendered frame about to be
displayed on the monitor or VR-display. Modern renderers use at least two frame
buffers. To avoid showing unfinished frames to the user, drawing happens in
one buffer, while the other is being displayed. This practice is termed double
buffering. Further, to avoid showing parts of two different buffers, it is common
to wait for the next screen refresh before swapping. When double buffering is
used, rendering follows the sequence: Assume frame 0 is the frame during which
an event from an input device is registered. Frame 1 contains the result of the
event, and at the time of frame 2 the result is sent to screen. This gives a
minimum of 1 full frame time from input event to result on screen.

At 60 FPS this adds up to a minimum of one frame delay (17 ms) to a maxi-
mum of two frames (33 ms) delay. Further, not all hardware is capable of keeping
up with the target frame-rate at all times. Slow hardware leads to significantly
longer delays. An increased number of frame buffers in the pipeline increases this
delay, because more steps are added between rendering and displaying data.

Dedicated VR equipment has tailor-made hardware and drivers that have
been tweaked for low latency performance. The gyros of smartphones on the
other hand are mainly intended for navigation or keeping the screen rotated the
correct way, neither of which require fast response time or high accuracy.

Measuring Latency in Virtual Reality Systems 3

2.2 Acceptable delay

Empirical values for how long delay is acceptable is difficult to find. Davis et
al. investigated a condition they term cybersickness[2] in analogy to motion
sickness. They consider a range of options for the cause of these problems, delay
among them. However they do not quantify delay that might lead to symptoms.
Jarods [5] concludes that people reacts very differently to latency. Some people
would hardly notice a 100 ms delay while other very sensitive people are able to
perceive down to 3-4ms of latency.

Most design guidelines and measurements reports are from developers and of
VR equipment and VR-software rather than scientists. John Carmack [1] states
that a latency of 50 ms feels responsive but the lag when moving in the virtual
world is noticeable. He recommends that latency should be under 20 ms. Neither
methodology or background numbers and test results are presented.

3 Experiment Setup

To measure response time after abrupt movements, we need the virtual reality
device to run a program that detects a small rotation and as fast as possi-
ble change the displayed picture. A simple program that detects rotation and
changes the displayed picture would create solve this problem. However, we are
interested in delays from actual 3D virtual reality software. Therefore we used a
popular game engine, Unity 3D1, and made a scene that creates abrupt changes
based on headset movement. We tested multiple VR devices. Oculus Rift is a
dedicated VR display solution, designed for this purpose. The other systems are
smartphones, which developers have discovered have all the required hardware
to run VR application and can also function as headsets.

The physical setup(fig 1) consists of the VR device (Oculus Rift, Smartphone
etc.) mounted on a camera tripod. One light sensor is attached to the screen
of the VR-device to register the virtual scene shifting from white to black. A
laser pen is also attached to the virtual device pointing at another light sensor
approx. one meter from the tripod setup. Both light sensors are connected to
an oscilloscope. When we move the VR device by turning the tripod, the light
sensor illuminated by the laser pen registers the disappearance of the light.
When the movement is detected, light sensor connected to the virtual device
screen measures the light shift from the white plane disappearing in the virtual
scene.

This allows us to measure the time from when the physical movement starts
until in movement is visible in the virtual scene. We measured 5-10 times on
each device and we present an average of the measured values.

The virtual setup running on the VR-device is a simple completely black
virtual 3D scene with a white self-illuminated plane and a virtual stereo camera.
The virtual camera is set up with normal VR movement controllers. For the mo-
bile phone setup the Durovis Dive SDK2 was used while for the Oculus rift setup
1 http://unity3d.com
2 http://www.durovis.com/sdk.html

4 Kjetil Raaen, Ivar Kjellmo

(a) Schematic drawing

(b) Photograph

Fig. 1: The Physical setup with the Oscilloscope (A), light sensor (B) attached
to Virtual device, Laser pen (C) and light sensor (D) picking up the laser.

the Oculus Rift SDK3 was used. This in order to set up a virtual reality scene
with an absolute minimum of content optimised for a highest possible frame-
rate, giving consistent values of multiple hundred frames per second and to use
the build in VR movement controllers. The OculusRift devices were connected
to a fast laptop4.

The virtual scene consists of a white plane on a black background. The camera
faces the white plane from a large distance and is set to a very narrow field of
view. The scene is tweaked so that the display is completely white initially.
Because of narrow field of view the camera is very sensitive to rotation. This
means that even a small rotation in the headset leads to the screen changing
colour from white to black, a change picked up by the light sensor.

4 Results and discussion

Measured delay is simply the time from the light sensor illuminated by the laser
changes from bright to dark until the light sensor attached to the screen reports
the same change. Table 1 shows the results from the systems we tested. Un-
surprisingly, the dedicated hardware has much faster response rate. Further, the
smartphones do not give developers access to control the vertical synchronisation
setting, and it seems from the numbers that it is always on.

For the dedicated VR displays, v-synch has a large effect on total delay. While
the Virtual scenes with V-sync off the frame-rate in the application was as high
as 3000 fps, the one with V-sync on would hold a steady frame-rate at 60 fps.

3 https://developer.oculus.com/
4 Windows 7, Intel i7 - 3740 QM CPU @ 2,70 ghz, NVIDIA Quadro K2000M - 2048
mb DDR3

Measuring Latency in Virtual Reality Systems 5

Turning off this feature introduces introduce visual artefacts, but reduces the
delay significantly. Without vertical synchronisation, these products can react
very fast. Smartphones on the other hand are much slower, with delays close to
100 ms for most models. The exception is the Samsung S5 which has a delay less
than 50ms. This result is similar to the Oculus Dev kit 2 with V-sync on. The
screen in the Samsung S5 is actually the same as in the Oculus Dev kit 2 and
the result confirms the similarity between the two devices.

These results come with some caveats. Despite our efforts, the rendered scene
might not turn instantly from white to black between one frame and the next.
Intermediate frames should show up as plateaus in the oscilloscope output, but
we cannot be completely sure the animated movement did not show a frame or
a few of parts of the white square. However, consistent results indicate that this
is unlikely.

Table 1: Results from delay measurements.
VR Display Avg. Min. Max.
Oculus Rift dev kit 1, v-sync ON 63 ms 58 ms 70 ms
Oculus Rift dev kit 1, v-sync OFF 14 ms 2 ms 22 ms
Oculus Rift dev kit 2, v-sync ON 41 ms 35 ms 45 ms
Oculus Rift dev kit 2, v-sync OFF 4 ms 2 ms 5 ms
Samsung Galaxy S4(GT-I9505) 96 ms 75 ms 111 ms
Samsung Galaxy S5 46 ms 37 ms 54 ms
iPhone 5s 78 ms 59 ms 96 ms
iPhone 6 78 ms 65 ms 91 ms

5 Conclusions and future work

We have presented a simple and precise solution for measuring delay in VR-
systems. In contrast to DiLuca’s [3] and other previous work, our system are
able to detect delays in instantaneous, jerky movements. Earlier systems have
generally relied on smooth, continuous movements, which are quite alien to a
real user in a chaotic game. Jerald finds in 2012 [4] that users are most sensi-
tive to delays when their movement changes direction. Current and future VR
technology often employ prediction to reduce delay during continuous motion,
which does work when motion changes. Thus, measuring delay for these sudden
movements produces results more aligned with the sensitivity of users. Our setup
does not require any modifications to the VR-systems to measure their delay,
and can thus easily be applied to new hardware as soon as it becomes available.

Regarding how short delay is good enough both developer guidelines and than
scientific papers mostly agree, placing ideal delay at less than 20 ms[4]. Even if
the numbers comes from a simulated environment it gives a quality study of
human perception when it comes to noticing latency.

With this in mind, it seems clear that the phones are too slow. Both of the lat-
est models of iPhone, as well as the older Samsung have latencies around 100 ms,

6 Kjetil Raaen, Ivar Kjellmo

which all sources agree is far too slow. The older phones are not designed to run
VR systems, but these results give us a picture of the difference of yesterday’s
standards and the present specifications needed for pleasant VR experiences on
mobil. In this picture the Samsung Galaxy S5 is closer to acceptable. Depending
on which limits you use, an average value of 46 ms is either barely acceptable
or somewhat too slow. However, Samsung markets some phones clearly as VR-
devices, such as Samsung Note 4 and the upcoming Samsung Note 5. These are
currently the only devices working with Gear VR, their new system for com-
bining phones with VR. Our results from the Galaxy S5 indicates that some
optimisations for VR are already included in this phone.

Oculus Rift in both versions respond extremely fast with v-synch off, fast
enough to satisfy most guidelines. With synchronisation on, on the other hand,
they are barely fast enough. The same guidelines that recommend 20 ms delay
also claim v-synch is important for user experience. We found no way of satisfying
both the delay requirement and the requirement to use vertical synchronisation
at once. Oculus Rift is advertised to contain a built in latency tester. We did
not find documentation on how to use the, nor did we find any description on
how it works. Comparing our results with the output of this hardware would be
interesting.

Development of new VR technologies, both dedicated and mobile, is pro-
gressing at a rapid pace these days, and not all the systems presented here will
be current by the time this paper is published. The experiment setup on the
other hand should be useable for any new system, and we hope to update our
data with new systems when they become available. Other factors influencing
user experience should also be studied in more detail, as well as their interaction
with delay.

References

1. Carmack, J. Latency Mitigation Strategies.
https://www.twentymilliseconds.com/post/latency-mitigation-strategies/, 2013.

2. Davis, S., Nesbitt, K., and Nalivaiko, E. A Systematic Review of Cybersick-
ness. In IE2014 (New York, NY, USA, 2014), IE2014, ACM.

3. Di Luca, M. New Method to Measure End-to-End Delay of Virtual Reality. Pres-
ence: Teleoperators and Virtual Environments 19, 6 (2010), 569–584.

4. Jerald, J., Whitton, M., and Brooks, F. P. Scene-Motion Thresholds During
Head Yaw for Immersive Virtual Environments.

5. Jerald, J. J. Scene-Motion- and Latency-Perception Thresholds for Head-Mounted
Displays. PhD thesis, 2009.

6. Kijima, R., and Ojika, T. Reflex HMD to compensate lag and correction of
derivative deformation. Proceedings IEEE Virtual Reality 2002 2002 (2002).

7. Raaen, K., and Petlund, A. How Much Delay Is There Really in Current Games
? ACM MMsys (2015), 2–5.

8. Swindells, C., Dill, J., and Booth, K. System lag tests for augmented and
virtual environments. Proceedings of the 13th annual ACM . . . 2 (2000), 161–170.

Paper IV

Can gamers detect cloud delay?

135

978-1-4799-6882-4/14/$31.00 c⃝2014 IEEE

Can gamers detect cloud delay?

Kjetil Raaen
Westerdals — Oslo School of Arts,
Communication and Technology

Faculty of Technology
Simula/University of Oslo

Email: raakje@westerdals.no

Ragnhild Eg
Simula Research Laboratory

1325 Lysaker, Norway
Email: rage@simula.no

Carsten Griwodz
Simula Research Laboratory

1325 Lysaker, Norway
University of Oslo

Email: griff@simula.no

Abstract—In many games, a win or a loss is not only contin-
gent on the speedy reaction of the players, but also on how fast
the game can react to them. From our ongoing project, we aim to
establish perceptual thresholds for visual delays that follow user
actions. In this first user study, we eliminated the complexities of
a real game and asked participants to adjust the delay between
the push of a button and a simple visual presentation. At the
most sensitive, our findings reveal that some perceive delays
below 40 ms. However, the median threshold suggests that motor-
visual delays are more likely than not to go undetected below
51-90 ms. These results will in future investigations be compared
to thresholds for more complex visual stimuli, and to thresholds
established from different experimental approaches.

I. INTRODUCTION

Games resemble real life in many ways, and players expect
them to behave like the physical world. There, most actions
we perform lead to instant reactions. Unfortunately, because
of technical restrictions, immediate results are impossible in
computer games. To study how we perceive these delays
between input actions and visual results, we apply work on
sensory interactions to current gaming shortcomings imposed
by network limitations.

Our sensory systems process many external stimuli at
the same time, but somewhere along the way they converge
and align to create a unified experience. For instance, in
many human-computer interactions, a button push and a visual
event have to coincide in order to ensure fluent operations.
Fortunately, they need not be in perfect synchrony. Humans
learn from experience what to expect following a familiar
action, moreover, the perceptual system can compensate for,
and even adapt to, short time displacements [1]. Causality is
an important factors in motor-visual interaction, if too much
time passes after an action, the delayed consequence may
be attributed to another event [2]. Online games introduce
concerns related to causality and anticipation, considering
that gamers expect immediate reactions from their actions.
Unfortunately, network limitations slow down the reaction
time, creating temporal delays between the motor and the
visual signals. Eventually, the delays become too long for the
perceptual system to compensate, and they become detectable.

