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Chapter 1

Introduction

1.1 Background and motivation

As more and more media content is made available through the Internet, content such as radio,
tv, movies and music, is streamed to users from media servers. The media servers must be able
to serve a magnitude of users and therefore it is important that the media server application
responsible of retrieving the content a user requests and sending it out to he or she, does this
with as small processing effort possible. The less processing effort the server can use on each
client it serves, the more clients it can serve. One possiblearchitecture to build the media server
application upon is module and component based called a stream handler architecture. This
architecture relies heavily upon the use of virtual functions to allow new components be added
without the need to rewrite existing code, and to plug arbitrary components together, old or
new. But, with this ease of development of new components in the media server and the ease of
changing existing compositions of components, there is an increased cost related to the use of
virtual functions needed for components to communicate. Ifthis architecture causes the server
to support less concurrent users, then its use has to be considered and its ease of development
has to be weighed against the cost of buying a new server.

1.2 Problem definition

A typical scenario is where a client, located on a different network than the media server,
requests a video file located locally on the server. To serve this request, the media server,
sequentially, reads the file from disk, packs the data into a transport protocol of some kind
and sends it out on the net to the client. In the component based stream handler architecture,
this process is split into three logical components; reading data, packing data and sending the
data. The communication between these components are done using virtual functions. The
problem we want to investigate is the cost of using the streamhandler architecture and evaluate
its performance against an alternative, stripped version,which uses no virtual functions. In the
alternative version, the components that does the job of reading, packing and sending data to
the client in the stream handler architecture, is merged together into a single component which
then uses no virtual functions.
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1.3 Outline

This thesis is organized as follows. In chapter 2 we present the stream handler architecture and
four media frameworks that are based on the this architecture. In chapter 3, we take a look at
a media system consisting of a media server and a media client. We present some changes and
add-ons to this system and a new system call that is used to assemble network packets in kernel
space and send it out on the network to a client. In chapter 4 wepresent a time measuring tool
that we will use to test changes we have made to the media system, and in chapter 5 we will
present and evaluate these results before we conclude our work in chapter 6.
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Chapter 2

Media streaming frameworks

2.1 Introduction

The need for generic and reusable building blocks for building multimedia streaming
applications has led to the idea of breaking down streaming applications into smaller units that
can be reused. These units should be tasks that are typical and often used in such applications.
This can be decoding, encoding, transcoding, presentation, analysis etc. Combined with
interfaces that makes it easy to connect these processing units together, the application
developer can write multimedia applications that adheres to a flow-based programming model,
without the need of writing everything from scratch.

In this paper five kinds of such frameworks are presented: Infopipes [1], Komssys [2],
Network-Integrated Multimedia Middleware [3] and GStreamer [7].

2.2 The stream handler architecture

The units introduced in the previous section are termed stream handlers or components. They
are seen as objects and therefore built using an object oriented programming style. The stream
handlers can usually be split into three categories which reflect their role in the application:

• A source stream handler that produces the data. This can be reading data from a file or
from a live capture from a camera, or some other device.

• A sink stream handler which is responsible for sending the data stream to a file or sending
the stream to a suitable device like a sound card and/ or a video card or sending data stream
out on the net to a client.

• In between the source and the sink it is possible to have one or more processing or buffer
stream handlers. The processing stream handler can be, as already mentioned, a decoder,
encoder, transcoder, multiplexer, demultiplexer, filter etc. A buffer stream handler is only
used for intermediate storage between two other stream handlers.

These three stream handler categories is presented in figure2.1 together with some terms related
to their interaction.

Since stream handlers are modeled as objects, most of them have properties/attributes that
can be used to tune their behavior. This tuning can be done by the user to suit special needs, or it

3



Figure 2.1: Data flow and terms in the stream handler architecture.

can be done dynamically by the stream handlers themselves while the application is streaming
data. The latter is usually done by sending a report regarding the current state of the stream,
and then the stream handlers that are affected is updated. This communication, combined with
the media data flowing from source to sink, is the data flowing through the stream handlers.
Unlike the media data that only flows in one direction, from source to sink, the communication
between the stream handlers, called control information, can flow in both directions. The control
information can be a notification to other stream handlers tochange some of their attributes, or
it can be information regarding the media stream, such as a notification to change the position
in a video or audio stream.

To connect the stream handlers together, so the data can flow from one stream handler to
the next, there has to be some kind of interface that dictateshow data is delivered between two
neighbouring stream handlers. This interface is called a port. The buffers and processing stream
handlers have both an input and output port so the data can flowthrough them. It is also possible
to have multiple input and/or output ports. The source and sink stream handlers have only one
port, output port and input port respectively. For the data to flow from one stream handler
to another, input and/or output ports must have mechanisms to deliver or retrieve data from a
neighbouring stream handler. This is done with push and pullmethods respectively. With these
methods, media data can be put into a neighbouring downstream stream handler with a push
method, or media data can be pulled out of a neighbouring upstream stream handler with a pull
method.

The structure of all the connected stream handlers is calledthe composition and varies with
the stream handlers used. If the stream handlers used only has one input port and/or output port,
the composition is a pipe. When stream handlers with more than one input and output port are
used, the structure is a graph or a tree, depending on how manysinks and sources are used:

• When the composition consists of one source and multiple sinks, the resulting structure
is a tree with the source as root and the sinks as leaf nodes.

• When there are multiple sources and one sink, the structureis also a tree with the sink as
root and the sources as leaf nodes.

• With only one source and one sink, the composition has a graph structure with branching
in the middle and the branches meeting at the end. A demultiplexer, for example, is a
stream handler that causes branching of the data flow.

The stream handlers are connected either at compile time, static connections, or at run time,
dynamic connections.
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2.3 Existing frameworks

In this section we will present four frameworks that are based on the stream handler architecture.
These are Infopipes, Komssys, Network-Integrated Multimedia Middleware (NMM) and
GStreamer.

2.3.1 Infopipes

Infopipes is a media streaming framework proposed by Kosteret al. in [1]. In the
following subsections we will see that this framework fits well with our generic stream handler
architecture.

Infopipes architecture

Infopipes is a an abstraction, together with middleware andtools, for simplifying the task of
constructing streaming applications. This is done by offering a rich set of stream handlers,
which Koster et al. terms as infopipes, to the application developer. These stream handlers
are the building blocks of the streaming application. Together they constitute a composition in
which data and control information flow. Koster et al. uses infopipeline as the name for the
composition. The setup of the composition is predefined and is done static at compile time.

Koster et al. use a plumbing analogy to simplify and capture the Infopipes vision: "just
as a water-distribution system is built by connecting together pre-existing pipes, tees, valves
and application-specific fixtures, so an information-flow system is built by connecting together
predefined and application-specific Infopipes". For these stream handlers to communicate and
data to flow through them, there is a communication interfacebetween the components. Koster
et al. uses the name port. There are two kinds of ports: outports in which data flows out of
a stream handler, and inports where data flows into a stream handler. Each port is owned by
exactly one stream handler, but a stream handler can have multiple input ports or output ports.
Push and pull operations on these ports constitute the Infopipe’s data interface. There is also
a control interface which allows the stream handlers to exchange information and dynamically
monitor and control their properties.

A vital property to the stream handler is that they are compositional. This means that the
properties of a composition can be calculated from each individual stream handler constituting
that composition. For example, the latency of a compositionis computed by taking the sum of
the latency for all stream handlers in that composition. Compositionality also requires that
the connection between each stream handler has to be seamless. This means that the cost
of connecting these objects together should be insignificant, and therefore the push and pull
methods are seen to have no cost. In contrast, remote procedure calls or function calls that can
block the caller may have high costs. But the Infopipe architecture does not allow such cost to
be introduced automatically without encapsulating them into stream handlers. In this way their
cost can be included in the composition cost calculation.

For an object to become a stream handler and be able join a composition, it has to implement
the principal interfaces shown in figure 2.2. With these interfaces the user has the ability to
create new compositional stream handlers from the already existing ones. To able these new
complex stream handlers to be connected into the composition, they must have their own ports.
These ports are called ForwardedPorts by Koster et al. and are in one-to-one correspondence,

5



Figure 2.2: Principal interfaces of an Infopipe [1].

but different from the open ports of the sub-stream handlerssince ports can be owned by only
one stream handler.

Control Interface

The control interface of a stream handler exposes and manages two sets of properties: properties
regarding the stream handler itself and properties regarding the information flowing through the
stream handler.

Information can pass from one stream handler to another in two ways: pull mode and push
mode. In push mode the output port of the upstream component pushes data into an input
port of the downstream component. In pull mode the downstream component invokes a pull
method on the output port on the upstream component. The ports that invoke methods in other
components are said to be positive, and the ones that executethe methods when invoked are
said to be negative. For a composition to be well-formed, only ports with opposite polarities
can be connected.

Netpipe

A netpipe is special kind of buffer that allows components indifferent address spaces connect
to each other, but differs in the control interface as it reflects the properties of the network.
The netpipe has an input port in one address space and an output port in another. This way
the upstream neighbour is located in the same address space as the netpipe’s input port and
hence can do a seamless push of data into the netpipe. Equallythe output port is located in the
same address space as its downstream neighbour which then seamlessly pulls the data out of the
netpipe. The Infopipe framework uses smart proxies (Kosterand Kramp 2000) to implement
netpipes. Smart proxies works as an extension of the server at the client side, allowing the
server to control the network part of the composition, as shown in figure 2.3. But, instead of
sending the complete code of the proxy for performing the task the server wants, it can instead
take advantage of the fact that the client already has many primitive stream handlers that can
do the job. It sends the blueprints for the proxy, and the client assembles it itself, or it sends a
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Figure 2.3: Smart proxies used in Infopipes [1].

small specialized stream handler if it is not already available from the stream handler library.

2.3.2 Komssys

Komssys is a media streaming framework that was proposed by Zink et al. in [2]. We will in the
following section see that this framework fits well with our generic stream handler architecture.

Komssys architecture

The Komssys framework is targeted towards audio/video streaming over Real Time Streaming
Protocol (RTSP) with Real-time Transport Protocol/Real-time Transport Control Protocol
(RTP/RTCP) and the ability to handle multiple concurrent streams. It supports a wide range of
distribution mechanisms such as combining multicast and unicast distribution and segmentation
and reordering for efficient delivery.

The composition in Komssys is termed a graph by Zink et al. andis controlled by a graph
manager. The stream handlers are connected through input and output ports which Zink et
al. terms source endpoint and sink endpoint respectively. Astream handler can have multiple
input and/or output ports, all depending on its purpose. Thedata that flows through these
ports and their respective stream handlers are media data and report data, where the latter is
used for in-band control of the stream handlers. Komssys also allows the stream handlers to
use notifications to inform the composition manager that an event has occurred. This can for
example be that a RTP packet arrives from an unknown source.

The creation of a composition in Komssys is made from well-known “blueprints” which
connect the stream handlers that are needed for specific tasks. For each general task, Komssys
has statically at compile time defined a composition managerthat knows which stream handlers
to use in the composition. For example, when Komssys shall stream a file from disk to a
client, it creates a composition manager calledFileStreamerGM. This connects three stream
handlers, like in figure 2.1:

• OneFileSource responsible for reading the file.

• OneRTPEncoderSH responsible for creating data that shall be inserted into a Real-time
Transport Protocol (RTP) packet.

• And oneRTPSinkSH responsible for sending the RTP packet to the network.

7



The responsibilities for the composition manager is to set up and destroy the stream
handlers, provide an interface towards the application anddetermining the interaction between
stream handlers. It is able to split and merge the composition at run-time to handle new
connections in response to, for example, user joins and leaves from multicast streams, or arrival
of packets from unknown senders. This means that Komssys is able to dynamically connect
new stream handlers into the composition at run time.

Figure 2.4: The classes for making an object a stream handlerin komssys [2].

To make Komssys usable for third party developers, there exist basic classes, templates
and interface definitions, which are displayed in figure 2.4,that provide the developers with
stream handler functionality. To create a stream handler inKomssys, one has to create a object
that is a sub class of SH. And for the new stream handler to be able to communicate with
other stream handlers, it has to have aSHEndpoint object, either aSHSinkEndpoint,
SHSourceEndoint or both depending on the type of stream handler. These classes are used
to push or pull data to and from, respectively, the stream handler.

Control interface

Komssys, by enforcing new stream handlers to implement a report interface, has the ability to
provide direct feedback in the opposite direction of the data path. This way RTCP feedback can
be sent to a RTP packetizer without the involvement of the graph manager.

Three types of stream handlers

When dealing with concurrency, clocks are essential to makethings work. In the Komssys
framework a stream handler can specify whether it has its ownclock or not, and if it requires a
clock or not. These properties constitute that the stream handlers has to be grouped into some
operation modes, so that the graph manager can order them appropriately. The operation modes
are active, passive and through. If a stream handler is active it implements its own timer. This
can be either a local timer or external. The latter meaning that the stream handler is observing
some external activity, like the arrival of network packets. When an active stream handler acts
as a source it pushes data downstream actively by calling a push function on the neighbouring
downstream stream handler. If it is a sink it pulls data from its upstream neighbour. An active
stream handler may also combine these to properties; pulling from an upstream stream handler
and pushing the data into a downstream stream handler. Combining these properties of an active
stream handler, Komssys does not allow two active stream handlers to connect directly.

The second mode of a stream handler is passive. This stream handler does not implement
its own clock. If it acts as a source, its downstream neighbour pulls data from it. If it is a sink,
data gets pushed to it. If it implements both of these capabilities then it becomes a buffer, and
therefore must provide some buffering capabilities that suit the needs for the graph it is likely
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to be included in. Such buffer capabilities are for example athreshold that allows the stream
handler to notify the graph manager of over- and under runs ofthe buffer. As with the active
stream handlers, one can not connect two passive stream handlers because then no data would
be exchanged.

The third kind of operation mode of a stream handler is called“through”. These kinds of
stream handler are meant to do tasks like packet duplication, on-the-fly transcoding or filtering.
They do not have an own timer, but should not introduce buffercapabilities, like the passive
mode, beyond what is necessary for their operation. The stream handlers in this operation mode
must implement both the source and sink interface, and unlike stream handlers in the two other
modes stream handlers in this mode can be connected in an arbitrary number.

A combination of stream handlers from the three modes described may look like the one in
figure 2.5. An active stream handler upstream should push data into a through stream handler,

Figure 2.5: An example of connected stream handlers in Komssys [2].

which is followed by an arbitrary number of through stream handlers. The data should then
flow into a passive stream handler, for example a buffer, which then a sink stream handler pulls
data from.

