
UNIVERSITY OF OSLO
Department of Informatics

Experimentally
finding the right
aggressiveness for
retransmissions in
thin TCP streams
How hard can it be?

Master thesis

Jonas Sæther
Markussen

18. August 2014

i

Experimentally finding the right aggressiveness for

retransmissions in thin TCP streams

Jonas Sæther Markussen

18. August 2014

ii

iii

Abstract

The traditional concept of fairness in TCP is based on being limited by congestion control. Today,
however, we see that TCP is being used as transport for interactive applications that have latency re-
quirements. These applications create application-limited, thin streams where retransmissions, rather
than congestion control, is the factor controlling the performance of the flow. Keeping the maximum
delay as low as possible is crucial to improving the Quality of Experience for interactive, thin-stream
applications. As there is little existing work and no clear consensus on how time-dependent, thin-
streams should be treated, we attempt to assess how aggressive these thin TCP streams can and should
be on retransmission in order to reduce their retransmission latency when loss occurs. In this thesis,
we discuss how we have created a Linux networking environment and conducted our experiments in
order to find a reasonable trade-off between aggressiveness and fairness. Our findings indicate that
an increased aggressiveness can be justified in competition with greedy streams, and we highlight
some issues surrounding thin stream behaviour needs to be further studied.

iv

v

Acknowledgements

What seemed like a relatively simple requests from my supervisors – set up a networking testbed
and run some tests in order to assess how modifications to the congestion control for thin streams
affect other traffic – turned out to be enough tears, late nights and outright desperation to be a topic
for a thesis on its own. After much frustration and many dead-ends, accompanied by unexpected
and, sometimes, weird results, as well as a recurring reminder that I did not understand network
behaviour as well as I thought I did to begin with1, was I finally able to turn my work into something
that resembles a master’s thesis.

First, I would like to thank my supervisors, Dr. Andreas Petlund and Dr. Carsten Griwodz, for their
guidance and feedback on my work, patiently answering my questions, and taking time to review and
discuss my observations and test results. Both of them have provided me with a lot information about
new findings and results from the rest of the thin-stream group here at Simula as well as keeping me
updated about research going on both at the networking group at the Department of Informatics at
University of Oslo and by others working on the RITE project.

I would also like to thank Dr. Pål Halvorsen for his valuable input on my test results, and especially
for helping me concretise my thesis and narrowing down my test scenarios to something that was
manageable. He and Dr. Petlund really helped me tie together all the loose ends I had.

A special thanks to Bendik Rønning Opstad. Without his patching of streamzero and our com-
bined efforts to fix and improve analyseTCP, my work simply wouldn’t have been possible. I have
also learned a great deal from our discussions on various topics and problems; everything from how
the Linux kernel works, how TCP behaves and what is actually passed to the network driver and put
"on the wire", to other issues such as best practices in software development and source control.

Additionally, I would like to thank Markus Fuchs and Dr. David Ros for their individual comparisons
of their simulation results and my own observations from emulation, and especially for confirming
my observations. I also want to thank them both for our discussions about differences and similarities
in the observations as well as hypothesising about possible explanations, which gave me a lot of new
ideas to try out.

My thanks also goes to Øystein Gyland for kick-starting my Linux networking skills, and getting me
started on setting up my testbed, Preben Nenseth Olsen for a lot of tips on how to write a thesis, and
to Tor Ivar Johannesen for getting me started with LATEX as well as spending the entire summer in
solitude with me out here on Fornebu, when everything was closed down for the summer holidays.

My gratitude is also due to Anders Moe and Christian Tryti for our friendly talks and frequent trips to
the store. Thanks to Morten Ødegaard, Anders Ellefsen, Karoline Klever, Nora Raaum, Axel Sanner,
Helene Cederstolpe Andresen, Chris Carlmar and Ståle Kristoffersen, as well as all my friends and
family for believing in me and constantly nagging me to get my thesis done.

Finally, I would like to thank AK. This has been a stressful period in my life with a lot of work, and
you were always there for me and supported me in so many ways without hesitation or asking for
anything in return. You’re always in my heart and I will never forget what you mean to me.

1... and I probably still don’t!

vi

vii

Contents

Experimentally finding the right aggressiveness for retransmissions in thin TCP streams i

Abstract iv

Acknowledgements vi

Contents viii

List of Figures xiii

List of Tables xv

List of Abbreviations xvi

1 Introduction 1

1.1 Background and related work . 1

1.2 Problem statement . 2

1.3 Scope and limitations . 2

1.4 Research method . 3

1.5 Contributions . 4

1.6 Outline . 4

2 Thin streams 6

2.1 Traffic characteristics . 6

viii

2.2 Latency requirements . 7

2.2.1 Online games . 8

2.2.2 Real-time multimedia applications . 8

2.2.3 Administrating remote systems . 9

2.2.4 High-frequency algorithmic trading . 9

2.3 Thin-stream transport protocols . 9

2.3.1 User Datagram Protocol . 10

2.3.2 Real-Time Transport Protocol . 10

2.4 Transmission Control Protocol . 11

2.4.1 Header layout . 12

2.4.2 Connection management . 14

2.4.3 Data transfer . 15

2.4.4 Flow control . 17

2.5 Congestion control in TCP . 19

2.5.1 Nagle’s algorithm . 19

2.5.2 Delayed acknowledgements . 20

2.5.3 Congestion window . 20

2.5.4 Window algorithm variants . 24

2.5.5 Retransmission time-out calculation . 27

2.6 Thin-stream modifications to TCP . 28

2.6.1 TCP smart framing . 28

2.6.2 Early retransmit . 29

2.6.3 Modified fast retransmit . 30

2.6.4 Linear retransmission time-out . 30

2.6.5 Tail loss probe . 31

2.6.6 Redundant data bundling . 31

2.7 TCP fairness . 32

ix

2.7.1 Max-min fairness . 33

2.7.2 Jain’s fairness index . 34

2.8 Summary . 34

3 Experiment design and tools 36

3.1 Metrics . 36

3.2 Design considerations . 37

3.2.1 Previous evaluations . 37

3.2.2 Simulation versus emulation . 39

3.2.3 Realistic packet loss . 40

3.2.4 Generating thin streams . 40

3.2.5 Choosing the network parameters . 41

3.3 Test environment . 42

3.3.1 Network topology . 43

3.3.2 Traffic control . 43

3.3.3 Router configuration . 45

3.3.4 Network emulator . 49

3.3.5 Traffic generation . 49

3.4 Analysis tools . 50

3.4.1 tcpdump . 50

3.4.2 tcp-throughput and tput . 50

3.4.3 analyseTCP . 51

3.4.4 aqmprobe . 55

3.4.5 count3way . 55

3.5 Summary . 56

x

4 Verifying the testbed 57

4.1 A naïve approach . 57

4.1.1 Too congested? . 59

4.2 A thought-through approach . 60

4.3 Thin stream discrimination . 60

4.3.1 Comparing throughput and goodput . 60

4.3.2 Examining the loss rates . 63

4.3.3 Kernel buffering and repacketisation . 64

4.3.4 Thin stream clustering . 64

4.4 Summary . 65

5 Summarising the results 66

5.1 Queue length evaluations . 66

5.2 Assessing the impact on other streams . 69

6 Conclusion 73

6.1 Main contributions . 73

6.2 Future work . 74

Bibliography 75

Internet Standards and Drafts 80

Internet References 82

A All test scenarios 87

B Testbed configuration 88

B.1 Specifications . 88

B.2 Topology . 89

xi

C Web-site RTT measurements 90

D Position paper 93

D.1 On the Treatment of Application-Limited Streams . 94

xii

List of Figures

2.1 RTP encapsulation . 11

2.2 The TCP header . 12

2.3 Example of TCP header options . 14

2.4 Connection handling in TCP . 14

2.5 Retransmissions in TCP . 16

2.6 TCP sender-side buffer . 16

2.7 Cumulative acknowledgement in TCP . 17

2.8 Flow control in TCP . 18

2.9 TCP segment transmission time-line with and without Nagle’s algorithm 19

2.10 TCP slow start and congestion avoidance . 21

2.11 TCP fast recovery . 23

2.12 Fast recovery cycles in TCP Reno . 23

2.13 Congestion window growth stages . 26

2.14 Unused space in an Gigabit Ethernet frame . 31

2.15 Redundant data bundling . 32

2.16 Example network with six senders and two shared links 32

3.1 Network configurations used in previous evaluations 38

3.2 Testbed network topology . 43

3.3 Classes and qdiscs . 44

3.4 Packet enqueueing in a hierarchical qdisc configuration 45

xiii

3.5 Token bucket algorithm for rate control . 46

3.6 Rate limitation accuracy at different clock granularities 46

3.7 Packet flow through a Linux router with rate control . 47

3.8 Traffic capturing in our testbed . 50

4.1 Aggregated goodput of N thin streams (blue) competing with N greedy streams (red) . . 58

4.2 Relative loss for N thin streams (blue) competing against N greedy streams (red) 59

4.3 Goodput of N thin streams (blue) competing against 5 greedy streams (red) 62

4.4 Comparing goodput and throughput for N unmodified thin streams competing against 5
greedy streams . 63

4.5 Relative packet loss for 30 thin streams and 20 greedy streams 63

5.1 Relative byte loss using different qdiscs. 30 unmodified thin streams competing with 30

greedy streams. 67

5.2 Impact of queue configuration on latency . 68

5.3 Throughput. 60 thin streams versus 10 greedy streams. 70

5.4 Relative packet loss. 60 thin streams versus 10 greedy streams 70

5.5 ACK latency. 60 thin streams versus 10 greedy streams 71

5.6 ACK latency CDF annotation . 72

B.1 Testbed network topology . 89

xiv

List of Tables

2.1 Packet statistics for some interactive applications . 7

2.2 TCP header control flags . 13

3.1 RTT to the ten most popular web-sites . 42

4.1 Number of problematic thin stream connections . 59

4.2 Duration test, 2 hours and 5 minutes. Evaluated traffic: 40 thin streams; Cross-traffic: 10
greedy streams. 61

5.1 Test configuration used for our qdisc evaluation . 67

B.1 Testbed system specifications . 88

B.2 Testbed network specifications . 88

C.1 Web-site RTT measurements . 90

xv

List of Abbreviations

bfifo byte-based FIFO.

codel controlled delay.

cwnd congestion window.

htb hierarchical token bucket.

netem network emulator.

pcap packet capture.

pfifo packet-based FIFO.

prio priority scheduler.

red random early detection.

rwnd receive window.

sfq stochastic fair queueing.

ssthresh slow start threshold value.

tbf token bucket filter.

tc traffic control.

ACK acknowledgement.

ADSL Asymmetric Digital Subscriber Line.

AIMD additive increase — multiplicative decrease.

ALD application-layer delay time.

ALG application-layer gateway.

API Application Programming Interface.

AQM active queue management.

xvi

ARP Address Resolution Protocol.

ARQ active repeat request.

BDP bandwidth-delay product.

BIC binary increase congestion control.

bps bits per second.

CDN content delivery network.

CPU Central Processing Unit.

DCE Direct Code Execution.

DNS Domain Name System.

DSACK duplicate selective acknowledgement.

DSCP DiffServ Code Point.

dupACK duplicate acknowledgement.

ECN Explicit Congestion Notification.

ER early retransmit.

F-RTO forward RTO recovery.

FACK forward acknowledgement.

FIFO first in — first out.

FIN finalize.

FTP File Transfer Protocol.

GB gigabyte.

Gbps gigabits per second.

GRO generic receive offload.

GSO generic segmentation offload.

HFT high-frequency algorithmic trading.

HOL blocking head-of-line blocking.

HTML5 HyperText Markup Language version 5.

xvii

HTTP HyperText Transfer Protocol.

IAT inter-arrival time.

ICE Interactive Connectivity Establishment.

ICMP Internet Control Message Protocol.

IETF Internet Engineering Task Force.

IP Internet Protocol.

IPv4 Internet Protocol version 4.

ISP Internet Service Provider.

ITT inter-transmission time.

ITU-T ITU Telecommunication Standardization Sector.

kB kilobyte.

kbps kilobits per second.

Kprobe kernel probe.

Kretprobe kernel return probe.

LAN Local Area Network.

LFN long fat network.

LRO large receive offload.

LT linear retransmission time-out.

Mbps megabits per second.

MFR modified fast retransmit.

MMOG Massively Multiplayer Online Game.

MSS Maximum Segment Size.

MTU Maximum Transfer Unit.

NAT Network Address Translation.

NIC network interface controller.

OS Operating System.

xviii

OSPF Open Shortest Path First.

OWD one-way delay time.

OWDVAR one-way delay variance.

P2P peer-to-peer.

PIF packets in flight.

qdisc queuing discipline.

QoS Quality of Service.

RDB redundant data bundling.

RDC Remote Desktop Connection.

RFC Request for Comments.

RTCP RTP Control Protocol.

RTO retransmission time-out.

RTP Real-Time Transport Protocol.

RTT round-trip delay time.

SACK selective acknowledgement.

SSH Secure Shell.

STUN Session Traversal Utilities for NAT.

SYN synchronize.

TCP Transmission Control Protocol.

TCP-SF TCP smart framing.

TFO TCP fast open.

TLP tail loss probe.

TSO TCP segmentation offload.

TURN Traversal Using Relays around NAT.

UDP User Datagram Protocol.

VNC Virtual Network Computing.

xix

VoIP Voice over IP.

W3C World Wide Web Consortium.

WebRTC Web Real-Time Communications.

xx

Chapter 1

Introduction

In the last couple of decades, we have seen a development of networking technology allowing a massive
increase in capacity compared to the early days of the Internet. Following this increased capacity, the
number of services provided by the Internet has exploded. Parallel to this trend of increased bandwidth
usage, applications with real-time requirements have also emerged.

Today, we see that the Internet is used as a medium for a wide variety of interactive applications such
as chat services, remote desktop, IP telephony, and networked games [1]. This has sparked renewed
interest for research on these trends, and new attempts on reducing latency for interactive applications
have emerged [2,3] [84,85]. Interactivity and time-dependency, however, has a multitude of requirements
that are different from the requirements of applications that need high capacity.

1.1 Background and related work

There has been a lot of effort put into improving the Transmission Control Protocol (TCP) in order to
achieve higher throughput while at the same time reacting to congestion building up in the network.
These mechanisms are, however, designed on the assumption that TCP tries to consume as much as
possible of the available bandwidth. This is not the case for traffic belonging to many interactive or time-
dependent applications [4]. These kind of applications often produce network traffic that has a distinct
pattern — low packet rate and small packet sizes. We call traffic flows with these characteristics thin
streams.

As more of the traffic in the Internet is guided by application transmission patterns, rather than by con-
gestion control, new patterns of behaviour are emerging. The effects of these developments are not
well-understood. Studies have shown that the retransmission mechanisms of TCP produce higher re-
transmission delays for thin streams, as these mechanisms rely on many packets on the wire in order to
be effective [4–8]. These studies suggests some modifications to the congestion control mechanisms in
order to compensate for this unfortunate behaviour.

1

How fair these modifications are towards other traffic flows is something that has not been well investi-
gated. Despite this, some of these modifications, particularly modified fast retransmit (MFR) and linear
retransmission time-out (LT) [4], are already implemented the Linux kernel [9]. Although criticised, the
concept of fairness between TCP streams is virtually synonymous with all streams having a fair share of
the available bandwidth [10, 11] [49]. What we consider fair when streams with different requirements
compete against each other is still an open question [12, 13].

1.2 Problem statement

The traditional fairness principle in TCP is that all streams sharing a limited resource, i.e. a network path
with limited capacity, should receive an equal share of the bandwidth. In order to achieve this, TCP relies
on its congestion control algorithm. This algorithm builds on the assumption that applications attempt
to achieve the highest possible throughput. Interactive and time-dependent applications, however, do not
attempt to send as much data as possible, but generate what we call thin streams — streams that are
limited by the application rather than by congestion control. In a scenario where different TCP streams
are competing over the same shared resource have different requirements, we need a different definition
of fairness. The question remains: how aggressive can time-dependent traffic be in order to achieve the
lowest possible latency?

The goal of this thesis is to determine if a more aggressive behaviour can be justified for an application-
limited TCP stream in order to reduce overall latency. In particular, we attempt to experimentally answer
how aggressive the retransmission mechanisms can be for thin streams while still remaining relatively
fair towards other traffic.

1.3 Scope and limitations

Although there are a number of problems with using TCP for time-dependent data, such as head-of-
line blocking (HOL blocking) and slow transmission rate ramp up, our focus is on investigating how
aggressive thin streams can retransmit data as studies show that one of the largest factors contributing to
increased latency is retransmission delays [4,5]. We have limited ourselves to evaluating two thin stream
modifications that are implemented in the Linux kernel — MFR and LT.

Network simulators are widely used in network research, but studies suggest that some simulators intro-
duce uncertainties [13, 14]. Since the modifications we want to evaluate are already implemented in the
Linux kernel, we decide to emulate a network using a Linux network testbed for our test environment.
This test environment is created according to best practices [86] and our own findings, outlined in this
thesis.

In order to assess the fairness of a more aggressive retransmission behaviour, we introduce competition
over a shared, limited resource. In our case, this is a bottlenecked router. There are other forms of

2

competition that is worth investigating, but because of time constraints we limit ourselves to only con-
sider the most common bottleneck: limited capacity. Even though Quality of Service (QoS) regimes
are common in the Internet to improve the performance of time-dependent network traffic, we have not
found time to explore them. Our test environment is therefore not optimally designed for thin-stream (or
mixed-stream) traffic.

Due to time constraints, we have also limited ourselves to only focus on the most used TCP variant in
Linux, CUBIC, using mostly default configurations. The default options for TCP in Linux are not opti-
mised for time-dependent traffic, but we have experimented with some of the settings that we suspected
could have an effect on thin streams.

Instead of using real interactive and time-dependent applications to generate network traffic, we use a
program developed by the authors of the previous thin-stream studies to simulate network traffic with the
same characteristics as traffic created by real applications.

1.4 Research method

We attempt to answer how aggressive thin-stream retransmissions can be by investigating how two ex-
isting thin-stream modifications, MFR and LT, affect greedy streams and other thin streams using un-
modified retransmission mechanisms. To do so, we conduct a fairness experiment in a controlled test
environment and analyse our findings.

As there is no unified definition of fairness when streams with different requirements compete, in order to
confirm the validity of our findings, it is imperative that we subject network traffic to a realistic scenario
and that we fully understand and trust our test environment to be correct. We design a Linux network
testbed to perform our experiment in, and attempt to model reality as close as possible by choosing a
network topology and setting network conditions that reflect a plausible, real-world scenario.

Three hypotheses were formulated based on the limitations surrounding TCP congestion control as
shown by the previous thin-stream studies [4–6]:

Hypothesis 1. The thin-stream modifications to the TCP retransmission mechanisms improve the
latency experienced by the application for application-limited streams when packet loss is caused
by network congestion.

This hypothesis serves the purpose of verifying the findings of the previous studies [4–6]. We want
to evaluate how well the thin-stream modifications perform when congestion starts building up in the
network.

Hypothesis 2. When competing over the same bottleneck, a more aggressive retransmission be-
haviour does not affect the performance of other TCP streams that are limited by congestion con-
trol (greedy streams).

3

The authors of the previous studies argue that a more aggressive retransmission mechanism for application-
limited streams can be justified since these streams do not contribute to congestion [4, 6, 15]. The TCP
congestion avoidance algorithm is designed in such a way that the bandwidth share for each TCP stream
should converge against an equal allocation. We test if the more aggressive retransmission behaviour
leads to greedy TCP streams receiving a share that is less than fair.

Hypothesis 3. When competing over the same bottleneck, a more aggressive retransmission be-
haviour does not affect the performance of other TCP streams that are limited by the application
(thin streams).

Even if the bandwidth share of competing streams is only reasonably reduced and could still be consid-
ered fair, being more aggressive can still harm streams that are unable to recover from loss as quickly
as greedy streams. In other words, we need to ensure that streams using the modifications do not affect
other application-limited streams that use unmodified retransmission mechanisms. Since these streams
are often generated by time-dependent applications, we expand our fairness consideration to include the
experienced latency for this type of streams.

1.5 Contributions

To prove the hypotheses formulated in the previous section, as well as attempting to answer the question
of how aggressive thin streams can be on retransmissions, we performed work consisting of analysis,
implementation and evaluation. Our main contributions are listed here:

• Evaluation of the MFR and LT retransmission modifications, showing that application-limited
streams using the modifications are still at a disadvantage when sharing a resource with greedy
streams. This suggests that an even more aggressive behaviour can be justifiable.

• Implementation of a deterministic network testbed and discussions of various pitfalls and chal-
lenges surrounding experimentally finding the appropriate aggressiveness for thin streams.

• Improvements to the pcap analysis tool, analyseTCP, originally created by the authors of the
previous thin-stream studies [4, 15], as well as extending the functionality and implementing new
features.

• Implementation of a kernel module that attaches itself to a Linux router queue and provides accu-
rate drop and queue statistics.

1.6 Outline

This thesis attempts to assess the right aggressiveness for retransmissions in TCP thin streams, from the
design of a fairness experiment to the analysis of the results and an evaluation of the observed behaviour.

4

• Chapter 2 describes the characteristics of interactive data traffic and defines the concept of thin
streams. We also outline modus operandi for TCP and how the mechanisms for reacting to network
congestion works. We explain how these mechanisms cause extra application latency for thin-
stream applications. Finally, we introduce the thin-stream modifications we evaluate and give a
brief explanation of how they work.

• Chapter 3 discusses the design and implementation of an experiment to test the TCP friendliness
of the thin-stream modifications. Here we introduce a network testbed for performing our tests
in order to evaluate how the thin-stream modifications affect other network traffic streams. We
also outline which parameters we have decided to focus on, and the criteria we have chosen for
considering the fairness.

• Chapter 4 describes our iterative process to find sensible test parameters in order to conduct our
fairness experiment. We discuss some unexpected observations, and describe how we investigated
them as part of our effort to verify the validity of our findings. We also review some of the proper-
ties of application-limited streams and how their behaviour is unfortunate in a congested network,
and outline the various factors that come into play in an attempt to explain our observations.

• Chapter 5 presents the results from our tests as well as a discussion of some of the observed
effects.

• Chapter 6 concludes this thesis by summarising our findings and experiment results and what we
learned from these. Finally, we outline some candidate topics for further research and investiga-
tions.

5

Chapter 2

Thin streams

The requirements for data delivery have changed significantly since the Internet’s infancy. In the early
days of the Internet, programs were designed around simple client-server models, focused around ap-
plications like web access, file transfer and e-mail. In the last decade, there has been an increase in the
demand for more bandwidth, as well as a shift in traffic patterns to more complex peer-to-peer (P2P)
models, with focus on both uploading as well as downloading, suitable for file sharing services such as
BitTorrent. More recently, we have also seen a large growth in the number of streaming services, such
as Netflix, YouTube and Spotify. [1]

Today, we see a use of the Internet that reflects aspects of real life. We interact in virtual environments,
control remote systems and hold audio/video conferences. These interactive applications introduce a
multitude of requirements to the infrastructure, since the experienced latency profoundly impacts the
perceived quality of the service. Real-time computing systems, such as trading robots or sensor networks,
are also a type of applications that require low latency [16–18].

On modern computer systems, the arguably largest source of latency is network traffic delays. This
is due to the best-effort design of the Internet Protocol (IP) [50]; a design that paradoxically made it
so popular for interconnecting computer networks in the first place. IP networks are packet-switched
and uses routing algorithms in order to be fault tolerant. However, this design choice also means that
datagrams, or packets as they are commonly called, are sometimes lost, delayed, corrupted or could arrive
in a different order than they were sent. Later in this chapter, we will discuss protocols and mechanisms
that aims to make the Internet more reliable.

2.1 Traffic characteristics

Network traffic generated by time-dependent applications, especially by those that are interactive, have
distinct characteristics. Table 2.1 shows a selection of packet statistics collected from a range of time-
dependent applications [4,15]. It shows the distribution of packet payload sizes, packet inter-arrival time

6

Application
Payload size (B) Inter-arrival time (ms) Bandwidth (avg)

min avg max min avg med max 1% 99% pps Kbps

T
hi

n

Anarchy Online 8 98 1333 7 632 449 17032 83 4195 1.6 2.2
Age of Conan 5 80 1460 <1 86 57 1375 24 386 11.6 12
BZFlag 4 30 1448 <1 24 <1 540 <1 151 41.7 31
Halo 3 (8 players) (UDP) 32 247 1264 <1 36 33 1403 32 182 27.8 60
Halo 3 (6 players) (UDP) 32 270 280 32 67 66 716 64 69 14.9 36
Test Drive Unlimited (UDP) 34 80 104 <1 40 33 298 <1 158 25 23
Tony Hawk’s Project 8 (UDP) 32 90 576 <1 308 163 4070 53 2332 3.2 5.8
World in Conflict (server) 4 365 1361 <1 104 100 315 <1 300 9.6 31
World in Conflict (client) 4 4 113 16 105 100 1022 44 299 9.5 4.4
World of Warcraft 6 26 1228 <1 314 133 14855 <1 3785 3.2 2
Skype (2 users) (UDP) 11 111 316 <1 30 24 20015 18 44 33.3 37
Skype (2 users) (TCP) 14 236 1267 <1 34 40 1671 4 80 29.4 69
RDC (Windows) 8 111 1417 1 318 159 12254 2 3892 3.1 4.5
SSH (text session) 16 48 752 <1 323 159 76610 32 3616 3.1 2.8
VNC (client) 1 8 106 <1 34 8 5451 <1 517 29.4 17
VNC (server) 2 827 1448 <1 38 <1 3557 <1 571 26.3 187

G
re

ed
y YouTube 112 1446 1448 <1 9 <1 1335 <1 127 >1000 1.3K

HTTP download 64 1447 1448 <1 <1 <1 186 <1 8 >1000 14K
FTP download 40 1447 1448 <1 <1 <1 339 <1 <1 >1000 82K

Table 2.1: Packet statistics for some interactive applications

(IAT) and average bandwidth consumption in packets per second and kbps. Statistics for three non-
interactive applications have also been included for comparison, and these are shown in the last three
rows.

As shown in the results, the last three applications generate network traffic that attempts to consume as
much of the available bandwidth as they can get and are limited by congestion control. Traffic flows
that behave this way are commonly known as greedy streams. On the other hand, we see that the traffic
generated by the time-dependent applications have a high packet IAT and a small average packet size. In
other words, these non-greedy streams are application limited. We call flows with these characteristics
thin streams.

A third characteristic that also is quite evident, is of course variance in IAT. We will explain the impact
of having regular packet transmission intervals as opposed to varying IAT in chapter 4.

2.2 Latency requirements

To understand why thin streams have the traffic pattern they have, we need to look to the latency re-
quirements of these applications. A large majority of thin-stream applications involve user interaction,
either between users or with a remote system. From this we argue that, generally speaking, the inten-
sity of the interaction determines the requirements to the application latency and how the experienced
quality of service is affected under non-optimal conditions. In this section we describe various real-time
applications and their requirements.