Multiplayer games communicating over a network exhibit
two types of delay. Interface delay is the most critical, but
shortest, occurring between a user’s input and the resulting
visual presentation. Further, when games are played across a
network, information exchange between client and server, in
addition to processing on the server, introduces delays. This

type of network delay can extend to tens or even hundreds of
milliseconds, and developers strive to hide it using various
techniques [3]. Recently, a new way of delivering games
has gained popularity: Cloud gaming, the concept of running
the entire game remotely and using the local computer as
a dumb terminal. In this scenario, network delays appear
between input and output, and add to the interface delay.
Latency hiding techniques have become much more difficult to
implement, which highlights the importance of understanding
users’ basic latency tolerance and ability to detect it. Jarschel
and colleagues [4] ran a study on player sensitivity to latency
in cloud gaming, but their manipulations included no latencies
shorter than 80 ms. Because subjective quality of experience
was noticeably reduced at this value, their results emphasise
mainly how sensitive players are to fairly short delays.

Psychologists typically tackle their research questions us-
ing controlled experimental designs that heed statistical power.
On the other hand, game developers tend to use rules-of-thumb
and estimates based on experience when working to reduce lag
in networks and computational processes. In the study of real
game scenarios, stringent experimental methods with repeated
presentations could require participants to spend hours on a
single experiment. To circumvent this, earlier studies on in-
game delays have applied the experimental method to real
games, and have instead restricted the number of partici-
pants [5]. With a smaller pool of participants to average across,
generalisations come with a note of caution. Our motivation
is to empirically establish thresholds for detectable motor-
visual delays, and in this first step we explore their temporal
interaction in isolation.

II. EXPERIMENT DESIGN AND METHOD

We designed and conducted a behavioural experiment that
uses a button device and a simple visual stimulus, and we
ran it on standard computers1. The button devices are Griffin
click+spin USB controllers, or jog shuttles, which are designed
solely for button-pushes and left/right rotations2. The visual
stimuli consisted of a black disc on a white background that
would flash on or off in response to the button pushes. We
wanted to explore object size as an additional factor that
could shape the perceptual process. Thus we included both
a small and a large disc, with diameters of 20 and 200 pixels.

1HP Z200 (Intel Xeon X3430 CPU 4 cores@2533MHz, 8GB RAM) running
Windows 7 and connected to Acer AL1916W monitors with1440x900 screen
resolution and 60 Hz refresh rate

2http://store.griffintechnology.com/powermate

Fig. 1. Illustration of the experimental set-up with the USB controller placed
conveniently in front of the participant and the visual stimulus presented on
the monitor. The visual stimulus is here represented by a 20 pixel black disc.

At a viewing distance of 60 cm, these disc sizes correspond
to visual angles of 5.6◦ and 0.56◦, respectively. During the
experiment, a visual guideline in the form of a simplified clock
face helped participants keep track of rotations made with
the USB controller. An example of the experimental set-up is
visualised in Figure 1. The initial delay at which stimuli were
introduced varied between 200 ms, 300 ms, and 400 ms. Each
stimulus condition was repeated four times, so that participants
completed a total number of 24 trials, in addition to two
initial practice trials. The experiment took approximately 10-
15 minutes to complete, including an initial questionnaire
that assessed possible background variables, such as gaming
experience.

We recruited 13 female and 28 male volunteers, aged
between 19 and 43 years (mean = 24), and conducted the
experiment in a computer lab at the Norwegian School of
IT. Participants were instructed to click the knob of the USB
controller in order to make the disc presented on the monitor
flash on or off, and to rotate the controller when they wanted
to adjust the temporal delay between the push and the disc-
flash. The delay would change proportionally to the adjustment
angle. Because the controller provided no reference points,
participants were always unaware of the value of the delay
and the direction of their adjustments. Values for delay could
be adjusted from 0 to 500 ms; if adjusted past these extremes,
the values would gradually decrease or increase away from the
extreme. We emphasised that they could spend as much time
and make as many pushes and adjustments as they wanted.
When they were satisfied that they could no longer perceive
the temporal delay, they proceeded to the next trial by pressing
the spacebar.

An experimental set-up that depends on a computer system
is bound to be influenced by physical and computational
limitations. We highlight these limitations in order to explain
the precautions taken. First of all, the screen refresh rate of
60 Hz could introduce up to 16.7 ms visual lag. Assuming
a random distribution of clicks between screen updates, this
corresponds to an average of 8.3 ms delay. Clicks collected
by the USB controllers also have limited temporal resolutions,
the experiment machines polled these at a rate of 125 Hz. This
equals a maximum delay of 8 ms and an average of 4 ms.
In total, these uncertainties add up to 12.3 ms average and
24.7 ms maximum technical delay. An additional uncertainty
relates to the experimental task. A standard approach would

be to adjust delays continuously downwards, meaning that the
exact detection threshold could be surpassed. Accepted values
may therefore correspond to a point below the threshold. In
the worst case, our collected data may be uniformly distributed
over a region of imperceptible delays. Finally, the controller
rotations adjusted the delays at 25 ms increments, which leads
to a clustering of the collected data. These concerns are all
addressed in the interpretation and presentation of our findings.

III. RESULTS

In our study of the perception of motor-visual delays,
we designed and conducted an experiment where participants
adjusted the delay between a button-push and a visual disc
flash. We also explored the relationship between accepted
delay scores and the size of the presented disc, as well as
participants’ gaming experience.

Any initial delay value that participants accepted without
adjustments was categorised as an accidental accept; accidental
accepts were thus labelled as missing values and treated like
such for the main analyses. We also judged that participants
who made two or more of these accidents (corresponding
to approximately 5% of all trials) did not adhere to the
experimental procedures and we therefore excluded the data
from two participants from the analyses.

We explored potential effects with Wilcoxon signed rank-
sum tests, but found no significant differences in accepted
delays due to disc size (W = 660, n = 38, Z = 0.06, p > .5)
or to gaming experience (W = 89189, n = 893, Z =
−0.46, p => .3). However, we observed great differences in
task effort between participants, defined by the number times
they pushed the button. Using the number of button-pushes as
an estimate for the number of adjustments made, we ran a lin-
ear regression with a logarithmic fit. This revealed a significant,
but negative, relationship between task effort and accepted
delays (accepted delay = −19.96∗log(clicks)+118.14, R2 =
.04, p < .001). In other words, frequent adjustments led to
lower delay values. Furthermore, we found that experienced
gamers made significantly more adjustments than those with
less experience (W = 66254, n = 893, Z = −5.31, p < .001),
meaning that experienced gamers make more attempts than
less experienced gamers before finding an acceptable motor-
visual delay. Accordingly, we surmised that the accepted
delays depended in part on the number of adjustments made,
contributing to greater temporal sensitivity among those most
dedicated to the task. In light of this finding, we decided to
run separate analyses for the full participant group and for
the best-effort subgroup. The latter group was defined by their
average number of adjustments, and it includes all participants
who made more than the median number of 18 button-pushes
during a trial.

To establish detection thresholds for motoric-visual tempo-
ral delays, we plotted an empirical cumulative density distribu-
tion with all delay scores and then established the best-fitting
gamma distribution. From this distribution, we derived the 25th,
50th, and 75th percentiles. We did the same for the best-effort
sub group. The distributions and percentiles are portrayed in
Figure 2. When interpreting these results, keep in mind the
limitations outlined in section II. Notably, even when taking
these cautionary measures, the 25th and 50th thresholds still
fall below 100 ms.

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Accepted delay(ms)

D
el

ay
 s

co
re

 d
en

si
ty

.25

.50

.75

All participants
Best effort subgroup

All Participants Best Effort
25% 14 13
50% 39 33
75% 85 70

Fig. 2. Cumulative density of participants’ accepted delay scores plotted
with the best-fitting gamma distributions. The thresholds listed in the table
correspond to the 25th, 50th and 75th percentiles of the distributions.

IV. DISCUSSION

This work presents the first step in our studies of the
interplay between human actions and digital events, where we
aim to establish thresholds for detectable motor-visual delays.
The applicability of these perceptual thresholds is particularly
prominent in current challenges facing the gaming industry.

In our first venture, we explored the detectability of these
delays under the most ideal conditions, using simple, isolated
stimuli. We also considered individual differences, although we
found no correlation between gaming experience and accepted
delays. Similarly, we found no effect related to the size
of the visual object. Instead, our results showed that some
participants made more adjustments during a trial than others,
and this effort was reflected in decreased values for accepted
delays. Moreover, experienced gamers had a greater tendency
to make more adjustments than non-experienced gamers.

Because the experiment task allowed participants to adjust
delays below the actual point of detection, we prefer to err on
the side of caution. Our cautionary measures take into account
that the collected data could be uniformly distributed across
the individuals’ detection ranges, as well as the average 12 ms
delay added by our system.

When incorporating these limitations into our motor-visual
delay thresholds, we find that a small share of participants
cannot perceive visual lags shorter than 97-182 ms, while those
whose scores fall below the median are able to detect delays
around 51-90 ms. The most sensitive of our participants could
even perceive visual lags as short as 26-40 ms. Because of
the strong correlation between task-effort and accepted delay,
we included a separate analysis for participants who made
more adjustments than the median of 18. For this half of
participants, the median accepted delay lies between 45-78 ms.
Although these thresholds allow room for uncertainty, they
serve as guidelines to the sensitivity of the human perceptual
system when encountering motor-visual delays. Importantly,
they suggest that a large proportion of our participants can

easily perceive delays shorter than 100 ms. Moreover, for one
out of every four trials, our participants could even detect
delays below 40 ms.

In cloud gaming scenarios, all network latency appears
as interface latency. The presented experiment tackles this
temporal challenge using a button-device and a simple visual
presentation, and herein lies the most pronounced difference
between real-life cloud games and our experimental scenario.
Most games involve reactions to moving stimuli, and this
points the direction for our next step in the study of motor-
visual delay perception. For the time being, the isolation of the
motor-visual interaction allowed us to investigate how much
delay people can detect when they are at the most sensitive. By
presenting game developers with a lower bound for acceptable
motor-visual delays, we hope to introduce a level of confidence
in the development stage. Below the shortest of our established
thresholds, gamers are very unlikely to consciously experience
any visual lags. On the other hand, gaming performance may
still be negatively affected by imperceptible delays, which is
another issue we aim to address in future works.

V. CONCLUSIONS AND FUTURE DIRECTIONS

If our participants are representative of a larger population
of regular computer users, we can assume that half of these
individuals will have a difficult time tolerating services that
operate with up to 100 ms delay. At the most sensitive, some
of these people are also able to detect motor-visual delays as
short as 26-40 ms. Consequently, providers of cloud gaming
services should bear in mind that some of their players could
be very sensitive to the visual consequences of network latency.

With this foundation, we now have a scale of noticeable
delays to build our work on. In the next planned step, we
will compare experimental methodologies to ensure that the
established thresholds do not merely reflect the assigned task.
We also plan to apply more dynamic and more complex
stimuli, to explore whether this could alter the detection of
motor-visual delays. Our end objective is to conclude the
project with a fully operational game; this will build the
foundation for an investigation into the ability of game players’
to compensate for lags.

ACKNOWLEDGEMENTS

We acknowledge the valuable feedback provided by Pro-
fessors Mark Claypool, Pål Halvorsen, and Dawn Behne.

REFERENCES

[1] C. Stetson, X. Cui, P. R. Montague, and D. M. Eagleman, “Motor-sensory
recalibration leads to an illusory reversal of action and sensation.”
Neuron, vol. 51, no. 5, pp. 651–659, Sep. 2006.

[2] J. Heron, J. V. M. Hanson, and D. Whitaker, “Effect before cause:
Supramodal recalibration of sensorimotor timing,” PloS One, vol. 4,
no. 11, p. e7681, Jan. 2009.

[3] Y. Bernier, “Latency compensating methods in client/server in-game
protocol design and optimization,” Game Developers Conference, vol.
98033, no. 425, Mar. 2001.

[4] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “An Evaluation
of QoE in Cloud Gaming Based on Subjective Tests,” Innovative Mobile
and Internet Services in Ubiquitous Computing, pp. 330–335, Jun. 2011.

[5] M. Claypool and K. Claypool, “Latency and Player Actions in Online
Games,” Communications of the ACM, vol. 49, no. 11, pp. 40–45, Nov.
2005.

