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Abstract

Today, highlights in soccer matches are manually annotated and clipped
by human operators. This is a time-consuming, tedious, and expensive
task. The clips are often a preset time interval instead of a tailored
interval that fits the specific event. The editors might not even have
time to clip it as it can often be important to distribute it as close to the
live event itself. It could be edited later, but in many cases, this is too
expensive. In this thesis, we experimented with automating the process of
highlight generation using Scene boundary detection, logo detection, and
a production-based algorithm. Through experimentation, we concluded
that the VGG inspired CNN using grayscale input of 54× 96 achieving a
100% F1-score was the best fit for our logo detection module on Eliteserien.
For the more complex Premier League logo dataset, we concluded that the
ResNet CNN using RGB input of 108 × 192 achieving an 0.997 F1-score
was the best fit for our logo detection module. We trained and evaluated
TransNet-V2 [64] on the SoccerNet shot boundary dataset, and compared
the performance to the pre-trained version, and concluded that the pre-
trained version was sufficient for the Scene boundary detection model
of our system. Further, we combined these modules and implemented
two different configurations of our system, one including full celebration
scenes, and the other removing certain celebration scenes. We compared
these to the already existing model in Eliteserien. Based on the qualitative
and quantitative evaluation through a user study, we showed that Our
model - Short and Our model - Full consistently produces more compelling
highlight clips compared to the original model used in Eliteserien today.
Upon inspection of the preferences of the participants we discovered that
due to the random nature of the original model (using a set time interval
for highlight extraction), it achieves low scores when it "misses", while in
the cases where it "hits", the preference of model is more even. The results
showed that this is a complicated task and there is a variety of which model
is preferred impacted by several different factors such as background, real-
world factors, mood, etc.
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Chapter 1

Introduction

1.1 Motivation

Non-linear TV and video clips on the internet are becoming an increasingly
bigger part of our everyday life. Videos’ incorporation with social media,
smaller devices, cheap cellular data, and high-bandwidth internet at all
times has made videos highly accessible and shareable. The competition
for the users’ attention is high with many video streaming services such as
Amazon Prime, HBO, Netflix, Disney+, and video sharing platforms such
as TikTok, Twitch, and YouTube. YouTube alone has over 1 billion hours of
content watched daily, most of it through mobile screens [77].

Sports play a huge part in society today, both culturally and commer-
cially. From 2016 to 2017, watch time for sports highlight videos grew by
more than 80% on YouTube. In a survey of people who identified as sports
fans, 80% said they used multiple devices to search for additional inform-
ation such as player stats, live scores, and related videos [65]. Therefore,
providing consumers with near to real-time replay options for use on a
second device could be of big interest during a game. Previous clips re-
lated to the teams, league, or players are of interest too and should be avail-
able. To meet these demands, we want to make compelling clips of more
events while providing a good technical standard and make them available
fast. This way, online sports streaming providers and betting companies
can provide good pregame content and live replay accessible on the fly.

Soccer is maybe the world’s most popular sport, played by 250 million
players in over 200 countries as reported by FIFA[25]. A combined 3.572
billion viewers – more than half of the global population aged four and over
– tuned in to the 2018 FIFA World Cup, according to audience data for the
official broadcast coverage[46]. FIFA also report 1.25 billion views on their
content on YouTube and 87 million clicks on their live blogs during 2018[3].
Soccer is popular on TV, but as the world becomes more mobile than ever
with accessible internet, there is a higher demand for instant updates on
our mobile devices.

In recent years, we have seen the trend of consumers wanting to
consume as much video as possible in the shortest amount of time. In 2015,
a study by Microsoft showed that the human attention spawn decreased
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from 12 seconds (2000) to 8 seconds (2013) [43]. With these trends, we have
seen platforms such as TikTok having enormous growth in recent years.
They report 800 million active users and 2 billion downloads in App Store,
bypassing YouTube, Instagram, and Facebook with 33 million downloads
as of Q1 2019 [22, 45]. Further, we see a rising trend in providing events
in both research [7, 36, 79] and real systems 1. In the context of soccer
highlights, short and concise summaries have been the standard in sports
news coverage, but these do not cover all games or events and each
highlight can not be watched separately. It is fair to assume that it would
be of benefit to make more events available with short and concise clips of
soccer highlights .

Figure 1.1: Visualization of how the solution used today can cut when using
a fixed interval. This is an example of the cutting in the middle of the replay.

Today, highlights in soccer matches are manually annotated and
clipped by human operators. This is a time-consuming, tedious, and
expensive task. The clips are often a preset time interval instead of a
tailored interval that fits the specific event as shown in Figure 1.1. The
editors might not even have time to clip it as it can often be important to
distribute it as close to the live event itself, like on a betting site. It could
be edited later, but in many cases, this is too expensive. Due to all this, the
highlights are in many cases of poor quality. The clips often start way too
early or in the middle of the event of interest. It often ends abruptly in the
middle of a replay as well. The celebration is part of the sport and should in
many cases be included, so the end timestamp is also an important aspect.
It is important to keep the momentum going if the highlights are being
played back to back. Good highlights should be short and exciting, while
still giving enough context to understand what is going on. It should start
and end on reasonable timestamps.

Automatic event detection and clipping can increase the availability
of user consumption. Video files that contain such data are valuable in
themselves, providing statistics from events that can be useful for fans,
gambling companies, coaches, or fans reading text-based summaries of
matches. A system like this can be especially useful for teams in lower
divisions with limited funds and save a lot of time for people who have
little knowledge about editing by making the clipping automatic by the
press of a button. You can find a lot of papers online about event detection
and video summarization [5, 17, 27, 41, 49, 54], but they mostly focus on
the part of spotting a goal, card, substitutions, and other events. While

1highlights.eliteserien.no
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most papers focus on the task of spotting, we will focus on a task that
has received less attention, i.e., using machine learning techniques to find
the best start and stop for clipping the highlights in soccer matches. For
example, the current clips clipped by Forzasys2 in the Swedish Allsvenskan
and Norwegian Eliteserien are initially clipped using a static value of
seconds before and after a highlight based on "averages", and is only edited
manually if resources are available. Often, these static clippings are just
fine, however, sometimes they are completely off by for example stopping
the clip in the middle of a replay. Thus, We want to use machine learning
to make the clipping function dynamic, less expensive, and much faster.

In summary, with the growing demand for sports highlights combined
with most people having multiple and portable devices with internet
access, we want to research an intelligent system that can automatically
produce highlight clips from a timestamp with the help of machine
learning and video processing. Research on event spotting is already a
popular [17, 27, 41, 49] focus in the field of machine learning, and combined
with our task, it would be completely automatic. We see that it is beneficial
to be able to distribute highlights fast, as sports fans often use a second
device to look at complementary content in parallel to a match. Given the
drop in human attention spawn [43], we also want the clips to be concise,
showing only the relevant action. A system like that would save time and
money and produce more content and more compelling highlights than the
existing solution today 3.

1.2 Problem Statement

Addressing the manual, tedious task of performing accurate clipping of
events as described above, we want to research a high-performance method
to extract compelling highlights in soccer. We want the system to extract
compelling highlight clips using an already annotated timestamp of an
event taking place. To do this we build on existing machine learning state-
of-the-art solutions of shot classification, clipping, and summarization of
sporting events, and make our own proposed model that will work on our
specific problem. We also want to explore how good our clips are compared
to the already existing clips in the Norwegian Eliteserien in a scalable
manner. Because what defines a good clip is a rather complicated matter,
that comprises both technical, more objective truths, while also being a
subjective question. We perform a user survey where we compare our
clips to the already existing clips. This way, we can evaluate not only the
technical performance but also get quantitative and qualitative data that
can give insight into the quality of the highlights in the eyes of consumers.
Based on this, the research question we aim to answer is:

Can a machine automatically extract compelling highlight clips from
soccer videos?

2http://forzasys.com
3http://forzasys.com
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To answer this question and narrow down the tasks into smaller parts,
we have defined 3 research objectives that each will bring us closer to a
final conclusion:

Objective 1 Research and design a system to automatically extract high-
light clips from soccer videos. Identify and prepare the necessary
data needed for development and final evaluation.

Objective 2 Implement a system for clipping highlights and perform an
objective evaluation of the different modules used, i.e., logo detection
and scene boundary detection.

Objective 3 Perform a qualitative and quantitative evaluation of the
system through a user study that evaluates the subjective nature of
high-quality soccer highlight clips.

1.3 Scope and limitations

This thesis will focus on the specific event type goal in the sport of soccer,
but the solution was designed as a more general system, meaning that it
can be adapted to other events with few adjustments. We limit ourselves to
the Eliteserien dataset collected by Forzasys (season 2018) and the Premier
League (season 16/17) subset from SoccerNet [18] dataset. The reason we
do not use the full dataset of SoccerNet [18], is the fact that we have to make
our own logo detection datasets, and SoccerNet originally a very large
dataset with 500 matches covering six different leagues. Our computational
ability is limited by the hardware we have available. This limits the amount
of training, training duration, and storage space available. Due to the
length of the thesis, we decide to only include video in our scope of work
and leave out audio and commentaries, though it is considered during
evaluation as it is still part of the finished highlight clips.

The number of participants and their diversity are limited due to the
reach of our network. This impacts the subjective evaluation in the sense
that most of the participants fall into our age group of 18-29 years old. We
would also have liked to have had the participants view a much higher
number of videos, but in a realistic setting, it is hard to find participants
willing to use hours and hours watching soccer highlights. Therefore,
not all types of goals are represented in the subjective evaluation and the
number of comparisons shown to the participants is limited.

1.4 Research method

We have based our research method upon the report "computing as a
discipline" written by the task force on the core of computer science which
was established by the ACM (Association for Computing Machinery)
education board in 1989 [52]. In this report, three paradigms are described
which we will describe in general and how they link up to our thesis.
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• Theory paradigm The theory paradigm is rooted in mathematics and
consists of four different steps. These are (i) characterize objects of
study (definition), (ii) hypothesize possible relationships among them
(theorem), (iii) determine whether the relationships are true (proof),
and (iv) interpret results.

• Abstraction paradigm The second paradigm, abstraction (modeling),
is rooted in the experimental scientific method and consists of four
stages. These are (i) form a hypothesis, (ii) construct a model and
make a prediction, (iii) design an experiment and collect data, and
(iv) analyze results.

• Design paradigm This thesis is mostly applying the third paradigm,
design which is rooted in engineering and consists of four steps.
These are (i) State requirements, (ii) state specifications, (iii) design
and implement the system, and (iv) test the system.

Our work mainly falls under the design paradigm as we state require-
ments, design, implement, and test the system. For our system to be useful
the system needs to reach a certain performance for logo detection, Scene
boundary detection, and consumer satisfaction. We also fall under the the-
ory paradigm as we have a theory that certain modules will be faster and fit
better for our use case, and we also have certain hypotheses about how well
some of the models will perform based on the participant’s background.
Furthermore, we collect the data and analyze the results in-depth to either
confirm or discard our hypothesizes. Finally, we touch upon the abstrac-
tion paradigm through the use of machine learning concepts and different
type of hyperparameter optimizations for the different models.

1.5 Main contributions

Based on the problem statement described in Section 1.2, we want to make a
machine learning model that provides a soccer highlight of a high standard,
and this involves objective evaluation of key modules and a subjective
evaluation of the final system. We will here restate the objectives set in
Section 1.2, and our main contributions in association with each of them.

Objective 1 Research and design a system to automatically extract highlight clips
from soccer videos. Identify and prepare the necessary data needed
for development and final evaluation.

To meet this objective, we research machine learning approaches for
video summarization, Scene boundary detection, and logo detection.
Based on soccer broadcast production, we propose a highlight
clipping system based on logo recognition tailored for a specific
league and season and a shot boundary detection.

We design our logo detection as a binary image classification task. We
analyze state-of-the-art approaches in the field of image recognition.
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We settle on VGG [62] and ResNet [32, 33] architectures, both reach-
ing impressive performance on the ImagNet ILSVLC dataset [19, 58].
Our candidate logo recognition models are ResNet50V2 [33], a light-
weight CNN based on the VGG architecture [62], a simple CNN ar-
chitecture, and an SVM using VGG16 [62] as a feature extractor.

We create a frame logo recognition datasets for two different leagues,
Eliteserien season 2018 containing 1, 025 logo and 7, 025 background
frames, and Premier League season 2016 - 2017 extracted from
SoccerNet-v2 [18] containing 23, 194 logo and 43, 260 background
frames. Both with high quality with respect to the sampling and
labeling quality, but differ in size and complexity of logos. To
compensate for insufficient data from Eliteserien, we supplement
with synthetic data using a script adding extra logo frames.

Shot boundary detection is a popular field of research and has
shown great performance results in the recent years [39, 63, 64, 70].
For our shot boundary detection task, we use TransNet-V2 [64], a
state-of-the-art model with great performance on the shot boundary
benchmark datasets ClipShots [70], RAI [11], and BBC [10]. We
will test TransNet-V2 with its complimentary pre-trained weights,
trained on ClipShots [70] and generated transitions using clips from
TRECVid IACC.3 [8], as well as do our training on soccer clips only.

To train and evaluate, we extract over 150, 000 clips of 100 frames
containing transitions from the full SoccerNet-v2 dataset with labels
suitable for TransNetV2 [64]. Finally, we prepare a subjective
evaluation for our system and the current system used in Eliteserien,
on the Eliteserien dataset.

Objective 2 Implement a system for clipping highlights and perform an objective
evaluation of the different modules used, i.e., logo detection and
scene boundary detection.

To meet this objective, we implement the candidate models for logo
detection, using SVM and CNN. We experiment on the Eliteserien
dataset and Premier League dataset and assess the performance using
several metrics. We show that for the Eliteserien dataset both the
SVM and CNN achieved satisfactory results for the task at hand and
the VGG model with a grayscale input of 54× 96 pixels achieves the
best result with a 100% F1-score. We also show that with a larger and
more complex dataset such as the Premier League dataset, the CNN
still performs well, while the SVM models failed to reach satisfactory
results. We further improve the CNN models by adding more variety
of backgrounds, including hard samples extracted by our classifiers,
which proves to be effective. We find that the ResNet model with
an RGB input of 108× 192 reaches the best scores with a precision of
100% and a recall of 95.5% for logo transition detection on five full-
length matches.

We evaluate the state-of-the-art shot boundary detection model
TransNetV2 [64] on the SoccerNet-v2 [18] dataset. We show that a
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pre-trained version trained on regular video clips performs well on
soccer videos for gradual and abrupt transitions. We experimented
with training the model specifically on soccer clips, which show
potential but does not reach the levels of the pre-trained model. We
find the model to be frame-accurate and therefore a sufficient model
for our scene boundary detection module.

We combine logo detection and shot boundary detection in order to
form a full system that outputs highlight clips, with high technical
performance. We implement two different clipping protocols. The
first configuration of the system includes all the celebration scenes
between the event and the replay, and the other configuration of the
system excludes a number of celebration scenes.

Objective 3 Perform a qualitative and quantitative evaluation of the system
through a user study that evaluates the subjective nature of high-
quality soccer highlight clips.

For this objective, we perform a qualitative and quantitative evalu-
ation through a user study for Our model - Short, Our model - Full,
and the Original model used today in Eliteserien. 64 participants
rate highlights of five goals generated by our system and the exist-
ing solution and compare them with each other. The rating goes from
1 (worst) to 10 (best). Based on the results from the survey, we find
the following ranking of the models:

1 Our model - Short achieves an average score of 7.40

2 Our model - Full achieves an average score of 6.84

3 Original model used in Eliteserien today achieves an average
score of 5.89.

We find that due to the random nature of the Original model using
a fixed interval for highlight extraction it achieves low scores when
it "misses", while in the cases where it "hits", the original model
achieves decent results compared to the other models.

Further, we group the participants by soccer fans, sports fans, gender,
age, and editing experience, and find that the ranking of the models
remains the same for all the groups, but the preferences, scores,
standard deviation, and median vary.

Finally, we identify possible biases for the different groups of
participants and discuss possible biases and real-world factors that
could impact the results.

Our contributions are interesting in the context of the problem state-
ment, and the presented results are valuable as for how much impact a
good highlight clip has on consumer satisfaction. We showed that the ma-
chine was able to provide highlight clips of reliable technical standards
based on the technical results and empirical evaluation. From the gathered
quantitative results from the online survey, we showed that the technical
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performance in conjunction with our two different clipping protocols leads
to better results than the solution of the fixed interval used today. We also
identified that what is considered a compelling highlight is subjective, and
there are differences in what production strategy the potential users prefer.
Our work gives a strong foundation for further work with using machine
learning to generate automatic highlight clips in soccer.

1.6 Outline

Chapter 2 - Background In the Background chapter we introduce key
concepts and terminology in machine learning that will be used further
thorough the thesis. We also discuss already existing approaches for the
problem at hand and relevant concepts that could apply to our problem
statement. This chapter lays the foundation for the ideas this thesis will
build upon.

Chapter 3 - Methodology In chapter 3, we describe the datasets and their
respective task. We address the differences and weaknesses, and how it is
pre-processed. Further, we discuss our proposed solution and introduce
the different candidate models for the different tasks. This includes
architecture and hyperparameters which will be used for experimentation
in the next chapter. We discuss how to evaluate the system through
objective data as well as subjective data gathered from an online survey.

Chapter 4 - Experiments and Results In the Experiments and Results
chapter, we discuss the training iterations before we present the results
for our experiments. The strengths and weaknesses of our models are
analyzed and we try to understand why the models perform as they do.
We present and analyze results for logo detection and Scene boundary
detection based on objective quantitative data. Finally, we make prototypes
of our system, and evaluate their performance based on their outputting
highlight clips, and continue addressing the results of the online survey.

Chapter 5 - Conclusion In chapter 5, the work of our thesis is summar-
ized, and the contributions are presented. Furthermore, we discuss pos-
sible future work that can be done in the context of our task and this field
of research in general, to improve today’s solutions.
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Chapter 2

Background

Based on the challenges described in the previous chapter, we aim to
develop a system that can automatically extract high-quality highlights in
soccer. To understand the problem and the solution, there is a need to
understand the concepts on which it builds. This chapter tries to explain
some of the basic underlying technologies and some related works.

We start by defining the events we are using in this thesis, then we
define some key concepts in machine learning relevant to the problem
we are trying to solve. Next, we explore related works using different
approaches related to the task of image processing, video summarizing,
and other machine learning research that could be used for our solution.

2.1 Event definition

An event in our context is a goal, goal attempt, or a card. An event is
defined as a thing that happens, especially something important. It can
be hard to quantify an event, as the duration of an event is not clear.
Sigurdsson, Russakovsky and Gupta [60] found in an experiment that there
is mostly consensus of the center of the event. Therefore, defining an event
as instantaneous on the time of the main action in the center of the event
would be reasonable. In this thesis, we work with events being defined as
Norgård Rongved et al. [49] defines it. Goals are defined by when the ball
crosses the goal line, goal attempt as when the player makes an attempt,
and cards when the card is given by the referee. It is consistent with
the annotations provided by SoccerNet, as well as the spotting provided
by online match reports, which also defines events at one exact point in
time [18].

2.2 Machine Learning

Machine learning (ML) is an enormously expansive field in data science. Its
ability to learn through experience has been useful in many fields such as
health, entertainment, and science. Machine learning at its most basic is the
practice of using algorithms to parse data, learn from it, and then make a
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determination or prediction about something in the world [72]. Therefore,
we will in this chapter explain some key concepts in machine learning that
lay the foundation for what we use in this thesis.

2.2.1 Supervised, Unsupervised and Reinforcement Learning

We often split ML into three categories, supervised, unsupervised, and
reinforcement learning. Supervised learning is the most common form
of machine learning. In supervised learning, we have a set of true labels
Y = {y1, y2, y3.., yn} which usually are annotated manually by a human.
We also have an input dataset X = {x1, x2, x3, .., xn} corresponding to the
true labels. Supervised machine learning utilizes the known data to learn
the mapping function from input variable X to output variable Y, finding
the best suitable function Y = f (X) such that mapping new unknown
input data X yields correct Y. We use supervised learning in this thesis.

As opposed to supervised learning, we have unsupervised. Unsuper-
vised machine learning uses data without labels and tries to find hidden
patterns. We also have reinforcement machine learning which does not
need labeled data. It uses software agents, which are programs or al-
gorithms that have a set of rules to follow. These rules are set to maximize
the result of the learning.

2.2.2 Classification

Supervised machine learning is often used for classification. The output is
categorical. It is used to identify a specific class, e.g. classify pictures of
animals to a specific animal. An example in the context of our problem
is running our labeled data through a machine learning algorithm that
identifies if there is a logo present or not. This is an example of a binary
classification problem.

2.2.3 Regression

Regression is a type of supervised machine learning. Instead of outputting
a class like in classification, it outputs a real number (score). The training
data is a mapping from input to a goal target. Its goal is to identify the
relationship between the input features and making a function that can
accurately predict the correct score. An example of this could be to predict
the temperature tomorrow based on the temperature of the previous days.

2.2.4 Dataset

Whatever the use case for your algorithm is, it needs data to learn from and
evaluate performance on it. Datasets help you to organize unstructured
data from different (the same) sources to get the target outcome. Your
dataset must be of good quality and relevant to the use case because it is
the foundation of your model [30].
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In the context of supervised learning, we have our input data X and our
corresponding labels Y that make up our dataset. To prepare the dataset
for training, we usually split our dataset into three sets depending on our
problem and solution. We have the training set, validation set, and test
set.The training set is what is used directly to update the algorithm to make
it fit better. The training set is most often the biggest subset of our total
dataset.

The validation set is another subset we use during training to validate
the results. This dataset represents the current state of the algorithm, as
it is a more accurate measurement than the training set because it is not
directly updating the weights. We often use the metrics on the validation
to tune the hyperparameters of the model to evaluate how well our model
generalizes and to prevent our model from overfitting to the training set.
Even though we do not use the validation set directly on the algorithm,
the tuning makes the model biased toward it as we tweak the model into
what gives the best results on the validation dataset. This is why this is not
used for the final evaluation. The test set serves the purpose of evaluating
how well our model performs on unseen data and is never touched during
training to keep it independent and general. It is used in the end to see if
the algorithm is generalized and in a scientific context this is the set you use
to give a final evaluation of your model. This should never be used before
a final evaluation.

Overfitting

Overfitting is a problem to be aware of in Machine Learning. Machine
learning tries to make an optimal solution based on the data we use in
the learning phase. There is a risk of overfitting to this data, i.e. the
algorithm works great on the training data, but fails to generalize to new
data. Separating the data into train-, validation- and test sets are one way
of minimizing this risk. It is also important that the data for the training is
representative of the real data. The ultimate goal for a model is to be able
to predict well on new unlabeled data the model has never seen before [57,
76].

Figure 2.1: Illustration of 3 different functions (red line) used to fit the
training set, Taken from [57].
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2.2.5 Gradient Descent

Gradient descent is widely used to estimate optimization for a model. It is
used to update the function iteratively, updating it little by little in the right
direction until an optimal solution is found. A cost function, C(X, w), is an
estimate of how far off the model is from the optimal solution. By finding
the gradient of the cost function with respect to the weight, ∇wC(wt), we
can find the direction in which the weights should be updated to reduce
the cost [57, 76].

wt+1 = wt − µ∇wC(wt) (2.1)

Where t is time, µ is learning rate and C(wt) is the cost function. The
learning rate is a hyperparameter that decides how big of a step the
iteration will take. Higher values make it update faster, but it might not
converge due to overshooting the local minimum. If it is too low, it will
update slow. There needs to be a compromise between the two.

Figure 2.2: An example of gradient descent used to find the local minimum.
On the left, we see an example of a linear regression line fit during each
iteration; on the right, we see the loss for corresponding iterations of
gradient descent. Taken from [57].

2.2.6 Convolution

Convolution is the operation of an element-wise multiplication and sum
between a filter and a region of the same size of the input. With a 2D input,
such as a frame, the filter ’slides’ over the input image, outputting a 2D
feature map, where each element corresponds to one application of the
filter on a specific part of the frame. The filter is essentially a matrix of
learnable weights that are trained to identify specific features [31, 76].

For one convolution, we often specify the filter size, stride, and dilation.
The filter size decides the local receptive field, meaning that it decides

how much information we look at simultaneously. Today, we usually go
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Figure 2.3: Illustration of a simple convolution using a 3x3 kernel, zero
padding and a stride of 1. Figure pulled from [76].

for small filter sizes and instead go deeper which widens the receptive
field. 3x3 is the most common, as it is cost-friendly. A 1x1 filter will only
reduce the dimensionality, for example, map an image with three channels
to a 2D feature map. 2x2 and 4x4 are generally not used because we need
the symmetry we get from odd-numbered size filters. Each element in the
feature map would not point directly to one anchor point. 5x5 or bigger is
very costly to train, and in most cases, it is better to use the 3x3 filter size
with a deeper model.