7

2.2.1 Online games

In the last decade, we have seen so-called Massively Multiplayer Online Games (MMOGs) exploding
in popularity [1, 19]. Fast paced and high precision games require lower latencies than games with
relatively slower interaction. Studies suggest that the threshold for tolerated latencies is around 100 ms
for first-person shooter games, 500 ms for action role-playing games and 1000 ms for real-time strategy
games [20–22]. However, professional gamers can have an actions per minute count of over 300 on
average during a game [87]. This suggests that the tolerated thresholds for some real-time strategy
games would be closer to that of first-person shooter games.

We can see from table 2.1 that the high intensity games, such as the first-person shooter games, have
slightly lower IAT than the role playing games. This is most likely due to the fact that first-person
shooters demand a higher frequency of position updates in order to be perceived as reliable. With too
much delay for position updates, the user experiences in-game lag, and objects in the game can move
erratically which contributes to a bad gaming experience [23].

2.2.2 Real-time multimedia applications

Audio/video conferencing software, IP telephony, Voice over IP (VoIP) systems, etc., are other exam-
ples of thin-stream applications. Today, we see that software like Microsoft Lync, Skype, TeamSpeak,
TeamViewer and other virtual collaboration tools are becoming increasingly popular in workplaces as
well as in homes.

Many IP telephony systems use the G.7xx series of audio compression algorithms recommended by ITU-
T [88]. For example, G.711 and G.729 have bandwidth requirements of 64 and 8 kbps respectively, and
the packet payload size is determined by the packet transmission cycle. For G.711, this cycle is typically
a few tens of milliseconds, resulting in packet sizes that are between 80 and 320 bytes [15,24]. Similarly,
the traffic generated by Skype as seen in table 2.1, has packet payload sizes that average on 236 bytes
(TCP) and have a bandwidth usage of around 69 kbps.

Web Real-Time Communications (WebRTC) is a relatively new framework, developed jointly by IETF
and W3C and being supported by Google, Opera and Mozilla. [89]. It aims to be a simple HTML5
Application Programming Interface (API) for web developers, enabling real-time P2P communications
in the browser. It uses multiple codecs and compression algorithms, such as Opus [51] [90] (which
incorporates SILK originally developed for Skype), G.711, G.722, iLBC [52], iSAC, as well as VP8 for
video. WebRTC uses the Real-Time Transport Protocol (RTP) for transport protocol. This means that
it uses Interactive Connectivity Establishment (ICE), Traversal Using Relays around NAT (TURN), and
Session Traversal Utilities for NAT (STUN) [53–55], in addition to RTP-over-TCP, for Network Address
Translation (NAT) and firewall traversal.

For voice communications, ITU-T defines the acceptable (average) one-way transmission delay to be
around 150-200 ms, with 400 ms as the absolute maximum [25] [91] and that a gap between audio and
video (lip sync) of 45-100 ms is acceptable [26] [92, 93]

8

2.2.3 Administrating remote systems

Another popular type of interactive application is controlling and administrating systems remotely. Ap-
plications of this type usually send instructions and commands to the remote system, either periodically
or in an event-based manner. As many of these systems operate in real time, they need to be able to react
quickly to control signals.

Four popular applications for this are Telnet, Secure Shell (SSH), Remote Desktop Connection (RDC)
and Virtual Network Computing (VNC). As seen in table 2.1, these applications create packets that are
small and have a high average IAT. This is caused by the fact that network traffic is generated when the
user interacts with the system, e.g. presses keys on his keyboard or moves the mouse cursor, but the user
interaction is not as intensive as with games described in section 2.2.1.

Studies show that the average computer user can type 33 words per minute on average when copying a
transcript, while a skilled user can type 87 words on average [15] [94]. Using a standardized word count
of five characters per word [27], this means that the average user can type 2.75 characters per second on
average and the skilled user up to an average of 7.25 characters per second. This means that 363 and 137
milliseconds will pass between each typed letter for the average and skilled user respectively.

2.2.4 High-frequency algorithmic trading

High-frequency algorithmic trading (HFT) is a field within real-time computing that is becoming in-
creasingly popular. In 2010, it was estimated that HFT accounted for 56% of the entire equity turnover
in the U.S. [28]. This has led to a technological arms race between HFT firms, with each firm trying to
be faster and smarter than the others.

While many HFT firms use proprietary algorithms in order to outperform their competitors, they also
have a need for speed. A study from 2010 shows that the speed of light1 has become the bottleneck
preventing HFT traders to operate on a global level [29], so firms often implement their systems as close
to stock exchanges as possible [16]. Many of these systems have to react to events at sub-millisecond
speed [16–18]. Estimates suggests that even a 1 millisecond improvement in latency for every transaction
could be worth up to $100 million a year to a large investment bank or a broker firm [16–18] [95, 96].

2.3 Thin-stream transport protocols

Although the scope of this thesis is related to problems surrounding TCP as transport protocol for thin
streams, there exist transport protocols that are designed for network transport of interactive and latency
sensitive data. Many of these protocols are, however, not as well understood as TCP and User Datagram
Protocol (UDP), and the general support for them in various networking components is uncertain. [4,30,
31]

1Light propagates through 1 kilometre of fiber in approximately 3 microseconds.

9

2.3.1 User Datagram Protocol

UDP [56] is one of the simplest transport protocols, but it is nonetheless widely used for multimedia
and interactive applications where some data loss is considered acceptable. It is a stateless, connection-
less and message-oriented transport protocol, where a program can send messages (datagrams) to other
hosts over an IP network without any transmission channels or data paths set up. It maps directly to the
unreliable nature of IP; UDP offers no guarantee of delivery or ordering. Its simplicity makes it attractive
for real-time applications where error correction is not necessary or can be done on the application layer.
and where losing data (dropping a packet) is preferable to waiting for it to be retransmitted. [30, 31]

However, because of the IPv4 address space exhaustion2, home consumer devices are almost exclusively
connected to private networks behind NAT gateways. A common NAT implementation is the mapping
of program ports to actual hosts on the private network, but this proves difficult with a unidirectional
connection-less protocol like UDP [30]. Because of this, most home consumer oriented UDP-based
applications offer TCP as a fall-back protocol, since TCP is bidirectional and the host behind NAT can
initiate the connection instead. [4].

2.3.2 Real-Time Transport Protocol

RTP [57, 58] is a generic protocol suitable for transporting real-time data, and is used extensively in
media streaming and VoIP implementations, together with its sibling protocol RTP Control Protocol
(RTCP). [30]

It is not really a transport-layer protocol, but is positioned in between the application layer and the
transport layer in the protocol stack. This means that the RTP interface is through a user-space RTP
implementation, and this interface is responsible for multiplexing the streams and use a suitable transport-
layer protocol to transmit the RTP packets. RTP has no built-in mechanism for retransmissions, reliability
or congestion control. It offers facilities useful for multimedia, such as timestamping and sequence
numbering, which allows for buffering and synchronizing multiple streams, e.g. an audio and video
stream.

RTP was designed to transport a wide variety of multimedia formats, and allows a format or encoding to
be specified through RTP profiles. A profile defines the codec used to encode the payload data, and an
RTP packet can contain multiple encodings of the same data [30].

Figure 2.1 illustrates how RTP packets are encapsulated. Most RTP implementations use UDP, but it is
possible to send RTP over other transport protocols, such as TCP. This means that RTP is at the mercy
of the behaviour and treatment of the transport-layer protocol it uses.

2http://www.ripe.net/internet-coordination/ipv4-exhaustion

10

http://www.ripe.net/internet-coordination/ipv4-exhaustion

UDP/TCP payload

RTP payload

IP payload

Ethernet payload

Ethernet header IP header UDP/TCP header RTP header

Figure 2.1: RTP encapsulation

2.4 Transmission Control Protocol

TCP, defined by RFC 793 [59] and updated by RFC 1122 [60], is a data transport protocol specifically
designed to provide a reliable, end-to-end data delivery service over an unreliable data forwarding plane.
It complements the best-effort, connection-less packet-switching design of IP networks by adding means
for reliable, connection-oriented in-order data transmission, flow control and adaptiveness to network
congestion. It is considered one of the core protocols of the Internet protocol suite, and the Internet
today is in fact so dependent on TCP, that the suite is often referred to as TCP/IP [30, 31] [97].

TCP will establish, maintain and tear down a full duplex, reliable byte stream between two processes
running on separate hosts over an interconnected network. Seen from the application, this byte stream
works like a pipe, where data (bytes) go in at one end and arrives at the other, in-order and error free,
thus making the underlying architecture transparent3. [59, 61] [32]

TCP divides chunks of bytes into segments. These segments consist of a 20-byte fixed header (plus
an optional part) followed by zero or more data bytes. Segments are encapsulated in, and sent as, IP
datagrams, thus the segment’s length is restricted by the maximum IP payload size (65,515 bytes [50]) in
addition to the network Maximum Transfer Unit (MTU). which generally is 1500 bytes — the same as
the Ethernet payload size [30]. This means that the Maximum Segment Size (MSS), the size of the largest
possible packet that will not be fragmented, is MSS = MTU − IP header length − TCP header length.
TCP segments are essentially the same as packets or datagrams, and the names are used interchangeably
throughout the literature, even though strictly speaking "packets" would refer to packets from an IP layer
point-of-view, while "datagrams" would be packets with data payload (i.e. UDP datagrams). We will use
segments when talking about TCP packets, with or without data payload.

Since segments can be lost, e.g. due to network congestion, TCP uses retransmission to ensure reliability.
Each byte is given a sequence number. When a sender transmits a segment, it gives the segment a
sequence number corresponding to the first byte in that segment and starts a timer. The receiver explicitly

3In this context, transparency means that the running program only sees a handle (socket, see 2.4.2) provided by TCP to this
byte stream "pipe". This handle has a simple API: connect, write, read and close. The "gory details" of the network is hidden
from the program. Please refer to the literature for more details. [30] [59] [98]

11

Window size

Source port Destination port

Sequence number

Acknowledgement number (if ACK is set)

Urgent pointer (if URG is set)Checksum

Header
length

F
I
N

S
Y
N

R
S
T

P
S
H

A
C
K

U
R
G

E
C
E

C
W
R

N
S

Options
0-10 words

(0 to 40 bytes)

5 words
(20 bytes)

32 bits (4 bytes)

Figure 2.2: The TCP header

notifies the sender about a received segment by sending back an acknowledgement (ACK), accounting
for the highest byte in the received segment. If a segment remains unacknowledged after the timer goes
off, the segment is assumed lost and retransmitted (until acknowledged by the receiver). Segments can
also arrive out of order, e.g. due to routing changes, so to ensure in-order delivery to the application,
TCP uses a sliding window algorithm with cumulative acknowledgement, which is described in section
2.4.3.

2.4.1 Header layout

Figure 2.2 shows the TCP segment header, which every TCP segment begins with. The header may be
followed by a set of header options. After the options, if any, the data bytes may follow, but segments
without any payload is allowed and is commonly used for ACKs and other control messages. The
segment header structure is, as defined in RFCs 793, 1122, 3168 and 3540 [59, 60, 62, 63], as follows:

Source port (16 bits): Identifies the sending port.

Destination port (16 bits): Identifies the receiving port.

Sequence number (32 bits): The sequence number of the first data byte of this segment (every byte is
given a sequence number in a TCP stream). The first sequence number is chosen randomly by the
host initiating the connection, so it does not necessarily start on 1.

Acknowledgement number (32 bits): The sequence number of the next byte expected (not the last
correctly received).

Header length (4 bits): Specifies how long the header is, in 32-bits words (5 = no options). Maximum
value is 24 − 1 = 15 words, 40 bytes of options.

Reserved (3 bits): For future use, and should be set to zero.

12

Flags (9 bits): Nine control bits, see table 2.2.

Window size (16 bits): The size of the receive window; the number of bytes the sender of this segment
is willing to receive (see 2.4.4).

Checksum (16 bits): Checksum for data integrity. Should add up to 0.

Urgent pointer (16 bits): See the description for the URG flag below.

Table 2.2 shows the nine different control bits, or "flags", used by TCP. NS, CWR and ECE are used
for a congestion notification technique called Explicit Congestion Notification (ECN) [62]. If the URG
flag is set, this field indicates a byte offset from the current sequence number at which urgent data in
the segment begins. It can be used to transfer out-of-band interrupt style signalling data, for applications
like Telnet [64]. The ACK flag indicates that the packet contains an acknowledgement, all packets after
the initial SYN packet should have this set. The PSH flag is used for quick transmission, indicating that
data in buffers should be delivered to the application. In other words, data in sender-side buffers should
be sent at once, while data in receiver-side buffers should be "pushed" to the application at once. The
RST, SYN and FIN flags are used to reset, synchronize (initiate) and terminate a connection respectively.
[30, 31] [99]

As specified in RFC 793 [59], we can have a variable amount of additional options after the initial, fixed-
size segment header. Each TCP option is a three field value: Option kind (1 byte), option length (1 byte)
and option data (variable length). Figure 2.3 shows how an example of TCP option layout in the options
field with three options. Note that option 1 and 3 are padded to align with 32-bits.

Three commonly used TCP options are selective acknowledgement (SACK) [65], receiver window scal-
ing and TCP timestamp [66]. A TCP sender sending its timestamp in headers are used for improved
round-trip delay time (RTT) measurement and for better assessing when the sequence number has
wrapped. SACK is further explained in 2.4.3, and window scaling is explained in 2.4.4.

The TCP header and IP header may be compressed, as proposed in RFC 1144 [67].

NS ECN nonce concealment protector
CWR Congestion window reduced
ECE ECN echo
URG Urgent pointer is significant
ACK Acknowledgement number is significant
PSH Push buffered data to the receiving application
RST Reset the connection
SYN Synchronize sequence numbers
FIN No more data from sender (finalize)

Table 2.2: TCP header control flags

13

Option 1 kind

0 to 10 words
(0 to 40 bytes)

32 bits (4 bytes)

Option 1 length Option 1 data

Option 1 data Padding

Option 2 kind

Option 3 kind Option 3 length Option 3 data Padding

.

.

.

Option 2 length Option 2 data

Figure 2.3: Example of TCP header options

Time Host 1 Host 2

SYN seq=x

SYN+ACK seq=y ack=x+1

ACK seq=x+1 ack=y+1

(a) Establish (open connection)

Time Host 1 Host 2

FIN

ACK

FIN

ACK

Conn.
timeout

Active
close

Passive
close

(b) Finalize (close connection)

Figure 2.4: Connection handling in TCP

2.4.2 Connection management

TCP establishes a connection-oriented byte stream between two processes, either on the same machine
or two different hosts. The hosts are uniquely identified by the network layer addressing scheme, i.e.
IP addresses. A process is in turn identified by a port number. An address and a port number forms
what is called a socket, and a pair of sockets uniquely identifies a TCP connection. This allows multiple
processes within a single host to use TCP simultaneously, and a socket may be used for multiple streams
[59]. In other words, services, such as HyperText Transfer Protocol (HTTP) and File Transfer Protocol
(FTP), can be bound to well-known ports, and many clients can connect to the same service on the same
server [68] [30].

Figure 2.4 shows how TCP establishes and tears down a connection. The connection is established using
a three-way handshake. The initiator, Host 1, sends a segment with the SYN flag set, Host 2 replies with
a segment with both the SYN and ACK flag set, and finally Host 1 acknowledges the active connection
with an ACK. Note that the sequence number does not necessarily begin at 1. A TCP sender will choose
a random starting number [30, 31]. This is a security measure to prevent a malicious user from guessing

14

the ACK number and leaving the receiver in a half-open state [30].

In addition to synchronizing the sequence numbers, by setting the sequence number and acknowledge-
ment number as shown in fig. 2.4a, other tasks may be performed, such as determining the MSS (RFC
1191 [69]) or scaling the window size (RFC 1323 [66]). A proposed extension called TCP fast open
(TFO) improves performance by allowing data to be sent with the opening SYN segments [100, 101].

Tearing down a connection can be done in different ways depending on the implementation, either by a
four-way handshake — where both sides terminate the connection independently as shown in fig. 2.4b
— or by a three-way handshake. The three-way handshake is similar to the four-way, but where both the
ACK and FIN flags are set for the same segment. The latter is perhaps the most common method [99].

There are some issues with the three-way-handshake and connection tear-down: Delayed segments that
arrive after the connection is terminated may lead to confusion if there are any subsequent streams, i.e.
the receiver might think that the segments belongs to the current rather than the previous connection.
So-called "half open" connections — where one side has terminated while the other has not — may also
occur if some of these segments are lost. A more detailed explanation of connection handling in TCP can
be found in literature [30] and in RFC 793 [59]. Stream termination and implementation considerations
are further explained in RFC 1122 [60].

2.4.3 Data transfer

As mentioned previously in this chapter, every byte belonging to a TCP stream is given its own sequence
number, and chunks of bytes are sent as segments. Segments are explicitly acknowledged by the receiver,
by setting the ACK flag and the acknowledgement number to the next expected byte. Each segment
header has both a sequence number and an acknowledgement number, allowing data to be transferred
both ways (full duplex). In other words, ACKs can piggy-back on data segments, or they can be sent as
stand-alone segments if there is no data to send back (packets containing only the header, zero-length
payload).

If a segment is lost somewhere along the line from sender to receiver, it has to be retransmitted. Es-
sentially, when TCP sends a segment it also starts a timer for that segment. If an ACK is received
acknowledging the segment, the timer is cancelled and the next segment is sent. If the timer times out
and no ACK for that segment is received, the segment is re-transmitted. How this time-out interval is
calculated is explained in section 2.5.5.

The capability of retransmitting lost segments is achieved through buffering. The sender temporarily
stores unacknowledged segments in a buffer. Figure 2.5 shows how this works. For simplicity, the
sequence and acknowledgement numbers is the same as the segment number, while in reality, it would be
a byte count. Host 1 transmits first segments 0-3, but segment 2 is lost (or massively delayed) somewhere
along the line. The receiver sends an ACK every time it receives a segment, but since it has not received
segment 2, it can not accept segment 3, and therefore replies that segment 2 is still the next expected

15

Time Host 1 Host 2

seq=0

seq=1

seq=2

seq=3

.

.

.

.

.

.

ack=1

ack=2

ack=2

seq=2

seq=3

seq=4

seq=5

ack=3

ack=4

RTO for
seg. 2

ack=5

ack=6

Figure 2.5: Retransmission in TCP

2 30 1 4 5 6 7

Must wait until
window slides

Window

Can be sent

(a) Initial window

2

Sent and
acknowledged

30 1 4 5 6 7

Must wait until
window slides

Window

Sent
not acknowledged

Can be sent

(b) After the time-out

Figure 2.6: TCP sender-side buffer

segment. Segment 2 (and 3) is retransmitted after its time-out. Note that the sender does not send one
segment and wait for an ACK and then sends the next, but rather sends an entire window of segments.
This is what is called a sliding window protocol, and is explained further in section 2.4.4.

However, transmitted segments can be lost both ways — in other words, acknowledgements may also be
lost. To prevent unnecessary retransmissions if an ACK is lost, TCP uses a mechanism called cumulative
acknowledgements. Figure 2.7 illustrates this. The ACK for segment 2 (ack=3) is lost, but the ACK for
segment 3 (ack=4) is received before the time-out for segment 2 goes off. The sender then knows that
the segment was actually received, thus no retransmission of that segment is required.

The combination of the sliding window and cumulative ACKs is essentially what is called a "Go-Back-
N" active repeat request (ARQ). Although simple to implement, "Go-Back-N" is not very efficient. Even
though the receiver may choose to buffer out-of-order segments that are within the window size —
which in the example in figure 2.5 would be segment 3 — with cumulative ACKs, the sender can not

16

Time Host 1 Host 2

seq=0

seq=1

seq=2

seq=3

.

.

.

.

.

.

ack=1

ack=2

ack=4

seq=4

seq=5

seq=6

seq=7

ack=5

ack=6

ack=7

ack=8

ack=3

Figure 2.7: Cumulative acknowledgement in TCP

know whether it has been received or not, and thus has to resend it.

This is addressed by RFC 2018 [65], which makes it optional for TCP hosts to implement SACK4.
Similar to the "Selective Repeat" ARQ [30], the receiver explicitly tells the sender which segments were
lost and which were received. This is done by using header options for reporting information about
received segments back to the sender. [70]

RFC 2883 [71] extends SACKs even further, by introducing duplicate selective acknowledgement (DSACK),
which allows the receiver to notify the sender about the sequence numbers of the segments that triggered
the ACK, thus allowing the sender to infer the order of segments received and from this understand when
it has unnecessarily retransmitted a packet. The sender uses this to (better) assess the network loss.

2.4.4 Flow control

In addition to offering reliability (in form of explicit acknowledging received data), TCP also has mech-
anisms to manage the data rate between a TCP sender and a receiver. Although they somewhat overlap,
it is important to distinguish flow control from congestion control. The latter is explained section 2.5.

As mentioned in section 2.4.3, a TCP sender transmits an entire window of segments rather than trans-
mitting one segment at the time. The size of this window is set by the receiver, by setting the "window
size field" in the ACK segment header, and the value in this field is interpreted by the sender as how
many bytes the receiver is willing to accept next. This is what is called the receive window (rwnd). [72]

4A study from 2011 on Google web servers shows that 96% of all connections supported SACK [7]

17

Time Sender Receiver

seq=0 payload=1024 B

ack=1024 win=1024

Empty

1 kB

seq=1024 payload=1024 B

Full

2 kB

Receiver's buffer

ack=2048 win=0

Application does
a 1 kB write

Application does
a 1 kB write

Sender is
blocked

ack=2048 win=1024

Sender can
send up to 1 kB

1 kB

Application reads
1 kB

seq=2048 payload=500 B
1 kB500

ack=0 win=2048

Figure 2.8: Flow control in TCP

In figure 2.5, rwnd is 4×MSS. When the time-out for segment 2 occurs, the sender can transmit segment
3-5 as well, since the successful arrival of segment 0 and 1 means that the window "slides" two segments.
Figure 2.6 shows how this works. A more detailed explanation of the sliding window and "Go-Back-N"
ARQ mechanism can be found in literature. [30, 31]

By adjusting rwnd and setting the window size corresponding to the available receive buffer, a TCP
receiver can notify the sender that it is currently being overwhelmed and that the sender needs to slow
down the transmission rate. Figure 2.8 outlines how this work. While the window size is 0, the sender
may not send any segments, but there are two exceptions: urgent data may be sent — for example so that
the user can kill a remote application — and an empty segment can be sent so it forces the receiver to re-
announce the acknowledgement number and window size. This is to prevent deadlocks should window
size announcements be lost. [30]

When a network has a large bandwidth-delay product (BDP), the maximum possible window size be-
comes too small: 216 = 65, 535 bytes (≈ 64 kB) is simply not large enough to accommodate the band-
width of these high-capacity links. Large BDP networks are known as long fat networks (LFNs) [73],
and RFC 1323 [66] deal with these by specifying a byte shift count in a header option field, thus allowing
rwnd to be the value of the window size field left shifted by the value in the shift count. A maximum
value of 14 may be used for the shift count, allowing rwnd to be increased to a maximum value of
216 × 214 = 216+14 = 230 bytes (≈ 1 GB). This is called TCP window scaling.

18

TimeSender Receiver

4

1

2

Data from
the application

3

4

3

2

1

Data from
the application

Data from
the application

Data from
the application

(a) Without Nagle’s algorithm

TimeSender Receiver

1, 2, 3, 4

Delaying transmission,
filling up a segment

1

1 2 3 4

Data from
the application

Data from
the application

(b) With Nagle’s algorithm

Figure 2.9: TCP segment transmission time-line with and without Nagle’s algorithm

2.5 Congestion control in TCP

While reliable data transfer is achieved through explicitly acknowledging received segments (packets),
TCP also aims to be robust in the event of network congestion. TCP assumes packet loss in the network
is due to increasing load and congestion building up. TCP therefore has mechanisms to adapt to this and
limit the data rate to try to avoid this. The Internet relies on this adaptiveness, and is why the Internet
protocol suite is referred to as TCP/IP.

2.5.1 Nagle’s algorithm

Network congestion was identified as a potential serious problem as early as 1984 by John Nagle, and
congestion collapse was described in RFC 896 [74]. One of the identified problems is what Nagle called
the "small packet problem", where an application frequently delivers tiny chunks of data to be sent over
TCP, e.g. an interactive Telnet [64] session that reacts on every single keystroke. This means that a host
could, in a worst case scenario, transmit a 41-byte packet (segment header + 1 byte character) for 1 byte
of useful data, and it would do so repeatedly.

Nagle proposed what is known as Nagle’s algorithm to reduce the number of small segments sent, which
is widely used by TCP implementations today [60]. The main idea is simple: buffer data chunks until
they fill up an MSS-sized segment. Figure 2.9 shows how this works.

The algorithm is simple: whenever data is pushed from the application, buffer it until either the size of
the segment reaches an MSS, or to a timer goes off. The latter ensures that data is ultimately sent if the
applications stops pushing data. However, when a data segment is received, the current buffer can be

19

"flushed", as in sent as data payload with the ACK. This is because the ACK must be sent back anyway,
so we can just allow the data buffered until now to piggy-back on that.

In the light of today’s computers and networks, the algorithm has lost much of its relevance. Computers
are vastly more powerful than at the time the algorithm was conceived. The network capacity is also
much greater, and real-time applications relying on speedy transmission of data is becoming increasingly
more common. Yet the algorithm is still enabled by default on many OSes. The double latency resulted
by combining Nagle’s algorithm with delayed acknowledgements, described in the next section, makes
it terrible for interactive applications [4, 31].

2.5.2 Delayed acknowledgements

Let us revisit figure 2.7. Since ACKs are cumulative, it is unnecessary to send an ACK for every single
segment when, strictly speaking, one ACK would suffice in the event that the entire window was received
properly. In the case of of figure 2.7, an ACK for segment 3 (ack=4) and again for segment 7 (ack=8)
would be enough.

This is exactly what RFC 1122 [60] recommends. Similar to Nagle’s algorithm on sender-side, ACKs
too can be delayed on the receiver-side to cover multiple segments. Two limitations are necessary, an
ACK delay must not exceed 500 ms (the Linux kernel uses 200 ms [4]) and at least one ACK should be
sent for every other segment received. The first requirement is self-explanatory, we do not want to trigger
a retransmission as it would defeat the purpose. The latter requirement is needed because delaying ACKs
disturbs RTT estimation. [4, 31]

If reordering is detected, then delayed ACKs must be disabled. Delayed ACKs is enabled by default in
the Linux kernel [102].

2.5.3 Congestion window

The breakthrough in TCP congestion control came with the introduction of the congestion window
(cwnd) in a paper by Van Jacobson in 1988 [10]. In section 2.4.4 we explained that TCP can control the
sender rate by using a receiver advertised window (rwnd); while rwnd allows a TCP sender to react to
the receiver’s capacity, a mechanism to deal with the network capacity is needed. The solution was to
introduce a second window, namely the cwnd. A TCP sender will always choose the minimum of the
two windows when determining how much it should transmit. The size of cwnd is determined during
TCP’s four stages of congestion avoidance, which are described in RFC 5681 [72].

The specification differentiates between sender’s MSS (SMSS) and receiver’s MSS (RMSS), but in the
following explanation we will keep it simple and use only MSS for describing the maximum size of a
non-fragmented segment across the line. The specification also states that cwnd should be calculated
as a number of bytes, many OSes (including Linux) uses number of MSS-sized segments instead of
bytes [15].