Paper V

Instantaneous human-computer
interactions: Button causes and screen
effects

141

Instantaneous human-computer interactions:
Button causes and screen effects

Kjetil Raaen123 and Ragnhild Eg1

Westerdals - Oslo School of Arts, Communication and Technology, Oslo, Norway
Simula Research Laboratory, Bærum, Norway

University of Oslo, Oslo, Norway

Abstract. Many human-computer interactions are highly time-depen-
dent, which means that an effect should follow a cause without delay. In
this work, we explore how much time can pass between a cause and its ef-
fect without jeopardising the subjective perception of instantaneity. We
ran two experiments that involve the same simple interaction: A click
of a button causes a spinning disc to change its direction of rotation,
following a variable delay. In our adjustment experiment, we asked par-
ticipants to adjust the delay directly, but without numerical references,
using repeated attempts to achieve a value as close to zero as possible. In
the discrimination task, participants made judgements on whether the
single rotation change happened immediately following the button-click,
or after a delay. The derived thresholds revealed a marked difference be-
tween the two experimental approaches, participants could adjust delays
down to a median of 40 ms, whereas the discrimination mid-point cor-
responded to 148 ms. This difference could possibly be an artefact of
separate strategies adapted by participants for the two tasks. Alterna-
tively, repeated presentations may make people more sensitive to delays,
or provide them with additional information to base their judgements
on. In either case, we have found that humans are capable of perceiving
very short temporal delays, and these empirical results provide useful
guidelines for future designs of time-critical interactions.

1 Introduction

Several of our work and after-work hours are spent typing and clicking with keys
and buttons to tell a machine what to show on a screen. Sometimes, we don’t
pay much attention to the swiftness of the visual presentation; yet at times,
we want the input to lead to instant results. However, due to screen refresh
intervals, buffering and sometimes network stalls, our actions are not always
immediately followed by the expected outcomes. The extent and acceptability of
an outcome delay is highly context-dependent. In human-computer interactions,

2 Kjetil Raaen and Ragnhild Eg

the responsiveness of a system can vary from a few milliseconds to a few seconds.
Seow separates between four categories of responsiveness [1], labelling the slowest
interactions flow and continuous; both of these exceed one second. Somewhat
faster are immediate responses, which range from half a second to one second,
and the fastest are termed instantaneous. The latter category is recommended
for graphical controls and other interactions that mimic the physical world, but
the thresholds are only estimated to be between 100 and 200 ms. While delays
shorter than 100 ms may be imperceptible, they can still affect user performance,
for instance through increased stress levels [2]. This work sets out to establish
empirical values for how fast an outcome must follow an input in order for a user
to perceive it as instantaneous.

1.1 Interaction delays and sensory processes

Humans are very adept at handling and acting on objects, facilitated by both the
motoric and the visual systems, along with other inputs. Sense of agency refers
to the experience of being the direct cause of an event, and this term encom-
passes the expected delays that follow many actions [3]. Indeed, one study found
that participants maintained the sense of agency from a joystick controlling the
movements of an image for intervals as long as 700 ms [4]. This type of delay can
approximate those found that follow real physical events, where consequences
are stalled by the time taken to traverse a distance. However, many human-
computer interactions involve series of inputs and outputs and these require far
more speedy reactions. Whether typing in text, shooting at moving targets, or
moving a cursor across the screen, most users expect instantaneous responses
from the system. The higher demands for this type of human-computer interac-
tion is emphasised by the findings of an experiment that compare the temporal
boundaries for the sense of agency and the sense of simultaneity [5]. Participants
were asked to push a button and watch for a visual flash, then make a judge-
ment on the simultaneity of the events, or on the event serving as the agent.
On average, the button-push was perceived as the agent as long as the visual
flash did not lag by more than ≈400 ms; conversely, the two events were judged
as simultaneous, at greater than chance rates, when the flash delay stayed be-
low ≈250 ms [5]. In fast-paced game scenarios, similar delays become noticeable
to players around 100 ms, and these can be detrimental to the gaming experi-
ence [6,7]. Furthermore, mouse actions that require pointing and dragging have
been found to be even more sensitive to temporal delays [8]. Still, humans are ca-
pable of adapting to fairly long temporal delays (235 ms) between movements of
a mouse and movements on a screen, although this becomes increasingly difficult
as the visual task speeds up [9].

Clearly, instantaneous and simultaneous are not synonymous with zero delay,
a computational impossibility. Yet, these and similar human-computer interac-
tions place strong demands for speedy responses on a system. Moreover, studies

Title Suppressed Due to Excessive Length 3

on multisensory and sensorimotor processes have demonstrated that the human
perceptual system is adaptable and quite capable of compensating for short tem-
poral offsets between corresponding signals [5,10,11,12]. In our quest to find out
exactly how much visual lag the perceptual system can compensate for following
a motoric input, we have run a series of behavioural experiments on motor-visual
delays. Our initial investigations involved direct delay adjustments using a jog-
shuttle, with the corresponding visual event presented as disc that flashed on
or off on a screen [13]. This approach allowed participants to repeatedly test
and adjust the delay by turning the wheel and clicking the button of the jog-
shuttle. Results from this experiment revealed that people vary greatly in their
sensitivity to this type of delay, but the established median threshold was still
far lower than expected at 39 ms. Adding system limitations to this value, our
first investigation concluded that humans are on average capable of perceiving
motor-visual delays as short as 51-90 ms.

1.2 Discrimination and adjustment of delays

This study continues our investigations into human sensitivity to motor-visual
delays. It addresses the question on the appropriateness of our initial experi-
mental approach and puts it back to back with a more traditional approach.
Hence, we compare thresholds derived from two distinct methodologies, aim-
ing for a more expansive range of data to generalise from. Because our first
paradigm [13] allows participants some leeway to get results lower than they
can actually percieve, we selected an isolated experimental task that relies on
subjective discrimination and a binomial response selection. The simultaneity
judgement task is a common methdology in multisensory research [5,10,12], and
like the name implies, it involves a judgement call on the simultaneity of two
signals. In our version of this task, participants are asked to discriminate be-
tween a motoric input and a visual output and make a judgement on whether
the output followed immediately or whether it was delayed. Our comparison of
delay thresholds established from two different methodologies thus forms the
basis for an ongoing discussion around the use of less traditional experimental
methods. Furthermore, we build on our earlier experiment where the motoric
input, the button-click, resulted in the appearance or disappearance of a black
disc [13]. Thus, we extend our work by adding dynamics to the previously static
presentation. In the two current experiments, the visual presentation is made
up of a black disc that rotates continuously at a steady pace. Moreover, bearing
in mind that fast visual presentations can affect performance on these types of
tasks [9], we include two speeds of rotation. By doing so, we explore whether the
speed of motion can influence not only performance, but also the sensitivity to
motor-visual delays.

4 Kjetil Raaen and Ragnhild Eg

Fig. 1: Illustration of the experimental set-up.

2 Method

We explored subjective sensitivity to temporal delays between motor inputs and
visual outputs in two repeated-measures experiments. The first experiment ap-
plied the described adjustment task, extending on our earlier work by replacing
the static visual stimulus with a rotating disc. The second experiment encom-
passed the same visual presentation, but introduced a variation of the more
common simultaneity judgement task [5,12,10], hereafter referred to as the dis-
crimination task. We ran the two experiments over one session in a computer
lab at Westerdals, with the order of presentation counterbalanced across our 10
female and 41 male participants (aged between 19 and 33 years).

We aimed to keep conditions as comparable as possible across the experiments,
allowing for a direct comparison between the two methodologies. We therefore
used the same visual stimulus throughout, simply a black disc moving in a contin-
uous circle. The experiments ran on MacBook Pro computers with 15.4" mon-
itors and participants’ adjustments and responses were registered using Grif-
fin click+spin USB controllers1. These are simple controllers called jog-shuttles,
comprised of a big click-button that also serves a rotating wheel. In both ex-
periments, the button served as a trigger to change the direction of the disc’s
rotation, as portrayed in figure 1. The disc rotated either slowly or quickly (0.2
or 1 revolution/second), with the speed of rotation varying randomly from trial
to trial; the initial direction of rotation was also randomised across trials.

1 http:/store.griffintechnology.com/powermate

Title Suppressed Due to Excessive Length 5

2.1 Adjustment experiment

For the adjustment experiment, each trial commenced with an initial delay (100,
200, 300, or 400 ms). Participants were instructed to push the button on the jog-
shuttle to change the direction of rotation and turn the wheel to adjust the delay
between their push and the visual change. Due to the lack of reference points,
participants were always unaware of the physical value of the delay; however, a
clock-face served as a visual cue for the full range of delays. The task involved
repeated adjustments and tests of the motor-visual delay, using the jog-shuttle,
until the visual presentation was perceived to follow the motoric input instan-
taneously. Participants were allowed to spend as long as they wanted on each
trial, but they had to make a minimum of ten button-clicks before proceeding
to the next trial. Each trial therefore involved a series of wheel rotations and
button-clicks before reaching the point of no delay, in a sequence illustrated in
figure 2. With four levels of initial delay, two levels of rotation speed and two
levels of rotation direction, along with two repetitions of all conditions, the full
adjustment experiment included 32 trials and took approximately 10 minutes to
complete.

2.2 Discrimination experiment

In the discrimination experiment, each trial involved a single button-click with
a corresponding change in the direction of rotation. The delay between the click
and the directional change varied randomly between 11 pre-established values
(0, 20, 40, 60, 80, 100, 140, 180, 220, 260, and 300 ms). We asked participants
to click button and pay close attention to the visual change. They were there-
after prompted for a judgement on the simultaneity of the motor and the visual
events. Participants provided their responses by turning the wheel left or right
to choose either the ”immediate” or the ”delayed” response options. We included
four repetitions of all delay, direction and speed conditions, making a total of 176
experimental trials. With the short trial presentations, the experiment duration
was on average 12 minutes.

2.3 Limitations

Our methodologies carry with them a few limitations. Even without system or
network lags, computers will always introduce some delay in any interaction.
These values are largely disregarded in the literature because they cannot be
controlled in an experimental set-up. Although a computer’s internal system does
not have the functionality to calculate the total duration between user input and
screen output, we have applied an external set-up to measure this delay. Using

6 Kjetil Raaen and Ragnhild Eg

Click button to
change direction
of rotation

Observe the
rotating disc Evaluate delay

between click and
rotation change

Twist button to
adjust delay

Experimental task:
Continue with

adjustments, button-
clicks and assessments
until delay cannot be

detected. Accept current
delay and proceed to

next trial.
	

(t)

Evaluate delay

Twist button to
adjust delay

Observe disc

Observe disc

Click button to
change direction
of rotation

(t)

Fig. 2: Circular timeline illustrating the experimental procedure for the adjust-
ment experiment. The experiment starts with an initial push of the button and
a delayed change in rotation direction and it continues for as long as it takes the
participant to adjust the delay down to an imperceptible level.

a light sensor on the screen and an extra connector to the button, we performed
10 measurements and obtained an average input-output delay of 51 ms, this
procedure is described in more detail in [14]. We report all scores and thresholds
without adding this delay, in order to allow for comparisons with earlier studies in
the field. However, this number should be kept in mind for a better representation
of the human ability to detect motor-visual delays. Moreover, adding this delay
to our results also improves the ground for comparison with findings from studies
that make use of purpose-built experiment hardware.

Title Suppressed Due to Excessive Length 7

3 Results

We initially treated data from the two experiments separately. For every factor
and delay level, we calculated each participant’s mean and then derived the 50th

percentile threshold from their individual distributions. This statistical approach
did result in thresholds that exceeded the presented delay values, but only for a
few individuals who likely have high tolerance to these types of delay. Further-
more, we took the precaution of checking for outliers based on the discrimination
task distributions. For the vast majority of participants, the rate of ”immediate”
responses decreased as delays increased. However, one participant’s scores were
discarded because the rate of ”immediate” responses increased alongside the de-
lay values, yielding a negative threshold value.

3.1 Adjustment task

We ran two Wilcoxon signed rank-sum tests to investigate potential variations
in delay sensitivity between the two initial disc rotation directions and the two
disc rotation speeds, we also ran a Friedman test to explore differences due to
the initial delay values. None of the tests revealed significant differences between
the conditions. Following this, we collapsed scores across presentation modes and
established the overall median threshold for adjusted delays to 40 ms. The 25th,
50th and 75th percentile thresholds are presented as an empirical cumulative
distribution in figure 3. With our motivation to evaluate the appropriateness
of two distinct experimental methodologies, we also established the mode value
for delay adjustments from the density plot presented in figure 5a. From this
distribution, we found that the mode falls around 30 ms, a lower value than
the median threshold. Furthermore, we observed an asymmetrical distribution,
where the majority of scores centered around the mode, but a long tail of delay
scores extended close to 400 ms.