Stride is the steps we take between each application of the filter. With
a stride of 1, we apply the filter on every element. With a stride of 2, we
skip every other element. This also increases the receptive field. Dilation
decides the width and height of the kernel. If the filter size is 3x3 with a
dilation of 1, the filter will look at the neighboring elements to the central
element. If the dilation is 2, it will skip over one element on each axis. For
filters bigger than 1x1, we also specify if we want to zero pad the edges.
This is because the filter can not fit, leading to some lost information. Zero
paddings are often used if the edges contain important information or to
preserve the input size.

All this translates directly to 3D convolution, such as a video input
which is a series of images. The only difference is that there is one more
axis to move along.

2.2.7 Neural Network

A Neural Network (NN) is inspired by biological neurons of our brain. Its
building blocks are perceptrons, which are interconnected nodes, which
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can be over multiple layers. The perceptrons send the signal produced to
an activation function, where the function is to decide if that perceptron is
to "fire" or not, which is an analogy of how our neurons in the brain work.
The activation function is usually non-linear, making the resulting function
of the network non-linear and a universal approximator. Two popular
activation functions are ReLU as shown in Equation 2.2 and Sigmoid as
shown in Equation 2.3.

ReLU(x) = max(0, x) (2.2)

σ(x) =
ex

1 + ex (2.3)

The patterns recognized by the Neural network are stored numerically
in vectors and could represent images, sound, time, words, and so on. We
can think of neural networks as a model that helps us cluster or classify our
data [31, 57].

Figure 2.4: A illustration of a neural network where the pink nodes
illustrate the input nodes, blue nodes illustrate the nodes at the hidden
layer, the green nodes illustrate the nodes at the output layer and the
lines illustrate the learn-able weights of the neural network. Figure pulled
from [35].

The neural network also has a loss function. This loss function is used
to give the model a state during training of how close it is to the goal. The
goal would be to find a function approximation that most accurately maps
input X to correct output Y for all data. If we look at the neural network as
a function f (X) = Ỹ, the loss function would be a function f (Y, Ỹ) = loss,
where Y is the ground truth mapping from X. Given this function, we
can find the gradients with respect to the weights in the network and
update them according to gradient descent. This way, the loss will become
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less, and we will be closer to the target function. For binary classification
problems, the most common loss function is binary cross-entropy. This is
described in Section 2.4.

2.2.8 Convolutional Neural Network

Convolutional Neural Networks (CNN) combines convolution and neural
networks. It often combines multiple convolutions as showed in Figure 2.3
and neural network layers as showed in Figure 2.4, each taking the
output activations of the previous layer as input. The convolution uses
multiple filters in each layer, each learning different features. The filters
in the earlier layers, i.e. the layers closer to the input, interpret simpler
features like edges, while deeper layers combine these layers and find more
complex features like circles and squares, and eventually very complex
combinations such as faces, hands, wheels, etc. We often add more filters to
deeper layers because there are more combinations of features to learn. The
output features of the convolutional layers are fed to the neural network.
The neural network learns to separate the samples based on these [31, 76].

2.2.9 Pooling

Pooling uses a pooling operator to downsample a feature map. The pooling
operator works almost exactly like a kernel in the convolution operation,
except that the pooling operator either chooses the highest value or the
average of the patch instead of taking the dot product. The pooling
operator is almost always of size 2x2 with a stride of 2, meaning that each
2x2 region (with no overlapping) maps directly to one activation [76].

Figure 2.5: A illustration of max pooling and average pooling with a stride
of 2 and filter size of 2x2.

The two main operators used are max or average pooling. Max pooling
chooses the highest value in the active region, while average pooling takes
the average as illustrated in Figure 2.5. This reduces the computational cost
by reducing the number of learnable parameters without losing too much
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information. It also makes the network less sensitive to the location of the
features.

2.2.10 SVM

SVM is a supervised machine learning algorithm that can be used for
regression and classification challenges. The SVM algorithm plots the data
in a N dimensional space where N represents the N number of features
you have. Where the value of each feature represents a coordinate. Then
SVM performs classification by finding the best hyperplane to separate the
classes. A good rule of thumb is to select the hyperplane that segregates
the classes better [51, 78].

The SVM chooses the "best" hyperplane by maximizing the distance
between the nearest data points and the hyperplane to help select the
right hyperplane. This distance is called Margin, the SVM will choose
the hyperplane that maximizes the margin, if you have a low Margin you
have a higher chance of miss classification. One thing that makes the
SVM so robust is that it contains a feature to ignore outliers and finds
the hyperplane that maximizes the margin. Now that we have looked at
linearly separable data, how does SVM handle data that is not linearly
separable? We can solve this problem easily by introducing additional

Figure 2.6: On the left we see potential hyperplanes for the SVM, on the
right we see the optimal hyperplane that maximizes the margin, Taken
from [51].

features manually before letting the SVM do its magic. But introducing
additional futures manually also makes the computational cost of the SVM
more expensive.

To solve this the SVM uses a kernel function to map the feature space to
a higher dimension. This can be computationally expensive to transform
all the data to a higher dimension, therefore the kernel figures out what
the dot product in the space looks like instead of transforming all the data
(this is computationally cheaper). It is important to note that this is still
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an expensive and complex operation, so this is something to have in mind
when choosing a model for your dataset. One of the kernel tricks we will
be using in this thesis is the radial basis function kernel (RBF kernel) which
is commonly used to separate non-linearly separable data.

2.2.11 Weight initialization

Weight initialization refers to the initial values of the weights. A network
can be sensitive to the initial weight values [42]. Earlier, it was normal
to initialize the weights between small numbers, such as +/− 0.01, with
a uniform distribution (all values are equally likely). The problem with
this is that it can be hard to know what values to use. Reproducing other
scientists’ work can also be hard if these values are not documented. In
2010, Glorot and Bengio [28] proposed a method now known as Glorot
uniform initialization (also known as Xavier initialization). They proposed
to initialize the weights based on the number of input nodes and the
number of hidden layers. The Glorot uniform initialization initializes the
weights between−s and s if s =

√
6√

ni+nh
m where ni + nh is number of input

nodes plus the number of hidden layers. The bias is commonly initialized
to 0.

2.2.12 Binary cross-entropy

For binary classification problems, it is common to use binary cross-
entropy. The reason for using this is that it gives an exponential increase of
loss the more off the predictions are. The formula looks like this:

Hp(q) = −
1
N

N

∑
i=1

yi ∗ log(p(yi)) + (1− yi) ∗ log(1− p(yi)) (2.4)

Where Hp(q) is the loss over q elements, y is the true class (0 or 1), p(y) is
the predicted probability of the positive class (between 0 and 1) and N is
the total number elements. Easy explained, we sum the log of the distance
distance from the true class to the predicted probability over all elements,
and then divide on the negative total number of elements, because log of
values between 0 and 1 are negative. This leads to an exponential increase
of loss the further from the true class the prediction is. The loss can be seen
in Figure 2.7.

2.2.13 Exploding and vanishing gradient problem

When gradient descent is used for training a network, we calculate the
derivative of a given loss function with respect to the weights and bias.
We do this in what is called forward propagation. In the backpropagation,
we use this to calculate the gradient and update the weights in the right
direction according to the gradient. The more hidden layers, the more the
gradients are multiplied. This is the reason for a problem referred to as
the exploding or vanishing gradient. Small values will exponentially get
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Figure 2.7: Illustrates the loss for y=1 (red) and y=0 (purple).

smaller and big values will get very big until they eventually overflow.
This leads to the earlier layers being unable to learn.

2.2.14 Transfer Learning

Training a network takes a lot of time and resources. Therefore, using pre-
trained weights as part of the network might be a good idea, leveraging
already known knowledge to another problem. To continue on the
analogy of our brain, our brain uses former knowledge from different
scenarios when learning something new. Transfer learning uses learned
patterns from other similar tasks to initialize the weights to kick start the
initialization, and then train the model to generalize on our new specific
problem.

2.2.15 Spatial and temporal features

Machine learning algorithms are very good at extracting spatial features.
Classifying images has become extraordinarily accurate. Classifying events
in videos is however a much harder task. Temporal features are features
spanning over multiple frames or time. This is important to catch an event
like a goal in a soccer video or to make a weather forecast where earlier
conditions are important. The technology can also be applied to other
inputs like MRI scans, helping us diagnose patients.

2.3 Definition of metrics

We use many different metrics when analyzing the results. It is very
important to understand what the different metrics mean, and to know
what metrics should be used to measure success. In machine learning, we
look at a prediction as either true positive, false positive, true negative or
false negative. Positive or negative refers to the predicted value, while
true/false refers to if it is correct or incorrect. The metrics are objective
data [29].
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In many domains and specific problems, we use accuracy as measure-
ment. Accuracy shows us how many of the true positives are found out of
the total.

Accuracy =
True Positives

Total
(2.5)

Precision tells us how many of the positives we trust actually are
positives in reality. This unit measurement is important if we need all true
cases to be correct.

Precision =
True Positives

True Positives + False Positives
(2.6)

Recall tells us how many of the positive class is found. This is important if
it is important to not leave out any positives. An example would be to fail
to find cancer in a patient, as it would be much better to have false positives
than to have false negatives.

Recall =
True Positives

True Positives + False Negatives
(2.7)

Sometimes we combine these two scores into one, by finding the harmonic
mean between them. This is called the F1-score

F1 = 2 ∗ Recall ∗ Precision
Recall + Precision

(2.8)

Average gives us the average S over all the classes and tell us how
consistent our model is across all the classes. here S is the calculated recall,
precission or F1-score and i denotes the i’th class for iε{1, 2, 3, .., C} for C
number of classes.

Avg(S) =
C

∑
i=1

Si (2.9)

One crucial factor is imbalance in the dataset. Therefore, we calculate the
average and the weighted average. in this equation Ni is the number of
samples in the i’th class.

WeightedAvg(S) = ∑C
i=1 Si ∗ Ni

NTotal
(2.10)

2.4 Related Works

Many papers and articles looking at machine learning to resolve and
automate video-related problems [10, 11, 60, 70] and sport is a common
topic. However, few papers focus on our specific task of clipping, but
rather on the problem of finding the relevant event [27, 41, 49]. There are
still many relevant works that offer possible solutions to different aspects
of our solution [7, 17, 54, 55]. In this section, we discuss already existing
work that is relevant to this thesis. We will first describe important work
that has great success in the field of object detection. Then we move on and
describe work done in the field of action recognition and how our system
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can be tied to this. Finally, we describe several concepts and research done
in the field of Camera shot classification, Replay detection, Audio, Sport
summarization systems and, Temporal and Motion segmentation and how
this research ties to the problem we are trying to solve throughout this
thesis.

2.4.1 Object detection

Object detection has had a lot of success in recent years, and one of the
main reasons is the availability of large datasets such as ImageNet[19],
and their ImageNet Large-Scale Visual Recognition Challenge (ILSVRC).
ImageNet contains over 15 million high-resolution images labeled in 22 000
categories. It uses the WordNet hierarchy (only the nouns). Each node in
the tree is a category with subcategories, meaning that we for example have
a category vehicle, with subcategories of boats and cars, etc. ILSVRC uses
a subset of ImageNet with 1000 categories and 1.2 million images, 500 000
of which have bounding boxes for object localization [58].

In 2012, the winner of the ILSVRC was AlexNet [40]. It achieved a
top-5 error of 16.4%, almost 10 % less than the second place[58]. This
was a groundbreaking result and the beginning of large-scale deep neural
networks. This architecture has around 62 million parameters, uses 5
convolution layers and 3 fully connected layers. The filter sizes used
are 11×11, 5×5, and 3×3. The first 2 convolutional layers are followed
by overlapping max pooling, and the last 3 are connected to the fully
connected layers. The output layer uses softmax activation distributing
the output probability of the 1000 classes.

In 2014, Szegedy et al. [66], a team from Google, entered the ImageNet
challenge with a deep convolutional network called GoogleNet[58]. To
overcome the problem of overfitting, the authors proposed making the
system ’wider’, by letting different filter sizes operate on the same level.
It is then followed by max pooling. This is illustrated in Figure 2.8. The
architecture is 22 layers deep and demands expensive calculations. This
is why the authors also added 1x1 convolutions reducing the dimensions,
meaning that each RGB pixel (consisting of 3 values) is reduced to one
value. GoogLeNet achieved 6.67% top 5 error in the ILSVRC challenge of
2014[58] and was also the winner (image classification challenge).

The same year as GoogLeNet in ILSVRC, Visual Geometry Group of
Oxford University submitted their architecture called VGGNet (VGG11,
VGG16, VGG19). Simonyan and Zisserman [62] presented it in the paper
’Very Deep Convolutional Networks for Large-Scale Image Recognition’.
This architecture had a huge impact on the community and has inspired
many other architectures. The paper has been cited over 55000 times. This
is probably due to the performance, the network achieved a top 5 error rate
of 7.4%, which is the first time a deep neural network has gotten under
the 10% mark. It was enough for the second place ILSVRC challenge of
2014 [58], behind GoogLeNet, as mentioned above. It is also fairly simple,
and easily available with pre-trained weights on ImageNet.

The architecture uses VGG-blocks, which is a series of consecutive
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Figure 2.8: Inception module with dimension reductions. Notice the width
(compared to VGG in Figure 2.9, and the 1 × 1 convolution used for
dimension reduction. Figure taken from [66].

convolution layers with 3x3 filters and a ReLu activation function, followed
by a 2x2 max pooling with a stride of two. For each block, the number
of filters present in the convolution layers is increased. VGG16 has three
blocks connected to two fully connected layers of 4096 channels each,
using the ReLu activation function. The last fully connected layer has
1000 channels to fit the ImageNet challenge classes and uses the softmax
activation function.

Figure 2.9: A residual block with two convolution layers.

Residual Network, or ResNet in short, was introduced in 2015 in
"Deep Residual Learning for Image Recognition"[32]. It is a type of
neural network that introduced residual blocks 2.9, where there is a skip
connection (or shortcut connection). Deeper architectures attain more
complex features but are also more prone to the vanishing gradient
problem, described in Section 2.2.13. ResNet alleviates this problem with
the skip connection giving the gradient a path to flow through. This allows
ResNet to reach a great depth of 152 layers. ResNet achieved a 4.49 top 5
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error rate and was the winner of ILSVRC 2015 in the image classification,
detection, and localization task.

These are some of the most revolutionary architectures since ImageNet
started its challenge in 2010. There have been many improvements making
the performance on ImageNet even better. These includes SENet [34],
ResNetV2 [33], InceptionV3 [68] and Inception-ResNet [67], the last of
which combines deep networks with residual connections.

Enabled by high quality and big datasets, the mentioned architects have
each made a huge impact in the field of object classification, recognition,
and localization. For our task, we can use this to differentiate frames with
and without a logo as part of a transition. These models are designed
for bigger classification tasks, but we can take inspiration and possibly
use smaller versions, as we do want to keep computational costs low.
Comparing the performance of simpler networks to the more complex
systems like these can give insight into what fits best in our system.

2.4.2 Action recognition

The results for the task of action spotting in soccer are getting better and
better as time goes by, and eventually, these events need to be clipped into
nice highlights. In 2018 SoccerNet 3.1.2 released the challenge of action
spotting introducing a baseline model scoring an Average-mAP of 49.7%
regarding the spotting task [27]. 2 years later the paper "A Context-Aware
Loss Function for Action Spotting in Soccer Videos" [17] was released
reporting an Average-mAP of 62.5%. But, this year in February RMS-
Net[41] was released significantly improving the results, reporting an
Average-mAP of 75.1% on the task of action spotting. These models all
were tested on a more complex dataset such as SoccerNet for a lot of
different actions. But, in the paper "Real-Time Detection of Events in Soccer
Videos using 3D Convolutional Neural Networks" [49] a model achieving
Average-mAP of 32.0% on the task of spotting in SoccerNet. The interesting
part is that the model was tested on Eliteserien and Allsvenskan reporting
87% accuracy for Allsvenskan and 95.0% on Eliteserien when considering
classification for the event Goal, which is inside the scope of this thesis.

The task of action spotting is highly related to our objective of
automating highlight clipping. Our proposed system’s aim is to make the
production of highlight clipping automatic by transforming a video clip
combined with one event timestamp into a high-quality highlight clip. To
make the whole process fully automatic, we can combine our model with
the task of event spotting for soccer.

2.4.3 Shot boundary detection

A popular strategy for making highlight clips in sports is to separate the
video into smaller clips, where the video is cut on each transition from
one camera view to another. Koumaras et al. [39] presents a shot detection
algorithm using discreet cosine transform (DCT). Tabii and Thami [69]
use this algorithm with soccer footage, first extracting the dominant color
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and comparing them frame by frame. If the difference is above a certain
threshold, it means there is likely a shot transition. they achieved good
results with high resolution on the DCT, but with lower resolution, the
recall suffered heavily. The results were 100% recall and precision of
94.23%. Zawbaa et al. [80] [79] followed this strategy and in addition,
implemented a more tailored algorithm to handle cuts that transitioned
gradually over several frames (smooth transition). This was done by
skipping 10 frames to simulate an instant cut transition. They achieved
97.2% recall and 93.9% precision. These are good results but are trained
and tested on very small datasets.

SoccerNet-v2 [18, 27] is a big dataset of broadcast soccer videos, which
include over 500 full-length matches. We describe the dataset in more detail
in Section 3.1. It is used as a benchmark for soccer event action spotting,
camera segmentation, and shot boundary detection. Deliège et al. [18]
reports the benchmarks for four approaches of shot boundary detection on
this dataset. The results can be seen in Table 2.1. CALF [17], an abbreviation
of Context Aware Loss Function, is a deep learning network originally
made for the action spotting of SoccerNet-v2 but was moderated to fit
this task. Using the scikit-video library [21], they made two boundary
detectors, Histogram and Intensity. Histogram reports a scene change
when the histogram intensity difference of two consecutive frames hits
above a threshold, while Intensity uses color intensity in the same manner.
Content uses the scene detection library PySceneDetect [14]. It uses the
content-aware option, which detects boundaries based on changes in the
HSV color space (hue, saturation value).

Method Bound det. Abrupt Transition fading Logo

CALF [17] (det.) 59.6 59.0 58.0 61.8
Intensity [21] 64.0 74.3 57.2 28.5
Content [14] 62.2 68.2 49.7 35.5

Histogram [21] 78.5 83.2 54.1 82.2

Table 2.1: Leaderboard for and Boundary Detection (mAP %), reported
in [18].

Souček and Lokoč [64] proposes TransNetV2, a model that uses series
of convolutions, RGB histogram and learnable similarities between frames
to detect scene boundaries [63, 64]. The learnable similarity is a learned
function that gives two frames a score according to how similar they are.
They report state-of-the-art performance on the shot boundary benchmark
datasets ClipShots [70], RAI [11], and BBC [10].

As seen in Table 2.1, there are some variable results. In order to use
shot boundary for clipping, it would need to be more stable predictions.
TransNetV2 reports very good results, although it has not been tested on
a large-scale soccer database such as SoccerNet. Soccer frames are very
similar in colors (much green) for the vast majority of scene changes,
making it harder to spot the changes. It would still be interesting to see
if it could outperform some of the reported models in Table 2.1, and help
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produce better quality highlight clips.

2.4.4 Camera shot classification

Extracting high-level features can be important when low-level features
do not map on certain classifiers. Shot classification is one example of
higher-level features, which is often used when analyzing sports events
with machine learning. Labeling each shot with a class could play a major
role in where to clip a highlight. It would be intuitive that where on the
playing field the camera is viewing has a correlation of the importance of
the shot of the event being highlighted.

In the paper "Algorithms And System For Segmentation And Structure
Analysis In Soccer Video"[6] published in 2001, the authors proposed an
algorithm for classifying soccer-segments as play/brake based on a set
of rules and camera-zoom. Because of the structure of a soccer game,
the author used the grass-to-color ratio to label a camera shot as either
global, mid-view, or zoom-in, based on the labeling they were classified
as play/break with respect to some set rules (looking at neighboring
classes). The system was tested across 4 different leagues and reported
an average global accuracy (correctly classified duration’s of play/break)
of 76,35%, and 84,5% for the task of camera-view classification [6]. Zawbaa
et al. [80] [79] classified the soccer shots as long, medium, close-up, and
audience/out of the field, with good results of above 85% for precision and
recall for all classes except for the audience class getting a 59.6% recall.
They used low-level features such as the grass ratio which they extracted
when finding the shot boundaries. Each class had different thresholds. The
black color ratio was also used to distinguish between audience and close-
ups. Minhas et al. [44] used the AlexNet CNN model to classify the shots
from sports videos. They used a deep-learning model, and it demonstrated
good accuracy of 94% accuracy. Rafiq et al. [54] proposed a model for
classifying scenes in cricket. They used AlexNet CNN deep-learning model
as well, but took advantage of transfer learning. It was pre-trained on
ImageNet, a database of images with associated nouns. They achieved an
impressive 99.27% precision and a recall of 99.26%, which gives an F1 score
of 99.26%

We see that other papers have achieved good results regarding scene
classification [6][79][54]. The idea of classifying scenes as play/break,
attack, and audience could help us find relevant scenes for our highlights
and identify which type of rules should apply when clipping, We also
see that a pre-trained model on ImageNet achieved impressive results of
99.26% F1 score[54], so this opens up the possibility of using pre-trained
weights instead of doing all the training from scratch.

2.4.5 Replay detection

Clips of events may contain replay clips, both before and after the event.
Replay is of great interest for highlight clips, showing the important
moments, while also having good quality shots. Replay detection can also
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help with filtering out irrelevant replay for event detection. Zawbaa et al.
[80] [79] implemented two different logo-based replay detection, one using
a support vector machine (SVM) and the other using an artificial neural
network (ANN). The SVM algorithm achieved 98.1% recall and 92.8%
precision, while the ANNs recall only achieved 69.6%. In 2005, the authors
of "Football Video Segmentation Based on Video Production Strategy"[56]
built further upon the idea of using the play/brake, grass-to-color-ratio and
camera-shot [6]. The authors used these previous ideas to introduce the
class labels play, focus, replay, and breaks (using logo detection). Using
these labels to classify segments as attacks. The authors also proposed a
new indexing scheme built on "attack" and on this new indexing scheme,
they introduced a "related video browser" (looking at nearest neighbors)
and "summary browser" (show all proposed video segments and the ability
to remove or insert segments in the summary) [56].

The safe assumption that a given league follows a standard production
pattern after a specific highlight is perhaps the most important thing
to keep in mind when approaching our problem statement. Detecting
the replay in soccer using a logo-based approach has been proven to be
effective using the SVM algorithm and not so effective using an ANN [79,
80]. With the prior knowledge of a production pattern and having the
ability to detect a logo and a replay, this could be used for the task of finding
cut points of highlights.

2.4.6 Audio

Raventos et al. [55] used audio features to give an importance score to the
highlights. This could potentially be used for clipping as well, as audio
from audiences is often a reaction to what is happening on the field. They
use a change in audio power level as one of the audio features. A shot of
the audience, for example, could be relevant for a highlight clip by giving
some context. Using the audio could give us information if it should be
included or not. In 2003, the authors of "Sports Video Summarization using
Highlights and Play-Breaks" [7] wrote a paper about a more audio-focused
summarization method to reduce computational cost and to generalize
across different sports. The authors designed an algorithm for detecting
whistle detection for finding highlights and based on the frequency and
pitch of the whistle sound they would set a threshold to determine if it is an
important event or not. The authors also measured the level of excitement
of the audience and commentators (commentators tend to speak faster
and with a higher pitch during important events). They also utilized the
visual aspect by analyzing text display (for example scoreboard), and by
combining all these aspects come up with a framework for detecting and
clipping highlights [7].

2.4.7 Sports summarization systems

Based on the papers discussed in the paragraphs above [6, 7, 56],
the authors of "Machine Learning-Based Soccer Video Summarization
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System" [80] proposed a video summarization system consisting of six
phases: pre-processing, shot-processing, replay detection, scoreboard
detection, excitement event detection, event detection, and summarization.
In the replay phase, the authors used logo detection for the segmentation
of the video, making the assumption that a logo appears at the start of
a highlight and the end of a highlight. They trained an SVM classifier
and a Neural Network classifier for this task They concluded that the
SVM classifier was better suited for this task with a 98.5% recall rate and
a 93.1 % precision rate, whereas the Neural Network had a 93.3% recall
rate and 69.5% precision rate. It is important to note that these results
were achieved on a relatively small dataset consisting of 5 videos from the
World Cup Championship 2010, Africa Championship League 2010, Africa
Championship League 2008, European Championship League 2008, and
Euro 2008 [80].

It would be interesting to take the ideas mentioned above and see if it
could generalize to different leagues and see if we can achieve these kinds
of results on a bigger dataset since it is hard to determine if this is a good
model that would work in a realistic setting when they only had a dataset
of 5 videos.

