
Panorama Video Tiling:
Efficient Processing and
Encoding of Tiles

Hoang Bao Ngo
Master’s Thesis Autumn 2015

Panorama Video Tiling: Efficient Processing and Encoding
of Tiles

Hoang Bao Ngo

September 20, 2015

ii

Abstract

High bitrate video has been exceedingly popular in recently, especially in soccer and gaming
tournaments. A system which records soccer games and generate panorama videos can be
found in the Bagadus system[40]. The panorama videos are generated from a stadium located
in Tromso, Norway, and they can be viewed real-time by a virtual camera[51] which was
implemented for users where they can interact the video stream. The virtual cameras does
not only let the users move the camera around the panorama video, it also has the capability
to pan, tilt and zoom into the video. But not everyone has a high bandwidth to receive a whole
panorama video, and with the increase of potential consumers due its popularity there would
be scaling challenges. Thus in this thesis, we introduce an encoder pipeline that is able to
divide a generated cylindrical panorama video from the Bagadus System into tiles and each
tile is encoded into different qualities. The overhead of tiling will be analysed extensively and
different approaches to reduces storage consumption are also proposed.

iii

iv

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Definition / Statement . 1
1.3 Limitations . 2
1.4 Research Method . 2
1.5 Main Contributions . 2
1.6 Outline . 3

2 Adaptive Encoding of Video Tiles 5
2.1 Tiling Concept . 5
2.2 Adaptive bitrate streaming . 6
2.3 Summary . 6

3 Software Encoding: Design and Implementation 9
3.1 Introduction . 9
3.2 Video compression . 9
3.3 H.264 / MPEG-4 AVC . 10
3.4 Choosing a software encoder . 10

3.4.1 x264, a H.264 encoder . 11
3.4.2 Constant rate factor . 11

3.5 Techniques to reduce the storage space and bandwidth requirement 11
3.5.1 Frame Types . 11
3.5.2 Group of Pictures . 12
3.5.3 Segmentation and GOP size . 13
3.5.4 Ffmpeg . 13

3.6 Image Formats . 14
3.6.1 YUV . 14

3.7 Image Stride . 15
3.8 Initialization pipeline . 16

3.8.1 Initializing the library and ensure thread safety in ffmpeg 16
3.8.2 Opening and decoding a Panorama Video - Demultiplexing and decod-

ing module . 16
3.8.3 File and folder structure . 19
3.8.4 Adding task to queue . 20

3.9 Tiling module . 23
3.9.1 Tiling formations . 23
3.9.2 Image processing . 24

3.10 Encoding concepts . 26
3.10.1 Sequential Encoding Concept . 26

v

3.10.2 Parallel Tiling Concept . 27
3.10.3 Threadpool Tiling Concept . 29

3.11 Encoding pipeline implementation . 29
3.11.1 Initialization . 30
3.11.2 Allocation of an AVFrame Structure . 30
3.11.3 Encoder settings . 31
3.11.4 Choosing a preset . 33
3.11.5 Setting CRF value . 34
3.11.6 Storing the media . 34
3.11.7 Processing and encoding of a tile . 35

3.12 Summary . 37

4 Case Study: Software Encoding with libx264 39
4.1 How experiments are done and measured . 39

4.1.1 Set-up specifications . 39
4.1.2 What kind of experiments are conducted and why? 39

4.2 Sequential Encoding . 40
4.2.1 Experiment 1: Sequential encoding of panorama video and tiles into

multiple qualities . 41
4.2.2 Experiment 2: Sequential encoding of panorama video and tiles into

multiple qualities with FFmpeg optimization 42
4.2.3 Summary of Sequential Encoding . 43

4.3 Paralell Encoding . 43
4.3.1 Experiment 3: Parallel Encoding using the amount of tiles and qualities

to decide the number of threads . 44
4.3.2 Experiment 4: Parallel Encoding using the amount of tiles to decide the

number of threads . 45
4.3.3 Summary of Parallel Encoding . 46

4.4 Thread pool Encoding, Persistent Threads . 46
4.4.1 Experiment 5: Encoding a Panorama Video using different amount of

threads . 46
4.4.2 Experiment 6: Encoding 2X2 tiles using different amount of threads . . . 48
4.4.3 Experiment 7: Encoding 4X4 tiles using different amount of threads . . . 49
4.4.4 Experiment 8: Encoding 8X8 tiles using different amount of threads . . . 50

4.5 Storage consumption . 51
4.5.1 Reducing bandwidth requirement with the use of tiling 51
4.5.2 Further reducing the storage consumption 52

4.6 Summary . 53

5 Hardware Encoding: Design and Implementation 55
5.1 Introduction . 55
5.2 NVENC . 55
5.3 Pixel formats supported . 56

5.3.1 YUV420 . 56
5.3.2 NV12 . 57

5.4 FFmpeg with NVENC support . 57
5.4.1 Testing FFmpeg with NVENC support . 57
5.4.2 Downgrading drivers to open more encoding sessions 58

5.5 NVENC initialization . 58

vi

5.5.1 Optimization and reducing unnecessary overhead 59
5.5.2 Initializtation of CUDA context . 59
5.5.3 NVENC Encoding configurations . 60
5.5.4 Performance bottleneck? . 61
5.5.5 Allocation of Input and Output buffers for encoding 62
5.5.6 Optimization to the intergration of hardware encoder 62

5.6 Encoding process . 62
5.6.1 Conversion of a frame . 63
5.6.2 NVENC resolution bug . 64
5.6.3 Encoding of a frame - Encoding module . 64

5.7 Summary . 65

6 Case Study: Hardware Encoding 67
6.1 NVENC Encoding . 67

6.1.1 Limitation . 67
6.1.2 Experiment 9: Encoding a Panorama Video into multiple qualities with

NVENC . 68
6.1.3 Experiment 10: Encoding 2X2 Tiles into multiple qualities with NVENC . 69
6.1.4 Experiment 11: Encoding 4X4 Tiles into multiple qualities with NVENC . 70
6.1.5 Experiment 12: Encoding 8X8 Tiles into multiple qualities with NVENC . 70

6.2 Summary . 71

7 Case Study: Software Encoding combined with Hardware encoding 73
7.1 Introduction . 73
7.2 Setup . 73
7.3 Testing the scalability of our design and implementation 73

7.3.1 Experiment 13: Encoding panorama video with x264 and NVENC
combined . 73

7.3.2 Experiment 14: Encoding 2X2 tiles with x264 and NVENC combined . . . 74
7.3.3 Experiment 15: Encoding 4X4 tiles with x264 and NVENC combined . . . 75
7.3.4 Experiment 16: Encoding 8X8 tiles with x264 and NVENC combined . . . 76

7.4 Summary . 76

8 Conlusion 77
8.1 Summary . 77

8.1.1 Software Encoder: Design and Implementation 77
8.1.2 Case Study: Software Encoding with libx264 77
8.1.3 Hardware Encoding: Design and Implementation 78
8.1.4 Case Study: Hardware Encoding . 78
8.1.5 Case Study: Software Encoding combined with Hardware Encoding . . . 78

8.2 Main Contributions . 79
8.3 Conclusion . 79
8.4 Future Works . 80

Appendices 83

vii

viii

List of Figures

2.1 Illustration of how Interactive Virtual Camera works[47] 5
2.2 Overview of how adaptive streaming works [3] . 6

3.1 Average bit ratio for a fixed quality for all categories and all presets [19] 10
3.2 Using CRF left 158 kbps, downscaled rigth 157kbps[17] 11
3.3 Overview of how the different picture type interacts with each other. This is the

Group of Pictures structure of a 1 second video segment 12
3.4 Illustration of YUV combined and each channel in YUV separated in greyscale . 14
3.5 Illustration of the different channels in YUV422 . 15
3.6 Image stride from [32] with a some modification 15
3.7 Overview of reading, decoding and storing the raw data 18
3.8 Illustration of a display order and a decode order 19
3.9 The offset used to find the surface origin1of each tile are added to the file name. . 19
3.10 Illustration of the file and folder structure after encoding a panorama video. . . . 20
3.11 Illustration of the flow of getTask() function. 23
3.12 Separation of a panorama to 2X2 tiles . 23
3.13 Overview of the different tiling formations . 24
3.14 How pixels are represented on an image . 24
3.15 How pixels are represented in memory . 25
3.16 Example of how to find the surface origin of a tile 26
3.17 Overview of sequential encoding . 27
3.18 Overview of parallel encoding. The number of threads created are the same as

total amount of tiles . 28
3.19 Overview of Parallel Encoding. The number of threads created are the same as

total amount of tasks. 28
3.20 Overview of Threadpool Encoding. The number of threads will be decided

according to the current hardware, . 29
3.21 Overview of the encoding pipeline . 30
3.22 Correlation of between encoding latency and compression efficiency. The

number under the squares represent the amount of reference frames we used. . . 32
3.23 Overview of how to transfer data from panorama to tile 36

4.1 The time to partition and encode the tiles of the full panorama into multiple
qualities with sequential encoding. These results originated from sequential
encoding without the use of FFmpeg optimization 41

4.2 The time to partition and encode the tiles of the full panorama into multiple
qualities with sequential encoding. These results originated from sequential
encoding with FFmpeg optimization . 42

ix

4.3 The time to partition and encode the tiles of the full panorama into multiple
qualities with parallel encoding.We attained these results by using second
concept, which is to spawn new threads for each tiles only. 44

4.4 The time to partition and encode the tiles of the full panorama into multiple
qualities with parallel encoding. We attained these results by using first concept,
spawning new threads for each tiles and resolution 45

4.5 Thread-pool: Overview of the encoding latency of Panorama 46
4.6 Thread-pool: Overview of the encoding latency of 2X2 Tiles 48
4.7 Thread-pool: Overview of the encoding latency of 4X4 Tiles 49
4.8 Thread-pool: Overview of the encoding latency of 8X8 Tiles 50
4.9 Panorama video mixed with tiles from 8X8 with CRF 48, 1,06MB 51
4.10 Source panorama video , 2,87MB . 52
4.11 Encoding latency presets . 53

5.1 Detailed overview of NVENC encoder API[7] . 55
5.2 YUV 4:2:0 . 57
5.3 NV12 . 57
5.4 NVENC: Testing different presets configuration with encoding a Panorama

Video to 1 quality . 60
5.5 NVENC YUV422 wrong calculations . 63
5.6 Conversion steps . 63
5.7 8X8 tiling approach, resolution 512x210. Missing some rows of pixels 64
5.8 Overview of the interaction between CPU and GPU 65

6.1 Encoding panorama video using NVENC . 68
6.2 Memory usage . 68
6.3 Encoding 2X2 tiles using NVENC . 69
6.4 Encoding 4X4 tiles using NVENC . 70
6.5 Encoding 8X8 tiles using NVENC . 70

7.1 Encoding Panorama video with x264 and NVENC 74
7.2 Encoding 2X2 tiles with x264 and NVENC . 74
7.3 Encoding 4X4 tiles with x264 and NVENC . 75
7.4 Encoding Panorama video with x264 and NVENC 76

x

List of Tables

3.1 Table shows the difference of required storage space between using GOP 90 and
GOP 30. The first column describe how many tiles we have and the numbering
tells us which QP we encoded the tiles with. 13

3.2 These settings was determined by Vamsii who worked with the clients side,
Interactive Virtual Camera . 31

3.3 Comparing x264 preset in combination with our encoding parameters. Encoding
of a panorama video to 1 quality. 34

4.1 Sequential Encoding: Average CPU and Memory Usage 41
4.2 Overview of the number of total threads created and terminated after the whole

encoding process has been completed using FFmpeg with optimization 43
4.3 Sequential Encoding(FFmpeg Optimized): Average CPU and Memory Usage . . 43
4.4 Parallel Encoding (Tiles): Average CPU and Memory Usage 44
4.5 Parallel Encoding (Tiles * Qualities): Average CPU and Memory Usage 45
4.6 Thread-pool: CPU and Memory usage during encoding of Panorama Video . . . 47
4.7 Thread-pool: CPU and Memory usage during encoding of 2X2 Tiles 48
4.8 Thread-pool: CPU and Memory usage during encoding of 4X4 Tiles 49
4.9 Thread-pool: CPU and Memory usage during encoding of 8X8 Tiles 50
4.10 Overview of the storage consumption . 51
4.11 Storage requirement . 53

5.1 Rate control modes supported in NVENC . 61
5.2 Overview of overhead produced by conversion . 63

6.1 CPU, GPU and memory usage . 69

7.1 Experiment 13: CPU and memory measurement for x264 combined with NVENC 73
7.2 Experiment 14: CPU and memory measurement for x264 combined with NVENC 75
7.3 Experiment 15: CPU and memory measurement for x264 combined with NVENC 75
7.4 Experiment 17: Encoding 8X8 tiles with x264 and NVENC combined 76

1 FFmpeg version we used and its configuration . 85
2 Machine configurations . 85

xi

xii

Preface

I want to thank my supervisors Vamsidhaar and Pål for giving me the chance to experience and
complete my thesis, it has been a fun ride. In addition I want to thank Ragnar who also gave
me alot of inputs which helped me start the project at the initial phase. When I encountered a
problem using NVENC, he guided me through it hence I could finish the thesis. I would also
like to thank Baard Winther, one of my colleague in the same room, for providing a simplified
algorithm to identify a tile. Even though I found discovered a new one which is compatible
with every tile formation, or at least those I’ve tried. I would also like to thank my colleagues
whom are doing or are done with their thesis and wish everyone whether they are mentioned
or not good luck and stay safe. Oh, and of course I want to thank my family, friends for sticking
up with me through life.

Yeah, Carsten was it, thank you for proposing the use of Constant Rate Factor. I intended
to implement a down and up scaling scheme, thus I saved a lot of time with your tip.

xiii

xiv

Chapter 1

Introduction

1.1 Background

The idea of tiling has been very popular in the last decade. It was been implemented in
various scenarios, like windows 8 where they use tiles in start screen, or in applications such
as SmartView[46] where you can stream several videos from different sources at the same
time. The interest has been huge as a consequence of how fast technology has progressed.
The current mainstream high definition standard is 1080p, but in the last few years Ultra High
Definition(UHD) and 4K resolution are becoming morea nand more popular. Even one of the
largest corporation in the technology industry, Toshiba, suggested that 4K Television will be
mainstream by 2017[1]. There are also 8K resolution or Full Ultra High Definition(FUHD)
which is being developed, though it will probably not be mainstream in the nearest future, but
we can still notice how fast digital video are evolving. With high resolution videos, transferring
the stream will require a lot of bandwidth and thus introduces huge scaling problems. Video
compression technology has been the solution to handle the challenges of sending high bitrate
streams to users. By reducing the bandwidth requirement it can scale to a large number of
consumers, but there is a limit of how much data it can compress before visual artifacts will
be shown. Thus leads us back to tiling. Tiling was another approach to further reduce the
consumption of bandwidth without using to much compression, which could affect the visual
acuity of the video.

1.2 Problem Definition / Statement

As a result of high spatial resolution video being more popular, there has been a trend to
implement interactive virtual cameras where users can control it and move around a panorama
video, thus making them be their own camera man. In the Bagadus system[40], such a virtual
camera[51] was implemented for users where they can view real-time panorama videos, which
are generated from a soccer stadium located in Norway Tromsø in real-time. The virtual
cameras does not only let the users move the camera around the panorama video, it also has the
capability to pan, tilt and zoom into the video. Not everyone has a high bandwidth to receive
a whole panorama video, so a concept was proposed to handle the issue. It was possible to
exploit the fact that a virtual camera usually has a limited vision when moving around, thus
the solution was to tile a high bitrate video stream up into equivalent sizes of tiles. Based on
the where the camera is focused, we will update the area where the camera is focused on with
the high quality video tiles, and send lower quality tiles outside of its view. Thus we can lower
the bandwidth requirement.

1

The problem we are trying to solve is to reduce the bandwidth requirement by producing
tiles with different qualities and if possible be able to stream the encoded video file in real-time.
Thus there are many other factors that comes into play, such as how do we tile a panorama
video. Which approach or resolution of a tile is optimal. How much overhead can we expect
from such a tiling system where a tile will be encoded into different qualities. Other factors that
must be considered is storage consumption, by having several video streams with the same
content but in different qualities would require a lot of space. Can it be streamed in real-time?.
Thus in this thesis we will explore the different video compression technologies available to
find out which are the most optimal to use for encoding. Experiments with different methods to
further reduce the bandwidth consumption while maintaining real-time encoding requirement
if possible.