Reconfiguration of the stream graph

Since the possibility of receiving several streams on one port is present when using RTP/RTCP
over IP multicast, Komssys supports reconfiguration of the composition at run time. It may add
or remove sub-compositions in response to users joining andleaving multicast streams.

A possible scenario where this feature of Komssys is useful is presented in [2]. Here,
Komssys acts as proxy cache server using a write-through method and the user gets data from
the origin server through the proxy cache. The proxy cache forwards the data to the client and
writes it to disk as well. If at one point the client wishes to pause the stream, the trunk of the
graph that sends data to the client has to be cut, while the trunk that stores the data has to be
maintained. If at one point the client wishes to resume the now paused stream, a new graph has
to be made which retrieves data from the cache.
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2.3.3 Network-Integrated Multimedia Middleware

NMM is a media streaming framework targeted towards distributed multimedia devices. It is
designed by Lohse et al. and is described in [3] and [8]. We will in the following sub-sections
see that this framework fits well with our generic stream handler architecture.

NMM architecture

NMM is designed to access and control distributed multimedia devices. It uses proxies to allow
distributed access to stream handlers. The stream handlersin NMM is called nodes by Lohse
et al. and can be software components or hardware devices. For communications, the stream
handlers have input and output ports, referred to by Lohse etal. as jacks, and are used to connect
stream handlers into the composition which Lohse et al. calls the flow graph. The multimedia
formats that are supported, the kind of data that can flow fromsource to sink, are specified by
the ports. A stream handler is not restricted to having only one input and output port, it can have
several, so each port is labeled with a “jack tag” which identifies it. Furthermore, ports can be
dynamically duplicated to form a port group. This group thenforwards outgoing messages from
the stream handler to all of its ports.

The messaging system in NMM handles two types of messages. “Buffers” transport data
and “events” transport arbitrary control information which can be used to control the stream
handlers. NMM also include a registry service that allow stream handlers to be registered with
its full description. This way suitable stream handlers canbe queried for, instantiated if a match
occur, and then returned. Queries are formatted as graph description, where the application
describes the kind of composition it is looking for. Lohse etal. use the term flow graph to refer
the our generic composition structure.

Control interface

The event messages in NMM can control the stream handlers in two ways. The stream handlers
can create “in-stream” events that are sent between the stream handlers in the composition. Or
the application that has instantiated the stream handlers,can send “out-of-band” events. This is
mainly used to set parameters in the stream handlers.

The event system in NMM allows for dynamically adding and removing certain event
handlers. It also allows listener objects to transparentlyregister to be informed when certain
events reaches a stream handler. Such events can for examplebe an “end-of-stream” event.

Synchronization

An important feature of NMM is the ability to have synchronized playback of several
multimedia streams to a device. A handheld device can for example be streaming an audio
and video stream from a DVD player. If the audio and video streams are separate streams, it
is very important that those two streams are synchronized for the user to have a satisfactory
playback experience. NMM achieves this by distinguishing between intra-stream and inter-
stream synchronization. The former referring to the relations between data units in one
stream, which can be frames in a video stream and the latter refers to the temporal relation
among several streams, for example a video stream and an audio stream. The two kinds of
synchronization can be seen in the figure 2.6.
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Figure 2.6: Synchronization in NMM [3].

The basis for the synchronization is a common source for timing information. A static clock
object is located inside each address space, i.e. inside each source stream handler. Intra-stream
synchronization is handled by time stamping each buffer, and then having the sink inspect
each buffer that arrives to see if it should be presented, using a sinkController located inside
the sink stream handler. Inter-stream synchronization is handled by a Synchronizer which
each stream-sink, that should be synchronized, is connected to. The Synchronizer then tells
all the connected sinks when to present their buffers in suchway that the user experiences a
synchronized playback. NMM does this by using what Lohse et al. refers to as theoretical
latency. This is the highest latency of all the streams that should be synchronized.

Automatic session sharing and synchronized reconfiguration

In NMM there is a possibility to have streams, for example an audio and video stream, share
parts of a composition. Therefore NMM uses a sharing policy on every stream handler that
is registered in the registry service. Stream handlers can be marked as shared, exclusive and
“exclusive and shared”, where the latter is to share a exclusively requested stream handler. There
is also a possibility to combine, for example “exclusive or shared” where a shared reservation
is chosen if an exclusive request fails.

When a composition of reserved and connected stream handlers is set up, it is stored as a
session in the registry service. Shared stream handlers canthen be reused in new compositions.
For sessions, synchronization is achieved by having synchronizer object for each session. An
example of session sharing can bee seen on the figure below. Here, the running session has
chosen to share all the stream handlers, except those for rendering audio and video. If then
another application wants to use a different audio stream, it queries the registry service for a
setup as seen in figure 2.7 (a), and the composition is setup asseen in figure 2.7 (b).

Another interesting feature in NMM is the ability to migrateparts of an active composition
to other devices in real time. And further, this is done seamlessly, i.e. the transition is not
noticeable from the user’s perspective. One possible scenario is presented in [8]. Here, the user
wants to play back media files stored on a mobile device. If there is no other system in a nearby
proximity, the user’s mobile device does the decoding and playback itself. But as soon as a
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Figure 2.7: Session sharing in NMM. In (a), a query comes in tothe registry service. In (b), the
new session is running and is sharing two stream handlers with the other session [3].

stationary system with richer I/O capabilities (higher quality stereo output) comes into reach, it
is desirable to have at least the audio playback directed to that system. If the stationary system
also supports the process of decoding the selected media files, then it is also preferable to send
that corresponding stream handler to the stationary system. This way the mobile device is able
to save power by delegating some of the battery consuming processes. NMM is thus able to
connect stream handlers dynamically at run time, but the initial composition is done at compile
time.

The basic idea behind this migration of stream handlers is that the new parts of the current
composition are configured alongside the running media processing. When the new parts have
been synchronized, the old part of the composition is “cut loose”. This seamless handover has
to be performed in two steps: In step one the required parts from the current composition is
instantiated and reconfigured. This newly created sub-composition is called a “slave graph”. In
the second step, data and control connections are transferred to the newly created “slave graph”.

2.3.4 GStreamer

GStreamer is a streaming media framework project founded byErik Walthinsen et al. In the
following sections we will see that the framework describedin [7] fits well with our own generic
stream handler architecture.
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GStreamer architecture

GStreamer is implemented in C, but uses the GObject programming model and therefore
adheres to the object oriented programming paradigm. The stream handlers are referred to
as elements and it uses ports to connect the stream handlers together. In GStreamer, the input
and output port are referred to as sink and source pad respectively. Links and data flow are
negotiated between the stream handlers ports before data can start to flow. It is the ports
that describe the type of data that can flow or currently flows through the stream handler it
is connected to, and links can only be made between stream handlers when their ports data type
match. The composition is referred to as a pipeline in GStreamer.

GStreamer allows us to create new stream handlers by deriving the new classes from the
stream handler class. But it also offers a way to create new stream handlers based on already
existing stream handlers in the GStreamer library. The useris able to group together multiple
stream handlers and mask it as a single stream handler using acontainer object which can hold
a collection of stream handlers, called bin. This bin is a subclass of stream handler which makes
it easy to mask the collection of stream handlers as just a single stream handler. The bin makes
it easy to control the states of all its contained stream handlers; changing the state of the bin,
causes all of its children to change state as well. The composition in GStreamer is a special
type of the bin object, a generic bin called pipeline. This object allows for scheduling of its
containing stream handlers using threads.

The data produced by the source stream handler and sent down the composition is wrapped
in entities called buffers. They consist, amongst others, of: a pointer to a piece of memory,
the size of memory, a time stamp for the buffer and a refcount that indicates how many stream
handlers are using the buffer. The refcount is used to decidewhen to destroy the buffer, when it
is zero it is destroyed.

Control Interface

To allow messages from the composition to be delivered to theapplication, GStreamer
implements a system called a bus. The bus forwards messages from the composition threads to
the application. Every composition contains a bus, so the user only have to attach a message
handler to the bus to be able to listen for specific messages. All the messages have a source and
type, so it is possible to identify which stream handler sentthe message.

Flowing alongside with buffers in the pipeline is events which contains the control
information, such as seeking information and end-of-stream notifiers. Events are sent both
up- and downstream. Downstream events are used to notify stream handlers of stream states.
Upstream events are used for application-stream handler interaction plus event-event interaction
to request change in stream state, for example seeks.

Autoplugging

Autoplugging is a feature in GStreamer that allow compositions to be created in response to
the type of media stream and available stream handlers in theGStreamer library. This means
that GStreamer has the ability to create compositions dynamically at run time. To accomplish
this, GStreamer forces all stream handlers to associate a Multipurpose Internet Mail Extensions-
type (MIME-type) to its source and sink ports when it is loaded into the stream handler library.
This way it can select the most suitable stream handlers thatfit a given stream type it receives.
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To find the MIME-type of an incoming stream, GStreamer uses a concept called typefinding
which basically involves the pipeline object sending the incoming stream to specialized stream
handlers called typefind which try to identify the MIME-type. If no type is found, it emits an
error signal and the processing stops. If the type of the datastream is found, the GStreamer
registry will be used to select the stream handlers that is suited for processing the media type.

2.4 Summary

We have looked at five media streaming frameworks in this chapter and have seen they all
fit well with our generic stream handler architecture. The main difference lies in what these
frameworks are used for and therefore they have implementedspecial features that are unique
for that particular framework. GStreamer is a very general framework that can be used to
create many types of applications. It can dynamically create a composition in response to a
stream type, while the others have statically at compile created their composition. This makes
GStreamer very easy to use. NMM has the ability to share stream handlers in a composition
and to migrate parts of a composition to other devices, from for example a Personal Digital
Assistant (PDA) to a desktop computer, which makes NMM suitable in mobile environments.
Infopipes is also a general framework, but offers a specialized stream handler to take care of
networking using smart proxies, which makes networking transparent.

Komssys is implemented as a media server that streams media content using RTSP, and can
also be used as a proxy cache server. It differs from the otherframeworks by being a server
framework, while the others are frameworks that can be used to create general media streaming
applications.

In the next chapter, we will look at how we can use Komssys together with a media player
to stream media over a network using RTSP.

14



Chapter 3

Media system

3.1 Introduction

To watch a movie or listen to audio, stored locally or remote,on a computer, we have to have a
media player. The purpose of the media player is to read the collection of zeroes and ones that
make up the file we want to play, demultiplex the stream of dataif it is multiplexed, decode the
stream(s) that comes from an eventual demultiplexing and then send the decoded data to their
respective output, video to screen and audio to the speakers.

When a data source is multiplexed it consist of two or more data sources, e.g. audio and
video. The reason for multiplexing data together is to make it less complicated to save, for
example, movies to disk, as we do not have to store the video data in one file and the audio data
in another file. Demultiplexing this movie file in the media player retrieves the two data streams
that have been interleaved on a single file when they were multiplexed.

When we want to watch a movie or listen to a song that is locatedon a different computer
than the one we are sitting on, termed as a remote computer, the file is “streamed” from
the remote computer. The media player has to support receiving data from the network
and strip it from eventual protocol headers that have been added to it before starting the
demultiplexing/decoding process described above.

The remote machine, from where we stream the data, has usually got a media server installed
which is responsible for delivering media data to the user who requests it. A media server can
support multiple connections to it, some may support transcoding files on the fly, which means
re-coding e.g. a DivX encoded movie to Xvid encoding before sending it to the client, support
different streaming protocols over which the data is delivered and so on. For each media file
,available through the media server, there is usually a Session Description Protocol (SDP) file
associated with it. SDP is used for describing the media session initiation such as the name of
the media, transport address, bandwidth information etc. [9].

An example of a media server streaming a movie over RTSP can beseen on figure 3.1.
RTSP is used to set up and control the state of the media session between the server and the
client, and RTP is used as a transport protocol to send the requested data to the client.

In this chapter we will take a closer look at the two components involved when playing
streamed media content over a network, namely a media playerand media server. In particular,
we will look at MPlayer and Komssys, respectively. We have chosen to use Komssys since this
is a server that follows the stream handler architecture, and we had access to the source code.
We will look at the initialization of the data stream and demultiplexing structures in MPlayer,
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and the initialization of a new file request in Komssys over the RTP/RTSP and till the first data
packet has been sent to the client.

Figure 3.1: Streaming example using RTSP/RTP.

3.2 MPlayer

In this section we will take a closer look at MPlayer [10]. MPlayer is a free and open source
media player available to most major operating systems today such as Unix-like systems,
Microsoft Windows and OS X.

It supports many popular video and audio formats used today which includes video formats
like H.263, Theora, H.264/Moving Picture Experts Group version 4 (MPEG-4) Advanced
Video Coding (AVC), MPEG-1, MPEG-2, Windows Media Video (WMV), and audio formats
like Advanced Audio Coding (AAC), Dolby Digital (AC3), MPEG-1 Audio Layer 3 (MP3),
Vorbis and Windows Media Audio (WMA) [10]. MPlayer also supports streaming via
Hyper Text Transfer Protocol/File Transfer Protocol (HTTP/FTP), RTP/RTSP, Microsoft Media
Services/Microsoft Media Services Over Tcp (MMS/MMST), Message Processing Subscriber
Terminal (MPST), Session Description Protocol (SDP). It supports data sources such as tv,
radio, dvb, local file etc. [10].

In the following, we will take a closer look on how MPlayer initializes a data stream that
shall be played, some of the data structures it uses and whichfiles are used. Then we will
describe how MPlayer accomplishes the task of streaming viaRTP/RTSP using the open source
library Live555 [4].
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3.2.1 Preliminary on the MPlayer code

The main file in MPlayer, mplayer.c is divided into logical modules, code blocks, that describe
in a concise way what is being done. The current module is printed out as debug information
if MPlayer crashes, making it easier to locate which code block that caused the crash. It also
makes it easier to refer to MPlayer code when trying to explain what goes on, and is how the
code in mplayer.c is referred to in the following sections.

The data is termed “stream” by MPlayer and is encapsulated ina struct calledstream_t.
This struct is defined in stream/stream.h. It is one of two major structures used in MPlayer that
we will look at. The other one is thedemuxer_t struct defined in libmpdemux/demuxer.h.
Together with some helper structs defined in the same files asstream_t anddemuxer_t,
these structs help MPlayer retrieve data, do seeks, resets and other data stream related operations
(functions defined in stream/stream.c), plus header processing for different video and audio
formats and demultiplexing before sending the data on to a decoder (functionality that concerns
the demuxer).