20

Figure 2.10: TCP slow start and congestion avoidance

Slow start

The first stage is used for determining the maximum available bandwidth the stream has. Although not
slow at all, but slow compared to the original start-up stage in TCP, this stage is called slow start [30].

When the connection is established, the sender sets cwnd to the size of an MSS. If this segment is
ACKed before the retransmission time-out (RTO) goes off, it adds another MSS to cwnd. If these
2 segments are ACKed successfully, the sender increases the window to 4 × MSS and then again to
8 ×MSS and so on. In other words, the window size increases exponentially for each RTT as long as
the segments are successfully ACKed. It does so until loss is detected or until the slow start threshold
value (ssthresh) is reached.

Lost segments are interpreted as a sign of congestion building up in the network. If an RTO is triggered,
ssthresh is set to cwnd/2, and cwnd is reset to its initial value. According to the specification [72],
the initial ssthresh can be set arbitrarily high, but many implementations usually set it to 64 kBs
[30, 31]. When cwnd exceeds ssthresh, the sender goes to the congestion avoidance stage.

Congestion avoidance

In the congestion avoidance stage, the window is incremented only by one MSS each RTT until loss is
detected. On RTO, the sender sets ssthresh to cwnd/2, and goes back to slow start.

This additive increase on success and halving of ssthresh on loss, is called additive increase —
multiplicative decrease (AIMD) and is essential to how the TCP transmission rate over time converges
against the available capacity in the network. Figure 2.10 depicts how cwnd and ssthresh increases
and decreases during these two stages and how they react to an RTO.

21

Fast retransmit

When a segment is lost from a transmitted window, the receiver will ACK the last received in-order
segment. This can be used to infer that if the sender receives a duplicate acknowledgement (dupACK)
for a sent window then the sent segment was not received properly (either out of order or lost).

The fast retransmit stage exploits this. If three dupACKs is received, the sender can be fairly certain that
the segment is lost and not simply re-ordered by the network [31] [72]. Instead of waiting for an RTO to
be triggered for the lost segment, the sender simply retransmits the segment "here and now".

RFC 5681 [72] states that during the fast retransmit stage, the sender must artificially inflate the window
to compensate for the segments that triggered the three dupACKs. These data segments were in fact
properly received, and are now in the receiver’s buffer and not in the network. The specification states
that ssthresh should be set to cwnd/2, and cwnd is then set to ssthresh+ 3×MSS.

In addition, when performing the fast retransmit, a timer should be started. If the segment that led to
the three dupACKs is recovered before this timer times out, a fast recovery is performed. Otherwise, the
sender should go back to slow start.

Forward acknowledgement (FACK) is an extension to SACK that keeps track of the amount of data that
has been received, and allows a sender to trigger a fast retransmit when it receives SACK information
indicating loss of at least three segments [31,33]. It does this by assuming that all segments with a lower
sequence number than the highest SACKed segment are lost.

Fast recovery

If a fast retransmit is triggered and the segment that led to the fast retransmit is recovered, the sender
performs a fast recover and sets cwnd to the value of ssthresh and goes to congestion avoidance
rather than going back to slow start. This is because the sender can assume the segment was lost due to
sporadic loss in the network, and not due to congestion, since the subsequent segments was successfully
received by the receiver. [72] [4, 30, 31]

Figure 2.11 shows how fast recovery works. The blue line depicts cwnd through the start-up (slow
start) and into the congestion avoidance stage. At around the 8th RTT a fast retransmit is triggered,
and the sender halves ssthresh. The blue line shows cwnd if the lost segment that lead to the fast
retransmit is recovered (ACKed by the receiver before the fast retransmit time-out) and the sender goes
to the congestion avoidance stage instead of going back to slow start. The red dotted line depicts what
happens if the lost segment that triggered fast retransmit is not recovered, where the sender goes back to
slow start.

22

Figure 2.11: TCP fast recovery

Figure 2.12: Fast recovery cycles in a J-Sim implementation of TCP Reno

Improved fast recovery

While traditional fast recovery is left upon receiving the first non-dupACK, multiple losses may still
occur in the same window. A sender implementing a traditional fast retransmit + fast recovery will in
that case leave and enter a fast retransmit + fast recovery cycle for each loss (and halve the window size
each time!). Figure 2.12 shows a plot of cwnd for a TCP implementation in J-Sim using traditional fast
recovery. The loss is caused by a bottlenecked router, so the lost segments are all from the same window.
Notice how the fast retransmit and fast recovery cycle is entered three times.

RFC 6582 [75] proposes that the sender should stay in fast recovery until all the lost segments from the
same window is acknowledged. To do so, the sender keeps track of the highest sent sequence number.
When receiving three dupACKs and performing fast retransmit and fast recovery, the sender uses this
stored sequence number to check whether the window is now accounted for or if there still are missing

23

segments. ACKs that cover the highest sent sequence number is considered a "full" ACK and mean that
the window is recovered. ACKs that only account for some of the segments, are considered "partial"
ACKs, and these are used for discovering "gaps" in the window. [4, 5, 31]

For example, imagine the scenario where a sender has transmitted segments 1, 2, 3, 4, 5 and 6, but 2
and 4 are lost along the way. The first "gap", the missing segment 2, is discovered when three dupACKs
acknowledging only segment 1 are received (the receiver creates dupACKs upon receiving segment 3, 5
and 6). The sender then enters fast retransmit + fast recovery and retransmits 2, but stays in fast recovery.
The receiver replies with an ACK accounting for 1-3 upon receiving segment 2 ("partial" ACK), thus
allowing the sender to discover this new "gap", the missing segment 4, which is also retransmitted. After
receiving segment 4, the receiver has now received the entire window, and sends an ACK acknowledging
1-6 ("full" ACK). TCP can now leave fast recovery, and cwnd is halved as usual. If a full ACK never
arrives, an RTO will eventually occur and the sender will go to slow start.

However, this partial ACK mechanism is somewhat flawed. Without SACK, TCP is unable to distin-
guish between dupACKs caused by spurious retransmissions and dupACKs properly indicating loss. For
example, if segments are reordered by the network by more than three segments, TCP mistakenly enters
fast retransmit + fast recovery. But as the reordered segments are received, the acknowledgement num-
ber progresses and the sender then further mistakes these ACKs for partial ACKs indicating "gaps", and
retransmits segments that are already received. [31]

2.5.4 Window algorithm variants

Although most TCP implementations incorporates the concepts and functionality we have described up to
now, some variations exists. Today, there are many different variants for a variety of purposes. Examples
include TCP Westwood+ [103], HighSpeed TCP [76], Compound TCP [104] and Data Center TCP [34].
The differences between the various implementations lie mostly in the congestion control mechanisms.

The first "modern" TCP implementation, was TCP Tahoe — a name given after the OS it was imple-
mented in 4.3BSD-Tahoe. It came as a result of work with congestion collapse in ARPANET by Van
Jacobson and the paper that followed [10]. TCP Reno (named after 4.3BSD-Reno) soon came after; the
first implementation to support all four congestion control stages: slow start, congestion avoidance, fast
retransmit and (traditional) fast recovery [4] [105]. We will in this section focus on the implementations
most commonly used in the Linux kernel.

TCP NewReno

RFC 3782 [77] (updated by RFC 6582 [75]) defined an algorithm variant called NewReno. It uses the
improved fast recovery stage instead of the traditional to detect multiple drops from the same window
(see 2.5.3). NewReno was until recently the default TCP variation in many OSes, including the Linux
kernel until version 2.6.8. In recent times, most implementations of Reno and NewReno also support
SACK and DSACK in addition to forward RTO recovery (F-RTO) [78]. This reduces the problem with

24

indistinguishable dupACKs (explained in 2.5.3), but doesn’t eliminate the problem entirely. This has
been cited as one of the reasons it isn’t the default congestion control in newer versions of the kernel
[106]. The other reasons are related to poor scalability in networks with high BDP.

TCP Vegas

TCP Vegas [35] modifies Reno and adds fine-grained timers to TCP and tries to predict congestion
based on variations in the RTT rather than packet loss. It also dynamically calculated the RTO, thus
allowed quicker retransmissions of lost segments. However, the algorithm has a less aggressive slow
start-stage, increasing cwnd every other RTT rather than every RTT, like e.g. Reno. This means that
while it is effective in an all-Vegas environment [35], it is outperformed by more aggressive algorithms
in terms of goodput when competing with these [107]. Vegas is implemented in the Linux kernel [108]
and FreeBSD [109], and is the default congestion avoidance algorithm for the DD-WRT firmware (v24
SP2) [110].

TCP CUBIC

The demands for fast transfer of large data volumes are ever increasing, and window scaling can only
do so much. Binary increase congestion control (BIC) and its successor, CUBIC, are variants of TCP
congestion control aimed at scaling for LFNs. [36] [111] [5]

The key concept of BIC is its window growth function: BIC maintains two variables, cwndmin and
cwndmax. Whenever packet loss occurs, cwndmax is set to the value of cwnd, cwnd is reduced by
a multiplicative factor β and cwndmin is set to the value of cwnd after the reduction. Then BIC sets
its cwnd to the midpoint between cwndmin and cwndmax. This works because since packet loss oc-
curred at cwndmax, the window size the network can handle must be somewhere between cwndmin and
cwndmax. [36] [111]

To prevent a too aggressive growth, BIC defines a fixed constant Smax, so that if the difference between
the midpoint and cwndmin is greater than Smax, BIC increments by Smax instead. If no packet loss
occurs when incrementing cwnd, cwndmin is set to the value of cwnd. If the window incrementation is
smaller than a fixed constant Smin, cwnd is set to the current maximum. These two threshold values en-
sure that after packet loss, the window growth function will resemble a linear function (additive increase
stage) followed by a logarithmic function (binary search stage). When cwnd grows beyond cwndmax,
BIC enters a stage where it "probes" for the new maximum value by using a growth function symmetrical
to the functions in additive increase and binary search — exponentially at first and then linearly. The
three stages are illustrated in figure 2.13a.

To summarize the algorithm:

25

(a) TCP BIC (b) TCP CUBIC

Figure 2.13: Congestion window growth stages

• Whenever cwnd is successfully increased and no loss occurs, cwndmin is updated and set to the
value of cwnd (cwndmin ← cwnd).

• Whenever loss is detected, cwndmax is updated and set to the current value of cwnd, cwnd is
reduced by a multiplicative factor β and then cwndmin is set to the value of cwnd (cwndmax ←
cwnd, then cwnd← cwnd/β, then cwndmin ← cwnd).

• For each RTT, cwnd is set to the midpoint between cwndmin and cwndmax (cwnd← cwndmin+

b(cwndmax − cwndmin)/2c). If cwnd grows beyond cwndmax, BIC "probes" for a new maxi-
mum by updating cwndmax for every successful incrementation.

Even though BIC achieves relatively good fairness, its growth function was too aggressive in networks
with short RTTs or with low bandwidth. In addition to this, the different growth stages added complexity
to the algorithm. CUBIC is a simplified algorithm, which aims to improve the fairness when competing
with other TCP implementations. It does so by replacing the stages in BIC with a single cubic function
to calculate the window size. [111] [4, 5]

The cubic function that replaces the different stages in BIC can be expressed as:

cwnd← C ×

(
T − 3

√
cwndmax × β

C

)
+ cwndmax (2.1)

where C is a scaling constant, and T is the elapsed time. As with BIC, β is the multiplicative decrease
factor after a loss event. The authors of BIC and CUBIC argue that 0.4 is a good value for C, 160 is a
good value for Smax and 0.2 is a good value for β. [111]

As illustrated in figure 2.13b, the window growth is similar to BIC, but CUBIC is much more "careful"
around cwndmax. The authors of CUBIC argue that using the elapsed time instead of relying on RTT
yields a reasonable convergence speed and that CUBIC is more fair towards other streams than BIC.
CUBIC also behaves better than other RTT-dependent algorithms in networks with a short RTT or low

26

BDP, but in order to be able to compete in these kind of networks, CUBIC — like many other high-speed
TCP variants — has a fall-back mode which it uses if the window growth is too modest. [5] [111]

Until version 2.6.8, NewReno was the default TCP congestion control algorithm in the Linux kernel.
BIC was the default from version 2.6.8 to 2.6.19, and CUBIC has been the default since. As of version 9
and onward, CUBIC is also available in FreeBSD [112, 113].

2.5.5 Retransmission time-out calculation

We mentioned in section 2.4.3 that TCP calculates a RTO for when segments should be retransmitted.
This time-out interval relies on an estimation of the network latency, which TCP does by constantly
measuring the RTT — the elapsed time between sending a byte with a certain sequence number and
receiving an ACK acknowledging that specific byte.

More specifically, RFC 6298 [79] specifies that a TCP sender should keep track of the smoothed RTT
(SRTT) and the variance (RTTVAR). The RTT should be measured at least once for each RTT5, and Karn’s
algorithm must be used when taking RTT measurements. Karn’s algorithm states that RTT measurement
from retransmitted segments must be ignored because it is ambiguous whether the ACK acknowledges
the segment from the previous transmission (the ACK is simply delayed) or if it acknowledges the current
retransmission.

Initially, the RTO should be set to 1 second. After the first RTT measurement, a host should set its SRTT
to this value, while RTTVAR should be set to SRTT

2 . Ignoring the clock granularity, whenever a new RTT
measurement RTT ′ subsequently is made, the host should compute the following

RTTVAR← (1− β)× RTTVAR+ β × |SRTT− RTT ′| (2.2)

SRTT← (1− α)× SRTT+ α× RTT ′ (2.3)

where α = 1
8 and β = 1

4 according to the specification [79]. α says how strong new measurements
should influence the SRTT, and β determines how quick RTOs should be triggered [31].

The RTO should then be calculated as

RTO ← SRTT+ 4× RTTVAR (2.4)

If RTO is less than 1 second, it should be rounded up to 1 second [79], but some OSes (like Linux) have
a lower value for this RTOmin to avoid unnecessary high retransmission delays. However, choosing a
very low RTOmin may trigger retransmission even though the segment is received and an ACK is under
way. If achieving a higher throughput is the goal, this is a waste of resources [4, 5].

Whenever a RTO goes off and a segment is retransmitted, RFC 6298 [79] mandates that the RTO interval
must be doubled for each successive retransmission of a segment until it is acknowledged. This is known

5RFC 1323 [66] suggests that TCP connections that uses large windows should take several RTT measurements per window
to avoid aliasing effects in the estimated RTT.

27

as exponential back-off and is a mechanism to prevent congestion collapse should severe congestion
build up in the network, allowing streams to entirely withdraw from trying to transmit.

2.6 Thin-stream modifications to TCP

Due to TCP delivering data in-order, when a segment is lost and has to be retransmitted, the receiving
application is blocked until the lost segment is successfully delivered and TCP can push that and subse-
quent segments to the application — even if all of the subsequent segments are received properly. This
is often referred to as HOL blocking. Greedy streams are able to compensate for the delay introduced
by waiting for an RTO by triggering retransmission already on three dupACKs, as explained in section
2.5.3. SACK and FACK improves this further, by supplying the sender with more detailed information
about lost segments so that fast retransmit can be triggered faster [6, 31].

Thin streams are not as lucky. They have a high inter-transmission time (ITT) between data segments
(relative to the RTT), which means that they are prone to have very few packets in flight (PIFs). When
the number of PIF is lower than four, something that is very likely for most of the application-limited
streams shown in table 2.1, a serious problem occurs: there simply are not enough transmitted segments
to trigger a fast retransmit + fast recovery cycle if the window is lost. The implication of this is that not
only do thin streams react much later to congestion than greedy streams, but they also suffer horrible
latencies caused by retransmission delays. [4–6, 8, 15]

Other types of application-limited streams are also affected by the three dupACKs limit for triggering
fast retransmit. TCP streams such as bursty and short-lived6 HTTP streams are vulnerable to tail loss —
dropped segments at the end of the stream. This can have a serious impact on the stream’s completion
time [80,81] [8,38,39]. Because the lost segments are among the last segments, the number of subsequent
segments are not enough to trigger three dupACKs and the lost segments can only be recovered after a
time-out.

Analysis of Google web server traffic show that almost 70% of retransmissions for short-lived HTTP
connections are triggered by an RTO and only 24% are recovered by fast recovery, while longer-lived
HTTP connections streaming YouTube video, RTO triggered retransmits account for 46% of the retrans-
missions [7].

2.6.1 TCP smart framing

A TCP stream sending fewer than seven MSS-sized segments, i.e. 10 kBs spread out over 1460-byte-
sized segments, has no chance of triggering a fast retransmit. To make the matter even worse, if the
receiver uses delayed ACKs as explained in section 2.5.2, a stream sending less than ten segments will
never trigger a fast retransmit.

6Short-lived flows usually transmit only a handful of segments, with average lengths no longer than 10 kB [7, 8, 37]

28

A modification attempting to reduce the flow completion time for short-lived streams is TCP smart
framing (TCP-SF) [8] [114]. In order to increase the number of ACKs, the full-sized segments are
divided into smaller sized segments. Not only does this increase the chance of getting three dupACKs,
but it also increases the accuracy of the RTT sampling, which leads to an improved RTO calculation.
This means that the penalty of the high initial RTO value for networks with a short RTT is alleviated.

It is argued that as long as the stream short-lived and transmits little data, the added load of sending more
but smaller segments compared to sending fewer but larger segments is minimal [8]. This means that
Nagle’s algorithm, explained in section 2.5.1, must be disabled when using TCP-SF.

TCP-SF operates with an alternative MSS, which can be expressed as

MSSalt ←
cwndinit
cwndthresh

(2.5)

where cwndinit is the initial cwnd size, and cwndthresh is a threshold value. The threshold value
determines when to use the alternative MSS and when to use the default MSS. In other words, if cwnd <
cwndthresh then MSSalt is used; otherwise the default MSS is used. The authors suggest that because
triggering a fast retransmit requires three dupACKs, cwndthresh should be 4 [8]. This corresponds to
the PIF limitation mentioned above.

For each in-sequence ACK received, the MSS should be increased with a factor α. The authors suggest
using α = 1.32, but it can also be 0 for simple implementations which means that a fixed minimum MSS
is used [8] [114]. As soon as cwnd reaches the threshold, cwndthresh = 4, the default MSS should be
used.

TCP-SF is not implemented in the Linux kernel. The modification is beneficial when large segments,
i.e. MSS-sized segments, are sent as smaller-sized segments. However, as seen in table 2.1, thin streams
often send small packets, which means that there is not a lot of data to divide into smaller segments.

2.6.2 Early retransmit

RFC 5827 [80] addresses the limitations surrounding PIF and the threshold of three dupACKs for trig-
gering a fast retransmit. A mechanism called early retransmit (ER) is proposed, which allows the TCP
sender to require fewer dupACKs before it performs a fast retransmit in some circumstances.

The mechanism is quite conservative, only allowing the number of required dupACKs to be reduced if
the amount of outstanding data is less than four segments and if the sender is otherwise inhibited from
sending new data — either that the advertised rwnd does not permit new data to be sent, or that there is
no new data ready in the sender’s transmit buffer.

However, as explained in 2.5.3, the reasoning behind the choice for requiring three dupACKs before trig-
gering fast retransmit, is to be fairly certain that the dupACKs are caused by a packet loss and not network
re-ordering [31]. This means that ER is prone to creating spurious retransmissions for application-limited
streams in networks where packet re-ordering is prevalent, but is somewhat more reliable when used in

29

conjunction with SACK enabled and delayed ACKs disabled [80]. Even so, the RFC recommends dis-
abling ER in case the stream has detected re-ordering. Studies show that adding a small delay to early
retransmissions is effective in preventing spurious retransmissions due to re-ordering because it gives the
ACKs time to arrive and cancel the pending retransmit [7].

ER was implemented in the Linux kernel in version 3.5 [115] and is enabled by default [101].

2.6.3 Modified fast retransmit

Another improvement dealing with the problem of number of dupACKs contra the number of PIF, is
MFR. Similarly to ER, it aims to reduce the number of dupACK required to trigger a fast retransmit.
Unlike ER however — where both the cwnd and outstanding bytes not yet transmitted determines the
number of dupACKs required to trigger a fast retransmit — MFR enters fast retransmit already on the
first received dupACK (as long as the stream has fewer than four PIF) [4].

This faster fast retransmit is beneficial since the sender avoids going back to slow start and avoids trig-
gering exponential back-off. Although going back to slow start or not has little effect on a thin stream, as
long as the implementation calculates the initial cwnd as a factor of MSSes [5], avoiding having to wait
for an RTO and avoiding increasing the RTO time (exponentially) is hugely beneficial in terms of reduc-
ing application latency introduced by retransmission delays. It is argued that the lowered retransmission
delay justifies the risk of potentially creating unnecessary retransmissions, and since the thin stream does
not expand its cwnd during recovery, it will not contribute to renewed congestion. [4–6].

The MFR algorithm has been part of the Linux kernel since version 2.6.34 [9] [116].

2.6.4 Linear retransmission time-out

Retransmissions are the most crucial factor for networking delay for thin streams. Experiments show that
the most extreme latency events were when a data segment had to be retransmitted several times [4, 5].
The reason for this is the exponential back-off algorithm for calculating the RTO timer: for each time
the segment has to be retransmitted due to an RTO, the RTO grows by a power of two. To make matters
worse, successive RTO events can also be caused by delayed ACKs (see 2.5.2), and not only loss events,
especially if the IAT is high.

Disabling exponential back-off for thin streams and instead increasing the time-out linearly, was pro-
posed as an enhancement in order to compensate for the extreme latencies experienced for consecutive
RTOs [4–6]. It was included in the Linux kernel for version 2.6.34 [9] [117]. In order to avoid being
too aggressive on retransmission, the implementation in the kernel will only use linear back-off for six
consecutive RTO events, before it starts increasing the time-out exponentially.

30

Headers (66 bytes) Unused space (342 bytes)

Payload (100 bytes) CRC (4 bytes)

Figure 2.14: Unused space in an Gigabit Ethernet frame when transporting a 100 byte payload

2.6.5 Tail loss probe

While ER and MFR reduces the number of dupACKs required to trigger a fast retransmit + fast recovery
cycle, studies show that as much as 96% of RTOs for short-lived HTTP streams occurred without a
single dupACK in advance [7] [118]. Tail loss probe (TLP) [118] attempts to solve this by "probing" the
receiver with a segment containing unacknowledged data if the sender has not received any ACKs for
a certain amount of time. If tail loss has occurred, the ACK for the loss probe will trigger a SACK- or
FACK-based fast retransmit. This means that TLP only works with SACK enabled.

TLP was implemented in the Linux kernel in version 3.10 [119], and is enabled by default [101].

2.6.6 Redundant data bundling

The thin stream modifications mentioned so far deal with the problem of having too few PIF to trigger a
fast retransmit. As we can see in table 2.1, segments belonging to a thin stream do not only have a high
IAT, but they are also on average smaller than an MSS. In addition, Gigabit Ethernet uses a minimum
frame size of 512 byte (4096 bit time slots) regardless of what is actually being used [40], as figure
2.14 illustrates. In other words, a lot of space is left unused in every transmitted segment. Redundant
data bundling (RDB) is a modification that attempts to exploit this, by bundling previously sent but not
acknowledged data in every new segment. [4, 5, 15]

Figure 2.15 demonstrates how this work. The application is sending messages of 365 bytes at a constant
interval. The first segment is lost, so on the second write the data (grey) from the first segment is bundled
in the new segment (olive). However, the second segment also gets lost, so the third time the application
does a write data from both the first (grey) and the second segment (olive) is bundled with the new data
(purple). The third segment arrives, carrying the continuous data, so the cumulative ACK covers all three
segments. The sender then transmits a fourth segment with new data only (brown). This time, the ACK
is lost. The fifth time the application does a write, the data from the fourth segment (brown) is bundled
with the new data (green).

31

Time Sender Receiver

seq=0
payload=365 B

seq=0
payload=730 B

Segment

Application does
a 365 B write

Large RTT

seq=0
payload=1095 B

Application does
a 365 B write

Application does
a 365 B write

ack=1095
Application does

a 365 B write

seq=1095
payload=365 BApplication does

a 365 B write

seq=1095
payload=730 B

ack=1460

Application does
a 365 B write

seq=1825
payload=365 B

ack=1825

.

.

.

.

.

.

Figure 2.15: Redundant data bundling

2.7 TCP fairness

In addition to preventing congestion collapse, the underlaying principle of the TCP congestion avoidance
algorithm explained in section 2.5.3 is fairness between TCP streams. The idea is that adapting the
transmission rate according to the state of the network, i.e. how saturated it is, ultimately allows the
capacity of the network to be distributed fairly among multiple TCP streams.

However, simply dividing the bandwidth evenly between streams is not very efficient. Consider the
example network scenario shown in figure 2.16. There are three routers with two shared links between

1

3 4 5 62

A B

Figure 2.16: Example network with six senders and two shared links

32

them, A and B. A and B have a total capacity,C, each. Host 1 and 2 are connected to the first router, while
host 3–6 are connected to the second router. All hosts have a fixed throughput, xi, for their respective
connections. Note that host 2 only uses the shared link A, while hosts 3–6 only use the shared link B.
Host 1 is the only host with a connection that uses both shared links.

With an equal bandwidth share as our fairness criterion, we would end up with a throughput x = 1/6×C
for all streams. This would be a fair division of the total capacity, but it would also be a poor link
utilization of the shared link A. Only 2

6 of its total capacity would be in use.

2.7.1 Max-min fairness

The idea of max-min is that bandwidth share (throughput) of the smallest streams should be as large as
possible. Given this condition, the bandwidth share of the second smallest streams should be as large as
possible, and so on. Each stream’s bandwidth share only stops growing when one or more links on the
path reaches its maximum capacity [13] [49] [120].

Max-min fairness can be said to be achieved when an attempt to increase the share by any stream results
in the decrease of the share for some other stream with an equal or smaller share. More formally, let ~x
be the distribution of received shares for n streams, x1, x2, . . . , xn. If the distribution is max-min fair,
then for any alternative distribution of shares, ~x′, if x′i > xi, there must exist some j so that xj ≤ xi and
x′j < xj .

Lets apply a progressive filling algorithm on our example scenario depicted in figure 2.16. All streams
start with a bandwidth share of 0, and their sending rate grow at the same pace. At some point, the streams
1 and 3–6 will hit the limit of link B. At this point all streams have a bandwidth share x = 1/6 × C.
Any attempt by stream 1 or 3–6 to increase their send rate, will result in a decrease for some of the other
streams, so they stop increasing. Stream 2, however, is still able to increase its share without affecting
the other streams. It will continue to increase its bandwidth share until the link capacity of link A is
reached, because at that point any attempt to increase the rate will result in a decrease of the share of the
other streams. This means that when the max-min fairness is achieved, the bandwidth share for stream 1
and 2 will be x1 = 1

6C and x2 = 5
6C respectively, and both shared links are fully utilized.

Max-min fairness through progressive filling is the key element of the TCP congestion avoidance algo-
rithm presented in section 2.5.3 [10, 12, 13, 15] [120]. If n TCP streams share the same link, they should
all get an equal share, 1/n× C, where C is the total capacity of that link. Assuming that loss is a result
of link saturation, something most TCP congestion window algorithms do, this means that a TCP stream
that experiences packet loss does so because it has exceeded its fair share of the bandwidth. The idea is
that by backing off on loss events, the streams will eventually converge against an equilibrium. [10,13,15]

This is what is known as the TCP fairness principle. However, TCP is not true to the progressive
filling algorithm; when several TCP streams with different RTTs share a link, they do not increase their
cwnd at the same pace. In other words, the streams with longer RTTs will be discriminated against

33

because the streams with a short RTT will be able to increase their cwnd faster during slow start and loss
recovery [5, 12, 15].