3.2 Discrimination task

For the discrimination scores, we derived a best-fit logistic regression model, see
figure 4. Running another two Wilcoxon signed rank-sum tests, we found no
significant differences between the rotation directions and the rotation speeds.
Hence, we collapsed scores across presentation modes and established the dis-
crimination threshold from the mid-point between ”immediate” and ”delayed”
responses, at 148 ms. As before, we established the mode value for the dis-
crimination mid-points from their density plot, which is illustrated in figure 5b.
Again the mode yielded a lower value than the median, this time it approximated
121 ms. The distribution showed a wide dispersion of scores around the mode,
along with a long tail that ran to the end of the experimental range of 500 ms.

8 Kjetil Raaen and Ragnhild Eg

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cumulative density

Accepted delay(ms)

D
el

ay
 s

co
re

 d
en

si
ty

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●●●

25 percentile = 15.00

median = 40.00

75 percentile = 85.00

Fig. 3: Individual adjusted delay scores plotted as an empirical cumulative den-
sity distribution. The x-axis shows participants’ final accepted delay score and
the y-axis corresponds to the proportion of scores that fall within defined range.

3.3 Comparison of experimental methodologies

Running a Wilcoxon signed rank-sum test, we settled that the striking differ-
ence between the mid-point thresholds established from the two methodologies
is statistically significant (W(49)=1871, p<0.001). While the median for the ad-
justed delay scores came to 40 ms, the corresponding median for discrimination
mid-points was more than 100 ms higher at 148 ms. The same difference was
evident for the mode values, established at 30 ms and 121 ms, respectively. Fur-
thermore, scores varied greatly across participants in both experiments. Yet, the
wider dispersion of the density plot for discrimination mid-points suggests more
individual variation for this task compared to the adjustment task.

4 Discussion

In this work, we have addressed the question on human sensitivity to motor-
visual delays. This question has been considered by others before us, in the broad
context of human-computer interactions [1], but also for fundemental multisen-
sory processes [4,5,11] and for game-specific scenarios [6,7]. We followed up this
body of work with a study that explored isolated motor-visual interactions, fo-
cusing on the lower range of delay values. We set out to extend on our ongoing

Title Suppressed Due to Excessive Length 9

●

●
●

●

●

●

●

●

●

●

●

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Discrimination task

Presented delay

R
el

at
iv

e
fr

eq
ue

nc
y

"im
m

ed
ia

te
"

148.26

Fig. 4: The best-fitting logistic regression line with the proportion of participants’
”immediate” responses plotted as a function of presented motor-visual delays.

innvestigations by introducing dynamic visual stimuli. Furthermore, we sought
to assess the generalisibility of results from our adjustment experiment.

In contrast to the higher ranges of motor-visual delays explored by others on
this topic [1,4,9], we found that humans are capable of perceiving delays shorter
than 100 ms. The thresholds derived from our adjustment experiment indicate
that approximately half of the motor-visual adjustments yielded values equal to
or below 40 ms, while a quarter of adjustment values fell around or below 15 ms.
Keeping in mind that delays related to internal processes are often overlooked,
we emphasise that these thresholds are under-estimates of the true delay. By
adding the measured system delay to our results (outlined in section 2.3), we
include all known sources of delay. Thus we present our most representative
thresholds, the 25th, 50th and 75th percentiles at 66 ms, 91 ms and 136 ms.

From our comparison of the two experimental procedures, we found that the
discrimination experiment’s mid-point was more than 100 ms greater than the
adjustment experiment’s median. With this marked difference, how do we deem
which one is more representative of human delay sensitivity? The answer may lie

10 Kjetil Raaen and Ragnhild Eg

0 100 200 300 400 500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Adjustment task

Delay (ms)

D
en

si
ty

29.53

(a) Density plot of each participant’s me-
dian accepted delay in the adjustment task.

0 100 200 300 400 500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Discrimination task

Delay (ms)
D

en
si

ty

121.09

(b) Density plot of each participant’s mid-
point in the discrimination task.

Fig. 5: Subjective delay thresholds presented as density plots

in the context. A short delay can be difficult to perceive with just a single pre-
sentation, whereas repeated exposures provide several temporal reference points.
Moreover, the discrimination task calls for a simple decision on the precense or
absence of delay, whereas the adjustment task rests on the premise that there
is a delay present and this should be adjusted down. Hence, the adjustment
task dictates engagement from participants and it provides ample opportunity
to move past points of uncertainty. On the other hand, the repetitive nature of
the adjustment task could also allow participants to adapt a personal strategy
to minimise the accepted delay. We observed examples of participants clicking
the button quickly and steadily, making the disc bounce back and forth, so they
could more easily judge the delay following the click. Relatedly, the repeated ad-
justments could give way for accepted delay values that fall below the subjective
detection thresholds. If a participant manages to find two detection thresholds,
one on either side of point zero, they could theoretically turn the wheel midway
between the thresholds and accept a value very close to zero. Nevertheless, even
when assuming that all pariticpants have adopted such a strategy, the extended
range of delay values still fall below the discrimination threshold [13].

Furthermore, the adjustment experiment demonstrates internal validity from
the constancy of the derived thresholds. We ran the first experiment with a
static visual presentation and a 20 ms temporal resolution on the adjustment
wheel. This time we introduced a moving visual presentation and we increased
the temporal resolution for adjustments, before we ran the experiment on a new
group of participants. Despite the changes, the 25th, 50th and 75th percentiles are
virtually identical across the two adjustment experiments. Although there is no

Title Suppressed Due to Excessive Length 11

ground for a similar comparison for the discrimination experiment, the density
plots in figure 5 show a wider dispersion of subjective thresholds. Accordingly,
the task of judging immediacy and delay had our participants accept higher
delay values than they could adjust for, and they made their judgements with
less consistency. As before, this outcome may be an artefact of strategies adopted
by participants. Despite this note of warning, we find it remarkable that several
of our participants are capable of manually tuning the motor-visual delays down
to values below 100 ms, and do so repeatedly and congruously.

Many human-computer interactions involve more than a single, delayed output.
Ongoing tasks that are carried out using a computer tend to involve series of
inputs and outputs, similar to our adjustment task. Arguably, the adjustment
experiment may be more representative of the scenarios we are interested in.
However, what we perceive may not necessarily affect how we perform. In order to
understand how motor-visual delays influence not only the conscious experience,
but also the interaction itself, we need to evaluate the ability to compensate for
delays when performing a task. Thus, we plan to apply the derived range of
subjective thresholds, which covers a fairly large sample’s sensitiviy to motor-
visual delays, to the study of performance on motor-visual tasks. In so doing,
we aim to shed more light on which experimental approach provides the most
representative estimate of motor-visual temporal sensitivity, and we hope to find
out whether perceptible and imperceptible delays can affect performance.

5 Concluding remarks and future work

This study presents findings on human sensitivity to delays between a button-
click and a visual presentation, which show that repeated motor-visual interac-
tions can make inherent delays more noticeable. Our results also demonstrate
that the dynamics of a visual presentation has little impact on the perceived de-
lay that precedes it. Instead, variations are far greater between individuals. The
most sensitive of our participants contributed to establish the 25th percentile
at 15 ms, or 66 ms when adding internal system delays. Considering that the
median also falls below 100 ms, these outcomes speak in favour of designing
interactive systems with very fast responses. Ideally, no user should be able to
notice delays during interactions with a computer and the presented thresholds
highlight the challenge of meeting these demands.

So far, our investigations have focused on universal thresholds for motor-visual
delay sensitivity. Our work shows that this sensitivity varies greatly between
individuals, and we wish to explore potential factors that could influence the
subjective perception of temporal delays. In particular, we plan to look into
earlier encounters with highly time-dependent processes, such as gaming and
musical experience. Additionally, some of the work on motor-visual delay ad-

12 Kjetil Raaen and Ragnhild Eg

dresses the relevant scenarios directly; for instance, the work of Claypool and
colleagues focus on delay in real games [6]. Conversely, we commenced our in-
vestigations with simple and isolated motor-visual interactions. In this work, we
have extended on our earlier study and added dynamics to the previously static
visual presentation. This had very little influence on the derived thresholds for
the delay adjustment task. The final step in our on-going work will be to apply
motor-visual delays to an interactive task, a simple game, to explore whether
task performance is affected by barely noticeable delays.

References

1. S. C. Seow, Designing and Engineering Time. Addison-Wesley, 2008.
2. K.-T. Chen and C.-L. Lei, “Are all games equally cloud-gaming-friendly? An elec-

tromyographic approach,” Proceedings of the 11th Annual Workshop on Network
and Systems Support for Games (NetGames), pp. 1–6, Nov. 2012.

3. P. Haggard and V. Chambon, “Sense of agency,” Current Biology, vol. 22, no. 10,
pp. R390–R392, May 2012.

4. J. P. Ebert and D. M. Wegner, “Time warp: authorship shapes the perceived timing
of actions and events,” Consciousness and Cognition, vol. 19, no. 1, pp. 481–489,
Mar. 2010.

5. M. Rohde, M. Scheller, and M. O. Ernst, “Effects can precede their cause in the
sense of agency.” Neuropsychologia, vol. 65, pp. 191–196, Dec. 2014.

6. M. Claypool and K. Claypool, “Latency and player interaction in online games,”
vol. 49, no. 11, pp. 40–45, 2006.

7. M. Dick, O. Wellnitz, and L. Wolf, “Analysis of factors affecting players’ per-
formance and perception in multiplayer games,” in Proceedings of the 4th ACM
SIGCOMM Workshop on Network and System Support for Games (NetGames),
New York, 2005, pp. 1–7.

8. R. Jota, A. Ng, P. Dietz, and D. Wigdor, “How fast is fast enough? A study of
the effects of latency in direct-touch pointing tasks,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, Paris, 2013, pp. 2291–2300.

9. D. W. Cunningham, V. A. Billock, and B. H. Tsou, “Sensorimotor adaptation to
violations of temporal contiguity,” Psychological Science, vol. 12, no. 6, pp. 532–
535, Nov. 2001.

10. W. Fujisaki and S. Nishida, “Audio-tactile superiority over visuo-tactile and audio-
visual combinations in the temporal resolution of synchrony perception.” Experi-
mental Brain Research, vol. 198, no. 2-3, pp. 245–259, Sep. 2009.

11. J. Heron, J. V. M. Hanson, and D. Whitaker, “Effect before Cause: Supramodal
Recalibration of Sensorimotor Timing,” PLoS ONE, vol. 4, no. 11, p. e7681, 2009.

12. V. Occelli, C. Spence, and M. Zampini, “Audiotactile interactions in temporal
perception,” Psychonomic Bulletin & Review, vol. 18, no. 3, pp. 429–454, Jun.
2011.

13. K. Raaen, R. Eg, and C. Griwodz, “Can gamers detect cloud delay?” in Proceed-
ings of the 13th Annual Workshop on Network and Systems Support for Games
(NetGames), vol. 200, Nagoya, 2014.

14. K. Raaen and A. Petlund, “How Much Delay Is There Really in Current Games?”
ACM MMsys, pp. 2–5, 2015.

Paper VI

Is todays public cloud suited to deploy
hardcore realtime services?

155

Is Today’s Public Cloud Suited to Deploy
Hardcore Realtime Services?

A CPU Perspective

Kjetil Raaen1,2,3, Andreas Petlund2,3, and P̊al Halvorsen2,3

1 NITH, Norway
2 Simula Research Laboratory, Norway

3 Department of Informatics, University of Oslo, Norway

Abstract. ”Cloud computing” is a popular way for application
providers to obtain a flexible server and network infrastructure. Provi-
ders deploying applications with tight response time requirements such
as games, are reluctant to use clouds. An important reason is the lack
of real-time guarantees. This paper evaluates the actual, practical soft
real-time CPU performance of current cloud services, with a special fo-
cus on online games. To perform this evaluation, we created a small
benchmark and calibrated it to take a few milliseconds to run (often
referred to as a microbenchmrak). Repeating this benchmark at a high
frequency gives an overview of available resources over time. From the ex-
perimental results, we find that public cloud services deliver performance
mostly within the requirements of popular online games, where Microsoft
Azure Virtual machines give a significantly more stable performance than
Amazon EC2.

