
WiFi to LTE handover in mobile
phones

Johannes Alexander Berg

Thesis submitted for the degree of
Master in Informatics: Programming and Networks

30 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2019

WiFi to LTE handover in mobile
phones

Johannes Alexander Berg

© 2019 Johannes Alexander Berg

WiFi to LTE handover in mobile phones

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

Today many devices like laptops and smartphones have access to both WiFi
and LTE at the same time. The reliability and performance of wireless
networks and the Internet is not perfect. Sometimes users need to manually
disconnect devices from slow or unreliable WiFi networks in order to
switch to LTE. The Android operating system already includes a way
to automatically switch to using LTE when the connected WiFi network
becomes unstable. In this thesis we analyse this switching between WiFi
and LTE in Android. We do this by emulating various network conditions
in order to provoke an Android phone to switch from WiFi to LTE.

We show that the Android phone sometimes can stay connected to WiFi
network networks even when there is very poor Internet access. Informed
by this we propose and implement a simple algorithm to disconnect
from WiFi networks that are performing poorly. We show that our
implementation is more consistent in switching to LTE from WiFi networks
with poor performance, however it also leads to much higher overhead in
terms of data usage.

i

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 1
1.3 Scope and limitations . 2
1.4 Research method . 3
1.5 Main contributions . 3
1.6 Thesis structure . 4

2 Background 5
2.1 WiFi . 5
2.2 Cellular networks . 5
2.3 Handover . 6

2.3.1 Horizontal handover 6
2.3.2 Vertical handover . 6
2.3.3 Handover control . 7
2.3.4 The handover process 7
2.3.5 Soft vs hard handover 7
2.3.6 The ping-pong effect 8
2.3.7 The focus of this thesis 8

2.4 Handover in Android . 8
2.5 Network performance metrics 9

2.5.1 Bandwidth and throughput 10
2.5.2 Delay . 10
2.5.3 Packet loss . 10
2.5.4 Signal strength and signal to noise ratio 10

2.6 captive portals . 11
2.7 Related work . 11
2.8 summary . 16

3 Methodology 17
3.1 Experimental setup . 17

3.1.1 Hardware . 17
3.1.2 choice of operating systems 20
3.1.3 Router configuration 20
3.1.4 software tools . 20

3.2 WiFi to LTE handover experiments 21
3.2.1 Signal strength . 21

iii

3.2.2 Captive Portal . 22
3.2.3 Prerequisites to run to automate experiments 23
3.2.4 Traffic control in linux 23
3.2.5 Android automation with ADB 24
3.2.6 Testing performance thresholds for triggering han-

dover . 27
3.2.7 Testing how long it takes before handover is initiated. 27

3.3 Battery consumption . 27
3.4 Summary . 29

4 Handover from WiFi to LTE in Android 31
4.1 Handover threshold results 31

4.1.1 Handover caused by delay 32
4.1.2 Handover caused by Packet loss 33
4.1.3 Handover caused by low throughput 34
4.1.4 Handover caused by low signal strength 35

4.2 How long does it take to make the handover decision? . . . 35
4.3 TCPdump analysis . 37
4.4 Captive portal . 42

4.4.1 Deauthentication from captive portal 42
4.4.2 Summary of handover in Android 42

5 A new algorithm for initiating WiFi to LTE handover 45
5.1 New handover algorithm . 45
5.2 File transfer for bandwidth estimation 46

5.2.1 tuning parameters for the new algorithm 46
5.2.2 Results of testing the new algorithm in comparison

with existing handover in Android 48
5.3 Overhead . 51

5.3.1 Data usage . 51
5.3.2 Energy usage . 52

5.4 Summary and conclusions . 53

6 Conclusion 55
6.1 Summary of contributions . 55
6.2 Future work . 55

iv

List of Figures

1.1 xkcd: WiFi vs cellular [43] . 2

2.1 WiFi handover related settings in Android 9

3.1 Setup . 18
3.2 hardware setup . 19
3.3 Transmit power configuration 22
3.4 This figure shows the steps we used to find out if handover

is triggered at a boundary value for various network perfor-
mance metrics. First the phone connects to WifI, then we
apply a command on the router to create packet loss, de-
lay or other network conditions. We keep three variables,
limit, upper_limit and lower_limit. Limit is used as a param-
eter to determine for example how many kbps of through-
put to allow. Then based on if handover is detected or not,
we update the variable_upper limit or lower_limit. Then we
update limit and check if upper_limit and lower_limit have
converged. 28

3.5 Procedure for measuring time until handover initiation. . . . 29

4.1 Frequency of ping packets sent from the mobile phone when
Smart network switch disabled. The X axis is time in seconds
and Y axis is packets per second. 39

4.2 Frequency of ping packets sent from the mobile phone when
Smart network switch is set to aggressive. The X axis is time
in seconds and Y axis is packets per second. 40

4.3 Ping packets between phone and router captured by TCP-
dump with packet loss created by the router. 41

4.4 captive portal check in Android 42

5.1 Handover Initiation algorithm 46
5.2 Handover initiation algorithm 47
5.3 Data usage while adjusting parameters 52
5.4 Battery usage while adjusting parameters 53

v

vi

List of Tables

2.1 Generations of WiFi standards [40] [11] 6
2.2 Generations of mobile communication systems 6
2.3 Parameters for handover decisions. [44] 12
2.4 Vertical handover algorithm performance metrics 13
2.5 Classification of vertical handover decisions. [44] 14

3.1 TP-Link Archer C7 V2 specifications 19

4.1 Overview of experiments performed when testing the exist-
ing handover in a Android. 32

4.2 Delay boundary values for Android phone 33
4.3 packet loss values for Android phone 34
4.4 throughput boundary values for Android phone 35
4.5 Signal strength boundary values 36
4.6 Time taken before making the handover decision. 37
4.7 Time taken before making the handover decision while

streaming video. 38
4.8 Internet blocked by captive portal 43

5.1 Delay boundary values for Android phone 48
5.2 packet loss values for Android phone 49
5.3 throughput boundary values for Android phone 49
5.4 Time taken before making the handover decision. 50

vii

viii

Listings

3.1 Capturing packets with tcpdump 21
3.2 Getting signal strength example 22
3.3 ndsctl example . 22
3.4 Throughput limit with tbf . 23
3.5 Setting delay with netem . 24
3.6 Setting loss with netem . 24
3.7 WiFi control through adb . 24
3.8 Broadcast with adb . 25
3.9 Android broadcast receiver 25
3.10 read system log with adb . 25
3.11 Detecting WiFi handover in Android 26

ix

x

Preface

I would like to thank my supervisors Dr. Audun Fosselie Hansen and
Professor Pål Halvorsen for their invaluable guidance throughout this
thesis.

xi

xii

Chapter 1

Introduction

1.1 Motivation

Smartphones often have access to both WiFi and cellular networks. There
are many factors that can affect the quality of wireless networks. Poor
network quality can prevent the use of resources over the Internet. In
our opinion having to manually switch between networks in order to
determine the best one is not optimal. This is illustrated in Figure 1.1 on
the following page.

Network connectivity can fail in many different ways. I often want
to access the Internet through my phone while waiting for the microwave
oven to finish. This is usually impossible even with good signal strength.
The phone stays connected to WiFi, but interference from the microwave
oven makes it completely impossible to reach anything on the Internet.
Another annoying situation is when you are waiting for a buss or similar
outside of your home or office. At this distance your phone might still
be able to maintain contact with the WiFi access point, but due to the low
signal strength the connection can be very unreliable.

By 2021 smartphone traffic is expected to exceed PC traffic, and more
than 63 percent of total IP traffic will be caused by mobile and wireless
devices.[7] If it is possible to make any sort of improvement to the way
mobile phones handle multiple network connections that would be quite
useful.

Switching from one network to another is called a handover, and
Android phones already includes the ability to automatically switch from
WiFi to LTE when the WiFi network becomes unstable. However, our
subjective experience as users of android phones is that the phones
sometimes gets stuck on poor WiFi networks even when the most
aggressive handover settings are applied. In this thesis we investigate
experimentally whether this actually is the case.

1.2 Problem statement

Today phones can can be connected to WiFi networks without internet
access or WiFi networks that give almost no throughput. Phones often have

1

Figure 1.1: xkcd: WiFi vs cellular [43]

access to both WiFi and mobile network connections. In this thesis we will
examine handover from WiFi to LTE in Android phones. More specifically
we will attempt to answer the following two research questions:

1. Do Android phones stay connected to WiFi networks with poor
performance or do they automatically initiate handover?

2. Can we improve the automatic handover in Android?

To answer the first research question we need to investigate if there
are thresholds for how poor performance of the WiFi network can become
before handover is triggered and also how long it takes from losing Internet
connection in a WiFi network until handover is triggered in the phone.

If it turns out that Android phones actually stay connected to WiFi
networks with poor performance instead of handing over to LTE, then
we can propose a new system for handover and test the new system.
For example, if it currently takes a long time from Internet connectivity
becomes unavailable until Android switches over to LTE, then we could try
to reduce this time. Another possibility would be that we find situations
where the Internet is not reachable through WiFi but Android for some
reason does not switch over to LTE. In that case we could attempt to find a
way to detect that these situations have occurred.

1.3 Scope and limitations

In this thesis we are focusing on Samsung smartphones with the Android
7.0 operating system. For the mobile network a 4G LTE connection will be
used, and for WiFi we will use IEEE 802.11ac-2013 in the 5GHz band.

2

There are many different manufacturers of Android based smart-
phones, and the handover process might be handled differently in Android
based smartphones made by other manufacturers and it could change in
newer versions of Android.

1.4 Research method

The ACM task force on the core of computer science proposed three
research paradigms for computer science [8]. These are theory, abstraction
and design.

In the theory paradigm one follows four steps to develop a coherent
and valid theory. These are: (1) characterize objects of study(definition),
(2) hypothesize possible relationships among them(theorem), (3) determine
whether the relationships are true (proof) and (4) interpret results.

The abstraction paradigm is used in the investigation of a phenomenon
and consists of the steps: (1) form a hypothesis, (2) construct a model and
make a prediction, (3) design an experiment and collect data (4) analyse
results.

The final paradigm is design, which is rooted in engineering and
consists of four steps. These are described in the report in the following
way; (1) state requirements, (2) state specifications, (3) design and
implement the system, (4) test the system.

The research method for this thesis support the design paradigm
through proposing an system for automatically initiating handover from
WiFi to LTE and then implementing and testing this system. In our
methodology we analyse an existing system for handover in Android,
then we develop a prototype for a new system and test the prototype in
comparison to the existing system.

1.5 Main contributions

The main contributions we have done during the work on this master
thesis is firstly to perform experiments to evaluate the existing solution
to automatic handover from WiFi to LTE in Android phones. We find that
Android does manage to handover to LTE, but that it often takes more than
a minute of being connected to a WiFi network with practically no Internet
access before handover is initiated. We also attempt to analyse how the
handover mechanism in Android works and why it performs the way it
does.

Secondly, informed and motivated by the results of analyzing handover
in Android and related works, we have proposed an alternative way to
automatically initiate handover. Finally, we compare it with the existing
solution in Android.

3

1.6 Thesis structure

This thesis is organized as follows. Chapter 2 covers the relevant
background and related work. We describe how handover algorithms can
be defined, and how different handover algorithms can be classified. Then
we cover metrics for measuring network performance, which can be used
as part of the handover decision. Finally, we look at some other relevant
studies of handover algorithms.

Chapter 3 describes the methodology we used to answer the research
questions. It covers the hardware and software setup and the procedure
for how we performed experiments.

In chapter 4 we analyse the results of performing the experiments
described in chapter 3 with the existing handover mechanism in Android.
We look at how handover was triggered by packet loss, high delay and low
data throughput. We also look at how long it takes to trigger handover in
Android.