How well a transport protocol manages to be fair when competing against TCP streams over a shared
resource is what is referred to as TCP friendliness [15, 31] [111]. This term is most often used when
describing how non-elastic streams affect TCP streams.

2.7.2 Jain’s fairness index

Jain’s fairness index [11] is often used to evaluate fairness. It states that if n streams share a resource
(i.e. the same limited link), and x1, x2, . . . , xn are the received shares of that resource for those streams
(i.e. the throughput of those streams), then the fairness index, J , is expressed as

J(x1, x2, ..., xn) =
(
∑n

i=1 xi)
2

n
∑n

i=1 xi
2

(2.6)

where xi is the received share of the resource for the i-th stream.

Jain’s fairness index ranges from 0 to 1, and is 1 when all streams receive the same share. It is k/n when
k streams equally share the resource, and the remaining n − k streams receive a zero-sized share of the
resource.

When dealing with streams that have different bandwidth requirements, we have to use the throughput
relative to the optimised throughput. Picture a scenario where we have two streams sharing a 1 Mbps
link; a thin-stream sender transmitting 120 bytes every 100 ms and a greedy-stream sender trying to
consume the rest of the bandwidth not used by the thin-stream sender. Even when the thin-stream sender
receives the optimal amount of bandwidth, 120×8

0.100 = 9600 bps, or 9.6 kbps, using simply the throughput
alone will lead to an index considered only 51% fair:

J(9.6, 990.4) =
(9.6 + 990.4)2

2(9.62 + 990.42)
≈ 0.51

Because of this we adapt the index to use the throughput, xi relative to the optimal throughput, oi,
instead:

J(
9.6

9.6
,
990.4

990.4
) =

(1 + 1)2

2(12 + 12)
=

22

2(2)
= 1

We should always carefully consider the proper criteria for the optimal situation when using Jain’s fair-
ness index.

2.8 Summary

The congestion avoidance algorithm in TCP uses packet loss as an indication of the network capacity.
By maintaining a window called cwnd, which is increased by actively probing for more bandwidth and

34

decreased when loss is experienced, TCP adapts its transmission rate according to the available capacity.
This algorithm, however, assumes that TCP streams tries to consume as much bandwidth as possible.

Thin streams are a type of streams with a different traffic pattern: small packets sent at a low rate. These
are often created by applications that have latency requirements rather than bandwidth requirements.
Whereas greedy TCP streams are limited by cwnd, thin streams do not probe the network for available
capacity and are limited by retransmission mechanisms instead. Modifications to these mechanisms,
such as MFR and LT, aims to reduce the latency the unmodified mechanisms introduce by retransmitting
more aggressively.

The effects of the TCP congestion control have been studied for decades, while the impact of thin streams
is relatively unexplored. In the next chapter, we discuss how we design an experiment to test and evaluate
the thin stream modifications available in the Linux kernel in order to assess a reasonable trade-off
between reduced latency for thin streams and how an increased aggressiveness affects the system.

35

Chapter 3

Experiment design and tools

Thin streams are without any doubts suffering from mechanisms designed for limiting streams that ac-
tively try to use as much of the available bandwidth as possible. The modifications presented in section
2.6 manage to reduce the penalty these streams experience by somewhat reducing the latency cost for
retransmissions. It has been suggested that these modifications are justifiable, because thin streams do
not increase their cwnd during recovery and thus will not contribute to renewed congestion [4]. How-
ever, even with modern techniques for traffic shaping and rate limiting, many networks are still at the
mercy of elastic streams, such as TCP, and are completely dependent on their mechanisms for avoiding
congestion in order to prevent congestion collapse. Making TCP more aggressive is therefore something
that should be done with great care.

With the exception of some preliminary tests, testing and analysing the general TCP friendliness of
these modifications is something that until now has remained relatively unexplored. Despite this, two
thin-stream enhancements in particular, MFR and LT, are already included in the mainline Linux kernel
branch as of version 2.6.34 although not turned on by default [116, 117]. In this chapter we discuss
the design and implementation of a fairness experiment in an attempt to assess the fairness of these
modifications towards other streams.

3.1 Metrics

To be able to conduct our experiment, we must first define what we consider to be fair and how we can
measure this fairness. Traditionally, fairness has been defined as streams having an equal share of the
bandwidth of a shared link [10,11]. More recent work, however, use a variety of criteria when judging the
fairness of a stream’s behaviour and how it affects other streams [12] [49]. Using bandwidth allocation
as a measurement of fairness has been heavily criticised [12], but is nevertheless still widely used today.

Our motivation for running a fairness experiment is to examine how the thin-stream modifications to the
congestion avoidance algorithm affect other TCP streams. Based on the observation that time-dependent

36

applications often generate thin streams (see section 2.1), as well as the recommendations in RFC 5166
[49], we have selected three metrics in particular to test our hypotheses stated in section 1.4.

The first metric is bandwidth share allocation. According to the TCP fairness principle, all TCP streams
should receive a fair share of the total available link capacity. Although this is not true when streams
with different properties compete, as explained in section 2.7 and 2.7.2, we can still use the throughput to
compare the share the streams get with what they should have received had the conditions been optimal.

The second metric is latency. The purpose of the thin-stream modifications is first and foremost to
improve the application-experienced latency. Therefore, we must make sure that improving the latency
of thin streams using these modifications does not increase the latency experienced by the thin streams
using unmodified retransmission mechanisms. In addition, (increasing) latency, and queuing delay in
particular, is an indication of congestion building up in the network, so we will also consider delay
variation in our analysis of latency.

The third metric is loss. Loss is used by most TCP implementations as indication of congestion (see
2.5 and 2.7). Moreover, the goal of the thin-stream modifications is to recover from loss faster, since
the retransmission delay has been shown to be a major factor contributing to the overall latency [4, 5].
It is therefore imperative that having more aggressive retransmission mechanisms does not cause other
streams to experience increased loss.

3.2 Design considerations

In order to conclusively determine whether our hypotheses hold up or not, we need to design our ex-
periment to model the real world as much as possible. At the same time, in order for our analysis to
be correct, there is an inherent desire for the test environment to be as deterministic as possible. In this
section we will discuss some considerations regarding how to best design the experiment as well as men-
tioning some concerns regarding the limitations of the previous evaluations of the effectiveness of the
thin-stream retransmission mechanisms.

3.2.1 Previous evaluations

The previous evaluations of the thin-stream modifications MFR and LT have mainly been focused on
showing their effectiveness in reducing the application-experienced latency. In order to do so, the authors
of these studies induced a certain amount of loss to trigger dupACKs and RTO events for MFR and LT
respectively [4, 5]. We will now briefly revisit the test scenarios and set-up used in these evaluations.

Figure 3.1a shows one of the network emulation scenarios used in those evaluations: a sender host
establishes connections and transmits data to a receiver host through a network emulator (netem) [121].
The network emulator added delay to simulate an RTT, jitter and dropped packets randomly from a
uniform distribution to ensure that enough loss events occurred, as well as occurrences of 2nd through

37

Sender Receiver

Network
emulator

Adding delay and packet loss
(~1% and ~5% loss rate)

(a) Network emulator creates loss and delay

Sender Receiver
Network
emulator

Bandwidth limitation
and delay

Cross-traffic
sender

Cross-traffic
receiver

(b) Loss is caused by congestion

Figure 3.1: Network configurations used in previous evaluations

n-th retransmissions in order to test the efficiency of LT. However, a test where a thin stream sender with
an IAT of 100 milliseconds and the emulator has a drop rate of 1%, a test would have to run for ten hours
in order to generate 3600 loss events.

A second emulation scenario used, was to test the modifications in a more realistic loss scenario. As
depicted in figure 3.1b, traffic was still sent from a sender to a receiver. However, unlike the first scenario,
the network emulator did not drop packets. Instead it was configured to limit the bandwidth on the
outgoing link. Two extra machines was used in order to generate cross traffic, mimicking traffic similar
to HTTP. The IATs of the thin-streams was chosen from a Pareto distribution with a chosen mean value,
and the length of the HTTP-like streams was varied. The length of the queue in front of the bottleneck
was set experimentally — a sensible trade-off between queueing delays and loss was chosen.

For generating foreground traffic, the authors used two different methods. One of the methods was de-
veloping a tool called streamzero (see 3.3.5) that simulates a thin-stream application by periodically
trying to transmit small amounts of data. This generates small TCP segments that is sent out on the wire
periodically, similar to the traffic patterns discussed in section 2.1. The other method used in the previous
evaluations, was capturing real-life thin-stream traffic from various interactive applications [4], as shown
in table 2.1, and creating a self-made program to replay this traffic [6].

A third test scenario the authors of the previous studies used, was sending thin streams through the
Internet. Different Internet Service Providers (ISPs) were used for the experiment in order to test different

38

network characteristics and path conditions. In addition to evaluating the effects of the thin-stream
modifications in a real world scenario, it also allowed for a user evaluation of perceived latency by using
the modifications on traffic generated by real interactive applications [4, 15].

Another related study attempted to create a model of different thin streams in order to classify them [13].
This study did not test the thin-stream modifications, but rather evaluated how thin streams in general
behave. A network simulator called ns-3 [122] was used as the test environment for these tests, and the
Linux kernel implementation of TCP was used in the simulations. However, the author of this study
observed unexpected effects and was unable to conclude whether these were real network effects or a
result of the simulation itself. Synchronisation caused by simulator ticks was pointed out as candidate
explanation.

3.2.2 Simulation versus emulation

A method often used in networking research, is using a network simulator. These simulators are models
of reality, i.e. real computer networks, and can therefore be used to evaluate and investigate various
properties and mechanisms used by protocols and network components. A commonly used network
simulator, is ns-2 [123] [14]. The thin-stream modifications we want to evaluate has not to our knowl-
edge been implemented in ns-2. In addition, the ns-2 TCP implementation differs from the Linux TCP
implementation on other areas as well [41, 42].

Even though the modifications we want to test are not implemented in any network simulator known to
us, it is still possible to work around this. One of the improvements of ns-3 over ns-2, is the Direct Code
Execution (DCE) framework [13,14] [124]. DCE allows user-space and kernel space code to be executed
as part of the simulator, meaning that the Linux networking stack can be used in simulations. This level
of abstraction is quite resource intensive and can, according to one of the previous studies discussed in
the section 3.2.1, lead to uncertainties surrounding the implementation of the simulator. Since we aim
to determine the right level of aggressiveness that can be justified for a thin stream, it is critical that we
understand our testbed and eliminate such uncertainties. A study suggest that different simulators can
give wildly different results for the same test scenarios [14].

A second possibility is to send traffic between two hosts over the Internet. By varying the ISPs the sender
and receiver are connected to, the effects can be measured with different network conditions depending
on the path and competing traffic. However, the downside of these tests is that the observer has no
influence over the network properties. While this approach is useful for testing the effects of the thin-
stream modifications in a realistic setting, as seen in the previous evaluations, the lack of determinism
and control makes it challenging for a fairness experiment.

The third way, is conducting evaluations by emulation. Emulation differs from simulation in that a
simulation attempts to model reality while an emulation uses real components mixed with emulated
aspects. In other words, we can replace a real-world component, such as a large network, with an
emulator. This allows us to test the actual implementation of the thin-stream modifications in a setting

39

close to reality, while still retaining a controlled environment in which we influence all conditions and
parameters.

We have chosen emulation as our approach for our evaluations. The main reason for this is that we want
to avoid any uncertainties surrounding network simulators, as experienced in the previous thin stream
study mentioned in the previous section [13]. In addition, we argue that since the behaviour of thin
stream traffic is still something that is not well-investigated, using real-life network components allow us
to identify any sources of error that stem from how hardware or the OS treat thin stream network traffic.

3.2.3 Realistic packet loss

Using a drop scheme that randomly drops packets from a uniform distribution is suitable for ensuring
that a statistical significant number of loss events occur. However, it does not necessarily reflect real-
world circumstances that well. As explained in section 2.5, TCP congestion control assumes that loss is
a result of network congestion. Congestion occurs when the contention for a shared resource exceeds the
capacity of that resource. The implications of this is that a realistic method of generating loss events is
to introduce competition over a shared resource.

In a packet-switched, statistically multiplexed network, like IP networks are, routers use queues to buffer
packets. Since a router’s memory is finite, these queues are also finite. When a router gets saturated,
it will stop buffering packets and drop them instead. This is normally what happens when a router’s
outgoing network link is congested; packets are received at the router at a higher rate than the router
manages to forward them. The router’s queue begins to grow, and if the high send rate continues, the
queue will ultimately become full.

How routers decide what to enqueue and what to drop is an entire field of study in itself, but despite years
of research and a lot of efforts put into improving these drop schemes and active queue management
(AQM) techniques, the most common scheme actually deployed today is a tail-dropping first in — first
out (FIFO) policy [2, 43, 44]. This means that when the router’s forwarding queue is full, it will simply
drop incoming packets until the queue starts to clear. Intuitively, we see that when loss is caused by a
saturated router, the probability of packet loss is determined by the drop scheme used by that router and
is not necessarily uniform.

3.2.4 Generating thin streams

We saw in section 3.2.1, that in order to evaluate the effectiveness of the thin-stream retransmission
modifications, one of the methods the authors used was to capture real network traffic from some thin-
stream applications and create a tool called tracepump to replay the data packets of that traffic [4–6,
15]. While this is a suitable approach for generating traffic with realistic packet sizes and ITTs1, it does
however have some potential pitfalls one needs to be aware of.

1Please note the difference between IAT and ITT; the former is suitable when evaluating packet traces, while the latter is
used when describing sending data at predetermined intervals.

40

Our main concern with tracepump is that it attempts to emulate a thin-stream application with limited
data. By using only the packet traces means that the only data available is what is actually sent on
the wire. Information such as which socket options were used, internal buffer sizes, congestion control
mechanisms and the system’s load is lost. In addition, some networking factors such as the RTT and how
congested the network is, can also be difficult to determine. Any relationship or correlation between ITT
and RTT or packet size and RTT, as well as the effects of network congestion or link stability, is hard to
determine outside a controlled environment with a single trace.

The second method used by the authors of the thin-stream modifications in their evaluations, was to
analyse the captured traffic (as seen in table 2.1) and use another program, streamzero, to simulate
such traffic using realistic packet sizes and ITTs, as well as packet size variance, gathered from their
analysis [4,15]. The strength of this approach, unlike the other approach mentioned above, is that the data
gathering can be repeated and done under different circumstances, e.g. multiple servers and clients from
different locations, thus eliminating uncertainties and doubts surrounding the significance of the data
when the data is gathered from an uncontrolled environment. The weakness of this approach however, is
that in order to create a correct model of the network traffic generated by a thin-stream application, we
must have an understanding of how the thin-stream application is supposed to work. In addition, making
the methods for analysis precise is difficult because of the huge amount of factors that might influence
the data.

3.2.5 Choosing the network parameters

We still want a deterministic test environment in order to determine the fairness of the modifications and
avoid having our tests influenced by factors outside our control, yet we also wanted realistic network
conditions and parameters. Modelling reality for an experiment, however, demands a consideration of
various network conditions such as packet loss, packet re-ordering and jitter. By conducting a simple
test, we attempted to establish how common these are in the Internet.

Our initial idea was to establish HTTP connections to a number of web-sites and gather statistics from
these flows using a packet analyser. However, modern day web-sites use multiple web servers and put
these behind content delivery networks (CDNs), firewalls and application-layer gateways (ALGs), load-
balancers and reverse proxies [7], which can lead to packet re-ordering and varying RTTs that occurs at
the end-point [39, 45]. This is not what we wanted to measure — we were interested in the properties of
the networks along the path.

Instead, we decided to do a much simpler test using the ping utility program. This utility sends an
Internet Control Message Protocol (ICMP) [82] echo request with a sequence number to a host and
measures the number of milliseconds until it gets an echo reply with the same sequence number in
return. This means that we only measured network latency.

Table 3.1 shows a subset of the results of measuring the RTT to the top 100 most popular web-sites from

41

Round-trip delay time (ms)
min avg med max

Google.com 81.175.29.177 0.8 0.9 0.9 2.7
Facebook.com 173.252.110.27 125.0 125.4 125.0 128.0
Youtube.com 81.175.29.148 0.8 0.9 0.9 1.4
Baidu.com 220.181.111.86 224.0 224.0 224.0 225.0
Wikipedia.org 208.80.154.224 113.0 113.0 113.0 118.0
Qq.com 125.39.240.113 361.0 368.7 368.0 374.0
Taobao.com 42.120.194.11 227.0 227.0 227.0 227.0
Twitter.com 199.16.156.230 118.0 118.0 118.0 119.0
Linkedin.com 216.52.242.86 185.0 185.5 185.0 187.0
Google.co.in 81.175.29.154 0.8 0.9 0.9 1.0

Table 3.1: RTT from Simula to the ten most popular web-sites in June 2014

the Alexa web-site ranking2. The measurements was taken from Simula Research Laboratory using their
Internet uplink. 1000 echo requests was sent in total to each host in bursts of 20 at the time using a 10
millisecond interval. Sending ping packets in bursts was done in order to detect potential re-ordering.
Host Domain Name System (DNS) look-up was disabled to ensure that we only sampled the network
RTT to the web-sites themselves.

As seen in the results in appendix C, while the RTT is very different for each host, the variance of the
RTT per host is quite small except for a few hosts. The Google sites have sub-millisecond response time
on average, but when inspecting the IP addresses, we see that this is because ping is in fact getting an
echo reply from local web caches and not from the Google web servers. In addition, some hosts did not
respond to the echo request at all, most likely due to firewall settings. Packet loss and re-ordering is not
included in the table since for all of the 100 hosts, either all 1000 ping packets arrived in-order or none
did.

If we filter out the hosts that either did not reply or are biased because they are web caches, we see that
for a total of 60 hosts, loss and re-ordering did not occur and RTT variance was relatively small. We
have, however, sampled too little data to say anything conclusive. The time of day often determines
the amount of traffic to a web server, running tests for a couple of minutes at an arbitrarily chosen time
is not very realistic. In addition to this, the Open Shortest Path First (OSPF) advertisement interval is
30 minutes meaning that the tests would not necessarily have run long enough to be affected by route
changes [83]. Even though our tests are too limited to say anything conclusively, they still provide us
with an indication of how common these error conditions are.

3.3 Test environment

We decided that the best approach in order to conduct our fairness experiment was to create a networking
environment using real hardware and recent versions of Linux. We argue that using actual hardware

2http://www.alexa.com/topsites

42

http://www.alexa.com/topsites

Sender

Receiver

Network
emulator

Router

XSender

Bridge

Limited bandwidth

Adding delay in both directions

10.0.0.10

10.0.0.11

10.0.1.10

10.0.0.1

10.0.1.1

Figure 3.2: Testbed network topology

rather than virtualised hardware makes the environment easier to predict and understand, because it
eliminates any potential pitfalls surrounding side-effects introduced by the virtualisation software. An
additional argument was that the hardware that was available to us simply did not have enough computing
power to virtualise multiple instances of Linux. Also, using real hardware allows for evaluation of
problems caused by hardware offloading on the network interface controllers (NICs).

3.3.1 Network topology

Figure 3.2 depicts the topology of the network testbed we use for our experiment. The hardware and
system specifications for the hosts are listed in appendix B. Traffic is sent from two senders to a single
receiver. The host labelled Sender generates thin-stream traffic, while the host labelled XSender gener-
ates cross-traffic. We decided to use two hosts rather than one because of limitations with the number of
threads and processor count. This is described in section 3.3.5.

Similar to a home network or a data centre, the end-hosts used the router as their preconfigured gateway
rather than using Address Resolution Protocol (ARP) to resolve the end-host addresses. The senders and
the receiver were put on two separate /24-subnets — opposed to having all hosts on the same Local Area
Network (LAN) — although this had no practical implications for the tests.

In order to evaluate the fairness of the thin-stream modifications, we need some sort of competition over
a shared limited resource, i.e. a link with reduced capacity. This was achieved by making the router
a bottleneck by reducing the bandwidth of the outgoing link. We also used a network emulator to add
realistic networking delays. The router configuration and network emulator are explained in section 3.3.3
and 3.3.4 respectively.

3.3.2 Traffic control

As mentioned in section 3.2.3, routers use queues to temporarily buffer packets. In Linux, each network
interface has an outbound queuing discipline (qdisc) associated to it, which is an object consisting of a

43

1:

1:10 1:20 1:30

10:100 30:100 30:200

child class child class

leaf class
(with implicit qdisc)

leaf class
(with implicit qdisc)

child class
leaf class

(with implicit qdisc)

root qdisc

100:0leaf qdisc

Figure 3.3: Classes and qdiscs. Note the major:minor numbering system.

buffer (queue) and a scheduler. These qdiscs can be configured and managed through the traffic control
(tc) tool, which is offered as part of the iproute2 utility collection [46] [125, 126]. Qdiscs can be
either classless or classful. A classful qdisc can contain classes, and every class has a handle to which
you can attach either multiple children classes or a single child qdisc. Classes only exist inside qdiscs,
and a class without a child class or qdisc is a leaf class. Classless qdiscs do not have classes.

Classes are very flexible, and makes it possible to create advanced traffic control scenarios. Figure 3.3
shows how you can make a complex traffic control tree. Leaf classes have an implicit FIFO qdisc. Note
that each qdisc and class are given a unique identifier on the form major:minor. The major number can
follow any arbitrary numbering scheme, but all objects sharing the same parent must use the same major
number. If the minor number is 0, this tells the system that the object is a qdisc — any other number
identifies the object as a class.

Only leaf qdiscs actually buffer the packets, and the system uses the root qdisc as its interface. The two
key interfaces are enqueueing packets in the buffer, and dequeueing packets in order to release it from
the buffer and push it to the network device. Figure 3.4 demonstrates this. Packets are coming in over the
wire, and the system calls enqueue() on the root qdisc. The root qdisc delegates this to its children
qdiscs. Dequeuing packets are done in the same way: the system calls dequeue() on the root qdisc,
and the root is responsible for calling dequeue() on one of its children qdiscs.

Classes can have filters associated to them as well, making it possible to create powerful packet clas-
sification schemes which can be used for shaping, policing and marking. Qdiscs, classes and filters

44

root qdisc

leaf qdisc

Network device's qdisc

read packet

was enqueued?

drop packet

YES

NO

Packets coming in over the wire

Calls enqueue() on child qdisc

Return value

Packet stored in buffer
if there is enough free space

enqueue

Figure 3.4: Packet enqueueing in a hierarchical qdisc configuration

makes it possible to implement advanced QoS regimes using tc. tc comes with a set of various
qdiscs such as stochastic fair queueing (sfq), controlled delay (codel) and random early detection
(red). [30, 31, 43, 46, 47] [125, 126]

3.3.3 Router configuration

The router is an integral part of our testbed, depicted in figure 3.2. It acts as the bottleneck point, respon-
sible for creating competition between the traffic streams. The capacity of the outgoing link, shown as
the link between the router and the network emulator, is reduced using a rate control implementation on
the router. We also configure a queue used for buffering packets when the router starts getting saturated,
as discussed in 3.2.3. In this section, we will explain how both are accomplished using tc and qdiscs.

Rate control

Limiting the capacity of a network link can be done by capping the bandwidth, either in hardware or in
software. The ideal is of course doing this in hardware, since it reduces the number of pitfalls we could
potentially fall in to [86]. On Linux, configuring the NIC is done through the ethtool utility program.
However, very few Ethernet NICs support speeds other than the three most common Ethernet variants:
10BASE-T, 100BASE-TX and 1000BASE-T which are 10 Mbps, 100 Mbps and 1 Gbps respectively
[30]. In order to run tests using a bandwidth cap lower than 10 Mbps, we decided to use a software based
rate control instead which allowed us to limit the bandwidth at an arbitrary rate.

45

Sufficient number
of tokens available?

Tokens are generated
at a configured rate

Incoming packets are
buffered in a FIFO queue

The bucket size
limits the number
of tokens available
at once

Consume tokens
and transmit packet

Wait until sufficient amount
of tokens are available

YES NO

Figure 3.5: Token bucket algorithm for rate control

One way of doing rate control in software, is to use a token bucket algorithm. Figure 3.5 shows how this
works. Tokens are generated at a steady rate, R, and put into a bucket. For simplicity, assume that one
token represents one byte. Whenever a packet of size S is dequeued and pushed down to the network, S
tokens are also consumed. If there are less than S tokens in the bucket, the packet has to wait until there
are a sufficient amount of tokens available. The bucket is never filled beyond its maximum size, which
means that the depth of the bucket, B, determines how bursty network traffic is. E.g., if B is 4 ×MTU
then a maximum of four MTU-sized packets can be sent in a burst.

tc has two token bucket implementations, namely hierarchical token bucket (htb) [127] and token
bucket filter (tbf) [128]. A rate control not based on a token bucket algorithm has also been imple-
mented in netem [46]. However, since both tbf and netem seems to change from classful to classless
and back again from kernel version to kernel version [129,130], as well as the netem rate control being
quite new [46], we used htb for our bandwidth limitation.

We evaluated htb against both tbf and a hardware rate control in order to verify that the rate control
worked as intended, testing how they performed at 10 Mbps. Figure 3.6 shows the result of a test of the
rate control implementations. We limited the rate of the outgoing link to 10 Mbps using htb, tbf and
the NIC respectively. The queue in front of the rate control was set to 1514 bytes (slightly more than an

HTB TBF NIC9

10

11

M
eg

ab
its

 p
er

 s
ec

on
d

(M
bp

s)

(a) Kernel clock HZ=250

HTB TBF NIC9

10

11

M
eg

ab
its

 p
er

 s
ec

on
d

(M
bp

s)

(b) Kernel clock HZ=1000

Figure 3.6: Rate limitation accuracy at different clock granularities

46

Network interface Network interface

Packet buffer

Rate control

Routing

Packets leaving at a slower ratePackets entering at high and bursty rate

Leaf qdisc

Root qdisc

OSI Layer 2

OSI Layer 3

Ingress Egress

Figure 3.7: Packet flow through a Linux router with rate control

Ethernet MTU) in all three cases. We used a command line utility called iperf to create an UDP stream
that attempted to transmit 20 Mbps from the sender to the receiver through the router for 1 minute. The
green line shows exactly where the 10 Mbps mark is.

As seen in 3.6a, the two token bucket implementations are not accurate, while all samples for the the
NIC rate control test are below the line. Investigations pointed at the kernel clock tick rate being the
problem as many Linux distributions uses 250 hertz for the system timer [46] [86]. After recompiling
the kernel on the router and setting the frequency to 1000 hertz, which is the finest granularity the clock
can have on the x86 architecture [46] [131], we saw that the bandwidth rate became more accurate (see
figure 3.6b).

Packet buffering

The simplest form of buffering is a simple FIFO queue, where packets are taken out of the buffer in the
same order they are put in. Figure 3.7 depicts a packet’s flow through a Linux router, and outlines the
order of rate control and buffering. Since htb is a classful qdisc, we can add FIFO queue as a leaf qdisc
of htb. Linux offers three FIFO qdiscs: packet-based FIFO (pfifo), byte-based FIFO (bfifo) and
a variant called pfifo_fast. pfifo is a queue with a fixed number of slots, each slot can hold one
packet. bfifo, on the other hand, has a fixed number of bytes it can hold, and the actual number of
packets that can be held in the queue depends on the packet sizes.