1.3 Limitations

Even though the goal of the thesis was to create a server which could receive a raw panorama
video directly from a source and encode them into different qualities, we had to design the
system to work locally to reduce the complexity of the implementation. Thus a limitation is we
can only try to simulate a process where the server can receive streams from source. Another
limitation is field testing, we are using FFmpeg to process video data, but the libraries are full of
memory leaks thus it will crash eventually at some point in the future. We are testing hardware
encoders such as NVENC, but there has been a restriction on the number of encodings session
after a driver update from NVIDIA. Thus we had to downgrade many drivers to be able to use
it for our cause. This could lead to unsatisfactory result as a consequence of issues or bugs that
was supposed to be removed in newer updates.

1.4 Research Method

The first step we did was to define the requirements and specifications which the implementa-
tion of our program should be able to conform to. Then we will begin with researching relevant
work within the field and make a design, and based on the design we will implement a pro-
totype. The demo program will be tested extensively to find out if it is possible to optimize
further. During this thesis we are expecting to implement a lot of prototypes. Each of them
will be experimented with and based on the results, we will proceed to modify our design and
attempt to improvise the prototype further. This procedure will be repeated until we get results
that can satisfy the requirement and specification we made. Our approach in this master thesis
is based on the Design methodology as described by the ACM Task Force in Computing as a
discipline[10].

1.5 Main Contributions

The main contributions in this thesis has been the implementation of a tiling system where
panorama video can be separated into smaller equivalent sizes and encoded into different
qualities. Thus could potentially reduce the bandwidth consumption. We have also
contributed a design where each part of the process is explained in detail for implementation
of a working prototype.

1. A tiling algorithm

2

2. Analysis of different tiling approaches

3. Analysis of the overhead cost produced as a consequence of tiling

4. Analysis of the software encoder x264 used in combination with FFmpeg

5. Methods to reduce the latency in x264

6. Techniques to reduce the storage consumption thus bandwidth

7. Analysis of the hardware encoder NVENC

8. Techniques to optimize NVENC

9. Demonstrating how well the system can scale up by integrating hardware components

We also have a paper in proceedings for the 21st International Packet Video Workshop (PV
2015)[17].

1.6 Outline

In the first chapter we wrote about our motivation behind this thesis, found the problems that
has to be solved with the limititions we have. Then we mentioned about our reasearch method
and the main contributions in this thesis.

Chapter 2 – Adaptive Encoding of Video Tiles We will be discussing various related work
in tiling which focuses in the server. We will also mention technologies which we used as a
concept and adopted it to our design.

Chapter 3 - Software Encoding: Design and Implementation In chapter 3, we will
introduce various technologies and methods to reduce the bandwidth requirement and how
to implement a working software encoder

Chapter 4 - Case Study: Software Encoding with libx264 In chapter 4, we will test out
different tiling approaches and find the potential overhead caused by tiling and the reduction
of bandwidth.

Chapter 5 - Hardware Encoding: Design and Implementation We will introduce some
hardware encoders, how to use them, limitations they have and how to implement a working
prototype.

Chapter 6 - Case Study: Hardware Encoding We will be experimenting the hardware
encoder and evaluate the results.

Chapter 7 - Case Study: Software Encoding combined with Hardware Encoding In chapter
7, we will introduce and confirm the scalability of our implementation.

Chapter 8 - Conclusion We will evaluate the design and draw some final conclusions and
mention some technologies and suggest new approaches to which could be used to further
develop it.

3

4

Chapter 2

Adaptive Encoding of Video Tiles

2.1 Tiling Concept

Figure 2.1: Illustration of how Interactive Virtual Camera works[47]

In figure 2.1, it shows us the concept of how an interactive virtual camera in the Bagadus[40]
system works. The tiles which are in the Region of Interest(RoI) are the coloured ones, they
depict high quality tiles while the greyed out tiles are of low qualities. Using RoI to decide
which quality of tiles to fetch in accordance to the camera are adapted to many implementations
of virtual cameras to reduce the bandwidth requirement, to make it more scalable. The way
interactive virtual camera shown in the aforementioned figure works is, only fetch the tiles
overlapped with the RoI in high quality and all other tiles outside of RoI in lower quality. The
outer tiles will be fetched in higher qualities subsequently depending of the bandwidth of the
user. Thus one of our goal is to use tiling to reduce the overhead and potential bandwidth by
exploring different approaches of compression technologies. There has also been researched
extensively on how to reduce the bandwidth consumption from the server side which are
mentioned in [2], [23] and [29].

5

2.2 Adaptive bitrate streaming

Figure 2.2: Overview of how adaptive streaming works [3]

Adaptive bitrate streaming [3] is a technique used for streaming of multimedia content over
computer networks. Historically, video streaming technologies were built on streaming
protocols such as Real-time Transport Protocol(RTP), Real-Time Streaming Protocol(RTSP) or
RTP with RTSP, but nowadays most adaptive streaming approaches are based on Hypertext
Transfer Protocol(HTTP). It is designed for transmission over large distributed HTTP networks
in an effective and efficient way. The user or client in our case are devices that are able to
playback video streams, for example a television, personal computer or mobile devices such as
mobile phones or tablet computers. The way it works is by monitoring the user’s bandwidth,
CPU and memory capacity in real-time and then making corresponding adjustments to the
video quality. The core process involves an encoder which can encode a single source video
at multiple bit rates, and then segmenting each of the different bit rates into small parts. The
duration of the segments typically varies between 2 and 10 seconds, but that depends on the
implementation. A manifest file will be created and it will contain the information of all the
video segments and their bit rates. At the beginning, when a client accesses the multimedia
file, it will request the segments from with the lowest bit rates from the given manifest file.
The transmission between the server and the client is monitored, if the user detects that the
download speed exceeds the bit rate of the initial downloaded segment, then it will request the
next higher tier of bit rates segments. If the download speed deteriorates, the client will then
adjust to the situation and request a lower category of bit rates segments. This process will keep
going until the current bit rate segments are closely matched with the available bandwidth
at the client. This is how the adaptive bitrate streaming technology can accommodate a
wide range of devices and network capacities, and therefore can provide the users the best
video quality and viewing experience on both low bandwidth and high bandwidth. The only
downside with this technology is it requires more processing in the server side caused by
additional encoding, but in return it is very flexible and simplifies the work flow. Various
adaptations of adaptive bitrate streaming has been implemented by Microsoft Corporation,
Adobe Systems, Apple Incorporated and Moving Picture Expert Group(MPEG).

2.3 Summary

The idea of tiling originated from the use of interactive virtual cameras as mentioned above. By
utilizing the same concept in adaptive bitrate streaming we could be able to stream real time
video and provide quality of service. Some server side processing has been proposed in [2],

6

[23] and [29]. But the way they adapt to users are to either downscale a tile before transferring,
then up-scale the corresponding tile again when it has reached the user. Cropping of a tile for
reduction was also discussed, but none of them had a solutions where the quality of the tiles
could dynamically change during playback. Thus we decided to not go into detail of each of
the papers.

7

8

Chapter 3

Software Encoding: Design and
Implementation

3.1 Introduction

There are several libraries and background theories that we have to be aware of, before we
can proceed to designing and implementing our solution of tiling and investigate the overhead
cost and bandwidth. One of the challenges we have with delivering of a high resolution and
high bitrate panorama video to a huge number of users is scaling. The required resources such
as processing power, storage and bandwidth would be huge. Many researches have already
proposed many different solutions such as tiling, downscaling and up-scaling or cropping
to reduce the resource requirement. One of the services the Bagadus system[20] offer is an
interactive moving virtual camera to each user. Since the virtual camera has a limited view
of the panorama video, we can use tiling to reduce the quality of every tiles other than the
region of interest(ROI) depending on the position of the virtual view. Thus we can reduce the
bandwidth requirement. The problem we have is that we have to be able to dynamically change
the quality of the tiles and none of the existing tiling approaches dealt with this particular
issue. In this section we will further discuss about the design and theories that are required to
understand the concept.

3.2 Video compression

One way to reduce the consumption of bandwidth and storage is video compression.
Essentially compression of video is a process that involves applying an algorithm to a
source video, which reduces and removes redundant data from it and creates a compressed
file so it can be effectively sent and stored. However, if the compression of a video is
too high, it may lose too much data thus presenting visible artifacts during playback. A
compressed video can not be viewed before we reverse the process. To play video files which
are compressed(encoded), we need to decompress(decode) the file by applying an inverse
algorithm to it thus producing a video that shows virtually the same content as the original
source. The trade-off is between the latency or time it take to reverse a process, applying more
advanced compression algorithm on a file will result in longer time in decompression. The
video codec format we will be using is H.264, since it is supposedly exceptionally efficient
in delivering good video quality at a lower bit rates than most other video compression
technologies(such as the previous standards H.263, MPEG-4 Part 2 or MPEG-2)

9

3.3 H.264 / MPEG-4 AVC

H.264, also known as MPEG-4 Part 10, Advanced Video Coding(MPEG-4 AVC) is a video
compression technology that was developed by ITU Telecommunication Standardization
Sector(ITU-T) Video Coding Experts Group VCEG)[28] as H.264 and International Organiz-
ation for Standardization/International Electrotechnical Commission Moving Picture Experts
Group(ISO/IEC MPEG-4)[27] as MPEG-4 AVC. The terms H.264 and MPEG-4 AVC are often in-
terchangeable since the ITU-T H.264 standard and ISO/IEC MPEG-4 standard are maintained
together thus they have identical content.

3.4 Choosing a software encoder

Figure 3.1: Average bit ratio for a fixed quality for all categories and all presets [19]

There are many AVC software implementations which has the ability to encode a video stream
into H.264 format, some of are mentioned in figure 3.1. The qualities are measured with Y-SSIM,
which is a variation of the standard SSIM, and according to the results x264 is one of the best
codecs by encoding quality. Certainly the results does not necessarily correlate with subjective
video quality, since the results can be adjusted by modifying the encoder settings hence giving
higher metric scores. They mentioned in [19] that they used a special encoding option("tune-
SSIM) in x264 which could explain the quality difference. So we had to do some initial tests
with x264 before deciding whether we should experiments with other encoders. X264 was very
user friendly, with its predefined presets, and it also had many encoding settings that can be
easily adjusted. As such we decided it was the most suitable software encoder to use in our
design and implementation.

0Structural Similarity index is a method for measuring the similarity between two images[42], Y-SSIM only
measure the Y channel(will be further explained later)

10

3.4.1 x264, a H.264 encoder

x264 is an open source implementation which encodes video streams into H.264 file formats.
The one we are using is called libx264 which is a "wrapper" around x264. FFmpeg does not
have a native encoder for H.264 format thus it uses x264 as an external library for encoding.
For it to work, FFmpeg implemented libx264 which converts FFmpeg generic data structures
to a format x264 can accepts and process them. Thus when we are referring to using FFmeg or
libx264, it means we are actually using an x264 encoder to process a file.

3.4.2 Constant rate factor

Constant rate factor or CRF, is a rate control scheme which are implemented in x264. We can
set a value from 0-51 where 0 is lossless, 23 better and 51 worst. The lower number we pick
the better compression will we get, but it will also require more processing time. The concept
of CRF exploits how the human eye perceives motions. By deducing if a frame has a lot of
motions in it, CRF will apply a higher Quantization Parameter(QP) on it. A QP decides how
information is tossed by the encoder, the higher the QP value is the more informations is lost.
However in still images CRF will apply a lower QP for better visual appearance. Thus we can
reduce the data rate. In terms of visual perception, we would think it is constant due to the fact
that our eyes would be distracted by everything happening, thus would not have enough time
to notice the heavier compression. Constant Rate Factor is the 1 pass rate control which will
be used in this design. Since we are tiling a panorama video into separate file, we could either
crop or downscale a video stream to get a lower bitrate. However with CRF, we can apply
it directly to a tile to get a lower bitrate while have better visual, even though in it is not if a
machine evaluates it. We can see in figure 3.2 the loss of sharpness in the downscaled video.

Figure 3.2: Using CRF left 158 kbps, downscaled rigth 157kbps[17]

3.5 Techniques to reduce the storage space and bandwidth require-
ment

3.5.1 Frame Types

There are several types of frames, and these are intra coded pictures(I-frames), predictive coded
pictures(P-frames) and bidirectionally predicted coded pictures(B-Frames). There is another
one called D-pictures, but these are not commonly used so we are not going to explain about it.

I-frame are frames coded by themselves. It means they contain the full image, which can be
decompressed without the need for additional data from any other frames. The disadvantage is
they do not have good compression because the information they keep is important. However,
the benefit of using these picture types is that the video stream is more editable. That means
we can access the video at various points in the stream randomly, for example searching a
specific scene or fast forwarding. The effect of not having an I-frame in a scene change is that
the first few scenes will be visually blurry, but it will gradually get clearer after a short while.
Another type of pictures is the P-pictures. They are forward predicted, which means they

11

need information from the previous I-frame or P-frame to reconstruct the image. They do not
require much space as I-frames, since they do not contain a full image. The information they
hold is just a part of an image, more specifically they only contain the differences of motion
relative to the previous decoded frame, so the unchanging background pixels are not stored.
The last type of pictures are the B-frames. They are frames that requires information from both
previous and next I- or P-frames for decompression. The information a B-frame contains is also
the differences of motion between frames, but unlike P-frames the content of a current B-frame
can be reconstructed by references from both the preceding frame and the following frame.
Thus it saves even more space than both I-frames and P-frames.

Figure 3.3: Overview of how the different picture type interacts with each other. This is the
Group of Pictures structure of a 1 second video segment .

3.5.2 Group of Pictures

A Group of Pictures, also known as GOP, is a specific sequence of frames in a video stream.
Each video stream consist of 1 or more Group of Pictures. We have mentioned in 3.5.1 that
there are 3 types of picture frames; I-frames, B-frames and P-frames. GOP are determined
by the pattern of these frame types, the size and whether it is open or closed. The sequence of
structure a GOP is important since the sizes of each frame types are different. As we know from
3.5.1, the picture type that requires the most space are the I-frames, then the B-frames and lastly
the P-frames. In general, the sequence of a GOP has many variations, but it usually starts with
a I-frame. It is possible to have a B-frame at the beginning in an open GOP. Since it is allowed
to have references from one GOP to an I-frame or P-frame in an adjacent GOP. The limitation
is a B-frame can’t be at the beginning in the first GOP or at the end in the last GOP(or in a GOP,
since a GOP cannot end with a B-frame), since a B-frame needs information from both sides to
decompress. A closed GOP will always begin with an I-frame and ends with a P-frame, and
unlike an open GOP, it does not rely on frames outside of the GOP for decompression. Our goal
is to reduce the bandwidth requirement, so the most important factor for us when choosing the
GOP structure is to reduce the size. Overall size are generally determined by distance between
each P-frames. If the P-frames are farther apart from each other then there would be more B-
frames, thus resulting greater compression. The space between the frames can be determined
by the difference of motion between a P-frame to the previous P- or I-frame. If there are minimal
changes between the 2 frames then they can be farther apart from each other, if the difference
is big the distance should be smaller between them. Another way to reduce the bandwidth is
by setting the GOP size, it specifies number of frames in a GOP. By increasing the length of
GOP, there would be less I-frames in a video stream. Since I-frames are larger in size than both
B- and P-frames, we can reduce the consumption of storage space. There are any ways to set

12

up the GOP, and the trade-off is complexity vs storage. For example, with only I-frames in a
video stream with 30 frames(thus 30 GOP) the decompression would be simple, because each
frame is not dependant of another frame. The downside is the required storage space would
significantly increase . If we compress the video more by having greater GOP sizes, then the
decompression would take more processing time since there are more B-frames and P-frames.
Illustration of our GOP in figure 3.3.

3.5.3 Segmentation and GOP size

Table 3.1: Table shows the difference of required storage space between using GOP 90 and GOP
30. The first column describe how many tiles we have and the numbering tells us which QP
we encoded the tiles with.

We are trying to reduce the bandwidth to improve the scalability, thus the size of each video
stream produced by the tiling system plays an important role. The segments in our system
has a duration of 3 seconds and GOP size we used are 30 and 90. We tested on both lengths
to give us an indication of the difference between having 3 GOP versus 1 GOP, and find out
how much space we can potentially save. By increasing the GOP size we did indeed reduce
the size of files significantly based on the results in table 3.1. The disadvantage, like we
also mentioned in section 3.5.2, is the trade-off between saving space and the complexity in
decompression. The duration of the segments plays another important role, we can optimize
the bandwidth and storage space consumption a lot by increasing both the duration of the
segments and also increase the size of GOP. The overall quality adaptation latency will also
increase proportionally with the duration of the segment though.