In chapter 5 we propose a new algorithm for initiating handover, which
is motivated by the results presented in the previous chapter. We also
present the results of performing experiments to test how handover is
triggered and how long it takes to trigger handover on the proposed
algorithm and compare the results of this with the results of the testing
the existing Android handover mechanism.

Finally in chapter 6 we conclude the thesis with a summary of what
we have presented and the most important conclusions in addition to
discussing potential future work.

4

Chapter 2

Background

The focus in this thesis is preventing mobile phones with access to both
WiFi and LTE from being stuck on WiFi network with no or poor Internet
access. We start this chapter by briefly cover what LTE and WiFi are.
Then we discuss the basics of handover. Switching from one network to
another is called a handover, and We will elaborate on how handover can
be defined and classified and the different kinds of handover algorithms
that exist. We also discuss the options for automatically switching from
WiFi to LTE that already exist in Android. After this, we also discuss and
some metrics that can be used to evaluate network performance. These can
potentially be used as parameters for the decision of initiating handover.
Finally we will discuss existing work that has been done on handover
algorithms.

2.1 WiFi

Wireless local area networks (WLAN) are wireless computer networks
where two or more computers form a network using wireless communica-
tion. WLANs are typically at the scale of a building and are commonly used
within homes and companies. WiFi is a set of communication standards
for WLAN. It contains specifications for the data-link layer and physical
layer of the Open Systems Interconnection (OSI) model. These specifica-
tions are for implementing wireless communication in the 2.4GHz, 5GHz,
and 60GHz frequency bands. Table 2.1 on the next page shows an overview
of WiFi generations. In addition to the ones listen in the table the WI-FI Al-
liance has introduced 802.11ax, which is also know as WiFi 6 and will be
the next generation WiFi standard. The router we are using in this thesis is
using the 802.11ac wave 1 standard.

2.2 Cellular networks

Cellular networks are a form of wireless wide area networks (WWAN).
There are currently four generations of mobile communications standards.
Each generation includes several technologies. An overview of generations

5

Standard release year
Legacy 802.11 1997
802.11b 1999
802.11a 1999
802.11g 2003
802.11n 2009
802.11ac wave 1 2014
802.11ac wave 2 2016

Table 2.1: Generations of WiFi standards [40] [11]

Generation Technologies
1G NMT, AMPS, TACS
2G GSM, IS-136, PDC, IS-95
3G WCDMA/HSPA, cdma2000, TD-SCDMA
4G LTE

Table 2.2: Generations of mobile communication systems

of mobile communication standards can be seen in Table 2.2. Specifications
for these can be found on the 3GPP website [36]. In addition to the
generations listen in the table, the first specifications for the fifth generation
was completed in 2017 [1].

2.3 Handover

Handover or handoff is the process where a network node changes or
attempts to change its attachment point to a network. Within the literature,
the terms "handoff" and "handover" are used interchangeably according to
[31]. In this thesis the Android phone takes the role of the network node.
Handover can be classified into different types based on various aspects
involved [24]. The following subsections discuss some of these types and
how they relate to handover from WiFi to LTE.

2.3.1 Horizontal handover

In this type of handover mobile nodes move from one access point to
another of the same type. For instance, a node might handover from one
WiFi access point to another, or from one cell to another when moving
between the border region of two cells in a cellular network.

2.3.2 Vertical handover

In vertical handover mobile nodes move from an access point of one type to
a different type. This thesis focuses on handover from WiFi to LTE which is
a vertical handover. According to [44], vertical handover algorithms need

6

to allow seamless roaming among multiple access network technologies,
and they also need to be designed to provide the quality of service that is
required by a wide range of applications.

2.3.3 Handover control

Handover can also be classified in several ways depending on how it
is controlled. Handover is either mobile-initiated or network-initiated
depending on who initiated the handover process. Furthermore handover
can be either mobile-controlled or network-controlled depending on who
has primary control of the process.

Handover can also be classified based on where it obtains information
used to make the decision to initiate handover. If a handover is network
controlled and information collected by the mobile node is used to assist,
then the handover is mobile-assisted. In the opposite situation where
handover is mobile-controlled and uses information form the network, we
can qualify the handover as network-assisted. The final alternative is that
the network and mobile node does not assist each other.

2.3.4 The handover process

The handover process consist of several stages. It can be divided into
initiation, decision and execution. In the initiation stage handover is
triggered based on some criteria like low signal strength or network
congestion. After the initiation stage the process enters the decision
stage. During this stage the process makes a decides which access point
to hand over to. To make this decision several parameters can be used.
For example, signal strength. The final stage is execution. In this stage
communication is established with the new access point and and data is
re-routed through the new path. [25]

2.3.5 Soft vs hard handover

Handover can also be classified as soft or hard. The terms soft and hard
handover are defined for the UMTS system [23]. Hard handovers are also
known as break-before-make. In this type of handover the connection to
the old cell is released before a connection to the new cell is established.

Soft handovers are also known as make-before-break. In this variant
connection to the old cell is not broken before connection to the new cell is
established. It is possible that both connections will be used simultaneously
for a long period of time in soft handover.

The terms soft and hard handover are also used in the context of vertical
handover. Here an example of a soft handover could be that the mobile
terminal executes handover from WiFI to LTE, but retains connection to the
WiFi access point while using the LTE connection.

7

2.3.6 The ping-pong effect

The ping-pong effect was introduced in the context of horizontal handover
in cellular networks. When a mobile node is moving at the boundary
between the two base stations, rapid changes in received signal strengths
could force the node to hand over from one base station to the next and
then back to the original again. The mobile node may continue to "ping-
pong" between the base two stations until it moves sufficiently far into the
coverage of one of them [31].

The ping-pong effect is also used to describe undesired handing back
and forth between networks in the context of vertical handover. For
example, some of the vertical handover algorithms surveyed in [44] use
heuristics to eliminate the ping-pong effect.

2.3.7 The focus of this thesis

In this section we have elaborated on the different kinds of handover and
some possible ways to classify handover. So how does this thesis fit into
the world of handover algorithms? The focus is handover from WiFi to
LTE, which is classified as a vertical handover. The mobile phone is the
one initiating handover and the decision is only based on information
gathered by the phone itself, so the handover can be classified as mobile
initiated and mobile controlled. Focus is mainly on the initiation part of the
handover process. More specifically the goal is that the decision to initiate
handover should be taken if the connected WiFi network no longer is
providing sufficient quality. The decision stage of choosing which network
to handover too is left to the Android system. This means that when the
handover decision is made we terminate connection to the WiFi access
point, meaning that the handover is break before make or hard handover.

2.4 Handover in Android

Our experience as users is that Android based phones sometimes gets stuck
on poor WiFi networks even with the most aggressive handover settings.
Figure 2.1 on the facing page shows the menu for the handover related
settings that are available in Android 7.0. On the left we can see smart
network switch, which is found under the WiFi section of the settings
app. When enabled this setting is supposed to make the mobile phone
use a mobile network like LTE for Internet connectivity Instead of WiFi
when WiFi becomes unstable without the need for the user to manually
disconnect from WiFi. There is also an option to toggle Aggressive
Switching to use mobile networks when WiFi is only slightly unstable. For
Android 8.0 and newer, Samsung have renamed smart network switch to
adaptive WiFi in their phones[41].

On the right we can see that under the developer options there is
a setting to more aggressively hand over to cellular when WiFi signal
strength is low. The developer options contain options that meant for
debugging and development purposes. In order to access developer

8

Figure 2.1: WiFi handover related settings in Android

options one must first enable developer mode. On Samsung devices this
is done by touching build number under software info in the settings
app[19]. The fact that the setting to more aggressively switch over from
WiFi to cellular is only accessible in developer options suggests that it is
not yet meant to be used by ordinary users and that it still might be under
development.

In this thesis we will investigate if these settings actually can prevent
the problem of getting stuck on a WiFi network with poor connectivity, and
why they how they solve or don’t solve the problem. By using experiments
in a controlled setup we can investigate if Android phones actually do get
stuck on poor networks without initiating handover and if applying these
settings makes any difference. If we find that the mobile phone does get
stuck, then we can use the results as a basis for comparison that we can use
in our attempt to improve the handover behavior.

2.5 Network performance metrics

Handover algorithms need some basis for decision making. The algorithms
must decide when to initiate handover and there might be several available
candidate networks to choose from. Network performance metrics gives a
way to quantitatively compare different networks, and when evaluating
handover algorithms it can be useful to investigate how the algorithms

9

cope with various performance problems in the networks.
In [17] Hanemann et al. have created a study on network performance

metrics and their composition. There they provide explanations of some
network performance metrics. The metrics relevant for this thesis will be
explained in this section.

2.5.1 Bandwidth and throughput

In [9], Comer defines both throughput and bandwidth. Throughput is
the capacity of a network. It is a measurement of how much data can be
transferred through the network in a unit of time, and is often measured in
bits per second.

Bandwidth, on the other hand, is related to the number of signal levels
in a transmission medium, and determines the maximum amount of data
that theoretically can be sent in a given time. 802.11ac can achieve a data
rate of is 3.46Gbps using eight antennas [20], and the advertised maximum
data rate of the TP-Link Archer C7, which we are using in this thesis, is
1.3Gbps for the 5Ghz band. Even though there is a difference between
throughput and bandwidth, as Comer explains in [9], network bandwidth
is generally used to refer to data rate in the networking indurstry.

In a multi-hop path the link with the lowest throughput will be the
limiting factor, so the WiFi link itself will not always be the limiting factor.

2.5.2 Delay

The delay metric can be either one way delay (OWD), which measures how
much time it takes to transfer a packet from the sender to the destination,
or it can be round trip time(RTT) which is the time it takes to send it takes
to send a packet from sender to receiver and to send a reply back again.

2.5.3 Packet loss

Packet loss indicates how many of the sent packets that are lost. It is usually
measured as the percentage of packets lost compared to the total number of
packets. There are various reasons that packets can get lost in the network.
For example, transmission errors or congestion.

2.5.4 Signal strength and signal to noise ratio

WiFi signal strength is typically measured in three different ways, mil-
liWatts (mW), Received Signal Strength Indicator (RSSI) and decibel-
milliwatts. A potentially challenging scenario for handover algorithms
is when you far enough away from the access point that you have poor
throughput but not so far away that the mobile phone has lost contact with
the access point.

10

2.6 captive portals

Captive portals are used to restrict access to public WiFi networks.
When a user connects to a WiFi network they get redirected to a web
portal where they can log in to gain access to the Internet. Captive
portals are relevant to this thesis because they restrict Internet access and
therefore makes it impossible to reach the Internet for devices that have
not been authenticated. If the captive portal somehow is not detected
when connecting to WiFi, then the result is that the phone could end up
connected to the unusable WiFi without handing over to LTE. Another
potential problem with captive portals is that a device might become
deauthenticated after using the network for some time and therefore be
prevented from accessing the Internet. The phones should be able to detect
that Internet access is no longer available, and maybe do a handover to
LTE.

We typically find captive portals in places like hotels or airports. So a
potential scenario where a captive portal causes problems would be that
you are visit a hotel you have stayed at before and your phone connects
to the WiFi which is known from the previous visit. Internet access is
restricted by the captive portal and you need to get a password from the
staff before you can log in. In this situation the phone should correctly
detect the captive portal and prompt the user to authenticate or disconnect.

2.7 Related work

Much work has been done on vertical handover algorithms. [44] is
a survey on vertical handover decision algorithms in fourth generation
heterogenous wireless networks. In [44] Yan et al. compare many
vertical handover algorithms, but before that they start the paper by
presenting background on vertical handover algorithms. They presented
several parameters that have been proposed in literature to use in the
vertical handover decision algorithms. An overview of these parameters
is presented in table 2.3 on the next page.

They also presented a classification on vertical handover decision
algorithms based on the criteria used to classify them. Table 2.5 on page 14
gives an overview of their classification of vertical handover algorithms.