2.4.8 Temporal and Motion segmentation

Capturing temporal features can be a hard task. It is important for a num-
ber of machine learning problems, such as action recognition, weather fore-
cast, and for example analyzing MRI scans. For general action recogni-
tion, Simonyan and Zisserma [61] proposed a CNN architecture using two
streams, one extracting spatial features pre-trained on ImageNet, and the
other extracting temporal features with the optical flow as input. Carreira
and Zisserman [13] added 3D convolution, and Feichtenhofer, Pinz and
Zisserman [24] looks at 3D pooling in addition. C3D used 3D Convolu-
tion to learn spatio-temporal features compared to 2D filters [74]. Two-
Stream Inflated 3D ConvNet (I3D) [13] using kinetics-400 [37] showed that
inflating pre-trained 2D filters into 3D filters improved the results. Ex-
tracting temporal information from the video may be useful when clipping
as well. The authors of "Motion Entropy Feature and Its Applications to
Event-Based Segmentation of Sports Video" [4] used an entropy-based mo-
tion approach towards the problem of video segmentation in sports events.
By computing the EMV (entropy motion value) as a function of time, the
author formulated the task of segmentation as a change point detection
problem where the author divides the EMV curve into segments by change
points.

Extracting temporal information could be very interesting to use for
clipping the highlights. It could for example be used with audio to
prevent clipping in the middle of a word. It could also be used to capture
the ball and player movement, game pace, and crowd reactions, maybe
indicating the value of interest for a highlight clip. Using already used
techniques to extract these features, and finding new effective methods for
features revolving around the particular problem of soccer highlights will

26



be important for the final result.

2.5 Summary

The annotation operation of videos is expensive, boring, and tedious work.
In this chapter, we started by defining the different events we can expect to
face when working with soccer matches. Then, we moved on to describe
how datasets are often split into training, validation, and test sets, and
the reason for doing this. We described some key concepts in Machine
learning relevant to our thesis, such as gradient descent and the concepts
of SVM, CNN, and NN. Finally, we define some metrics to be used further
in this thesis. The problem of annotating video is an active field of research.
With increasing amounts of video data, there is a need for an effective
and accurate annotation. Sports video annotation is a time-consuming and
tedious process. The community is making big steps in research regarding
automatic event annotation, but few focus on the production side of the
clipping process. We think the next step is automating this as well, in
order to show the result of finding the events in a subjective appealing
clip. Therefore, by using earlier research and experimentation, we aim to
improve the quality of the highlights.

The object classification problem has seen great improvements in recent
years, for easier training and better performance. For image and video
processing, we find that it is common to extract high-level features such as
play/brake, shot transitions, replay and logo. Replay is of special interest
when it comes to making a highlight. Combining these high level features
with prior knowledge of production strategies regarding the event at hand
(our main focus is on goals), could be used for annotation of the highlight
start/end interval. We further see that CNN and SVM have been proven
to yield good results finding these high-level features and that pre-training
has shown to yield good results. Sound is also a feature that should not be
overlooked as clipping in the middle of a sentence could be annoying and
the sound itself based on noise from the crowd, commentator voice, and
speech speed could provide valuable information about the event itself.
We also discover that temporal information for a task such as ours could be
very useful for our task as soccer is a sport with a lot of movement, pace,
and scene changes when an exciting highlight is taking place. Using all this
knowledge and ideas gained, we want to make our own model based on
some of these ideas and experiment with different configurations. In the
next chapter, we propose a selection of different machine learning models
used for high-level feature extraction to find a good performing model for
soccer videos, before putting them together to our final highlight system.
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Chapter 3

Methodology

We have talked about the manual annotation operation used today, and
how the research of automatic event detection has progressed 2.4.2. We
have looked at research regarding highlights, and how these papers’ main
focus is often on the event detection itself. The segmentation provided
is either segmentation of the replay scenes, a predetermined cut, or a cut
based on the scores of the events itself [56, 79, 80]. While these papers have
provided highlights, they have only provided an evaluation of how well
the model can classify replays, events, and so on, without providing any
subjective evaluation of these highlight clips. We have also looked at how
shot boundary detection has been used to segment the input of different
models to further classify them separately into classes such as play/break,
camera shot classification, and replay [17, 55, 56, 79, 80].

We will in this chapter introduce our solution for automatic clipping,
focusing on the production quality. We will also provide a qualitative and
quantitative evaluation of the highlights produced by our model to further
help us understand what makes a good clip in the eyes of a consumer.
Furthermore, we want to set our model up against the solution provided
today in Eliteserien that makes a predetermined cut at 10 seconds before
the event and 25 seconds after the event, which has multiple problems. It
can start too early, start a few frames before a shot boundary, start in the
middle of a replay scene of a prior event, and so on. It also typically ends
in the middle of a replay scene, or even before the replay has started.

To build a system that can automatically clip highlight moments from
a soccer match, we need to identify the important parts surrounding an
event. For example, for goals, we want to show the live footage of the
goal attempt in addition to the replay. A preliminary screening of our
datasets shows that there is almost always a logo transition before and
after a replay. In SoccerNet, 1, 693 out of 1, 703 goals has a logo transition
before a replay within 100 seconds after the annotated goal. 1, 609 of these
include a logo at the end before 100 seconds as well. This is also the case
in our logo Eliteserien dataset. This is why we propose to make a logo
recognition module that will help us annotate the ending of a highlight
and ensure that the event is shown from different angles. We will also use
shot boundary detection to improve the production quality of automatic
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clipping. By knowing where there is a scene change, we can avoid clipping
a few frames before it and instead decide on some rules on where to clip to
get the quality we want. We can also use the scenes to determine where
to cut if we do not find a logo transition or only one of them. Due to
the decrease in human attention spawn and the rising trend of platforms
providing short video clips to be consumed fast and in large quantities, we
want to see if these trends generalize to soccer highlights 1.1.To keep the
consumer more engaged, we also want to test out shortening the clips by
cutting out some of the scenes between the goal and the replay. The input
of our system will be the tag for the goal event and enough of the video clip
to be able to make a better beginning and include the replay after.

3.1 Dataset description

To train and evaluate our proposed system for automatic highlight
clipping, we use soccer match video clips from Eliteserien (2018) and
SoccerNet [18]. From these, we have made two separate logo recognition
datasets containing frames separated into a logo or background class.
Eliteserien is a small dataset with annotation of events only. This makes
the collection of quantitative data to evaluate our system hard. During
the work on this thesis, SoccerNet-v2 [18] was released and provided us
with the ability to expand the scope of this thesis. SoccerNet provides a lot
of annotations as well as a huge amount of soccer footage, enabling us to
gather much more objective data automatically. The differences between
the two datasets can also provide more insight into how our system can be
more generalized across leagues.

3.1.1 Eliteserien

The Eliteserien dataset consists of 300 clips of goals from Norwegian
Eliteserien. These clips start 25 seconds before the annotated goal and end
50 seconds after, lasting a total of 1 minute and 15 seconds. The goals are
annotated as the ball crosses the goal line, and we observe a +/- 2 seconds
inaccuracy, though it is mostly accurate. All clips have a resolution of
960× 540 at 25 frames per second and audio with commentaries.

One problem with this dataset for our application is that many of the
clips are too short. The logo transition is not always present. There is
also no other annotation than the time of the event, which means we can
only evaluate the performance of our system by manually examining the
predicted annotations.

3.1.2 SoccerNet

SoccerNet [27] has 500 annotated games from different professional soccer
leagues. The dataset consists of untrimmed broadcast videos from each half
of the game, meaning the full dataset has 1,000 videos, each half containing
about 45 minutes each (plus 0 to 8 minutes of added time), adding up to
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a total of 764 hours of video. The dataset contains videos with audio and
506,137 commentaries at 1-second resolution from online sources. The clips
are available in high-quality (resolution of 1, 920× 1, 080) and low-quality
versions (resolution of 398× 224). 6, 637 action events were annotated from
parsed online match reports and manually refined to a 1-second resolution.

Furthermore, in the SoccerNet-v2 dataset [18], they added 14 additional
action events with over 100,000 annotations, in addition to camera labels
describing camera view and scene changes as a single temporal anchor.
There is a total of 158 493 scene change timestamps with the additional
information of type, such as a close-up corner, public, inside the goal, close-
up player, and so on. The dataset also provides the type of transition. These
can be abrupt changes (71.4%), fading transition (14.2%), or logo transition
(14.2%). The final category for the annotations in SoccerNet-v2 is replay
scenes linked to their associated action event. They make up a total of 32
932 scenes.

The videos were manually annotated. Where annotations traditionally
have been an interval indicating that the event lies within, these are single
temporal annotations instead. The three most relevant action events are
defined as follow by the authors of SoccerNet:

• Goal is defined similarly to the IFAB rules 1, which is when the ball
crosses the goal line.

• Card (separately annotated as red and yellow) Is defined as the
moment the referee shows the yellow/red card to the player.

• Substitution Is defined as the moment the new player enters the field.

Season

League 14/15 15/16 16/17 Total

EN-EPL 6 49 40 95
ES-LaLiga 18 36 63 117

FR-League 1 1 3 34 38
DE-Bundesliga 8 18 27 53

IT-Serie A 11 9 76 96
EU-Champions 37 45 19 101

Total 81 160 259 500

Table 3.1: Overview of the SoccerNet dataset with respect to different
leagues and seasons.

Since all the videos are from popular high-level leagues we can expect
professional broadcast videos containing multiple views, replays, and a
variety of standard video production techniques such as slow-motion,
scoreboard, logos, animations, and so on. SoccerNet provides so much
data, both in video and complimentary annotations, which we can get

1https://www.theifab.com/laws/chapter/30/section/82/
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Class Total

Goal 1643
Substitution 2849

Card 2145
Total 6637

Table 3.2: Distribution of the "main" events annotated in SoccerNet.

good amounts of quantitative data from. We can measure the technical
performance of the modules on full videos using the annotations for scene
changes and logo transitions, making it easier to evaluate.

Dataset Videos Logo transition Shot boundaries

Train 29 1, 999 9, 321
Validation 6 393 2, 464

Test 5 359 1, 897

Table 3.3: Distribution of the full dataset compared to the expected input of
120 seconds * 25 frames per second, where two logo transitions of 20 frames
each are present.

3.1.3 Logo recognition dataset

We have two separate logo recognition datasets with images of a logo
and background class, made from frames in the Eliteserien and SoccerNet
Premier League 2016/2017 datasets. They will be used to train and evaluate
the frame logo classifiers. Making datasets can be a time-consuming task,
and for our datasets, most of the job has to be done manually. The
SoccerNet dataset 3.1.2 has annotations that help us to extract the data, but
it is still much manual work to get the quality and quantity we want.

Eliteserien logo dataset

The Eliteserien dataset is made of images from 50 randomly selected clips
from the Eliteserien dataset. We extract images from every 15th frame using
the FFmpeg tool, described here 3.3.2. We further extract all frames around
the ones containing a logo transition. The images are 108× 192 pixels. We
ended up with 1, 025 logo images and 7, 025 background images.

The logo transition frames, shown in Figure 3.2, are very similar to
each other, considering 1/4 of the transition graphic cover up the whole
screen, resulting in identical frames. Most display the league logo as
well. The ones with a team logo are very similar to one another as
they are all in a white box. A weakness in the background set is that
it lacks diversity with regards to what we can expect in a full match
because all our data is obtained from a few clips that only revolve around
goals. The background/logo ratio does not correspond to the ratio we
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Figure 3.1: Eliteserien: Random images from the background class (left)
and logo class (right).

Figure 3.2: Figure shows the type of logo transition we can expect in the
Eliteserien dataset. It lasts for 20 frames in total, 10 of which are fade-in, 5
fully covering, and 5 are fade-outs.

expect from our use case. With an expected input of 120 seconds, we get
120seconds× 25 f ramespersecond = 3000, with 2 expected logo transitions
of 20 frames each, we get a background/logo ratio of 74, while our dataset
has 6.85.

Background frames (B) Logo frames (L) Ratio B/L

Dataset 7, 025 1, 025 6.85
Expected input 2, 960 40 74

Synthetic2 N/A 896 N/A

Table 3.4: Distribution of logo transition and shot boundaries in SoccerNet
Premier League season 2016 - 2017

SoccerNet Premier League Season 16/17 logo dataset

From SoccerNet, we choose Premier League season 2016/2017 (SoccerNet
PL16/17). Using the camera segmentation annotations, we extract 50
frames around each logo transition. We find 5 different logotypes, shown in
Figure 3.4. We also find two unique transitions. We manually categorized
each logo transition into one of these, both for value when analyzing later,
and to split between logo and background. The annotated anchor points

2Dataset with additional augmented logo images, described in Section 3.1.5
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are similarly tagged by the annotators (within +/- 3-5 frames) for each
type, making it an easier task to further separate the frames into logos
and background. We count the number of frames for each type, take into
account the uncertainty, and make a script to divide them into classes. We
have also manually looked over the set, eliminating the errors that are
exceptions to the rules. Because of the uncertainty for the start/end time
of the frames, the start and end of the logos are less represented. Example
images are shown in Figure 3.4

This leaves us with a dataset of over 85, 000 images extracted from 1, 999
logo transitions, of which 36, 319 images are classed as logo and 49, 947%
are of backgrounds. During training, we notice a bias in the set due to the
lack of diversity in the background, further described in Subsection 4.1.4.
We expand the training set with 7, 812 backgrounds from the training set
matches from every 500th frame. We use a classifier to extract over 6000
hard samples to make the training set sturdier. All frames are at least 2
frames apart. No frames are duplicates from the old dataset. We also find
954 logo frames that are wrongly classified, and add them to the training
set. All the frames are manually quality-checked. The training set now
contains a total of 43, 260 background images and 23, 194 logo images.
We refer to this training set as Train Medium. We experiment with an
even bigger set, made by extracting every 100th frame. We call this the
Train Max set. Due to worse performance, we settled on the medium-
sized background set for training. The validation set is kept the same for
comparability.

Background frames (B) Logo frames (L) Ratio B/L

Train Max3 74, 432 23, 191 3.21
Train Medium4 43, 260 23, 191 1.87

Train Initial5 29, 378 22, 240 1.32
Validation 9, 302 6, 938 1.34

Test 9, 102 7, 004 1.30
Total6 61, 664 37, 113 1.66

Expected input 2, 960 40 74.00
Full matches 130, 960 1, 380 94.90

Table 3.5: Distribution in the full dataset compared to the expected input
of 120 seconds×25 fps, where two logo transitions of 20 frames each are
present.

The reason we choose to focus on only one season, the Premier League
season 2016/2017, is because we want to keep the data at a manageable
level because of how time-consuming it can be. Both considering
processing videos and manually processing and categorizing frames. We
want to ensure good quality. Premier League is the most watched football

3Training set with mined hard samples and every 100th background frame
4Training set with mined hard samples and every 500th background frame
5The first version of the train dataset
6Including the final version of the train dataset (Train Medium)
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Figure 3.3: SoccerNet: Random images from the background class (left) and
logo class (right).

Figure 3.4: The different types of logo transitions we can expect in the PL
2016/2017 dataset (from SoccerNet PL16/17).

league in the world, reaching over 978 million homes with live coverage in
the 2018/2019 season [23, 53]. The 2016/2017 season is the newest season
available on SoccerNet. This dataset is still much more diverse compared
to our Eliteserien dataset, with several different types of transitions,
infographics, and stadiums. With a total of 40 games, this is still a very
large dataset.

Augmentation

Augmentation can be used to make a model more robust, reduce overfit-
ting, build invariance, and level out imbalanced datasets. We want to make
our models as robust as possible towards changes in the frames or unex-
pected patterns when it comes to logo/background appearance.

During training, each image in the training set gets a random degree of
shear between 0 and 0.2. Shear distorts the image along an axis to rectify
the perception angles and can represent looking at an object from different
angles. The images also get a random value between 0 and 20% of zoom
for each axis independently. The lost pixels are filled with the nearest pixels
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value. There is also a 50% chance of horizontal flip. These augmentations
happen on the fly, with the use of Keras ImageDataGenerator [16]. Because
we use such a small value for shearing, it mostly just adds some small noise
to the image, helping to prevent overfitting. Flipping will make the dataset
virtually bigger, but it may also help the model to be more generalized
concerning the positioning of a logo, as well as where the graphics of the
live scenes are located.

Figure 3.5: Example of augmentations, original picture, zoomed, sheared
and horizontally flipped.

3.1.4 Dataset for shot boundary detection

Our shot boundary dataset (SoccerNet SBD dataset) is made from all shot
boundary transitions in SoccerNet, using FFmpeg 3.3.2 to make the clips.
It is made for TransNetV2, which takes 100 frames as input in 48 × 27
resolution. The system only needs to train on 100 frame clips containing
shot boundaries as it can learn what is not a boundary by all the frames
that are not a boundary. Therefore, we extract 100 frames from each shot
boundary. To make it more robust towards the variable placement of the
boundary frame, we randomly select a frame between 30 and 60 which are
to be the shot boundary. We also made sure that close shot boundaries were
also annotated for each of our clips.

Dataset Logo Abrupt Smooth Other

Train 25, 920 48, 745 16, 426 60
Validation 8, 648 19, 019 6, 286 73

Test 8, 637 17, 844 6, 027 20

Table 3.6: Distribution of the different transition types from the full
SoccerNet-v2 [18] dataset.

The dataset contains over 150 000 shot boundaries, with 43, 000 logo
transitions, 85, 000 abrupt transitions, 28, 000 smooth transitions and 153
labeled ’other’. We also use a subset containing clips from Premier
League season 2016/2017 (SBD PL16/17 dataset), which has a total of
12, 323 transitions. We used a python script to process all videos using
FFmpeg [73], and it was run on the DGX-2 server 3.3.1. All labels from
SoccerNet (temporal anchors for the transition) were converted into the
format used by TransNet V2 (frame number of start/end of each scene).
We will also use the full videos from the test set of SoccerNet V2 [18] for
evaluation. For training, TransNetV2 relies on two output heads, one of
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which is used to find all transition frames. Because SoccerNet does not
provide the number of transition frames, the transitions are classified as
abrupt, smooth (gradual), and logo. In order to train this head, we label
the logo as +/- 5 frames, and smooth as +/- 3. Most logos we have looked
at is more than 10 frames. The smooth transitions are usually 3-5 frames,
with some exceptions.

3.1.5 Data preparation

Both datasets are split into train, validation, and test sets. For Eliteserien,
we split each of the 50 clips into 60% train, 20% validation, and 20% test.
On the SoccerNet dataset, we split by what game the frames are extracted
from and use the split recommended by the SoccerNet team. This results
in 29 games for training, 6 for validation, and 5 for test. To try to lessen
possible bias, we split the sets on the full games for SoccerNet PL16/17 and
on clips for Eliteserien. This can mitigate the problems of the same game
or clip having consecutive frames, or more general similarities, such as the
team colors, digital graphics, grass, stadium, and lighting conditions. This
way, we can better test the generalization of our models. This split is the
same for the overall datasets, logo recognition dataset, and shot boundary
dataset.

The training sets are used to directly train our model, validation
evaluates the models during training, and the test sets are only used
to evaluate finished models. For the logo frame classifier and logo
detection module, presented in Section 3.8, we will use both the logo frame
datasets as well as the full-length matches (SoccerNet PL16/17) and clips
(Eliteserien) to evaluate, and we will do so in the context of each league
separately. For Eliteserien models, we will additionally evaluate on some
of the unused clips. The shot boundary detection system, described in
Section 3.5, will be evaluated on the SoccerNet PL16/17 full-length videos.
We will evaluate the system in the context of each dataset separately before
evaluate the comparing and concluding the system as a whole. The test
set for Eliteserien logos is used to evaluate the logo classifier, while some
of the unused 250 clips of Eliteserien will be used for evaluating the whole
system.

One thing to note about the dataset split, is that some team logos might
not be encountered during training, such as in the goal logo in Figure 3.4
and the team logo transition shown in Figure 3.2. We can use this to
evaluate if the features learned are very specific (overfitted) or if they learn
the more general features present in all of the corresponding transitions. If
this proves to be a vital flaw in the Eliteserien dataset, as it is very small to
begin with, we have made a synthetic logo class dataset that can act as a
supplement to the existing logo frame training set of Eliteserien. This way
we can boost the performance even though we lack a complete dataset. Our
python script generates a desired number of images by pasting manually
cropped logos onto random backgrounds. The logo is randomly inserted
and randomly scaled to fit the random background. This helps prevent
overfitting. This script is useful to serve as a supplement for the training
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set if more training data or a more balanced distribution of logos in the
training set is desired.

Figure 3.6: 4 images from Eliteserien randomly inserted logo with random
size.

This type of generating synthetic training images would be useful in the
realistic scenario of a league implementing a new logo transition where no
video or images of this exists. Because the soccer background will look very
similar no matter the season or league, this script can be used to update the
logo training data only. By only needing to insert the different transition
frames into the script, this is a very effective method to update the model
on the new logotype. This way the model will be up and ready to go when
the new season starts.

3.2 Data preprocessing

Before we feed our data to the model, we apply normalization to the data.
We scale the pixel values to values by zero centering it by subtracting half of
the maximum pixel value of 255. We then divide it by 2/255. By doing this,
we squeeze all our data between -1 and 1 while still keeping their relative
value with respect to the other pixels in the image. The reason for doing
this type of normalization is to prevent large weight values which can lead
to an unstable model that will not generalize well. It also helps prevent
the exploding gradient problem and makes our data less sensitive towards
outliers. It also implies that our features should be weighted equally, and
prevent higher values to change the gradient too drastically. We used the
implementation of this method from the Keras library [16]

Normalization(pc) =
pc − 127.5

127.5
(3.1)

p is pixel and c is channel. 127.5 is half of the max color intensity, which is
between 0− 255

Because the input size of our models is all smaller than the original
images, we have to downsize them. We use Nearest neighbor interpolation
(nearest) to achieve this, a non-adaptive algorithm, meaning that the pixels
are treated equally across the image. The intensity is chosen from the
nearest pixel in the original image, preserving sharpness, but losing all
information in between. When performing changes from the original 16:9
aspect ratio to 1:1, for example with the input of 72× 72, the images are
resized using the same interpolation. We can see how the image is resized
in Figure 3.7.
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Figure 3.7: Aspect ratio 1:1 compared to 16:9 .

3.3 Implementation

The models were implemented using python version 3.7.10 (gcc version
7.3.0) with numpy 1.19.2, Keras 2.4.3, Sklearn 0.24.1 and Tensorflow 2.4.1,
and executed on DGX-2 server 3.3.1. The development of the models in this
thesis is done locally on 2 different computers with the following specs:

• Computer 1 16GB RAM and NVIDIA GeForce MX350 GPU

• Computer 2 16GB RAM, Intel(R) Core(TM) i7-6700HQ CPU @ 2.60
GHz 2.59GHz and a Nvidia GTX 950M, 4 GB GPU

3.3.1 DGX-2

DGX-2 is the deep learning cluster we use for training and testing in this
thesis when it comes to computationally heavy operations or memory
heavy operations. It holds 16X NVIDIA Tesla V100 GPUs with a total of
512G memory. Using the DGX-2 servers significantly sped up the training
time of one of our dummy models by about 200% using only one GPU
compared to training on our machine [50].

3.3.2 Tensorflow

Tensorflow is an open-source library for numerical computation and
machine learning. TensorFlow uses python to provide a convenient front-
end API for the user while executing the applications in high-performance
C++.

Keras

We use Keras 2.4.3 to implement and train all our machine learning models,
and for loading and preprocessing our images. Keras is a high-level API
of TensorFlow 2 and serves as a highly productive interface for solving
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machine learning problems, with a focus on deep learning. The key abilities
of Keras are:

• efficiently executing low-level tensor operations on GPU, CPU, or
TPU.

• Scaling computation to many devices

• computing the gradient of arbitrary differentiable expressions.

• Exporting programs to external run times such as servers, browsers,
mobile, and embedded devices.

Using Keras for the implementation allows us to use a high level API for
building our machine learning models efficiently, with good performance
when combined with the DGX-2 cluster 3.3.1. It includes a number of
popular architectures, such as VGG16 [62], VGG19 [62], InceptionV3 [68],
Xception [15], ResNet50 [32], ResNet50V2 [33], ResNet152 [32] (and
more ResNet architectures) and many more. They come pre-trained on
ImageNet [19].

Sklearn

Sklearn is a useful machine learning library in python. The library contains
a lot of efficient tools for machine learning and analysis, such as regression,
SVM, Gridsearch, confusion matrices, and so on. Sklearn was used for the
development of the SVM models.

FFmpeg

FFmpeg is a powerful multimedia framework able to decode, encode,
transcode, and more, with all common file formats, and many more. It
is compatible across Linux, Mac OS X, Microsoft Windows, and more [2].
We use this tool to extract frames from our video datasets and save them as
JPG files as well as load video as a NumPy array in python.