The last variant, pfifo_fast, is the default qdisc which is used by leaf classes and interfaces without
a configured qdisc [46] [125]. It is similar to pfifo, but it also provides some prioritisation. Internally it
uses three FIFO queues, which are called bands, and uses the DiffServ Code Point (DSCP) field in the IP
header to determine which band to place the incoming packet in. However, pfifo_fast does not offer
any configuration possibilities to the user. Because of this, we have chosen to not include pfifo_fast

47

1: tc qdisc add dev eth2 root handle 1: htb default 10

1:10 tc class add dev eth2 parent 1: htb classid 1:10 rate 1000kbit burst 1514

8001: tc qdisc add dev eth2 parent 1:10 pfifo limit 4

root qdisc

child class

leaf qdisc

Class type is of same type
Default class is 10

Packet-based FIFO queue with 4 slots

1 tc qdisc add dev eth2 root handle 1: htb default 10

2 tc class add dev eth2 parent 1: classid 1:10 htb rate 1000kbit burst 1514

3 tc qdisc add dev eth2 parent 1:10 pfifo limit 4

Listing 3.1: tc command example

in our evaluations because we are unable to configure how it prioritises traffic and the queue length it
uses.

We focus mainly on pfifo in our experiment, since studies show that FIFO queues is still the most
employed form of buffering [2,43,44]. From a fairness perspective, pfifo is the most relevant since all
packets are treated equally. In some tests, we used other qdiscs such as bfifo, red, codel and sfq.
These tests are presented in chapter 5.

Listing 3.1 demonstrates how we can limit the rate of a link to 1 Mbps and use a pfifo queue with four
packet slots for buffering using tc. The first command specifies that the interface’s root qdisc should be
a htb, and that it should use class 10 as the default class for packets. The second command adds a htb
class as a child of the root qdisc, specifying the rate tokens are generated (rate) and the bucket size
(burst). We specify a burst of just slightly more than an Ethernet MTU. The third and final argument
adds a pfifo queue with room for four packets. Note that the handle of the leaf qdisc is chosen by the
system because we did not specify a handle ourselves.

Although criticised [43, 44] [84], packet buffers are usually configured to reflect the BDP. The theory
is that the queue length should allow a TCP stream to fill the pipe [43, 48]. For our tests, we therefore
used the BDP to calculate the queue lengths — using both the BDP calculated from one-way delay time
(OWD) as well as the RTT — unless otherwise is specified.

48

3.3.4 Network emulator

As discussed in section 3.2.5, a network emulator was needed in order to emulate realistic network
conditions. To accomplish this, we used the Linux network emulator (netem). netem is implemented
as a classful qdisc, which allows it to be used in advanced networking scenarios. It has support for
delaying traffic, re-ordering packets and dropping packets based on a random distribution. [46] [121]

In order to evaluate the effects of the thin stream modifications, we configured our testbed to have a fixed
network RTT for all streams originating at the sender, with a symmetrical delay each direction. Ideally,
all TCP traffic should have different network RTTs in order to avoid cwnd growing and decreasing
synchronous. However, we argue that an equal RTT is necessary for a fairness test when we consider
the fairness definition used by TCP implementations, such as NewReno (see section 2.7.1. Because of
this, traffic from the sender have the same RTT, while traffic from the cross-traffic sender have different
RTTs. We accomplish this by using the priority scheduler (prio) qdisc in combination with netem,
using the filter utility to assign traffic to a band (class) based on IP address and port and having
different netems attached to the leaf classes.

Albeit inconclusive, our findings in section 3.2.5 suggests that re-ordering, jitter and loss not caused
by congestion are not that common in the modern Internet, and that these effects usually occur at the
end-points [45].

3.3.5 Traffic generation

We use a program called streamzero in order to create both thin streams and greedy streams. The
program mimics a thin-stream sender by trying to send small amounts of data and sleeping for an interval
before it repeats the process. In other words, streamzero transmits packets of a given size at given
intervals. It can also generate greedy streams depending on the bottleneck capacity, by writing larger
chunks of data to the socket descriptor and sleeping for shorter intervals. As seen in table 2.1, packet
sizes and IAT varies slightly. In order to simulate this, it is also possible to specify that streamzero
should vary its ITT and packet sizes choosing a random value from a normal distribution, where the
user specifies the mean and standard deviation. Using streamzero means that we were able to create
deterministic traffic patterns.

As streamzero uses several threads to create multiple streams, we use two sender hosts in order
to avoid complications due to hardware limitations; both senders are dual core machines supporting
hyperthreading, which means that they are able to run only four threads simultaneously. The specification
for each host is listed in appendix B.

In order to make sure all connections are established before transmitting data and saturating the network,
each streamzero thread waits on a barrier synchronisation primitive after successfully calling the
connect() socket function. When the threads are woken up, they can be sure that all connections
have been established successfully. In addition to this, we also use a ramp-up interval between each
stream starting up in order to avoid a large number of streams attempting to transmit simultaneously.

49

Sender

Receiver

Network
emulator

Router

XSender

Bridge

Packet sniffer Packet sniffer

10.0.0.10

10.0.0.11

10.0.1.10

10.0.0.1

10.0.1.1

Figure 3.8: Traffic capturing in our testbed

This ramp-up interval can either be a fixed interval, e.g. 100 milliseconds between each stream start-up,
or can be selected from a normal distribution with a fixed mean value and a specified standard deviation.
This allows for some randomness in order to avoid inter-stream synchronisation.

Since the thin stream modifications work with both TCP CUBIC and TCP NewReno, we run tests using
both. These two are the most common TCP variants, and are available by default in a vanilla Linux
kernel.

3.4 Analysis tools

An important part of our evaluation is how we measure and analyse data. In this section, we review the
tools and analysis software we use for our analysis of the experiment data and how they related to the
fairness metrics we discussed in section 3.1.

3.4.1 tcpdump

Our main data source was the use of packet sniffers on the sender-side and receiver-side of the testbed.
We used a packet sniffer utility program called tcpdump [132]. This program captures network traffic
sent and received on an interface. The captured packets can then be stored to file, using the pcap format.
These packet trace files can be read by a program, by using the libpcap library.

Packets stored in pcap-format include a timestamp of when it was captured. However, keeping system
clocks synchronised for longer periods of time is a difficult task due to clock drift [24]. To circumvent
this, we use a bridge between the two senders and the router, as shown in figure 3.8. This allows traffic
from both the senders to be aggregated at the bridge, and the timestamps are synchronised.

3.4.2 tcp-throughput and tput

Bandwidth share allocation is the traditional fairness metric for TCP congestion avoidance mechanisms
[10–13] [49]. Because of this, we decided to look at the bandwidth share each connection is allocated by

50

examining their throughput and goodput aggregated over time intervals.

Note the difference between throughput and goodput. Throughput is the number of bytes that a stream is
able to transmit on the wire. Goodput is the number of bytes useful to the application.

For measuring goodput, we used the tcp-throughput tool developed by the authors of the previous
thin stream evaluations [4]. This program reads a sender-side pcap trace file, and divides a stream’s
duration into time slices. The program keeps track of the payload size of the sent packets. For every ACK
it encounters in the trace file, it calculates the corresponding time slice based on the capture timestamp,
and stores the number of bytes the ACK acknowledged in that time slice.

In order to measure throughput, we use a self-developed utility program called tput [133]. The idea
is similar to tcp-throughput — it stores the throughput aggregated over time intervals — but it is
much simpler because it only looks at the packets being sent. Instead of reading the sender-side trace
file, tput reads the receiver-side trace file. For each stream, the stream’s duration is divided into time
slices as above. Then the program iterates over all packets belonging to that stream. For each packet, it
calculates the time slice it belongs to based on the timestamp, and stores the packet size (including the
size of all headers) in that time slice.

3.4.3 analyseTCP

Another pcap analysing tool we used, was a program called analyseTCP. This program was origi-
nally created by the authors of the previous thin stream evaluations [4, 15], but we have improved it and
made some modifications to it in order to make it more reliable, as well as adding new functionality. The
specific contributions are listed in the end of this section.

The main benefit of analyseTCP over any other pcap-analyser is that it focuses on latency in many
ways. No other pcap-analysing tool we know of provide such statistics. analyseTCP accepts two
packet traces; a sender-side and a receiver-side trace. This allows analyseTCP to determine actual
packet loss rather than estimating it by examining retransmissions, and it also allows the program to
examine the OWD.

The program starts by reading the sender-side trace. For each TCP segment it encounters in the trace file,
a byte range object is created and stored in memory, mapped to a specific stream. A byte range object
is metadata about the segment payload such as the timestamp when it was first transmitted, how many
times it detected retransmitted and the relative timestamp when it was ACKed. Relative timestamps are
calculated by subtracting the timestamp of a stream’s first packet from every other packet timestamps.

The reason we register byte ranges, rather than segments, is because TCP is allowed to do repacketisation.
When a retransmission is encountered for a byte range, the sent count is increased and the timestamp
of the retransmission is also stored. If only a part of a byte range is retransmitted, the byte range is
split into two smaller byte ranges. Linux uses a technique called segment collapsing (repacketisation) on

51

retransmissions3, a setting that is enabled by default [101]. This technique is similar to Nagle’s algorithm
explained in section 2.5.1. When a retransmission occur, Linux will concatenate the payload of small
segments in larger, MSS-sized segments.

After the sender-side trace is processed, the receiver-side is read by the program. TCP segments in the
receiver-side trace is matched to the byte range objects in memory by using the timestamp found in the
TCP header option. The relative received times are also stored.

Latency

Ultimately, the goal of the thin-stream modifications is to reduce the latency. In order to measure the
effectiveness of the modifications, we examine application-layer delay time (ALD). ALD is the time
it takes from the first time a byte range is sent until it is ACKed. In other words, we define ALD as
ACK-time: the time it takes from the first time a byte range is registered in the sender-side trace, to the
ACK covering it is found in the sender-side trace. This means that packet loss, retransmission delays and
queueing delays will affect the ALD measurement.

Since we register the relative receive time from the receiver-side trace, we are also able to calculate
the one-way delay variance (OWDVAR). Only packets that are matched in both traces (using the TCP
timestamp) have their OWDVAR calculated, so unlike ALD, we only include the last time a packet was
(re)transmitted and arrived successfully.

However, system clocks on two separate hosts are unsynchronised and prone to drifting4, we must com-
pensate for clock drift when calculating the OWDVAR. Based on observations made in the previous thin
stream studies [4], we assume that clock drift is linear. The pseudo-code in listing 3.2 shows how this is
done.

3It is also necessary for evaluating RDB, explained in section 2.6.6, which bundles segments together. This is, however,
outside the scope of our thesis.

4Clock drift depends a lot upon the hardware and OS technology of the computer. Newer computer have much less drift
than old computers.

52

1 diffs = <relative received timestamp - relative sent timestamp for all byte ranges>

2

3 start_diff = <infinity>

4 for diff in <first 200 of diffs>:

5 if diff < start_diff:

6 start_diff = diff

7

8 end_diff = <infinity>

9 for diff in <last 200 of diffs>:

10 if diff < end_diff:

11 end_diff = diff

12

13 drift_factor = end_diff - start_diff

14

15 for stream in <all streams>:

16 first_ts = <received timestamp of first network packet in stream>

17 for byte_range_object in <byte ranges belonging to stream>:

18 ts = <received timestamp of byte_range_object>

19 duration = ts - first_ts

20 adjusted_ts = ts - duration * drift_factor

Listing 3.2: Pseudo-code for linear clock drift compensation

This solution is not ideal: it assumes that there are two packet within the first and last 200 packets
respectively that each have the minimum delay — the network OWD — and uses this to determine the
clock drift. These two packets have their OWDVAR calculated to 0. If the network is congested when
the stream starts up, the calculations become skewed. Packets might even get a negative OWDVAR
calculated if the network becomes less congested after the initial 200 packets. It is, however, easy to
detect such anomalies by using programmatic asserts.

As we mentioned in section 3.3.5 however, the tool we use for generating traffic does not start transmit-
ting data until all connections are established due to the threads waiting on a barrier. In practice, this
means that the packet among the first 200 packets with the lowest difference in relative received and sent
times is likely to be the SYN packet. Since there is no other traffic until all connections are established
and there are no sources for delay, the SYN packet’s sent and received difference reflects the true net-
work OWD. In other words, because of the way we establish connections, we can with a fair amount of
certainty say that the calculated OWDVAR and the clock drift compensation are correct.

Since we use a static network RTT and do not include lost packets when calculating OWDVAR, the
OWDVAR is in fact the queueing delay of a packet. This is because the only source of delay is either at
the router or in transmission buffers. However, since we capture packets on a separate bridge, we measure
after the packet has left the transmission buffer. We also have symmetrical delay in both directions, which
means that we can calculate the absolute OWD of a packet by adding the lowest calculated RTT divided
by two. The lowest RTT is calculated by simply taking the smallest time between the last time a byte
range was registered as sent to the time it was ACKed, and since this is done on one side only (and in
other words uses the same system clock), we know this value is accurate.

53

Loss

As previous studies have identified retransmissions as the greatest contributing factor to transport delay
[4–6], an important metric is loss. Because analyseTCP uses two traces, it is able to produce accurate
loss statistics. Packet loss is calculated by identifying packets that are found in the sender-side trace
but not in the receiver-side trace. As with latency calculation, segments are identified with the TCP
timestamp option. Byte-based loss is calculated by comparing the number of bytes received with the
number of bytes attempted sent. In addition, analyseTCP also estimates loss based on retransmissions.

However, we are also able to distinguish between new and old data being lost, by looking at how re-
transmissions are lost. With this, we can provide accurate numbers for how many n-th retransmissions
a stream has, as well as providing statistics about the dupACKs. These are useful for evaluating LT and
MFR respectively.

Our contributions to analyseTCP

In order to make analyseTCP more reliable, we compared its output to the output of other packet
trace analysing programs, such as tcptrace [134], Wireshark and tshark [135] [136] and captcp
[137]. Even though these only provide limited latency and loss statistics, compared to analyseTCP,
we were still able to verify our calculations by comparing statistics the other programs did offer, such
as RTT statistics, estimated loss, retransmissions, number of special packets (SYN, FIN, pure ACKs).
In situations where the results from analyseTCP differed from the other three, we investigated and
corrected the calculations. In situations where the output from the three differed between themselves, we
investigated why and made analyseTCP produce the results we deemed the most correct.

A major improvement was to make analyseTCP use relative sequence numbers instead of absolute,
and making sure it handled sequence number wrapping correctly. The tests for checking whether a given
sequence number is a wrapped number or a previous number out of order were copied from the Linux
kernel implementation for managing sequence numbers in TCP.

Another contribution was to extend the already existing OWD calculation with queueing delay calcula-
tion and more accurate clock drift compensation. Queueing delay was calculated by filtering out seg-
ments that were lost.

The old version of analyseTCP offered crude loss rate statistics: packet-based loss and estimated loss
by looking at retransmissions. We added calculation of loss over time, aggregating loss into time slices
similar to how we calculate throughput. In addition, we also distinguish between lost retransmissions
and new data being lost, thus improved on the old functionality that simply counted 1st through n-th
retransmissions of a byte range. We also use the timestamp found in TCP header options (which is on by
default in Linux) to match ranges in the sender and receiver trace more accurately.

Throughput and goodput calculation was also implemented in analyseTCP. Throughput is calculated
in the exact same way it is in tput. Goodput is calculated similarly as in tcp-throughput, where

54

ACKs encountered in the sender-side trace are inspected.

3.4.4 aqmprobe

As part of our process of verifying the output of analyseTCP, we implemented a simple kernel module,
dubbed aqmprobe [138], in order to inspect the router queue in real-time. By using a kernel probe
(Kprobe) [139], it attaches itself to the pfifo entry point, the pfifo_enqueue() function, and
records some metadata about the packet such as stream, packet size and whether or not it was dropped.
A user-space program can extract these records by reading periodically from a character device the kernel
module registers.

The module starts by registering a kernel return probe (Kretprobe) on pfifo_enqueue(). Under the
hood, the module replaces the first instruction at the memory location of pfifo_enqueue() with an
x86 breakpoint instruction. When the CPU hits this instruction, a trap occurs. The registers are saved, and
the control is passed to the Kretprobe which executes the handler function, passing the saved registers as
arguments. In other words, as a struct sk_buff-pointer and a struct Qdisc-pointer are passed
as arguments when pfifo_enqueue() is invoked, we intercept this call and are able to record some
data about the packet being attempted enqueued in the qdisc.

pfifo_enqueue() returns a success value indicating whether or not the packet was enqueued in the
qdisc or not. By replacing the return address with an address of a second handler function, Kretprobe
is able to intercept when functions return as well. In other words, we have a second handler function
that is executed when pfifo_enqueue() returns, allowing us to intercept the return value and record
whether or not the packet was dropped or successfully enqueued.

Passing data to the user-space application is done through a multiple-producer, single-consumer message
queue. Constraining the module to only allow a single user-space program to read from the character
device, means that we were able to use atomic compare-and-swap operations on the message queue and
can avoid using spin-locks completely. This is important, as packet enqueueing happens quite frequently
and our probe must not disrupt the service as this would skew our results.

3.4.5 count3way

In some tests, where congestion was extreme, we experienced that Linux would often drop connections
that were not fully established by a complete three-way handshake (see 2.4.2) and retry establishing
the connection after some time5. In all of the pcap analysis programs we used, these reconnected
connections were counted as new, separate connections. In order to verify our connection statistics, we
made an utility program called count3way that identified streams by host addresses and port numbers
alone, and counted the number of successful and unsuccessful TCP three-way handshakes performed by
a specific stream.

5The default SYN retry timeout in Linux is 20 seconds [101].

55

3.5 Summary

In this chapter we outlined the design of our fairness experiment. In order to evaluate the fairness of the
thin-stream modifications, we selected three metrics to test our hypotheses stated in section 1.4:

• Bandwidth allocation

• Latency

• Loss

We also discussed the design of our test environment. A Linux networking testbed was created, using a
bottlenecked router in order to create contention between streams over a shared resource. For generating
traffic, we use a program called streamzero. This program establishes TCP connections, and allow
us to generate network traffic with similar patterns seen in table 2.1.

We also discussed some considerations surrounding choosing realistic network conditions for our tests.
By conducting a naïve ping test, we observed that sporadic loss, jitter and packet re-ordering is not
that common in the Internet. Packet loss is often caused by network congestion, so the most realistic
approach to generate loss events is to have competition over a shared, limited resource. For this reason,
we implemented a bandwidth limitation in our testbed using a router with rate control.

In the next chapter, we will present the results of from an iterative try — improve — retry process of
finding the right parameters and conditions for our tests.

56

Chapter 4

Verifying the testbed

While studies of the impact of increased aggressiveness in TCP in general is not something new, the
behavioural patterns of thin streams are not well understood. Evaluation of thin streams is mostly un-
charted territory, and there are few guidelines to follow and no best practices to refer to. Therefore,
experimentally assessing a reasonable trade-off between improved thin stream performance and the ef-
fects of increased thin-stream aggressiveness on the system, depends greatly on how our test environment
is implemented and how well our analysis tools work. Because of this, it is of utmost importance that we
eliminate concerns and limitations surrounding our testbed and test scenarios.

4.1 A naïve approach

In order to test hypotheses 1 and 2 in particular, we design a simple fairness test based on the fairness
test done in the previous thin stream evaluations [4,13]. We letN thin streams, using the LT and/or MFR
retransmission modifications, compete withN greedy streams. As our control test, we letN thin streams
using unmodified retransmission mechanisms compete withN greedy streams. By comparing the results
we should be able to both determine how effective the thin stream mechanisms are in increasing thin
stream performance, as well as the impact these mechanisms have on greedy stream traffic.

We configured our testbed accordingly: N thin stream senders competing withN greedy stream senders.
The bottleneck link speed was limited at 1 Mbps, and the network RTT was set to 100 milliseconds using
netem. These values were chosen because it yields a BDP of 12,500 bytes, which is defined as the limit
for an LFN in RFC 1072 [73]. We configured pfifo with a queue length of 9 packets to be used on the
router. This corresponds to the BDP rounded up to the nearest whole packet (12, 500/1500 ≈ 8.33). The
thin stream senders were configured to transmit packets with a 120 byte payload every 100 millisecond
(172 bytes IP packets including IP and TCP headers as well as SACK header and TCP timestamp).
An interval similar to the RTT meant that the thin stream senders would alternate between sending one
packet within an RTT and none at all. As we had no prior estimates of how congested the network would
be or how high the loss rates would become in our test scenario, we ran each test for an hour. We deemed

57

1 greedy vs 1 thin1 greedy vs 1 thin

0
10

0
30

0
50

0
70

0
90

0

2 greedy vs 2 thin2 greedy vs 2 thin 4 greedy vs 4 thin4 greedy vs 4 thin 8 greedy vs 8 thin8 greedy vs 8 thin 16 greedy vs 16 thin16 greedy vs 16 thin

32 greedy vs 32 thin32 greedy vs 32 thin

0
10

0
30

0
50

0
70

0
90

0

TC
P LT M
FR

M
FR

+L
T

TC
P

64 greedy vs 64 thin64 greedy vs 64 thin
TC

P LT M
FR

M
FR

+L
T

TC
P

128 greedy vs 128 thin128 greedy vs 128 thin

TC
P LT M
FR

M
FR

+L
T

TC
P

256 greedy vs 256 thin256 greedy vs 256 thin

TC
P LT M
FR

M
R

+L
T

TC
P

512 greedy vs 512 thin512 greedy vs 512 thin

TC
P LT M
FR

M
FR

+L
T

G
oo

dp
ut

 (
K

bp
s

ag
gr

eg
at

ed
 o

ve
r

30
 s

ec
on

ds
)

TCP variation used for competing streams

Figure 4.1: Aggregated goodput of N thin streams (blue) competing with N greedy streams (red)

this to be more than long enough to produce both enough loss events for the less congested scenarios and
for the connections in the more congested scenarios to reach a stable rate.

Figure 4.1 shows the goodput of N thin streams (blue) and N greedy streams (red) aggregated over 30
second intervals. For each N , we compared LT, MFR and LT combined with MFR. We can see that as
N grows, the goodput of both types of streams converges. LT, both alone and in combination with MFR,
appears to have slightly more impact than MFR alone when congestion increases. We speculate that this
is because the number of successive retransmissions becomes more significant as the congestion grows.

The stapled line represents the expected goodput the thin streams should have, based on how much they
attempt to transmit. We observe that as the competition increases, the thin streams become less and less
able to maintain their expected goodput. Note that for N = 256 and N = 512, the expected goodput is
limited by sharing the capacity with a number of competing streams. We also see that the goodput varies
somewhat and appears less predictable for the two most congested scenarios (N = 256 and N = 512).
We suspect that this is caused by the high loss rate experienced under congestion.

58

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
N=1 N=2 N=4 N=8 N=16

TC
P

MFR LT

MFR
+LT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
N=32

TC
P

MFR LT

MFR
+LT

N=64

TC
P

MFR LT

MFR
+LT

N=128

TC
P

MFR LT

MFR
+LT

N=256

TC
P

MFR LT

MFR
+LT

N=512

Re
la

tiv
e

pa
ck

et
 lo

ss

Figure 4.2: Relative loss for N thin streams (blue) competing against N greedy streams (red)

N Dropped No data Never est. Total

.
64 43 43 43 44
128 66 76 76 84
256 188 192 176 209
512 403 411 397 445

Table 4.1: Number of problematic thin stream connections

4.1.1 Too congested?

Figure 4.2 shows the relative packet loss for N thin streams (blue) competing with N greedy streams
(red). As we see in the figure, thin streams have a higher overall loss rate than the greedy streams. We
suspect that this might be why thin streams are unable to maintain their expected throughput. Note that
as congestion builds up, being more aggressive results in a higher loss rate for other streams, as seen in
N = 64, N = 128, N = 256 and N = 512.

As we see in the figure, the loss rates are very high. The median loss rate is approximately 55% for thin
streams for N = 512. By running shorter, ten minute tests, we also saw that the data spread increases.
This is a red flag, as this indicates that the connections are taking too long in order to reach a stable rate.

When looking at the number of unestablished connections, connections that last shorter than half of the
test duration (dropped connections), and connections where no data packets were received due to the
connections being in a state where they continuously back off, we see that for N > 64 more than half of
the connections are problematic. This is because the level of congestion is actually quite severe; as the
router is the bottleneck, with a maximum queue length of 9 packets and 512× 2 streams simultaneously
competing over a slot in the queue, there will always be at least 1024 − 9 = 1015 streams that will not

59

have a packet in flight at any given time. We also see that for the most congested scenario, N = 512,
most connections do not even complete the TCP three-way handshake.

4.2 A thought-through approach

As our previous approach turned out to have several problems, such as extreme congestion and packet
loss, which rendered most of our findings doubtful to say the least, we went back to the drawing board.
Instead of determining the queue size from an arbitrarily chosen BDP, we chose a typical household
Asymmetric Digital Subscriber Line (ADSL) downlink speed for our bottleneck link rate. Get, a common
Norwegian ISP, offers 5 Mbps as their most affordable speed [140].

Since the mechanisms we evaluate assume that thin streams have few PIF, our network RTT can not be
too low as this would mean that we would have to transmit packets more often. Therefore we configured
a network RTT of 150 milliseconds, 75 milliseconds delay in each direction1. This gave us a BDP of
93,750 bytes, or approximately 63 MTU-sized IP packets.

As we observed in the previous section, even though the results may look relevant when looking at a
single measure, it is important to include multiple metrics in order to conclusively determine whether
the results are valid or not. By looking at a multitude of measures, we were able to find scenarios were
results were reproducible without having to run tests for a long time. Table 4.2 shows that the results
from running the same scenario twice, two hours and five minutes respectively, scales according to the
run time.

4.3 Thin stream discrimination

Looking at table 4.2, we can see that the loss rates for thin streams are somewhat more spread than the
greedy stream loss rates. When we combine this observation with the observation we made in section
4.1, that thin streams are unable to maintain their expected goodput, we started suspecting that there
might be some effect that was somehow inhibiting thin streams. In this section, we describe our process
in identifying the culprit of the apparent unfair treatment of thin streams.

4.3.1 Comparing throughput and goodput

As we discussed in section 2.7, the traditional fairness principle of TCP is based on the assumption that
each TCP stream tries to consume as much of the available bandwidth as possible. Since thin streams
do not behave this way, they can not achieve a fair share of the bandwidth by this definition of fairness.