Finally Yan et al. also presented some metrics for evaluating vertical
handover algorithms. These are handover delay, number of handovers,
handover failure probability and throughput. These are explained in more
detail in Table 2.4 on page 13.

In [5] Busanelli et al. present two vertical handover algorithms and an
experimental performance analysis of these. The scenario is very similar
to the scenario considered in this thesis. They are testing a RSSI based
vertical handover algorithm and a hybrid RSSI/goodput algorithm. Their
algorithm is running on a Windows 7 notebook and the vertical handover
is performed between WiFi and UMTS instead of WiFi and LTE as in this
thesis.

11

Received signal strength (RSS) RSS is used as the main criterion in
the majority of existing horizontal
handover algorithms and is also
an important criterion for vertical
handover algorithms.

Network connection time The network connection time is
the duration that a mobile node is
connected to a point of attachment.

Available bandwidth This parameter is a measure of
available data transmission re-
sources. We discuss this parame-
ter more in detail in Section 2.5.1
on page 10.

Power consumption limited power is a critical issue for
mobile devices. Handover deci-
sion algorithms should prefer net-
works that maximize battery life if
possible.

Monetary Cost It should be taken into account that
different network have different
associated costs. For this thesis
in particular LTE networks will
often charge per megabyte or have
a data cap. WiFi networks on
the other hand will often not have
these kinds of charges.

Security Applications have differing re-
quirements for confidentiality or
integrity of transmitted data. The
security level of a network might
be taken into account when mak-
ing the handover decision.

User preferences User preference may differ from
the decision made by the handover
decision algorithm.

Table 2.3: Parameters for handover decisions. [44]

12

handover delay This is a measure of the total time
of the handover process, from ini-
tiation to completion. Handover
delay is affected by the complex-
ity of process and is especially im-
portant for voice and multimedia
which are sensitive to delay or in-
terruptions.

number of handovers This metric is related to the ping-
pong effect. It is usually preferred
to reduce the number of handovers
because frequent handovers is a
waste of network resources. If han-
dover is executed and it becomes
necessary to handover back to the
original network in a short period
of time, then we have a super-
fluous handover, which should be
minimized.

handover failure probability Handover can fail in two different
kinds of ways. It can fail when a
mobile node moves out of range
of the target network before the
handover is completed, and it can
fail if the target network has in-
sufficient resources to complete the
handover.

throughout This metric measures the data
rate that is delivered to a mobile
node on the network. Networks
that provide higher throughput are
usually preferred when selecting
between multiple candidates.

Table 2.4: Vertical handover algorithm performance metrics

13

RSS based algorithms This class of algorithms use RSS
as the main criterion for taking the
handover decision.

Bandwidth based algorithms This class of algorithms use avail-
able bandwidth for a mobile termi-
nal as the main criterion for taking
the handover decision.

Cost function based algorithms Algorithms in this class combine
various parameters in a cost func-
tion. Then the function is used to
calculate a score for the candidate
networks which can be compared
to decide which network to use.

Combination algorithms Algorithms in this class use a
richer set of inputs than the other
classes for making handover deci-
sions.

Table 2.5: Classification of vertical handover decisions. [44]

14

In [22] Inzerilli et al. proposes a location based handover algorithm
with the goal of limiting the ping-pong effect and maximizing goodput.
The algorithm they propose is a mobile controlled, soft and vertical
between WiFi and UMTS. They then evaluate the performance of their
algorithm versus a power based algorithm using simulation. Their results
show that the location based algorithm reduces the number of handovers
compared to the power based algorithm, thus reducing the ping-pong
effect. They also show that there is a reduction in cumulative received
bits with the location based algorithm versus the power based one. So the
power based algorithm needs a waiting time constraint between handovers
to increase stability and reduce number handovers. On the other hand
this waiting time constraint should not be applied to the location based
algorithm to limit the reduction in cumulative received bits.

Some studies have also looked specifically at vertical handover in
android Phones. [28] and [13] are two studies that propose methods for
selecting the best wireless interface in a mobile device, and they also
made implementations for Android based mobile phones. A system
for policy oriented real-time switching of wireless interfaces on mobile
devices, MultiNets, has been presented in [28] by Nirjoin et al. The mobile
devices in this paper were using WiFi and 3G cellular interfaces, while this
thesis covers mobile phones with WiFi and 4G interfaces.

MultiNets has three different modes. Energy saving mode is meant
to choose the interface that saves the most energy. Offload mode is for
offloading data traffic from the cellular network to WiFi, and performance
mode is for selecting the interface with the fastest data connectivity. The
choice of interface in performance mode is based on a correlation between
signal strength and bandwidth.

In [13] Foremski et al. propose a method for automatically selecting
the optimal network interface, in terms of transmission speed and energy
usage, for devices with both WiFi and LTE interfaces. They propose a new
method for estimating available bandwidth in order to select the best link.
Their method for bandwidth estimation consists of the following steps: 1.
The client registers at the server and obtains a password to be used for
further authentication. 2. The client sends a PING request and receives a
50B response from the server. By default this step is repeated five times
with a timeout of one second. 3. The average time between sending the
requests and receiving responses is treated as RTT. 4. The client sends a
start request and the server replies with data, by default 100 packets of
1KB. 5. The client calculates available bandwidth based on the time it took
to receive data.

Both [28] and [13] focus on selecting the best wireless interface. This
thesis is different in that it focuses on the handover initiation decision
instead of selecting between handover candidates. Another difference
is that [13] uses a server component in its bandwidth estimation. The
algorithm in this thesis will not use a server component.

15

2.8 summary

In this chapter we discussed background and related works about han-
dover algorithms. This includes the basics of handover algorithms and
how they can be classified in different ways. Additionally, we discussed
how the focus of this thesis fits into these classifications. The chapter also
includes a discussion of the options for handover from WiFi to LTE that
exist in Android today. To the best of our knowledge, there does not ex-
ist detailed documentation of how these are implemented. This further
motivates investigating how the handover mechanism works in Android.
Finally, we discussed related studies about vertical handover algorithms.
The next chapter elaborates the experimental setup and the experiments
performed in order to answer the research questions. We analyse how han-
dover works in Android, and if Android devices get "stuck" on a network
with poor connectivity instead of doing a handover to an alternative net-
work.

16

Chapter 3

Methodology

In this thesis we are investigating how well the existing handover
mechanism in Android phones work. Does Android phones sometimes
remain connected to WiFi networks with no connectivity when LTE is
available? In section 1.4 on page 3 we discussed how this thesis follows
the design research paradigm made by the ACM task force on the core of
computer science. This research paradigms consists of the steps: (1) state
requirements, (2) state specifications, (3) design and implement the system,
(4) test the system. In this chapter we are designing some experiments,
which we first use to investigate handover in Android. The results of these
experiments can then be used to inform the design of the new system, and
in the end we also repeat the experiments in this chapter in order to test the
new system.

This chapter elaborates the setup used when performing experiments
and it explains the procedure of how the experiments were performed. The
experiments are meant to discover if there are any boundary values where
performance lower than this value will trigger handover from WiFi to LTE.
For example, will handover be triggered when throughput is below some
threshold? We also perform experiments testing how long it takes to initiate
handover after performance of the connected WiFi network becomes poor.
Automatic handover is not that useful if it takes several minutes from the
network becomes unusable until handover is initiated.

3.1 Experimental setup

We can see an overview of the setup in Figure 3.1 on the following page.
TP-link AC1750 is functioning as a router and WiFi access point. It is
connected to a modem which provides Internet access. The mobile phone
can then connect to the Internet via WiFi provided by the router and also
by the cellular LTE connection.

3.1.1 Hardware

The hardware resembles a typical network setup found in a home or office,
and should be representative of the networks that an Android phone would

17

Figure 3.1: Setup

be connected to most of the time in real world. Doing experiments with a
setup that is similar to what one could find in a home or office should give
some results that are comparable to a real situation. Figure 3.2 on the next
page shows what the setup looks like. In the bottom left is the Samsung
galaxy S7, and in the top is the Archer C7 router. In the bottom right is a
laptop for running scripts, connected to the phone via usb and connected
to the router via ethernet.

List of hardware

• TP-Link Archer C7 v2 [4]

• Samsung Galaxy S7 model number SM-G930F [34]

For the Android phone we use a Samsung Galaxy S7. According to [35]
the galaxy S7 was the best selling smartphone in H1 2016, so this phone is
one of the most widely used models and should be a good representation
of Android phones in use by people today.

For the router we use a TP-link AC1750[4]. This router is compatible
with with the OpenWrt[29] operating system. [18] gives more detailed
hardware specifications than those provided by the manufacturer. These
can be seen in table 3.1 on the facing page.

18

Figure 3.2: hardware setup

CPU - QCA9558 dual-band
- 3-stream 802.11n SoC

Switch - Atheros AR8327
RAM - 128 MB Winbond W9751G6JB DDR2 (x2)
Flash - 16 MB

2.4 GHz radio - In QCA9558
- Unidentified 2.4 GHz power amp (x3)

5 GHz radio - QCA9880-BR4A 3x3 802.11ac radio
- SiGE 5005L 5 GHz power amp (x3)

Table 3.1: TP-Link Archer C7 V2 specifications

19

3.1.2 choice of operating systems

We use Android 7.0 as the operating system for the phone. Newer versions
of Android have been released, however for consistency we have decided
to focus on Android 7.0 throughout the work with this thesis. According
to [12] the combination of devices running either android 7.0 or 7.1 makes
up 28.2 % of all Android devices, making Android 7 the most used major
version of Android.

OpenWrt is an open source linux based operating system for emebeded
devices. It gives us more control over the router than the factory firmware,
including the ability to change wireless signal strength and simulating
packet loss, which is necessary for experimenting with handover.

The specific version of the operating systems are listed below.

• OpenWrt 18.06.1 r7258-5eb055306f / LuCI openwrt-18.06 branch (git-
18.228.31946-f64b152) [21]

• Android 7.0 build number NRD90M.G930FXXS1DQLB

3.1.3 Router configuration

The router was connected to a wired network with 120Mbps download
and 15 Mbps upload. OpenWrt allows changing the radio transmit power
through the configuration web interface. We left transmit power on the
default auto setting during all experiments except the ones where we were
trying to determine the effect of received signal strength on triggering
handover which we will describe in more detail in section 3.2.1 on the
next page. Leaving the transmit power on the default setting results in
a transmit power of 23dbm(199mW). This way we have a good signal
making sure that low signal strength was not causing poor performance.
All the experiments were performed using the 5GHz band, specifically
channel 36 (5180Mhz), with a channel width of 80Mhz.

3.1.4 software tools

• Tcpdump 4.9.2-1

• Wireshark Version 2.6.4 (v2.6.4-0-g29d48ec8)

• Nodogsplash 3.2.1-1

TCPdump and Wireshark

Throughout the testing it can be useful to be able to inspect the packet flows
between the mobile phone and router. To do this we use TCPdump[39] and
Wireshark[42]. TCPdump is a command line packet analyser that allows
us to capture packets on a network interface. We used tcpdump to capture
packtes on the wireless interface of the router. Listing 3.1 on the facing page
shows the command to capture packets with TCPdump, where the -v flag
gives increased verbosity of the output from TCPdump.

20

Listing 3.1: Capturing packets with tcpdump

$ tcpdump − i INTERFACE −v −w FILENAME

Wireshark is a network protocol analyser with a powerful GUI for
analysing network traffic. After running a test and capturing packets with
tcpdump on the router the resulting files were opened with wireshark for
further analysis.

Nodogsplash

Nodogsplash is a captive portal package. Many public WiFi networks
require signing in through a splash page in order to access the Internet.
Having the ability to set up a captive portal allows us to test if Internet
being blocked by the captive portal will cause Android to trigger handover
to LTE. We elaborate more on the usage in section nodogsplash in
section 3.2.2 on the next page.