Two helper structs which MPlayer use when trying to find suitable stream and demuxer
structs arestream_info_t anddemuxer_desc_t, respectively. Thestream_info_t
struct holds information about a corresponding stream type, the protocol names that stream can
handle (a stream can handle more than one protocol) and a pointer to a function that sets up the
correctstream_t struct. Thedemuxer_desc_t struct has the same purpose when MPlayer
is trying to find a suitable demuxer for a given file or streaming protocol. What differs is that
demuxer_desc_t has more function pointers that help the demuxer to check if the file can
be demuxed with the current demuxer and fill the data buffer, plus some optional functions that
can be set.

Eachstream_info_t struct is set up at the end of the file that handles the stream
handling for a specific stream type. Thestream_info_t struct for a Digital Video
Broadcasting (DVB) for example is set up in stream_dvb.c. All thestream_info_t structs
are then made available through an array calledauto_open_streamswhich is initialized at
the top of stream/stream.c. The same code structure is also applied to thedemuxer_desc_t
structs which are set up in their corresponding demuxer files(located in libmpdemux) and then
made available in libmpdemux/demuxer.c through an array called demuxer_list.

3.2.2 Streaming with MPlayer

MPlayer starts at the main function located in mplayer.c. Itstarts by initializing variables
and properties, checking if a Graphical User Interface (GUI) is present and other init-related
procedures before we come to the “open_stream” module. Here, the demux and stream structs,
typedemuxer_t andstream_t respectively, is initialized to NULL. Then,open_stream()(
see table 3.1) is called and the return value is put into stream.

Initializing the stream struct

open_stream()sets thefile_format variable, sent in as an argument, to UNKNOWN-
STREAM_TYPE if we are not trying to open a play list. It then calls open_stream_full()
(see table 3.1) which does the stream setup, and is implemented in stream/stream.c. This
function runs through all thestream_info_t structs inauto_open_streams, looking
for a stream type that fits the kind of medium the user tries to open. When a stream type that
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Figure 3.2: Call graph showing the functions used in the setup of thestream_t struct.

Function: Parameters: Source file:
stream_t * char *filename, stream/open.c
open_stream() char **options,

int *file_format
stream_t * char *filename, stream/stream.c
open_stream_full() int mode,

char **options,
int *file_format

stream_t * stream_info_t *sinfo, stream/stream.c
open_stream_plugin() char *filename,

int mode,
char **options,
int *file_format,
int *ret

Table 3.1: Some important functions used to set up the stream_t struct.

can handle the medium is found,open_stream_plugin()(see table 3.1) is called. This function
handles the setup of a newstream_t struct by first allocating space for it and then sending
it into the open function pointer in thestream_info_t struct. When thestream_t struct
has been set up it is returned to the caller, all the way back tomplayer.c. If no supported stream
type is found to match the medium the user tries to open, MPlayer terminates. A small call
graph of the functions used and who calls who can be seen in figure 3.2.

Initializing the demuxer struct

After thestream_t struct has been set up, we eventually enter the “demux_open”module
which handles the setup of the demuxer. The most important functions used to set up the
demuxer_t struct, are listed in table 3.2.demux_open()is responsible for initializing the
demuxer_t struct. The setup follows the number ordering on figure 3.3, and is described in
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the following.

1 The first thing that is done, is to check whether the user has provided a demuxer name as
a command line argument. If this is true, the demuxer type to use is retrieved by calling
get_demuxer_type_from_name(). If the user has not specified which demuxer to use or the
given demuxer name is not valid, the function returns DEMUXER_TYPE_UNKNOWN
which is assigned to the variabledemuxer_type.

2 After these checks have been made for an audio, video and sub1 demuxer, the presence of
separate audio and sub streams are checked, and if existent,open_stream()is called for
each of these.

3 The next function that is called isdemux_open_stream(). This function returns a
new demuxer_t struct. The type ofdemuxer_t struct returned depends on the
demuxer_type variable and thefile_format parameter (which was set in the
initialization of thestream_t struct). demuxer_type takes precedence over the
file_format, so if this variable is different from DEMUXER_TYPE_UNKNOWN
this kind of demuxer_t is created. If it not, the demuxer is found using the
file_format.

4 Either way, thedemuxer_desc_t struct is retrieved by callingget_demuxer_-
desc_from_type().

5 If it is found, a newdemuxer_t struct is created by callingnew_demuxer(). This
function allocates space for the new struct, initializes the fields, sets the correct,
recently created,demuxer_desc_t struct for the demuxer and creates a pointer to the
stream_t struct, allowing the demuxer to retrieve data from the incoming data stream.
The latter is done by setting the stream field in the demuxer tothe stream_t struct
created in the “open_stream” module.

6 When we return fromnew_demuxer(), thedemuxer_desc_t’s check_file()function
pointer is called if it has been set in definition of thedemuxer_desc_t struct, to check
if the functions found in thedemuxer_desc_t struct can demux the file provided
by the user. If so, a call todemuxer_desc_t’s open() function pointer with the
new demuxer as argument is executed. This open function setsup the newly created
demuxer. If this call succeeds, we jump to the labeldmx_open, located at the bottom
of demux_open_stream(), where some video specific parameters are set in the demuxer
struct and then the demuxer is returned.

7 It is also a possibility that thefile_format parameter does not give any use-
ful information, in the case it has been set to STREAM_UNSUPPORTED. This
happens for example when one tries to stream media using RTSPwith MPlayer.
demux_open_stream()is still called but thedemuxer_desc_t struct is found using
a different method. One of these methods is to check the file name of the file we are
trying to open withdemuxer_type_by_filename()

1A short for subtext.
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8 When we return from the call todemux_open_stream(), the returned demuxer is checked
for validity. If it is not NULL various if-tests are performed to see if we also have to create
an audio demuxer and sub demuxer. Then the function returns either the video demuxer
we got fromdemux_open_stream()or it returns a new demuxer, created with a call to
new_demuxers_demuxer(). This function encapsulates threedemuxer_t structs inside
a locally defined struct and puts this inside the priv field of anew allocateddemuxer_t
struct. Among the other variables that are set are the type and file_format fields
which are both set to DEMUXER_TYPE_DEMUXERS, and thedemuxer_desc_t
field which is set to ademuxer_desc_t struct defined in demux_demuxers.c called
demuxer_desc_demuxers.

Figure 3.3: A call graph of the functions used in the setup of thedemuxer_t struct.

3.2.3 RTSP with Live555

When MPlayer tries to stream videos using the RTSP protocol,it uses the Live555 open source
library [4]. From the libmpdemux/demux_rtp.cpp file in the MPlayer source tree, Live555 code
gets linked in to handle the RTSP setup and tear down togetherwith the delivering of the payload
of each incoming RTP packet to MPlayer (omitting the libmpdemux/ directory prefix from here
on).

Live555 setup in MPlayer

The initialization of Live555’s RTSP and RTP handling code is done in demux_rtp.cpp. This
is the only C++ file in the MPlayer source together with demux_rtp_codecs.rtp, which contains
helper functions for demux_rtp.cpp. demux_rtp.cpp acts asa communication link between
Live555’s C++ code and MPlayer’s C code.demux_open_rtp()(see table 3.3) is linked to the
Live555demuxer_desc_t’s (demuxer_desc_rtp) open()function pointer and therefore
executed when thedemuxer_t struct is set up.

When demux_open_rtp()is called fromdemux_open_stream(), a TaskScheduler and an
UsageEnvrionment object from the Live555 library is created. “The ’UsageEnvironment’ and
’TaskScheduler classes are used for scheduling deferred events, for assigning handlers for
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Function: Parameters: Source file:
demuxer_t * stream_t *vs, libmpdemux/demuxer.c
demux_open() int file_format,

int audio_id,
int video_id,
int dvdsub_id,
char *filename

static demuxer_t * stream_t *vs, libmpdemux/demuxer.c
demux_open_stream() int file_format,

int audio_id,
int video_id,
int dvdsub_id,
char *filename

int get_demuxer_ char *demuxer_name,libmpdemux/demuxer.c
type_from_name() int *force
static demuxer_desc_t * int file_format libmpdemux/demuxer.c
get_demuxer_
desc_from_type()
demuxer_t * stream_t *stream, libmpdemux/demuxer.c
new_demuxer() int type,

int a_id,
int v_id,
int s_id,
char *filename

demuxer_t * demuxer_t *vd, libmpdemux/demux_demuxers.c
new_demuxers_demuxer() demuxer_t *ad,

demuxer_t *sd

Table 3.2: Some important functions used when setting up thedemuxer.
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asynchronous read events, and for outputting error/warning messages” [4]. All the Live555
files mentioned here is located in the liveMedia/ directory of the Live555 source tree if not a
different location is mentioned.

Figure 3.4: Collaboration diagram for MediaSession in Live555 [4].

For handling sending and receiving RTSP messages to and fromthe server, Live555
offers aRTSPClient object, implemented in RTSPClient.cpp. This object is created in
demux_open_rtp()when the user only has provided MPlayer with a RTSP Uniform Resource
Locator (URL). The URL together with theRTSPClient object is sent intoopenURL_rtsp(),
a local function in demux_rtp.cpp. Here, the SDP description is retrieved from the server
by calling either the functioninviteWithPassword()if a network username is provided, or
invite() if not. Both functions are implemented in RTSPClient.cpp. The information
about the session taken from the SDP description, is used to create aMediaSession
object which holds general information about the session, mainly things found in the SDP
description. This MediaSession is created by callingMediaSession::createNew()which then
instantiates a newMediasession object and callsMediaSession::initializeWithSDP()with
the newMediaSession object as argument. Here, the SDP description file is parsed
and the information extracted and put into member variables. For every “m=” option,
which describe a stream name and transport address [9], aMediaSubsession object
is created and appended to a list accessed with the variablesfSubsessionsTail and
fSubsessionsHead defined in include/MediaSubsession.hh. EachMediaSubsession
object encapsulates the stream and its properties. A collaboration diagram ofMediaSession
andMediaSubSessoin can be seen on figure 3.4. We also see members and inheritance of
the two classes.

When theMediaSession::initializeWithSDP()function is done parsing the SDP description,
we return toMediaSession::createNew()which return the initializedMediaSession object.
Back in demux_rtp.cpp, aRTPState struct defined in demux_rtp.cpp is created to store the
RTSP state just created. This struct stores the SDP description, MediaSession object and
RTSPClient object plus initializes other fields. This struct is then stored in a void pointer
field, in thedemuxer_t struct that is being set up, calledpriv. The next thing that is done
is to initiate everyMediaSubsession contained in theMediaSession object by iterating
through them. For eachMediaSubsession:

• It is checked whether the sub-session encapsulates an audio or video stream. This is
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so adesiredReceiveBufferSize variable can be set correctly. If it is video, the
desiredReceiveBufferSize is set higher.

• The MediaSubsession’s client RTSP port number is set to a pre-defined number,
defined in the MPlayer source code in stream/libRTSP/RTSP_rtp.c. In current status it is
always 0, so it is the kernel’s task to find a port number to use.

• MediaSubsession::initiate()is called. To keep it short, this function creates one socketfor
RTP and one socket for RTCP data. For reading data out of the RTP socket and process it,
MediaSubsession has afReadSourcemember of typeFramedSourcewhich is
an abstract class. For each stream type, e.g., MPEG-2 transport, QuickTime, H.261 etc.
there are subclasses of theFramedSource class that handle these special formats, with
respect to their headers. The RTP headers is also stripped from the data and analyzed.
For handling RTCP messages,MediaSubsession has aRTCPInstance member,
fRTCPInstance. RTCPInstance is implemented in RTCP.cpp. This class handles
the RTCP messages and RTP statistics for the RTSP session.

• The receive buffer size is increased for the RTP socket by calling increaseReceive-
BufferTo()with thedesiredReceiveBufferSize variable as one of the arguments.
increaseReceiveBuffer()is located in groupSock/GroupSockHelper.cc (from the root
directory in Live555).

• The last thing that is done is to send a RTSP setup message to the server to initiate the
RTSP session. This is done with theRTSPClient::setupMediaSubsession().

When all the MediaSubsessions have been iterated through, the RTSP play message is
sent for the whole session by callingRTSPClient::playMediaSession(). This sends the RTSP
“PLAY” message for all sub-sessions to the server, which after sending an “OK” response starts
streaming the requested media. After theMediaSession andMediaSubsession(s)
have been set up, aReadBufferQueue object is created for eachMediaSubsession.
The ReadBufferQueue is implemented in demux_rtp.cpp and represents input data for
each stream. If theMediaSubsession holds an audio stream,rtpCodecInitialize_audio()
is called. This function is implemented in demux_rtp_codec.cpp and sets audio codec-specific
parameters.rtpCodecInitialize_video()is called if the stream is a video stream and found in the
same file as the audio version. This function also sets a flag ifthe stream is a multiplexed video
and audio stream, such as a MPEG system stream.

The last thing that is checked, if the streams were set up correctly, is, if we are receiving
a single stream, if it is a multiplexed audio and video stream. When it is multiplexed, a
new demuxer is created with thedemux_open()function described in section 3.2.2. This new
demuxer is then wrapped inside a new demuxer using thenew_demuxer_demuxers()function,
also mentioned in 3.2.2, and then returned. The “old” demuxer just set up as described above is
preserved by creating a new stream with thenew_ds_stream()function in stream/stream.c. This
function creates a new stream and sets the stream type to STREAMTYPE_DS. This means
that the stream is coming from a demuxer, namely the RTP demuxer. It also saves the video
demux_stream_t struct from the olddemuxer_t struct that has been set up. This way
the “old” demuxer is not lost when a new is created since thedemux_stream_t struct has a
reference to the parent demuxer. We will take a closer look atthis structure in section 3.2.3.
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Function: Parameters: Source file:
static char * RTSPClient *client, libmpdemux/demux_rtp.cpp
openURL_RTSP() char const *url
demuxer_t *demux_open_rtp() demuxer_t *demuxer libmpdemux/demux_rtp.cpp
static demux_packet_t * demuxer_t *demuxer, libmpdemux/demux_rtp.cpp
getBuffer() demux_stream_t *ds,

Boolean mustGetNewData,
float &ptsBehind

int demux_rtp_fill_buffer() demuxer_t *demuxer,
demux_stream_t *ds

void demux_close_rtp() demuxer_t *demuxer libmpdemux/demux_rtp.cpp

Table 3.3: This table shows some important functions related to the interaction between Live555
and MPlayer.