1 Introduction

A game company planning to deploy an online game will traditionally have to
face huge costs for data centre space and bandwidth capacity. Because it is
hard to predict a game’s popularity before it is launched, the game provider
is prone to choose over-provisioning in order to meet potential high demands.
Over-provisioning boosts the costs of deployment further. ”Cloud computing”
is a popular way for other application areas to address this problem. Here, the
customer is billed based on the resources used, and can scale resources dynami-
cally. Game companies have, however, been reluctant to place their game servers
in a virtualized cloud environment. This reluctance is mainly due to the highly
time-dependent nature of games. Many studies have reported that the quality
of user experience is highly dependent on latency [3] [4]. For example, Chen
et al. [3] examine network latency, but it is safe to assume that delays caused
by processing will be perceived identically by players. They find that perceived
quality of services in games depends strongly on response time, and variations in
response time (jitter) from the server are more important than absolute values.
The scale of the delays these papers describe as detrimental to the players lays
between 50 and 100 ms. Since providers must allow for normal network latencies

D. an Mey et al. (Eds.): Euro-Par 2013 Workshops, LNCS 8374, pp. 343–352, 2014.
c⃝ Springer-Verlag Berlin Heidelberg 2014

344 K. Raaen, A. Petlund, and P. Halvorsen

in addition to processing time, any significant proportion of this delay incurred
by overhead due to the cloud infrastructure should be noted.

The term ”Cloud gaming”, as currently used, represents ”Software as a Ser-
vice” (SaaS) [10], where the software in question is a game. The players will
only run a simple thin client, sending player input to the servers, and receiv-
ing video and audio from the server. This is the approach followed by OnLive,
Gaikai and others. Cloud gaming thus trades the need for local computing power
for increased network throughput requirements as well as QoS demands. These
services usually use a custom cloud infrastructure optimised for games.

Streaming the game in this way has some disadvantages. First of all, it has
significant computing and bandwidth requirements. Many games require the full
power of a modern computer to run, and the network traffic is equivalent to
video streaming. Using a thin client which simply receives input and outputs
video also precludes using any client-side latency-hiding techniques, so games
run this way will be more latency sensitive. ”Cloud gaming” in this sense is not
the topic of this paper.

Conversely, this paper considers using general purpose public clouds to run
traditional game servers, serving fully featured game clients. This configuration
can be described as online games using cloud infrastructure. Time-dependent
applications, like networked games, usually need to be custom-made, and can
rarely be built upon typical web- or enterprise frameworks. Hence we need the
kind of cloud service known as ”Infrastructure as a Service” (IaaS) [10]. This
allows the developers to access complete virtual machines, with full access priv-
ileges, allowing them to run their fully customised programs in the cloud.

Barker et al.(2010) [2] have investigated many aspects of latency sensitive
applications on the Amazon EC2 cloud service. Investigating CPU, disk IO and
network performance as well as running an actual game server, they conclude
that the variable access to these resources, especially disk and CPU, are enough
to degrade performance of latency sensitive applications.

In this paper build on [2] reexamining the CPU stability three years later
and add data from one of the competitors that have entered the scene after
Amazon: Microsoft Azure. We evaluate the applicability of public infrastructure
clouds for use as infrastructure for online games and other highly time-sensitive
applications. The work isolates CPU performance, leaving network and other
subsystems for further work. We compare response time stability, with respect
to processor availability, between cloud services and natively running software,
as well as between two different cloud providers. The result is an updated recc-
ommendation for services providers.

Other than [2], work on performance in clouds have so far primarily focused
on the typical large, bulk jobs of scientific computing. Schad et al. (2010) [9],
Ostermann et al. (2010) [7] and [5] have all worked on long term tasks, most
finding relevant variation between runs. For the large workloads investigated in
this work, transient performance degradations at a millisecond scale, and even
stalls will be averaged out and difficult to detect. These issues are, however,
highly relevant for game servers, as well as other soft realtime applications.

Is Today’s Public Cloud Suited to Deploy Hardcore Realtime Services? 345

2 Experiment Design

To evaluate the virtual machines provided by different cloud services for their
suitability in real-time applications, we created a benchmark and calibrated it
to take a few milliseconds to run. The absolute average values of the benchmark
runtime is not important, as we are only interested in the stability of the result.
Neither does the load need to behave like any specific realistic load. This evalu-
ation is only concerned with the actual availability of computing resources on a
fine-grained time resolution.

With this in mind, the benchmark was designed as a small loop using array
lookups and arithmetic, where the array is sized to be significantly larger than
the cache size. This allows us to examine the memory subsystem and the CPU
performance in isolation, ignoring external I/O. The tight loop of the benchmark
is designed as a ”worst case” load scenario for a virtual machine. Each machine
was tested with a number of threads equal to the number of cores available to the
virtual machine. Note that each instance of the benchmark is single-threaded,
and will not show ”better” results by increasing the number of cores. For these
reasons, the most relevant single metric is the coefficient of variation. This value
is defined as: cv = σ

µ , where σ is the standard deviation and µ is the mean.
In addition to the benchmark code, the utility ”mpstat” was run in the back-

ground. Mpstat gives us ”% steal”, a metric that reports how much of the phys-
ical CPU is unavailable to the current OS instance because the hypervisor has
assigned it to other instances.

Although the paper’s main concern is to investigate the variance in execution
time for the benchmark, a by-product is that we get an indication of the pro-
cessing power provided by the different providers/service levels. This may also
be of interest to game providers considering cloud deployment.

The benchmark was run on three different instances in Amazon EC2, in the
zone ”us-east-1d” (Table 1), as well as three different instances in Windows
Azure (Table 2).

Table 1. Technical specifications. from amazon [1].

Micro
Instance

613 MiB memory Up to 2 EC2 Compute Units (for short periodic
bursts) I/O Performance: Low

USD 0.020
per Hour

Medium
Instance

3.75 GiB memory 2 EC2 Compute Unit (1 virtual core with 2
EC2 Compute Unit) I/O Performance: Moderate

USD 0.120
per Hour

High-CPU
Medium
Instance

1.7 GiB of memory 5 EC2 Compute Units (2 virtual cores with
2.5 EC2 Compute Units each) I/O Performance: Moderate

USD 0.145
per Hour

2.1 Short-Term Runs

To compare the different instances, the benchmarks were run for 18 hours each
under the configurations shown in tables 1 and 2. To create a baseline for com-
paring the cloud services with native dedicated hardware, the same benchmark

346 K. Raaen, A. Petlund, and P. Halvorsen

Table 2. Technical specifications from Microsoft [6]

Extra
small
instance

768 MiB memory 1 shared core USD 0.020
per Hour

Small
Instance

1.75 GiB memory 1 CPU Core USD 0.085
per Hour

Medium
Instance

3.5 GiB memory 2 CPU Cores USD 0.160
per Hour

was run a standalone PC (Intel Core 2 Duo CPU E7500 @ 2.93GHz, 4GB RAM)
without any visualization, chosen to be approximately the same class of perfor-
mance as the cloud computers.

2.2 Time Series

Schad et al. [9] suggest that there might be differences in performance of the cloud
systems based on when the benchmark is run, either by time of day or day of week.
To investigate this, we ran the benchmark described above for three minutes every
half hour for a week (the week of 27th ofMay, 2013). Between each run, we stopped
the instance, and started it again before the next run. According to [9], this should
allow us to get a different physical machine every time.

3 Evaluation

3.1 Reference System

The reference system (figure 1) shows the baseline of consistency we can expect
from this benchmark while running natively. Deviations from this baseline can be
assumed to result from the hypervisor or other aspects of the cloud system. As we
can observe, the benchmark here reports extremely consistent results. The cv is
0.02.

Benchmark runtime

Fr
eq

ue
nc

y

0 200 400 600 800

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Cv = 0.0213
σ = 1.53

Fig. 1. Benchmark results from reference system

Is Today’s Public Cloud Suited to Deploy Hardcore Realtime Services? 347

3.2 Amazon EC2

CPU Steal. This metric is only sampled once a second, and so has a low
resolution, but with sufficient samples we build up a picture of how much CPU
is allocated to each instance, as well as the distribution over time.

0 20 40 60 80 100

0
50

00
10

00
0

20
00

0

(a) Amazon Micro

0 2 4 6 8 10

0
20

00
0

40
00

0
60

00
0

(b) Amazon Medium

0 20 40 60

0
10

00
0

30
00

0
50

00
0

(c) Amazon Medium High CPU

Fig. 2. CPU Steal histograms. Samples every second.

The first thing to note in this data (figure 2) is the fact that all the instance
types have a significant number of samples where the current instance has full use
of the CPU. These situations will pull the average CPU availability significantly
up, allowing the provider to fulfil their obligations despite other samples with
much less available resources.

The next point standing out is the ”medium” instance. According to the
pricing information, the available CPU resources on this instance type equals
exactly one core of the current hardware. This seems to create a situation where
our instance gets full use of the core most of the time, with very little steal.
Increasing the available CPU power to the ”high cpu” instance adds another

348 K. Raaen, A. Petlund, and P. Halvorsen

Benchmark runtime

Fr
eq

ue
nc

y

0 500 1000 2000

0.
00

0
0.

00
4

0.
00

8

Cv = 0.448
σ = 698

(a) EC2 Micro

Benchmark runtime

Fr
eq

ue
nc

y

0 200 400 600 800

0.
00

0.
02

0.
04

Cv = 0.0394
σ = 8.91

(b) EC2 Medium

Benchmark runtime

Fr
eq

ue
nc

y

0 200 400 600 800

0.
00

0.
02

0.
04

Cv = 0.192
σ = 18

(c) EC2 Medium High CPU

Fig. 3. Amazon EC2: Histogram of benchmark runtimes. Note different scale on the
axis of 3(a).

core, but since the instance on average only has access to part of this core, the
cpu steal value increases again.

Benchmark Runtime. These results (figure 3) show several interesting values.
First of all, for both the ”micro” as well as the ”medium, high-CPU” instance,
there are two clear peaks. This matches the CPU-steal data, where the low
values represent the situations where our instance got full use of the CPU, and
the high run-times are the result of periods of higher CPU-steal. Again we see the
advantage of the ”medium” instance, in that it has a much more stable runtime,
with cv equal to 0.04. This more stable instance type depends on the fact that it
allocates exactly one core to the instance. As the processing power granted each
instance type is defined by an abstract, hardware independent metric, clients
have no guarantee that this situation will continue indefinitely. Rather, when

Is Today’s Public Cloud Suited to Deploy Hardcore Realtime Services? 349

the underlying hardware is upgraded, it is very likely that each core will provide
more power, and the currently stable instance type will become unstable.

3.3 Microsoft Azure

CPU Steal. On the ”Microsoft Azure Virtual Machine” cloud, the operating
system always reports 0 CPU steal, as if it was running on its own dedicated
machine. This implies that the hypervisor hides these details from the operating
system, or that our instance actually has a dedicated CPU resource.

Benchmark runtime

Fr
eq

ue
nc

y

0 200 400 600 800

0.
00

0
0.

01
0

0.
02

0

Cv = 0.0501
σ = 34.4

(a) Azure Extra Small

Benchmark runtime

Fr
eq

ue
nc

y

0 200 400 600 800

0.
00

0
0.

01
0

0.
02

0 Cv = 0.0478
σ = 30.3

(b) Azure Small

Benchmark runtime

Fr
eq

ue
nc

y

0 200 400 600 800

0.
00

0.
02

0.
04

0.
0

Cv = 0.0466
σ = 14.6

(c) Azure Medium

Fig. 4. Microsoft Azure: Histograms of benchmark runtimes

Benchmark Runtime. Compared to the Amazon case, access to the CPU is
significantly more stable in the Azure cloud (figure 4). Regardless of instance

350 K. Raaen, A. Petlund, and P. Halvorsen

type, the runtime of the benchmark is almost completely predictable and stable,
cv is 0.05 for all instance types. The deviation is however twice that of the
reference case. Depending on the exact level of time-sensitivity of the load, and
its computational cost, this could be acceptable or not. The single-threaded
nature of the benchmark explains why the ”small” and ”medium” show almost
identical results.

3.4 Time Series

Figure 5 shows the results of running the benchmark repeatedly over a week on
an EC2 Medium Highcpu instance. The two bands of performance are visible
throughout the week, and there is no clear difference based on weekday or time
of day.

Monday:00:05 Monday:22:05 Tuesday:20:35 Wednesday:21:05 Thursday:23:05 Friday:20:35 Saturday:18:05 Sunday:16:05

0
10

0
20

0
30

0
40

0

Experiment time

B
en

ch
m

ar
k

ru
nt

im
e(

m
s)

Fig. 5. Time series of Amazon EC2 Medium High CPU

3.5 Overview

Putting it all together (figure 6) we see the quite clear differences between the
providers. The low-end instance from Amazon has variations far above the ac-
ceptable level for any time-sensitive application. Interestingly the ”Amazon EC2
Medium High CPU” is also quite unpredictable, though this configuration is sold
as higher performing than the ”Medium” type. Among the Amazon offerings ex-
amined only the ”Medium” instance type is near acceptable. From Microsoft
Azure, all instance types are reasonably stable in performance. All show vari-
ations above our native machine reference. The significance of these variations
depend on the requirements of the application.