3.2 WiFi to LTE handover experiments

In this section we describe the procedure for how we tested how handover
is currently handled in Android. Based on the results of these tests we can
propose propose a simple algorithm for initiating handover, and then use
the same procedures to test the proposed algorithm and compare it with
how Android currently handles handover.

3.2.1 Signal strength

When mobile devices move away from WiFi access points the received
signal strength decreases. This has an effect on the effective data rate
that the mobile devices are able to send and receive. When the mobile
device is far enough away from the access point the performance might
have become so low that it would be better to hand over to LTE instead of
staying connected. For this reason we are interested in finding out if the
phone will hand over before the signal from the access point is completely
lost, and what level of signal strength is the threshold for handover.

To test this it is useful to be able to control transmit power of the WiFi
router. One way Transmit power can be set is through the web interface
of OpenWrt. This is shown in 3.3 on the following page. Unfortunately
changing transmit power setting results in disconnecting all the connected
stations. Therefore we can not create a script to gradually fade the signal
and automate the testing. Instead we must physically move the phone
away from the router to decrease the signal.

The command in Listing 3.2 on the next page can be used to obtain a
list of client connected to the wlan0 interface and their signal strengths. On

21

Figure 3.3: Transmit power configuration

Listing 3.2: Getting signal strength example

$ iwinfo wlan0 a s s o c l i s t

the phone we can write the rssi value to the system log when handover is
initiated.

By polling this command while the phone disconnects we can get see
the last values for signal strength and signal to noise ratio before the phone
disconnected.

3.2.2 Captive Portal

We used Nodogsplash [16], which is a captive portal package, to setup
a captive portal on the WiFi provided by the router. We then used
TCPdump to capture packets on the wireless interface in order to learn how
captive portals are detected in Android. The results of this is discussed in
Section 4.4 on page 42. Nodogsplash comes with a separate application
called ndsctl, which can be used to control the running nodogsplash
process. When a phone or other device connects to the wireless access
point and Nodogsplash is enabled it will get redirected to a splash page
where it can be authenticated. Then we can use ndsctl to deauthenticate
the phone in order to check how the loss of Internet connection is handled.
Listing 3.3 shows the command to deauthenticate a device that already is
authenticated.

Listing 3.3: ndsctl example

$ /usr/bin/ n d s c t l deauth IP|MAC

22

Listing 3.4: Throughput limit with tbf

$ t c qdisc add dev wlan0 root t b f r a t e LIMIT k b i t
burs t 100 k b i t l a t e n c y 50ms

Here we look at the procedure we used to test what happens when
the Android phone becomes deauthenticated. When the phone connects
to WiFi it is redirected to the splash page of the captive portal for
authentication. After authentication is complete and the phone has Internet
connectivity we can deauthenticate the phone using the ndctl utility like
described in section 3.2.2 on the preceding page. After deauthentication
Internet connectivity is unavailable and we observe the phone to see if it
stays on WiFi.

3.2.3 Prerequisites to run to automate experiments

This subsection presents what we need in order to be able to automate
the experiments we perform to test Android handover. We decided to
automate as much of the testing as possible in order make the testing
procedure more consistent and to enable us to do a greater number of
repetitions.

We use OpenWrt on the router to control performance with regard to
metrics like throughput, delay and packet loss. Therefore, to be able to
automate the experiments we need a way to send commands to the router
from the computer where the script is running. We also need to send
commands to the phone. After the phone has handed over to LTE we need
to send commands to reconnect to WiFi in order to do more repetitions.
Finally we also need a way to automatically detect that the phone has
initiated handover.

The laptop was connected to the router with ethernet and we used we
used ssh to send commands to the router. Then we used the traffic control
capabilities of linux to control performance of the WiFi network.

3.2.4 Traffic control in linux

Each network device has an attached queing discipline (qdisc). Qdiscs
are algorithms that control the packet queue on the device [26]. By
using different qdiscs we can shape the data that is transmitted from the
router.The default qdisc for devices is called pfifo_fast and the underlying
basis for this qdisc is the first in first out algorithm.

Tc [38] is a utility for configuring the linux kernel packet scheduler. Tc
allows us to change which qdiscs are used by the network devices. We can
use this utility to set qdiscs that control throughput limits and emulates
packet loss and delay.

For limiting data rate we use the token buket filter (tbf) qdisc. Listing 3.4
shows the command to set a limit to throughput using tc and tbf. Netem

23

Listing 3.5: Setting delay with netem

$ t c qdisc add dev INTERFACE root netem delay TIME

Listing 3.6: Setting loss with netem

$ t c qdisc add dev wlan0 root netem l o s s PERCENTAGE

[27] is another queuing discipline for the linux packet scheduler. It provides
the ability to emulate various network properties like delay and packet loss.
Listing 3.5 shows an example command for setting delay with netem, and
Listing 3.6 shows an example of setting loss.

3.2.5 Android automation with ADB

We used the command-line tool Android Debug Bridge (adb) [3] to
communicate with the phone. For the automation we need to receive a
notification when a handover occurs or state of WiFi changes somehow.
We also need to be able to control WiFi on the phone.

Listing 3.7 shows the command to enable or disable WiFi through
adb. The problem with this command is that it requires root ac-
cess to work. For this reason we use a workaround to be able to
control WiFi. The way we got around this issue is by using the
broadcast mechanism in Android. Broadcasts allows for sending and
receiving of messages between apps and the system. We create a
dummy app with android.permission.CHANGE_WIFI_STATE and an-
droid.permission.ACCESS_WIFI_STATE permissions, which means the
app can change WiFi state. Then we add a broadcast receiver class which
will enable or disable WiFi. Listing 3.9 on the facing page displays a broad-
cast receiver that will enable or disable WiFi depending on whether the
extra field of the broadcast is true or false. Now we can enable or disable
WiFi through adb using the command in Listing 3.8 on the next page.

The Android API provides the ability to get notified about network
changes through the NetworkCallback class [10], which provides several
callback funcions. Applications wanting notifications about network
changes can extend this class and then register a NetworkCallback.

Listing 3.11 on page 26 shows example code that extends the Network-
Callback class by overriding the onCapabilitiesChanged and onLost meth-

Listing 3.7: WiFi control through adb

$ adb s h e l l svc w i f i enable| d i s a b l e

24

Listing 3.8: Broadcast with adb

$ adb s h e l l am broadcast −a WifiChange −e w i f i t rue

Listing 3.9: Android broadcast receiver

public c l a s s ControlWif i extends BroadcastReceiver {
public void onReceive (Context c , I n t e n t i n t e n t) {

WifiManager wfm = (WifiManager) c .
getSystemService (Context . WIFI_SERVICE) ;

wfm. setWif iEnabled (Boolean . parseBoolean (i n t e n t
. g e t S t r i n g E x t r a (" w i f i "))) ;

}
}

ods. In the onCapabilitiesChanged method we can see an if-statement
that checks if the network whose capabilities changes has the TRANS-
PORT_WIFI transport type, if it has NET_CAPABILITY_INTERNET, and
that it does not have NET_CAPABILITY_VALIDATED. This check en-
sures that the network whose capabilities changes is a wifi network
instead of a cellular network, and when a network that has both
NET_CAPABILITY_INTERNET and NET_CAPABILITY_VALIDATED, then
that means that Android has successfuly detected internet connectivity.
Since we want to detect when Android decides that the network no longer
has Internet connectivity we instead check that the network does not have
NET_CAPABILITY_VALIDATED. We have seen that when the user inter-
face on the Android phone displays the message "Ready to connect when
network quality improves.", then we also get this notification. However,
when the phone first connects to WiFi it will try to detect Interet conectivity,
and we could get this notification before Internet connectivity is detected.
Because of this we must make sure that the phone is connected to WiFi and
has successfuly validated that Internet is available before we can monitor
for handover. Otherwise we could get false positives. The line Log.i(TAG,
"Handover network " + network); prints to the Android system log. Now
we can read the log in an automated script with the command in listing 3.10
in order to automatically check if handover has been triggered.

Listing 3.10: read system log with adb

$ adb l o g c a t −d

25

Listing 3.11: Detecting WiFi handover in Android

ConnectivityManager connectivityManager = (
ConnectivityManager) getSystemService (Context .
CONNECTIVITY_SERVICE) ;

NetworkRequest . Bui lder bui lder = new NetworkRequest .
Bui lder () ;

connectivityManager . regis terNetworkCal lback (
bui lder . bui ld () ,
new ConnectivityManager . NetworkCallback () {

public void onLost (Network network) {
Log . i (TAG, " network " + network + "

l o s t . ") ;
}

public void onCapabil i t iesChanged (Network
network , NetworkCapabi l i t ies
ne tworkCapabi l i t i es) {

i f (ne tworkCapabi l i t i es . hasTransport (
NetworkCapabi l i t ies . TRANSPORT_WIFI)
&&

networkCapabi l i t i es .
hasCapabi l i ty (
NetworkCapabi l i t ies .
NET_CAPABILITY_INTERNET) &&

! networkCapabi l i t i es .
hasCapabi l i ty (
NetworkCapabi l i t ies .
NET_CAPABILITY_VALIDATED))
{

Log . i (TAG, " Handover network " +
network) ;

}
}

}
) ;

26

3.2.6 Testing performance thresholds for triggering handover

Figure 3.4 on the following page shows the algorithm in the testing script.
The first step is to initialize the upper and lower limit. These could be
percentage of dropped packets or data rates. Then WiFi is enabled on the
phone so that it connects to the WiFi network. Next we apply some sort
of traffic shaping on the router like explained in section 3.2.4 on page 23.
Then we wait for a set period of time while monitoring for handover in the
phone. Next upper or lower limit is updated based on whether handover
was triggered or not. Then we update the limit variable to be the average of
upper and lower limit. Then the process is repeated until upper and lower
limit close in on each other and we find the threshold value that will trigger
handover.

3.2.7 Testing how long it takes before handover is initiated.

We are also interested in how long it takes from a WiFi network becomes
unusable until handover is initiated. Figure 3.5 on page 29 shows the
basic steps in this procedure. First we connect the phone to the WiFi, then
we limit performance somehow, for instance by inducing packet loss or
setting a limit on throughput. Then we wait wait until the phone initiates
handover or a timeout in case the phone never initiates handover, and
finally we compare timestamps of when we applied the command to limit
performance and when handover was initiated. For the timeout we used
ten minutes. Ideally handover should be initiated within seconds or even
milliseconds, and if it takes several minutes then is is reasonable to assume
that if the user would end up disconnecting manually instead.

3.3 Battery consumption

Running code on the CPU and using the WiFi radio consumes energy. We
use the battery historian [15] tool to analyze overhead in terms of power
usage of the proposed new handover algorithm. Getting energy usage with
battery historian consist of the following steps:

1. Connect the mobile device to your computer.

2. Shut down the runnig adb server.
$ adb kill−server

3. Restart adb and check for connected devices
$ adb devices

4. Reset battery data gathering
$ adb shell dumpsys batterystats −−reset

5. Disconnect the device and run the app that is to be tested.

6. Reconnect the mobile device to the computer

27

start

(re)connect to WiFi

Limit network performance

Wait for handover

handover?

limit = (upper limit + lower limit) / 2

lower limit = limitupper limit = limit

upper limit -
lower limit < 10

end

yes

no

yesno

Figure 3.4: This figure shows the steps we used to find out if handover is
triggered at a boundary value for various network performance metrics.
First the phone connects to WifI, then we apply a command on the router
to create packet loss, delay or other network conditions. We keep three
variables, limit, upper_limit and lower_limit. Limit is used as a parameter
to determine for example how many kbps of throughput to allow. Then
based on if handover is detected or not, we update the variable_upper
limit or lower_limit. Then we update limit and check if upper_limit and
lower_limit have converged.

28

start

connect to WiFi

Limit network performance

Wait until handover or timeout

end

Figure 3.5: Procedure for measuring time until handover initiation.