Streaming with Live555 in MPlayer

After the RTP demuxer has set up theMediaSession, Live555 starts receiving data from
the media server and MPlayer goes through the rest of its initialization modules, before it starts
playing the data stream(s). The functions called before entering the interface functions towards
Live555 in demux_rtp.cpp vary in response to the format of the stream. We will use examples
from streaming a MPEG file through Live555 media server [4]. The file is split into two separate
streams, one for audio and one for video, and therefore thereare two different call sequences,
but the functions used to retrieve data from Live555 are the same. A trace back of the functions
called are shown in figure 3.5.

From the fourth call (#3 in both figures) and down the functioncalls are the same. The
ds_fill_buffer()function uses a struct not discussed in previous sections, thedemux_stream_t
structure. While thedemuxer_t struct holds information like demuxer type, file name, general
information in the form of ademuxer_info_t struct and link thestream_t struct into the
demuxer, thedemux_stream_t struct holds information regarding the actual stream. More
detailed information for each stream; video, audio or sub stream. It holds pointers to packets,
wrapped in a struct calleddemux_packet_t, flags, the position in the stream, the pointer to
the buffer where the data is stored etc. Thedemux_stream_t struct is accessed from the
demuxer_t struct which holds a pointer to it.

ds_fill_buffer()checks if there is a data packet in thedemux_stream_t struct’s buffer.
If so, extracts the packet, updates the fields in thedemux_stream_t struct and returns.
If there are no packets in thedemux_stream_t buffer, a call todemux_fill_buffer()is
made. This function calls the function pointed to by thefill_buffer pointer in the
demuxer_t’s demuxer_desc_t struct. This points todemux_rtp_fill_buffer()(see table
3.3) in demux_rtp.cpp. Here, a loop is entered and is not exited until a valid demux packet,
with respect to its presentation time, is retrieved. To get anew demux packet, thegetBuffer()
(see table 3.3) function is called, and blocks until a packetis available from Live555. In
getBuffer(), theReadBufferQueue object is referenced from theRTPState struct saved
in thedemux_t struct’s priv field. MediaSubsession::readSource::getNextFrame(), which is
stored inReadBufferQueue::readSource, is then invoked to get a RTP packet from the
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socket, strip it from its header and deliver the payload intothedemux_packet_t’s buffer.
We are then blocked until the data is available, and when it arrives thedemux_packet_t is
returned. The data retrieved is then processed and encoded by the respective functions shown

Figure 3.5: Back trace taken from Data Display Debugger (DDD) when streaming a mpg file
from Live555 media server. Part A is related to the decoding of the video stream. Part B is
related to decoding the audio stream.

in figure 3.5, until more data have to be retrieved and we enterthe same call flow just described.
This is done until the stream is ended.

3.2.4 Changes made to MPlayer

MPlayer version 1.0rc1 does not support receiving a MPEG 1 system stream over RTSP. It fails
to find the correct demuxer when it discovers that the MPEG stream it receives is a multiplexed
stream with audio and video. This is easily fixed by insertingan if-test where we check the
codec name string Live555 has received from the streaming server. If it is MPEG 1 system
stream (MP1S)2 we create a new demuxer of type DEMUXER_TYPE_MPEG_PES, if the
codec name is something different, like for example MPEG-1 or 2 video (MPV), we make
MPlayer search for a suitable demuxer itself, as it did before we changed it.

To close the stream in a proper way, we have to make sure that a TEARDOWN message is
sent to the server when the user decides to abort the streaming. This is done in demux_mpg.c.
Here, we check the stream type and if it is of type STREAMTYPE_DS, we know that the RTP
demuxer is used to deliver the data. A call to theclose()function in demux_rtp.cpp is then
all it takes to make Live555 initiate a tear down. Theclose()function is accessible from the
demuxer_desc_t struct contained in the RTP demuxer.

2We have only tested this with MP1S in Komssys
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3.3 Komssys

Komssys is a media server built upon the idea of stream handlers (section 2.3.2). In this section
we will look at unicast delivery over RTP/RTSP and see which components Komssys uses to
send RTP packets to the client when it streams a MPEG file from disk.

As Komssys is a stream handler framework it relies on the use of base classes to make it
easy to plug different types of stream handlers together. Wewill not describe the base class
pointers Komssys uses but only use the names of the sub classes that are being used in this
particular scenario.

3.3.1 The RTSP setup

Before Komssys can start sending out RTP packets to the client, the RTSP session has to be set
up. The RTSP setup starts when the client sends a SETUP message to Komssys. But this might
not always be the first message the client sends. Live555, forexample, sends a DESCRIBE
message before it decides that it can send a SETUP message. The DESCRIBE message tells
Komssys to send a description, in SDP format, of the requested media file back to the client.
This message then helps the client decide if it supports the way the server will stream the
requested media. If the client does not support the way Komssys will stream the requested
media, it will not start a RTSP session. If there are no problems, the client will send the SETUP
message and thereby initiates the setup procedure that can be seen on figure 3.1. When Komssys
receives the SETUP message, in short, it does this:

• Creates aMNSocket object which is defined in os/net/MNSocket.h. This class
encapsulates socket functionality for the connection and has member functions that takes
care of sending and receiving data to the client and other socket related functionality.

• Parses the SETUP message with aSDPParser object. This is a class defined in
sdp/SDPParser.h.

• Creates a graph manager object, in this case aFileStreamerGM which we saw in
section 2.3.2 creates the three stream handlersFileSourceSH, RTPEncoderSH and
RTPSinkSH. The graph manager opens the file the client requested, sets RTP and RTCP
port numbers that it shall use and initializes the stream handlers. All the graph managers
and stream handlers are defined in the rtp/gm/ and rtp/sh/ directories respectively.

• Creates aMNRTCP and MNRTP object which are responsible for sending out RTCP
and RTP packets respectively.MNRTP builds up the RTP packet in memory before
sending it to theMNSocket for delivery. They are defined in rtp/rtp/MNRTCP.h and
rtp/rtp/MNRTP.h respectively.

When the PLAY message arrives from the client Komssys startsthe streaming process by calling
FileStreamerGM::play().

3.3.2 From disk to net

When FileStreamerGM::play()gets called, it “starts” the stream handlers by callingstart-
Streaming()on each of them. This prepares the stream handlers to start streaming, especially it
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starts a timer inRTPEncoderSHwhich callsRTPEncoderSH::send_timer_callback()at every
thread clock tick and makes sure that data is pulled fromFileSourceSH and pushed to
RTPSinkSH.

A smart pointer that points to aData object is used to transfer data between the three stream
handlers. The smart pointer named DataPtr, using typedef declaration in C++. Using DataPtr,
Komssys only sends a pointer between the stream handles, eliminating the need to send all the
data, and thus saving a lot of CPU cycles.

Pulling data from FileSourceSH

Pulling data fromFileSourceSH starts with a call toRTPEncoderSH::pull_encode()with a
DataPtr as argument. This function checks if we are streaming and that a member variable
of type NoRetrans is not NULL. If it is set, a call toNoRetrans::get_next_data()is
made.NoRetrans is defined in rtp/codec/rt-profiles/NoRetrans.h and holds the retransmission
functionality, which is a RTP extension. As the name imply, this class offers no retransmission,
but only helpsRTPEncoderSH get the data fromFileSourceSH.

In NoRetrans::get_next_data()we get the encoder for the file format we are streaming,
which helps read out the MPEG file correctly from disk, calledPacketizerMPEG. Then,
PacketizerMPEG::get_next_data()is called. PacketizerMPEG::get_next_data()uses a helper
function inRTPEncoderSH’s SinkEndpoint object calledpull_from_peer()to pull data
from the neighboring upstream stream handlerFileSourceSH. This function asserts that
RTPEncoderSH and FileSourceSH are connected before callingFileSourceSH’s
SourceEndpoint::pull(). The arguments to both of these functions are a DataPtr to store the
data, and two arguments specifying how much to data pull.SourceEndpoint::pull()calls
FileSourceSH::pull_from_file()which reads a given amount of data from disk and puts it into
the DataPtr and returns it. When we return toPacketizerMPEG::get_next_data(), information
regarding how much we have read and current byte position areupdated, together with the
calculation of the time stamp for the RTP packet. Then a rope [2] to the data is returned to
MNRTPEncoderSH::pull_encode(). Here, aRPtr<MNRTPPacket>, MNRTPPacket being a
sub class of classData, defined in rtp/rtp/MNRTPPacket.h, object is created to hold the pulled
MPEG data, and to hold parameters related to the RTP packet, like the time stamp and RTP
marker bit [11]. The DataPtr which was sent in as argument topull_encode()is then assigned
to the pointer to the newly created RPtr<MNRTPPacket> object, and returned.

When Komssys usesNoRetrans to handle the retransmission, which then means no
retransmission, an extension header is added to the RTP packet. This extension header holds
the difference between the absolute byte position and how many bytes we have pulled.

Pushing data to RTPSinkSH

When we return from the call toMNRTPEncoderSH::pull_encode(), the data and RTP related
information are stored in aDataPtr object. If the pulling from theFileSourceSH
went fine, we send it downstream, to the neighboring stream handler RTPSinkSH, using
RTPEncoderSH’s SourceEndpoint::push_to_peer()with the DataPtr object as argument.
This function asserts thatRTPEncoderSH and RTPSinkSH are connected, and calls
RTPSinkSH’s SinkEndpoint::push(). This function then callsRPTSinkSH::push_to_net().
Here, the data we pulled fromFileSourceSH is extracted from the DataPtr object,
together with the time stamp, marker bit and the extension header length. If the RTP
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packet should be sent without an extension header,MNRTP::rtp_send()is called, otherwise
MNRTP::rtp_send_ext(). The two functions differs only in the way the RTP packet is
constructed. In short, both functions builds the RTP packet, sends a pointer to it to
MNSocket::send()which then sends the packet out on the net using asendmsg()system
call. The amount of data that was sent is then returned fromMNSocket::send()and is, in
MNRTP::rtp_send()andMNRTP::rtp_send_ext(), used to update statistics. Then if there were
no errors while sending the packet, the sequence number of the RTP packet sent is returned to
RTPSinkSH::push_to_net().

3.3.3 Changes made to Komssys

We have made some changes and added some new stream handlers and graph managers to
Komssys. The changes have made it possible for MPlayer to communicate with Komssys, and
let us use a new system call that we have implemented in Linux,which is described in section
3.4.1 and calledsendfile_prefixed()[12]. The new stream handlers and graph managers are
created so we can test different implementations of Komssys.

Streaming MPEG using Komssys and MPlayer

As of today, MPlayer can not communicate with Komssys when streaming a MPEG file over
RTSP/RTP. The reason for this lies in the setup of the RTSP session, more precisely in the
response to the DESCRIBE message sent to Komssys from MPlayer. As we can see from figure
3.6, Komssys sends the character string “X-PN-MPG” together with the codec code 32. This is
an unknown codec name to Live555, which causes it not to startthe setup of the RTSP session,
and thereby causing MPlayer to quit. A small change in sdp/PayloadTypes.h fixes this. By
making Komssys associate the codec code 32 with “MP1S” instead of “X-PN-MPG”, Live555
is able to set up the RTSP session.

Figure 3.6: RTSP Describe message.
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New stream handlers and graph managers

We have added two new stream handlers and graph managers to Komssys. The stream
handlers are calledTunedFileSH and TunedFilePrefixedSH. TunedFileSH is a
stream handler that combines the functionality of the threestream handlers we looked at in
section 3.3.2 into one stream handler. This new stream handler has removed any use of virtual
functions that are used in the regular stream handlers, which are functions that are implemented
in a base class but can be overridden in a sub class to behave differently.

The second stream handler,TunedFilePrefixSH, is based onTunedFileSH, but uses
the new system callsendfile_prefixed(). We have removed read-from-disk functionality from
TunedFilePrefixedSH, instead it usessendfile_prefixed()to do this.

The new graph managers areTunedFileStreamerGM andTunedFilePrefixed-
StreamerGM. They useTunedFileSH and TunedFilePrefixedSH respectively as
stream handlers. The rest of their functionality is the sameas theFileStreamerGM we
have looked at in section 2.3.2.

Adding support for a new system call

In section we describe a new system call that we have implemented. To have Komssys support
this, we have changed rtp/rtp/MNRTP.h and net/os/MNSocket.h. In MNRTP.h we have added
two new functions, one for sending regular RTP packets and one for sending RTP packets with
extension headers, where both are using the new system call.They do not use the system call
directly but use a new function we have added to MNSocket.h called sendfile_prefixed()which
calls it for them.

3.4 Linux

We have used Linux kernel 2.6.20.15 as the test bed for the experiments we have done. Most
of the changes made to the kernel is described in chapter 4, but we have implemented a system
call that is used by Komssys and therefore we describe it here.

3.4.1 A new system call: sendfile_prefixed

sendfile_prefixed()is a modification to the already existing system callsendfile(). send-
file_prefixed()allows us to send header data down to the kernel, which can be prepended to
the data we wish to send usingsendfile(). By using this new system call we avoid using CPU
cycles on context switching which Komssys does inFileSourceSH when it issues aread()
system call to read from file, and on copy operations during sending [12]. Instead, we can
discard of theread() system call by creating the RTP header in Komssys and send it down to
the kernel withsendfile_prefixed(). In the kernel,sendfile_prefixed()will send the RTP header
to the network buffer and cork it, which prevents it from being sent out to the client, where
it waits for a chunk of the file the client has requested. When this arrives, the chunk of data
and the RTP header will be uncorked and sent as a RTP packet to the client. The data path,
usingTunedFilePrefixedStreamerGM as graph manager in Komssys, is illustrated in
figure 3.7. For a comparison, the data paths for the graph managersFileStreamerGM and
TunedFileStreamerGM is illustrated in figure 3.8 and 3.9 respectively.
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Figure 3.7: User/kernel space interaction usingsendfile_prefixed() with TunedFilePrefixed-
StreamerGM.

Figure 3.8: User/kernel space interaction using a combination of read()andsendmsg()system
calls with FileStreamerGM.
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Figure 3.9: User/kernel space interaction using a combination of read()andsendmsg()system
calls with TunedFileStreamerGM.

sendfile_prefixed()uses two helper functions, one that corks the header data at the network
buffer, and one that uncorks it when we have calledsendfile()to send a chunk of data from disk
to the network buffer. These helper functions are implemented for both User Datagram Protocol
(UDP) and Transmission Control Protocol (TCP).

3.4.2 Changes made to Linux

To implement a new system call in the 2.6 Linux kernel, there are three files that have been
modified: arch/i386/kernel/syscall_table.S, include/linux/syscalls.h, include/asm-i386/unistd.h.
The changes in these files are needed to make Linux aware of thenew system call.