60

Duration_Test_2hours
Duration 120 min 0 sec

Network parameters
BW 5 Mbps
RTT 150 ms
BDP 63 pkts
Queue pfifo 63 pkts

Cross traffic, greedy
Conns 10
Ramp-up 100± 0 ms

Evaluated traffic, thin
Conns 40
Ramp-up 100± 50 ms
ITT 100± 0 ms
Pkt size 120± 10 B
No RetrClps Off
No Nagle On
No DelAck On
ER On
ER+ Off
TLP Off
LT Off
MFR Off

Duration_Test_2hours
Duration_Test_2hours : 1 / 2 Cross traffic, 10 greedy streams

min Q1 med Q2 max 1% 5 % 90% 95% 99%
Pkts sent 270.7K 275.0K 277.6K 279.6K 284.7K 270.7K 271.0K 280.5K 282.6K 284.3K
Pkts lost (%) 2.5 2.6 2.6 2.6 2.7 2.5 2.5 2.7 2.7 2.7
Bytes lost (%) 2.5 2.6 2.6 2.6 2.7 2.5 2.5 2.7 2.7 2.7
Calc loss (%) 2.5 2.6 2.6 2.6 2.7 2.5 2.5 2.7 2.7 2.7
Pkts retr 7.1K 7.2K 7.2K 7.3K 7.4K 7.1K 7.1K 7.3K 7.3K 7.4K
Successive retr 3.0 3.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0
DupACKs 51.6K 53.0K 53.3K 53.9K 54.2K 51.7K 52.2K 54.0K 54.1K 54.2K
Connections dropped None
Duration_Test_2hours : 2 / 2 Evaluated traffic, 40 thin streams No Nagle;No DelAck;ER

min Q1 med Q2 max 1% 5 % 90% 95% 99%
Pkts sent 28.7K 28.7K 28.7K 28.7K 28.8K 28.7K 28.7K 28.8K 28.8K 28.8K
Pkts lost (%) 5.5 5.6 5.6 5.6 5.7 5.5 5.5 5.7 5.7 5.7
Bytes lost (%) 5.0 5.1 5.2 5.2 5.3 5.0 5.1 5.2 5.3 5.3
Calc loss (%) 5.5 5.6 5.6 5.6 5.7 5.5 5.5 5.7 5.7 5.7
Pkts retr 1.6K 1.6K 1.6K 1.6K 1.6K 1.6K 1.6K 1.6K 1.6K 1.6K
Successive retr 2.0 2.0 2.0 3.0 5.0 2.0 2.0 5.0 5.0 5.0
DupACKs 1.0 1.0 1.0 2.0 3.0 1.0 1.0 2.0 2.2 3.0
Pkt size 82.0 236.0 254.0 357.0 1.4K 209.0 220.0 379.0 722.0 858.0
ITT (ms) 12.0 230.0 239.0 248.0 31.5K 206.0 217.0 258.0 436.0 447.0
Trans delay (ms) 75.0 132.0 144.0 156.0 219.0 103.0 115.0 167.0 172.0 182.0
ACK delay (ms) 150.0 230.0 239.0 248.0 31.3K 206.0 216.0 258.0 667.0 696.0
Connections dropped None

Duration_Test_5mins
Duration 5 min 0 sec

Network parameters
BW 5 Mbps
RTT 150 ms
BDP 63 pkts
Queue pfifo 63 pkts

Cross traffic, greedy
Conns 10
Ramp-up 100± 0 ms

Evaluated traffic, thin
Conns 30
Ramp-up 100± 0 ms
ITT 100± 0 ms
Pkt size 120± 0 B
No RetrClps Off
No Nagle On
No DelAck On
ER On
ER+ Off
TLP Off
LT Off
MFR Off

Duration_Test_5mins
Duration_Test_5mins : 1 / 2 Cross traffic, 10 greedy streams

min Q1 med Q2 max 1% 5 % 90% 95% 99%
Pkts sent 10.0K 11.8K 11.9K 12.1K 13.0K 10.2K 10.8K 13.0K 13.0K 13.0K
Pkts lost (%) 2.2 2.4 2.6 2.7 3.1 2.2 2.2 2.8 3.0 3.1
Bytes lost (%) 2.2 2.4 2.6 2.7 3.1 2.2 2.2 2.9 3.0 3.1
Calc loss (%) 2.2 2.4 2.6 2.7 3.1 2.2 2.2 2.9 3.0 3.1
Pkts retr 280.0 294.0 308.5 312.5 336.0 280.5 282.7 325.2 330.6 334.9
Successive retr 2.0 2.0 2.0 2.0 4.0 2.0 2.0 3.1 3.5 3.9
DupACKs 2.0K 2.2K 2.2K 2.4K 2.5K 2.0K 2.0K 2.4K 2.4K 2.5K
Connections dropped None
Duration_Test_5mins : 2 / 2 Evaluated traffic, 30 thin streams No Nagle;No DelAck;ER

min Q1 med Q2 max 1% 5 % 90% 95% 99%
Pkts sent 1.1K 1.2K 1.2K 1.2K 1.2K 1.1K 1.2K 1.2K 1.2K 1.2K
Pkts lost (%) 2.3 2.9 3.2 3.4 4.4 2.3 2.4 3.6 3.7 4.2
Bytes lost (%) 2.2 2.8 3.0 3.2 4.3 2.3 2.5 3.6 3.6 4.1
Calc loss (%) 2.4 3.0 3.2 3.4 4.4 2.4 2.5 3.7 3.8 4.2
Pkts retr 28.0 35.0 37.5 40.0 50.0 28.3 29.5 42.2 44.5 48.6
Successive retr 1.0 1.0 1.0 1.8 2.0 1.0 1.0 2.0 2.0 2.0
DupACKs 1.0 1.0 1.0 2.0 3.0 1.0 1.0 3.0 3.0 3.0
Pkt size 120.0 240.0 360.0 360.0 1.4K 120.0 240.0 360.0 360.0 840.0
ITT (ms) 2.0 247.0 258.0 267.0 2.9K 150.0 217.0 275.0 280.0 463.0
Trans delay (ms) 75.0 151.0 165.0 176.0 213.0 76.0 112.0 185.0 190.0 197.0
ACK delay (ms) 150.0 247.0 259.0 267.0 2.3K 150.0 217.0 275.0 280.0 720.0
Connections dropped None

Table 4.2: Duration test, 2 hours and 5 minutes. Evaluated traffic: 40 thin streams; Cross-traffic: 10
greedy streams.

61

5 greedy vs 1 thin5 greedy vs 1 thin

0
10

0
30

0
50

0
70

0
90

0

5 greedy vs 2 thin5 greedy vs 2 thin 5 greedy vs 4 thin5 greedy vs 4 thin 5 greedy vs 8 thin5 greedy vs 8 thin 5 greedy vs 16 thin5 greedy vs 16 thin

5 greedy vs 32 thin5 greedy vs 32 thin

0
10

0
30

0
50

0
70

0
90

0

TC
P LT M
FR

M
FR

+L
T

TC
P

5 greedy vs 64 thin5 greedy vs 64 thin
TC

P LT M
FR

M
FR

+L
T

TC
P

5 greedy vs 128 thin5 greedy vs 128 thin

TC
P LT M
FR

M
FR

+L
T

TC
P

5 greedy vs 256 thin5 greedy vs 256 thin

TC
P LT M
FR

M
FR

+L
T

TC
P

5 greedy vs 512 thin5 greedy vs 512 thin

TC
P LT M
FR

M
FR

+L
T

G
oo

dp
ut

 (
K

bp
s

ag
gr

eg
at

ed
 o

ve
r

30
 s

ec
on

ds
)

TCP variation used for competing streams

Figure 4.3: Goodput of N thin streams (blue) competing against 5 greedy streams (red)

Therefore, our first suspicion was that the greedy streams were consuming an unfair share of the capacity.
In order to determine if the greedy streams were to blame, we conducted a simple experiment.

Figure 4.3 shows the result of 5 greedy streams (red) competing with N thin streams. Just like in figure
4.1, we see that the thin streams struggle more and more as N increases. However, as the number
of greedy streams remain constant, we suspected that the increased competition among thin streams
themselves could be a possible culprit and that the greedy streams had little to do with this. In order to
test this, we compare both the throughput and goodput of the thin streams. Figure 4.4 shows a subset of
the results from redoing the 5 greedy versus N thin stream test2.

The stapled blue and red lines depicts the expected goodput and throughput respectively, whereas the
stapled green line is where the goodput catches up to the throughput because they are limited by the
capacity. We see that neither the goodput nor the throughput reach their expected rates. As the throughput
measure also includes retransmissions, this is an indication that thin streams alone are not the sole culprit
and that we need to investigate this further.

1150 milliseconds is roughly the RTT from Oslo to San Francisco.
2We had to redo the test because the data files from the one-hour tests were lost.

62

Goo
dp

ut

Th
.pu

t0

200

400

600

800

1000

N=32

Goo
dp

ut

Th
.pu

t

N=64

Goo
dp

ut

Th
.pu

t

N=128

Goo
dp

ut

Th
.pu

t

N=256

Goo
dp

ut

Th
.pu

t

N=512

Kb
ps

 a
gg

re
ga

te
d

ov
er

 3
0

se
co

nd
s

(a) Thin stream goodput (blue) and throughput (red)

100 500 9000.0

0.2

0.4

0.6

0.8

1.0

N=32

100 500 900

N=64

100 500 900

N=128

100 500 900

N=256

100 500 900

N=512

Pe
rc

en
t o

f s
am

pl
es

Throughput (Kbps aggregated over 30 seconds)

(b) Thin stream throughput

Figure 4.4: Comparing goodput and throughput for N unmodified thin streams competing against 5
greedy streams

thin greedy0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ITT=100

thin greedy0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ITT=90

thin greedy0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ITT=75

thin greedy0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ITT=70

Re
la

tiv
e

pa
ck

et
 lo

ss

Figure 4.5: Relative packet loss for 30 thin streams and 20 greedy streams

4.3.2 Examining the loss rates

As we saw in figure 4.2 some thin streams are consistently getting higher loss rates. Arguably, a higher
loss rate for thin streams, even just for some, would be unfair. Lost packets has to be retransmitted, and
as we discussed in chapter 2, retransmission delays is by far the biggest contributor to transport latency.

In order to investigate this further, we decided to do a new set of tests. Figure 4.5 shows the relative packet
loss rate for 30 thin streams competing against 20 greedy streams, repeated four times with different ITTs.
We used different ITTs in order to rule out any unforeseen synchronisation of a badly chosen ITT and the
RTT. In addition, we also chose stream ramp-up times with a slight random variation. In all four cases,
some of the thin streams are consistently getting higher loss rates than the competing greedy streams.

As thin stream loss rates seemed to get worse with an increased level of congestion, as seen in figure 4.5,

63

we again suspected the greedy streams. It is a known effect that when multiple TCP streams using the
same algorithm and with the same RTT experience loss, they back off and increase their transmission
rate at the same pace [30, 31]. This is commonly known as global TCP synchronisation. We suspected
that this might cause the greedy streams to alternately fill up the router queue and backing off. We moved
the greedy stream senders to the cross-traffic sender machine and configured netem so that each greedy
stream had 5 milliseconds longer RTT than the previous, starting at 100 milliseconds for the first stream.
However, as the problem persisted and the results remained similar, it was clear that this was not the
case.

4.3.3 Kernel buffering and repacketisation

In our packet traces, we discovered that retransmitted thin stream packets were consistently two to
three times larger than the size of the original transmission. We learned that this was a result of the
tcp_retrans_collapse system option, which is by default enabled [101]. As this, as well as Na-
gle’s algorithm and various other settings, are a result of Linux preferring to send filled up segments
rather than many small segments, we investigated how this option affected thin streams. However, as
our findings varied wildly — sometimes turning it off led to higher loss rates, other times leaving it on
resulted in higher loss – we decided to keep it on, as this is the default setting.

We searched for other mechanisms in the kernel that might have influenced the results, and discov-
ered that various NIC offloading mechanisms were enabled. Even though this should be irrelevant for
our testbed, since we have a bridge between the sender and the router, based on our experience with
tcp_retrans_collapse, we turned it off in order to avoid any potential problems. Which NIC
supports which offloading technique varies, but the four relevant mechanisms are: generic segmentation
offload (GSO), TCP segmentation offload (TSO), generic receive offload (GRO) and large receive offload
(LRO).

4.3.4 Thin stream clustering

By using the aqmprobe kernel module, described in section 3.4.4, we were able to analyse loss events
over time. By highlighting loss after stream type, we identified a clustering of drop events that occurred
on roughly every ITT for the thin streams. In other words, because we had used a too low ITT variance,
thin streams clustered together. Choosing a sensible ramp-up time did not, contrary to our expectations,
alleviate this effect. We reasoned that this was because the ITT is periodic and smaller than an RTT, and
a ramp-up time chosen from a random distribution is not guaranteed to be spread out over the entire ITT
interval.

We confirmed this clustering effect when we reduced the queue size to half its original size, and sud-
denly that the loss rates for roughly half of the thin streams increased. This is because as they transmit
periodically, any given thin streams end up roughly in the same spot in the clustering every ITT, meaning

64

that some streams consistently get data through because they are enqueued properly, while other streams
consistently hit a full queue (and the packet is subsequently dropped).

4.4 Summary

In this chapter we saw how seemingly meaningful results can be completely skewed by a hidden factor.
We identified some culprits of thin stream discrimination, as well as a clustering effect, causing mul-
tiple thin streams to time after time experience loss because they end up in the same “bad spot” every
transmission interval.

Because of time-constraints and a old computer, we have not been able to include all results and plots in
this (and the next chapter). For a complete list of results, please refer the URL given in appendix A

65

Chapter 5

Summarising the results

As thin streams often are a product of real-time applications, they have entirely different requirements
and acceptable limits than other network traffic. Where some scenarios are considered edge cases and
can be excused for some applications since they happen so rarely, edge cases can be make or break for a
time-dependent application.

5.1 Queue length evaluations

As part of our evaluation, we also did an evaluation of the effects of the queue length on thin streams.
We configured our test scenario according to table 5.1. 30 thin streams using unmodified retransmission
mechanisms competing against 30 greedy streams. We tested the impact pfifo and bfifo had on
three different lengths: half a BDP, a BDP and twice the BDP.

Figure 5.1 shows the relative byte loss, number of bytes lost divided by number of bytes sent, for both thin
(blue) and greedy (red) streams. 30 thin streams using unmodified retransmission mechanisms competed
against 30 greedy streams. The pfifo_short, pfifo_bdp and pfifo_long are pfifo qdiscs
with a queue size of 31 packets (half a BDP), 63 packets (a BDP) and 125 packets (twice the BDP
respectively. Note that we had to scale up the loss rates for pfifo_short due to the loss rate being
higher than all the others. The bfifo_short qdisc was configured to have a queue size of 46, 875
bytes (half a BDP), while the bfifo_bdp qdisc was set to 93, 750 bytes (a BDP). Although our focus
was to investigate the effects of tail-drop on thin streams, we included three other queue algorithms for
reference: red, sfq and codel.

We see that when the queue size becomes too short, as seen with pfifo_short, the thin streams in our
scenario experience high loss rates. This is because they have similar ITT and get clustered, effectively
forming a burst. Since the queue is not long enough to absorb the burst, the tail gets dropped and some
streams experience loss. The effects on the thin streams in terms of latency, can be seen in figure 5.2a.

66

qdisc-evaluation
Duration 10 min 0 sec

Network parameters
BW 5 Mbps
RTT 150 ms
BDP 93750 bytes (63 pkts)

Cross traffic, greedy
Conns 30
Ramp-up 100± 0 ms

Evaluated traffic, thin
Conns 30
Ramp-up 100± 0 ms
ITT 100± 0 ms
Pkt size 120± 0 B
No RetrClps Off
No Nagle On
No DelAck On
ER Off
ER+ Off
TLP Off
LT Off
MFR Off

Table 5.1: Test configuration used for our qdisc evaluation

thin greedy0.00

0.05

0.10

0.15

0.20

0.25 pfifo_short

thin greedy0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 pfifo_bdp

thin greedy0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 pfifo_long

thin greedy0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 bfifo_short

thin greedy0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 bfifo_bdp

thin greedy0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 red

thin greedy0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 codel

thin greedy0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16 sfq

Re
la

tiv
e

by
te

 lo
ss

30 thin vs 30 greedy

Figure 5.1: Relative byte loss using different qdiscs. 30 unmodified thin streams competing with 30

greedy streams.

67

0 500 1000 1500 2000 25000.0

0.2

0.4

0.6

0.8

1.0 pfifo_short

greedy
thin

0 500 1000 1500 2000 25000.0

0.2

0.4

0.6

0.8

1.0 pfifo_bdp

greedy
thin

0 500 1000 1500 2000 25000.0

0.2

0.4

0.6

0.8

1.0 pfifo_long

greedy
thin

0 500 1000 1500 2000 25000.0

0.2

0.4

0.6

0.8

1.0 bfifo_short

greedy
thin

0 500 1000 1500 2000 25000.0

0.2

0.4

0.6

0.8

1.0 bfifo_bdp

greedy
thin

0 500 1000 1500 2000 25000.0

0.2

0.4

0.6

0.8

1.0 red

greedy
thin

0 500 1000 1500 2000 25000.0

0.2

0.4

0.6

0.8

1.0 codel

greedy
thin

0 500 1000 1500 2000 25000.0

0.2

0.4

0.6

0.8

1.0 sfq

greedy
thin

Pe
rc

en
t o

f v
al

ue
s

30 thin vs 30 greedy

(a) ACK delay

0 50 100 150 200 250 3000.0

0.2

0.4

0.6

0.8

1.0 pfifo_short

greedy
thin

0 50 100 150 200 250 3000.0

0.2

0.4

0.6

0.8

1.0 pfifo_bdp

greedy
thin

0 50 100 150 200 250 3000.0

0.2

0.4

0.6

0.8

1.0 pfifo_long

greedy
thin

0 50 100 150 200 250 3000.0

0.2

0.4

0.6

0.8

1.0 bfifo_short

greedy
thin

0 50 100 150 200 250 3000.0

0.2

0.4

0.6

0.8

1.0 bfifo_bdp

greedy
thin

0 50 100 150 200 250 3000.0

0.2

0.4

0.6

0.8

1.0 red

greedy
thin

0 50 100 150 200 250 3000.0

0.2

0.4

0.6

0.8

1.0 codel

greedy
thin

0 50 100 150 200 250 3000.0

0.2

0.4

0.6

0.8

1.0 sfq

greedy
thin

Pe
rc

en
t o

f v
al

ue
s

30 thin vs 30 greedy

(b) Queueing delay

Figure 5.2: Impact of queue configuration on latency

68

With a longer queue, more of the thin stream cluster fits in the buffer, and the thin streams get better
ACK latency.

However, longer queues also mean longer queueing delays. It is a rule of thumb in real-time networking
to keep buffers to a minimum size in order to keep latencies as low as possible [2, 31, 43] [84, 86, 141].
As seen in figure 5.2b, for the longest pfifo queue, the 90th percentile is almost 4 times higher as
for the shortest pfifo queue, which of course is a huge increase in delay. However, it reduces the
overall thin stream latency because less thin streams experience loss. This is a trade-off that needs careful
consideration. Many game servers and sensor networks, typical thin stream applications, operate in ticks,
where they periodically send out updates. For a game server, for example, the number of clients might
be very high, resulting in bursts of packets being sent out at periodic intervals. The immediate packet
buffers must be large enough to not drop packets, but short enough to not delay packets unnecessary. The
best configuration for such scenarios is a possible candidate for further study.

The bfifo queue tells a different story. Hardly any thin stream packets are dropped, even when the
queue is short. This is actually because byte-based queues most often be able to fit a small packet, where
larger packets are dropped. Although not as bad as the pfifo queues, packets enqueued in a bfifo are
still subject to quite high queueing delays (a queueing delays as high as the RTT for the 90th percentile
and above).

sfq is the queue that maximises the thin stream performance in our scenario. This is because of how
sfq works: packets are hashed based on their source and destination IP address and destination port
address. Based on this hash, they are put into a bucket — a virtual queue. Since thin streams and greedy
streams send to their separate servers using different receiver ports, thin and greedy streams are given
separate virtual queues. The benefit of this is that streams do not suffer from how other, misbehaving
streams behave. However, sfq is not widely used in the Internet [2].

5.2 Assessing the impact on other streams

As we saw in section 4.1, it is hard to determine whether we are measuring the impact thin streams
have on greedy streams, or if we are measuring the impact thin streams have on themselves. It is clear
that greedy TCP streams are robust and able to to adapt other, competing network traffic. Thin streams,
however, are vulnerable because they are limited by retransmissions and not by congestion control and
can not recover effectively using fast recovery, see section 2.6.

In order to determine the impact of the thin stream modifications on other streams, we did two tests, one
with 60 thin streams using all modifications competed against 10 greedy streams, and the other with 60
unmodified thin streams (using none of the modifications) competed against 10 greedy streams. As seen
in the following figures, 5.3, 5.4 and 5.5, only the thin streams themselves were affected; the greedy

69

thin greedy0

1000

2000

3000

4000

5000

6000

Th
ro

ug
hp

ut
 (K

bp
s

ag
gr

eg
at

ed
 o

ve
r 1

 s
ec

on
d)

No Nagle

(a) No thin stream modifications

thin greedy0

1000

2000

3000

4000

5000

6000

Th
ro

ug
hp

ut
 (K

bp
s

ag
gr

eg
at

ed
 o

ve
r 1

 s
ec

on
d)

LT; TLP; No RetrClps; ER+; No DelAck; MFR; No Nagle

(b) All thin stream modifications

Figure 5.3: Throughput. 60 thin streams versus 10 greedy streams.

thin greedy0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

Re
la

tiv
e

pa
ck

et
 lo

ss

No Nagle

(a) No thin stream modifications

thin greedy0.025

0.030

0.035

0.040

0.045

0.050

0.055

Re
la

tiv
e

pa
ck

et
 lo

ss

LT; TLP; No RetrClps; ER+; No DelAck; MFR; No Nagle

(b) All thin stream modifications

Figure 5.4: Relative packet loss. 60 thin streams versus 10 greedy streams

70

0 500 1000 1500 2000 25000.0

0.2

0.4

0.6

0.8

1.0

AC
K

la
te

nc
y

(p
er

ce
nt

 o
f s

am
pl

es
)

No Nagle

greedy
thin

(a) No thin stream modifications

0 500 1000 1500 2000 25000.0

0.2

0.4

0.6

0.8

1.0

AC
K

la
te

nc
y

(p
er

ce
nt

 o
f s

am
pl

es
)

LT; TLP; No RetrClps; ER+; No DelAck; MFR; No Nagle

greedy
thin

(b) All thin stream modifications

Figure 5.5: ACK latency. 60 thin streams versus 10 greedy streams

71

Figure 5.6: ACK latency CDF annotation

streams were able to adapt without any considerable changes in performance.

Figure 5.6 explains the various trends we observe in the ACK latency plots. We can see that the RTO
has a major impact on the streams overall latency values. Also, we see that every step on the thin stream
latency CDF is caused by previous unacknowledged segments blocking a new segment (HOL blocking).

72

Chapter 6

Conclusion

“I have not failed. I’ve just found 10,000 ways that won’t work.”

Thomas Edison

6.1 Main contributions

In this thesis, we have attempted to experimentally find the right aggressiveness for retransmissions in
thin TCP streams. We have implemented a controlled test environment in the form of an emulated Linux
networking testbed in order to conduct fairness experiments and evaluate the thin stream modifications
to the TCP retransmission mechanisms. Our motivation for doing this has been to assess how aggressive
these mechanisms can be in order to improve thin stream performance, while still remaining fair towards
other traffic. As part of our evaluation, we have developed new tools and improved existing software, in
order to accurately analyse thin stream performance. During this process, we have made observations that
strengthens our view that an increased aggressiveness for application-limited streams can be justified.

We have identified a thin-stream clustering effect as a problem for tick-based applications (which may
include games, video/audio streaming and financial applications using barriers to control transaction
commits) and the detrimental effect small queues has in such scenarios, as the clusters of thin-stream
packets arrive at the short queue together time after time. Some advice for providers of tick-based inter-
active applications to not scale for expected (average) throughput) but to scale queues to accommodate
the bursts generated from the clustering effects. This finding confirms observations made in a previous
thin-stream study, but which was dismissed as a simulator synchronisation effect [13].

The awareness of latency in the Internet is recently having a renaissance after many years of focus on
throughput in Internet research. In this context, we have contributed to a position paper calling for a
reconsideration of the traditional fairness definition and advocating increased retransmission aggressive-
ness for interactive thin streams in order to reduce recovery latency, published as part of the Internet

73

Society Workshop on Reducing Internet Latency (RITE) in September 2013. We have also made contri-
butions to another unpublished paper on thin streams, planned to be submitted to IEEE/ACM Transac-
tions on Networking some time in the future.

6.2 Future work

As thin stream behaviour is not well understood, further research on how thin streams behave in realistic
scenarios is more than warranted. One of the previous thin stream studies attempted to classify and
model different forms of thin stream [13]. We believe that a realistic model of thin streams is crucial for
understanding how thin streams behave in certain circumstances.

We observed in our investigations that there are mechanisms with conflicting motives enabled by default
in the Linux kernel. On one hand, there is an inherent desire to conserve packets and avoid unnecessary
transmissions. On the other hand, there is an ongoing process of trying to reduce various sources of
latency in the kernel, most recently addressed by the “bufferbloat” project. We believe that further
investigations on mechanisms that might affect thin streams are absolutely crucial in order to increase
the awareness of these contradicting mechanisms among kernel developers.

While keeping buffering to a minimum is the rule of thumb for reducing latency, we saw in our eval-
uations that when thin streams cluster and form bursts, having too small buffers do more harm than
good. Such bursts can be common in applications that are tick-based, such as game servers or sensor
networks. Finding a sweet-spot between large enough buffers to absorb these bursts and avoid loss while
still keeping queuing delay is a possible candidate for future work.

74

Bibliography

[1] Global internet phenomena report. Technical Report 2H-2013, Sandvine Incorporated, December 2013.
https://www.sandvine.com/downloads/general/global-internet-phenomena/

2013/2h-2013-global-internet-phenomena-report.pdf .

[2] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark buffers in the internet. ACM Queue, 55(1):57–65,
November 2011. ISSN 1542-7730
http://queue.acm.org/detail.cfm?id=2071893 .

[3] Ashvin Goel, Charles Krasic, Kang Li, and Jonathan Walpoe. Supporting low latency TCP-based media
streams. In Proceedings of the Tenth International Workshop on Quality of Service (IWQoS), May 2002.
http://www.eecg.toronto.edu/~ashvin/publications/iwqos2002.pdf .

[4] Andreas Petlund. Improving latency for interactive, thin-stream applications over reliable transport. PhD
thesis, Department of Informatics, University of Oslo, Oslo, Norway, October 2009. ISSN 1501-7710
https://www.duo.uio.no/bitstream/handle/10852/10152/Petlund.pdf .

[5] Espen Søgård Paaby. Evaluation of TCP retransmission delays. Master’s thesis, Department of Informatics,
University of Oslo, Oslo, Norway, May 2006.
http://www.duo.uio.no/publ/informatikk/2006/42442/Paaby.pdf .

[6] Carsten Griwodz and Pål Halvorsen. The fun of using TCP for an MMORPG. In Proceedings of the 2006
International Workshop on Network and Operating Systems Support for Digital Audio and Video, NOSSDAV
’06, pages 1–7, Newport, Rhode Island, United States, 2006. Association for Computing Machinery (ACM).
http://heim.ifi.uio.no/~griff/papers/funtrace.pdf .

[7] Nandita Dukkipati, Matt Mathis, Yuching Cheng, and Monia Ghobadi. Proportional rate reduction for TCP.
In Proceedings of the 11th ACM SIGCOMM Conference on Internet Measurement 2011. Association for
Computing Machinery (ACM), November 2011.
http://conferences.sigcomm.org/imc/2011/docs/p155.pdf .