7. Make sure the device is recognized
$ adb devices

8. Dump all battery data
$ adb shell dumpsys batterystats [path/]batterystats. txt

9. Create a bugreport from raw data.
$ adb bugreport > [path/]bugreport.zip

Now we can open bugreport.zip in the battery historian tool and inspect
device power usage of the running apps.

3.4 Summary

In this chapter we have covered the setup used in the experiments in this
thesis. This includes the devices used and the software packages installed.
In addition we covered the procedures used in the various tests, which
includes using logging and callback functions to read changes in the WiFi
state in the Android phone and using adb to control the phone and ssh to
control the openwrt router from scrips running on computer. Finally, we
covered how to generate an Android debug log which contains detailed
information about power usage. In the next chapter we will look at the
results of running the experiments described in this chapter on the existing
handover mechanisms in Android.

29

30

Chapter 4

Handover from WiFi to LTE in
Android

In this chapter we present the results of experimenting with handover in
Android. We have looked at the threshold to trigger handover with regard
to delay packet loss and limited throughput. We cover how long it takes
to reach the handover decision, and we analyse a TCPdump of packets
between the router and the phone to see if we can find some indications
of how the handover decision is made. During the testing we made sure
that the phone was not downloading updates or otherwise using the WiFi
connection. Later we repeated some of the tests while steaming a video
to the phone to generate some network traffic. According to Cisco, video
traffic accounted for 59% of mobile data usage in 2017 [7]. Therefore, testing
the scenarios that could trigger handover while the phone is receiving
video traffic might be more representative of real world use than just testing
the scenarios while the phone is receiving on additional traffic. Finally
we looked at a scenario where Internet access is blocked by a captive
portal. Table 4.1 on the next page shows an overview of all the experiment
scenarios.

4.1 Handover threshold results

This section presents the results of the experiments we performed to find
the threshold for various metrics that would trigger handover in Android.
The packet loss, delay and throughput tests were performed with the
procedure shown in Figure 3.4 on page 28. A script connects the phone
to WiFi, then it sends a command to the router to for example add delay
to the packets, then it waits while checking if the phone stays connected.
Then the performance value of the metric being tested is updated based on
whether handover was detected or not, and this is repeated until we find
the threshold value where handover is triggered.

We recall that we saw in Section 2.4 on page 8 that Android includes
some settings which, when enabled, are supposed to make the phone
automatically handover from WiFi to LTE when the Internet connection
on the WiFi network becomes unstable. The experiments were performed

31

Boundary for triggering handover.
gradually adjusting throughput

gradually adjusting delay
gradually adjusting packet loss

physically moving phone away from router to adjust signal strength
How long does it take to trigger handover?

Time from limiting throughput until handover is initiated
Time from adding delay until handover is initiated

Time from adding packet loss until handover is initiated
Captive portal

Internet is no longer reachable because of deauthentication from captive
portal.

Table 4.1: Overview of experiments performed when testing the existing
handover in a Android.

with the handover setting in Android called "smart network switch" turned
off, with the setting set to normal and with the setting set to aggressive. As
expected we do not get handover when "smart network switch" is turned
off.

In the remainder of this section we look at the results of how the
existing handover mechanism in Android behaves when we simulate
various network conditions with the router.

4.1.1 Handover caused by delay

Table 4.2 on the facing page shows the results of the experiments where
we provoked handover by adding delay to the network. The leftmost
column contains the settings we used on the mobile phone, the middle
column shows the mean of 30 repetitions and the rightmost column shows
standard deviation. The mean value for all the repetitions with smart
network switch to normal is 970ms, and the mean for the aggressive setting
is 377ms. Standard deviation is 213,3ms, 160ms and 67,7ms for smart
network switch set to normal, smart network switch set to aggressive and
smart network switch set to aggressive while WiFi is used to download a
video, respectively. There is some variation in the results, but even with
variation we can see a trend.

Unfortunately, after having performed the experiments, we found that
when we set delay with netem we sometimes get "spikes" in the delay. We
tested adding delay between the router and the laptop which is connected
with an ethernet cable and then the delay added by netem was completely
stable. But when we are connected with WiFi and add delay with netem rtt
reported by ping is unstable and sometimes more than 100ms higher than
the delay we specified in the command line. The values in Table 4.2 on the
next page are calculated using the values used as parameter to the netem
command. Because of the results are likely skewed so that the actual delay
was higher than the one we specified in the netem command.

32

setup mean standard deviation
Smart network switch
normal

970ms 213,3ms

Smart network switch
aggressive

377.3ms 160ms

Smart network
switch aggressive
and streaming video

580ms 67,7ms

Table 4.2: Delay boundary values for Android phone

Even with the high variation indicated by the standard deviation and
skewed results we can still see a trend. It is clear that enabling the handover
setting actually causes handover when the delay becomes higher, and that
the threshold for taking the handover decision is lower with the aggressive
setting. When we had smart network switch set to aggressive and a video
steaming to the phone the mean threshold for added delay needed to
trigger handover actually increased to 580ms. One possible reason for this
might be that the algorithm for smart network switch keeps track of how
many bytes are sent and received by the phone and that because the video
stream is generating traffic that indicates that there is some connectivity
despite the high delay.

[14] recommends that one-way end-to-end delay should be kept below
150ms for high quality voice communication, but it also notes that delays
between 150ms to 400ms are still acceptable. The mean value for the
aggressive setting does fall within this 400ms acceptable value, but it might
also be advantageous to have an even more aggressive option that to assure
meeting the 150ms recommendation.

4.1.2 Handover caused by Packet loss

Table 4.3 on the following page shows the results of the experiments where
we provoked handover by adding packet loss to the network. The leftmost
column contains the settings we used on the mobile phone, the middle
column shows the mean of 30 repetitions and the rightmost column shows
standard deviation. With the normal handover setting, 38,7% is the mean
value and 10,% is standard deviation, for the threshold where handover
was triggered. With the aggressive setting the threshold is 8,2% with a
standard deviation of 3,2%. Again the threshold for triggering handover
is clearly lower with the aggressive setting. With smart network switch
set to aggressive and a video stream generating network traffic the mean
threshold was 15,8% with a standard deviation of 5,2%. Like in the results
with delay the phone stays connected up on higher levels of packet loss
when the phone is actively receiving data.

According to Cisco [33], the G.729 codec for audio data compression
often used in VoIP requires far less than 1 percent packet loss to avoid
audible errors. On the other hand WiFi can also be used for many other

33

setup mean standard deviation
Smart network switch
normal

38,7% 10,4%

Smart network switch
aggressive

8,2% 3,2%

Smart network
switch aggressive
and streaming video

15,8% 5,2%

Table 4.3: packet loss values for Android phone

purposes than VoIP, and reliable protocols like TCP ensures retransmits of
lost packets, so instating handover in networks with a mere one percent
packet loss is probably not desireable.

4.1.3 Handover caused by low throughput

Table 4.4 on the next page shows the results of the experiments where
we set limits on throughput to provoke handover. The leftmost column
contains the settings we used on the mobile phone. We remember from
section 2.4 on page 8 in the background chapter, that Android includes a
setting called smart network switch, which can be set to off, aggressive
or normal, and is supposed to automatically switch to using LTE when
the Internet connection on WiFi becomes unstable. The middle column
shows the mean of 30 repetitions and the rightmost column shows standard
deviation.

The mean throughput value were handover was triggered with smart
network switch set to normal was only 11,3 kbps, and with the aggressive
setting it was 198kbps. streaming a video to the phone while throughput
is limited gives a mean threshold of 173kbps. For these the values for
standard deviation are 9,7kbps, 40,2kbps and 53,1kbps respectively. Unlike
the experiments with packet loss and delay the test with streaming video
does not give very different results from the tests without streaming video.
Because throughput is limited here streaming video results in buffering
and lower values for total bytes received by the phone is not a good
indication of good performance of the WiFi network. This can be a possible
explanation for why the result look the way they do.

The threshold for the normal setting is so low that it is not useful in
many situations. For example, trying to load most webpages will result
in a timeout if we only have 11kbps available. 200kbps is also quite low,
however it is possible to load webpages with this value. The requirements
for streaming videos on YouTube is 500kbps and the requirements for
steaming live movies, TV shows and live broadcasts is 1+ Mbps[37]. So
for the purposes of video streaming an even more aggressive handover
algorithm could be beneficial.

34

setup mean standard deviation
Smart network switch
normal

11,3kbps 9,7kbps

Smart network switch
aggressive

198kbps 40,2kbps

Smart network
switch aggressive
and streaming video

173kbps 53,1kbps

Table 4.4: throughput boundary values for Android phone

4.1.4 Handover caused by low signal strength

Table 4.5 on the next page Shows the results of triggering handover by
moving away from the router so that signal strength becomes weaker.
All experiments presented in this table were repeated 30 times. Setting
the smart network switch setting to normal or aggressive leads to a soft
handover. The phone is still connected to WiFi after it has displayed
the message "ready to connect when network quality improves" and has
started using LTE for Internet connectivity. For these settings the table
includes the RSSI values reported by the phone when doing the handover.
With the Aggressive WiFi to mobile handover setting from the Android
developer options this message never appears and the phone disconnects
from the access point when switching over to the LTE connection. In this
case we have a hard handover. Because the phone is no longer connected
to the WiFi access point we can not read the rssi value programatically in
the callback function that gets called on network changes, so here the table
does not include these values.

The signal strength in dbm reported by the router just before handover
is the highest at -76 when using the smart network switch aggressive
setting. For smart network switch normal an aggressive wifi to mobile
handover the results are -83 and - 86.2. From this it appears that smart
switch aggressive actually is a bit more aggressive than smart switch
normal, but on the other hand the RSSI values, which is what is actually
being read by the phone, are basically the same at -84,8 and -85,33. The
setting do not appear to make much difference with regard to handover
caused by signal strength. During these experiments the phone was never
stuck on the WiFi network when signal strength was low. Unlike the
scenario with limited throughput the phone always successfully handed
over to LTE.

4.2 How long does it take to make the handover
decision?

Table 4.6 on page 37 shows how long it took from simulating loss, delay
or low throughput until handover was initiated. During these tests,

35

setup RSSI read
by phone

DBM read
by router

mean standard
deviation

mean standard
deviation

Smart net-
work switch
normal

-84,8 3,4 -83 3,85

Smart net-
work switch
aggressive

-85,33 3,1 -76 4,4

Aggressive
WiFi to
mobile
handover

-86,2 1,3

Table 4.5: Signal strength boundary values

the "aggressive WiFi to mobile handover" in the developer settings of
Android was turned off and "smart network switch" in the WiFi section of
settings was set to aggressive. In the different scenarios we set the values
for throughput, delay and packet loss such that network performance is
well below the thresholds we found in 4.1 on page 31. The tests were
repeated 30 times and in each repetition the script monitored the phone
for handover up to ten minutes from applying the command to reduce
network performance. The table presents the mean time and standard
deviation.

For the experiments with limited throughput handover was not
initiated after 10 minutes in 4 of the 30 repetitions, and the maximum time it
took was 120 seconds. For the tests with increased delay 2 of the repetitions
failed to register a handover, and the maximum time it took for handover
too occur is 183 seconds. In the scenario with 50% packet loss the phone
initiated handover for each repetition and 122 seconds is the maximum
time it took before making the handover decision. The calculation of mean
and standard deviation in table 4.6 on the facing page was done using the
values from the repetitions where we registered a handover.

The mean time to detect poor network performance and start handover
was 75 seconds for the setup with limited throughput and 95,9 seconds
for the setup with added delay, however it was only 35.1 seconds for the
setup with packet loss. Additionally, the setup with packet loss only had
23.6 seconds standard deviation versus 28,5 seconds and 71.7 seconds for
limited throughput and added delay. Here there is also quite a lot of
variation.