3.5.4 Ffmpeg

Fast Forward Motion Picture Expert Group(Ffmpeg) is a free software and it is a multimedia
framework. It contains libraries and programs that enables us to handle every existing
multimedia file ever created. We are only using libraries that are required to encode or
transcode and decode video files. In our program we are converting a existing digital format
to another digital format with different bit rate, thus based on the definition from this site [49],
it is transcoding. We decided to simulate the process of encoding video stream directly from
source in this kind of manner, since it is easier to work with digital files. Still, we want to be
able to encode video files straight from source in the future, but unfortunately not in this thesis.
We will proceed to mention some of the important structures we used from the FFmpeg library
for reading a file, demultiplexing(demuxing), decoding, encoding and multiplexing. Functions
from the library will be explained in relevant places.

13

3.6 Image Formats

3.6.1 YUV

Figure 3.4: Illustration of YUV combined and each channel in YUV separated in greyscale

YUV is used to represent colors in videos and images. The Y, U and V component contains the
luminance channel, and two chroma channels retrospectively. Humans are more sensitive to
differences in luminance, which is the brightness, and less perceptive to changes to the chroma
components. If we observe figure 3.4, we can notice the Y channel in the top right row, U in
the bottom left row and right the V channel. They are represented in greyscale, thus it is easier
for us to see any variance between the channels. From the picture we can observe how much
detail the luminance channel contains compared to the chroma components, also the U and
V channels when compared to each other does not have that much difference. Therefore it is
possible to down-sample them(hence reducing the size) without losing any noticeable detail.
Even if there are visual artifacts, we would not be able to observe it. As such YUV color space
are usually used as a part of a video pipeline to produce video streams with a lower bitrate
while retaining the visual quality. One such pipeline is found in the Bagadus system where it
generates panorama video streams from a soccer stadium. The videos can either be streamed
in real-time or stored as raw H.264 files in pixel format YUV 4:2:2.

14

YUV 4:2:2

Figure 3.5: Illustration of the different channels in YUV422

YUV 4:2:2 is a pixel format where the U and V channel are sampled half the rate of Y in the
horizontal dimension. If we use YUV 4:4:4 as a basis then YUV 4:2:2 can be seen in figure 3.5.
Thus it seems like we can reduce the bandwidth by 1/3 of the original size.

3.7 Image Stride

Figure 3.6: Image stride from [32] with a some modification

A video stream can be seen as a sequence of images, each representing a single frame in the
video. The frame can be represented as rows of pixels, and each row of pixels might contain
extra padding. It is possible to use padding for scaling, such as reducing the image by the
amounts of padding or increasing the image by filling the padded area with pixel informations.
Padding affect on how the image is stored in memory, but it does not alter the displayed picture.

15

The stride in a frame is the width of the displayed image and the amount of padding the image
has. The stride are usually larger than the image width since it might contain paddings. That is
why we have to take the image stride into account whenever we process a video. The Surface
Origin which was mentioned in figure 3.6 refers to the first byte of the image.

3.8 Initialization pipeline

3.8.1 Initializing the library and ensure thread safety in ffmpeg

Before we can use FFmpeg for encoding,decoding, muxing or demuxing of a media file, we
have to initialize the corresponding format and codec of the file. There are two ways to do this,
the first one is to register only certain individual file formats1 and codecs2(h264 and libx264)
then manually initialize the parser and bitstream filters(which will be used in decoding and
encoding), the second approach is to register all available file formats3 and codecs4 with the
library. There is no benefit in choosing the first approach over the second, thus using the latter
is preferred.

Thread safety was not considered until we began to encode multiple video stream in
parallel. Some of the output files we got had visual artifacts, others did not. The cause is most
likely due to the use of multi-threading. As we know, threads are commonly not referenced
to one another and they usually share some data between them that needs to be frequently
updated. In a non-threading environment, each instructions are executed in a proper sequence,
but in parallel the order of instructions may be interleaved5. Thus whenever the executions
are out of order we will get incorrect data. We found out the issues originated from several
functions in FFmpeg library[13], so in order to encode several streams concurrently, we need to
synchronize access on the functions by applying a locking mechanism. One of the solutions we
found and tested was the use of av_lockmgr_register to register a mutex handler6 in FFmpeg,
which is then used whenever we call functions from the library. Another solution that should
also work is to build FFmpeg with –enable-pthreads, it will automatically synchronize function
calls by using its own lock manager implementation.

3.8.2 Opening and decoding a Panorama Video - Demultiplexing and decoding
module

As we mentioned before in section 1.3, our encoder prototype does not have a feature for
retrieving frames directly from the Bagadus system, thus we have to work with panorama
videos that has already been encoded and stored locally as H.264. This part of the pipeline is
responsible opening and reading a file, then extracting the contents and store it as raw YUV
frames in memory. We decided to store the contents of a video file in memory to simulate an
enviroment where our encoder is integrated in the Bagadus system, thus frames can be fetched
straight from source without the need for reading,demuxing then decoding a file.

1use av_register_input_format(AVInputFormat *format) for input and av_register_output_format(AVOutputFormat
*format) for output

2avcodec_register(AVCodec *codec)
3av_register_all(void) registers all format available in the library for muxing and demuxing, it will also execute

avcodec_register_all(void)
4avcodec_register_all(void) registers all codec available in the library for encoding and decoding, it will also

initialize the parser and bitstream filters at configuration time
5Race Condition[44]
6The locking implementation was found from [11] and it was also proposed by Vamsii

16

1. Prototype - Sequential Encoding of Panorama Video

During development, we implemented a prototype for testing the FFmpeg library and to give
us an estimation of the transcoding time. It could read a H.264 file stored on disk, then
transcoded it to the same format and codec. It worked well and the transcoding time was under
real-time requirement of 3 seconds when we had only 1 quality. We later added a new feature
which transcoded an input file to multiple output files with different qualities. The time it took
to transcode increased exponentially which was in our prediction, but we wanted to reduce
the time so we explored various parts of the program to see if there are any areas which we
could optimize. The first region which could affect the time measurement was file reading and
writing operations. This should not be a bottleneck since we have a Solid State Drive(SSD)
as our storage medium, which makes these operations exceedingly fast. But we have to keep
in mind that when reading the media file, it also processes the data read by decoding it thus
using CPU-resources. This issue becomes more apparent when we added tiling and tried to
encode several files in parallel which will be further discussed in section 3.8.4 and mentioned
in prototype 2. The general flow of the first prototype is as follows:

1. Open input file

2. For as long as there are still tasks left

(i) Create output file

(ii) Open encoder for the newly created file

(iii) For as long as there are still frames left in the input file

(a) Fetch a frame from input file
(b) Decode the frame and store the raw YUV data in memory
(c) Encode the raw YUV data and write it to output file

(iv) Close output file and encoder

(v) Reposition the stream pointer to the beginning of the input file

3. Close input file

Module Implementation - Initializing a file for reading

Like we discussed in section 3.8.2, the primary goal this module has is demuxing and decoding
of Panorama videos. As the name implies, the procedure consist of 2 parts and the first one
is discussed here. We are utilizing ffmpeg for the implementation. The libraries we used are
libavformat(lavf) which contains demuxers and muxers for different audio and video container
formats, and libavcodec which consist of encoders and decoders that can accommodate the
majority of audio and video files. Some of the structures we will be using are:

1. AVFormatContext - A structure that stores all information of an opened file, all IO
operations of files goes through here

2. AVStream - A structure that has information of a stream

3. AVCodecContext - A structure which contains codec information from a stream

4. AVCodec - A structure that contains information of a specified codec and function pointer
for encoding and decoding

17

First we have to open the file which is stored as h264 before we can process the data. With lavf,
we can open media files by passing the filename to function avformat_open_input(). It opens
the specified file(automatically detects the input format if not provided), read the header and
then store the extracted information in an AVFormatContext. Usually the next step is to find
how many streams there are in the media file and store it in AVStream, but we know from , h264
files are a file extension which denote raw H.264(AVC7), hence there is only one stream. After
we have extracted the codec information from the stream and stored it in AVCodecContext, we
used avcodec_find_decoder() to find the corresponding decoder for the stream. Then we have
to initialize it by using avcodec_open2() before using the decoder.

Module Implementation - Reading from a file

Figure 3.7: Overview of reading, decoding and storing the raw data

The figure 3.7 shows us the second part of the module implementation, which is to read data
from an opened file, decode it then store it in memory. Some structures worth mentioning:

1. AVPacket A structure which contains encoded data and data which is used to identify
the stream it originated from

2. AVFrame A structure which contains the decoded video data

We can read the entire data stream from an opened file by repeatedly calling av_read_frame().
It will return an AVPacket with references to where the encoded data is allocated and stored
each time it is called. We can then decode the compressed data with avcodec_decode_video2()
which will convert the AVPacket to an AVFrame. Usually it will take several AVPackets to
have sufficient data to fill an AVFrame, especially if is the first frame(which is most likely an
I-Frame), thus we will have to call the decode function several times while providing it with
new data. We will be notified when an AVFrame has been decoded and proceed to store it in
memory. We discovered that when end of file has been reached, there was still some frames left
in avcodec_decode_video2(). These can be fetched by flushing the encoder which is repeatedly
calling on the decoder until there is none left. The delay is a normal behaviour from FFmpeg
and there are two reasons for it. The first one is for multi-threaded efficiency. During decoding
one thread will queue frames to the decoder and other threads will fetch the data from the
queue and decode them, thus even if file has reached the end there could still be frames that

7Advanced Video Coding, which is a digital video-compression format

18

are in the middle of decoding. This situation is more likely to happen in the case of B-frames
where the decode order may not be the same as the display order.

Figure 3.8: Illustration of a display order and a decode order

If our display order is the same as a) illustrated leftmost in figure 3.8, then our decoding
order would also be same as b). As we know from section 3.5.1, a B-frame needs both a previous
frame and a future frame to specify its content. Thus I0 and P4 needs to be decoded and
available to the decoder before we can start decoding B1, B2 and B3. It is possible to reorder
the frames to speed up the process of decoding, but the trade-off is longer encoding time.

3.8.3 File and folder structure

Figure 3.9: The offset used to find the surface origin8of each tile are added to the file name.

The virtual viewer in the Bagadus system fetches tiles by using the index of the tiles. The file
name needs to be unique and easy to identify so the virtual camera can fetch the corresponding
tiles it needs. It was decided the file name of the tiles should include the source name of
panorama video and then add the offset of where we found the first byte of the image from the
panorama video. Figure 3.9 illustrates the concept of how we name the files.

8Surface origin is the first byte of an image, also mentioned in 3.7

19

Module Implementation - creating folders and sub-folders

Figure 3.10: Illustration of the file and folder structure after encoding a panorama video.

This module was implemented because of the files created by encoding a panorama video
to tiles in different qualities. The file names based on the concept mentioned in section 3.8.3
should be unique enough to avoid overwriting of files, but there is a catch. Files which are
encoded in different qualities would have the same name, since they have the same source
name, the X and Y offsets. The solution was to categories each quality in their own folder. The
general flow of making folders and sub-folders is as follows:

1. Create source folder

(a) Create sub-folders with folder name describing the tiling method

(b) For each of the sub-folders above

i. Create a sub-folder with folder name describing which quality was used during
encoding

The structure should look like in figure 3.10. In a Linux enviroment, the function mkdir() is
used for making folders.

3.8.4 Adding task to queue

Experimenting with the first prototype, we discovered there was several problems when we
tried to execute it in parallel. If we look at the general flow of the program mentioned in
section 3.8.2, each time we read data from file, it will be processed and written to an output
file. This procedure would be the main flaw when we tried to encode the file in parallel, but we
had to experiment with different approach before we could come to this conclusion. The first
proposition was we will decode the compressed data then subsequently encode the raw data
and store it. This is to avoid the need to move the stream pointer at the beginning of the file
each time a quality has been produced. As we know, before we can use a decoder we would
have to initialize it by calling the avcodec_open2() where system resources are automatically
allocated by FFmpeg. This procedure is also mandatory for encoding. Thus we would have to
initialize all the encoders we would be using and keep them active through the whole encoding

20

process. Testing the program with a small number of tasks gave us reasonable results, but as
we increase the workload we noticed a decline in performance. Hence the weakness of this
approach was the overhead produced as a consequence of initializing and maintaining several
codecs simultaneously. Another approach was mentioned but it was denied rather fast. But the
general concept was to give each available thread an instance of the encoder, which is the first
prototype at that time. This also means each encoder will get a decoder and an unique file. Files
accessed by FFmpeg has to be distinct, as such we have to duplicate the file for each encoder.
It has the same shortcomings as the first approach, but it also consume more storage space and
file duplication is redundant. The reason why this module is necessary will be discussed at the
end of section 3.8.4 and it is also the third approach for solving the flaw we had.

Prototype 2 - Parallel Encoding with Tiles

The second prototype was developed to handle some challenges we had in the first prototype.
When we introduced tiling to the first prototype, the performance was inadequate. This is
most likely due to the amount of work produced by the tiling module, which will be further
discussed in section 3.9, but basically it is a procedure where we split a video into smaller
parts. Another problem that came to our attention was the CPU usage. In sequential encoding,
we could not utilize the full potential of the CPU, due to the fact that we had to encode each
and every video streams(the tiles) one after another in a succession fashion. Thus the solution
was to utilize more of the CPU resources by introducing parallel processing. This approach
should boost the performance, since we are dividing the work load to several threads. But it
also introduced some new challenges, which was discussed in section 3.8.4. Essentially it was
about where to obtain the video stream, and the solution we came up with was to decode a
panorama video and store the frames in memory before encoding. The second issue, which
was not mentioned, was synchronization between the threads. The problem we had was how
to identify which part of the video has been processed and which has not, and also keep track
on which quality has already been encoded. The easiest solution we had at the time was to
have the parent thread keep track of every operations. Whenever a child thread is created by
the parent thread, it will get two values. One is the tile number which is used for calculating
positions(further discussed in section 3.9 of how it works) and the other is a value which
represent the quality the tile has to be encoded with. Without going into further detail, since
this is a prototype, the general flow of the encoding after video files had been preprocessed and
stored in memory:

1. For each tile or tiles and their qualities it will

(i) Create a child thread and during the its life cycle it will
(a) Fetch a task from queue
(b) Calculate the position of the surface origin of the tile
(c) Initialize an encoder with a given CRF value9

(d) For as long as there are still frames left
A. Fetch a frame from memory
B. Make a replica of the tile by copying raw yuv data from a given area in the

frame
C. Encode the yuv data and write it to file

(e) Close encoder
(ii) Terminate child thread

9Constant Rate Factor, mentioned in ??

21

Adding task to queue - Module implementation

The third approach was to split the program into two parts, the first one will pre-process the
files and make them available in memory. The second part is encoding and storing the outputs
to their respective locations in the folder structure. This was heavily influenced by the reason
for storing files in memory as mentioned in section 3.8.2, but there are still some challenges
that needed to be resolved. We know from the initial testing of the second prototype, that tiling
and encoding of a panorama video is very well suited in a parallel enviroment. Even though
we cleared up some of the obstacles, it still suffered from considerable overhead. This can
been seen by increasing the amount of tiles it has to encode. With more tiles it has to initialize
and maintain more encoders thus overhead is produced. Another cause is the sheer amount
of context switching between the threads, and lastly the creation and termination of threads
which is also very costly. Thus the solution we came up was to create and maintain a given
number of threads. The difference is when they have completed their task, they will remain
idle and wait for new tasks instead of getting terminated. Hence we avoid the unnecessary
overhead produced from the previous approach.

In the second prototype we had a thread act as an overseer to synchronize the whole
encoding process of every threads, therefore we did not fully use the CPU. Thus we decided
to also use the parent thread for encoding. That is why we needed a structure where every
thread can execute independently without the need to be supervised by another thread, or as
little as possible. That is why we implemented the Task Structure. It has 2 main functions,
addTaskToQueue() and getTask(). As the name implies, the first function adds task to queue,
but it also has the responsibility for creation of tasks that are mandatory for synchronization
between threads. The information stored in a task structure will be used by a thread to identity
which tile to process, what quality it should be encoded with and where it is going to be stored.
Thus threads can fetch a task with getTask() from the queue and operate independently. Since
we are executing the application in parallel, there can be cases where two concurrent processes
gets the same task. To prevent a race condition10 from happening we added a mutual exclusion
object(mutex)11 to ensure that every threads can access the queue but not simultaneously, thus
every threads will get unique tasks. The general flow of addTaskToQueue() is shown below:

1. Extract the source file name from the source

2. For each tile, do the following:

(i) Calculate the x and y position of a tile based on which tile or tile number it is

(ii) For each quality we have to encode a tile with, do the following:

(a) Find the coordinates of the surface origin of the tile in panorama video
(b) Create an AVCodecContext 12 with a given quality
(c) Create an output file name with the folder address(based on the number of tiles)

as a prefix, then append the source name with the coordinates we calculated
previously

(d) Create a Task Structure, then store the tile number, AVCodecContext and the
output file name.