3.4 Logo transition detection

Our function of the logo transition detection module is to recognize the
full logo transitions with one temporal anchor point without any false
positives. Our strategy is to make a frame logo classifier that predicts a
frame as either a background or a logo and then use a sliding window
approach to determine a logo transition as a temporal point. That means
that the frame logo detector has to recognize enough consecutive logo
frames while not find too many false positives consecutively so that we
can predict a logo transition with high confidence. The module will take
the frames after the goal event as input, classify the frames separately, and
then annotate a logo transition if there are multiple frames in a window
present. The window size, stride, and frame rate will depend on the results
of the frame logo classifier.
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Figure 3.8: Our approach to find start and end of replay. Different window
size, stride and frame rate will be determined by the performance of the
selected frame logo detector.

For the module to predict a transition correctly, we need the frame logo
classifier to perform well enough so that enough actual logos are predicted
as such, while the number of clustered backgrounds incorrectly classified
as logos is low. To evaluate the logo frame classifiers during the design
and training stage of our proposed architectures, we will use the validation
frame dataset. The two important things to look at are how many of
the actual logos are found, and how many of the backgrounds are miss
classified. For the SoccerNet Premier League models, we will also use the
full soccer matches in the validation set to evaluate the module as a whole
and further analyze the performances, before concluding training. We will
then move on to test the performances on the test sets.

3.4.1 Feature extraction

Since we are working with images that contain a lot of data, we want to
be able to reduce the dimensionality while still accurately and completely
describing the original data. We want our model to extract relevant features
for the task of recognizing logos, such as shapes, edges, motions, and
complex patterns. The challenge here is to reduce the computational cost
and memory usage of extracting these features while still keeping all the
relevant information for our model. For this task, we have chosen more
complex state-of-the-art models which have performed well on similar
tasks such as VGG16 [62] and ResNet [32]refObject Detection. We have
also chosen to implement our own smaller CNN and a lightweight VGG
which is computationally cheaper to see how well it performs compared
to these state-of-the-art models. Our goal is to find a sufficient model that
provides good predictions while still computationally cheap.

3.4.2 Model selection for logo classifier

To find a model that best fits our system, we test different architectures and
input sizes. We want to measure the performance of each model in relation
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to the execution time. Our two datasets have different properties, such as
size and logo features, and the best fit for each may differ.

A simple CNN

A small and simple CNN is fast to implement and train. It is interesting to
see the results of this compared to deeper CNN and residual networks. The
CNN logo detector is a shallow CNN model that consists of only two 2D
convolution layers with 32 3× 3 filters and ReLU activation. Both layers
are followed by 2× 2 max pooling with a stride of 2. It is then flattened,
and sent to a fully connected layer with 128 neurons with ReLU activation.
Last, predicting the binary outcome with a fully connected layer with a
sigmoid output function. The total number of parameters with an input of
108× 192× 3 is 4, 720, 801.

Figure 3.9: CNN model architecture.

The model is extremely fast compared to the others in Table 4.19. It
achieves great scores on the Eliteserien, with an F1-score of 0.994 for the
logo class with an RGB input of 72× 72, running at 9, 063 fps. The with
RGB 27× 48 input, this architecture achieves the best precision of 0.995 and
a recall of 0.983, running at 15, 964 fps. On the SoccerNet dataset, however,
the shallow architecture has a harder time performing. The results are
presented in Chapter 4.1
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Residual Network

ResNet uses residual connections in order to be able to train deep
networks, as illustrated in Figure 2.9. The network used in the ImageNet
challenge (ILSVRC) achieved a 4.49 top 5 error rate. More about ResNet in
Section 2.4.1. This is a very complex model which is probably well suited to
the SoccerNet dataset. The drawback is the size and number of parameters.

We use ResNet50V2 [33] from the Keras library [16], which is based on
the ResNet architecture described in Section 2.4.1. It is designed for the
classification of a thousand different object classes from the ImageNet [19]
database. We have swapped out the last two dense layers with a dense
layer of size 128 with ReLU as activation function and an output layer
with sigmoid activation function to fit the model to our problem. It is a
very deep network with lots of parameters. With an RGB input of size
108 × 192, we end up with a total of 23, 827, 201 parameters, 23, 781, 761
of which are trainable. This is more than 5 times that of the simple CNN
with the same input. ResNet50V2 comes with pre-trained weights trained
on ImageNet [19], and we test using these as initial weights, with both
fine-tune training and normal training. We only run RGB images on this
network, as this is what it is designed for.

VGG

We use a model inspired by VGG architecture. This is a deeper
convolutional model than our previous simple CNN. It has more layers and

Figure 3.10: Architecture inspired by VGG.

more filters. VGG uses more filters for each convolution layer the deeper
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they are positioned, and more consecutive convolution layers before max-
pooling are performed. Inspired by this, we use a model with 3 VGG-
blocks, seen in Figure 3.10. The first block has two convolutions with filters
64 filters each, the second block with two convolutions and 128 filters each,
and the last block have four convolution layers with 256 filters each. All
blocks end with a 2 × 2 max pooling with a stride of 2. The blocks are
followed by a fully connected layer with 128 neurons and ReLu activation,
and an output layer using sigmoid. With an input of 108 × 192, it has
12, 549, 441 parameters.

SVM

The SVM algorithm achieved promising results for the task of logo
recognition in soccer on a relatively small dataset, discussed in 2.4.5, so
we want to see how well the SVM performs using our feature extractors
on a small dataset (Eliteserien) and a large dataset (SoccerNet). Pre-
trained CNN that have achieved good results on similar datasets are
commonly used as feature extractors throughout machine learning [9,
20]. Therefore we want to explore how well the SVM performs using
a pre-trained state-of-the-art feature extractor such as VGG16, which has
achieved 92.7% top-5 test accuracy in ImageNet [19]. VGG16 is a relatively
large and computationally consuming CNN. To compare performance to
a computational cheap model, we use Simple CNN to extract features as
well. VGG architecture is described in 2.4.1, and we explain SVM in
Section 2.2.10.

Figure 3.11: VGG16 architecture, figure taken from [48].

VGG16 is part of the VGG family of deep convolutional architectures,
and follows the concepts of VGG as described in Section 2.4.1 and
mentioned in the above section. The VGG16 architecture consists of 16
layers in 5 VGG-blocks. Each blocks convolutional layers uses 64, 128, 256,
512 and 512 filters for block 1, 2, 3, 4 and 5 respectively. It has three dense
layers, two consisting of 4, 090 nodes and the last one consisting of 1, 000
nodes for each of the 1, 000 classes its weights were originally trained for in
ImageNet. It is available with pre-trained weights (ImageNet) in the Keras
library, which is described in Subsection 3.3.2

As we can see from Figure 3.12 our model starts by preprocessing the
image using the pre-trained (on ImageNet) VGG16 but cuts out the dense
layers. After the model gets the output from the VGG16 network, it flattens
the output into a feature vector which is fed into the SVM. The SVM uses
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Figure 3.12: SVM architecture.

the decision boundary line to make a prediction based on the given feature
vector. Based on the result the SVM outputs 0 for class background or 1
for class logo. The SVM CNN model works in the same way as the SVM
VGG16 model, except here the flattening is done in the CNN model and
not manually on the output as in the SVM VGG16 model.

3.4.3 Training and evaluation

For training of the CNN models, we initialize the weights using the Glorot
uniform initialization [28] with Adam optimizer [38] and use binary cross-
entropy as the loss function. Read more about initialization, optimizers,
and loss-function in Section 2.2. Because ResNet50V2 comes with pre-
trained weights on ImageNet [19], we will use these for initializing.
All data is pre-processed as described in Section 3.2. We use the
hyperparameters as described below.

The training of the SVM models starts by taking in the normalized data
of the images in a given input size and feeding them into the CNN. After
we get the output from the CNN and have our feature vector. Here we will
perform a grid-search which is described below in the hyperparameters
section. Through experimentation, we also define either a linear kernel or
RBF kernel depending on if the data is linearly separable or not.
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Figure 3.13: SVM architecture.

Hyperparameters

In general, we use a learning rate of 0.001 and 32 for batch size. We run
training with early stopping using patience of 10, meaning we stop if the
loss of the validation set does not improve (loss) for 10 epochs. We also
reduce the learning rate by a factor of 10 with a patience of 7 epochs on
plateau, meaning there is no improvement for validation loss. This is to
fine-tune the model in the last epochs. We run training for a maximum
of 40 epochs. We change some of these settings depending on the model
we train. We use the Keras built-in methods for all our training of the
CNNs [16]. These settings are used except for when we fine-tune the pre-
trained ResNet50V2 model.

For the SVM we use grid search which is a type of hyperparameter
tuning where we pass in a grid of parameters and grid-search will return
the best estimator. The different parameters we pass in to the grid-
search are "C": [0.01, 0.1, 1, 10, 100] (the regularization parameter) and
’gamma’:[1,0.1,0.001,0.0001] (learning rate), so the model will estimate for
"C=0.01, gamma=1", "C=0.01, gamma=0.1", "C=0.01, gamma=1" and so on.
We define a max iteration of 100 epochs. After the grid-search is done we
choose the estimator with the best score on the validation set.

To choose a window size and the number of frames required, we will
use a grid search to find the best settings. Using the results of these, we can
also determine the lowest frame rate of which are necessary to get the same
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result. From this, we can calculate the theoretic computation performance
based on the classifier’s performance, measured in FPS.

Fine-tune ResNet50V2

To fine-tune ResNet50V2, we start by only training the dense layers. To
do this, we freeze the weights of the base model containing the pre-trained
model, only training the head containing two fully connected layers. We
trained using the hyperparameters described in the section above. After
this stage, we got a weighted F1-score of 0.9082 and 0.962 on the SoccerNet
and Eliteserien validation dataset respectively, with an RGB input with
108 × 196 resolution. On SoccerNet, we get a recall above 97 % for all
logotypes except for the Simple PL logo, shown in Figure 4.4. This got a
recall of 0.6050. The results are described in Subsection 4.1.3 and presented
in Tables 4.11 and 4.3 and

For further fine-tuning, we ’unfreeze’ all the layers, and continue
training. We set the learning rate to 0.0001 to help preserve the learned
features from ImageNet [19]. We reset the optimizer with the new learning
rate. We run for another 40 epochs (with early stopping). For the RGB input
with 108× 196 resolution, all scores for recall on the logotypes improved,
but the recall for the Simple PL logo only reached 0.7776, while the others
got 0.99 or better. Logo precision improved from 0.9505 to 0.9809.

Evaluating models

We want to be able to evaluate the different components of the system
during and after training. Correct evaluations lead to better decisions for
tweaking the design and selection of models. This can be a tricky task,
as there are many aspects to take into considerations when analyzing the
results. First and foremost, it is important to understand the meaning of
the metrics we use and analyze them with the dataset and the actual use
case in mind. We will use the metrics defined in Section 2.3.

To evaluate the classifier during training, we will use precision, recall,
and F1-score for both classes from the logo frame validation datasets. We
will also use full videos from the SoccerNet PL16/17 validation set to
analyze the performance in a more realistic use case. Finally, we will use
logo frame test sets to evaluate the final classifiers’ performance, followed
by a test on full videos. Testing on the full video matches will give us a more
realistic overview of how the models will perform on real data. Comparing
data from testing on frames and full videos can also give us a clearer idea
of how well the logo frame dataset performs.

Measure computational performance

To calculate the execution time, we measure the prediction time of
predicting 1, 000 random frames, including normalization. We use a seed
when picking the random images to make sure we use the same for each
measure. For each model, we run the measurement 11 times in a for-loop,
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sort the results and report the average of the 5 middle values. This way,
we do not let outliers influence too much. We do not measure the time
of loading and handling resizing of the images, or take into account the
memory usage. We used 500 images as batch size. We used the model’s
call function (opposed to the model’s predict function) for predicting, as
this is optimized for predicting images that fit in memory, according to
the documentation [71]. This fits our use case. The results are reported in
Section 4.1.

3.5 Shot Boundary Detection

Our shot boundary model will be used to detect scene boundaries in order
to make decisions for the start point, possibly the start- and endpoint of the
trimmed out part, and possibly the endpoint if a logo transition does not
appear or are not detected.

In Subsection 2.4.3 we introduced some related works regarding
shot boundary detection. In Table 2.1 we see some results reported
on SoccerNet-v2 dataset [18]. We see that the mAP results for fading
transitions (smooth, gradual) are not that great with the proposed models
used. We, therefore, want to test TransNetV2, which reported a good
performance on the more universal datasets. We want to see how it
performs on soccer videos, and if it can be used to improve the quality
of our highlights.

3.5.1 TransNetV2

To find camera shot boundaries, we will use TransNet V2, a state-of-
the-art scalable architecture for shot boundary detection. The model
comes with pre-trained weights trained on ClipShots [70] and generated
transitions using clips from TRECVid IACC.3 [8]. In general, the network
takes a sequence of 100 consecutive video frames and applies a series of
convolutions, RGB histogram and learnable similarities between frames,
returning a prediction for every frame in the input [63].

Stacked Dilated Deep CNN

TransNet V2s main layer component is called Stacked Dilated Deep CNN
(SDDCNN), shown in Figure 3.15. Multiple DDCNN cells on top of each
other, followed by spatial average pooling, form a Stacked DDCNN block.
A DDCNN cell contains four 1× 3× 3 (spatial) convolution, each followed
by a 3× 1× 1 dilated (temporal) convolution with the dilation rates of 1,
2, 4 and 8. With a dilation rate of D in the first cell, the kernel looks at the
Dth frame to the left and right of the middle frame. TransNet V2 consists
of three SDDCNN blocks with two DDCNN cells in each.
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Figure 3.14: TransNet V2 Archi-
tecture taken from [63].

Figure 3.15: TransNet V2
DDCNN V2 cell with 4F fil-
ters, taken from [63].

Figure 3.16: TransNet V2 Learn-
able frame similarities computa-
tion with visualization of Pad +
Gather operation (right), taken
from [63].

RGB histogram and learnable similarities

RGB histogram similarities and learnable similarities between the frames
are also used by TransNet V2. RGB histograms, as well as learned
features, are computed by spatially averaging activation of each average
pooling [64]. See Figure 3.16. RGB histogram looks at the intensity and
frequency in the red, green, and blue color space, giving each frame a
similarity score. The learnable similarities are extracted from the three
averaging pool layers. Both these similarities are projected by a single
dense layer, followed by calculating the cosine similarity matrix. The
output is a similarity score, representing the similarity of the frame
compared to all the input frames on either side.
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Multiple classification heads

In Figure 3.14, we can see that it has two output heads. One is for single
frame predictions, used for predicting the middle frame of the prediction.
This is the one used in inference. The second head, the all transition frame
head, is used to predict all transition frames. Its purpose is to update
the weights during training to help the models ’understanding’ of the full
transition [64].

Training

TransNet V2 model comes pre-trained, 15% of which are ’real’ transitions
extracted from ClipShots [70] and the rest from synthetically generated
transitions made from clips from TRECVid IACC.3 [8] (35% hard cuts and
50% dissolves). ClipShots is a database with 166,756 manually annotated
transitions from over 4000 online videos. 77% of the transitions are hard
cuts while the rest are gradual transitions such as dissolves and wipes.
TECVid IACC.3 is a database of 4600 internet archived videos (1800 hours
of content) [8, 75]. We will compare the pre-trained model with the model
trained on our shot boundary dataset.

We will start with the SBD PL16/17 dataset, a subset of the SoccerNet
SBD dataset, as a preliminary experiment to see how the dataset and labels
perform. We then continue training the same weights on the full SoccerNet
SBD dataset in order to see if the performance increases. These experiments
are described in Section 4.2. We run training on the small dataset for 50
epochs and continue training on the bigger set for 30 epochs. We train using
the same configurations as Souček and Lokoč [64] uses. The positive class
in the first single-frame head is weighted by a factor of 5. The second all-
frame head’s contribution to the loss is discounted by 0.1. L2 regularization
is added to the loss weighted by 0.0001. We use Stochastic gradient descent
with momentum set to 0.9 with a fixed learning rate of 0.01 [64].

To evaluate the two models, we will look at precision, recall, F1 score,
mainly for abrupt and smooth transitions, as this is what this module
will encounter the most. The metrics are described in Section 2.3. When
evaluating, we use a tolerance parameter δ, which is the size of an interval
centered on the ground truth frame, in which a transition must be predicted
to be considered correct. δ

2 is the maximum distance from the ground truth.
This hyperparameter is important, as we are not sure how accurate the
annotations are. Because the module is going to be used for clipping, we
need the module to be very accurate, as more than a few frames inaccuracy
can lower the quality of the editing. It can be hard to derive if inaccuracies
are in the annotations or predictions from only looking at the quantitative
data we gather from the evaluation of the models using different tolerance
(δ) values, and we will therefore build an analyzing tool to look at a hand
full of the predicted transitions manually. This way we can evaluate if it
finds the transitions if false negatives and false positives are due to the
tolerance and get a sense of how frame-accurate it is.
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3.6 Our model

Figure 3.17: Our model.

Figure 3.18: We want to make the highlight clips include all replay. We
also want to experiment with shortening down the clips without losing the
replay.

The full model is shown in Figure 3.17. The output of the system
is visualized in Figure 3.18. The input of the system is a sequence of
frames starting 15 seconds before the annotated goal event and 120 seconds
after. The system first identifies the logo transitions, and then the scene
changes between the first input frame up to the first logo transition. These
timestamps are then used by the video processing module to process the
input frames into a final highlight clip based on a clipping protocol. This
protocol determines how the system cuts the output of the logo transition
module and shot boundary detector. The protocol is available in the
appendix in Algorithm 1.

The protocol determines the start point based on the scene starts present
12 to 5 seconds before the goal. It chooses the scene furthest from the goal.
If there is no scene change, a default value of 10 seconds is used. The end is
chosen in the middle of the last logo transition. We have added the option
of cutting out some of the scenes in between the goal and replay. If a scene
change is found between 5 and 10 seconds after the goal we cut. If not,
we use the default value of 8 seconds. The protocol includes the last scene
if it ends before 5 ahead of before the first logo transition, or 5 seconds if
no scene change is present. This is to avoid a transition with poor quality.
We designed these protocols by examining the production patterns in the
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soccer broadcasts. Clipping at scene changes can improve the quality by
avoiding starting a clip a few frames before a scene change. This utilizes
the broadcast production as well, as a scene change often happens when
something exciting happens. We will evaluate both protocols using an
online survey, described in the next section.

3.7 Subjective evaluation

The end goal of our final model is to provide high-quality soccer clips
in the eyes of a consumer. Considering this end goal does not have an
objective truth to it, but is a rather subjective opinion that will vary from
person to person, we need some form of measuring our final model other
than technical reports. To evaluate our system, we have made an online
survey. The goal of the survey is to get sufficient data to be able to better
understand what makes a good clip in the eyes of a consumer.

To gather participants, we invite family, friends, and colleagues to
participate in the survey without providing any information other than
what is provided in the survey itself. In addition, we post the survey
publicly in the IFI, UIO (Department Of Informatics, University of Oslo)
Facebook group with 3,3 thousand members and sent the survey to OSI3
(Soccer team for students in Oslo).

We used Google form to create and host the survey. The survey is
described in the following sections.

3.7.1 Background

The survey starts with an introduction part where we inform the parti-
cipants that we are trying to make a machine learning model for the auto-
matic extraction of highlights in soccer. During the form, they will be asked
to rate different clips. In other words, we give some background inform-
ation about the survey without revealing information about our model to
avoid as much bias as possible as seen in Figure 3.19. The survey takes an
estimated time of 10 - 12 minutes.

After the initial introduction, we want to gather some background
information about the participants to be able to group the participants by
different variables and see if there is any impact on the results based on
which group the participants get categorized in. We also want to group the
participants to analyze the group’s representation with respect to the actual
users of online highlight clips.

We first want to know some general information about the participants
by asking them to fill in their age and gender. We want a diverse group,
but also be able to take it into account if that is not the case. Furthermore,
we want to see if there is some bias across genders or age groups when it
comes to how they rate the clips.

In the next section, we ask general questions about the participants
relation to sport in general and soccer as seen in Figures 3.20 3.21. We
start by asking the participants if they consider themselves a sports fan.
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Figure 3.19: General information about the survey(the first page presented
to the participants).

The reason for asking this is to see if general sports fan rates the videos
differently. It is a reasonable assumption that familiarity with sports gives
you a better foundation to know what to look for and what you want to see
in a highlight, even on soccer specifically. Most sports with TV coverage
have a similar pattern when it comes to highlights, for example, the pacing
of how the exciting and crucial events play out. Further on, we want to
consider the participant’s foundation for rating a clip. We map how often
the participants watch sports broadcasts and online highlights weekly. This
can indicate the participant’s understanding of the production quality and
interest in sports content.

The next section is about soccer specifically. This is the important
section where we want to filter out our target group from the rest. Therefore
we ask these questions, "How often do you watch soccer matches on
average?" and "How often do you watch soccer highlights on the web?".
These questions provide us with data that will let us filter out the target
group who will most likely be viewing these clips in a realistic scenario
and probably has the strongest opinions on what they want to see or what
annoys them about certain highlights.
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Figure 3.20: The general ques-
tions about sports presented to
the participants.

Figure 3.21: General questions
about soccer and video editing
presented to the participants.

3.7.2 Video event comparison

For the final section of the survey, we want to compare different clipping
models against each other. In this part of the survey, we perform A/B
testing[1], where each comparison shows the participant 2 different cuts
(existing solution’s cut, our short cut and our full-length cut) of the same
event. The participant is then asked to give a score from 1 to 10 on each clip
as seen in Figures 3.22 3.23 3.24. For each comparison we get insights to:

• What the quality of each video clip is

• What version is preferred

• How much do the clips differ in quality

The reason for having a 1 to 10 scale is that it gives more room for scoring
the clips, which is useful in the cases where the difference is minimal, while
still noticeable. For example, if the participant thinks a clip is slightly better
they can give clip 1 score 8 and clip 2 score 9. If the scale were is 1 to 5,
the participant would likely give both a score of 4, as there is no major
difference. It can also be that they give the scores 4 and 5. This can make it
harder to interpret exactly how good they think each clip are when looked
at separately. We inform the participant that 1 on the scale refers to very
poor, 5 is average, and 10 is broadcast ready. This is to reduce the room
for subjective interpretation of the scale, though does not eliminate it. Our
primary objective is to evaluate them with relation to each other.

We also provide the participants with an optional comment field for
each comparison, where they can elaborate their ratings. This qualitative
data can can provide us context behind given scores.
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Figure 3.22: Figure of how the
clips are presented.

Figure 3.23: Description of the
task presented to the participants.

Figure 3.24: The scoring sys-
tem and optional comment field
provided for each comparison.

The structure of the A/B testing is set up as following:

• Clip 1 original VS Clip 2 our model - Short

• Clip 1 our model - Short VS Clip 2 our model with full crowd

• Clip 1 our model with full crowd VS Clip 2 Original

• Clip 1 Original VS Clip 2 our model with full crowd

• Clip 1 our model shorter crowd VS Clip 2 Original

For the highlight clips to be compared, we randomly choose the clips
and inspect them to make sure they are not edge cases before inserting
them in a random order for the survey. The order remains the same for
every participant.

3.8 Summary

In this chapter, we introduce our proposed strategy for automatic highlight
clipping of soccer goals. We continue to introduce the datasets of
Eliteserien and SoccerNet [18] and how we use them. We further explain
how we extract the logo recognition datasets with supplemented synthetic
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data and the scene boundary detection dataset. Next, we describe how
we preprocess the data to prepare for training and evaluation. Further, we
describe which hardware is used for data preparation and experimentation,
and what libraries we use for the implementation and development of the
system. We then proceed to describe the Logo transition detection model
of our system and the architecture of the different logo detection modules
using a simple CNN, VGG inspired CNN, ResNet50V2 [16, 33] and SVM
using VGG16 [62] and simple CNN as feature extractors. We discuss
how the training on this module will be performed and how the metrics
are used to evaluate the model’s performance. We furthermore discuss
the hyperparameters and hyperparameter tuning for use during training,
testing, evaluation, and in a possible inference situation. We then proceed
to discuss the Shot boundary detection module and how the training of
this module is done using the architecture of TransNetV2 [64]. Further,
we describe the architecture of the final system and the clipping protocol
to be used for the final models. Finally, we present the method used for
evaluating the final models’ performance in the eyes of a consumer, by
describing the structure of the survey and discussing the choices made for
the survey.
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Chapter 4

Experiments and Results

In chapter 3, we found a design for our system using a logo detection
module, scene boundary detection module, and a video processing module
using a production-based clipping protocol. We found a strategy to detect
logo transitions using CNN and SVM logo frame classifiers and presented
our candidate model architectures, and the shot boundary detection model
TransNetV2 [64]. We explained our approach to test and evaluate the
different models which we will carry out in this chapter.