The system call itself is implemented as a module so it can easily be modified without re-
compiling the kernel. As already mentioned,sendfile_prefixed()uses two functions that helps
it cork and uncork data at the network buffer. Both of them areimplemented for UDP and TCP
in net/ipv4/upd.c and net/ipv4/tcp.c respectively.

3.5 Summary

We have looked at how MPlayer initializes two important structures, namely the demuxer_t and
stream_t structs. These help MPlayer retrieve the data froma source and demultiplex it. We
have also seen how MPlayer makes use of Live555 to handle streaming with RTSP as this is
currently unsupported in MPlayer’s own code. In section 3.2.4 we looked at the changes made
to MPlayer to make it work when streaming MPEG with multiplexaudio and video over RTSP.

In section 3.3 we looked at the data path in Komssys, which functions and classes that are
used, when streaming a MPEG file from disk to network over RTSPand using RTP/RTCP as
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transport protocol. Then, we went through some changes and add-ons, to make Komssys work
with MPlayer and some new stream handlers and graph mangers to Komssys, that we will make
use of in the chapter 5. We also added support for using the newsystem call,sendfile_prefixed(),
in Komssys. The last we covered was a new system call we have added to Linux. This was a
modified version of thesendfile()system call, that we will use with Komssys when performing
experiments.

In the next chapter we will look at a time measurement tool that we we will use in chapter 5
to do benchmarks of Komssys using the proposed changes.
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Chapter 4

Time measuring tool

4.1 Introduction

Measuring how much time used from point A to point B in programcode can easily be done
with existing functions in Linux. It involves retrieving a time stamp both at point A and B then
calculating the difference to find out how much time was used.This works fine when measuring
small pieces of code. But if we want to do time measures when A and B is far apart in terms of
code lines, the method just outlined may be inadequate for several reasons: the program may be
scheduled out, it may get interrupted to handle hardware interrupts, page faults might occur if
the program code is not residing in memory and different kinds system calls may be called. All
these factors affect a time measure, some more than others. If the program is scheduled out this
usually will affect the time measure more than if it is interrupted by a single interrupt and then
later resumed. System calls that offer reads and writes to disk, for example, may have variable
execution time depending on the state of the disk. So to get a good approximation on how much
time the CPU spends on program code alone, when doing time measure over many lines of
code, one subtract time spent in kernel space doing interrupts, system calls and exceptions from
the total time measured, starting at A and stopping at B. Subtracting all these factors makes it
easier to compare different implementations of a program, for example with or without the use
of virtual functions when written in C++, with respect to time spent on the CPU.

It is an essential condition that the data path in the code we are time measuring is single
threaded, if this was not the case, several time measures could start before the first measure
stops, making it hard to estimate how much time used from A to B.

4.2 Design

Identifying how much time is used for user space processing and kernel space processing, on
behalf of the program, and time spent on other processes, we first have to identify where the
entry points to the kernel resides, start a timer at these points and when the program is to resume,
stop the timer at the exit point out of the kernel. The file thatholds all entry points to the Linux
kernel can be found is entry.S and is located in arch/i386/kernel/ for the i386 architecture1. It
also holds the exit point which is used by interrupts, exceptions and system calls that use the int
$0x80 instruction labeled restore_all (figure 4.1), and theentry and exit point for system calls

1The measure tool has been developed for the i386 architecture using kernel 2.6.20.15.
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Figure 4.1: Exceptions and interrupts both end up at the restore_all label [5].
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that use the sysenter instruction. The exit point for the sysenter instruction is at the bottom of
the sysenter entry point. It is at these two exit points, restore_all and sysenter exit point, that we
stop the timer.

All interrupts are set up to push the IRQ number, associated with the interrupt minus
256, on the stack and then jump to a label called common_interrupt [5]. So a suitable
location for interrupt detection will be there. System calls that use the int $0x80
instruction enters at ENTRY(system_call) and those that use the sysenter instruction enter at
ENTRY(sysenter_enter). Placing code here will be a good location to detect when these system
calls are issued.

Exceptions are the third possibility an user space processes may end up in kernel space.
Most of the exceptions are used to signal when errors have occurred in the program, like
for example divide by zero and overflow. These relates to errors in the program and usually
makes the program that caused the exception to terminate. The only useful exception, for
time measuring, which does not make the program terminate isa page fault, assuming that the
program has access to the given page. Its entry point is KPROBE_ENTRY(page_fault) and is
the last point where code is to be inserted to detect when the program enters kernel space.

For the user to be able control when to start and stop the time measure, the program has to
communicate with the kernel. This is done with two system calls, one for starting the measure
and one for stopping it. These system calls take a struct as argument to be filled with total time
used in both kernel space and user space and statistics, whenthe time measure stops.

In the following sub sections we will look at how to use systemcalls to start and stop the
time measure, present some design issues related to how to insert code into the kernel to detect
when one of the above mentioned entry/exit points are entered/exited, how to retrieve a time
stamp and what possible kernel control paths the time measure code has to take into account an.

4.2.1 New system calls

Since we start the time measures in user space and the code that calculates time stamps and
time used is in kernel space, we have to create two system calls, start_time_measure()and
stop_time_measure(), so that we can communicate with the code located in the kernel. The
system calls are implemented in such way that we can send a struct “down” to kernel space.
This struct is then filled time information. Information regarding when we started the time
measure whenstart_time_measure()is called, and total time spent in kernel space and user
space and statistics whenstop_time_measure()is called. The members of the struct, and an
explanation of what the meaning of each, is put into table 4.1

The total time used in kernel space and user space is then calculated as follows:

total_time_kernel_space = kernel_space_total_time

− umeasure.kernel_space_time_base

total_time_user_space = stop_time_stamp

− umeasure.start_time_stamp

− total_time_kernel

Here, umeasure is the name of the struct we send down to kernelspace. stop_time_stamp
is created when we stop the time measure, and umeasure.start_time_stamp when we started.
kernel_space_total_time is the total time used in kernel space for all measures taken for a single
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Data type: Name: Comment:
uint64_t kernel_space_time_baseWe set this to the time used in the

kernel when we start a time measure.
uint64_t start_time Time stamp from when we start the

measure.
uint64_t total_time_user_space The total time used on the time

measure in user space.
uint64_t total_time_kernel_space The total time used on the time

measure in kernel space.
uint16_t syscall_count Number of syscalls issued in a time

measure.
uint16_t page_fault_count Number of page fault happened in a

time measure.
uint16_t interrupt_count Number of interrupts hap-pend in a

time measure.
uint16_t sched_count Number of times the CPU has been

used by other processes while in
between a time measure.

uint16_t sched_count_between Number of times the CPU has been
used by other processes while in
between two time measures.

Table 4.1: Struct that is used to calculate statistics and time in a time measure.
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process, and umeasure.kernel_space_time_base is what kernel_space_total_time was when we
started the time measure.

System calls implementation

The implementation of the system calls are actually made in amodule which we insert when
we want to perform a time measure. The default implementation, which resides in the kernel,
only return -ENOSYS to signal that the module is not present.The reason we have chosen to
do it like this is because it makes the development much easier. If the implementation is located
in the kernel we have to recompile and restart Linux every time a change to the system calls
are made. Writing the implementation in a module saves us a lot of time as we only have to
recompile the module.

Implementing the system calls in a module is done by “hijacking” the default implementa-
tions in the kernel by inserting new ones in the syscall_table and saving the old ones. The new
ones are inserted when the module is inserted into the kerneland removed when the module
is removed. The syscall_table must be made available from arch/i386/kernel/i386_ksyms.c
by first declaring it as an extern void pointer to an array and then exporting it using
EXPORT_SYMBOL. Doing this makes it possible to alter the syscall_table inside our module.

4.2.2 Inserting time measure code into the kernel

Inserting code into the Linux kernel can be done by either statically, modifying some existing
source files, or it can be done dynamically at run time. The latter is a safer and a more time
friendly method. It involves the use of kernel modules [13] and kprobes [14] which are inserted
into the kernel at run time. Because the kernel is not modifiedthere is no need to re-compile the
kernel and reboot which is a time consuming business, and hasto be done when inserting code
statically. Kprobes is originally intended to be used as a debugging tool. But it may also make a
very suitable tool when we want to insert code into the kernelto record time stamp information
as described above.

Kprobes

Kprobes is a mechanism that allows users to dynamically insert non-disruptively break points,
probes, at almost any instruction in the kernel. The exceptions are entry points defined with
KPROBE_ENTRY in entry.S and functions declared with the keyword __kprobes. These
definitions prohibit kprobes to be inserted2. Kprobes are usually packaged inside a kernel
module. It gets registered when the module is initialized and unregistered when the module is
removed. The register process involves inserting the breakpoint at a given instruction address
in the kernel and associate handler functions to be called when the break point is encountered.
There are two handler functions that can be associated: a pre-handler and a post-handler
function. The pre-handler gets executed just before the probed instruction, where the break
point is inserted, and the post handler right after the probed instruction has been executed. One
does not have to specify both handler functions, it suffices to specify one of them. When control
reaches one of the handler functions, we have access to a copyof all of the CPU registers that

2Defined in include/linux/linkage.h and include/linux/kprobes.c respectively.
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were present when the break point was encountered. A schematic figure of these steps is shown
in figure 4.2

Figure 4.2: Execution of a Kprobe [6].

How kprobes work is architecture dependent [14]. We will take a short look at what is done
on the i386 architecture. Here, kprobes works by making a copy of the instruction where the
break point is inserted, and replaces the first byte(s) of theprobed instruction with the break
point instruction int3 [14]. This is done when the Kprobe is registered. When the break point
is encountered a trap occurs, the registers are saved and control is passed to kprobes which
executes the pre-handler (if existing). Then the saved instruction is single stepped and the post
handler is executed (if existing). When the post handler exits, the instruction coming after the
probed instruction is executed and code execution continues as before.

Using kprobes to insert measure code

Using kprobes to insert time measure code into the identifiedentry points in section 4.2 involves
creating a kernel module which will hold the kprobes, and then register six kprobes, one for each
entry point and one for each of the exit points. The first hinder we meet is that the page fault
entry is defined with KPROBE_ENTRY, meaning that we are not allowed to insert a Kprobe at
this entry. We could argue that the time spent doing page faults are a diminishing factor in the
time measure results if we are doing repetitive measurementon the same code, i.e. in a while
loop. In a loop, page faults will only happen the first time, and then the code is in memory and
no more page fault will occur if not those pages are swapped out. But if the time measuring is
to be done one time only the time spent retrieving missing pages might have an impact on the
time measure. The different code lines we are measuring might have different disk and memory
size and therefore may have different page faults times. So,it can be a good idea to add the over
all time time spent doing page faults to the total kernel space time.

The second hinder and the most difficult to pass is the consequences that occur when
inserting a Kprobe at the restore_all label in entry.S. Without code here we are not able to
find out how much time was spent in kernel space. And the reasonwhy it does not work
using kprobes is that kprobes uses the int3 instruction which causes an exception. As all other
exceptions, when the int3 exception is done with its processing, when the probe has been
processed, it makes a jump to a label called ret_from_exception which eventually ends up at
the restore_all label. By inserting a probe at the restore_all label we will be inducing an infinite
loop in the Linux kernel which is, to say at least, something we not want to be doing.
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In conclusion we can say that kprobes is not suitable for these kinds of time measures, i.e.
where we wish to find the time spent in kernel space and subtract this from the total time used
from start to stop. This is because it is impossible to detectwhen we are done with kernel
space processing and re-enter user space. On the other hand,we can and will use kprobes
to count how many times the measuring process is scheduled out, to be able to see the effect
of cache misses. We want to count the number of processes, notcounting the one we are
measuring, that is run on the CPU during and in between time measures. We achieve this by
registering a Kprobe, in the same module as the two time measure system calls resides on entry
to __switch_to(), and associates a pre-handler with this probe. Then, in the pre-handler we
check if the process we are measuring is being switched out orin. If it is switched out, we
increment a variable called sched_count_total and set the variable scheduled_out to TRUE. If
the process is being switched in we set scheduled_out to FALSE. When scheduled_out is TRUE,
sched_count_total is incremented every time a process switch occurs. Thus we will get the total
number of processes that have used the CPU when the measuringprocess has been scheduled
out.

For example, let us say we are doing time measure in code that is repeated, e.g. in a while
loop, and the process is interrupted after one time measure has ended. The kernel will check if
there are other processes that are waiting to use the CPU and if there are, and they have higher
priority than the process we are measuring, call__switch_to(). On entry to this function, our
kprobe will intercept and take us to the pre-handler. Here, we check the pid of the process that
is beeing switched out, and if it is the process we are measuring, we increment schedule count.
We then set the flag variable indicating that we are scheduledout to true, and return to normal
execution. Now, every time a process switch occurs that doesnot involve the process we are
measuring, the kprobe intercepts the__switch_to()function and increments the schedule count.
When our process is switched back in, we set the schedule out flag to false, and return.

Statically inserting measure code

Statically inserting code at each of the identified entry/exit points to the kernel in section 4.2
involves writing assembly code in entry.S. At each entry point we have to create a start time
stamp and at the return to user space, in the restore_all label and exit from sysenter, create a
stop time stamp. To ease the development these functions canbe written in C and called from
entry.S. At each point, we have to save the registers that will be clobbered and then restore them
when we return from the call. This has to be done so everythingrun as if the inserted code is
not there. If we were to forget this it can result in unexpected behavior of the programs affected
by clobbered registers.

We define the functions to call in a C-file. In this file we define the functions to be used and
some global variables that shall hold the time stamps and some statistics regarding page faults,
system calls and interrupts. Four functions are defined, onefor each of the entry points and one
for each of the exit points. To have only the process we are measuring trigger the creation of
time stamps, each function checks the pid of the process entering kernel space. This is done by
comparing the current3 process pid with the process pid of the process we are measuring. The
latter pid is saved when we start the time measure and will be described in section 4.2.1. If the
two pids match we start or stop the time measure, which depends on if we are at an entry or exit
point respectively.

3The current process refers to the process that has executiontime on the CPU.
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To recap, we create a time stamp in each of the functions that are to be placed at the entry
points and we create a time stamp at the exit points. At the exit points we subtract the time
stamp we created when we entered kernel space from the stop time stamp. The difference is
then how much time spent processing in kernel space and possible on other user processes if
the program has been scheduled out. This time is then added toa global variable that holds how
much time is spent in kernel space altogether. When the measuring is stopped, this variable,
indicating how much time is spent in kernel space and possibly on other processes, is subtracted
from the over all total time it took from A to B. The differenceis how much time was used by
the user process.