Later we repeated the experiments while streaming a video to the
phone. Apart from using a video to generate network traffic the setup and
procedure was identical to the previous timing testing. The results of this is
shown in table 4.7 on page 38. In the table we can see that the mean time for

36

setup mean time before
handover

standard deviation

Throughput limited to
50kbps

75s 28,5s

700ms delay 95.9s 71.7s
50% packet loss 35.1s 23.6s

Table 4.6: Time taken before making the handover decision.

handover was 12.5s for the test with limited throughput, 145.5s for the tests
with 700ms added delay and 52.8 seconds for the tests with 50% packet
loss. Compared to the tests without streaming a video to generate traffic
handover was much faster for the test with limited throughput. On the
other hand it was somewhat slower, though not by a meaningful amount,
in the other tests. The result with limited throughput seems to suggest that
bytes received by the phone is used as part of the smart network switch
handover mechanism.

In most of the scenarios the phone takes more than a minute to
handover, and there is quite a high variation in how long it takes from
the network performance becomes poor and until handover is initiated.
The aggressive handover setting does help with switching from low
performance WiFI to LTE, however it is quite inconsistent. Even though
the WiFi is practically useless it sometimes fails completely or takes several
minutes to initiate handover. In situations where the a user actively is using
the phone’s Internet connection, for example streaming a video or using
voice over IP,it most likely becomes necessary for the user to disconnect
from WiFi manually in order to restore Internet connectivity.

One possible reason for taking a long time to initiate handover is to
avoid handover in cases where an issue arises in the network but resolves
it self after a few seconds. In such cases it might not be desireable to hand
over to LTE in order to avoid the higher cost which is often associated with
LTE.

In the background chapter one of the vertical handover decision criteria
we presented is network connection time. According to Yan et al. [44],
it is important to keep track of network connection time in order to
choose the right moment to trigger handover. In the survey they say
that initiating handover from WLAN to a cellular network too early
would waste network resources, and that being too late would result in a
handover failure. Therefore, another possible reason for the slow handover
initiation would be avoiding waste of network resources.

4.3 TCPdump analysis

In this section we present the results of looking at the packets sent between
the phone and router to find out if the phone is sending any packets to aid
in the decision to initiate handover.

37

setup mean time before
handover

standard deviation

Throughput limited to
50kbps

12.5s 6.5s

700ms delay 145.5 97.9
50% packet loss 52.8s 46.25s

Table 4.7: Time taken before making the handover decision while streaming
video.

Figure 4.2 on page 40 and 4.1 on the next page shows the frequency
of ping packets sent from the Android phone to the router with time in
seconds on the X axis and packets per second ond the Y axis. These
were generated by capturing packets from the phone using TCPdump and
filtering the packets using wireshark. Figure 4.2 on page 40 shows the
frequency of sending ping packets when the smart network switch setting
was set to aggressive. In the figure we can see that nine ping packets was
sent at first and then it sends pings in groups of four packets with about
10 second intervals. After two minutes groups of only two packets are sent
instead of four and the interval stays about the same. It is possible that
the reason for sending more packets in the beginning is part of validating
the connection upon connecting to a WiFi network, and then the number
of packets is reduced to reduce overhead.

Figure 4.1 on the next page shows the frequency of sending ping packets
when smart network switch was disabled. In this figure ping packets are
sent in the phone first sends four ping packets and then after about 30
seconds it sends four packets again, and after this four packets are sent
with 60 second intervals.

By comparing the graphs we can see that the frequency of sending
ping packets is higher when we set smart network switch to aggressive vs
when smart network switch is disabled, with roughly 10 second intervals
between sending pings with smart network switch in comparison to
roughly one minute intervals with smart network switch disabled.

Figure 4.3 on page 41 shows part of a TCPdump where the Android
phone was connected to the OpenWrt router with the "smart network
switch" setting set to aggressive. In this figure the first column shows
the time of day instead of seconds since last displayed packet, and it also
includes a column with info about the packets . It shows that the Android
phone is sending ping requests to the wireless router and getting reply
packets back. When the time was 13:42:00 we applied a 50% packet loss on
the router. By looking at the timestamps in the figure we can see that not
all the ping requests are getting replies any more. At 13:42:44 the phone
handed over to LTE. After this the phone was still connected to the WiFi
router but it stopped sending pings. This suggests that the pinging is used
as part of the decision to hand over from WiFi.

38

Figure
4.1:Frequency

ofping
packets

sentfrom
the

m
obile

phone
w

hen
Sm

artnetw
ork

sw
itch

disabled.
The

X
axis

is
tim

e
in

seconds
and

Y
axis

is
packets

per
second.

39

Figure
4.2:Frequency

ofping
packets

sentfrom
the

m
obile

phone
w

hen
Sm

artnetw
ork

sw
itch

is
setto

aggressive.The
X

axis
is

tim
e

in
seconds

and
Y

axis
is

packets
per

second.

40

Figure 4.3: Ping packets between phone and router captured by TCPdump
with packet loss created by the router.

41

Figure 4.4: captive portal check in Android

4.4 Captive portal

Captive portal detection in Android

When an Android device connects to a WiFi network it will make a DNS re-
quest to get the address of connectivitycheck.gstatic.com Then the Android
device makes an HTTP get request to connectivitycheck.gstatic.com. If 204
No Content is received as a response then there is no captive portal an the
device can connect normally. This can be seen in Figure 4.4. Otherwise, if a
307 temporary redirect is received then there is a captive portal on the WiFi
network.

4.4.1 Deauthentication from captive portal

Table 4.8 on the next page shows an overview of the observations
when the Android phone loses Internet connectivity because it becomes
deauthenticated by the captive portal. The android phone detects that
Internet is no longer available and starts using LTE instead not long after
Internet was blocked in the cases where "smart network switch" is disabled.
When "smart network switch is enabled" the phone does not seem to detect
that Internet in unavailable, and no handover takes place. Strangely the
phone only does handover when smart network switch is disabled, which
is the opposite of what one might expect to happen. In the previous section
we saw that the phone is pinging the router as a way to check if the
connection is still good, and since the phone stays connected to the router
these pings will still get replies even though the phone can not reach the
Internet anymore.

4.4.2 Summary of handover in Android

In this chapter we have seen that the handover settings actually do switch
from WiFi to LTE automatically when WiFi becomes unstable, and that
the aggressive variant of the smart network switch is significantly more
aggressive than the normal variant. We have however also seen that as
we suspected the phone can sometimes get stuck on WiFi network with
poor performance without initiating handover. In addition to that we have
found that it sometimes takes a long time before handover is initiated and
that the time to initiate handover is quite inconsistent.

We have seen that handover will be initiated before we are completely
out of range of the access point, which suggests that signal strength is used
as part of the decision to initiate handover. Based on analysis of the traffic
captured by tcpdump it also appears that ping to the router is used as part

42

Setup observation
Smart network switch off and ag-
gressive WiFi to mobile handover
off

A few seconds after deauthentica-
tion “Internet may not be avail-
able” is displayed in the WiFi set-
tings menu, and the phone is still
connected to the WiFi access point.
The phone is now using LTE when
opening a webpage etc

Smart network switch normal “connected” is still displayed 2
min after deauthentication, and
the phone is still connected to the
WiFi access point.
Loading web pages or using the In-
ternet is not possible before manu-
ally disconnecting from WiFi.

Smart network switch aggressive Same behavior as Smart network
switch normal

Aggressive WiFi to mobile han-
dover

Same behavior as smart network
switch off and aggressive WiFi to
mobile handover off

Table 4.8: Internet blocked by captive portal

of the decision to initiate handover. Based on the results of sending data
in the form of streaming a video while limiting available throughput, the
amount of bytes received by the phone is also likely used as part of the
handover decision.

Requirements for throughput and other metrics depend on the use
case. In our opinion the aggressive handover settings are not aggressive
enough for many typical use cases of mobile phones, like real time voice
communication, video streaming or online games. A possible drawback
of more aggressive handover decision algorithm is the risk of being too
aggressive, making it impossible to stay connected to a network with
sufficient performance.

On the other hand using LTE is often more expensive than WiFi.
While LTE often has a data cap or charges based on how much data
is downloaded public WiFi is often provided for free in many places.
Avoiding unexpected costs related to LTE usage is one possible motivation
for not being more aggressive with initiating handover.

We think the results in this chapter shows that there is some room
for improvement through an algorithm that is more aggressive and more
consistent in taking the handover decision. In the next chapter we suggest
such an algorithm that can run on the phone in the form of an app. The
algorithm is monitors WiFi and disconnects from a network if performance
becomes low.

43

44

Chapter 5

A new algorithm for initiating
WiFi to LTE handover

In this chapter we propose a simple algorithm to initiate handover more
aggressively than how it is done currently with smart network switch.
Then we run the same experiments on the proposed algorithm as we did on
handover with Smart network switch in Android, and compare the results.

5.1 New handover algorithm

In the previous chapter we saw that initiating handover was slow and
inconsistent even when the delay, packet loss were high or the available
throughput was low. We propose to send ping packets at regular intervals
to estimate packet loss and round trip time. RX is a count of the total
number of bytes received by the Android phone. If RX is above the desired
minimum throughput then there is no need to initiate handover. On the
other hand, if RX is below the minimum desired threshold then we can do
an active test by doing a small download. If the download finishes in a
reasonable amount of time then we have sufficient throughput.

Figures 5.1 on the following page and 5.2 on page 47 shows the basic
steps of the proposed algorithm as a pseudo code and as a a flow chart. The
algorithm starts of with executing ping. Ping [30] works by sending ICMP
ECHO_REQUEST packets and tracking how much time passes before a
ECHO_RESPONSE is received. How many ping packets to send and the
interval between them are parameters that we can adjust. If the results of
executing ping is that packet loss or round trip time is higher than some
boundary then we initiate handover. Otherwise we monitor RX for a while
and if RX is too low, for example if the phone is idle, then we do a test
download to make sure connectivity is good. IF the download takes too
long we initiate handover. Finally we sleep for a while before repeating the
loop. Probing the network with pings and test downloads causes overhead
in the form of generating traffic and in using energy, which is a limited
resource in mobile devices. On the other hand probing the network more
frequently leads to shorter time to initiate handover when a performance
problem occurs.

45

while true do
rtt, loss← PING()
if loss > threshold or rtt > threshold then

INITIATEHANDOVER()
end if
rx ← CHECKRX()
if rx < threshold then

HTTPDOWNLOAD

if timeout then
INITIATEHANDOVER()

end if
end if
SLEEP

end while

Figure 5.1: Handover Initiation algorithm

In the next chapter we will look at the effect of adjusting the parameters
of the algorithm and how it compares with current handover in Android.

5.2 File transfer for bandwidth estimation

We are using file download over the HTTP protocol with a timeout to
ensure that the WiFi network provides some level of throughput. The main
benefit of using this method is that it is is done at the user level and gives a
close idea of the actual user experience.

There are two big drawbacks of using file transfer as an active test
of the WiFi network. First is the overhead. When transferring a file we
are generating traffic on the network and using the WiFi radio consumes
energy. The second drawback is the high influence of cross-traffic. The
HTTP protocol uses TCP as its transport protocol. TCP limits the amount
of data that can be sent without receiving an acknowledgement with a
congestion window mechanism.

5.2.1 tuning parameters for the new algorithm

The goals for the handover algorithm is to be more aggressive and
consistent than the current android implementation in initiating handover.
Acceptable values for packet loss, delay and throughput comes down
to personal preferences and also what tasks the network is to carry out.
We suggest that 500kbps might be a reasonable minimum accepted value
because this is the requirement for streaming video from youtube.com
[37], and according to CISCO nearly four-fifths of mobile data traffic in
the world will be video by 2022[7]. Through some trial and error we
arrived at setting the timeout for the download to 800ms + 2*rtt, where rtt
is measured by ping. In the results we present in this chapter we will see

46

start

connect to WiFi

Execute ping too high rtt or
packet loss?