We will start by presenting the experiments for the logo detection
module on the Eliteserien dataset and the Premier League dataset,
including training and preliminary evaluation providing insight and
reasons for steps taken to further improve the models. Finally, we test
them on the test set and analyzing the results. We proceed to present the
experiments for the shot boundary detection module and analyzing the
results. In the final section, we present the results for our final system using
two different clipping protocols and compare them to the already existing
model used in Eliteserien today. We evaluate based on our own technical
analysis of the system’s output, and analyze results gathered from the
online survey. Finally, we discuss possible weaknesses and improvements
of the experiments, biases, and other factors present in the survey data.

4.1 Logo detection

We will in this section present the experiments for the logo detection
module. We will show the results on the validation set during training,
and finally, report the results on the test sets. For Premier League 16/17,
we include a test on the full soccer matches, to get a better picture of how
it will perform with real data. We split the section into each league.

4.1.1 Model input

As mentioned in Section 3.4.3, we want to find a model that is fast and
performs well. In images, much information lies in the colors used, but
using grayscale can be much more computationally cheap. A higher
resolution has more information, but also comes at the cost of speed. We
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will therefore test with grayscale and RGB input. During preliminary
experiments on Eliteserien, we found that even small resolutions perform
well. This applied to grayscale as well. We also found that using a format of
1:1 performed well. The preliminary experiments were done on an earlier
version of the frame logo dataset using the simple CNN. As reported in
Subsection 4.1.2, small outputs yield good results on the validation set. For
both datasets, we include 108× 192, 54× 96, 72× 72 and 27× 48 in order
to compare the performance with a lower computational cost. Described
in Subsection 4.1.3, we see a correlation between higher resolution and
better performance. We decide to include 144 × 256 resolution for the
SoccerNet dataset only, as the Eliteserien dataset was extracted with a
smaller resolution of 108 × 192. We test with these resolutions on both
datasets for comparability. ResNet is only trained on RGB images, as this
is what the architecture is designed and trained on.

4.1.2 Eliteserien Experiments

We will in this section present the results from training and testing the
models on Eliteserien as described in Section 3.4.3.

In Figure 3.2, we can see that the logos are very simple and take up
much of the whole screen for most of the transition. There is also very little
difference between the separate team logos, all of which are surrounded
by a white box. To find the best model for this architecture, we tested on
different input sizes, both in height and width dimensions, as well as the
number of channels. We find that we can reach both good results and fast
performance on this dataset.

Input Precision Recall F1 Score

108× 192× 3 0.9793 0.9833 0.9813
54× 96× 3 0.9874 0.9792 0.9833
72× 72× 3 0.9917 0.9958 0.9938
27× 48× 3 0.9958 0.9733 0.9895

108× 192× 1 0.9790 0.9708 0.9749
54× 96× 1 0.9915 0.9750 0.9832
72× 72× 1 0.9833 0.9792 0.9812
27× 48× 1 0.9746 0.9583 0.9664

Table 4.1: Results for Simple CNN on the Eliteserien validation set.

The results for the Simple CNN on Eliteserien validation set is
presented in Table 4.1. This shows an overall good performance and serves
to prove that the transition is not very complex. It is surprising that the
smaller input performs better on the RGB inputs, though there is not much
of a difference. We can see that the recall for the logo class suffers when
using grayscale. This suggests that this model learns important features
from the colors to separate logos and backgrounds. We also notice that an
input size of 72× 72 has the best F1 and recall score. We also note that the
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precision of the RGB 27× 48 model is the best, meaning that it misclassifies
fewer backgrounds as logos.

Input Precision Recall F1 Score

108× 192× 3 0.9833 0.9792 0.9812
54× 96× 3 0.9833 0.9833 0.9833
72× 72× 3 0.9958 0.9958 0.9958
27× 48× 3 0.9514 0.9792 0.9651

108× 192× 1 1.0000 0.9500 0.9744
54× 96× 1 0.9957 0.9708 0.9831
72× 72× 1 0.9793 0.9875 0.9834
27× 48× 1 1.0000 0.9792 0.9895

Table 4.2: Results for VGG inspired CNN on the Eliteserien validation set.

For the VGG models, we note that the grayscale input gets very good
precision. This is a deeper network that can see more complex patterns in
the data, and may not have to rely as much on the colors to separate the
classes, like in the Simple CNN. However, the recall suffers for the logo
class. The RGB input performs better, and we see again that the 72× 72
RGB input performs best, and it is slightly better than the Simple CNN.
The results are reported in Table 4.2.

Training Input (RGB) Precision Recall F1 Score

Normal 108× 192 0.9710 0.9750 0.9730
Normal 54× 96 0.9835 0.9917 0.9876

Fine-tune 108× 192 0.9955 0.9125 0.9522
Fine-tune 54× 96 0.9671 0.8583 0.9095

Table 4.3: Results for ResNet50V2 on the Eliteserien validation set. All
weights are initialized with the ImageNet weights.

In Table 4.3, we see that the freezing and fine-tuning ImageNet weights
do not perform better for the recall. We suspect the learning rate of 0.0001
to be too low, making the model converge prematurely. However, we see
that it scores very good on the precision for the bigger resolutions. This
means there is a higher recall score for the backgrounds. This approach
has shown good results for some tasks, as well as saving time on training.
In our case, however, it seems the features are easy enough to learn from
only initializing to the weights and train with a more fit learning rate of
0.001. But we also see a higher precision, which means there is a higher
recall score for the backgrounds. In our actual use case, this can prove more
important if the classifier predicts sufficient logo frames from each separate
transition. We deem the performance of the more straightforward transfer
learning of ResNet suffices, and we will use this going forward with the
Eliteserien dataset.

Looking at the graphs in Figure 4.1 and 4.2, we see signs of overfitting.
ResNet ran training 12 epochs and the Simple CNN ran for 14 epochs. For
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Figure 4.1: Comparing training
and validation loss and accuracy
for Simple CNN 72× 72.

Figure 4.2: Comparing training
and validation loss (low is better)
and accuracy (high is better) for
ResNet 108× 192.

the ResNet model (right), the validation loss stopped improving already
after 2 epochs, while the training loss kept improving. This suggests
overfitting. The Simple CNN model had a steadier decrease of loss before it
stopped improving after 7 epochs. This can be a result of the small dataset
and low complexity. Though overfitting can be a significant problem for
some tasks, there is a limit to how much harm it can do for this transition,
due to most frames in the transition being very similar. We see that the
models only misclassify the earliest frames, while all still hitting the rest.
Alternatives to help solve overfitting are to stop earlier or choose the best
weights.

Figure 4.3: The logos that ResNet 108× 192 misclassifies.

When we look at the logos that are missed, most are within the first
5 frames of a team logo transition, and we notice that these team logos
are not present in the training set. This can suggest overfitting due to the
limited data. In Figure 4.3, we show the logo frames that are misclassified
by ResNet 108× 192. To tackle the insufficient data, we make a synthetic
dataset in order to train the models to recognize all the team logos. We will
only focus on a few models, and the results are presented in Table 4.4. For
the Simple CNN, we choose 72× 72× 3, which have the best F1-score for
this architecture. We also include 108× 192 with RGB and grayscale, and
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input shape 27× 48× 3, to compare different size and color input. For our
VGG model, we choose 72× 72× 3, having the overall best F1-score, and
108× 192 with both color inputs. For ResNet we go further with the models
trained without the fine-tune training.

Model Input Precision Recall F1 Score

VGG inspired 108× 192× 3 0.9917 0.9958 0.9938
VGG inspired 108× 192× 1 0.9915 0.975 0.9832
VGG inspired 72× 72× 3 0.9836 1.000 0.9917
Simple CNN 108× 192× 3 0.8633 1.000 0.9266
Simple CNN 72× 72× 3 0.9189 0.9917 0.9539
Simple CNN 27× 48× 3 0.8852 0.9958 0.9373
Simple CNN 108× 192× 1 0.7539 0.9958 0.8582

ResNet (Normal) 108× 192× 3 0.9796 1.0 0.9897
ResNet (Normal) 54× 96× 3 0.9754 0.9917 0.9835

Table 4.4: Results (validation) from further training on the dataset
supplemented with synthetic logo frames.

From the results in Table 4.4, we can see that training with the original
training set together with our synthetic logo images led to an increase of
recall, and worked in getting the models to recognize the team logos not
encountered during training, like the images in 4.3. We also see a decrease
in precision for all models. More backgrounds are now misclassified.
Described in 4.1.4, we see that our dataset of SoccerNet logo frames
contains too few backgrounds, and we assume this is the case for this
dataset as well. By correcting this, the use of our synthetic set could
have performed better. Because all of the frames later in the transition are
correctly classified, we do not believe the trade-off is worth it in this case
and decide to not go forward with these models.

Feature extractor Input Precision Recall F1 Score

Simple CNN 108× 192× 3 1.0000 1.0000 1.0000
Simple CNN 72× 72× 3 1.0000 1.0000 1.0000
Simple CNN 27× 48× 3 1.0000 0.9917 0.9958
Simple CNN 108× 192× 1 1.0000 1.0000 1.0000
Simple CNN 72× 72× 1 1.0000 1.0000 1.0000
Simple CNN 27× 48× 3 1.0000 1.0000 1.0000

VGG16 108× 192× 3 1.0000 0.9958 0.9979
VGG16 72× 72× 3 0.9367 0.8625 0.8980

VGG16 (RBF) 108× 192× 3 1.0000 0.9500 0.9744

Table 4.5: Validation results on the Eliteserien dataset for the SVM.

The results for the SVM on the Eliteserien dataset are presented in
Table 4.5. To find the best model for the Eliteserien dataset, we tested
on different input sizes and feature extractors. We start by looking at the
results using the simple CNN as a feature extractor. As we can see from
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the results, all the models perform extraordinarily well on the validation
set. The interesting part about the results is that, with regards to the
Simple CNN model, all the models have a perfect score except the RGB
27x48 model that scores 0.9917 on recall. The grayscale model with the
same input size actually outperforms the model with RGB. Upon further
inspection, we see that it classifies 2 very small logos from the first frames
of the transitions, both with a close-up background with dark and blue
colors. A theory is that the logo blends too much into the background and
that the RGB version of this model relies more on the colors vs the grayscale
being able to find the features.

We further inspect the VGG16 results as a feature extractor for
Eliteserien as shown in Table 4.5. We see that the VGG16 performs better at
higher resolution, and we see that the linear kernel actually outperforms
the RBF kernel, so this indicates that the Eliteserien dataset is linearly
separable and that an RBF kernel probably overfits the separation of the
classes towards the training set. Upon further analysis, we see that the
model using the RBF kernel struggles with small logos with no blue
transition border around the logo, and we also notice that all the logos it
miss classifies are closeup camera shots with either players, coaches, or the
crowd covering up the background of the small logo, where it blends in
with the background. The same pattern of miss classifications applies to
the VGG16 72x72 model, but this model actually also miss classifies bigger
logo appearances containing the blue transition fade of Eliteserien.

Model Input Precision Recall F1 Score

VGG inspired 54× 96× 1 1.0000 1.0000 1.0000
SVM (Simple CNN) 108× 192× 1 1.0000 0.9955 0.9978

VGG inspired 72× 72× 3 1.0000 0.991 0.9955
SVM (Simple CNN) 27× 48× 3 1.0000 0.9776 0.9887
SVM (Simple CNN) 72× 72× 1 0.9865 0.9865 0.9865

VGG inspired 27× 48× 3 1.0000 0.9731 0.9864
SVM (Simple CNN) 72× 72× 3 1.0000 0.9731 0.9864

Simple CNN 72× 72× 3 0.9954 0.9731 0.9841
ResNet 54× 96× 3 0.9954 0.9686 0.9818

VGG inspired 108× 192× 3 0.9954 0.9686 0.9818

Table 4.6: Best 10 results on the Eliteserien logo frame test set, based on
F1-score.

The final results on the test set is presented in Table 4.6, and the full
table is available in the appendix A.1. We see great performance on the
test set, with the VGG inspired CNN model using grayscale 54 × 96 × 1
input reaching 100% recall and precision. The F1-score increase by 1.7%
from the validation set. We see that the SVM performs well on this. We
notice many models with a significant decrease in performance, especially
on the recall. This may be due to overfitting, as discussed earlier, and can
be seen in the graphs of Figure 4.2 and 4.1. The models still hit more than
15 frames, meaning they will still perform well as part of the logo transition
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module. The dataset is also very small and includes some team logos not
present in the training set, and even one misclassified logo frame will have
a significant impact on the recall.

When looking at how the models perform on the full clips from
Eliteserien, we see that all models perform well enough to find all logos
we tested on without any false positives. We tested on 50 clips. This proves
that this simple strategy can work great. In the next section, we show how
the models perform on a substantially bigger logo frame dataset before we
test the module on full soccer matches.

4.1.3 SoccerNet Premier League 2016/2017

We now move on to the bigger dataset of SoccerNet PL16/17. This dataset
will give us an indication of how our strategy translates to a more diverse
logo composition, as well as much more diverse backgrounds. The volume
will also give us more trustworthy results. It also provides us with the
opportunity to run our final tests on full soccer matches.

All models are initialized and trained as discussed in Section 3.4.3,
with glorot uniform weight initialization for the Simple CNN and VGG
inspired model. With ResNet, we use transfer learning instead, meaning
we initialized to the pre-trained ImageNet weights. We use a learning rate
of 0.001 and reduce the learning rate on plateau with a patience of 7, and
early stopping with a patience of 10. For ResNet, we also try fine-tune
training, by first training the dense network only, then the whole network
with a lower learning rate.

Input Precision Recall F1 Score

144× 256× 3 0.9894 0.9867 0.9881
108× 192× 3 0.9911 0.9777 0.9843

54× 96× 3 0.9825 0.9408 0.9612
72× 72× 3 0.9668 0.9540 0.9604
27× 48× 3 0.9391 0.9186 0.9287

144× 256× 1 0.9937 0.9764 0.9850
108× 192× 1 0.9957 0.9641 0.9796

54× 96× 1 0.9759 0.9445 0.9599
72× 72× 1 0.9757 0.9530 0.9642
27× 48× 1 0.9414 0.9271 0.9342

Table 4.7: Simple CNN results for the Simple CNN on the SoccerNet
validation set. There is a notable relation between the input size and results.
The grayscale 108 × 192 has the best precision, but the recall of the logo
class is lower.

This dataset is much more diverse and complex, with five different
logotypes. We notice that the results differentiate much more than on the
Eliteserien dataset across the different input sizes. For the Simple CNN
models and the VGG-inspired models, we see that there is a direct relation
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Input Simple Goal PL1 PL2 Trophy

144× 256× 3 0.9543 0.9923 0.9921 0.9997 0.9959
108× 192× 3 0.9323 1.0000 0.9923 0.9991 0.9954

54× 96× 3 0.8124 0.9898 0.9892 0.9986 0.9921
72× 72× 3 0.8528 0.9949 0.9751 0.9908 0.9876
27× 48× 3 0.7386 0.9745 0.9569 0.9885 0.9739

144× 256× 1 0.9262 0.9950 0.9976 0.9994 0.9957
108× 192× 1 0.8963 0.9898 0.9981 0.9992 0.9954

54× 96× 1 0.8234 0.9949 0.9864 0.9983 0.9862
72× 72× 1 0.8572 0.9898 0.9868 0.9941 0.9852
27× 48× 1 0.7649 0.9821 0.9605 0.9832 0.9761

Table 4.8: Simple CNN recall on the SoccerNet PL16/17 logos in the
validation set. The types are shown in Figure 3.4.

between the F1-score and the input resolution when we group by color
mode (RGB and grayscale), which can be seen in Tables 4.7 and 4.9.

Figure 4.4: Some of the logo frames that is predicted wrong. There is very
little contrast between the logo and the background, as well as it is very
small at this stage of the transition.

It is especially one logotype that stands out, the Simple logo shown in
Figure 4.4. In Table 4.12 we see the best recall achieved on this type is 0.9710
by RGB input with resolution 108× 192 on the ResNet model, relatively low
compared to the perfect recall on PL2 and Goal types and the almost perfect
score for the PL1 and Trophy types. We also see in the same table that with
input 54× 96, it scores almost 99% for all other logotypes, but only 87.6%
on the Simple. This extends to the other models as well, seen in Tables 4.8
and 4.10. Figure 4.4 shows some example logo frames of the Simple logo
that the models predict wrong. One can see that it is hard to spot, even
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Input Precision Recall F1 Score

144× 256× 3 0.9954 0.9916 0.9935
108× 192× 3 0.9965 0.9821 0.9893

54× 96× 3 0.987 0.9869 0.987
72× 72× 3 0.9888 0.9818 0.9853
27× 48× 3 0.9687 0.9532 0.9608

144× 256× 1 0.9971 0.9911 0.9941
108× 192× 1 0.9969 0.9844 0.9906

54× 96× 1 0.979 0.9722 0.9756
72× 72× 1 0.9881 0.9836 0.9858
27× 48× 1 0.9629 0.9356 0.949

Table 4.9: VGG inspired model results on the validation dataset for
SoccerNet validation set.

Input Simple Goal PL1 PL2 Trophy

144× 256× 3 0.9719 0.9923 0.9957 0.9997 0.9993
108× 192× 3 0.9451 0.9974 0.9976 1.0000 0.9979

54× 96× 3 0.9455 1.0000 0.9943 1.0000 0.9943
72× 72× 3 0.9354 1.0000 0.9892 0.9997 0.9983
27× 48× 3 0.8392 0.9974 0.9694 0.9961 0.9948

144× 256× 1 0.9719 0.9949 0.9988 0.9997 0.9983
108× 192× 1 0.9525 0.9923 0.9990 0.9994 0.9979

54× 96× 1 0.9029 0.9974 0.9847 0.9975 0.9926
72× 72× 1 0.942 0.9974 0.9919 0.9969 0.9969
27× 48× 1 0.7926 0.9872 0.972 0.9955 0.985

Table 4.10: VGG inspired model recall on the SoccerNet PL16/17 logos in
the validation set. The types are shown in Figure 3.4.

for us. This can explain why bigger resolutions perform better, as small
resolutions might lose too much information around the small logo to be
able to find the features needed to separate this logo from a background.

For ResNet, initializing the models with the pre-trained ImageNet
weights and train with the same hyperparameters as we used with the
other models described in Section 3.4.3, we get very good results on the
SoccerNet dataset. The input size of 108× 192 scores best on every category
in Table 4.11. There seems to be no benefit of fine-tuning the pre-trained
weights in the manner described in Subsection 3.4.3. We saw this for the
Eliteserien dataset as well, in Section 4.1.2. We see from the results over
each logotype in Table 4.12 that fine-tuning does not achieve good results
on the Simple logo. Already after training the dense network only, with
the pre-trained ResNet features, we see that it performs well on the other
logotypes. One reason for this might be that the Simple logo is the least
similar to the objects of ImageNet, and therefore the pre-trained features
do not capture the information needed to perform well for this task. It
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Training Input (RGB) Precision Recall F1 Score

Normal 144× 256× 3 0.9922 0.9909 0.9916
Normal 108× 192× 3 0.9958 0.9919 0.9939
Normal 54× 96× 3 0.9799 0.9632 0.9715

Fine-tune 144× 256× 3 0.9821 0.9709 0.9764
Fine-tune 108× 192× 3 0.9809 0.9338 0.9568
Fine-tune 54× 96× 3 0.9577 0.8647 0.9088
NN only 108× 192× 3 0.9505 0.8696 0.9082

Table 4.11: ResNet results on the validation dataset for SoccerNet valida-
tion set. We see that initializing to the pre-trained weights and train with
a 0.001 learning rate performs better than using a low learning rate, as dis-
cussed in Section 3.4.3.

Training Input Simple Goal PL1 PL2 Trophy

Normal 144× 256× 3 0.9653 1.0 0.9945 1.0 0.9974
Normal 108× 192× 3 0.971 1.0 0.9971 1.0 0.9988
Normal 54× 96× 3 0.8761 1.0 0.9868 0.998 0.9917

Fine-tune 144× 256× 3 0.8989 0.9974 0.9914 0.9997 0.9902
Fine-tune 108× 192× 3 0.7777 1.0 0.9907 0.9994 0.9935
Fine-tune 54× 96× 3 0.5571 0.9923 0.9806 0.9952 0.9837
NN only 108× 192× 3 0.605 0.9668 0.9703 0.9896 0.9749

Table 4.12: ResNet recall on the SoccerNet PL16/17 logos in the validation
set. The types are shown in Figure 3.4.

is also very small, and harder in general for all models. Going forward,
we only use the model initialized to ImageNet weights and trained with a
learning rate of 0.001 without freezing any layers and refer to it as ResNet.

The SVM results for the SoccerNet dataset are presented in Table 4.13.
Here we also apply the same concept as for Eliteserien as discussed above.
As we can see from figure res the SVM starts to perform poorly when
it faces more complicated logotypes and a bigger dataset. We start to
inspect what happens during training for the top three models with the
best scores as shown in Table 4.13, to see if we can improve them. Upon
further inspection we notice one thing both the linear kernel models have
in common, it seems during the grid search the scores start to rise in parallel
with the learning rate. This gives us information that the models probably
have not been trained long enough, therefore we will try training these
3 models with a higher number of max iterations while keeping the best
scoring parameters. The models start to show poor results when increasing
the number of iteration, so when then assume that the reason behind this is
that the model never converges so the good/bad results are more random
than an actual good hyperplane to separate the classes. Given enough
computing power and time the SVM could maybe find a good fit, or there
could simply be that the classes cannot be separated using these feature
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extractors for the SVM model. Based on the results on the SoccerNet
dataset, computational cost, and execution time of the SVM compared to
the CNN we choose to not pursue this model any further.

Feature extractor Input Precision Recall F1 Score

Simple CNN 108× 192× 3 0.9635 0.6807 0.7978
VGG16 108× 192× 3 0.5944 0.6376 0.6016

ResNet-RBF 108× 192× 3 0.4278 0.9979 0.5989
Simple CNN 27× 48× 1 0.4459 0.4430 0.4445
Simple CNN 27× 48× 3 0.2808 0.3477 0.3106

Table 4.13: Top 5 SVM scores on the SoccerNet PL16/17 logos in the
validation set.

During training, the aim has been good precision and recall for the
validation set. We have a lot of good results, but they do not necessarily
generalize to new data. The problem with these results on the logo
validation dataset is that we do not know how many consecutive frames
are misclassified for both classes. To test some of the suited classifiers,
we will run the logo detection module on whole matches to measure the
performance on a real case scenario and with the whole logo detection
module. This will also give us a better comparison to the total execution
time performance of the different models because the values for the
window size, stride, and frame rate parameters in the logo transition
detection can make a significant difference.

4.1.4 Testing the logo detection module

The frame logo detection model is going to be used to classify frames
in video clips in order to find logo transitions. To further analyze these
models, we will run some of the best models on full matches from the
validation set of the Premier League 16/17 SoccerNet dataset, as this
contains annotations we can use to gather objective quantitative data and
make an objective evaluation of the technical performance. For each model,
we use FFmpeg 3.3.2 to extract the video in the target shape of each model.
We will use a grid search for finding the best suitable window size and logo
frame requirement for a logo transition to be predicted. From these, we
can calculate the frame rate and stride to make the module more efficient.
We will analyze the results to find the weaknesses in the context of the
full module, and see if adjustments are needed. After this, we will run the
module on the full matches in the test set with the final frame logo detection
models with their respective configurations. The module is shown in
Figure 3.8

We use the original frame rate of 25 fps on the low-quality videos in the
SoccerNet Premier League 16/17 validation dataset, and a stride of 1. Each
video is extracted with the target shape of the respective model’s input
shape using FFmpeg [73]. We first tested our VGG inspired model with
input 108x192 as the logo frame classifier. Its best results are with a window
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size of 13, a stride of 1, and the requirement of all of the frames being
classified as a logo. The model finds 394 true positives, 22 false positives,
and 0 false negatives. When looking closer at the false positives, we find
that 4 of them are a logo. This means that this model scores a 95.67%
precision on the validation set. We proceed to test a few more models and
report the best results according to the F1-score in Table 4.14.

Classifier Input FN FP TP Recall Precision

ResNet 144× 256× 3 0 33 398 1 0,9234
ResNet 108× 192× 3 0 22 398 1 0,9476

Simple CNN 108× 192× 3 0 47 398 1 0,8944
Simple CNN 108× 192× 1 2 38 396 0.9950 0,9124

VGG inspired 144× 256× 3 0 8 398 1 0,9803
VGG inspired 108× 192× 3 0 18 398 1 0,9567
VGG inspired 108× 192× 1 0 18 398 1 0,9567

Table 4.14: Best results using the F1-score for our first logo transition
detection test on the full validation set matches in SoccerNet PL16/17 for
classifiers trained on the initial training set. We see very good recall, but
there seems to be too many false hits on frame level, resulting in false logo
transition predictions.