Is Today’s Public Cloud Suited to Deploy Hardcore Realtime Services? 351

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n,
 b

en
ch

m
ar

k
ru

nt
im

e

0.
0

0.
1

0.
2

0.
3

0.
4

R
ef

er
en

ce
 S

ys
te

m

E
C

2
M

ic
ro

E
C

2
S

m
al

l

E
C

2
M

ed
iu

m
 H

ig
h

C
P

U

A
zu

re
 E

xt
ra

 S
m

al
l

A
zu

re
 S

m
al

l

A
zu

re
 M

ed
iu

m

Fig. 6. Summary of benchmarks for the different systems

4 Conclusion

From these simple tests, it seems that the conclusions about CPU usage from [2]
still hold for Amazon EC2. For the more time sensitive class of games [4], these
delays can add up with network latency to unacceptable levels. Even for less
sensitive applications there are some caveats. We do get rare samples where the
CPU seems to have stalled for multiple seconds which could discourage users.
Microsoft Azure Virtual machines seem to give more stable performance than
Amazon EC2, without the extreme latency peaks. Utilizing these results can
allow providers of interactive online services to be much more agile and react
faster to changes in demand.

For future work on clouds and other virtual machines, we found that the cv
metric of multiple runs of a small, simple benchmark is a good starting point for
measuring the consistency of computing resources.

Based on our measurements, access to processors is sufficiently stable on to-
day’s IaaS cloud systems to allow for real-time services to be deployed, assuming
the servers are run on the right instance types.

Amazon EC2 is better at the higher service levels, although variance at all
levels is larger than for Azure. An important element to keep in mind for Amazon
EC2 is that migration to a different instance is necessary if a change in service
level is needed.

Azure cloud shows less variance in processor availability results than Ama-
zon. Although you get less processor speed for the same price, it is more reliable
for planning stability, reducing the need for a specialized service for managing
changes between service levels. If a change in service level is needed, though,
Azure allows for dynamic changes without the need to migrate the virtual ma-
chine.

In this paper we have evaluated Amazon EC2 and Microsoft Azure Cloud. To
give wider recommendationswe are planning similar experiments using Rackspace
and Google Cloud. Google Cloud currently requires the customer to go through

352 K. Raaen, A. Petlund, and P. Halvorsen

an application process for access. We did not get any reply from Google on our
request. Rackspace have not been included due to time and space requirements.

To provide a complete view of the conditions for running real-time services
on IaaS instances, we need to extend our result with networking measurements,
extending [2].

In order to minimize the experienced processing time variance, monitoring the
experienced processing time cv and changing the service level based on the results
should be explored. This will require different methods in Amazon EC2 and
Azure, but should be a useful tool for game service providers that are concerned
about processing jitter.

With more detailed knowledge of how virtual machines in the cloud respond,
it would be relevant to experiment with more realistic, preferably highly parallel
workloads such as LEARS [8].

References

1. Amazon. Amazon EC2 Instance Types (2013),
http://aws.amazon.com/ec2/instance-types/

2. Barker, S.K., Shenoy, P.: Empirical evaluation of latency-sensitive application per-
formance in the cloud. In: Proceedings of ACM SIGMM on Multimedia Systems,
MMSys 2010, pp. 35–46. ACM, New York (2010)

3. Chen, K.-T., Huang, P., Wang, G.-S., Huang, C.-Y., Lei, C.L.: On the Sensitivity of
Online Game Playing Time to Network QoS. In: Proceedings of IEEE INFOCOM
2006(2006)

4. Claypool, M., Claypool, K.: Latency Can Kill: Precision and Deadline in Online
Games. In: ACM Multimedia Systems Conference (2010)

5. El-Khamra, Y., Kim, H., Jha, S., Parashar, M.: Exploring the Performance Fluctu-
ations of HPC Workloads on Clouds. In: 2010 IEEE Cloud Computing Technology
and Science, pp. 383–387 (November 2010)

6. Microsoft. Microsoft Azure Pricing Details (2013),
http://www.windowsazure.com/en-us/pricing/details/

7. Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.:
A performance analysis of EC2 cloud computing services for scientific computing.
In: Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., Epema,
D. (eds.) Cloud Computing. LNICST, vol. 34, pp. 115–131. Springer, Heidelberg
(2010)

8. Raaen, K., Espeland, H.: LEARS: A Lockless, Relaxed-Atomicity State Model for
Parallel Execution of a Game Server Partition. In: Parallel Processing . . . , pp.
382–389. IEEE (September 2012)

9. Schad, J., Dittrich, J., Quiané-Ruiz, J.: Runtime measurements in the cloud: ob-
serving, analyzing, and reducing variance. Proceedings of the VLDB . . . 3(1) (2010)

10. Vaquero, L.M., Rodero-merino, L., Caceres, J., Lindner, M.: A Break in the Clouds:
Towards a Cloud Definition. Computer Communication Review 39(1), 50–55 (2009)

Paper VII

LEARS: A Lockless, relaxed-atomicity
state model for parallel execution of a
game server partition

167

LEARS: A Lockless, Relaxed-Atomicity State
Model for Parallel Execution of a Game Server

Partition
Kjetil Raaen, Håvard Espeland, Håkon K. Stensland, Andreas Petlund, Pål Halvorsen, Carsten Griwodz

NITH, Norway Simula Research Laboratory, Norway IFI, University of Oslo, Norway
Email: raakje@nith.no, {haavares, haakonks, apetlund, paalh, griff}@ifi.uio.no

Abstract—Supporting thousands of interacting players in a
virtual world poses huge challenges with respect to processing.
Existing work that addresses the challenge utilizes a variety of
spatial partitioning algorithms to distribute the load. If, however,
a large number of players needs to interact tightly across an area
of the game world, spatial partitioning cannot subdivide this
area without incurring massive communication costs, latency or
inconsistency. It is a major challenge of game engines to scale such
areas to the largest number of players possible; in a deviation
from earlier thinking, parallelism on multi-core architectures is
applied to increase scalability. In this paper, we evaluate the
design and implementation of our game server architecture,
called LEARS, which allows for lock-free parallel processing of
a single spatial partition by considering every game cycle an
atomic tick. Our prototype is evaluated using traces from live
game sessions where we measure the server response time for
all objects that need timely updates. We also measure how the
response time for the multi-threaded implementation varies with
the number of threads used. Our results show that the challenge
of scaling up a game-server can be an embarrassingly parallel
problem.

I. INTRODUCTION

Over the last decade, online multi-player gaming has expe-
rienced an amazing growth. Providers of the popular online
games must deliver a reliable service to thousands of concur-
rent players meeting strict processing deadlines in order for
the players to have an acceptable quality of experience (QoE).

One major goal for large game providers is to support as
many concurrent players in a game-world as possible while
preserving the strict latency requirements in order for the
players to have an acceptable quality of experience (QoE).
Load distribution in these systems is typically achieved by
partitioning game-worlds into areas-of-interest to minimize
message passing between players and to allow the game-world
to be divided between servers. Load balancing is usually com-
pletely static, where each area has dedicated hardware. This
approach is, however, limited by the distribution of players
in the game-world, and the problem is that the distribution
of players is heavy-tailed with about 30% of players in 1%
of the game area [5]. To handle the most popular areas of
the game world without reducing the maximum interaction
distance for players, individual spatial partitions can not be
serial. An MMO-server will experience the most CPU load
while the players experience the most “action”. Hence, the

worst case scenario for the server is when a large proportion of
the players gather in a small area for high intensity gameplay.

In such scenarios, the important metric for online multi-
player games is latency. Claypool et. al. [7] classify different
types of games and conclude that for first person shooter (FPS)
and racing games, the threshold for an acceptable latency
is 100ms. For other classes of networked games, like real-
time strategy (RTS) and massively multi-player online games
(MMOGs) players tolerate somewhat higher delays, but there
are still strict latency requirements in order to provide a good
QoE. The accumulated latency of network transmission, server
processing and client processing adds up to the latencies that
the user is experiencing, and reducing any of these latencies
improves the users’ experience.

The traditional design of massively multi-player game
servers rely on sharding for further load distribution when too
many players visit the same place simultaneously. Sharding
involves making a new copy of an area of a game, where
players in different copies are unable to interact. This approach
eliminates most requirements for communication between the
processes running individual shards. An example of such a
design can be found in [6].

The industry is now experimenting with implementations
that allow for a greater level of parallelization. One known ex-
ample is Eve Online [8] where they avoid sharding and allow
all players to potentially interact. Large-scale interactions in
Eve Online are handled through an optimized database. On the
local scale, however, the server is not parallel, and performance
is extremely limited when too many players congregate in
one area. With LEARS, we take this approach even further
and focus on how many players that can be handled in a
single segment of the game world. We present a model that
allows for better resource utilization of multi-processor, game
server systems which should not replace spatial partitioning
techniques for work distribution, but rather complement them
to improve on their limitations. Furthermore, a real prototype
game is used for evaluation where captured traces are used to
generate server load. We compare multi-threaded and single-
threaded implementations in order to measure the overhead of
parallelizing the implementation and showing the experienced
benefits of parallelization. The change in responsiveness of
different implementations with increased load on the server is

2012 41st International Conference on Parallel Processing Workshops

1530-2016/12 $26.00 © 2012 IEEE
DOI 10.1109/ICPPW.2012.55

382

studied, and we discuss how generic elements of this game
design impact the performance on our chosen platform of
implementation.

Our results indicate that it is possible to design an “em-
barrassingly parallel” game server. We also observe that the
implementation is able to handle a quadratic increase of in-
server communication when many players interact in a game-
world hotspot.

The rest of the paper is organized as follows: In section II,
we describe the basic idea of LEARS, before we present the
design and implementation of the prototype in section III. We
evaluate our prototype in section IV and discuss our idea in
section V. In section VI, we put our idea in the context of
other existing work. Finally, we summarize and conclude the
paper in section VII and give directions for further work in
section VIII.

II. LEARS: THE BASIC IDEA

Traditionally, game servers have been implemented much
like game clients. They are based around a main loop, which
updates every active element in the game. These elements
include for example player characters, non-player characters
and projectiles. The simulated world has a list of all the
active elements in the game and typically calls an “update”
method on each element. The simulated time is kept constant
throughout each iteration of the loop, so that all elements get
updates at the same points in simulated time. This point in time
is referred to as a tick. Using this method, the active element
performs all its actions for the tick. Since only one element
updates at a time, all actions can be performed directly. The
character reads input from the network, performs updates on
itself according to the input, and updates other elements with
the results of its actions.

LEARS is a game server model with support for lockless,
relaxed-atomicity state-parallel execution. The main concept
is to split the game server executable into lightweight threads
at the finest possible granularity. Each update of every player
character, AI opponent and projectile runs as an independent
work unit.

White et al. [15] describe a model they call a state-effect
pattern. Based on the observation that changes in a large,
actor-based simulation are happening simultaneously, they
separate read and write operations. Read operations work on a
consistent previous state, and all write operations are batched
and executed to produce the state for the next tick. This means
that the ordering of events scheduled to execute at a tick
does not need to be considered or enforced. For the design
in this paper, we additionally remove the requirement for
batching of write operations, allowing these to happen anytime
during the tick. The rationale for this relaxation is found
in the way traditional game servers work. In the traditional
single-threaded main-loop approach, every update is allowed
to change any part of the simulation state at any time. In such
a scenario the state at a given time is a combination of values

from two different points in time, current and previous, exactly
the same situation that occurs in the design presented here.

The second relaxation relates to the atomicity of game state
updates. The fine granularity creates a need for significant
communication between threads to avoid problematic lock
contentions. Systems where elements can only update their
own state and read any state without locking [1] do obviously
not work in all cases. However, game servers are not accurate
simulators, and again, depending on the game design, some
(internal) errors are acceptable without violating game state
consistency. Consider the following example: Character A
moves while character B attacks. If only the X coordinate
of character A is updated at the point in time when the attack
is executed, the attack sees character A at a position with the
new X coordinate and the old Y coordinate. This position is
within the accuracy of the simulation which in any case is no
better than the distance an object can move within one tick.

On the other hand, for actions where a margin of error is not
acceptable, transactions can be used keeping the object’s state
internally consistent. However, locking the state is expensive.
Fortunately, most common game actions do not require trans-
actions, an observation that we take advantage of in LEARS.