10A situation where several processes or threads access a shared data and perform operations on it at the same
time, thus the output will vary according to which operation was executed first, which is undesirable in most
situations

11mutual exclusion object or short for mutex, is a program object that allows multiple program threads to share
the same resource, but not simultaneously (34)

12Creation of this type of structure would not cause overhead, it is when initializing that we would require the
use of system resources.

22

(e) Push the Task in queue

Figure 3.11: Illustration of the flow of getTask() function.

We can see the flow of getTask() in figure 3.11. When called upon the function will lock itself
to prevent other threads from accessing the queue. Then it will check if the queue is empty, a
task will be obtained from queue if there are still elements in it and the data is then returned
to the callee, else it will go back with nothing. Before returning, the lock will be freed and the
next thread in line can access the function.

3.9 Tiling module

In this thesis, a tile is a sequence of frames which are extracted from a specific area of a
panorama video and then encoded into a video stream and stored as a raw H.264 file format
using x264. Thus tiling of a panorama video means that we are separating the video into
smaller video streams where each of them has equivalent resolutions. These tiles are processed
in such a way that they would not overlap with each other when we create the original
panorama video by stitching the tiles together. The tiling module main responsibility is to
separate a panorama video stream into equivalent tile sizes.

Figure 3.12: Separation of a panorama to 2X2 tiles

3.9.1 Tiling formations

In the thesis there was 3 tiling formations that was proposed, 2X2, 4X4 and 8X8 tiling. The
first number before X determine how many tiles are created in the horizontal direction, and
the next number decides how many tiles we are going to have in the vertical direction. There
were other formations that was mentioned, such as 16X14, 9x9 3x3 and so on. But there were
either too many video streams created(1120 for 16X14) or the extra calculations and padding
as a consequence of tiles with odd numbered resolutions being created. Thus it was decided

23

to use 2X2, 4X4 and 8X8 tiling approaches for the panorama video stream with a resolution
4096x1680.

Figure 3.13: Overview of the different tiling formations

3.9.2 Image processing

Figure 3.14: How pixels are represented on an image

A tile can be described as a subset of tiles which together makes a whole panorama video. But
the problem is how to separate a panorama to tiles. We have mentioned in section 3.7 that a
video stream is a sequence of images. Thus creation of a tiled video stream means we have to
go through every frame and extract the corresponding area. An image can be described as rows

24

of pixels, where each pixels are numbers indicating the variations of red, green and blue. As a
whole it will provide a representation of a picture. Everything on screen is made of pixels, and
we are familiar with the idea that each pixels have an x and y position on a two dimensional
window. An example is drawing programs, they usually has a window or corner where they
show the x and y position of the pixel your mouse is pointing on. However, images stored in
memory are a linear sequence of colour values, thus only one dimension.

Figure 3.15: How pixels are represented in memory

When we are transcoding with no regard of which pixels we need to have, there would not
be any problem. Since we can access each pixels one by one and copy the data over to a new
frame. If a panorama video is represented by every pixels as shown in figure 3.14, then each tile
in a 2X2 tiling approach would be represented by each grid(with 4 pixels) in different colors.
The image stored in memory would look like figure 3.15, thus the pixels which represent a tile
cannot be extracted in a sequential order. In order to successfully make a tiling system, we have
to be able to extract the pixels which belongs to a specific tile. At the initial phase a formula
was proposed by a colleague which could find the first pixel of every tile on a panorama video.
The process can be described as follows:

1. Assume an image where the number of tiles is n in both vertical and horizontal directions

2. Find the x position of a tile with:

tile number % n

3. Find the y position of a tile with:

tile number / n

4. The first pixel of a particular tile can be calculated with:

(x * tile width * n) + ((y * tile width * n) * height of the panorama video)

These steps made it possible to find the first pixel of a tile in memory. Even though it
worked, there was a limitation. The restraint we found was; it does not work if the tile
formation does not have the same number of tiles horizontally and vertically. Thus we did
some research and made some improvements to the first approach.

1. Assume an image has n number of tiles in the horizontal direction and m number of tiles
in the vertical direction

2. Find the x position of a tile with:

tile number % n

3. Find the y position of a tile with:

tile number / m

4. The first pixel of a particular tile can be calculated with:

(x * tile width) + (y * tile height) * panorama width

25

After testing it could handle the tile formations we used in the thesis and also compatible
with tile approaches with different horizontal and vertical sizes. The reason it works is because
we exploits the fact the image in memory is expressed as a one dimensional array, thus the
first pixel is in index 0. So if we make some adjustments to our numbering of tiles, such as tile
number 1 is expressed as 0 and tile 2 as 1 and so on. Then update the memory layout figure to
represent the index of the pixels in an array. An example of how the whole process works is
shown in figure 3.16.

Figure 3.16: Example of how to find the surface origin of a tile

How to copy every pixels of a tile is covered in 3.11, since the calculations can vary in
accordance to the pixel format we are using.

3.10 Encoding concepts

There were several concepts of how to encode the different tiling formations we have. We
expect the some of the concepts would not give us any satisfactory results, but there are many
unknown factors to us which can be revealed by implementing and testing every approaches.
The knowledge gained from the experiments can be used to determine the origin of overheads,
bottlenecks, bugs and many others. Thus we can make adjustments to the implementation to
correct the problems and at the same time improve our design.

3.10.1 Sequential Encoding Concept

At the initial phase of the project, we needed to implement a prototype for experimentation.
Thus we adapted the idea of sequential programming[21] to our scheme for its simplicity.

26

Figure 3.17: Overview of sequential encoding

The figure 3.17, gives us an overview of what happens when we encode a 2X2 Tiles into
different qualities sequentially. At the beginning we will encode the first tile and when the
process has been completed, it will proceed to encode the next tile. This procedure will continue
until every tile with different qualities are encoded. Since we are using only 1 thread to encode
every tile, we would not be able to utilize the CPU efficiently. Thus it is very probable that the
results from sequential encoding would deviate substantially from the outcome of both parallel
and thread pool encoding.

FFmpeg has an optimization procedure called frame slicing, where a frame is separated
into smaller parts, and each part will be processed by a thread which are created internally of
an encoder. Thus we will also test the sequential encoding concept with frame slicing to see if
there are any huge performance leap. Maybe it could even be able to satisfy our design.

3.10.2 Parallel Tiling Concept

One of the main goal in the thesis is to separate a panorama video into smaller equivalent video
sizes, and encode each of them in multiple qualities. This produces a lot of work which will
probably lead to poor performance with the sequential approach. Thus we introduced another
approach adopting the idea of parallel computing, where we can execute multiple operations
simultaneously. There were 2 ways to decide the number of threads. The first one is shown in
figure 3.18 and the second in figure 3.19.

27

Figure 3.18: Overview of parallel encoding. The number of threads created are the same as
total amount of tiles

Figure 3.19: Overview of Parallel Encoding. The number of threads created are the same as
total amount of tasks.

We know there is overhead produced whenever a thread is created and terminated, but
how much does it affect our implementation. So instead of randomly picking a number of
threads to tests all the different tiling approaches, we decided to use the number of tiles in
accordance to the tiling approach used to determine the number of threads being created in the
first parallel concept. For the second concept the number of threads are decided by the total
amount of video streams that is going to be created. Thus for 2X2, we will only get a maximum
of 4 threads working at the same time on the first concept, each of them will be created and
terminated whenever a stream is created and completed. There will be 20 threads working
simultaneous in the second concept, both approaches uses 20 threads during its lifetime.

28

3.10.3 Threadpool Tiling Concept

Figure 3.20: Overview of Threadpool Encoding. The number of threads will be decided
according to the current hardware,

Thread pool is a group of threads that has been created and put in a standby mode, waiting
for jobs. When a task or operations that needs to be executed, it will be transferred to the pool
where one of the pre-initiated thread will work on the task. There are many implementation
of thread pool which can be found online and can easily be integrated in our program. We
decided to not use the implementation but only adopt the concepts of thread pool as shown in
figure 3.20. We will also create threads at the beginning and let them be idle, but we will not use
them until we have filled up a queue. This is to get a more precise evaluation of the concept,
since if they work during insertion of tasks to a queue and a task only needs a few operations
to completed. The other threads would not have the chance to work. This restriction is due
to the fact that we are working on video files stored locally and they are in H.264 format, thus
we have to read and decode them before we can process them. This procedure also requires
resources from the system, hence the limitation. The performance with the use of thread pool
should be better than sequential and parallel concepts. We expect the number of threads in a
pool which gives the least encoding latency should correlate with the number of physical cores
in a CPU, since video encoding are CPU-bounded.

3.11 Encoding pipeline implementation

The encoding pipeline has the responsibility to separate a panorama video into n x n tiles, the
n stands for the number of tiles. Each tile is then encoded into multiple qualities and stored.
The end product of our implementation can be seen in figure 3.21.

29

Figure 3.21: Overview of the encoding pipeline

3.11.1 Initialization

The encoding process starts upon calling the function startEncoding() in our software encoder
implementation. As we know from section 3.3, the file formats we are using to store files are
h.264 because of its efficient compression while retaining good video quality. It is a video
technology standard which describes how a video stream is compressed. Thus we need a
software encoder which encodes a video stream into h.264. There are many encoders available
that can encode video streams into h264 as mentioned in section 3.4, but we chose x264 software
encoder for its efficient compression capability while retaining good video quality and its
flexibility. As mentioned before, we are going to use the libraries in FFmpeg for encoding.
Before we can proceed to encoding of a video stream, we have to find the corresponding
encoder by using avcodec_find_encoder_by_name() which locates a registered encoder in
libavcodec with the a specified name. If an encoder is found we will allocate memory for a
new AVFrame with getDummyFrame(), the information in it is based on the number of tiles.

3.11.2 Allocation of an AVFrame Structure

During demultiplexing and decoding we also used AVFrame, but the AVFrame we created
was only a shell without any data of a specific frame inside it. The AVFrame is allocated and
filled by FFmpeg automatically during decoding. However in encoding, FFmpeg do not have
the necessary information to execute the same procedure, thus it has to be manually done by
us. Though we could directly encode the AVFrames(decoded from source) stored in memory
to new video streams with different qualities, but that would counteract the purpose of this
thesis. Hence the implementation of getDummyFrame(). The function getDummyFrame() can
be described in these steps:

1. Create an AVFrame with av_frame_alloc()

2. Set the pixel format of frame given by callee

3. Set width and height of frame given by callee

4. Allocate an image to AVFrame with av_image_alloc()

5. Return the AVFrame

We allocated twice for an AVFrame with 2 different functions. The reason for this is because
FFmpeg does not have sufficient information to determine how much memory to allocate an
image data, thus the first function only allocates a space for a generic AVFrame and set its fields
to default values. As we know from section 3.6.1, an image may consist of several channels

30

according to the pixel format, and these channels are stored in AVFrame as uint8_t data pointer
or pointers(depending on the pixel format). When the width, height and the pixel format is
known, then we can use the second function to allocate a memory space for an image and
populate the AVCodecContext::data pointers. The function will also calculate the stride of each
channel and store it in AVCodecContext::linesize field.

The reason for getDummyFrame() is to get an AVFrame which can act as temporary storage
for a frame of a tile, thus we needed to manually allocate the AVFrame corresponding to the
resolution of the tile(and pixel format if there is a need for conversion). There should not be any
significant overhead caused by getDummyFrame() since it will be executed only once during
the whole encoding life cycle and the frame will be reused by overwriting the old data with
new information.

3.11.3 Encoder settings

When the queue has been populated with tasks and we have initiated a number of threads
for encoding(depending on which encoding concept we are using), each of the threads will be
autonomous until every tasks has been completed. At the start a thread will attempt to fetch
a task through getTask(), depending on the result, it will either proceed to encoding or remain
dormant until there are new tasks. When a task has been given to the thread it will initiate the
libx264 encoder from ffmpeg and initialized it with an AVCodecContext from Task structure.

An AVCodecContext is a structure used to control various properties of an encoder.
Many of the settings that we are using are predetermined beforehand to work with the
client side implementation of Interactive Virtual Camera(IVC), but we will run some test
on on various settings to find the pros and cons of using them and find out if there are
any way to further improve the design. Prior to using the AVCodecContext strucure, we
have to find out which encoder the context is going to be used for, thus we have to call
avcodec_find_encoder_by_name() with libx264 as the input. Then we can allocate the structure
with avcodec_alloc_context3() with the given encoder and populate it with the settings we
want. The predetermined option is as follows:

AVCodecContext data fields
gop_size 90
refs 1
time_base.den 30
time_base.num 1
ticks_per_frame 1
max_b_frames 3

Table 3.2: These settings was determined by Vamsii who worked with the clients side,
Interactive Virtual Camera

1. A short explanation of the data fields used

(a) gop_size refers to the size of a Group of Pictures.
Advantages and disadvantages are discussed in section 3.5.2

(b) refs = how many frames can be used as a reference frame
Advantage: In H.264, using several frames as a reference frame can improve

compression efficiency
Disadvantage: Multiple reference frame can substantially increase encoding

time

31

Disadvantage: Considerable increase in memory usage during decoding, since
reference frames must be stored until they are no longer needed

(c) max_b_frames Maximum number of B frames in a GoP

gop_size

gop_size is a limit the we can set to tell the encoder the maximum size of a Group of Pictures.
The advantages and disadvantages are discussed in section 3.5.2 and seen in figure 3.1.

refs

Figure 3.22: Correlation of between encoding latency and compression efficiency. The number
under the squares represent the amount of reference frames we used.

refs refer to the number of reference frame an encoder can search for redundancies while
encoding. We have mentioned frames which can be a reference frame and used by other
frames to fetch information from in section 3.5.1. In H.264, P-frames can have more than one
previously decoded reference frame during decoding, and B-frames can also use more than 1
previously decoded frames as reference. The same concepts of using reference frame to have
more efficient video compression rate in section 3.5.1 should apply here too. Extra reference
frame should lower the bandwidth, but increase the encoding latency since we have to search
after more frame to use as a reference. Though if we observe the figure 3.22, the bandwidth
reduction does not seem to be in our favour in this case. As we can see, the bandwidth increased
in accordance to the number of reference frames we used. The increase in encoding time was in
our expectation. We do not see a positive behaviour until the number of reference frame is set
to 4, that is when the consumption of the storage is starting to decrease. The results may have
been affected by our own settings. The duration of our video is 3 seconds, and the FPS is 30 thus
we have 90 frames. We also set the maximum of B-frames to 3, hence we can only have max 3
B-frames which can come subsequently after each other. To summarize, we have frames that
has been used as a reference frame already, and by adding more, the information of where the
new reference frame is has to also be stored thus the increasing bit rate. However, after increase
the number of reference frame beyond 3, the bitrate begins to decrease. The reason is currently
unknown, but since setting the AVCodecContext::refs to 1 gives us the least encoding latency,

32

we will be using it. This just proves to us not every encoding parameters are compatible, thus
we need to test with different settings and evaluate them.

Determining the frame per second(FPS)

Frames Per Seconds, or FPS, is used to determine the rate of frames that are shown during
playback, it is compulsory to have it. In FFmpeg, the FPS is calculated by a nominator and
denominator which represents a tick in one second and apply how many ticks to represent a
frame. We had a denominator set as 30 and nominator set as 1, thus 1 tick is 1/30 of a second.
Consequently, it means 1 seconds has 30 ticks and since ticks_per_frame are set to 1 we will
have 30 frames per seconds. The reason for this approach is because in some codecs, the time
base is closer to the field rate than the frame rate. In field rate, a video frame can be comprised
of two fields. The fields use interlacing between still images to simulate motions. But we will
not go into further detail since this is not the focus here. To summarize, FPS are represented
differently in accordance of codec thus the need for calculations.

max_b_frames

An encoding parameter which are used to tell the encoder the maximum amount of B frames
which can come subsequently after each other. We discussed the difference between picture
types in section 3.5.1.

Dynamic settings: Resolution, pixel format and thread_count

In this thesis, dynamic settings refers to parameters that varies according to which approach we
are using. Such as in 2X2, the resolution of the tiles are 2048x840. Pixel format refers to which
color space or variations of it we want the stream to be encoded in, changing pixel format could
potentially reduce bandwidth. These two parameters are mandatory since the encoder need to
have knowledge of the width and height of a frame, and pixel format to do correct calculations
for compression during encoding.