We further investigate the results and see that it is the Simple PL logo
transition that is most commonly miss classified. This correlates with
the results on the frame logo validation dataset reported earlier in this
Section 4.1.3. By looking at the background images that are consecutively
miss classified, we see some common features. Many of them are close-
ups, where either the player might be similar to the trophy logo, or the
background colors contain similarities with for example the white fade
transition found in the bigger Premier League logos such as a shade from
the stadium. We also see some of them containing the white goal net or
something similar to a grid. From analyzing the results, we see that it is the
Simple PL logo that has the most false-negative frames.

Figure 4.5: ResNet RGB 108× 192 heatmap using Grad-CAM [59]. Warm
colors signifies more activations.
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In Figure 4.5, we have used Grad-CAM [59], implemented with
Keras [16], to visualize what region of the frame gets activated when we
classify using ResNet with RGB 108× 192 input. These are all predicted
correctly, but it is interesting to see that the two frames containing the
Simple logotype (lower left and lower right image), do not focus on
the actual logo. A possible explanation for this is that when the model
encounters hard samples like in Figure 4.4, it adjusts to the surrounding
features. This could be one of the reasons that we see backgrounds with
similar features get wrongly classified, especially if the training set does
not contain enough background frames that counter this learning.

This points to that the previous frame logo training set might not
contain enough background images. In a real case, as this test tries to
mimic, background frames are a much bigger portion of the frames (see
Table 3.5), and our dataset should reflect that. To make the datasets more
complete, we supplement with 7812 random background images to the
premier league dataset. To make it even more robust, we add more edge
case samples found by classifying all training video frames and sample
over 6000 extra frames that were misclassified as a logo by either ResNet or
VGG inspired with RGB input and 108× 192 resolution. We also find 954
logo frames from transitions that have wrongly been annotated as abrupt
or smooth and added them to the logos. The hypothesis is our models will
improve by encounter more of these hard to classify backgrounds during
training, and hope it leads to better predictions during inference. We only
used videos from the training dataset for this. The set, Train Medium, now
contains a total of 43260 background images and 23194 logo images. All
frames are looked over manually. It is important to note that the extraction
of hard samples can give a bias to the used models.

We choose to go forward with the best performing models and some
models for the purpose of exploration and comparison. For the selected
models, we load the already trained weights for each respective model
and train with a learning rate of 0.001. We use early stopping and reduce
learning rate on plateau as previously described in Section 3.4.3. The results
on the same validation set are reported in Table 4.15. The results for the
module on full matches on the validation set are in Table 4.16

We compare the recall and weighted F1 score in Table 4.15. For the
most part, we see that the recall for the background increases, while the
recall for the logo decreases. This applies to almost all the models, except
for the VGG inspired 108 × 192 × 3, which was used to extract the hard
background samples. Even though the other model used for extraction had
decreased performance (ResNet 108× 192× 3), we believe this increase is
due to the bias of extracting hard samples from this model. The weighted
F1 score decreases, but it is important to remember that the logo class is
over-represented in our dataset compared to what the ratio is in a full
game or the expected video clip input of our system. While the increase
in background recall is small, there are almost 75 times more background
frames than logo frames for the system’s input, making the impact of the
improvement bigger than it may look like. Even though the recall for the
logo decreases by a substantial amount, we hope it will still be adequate to
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Before After
Classifier Input l.rec. b.rec W-F1 l.rec. b.rec. W-F1

ResNet 144× 256× 3 0.991 0.994 0.993 0.985 0.998 0.993
ResNet 108× 192× 3 0.992 0.997 0.995 0.988 0.999 0.992
ResNet 54× 96× 3 0.963 0.985 0.976 0.935 0.999 0.972

Simple CNN 144× 256× 3 0.987 0.992 0.990 0.955 1.000 0.980
Simple CNN 108× 192× 3 0.978 0.993 0.987 0.949 1.000 0.978
Simple CNN 72× 72× 3 0.954 0.976 0.966 0.913 0.996 0.961

VGG inspired 144× 256× 3 0.992 0.997 0.995 0.987 1.000 0.994
VGG inspired 108× 192× 3 0.997 0.982 0.989 1.000 0.983 0.991
VGG inspired 54× 96× 3 0.987 0.990 0.989 0.979 0.995 0.988
VGG inspired 72× 72× 3 0.989 0.982 0.985 0.998 0.973 0.985
VGG inspired 144× 256× 1 0.991 0.999 0.995 0.988 0.999 0.994
VGG inspired 72× 72× 1 0.984 0.991 0.988 0.971 0.997 0.986

Table 4.15: Comparison of the results on the validation frame dataset before
and after further training on the Train Medium dataset.

make our transition module separate the two classes accurately.
In Figure 4.6, we can see that the heatmaps produced using Grad-

CAM [59] with RGB 108× 192 input, before (above) and after (below) the
extra training. These background frames was previously predicted wrong.
We see that there are less activations, and may suggest that the model have
learned better features to separate the classes.

Figure 4.6: Heatmap from three of the layers of the VGG inspired model
with RGB 108 × 192 input, before and after the extra training. These
background frames was previously predicted wrong.

The validation set results for the classifiers trained on the bigger dataset,
reported in Table 4.16, suggests that we were right that the training set was
insufficient, and that the models needed to encounter more backgrounds
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during training. The models are still able to find all the logos, and the
precision has improved a lot. ResNet with RGB 108 × 192 went from 22
wrongly predicted transitions to just 2. It is also surprising that the VGG
inspired with RGB 54× 96 input scores a perfect score when comparing to
the results reported on the frame logo set in Table 4.9.

Classifier Input FN FP TP Rec. Prec. l/ws

ResNet 144× 256× 3 0 8 398 1 0,980 13/13
ResNet 108× 192× 3 0 1 398 1 0,997 8/8
ResNet 54× 96× 3 0 0 398 1 1 14/14

Simple CNN 144× 256× 3 0 8 398 1 0,980 10/10
Simple CNN 108× 192× 3 0 4 398 1 0,990 12/13
Simple CNN 72× 72× 3 0 17 398 1 0,959 13/13

VGG inspired 144× 256× 3 0 0 398 1 1 10/11
VGG inspired 108× 192× 3 0 1 398 1 0,997 13/13
VGG inspired 54× 96× 3 0 8 398 1 0,980 13/13
VGG inspired 144× 256× 1 0 3 398 1 0,993 12/12
VGG inspired 72× 72× 1 0 2 398 1 0,995 12/12

Table 4.16: Best results for each logo transition detection after training the
classifiers on the medium extended training set (Train Medium). l/ws -
logo frames out of window size.

Because of this significant improvement, we will further expand the
training dataset, report the results on the validation, and finally report the
final results on the test set using the same window size and requirement
as the best for the validation. Due to the time-consuming extraction and
assembly of the extra frames, as well as training time, we only test this on
some models to further analyze the effects of a bigger background training
set.

The results after training on Train Max is reported in Table 4.17. For
most of the models with the same input, we see a decrease in performance.
ResNet with RGB 144× 256 input gets quite a significant improvement and
ResNet with RGB 108× 192 and VGG inspired with grayscale 144× 256
both achieves the same result as before. The rest has worse performance
with the same settings as in Table 4.16, and compared to their respective
best settings. This can suggest that the initial training set lacked hard
background samples rather than quantity being the main problem.

For the final, test we will use the models trained on the medium
extended set instead of the full set. We use the same window size and logo
frame requirement as the best results on the validation test from Table 4.16,
to see how it generalizes to a less biased set.

The final results for the module are presented in Table 4.18. The
results are very good, with the best model, ResNet with RGB input and
a resolution of 144× 256, scoring an impressive F1 score being 0.9946, with
zero missed logos and only 2 false positives. This model performed well on
the validation set as well, The runner-ups got an F1 score of 0.9918 using
the classifiers VGG (144× 256× 3) and ResNet (144× 256× 3). All models
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Train Medium Train Max
Classifier Input Rec. Prec. Rec. Prec

ResNet 144× 256× 3 1.0000 0, 980 1.000 1.000
ResNet 108× 192× 3 1.000 0,997 1.000 0,997
ResNet 54× 96× 3 1.000 1 1.000 0.993

Simple CNN 144× 256× 3 1.000 0,980 1.000 0,980
Simple CNN 108× 192× 3 1.000 0,990 1.000 0.985
Simple CNN 72× 72× 3 1.000 0, 959 1 0.966

VGG inspired 144× 256× 3 1.000 1 1.000 0.997
VGG inspired 108× 192× 3 1.000 0.997 1.000 0.988
VGG inspired 54× 96× 3 1.000 0, 980 1.000 0.983
VGG inspired 144× 256× 1 1.000 0,993 1.000 0,993
VGG inspired 72× 72× 1 1.000 0,995 1.000 0.983

Table 4.17: Best results for logo detection module after training the
classifiers on the medium extended training set (Train Medium) versus
trained on the Train Max dataset. Bold text signifies best recall/precision
within row.

performed very well on the validation set while we see a much higher
variance here. This is expected, as we used prefixed parameters for the
window size and frame requirement. The most surprising results are the
bad performance using the VGG inspired model with 54× 96× 3, with 120
false negatives. This may be due to the module parameters not working on
this set, or that the model overfit.

Classifier Input FN FP TP Rec. Prec. F1 l/ws

ResNet 144× 256× 3 5 1 363 0.986 0.997 0.993 13/13
ResNet 108× 192× 3 2 0 366 0.995 1.000 0.997 8/8
ResNet 54× 96× 3 20 4 348 0.946 0.989 0.967 14/14
S. CNN 144× 256× 3 8 1 360 0.978 0.997 0.988 10/10
S. CNN 108× 192× 3 7 8 359 0.981 0.978 0.980 12/13
S. CNN 72× 72× 3 26 7 342 0.929 0.980 0.953 13/13

VGG 144× 256× 3 3 3 365 0.992 0.992 0.992 10/11
VGG 108× 192× 3 21 2 347 0.943 0.994 0.968 13/13
VGG 54× 96× 3 2 120 366 0.995 0.753 0.857 13/13
VGG 144× 256× 1 8 0 360 0.978 1.000 0.989 12/12
VGG 72× 72× 1 13 6 355 0.965 0.983 0.974 12/12

Table 4.18: Final test results classifiers trained on Train Medium dataset,
and evaluated using the same window size and logo frame requirement as
the best results on the validation test from Table 4.16.

The results are overall good, and we have models that are capable
of finding most logos with few false negatives. If we consider that the
modules’ input when part of our full highlight clipping system will have
significantly fewer background frames, the false negatives are a much
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smaller problem. We see that even with more complex logos, our strategy
works well.

The computational efficiency is presented in Table 4.19, and was
measured as described in Section 3.4.3. We can see that even the slowest
CNN models perform at a high fps rate. According to statistics provided
by FIFA, there were on average 2.6 goals per match in the FIFA world cup
2018 [26]. In the naive solution of predicting all input frames (2 minutes
adding up to 300 frames), the slowest CNN model, ResNet with RGB
input of 144× 256 resolution, would use a little over 2.5 second per game,
while the Simple CNN with RGB input of 144 × 256 resolution would
use 0.23 seconds, using the results from the module test in Table 4.18.
Theoretically, the slowest CNN model could use 0.37 seconds each game
by only predicting every 13th frame, and predict 12 frames on either side if
it finds a frame, while still outputting the same result. ((3000/13)+24)×2.6

1,798 =
0.37s.

4.1.5 Computational cost

model input fps

ResNet 144× 256× 3 1, 798
ResNet 108× 192× 3 3, 117
ResNet 54× 96× 3 12, 295

Simple CNN 144× 256× 3 340, 936
Simple CNN 108× 192× 3 341, 897
Simple CNN 72× 72× 3 339, 099

VGG inspired 144× 256× 3 94, 169
VGG inspired 108× 192× 3 65, 281
VGG inspired 54× 96× 3 86, 594
VGG inspired 144× 256× 1 96, 428
VGG inspired 72× 72× 1 85, 722

SVM (Simple CNN) 108× 192× 3 179
SVM (Simple CNN) 27× 48× 3 14023
SVM (Simple CNN) 72× 72× 3 1103
SVM (Simple CNN) 72× 72× 1 883

SVM (VGG16) 108× 192× 3 442
SVM (VGG16) 72× 72× 3 3172

Table 4.19: Execution times measured on the DGX2 server 3.3.1. All models
was evaluated using Eliteserien dataset.

Even though the execution cost for the different CNN models is
relatively high, this means that we, in practice, do not need to compromise
in order to get good performance, as the computational cost is negligible
for a high-end system such as DGX-2. It is still of interest for other use
cases where processing power is more limited.

The SVMs perform slower, with a high increase of computational cost
with higher resolutions. An important aspect of SVMs computational cost
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is the number of parameters it takes in as input. Using the Simple CNN
with an image resolution of 108× 192× 3 outputs over 36,000 parameters,
leading to a slow execution time for the SVM, and high memory usage.
With resolution 72× 72× 3, there are 8,192 features. The SVM is therefore
not suitable with high resolution for the Simple CNN. Even though the
SVM performs well on the Eliteserien dataset, its computational costs are
too high, compared to the good performance of many of our tested CNNs
on the same set, with much lower computational cost.

4.2 Shot boundary detection module

TransNetV2 is a state-of-the-art shot boundary detection model and
has achieved very good performance on benchmark datasets, such as
ClipShots [70], RAI [11], and BBC [10]. We will now proceed to test it
on our shot boundary detection dataset, and SoccerNet [18], to see how
it performs on soccer clips. We will evaluate based on the abrupt and
gradual transitions, as these are the transitions our module is designed
to process. We will evaluate the pre-trained weights trained on ClipShots
and IACC.3 [64] [70] [8], and is further referenced to as TransNetV2 pre-
trained. We will also train our model using our SoccerNet SBD dataset,
and we reference this as TransNetV2 SoccerNet. TransNetV2 is introduced
in Section 2.4.3 and described in Section 3.5.1.

4.2.1 Training TransNetV2

We train our weights from scratch to compare to the pre-trained weights
provided with TransNetV2 [64]. We describe our dataset and method in
Section 3.5.1. We start with the subset of the SoccerNet SBD dataset, SBD
PL16/17, then the full SoccerNet SBD dataset, before we finally run an
evaluation on the full matches of the full test set from SoccerNet. The
datasets are described in Section 3.1.4.

For our preliminary experiment, we run 50 epochs of training on SBD
PL16/17. The best results after 20 epochs. For our first evaluation, we
compare results on the SBD PL16/17. We use our trained TransNetV2 and
compare it to the pre-trained model. We use tolerance δ = 4 and δ = 24 (1
second), meaning the prediction must be at least within a distance of 2 and
12 frames, respectively, to be considered a true positive. We start with δ = 4
for both models. This yields good results, meaning that we can assume that
most annotations are accurately annotated. The results for the models are
presented in Table 4.20.

Looking at the false positives manually, we notice that some are correct.
This is especially apparent with logos. We notice that the logos are often
detected at the end of a transition. This may be due to the more aggressive
change in the fade-out as opposed to the fade-in. Some logos are also very
small throughout the transition before it expands in the last 3 - 4 frames.
We also notice that some gradual transitions are predicted at the start of the
transition, and not in the middle like the labels are. Some annotations may
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Trained on SoccerNet Pre-trained
metric δ = 4 δ = 24 δ = 4 δ = 24

Precision 93.80% 96.46% 97.85% 99.05%
Recall 84.09% 86.47% 97.85% 99.05%

F1 Score 88.68% 91.19% 89.33% 90.43%

Table 4.20: TransNetV2 SoccerNet results on SBD PL16/17 validation set.

be less accurate as well, by a few frames. This means that low tolerance
could be an issue. It is also possible that some transitions are not annotated
at all. We continue with a tolerance δ of 24 (1 second) to see the effect. This
is the tolerance used for evaluation by Deliège et al. [18] on the models
shown in Table 2.1.

We see an increase of over 1% for all metrics when using the higher
tolerance. This suggests that the accuracy of some of the annotations is
off by more than two frames. Some of the increases can also be previous
actual false positives considered as true positives. Because the recall is
at a high level, the increase is more likely due to actual transitions being
detected, because if the true positive is found, the previous false positive
for tolerance δ = 4, will still be considered a false positive. There also are
not very many false negatives, to begin with. We, therefore, consider a
tolerance δ of 24 to reflect an accurate description of the performance.

We compare the scores for each transition type in Table 4.21 with a
tolerance δ of 4. We can see that it has very bad performance on the logo
transitions. The low precision can suggest that it is a result of inaccuracies
between the predicted frame and the annotated point.

weights metric All Abrupt Gradual Logo

SoccerNet
Precision 93.80% 96.93% 91.62% 21.11%

Recall 84.09% 98.26% 95.35% 4.61%
F1 Score 88.68% 97.59% 93.45% 7.57%

Pre-trained
Precision 97.85% 98.88% 91.33% 56.67%

Recall 82.17% 97.16% 79.65% 4.13%
F1 Score 89.33% 98.01% 85.09% 7.69%

Table 4.21: Both models performance for each transition type on the SBD
PL16/17 Valid dataset. The tolerance used is 4 frames.

When we use a tolerance δ of 24, the precision increases to 88% and
recall to 23% for the pre-trained model. When we look at them manually,
we see that most of the predictions of the logos are at the end, treating it as
an abrupt transition. This is probably due to the sudden change in colors
happening at the end, as the fade-in is mostly gradual, and the fade-out
is more aggressive. The pre-trained model achieves 99.0% precision and
96.5 recall when we consider abrupt and gradual transitions only. This is a
good result. Our manual inspection also suggests that it is frame-accurate
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for abrupt and smooth transitions. With our trained TransNetV2 model,
we achieve 96.6% precision and 98.0% recall.

Due to this set being part of the training for our trained model, it is
biased, and we only use it as an intermediate evaluation of both models.
We can see that the pre-trained model has better precision, but our trained
model achieves better recall. For smooth transitions, we see that the recall
of the pre-trained model is 15% lower than that of the trained model. This
can suggest that training on the soccer clips makes the model significantly
better at detecting them in soccer videos.

We continue training for 30 epochs on the full dataset. We choose the
best model and run a test on the test set of the small 100 frame clips and the
full-length matches. The results are shown in Table 4.22 and 4.23.

4.2.2 Evaluation of TransNetV2

We start by testing on the SoccerNet SBD dataset. The results are presented
in Table 4.22. We can see that the pre-trained model outperforms our model
on all classes except for the abrupt class. On the abrupt class with the
trained model, we see a higher recall than that of the pre-trained model.
The same goes when we combine abrupt and gradual transitions in one
metric. In the context of the function the module has in our system, we
prioritize the precision over recall, as the recall is high for both. The
consequences of a false positive are more severe than the consequences of a
false negative. A false negative will lead to the system making a default cut,
but false positives will potentially fool the system into including/excluding
scenes that it is not supposed to. Based on this, the pre-trained model is
preferred for our system. It may be that hyperparameter tuning and better
annotations for gradual and logo transitions can achieve even better results.
Souček and Lokoč [64] notes that synthetic data boosted the performance,
and in our case, it could have provided gradual transitions with exact
annotations without any manual work.

weights metric All Abrupt Grad Logo Abr.&Grad.

SoccerNet
Prec.

95.66% 98.37% 97.66% 76.80% 98.22%
Pre-trained 95.96% 98.73% 98.69% 77.26% 98.72%

SoccerNet
Rec.

80.35% 96.63% 87.51% 33.24% 94.56%
Pre-trained 80.67% 95.58% 89.19% 36.06% 94.13%

SoccerNet
F1-score.

87.34% 97.49% 92.31% 46.40% 96.36%
Pre-trained 87.65% 97.13% 93.70% 49.17% 96.37%

Table 4.22: Comparing both models’ performance for each transition type
on our SoccerNet SBD test set. Valid dataset. The tolerance δ is 24 frames.

We move on to the full SoccerNet test set, containing 100 full-length
games. We consider a transition correct if it is within +/ − 0.5 seconds
(tolerance δ of 24) from an annotated transition. The results are shown in
Table 4.23. The recall performance is in line with the previous test, but we
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see poor precision scores.

Weights Precision Recall F1-score
SoccerNet 45.63% 78.08% 57.60%

Pre-trained 46.88% 78.85% 58.80%

Table 4.23: Result for TransNetV2 on the SoccerNet full-length test set with
a tolerance δ of 24 frames.

Figure 4.7: TransNetV2 model’s false positives. We see close similarity to
abrupt and fade transitions.

When we look closer at the results per game, we see that some achieve
an almost perfect score above 90%, while others have hundreds of false
positives. It may be the matches’ properties, such as colors on the team
jerseys, colorful advertising boards, lighting conditions, production style,
and such, that makes the model detect false positives. It is also possible that
the quality of some of the annotators has been poor, due to all false positives
being clustered in the same matches. Due to all these false positives, we will
manually look over some of the false positives and false negatives, using
the pre-trained model, as this is the preferred model.

We start by looking specifically at the matches from the test set from
Premier League season 2016 - 2017. Looking through a total of 861 false
negatives, we only spotted 10 actual false positives. With the earlier results
of 1, 464 TP, 861 FP and 420 FN, we now have 2, 325 TP and 10 FP. This
means that the model achieved a precision of 99.57% and a recall of 84.70%.
We continue to check 10 more random soccer periods from 10 different
games. After looking at 1, 378 more false positives, we find that only two
of them are actual errors. Almost all cases of the false negatives we saw are
abrupt or smooth transitions.

Looking at the false negatives, the transitions that the model misses, we
see that it is mostly logos and smooth transitions. Examples can be seen in
Figure 4.8. We also find abrupt transitions that seem simple.

Training TransNetV2 on the SoccerNet SBD dataset showed promising
results. Our preliminary training on SBD PL16/17 dataset only showed
potential for the model to perform better on smooth transitions when
trained specifically on soccer clips. However, the differences disappeared
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Figure 4.8: Some of the transitions the model misses. The screenshot is
taken from our analyzing tool for shot boundary.

when running further training and tests on the full set. This may have
been due to bias when we chose the best model, meaning it would not
generalize over the whole test set. Continued training and test on the full
SoccerNet SBD dataset show that both models perform well, but the pre-
trained model is preferred, with better precision on abrupt and smooth
transitions and a similar recall.

When evaluating the pre-trained TransNetV2 shot boundary detection
system on the full SoccerNet-v2 test set matches, we found a lot of false
positives. The model had a precision of less than 50%. From manual
inspection on some of the transitions, we found that they were in fact
transitions, and it is possible that most of the false positives are missing
annotation for the other leagues as well. We only inspected a hand full
of 1, 300 transitions fully (a little over 5% of the false positives). The
model shows good results if we assume that the dataset is missing a lot of
annotated transitions. If we assume so, the model performs very well, with
99.7% precision, 89.2% recall, and 94.2% F1-score. However, we can not
be sure, and we do not have enough objective data to reach a conclusion.
What we can conclude, is that it achieves good recall. We also find that the
models are frame-accurate, which is important for the technical standard
when clipping the highlights. We conclude that the model performs at least
adequate for our usage, as it is very accurate, and performs well on our
SoccerNet SBD dataset seen in Table 4.22.

4.3 Final version of our system

For our full system, we will combine the logo detection and shot boundary
detection module. The system takes the video frames and annotated goal
as input. The modules then identify scene transitions and logo transitions.
This is then fed to the clipping protocol to determine the interval for this
specific goal. We describe the system in-depth in Section 3.6.

In Section 4.1, we show that the frame logo classification performs great
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on the logo frame datasets, and they are capable of great performance
spotting a logo transition. The best model for Eliteserien is VGG inspired
with a resolution of 54 × 96 × 1 (100% F1-score1) and ResNet with a
resolution of 108× 192× 3 (99.7% F1-score2) for SoccerNet. We use these
models in our final system.

In Section 4.2.2, we find good results from training TransNetV2 [64]
on SoccerNet [18], however, it did not outperform the pre-trained model
trained on ClipShots [70] and IACC.3 [8]. We use the pre-trained model in
our final system.

With the scenes and replay identified, we use a video processing
module to make the highlight. The clipping protocol, in Algorithm 1, is
used to decide where the highlight will start and end. We also have a
version that trims the length by removing parts in between the goal and
replay.

We have evaluated the objective technical standard from our experi-
ments. To see how compelling the two different outputted highlights are,
we will, in the next section, evaluate the performance of the system by ana-
lyzing the subjective data from the online survey.

4.4 Subjective evaluation of highlight clips

In this section, we evaluate the quality of our final highlight clips in
relation to the existing model used today, using quantitative and qualitative
subjective data gathered from our user survey. The survey is set up
and distributed as described in Section 3.7. We start by going through
the participants’ background information to get an overview of the
distribution. We then move on to the results for the highlight comparisons
and discuss the results. We look at the overall results and results for
different groupings of the participants.

4.4.1 General information about the participants

Upon inspection of the data, we see that 3/64 of the participants have given
a score of 10 for all the clips they were asked to evaluate and no additional
comments. Since these are the only participants giving an identical score
for every clip, we make the assumption that these individuals have either
just clicked their way through the survey without watching the clips or
they have misunderstood what they were supposed to do. There is the low
possibility that the individuals did not see any difference in the clips and
think they all were perfect, but since their data only will up the average
score of every model it does not provide any value for us and therefore we
remove the data provided by these participants.