4.2.3 Retrieving a time stamp

Retrieving current date and time could have been done with several system calls in Linux [5].
Two of them istime() andgettimeofday(). The former returns the number of elapsed seconds
since midnight at the start of January 1, 1970 (UTC), the latter does the same but returns it in a
struct named timeval, that also holds the number of elapsed microseconds in the last second.

Doing time measures with second resolution is not very useful. Most time measures
will often complete in much less time and secondly, this resolution is not very useful when
comparing two time measures against each other. Usinggettimeofday()gives us an increase in
resolution with a factor of one million which is acceptable in many situations. But the fact that
today’s CPUs operates in terms of Ghz, microsecond resolution is far away from giving us the
most detailed timing information. To get this we have to use nanoseconds resolution. This is
only achievable on platforms that has a Time Stamp Counter4 (TSC) and offers an assembly
instruction to read this called rdtsc. On x86 processors this instruction reads the value from the
TSC and stores it in edx:eax [15]. One is free to use both registers or just one of them. Using
only the eax register gives us a cycle count of232 before it overflows. How much time before
the eax register overflows depends on the processor speed. Ifwe are running on a 1.6 GHz
processor, the time between overflows is equal to:

232cycles ∗ (1 second/1, 600, 000, 000 cycles) = 2.68 seconds

The exactness and reliability of the time stamp counter relies on some factors that we will take
a closer look at in the following section.

Issues related to TSC

Using the rdtsc will under optimal conditions give us the number of CPU cycles the CPU has
executed between start point A and stop point B when we subtract A from B. From this return
value we can deduce how many nanoseconds have elapsed by dividing it by the CPU frequency.
If our CPU is running at exact 2.4 Ghz we divide the return value from rdtsc by 2,4.

There are some issues that have to be taken into account that are related to exactness and
reliability. Exactness is affected by the processor speed.We have to know the exact processor
speed to calculate how many nano seconds used. This can be found via BIOS information or
/proc/cpuinfo/.

As mentioned, we need optimal conditions for the rdstc to be reliable. There are two
important properties that must be fulfilled in order for thisto happen. The first property is

4Time Stamp Counter is a 64-bit register and holds the number of CPU cycles since start up.
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that the value received from rdtsc must be strictly increasing: the rdtsc value from stop point
B must be larger than the rdtsc value from start point A. The second property is that the CPU
frequency where the rdtsc value is taken from must be constant between A and B. The former
property secures that we get a positive difference when we subtract the rdtsc value A from the
rdtsc value B. The latter property ensures that we can convert the computed difference into
nanoseconds. But, there is no guarantee that these properties are met and so the rdtsc values
retrieved are seen to have no reliable value and can not be used. This happens when we are on
a multiprocessor or multicore system. These systems do not offer guarantees that their cycle
counter is synchronized between cores [15]. Since there is no guarantee that the executing
process will not be scheduled on a different core than the oneit started on, the first property will
be broken. The second property is often broken in laptop systems where the CPU is sometimes
tuned to save as much battery as possible. If this happens we can not be sure that the CPU
frequency is constant in between the A and B.

There is actually a third property that we have to take in to account when we are doing time
measures on small pieces of code; which is out-of-order execution. This can happen when the
CPU reorders the instructions it is about to execute. To overcome this, we can issue a cpuid
instruction before we start a time measure and right before we stop the time measure. But on
time measures where the code distance is big, the effect of out-order-execution is diminishing
and therefore no need to execute cpuid.

Choosing between gettimeofday and rdtsc

gettimeofday()is not affected by any of the issues described about the rdtscin section 4.2.3.
The downside is the resolution of the timer. But if we can not be sure that the two properties
described in section 4.2.3, thengettimeofday()is the best we can do in terms of timerr esolution.
Under Linux though we have the ability, firstly, to make sure it only uses one core by disabling
Symmetric Multiprocessing (SMP) support and secondly thatit does not use different CPU
frequencies by disabling support for CPU frequency shifting. Doing this is an easy task when
configuring the Linux kernel and we have therefore decided touse the TSC, by using rdtsc
assembly instruction, for creating the time stamps.

4.2.4 The kernel control paths

Every interrupt or exception creates a kernel control path that execute in kernel space on behalf
of the current process [5]. Since interrupts can occur at anytime, except when interrupts are
turned off, the control paths can be nested, as shown in figure4.3; an interrupt or exception
handler can be interrupted which causes nesting levels greater than 1. Exceptions can only give
rise to at most two kernel control paths since bug free kernels do not cause exceptions. The
only time an exception occurs in kernel space is when the userinvokes a system call which then
causes a page fault.

The nested nature of kernel control paths must be taken into account when calculating how
much time a process spends in kernel space. It is only the top level control path where we have
to create a time stamp and when other nested interrupts occurwe check if we are already in a
nested control path. If we are, we do nothing and return. Whenthe topmost control path is about
to exit to user space again, we calculate the time spent in kernel space and clear the variables
that indicates that we are in a kernel control path.
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Figure 4.3: Nested interrupts in kernel space [5].

4.3 Summary

In this chapter we have looked at a time measurement tool thatsplits up the total time used
on a time measure into kernel space time and user space time, and at the same time give us
information about kernel events and if the process has been scheduled out. Doing this makes
it possible to do time measures over a greater code distance without having to worry about
the process being scheduled out or affected by other kernel variabilities as this does not affect
the time used in user space. We discussed how this could be done using kprobes or statically
inserting code, and looked at what time taking instruments Linux and the x86 platform had to
offer. To start and stop the time measure, we introduced two system calls, and looked at how
we calculate the time spent in kernel space for a process. Forthe results from the time measure
to be valid, we saw that the measuring tool is only usable in code that is single threaded, if this
was not the case, several time measures can be started in parallel.

In the next chapter we will use the tool presented in this chapter together with the standard
time measurement procedure to investigate the effects of the proposed changes to Komssys we
looked at in chapter 3.
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Chapter 5

Testing of proposed changes

5.1 Introduction

In this chapter, we will test and evaluate the proposed changes to Komssys and look at their
effect on the number CPU cycles Komssys have to use in order tocreate a RTP packet and send
it out on the net, to a client. We will also evaluate the proposed time measuring tool described
in chapter 4.

The proposed changes to Komssys and the time measuring tool have been developed so that
we can measure the penalty of using virtual functions in Komssys, and to see the effects of
usingsendfile_prefixed(). We want to measure the effect, with respect to the number of CPU
cycles used, of removing the use of virtual functions and further find out whether there are any
improvements if we usesendfile_prefixed()instead of the combination ofread()andsendmsg()
system calls, used byFileStreamerGM.

5.2 Test setup

For the testing we run Komssys on a desktop computer running Linux 2.6.20.15 kernel with
CPU frequency scaling turned off. It has a 1.6 GHz AMD processor with 512 MB ram. The
client, which runs MPlayer and displays the video sent from Komssys, is a Macbook Pro 2.4
Ghz dual core processor.

5.3 Test Layout

5.3.1 Testing three different graph managers

We will test three different graph managers:FileStreamerGM (FSGM), TunedFile-
StreamerGM (TFSGM) andTunedFilePrefixedStreamerGM (TFPSGM). Each time
measure is started right before the call topull_encode()in RTPEncoderSH, TunedFileSH
andTunedFilePrefixedSH, and stopped right after we have sent the RTP packet to net
by callingMNRTP::rtp_sendfile_prefixed_ext()or MNRTP::rtp_send_ext(), depending on if we
are usingsendfile_prefixed(). After the time measure is stopped we pack gathered statistics
of the measure into a class calledTMeasure and put this into a vector. We stop the time
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measuring when Komssys has sent out20000 RTP packets to the client, and write the gathered
statistics out to file. These measurements are done with the time measuring tool.

To see effects of cache over-writes, we re-run the these tests with some background noise.
This noise is background processes running as daemons and a cron job. The cron job is triggered
execute every minute and update the desktop background. There are some daemons running
on the regular test also, but these are system specific daemons that we did not turn of. These
processes will often over-write the cache used by Komssys and this will affect the time measures
as Komssys has to go to the main memory to get instructions anddata, which is much slower
than using the cache. The processes running on the regular and background noise test are put
into the appendix.

We will look at the time used in user space and kernel space. Wewill also construct
confidence intervals for some statistical measures we create from the test data we gather, and
try do a meaningful interpretation of these results.

5.3.2 Testing cost of a context switch

Using sendfile_prefixed(), we are able to removeread() system call that is used in
FileStreamerGM andTunedFileStreamerGM. This saves the CPU from copying data
from disk into a buffer in user space. It also saves CPU cyclesby not having to do a context
switch.

To see the effect of removing a context switch, we wish to measure how many CPU cycles
a context switch takes from when we call a system call and tillwe are back in user space again.
We use an empty implementation of thesendfile_prefixed()system call, which just returns -
ENOFAULT, and use the rdtsc instruction right before and after the call, using the guidelines
found in [15]. The time measure is repeated20000 times.

The sendfile_prefixed()system call takes six parameters. To see how much the number
of parameters affects the context switch time, we also run the same test using an empty
implementation ofstart_time_measure()which only takes one parameter.

The minimum value we got from the measures usingsendfile_prefixed()was 278 CPU
cycles. Usingstart_time_measure()instead gave us a minimum value of268 CPU cycles.
There is a difference of10 CPU cycles between using6 and1 parameters, in other words2
CPU cycles per parameter. After the system call we issue a cpuid instruction to remove out-of-
order execution problems. We have to remove the time used to issue this instruction, together
with the time used to issue rdtsc when we end the time measure to find the time used on a
context switch. The rdtsc instructions was found to take11 cpu cycles. The cpuid instruction
on the other hand has a variable execution time, but its minimum value was found to be58 cpu
cycles, and therefore a context switch takes(268 − 2 − 69) = 197 CPU cycles to complete,
from user space to kernel space and back again. We have to keepin mind that this number also
includes the call to the system call after we have entered kernel space.

5.3.3 Testing overhead of time measuring tool

To see how much the time measuring tool affects each time measure, we set up a test to find the
overhead using the time measure tool. We also used the statistics gathered from a regular time
measure test usingFileStreamerGM, to find, in average, how many CPU cycles are used by
the measuring tool between the measure points A and B.
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5.4 Test results

The test results we gathered were put into Matlab [16] and R [17], programs used for scientific
and statistical programming respectively, to make plots and produce statistical information.
Plots and statistics will be presented in the following sections.

5.4.1 Testing three different graph managers

Min. 1st Qu. Median Mean 3rd Qu. Max.
[cycles] [cycles] [cycles] [cycles] [cycles] [cycles]

FSGM
Regular: 27840 28830 29000 29580 29280 209500
Noise: 27420 29010 29220 33260 29530 216900

TFSGM
Regular: 26440 27480 27670 28080 27940 187900
Noise: 25910 27040 27240 30750 27560 232000

TFPSGM
Regular: 21080 22290 22440 22790 22620 176000
Noise: 20570 22040 22200 25340 22420 234800

Table 5.1: Statistics of the number of CPU cycles used in userspace from regular and noise test.

To see the improvements, if any, using the proposed changes,we did our first test on
FileStreamerGM. This is the graph manager Komssys uses when streaming a file from
disk. We will use the results we get from this test and compareit with the test of the proposed
changes.

In table 5.1 and 5.2 we have created some statistics for the three test cases. Table 5.1 gives
statistics for the number of CPU cycles used in user space forthe regular and background noise
test, and table 5.2 presents the same information but for thenumber of CPU cycles used in
kernel space. An explanation of the column values, for both tables, are given in the following:

• Min. : The minimum observed value of all the 20000 measures.

• 1st Qu.: This measure gives us where the 25% quantile lies, i.e. it tells us that 25% of all
the measures lie between, including, this and the minimum value.

• Median: The middle value when arranging all the observations from low to high.

• Mean: The sum of all observed values divided by the number of observed values.

• 3st Qu.: The same as the 1st Qu., but this marks the 75% quantile.

• Max.: The maximum observed value for all the 20000 measures.

Data in both tables have been rounded to make it easier to read. These tables together with plots
of the data will be used to discuss the results.
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(a) Regular (b) Background noise

Figure 5.1: Plot of CPU cycles used withFileStreamerGM in user space.

(a) Regular: kernel processing (b) Background noise: kernel processing

Figure 5.2: Plot of CPU cycles used withTunedFileStreamerGM in user space.

(a) Regular (b) Background noise

Figure 5.3: Plot of CPU cycles used withTunedFilePrefixedStreamerGM in user space.
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FileStreamerGM

We have plotted the test results from the regular test in figure 5.1 (a). In table 5.1 we can see
that the maximum value for the regular time measure test, usingFileStreamerGM, is more
than 7 times higher than the minimum value, i.e. in worst caseit takes 7 times as much time to
complete the given task compared to the best case. But luckily these high values only happen on
very few occasions. The mean is only1740 CPU cycles higher than the minimum value. The
dispersion around the median is equal to308 CPU cycles, using a dispersion measure called
median absolute deviation from the median(MAD). MAD is defined to be the median of the
numbers|xi − x̃|, wherex̃ is the median for the data pointsx1, ..., xn [18]. Using MAD instead
of the standard deviation (SD), gives us statistical measures that are more robust to high values.
The same property is true for the median of the data set compared to the mean, but for this data
set there are no extreme outliers that affect the mean enoughto not use it. There is only one
value over200000 CPU cycles, and this value is associated with the initial 4 page faults that are
needed to bring the program code, from measure point A to B, into memory. As we can see, the
mean forFileStreamerGM is not far off from the median in table 5.1. The SD, on the other
hand, is very sensitive to even small outliers as we can see bycomputing it, making SD equal
to 3314 CPU cycles.

When we introduced background noise to the time measure test, we got a result that is
plotted in figure 5.1 (b) and with statistical measures in row1 in table 5.1. We can see that this
test has a higher frequency of bigger values, compared to theregular test, if we look at the plots
in figure 5.1. In table 5.1, we see that the test done with background noise has higher values
on almost every statistical measure. The only one that is lower is the minimum value. This
is just a coincidence and could easily have been the other wayaround since the lower values
in both tests are not affected by any cache over-writes. The statistical measure that reveals
there are much more higher observed values in the backgroundnoise test, is the mean which is
11.1% (3680 CPU cycles) higher than that of the regular test. The MAD for this data set is366
CPU cycles, indicating, together with the mean, that the data set is more dispersed. Looking
at figure 5.1 (b), we see how the background processes have affected the time measurements.
The measurements where the background and cron processes have been using the processor,
when we are not measuring from A to B, lies over90000 CPU cycles above most of the other
measures. The difference gets even higher when the cron job starts executing, which we can see
from the spikes. These measures are probably a result of the cache being replaced by data and
instructions from other processes. When Komssys is allowedto run on the CPU again, the CPU
has to fetch instructions and data from memory which is costly, with respect to CPU cycles,
compared to fetching them from the cache. There are still some high values in the regular time
measure test in figure 5.1 (a). Although we removed some daemons and a cron job, there will
always be some background processes running, and as we can see, they will on some occasions
affect the running time of the process we are measuring by tampering with the cache.