MonitorRX

RX > targetRX

test download

Initiate handover

end

sleep yes

yes

no timeout

no

no

timeout

Figure 5.2: Handover initiation algorithm

47

setup mean standard deviation
Smart network switch
normal

970ms 213,3ms

Smart network switch
aggressive

377.3ms 160ms

Smart network
switch aggressive
and streaming video

580ms 67.7ms

New handover Algo-
rithm

205ms 15.2ms

Table 5.1: Delay boundary values for Android phone

that the throughput threshold for initiating handover ends up quite close
to 500kbps when using this timeout. Timeout and rtt are compared directly
with the results from ping so these can easily be adjusted. We propose
for instance using 300ms as the upper boundary for delay which means
that we achieve the 150ms one-way delay which is recommended by [14]
and for instance not accepting more than 10 % packet loss which is close
what we saw when testing the aggresive setting of smart network switch
in Android.

5.2.2 Results of testing the new algorithm in comparison with
existing handover in Android

Table 5.1 shows the previous results for the mean delay value where
handover was triggered and also the observed value where the new
algorithm triggered handover. Using ping we found that average rtt to
google.com was about 20 milliseconds. We recall from the methodology
chapter that when we add delay using the router the delay only applies
in one direction. So if we add 50ms of delay then rtt should increase by
50 instead of 100. Since we set the delay cutoff to 300 we would expect
that handover would be triggered when we added around 280ms, but
what actually happens is that it is triggered around 205 milliseconds. We
investigated this further and found that when we set delay with netem
we sometimes get "spikes" in the delay. Before doing any experiments we
tested adding delay between the router and the laptop which is connected
with an ethernet cable and then the delay added by netem was completely
stable. But when we are connected with WiFi and add delay with netem rtt
reported by ping is unstable and sometimes more than 100ms higher than
the delay we specified in the command line. This explains why we see the
handover with much less added delay than expected.

When we added around 200ms of delay with netem we will sometimes
see delay above 300ms with ping, which explains why we was handover
at a mean value of 205ms. The other delay boundary results all have quite
high variation. Even with all this variation it is at least clear that handover
is not reliably triggered by the existing mechanism in Android before we

48

setup mean standard deviation
Smart network switch
normal

38,7% 10,4%

Smart network switch
aggressive

8,2% 3,2%

Smart network
switch aggressive
and streaming video

15,8% 5,2%

New handover Algo-
rithm

7,6% 3,8%

Table 5.2: packet loss values for Android phone

setup mean standard deviation
Smart network switch
normal

11,3kbps 9,7kbps

Smart network switch
aggressive

198kbps 40,2kbps

Smart network
switch aggressive
and streaming video

173kbps 53,1kbps

New handover Algo-
rithm

540 118,6

Table 5.3: throughput boundary values for Android phone

have several hundred milliseconds of delay. Variation is a lot lower in the
results for the new algorithm at 15.2ms.

Even with some variation in the results we can clearly see that the
proposed algorithm will initiate handover at a lower delay and the
lower standard deviation indicates that it is more consistent in initiating
handover even though the mean for added delay is misleading because of
the "ping spikes".

Figures 5.2 and 5.3 shows the previous results of testing boundary
for packet loss and throughput in the new algorithm in addition to the
previous results of testing the existing handover mechanism. The mean
boundary value for packet loss is 7,6% with a standard deviation of 3,8%.
Since the router is randomly dropping packets such that on average 10%
of all packets are dropped it seems reasonable that we would get handover
when the loss value is somewhat lower than 10 % since the packets to drop
are chosen randomly sometimes more than one of the ping packets end up
being dropped.

Table 5.4 on the next page shows the times it took to initiate handover
in Android which we discussed in chapter 4 on page 31. It also shows
the time it took to initiate handover at the same conditions with the new
algorithm. The delay between low performance of the WiFi network and

49

setup mean time before
handover

standard deviation

Android smart network switch aggressive
Throughput limited to
50kbps

75s 28,5s

700ms delay 95,9s 71,7s
50% packet loss 35,1s 23,6s

New handover algorithm with sleep set to 0 seconds
Throughput limited to
50kbps

6,6s 3,1

700ms delay 7,3s 3,6s
50% packet loss 6,6s 3,3s

New handover algorithm with sleep set to 20 seconds
Throughput limited to
50kbps

18,2s 7,2s

700ms delay 17,3s 9,3s
50% packet loss 14,9s 10s

Table 5.4: Time taken before making the handover decision.

handover depends on how often we actively test with ping or a download.
The parameters for number of seconds spent monitoring RX or sleeping
will affect this delay.

Sending ten ping packets with an interval of half a second takes about
five seconds depending on round trip time for the replies. Timeout for the
download is set to 800ms + rtt * 2, and because we are sleeping for 1 second
and repeating the download in the case of timeout this can around 2,6
seconds depending on rtt. Most of the time if the download is successfully
it will take much less time at most a few hundred milliseconds.

We let the algorithm monitor RX for five seconds, meaning that testing
ping, testing download and monitoring RX takes roughly ten seconds. we
Tested the scenarios of low throughput, high delay and high packet loss
with the sleep parameter set to zero seconds and again with the sleep
parameter set to 20 seconds. Therefore the interval between sending pings
or between doing a download would be roughly to ten seconds in the first
set of tests and 30 seconds in the second set of tests. If we are running the
the test that triggers handover every ten seconds then delay from limiting
performance until handover is triggered could be anything between 0 and
ten seconds and the average will be five seconds. Because we sleep for
one second and repeat the download before initiating handover we take an
additional one seconds plus the timeout of the downloads before initiating
handover, which means that we the maximum time it could take is closer to
12,6 seconds than 10 and that we should expect a value around 6.3 seconds
to be the mean of the observations. This matches quite well with the
observed values, which are 6,6 seconds for limited throughput 7,3 seconds
for tests with added delay and 6,6 seconds for the tests with packet loss.

50

The higher mean for the tests with delay could be because the increased
delay causes it to take a longer time before the ping response packets arrive
at the phone.

For the set of tests with a 20 second sleep the mean times before
handover are 18,2 seconds with a standard deviation of 7.2s for limited
throughput 17,3 seconds with a standard deviation of 9,3 seconds for the
tests with added delay and finally 14,9 seconds with 10 seconds standard
deviation for the packet loss tests.

The results in this section have shows that When we run tests more
frequently we can initiate handover more quickly in the event of loss of
Internet connectivity or poor performance. In the next section we look at
the overhead of running this algorithm.

5.3 Overhead

5.3.1 Data usage

To estimate data usage we started by using tcpdump to capture all traffic
generated when executing ping and when downloading a webpage. The
rest of the time the process is either sleeping or monitoring RX which does
not send any data over WiFi.

The size of each ping packet is 98 bytes and we are sending 10 ping
packets and receiving 10 in reply if there is no loss. In the download test
we are downloading https://www.google.com. The get request to start the
download as captured in tcpdump is 255 bytes. At this time the total size
of the received packets containing the google webpage is 47398 bytes. The
total download for one round of the active tests is 98 ∗ 10 + 47398 bytes,
and total upload is 98 ∗ 10 + 255. The total data usage in day depends on
the frequency of the active tests of the algorithm. The goal of the algorithm
is to automatically disconnect from WiFi when performance is insufficient
to remove the need for users to manually disconnect from the WiFi access
point. Therefore we don’t need to run the algorithm when WiFi is disabled
or when the phone is not in use like when the screen is off.

We also used TCPdump to capture packets from the phone to compare
data usage of the existing handover method vs the algorithm proposed in
this thesis. As we saw in section 4.3 on page 37, Android is sending ping
packets to the default gateway and when we activate the aggressive smart
network switch it sends pings more frequently.

The participants in a study by Andrews et al. [2] used their mobile
phones for a total of 5.05 hours each day. Assuming that the phone is
connected to WiFi and used for 5 hours a day we can estimate the total
data usage of running the proposed handover initiation algorithm. The
download test will only be executed when the measured RX is low, but to
get a worst case estimate we assume that the measured RX always is so low
that the download test will be executed.

In Figure 5.3 on the following page we see a comparison of the effect of
adjusting parameters of the algorithm. How much data is used depends on

51

0

20000

40000

60000

80000

100000

120000

140000

160000

sleep 0 sec, monitor
RX 1 sec

sleep 0 sec, monitor
RX 5 sec

sleep 10 sec,
monitor RX 5 sec

sleep 20 sec,
monitor RX 5 sec

Smart switch
aggressive

D
at

a
u

sa
ge

 (
ki

lo
b

yt
es

)

Data usage

Figure 5.3: Data usage while adjusting parameters

the frequency of the active tests. Active tests, in the form of a file download
or ping, are not done during the sleep period, and they are not done during
the period of monitoring RX on the phone. When we decrease the values
of these parameters we see that the data usage is increased.

5.3.2 Energy usage

We measured energy usage with Google’s battery historian tool [32].
Battery historian gives details about each apps power usage and Samsung
Galaxy S7 has a 3000 mAh battery [35]. We let the algorithm run for 30
minutes and then used battery historian to inspect the energy usage. The
standard deviation for all these measurements is 0,01 or less. Then to get
an estimate of battery usage for five ours we multiply the power usage
values for 30 minutes with 10. According to [2] five hours was how much
time the participants spent using their phones per day. Figure 5.4 on the
next page shows the percentage of total battery capacity expended when
running the algorithm for five ours with different adjusting the values for
some of the parameters. For the first test we set sleep to zero and only
monitored RX for one second. With these values the energy usage was 1,1%
of total battery capacity. In the rest of the tests we monitored RX over five
seconds and varied the sleep time. In the second measurements sleep was
set to 0 seconds and energy usage was 0.9 %. In the third measurements
sleep was set to ten seconds and the measured battery usage was 0,7%,
and in the last measurements we set the sleep parameter to 20 seconds and
measured energy usage was 0.6%.

[6] is an analysis of power consumption in a smartphone. In this
study Caroll et al. perform multiple benchmarks and analyse the power
consumption of various components in a smartphone. In the network
intensive benchmarks like downloading files, they found that WiFi used
much more power than components like CPU or RAM. This could explain
why we see that battery usage increases with the data overhead.

52

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

sleep 0 sec, monitor
RX 1 sec

sleep 0 sec, monitor
RX 5 sec

sleep 10 sec, monitor
RX 5 sec

sleep 20 sec, monitor
RX 5 sec

B
at

te
ry

 u
sa

ge

Battery usage

Figure 5.4: Battery usage while adjusting parameters

5.4 Summary and conclusions

In this chapter we have suggested some performance threshold values that
might be reasonable for initiating handover and we have experimented
with some values for the parameters of active tests of the algorithm and
seen lead to initiating handover when performance of the WiFi network is
relatively close to the suggested thresholds. We have also seen that running
the active tests in the algorithm more frequently leads to a lower delay
before initiating handover but also lead to higher overhead in terms of
data usage and power usage. The results show that the new algorithm,
depending on the sleep parameter, can initiate handover faster than th
existing smart network switch in Android. However this comes at the
cost of a much higher data usage overhead. Higher data usage might not
be a problem on WiFi where you typically don’t have data caps or pay
per megabyte. On the other hand, on mobile networks like LTE networks
this way of initiating handover is not suitable since data costs are typically
higher in mobile networks. In other words, the proposed algorithm, can
potentially be suitable for initiating handover from WiFi to LTE, but not the
other way around. We have used an Android phone in this thesis, however
the proposed algorithm could also be used on other kinds of devices that
have access to multiple different wireless networks.

53

54

Chapter 6

Conclusion

6.1 Summary of contributions

In this thesis we investigated how handover from WiFi to LTE is initiated
in a mobile phone with the Android operating system. More specifically
we conducted experiments where we looked at how poor network
performance in terms of low throughput, high delay or high packet loss
would trigger the initiation of handover.