After removing some of the data as discussed above we start to process
the remaining data to get a better overview of the participants taking part

1Results on the Eliteserien logo frame dataset
2Results on the full-length test set.
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in our survey and be able to categorize them into different groups to see if
there is any bias across the different groups.

Figure 4.9: The distribution of
gender.

Figure 4.10: The distribution of age.

As we can see from figure 4.9 the distribution of females and males is
more weighted towards males, which could lead to biased results because
more females are not represented in the survey. Looking at the age
distribution in 4.10 we were not able to get any participants in the age
groups below 18 or over 59 which leads to the opinions of these ages
groups not being represented in the results (assuming there is bias across
different age groups). We also see that 82,2% participants in the survey
fall under the age group 20 - 29 years old and the remaining 14,8% make
up the participants between age 30-59, so the results of this survey mostly
represent participants of age 20-29 and the male gender.

Figure 4.11: Distribution of people
who consider themselves sports
fans.

Figure 4.12: Distribution of how
often the participants watch sports
broadcasts on average.

As we can see from Figure 4.11 two thirds of the participants are sports
fans which is a reasonable distribution given that people who are sports
fans would be more interested in this type of survey and probably have
a stronger foundation for evaluating the clips. In Figures 4.12, 4.13, 4.15,
and 4.14, we see a fairly even distribution of how often participants watch
matches and highlights which we will further in the chapter categorize into
groups we think could have an impact on the results to see if there is any
bias across the groups.

Most of the participants do not have any experience with video editing
as shown in Figure 4.16, but 27,9% of the participant have experience
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Figure 4.13: Distribution of how
often the participants watch sports
highlights (on web) on average.

Figure 4.14: Distribution of how
often the participants watch soccer
matches on average.

Figure 4.15: Distribution of how
often the participants watch soccer
highlights on average.

Figure 4.16: Distribution of the par-
ticipants experience with video edit-
ing.

with video editing which could provide helpful data more focused on the
cut themselves. Out of the 27,9% having experience with video editing,
two of the participants answered they have professional experience with
this which could be interesting to further inspect the opinion of these
individuals, but we keep in mind that only two professionals is not enough
data to represent the general opinion of this group.

4.4.2 Results

After sorting our data out, we start looking at the numbers themselves. The
statistics we choose to inspect further are as follows

• Average score for a model across all the comparisons to tell us a
general idea of the performance of the model.

• which model is preferred in every comparison to give us an overview
of what model is preferred in each comparison.

• Standard deviation to see if there is a general agreement in the given
average score or if there is strong disagreement from participant to
participant.

• Median to tell us what the center of the data to be analyzed is.
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The final reasoning behind the measurement choices above is that given an
average is not enough due to the fact that one model could receive high
scores from the participants preferring this model, while the other group
preferring the other model gives a lower average score to their preferred
model (therefore we also measure the preference). The standard deviation
is also introduced due to the fact that even if most people prefer 1 model
over the other they could be giving a very close score to the non-preferred
model and be a small factor separating them. Further, we will be looking at
these statics for different groups to see if there is any bias across the groups
and present the data for the groups we assume to be most relevant for the
evaluation of our model.

Model name Average score Standard deviation Median

Our model - Short 7.40 1.98 8
Our model - Full 6.84 2.10 7

Original 5.89 2.12 6

Table 4.24: Average score for all the models across all the comparisons.

Figure 4.17: The standard deviation
for the original model across all the
comparisons.

Figure 4.18: The standard deviation
for Our model - Full across all the
comparisons.

Figure 4.19: The standard deviation
for Our model - Short across all the
comparisons.

As we can see from Table 4.24, Our model - Short is a clear winner
on average score, Our model - Full is the runner up and the original
model achieves an average score of only 5.89. We further inspect the
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results and plot a standard deviation graph for all the models as shown
in Figures 4.174.194.18. We start by looking at the graph for the original
model, here we see that the standard deviation is 2.12 so the scores will
normally vary between 3.77 and 8.01. The median of 6 is fairly close to the
average score which leads to an even distribution of the scores as shown in
Figure 4.17. The graph for Our model - Full is fairly similar to the original
except it is slightly more right-skewed which leads to a higher score on
average. Now looking at the graph and table for Our model - Short we
see that the median of 8 is relatively a lot higher than the average score
of 7.40 which leads to a right-skewed standard deviation graph as shown
in Figure 4.19. Due to the fact that our median is 8 we know that 50% of
the scores are 8 or higher meaning that there are some relatively low scores
bringing the average down to 7.40. Upon further inspection we see that in
comparison 2 our model - Short scores 6.85 on average meaning this is the
comparison that brings down the average of the model the most. Further,
inspecting comparison 1 our model - Short receives an average score of
8.16 which is closer to the median meaning this is probably the comparison
leading to a right-skewed graph 4.19.

Figure 4.20: The preferred model with respect to the comparison.

Looking further into the preferences of the participants as shown in
Figure 4.20 we are going to look at each individual comparison and analyze
the comments to find a reasoning behind the preferences.

Comparison 1

In comparison 1, a corner goal is shown, the original model (clip 1) shows
the corner being taken, the goal, full celebration, and cuts at the start of the
replay. Our model - Short (clip 2) shows the corner being taken, the goal,
short celebration, and the full replay. Looking at some of the comments
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given by the participants:

• "The first clip seems to have more random points of start and stop.
The second clip starts where the situation actually begins, and catches
replays and celebration before it stops at what feels like a natural
time."

• "I would say clip 1 is just the live footage, clip 2 is the highlight. Clip
2 is well cut, but could have shown a couple of seconds more of the
celebration before the replay is played."

• "clip 2 was way more engaging"

• "Goal summary (replay) adds value."

• "first one feels longer and boring"

• "To much unnecessary content in clip 1."

• "I think the first one is too long. I and i miss a replay of the goal.
Second one is great!"

There seems to be a consensus in the comments that the replay is almost
a must to have in the clip, but there seems to be a disagreement regarding
the celebration and celebration length. Some of the comments state that
the original clip is boring due to the fact it is focusing too much on the
celebration, while other comments stated that they wished to see more
celebration in clip 2.

Comparison 2

In comparison 2, a counter-attack following a goal is shown. Our model
- Full (clip 2) shows a short build-up, the goal, full celebration, and
replay. Our model - Short (clip 1) shows a short build-up, the goal, short
celebration, and replay. Looking at some of the comments given by the
participants

• "for my feeling both are too long. one repetition of the goal is enough.
also all the fans and celebrating is boring."

• "I think clip 2 is fairly good, but it shows the same clip of a celebration
twice which is unnecessary."

• "Goal summary (replay) more closely after the goal seems better."

• "They seemed very similar."

The comments all seem to agree that the clips were too long or that they
looked very similar. Some comments stated that they also disliked that the
celebration after the goal also appeared at the end of the replay.
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Comparison 3

In comparison 3, a cross ball following a goal is shown. Our model - Full
(clip 1) shows two scenes before the goal, the goal, celebration, and the full
replay. the Original (clip 2) model shows 3 scenes before the goal, the goal,
full celebration and cuts a few second before the replay is finished. Looking
at some of the comments given by the participants

• "In my opinion the second clip catches more of the situation leading
up the the goal, which gives a better understanding of how the goal
happened. The first seems to start a bit in the middle of a situation,
which feels a bit abruptly."

• "too much additional things (trainer drinking water, etc.) Better two
or three good representations of the goal and what lead to it."

• "Starting with the wide angle view (Clip 2) gives better context.
Second angle for the goal summary (Clip 1) is good to have."

• "Clip 2 started a bit early"

• "Almost identical"

Some of the participants prefer clip 2 due to the fact it shows a
bit more of the build-up towards the goal, while others think this is
unnecessary. It also seems that some of the participants think it is too many
unnecessary "celebration" scenes not actually showing the goal event and
some comments state the clips look very similar.

Comparison 4

In comparison 4 a penalty kick is shown leading to a goal. The original
model (clip 1) shows 1 scene of the tackle leading to the penalty, build-
up, the goal, full celebration, and no replay. Our model - Full shows the
build-up, the goal, full celebration, and full replay. Looking at some of the
comments given by the participants

• "The second seems to be a cleaner cut for me, as it starts when the
player is ready for the penalty. The first clip includes just a brief
moment where the tackle happens, but if the situation leading to a
penalty is decided to be included it should include much more of the
situation. With just this brief clip it just contributes to making the clip
more untidy."

• "again celebration and other things around feel too long. especially if
you are from the opposite team. These things might be necessary but
can be much shorter"

• "clip 1 missing replay of goal, clip 2 missing replay of penalty
incident, would like both to be included"
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We see in the comments that participants want to see a better clip of
the tackle leading to the penalty and would rather have it not included
as shown in clip 1 due to the fact it is so brief and seems untidy. The
participants also seem to agree in the comments that the replay provides
value for the highlight, but some participants expressed they would prefer
it to be shorter.

Comparison 5

In comparison 5 a corner kick following a goal is shown. Our model - Short
(clip 1) shows two scenes of the corner kick, the goal, shortened celebration,
and full replay. the original model (clip 2) shows more of the build-up, the
goal, full celebration, and no replay. Looking at some of the comments
given by the participants

• "1 is better on 2 to much time is wasted for celebrating."

• "the first video here is exactly what I would expect."

• "Corner kick goal summary (replay) adds value."

• "Again, little bit weird when it goes straight to the replay. Feels a bit
like fifa or a recap, so if this was during a game, it would be weird
with nr 1. After the game, number 1 works"

The comments seem to agree that clip 1 containing the replay is a plus.
A participant also commented that the cut before the replay in clip 1 is a
little abrupt (unnatural transition). Looking at the last comment there is a
possibility that some of the participants perhaps have misunderstood that
these were actually supposed to be highlights posted after the game, and
not during the game.

4.4.3 Grouping of participants

We will now group the participants into different groups to see if there is
any bias across the groups that impacts the scores given or which model is
preferred as discussed in Section 3.7.1.

Sports fans

As discussed in Section 3.7.1 we want to categorize participants who
consider themselves sports fans and see how they compare to participants
that do not consider themselves sports fans to see if there is any bias across
the two different groups.

After grouping the participants into sports fans and non-sports fans
we see that the ranking remains the same for both groups, as for the
ranking given by all the participants in Figure 4.24. The interesting part
for these two groups is that the group for sports fans seems to have given
a significantly lower average score for all the models, than the participants
in the non-sports fans group as seen in Tables 4.25 4.26. There is also a
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Model name Average score Standard deviation Median

Our model - Short 7.20 1.93 8
Our model - Full 6.57 1.89 7

Original 5.71 1.95 5

Table 4.25: Statistics for sports fans.

Model name Average score Standard deviation Median

Our model - Short 8.07 2.03 9
Our model - Full 7.71 2.48 9

Original 6.50 2.53 6

Table 4.26: Statistics for non-sports fans.

significantly higher standard deviation for the group of non-sports fans
which seems to not be the case for the group of sports fans. These results
further strengthen our assumption discussed in Section 3.7.1 that sports
fans have a stronger foundation of rating these clips due to the fact that they
know what to look for and what they want. Also given the higher standard
deviation and average score given by the non-sports fans groups could be
an indication that the participants do not really see that much difference
and think all the models are relatively good, and the given higher standard
deviation for the non-sports fans suggests that the participants do not have
a mutual agreement on what makes a good sports highlight.

Figure 4.21: The preferred model for sports fans with respect to the
comparison.

Looking in to the preferences for the two groups shown in Figures 4.22
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Figure 4.22: The preferred model for non-sports fans with respect to the
comparison.

and 4.21. we see that for the sports fans in the majority of comparisons
there is a clear preference in which model is preferred except in comparison
3 and comparison 5. For the non-sports fans, the interesting part is that in
comparison 2 the number of participants having no preference is equal to
the number of participants preferring Our model - Full and the number
of participants preferring Our model - Short is almost equal. This gives
an indication that sports fans prefer that the celebration scenes are shorter
given the huge difference in preference towards Our model - Short, while
the non-sports fans do not consider the length of celebration a huge factor
for the highlight itself. This is further strengthened in comparison 3 where
the sports fans preferences were pretty much equal and looking at the
comments in Section 4.4.2 it is further confirmed that the length of the
clip is a big factor for the sports fans. While for the non-sports fans the
preference of Our model - full indicates that the clip length (even if a huge
part of the clip is celebration scenes) is not that much of a factor impacting
the score given. For comparison 5 it is interesting that there is a more
mutual agreement in which model is preferred for the non-sports fans in
contrast to the sports fans. Looking at some of the comments stated in
Section 4.4.2 the majority of the sports fans prefer Our model - Short due
to the fact that replay is added and is pretty much straight to the point,
while another comment stated that the clip felt a little abrupt and would
be weird including this clip during a game, but after a game it works fine.
So this disagreement in the preferred model could come from that the clip
felt abrupt or some of the participants misunderstanding that these clips
actually are supposed to be highlights posted after a game.
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Soccer fans

As discussed in Section 3.7.1 we want to categorize participants who watch
soccer matches once or several times a week and see how they compare
to participants that never watch soccer matches or less than once a week
to see if there is any bias across the two different groups and filter out our
target group who are most likely to be viewing these highlights in a realistic
scenario.

Model name Average score Standard deviation Median

Our model - Short 7.24 2.00 8
Our model - Full 6.72 1.88 7

Original 5.82 1.98 6

Table 4.27: Statistics for people watching soccer once a week or several
times a week.

Model name Average score Standard deviation Median
Our model - Short 7.55 1.96 8

Our model - Full 6.95 2.29 7
Original 5.96 2.24 6

Table 4.28: Statistics for people watching soccer less than once a week or
never.

After grouping the participants into soccer fans and non-soccer fans we
see that the ranking remains the same for both groups, as for the ranking
given by all the participants in Figure 4.24. The interesting part for these
two groups is that the group for soccer fans seems to have given a lower
average score for all the models, compared to the participants in the non-
soccer fans group as seen in Tables 4.27 and 4.28. The standard deviation
for Our model- Short is fairly close, whereas the standard deviation for Our
model - Full and Original is relatively higher for the non-soccer fans group.
This suggests that there is a more mutual agreement for the soccer fans
group for these models than the non-soccer fans group.

Looking further into the preferences of the two participant groups
as shown in Figures 4.23 and 4.24 we see that for Comparison 1 and
Comparison 4 the distribution of preferences remains pretty much the
same regardless of being a soccer fan or not. The interesting thing about
Comparison 2 is that for the non-soccer fans we see there is a majority that
has a preference for either Our model - Full or Our model - Short while
for the soccer fans the majority preferred Our model - Short while Our
model - Full is significantly less preferred in comparison to participants
with no preference. This could be an indication that the soccer fans do
not really mind watching more of the celebration scenes in comparison
to the non-soccer fans. In comparison 3 we see that for the soccer fans
a high number of participants had no preference regarding Our model
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Figure 4.23: The preferred model for soccer fans with respect to the
comparison.

Figure 4.24: The preferred model for non-soccer fans with respect to the
comparison.

- Full compared to the original model which is an indication that these
participants did not care/notice that much about including more time
for the replay. For the non-soccer fan participants, the preference of the
model is almost evenly split. Further inspecting the comments as seen in
Section 4.4.2 the comments suggest that the reason for these preferences
are that some participants simply think they are similar, the replay adds
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more value, and that some participants preferred the original model due
to the fact that it showed additional angels of the build-up leading to the
goal. Looking at comparison 5 we see a clear preference for Our model -
Short for the non-soccer fans, while for the soccer fans we see a more split
preference between the two models. Further inspection of the comments
as seen in Section 4.4.2 that including the replay adds value, but that the
cut is a little abrupt. This suggests that the reason for the split preferences
could be that some of the soccer fans prefer the more clean transition than
the replay containing more angles of the goal. Given the type of goal is also
important to take into account, given that this goal is a cross ball following
a header it is not an "amazing" goal, and perhaps given the quality of the
goal the soccer fans do not feel they need to see as many replays of it (and
therefore the cleaner cut is preferred) and the non-soccer fans feel like the
replay is more needed for this goal and do not take the abrupt cut as much
into account.

Gender

As discussed in Section 3.7.1 we want to group the participants by gender
to see if there is any bias between the female and male gender.

Model name Average score Standard deviation Median

Our model - Short 7.39 2.03 8
Our model - Full 6.72 2.15 7

Original 5.86 2.13 6

Table 4.29: Statistics for the Male gender.

Model name Average score Standard deviation Median
Our model - Short 7.42 1.85 8

Our model - Full 7.18 1.90 7
Original 5.98 2.09 6

Table 4.30: Statistics for the Female gender.

Upon inspection of the statics shown in Table 4.29 and 4.30 we see
that the ranking remains the same for both groups, as for the ranking
given by all the participants in Figure 4.24. the interesting part is that the
female participants gave a higher average score than the male participants
for all the models and that the female participants have a lower standard
deviation across all the models compared to the male participants.

Looking further into the preferences of the genders as shown in
Figures 4.25 and 4.26 we see that for Comparison 1 and Comparison 5
the distribution of preferences remains pretty much the same regardless of
the participant’s gender. The interesting thing about Comparison 2 is that
for the female gender we see there is a majority that has a preference for
either Our model - Full or Our model - Short while for the male gender the
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Figure 4.25: The preferred model for the male gender with respect to the
comparison.

Figure 4.26: The preferred model for the female gender with respect to the
comparison.

majority preferred Our model - Short while Our model - Full is significantly
less preferred in comparison to participants with no preference. This could
be an indication that the female gender does not really mind watching more
of the celebration scenes in comparison to the male gender. In comparison
3 the preferences of the male gender are fairly evenly split between no
preference, Our model - Full and no preference while for the female gender
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Our model - Full is preferred by the majority which could be a product of
some bias between the genders. As discussed for comparison 3 there seems
to be an indication of some bias between the genders in comparison 4. The
majority of the female gender preferred Our model - Full whereas the male
gender 13 of the participants had no preference and 9 participants preferred
the original model.

Age

As discussed in Section 3.7.1 we want to group participants by age and
see how they compare, to see if there is any bias across the two different
groups. The reason for diving the age groups into two groups is that as
we can see from Figure 4.10 we were unfortunately only able to gather 9
participants over the age of 29, so the rest of the participants fall in under
the age group 20− 29. Therefore we combine the age groups of everyone
over 29 years to one age group to be able to have a decent amount to give
us some pointers and indication of bias.

Model name Average score Standard deviation Median

Our model - Short 7.31 2.01 8
Our model - Full 6.79 2.06 7

Original 5.86 2.18 6

Table 4.31: Statistics for the age 18 - 29.

Model name Average score Standard deviation Median
Our model - Short 7.93 1.75 9

Our model - Full 7.11 2.31 8
Original 6.06 1.72 6

Table 4.32: Statistics for the Older participants group.

After grouping the participants into the different age groups we see
that the ranking of the models given by the two age groups remains the
same as in Table 4.24. The interesting part about the statistics (seen in
Tables 4.31 4.32) for these two groups is that the group of older participants
seems to give a higher average score for all the models compared to the
group of younger participants. The older group has a significantly lower
standard deviation for Our model - Short and Original compared to the
younger participants, so there seems to be more of a mutual agreement
for the scores given to these models. But, as we can see there is a higher
standard deviation for Our model - Full for the older participants compared
to the younger participants. These numbers for standard deviation indicate
that there is a stronger mutual agreement in the older participants group
for Our model - Short and Original compared to the younger participants
group, but a stronger disagreement for Our model - Full in the older
participants group compared to the younger participants group.
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Figure 4.27: The preferred model for the younger participants with respect
to the comparison.

Figure 4.28: The preferred model for the older participants with respect to
the comparison.

Looking at the preferences of the younger participants in Figure 4.27 we
see that the distribution of preferences is fairly similar to the preferences
for all the participants with no grouping of participants as shown in
Figure 4.20. The reason for this is probably because the majority of the
participants fall under this age group, therefore we will not comment on
these preferences any further because it would end up being very similar
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to the discussion in Section 4.4.2. For the older participants group, we
see in Figure 4.28that for Comparison 1 and 4 the preferences do not vary
that much from the preferences shown in Figure 4.20 (preferences with no
grouping). In comparison 2 we see that the majority has no preference
between Our model - Full and Our model - Short, which could be an
indication that this age group does not mind the length of the celebration
scenes that much. For comparison 3 wee see the same pattern as for
comparison 2, the majority of participants in this age group did not really
see a difference, and this is fair since in this comparison there really is not
that much of a difference, except that Our model - Full has a cleaner cut
(cuts on the logo, and not before). This could be an indication that this age
group does not care that much about how clean the cut is, which is further
confirmed in comparison 5 where Our model - Short has a more abrupt cut
compared to the Original model.

Editing experience

As discussed in Section 3.7.1 we want to group filter out the participants
that have experience with video editing from the rest of the participants,
making the assumption that people with video editing experience will have
a stronger foundation for evaluating the quality of the clip with more focus
on the quality of the cut itself.

Model name Average score Standard deviation Median

Our model - Short 7.59 2.33 8
Our model - Full 6.67 2.42 7

Original 5.47 2.42 5

Table 4.33: Statistics for the age participants with video editing experience.

After filtering out the participants that have experience with video
editing, we see that the ranking of the models given by the participants
with video editing experience shown in Table 4.33 remains the same as
in the overall ranking shown in Table 4.24. The interesting part about
these results is that the average score for Our model - Short is relatively
higher compared to the majority of the scores given by the other groups,
while the average score for Our model - Full and Original is relatively
lower compared to the majority of the other groups. This could be an
indication that people with video editing experience pay more attention
to the shortening of the crowd, and are more pleased with this type of cut
compared to the other two models. The interesting part here is that the
standard deviation is relatively high for all the models compared to the
standard deviation for the other groups, this indicates that there is more of
a disagreement between the participants when it comes to the models.

Looking at the preferences of the younger participants in Figure 4.29
we see that the preferences for comparison 1 there is a mutual agreement
that Our model - Short is preferred, except for 1 individual that had no
preference. For comparison 2 there is pretty much a 50/50 split between
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Figure 4.29: The preferred model for participants with video editing
experience with respect to the comparison.

which model is preferred between Our model - Short and Our model -
Full, which indicates that the participants with video editing experience
were split between the preference of including the full celebration scene
or not. For comparison 4 we see a clear preference for Our model - Full
that indicates that the participants with video editing experience think that
including the replay and having a clean cut is valuable for the highlight
itself. The interesting part for comparison 5 is that Our model - Short is
preferred by the majority, but a good amount of the participants preferred
the original model, a reason for this could be that while the participants
think replay is important to include, the participants that preferred the
original model thought the cut provided by Our model - short was too
abrupt.

We further inspect the scores given by the two participants that have
worked with video editing in a professional setting as it is interesting to
see their opinion on the different clips since these are the participants that
will most likely know what to look for in a good cut on a professional
level. Both of the participants with professional video editing experience
answered they Never watch soccer matches, sports highlights on the web,
and soccer highlights on the web. The only relationship towards sports
they differentiate in is that participant 2 considers herself a sports fan and
watches sports less than once a week, while participant 1 never watches
sport and does not consider himself a sports fan. So it is important to keep
in mind that these participants do not fall into the group of soccer fans and
do not seem to have much relation to soccer, which could impact the scores
given.

As we can see in Table 4.34 participant 1 mostly thinks all the models
are a 3/10 even though he seemed pleased with Our model - Short in
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Participant 1 Our model - Short Our model - Full Original

Comparison 1 7 - 2
Comparison 2 3 3 -
Comparison 3 - 3 3
Comparison 4 - 5 3
Comparison 5 3 - 3
Average score 4.33 3.67 2.75

Table 4.34: Scores and average given by professional editor 1.

Participant 2 Our model - Short Our model - Full Original

Comparison 1 9 - 3
Comparison 2 7 4 -
Comparison 3 - 4 8
Comparison 4 - 9 5
Comparison 5 9 - 5
Average score 8.33 5.67 5.25

Table 4.35: Scores and average given by professional editor 2.

comparison 1, and thought Our model - Full was decent in comparison
4. But, even with giving a relatively low score to all the models, by looking
at the average score given by the participant we see that the ranking of the
models remains the same as for the ranking of the models for all the other
groups. The interesting part about participant 1 is that he left a comment
on comparison 1, "clip 2 was way more engaging" (Clip 2 referring to Our
model - Short) so this could indicate that the foundation of participant 1 for
judging the clips is how engaging they are. If participant 1 was rating based
on how engaging the clips are much of this responsibility falls on the actual
production, we have no control over the camera angles available, type of
goal, or the angles the production chooses to include in the replay. Looking
at Table 4.35 we can see that this person was fairly optimistic for Our model
- Short, but on average considered Our model - Full and Original almost
equally good. Actually having a lower median for Our model - Full than
the Original model. Looking at the scores given this could be an indication
that this participant thinks that a highlight should be short, but does value
the importance of replay (even if a consequence is a slightly longer clip)
and think what makes good video editing is removing unnecessary scenes.