These two relaxations allow actions to be performed on
game objects in any order without global locking. It can be
implemented using message passing between threads and re-
tains consistency for most game actions. This includes actions
such as moving, shooting, spells and so forth. Consider player
A shooting at player B: A subtracts her ammunition state,
and send bullets in B’s general direction by spawning bullet
objects. The bullet objects runs as independent work units, and
if one of them hits player B, it sends a message to player B.
When reading this message, player B subtracts his health and
sends a message to player A if it reaches zero. Player A then
updates her statistics when she receives player B’s message.
This series of events can be time critical at certain points. The
most important point is where the decision is made if the bullet
hits player B. If player B is moving, the order of updates can
be critical in deciding if the bullet hits or misses. In the case
where the bullet moves first, the player does not get a chance
to move out of the way. This inconsistency is however not
a product of the LEARS approach. Game servers in general
insert active items into their loops in an arbitrary fashion, and
there is no rule to state which order is “correct”.

The end result of our proposed design philosophy is that
there is no synchronization in the server under normal run-
ning conditions. Since there are cases where transactions are
required, they can be implemented outside the LEARS event
handler running as transactions requiring locking. In the rest of
the paper, we consider a practical implementation of LEARS,
and evaluate its performance and scalability.

III. DESIGN AND IMPLEMENTATION

In our experimental prototype implementation of the
LEARS concept, the parallel approach is realized using thread
pools and blocking queues.

383

��������
�	
���

���
������

����������
������

��������
�	
���

��������
�������

�������
������

�������
��������

�������	

�

���	����

�
�
��

Figure 1. Design of the Game Server

A. Thread pool

Creation and deletion of threads incur large overheads, and
context switching is an expensive operation. These overheads
constrain how a system can be designed, i.e., threads should
be kept as long as possible, and the number of threads should
not grow unbounded. We use a thread pool pattern to work
around these constraints, and a thread pool executor (the
Java ThreadPoolExecutor class) to maintain the pool of
threads and a queue of tasks. When a thread is available, the
executor picks a task from the queue and executes it. The
thread pool system itself is not preemptive, so the thread runs
each task until it is done. This means that in contrast to normal
threading, each task should be as small as possible, i.e., larger
units of work should be split up into several sub-tasks.

The thread pool is a good way to balance the number of
threads when the work is split into extremely small units.
When an active element is created in the virtual world, it is
scheduled for execution by the thread pool executor, and the
active element updates its state exactly as in the single threaded
case. Furthermore, our thread pool supports the concept of
delayed execution. This means that tasks can be put into the
work queue for execution at a time specified in the future.
When the task is finished for one time slot, it can reschedule
itself for the next slot, delayed by a specified time. This allows
active elements to have any lifetime from one-shot executions
to the duration of the program. It also allows different elements
to be updated at different rates depending on the requirements
of the game developer.

All work is executed by the same thread pool, including the
slower I/O operations. This is a consistent and clear approach,
but it does mean that game updates could be stuck waiting for
I/O if there are not enough threads available.

B. Blocking queues

The thread pool executor used as described above does not
constrain which tasks are executed in parallel. All systems
elements must therefore allow any of the other elements to
execute concurrently.

To enable a fast communication between threads with shared
memory (and caches), we use blocking queues, using the Java
BlockingQueue class, which implements queues that are
synchronized separately at each end. This means that elements
can be removed from and added to the queue simultaneously,
and since each of these operations are extremely fast, the prob-
ability of blocking is low. In the scenario analysed here, all
active elements can potentially communicate with all others.
Thus, these queues allow information to be passed between
active objects. Each active object that can be influenced by
others has a blocking queue of messages. During its update,
it reads and processes the pending messages from its queue.
Messages are processed in the order they were put in the
queue. Other active elements put messages in the queue to
be processed when they need to change the state of other
elements in the game.

Messages in the queues can only contain relative informa-
tion, and not absolute values. This restriction ensures that the
change is always based on updated data. For example, if a
projectile needs to tell a player character that it took damage,
it should only inform the player character about the amount
of damage, not the new health total. Since all changes are put
in the queue, and the entire queue is processed by the same
work unit, all updates are based on up-to-date data.

C. Our implementation

To demonstrate LEARS, we have implemented a prototype
game containing all the basic elements of a full MMOG with
the exception of persistent state. The basic architecture of the
game server is described in figure 1. The thread pool size
can be configured, and will execute the different workloads
on the CPU cores. The workloads include processing of
network messages, moving computer controlled elements (in
this prototype only projectiles) checking for collisions and hits
and sending outgoing network messages.

Persistent state do introduce some complications, but as
database transactions are often not time critical and can usually
be scheduled outside peak load situations, we leave this to
future work.

In the game, each player controls a small circle ("the
character") with an indicator for which direction they are
heading (see figure 2). The characters are moved around by
pressing keyboard buttons. They also have two types of attack,
i.e., one projectile and one instant area of effect attack. Both
attacks are aimed straight ahead. If an attack hits another
player character, the attacker gets a positive point, and the
character that was hit gets a negative point. The game provides
examples of all the elements of the design described above:

• The player character is a long lifetime active object.
It processes messages from clients, updates states and
potentially produces other active objects (attacks). In

384

Figure 2. Screen shot of a game with six players.

addition to position, which all objects have, the player
also has information about how many times it has been
hit and how many times it has hit others. The player
character also has a message queue to receive messages
from other active objects. At the end of its update, it
enqueues itself for the next update unless the client it
represents has disconnected.

• The frontal cone attack is a one shot task that finds player
characters in its designated area and sends messages to
those hit so they can update their counters, as well as
back to the attacking player informing about how many
were hit.

• The projectile is a short lifetime object that moves in the
world, checks if it has hit anything and reschedules itself
for another update, unless it has hit something or ran to
the end of its range. The projectile can only hit one target.

To simulate an MMORPG workload that grow linearly
with number of players, especially collision checks with the
ground and other static objects, we have included a synthetic
load which emulates collision detection with a high-resolution
terrain mesh. The synthetic load ensures that the cache is
regularly flushed to enhance the realism of our game server
prototype compared to a large-scale game server.

The game used in these experiments is simple, but it
contains examples of all elements typically available in the
action based parts of a typical MMO-like game.

The system described in this paper is implemented in Java.
This programming language has strong support for multi-
threading and has well-tested implementations of all the re-
quired components. The absolute values resulting from these
experiments depend strongly on the complexity of the game,
as a more complex game would require more processing.

In addition, the absolute values depend on the runtime en-
vironment, especially the server hardware, and the choice of
programming language also influence absolute results from the
experiments. However, the focus of this paper is the relative
results, as we are interested in comparing scalability of the
multi-threaded solution with a single-threaded approach and
whether the multi-threaded implementation can handle the
quadratic increase in traffic as new players join.

IV. EVALUATION

To have a realistic behavior of the game clients, the game
was run with 5 human players playing the game with a game
update frequency of 10 Hz. The network input to the server
from this session was recorded with a timestamp for each
message. The recorded game interactions were then played
back multiple times in parallel to simulate a large number of
clients. To ensure that client performance is not a bottleneck,
the simulated clients were distributed among multiple physical
machines. Furthermore, as an average client generates 2.6 kbps
network traffic, the 1 Gbps local network interface that was
used for the experiments did not limit the performance. The
game server was run on a server machine containing 4 Dual-
Core AMD Opteron 8218 (2600 MHz) with 16 GB RAM.
To ensure comparable numbers, the server was taken down
between each test run.

A. Response latency

The most important performance metric for client-server
games is response latency from the server. From a player
perspective, latency is only visible when it exceeds a certain
threshold. Individual peaks in response time are obvious to
the players, and will have the most impact on the Quality of
Experience, hence we focus on peak values as well as averages
in the evaluation.

The experiments were run with client numbers ranging from
40 to 800 in increments of 40, where the goal is to keep the
latencies close to the 100 ms QoE threshold for FPS games [7].
Figure 3 shows a box-plot of the response time statistics from
these experiments. All experiments used a pool of 48 worker
threads and distributed the network connections across 8 IP
ports.

From these plots, we can see that the single-threaded
implementation is struggling to support 280 players at an
average latency close to 100 ms. The median response time
is 299 ms, and it already has extreme values all the way to
860 ms, exceeding the threshold for a good QoE. The multi-
threaded server, on the other hand, is handling the players
well up to 640 players where we are getting samples above 1
second, and the median is at 149 ms.

These statistics are somewhat influenced by the fact that the
number of samples is proportional to the update frequency.
This means that long update cycles to a certain degree get
artificially lower weight.

Figure 4 shows details of two interesting cases. In figure
4(a), the single-threaded server is missing all its deadlines
with 400 concurrent players, while the multi-threaded version

385

0
50

0
10

00
15

00
20

00
25

00

Number of concurrent clients

D
el

ay
 p

er
 s

ch
ed

ul
ed

 r
un

 (
m

s)

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800

(a) Single-threaded server

0
50

0
10

00
15

00
20

00
25

00

Number of concurrent clients

D
el

ay
 p

er
 s

ch
ed

ul
ed

 r
un

 (
m

s)

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800

(b) Multi-threaded server

Figure 3. Response time for single- and multi-threaded servers (dotted line is the 100 ms threshold).

� ���� ���� ���� ���� ����

��
�

��
�

��
�

��
	

��

��
�

�������������������������������

�
�

�

�� ! �������
"!�#�� �������

$

$

$

$

$ $

$ $

$ $ $

�

�

�

�

� � �

� �

(a) 400 concurrent clients

� ���� ���� ���� ���� ����

��
�

��
�

��
�

��
	

��

��
�

�������������������������������

�
�

�

�� ! �������
"!�#�� �������

$

$

$

$

$ $ $ $

�

�

�

�

�

�

� �

$ $

(b) 800 concurrent clients

Figure 4. CDF of response time for single- and multi-threaded servers with 400 and 800 concurrent clients.

20
0

40
0

60
0

80
0

C
P

U
 lo

ad
 (

%
)

0 50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Seconds since start of test

R
es

po
ns

e
tim

e
(s

)

Figure 5. CPU load and response time for 620 concurrent clients on the
multi-threaded server.

is processing almost everything on time. At 800 players
(figure 4(b)), the outliers are going much further for both cases.
Here, even the multi-threaded implementation is struggling to
keep up, though it is still handling the load significantly better
than the single-threaded version, which is generally completely
unplayable.

B. Resource consumption

We have investigated the resource consumption when play-
ers connect to the multhreaded server as shown in figure 5. We
present the results for 620 players, as this is the highest number
of simultaneous players that server handles before significant
degradation in performance, as shown in figure 3(b). The mean
response time is 133 ms, above the ideal delay of 100 ms.
Still, the server is able to keep the update rate smooth, without
significant spikes. The CPU utilization grows while the clients
are logging on, then stabilizes at an almost full CPU utilization
for the rest of the run. The two spikes in response time happen
while new players log in to the server at a very fast rate (30
clients pr. second). Receiving a new player requires a lock in

386

0 50 100 150 200 250

0
50

0
10

00
15

00
20

00
25

00

Number of threads in threadpool

D
el

ay
 p

er
 s

ch
ed

ul
ed

 r
un

 (
m

s)

Figure 6. Response time for 700 concurrent clients on using varying number
of threads. Shaded area from 5 to 95 percentiles.

the server, hence this operation is, to a certain degree, serial.

C. Effects of thread-pool size

To investigate the effects of the number of threads in the
threadpool, we performed an experiment where we kept the
number of clients constant while varying the number of threads
in the pool. 700 clients were chosen, as this number slightly
overloads the server. The number of threads in the pool was
increased in increments of 2 from 2 to 256. In figure 6,
we see clearly that the system utilizes more than 4 cores
efficiently, as the 4 thread version shows significantly higher
response times. At one thread per core or more, the numbers
are relatively stable, with a tendency towards more consistent
low response times with more available threads, to about 40
threads. This could mean that threads are occasionally waiting
for I/O operations. Since thread pools are not pre-emptive,
such situations would lead to one core going idle if there are
no other available threads. Too many threads, on the other
hand, could lead to excessive context switch overhead. The
results show that the average is slowly increasing after about
50 threads, though the 95-percentile is still decreasing with
increased number of threads, up to about 100. From then on
the best case is worsening again most likely due to context
switching overhead.

A game developer needs to consider this trade-off when
tuning the parameters for a specific game.

V. DISCUSSION

Most approaches to multi-threaded game server implemen-
tations in the literature (e.g., [1]) use some form of spatial
partitioning to lock parts of the game world while allowing
separate parts to run in parallel. Spatial partitioning is also
used in other situations to limit workload. The number of play-
ers that game designers can allow in one area in a game server
is limited by the worst-case scenario. The worst case scenario
for a spatially partitioned game world is when everybody move

to the same point, where the spatial partitioning still ends up
with everybody in the same partition regardless of granularity.
This paper investigates an orthogonal and complementary
approach which tries to increase the maximum number of users
in the worst case scenario where all players can see each other
at all times. Thus, spatial partitioning could be added to further
scale the game server.