The encoding parameter thread_count refers to how many child threads can be used during
encoding. The numbering decides whether FFmpeg will activate frame slicing which will
reduce encoding latency. Basically it will split a frame up into separate smaller frames, then
create and dedicate one child thread to each slice. Setting thread_count to 0 will give FFmpeg
the freedom to choose how many child threads it will create during encoding, and with 1 an
encoder will only use 1 thread without any optimization for encoding.

3.11.4 Choosing a preset

A preset is a pre-defined collection of encoding options that are designed to accommodate
one specific type of scenario. Thus encoders usually provide a set of default configurations
for various settings. The presets can also be used as a base then the user can add their own
encoding configurations which will override some or all of the presets encoding parameters
if they collide. We tested the following default configuration in x264 with our encoding
parameters from section 3.11.3.

33

Preset used Encoding Time (ms)
Size of the output file
(bytes)

ultrafast 957.79 3419191
superfast 1245.11 3050601
veryfast 1182.17 518973
faster 1756.50 570575
fast 2083.88 817215
medium 2683.02 771893
slow 3083.80 782174
slower 4351.90 727461
veryslow 4942.89 611973
placebo 27208.39 667652

Table 3.3: Comparing x264 preset in combination with our encoding parameters. Encoding of
a panorama video to 1 quality.

We optimally want very low encoding latency, high compression rate while having high
video quality, but unfortunately it is still not possible in real-life. Based on the results from
table 3.3, it seems like the latency increases in descending order, but the size of the file
decreases. According to FFmpeg[56], the superfast configuration should be faster than veryfast,
and the file sizes should decrease following the order. This behaviour is most likely due to
the combination of encoding parameters and the presets set by us were incompatible. The
configurations that are relevant for this thesis are those designed to decrease the latency, faster
thus better. The ultrafast preset came out as the top in encoding time, but the file size was also
the largest. The veryfast preset was not so far behind and the tiled videos was compressed
very efficiently. As such we cannot decide which preset to pick, since we do not have sufficient
information to know how much the overhead from tiling would affect the results using these
presets. Thus when the design and implementation has been finalized, we will experiment
with the two default configuration again to get a more complete evaluation. The only way to
set the preset in x264, is through av_opt_set() which is a function that sets parameters which
are not native or found in a generic AVCodecContext structure.

3.11.5 Setting CRF value

We are using CRf as rate control, thus the file size would be unknown until the file has been
created. Setting of CRF value follows the same step as presets. By using the av_opt_set() to
explicitly tell the x264. The value for each tile but the values we are using for the tiles are: 21,
24, 30, 36 and 48.

3.11.6 Storing the media

When a task has been fetched from getTask() and the encoder has been initialized in accordance
to the encoding parameters stored in the task. The next step is to define a storage medium to
store the encoded bitstream. There were 3 approaches we tried:

1. Store the encoded bitstream in memory

2. Write it to file through FFmpeg

3. Write it to a blank file

34

Storing the encoded bitstream in memory should not be a problem with our machine
configurations(8GB ram), but we have to keep track of every encoded bitstreams from each
tile in each quality(8X8 tiles will give us 320 video streams). There are maintaining to do such
as allocating and deallocation of memory, reference pointers, synchronization if it is shareable
and some other. Nevertheless, we would need to store the encoded bitstreams to disk after the
encoding sessions.

Writing to file was another approach, and FFmpeg has its own structures and function
for IO operations on a file. For each file, FFmpeg would need to create a structure to store
information. But before we can use them(IO operations), like many other functions from
FFmpeg, we would need to initialize them thus requires system resources. Keeping them open
over a period of time would further increase the requirement. Closing them would release the
resources, but then we would not be able to access them before re-initialization of it. Testing
with 2X2 approach did not have any noticeable performance decrease, but the more tiles we
used the worse it performs.

The third approach was to write the encoded data into a blank file through fstream[16]. We
discovered later that it was possible to create a blank file and write a video stream to it directly.

Usually a stream header is needed so an application can read and identify how it is coded
to decode it correctly. But we found out later it was during the encoding of the first output
bitstream that a stream header is created and included. Some tests were made with different
tiling approaches, one where we left the files open and another where we will only open them,
write to files and close them. We noticed there were lower resource usage with the second test
but the amount of IO calls it made a little affect on the performance. The CPU would be set to
wait state while writing to disk. Even though with a SSD, every calls are executed at a fast rate,
the build up after a period of time would still be noticeable. Thus we decided to use the third
approach, avoiding the extra structures and functions required, and let the files be open even
though it used more resource.

3.11.7 Processing and encoding of a tile

When a file has been created, then we will proceed to extracting a tile from a panorama video
stream. We have make some calculation to find the surface origin of the tile. As we know
from section 3.11.2, we used getDummyFrame to get an AVFrame structure and it is used to
used as a temporary storage during the encoding process. We have mentioned before that
the frames from the panorama video stream are stored in memory as AVFrame structures.
The way it stores changes according to which pixel format, but for YUV 4:2:2, the image
data(Y, U and V channels) are stored and referenced by AVFrame::data pointers, and their
strides(width+padding if any) are stored in AVFrame::linesize. To find the surface origin of a
frame we can calculate it with equation which was created and discussed in section 3.9.2.

sur f ace origin = (x ∗ tile width) + (y ∗ tile heigth) ∗ panorama width (3.1)

We are exploiting the fact that the YUV channels has been stored as a 1 dimensional array,
thus we can adopt the same concept from image processing here. We know Y channel is never
sampled, so it has the same resolution as the image we look at. Thus the position we found
through the formula can be used as an offset to the first byte of the Y channel. The offsets of U
and V is always half of the offset of Y, because U and V is sampled half the rate of Y horizontally
in YUV 4:2:2. Consequently, it also means that the height are the same between Y and UV. The
height are used to keep track of which row we are in when tiling. Thus we can fetch the pixels
from all three channels at the same time. Getting to the next row can be done by incrementing
the offset of Y by 2, and for U and V divide Y by 2 to find their offsets. Each time we find the

35

offset of all three channels, we copy the size of tile width data to the Y channel. With U and V
only the amount of data to be copied is half of the tile width. Transferring data from panorama
to a tile can be seen in figure 3.23.

Figure 3.23: Overview of how to transfer data from panorama to tile

a) is the initial state of the tile. When the Y, U and V offset has been calculated, copy the
pixels at the offsets corresponding to the channels b). The amount of pixels to be copied is
always the width or stride of a channel, so from b) it was 2 pixels and from U and V only 1. To
get to the bottom row of the tile, we have to add the width of the panorama, thus the Y offset
will land on the first grey area on the next row and replicate the same procedure as b), then we
get c).

We have only described the procedure to get the right information for a tile, to produce a
tiled video stream can be summarized in these steps:

1. Find the surface origin of the tile, which is also the offset of Ytile

2. If there are still frames left, do the following:

(a) Fetch a f ramepanorama

(b) If there are still rows left in the f ramepanorama

i. Copy stride of Ytile worth of data from Ypanorama channel based on Yo f f set

ii. Copy stride of Utile worth of data from Upanorama channel Yo f f set/2
iii. Copy stride of Vtile worth of data from Vpanorama channel based on Yo f f set/2
iv. Increment Yo f f set with the width of f ramepanorama

(c) Write the presentation time stamp to f rametile

(d) Encode the f rametile

36

(e) Write the encoded bitstream to file

3. Flush the encoder and write the remaining encoded bitstream to file

4. Close the file

3.12 Summary

In this chapter we have presented different approaches to reduce the storage of files thus
reducing the bandwidth consumption. We have discussed the h.264 codec and its encoder
x264(libx264 in FFmpeg) and how we can affect the video quality by modifying the options
available in x264. We have gone into detail of how our design was constructed through
simple steps. First we designed a simple design and implemented it, through experiments
with the prototypes we discovered different ways to improve many aspects of the program
thus removing unnecessary overhead. We have mentioned the process of how to make a tile of
a panorama video and encode them. Some small tests were conducted on encode settings
for verification and finding the best option to use for further testing the final design and
implementation of our thesis.

37

38

Chapter 4

Case Study: Software Encoding with
libx264

In this chapter we will be presenting the results of our approaches and their implementation.
Furthermore we will discuss the overhead produced with these designs and compare them
to each other. We will also explore the advantages and disadvantages between the tiling
approaches. The experiments will reveal to us any correlation between the level of compression
and encoding latency and their consumption of storage space thus bandwidth.

4.1 How experiments are done and measured

4.1.1 Set-up specifications

The machine we used conducting experiments and performance measurement are equipped
with an Intel Core i7-4700, 8GB RAM and a SSD hardisk. The configuration we used for
FFmpeg can be found in the Appendix 1. The panorama video we are processing has a
resolution of 4096x1680 and YUV422() as pixel format.

4.1.2 What kind of experiments are conducted and why?

The experiments conducted in this chapter reflects on the prototypes we made during our
master thesis. The prototypes are made and tested so we can rework our design and adjust the
implementation to optimize it further. The duration of the panorama video are 3 seconds, and
in each test the video stream will be separated into tiles according to which approach is used,
then each tile will be encoded into 5 different qualities. Most of the graphs will have a red line,
which is the threshold for real-time encoding. The CPU and memory usage will also be taken
into account during the tests. The CPU and memory usage measurement are extracted from
the system tool "top". The command used are:

1. top -d 1 -b > process.txt

2. more process.txt | grep Encode | cut -c 42-48

The first command will execute top and run indefinitely. For each second it will log the
information shown in top to a text file. When the encoding has been completed we can CTRL-C
to interrupt the program and causing it to abort. The second command shows the log file in
terminal, only the information which has "Encode" in it(which is our process) and cut out all
other unnecessary information.

39

Note that we are using an intel 4700 processor for testing, it has 4 physical cores and has
Hyper-Technology(HTT)1, thus it will be recognized by the operative system as a CPU with
8 cores. So when executing top, the CPU usage percentage can vary from around 100% to a
maximum of 800% during encoding. Where 100% correspond to full utilization of 1 core and
800% for all cores. We want to evaluate the encoder, not the decoder. Thus when the CPU
utilization has been stable in a period of time, which means encoding of panorama stream to
tiles is in execution, it is then we will take the measurement. Another way to easier differentiate
the decoding and encoding part is to put the program in sleep mode right before encoding.
Then start and log the CPU utilization.

4.2 Sequential Encoding

Sequential encoding was the first approach that we designed and implemented. It was also our
first prototype to be used for testing. The origin of this idea was from sequential processing, in
which every instruction is executed following in a logical order or sequence. Thus the encoding
process of the first prototype is based on the mentioned approach. We doubt sequential
encoding would give any better results over other approaches that we designed, but the reason
for testing is to verify for ourselves and prove that the design needs to be reworked. Thus
the results from this approach would be used as hints of how to optimize our design further.
Furthermore we are using ffmpeg for encoding, more precisely its library to encode video
streams with x264, and they have a feature to optimize the encoding process of a frame by
utilizing more threads on it. There are two experiments that could be conducted with the
sequential encoding design. The first one is tested with the proposition we had, and the second
test will be conducted using FFmpeg native optimization for encoding. Basically, FFmpeg can
spawn new child threads and assign them independent tasks on a frame. The amount of
threads can be modified(through AVCodecContext::thread_count), but after some testing we
concluded that the best solution was to have FFmpeg spawn the number of threads at its own
discretion.

1Hyper-Threading Technology is Intel’s proprietary simultaneous multithreading (SMT) implementation used
to improve parallelization on x86 microprocessors[24].

40

4.2.1 Experiment 1: Sequential encoding of panorama video and tiles into multiple
qualities

Figure 4.1: The time to partition and encode the tiles of the full panorama into multiple qualities
with sequential encoding. These results originated from sequential encoding without the use
of FFmpeg optimization

If we look at figure 4.1, the encoding latency between 2X2 and 4X 4 tiles does not seem to be
any different. The upper bound of 4 tiles does seem to be a bit higher than the other, but it
does not seem to introduce any new overhead by going from 2X2 to 4X4 tiling approach. From
the results we can clearly see a big difference between the two previous approaches and 8X8.
The dissimilarity is probably caused by the sheer amount of tasks the encoder has to complete.
The total unique video streams we would have in 8X8 tiling approach is 64 tiles * 5 different
qualities = 320 streams. Each video would need an AVCodecContext to describe how and
in which quality it should be encoded in, and to use them we have to initialize the encoder
with the context. The initialization and de-initialization of an encoder produces overhead thus
prolonging the encoding time as shown in the same figure we mentioned before. But the main
issue is in sequential processing, each operation is executed in order, thus we cannot proceed to
the next tile and process it before the current tile has been completed. Encoding of a Panorama
video into 5 different qualities had the least encoding latency of them all. That is because the
overhead generated by tiling, such as calculating the offsets and the specific bytes we need to
transfer from one place to another, is avoided. Additionally, encoding of panorama video does
not suffer the same amount of overhead(creation and termination of encoders) as tiling.

CPU and memory usage

Panorama 2X2 4X4 8X8
CPU RAM CPU RAM CPU RAM CPU RAM
99,25% 18,73% 98,58% 16,99% 98% 16,49% 95,42% 16,39%

Table 4.1: Sequential Encoding: Average CPU and Memory Usage

41

It was in our expectation that the results from using the sequential approach would not use
the CPU efficiently. The utilization around 100% means that there was only 1 CPU core that
did the encoding during the whole process. The memory usage seems to be normal, since an
image from the panorama video would need to allocate more data as it is bigger. Thus the
memory usage decreases the smaller a tile is. The decrease CPU usage is another aspect to look
at. During profiling we noticed it had to make a lot of I/O, which is caused by the fact that
each time a frame has been encoded, we will directly write it to file, thus the calls. As such
the CPU will need to stop encoding and write the encoded bitstream to the file before it can
proceed to the next frame. We can conclude that the first experiment is not adjusted to handle
a huge amount of task at one.

4.2.2 Experiment 2: Sequential encoding of panorama video and tiles into multiple
qualities with FFmpeg optimization

Figure 4.2: The time to partition and encode the tiles of the full panorama into multiple qualities
with sequential encoding. These results originated from sequential encoding with FFmpeg
optimization

We can see from figure 4.2 there was a considerable increase in encoding time using FFmpeg
optimization compared to the previous test. A closer look at the code segment which controls
the use of thread[14] (starting from line 161). FFmpeg would either initialize a number of
thread corresponding to a given number by the user, or it will find out the the number of cores
on the current machine and spawn the same number of threads. The threads would be put in
a waiting state. Then whenever a frame is transferred to the encoder for coding, the frame will
be split into slices and added to task queue. As soon as the queue is filled with the slices of the
frame, a signal will be broadcast to every child thread which will proceed to encode each part
of the frame. When encoding of a frame has been completed and there is no more task they will
sleep again. Thus the overhead that comes with termination of threads can be avoided. It is
a very efficient method for encoding, but there is a flaw. The optimization is designed to only
encode 1 video stream as a time, as such they will be terminated when an encoder is longer
needed. With the assumption that when an encoder is created with optimization on, it will

42

Table 4.2: Overview of the number of total threads created and terminated after the whole
encoding process has been completed using FFmpeg with optimization

Tiles Qualities Number of encoders Total Threads created and terminated
Panorama Video 1 5 5 40
2X2 Tiles 4 5 20 160
4X4 Tiles 16 5 80 640
8X8 Tiles 64 5 320 2560

create the same amount of threads as there are CPU cores thus we will get a formula:

encoders = tiles ∗ qualitiestotal_threads = encoders ∗ number_o f _cores (4.1)

With the equation 4.1, we can count the number of threads created and terminated during the
whole encoding process as shown in table 4.2. The amount of overhead produced is closely
related to the amount of tiles. Thus the encoding latency increases in parallel with the number
of tiles, which can also be observed in figure 4.2.

CPU and memory usage

Panorama Video 2X2 4X4 8X8
CPU RAM CPU RAM CPU RAM CPU RAM
577,5% 24,05% 480% 18,46% 439,2% 16,94% 300,89% 16,53%

Table 4.3: Sequential Encoding(FFmpeg Optimized): Average CPU and Memory Usage

The utilization of the CPU was much higher than the previous experiment, but it does not
seem like it can use more than 6 cores when encoding a whole panorama stream. The number
of cores decreases the more tiles we have to encode. We assumed FFmpeg would spawn the
same amount of threads as cores on the current machine, but it does not seem to be the case.
Nevertheless with 3 threads per encoder when encoding a panorama video to 8X8 tiles, we
would still get a huge amount of overhead.