TunedFileStreamerGM

TunedFileStreamerGM offers the same functionality asFileStreamerGM, but it does
so without the use of virtual function pointers. Row 2 of table 5.1 gives us statistical measures
of the CPU cycles used in user space from the regular and background noise test. Figure 5.2
(a) and (b) shows plots of the observed CPU cycles from the regular and background noise test,
respectively.
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If we compare the regular test results we got from usingFileStreamerGM with the
results from this test, we can see from table 5.1 that we, in average, have saved1500 CPU
cycles by not using virtual functions, which is a 5% gain in performance. Comparing the
plots from the two tests, figure 5.1 (a) and 5.2 (a), it is not easy to see any differences, but
it looks like the observed values from this test are more compact. The MAD and the width
of the two data sets tell us the opposite though. MAD is calculated to be328 CPU cycles
and width of 75% of observed values is1500 CPU cycles, which is6.5% and4.1% (20 and
60 CPU cycles) higher than of the results fromFileStreamerGM, respectively. This is not
shown on the plots because of the scale of Y-axis. If we were tocalculate the SD for both data
sets, it would coincide with what we observe in the plots because the time measure test using
FileStreamerGM has a higher frequency of high values. To be precise, the SD for the time
measure test usingTunedFileStreamerGM andFileStreamerGM, would be2392 and
3314 CPU cycles respectively. The reason why the dispersion of this time measure test is higher
than the time measure usingFileStreamerGM is most probably due to variability in the time
measures. As we will see in section 5.4.3, the true value for the MAD and mean measures will
vary from one test to another, so to get a good estimate of the true mean and MAD we need more
and longer tests using the same graph manager. Doing this, wecan achieve a good confidence
interval.

When we added background noise to the measurements, the results we got followed a similar
pattern as the results we got fromFileStreamerGM, as can be seen in figure 5.2 (b), for this
test, and 5.1 (b) for the test usingFileStreamerGM. From row 2 in table 5.1 we see that
the mean for the background noise test lies9.5%, (2670 CPU cycles) above the regular test,
which is1.6% lower than the same difference when we useFileStreamerGM. If we look at
the small belt of values that lies around and over100000 CPU cycles, including the spikes, in
both figure 5.2 (b) and 5.1 (b), we see that the high values fromthis test have sunk by far more
than the mean of the whole data set, compared to the test usingFileStreamerGM. Taking
the mean for these high data values, for this and the test using FileStreamerGM, we get
127502 and142422 respectively. In other words, these high values have sunk10.5% (14920
CPU cycles) in average when we removed the use of virtual functions. This result indicates that
virtual functions have an increasing cost related to how much of the cache that is over-written
by other processes. If much of the cache is over-written, it takes many CPU cycles to use the
virtual functions pointers.

The dispersion for the background noise test is calculated to be, using MAD,353 CPU
cycles. This is3.6% (13 CPU cycles) better than the same test usingFileStreamerGM.
The spread of the data has improved a bit when there are many processes competing for the
processor.

TunedFilePrefixedStreamerGM

Together with removing the use of virtual functions, the stream handler used byTunedFile-
PrefixedStreamerGM has removed the code that was associated with the reading of data
from disk into user space. By doing this, we have also removeda context switch associated
with the read system call. The result of using this graph manager is plotted in figure 5.3 (a) and
(b), and in row 3 in table 5.1.

Looking at table 5.1 and comparing row 1 and 3 for the regular test, we can see that we in
average have saved23% (6570 CPU cycles). This is a combination of removing virtual function,
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a context switch and code that handled reading the file from disk in Komssys. The performance
gain from just removing the code and a context switch is foundby comparing this test with
the test done withTunedFileStreamerGM, since that graph manager also has removed the
use of virtual functions. The difference between the mean inrow 2 and 3 is18.8% (5290 CPU
cycles). Most of this due to the removal of some code in Komssys, but some also from avoiding
a context switch.

In figure 5.3 (a), there is a noticeable difference to the dispersion compared to figure 5.1
(a). We can see that figure 5.3 (a), is more compact, where 95% of the observed data is actually
centered in a belt with a width of3520 CPU cycles and where the minimum value is21080. This
causes the MAD to be quite low compared to the other test we have run, only239 CPU cycles.
Compared to the test usingFileStreamerGM, this is an improvement of26.8% (1290 CPU
cycles) on the width and22.4% (69 CPU cycles) on the MAD.

Introducing background noise into the test did not give us any surprises. We see the same
patterns in figure 5.3 (b) as we have with the other backgroundnoise tests. But we can see
that the high observed values around and over100000 CPU cycles have decreased even more
compared to the test usingTunedFileStreamerGM. Taking the mean for these values gives
us110010 CPU cycles, over22.8% (32412 CPU cycles) lower thanFileStreamerGM used
in average, when instruction and data cache gets over-written. This comes from the fact that we
have trimmed down the code plus the removal of virtual functions. The dispersion for the whole
data set from the background noise test is calculated to be261 using the MAD, an improvement
of 28.6% (105 CPU cycles) compared to the test usingFileStreamerGM.

5.4.2 Time used in kernel space

Min. 1st Qu. Median Mean 3rd Qu. Max.
[cycles] [cycles] [cycles] [cycles] [cycles] [cycles]

FSGM
Regular 15880 19280 19640 20450 20080 289500
Noise: 16420 19540 19880 22720 20360 325400

TFSGM
Regular: 15850 18920 19250 20140 19710 1123000
Noise: 16490 19590 19940 22730 20390 326300

TFPSGM
Regular: 17120 19960 20320 21490 21730 280200
Noise: 17030 20250 20730 24070 22300 352300

Table 5.2: Statistics of the number of CPU cycles used in kernel space from regular and noise
test.

When we used the time measure tool described in chapter 4, to do the tests in section 5.4, we
also got hold of how much time spent in kernel space for each ofthe tests. Statistical measures
of the results have been put into table 5.2.
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(a) Regular (b) Background noise

Figure 5.4: Plot of CPU cycles used withFileStreamerGM in kernel space.

(a) Regular: kernel processing (b) Background noise: kernel processing

Figure 5.5: Plot of CPU cycles used withTunedFileStreamerGM in kernel space.
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(a) Regular (b) Background noise

Figure 5.6: Plot of CPU cycles used withTunedFilePrefixedStreamerGM in kernel
space.

FileStreamerGM

Figure 5.4 shows the test results from kernel space usingFileStreamerGM for a regular
test (a) and a background noise test (b). We see that the measures where the process has
been scheduled out, stick out from the rest on both plots by being much higher. We can
also see the characteristic of cache over-writes in figure 5.4 (b). Though in kernel space, the
distance between the belt of high values, including the spikes, is much closer to the rest of the
observed values which might indicate that the kernel code isnot so sensitive to cache changes.
We can also see that there is a second belt of values on all the measures, with all the graph
managers actually. This belt lies between the the spikes andthe rest of the observed values at
approximately50000 CPU cyles. This might be from smaller cache over-writes, or it might
come from disk reading.

Summing the time used in kernel space and user space for this test, with the median
as a measure for the typical value of the two data sets, we find that FileStreamerGM
spends40.3% and 40.5% of its time in kernel space, for the regular and background noise
test respectively. The reason for using the median instead of the mean in this case is because
the kernel space measures have extreme outliers related to when the process has been scheduled
out.

The data dispersion for both measures taken in kernel space are higher, compared to the
dispersion from user space, looking at plots in figures 5.1 and 5.4. The MAD is calculated to be
572 CPU cycles for the regular test and586 for the background noise test. This high dispersion
of the data is due to the fact that the time used reading from disk has a greater variability than
only reading from memory and cache.

TunedFileStreamerGM

The result of the kernel time measurements for regular and background noise test with
TunedFileStreamerGM, is depicted in figure 5.5. As before, there are no real surprises
here, the observed values are visually similar distributedas the results we got from the kernel
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space times usingFileStreamerGM. This is only natural as the use of system calls in both
graph managers are the same. But, can we say that the observedvalues from the two time
measures test, taken in kernel space, are identically distributed? Table 5.2 indicates that this is
not likely for the regular tests, but might be true for the background noise tests. In a perfect
world where the test run has had identical conditions, then perhaps we could conclude that two
data sets follow the same probability distribution with probability p, for every test done with
these graph managers. But the measures are run under different conditions, even though they
are small, and the test results may be affected by this. Differences that may affect the measure
is when we start the measure, memory access times, the degreeof cache over-writes and the
code for runningFileStreamerGM is different from runningTunedFileStreamerGM.

Going a bit deeper, we decided to test the hypothesesH0 that the observed values, in kernel
space, for the two graph managers come from the same distribution. To check this, we run
a Mann-Whitney test [18] in R by sampling with replacement,1000 values from the data set
created usingFileStreamerGMand fromTunedFileStreamerGM. We tested the regular
tests against each other and the background noise test against each other. To exclude any lucky
sampling, we run a Monte Carlo simulation with10000 iterations, and then calculated the mean
of all the gathered p-values. For the regular tests, the datasets are too different and we can
conclude that the values do not come from the same distribution. For the tests done with
background noise, the p-value was found to be0.25, and so can we acceptH0. These results
may change if we gather new time measure data because the conditions under which we take
the time measures are so variable.

The time spent in kernel space for this graph manager is41% and42.3%, for the regular and
background noise test respectively, when we use the median as an estimation to find the most
typical value. This is0.7% and1.8% more thanFileStreamerGM uses, a consequence of
that we have removed the use of virtual functions and therefore spend less time in user space.

TunedFilePrefixedStreamerGM

The kernel space measures forTunedFileStreamerGM have been plotted, for regular
and background noise test, in figure 5.3. Both plots are similar to the other ker-
nel space measures we have done. If we look at table 5.2, the measures done with
TunedFilePrefixedStreamerGM are a bit higher than the two other tests, for all
statistical measures except the maximum value. The difference between this graph manager
andFileStreamerGM, looking at the median, is3.5% (680 CPU cycles) and4.3%(850 CPU
cycles) for regular and background noise test respectively, in favour ofFileStreamerGM.
This difference comes from the fact we probably do more work in the kernel with this graph
manager than in the other two graph managers. Withsendfile_prefixed()we have to issue
cork() and uncork() to assemble the RTP packet before it is sent out on the net. In total,
when we add up the time spent in kernel space and user space forFileStreamerGM
and TunedFilePrefixedStreamerGM, we save11.8% (6570 − 680 = 5890 CPU
cycles) in total on a regular test, usingTunedFilePrefixedStreamerGM instead of
FileStreamerGM.

Calculating the MAD for both regular and background noise test,1131 and832 CPU cycles,
shows that there is high variability in the thesendfile_prefixed()code.
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5.4.3 Estimating variability of MAD and mean

Doing time measures can give, as we have seen, variable result from time to time, when we
measure over a large distance of code. As such, it is interesting to find the variability of the
location estimates we have looked at, which are mainly the MAD and mean. Finding the
variability allows us to set up confidence intervals for the the location estimates and thus we
can see the interval where the true value of the two estimateslie.

One way of finding the variability of the location estimates is with a method called
bootstrapping [18]. With this method we view the empirical cumulative distribution function
(cdf) Fn of the data set as an approximation of the real underlying cdfF . To find, for example
the SD for a location estimator̂θ, we sampleB samples of sizen uniformly from Fn with
replacement, giving each observed valuex1, x2, ..., xn a probability of1/n for being drawn.
For eachn sized sample we calculate the location estimator, giving usθ∗
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identical distributed, we can use the result from the Central Limit Theorem [18] which tells
us that the distribution ofθ∗
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, tends to the normal distribution, and uses

θ̂
to create a

confidence interval. In figure 5.7 we have created a histogramof all the theta stars we created
for the MAD, with data from a regular test usingFileStreamerGM, and as we can the
characteristic shape of the normal distribution is present. A more thorough explanation is found
in [18].

In table 5.4.3 and 5.4.3 we have put in 95% confidence intervals for the MAD and mean
for all the test we have done, in user space and kernel space respectively, withB = 1000.
These intervals tells us with probability0.95 that the real value of MAD or mean will lie in this
interval. It is important to have in mind though, that these intervals are not valid for every time
measure test we run. There is too much variability in the conditions under which we have run
the tests, to claim that all the measures will have MAD and mean in these intervals. The data
from different tests, using the same graph manager, might come from the same distribution,
but the parameters of the distribution vary from time to time. In order to find intervals where
the MAD and mean will lie with probability0.95, for all time measure tests using the same
graph manager, we would have to run, for example, 1000 time measure tests for each graph
manager. Then, for each measure calculate the MAD and mean. When we have gathered 1000
such location estimators, we run the bootstrap method on those values. But this would probably
take weeks if we should have done it for all the tests we have done, and that is a luxury we do
not have.

The confidence intervals

We can see from the confidence intervals in table 5.4.3 and 5.4.3 that the width of the intervals
are bigger in the measures taken in kernel space, than in userspace. This is because the
variability of the measures in kernel space is bigger since the hard disk is used. In user space
the intervals are bigger when we have introduced backgroundnoise into the measures because
then there are more variability in the measures. This is partly true in kernel space also, but not
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Figure 5.7: A histogram of the theta stars for the MAD.

for the MAD. This is probably because, as we know, the MAD is a robust measure which is not
much affected by the high measures we encounter in kernel space when the process is scheduled
out. The mean on the other hand is more sensitive to high measures and therefore the interval
is wider.

5.4.4 Overhead using time measure tool

It is important to know how much the measure tool itself afflicts the time measure. The overhead
should be very small compared to the result of the time measure. To find this overhead we need
to know how many CPU cycles are used for the time measure; saving and restoring registers,
calling the functions responsible for creating time stampsand time stamp creation itself.

We calculate how many CPU cycles are used by running a test similar to the one we
used to calculate the time used on a context switch. We start the time measure with a call
to start_time_measure()before we enter a loop which issues an empty implementation of
sendfile_prefixed()20000 times. We use rdtsc and cpuid as we did with the context switch
time measure. For each iteration the call tosendfile_prefixed()will be intercepted by the time
measure code in the kernel. It will also intercept when the system call is done and is about to
return to user space. The time we get using rdtsc in the for loop gives us the time it takes to call
an empty system call when we have a time measure enabled kernel.