[8] Marco Mellia, Michela Meo, and Cladio Casetti. TCP smart framing: a segmentation algorithm to reduce
TCP latency. IEEE/ACM Transactions on Networking, 13(2):316–329, April 2005. ISSN 1063-6692
http://research.microsoft.com/en-us/um/people/padmanab/temp/ton/

fea2f08f9e3206d5001.pdf .

[9] Andreas Petlund. TCP thin-stream modifications: Reduced latency for interactive applications. Linux Jour-
nal, 219, July 2012.
https://www.simula.no/publications/LJ-219-Jul-2012/simula_pdf_file .

[10] Van Jacobson. Congestion avoidance and control. SIGCOMM Computer Communication Review, 18(4):314–
329, August 1988. ISSN 0146-4833
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z .

75

https://www.sandvine.com/downloads/general/global-internet-phenomena/2013/2h-2013-global-internet-phenomena-report.pdf
https://www.sandvine.com/downloads/general/global-internet-phenomena/2013/2h-2013-global-internet-phenomena-report.pdf
http://queue.acm.org/detail.cfm?id=2071893
http://www.eecg.toronto.edu/~ashvin/publications/iwqos2002.pdf
https://www.duo.uio.no/bitstream/handle/10852/10152/Petlund.pdf
http://www.duo.uio.no/publ/informatikk/2006/42442/Paaby.pdf
http://heim.ifi.uio.no/~griff/papers/funtrace.pdf
http://conferences.sigcomm.org/imc/2011/docs/p155.pdf
http://research.microsoft.com/en-us/um/people/padmanab/temp/ton/fea2f08f9e3206d5001.pdf
http://research.microsoft.com/en-us/um/people/padmanab/temp/ton/fea2f08f9e3206d5001.pdf
https://www.simula.no/publications/LJ-219-Jul-2012/simula_pdf_file
ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z

[11] Rajendra K. Jain, Dah-Ming W. Chiu, and William R. Hawe. A quantitative measurement of fairness and
discrimination for resource allocation in shared computer system. Technical report, Digital Equipment Cor-
poration, September 1984.
http://www1.cse.wustl.edu/~jain/papers/ftp/fairness.pdf .

[12] Bob Briscoe. Flow rate fairness: Dismantling a religion. SIGCOMM Computer Communication Review,
37(2):63–74, April 2007. ISSN 0146-4833
http://www.eecs.berkeley.edu/~sylvia/cs268-2013/papers/dismantling.pdf .

[13] Markus Simon Fuchs. Time-dependent thin transport layer streams: Characterization, empirical observation
and protocol support. Master’s thesis, Department of Computer Science, University of Kaiserslautern (TU
Kaiserslautern), Kaiserslautern, Germany, January 2014.

[14] Mats Rosbach. Verification of network simulators: The good, the bad and the ugly. Master’s thesis, Depart-
ment of Informatics, University of Oslo, Oslo, Norway, November 2012.
https://www.duo.uio.no/bitstream/handle/10852/34916/Rosbach-Master.pdf .

[15] Kristian R. Evensen. Improving TCP for time-dependent applications. Master’s thesis, Department of Infor-
matics, University of Oslo, Oslo, Norway, May 2008.
http://www.duo.uio.no/publ/informatikk/2008/79691/Evensen.pdf .

[16] High-performance automated trading network architectures. Technical report, Cisco Systems Inc., 2010.
http://www.cisco.com/web/strategy/docs/finance/c11-600126_wp.pdf .

[17] Petri Arola. Algorithmic trading: Can you meet the need for speed? Technical report, Detica, 2008.
https://www.baesystemsdetica.com/uploads/resources/

d4e99b39c4c4622ce5ece31a4e2d946a1.pdf .

[18] Ultra-low-latency networking. Technical Report 888.706.4239, CDW, 2012.
http://webobjects.cdw.com/webobjects/media/pdf/Solutions/Financial/

Ultra-Low-Latency-Networking.pdf .

[19] Essential facts about about the computer and video game industry. Technical report, Entertainment Software
Association, 2010.
http://www.theesa.com/facts/pdfs/ESA_Essential_Facts_2010.PDF .

[20] Mark Claypool and Kajal Claypool. Latency and player actions in online games. Communications of the
ACM, 49(11), November 2006.
http://web.cs.wpi.edu/~claypool/papers/precision-deadline/final.pdf .

[21] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel Agu, and Mark Claypool. The
effects of loss and latency on user performance in Unreal Tournament 2003. SIGCOMM’ 04. Association
for Computing Machinery (ACM), August 2004.
http://web.cs.wpi.edu/~claypool/papers/ut2003/ut2003.pdf .

[22] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and Emmanuel Agu. The effect of latency on user
performance in Warcraft III. NetGames ’03. Association for Computing Machinery (ACM), May 2003.
http://web.cs.wpi.edu/~claypool/papers/war3/war3.pdf .

[23] Peter Quax, Patrick Monsieurs, Wim Lamotte, Danny De Vleeschauwer, and Natalie Degrande. Objective
and subjective evaluation of the influence of small amounts of delay and jitter on a recent first person shooter
game. In Proceedings of ACM International Conference on Applications, Technologies, Architectures
and Protocols for Computer Communication, SIGCOMM ’04 Workshops. Association for Computing
Machinery (ACM), September 2004. ISBN 0-58113-042

76

http://www1.cse.wustl.edu/~jain/papers/ftp/fairness.pdf
http://www.eecs.berkeley.edu/~sylvia/cs268-2013/papers/dismantling.pdf
https://www.duo.uio.no/bitstream/handle/10852/34916/Rosbach-Master.pdf
http://www.duo.uio.no/publ/informatikk/2008/79691/Evensen.pdf
http://www.cisco.com/web/strategy/docs/finance/c11-600126_wp.pdf
https://www.baesystemsdetica.com/uploads/resources/d4e99b39c4c4622ce5ece31a4e2d946a1.pdf
https://www.baesystemsdetica.com/uploads/resources/d4e99b39c4c4622ce5ece31a4e2d946a1.pdf
http://webobjects.cdw.com/webobjects/media/pdf/Solutions/Financial/Ultra-Low-Latency-Networking.pdf
http://webobjects.cdw.com/webobjects/media/pdf/Solutions/Financial/Ultra-Low-Latency-Networking.pdf
http://www.theesa.com/facts/pdfs/ESA_Essential_Facts_2010.PDF
http://web.cs.wpi.edu/~claypool/papers/precision-deadline/final.pdf
http://web.cs.wpi.edu/~claypool/papers/ut2003/ut2003.pdf
http://web.cs.wpi.edu/~claypool/papers/war3/war3.pdf

http://conferences.sigcomm.org/sigcomm/2004/workshop_papers/net608-quax.

pdf .

[24] Chris Carlmar. Improving latency for interactive, thin-stream applications by multiplexing streams over TCP.
Master’s thesis, Department of Informatics, University of Oslo, Oslo, Norway, February 2011.
http://www.duo.uio.no/publ/informatikk/2011/111955/Carlmar.pdf .

[25] One-way transmission time. Technical Report G.114, International Telecommunication Union (ITU-T), May
2003.
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-G.114-200305-I!

!PDF-E&type=itemsoiceoverIP .

[26] Narrow-band visual telephone systems and terminal equipment. Technical Report H.320, International
Telecommunication Union (ITU-T), March 2004.
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.320-200403-I!

!PDF-E&type=items .

[27] Ahmed Sabbir Arif and Wolfang Stuerzlinger. Anaysis of text entry performance metrics. In Science and
Technology for Humanity (TIC-STH), 2009 IEEE Toronto International Conference, pages 100–105, Septem-
ber 2009.
http://www.cse.yorku.ca/~wolfgang/papers/textperfmetrics.pdf .

[28] Anuj Agarwal. High-frequency trading: Evolution and the future. Technical report, Capgemini, 2012.
http://www.capgemini.com/resource-file-access/resource/pdf/High_

Frequency_Trading__Evolution_and_the_Future.pdf .

[29] A. D. Wissner-Gross and C. E. Freer. Relativistic statistical arbitrage. Physical Review E, 82(5):056104,
November 2010.
http://www.alexwg.org/publications/PhysRevE_82-056104.pdf .

[30] Andrew S. Tanenbaum. Computer Networks. Pearson Education International, Inc., Vrije Universiteit (VU
University), Amsterdam, Netherlands, 4th edition, 2003. ISBN 0-13-038488-7.

[31] Michael Welzl. Network Congestion Control: Managing Internet Traffic. Communications Networking
& Distributed Systems. John Wiley & Sons, Ltd., Leopold Franzens University of Innsbruck, Innsbruck,
Austria, 2005. ISBN 978-0-470-02528-4.

[32] Vinton G. Cerf and Robert E. Kahn. A protocol for packet network intercommunication. In IEEE Transac-
tions on Communications, volume 22. Institute of Electrical and Electronics Engineers (IEEE), Institute of
Electrical and Electronics Engineers (IEEE), May 1974.

[33] Matthew Mathis and Jamshid Mahdavi. Forward acknowledgement: refining TCP congestion control. In
Proceedings of ACM International Conference on Applications, Technologies, Architectures and Protocols
for Computer Communication, SIGCOMM ’96, pages 281–291, Palo Alto, California, United States, 1996.
Association for Computing Machinery (ACM). ISBN 0-89791-790-1
http://doi.acm.org/10.1145/248156.248181 .

[34] Mohammad Alizadeh, Albert Greenberg, David Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,
Sudipta Sengupta, and Murari Sridharan. Data center TCP (DCTCP). In Proceedings of the ACM SIGCOMM
2010 Conference, SIGCOMM ’10, pages 63–74. Association for Computing Machinery (ACM), August
2010. ISBN 978-1-4503-0201-2
http://sedcl.stanford.edu/files/dctcp-final.pdf .

77

http://conferences.sigcomm.org/sigcomm/2004/workshop_papers/net608-quax.pdf
http://conferences.sigcomm.org/sigcomm/2004/workshop_papers/net608-quax.pdf
http://www.duo.uio.no/publ/informatikk/2011/111955/Carlmar.pdf
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-G.114-200305-I!!PDF-E&type=itemsoice over IP
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-G.114-200305-I!!PDF-E&type=itemsoice over IP
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.320-200403-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-H.320-200403-I!!PDF-E&type=items
http://www.cse.yorku.ca/~wolfgang/papers/textperfmetrics.pdf
http://www.capgemini.com/resource-file-access/resource/pdf/High_Frequency_Trading__Evolution_and_the_Future.pdf
http://www.capgemini.com/resource-file-access/resource/pdf/High_Frequency_Trading__Evolution_and_the_Future.pdf
http://www.alexwg.org/publications/PhysRevE_82-056104.pdf
http://doi.acm.org/10.1145/248156.248181
http://sedcl.stanford.edu/files/dctcp-final.pdf

[35] Steven Low, Larry Peterson, and Limin Wang. Understanding TCP Vegas: Theory and practice. Technical
Report TR-616-00, Princeton University, February 2000.
ftp://ftp.cs.princeton.edu/techreports/2000/616.pdf .

[36] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary increase congestion control for fast, long distance
networks. Technical report, North Carolina State University.
http://www.csc.ncsu.edu/faculty/rhee/export/bitcp.pdf .

[37] Marco Mellia, Ion Stoica, and Hui Zhang. TCP model for short lived flows. Communications Letters,
6(2):85–87, February 2002. ISSN 1089-7798
http://iie.fing.edu.uy/ense/asign/perfredes/material_perm/

shortLivedTCPFlows.pdf .

[38] Sally Floyd and Van Jacobson. On traffic phase effects in packet-switched gateways. SIGCOMM Computer
Communication Review, 21(2):26–46, April 1991.
http://www.icir.org/floyd/papers/phase.pdf .

[39] Hari Balakrishnan, Venkata N. Padmanabhan, Srinivasan Seshan, Mark Stemm, and Randy H. Katz. TCP
behaviour of a busy internet server: Analysis and improvements. In Proceedings of IEEE INFOCOM, vol-
ume 1, pages 252–262. Institute of Electrical and Electronics Engineers (IEEE), March 1998.
http://www.cs.cmu.edu/~srini/Papers/1998.Balakrishnan.infocom.pdf .

[40] IEEE standard for ethernet: Section one. Technical Report IEEE 802.3-2012, Institute of Electrical and
Electronics Engineers (IEEE), December 2012.
http://standards.ieee.org/getieee802/download/802.3-2012_section1.pdf .

[41] Pasi Sarolahti and Alexey Kuznetsov. Congestion control in linux TCP. In Proceedings of the FREENIX
Track: 2002 USENIX Annual Technical Conference, pages 49–62. USENIX Association, 2002. ISBN
1-880446-01-4
https://www.usenix.org/legacy/event/usenix02/tech/freenix/full_papers/

sarolahti/sarolahti_html/ .

[42] David X. Wei and Pei Cao. NS-2 TCP implementation with congestion control algorithms from Linux.
In Proceedings from the 2006 Workshop on Ns-2: The IP Network Simulator, WNS2 ’06. Association for
Computing Machinery (ACM), 2006. ISBN 1-59593-508-8
http://netlab.caltech.edu/projects/ns2tcplinux/paper/wns2-final.pdf .

[43] Kathleen Nichols and Van Jacobson. Controlling queue delay. ACM Queue, 10(5):20–34, May 2012. ISSN
1542-7730.

[44] G. Vy-Brugier, R. S. Stanojevic, D. J. Leith, and R. N. Shorten. A critique of recently proposed buffer-sizing
strategies. SIGCOMM Computer Communication Review, 37(1):43–48, January 2007. ISSN 0146-4833
http://www.hamilton.ie/net/ccr.pdf .

[45] Yi Wang, Guohan Lu, and Xing Li. A study of Internet packet reordering. The International Conference on
Information Networking (ICOIN) 2004, pages 350–359, 2004. ISBN 3-540-23034-3
http://www.cs.princeton.edu/~yiwang/papers/icoin04.pdf .

[46] Anders Grotthing Moe. Implementing rate control in NetEm: Untying the NetEm/tc tangle. Master’s thesis,
Department of Informatics, University of Oslo, Oslo, Norway, August 2013.
https://www.duo.uio.no/bitstream/handle/10852/37459/Moe-Master.pdf .

[47] Wu chang Feng, Kang G. Shin, Dilip D. Kandlur, and Debanjan Saha. The BLUE active queue management
algorithms. In IEEE/ACM Transactions on Networking, volume 10. Institute of Electrical and Electronics
Engineers (IEEE), August 2002. ISSN 1063-6692.

78

ftp://ftp.cs.princeton.edu/techreports/2000/616.pdf
http://www.csc.ncsu.edu/faculty/rhee/export/bitcp.pdf
http://iie.fing.edu.uy/ense/asign/perfredes/material_perm/shortLivedTCPFlows.pdf
http://iie.fing.edu.uy/ense/asign/perfredes/material_perm/shortLivedTCPFlows.pdf
http://www.icir.org/floyd/papers/phase.pdf
http://www.cs.cmu.edu/~srini/Papers/1998.Balakrishnan.infocom.pdf
http://standards.ieee.org/getieee802/download/802.3-2012_section1.pdf
https://www.usenix.org/legacy/event/usenix02/tech/freenix/full_papers/sarolahti/sarolahti_html/
https://www.usenix.org/legacy/event/usenix02/tech/freenix/full_papers/sarolahti/sarolahti_html/
http://netlab.caltech.edu/projects/ns2tcplinux/paper/wns2-final.pdf
http://www.hamilton.ie/net/ccr.pdf
http://www.cs.princeton.edu/~yiwang/papers/icoin04.pdf
https://www.duo.uio.no/bitstream/handle/10852/37459/Moe-Master.pdf

[48] Masaki Hirabaru. Impact of bottleneck queue size on TCP protocols and its measurement. IEICE Transac-
tions on Communications, E89-B(1), January 2006.
http://hirabaru.org/papers/IEICE2005-final.pdf .

79

http://hirabaru.org/papers/IEICE2005-final.pdf

Internet Standards and Drafts

[49] S. Floyd. Metrics for the Evaluation of Congestion Control Mechanisms. RFC 5166 (Informational), March
2008.

[50] J. Postel. Internet Protocol. RFC 791 (INTERNET STANDARD), September 1981. Updated by RFCs 1349,
2474, 6864.

[51] JM. Valin, K. Vos, and T. Terriberry. Definition of the Opus Audio Codec. RFC 6716 (Proposed Standard),
September 2012.

[52] S. Andersen, A. Duric, H. Astrom, R. Hagen, W. Kleijn, and J. Linden. Internet Low Bit Rate Codec (iLBC).
RFC 3951 (Experimental), December 2004.

[53] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator
(NAT) Traversal for Offer/Answer Protocols. RFC 5245 (Proposed Standard), April 2010. Updated by RFC
6336.

[54] R. Mahy, P. Matthews, and J. Rosenberg. Traversal Using Relays around NAT (TURN): Relay Extensions to
Session Traversal Utilities for NAT (STUN). RFC 5766 (Proposed Standard), April 2010.

[55] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal Utilities for NAT (STUN). RFC 5389
(Proposed Standard), October 2008.

[56] J. Postel. User Datagram Protocol. RFC 768 (INTERNET STANDARD), August 1980.

[57] Audio-Video Transport Working Group, H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A
Transport Protocol for Real-Time Applications. RFC 1889 (Proposed Standard), January 1996. Obsoleted
by RFC 3550.

[58] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol for Real-Time Appli-
cations. RFC 3550 (INTERNET STANDARD), July 2003. Updated by RFCs 5506, 5761, 6051, 6222, 7022,
7164.

[59] J. Postel. Transmission Control Protocol. RFC 793 (INTERNET STANDARD), September 1981. Updated
by RFCs 1122, 3168, 6093, 6528.

[60] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC 1122 (INTERNET STANDARD),
October 1989. Updated by RFCs 1349, 4379, 5884, 6093, 6298, 6633, 6864.

[61] V. Cerf, Y. Dalal, and C. Sunshine. Specification of Internet Transmission Control Program. RFC 675,
December 1974.

[62] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion Notification (ECN) to IP.
RFC 3168 (Proposed Standard), September 2001. Updated by RFCs 4301, 6040.

80

[63] N. Spring, D. Wetherall, and D. Ely. Robust Explicit Congestion Notification (ECN) Signaling with Nonces.
RFC 3540 (Experimental), June 2003.

[64] J. Postel and J.K. Reynolds. Telnet Protocol Specification. RFC 854 (INTERNET STANDARD), May 1983.
Updated by RFC 5198.

[65] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowledgment Options. RFC 2018
(Proposed Standard), October 1996.

[66] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance. RFC 1323 (Proposed
Standard), May 1992.

[67] V. Jacobson. Compressing TCP/IP Headers for Low-Speed Serial Links. RFC 1144 (Proposed Standard),
February 1990.

[68] M. Cotton, L. Eggert, J. Touch, M. Westerlund, and S. Cheshire. Internet Assigned Numbers Authority
(IANA) Procedures for the Management of the Service Name and Transport Protocol Port Number Registry.
RFC 6335 (Best Current Practice), August 2011.

[69] J.C. Mogul and S.E. Deering. Path MTU discovery. RFC 1191 (Draft Standard), November 1990.

[70] E. Blanton, M. Allman, K. Fall, and L. Wang. A Conservative Selective Acknowledgment (SACK)-based
Loss Recovery Algorithm for TCP. RFC 3517 (Proposed Standard), April 2003. Obsoleted by RFC 6675.

[71] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An Extension to the Selective Acknowledgement (SACK)
Option for TCP. RFC 2883 (Proposed Standard), July 2000.

[72] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC 5681 (Draft Standard), September
2009.

[73] V. Jacobson and R.T. Braden. TCP extensions for long-delay paths. RFC 1072 (Historic), October 1988.
Obsoleted by RFCs 1323, 2018, 6247.

[74] J. Nagle. Congestion Control in IP/TCP Internetworks. RFC 896, January 1984.

[75] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida. The NewReno Modification to TCP’s Fast Recovery
Algorithm. RFC 6582 (Proposed Standard), April 2012.

[76] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649 (Experimental), December 2003.

[77] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to TCP’s Fast Recovery Algorithm. RFC
3782 (Proposed Standard), April 2004. Obsoleted by RFC 6582.

[78] P. Sarolahti, M. Kojo, K. Yamamoto, and M. Hata. Forward RTO-Recovery (F-RTO): An Algorithm for
Detecting Spurious Retransmission Timeouts with TCP. RFC 5682 (Proposed Standard), September 2009.

[79] V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing TCP’s Retransmission Timer. RFC 6298 (Pro-
posed Standard), June 2011.

[80] M. Allman, K. Avrachenkov, U. Ayesta, J. Blanton, and P. Hurtig. Early Retransmit for TCP and Stream
Control Transmission Protocol (SCTP). RFC 5827 (Experimental), May 2010.

[81] M. Mathis, N. Dukkipati, and Y. Cheng. Proportional Rate Reduction for TCP. RFC 6937 (Experimental),
May 2013.

[82] J. Postel. Internet Control Message Protocol. RFC 792 (INTERNET STANDARD), September 1981. Up-
dated by RFCs 950, 4884, 6633, 6918.

[83] J. Moy. OSPF Version 2. RFC 2328 (INTERNET STANDARD), April 1998. Updated by RFCs 5709, 6549,
6845, 6860.

81

Internet References

[84] Jim Gettys. The criminal mastermind: bufferbloat.
http://gettys.wordpress.com/2010/12/03/introducing-the-criminal-mastermind-bufferbloat/

, December 2010.
Accessed July 2014.

[85] Reducing internet transport latency.
http://riteproject.eu/ .
Accessed July 2014.

[86] Best practices for benchmarking CoDel and FQ CoDel (and almost anything else!).
https://www.bufferbloat.net/projects/codel/wiki/Best_practices_for_

benchmarking_Codel_and_FQ_Codel , March 2013.
Accessed November 2013.

[87] Actions per minute.
http://en.wikipedia.org/wiki/Actions_per_minute .
Accessed July 2014.

[88] G-series recommendations.
http://www.itu.int/rec/T-REC-G/en .
Accessed March 2014.

[89] WebRTC frequently asked questions.
http://webrtc.org/faq .
Accessed April 2014.

[90] Opus (audio codec).
http://en.wikipedia.org/wiki/Opus_(audio_codec) .
Accessed April 2014.

[91] Understanding delay in packet voice networks.
http://www.cisco.com/c/en/us/support/docs/voice/voice-quality/

5125-delay-details.html#standarfordelaylimits .
Accessed June 2014.

[92] Stuart Cheshire. Latency and the quest for interactivity.
http://www.stuartcheshire.org/papers/LatencyQuest.html , November 1996.
Accessed June 2014.

[93] Measuring video quality in videoconferencing systems.
http://www.watchpointvideo.com/pdf/Measuring%20Video%20Quality%20in%

82

http://gettys.wordpress.com/2010/12/03/introducing-the-criminal-mastermind-bufferbloat/
http://riteproject.eu/
https://www.bufferbloat.net/projects/codel/wiki/Best_practices_for_benchmarking_Codel_and_FQ_Codel
https://www.bufferbloat.net/projects/codel/wiki/Best_practices_for_benchmarking_Codel_and_FQ_Codel
http://en.wikipedia.org/wiki/Actions_per_minute
http://www.itu.int/rec/T-REC-G/en
http://webrtc.org/faq
http://en.wikipedia.org/wiki/Opus_(audio_codec)
http://www.cisco.com/c/en/us/support/docs/voice/voice-quality/5125-delay-details.html#standarfordelaylimits
http://www.cisco.com/c/en/us/support/docs/voice/voice-quality/5125-delay-details.html#standarfordelaylimits
http://www.stuartcheshire.org/papers/LatencyQuest.html
http://www.watchpointvideo.com/pdf/Measuring%20Video%20Quality%20in%20Videoconferencing%20Systems.pdf
http://www.watchpointvideo.com/pdf/Measuring%20Video%20Quality%20in%20Videoconferencing%20Systems.pdf
http://www.watchpointvideo.com/pdf/Measuring%20Video%20Quality%20in%20Videoconferencing%20Systems.pdf

20Videoconferencing%20Systems.pdf .
Accessed April 2014.

[94] Words per minute.
http://en.wikipedia.org/wiki/Words_per_minute .
Accessed July 2014.

[95] Richard Martin. Wall street’s quest to process data at the speed of light.
http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/

d/d-id/1054287? , April 2007.
Accessed July 2014.

[96] Viraf Reporter. The value of a millisecond: Finding the optimal speed of a trading infrastructure.
http://community.rti.com/sites/default/files/archive/V06-007_Value_of_a_

Millisecond.pdf , April 2008.
Accessed July 2014.

[97] Wikipedia. Internet protocol suite.
http://en.wikipedia.org/wiki/Internet_protocol_suite .
Accessed June 2012.

[98] Wikipedia. OSI model.
http://en.wikipedia.org/wiki/OSI_model .
Accessed June 2012.

[99] Wikipedia. Transmission Control Protocol.
http://en.wikipedia.org/wiki/Transmission_Control_Protocol .
Accessed July 2012.

[100] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain. TCP fast open.
http://tools.ietf.org/html/draft-ietf-tcpm-fastopen-08 , March 2014.
Accessed July 2014.

[101] IPv4 variables.
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt .
Accessed April 2014.

[102] TCP protocol manual page.
http://man7.org/linux/man-pages/man7/tcp.7.html .
Accessed July 2014.

[103] TCP Westwood+.
http://c3lab.poliba.it/index.php/Westwood .
Accessed July 2012.

[104] M. Sridharan, K. Tan, D. Bansal, and D. Thaler. Compound TCP: A new TCP congestion control for high-
speed and long distance networks.
http://tools.ietf.org/html/draft-sridharan-tcpm-ctcp-02 , November 2009.
Accessed July 2014.

[105] Wikipedia. TCP congestion avoidance algorithm.
http://en.wikipedia.org/wiki/TCP_congestion_avoidance_algorithm .
Accessed July 2012.

83

http://www.watchpointvideo.com/pdf/Measuring%20Video%20Quality%20in%20Videoconferencing%20Systems.pdf
http://www.watchpointvideo.com/pdf/Measuring%20Video%20Quality%20in%20Videoconferencing%20Systems.pdf
http://www.watchpointvideo.com/pdf/Measuring%20Video%20Quality%20in%20Videoconferencing%20Systems.pdf
http://en.wikipedia.org/wiki/Words_per_minute
http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/1054287?
http://www.informationweek.com/wall-streets-quest-to-process-data-at-the-speed-of-light/d/d-id/1054287?
http://community.rti.com/sites/default/files/archive/V06-007_Value_of_a_Millisecond.pdf
http://community.rti.com/sites/default/files/archive/V06-007_Value_of_a_Millisecond.pdf
http://en.wikipedia.org/wiki/Internet_protocol_suite
http://en.wikipedia.org/wiki/OSI_model
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://tools.ietf.org/html/draft-ietf-tcpm-fastopen-08
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
http://man7.org/linux/man-pages/man7/tcp.7.html
http://c3lab.poliba.it/index.php/Westwood
http://tools.ietf.org/html/draft-sridharan-tcpm-ctcp-02
http://en.wikipedia.org/wiki/TCP_congestion_avoidance_algorithm

[106] Ilpo Järvinen. RE: TCP default congestion control in linux should be newreno.
http://lists.openwall.net/netdev/2008/12/04/87 .
Accessed March 2014.