4.2.3 Summary of Sequential Encoding

The performance of experiment 1 was poor due to its inability to use more than 1 core for
encoding. With FFmpeg optimization, the utilization of CPU increased several times and
encoding latency improved by a large margin. But it was not designed to handle a huge amount
of video streams in one encoding session. Thus it can not be used in our tiling module, as
such we can conclude that none of the sequential encoding approach would comply with our
requirements.

4.3 Paralell Encoding

Parallel encoding stems from the idea of making use of the multi-core processors efficiently,
which is the standard architecture of every CPU nowadays.

43

4.3.1 Experiment 3: Parallel Encoding using the amount of tiles and qualities to
decide the number of threads

Figure 4.3: The time to partition and encode the tiles of the full panorama into multiple qualities
with parallel encoding.We attained these results by using second concept, which is to spawn
new threads for each tiles only.

We did not include testing of panorama video since we would only get the same results as
sequential encoding by using 1 thread on it. We could use more threads for testing but it
would only overlap other experiments.

As we can see from figure 4.3, encoding 2X2 tiles had the worst performance, this is due
to the fact we had to terminate and create new threads each time a tile has been encoded and
written to file. Another factor is that the tasks are much larger compared to 4X4 and 8X8. The
performance of 4X4 with 16 threads came out best of the three test, but we have to keep in mind
that the total amount of small tasks are considerable in 8X8. According to the results it seems
that the there is a correlation in encoding latency and number of tasks. Even though it is not
prominent, it is most like due to overhead produced when initialization and termination of the
encoders.

CPU and memory usage

2X2 4X4 8X8
4 Threads 16 Threads 64 Threads
CPU RAM CPU RAM CPU RAM
352,22% 19,75% 718,06% 19,94% 736,46% 18,51%

Table 4.4: Parallel Encoding (Tiles): Average CPU and Memory Usage

The utilization of CPU was considerable higher than both sequential tests. There is also an
increase of memory usage as a consequence of having more encoders working concurrently.

44

4.3.2 Experiment 4: Parallel Encoding using the amount of tiles to decide the
number of threads

Each tile gets a thread, another experiments each stream gets one thread(Tiles*resolution)

Figure 4.4: The time to partition and encode the tiles of the full panorama into multiple qualities
with parallel encoding. We attained these results by using first concept, spawning new threads
for each tiles and resolution

The results from 4X4 and 8X8 are almost identical to the previous test, but if we observe a
little closer at the 8X8 results from both figures. The upper quartile of using 64 threads seems to
be more concentrated(green line), which means there are more cases where it performed worse
than normal. According to the all results till now, it seems context switching between threads
does not cause much overhead compared to terminations of threads. Dedicating 20 threads to
encode 2X2 tiles to 5 different qualities yielded much better results than the previous approach,
which would indicate using more threads are more useful in our case.

CPU and memory usage

2X2 4X4 8X8
20 Threads 80 Threads 320 Threads
CPU RAM CPU RAM CPU RAM
730,6% 30,45% 762,18% 21,06% 762,21% 18,72%

Table 4.5: Parallel Encoding (Tiles * Qualities): Average CPU and Memory Usage

The memory utilization of 2X2 tiles approach were substantially higher than 4X4 and 8X8. This
is caused by a task being larger and needs more processing time.The resolutions of 2X2 tiles are
2048x840, thus it will allocates more memory to store frame data for encoding. This behaviour
can also be observed when transcoding a panorama video stream in experiment 2 in section
4.2.2 using x264s frame slicing.

45

4.3.3 Summary of Parallel Encoding

Thread context switching usually produce a relatively high overhead. However, it did not affect
our experiments using the parallel approach as much we would expect. Thus it seems there are
situations where dedicating more resources are beneficial as seen in section 4.3.2. In our case,
the performance boost is probably due to FFmpeg. As we know, we are using the libraries
found in FFmpeg for encoding, and it has its own synchronization mechanism as mentioned in
section 3.8.1. Thus preventing collisions and shared data being overwritten between threads.
When a thread calls a function from libavcodec, it will fetch a mutex, preventing other threads
from accessing it. This is probably the case between the two 2X2 tiling approaches. When using
20 threads, there would be a long queue waiting for a mutex, but during this time there would
be context switching between the threads. Thus other threads can begin pre-preprocessing
frame data before encoding them, which can be observed by the high usage of RAM in section
4.3.2. Another factor which can be included are the Input and Output(I/O) operations. We
are accessing the disk for writing, and during this time there will also be waiting too. The time
threads has to wait are closely related to the size of an image surface they have to process. Thus
we can conclude in this case, that dedicating more threads are beneficial when encoding tiles
with larger resolutions for better utilization of system resources.

4.4 Thread pool Encoding, Persistent Threads

The concept of using persistent threads and having them wait for tasks was the third concept
we introduced, and is the approach we wanted as an addition to the design. Thus it will be
extensively tested and evaluated to see if we have successfully covered the challenges we had
stated. We will be testing each tiling approach(2X2, 4X4 and 8X8) with different numbers of
threads.

4.4.1 Experiment 5: Encoding a Panorama Video using different amount of threads

Figure 4.5: Thread-pool: Overview of the encoding latency of Panorama

46

Testing with 1 thread would deviate from the purpose of threading, thus ut was left out.
According to the results in figure 4.5, there is a curve from 2 thread to 5 threads, with the
lowest encoding latency at 5. There is a noticeable difference between using 4 and 5 threads for
encoding. The same reason which caused the deviation between different number of threads
from the experiment found in section 4.3.3. Thus overhead caused by I/O operations and
waiting for mutexes can also be applied here.

Even though with overhead caused by waiting time, we can clearly see the increase
in performance between using more threads to divide the workload, when compared to
panorama video encoding found in section 4.2.2 with frame slicing. Both approaches
uses threads for encoding, but using persistent threads clearly had a positive affect on the
performance. Another factor is the tiling algorithm is not used on the panorama video,
therefore the performance was considerably better than tiling.

CPU and Memory Usage

Table 4.6: Thread-pool: CPU and Memory usage during encoding of Panorama Video

2 Threads 3 Threads 4 Threads 5 Threads
CPU RAM CPU RAM CPU RAM CPU RAM
182,5% 21,78% 290,33% 24,47% 356,75% 26,3% 499,83% 31,6%

We can notice there is a correlation between the CPU usage and the utilization of RAM in table
4.6. The results were within our expectation, since threads waiting for locks and IO operations
would release CPU resource so other threads can acquire it and use it to pre-process their data.
This could not be observed in the 3. and 4 experiments due to the different sizes of tiles each
threads had to process.

47

4.4.2 Experiment 6: Encoding 2X2 tiles using different amount of threads

Figure 4.6: Thread-pool: Overview of the encoding latency of 2X2 Tiles

According to figure 4.6, we can observe a curve from using 2 threads to 16 threads for encoding,
where using 8 threads had the least encoding latency. The performance between using 8 and 16
threads did not have a huge difference, but we can notice a slight increase in latency from using
more threads. This could indicate the overhead caused by thread context switching. Dedicating
4 threads and under for encoding did not fare too well due to inefficient use of system resources
and idling.

CPU and memory usage

Table 4.7: Thread-pool: CPU and Memory usage during encoding of 2X2 Tiles

2 Threads 3 Threads 4 Threads 8 Threads 16 Threads
CPU RAM CPU RAM CPU RAM CPU RAM CPU RAM
174,78% 17,44% 258% 17,74% 313,33% 17,62% 470,6% 18,48% 454,5% 18,85%

In table 4.7, we can see the utilization of the CPU was slightly higher when using 8 threads than
16 threads. By comparing the results to figure 4.6, we can notice there is a correlation between
CPU usage and encoding latency.

48

4.4.3 Experiment 7: Encoding 4X4 tiles using different amount of threads

Figure 4.7: Thread-pool: Overview of the encoding latency of 4X4 Tiles

We could not use 64 threads in the previous experiment due to the fact 2X2 tiles did not have
enough tasks to be divided between 21 threads and beyond (4 tiles * 5 qualities = 20 tasks/video
streams). Thus we will not be able to make any comparisons on 64 threads against previous
work.

Compared to the previous results from experiment 6, we can see from figure 4.7 there is
some similarities and differences. Using 2 and 3 threads for encoding shared the same issue
between them, but using 4 threads and beyond yielded a performance leap. The increase was
around 600ms on the aforementioned instances. The reason for this is the tile sizes. As we
know, video streams are made up of a sequence of images, and these frames are encoded
subsequently. It is when we encode a picture where we utilize the FFmpeg library that we
encounter mutexes, thus we have to wait. But since the resolution of these tiles has been
reduced, the execution time to process each frame has also been reduced significantly. This
also applies to IO operations. Still it had some affect on the result from using 4 threads.

CPU and Memory Usage

Table 4.8: Thread-pool: CPU and Memory usage during encoding of 4X4 Tiles

2 Threads 3 Threads 4 Threads 8 Threads 16 Threads 64 Threads
CPU RAM CPU RAM CPU RAM CPU RAM CPU RAM CPU RAM
194,86% 16,9% 287,33% 17,17% 373,8% 17,46% 786,25% 18,38% 789,25% 20,65% 775,25% 21,3%

When we compare the previous CPU and memory usage, there was a significant increase in
utilization of system resources which can be seen in table 4.8. This verified our deduction,
where the increase of the performance was caused by the reduction of waiting time produced
by mutexes and IO operations.

49

4.4.4 Experiment 8: Encoding 8X8 tiles using different amount of threads

Figure 4.8: Thread-pool: Overview of the encoding latency of 8X8 Tiles

The results of experiment 8 can be seen in figure 4.8, displays a convex curve starting from the
2 threads to 64 threads with the lowest point at 4 threads. The increased encoding latency is a
result of increasing the number of tiles, thus workload. But the latency which was caused by
idling of threads has been reduced significantly, thus the difference between 4 threads and 8
threads was also affected. However, the best case is still using 4 threads for encoding of 8X8
tiles in 5 different qualities.

CPU and Memory Usage

Table 4.9: Thread-pool: CPU and Memory usage during encoding of 8X8 Tiles

2 Threads 3 Threads 4 Threads 8 Threads 16 Threads 64 Threads
CPU RAM CPU RAM CPU RAM CPU RAM CPU RAM CPU RAM
173,25% 16,51% 282,6% 16,62% 335,33% 16,68% 757,25% 17,28% 765,2% 17,98% 758,6% 19,36%

We can see from the usage of system resource in table 4.9 does not correlate with the results
from figure 4.8. In this case, we are using a Intel CPU with 4 cores, thus we can deduce that by
utilizing more than 4 threads, it would increase the overhead from context switching between
threads. It can also be observed in the same aforementioned figure.

50

4.5 Storage consumption

Table 4.10: Overview of the storage consumption

Source Panorama 2.9M
Panorama Video 7.0M
2X2 Tiles 12M
4X4 Tiles 13M
8X8 Tiles 15M

The storage consumption of different tiling approaches can be observed in table 4.10. We can
observe the space requirement increases in parallel with the number of tiles. There are two
reasons we can think of. In most cases, we need to create a stream header that contains the
video files meta-data. They are necessary for playback devices to recognize the structure of a
video stream so that they are able to play them. Thus the increased space consumption.

Another factor which is probably responsible for this behaviour is Constant Rate Factor.
As we know from , CRF can vary how much quantization can be applied to each frame by
exploiting the fact that the human eyes are better at observing still images than fast moving
objects. Thus it can increase the Quantization Parameter(QP) on frames where there are moving
objects, and decrease QP on still pictures. The panorama video we are using is a soccer game
which has a duration of 3 seconds, and during that time there was little movement involved.
If we observe figure 4.9, there are many places where there are either no activity or will never
have at all. Hence, by separating the video to smaller pieces, we inexplicitly created more
streams with no motion, which makes CRF increase its QP which increases quality and as a
consequence storage consumption.

4.5.1 Reducing bandwidth requirement with the use of tiling

Figure 4.9: Panorama video mixed with tiles from 8X8 with CRF 48, 1,06MB

51

Figure 4.10: Source panorama video , 2,87MB

Though the storage consumption was increased due to tiling there should still be no problem
since harddrives are inexpensive nowadays. But with the increase of storage, we can offer a
significant reduction in bandwidth requirement which can be observed in the figures 4.9 and
4.10. As we mentioned before, interactive virtual cameras are used in many technologies today
for streaming of high quality content. The cameras are able to zoom, pan and tilt which we
can exploit using tiling. We can do that through sending low quality tiles on areas where the
camera is not focused on. However, high quality tiles will be transferred to the part where
the camera are concentrated on, which is also know as Region of Interest(RoI). The RoI can be
observed in the first figure with the red mark which represents the camera.

4.5.2 Further reducing the storage consumption

We did initial test at the beginning by experimenting with different presets. The results was
ultrafast preset yielded the best performance, but the preset veryfast was not far behind and the
video compression was significantly more efficient. We wanted to redo the test after the final
design has been completed, so that we can find out how much storage consumption we can
potentially reduce.

52

Figure 4.11: Encoding latency presets

The number of threads chosen for each tests in figure 4.11, were based on the best cases
for each tiling approach. We can notice there were no tests where veryfast preset triumphed.
It was in our expectation, but the difference in compression can be seen in table 4.11. In this
thesis, encoding latency was the main focus thus we did not try to further reduce the storage
requirement.

Table 4.11: Storage requirement

Panarama 2X2 4X4 8X8
CPU ultrafast 7.0M 12M 13MB 15MB
CPU veryfast 1.2M 4.8M 5.1M 6.0M

4.6 Summary

We have presented multiple tests where we confirmed the liability of sequential encoding,
and verified to ourselves to come up with new approaches and ideas to further improvise
our design and implementation. Even though using frame slicing from FFmpeg improved
sequential encoding performance drastically, it was not compatible with our approach with
tiling due to the fact that we required a huge amount of encoders which can be executed
simultaneously. The overhead from frame slicing was produced by the creation and
termination of threads, which materializes whenever a codec is initialized and terminated.
Thus the performance decreased whenever the number of tiles increased. From experimenting
with parallel encoding of tiles, we discovered the efficiency of threads but also the overhead
caused by thread context switching. It also gave us an indication of how much overhead was
caused by IO operations and waiting for mutexes. Through the experiments, we designed
the concept of using persistent threads to avoid unnecessary overhead by terminations of
threads during an encoding session. After extensive testing with the last concept we can
conclude that in video encoding, being CPU-bounded, does not always yield the best in every
situations. Synchronization mechanism and IO operations plays an important factor, which can
be observed during encoding of 2X2 and 4X4 tiles. With larger tiles, the duration to process a

53

frame increases and as a consequence other threads are prevented to access a specific resource.
The same condition also applies to IO calls, larger tiles more data to write. Thus with 2X2 and
4X4 approaches, we can safely conclude that utilizing Intel Hyper-Technology would produce
the best results, since resources are released when a thread is idle and other threads can claim it
and pre-process their data. However, using 4 threads in 8X8 tiling approach generated the
best performance. The extra overhead which was produced by IO operations and locking
mechanism, had been reduced significantly due to tiles being smaller and as a consequence
less processing time is needed to complete a task.

Even though the storage requirement for tiling is significant, we can exploit the limited
vision of RoI and adapt the tiles in accordance based on the camera placement on video,
thus reducing the bandwidth requirement. Methods for reducing the space required was also
proposed, but the trade off is between encoding latency and compression efficiency.

54

Chapter 5

Hardware Encoding: Design and
Implementation

5.1 Introduction

Hardware encoders are dedicated processors that has been around longer than general purpose
processors, th In this chapter we will present a hardware encder which we will integrate it
in our design, and test its performance. There were also three hardware encoders that was
considered. It was Intel QuickSync, AMD VCE and NVENC. Intel QuickSync was considered
because the test machine we are using has an Intel core with QuickSync. But it was not easy
to activate and since it sits on the die, QuickSync is not scalable without any specialized
hardware. AMD VCE should have been a good choose to use, but there were no available
card in proximity. Thus we decided to use NVENC since it was the only one that was easily
obtainable and scalable with our design and implementation.

5.2 NVENC

Figure 5.1: Detailed overview of NVENC encoder API[7]

55

A detailed overview of the NVENC stack can be observed in figure ??. Variants of Maxwell
architectures has 2 instances of NVENC encoders to further improve performance. Context
switching between those encoder are done by the stack automatically.

NVENC SDK 3.0

In SDK 3.0 there is no support for asynchronous mode(will be mentioned later), but it allows
us to utilize more than 2 encoding sessions simultanously.

NVENC SDK 5.0

Does not have asynchronous mode either, but the structure/framework ahsa been updated
thus it performance better than SDK 3.0. The downside is in this version they removed the
ability to add a licence to the nvencApi, thus adding a limit on how many concurrent encoding
session we can have .