Experiments using multiple instances of a single-threaded
server are not performed, as having clients distribueted acrosss
multiple servers would mean partitioning the clients in areas
where they can not interact, making numbers from such a
scenario incomparable to the multithreaded solutions.

The LEARS approach does have limitations and is for ex-
ample not suitable if the outcome of a message put restrictions
on an object’s state. This is mainly a game design issue, but
situations such as trades can be accommodated by doing full
transactions. The following example where two players trade
illustrates the problem: Player A sends a message to player B
where he proposes to buy her sword for X units. After this
is sent, player C steals player A’s money, and player A is
unable to pay player B should the request go through. This is
only a problem for trades within a single game tick where the
result of a message to another object puts a constraint on the
original sender, and can be solved by means such as putting
the money in escrow until the trade has been resolved, or by
doing a transaction outside of LEARS (such as in a database).
Moreover, the design also adds some overhead in that the code
is somewhat more complex, i.e., all communication between
elements in the system needs to go through message queues.
The same issue will also create some runtime overhead, but
our results still demonstrate a significant benefit in terms of
the supported number of clients.

Tasks in a thread pool can not be pre-empted, but the threads
used for execution can. This distinction creates an interesting
look into the performance trade-off of pre-emption. If the
number of threads in the threadpool is equal to the number of
CPU cores, we have a fully cooperative multitasking system.
Increasing the number of threads allow for more pre-emption,
but introduces context-switching overhead.

VI. RELATED WORK

At Netgames 2011 [12], we presented a demo with a
preliminary version of LEARS. Significant research has been
done on how to optimize game server architectures for online
games, both MMOGs and smaller-scale games. In this section,
we summarize some of the most important findings from
related research in this field. For example, "Red Dwarf",
the community-based successor to "Project Darkstar" by Sun
Microsystems [13], is a good example of a parallel approach to
game server design. Here, response time is considered one of
the most important metrics for game server performance, and
suggests a parallel approach for scaling. The described system
uses transactions for all updates to world state, including
player position. This differs from LEARS, which investigates
the case for common actions where atomicity of transactions
is not necessary.

387

Work has also been done on scaling games by looking at
the optimization as a data management problem. The authors
in [14] have developed a highly expressive scripting language
called SGL that provides game developers a data-driven AI
scheme for non-player characters. By using query processing
and indexing techniques, they can efficiently scale to a large
number of non-player objects in games. This group also
introduces the concept state-effect pattern in [15], which we
extend in this paper. They test this and other parallel concepts
using a simulated actor interaction model, in contrast to this
paper which evaluates a running prototype of a working games
under realistic conditions.

Moreover, Cai et al. [4] present a scalable architecture
for supporting large-scale interactive Internet games. Their
approach divides the game world into multiple partitions and
assigns each partition to a server. The issues with this solution
is that the architecture of the game server is still a limiting
factor in worst case scenarios as only a limited number of
players can interact in the same server partition at a given time.
There have also been proposed several middleware systems
for automatically distributing the game state among several
participants. In [9], the authors present a middleware which
allows game developers to create large, seamless virtual worlds
and to migrate zones between servers. This approach does,
however, not solve the challenge of many players that want
to interact in a popular area. The research presented in [10]
shows that proxy servers are needed to scale the number of
players in the game, while the authors discuss the possibility
of using grids as servers for MMOGs. Beskow et al. [3] have
also been investigating partitioning and migration of game
servers. Their approach uses core selection algorithms to locate
the most optimal server. We have worked on how to reduce
latency by modifying the TCP protocol to better support time-
dependent applications [11]. However, the latency is not only
determined by the network, but also the response time for the
game servers. If the servers have a too large workload, the
latency will suffer.

In [2], the authors are discussing the behavior and per-
formance of multi-player game servers. They find that in
the terms of benchmarking methodology, game servers are
very different from other scientific workloads. Most of the
sequentially implemented game servers can only support a
limited numbers of players, and the bottlenecks in the servers
are both game-related and network-related. The authors in [1]
extend their work and use the computer game Quake to study
the behavior of the game. When running on a server with up
to eight processing cores the game suffers because of lock
synchronization during request processing. High wait times
due to workload imbalances at global synchronization points
are also a challenge.

A large body of research exits on how to partition the
server and scale the number of players by offloading to several

servers. Modern game servers have also been parallelized
to scale with more processors. However, a large amount of
processing time is still wasted on lock synchronization, or the
scaling is limited by partitioning requirements. In our game
server design, we provide a complementary solution and try
to eliminate the global synchronization points and locks, i.e.,
making the game server “embarrassingly parallel” which aims
at increasing the number of concurrent users per machine.

VII. CONCLUSION

In this paper, we have shown that we can improve resource
utilization by distributing load across multiple CPUs in a uni-
fied memory multi-processor system. This distribution is made
possible by relaxing constraints to the ordering and atomicity
of events. The system scales well, even in the case where all
players must be aware of all other players and their actions.
The thread pool system balances load well between the cores,
and its queue-based nature means that no task is starved unless
the entire system lacks resources. Message passing through
the blocking queue allows objects to communicate intensively
without blocking each other. Running our prototype game, we
show that the 8-core server can handle twice as many clients
before the response time becomes unacceptable.

VIII. FUTURE WORK

From the research described in this paper, a series of further
experiments present themselves. The relationship between
linearly scaling load and quadratic load can be tweaked in our
implementation. This could answer questions about which type
of load scale better under multi-threaded implementations.
Ideally, the approach presented here should be implemented
in a full, complete massive multiplayer game. This should
give results that are fully realistic, at least with respect to
this specific game.

Another direction this work could be extended is to go
beyond the single shared memory computer used and distribute
the workload across clusters of computers. This could be
achieved by implementing cross-server communication di-
rectly in the server code, or by using existing technology that
makes cluster behave like shared memory machines.

Furthermore, all experiments described here were run with
an update frequency of 10 Hz. This is good for many types
of games, but different frequencies are relevant for different
games. Investigating the effects of running with a higher or
lower frequency of updates on server performance could yield
interesting results.

If, during the implementation of a complex game, it is
shown that some state changes must be atomic to keep the
game state consistent, the message passing nature of this
implementation means that we can use read-write-locks for
any required blocking. If such cases are found, investigat-
ing how read-write-locking influence performance would be
worthwhile.

388

REFERENCES

[1] A. Abdelkhalek and A. Bilas. Parallelization and performance of
interactive multiplayer game servers. In Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS), page 72, april
2004.

[2] A. Abdelkhalek, A. Bilas, and A. Moshovos. Behavior and performance
of interactive multi-player game servers. Cluster Computing, 6:355–366,
October 2003.

[3] P. B. Beskow, G. A. Erikstad, P. Halvorsen, and C. Griwodz. Evaluating
ginnungagap: a middleware for migration of partial game-state utilizing
core-selection for latency reduction. In Proceedings of the 8th Annual
Workshop on Network and Systems Support for Games (NetGames),
pages 10:1–10:6, 2009.

[4] W. Cai, P. Xavier, S. J. Turner, and B.-S. Lee. A scalable architecture
for supporting interactive games on the internet. In Proceedings of the
sixteenth workshop on Parallel and distributed simulation (PADS), pages
60–67, 2002.

[5] K.-T. Chen and C.-L. Lei. Network game design: hints and implications
of player interaction. In Proceedings of the workshop on Network and
system support for games (NetGames), 2006.

[6] H. S. Chu. Building a simple yet powerful mmo game ar-
chitecture. http://www.ibm.com/developerworks/architecture/library/ar-
powerup1/, Sept. 2008.

[7] M. Claypool and K. Claypool. Latency and player actions in online
games. Communications of the ACM, 49(11):40–45, Nov. 2005.

[8] B. Drain. Eve evolved: Eve online’s server model.
http://massively.joystiq.com/2008/09/28/eve-evolved-eve-onlines-
server-model/, Sept. 2008.

[9] F. Glinka, A. Ploß, J. Müller-lden, and S. Gorlatch. Rtf: a real-
time framework for developing scalable multiplayer online games. In
Proceedings of the workshop on Network and system support for games
(NetGames), pages 81–86, 2007.

[10] J. Müller and S. Gorlatch. Enhancing online computer games for grids.
In V. Malyshkin, editor, Parallel Computing Technologies, volume 4671
of Lecture Notes in Computer Science, pages 80–95. Springer Berlin /
Heidelberg, 2007.

[11] A. Petlund. Improving latency for interactive, thin-stream applications
over reliable transport. Phd thesis, Simula Research Laboratory /
University of Oslo, Unipub, Oslo, Norway, 2009.

[12] K. Raaen, H. Espeland, H. K. Stensland, A. Petlund, P. Halvorsen, and
C. Griwodz. A demonstration of a lockless, relaxed atomicity state
parallel game server (LEARS). In Proceedings of the workshop on
Network and system support for games (NetGames), pages 1–3, 2011.

[13] J. Waldo. Scaling in games and virtual worlds. Commun. ACM, 51:38–
44, Aug. 2008.

[14] W. White, A. Demers, C. Koch, J. Gehrke, and R. Rajagopalan.
Scaling games to epic proportions. In Proceedings of the international
conference on Management of data (SIGMOD), pages 31–42, 2007.

[15] W. White, B. Sowell, J. Gehrke, and A. Demers. Declarative processing
for computer games. In Proceedings of the ACM SIGGRAPH symposium
on Video games (Sandbox), pages 23–30, 2008.

389

	I Overview
	Introduction
	Motivating trends
	Responsiveness in interactions
	Action games
	Massive games
	The growth of parallelism
	Cloud computing

	Problem statement
	Research method
	Literature survey
	Natural science in information technology
	Design science in information technology
	Perceptual psychology

	Main Contributions
	Outline

	Games and response time
	The importance of delay
	Genres of games
	Gameplay style
	Massive Multiplayer Online Games

	Scaling games
	Game communication modes
	Local games
	Client-Server games
	Cloud gaming
	Game servers in the cloud

	Types of delay
	Virtual reality
	Summary

	Measuring delay in games
	Related work
	Measuring local delay
	Measured delay in cloud gaming

	Important components in local delay
	Display devices
	Graphics hardware
	Input device latency

	Experiments
	Mouse click
	Virtual reality headset rotation

	Results
	Mouse click
	Virtual reality headset movement

	Discussion
	Summary

	Limits for observable delay
	Related work
	Controlled studies
	Observational Studies
	Cloud Gaming
	Results from psychophysics
	Limitations of existing work
	Summary

	Method
	Experiment design
	Adjustment task
	Discrimination task

	Limitations
	Results
	Results from adjustment task
	Results from the discrimination task
	Comparison of experimental methodologies
	Gaming experience
	Music experience

	Discussion
	Motor-visual temporal interactions
	Perception of delay in games
	Perceptible delays compared to measured delays
	Latency compensation

	Summary

	Game servers in the cloud
	Related work
	Experiment Design
	Evaluation
	Amazon EC2
	Microsoft Azure
	Time series
	Overview

	Summary

	Parallelising game servers
	Motivation
	Related work
	Binary Space Partitioning between threads
	Transactional approaches
	Improved Partitioning
	Databases as game servers

	Concept for parallelising game servers
	Traditional approach
	Relaxed constraints
	Limitations of our approach

	LEARS Design and Implementation
	Thread-pool
	Blocking queues
	Our implementation

	Evaluation
	Response latency
	Resource consumption
	Effects of thread-pool size

	Discussion
	Summary

	Paper and author's contributions
	Paper I: Latency thresholds for usability in games: A survey
	Paper II: How much delay is there really in current games?
	Paper III: Measuring Latency in Virtual Reality Systems
	Paper IV: Can gamers detect cloud delay?
	Paper V: Instantaneous human-computer interactions: Button causes and screen effects
	Paper VI: Is today’s public cloud suited to deploy hardcore realtime services?
	Paper VII: LEARS: A Lockless, relaxed-atomicity state model for parallel execution of a game server partition
	Other Publications

	Conclusion
	Summary
	Main contributions
	Future work
	Applying our conclusions in practice

	Bibliography

	II Research Papers
	Latency thresholds for usability in games: A survey
	How much delay is there really in current games?
	Measuring Latency in Virtual Reality Systems
	Can gamers detect cloud delay?
	Instantaneous human-computer interactions: Button causes and screen effects
	Is today’s public cloud suited to deploy hardcore realtime services?
	LEARS: A Lockless, relaxed-atomicity state model for parallel execution of a game server partition