Looking at both Tables4.34 and 4.35 we see that the opinions of the
participants with video experience are very split on the scores for the
models. There could be several factors for this, such as variation of the
professional setting they have worked in, personal bias, or experience with
sports.
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4.4.4 Final thoughts and bias

As discussed in Section 4.4.1 we were able to gather a decent number of
64 participants, but having to filter out 3 participants due to the score of
10 across all the models not providing any value for our analysis of the
results. Due to our approach for participant selection and the number
of participants we were able to gather we see that some of the groups
are poorly represented. The groups that have the lowest representation
are participants over the age of 29 and professional video editors, so the
important thing to keep in mind is that the results provided for these
groups will be stronger influenced by personal opinions and are too small
to be able to generalize for these groups, but these results will still be good
indications and bring value to our research. Upon further inspection of
the results as shown in Section 4.4.2 we see a clear preference for Our
model-Short with Our model - Full as runner up and the original model
with the lowest preference when it comes to the scores and looking at
the actual preferences with respect to the comparisons. The comments
discussed in Section 4.4.2 are a huge factor for helping us understand
what the participants value in a clip, and whatnot. The comments serve
as great indicators for future work, to even improve our models further.
By inspecting the comments we see that some of the comments given on
certain comparisons disagree with each other, so clearly it is impossible to
make everyone satisfied since this is such a subjective problem at hand.
The most important takeaways we want to take with us further in the
next iteration are that people thought some of the clips were too long,
so to experiment with making the clips even shorter and experiment with
different approaches to make the cuts where the crowd is removed cleaner
(less abrupt). For comparison 4, a penalty clip was shown, and the original
model included a short scene of what lead to the penalty which some of
the participants seemed to like (but disliked that it looked so untidy), while
Our model - short did not include what lead up to the penalty. So based
on the comments given for comparison 4 we think it would be interesting
to find an approach to handle these types of special events. Therefore it
could be interesting to implement a model that if a special event such as a
free-kick or penalty is present to include what lead up to it in the highlight.

We further have grouped our participants into different groups in
Section 4.4.3. We split the participants into more general groups such
as gender and age to see if there is any bias depending on this, and we
discover that the female gender had a lower standard deviation and gave
higher scores for all the models compared to the Male gender. Also looking
at the age grouping we discovered that the older participants gave higher
scores compared to the younger participants, and had the lowest standard
deviation for Our model - Short and the original model. Then looking at
the groups that are more sports orientated we discover that sports fans and
soccer fans gave lower scores than the groups of non-soccer fans and non-
sports fans, this could be an indication that the group for sports fans and
soccer fans are more aware and have higher expectations for the highlights
they want to see. Perhaps the most interesting part is that for all the groups
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of participants the ranking of the models remained the same with Our
model - Short in first place, Our model - Short second, and the original
model last place. This is a good indication that we are on the right path,
and Our model - Short is the best model with the most potential based on
this evaluation.

The final things to take into consideration for the results are that a group
of 61 participants is a relatively low number to be able to say that this
generalizes for everyone. Therefore, these results should only be viewed as
indications for further work, and it would be ideal to conduct this type of
survey/evaluation on a larger scale with a higher number of participants.
By conducting this evaluation on a larger scale we would be able to further
confirm if there is bias across the groups and strengthen some of the
theories proposed and see if they still generalize to a larger number of
participants. As we also have seen from the preferences of the participants
the preferences for comparison 1 had a stronger mutual agreement for
the preferred model compared to some of the comparisons, so the actual
event shown is something that will impact the scores and preferences. If
we were to evaluate the models on a different set of events the scores
would probably look different, and also not having a true random order
for showing the events due to the limitations of google forms could impact
the results. Optimally we would like the participants to watch a much
higher number of clips, but it is important to limit the time of the survey
due to the fact that the longer the survey goes the chance of participants
dropping out, just doing enough to complete the survey without rather
than providing thoughtful answers and not answering optional questions
such as comments in our case [12]. Taking this into consideration some of
the participants could have been bored towards the end and not provided
thoughtful answers, this could also be an explanation for the decrease in
comments provided towards the end of the survey. The participant’s mood
could also be a final factor for the scores given, so an interesting experiment
could be to follow up the same participants on a later point, to see if their
preferences will such as on some days they do not mind watching longer
clips and on some days they are in the mood for shorter clips [47].

4.5 Discussion

In the previous sections, we have presented the process and result from our
experiments, resulting in a final system able to make two different versions
of a highlight. We compared these to the existing solution used today. In
this section, we will further discuss the results of some choices taken during
the process.

4.5.1 Clipping in practice

Our presented models for clipping rely heavily on high-quality production
patterns which are mostly found in the top soccer leagues. In a realistic
scenario, our models would fail to generalize to lower quality leagues
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where there is no guarantee for scene changes or logo appearances and end
up making a default cut for the highlights. There is also no guarantee that
every top soccer league follows the same production pattern and that our
models would be able to generalize to these, so there is a good possibility
if this system were to be used by different leagues there would be a need to
study the production pattern and make adjustments to fit these particular
leagues.

Furthermore, the quality of a highlight is a task that is difficult to
evaluate and satisfy everyone due to the subjective nature of the task at
hand and all the real-life factors that could impact the results. Such as
which teams the participants support, as one participant commented in the
evaluation "Always nice to see Lillstrøm concede a goal, thank you" which
most likely impacted the score given for these clips. Other factors such as
which type of goal is shown could also be impacting the scores given, as
one participant commented "Clip 2 with a length of 57 seconds is too much
for a goal that is not nominated for the puskas" so if this was a more exciting
goal perhaps the participant would be fine with the length of the clip. We
also discovered through further conversations with the participants and
by looking at the comments the scores will vary depending on the goal
shown. While we have the capability to make the clips more engaging and
better, some things are out of our control that will impact the scores given.
This includes the camera angles available, what the production chooses
to include in the highlight, and the quality of a goal. The final thing that
could impact the results is depending on the goal shown and participant
watching the highlight, there will most likely be a preference depending
on if they want to relive the atmosphere provided by the live goal and
celebrations or they just want to see a quick summary of the goal.

4.5.2 Retrospect of process

The fact that our SVM models failed to generalize for a larger dataset
as the PL (16/17) compared to the CNN, was a consequence that when
the SVM models was implemented our scope was for a smaller dataset
such as Eliteserien containing simpler logotypes, but due to the release
of SoccerNet-v2 our scope expanded and the SVM models showed
disappointing results. In retrospect due to the available resources and
results of the SVM models we probably would either have dropped the
SVM leaving more time for improving the CNN or doing further research
on other aspects of this thesis. It would also be interesting to see if the
SVM models would have been able to generalize to more complex datasets
if implemented differently or using other feature extractors. Some ideas
that we think would improve the SVM models even further is using end to
end training where you train the feature extractor based on the SVM as the
output layer [20]. We could also have done some kind of clustering for the
features or adding a max pooling layer for the CNN to reduce the number
of features given to the SVM and increase the number of iterations for the
SVM with a lower learning rate (or introduce a decreasing learning rate).

One of the weaknesses with our Eliteserien logo dataset is the size
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of both classes. To counter the lack of team logos present in the train
dataset, we made a synthetic dataset to supplement the already existing
one. We saw a decline in performance for the background class when
introducing this dataset, which may be due to the lack of backgrounds.
Adding backgrounds from our SoccerNet set to Eliteserien could have
made the final evaluation on Eliteserien more reliable. This was not done as
we had already started experimentation on Eliteserien before we included
SoccerNet-v2.

When training and evaluating the logo frame classifiers, we overestim-
ated the importance of logo recall while underestimating the precision. It
was not before we ran tests on the full logo transition module on Soccer-
Net that we found the problem of false positives. In hindsight, we should
have analyzed the false positive more thorough in the frame set earlier, to
change our weighting of the metrics when evaluating them.

When we added hard samples to the Train Medium dataset of our
SoccerNet logo frame dataset in Section 4.1.4, we used only two of the
models, VGG inspired and ResNet with input 108 × 192 × 3. We saw
that the VGG model increased overall performance, while the others had
a decrease in weighted F1-score and precision. This suggest a bias, and in
retrospect, we should have extracted them by using an unrelated classifier
in order to compare the results without any bias. The results still suggests
that hard samples are beneficial, and that the hard samples are relevant to
all the models.

With our transfer fine-tune learning strategy for ResNet50V2 from
Keras [16, 33], we hypothesized that with a small learning rate, features
learned from the ImageNet [19] would be preserved. We mainly proposed
this strategy with the Premier League dataset in mind, as this is more
complex, and could utilize the advantage. This is a fair assumption, but
from the results, we see that the performance is bad for both leagues. In
retrospect, we should have tested with a higher learning rate, as it looks like
the low learning rate do not enable the model to learn important features
that is not present in the pre-trained ImageNet weights. We saw good
performance with the other, more straight forward transfer learning, which
gives sufficient results. It may still be the case that a solution in between
would have performed even better.

4.6 Summary

In this chapter, we started by defining what we expect from the logo
detection module and scene boundary detection module to be able to
produce highlight clips of a good technical standard. We looked at what
resolutions to experiment with.

We found that all the models performed well on the Eliteserien dataset
and that the transitions are very simple. We found that almost all of the
SVM models we tested, outperformed the CNNs on the validation with
perfect scores, but our lightweight VGG model with a grayscale input of
54 × 96 pixels performed best on the test set, with a 100% F1-score. The
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best Simple CNN scored an F1-score of 98.4%, while the more complex and
deep network ResNet50V2 [33] model scored 98.2%.

We then moved on to the SoccerNet PL16/17 logo dataset is much
more diverse in both logos and backgrounds. We saw that higher input
resolutions performed better, and we included the resolution 144 × 256,
which performed best for the VGG inspired CNN with grayscale input,
achieving an F1-score of 99.4%. When looking at the recall for each type
of logo, we found that it was the Simple PL logo that was harder for the
small resolutions to correctly classify, as this is very small, and in many
cases hard to see when it overlaps a bright background.

We experimented with fine-tuning ResNet50V2 with pre-trained
weights trained on ImageNet [19], by first training the dense network
alone, before training the full model with a low learning rate. The model
was not able to learn the Simple PL logo. We concluded that the model had
not learned the necessary features to separate this class from backgrounds
when the background colors were too similar. This was most likely due to
a too low learning rate.

We found that the SVM was hard to train on this set, and struggles
with converging. Due to the poor results achieved, computational cost,
and execution time, we decided to discard the SVM for this dataset.

We ran experiments on the full-length test set of SoccerNet-v2 for the
Premier League season 2016 - 2017 and found that the models tested found
all logo transitions. However, the number of false positives suggested that
they had not encountered enough backgrounds in training. We added
almost 8, 000 more backgrounds extracted evenly from the training set
videos, as well as extracting over 6, 000 hard samples. The results showed
great improvement. We experimented with more than 40.000 extra frames,
but saw a decrease in performance. This suggests that hard samples are an
effective way to better learn to separate the outlying samples.

On the full logo module experiment, the Simple and VGG inspired
CNN performed well for their best models, but was outperformed by
ResNet, suggesting that a deeper network is necessary for a league with
a much more diverse broadcast production than Eliteserien. With an RGB
input of 108× 192, it reached a precision of 100% and a recall of 95.5%.

We trained and evaluated TransNet-V2 [64] on the SoccerNet shot
boundary dataset, and compared the performance to the pre-trained
version. The preliminary test on the Premier League subset showed
promising results for the model we trained, with great performance on
the gradual transitions. However, further training and testing on the full
test set, showed that it was outperformed by the pre-trained model. It
still performed well, and with more complete labeling of gradual and logo
transitions may boost the performance. Further testing on the full-length
dataset of SoccerNet-v2 showed a very poor precision, but after analyzing
all the transitions from the Premier League matches, we found that almost
all were transitions failed to be annotated.

Moving on, we described how the subjective evaluation of highlight
clips was conducted, the distribution of participants gathered, and how
some groups are poorly represented. We discussed the metrics used for
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analyzing the results and presented the results for the subjective evalu-
ation. We then inspected the comments, different groups of participants,
and individual answers to filter out valuable information. We further dis-
covered based on the results of the evaluation that the highest-scoring
model is Our model - Short, Our model - Full as runner up and the Ori-
ginal model in the last place. We then discussed how difficult of a task it is
to evaluate and how preferences will vary from participant to participant
and real-life factors that could impact the results. In the final Section 4.5 we
discussed possible flaws of our models and how the preferences of what a
good highlight is could vary in practice, and just how difficult of a task it is
to satisfy the majority. we then finally discussed how we could have done
things differently and perhaps should have done differently.
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Chapter 5

Conclusion

Today, highlights in soccer matches are manually annotated and clipped by
human operators. This is a time-consuming, tedious, and expensive task.
The clips are often a preset time interval instead of a tailored interval that
fits the specific event. The editors might not even have time to clip it as
it can often be important to distribute it as close to the live event itself. It
could be edited later, but in many cases, this is too expensive.

In this thesis, we experimented with automating the process of
highlight generation using Scene boundary detection, logo detection, and
a production-based algorithm.

Through experimentation, we concluded that the VGG inspired CNN
using grayscale input of 54 × 96 achieving a 100% F1-score was the best
fit for our logo detection module on Eliteserien. For the more complex
Premier League logo dataset, we concluded that the ResNet CNN using
RGB input of 108 × 192 achieving an 0.997 F1-score was the best fit for
our logo detection module. We trained and evaluated TransNet-V2 [64]
on the SoccerNet shot boundary dataset, and compared the performance
to the pre-trained version, and concluded that the pre-trained version was
sufficient for the Scene boundary detection model of our system.

Further, we combined these modules and implemented two different
configurations of our system, one including full celebration scenes, and
the other removing certain celebration scenes. We compared these to the
already existing model in Eliteserien.

Based on the qualitative and quantitative evaluation through a user
study, we showed that Our model - Short and Our model - Full consistently
produces more compelling highlight clips compared to the original model
used in Eliteserien today. Upon inspection of the preferences of the
participants we discovered that due to the random nature of the original
model (using a set time interval for highlight extraction), it achieves low
scores when it "misses", while in the cases where it "hits", the preference of
model is more even.

The results showed that this is a complicated task and there is a variety
of which model is preferred impacted by several different factors such as
background, real-world factors, mood, etc.
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5.1 Main contributions

Based on the problem statement described in Section 1.2, we wanted to
make a machine learning model that provides a soccer highlight of a high
standard, and this involves objective evaluation of key modules and a
subjective evaluation of the final system. We will here restate the objectives
set in Section 1.2, and our main contributions in association with each of
them.

Objective 1 Research and design a system to automatically extract highlight clips
from soccer videos. Identify and prepare the necessary data needed
for development and final evaluation.

To meet this objective, we researched machine learning approaches
for video summarization, Scene boundary detection, and logo de-
tection. Based on soccer broadcast production, we proposed a high-
light clipping system based on logo recognition tailored for a specific
league and season and a shot boundary detection.

We designed our logo detection as a binary image classification task.
We analyzed state-of-the-art approaches in the field of image re-
cognition. We settled on VGG [62] and ResNet [32, 33] architec-
tures, both reaching impressive performance on the ImagNet ILS-
VLC dataset [19, 58]. Our candidate logo recognition models are Res-
Net50V2 [33], a lightweight CNN based on the VGG architecture [62],
a simple CNN architecture, and an SVM using VGG16 [62] as a fea-
ture extractor.

We created a frame logo recognition datasets for two different
leagues, Eliteserien season 2018 containing 1, 025 logo and 7, 025
background frames, and Premier League season 2016 - 2017 extrac-
ted from SoccerNet-v2 [18] containing 23, 194 logo and 43, 260 back-
ground frames. Both with high quality with respect to the sampling
and labeling quality, but differ in size and complexity of logos. To
compensate for insufficient data from Eliteserien, we supplemented
with synthetic data using a script adding extra logo frames.

Shot boundary detection is a popular field of research and has shown
great performance results in the recent years [39, 63, 64, 70]. For
our shot boundary detection task, we used TransNet-V2 [64], a
state-of-the-art model with great performance on the shot boundary
benchmark datasets ClipShots [70], RAI [11], and BBC [10]. We tested
TransNet-V2 with its complimentary pre-trained weights, trained on
ClipShots [70] and generated transitions using clips from TRECVid
IACC.3 [8], as well as performing our own training on soccer clips
only.

To train and evaluate, we extracted over 150, 000 clips of 100 frames
containing transitions from the full SoccerNet-v2 dataset with labels
suitable for TransNetV2 [64]. Finally, we prepared a subjective
evaluation for our system and the current system used in Eliteserien,
on the Eliteserien dataset.
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Objective 2 Implement a system for clipping highlights and perform an objective
evaluation of the different modules used, i.e., logo detection and
scene boundary detection.

To meet this objective, we implemented the candidate models for logo
detection, using SVM and CNN. We experimented on the Eliteserien
dataset and Premier League dataset and assessed the performance
using several metrics. We showed that for the Eliteserien dataset
both the SVM and CNN achieved satisfactory results for the task at
hand and the VGG model with a grayscale input of 54 × 96 pixels
achieved the best result with a 100% F1-score. We also showed that
with a larger and more complex dataset such as the Premier League
dataset, the CNN still performed well, while the SVM models failed
to reach satisfactory results. We further improved the CNN models
by adding more backgrounds, including hard samples extracted by
our classifiers, which proved to be effective. We find that the ResNet
model with an RGB input of 108× 192 reaches the best scores with a
precision of 100% and a recall of 95.5% for logo transition detection
on five full-length matches.

We evaluated the state-of-the-art shot boundary detection model
TransNetV2 [64] on the SoccerNet-v2 [18] dataset. We showed that a
pre-trained version trained on regular video clips performed well on
soccer videos for gradual and abrupt transitions. We experimented
with training the model specifically on soccer clips, which showed
potential but did not reach the levels of the pre-trained model. We
find the model to be frame-accurate and therefore a sufficient model
for our scene boundary detection module.

We combined logo detection and shot boundary detection in order to
form a full system that outputs highlight clips, with high technical
performance. We implemented two different clipping protocols. The
first configuration of the system includes all the celebration scenes
between the event and the replay, and the other configuration of the
system excludes several celebration scenes.

Objective 3 Perform a qualitative and quantitative evaluation of the system
through a user study that evaluates the subjective nature of high-
quality soccer highlight clips.

For this objective, we performed a qualitative and quantitative
evaluation through a user study for Our model - Short, Our model
- Full, and the Original model used today in Eliteserien.

64 participants rated highlights of five goals generated by our system
and the existing solution and compared them with each other. The
rating goes from 1 (worst) to 10 (best). Based on the results from the
survey, we found the following ranking of the models:

1 Our model - Short achieved an average score of 7.40

2 Our model - Full achieved an average score of 6.84
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3 Original model used in Eliteserien today achieved an average
score of 5.89.

We found that due to the random nature of the Original model using
a fixed interval for highlight extraction it achieves low scores when
it "misses", while in the cases where it "hits", the original model
achieves decent results compared to the other models.

Further, we grouped the participants by soccer fans, sports fans,
gender, age, and editing experience, and found that the ranking of
the models remains the same for all the groups, but the preferences,
scores, standard deviation, and median varied.

Finally, we identified possible biases for the different groups of
participants and discuss possible biases and real-world factors that
could impact the results.

Our contributions are interesting in the context of the problem state-
ment, and the presented results are valuable as for how much impact a
good highlight clip has on consumer satisfaction. We showed that the ma-
chine was able to provide highlight clips of reliable technical standards
based on the technical results and empirical evaluation. From the gathered
quantitative results from the online survey, we showed that the technical
performance in conjunction with our two different clipping protocols leads
to better results than the solution of the fixed interval used today. We also
identified that what is considered a compelling highlight is subjective, and
there are differences in what production strategy the potential users prefer.
Our work gives a strong foundation for further work with using machine
learning to generate automatic highlight clips in soccer.

5.2 Future work

There are several aspects of the solution that have the potential for future
works. We show that a simple image classifier can work as a logo
transition detector when tailored for one league, given that the transitions
are consistent throughout the season. It could be interesting to see if a
more generalized model can be made, by for example utilizing temporal
features, such as color histograms. This could help to mitigate the problem
of false negatives. One example could be to modify an existing model for
shot boundary detection, such as TransNetV2 [64], to be able to classify
transitions as abrupt, gradual, and logos.

We focus on goals only, and it could be of interest to widen the scope
to other events, such as goal attempts, cards, fouls, substitutions, or events
in other sports. It would also be interesting to see it expand into a full
summarization system. As discussed in Section 4.4, capturing the event
leading up to a goal, card and such, could be very interesting. Linking
associated events, and combining them as a highlight clip can enrich the
experience by providing the context of an event. In the context of a full
summary system, this can also help make the summary more complete.
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Audio is an important aspect of sports broadcasts. Both commentaries
and crowd cheering. It could be interesting to see how this impacts the
quality of a highlight. Examples could be not to cut in the middle of a word
from the commentators, or using natural language processing in order to
capture enough commentaries to retain the initial meaning. Also capturing
the commentator’s reaction can increase the quality.

High-quality, high-volume datasets are one of the most important parts
of enabling research, both for training and benchmarking. In order to
achieve the aforementioned research, more comprehensive datasets and
labels are needed, such as full labeling of logo and gradual transitions,
and more action event annotations. This could be done manually, or by
designing more complex gathering tools that can collect relevant data from
for example web sources.

We would also like to see a more thorough study of how the design
of highlights in soccer or sports in general impact the consumer, in order
to gain information and insights into how the automatic clipping can
best capture the event, and either strengthen/disprove the different biases
discussed in Section 4.4. One aspect that was not mentioned in the survey
was sound, and it could be interesting to see how it affects a clip. This can
be done by gathering qualitative data, subjective or objective, on a bigger
scale. Collecting qualitative data from more comprehensive interviews or
tests.

Finally, it would be interesting to see how our system compares to
highlight clips extracted by a professional editor.
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Appendix A

Appendix

Algorithm 1: Clipping protocol.

1 Clipping protocol (sceneschanges, logotransitions, event);
Input : temporal anchors (sceneschanges, logotransitions, event)
Output: temporal anchors (start, end, cuts)

2 start = defaultStart;
3 end = defaultEnd;
4 cuts = None;
5 for each scene change before event do
6 if Scene change is between thresholds then
7 start = scene change;
8 break;
9 end

10 end
11 if logo trainsitions is found then
12 end = endLogo ;
13 if cutCrowd is true then
14 cuts = celebration scenes outside of thresholds;
15 end
16 else
17 for each scene change after event do
18 if scene change is between end thresholds then
19 end = scene change;
20 break;
21 end
22 end
23 end
24 return start,end,cuts.
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Model Input Precision Recall F1 Score

VGG inspired 54× 96× 1 1.0000 1.0000 1.0000
SVM (Simple CNN) 108× 192× 1 1.0000 0.9955 0.9978

VGG inspired 72× 72× 3 1.0000 0.991 0.9955
SVM (Simple CNN) 27× 48× 3 1.0000 0.9776 0.9887
SVM (Simple CNN) 72× 72× 1 0.9865 0.9865 0.9865

VGG inspired 27× 48× 3 1.0000 0.9731 0.9864
SVM (Simple CNN) 72× 72× 3 1.0000 0.9731 0.9864

Simple CNN 72× 72× 3 0.9954 0.9731 0.9841
VGG inspired 108× 192× 3 0.9954 0.9686 0.9818

ResNet 54× 96× 3 0.9954 0.9686 0.9818
Simple CNN 108× 192× 3 0.9954 0.9686 0.9818
Simple CNN 27× 48× 3 1.0000 0.9641 0.9817

VGG inspired 72× 72× 1 0.9954 0.9641 0.9795
Simple CNN SVM 108× 192× 3 1.0000 0.9596 0.9794

SVM (Simple CNN) 27× 48× 1 1.0000 0.9596 0.9794
Simple CNN 72× 72× 1 0.9733 0.9821 0.9777
Simple CNN 54× 96× 1 0.9819 0.9731 0.9775
Simple CNN 108× 192× 1 0.9907 0.9596 0.9749
Simple CNN 54× 96× 3 0.9861 0.9552 0.9704

VGG inspired 108× 192× 1 1.0000 0.9417 0.97
VGG inspired 54× 96× 3 0.9729 0.9641 0.9685
VGG inspired 27× 48× 1 0.986 0.9462 0.9657

ResNet 108× 192× 3 0.9680 0.9507 0.9593
Simple CNN 27× 48× 1 0.9811 0.9327 0.9563

SVM (VGG16) 108× 192× 3 0.9528 0.9058 0.9287
SVM (VGG16) 72× 72× 3 0.7714 0.8475 0.8077

Table A.1: The final results on the Eliteserien logo frame test set.
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