5.3 Pixel formats supported

NVIDIAs hardware encoder NVENC can only accept pixel format NV12 as input, as it is
hardware based, we cannot solve it by updating or modifying the hardware. Thus the only
solution was either use another panorama video as input with pixel format NV12, or we can
use the libswscale library from FFmpeg to convert the pixel format to the corresponding format
NVENC accepts. Followed with NVENC SDK 3.0 and 5.0.1 packages, there was a sample
program which accepts YUV 4:2:0 as pixel format as input. We tested it with with YUV 4:2:2
too, but there seems to be some visual artifacts, which we will be explained in more detail in
5.6.1. Since we can potentially use pixel format YUV 4:2:0 as an input in the sample program,
it will be experimented on and evaluated against NV12. The test will reveal which format is
best suited for more comprehensive experimentation on the hardware encoder. Even though it
accepts only NV12, the encoded video output streams are recognized as in pixel format YUV
4:2:0 by FFmpeg.

5.3.1 YUV420

YUV is a color space which can represents most colors a an can perceive and it is commonly
used in video applications. More detailed explanation about YUV has been discussed in 3.6.1.
The difference is how much sampling has been done on a particular version of YUV. The
numbering found after the initials YUV describes sampling rate. For example in YUV 4:4:4,
all the Y, U and V channels has the sme sample rate, and in YUV 4:2:2 U and V is sampled half
the rate of Y. For YUV 4:2:0 the sampling rate is also half of the Y rate, but both the vertical and
the horizontal directions. Thus it reduces the bandwidth by 50%. The YUV 4:2:0 planes are
illustrated in figure 5.2.

56

Figure 5.2: YUV 4:2:0

5.3.2 NV12

As mentioned before, NV12 is the only pixel format NVENC accepts. Thus conversion is
necessary if other pixel formats are to be used. In NV12 the chroma components are also
sampled half the rate of Y channel both vertically and horizontally. But the U and V channels
are interleaved where every other value is either U or V, thus NV12 has only 2 planes.
Illustration of NV12 with 2 planes can be seen in fiugre 5.3

Figure 5.3: NV12

5.4 FFmpeg with NVENC support

At the initial phase of our design, we discovered that FFmpeg supported the use of NVIDIA
hardware encoder. To be more precise, we found a repository[15] which implemented the
support for using NVENC through FFmpegs generic functions and structures. Therefore we
decided to test it to have an indication of how the performance is, and verify if it is plausible to
use it in our design and implementation. The tutorial of how to build and configure FFmpeg
to support NVENC is found in the same repository, thus we would not go into detail of how to
do it.

5.4.1 Testing FFmpeg with NVENC support

The process for encoding a video stream is very similar to our implementation of the software
encoder. It can be rounded up with these simple steps:

1. Open stream

2. Read video file

57

3. Decode it and store every frames extracted from file

4. Populate the necessary information in an encoder context

5. Fetch an encoder from library corresponding to format you want

6. Encode all the frames and store it in disk

As we can see from these steps, the procedure to use NVENC through FFmpeg is very similar to
our implementation of the software encoder. But instead of fetching libx264 from the library, we
will ask for libnvenc. Libnvenc like libx264, is a wrapper or implementation that are necessary
to push video data from the FFmpeg internal format to an external encoder, in this case the
hardware encoder NVENC.

We ran some tests on it and the results were comparable to the sequential encoding with
optimization from FFmpeg. When we tried to integrate the concept of parallel computing
to our implementation we ran into some problems. The first problem we faced was when
we used two threads for encoding, the latency increased exponentially. We knew there was
some overhead when encoding is executed simultaneously, but the performance has never
been so poor. Even though we are unsure what provoked this kind of behaviour, we decided to
apply more threads thus encoders to find out if there are any correlation between the number
of threads and the latency. It was then we encountered another obstacle. When we tried
to initialize encoding session beyond the second one it failed. We were unsure whether it
was a bug in the implementation or some settings that was necessary to set but overlooked
by us. Thus we decided that it was essential to gain more knowledge of how NVENC
works so we proceeded use the sample program followed with NVENC SDK 5.0.1 package.
During experimenting and testing with NVENC API, we found out from the NVENC SDK
homepage[37] and PDF documentation[36], that our current NVENC SDK package(version
5.0) only allows up to two simultaneous encode sessions per system for low-end Quadro and
GeForce GPUs.

5.4.2 Downgrading drivers to open more encoding sessions

According to one of our colleagues, it was necessary to have a special licence key to use
NVENC to be able to initialize more than 2 encoding session. But during testing of the
sample program, we did not provide a licence key. It looks like NVIDIA removed the
requirement of a license key to use NVENC and it also limited the number of concurrent
encoding session through GPU driver updates. With a closer look in the Application
Program Interface(API) from NVENC 2.0, 3.0, 4.0 and 5.0. It seems like they removed
NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS:: clientPtr, which was used to set up an
encoder and pass the key for verification, from 4.0 and beyond. Thus in order to use the licence,
which we obtained from our colleague, we needed to use an older API from NVENC 3.0. The
newer drivers are not compatible with version 3.0 thus we had to downgrade NVIDIA driver
to version 334.21. After we have configured our machine, we ran some initial tests and verified
that it could open more than 2 encoding sessions simultaneously.

5.5 NVENC initialization

We used the libraries from FFmpeg to read and decode H.264 files and store their raw video
streams as frames in memory in the software encoder implementation. Instead of making
a new implementation with the same procedure of opening, reading, decoding and storing

58

the necessary data, we decided to try and integrate the sample program from NVENC SDK
5.0.1 to our software encoder implementation. Even though we had several problems with
the integration caused by the difference of structures, function calls and parameters found
in the API from 3.0. The process would still be easier than integrating the sample program
which followed the NVENC SDK 3.0 package to our program. First of all, it was designed
to be a standalone package with no need for external libraries. It contained a huge amount
of libraries which was custom made by NVIDIA, such as thread handling, synchronization
libraries and many more. Debugging and trying to optimize the implementation proved to
be too difficult, thus the decision we made. In NVENC SDK 5.0.1, NVIDIA removed almost
all of their custom libraries and there was only the API left. They still had their framework
of containers which does some pre-processing of frames or presets before encoding, but it
does seem to support threading. The containers are created as objects and the functions are
all private thus making external access impossible. The difference in API was not the only
challenge we had to overcome. There was a lot of redundant data and even though at first
glans it seems to support threading, it performed horrible when tested it. Thus there was many
improvements that we made during the design and implementation of our program.

5.5.1 Optimization and reducing unnecessary overhead

During testing of our new implementation, which supported NVENC, we discovered that the
program produced to much overhead and sometimes it even crashed. In Ubuntu(or Linux
enviroment), we can use nvidia-smi -l 1(comes pre-installed when using NVIDIA drivers), to
see some information of what is happening during execution. The operator -l means that the
program will loop or probe the GPU in a given interval(in our case 1 second) to get the current
status of it. What we noticed was, whenever the memory usage exceeded the video RAM it
will cause a crash. Which is normal, but the video files we are processing should not have
that much impact on the memory usage. Maybe close to the limit but it should not exceed.
So we tried to increase the number of threads one by one until we hit the threshold. It turned
out be the initialization of a CUDA context. Each time a context is initialized and allocated,
it will require a huge amount of memory, hence appointing more threads would only create
more CUDA context which leads to our crash. After some testing with encoding video streams
in different tile formations, we found out that it was possible to allocate one CUDA context
that could be shared between several session encoders. How many encoders that can share a
context will vary depending on the resolution of a video or tile. Also CUDA context switching
is expensive which could lead to performance loss.

5.5.2 Initializtation of CUDA context

As mentioned in section 5.5.1, instead of creating a CUDA context of each thread, we will
only create it once and make it shareable to avoid crash and loss in performance. A CUDA
context can be described as a CPU process. Before a context switching in CPU, general registers,
segments registers, Floating-Point Unit(FPU) registers, stack pointers, allocations and other
state-related information associated with a process will be stored before switching to another
process. For GPUs, all the state related information of a particular process is stored in a CUDA
context. Creating a CUDA context can be done with these steps:

1. Initialize the driver API with cuInit()

2. Get a handle or pointer to the device(GPU) with cuDeviceGet()

3. Create a CUDA Context associated with the callee through cuCtxCreate()

59

4. To make it shareable we used cuCtxPopCurrent() to release the context from the host
thread, so other threads can access it

5.5.3 NVENC Encoding configurations

NVENC has many different options to configure much like x264, and it has also predefined
configurations which controls various encoding parameters for motion estimation(ME)and
which rate control scheme to use in H.264 encoder. Thus it can be used in many different
scenarios if the user do not want to manually change or set each encoding parameters. The
following presets which are supported in NVENC SDK 3.0 can be seen in figure 5.4.

Figure 5.4: NVENC: Testing different presets configuration with encoding a Panorama Video
to 1 quality

Even though the name of the presets were pretty self-explanatory, there were many of them
that focused on low latency. So we ran some test to see if there are any large difference between
the presets. From figure 5.4, we can see some irregularities, since we expected HP to be faster
than HQ. But it was probably affected by our own settings that we made which overrides
configurations made by the presets. The preset we are mainly interested in are the one which
gives us the lowest latency, which is Low Latency High Performance. This preset are designed
for speed, as such it will disable the use of B-frames avoiding the use of more advanced
encoding algorithms for video compression. The configurations we manually changed was:

1. The size of Group of Pictures(GoP)

2. The rate of frames per seconds (FPS)

3. The height and width

4. Number of B-frames

FPS decides how many frames are shown during playback, the size of GoP is mentioned in
3.5.2, the height and width is set depending on whether the output is a panorama video or a tile.

0refer to ME

60

With a tile, the resolution is set based on which tiling approach we used. The next parameter
tells NVENC how many B-frames it will use during encoding. NVENC SDK 3.0 is bundled with
different codecs capable of handling many formats such as Joint Photographic Group(JPEG)1,
Windows Media Codec(VC-1)2, MPEG-2 and some more. Thus we have explicitly set the codec
to H.264 for NVENC to encode the data streams according to H.264 standard. Other formats
are not our main focus in this thesis hence we will not discuss about them further. NVENC has
many rate control modes that can be used to dynamically adjusts the encoder parameters to
achieve a specific bit rate. The ones NVENC supports are as follows:

Constant Quantization Parameter mode (CONSQP)
Variable bitrate mode (VBR)
Constant bitrate mode (CBR)
Variable bitrate mode with MinQP (VBR_MINQP)
2-pass encoding optimized for image quality and works
only with low latency mode (2_PASS_QUALITY)
2-pass encoding optimized for maintaining frame size
and works only with low latency mode (2_PASS_FRAMESIZE_CAP)
Constant bitrate mode using two pass for IDR frame only (CBR2)

Table 5.1: Rate control modes supported in NVENC

There does not appear to be a support for Constant Rate Factor in NVENC which we used in
x264. It does seem like two of the modes in NVENC supports the use of QP, CONSQP and VBR
with minumum QP. As we are trying to set the encoding parameters to conform to the options
we used in x264, only these two are relevant. We tested these modes and it seems CONSQP
was faster, but VBR had lower storage consumption. Thus we are going to use CONSQP as
it gives us the lowest latency. The reason for the sprecific choices with the configurations we
have in NVENC is to have a more evaluation between the different encoders when we compare
them.

5.5.4 Performance bottleneck?

Another configuration is automatically set based on which Operative System(OS) enviroment
you are on, and that is synchronous and asynchronous modes. The difference between them is:

Synchronous Encoding of frames can only happen in sequential order, a new frame cannot
be encoded before the previous frame has been completed

Asynchronous Multiple frames can be encoded simultaneously

The advantage of using the first mode is we do not need to keep track of the order of the
frames, encoded frames we get from NVENC is the same one we fed it. In asynchronous mode
we can encode multiple frames simultaneously, but we have to keep track of each of the frames
so we can write them in the right order. Both of these modes are supported for Windows,
but in Linux the only mode that is supported is synchronous mode. These restrictions applies
to every NVIDIA Video Interface versions(NVENC SDK 1.0, 2.0, 3.0, 4.0, 5.0) that is currently
available.

1A method of lossy compression of digital images
2Video codec developed by Windows

61

5.5.5 Allocation of Input and Output buffers for encoding

An encoder with the configuration we made in section 5.5.3 can be created through the API
provided by NVIDIA. Before we can use it, we have to allocate input and output buffers
which will be used as a handle by NVENC. The buffers are used to store the input frame data
which will be transferred from system memory to video memory for encoding, and when it has
completed the process then the encoded frame will be transferred back and stored in the output
buffer in system memory. We can allocate NVENC input buffers with NvEncCreateInputBuffer
and output buffers with NvEncCreateBitstreamBuffer.

5.5.6 Optimization to the intergration of hardware encoder

At the initial phase of integrating NVENC to our implementation, we followed the same
encoding procedure we had in the software encoder design. We will create an encoder, use
it to encode a video file and then terminate it. Thus the general flow of the program was:

1. For each tasks do the following

(a) Create an encoder

(b) Encode the video file

(c) Terminate the encoder

This design did not fit well, as it caused huge overhead most likely due to creation and
termination of the encoder. The same problem did not affect as much to software encoder
because FFmpeg is constantly developed and updated, as such it is highly optimized. We
found out later that in NVENC SDK, there was a function NvEncReconfigureEncoder which
was designed to configure an encoder during an encoding process. So we implemented it into
our system thus avoiding the creation of a new encoder and termination of it for each Task. So
the general flow has been updated to:

1. Create an encoder

2. For each task do the following

(a) Reconfigure the encoder corresponding to task

(b) Encode the video file

3. Terminate when there are no more task

5.6 Encoding process

The procedure of pre-processing of a frame prior encoding is very similar to the procedure in
found in the implementation of software encoder. Before proceeding to encode a video file and
write it to file, we will reconfigure the encoder to correspond to the parameters found in the
task we got from getTask().

62

5.6.1 Conversion of a frame

Figure 5.5: NVENC YUV422 wrong calculations

The panorama video files used in this thesis and implementation is in pixel format YUV422 as
mentioned before. Using the sample code we managed to encode video files with YUV422 as
pixel format. But as you can see from figure 5.5, it did not seem to make the right calculations.
However, with YUV420 as pixel format it came out without having any visual artifacts. The
only color space NVENC accepts is NV12, thus we have to convert YUV422 to either NV12 or
YUV420(with the conversion function found in the sample code). Among the libraries found
in FFmpeg, libswscale is the library which contains highly optimized color space and pixel
conversion and image scaling operations.

Figure 5.6: Conversion steps

Usually it would be logical to take the shortest conversion path as shown in figure 5.6, but
when we tested the latency between those two route we got some very intriguing results.

What format to convert first YUV420 NV12
FFmpeg libswscale 468.45ms 911.53ms
convertYUVtoNV12 227.20ms 0.00ms
Total time used for conversion 695,65ms 911.53ms
Total time of encoding 1669.80ms 1948.86ms

Table 5.2: Overview of overhead produced by conversion

The results in table 5.2 is gained from encoding a full panorama video into 1 high quality.

63

If we follow the a) route in figure 5.6, there will be an overhead caused by the extra conversion
found in the sample code. With the b) route, we avoid the overhead. Still the additional
step we took, where we convert YUV422 to YUV420 using libswscale then proceed using
convertYUVtoNV12 for conversion to pixel format NV12, had the lowest encoding latency.
Between the two route, a) was 48,61% faster than b). The reason at the moment is unclear,
but we will use the YUV420 as the pixel format to convert to NV12 since it gives us the least
encoding latency.

5.6.2 NVENC resolution bug

When we encoded a panorama video into 64 tiles(8X8), the resolution of each tile was 512x210.
There seems to be a issue of the resolution because we get a green line at the bottom as seen
on figure 5.7. In the previous implementation using libx264 for encoding, the same resolutions
did not appear to be a problem. Further reading revealed that most video codec nowadays
split a frame or an image for compression into smaller chunks called macroblocks, rather than
processing the whole image at once. These blocks are usually fixed in size, such as 4x4, 8x8,
16x16 pixels thus the resolutions has to be a multiple of 4, 8 or 16 depending on the block size.
Truncating the height to 212 and 214 did not help, but with 216 we got every pixels we needed.
Thus based on our observation and the fact that every other resolutions we used in the various
tiles formations we have, the size of a macroblock used in NVENC has to be 8 since 216 is not
a multiple of neither 4 nor 16.