[107] Kenji Kurata, Go Hasegawa, and Masayuki Murata. Fairness comparions between TCP Reno and TCP
Vegas for future deployment of TCP Vegas.
http://www.isoc.org/inet2000/cdproceedings/2d/2d_2.htm .
Accessed March 2014.

[108] Neal Cardwell and Boris Bak. A TCP Vegas implementation for Linux.
http://neal.nu/uw/linux-vegas/ .
Accessed March 2014.

[109] Lawrence Stewart, David Hayes, and Grenville Armitage. FreeBSD SVN commit log.
http://lists.freebsd.org/pipermail/svn-src-head/2011-February/024595.

html .
Accessed March 2014.

[110] DD-WRT changelog.
http://www.dd-wrt.com/wiki/index.php/Changelog .
Accessed March 2014.

[111] Sangtae Ha and Injong Rhee. BIC and CUBIC.
http://research.csc.ncsu.edu/netsrv/?q=content/bic-and-cubic .
Accessed March 2014.

[112] Lawrence Stewart, David Hayes, and Grenville Armitage. FreeBSD SVN commit log.
http://lists.freebsd.org/pipermail/svn-src-head/2010-December/022924.

html .
Accessed March 2014.

[113] CC_CUBIC manual page.
http://www.freebsd.org/cgi/man.cgi?query=cc_cubic .
Accessed March 2014.

[114] M. Mellia, M. Meo, and C. Casetti. TCP smart-framing.
http://tools.ietf.org/html/draft-mellia-tsvwg-tcp-smartframing-00 , Novem-
ber 2001.
Accessed July 2014.

[115] Yuchung Cheng. tcp: early retransmit.
http://git.kernel.org/linus/eed530b6c67624db3f2cf477bac7c4d005d8f7ba .
Accessed June 2014.

[116] Andreas Petlund. net: TCP thin dupack.
http://git.kernel.org/linus/7e38017557bc0b87434d184f8804cadb102bb903 .
Accessed June 2014.

[117] Andreas Petlund. net: TCP thin linear timeouts.
http://git.kernel.org/linus/36e31b0af58728071e8023cf8e20c5166b700717 .
Accessed June 2014.

[118] N. Dukkipati, N. Cardwell, Y. Cheng, and M. Mathis. Tail loss probe TLP: An algorithm for fast recovery
of tail losses.

84

http://lists.openwall.net/netdev/2008/12/04/87
http://www.isoc.org/inet2000/cdproceedings/2d/2d_2.htm
http://neal.nu/uw/linux-vegas/
http://lists.freebsd.org/pipermail/svn-src-head/2011-February/024595.html
http://lists.freebsd.org/pipermail/svn-src-head/2011-February/024595.html
http://www.dd-wrt.com/wiki/index.php/Changelog
http://research.csc.ncsu.edu/netsrv/?q=content/bic-and-cubic
http://lists.freebsd.org/pipermail/svn-src-head/2010-December/022924.html
http://lists.freebsd.org/pipermail/svn-src-head/2010-December/022924.html
http://www.freebsd.org/cgi/man.cgi?query=cc_cubic
http://tools.ietf.org/html/draft-mellia-tsvwg-tcp-smartframing-00
http://git.kernel.org/linus/eed530b6c67624db3f2cf477bac7c4d005d8f7ba
http://git.kernel.org/linus/7e38017557bc0b87434d184f8804cadb102bb903
http://git.kernel.org/linus/36e31b0af58728071e8023cf8e20c5166b700717

http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01 , Febru-
ary 2013.
Accessed June 2014.

[119] Nandita Dukkipati. tcp: tail loss probe (TLP).
http://git.kernel.org/linus/6ba8a3b19e764b6a65e4030ab0999be50c291e6c .
Accessed June 2014.

[120] Jean-Yves Le Boudec. Rate adaption, congestion control and fairness: A tutorial.
http://ica1www.epfl.ch/PS_files/LEB3132.pdf , November 2012.
Accessed August 2014.

[121] netem.
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem .
Accessed June 2014.

[122] ns-3.
http://www.nsnam.org/ .
Accessed August 2014.

[123] ns-2.
http://nsnam.isi.edu/nsnam/index.php/User_Information .
Accessed August 2014.

[124] Hajime Tazaki, Frédéric Urbani, and Thierry Turletti. Simulate network protocols with real stacks for better
realism.
http://www.nsnam.org/wp-content/uploads/2013/01/WNS3-2013-Presentation-Tazaki.

pdf , March 2013.
Accessed August 2014.

[125] Martin A. Brown. Traffic control HOWTO.
http://tldp.org/HOWTO/Traffic-Control-HOWTO/ , October 2006.
Accessed July 2014.

[126] iproute2.
http://www.linuxfoundation.org/collaborate/workgroups/networking/

iproute2 .
Accessed June 2014.

[127] HTB manual page.
http://linux.die.net/man/8/tc-htb .
Accessed July 2014.

[128] TBF manual page.
http://linux.die.net/man/8/tc-tbf .
Accessed July 2014.

[129] Jason Boxman. A practical guide to linux traffic control.
http://blog.edseek.com/~jasonb/articles/traffic_shaping/index.html , Febru-
ary 2005.
Accessed July 2014.

[130] Jarek Poplawski. sch_netem: Remove classful functionality.
http://git.kernel.org/linus/02201464119334690fe209849843881b8e9cfa9f .
Accessed July 2014.

85

http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01
http://git.kernel.org/linus/6ba8a3b19e764b6a65e4030ab0999be50c291e6c
http://ica1www.epfl.ch/PS_files/LEB3132.pdf
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
http://www.nsnam.org/
http://nsnam.isi.edu/nsnam/index.php/User_Information
http://www.nsnam.org/wp-content/uploads/2013/01/WNS3-2013-Presentation-Tazaki.pdf
http://www.nsnam.org/wp-content/uploads/2013/01/WNS3-2013-Presentation-Tazaki.pdf
http://tldp.org/HOWTO/Traffic-Control-HOWTO/
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://linux.die.net/man/8/tc-htb
http://linux.die.net/man/8/tc-tbf
http://blog.edseek.com/~jasonb/articles/traffic_shaping/index.html
http://git.kernel.org/linus/02201464119334690fe209849843881b8e9cfa9f

[131] The tick rate: HZ.
http://www.makelinux.net/books/lkd2/ch10lev1sec2 .
Accessed November 2013.

[132] TCPDUMP and LIBPCAP.
http://www.tcpdump.org/ .
Accessed July 2014.

[133] Jonas Sæther Markussen. tput.
https://github.com/enfiskutensykkel/tput .

[134] Shawn Osterman. tcptrace.
http://www.tcptrace.org/ .
Accessed August 2014.

[135] Wireshark.
http://www.wireshark.org/ .
Accessed August 2014.

[136] Wikipedia. Wireshark. http://en.wikipedia.org/wiki/Wireshark.
Accessed August 2014.

[137] Hagen Paul Pfeifer. captcp.
https://github.com/hgn/captcp .
Accessed August 2014.

[138] Jonas Sæther Markussen. aqmprobe.
https://github.com/enfiskutensykkel/aqmprobe .

[139] Jim Keniston, Prasanna S. Panchamukhi, and Masami Hiramatsu. Kernel probes (Kprobes).
https://www.kernel.org/doc/Documentation/kprobes.txt .
Accessed August 2014.

[140] Get xs 5.
http://www.get.no/produkter/superbredband/xs-4 .
Accessed August 2014.

[141] Stuart Cheshire. It’s the latency, stupid.
http://rescomp.stanford.edu/~cheshire/rants/Latency.html , May 1996.
Accessed June 2014.

86

http://www.makelinux.net/books/lkd2/ch10lev1sec2
http://www.tcpdump.org/
https://github.com/enfiskutensykkel/tput
http://www.tcptrace.org/
http://www.wireshark.org/
https://github.com/hgn/captcp
https://github.com/enfiskutensykkel/aqmprobe
https://www.kernel.org/doc/Documentation/kprobes.txt
http://www.get.no/produkter/superbredband/xs-4
http://rescomp.stanford.edu/~cheshire/rants/Latency.html

Appendix A

All test scenarios

An index of all tests performed as well as plots and datasets can be found at the following URL:
http://folk.uio.no/jonassm/masterthesis/

87

http://folk.uio.no/jonassm/masterthesis/

Appendix B

Testbed configuration

B.1 Specifications

Table B.1: Testbed system specifications

Host CPU RAM Kernel
sender AMD Athlon 64 X2 Dual Core 4800+ 2 GB 3.12.0-rc4+ x86_64
xsender AMD Athlon 64 X2 Dual Core 4800+ 2 GB 2.6.32-5-amd64 x86_64
receiver AMD Athlon 64 X2 Dual Core 4800+ 2 GB 2.6.32-5-amd64 x86_64
bridge Intel Pentium D 2.80 GHz 2 GB 2.6.32-5-amd64 x86_64
emulator Intel Pentium D 2.80 GHz 2 GB 2.6.32-5-amd64 x86_64
router AMD Athlon 64 X2 Dual Core 4800+ 2 GB 3.12.0-rc3 x86_64

Table B.2: Testbed network specifications

Host Interface IP address Controller Driver Type Bus
sender eth1 10.0.0.10 Marvell 88E8001 skge 1.13 1000BASE-T PCI
xsender eth1 10.0.0.11 D-Link DGE-528T r8169 2.3LK-NAPI 1000BASE-T PCI
receiver eth1 10.0.1.10 Marvell 88E8001 skge 1.13 1000BASE-T PCI
bridge eth1-4 - Intel 1521 (4 port) igb 3.0.6-k2 1000BASE-T PCIe x4
emulator eth1-4 - Intel 1521 (4 port) igb 3.0.6-k2 1000BASE-T PCIe x4
router eth1 10.0.0.1 D-Link DGE-528T r8169 2.3LK-NAPI 1000BASE-T PCI
router eth2 10.0.1.1 D-Link DGE-528T r8169 2.3LK-NAPI 1000BASE-T PCI

Since both interfaces on the router is connected to the same conventional PCI bus, the absolute maximum through-
put from sender to receiver and vice versa is around 230 Mbps.

88

Sender

Receiver

Network
emulator

Router

XSender

Bridge

Limited bandwidth

Adding delay in both directions

10.0.0.10

10.0.0.11

10.0.1.10

10.0.0.1

10.0.1.1

Figure B.1: Testbed network topology

B.2 Topology

We used tc to limit the bandwidth, netem as our network emulator and brctl for creating the network bridge.
On the router, the system option net.ipv4.ip_forward was enabled and static routes were configured using
the ip utility. Traffic from the sender had the same RTT, while traffic from the xsender were given different RTTs.
The txqueuelen was set to 0 on all interfaces, and NIC offloading (TSO, GSO, TRO and LRO) was disabled.

89

Appendix C

Web-site RTT measurements

Table C.1: Web-site RTT measurements performed in June 2014

Host IP address min avg median max max-min dist
google.com 81.175.29.177 0.8 0.9 0.9 2.7 1.9
facebook.com 173.252.110.27 125.0 125.4 125.0 128.0 3.0
youtube.com 81.175.29.148 0.8 0.9 0.9 1.4 0.6
yahoo.com 98.138.253.109 138.0 144.1 145.0 148.0 10.0
baidu.com 220.181.111.86 224.0 224.0 224.0 225.0 1.0
wikipedia.org 208.80.154.224 113.0 113.0 113.0 118.0 5.0
qq.com 125.39.240.113 361.0 368.7 368.0 374.0 13.0
taobao.com 42.120.194.11 227.0 227.0 227.0 227.0 0.0
live.com 65.55.206.154 - - - - -
twitter.com 199.16.156.230 118.0 118.0 118.0 119.0 1.0
amazon.com 205.251.242.54 - - - - -
linkedin.com 216.52.242.86 185.0 185.5 185.0 187.0 2.0
google.co.in 81.175.29.154 0.8 0.9 0.9 1.0 0.2
sina.com.cn 202.108.33.60 378.0 383.0 383.0 388.0 10.0
hao123.com 180.149.131.31 225.0 225.8 226.0 226.0 1.0
weibo.com 114.134.80.162 288.0 288.0 288.0 296.0 8.0
blogspot.com 74.125.136.191 29.9 30.0 30.0 30.2 0.3
tmall.com 42.120.194.11 227.0 227.0 227.0 231.0 4.0
sohu.com 220.181.90.240 225.0 226.2 226.0 227.0 2.0
yahoo.co.jp 183.79.197.242 306.0 306.0 306.0 306.0 0.0
vk.com 87.240.131.117 21.1 21.5 21.2 28.0 6.9
yandex.ru 213.180.204.11 32.5 32.7 32.7 34.9 2.4
wordpress.com 66.155.11.243 117.0 117.0 117.0 117.0 0.0
ebay.com 66.135.216.190 - - - - -
bing.com 204.79.197.200 11.0 11.1 11.1 13.0 2.0
google.de 81.175.29.154 0.8 0.9 0.9 3.7 2.8
pinterest.com 54.225.151.74 - - - - -
360.cn 220.181.24.100 227.0 228.0 228.0 229.0 2.0
google.co.uk 81.175.29.185 0.8 0.9 0.9 3.5 2.7

90

Host IP address min avg median max max-min dist
google.fr 81.175.29.144 0.8 0.9 0.9 1.4 0.6
instagram.com 107.23.28.33 - - - - -
google.co.jp 81.175.29.166 0.8 0.9 0.9 1.0 0.2
ask.com 66.235.120.127 116.0 116.1 116.0 117.0 1.0
163.com 123.58.180.7 390.0 414.9 410.0 433.0 43.0
soso.com 220.181.124.154 224.0 224.0 224.0 227.0 3.0
msn.com 65.55.206.228 - - - - -
tumblr.com 66.6.42.20 107.0 107.2 107.0 116.0 9.0
google.com.br 81.175.29.185 0.8 0.9 0.9 1.8 1.0
mail.ru 217.69.139.199 34.6 34.7 34.7 35.7 1.1
xvideos.com 141.0.174.40 - - - - -
microsoft.com 134.170.185.46 - - - - -
google.ru 81.175.29.185 0.8 0.9 0.9 1.1 0.2
paypal.com 66.211.169.3 - - - - -
google.it 81.175.29.159 0.8 0.9 0.9 1.7 0.9
google.es 81.175.29.154 0.8 0.9 0.9 1.1 0.3
apple.com 17.178.96.59 - - - - -
imdb.com 207.171.166.22 - - - - -
adcash.com 72.52.178.205 140.0 140.0 140.0 140.0 0.0
craigslist.org 208.82.238.129 175.0 175.0 175.0 176.0 1.0
imgur.com 23.235.43.193 22.9 24.3 24.5 25.3 2.4
neobux.com 192.230.66.91 138.0 140.2 139.0 146.0 8.0
amazon.co.jp 54.240.250.0 - - - - -
t.co 199.16.156.75 116.0 116.9 117.0 119.0 3.0
reddit.com 95.100.96.11 23.1 30.9 27.9 52.1 29.0
xhamster.com 88.208.24.59 42.9 43.4 43.2 59.2 16.3
google.com.mx 81.175.29.152 0.8 0.9 0.9 1.2 0.4
stackoverflow.com 198.252.206.140 95.9 96.0 96.0 96.5 0.6
fc2.com 54.183.104.112 - - - - -
google.ca 81.175.29.177 0.8 0.9 0.9 1.4 0.6
bbc.co.uk 212.58.246.103 30.3 30.7 30.5 32.0 1.7
cnn.com 157.166.226.25 133.0 133.0 133.0 141.0 8.0
go.com 68.71.220.3 188.0 188.0 188.0 192.0 4.0
ifeng.com 210.51.19.61 250.0 250.1 250.0 256.0 6.0
aliexpress.com 205.204.96.1 185.0 185.4 185.0 186.0 1.0
xinhuanet.com 202.108.119.193 - - - - -
youku.com 121.9.204.234 256.0 256.0 256.0 259.0 3.0
vube.com 216.127.49.178 - - - - -
google.com.hk 173.194.65.94 30.6 30.7 30.7 30.8 0.2
blogger.com 173.194.65.191 29.8 29.9 29.9 30.1 0.3
alibaba.com 205.204.96.36 186.0 186.0 186.0 186.0 0.0
webcache.foreign.ccgslb.com 180.210.234.65 30.2 30.3 30.3 45.1 14.9
google.com.tr 81.175.29.163 0.8 0.9 0.9 2.5 1.6
odnoklassniki.ru 217.20.147.94 36.1 36.2 36.2 36.5 0.4
godaddy.com 97.74.104.201 175.0 176.2 176.0 201.0 26.0
huffingtonpost.com 205.188.101.58 - - - - -

91

Host IP address min avg median max max-min dist
kickass.to 62.210.141.210 40.7 41.3 41.3 41.6 0.9
pornhub.com 31.192.117.132 - - - - -
wordpress.org 66.155.40.249 182.0 183.0 183.0 183.0 1.0
thepiratebay.se 194.71.107.27 - - - - -
gmw.cn 124.207.134.2 - - - - -
google.com.au 81.175.29.177 0.8 0.9 0.9 2.5 1.7
amazon.de 178.236.6.250 - - - - -
adobe.com 192.150.16.117 147.0 147.0 147.0 150.0 3.0
ebay.de 66.135.215.61 - - - - -
google.pl 81.175.29.152 0.8 0.9 0.9 1.1 0.3
netflix.com 69.53.236.17 165.0 165.0 165.0 169.0 4.0
clkmon.com 108.168.157.82 140.0 140.0 140.0 150.0 10.0
dailymotion.com 195.8.215.138 36.1 37.2 37.3 39.5 3.4
chinadaily.com.cn 124.127.52.130 - - - - -
espn.gns.go.com 199.181.133.61 183.0 183.0 183.0 187.0 4.0
alipay.com 110.75.143.33 237.0 237.2 237.0 239.0 2.0
about.com 207.241.148.80 - - - - -
indiatimes.com 223.165.27.13 - - - - -
google.co.id 81.175.29.163 0.8 0.9 0.9 1.0 0.2
rakuten.co.jp 133.237.48.124 287.0 287.0 287.0 288.0 1.0
dailymail.co.uk 195.234.240.212 - - - - -
vimeo.com 107.162.132.45 111.0 111.0 111.0 115.0 4.0

92

Appendix D

Position paper

The following is a position paper that was published as part of the Internet Society Workshop on Reducing Internet
Latency, September 2013. Note that we mixed up MFR and LT in the figure, and that it is goodput and not
throughput that is plotted.

93

On the Treatment of Application-Limited Streams

Andreas Petlund†, Anna Brunstrom‡, Jonas Markussen†, Markus Fuchs‡∗
†Simula Research Laboratory, ‡Karlstad University, ∗University of Kaiserslautern

Introduction

For streams that probe actively for bandwidth, a lot of work has been done to define how to behave
fairly, mainly by dividing the resource of bottleneck throughput between the competing streams over
time. Although this work targets greedy traffic it has a tendency to steer our thinking of what is fair
for all types of traffic.

For streams that are application-limited, latency is more important than throughput. When
reliable transport is required, the latency induced by the need to retransmit lost packets can cause
problems. Redundancy and more aggressive retransmissions may improve latency for such streams.
The use of aggression and redundancy has also been explored as a means of reducing retransmission
latency [1, 2, 3]. However, to which degree such aggression should be allowed, and how to weigh the
need for throughput against the need for latency, has only been superficially treated so far. Proposals
that advocate more aggressive behaviours for application-limited streams are often met with scepticism
and arguments that such behaviour will not be fair to competing traffic.

In this position paper, we present experimental results showing how application-limited streams
lose against greedy streams in the ”traditional”, throughput-based fairness regime. Even when more
aggressive retransmission mechanisms are applied, the application-limited streams still lose the battle
against the greedy streams. Our results suggest that it is defendable to use aggressive retransmissions
to reduce latency in many cases. We invite a discussion on how to define the level of aggression that
can be applied without clogging the tubes and how to explore and formulate guidelines that help
constantly application-limited streams recover in a timely fashion.

Sharing behaviour of application-limited streams

Figure 1 shows results from a set of experiments where we send an increasing number of streams
over a 1Mbps bottleneck. The dotted line shows the expected bandwidth consumption for the thin
streams if given their ”fair share”. We here define the fair share for the thin streams as the aggregate
bandwidth needed for the thin streams as long as that number is less than half the bottleneck capacity.
We also ran this experiment on thin streams using two mechanisms that increase aggressiveness for
retransmissions: one where the sender performs a ”fast retransmit” on the first dupACK it receives
(mFR), thus reacting on the first indication that loss has happened; and one where six retransmissions
using the base RTO are performed before the RTO is exponentially increased (LT), thus increasing
the chance of recovering the segment without extreme delays. The two mechanisms were applied
both individually and in combination. The goal of this experiment was to see if being slightly more
aggressive will skew the throughput fairness in a severely congested scenario. The results show no
significant difference between achieved throughput for competing greedy streams when aggressiveness
for thin-stream retransmissions is raised. We can see in Figure 1 that, as competition gets tougher,
the thin streams consistently lose the struggle for throughput-resources.

We focus in this position paper on the sharing characteristics of application limited streams, as
arguments for why we believe more aggressive behaviours for such streams are well justified. The posi-
tive benefits on latency of the two more aggressive retransmission mechanisms used in the experiments
were demonstrated in laboratory experiments in [2] and in a ”live” game server evaluation in [4]

1 greedy vs 1 thin1 greedy vs 1 thin 2 greedy vs 2 thin2 greedy vs 2 thin 4 greedy vs 4 thin4 greedy vs 4 thin 8 greedy vs 8 thin8 greedy vs 8 thin 16 greedy vs 16 thin16 greedy vs 16 thin

32 greedy vs 32 thin32 greedy vs 32 thin

TC
P

m
FR LT

LT
+m

FR TC
P

64 greedy vs 64 thin64 greedy vs 64 thin

TC
P

m
FR LT

LT
+m

FR TC
P

128 greedy vs 128 thin128 greedy vs 128 thin

TC
P

m
FR LT

LT
+m

FR TC
P

256 greedy vs 256 thin256 greedy vs 256 thin

TC
P

m
FR LT

LT
+m

FR TC
P

512 greedy vs 512 thin512 greedy vs 512 thin

TC
P

m
FR LT

LT
+m

FR

Th
ro

ug
hp

ut
 (K

bi
t/s

ec
on

d
ag

gr
eg

at
ed

 o
ve

r 3
0

se
co

nd
s)

TCP variation used for competing streams

Figure 1: Aggregated throughput of thin streams competing with greedy TCP streams. The plot shows aggregate throughput of
all greedy (red) streams and all thin streams (blue) normalised over 30 second intervals. Thin-stream properties: Packet-size: 160
B, Intertransmission-time: 150 ms. Link properties: Bottleneck bandwidth: 1Mbps, RTT: 100ms, queue size: 1 BDP (9 packets *
1500B)

Discussion

For congestion-controlled streams, fairness is deeply investigated, modelled and researched. Most com-
monly used when measuring fairness is Jain’s fairness index [5], which is a general metric. Although
it allows to assess fairness in different dimensions like latency or loss rate, throughput is still the
predominant choice. For application-limited streams that are not aggressively probing for bandwidth,
however, there is no clear consensus on how to limit aggressiveness. There has been a common practise
of condemning spurious retransmissions in order to conserve bandwidth resources for goodput. Our
view is that this argument should be reviewed when retransmission latency is important. Our exper-
imental results show that application-limited streams are currently at a disadvantage when sharing
resources with greedy streams, suggesting that more aggressive behaviour is appropriate.

Furthermore, we believe that improved mental models, as well as operational performance metrics,
for how streams of different types should share network resources are required. It is unclear by which
standards one should guide the evaluation of resource allocation in order to justly evaluate schemes
based on redundancy and more aggressive retransmissions.

Acknowledgement

The authors are funded by the European Community under its Seventh Framework Programme
through the Reducing Internet Transport Latency (RITE) project(ICT-317700). The views expressed
are solely those of the authors.

References
[1] M. Allman, K. Avrachenkov, U. Ayesta, J. Blanton, and P. Hurtig, “Early Retransmit for TCP and Stream Control

Transmission Protocol (SCTP),” RFC 5827 (Experimental), Internet Engineering Task Force, May 2010. [Online]. Available:
http://www.ietf.org/rfc/rfc5827.txt

[2] A. Petlund, “Improving latency for interactive, thin-stream applications over reliable transport,” Ph.D. dissertation, Simula
Research Laboratory / University of Oslo, Unipub, Kristian Ottosens hus, Pb. 33 Blindern, 0313 Oslo, December 2009.

[3] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell, Y. Cheng, A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan,
“Reducing Web Latency: the Virtue of Gentle Aggression,” in Proceedings of the ACM Conference of the Special Interest
Group on Data Communication (SIGCOMM ’13), 2013.

[4] A. Brunstrom, A. Petlund, and M. Rajiullah, “Reducing Internet Transport Latency for Thin Streams and Short Flows,” in
Proceedings of Future Network and MobileSummit (poster paper), 2013.

[5] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A Quantitative Measure Of Fairness And Discrimination For Resource
Allocation In Shared Computer Systems,” DEC-TR-301, Digital Equipment Corporation, Tech. Rep., Sep. 1984. [Online].
Available: http://arxiv.org/abs/cs.NI/9809099

	Finding the right aggressiveness for thin TCP streams
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background and related work
	Problem statement
	Scope and limitations
	Research method
	Contributions
	Outline

	Thin streams
	Traffic characteristics
	Latency requirements
	Online games
	Real-time multimedia applications
	Administrating remote systems
	High-frequency algorithmic trading

	Thin-stream transport protocols
	User Datagram Protocol
	Real-Time Transport Protocol

	Transmission Control Protocol
	Header layout
	Connection management
	Data transfer
	Flow control

	Congestion control in TCP
	Nagle's algorithm
	Delayed acknowledgements
	Congestion window
	Window algorithm variants
	Retransmission time-out calculation

	Thin-stream modifications to TCP
	TCP smart framing
	Early retransmit
	Modified fast retransmit
	Linear retransmission time-out
	Tail loss probe
	Redundant data bundling

	TCP fairness
	Max-min fairness
	Jain's fairness index

	Summary

	Experiment design and tools
	Metrics
	Design considerations
	Previous evaluations
	Simulation versus emulation
	Realistic packet loss
	Generating thin streams
	Choosing the network parameters

	Test environment
	Network topology
	Traffic control
	Router configuration
	Network emulator
	Traffic generation

	Analysis tools
	tcpdump
	tcp-throughput and tput
	analyseTCP
	aqmprobe
	count3way

	Summary

	Verifying the testbed
	A naïve approach
	Too congested?

	A thought-through approach
	Thin stream discrimination
	Comparing throughput and goodput
	Examining the loss rates
	Kernel buffering and repacketisation
	Thin stream clustering

	Summary

	Summarising the results
	Queue length evaluations
	Assessing the impact on other streams

	Conclusion
	Main contributions
	Future work

	Bibliography
	Internet Standards and Drafts
	Internet References
	All test scenarios
	Testbed configuration
	Specifications
	Topology

	Web-site RTT measurements
	Position paper
	On the Treatment of Application-Limited Streams