If we now repeat this test without the call tostart_time_measure()and without a time
measure enabled kernel, subtract the minimum values from both measures, we will have the
number CPU cycles the time measure code in the kernel uses when intercepting a system call.
The code that intercepts interrupts and page faults are verysimilar to the system call intercept
code, so the number of CPU cycles to intercept these kernel entries are thus approximately the
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MAD Mean.

FSGM
Regular [302, 314] [29530, 29620]
Noise: [359, 374] [32980, 33530]

TFSGM
Regular: [322, 333] [28050, 28120]
Noise: [346, 360] [30510, 30990]

TFPSGM
Regular: [235, 243] [22760, 22820]
Noise: [255, 267] [25130, 25560]

Table 5.3: 95% confidence intervals for MAD and Mean measuresin user space.

MAD Mean.

FSGM
Regular [562, 583] [20330, 20580]
Noise: [575, 596] [22510, 22930]

TFSGM
Regular: [558, 578] [19950, 20320]
Noise: [569, 588] [22520, 22950]

TFPSGM
Regular: [799, 865] [21360, 21620]
Noise: [1083, 1158] [23860, 24290]

Table 5.4: 95% confidence intervals for MAD and mean measuresin kernel space.

same. The interception when returning from one of these kernel entries is handled by the same
function, and thus also approximately the same. The result for the time used by system call
interception kernel code was found to take86 CPU cycles.

Time measure tool overhead in Komssys measures

When we tested the different graph managers and the proposedchanges to Komssys, we
gathered some statistics which are listed in table 4.1.

We will use the statistics to show that the overhead from the measure tool code is very small
compared to the CPU cycles used on the measure itself. We haveput the median of system
calls, interrupts and page fault into table 5.5, taken from the regular time measure test using
FileStreamerGM. We can see that it is only system calls that in the long run affect the
measure. In average, using the median as measure, the time measure only incur an overhead of
430 CPU cycles, which is very small compared to the measure results in table 5.1 and 5.2.
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Figure 5.8: The user space, kernel space and time measure tool overhead (in CPU cycles) for
each measure for each graph manager.

Figure 5.9: The user space, kernel space and time measure tool overhead (in CPU cycles) for
each measure added together in one column, for each graph manager.
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FSGM TFSGM TFPSGM
system calls: 5 5 4
page faults: 0 0 0
interrupts: 0 0 0
overhead (cycles): 430 430 344

Table 5.5: The medians of system calls, interrupts and page faults taken from the regular
measures.

5.5 Total performance

In figure 5.8 and 5.9 we have added the time used in user space and kernel space and
the overhead of the time measure tool for the three graph managers. On figure 5.8 we
see thatTunedFilePrefixedStreamerGM uses more time in the kernel than the other
two graph managers, but uses far less in user space. In figure 5.9 we see that the total
time used for all the graph managers. There is a considerableperformance gain using
TunedFilePrefixedStreamerGM compared toFileStreamerGM, but we see that the
performance gain usingTunedFileStreamerGM is not so high. The total CPU cycles used
for the three graph managers are50460 (FSGM),48650 (TFSGM) and44620 (TFPSGM), which
include the overhead from the time measure.

5.6 Evaluation

We have been running several tests that demonstrates the effect of the proposed changes to
Komssys. We have seen that the removal of virtual functions do save some CPU cycles, but
far from enough to say that the stream handler architecture has a bottleneck when it comes to
performance by using virtual functions when the CPU load is low. When the CPU load gets
high on the other hand, we saw that the cost of using virtual functions increase. So, in a heavily
loaded system, we can save many CPU cycles by not using virtual functions, but then again a
media server should not be heavily loaded by other processes.

By using sendfile_prefixed()in TunedFilePrefixedSH we were able to show that
assembling the RTP packet in the kernel is done more efficiently than doing it in user space. This
increase in efficiency is a combination of the changes we madein TunedFilePrefixedSH
to remove code related to reading data from disk, and the factthatsendfile_prefixed()does the
reading of data from disk more efficiently by not copying it into an user space buffer. Since
the effect of introducingsendfile_prefixed()into Komssys was so good, it should be considered
using it instead of the ordinary data path that is used today when streaming a file from disk using
FileStreamerGM. To keep the generality we get using virtual functions, a good solution
would be to use virtual functions asFileStreamerGM does, and usesendfile_prefixed()to
send the packets to the client, since it was by introducingsendfile_prefixed()we saved most
CPU cycles.FileStreamerGMwill then be reduced to two stream handlers, one for creating
the RTP data and a sink. The source stream handler will be removed sincesendfile_prefixed()
is responsible for reading the file from disk. This breaks thestream handler architecture which
stipulates that data is generated, or comes, from a source stream handler and exits through a
sink stream handler. A fix to this small problem would be to have a dummy source stream
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handler that just creates an empty RTP packet which then is filled with RTP information in
RTPEncoderSH.

We saw that the context switch did not take so many CPU cycles,only 197, if we compare
it to the time spent on the time measures. This means that the removal of a context switch, by
usingsendfile_prefixed(), does not reduce the amount of CPU cycles used much, comparedto
removal of code related to theread()system call and by not having to copy the data from the
hard disk into an user space buffer.

5.7 Summary

In this chapter we have tested the proposed changes to Komssys and discussed the result.
We saw that the combination of removing virtual functions and introducingsendfile_prefixed()
helped us save, in average on a regular test,5890 CPU cycles on reading a chunk of data from
disk, packing it in a RTP packet and sending it out on the net. We have also seen that these
results vary and that the real value of a location estimator is located in an interval for a given
time measure, but to find the interval of a location estimatorfor all time measures, we would
have to do many more tests. We looked at the time it takes to perform a context switch to
see how many CPU cycles we save when usingsendfile_prefixed(), and last we looked at the
overhead of using the time measure tool.
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Chapter 6

Conclusion and remaining challenges

In this report we have looked at the cost of using virtual functions in the stream handler
architecture, and the effect of usingsendfile_prefixed().

6.1 Conclusion

Virtual functions are used in the stream handler architecture to achieve a generality that allow
us to easily create new stream handlers and plug them into thecomposition. To find the cost
of this generality, we created a new stream handler in Komssys that is a fusion of three stream
handlers, removing the use of virtual functions. This new combined stream handler was then
used by a new graph manager we created, time measured and compared with the original, three
stream handler version with virtual functions. The tests showed us that under small CPU loads,
the virtual functions is not costly enough to not use them. But, as the CPU load increases, the
cost of virtual functions increase also, so on a heavily usedserver, the virtual functions should
be avoided.

Assembling the RTP packet in kernel space withsendfile_prefixed()showed to be very
effective compared to doing it in user space. We saw that we actually increaded performance
by 11.8% (5890 CPU cycles) in average on each time measure usingsendfile_prefixed()and
removing virtual functions. This is such a good improvementthat we should use it, and abandon
the standard way of assembling the RTP packet in user space. To keep the generality we get from
the use of virtual functions and to conform with the stream handler architecture, we suggest that
we should still use virtual functions and have a dummy sourcestream handler that just creates
an empty RTP packet.

6.2 Remaining challenges

It would be interesting to test how well a variation ofFileStreamerGM’s stream handlers
do, where we use virtual functions,sendfile_prefixed()and a dummy source stream handler,
compared to the test result we have already gathered. It would also be interesting to repeat the
test we have run maybe 100 times, to get enough data to create ainterval where the mean CPU
cycles lies, for every test run.
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Appendix A

Concurrent background processes

A.1 Processes in regular test

These are the processes that was running alongside Komssys when we were doing time
measures on a regular test.

PID TTY STAT TIME COMMAND
1 ? Ss 0:00 /sbin/init splash
2 ? SN 0:00 [ksoftirqd/0]
3 ? S 0:00 [watchdog/0]
4 ? S< 0:00 [events/0]
5 ? S< 0:00 [khelper]
6 ? S< 0:00 [kthread]

26 ? S< 0:00 _ [kblockd/0]
42 ? S< 0:00 _ [kseriod]
79 ? S 0:00 _ [pdflush]
80 ? S 0:00 _ [pdflush]
81 ? S< 0:00 _ [kswapd0]
82 ? S< 0:00 _ [aio/0]

1594 ? S< 0:00 _ [khubd]
1676 ? D< 0:00 _ [kjournald]
2629 ? S< 0:00 _ [kpsmoused]
2672 ? S< 0:00 _ [kgameportd]
1746 ? Ss 0:00 //sbin/logd
1882 ? S<s 0:00 /sbin/udevd --daemon
3440 tty1 Ss 0:00 /bin/login --
4598 tty1 S 0:00 _ -bash
4727 tty1 T 0:00 _ emacs -nw ../../bin/medianode2.xml
4868 tty1 R+ 0:00 _ ps fax
3441 tty2 Ss+ 0:00 /sbin/getty 38400 tty2
3443 tty3 Ss+ 0:00 /sbin/getty 38400 tty3
3444 tty4 Ss+ 0:00 /sbin/getty 38400 tty4
3445 tty5 Ss+ 0:00 /sbin/getty 38400 tty5
3446 tty6 Ss+ 0:00 /sbin/getty 38400 tty6
3522 ? Ss 0:00 /sbin/syslogd
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3548 ? Ss 0:00 /bin/dd bs 1 if /proc/kmsg of kmsg1

3550 ? Ss 0:00 /sbin/klogd -P /var/run/klogd/kmsg
3662 ? Ss 0:00 /usr/sbin/cupsd
3693 ? Ss 0:00 /usr/sbin/hpiod
3932 ? Ss 0:00 /usr/bin/dbus-daemon --system
3947 ? Ss 0:02 /usr/sbin/hald
3948 ? S 0:00 _ hald-runner
3957 ? S 0:00 _ /usr/lib/hal/hald-addon-keyboard
3960 ? S 0:00 _ /usr/lib/hal/hald-addon-keyboard
3972 ? S 0:00 _ /usr/lib/hal/hald-addon-storage
3974 ? S 0:00 _ /usr/lib/hal/hald-addon-storage
3995 ? S 0:00 perl SystemToolsBackends.pl2

4126 ? Ss 0:00 /usr/lib/postfix/master
4145 ? S 0:00 _ pickup -l -t fifo -u -c
4146 ? S 0:00 _ qmgr -l -t fifo -u
4317 ? Ss 0:00 /usr/sbin/atd
4330 ? Ss 0:00 /usr/sbin/cron

A.2 Processes in background noise tes

These are the processes that was running alongside Komssys when we were doing time
measures on a background noise test.

PID TTY STAT TIME COMMAND
1 ? Ss 0:00 /sbin/init splash
2 ? SN 0:00 [ksoftirqd/0]
3 ? S 0:00 [watchdog/0]
4 ? S< 0:00 [events/0]
5 ? S< 0:00 [khelper]
6 ? S< 0:00 [kthread]

26 ? S< 0:00 _ [kblockd/0]
42 ? S< 0:00 _ [kseriod]
79 ? S 0:00 _ [pdflush]
80 ? S 0:00 _ [pdflush]
81 ? S< 0:00 _ [kswapd0]
82 ? S< 0:00 _ [aio/0]

1594 ? S< 0:00 _ [khubd]
1676 ? S< 0:00 _ [kjournald]
2638 ? S< 0:00 _ [kpsmoused]
2863 ? S< 0:00 _ [kgameportd]
1746 ? Ss 0:00 //sbin/logd
1882 ? S<s 0:00 /sbin/udevd --daemon
3445 tty1 Ss+ 0:00 /sbin/getty 38400 tty1
3446 tty2 Ss+ 0:00 /sbin/getty 38400 tty2

1/var/run/klogd/kmsg
2/usr/share/system-tools-backends-2.0/scripts/SystemToolsBackends.pl
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3447 tty3 Ss+ 0:00 /sbin/getty 38400 tty3
3448 tty4 Ss+ 0:00 /sbin/getty 38400 tty4
3449 tty5 Ss+ 0:00 /sbin/getty 38400 tty5
3450 tty6 Ss+ 0:00 /sbin/getty 38400 tty6
3525 ? Ss 0:00 /sbin/syslogd
3551 ? Ss 0:00 /bin/dd bs 1 if /proc/kmsg of kmsg
3553 ? Ss 0:00 /sbin/klogd -P /var/run/klogd/kmsg
3625 ? Ss 0:00 /usr/sbin/gdm
3632 ? S 0:00 _ /usr/sbin/gdm
3635 tty7 Ss+ 0:00 _ /usr/X11R6/bin/X :0
4128 ? Ss 0:00 _ /bin/sh /home/kjellso/.xsession
4335 ? Ss 0:00 _ /usr/bin/ssh-agent
4418 ? S 0:00 _ fvwm
4436 ? S 0:00 _ /usr/X11R6/bin/xterm
4437 pts/1 Ss 0:00 _ bash
3665 ? Ss 0:00 /usr/sbin/cupsd
3696 ? Ss 0:00 /usr/sbin/hpiod
3699 ? S 0:00 python /usr/sbin/hpssd
3752 ? S 0:00 /bin/sh /usr/bin/mysqld_safe
3816 ? Sl 0:00 _ /usr/sbin/mysqld
3817 ? S 0:00 _ logger -p daemon.err -t mysqld_safe
3934 ? Ss 0:00 /usr/bin/dbus-daemon --system
3949 ? Ss 0:02 /usr/sbin/hald
3950 ? S 0:00 _ hald-runner
3959 ? S 0:00 _ /usr/lib/hal/hald-addon-keyboard
3962 ? S 0:00 _ /usr/lib/hal/hald-addon-keyboard
3974 ? S 0:00 _ /usr/lib/hal/hald-addon-storage
3976 ? S 0:00 _ /usr/lib/hal/hald-addon-storage
3997 ? S 0:00 perl SystemToolsBackends.pl
4008 ? Ss 0:00 /usr/bin/SCREEN -S hellanzb
4018 pts/0 Ssl+ 0:00 _ /usr/bin/python /usr/bin/hellanzb.py
4049 ? Ss 0:00 /opt/usit/wpa_supplicant/wpa_supplicant
4132 ? Ss 0:00 /usr/lib/postfix/master
4151 ? S 0:00 _ pickup -l -t fifo -u -c
4152 ? S 0:00 _ qmgr -l -t fifo -u
4278 ? Ss 0:00 /usr/sbin/anacron -s
4297 ? Ss 0:00 /usr/sbin/atd
4311 ? Ss 0:00 /usr/sbin/cron
4338 ? S 0:00 /usr/bin/dbus-launch
4370 ? Ss 0:00 /usr/bin/dbus-daemon
4429 ? Ss 0:00 /sbin/dhclient eth0
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