Based on the experiments we saw that activating the setting to
automatically hand over from WiFi to LTE when WiFi becomes unstable
indeed does cause handover, and that the aggressive settings actually wil
be more aggressive in instating handover. On the other hand it often takes
several minutes before handover is triggered automatically, meaning that
a user would likely disable WiFi manually to attempt using LTE instead.
The experiments also showed that the performance in terms of throughput,
delay or packet loss become so poor that the network was practically
useless for many tasks before handover would initiate.

Based on this we proposed a simple algorithm to automatically initiate
handover, and created a prototype implementation which we tested in
comparison to the existing handover mechanism in Android. Our tests
showed that this prototype implementation would initiate handover faster
than the current implementation in Android but at the cost of overhead in
terms of data and energy usage.

6.2 Future work

In this thesis we have focused on handover in a Samsung Galaxy S7 mobile
phone with Android 7.0. Many other kinds of devices also have access to
both LTE and WiFi. One way to extend the work in this thesis is to look at
how handover is handled in other devices.

Another way to extend the work in this thesis is to implement and
run experiments on more handover algorithms. For example some of the
handover algorithms covered in related studies, like [22], have only been
evaluated by simulation. Running experiments would allow us to evaluate

55

the real world performance of these algorithms and to see if this is in line
with the results form running simulations.

In the proposed algorithm we, used a file transfer as an active test of the
throughput of the WiFi network. If we had developed a server in addition
to the code running on the Android phone itself then we could have tried
other bandwidth estimation techniques, which for example could result in
lower overhead in data usage.

56

Bibliography

[1] 3GPP Declares First 5G NR Spec Complete. URL: https : / / www .
fiercewireless . com/wireless/3gpp - declares - first - 5g - nr - spec - complete
(visited on 05/07/2019).

[2] Sally Andrews et al. “Beyond Self-Report: Tools to Compare Es-
timated and Real-World Smartphone Use.” In: PLOS ONE 10.10
(Oct. 28, 2015). Ed. by Jakob Pietschnig, e0139004. ISSN: 1932-6203.
DOI: 10.1371/journal.pone.0139004. URL: https://dx.plos.org/10.1371/
journal.pone.0139004 (visited on 04/11/2019).

[3] Android Debug Bridge (Adb). URL: https : / / developer . android . com /
studio/command-line/adb (visited on 02/23/2019).

[4] Archer C7 | AC1750 Wireless Dual Band Gigabit Router | TP-Link. URL:
https://www.tp-link.com/en/products/details/cat-9_Archer-C7.html#
overview (visited on 11/15/2018).

[5] Stefano Busanelli et al. “Vertical Handover between WiFi and UMTS
Networks: Experimental Performance Analysis.” In: (Jan. 2011).

[6] Aaron Carroll and Gernot Heiser. “An Analysis of Power Consump-
tion in a Smartphone.” In: (), p. 14.

[7] Cisco Visual Networking Index: Forecast and Methodology, 2016–2021.
URL: https ://www.cisco .com/c/en/us/solutions/collateral/service -
provider/visual-networking-index-vni/complete-white-paper-c11-481360.
html (visited on 11/15/2018).

[8] D. E. Comer et al. “Computing As a Discipline.” In: Commun. ACM
32.1 (Jan. 1989). Ed. by Peter J. Denning, pp. 9–23. ISSN: 0001-0782.
DOI: 10.1145/63238.63239. URL: http://doi.acm.org/10.1145/63238.
63239 (visited on 04/23/2019).

[9] Douglas Comer. Computer Networks and Internets. 6., ed., global ed.
Always Learning. OCLC: 900493613. Boston: Pearson, 2015. 667 pp.
ISBN: 978-1-292-06117-7.

[10] ConnectivityManager.NetworkCallback. URL: https : / / developer .
android . com / reference / kotlin / android / net / ConnectivityManager .
NetworkCallback (visited on 02/23/2019).

[11] Different Wi-Fi Protocols and Data Rates. URL: https://www.intel.com/
content/www/us/en/support/articles/000005725/network- and- i - o/
wireless-networking.html (visited on 03/04/2019).

57

[12] Distribution Dashboard. URL: https ://developer . android . com/about/
dashboards (visited on 03/03/2019).

[13] Paweł Foremski and Krzysztof Grochla. “LTE or WiFi? Client-Side
Internet Link Selection for Smartphones.” In: Computer Networks.
Ed. by Piotr Gaj, Andrzej Kwiecień, and Piotr Stera. Springer
International Publishing, 2015, pp. 43–53. ISBN: 978-3-319-19419-6.

[14] G.114 : One-Way Transmission Time. URL: https://www.itu.int/rec/T-
REC-G.114-200305-I/en (visited on 03/11/2019).

[15] GitHub - Google/Battery-Historian: Battery Historian Is a Tool to Analyze
Battery Consumers Using Android "Bugreport" Files. URL: https : / /
github.com/google/battery-historian (visited on 04/24/2019).

[16] GitHub - Nodogsplash/Nodogsplash: Nodogsplash Offers a Simple Way
to Provide Restricted Access to an Internet Connection Using a Captive
Portal. Pull Requests Are Welcome! URL: https : / / github . com /
nodogsplash/nodogsplash (visited on 11/10/2018).

[17] Andreas Hanemann et al. “A Study on Network Performance Metrics
and Their Composition.” In: Campus-Wide Information Systems 23.4
(Aug. 2006). Ed. by Ingrid Melve, pp. 268–282. ISSN: 1065-0741. DOI:
10.1108/10650740610704135. URL: http://www.emeraldinsight.com/
doi/10.1108/10650740610704135 (visited on 11/15/2018).

[18] Tim Higgins. TP-LINK Archer C7 V2 Reviewed. URL: https : / /www .
smallnetbuilder.com/wireless/wireless-reviews/32498-tp-link-archer-c7-
v2-reviewed (visited on 02/24/2019).

[19] How Do I Turn on the Developer Options Menu on My Samsung Galaxy
Device? | Samsung Support UK. URL: / / www . samsung . com / uk /
support /mobile - devices / how - do - i - turn - on - the - developer - options -
menu-on-my-samsung-galaxy-device/ (visited on 03/13/2019).

[20] “IEEE Standard for Information Technology– Telecommunications
and Information Exchange between systemsLocal and Metropoli-
tan Area Networks– Specific Requirements–Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Speci-
fications–Amendment 4: Enhancements for Very High Throughput
for Operation in Bands below 6 GHz.” In: IEEE Std 802.11ac-2013
(Amendment to IEEE Std 802.11-2012, as amended by IEEE Std 802.11ae-
2012, IEEE Std 802.11aa-2012, and IEEE Std 802.11ad-2012) (Dec. 2013),
pp. 1–425. DOI: 10.1109/IEEESTD.2013.6687187.

[21] Index of /Releases/18.06.1/Targets/Ar71xx/Generic/. URL: http : / /
downloads.openwrt.org/releases/18.06.1/targets/ar71xx/generic/ (vis-
ited on 03/21/2019).

[22] T. Inzerilli et al. “A Location-Based Vertical Handover Algorithm for
Limitation of the Ping-Pong Effect.” In: 2008 IEEE International Con-
ference on Wireless and Mobile Computing, Networking and Communi-
cations. 2008 IEEE International Conference on Wireless and Mobile
Computing, Networking and Communications (WIMOB). Avignon,
France: IEEE, Oct. 2008, pp. 385–389. DOI: 10 . 1109 /WiMob . 2008 .

58

64. URL: http :// ieeexplore . ieee . org/document/4654269/ (visited on
02/25/2019).

[23] Heikki Kaaranen et al. UMTS Networks: Architecture, Mobility and
Services. 2 edition. Chichester, West Sussex, England ; Hoboken, NJ:
Wiley, Mar. 4, 2005. 422 pp. ISBN: 978-0-470-01103-4.

[24] Markku Kojo and Jukka Manner. Mobility Related Terminology. URL:
https://tools.ietf.org/html/rfc3753 (visited on 02/13/2019).

[25] G. Lampropoulos et al. “Handover Management Architectures in
Integrated WLAN/Cellular Networks.” In: IEEE Communications
Surveys Tutorials 7.4 (Fourth 2005), pp. 30–44. ISSN: 1553-877X. DOI:
10.1109/COMST.2005.1593278.

[26] Linux Advanced Routing & Traffic Control HOWTO. URL: https://lartc.
org/howto/ (visited on 03/01/2019).

[27] Networking:Netem [Wiki]. URL: https : / / wiki . linuxfoundation . org /
networking/netem (visited on 02/10/2019).

[28] Shahriar Nirjon et al. “MultiNets: A System for Real-Time Switching
between Multiple Network Interfaces on Mobile Devices.” In: ACM
Transactions on Embedded Computing Systems 13 (4s Apr. 1, 2014),
pp. 1–25. ISSN: 15399087. DOI: 10.1145/2489788. URL: http://dl.acm.
org/citation.cfm?doid=2601432.2489788 (visited on 12/08/2018).

[29] OpenWrt Project: Welcome to the OpenWrt Project. URL: https://openwrt.
org/ (visited on 11/07/2018).

[30] Ping(8) - Linux Man Page. URL: https : / / linux . die . net /man/8/ping
(visited on 02/03/2019).

[31] G. P. Pollini. “Trends in Handover Design.” In: IEEE Communications
Magazine 34.3 (Mar. 1996), pp. 82–90. ISSN: 0163-6804. DOI: 10.1109/
35.486807.

[32] Profile Battery Usage with Batterystats and Battery Historian | Android
Developers. URL: https://developer.android.com/studio/profile/battery-
historian (visited on 04/11/2019).

[33] “Quality of Service for Voice over IP.” In: (), p. 44.

[34] Samsung Galaxy S7 and S7 Edge. URL: http://www.samsung.com/global/
galaxy/galaxy-s7/ (visited on 03/21/2019).

[35] Samsung Galaxy S7 Edge Was World’s Top-Selling Android Smartphone in
H1 2016, Says Strategy Analytics. URL: https://www.strategyanalytics.
com/strategy-analytics/news/strategy-analytics-press-releases/2016/08/
01/strategy-analytics-samsung-galaxy-s7-edge-was-world’s-top-selling-
android-smartphone-in-h1-2016 (visited on 02/14/2019).

[36] Specifications Home. URL: http : / / www . 3gpp . org / specifications /
specifications (visited on 12/10/2018).

[37] System Requirements - YouTube Help. URL: https://support.google.com/
youtube/answer/78358?hl=en (visited on 03/14/2019).

59

[38] Tc(8) - Linux Manual Page. URL: http://man7.org/linux/man-pages/
man8/tc.8.html (visited on 02/10/2019).

[39] tcpdump. Tcpdump/Libpcap Public Repository. URL: https : / / www .
tcpdump.org (visited on 02/08/2019).

[40] The Evolution of WiFi Standards: A Look at 802.11a/b/g/n/Ac. June 22,
2017. URL: https : / / www . actiontec . com / wifihelp / evolution - wi - fi -
standards-look-802-11abgnac/ (visited on 03/04/2019).

[41] What Is Adaptive Wi-Fi? | Samsung Support Australia. URL: //www.
samsung . com/au / support /mobile - devices / galaxy - note - 8 - what - is -
adaptive-wifi/ (visited on 11/14/2018).

[42] Wireshark · Go Deep. URL: https : / / www . wireshark . org/ (visited on
02/08/2019).

[43] Xkcd: Wifi vs Cellular. URL: https : / / xkcd . com / 1865/ (visited on
12/06/2018).

[44] Xiaohuan Yan, Y. Ahmet Şekercioğlu, and Sathya Narayanan. “A
Survey of Vertical Handover Decision Algorithms in Fourth Gen-
eration Heterogeneous Wireless Networks.” In: Computer Networks
54.11 (Aug. 2010), pp. 1848–1863. ISSN: 13891286. DOI: 10 . 1016 / j .
comnet.2010.02.006. URL: https://linkinghub.elsevier.com/retrieve/pii/
S1389128610000502 (visited on 02/25/2019).

60