Figure 5.7: 8X8 tiling approach, resolution 512x210. Missing some rows of pixels

5.6.3 Encoding of a frame - Encoding module

Before we can encode a frame, it has to pre-processed the same way as the procedure found in .
Then we will fetch an input buffer which we allocated beforehand and lock it. To write data to
input buffer, we will have to convert frame data format to NV12 using convertYUVtoNV12()
since we decided to use pixel format YUV420 instead of NV12 to decrease the latency. We will
not go into detail of how it works, but basically convertYUVtoNV12() will align the pixels from
YUV420 to conform the NV12 pixel format and write it to the input buffer. When it has been
converted and completed the writing to the input buffer, we will need to unlock it. Before
we encode the frame, we will need to create a NV_ENC_PIC_PARAMS structure and set some
encoding parameters due to the nature of our design in secton 5.5.6. Since we are able to encode

64

multiple video sequences without the need to terminate and create a new encoder, we have to
signal NVENC whenever the first frame from each video sequence is going to be encoded.
The flag we have to send is NV_ENC_PIC_FLAG_OUTPUT_SPSPPS, which forces the encoder
to write the sequence and picture header in the encoded bitstream of the frame. Without a
header, decoders would not recognize the format thus playback would be impossible. Other
parameters which are necessary for encoding are a reference to the input buffer and output
buffer. Then we can send the structure to the encoder with nvEncEncodePicture() function
provided by NVENC API to start the encoding process. The pointer to the input buffer will be
used by the encoder to know where to fetch frame data, then the encoding process will begin
when the transfer from system memory to video memory is completed. When a frame has been
encoded, it will be stored in the output buffer. Reading from the output buffer requires us lock,
thus transferring the encoded bitstream from video memory to system memory. Then we can
either write the data to file or store it in memory. Upon completion of processing the output we
will have to unlock the output buffer. During encoding a frame, sometimes the encoder needs
more data from the user to fully encode a frame, it will then signal us and wait for new data.
This behaviour is strictly caused by B-frames, since they need a reference from both a previous
frame and a future frame. Like x264, when encoding of every frame has been completed, we
will need to flush the encoder to get the remaining encoded frames. The transferring of data
between system memory and video memory starts whenever locking is executed as shown
in figure 5.8. According to ffprobe, FFmpegs tool for getting metadata from a video file, the
output of NVENC is in pixel format YUV 4:2:0.

Figure 5.8: Overview of the interaction between CPU and GPU

5.7 Summary

In this chapter, we have presented NVIDIAs hardware encoder NVENC. The limitation it had
was extensively discussed and the necessity of downgrading drivers to initialize beyond 2

65

encoding session was mentioned. The tool which supports NVENC can also be used for
testing though it has its limitation. During this chapter we have made many optimization
and reduced unnecessary data to the program. We examined many the different presets and
encoder parameters NVENC supports and how to use them. There were some debate on
whether there would be a performance bottleneck between synchronous and asynchronous
mode, whatever the case we would still be limited to synchronous mode since the alternative
approach is not supported in linux. We demonstrated how to further optimize the encoder for
usage in a parallel enviroment by reconfiguring it, instead of terminating and initiating new
resources when needed. There were some problems with the pixel formats thus we introduced
new image formats and discussed several problems which we encountered. Consequently, we
needed to convert the pixel format to the one NVENC supports, some approaches were made
and their pros and cons were mentioned. We discovered a limitation to the hardware encoder
which did not affect x264. The procedure of encoding a frame was presented in detail.

66

Chapter 6

Case Study: Hardware Encoding

We wanted to be able to cross the threshold of 3 seconds which indicates real-time encoding,
but with the usage of the software encoder x264 we could not achieve the it. Thus we wanted
to explore new areas to further improve the encoding latency, hence hardware encoders were
the most logical route for us. Many were considered such as Intel Quick sync, AMD VCE
and NVENC. The hardware encoder from AMD was not chosen because it could not be easily
obtained. So we considered the other two, but we decided that our system should be scalable
without difficulty thus NVENC was chosen over Quick sync. The reason was we could not
have beyond 1 Intel CPU with Quick Sync on-board without specialized equipment. In this
chapter we will experiments encoding of the various tiling approaches with NVENC and find
out how efficient they are.

6.1 NVENC Encoding

The performance measurement still uses the same set-up as before, an Intel Core i7-4700, 8GB
and SSD hardisk. However, there is also the additional hardware encoder NVENC that we
used, which is integrated on a GeForce GTX750 Ti. We used NVENC SDK 3.0 with NVIDIA
driver version 334.21 and Cuda compilation tools, release 6.0, V6.0.1. .

6.1.1 Limitation

NVIDIA has stopped supporting GeForce and low-end Quadro GPUs, thus the use of nvidia-
smi(used for profiling) are showing only limited informations. Thus we could not get a
measurement directly from NVENC, which gives us the only way to assess the hardware
encoder is through encoding latency. Memory usage could also be measured, but after some
extensive testing, there were no correlation between the encoding efficiency and RAM used.
Thus we would only mentioned and shows some figures at the beginning, but they will be
excluded in the later experiments.

67

6.1.2 Experiment 9: Encoding a Panorama Video into multiple qualities with
NVENC

Figure 6.1: Encoding panorama video using NVENC

The restriction we had during testing was the limit of 5 threads. It was due to the fact there was
only 5 video streams that could be encoded at the same time. Thus we experimented with 1-5
threads as seen in figure 6.1. From the same figure we can spot a curve from the 1 thread to the
5 threads in , where using 2 threads was the best case. There seems to be an overhead caused
by context switching in the GPU by the look of the increased latency in accordance to threads
used.

Figure 6.2: Memory usage

We can observe there is a high usage of memory in figure 6.2 following the number of
threads dedicated for encoding, but the latency increased the more memory we used. The
reason is unknown at the moment.

68

6.1.3 Experiment 10: Encoding 2X2 Tiles into multiple qualities with NVENC

Figure 6.3: Encoding 2X2 tiles using NVENC

There is a slight difference between the 1 thread and 3 threads compared to the previous
experiment as seen in figure 6.3. There is also the test with 20 threads which further proved
our suspicion of CUDA context switching creating overheads. We expected the performance
should be on par or close to the x264 encoder, but the results compared to x264 indicated
differently. We could only test 20 threads due to insufficient tasks to initiate more threads.

Table 6.1: CPU, GPU and memory usage

GPU Memory 5,62% 9,38% 20,81% 39,47% 77,09%
CPU 91,88% 101,11% 109,8% 141,27% 139,56%
RAM 53,74% 51,37% 49,33% 55,5% 71,19

The RAM usage increases in parallel with the number of threads, but the usage of GPU
memory does not present any performance. Unlike the the software encoder we implemented,
the usage of system memory is higher than every experiment that was made previously(in
x264). The difference can be observed in table 6.1. The reason for high usage of memory is
because a frame need to be in the GPU memory before NVENC can proceed to process it, thus
we have to transfer the frame data from system memory to GPU memory.

69

6.1.4 Experiment 11: Encoding 4X4 Tiles into multiple qualities with NVENC

Figure 6.4: Encoding 4X4 tiles using NVENC

We wanted to find the threshold where the GPU would break and crash, and adapt the number
of threads until we found a number where the program is stable. The highest number we could
achieve was 30 threads, dedicating more threads beyond 30 would crash immediately. We can
see the same curve in fiugre 6.4 as in all previous experiments with NVENC. Using 1 thread
or beyond 2 threads had results that deviated a little, but there was not any noticeable change
with 2 threads. We could actually claim that it was non-existent.

6.1.5 Experiment 12: Encoding 8X8 Tiles into multiple qualities with NVENC

Figure 6.5: Encoding 8X8 tiles using NVENC

70

According to figure 6.5, NVENC is not performing well with small tasks which can be observed
by the increased encoding latency. According to the portable document format(PDF) that
followed the NVENC SDK 3.0 and 5.0.1 packages[36]. It is documented that NVENC supports
multiple hardware encoding but due to hardware context switching penalties, there is a slight
drop in the encoding performance, and the penalty will increase in parallel with then number
of concurrent sessions. But there seems to be variants of the new Maxwell architecture that has
an additional instance of NVENC. If that is the case, then the curve that can observed in all
experiments until, could indicate that NVIDIA GeForce GTX750 Ti has 2 instances of NVENC,
thus the best cases from all the test were 2 threads.

6.2 Summary

The performance using the hardware encoder did not yield the results we wanted. But there are
many factors for the difference in latency. First of all, NVENC only supports NV12 thus it has
to convert from YUV 4:2:2 to its native format. We did some profiling and found out that the
conversion decreased the encoding time, which was also mentioned in section 5.6.1. Secondly,
even though transferring from system memory to GPU memory seems to be executed at a very
fast rate, there are still overhead produced by it. Another factor was also mentioned in section
5.5.4, which is about execution modes that NVENC supports. In synchronous mode, which is
the only alternative for Linux users, frames are encoded one at a time and a frame cannot be
encoded before the previous frame has been encoded. This can be observed in figure 6.2 where
the memory usage is always constant during encoding. There were some improvements which
could be made, such as utilizing CUDA arrays but unfortunately it is still not yet supported
in the latest NVENC SDK 5.0.1. NVENC was probably not designed to handle tiling, or such
small tasks which can be observed by the increased latency with 8X8.

71

72

Chapter 7

Case Study: Software Encoding
combined with Hardware encoding

7.1 Introduction

Experimentation with the hardware encoder NVENC did not yield the results we wanted
due overheads such as conversion of pixel format, hardware context switching and restric-
tions(synchronous mode). But the performance using 2 threads gave us a reason to believe that
we can improve our design and implementation further by utilizing every resources available
on the current test machine. Thus we will be testing and evaluate the result from encoding
with both the hardware and software encoders combined.

7.2 Setup

The performance measurement still uses the same set-up as before, an Intel Core i7-4700,
8GB,SSD hardisk and NVENC. The driver versions are still NVENC SDK 3.0 with NVIDIA
driver version 334.21 and CUDA 6.0.

7.3 Testing the scalability of our design and implementation

In every tests we are using threads + 2 GPU threads even if it is not stated, we are using 2
because it was the one instance which had the best case in every tiling approaches. To get a
complete evaluation we added an extra step for conversion in the encoding pipeline in x264.
Thus we will get only video stream with pixel format YUV 4:2:0.

7.3.1 Experiment 13: Encoding panorama video with x264 and NVENC combined

Table 7.1: Experiment 13: CPU and memory measurement for x264 combined with NVENC

1 Thread 2 Threads 3 Threads
CPU RAM CPU RAM CPU RAM
209,25% 51,8% 324,67% 51,37% 472,33% 55,83%

We can observe a significant increase in encoding time by using both CPU and GPU for
processing videos in figure 7.1. The 3 threads + 2 GPU threads were the best case when

73

Figure 7.1: Encoding Panorama video with x264 and NVENC

encoding only panorama video without tiling. The reason for the high utilization of CPU is
we had 2 threads, each dedicated to 1 GPU thread. Thus we are actually 3, 4 and 5 threads in
the tests. Memory usage is due to transporting data between system and video memory.

7.3.2 Experiment 14: Encoding 2X2 tiles with x264 and NVENC combined

Figure 7.2: Encoding 2X2 tiles with x264 and NVENC

The encoding latency increases in parallel with the number of threads can be observed in
figure 7.2. Looking at the table 7.2, we can can see the memory usage was reduced significantly
when the number of threads increased. As we know, the high memory usage is due to the
fact that we have to transfer frame data to GPU. Thus low memory is equivalent to no data

74

Table 7.2: Experiment 14: CPU and memory measurement for x264 combined with NVENC

2 Threads 4 Threads 8 Threads 16 Threads 18 Threads
CPU RAM CPU RAM CPU RAM CPU RAM CPU RAM
338,33% 47,97% 519,5% 40,38% 784,25% 34,05% 788,25% 33,93% 797,33% 35,37%

transferred, meaning NVENC is idle. Another factor which can confirm our deduction is the
fact we have a low amount of tasks available in 2X2 tiling approach(20 tasks total, 4 tiles*5
qualities). Thus increasing the number of threads will reduce the tasks at a much higher rate.
With 18 threads + 2 GPU threads, all tasks will be taken straight away. With 2 threads as the
best case and 18 threads as the worst case. Additionally the fact that encoding latency increases
by the number of threads and the results from the previous experiment. We can conclude that
NVENC is much faster at processing data with a huge surface area.

7.3.3 Experiment 15: Encoding 4X4 tiles with x264 and NVENC combined

Figure 7.3: Encoding 4X4 tiles with x264 and NVENC

Table 7.3: Experiment 15: CPU and memory measurement for x264 combined with NVENC

Threads 2 3 4 8 16 64
CPU 326,25% 478,67% 582,33% 772,25% 785% 763%
RAM 43,5% 37,47% 39,43% 28,28% 23,63% 23,83

We can confirm our deduction that NVENC is more effective in processing large resolution
images by observing figure 7.3. The 2 threads test which was best case in 2X2 tiling performed
mediocre in 4X4 approach, and by adding an additional thread there was an increase and best
case performance for this test. Experimenting with 4 threads and beyond the encoding latency
increases in parallel with number of dedicated threads.

75

7.3.4 Experiment 16: Encoding 8X8 tiles with x264 and NVENC combined

Figure 7.4: Encoding Panorama video with x264 and NVENC

Table 7.4: Experiment 17: Encoding 8X8 tiles with x264 and NVENC combined

Threads 2 3 4 8 16 64
CPU 219% 309,5% 435,75% 548% 738% 757,5%
RAM 47,8% 41,08% 36,33% 35,63% 29,2% 23,08

Looking at the graph in figure 7.4, a convex curve can be observed starting from 2 threads
to 64 threads, with 4 threads as best case. A slight increase in encoding time can be noticed on
every thread instances, due to the vast amount of small tasks. However, because IO operations
and waiting time for getting mutexes has been reduced significantly as a consequence of
smaller tiles.

7.4 Summary

In this chapter, we have presented experiments which confirms to us that the threshold for
real-time encoding is achievable. We are only using one GPU with NVENC, and it already
improved the encoding time significantly. Thus we have shown that our solution are scalable
with the use of additional hardware in encoding. Though not proven scientifically, there are
indications which makes us believe that NVENC is better at processing high resolution images.

76

Chapter 8

Conlusion

In this chapter, we will look back and summarize our work, mention our main contributions
and lastly we will look into ways for future improvements of our work.

8.1 Summary

In chapter 1, we defined the problem we had which we tried to solve by design and
implementing our system. The challenges we had to face was finding the overhead caused by
tiling, the storage requirement and whether it is possible to encode it in real time. We tried to
solve it by using the free video processing tool FFmpeg, and using libx264 which is a wrapper
to the H.264 encoder x264.

8.1.1 Software Encoder: Design and Implementation

In chapter 3, we discussed several techniques for reducing the storage consumption thus
bandwidth, and tested several encoding parameters to find out the most suited configuration
for our design and implementation. We came over some issues when trying to use the free
video processing tool FFmpeg. Migrating from sequential encoding over to parallel encoding
revealed that the libraries from FFmpeg had some global variables that was shared between
functions, which resulted in corrupted data. But the issue was solved by implementing a
lock which could be used by FFmpeg for synchronization. We have also presented a detailed
description to replicate the prototype used for testing.

8.1.2 Case Study: Software Encoding with libx264

In chapter 4, we experimented with various encodings schemes with various tiling approaches.
We discovered with sequential encoding that system resources was too inefficiently used, thus
we tried to apply frame slicing. It was an optimization in FFmpeg where a frame was separated
into smaller frames, and create and dedicate a child thread for each sub-frame. It yielded much
better performance, but it was discovered that it could not satisfy our requirement of tiling.
The reason is when increasing the number of tiles, the performance decreased significantly.
We found the overhead was due to the termination and creation of threads, inside a software
encoder. Frame slicing uses persistent threads which are on standby if there are no tasks
available, thus it should not produce considerable overhead. The encoders in FFmpeg will
terminate when a stream has been encoded, thus threads which was created inside the encoder
will also be terminated. So we concluded that sequential encoding with or without frame
slicing would not suffice for our design.

77

Experimenting with a given number of threads based on the tiling approach gave us an
indication of the overhead produced during tiling. We learned that each tiling approach has
its own number of threads which would yield the best case. For 2X2 and 4X4 tile formation,
using 8 threads would have the best performance, but in 8x8 tiles 4 threads would have the
best case. Even though video encoding is CPU-bounded, where the same amount of threads
as CPU cores will have least encoding time, there are many other factors that we discovered
which affects the result. With using 2X2 of 4X4 tiles, an encoder has to use more time to process
the whole surface of an image. Thus during this time, other threads will have to wait. This
waiting mechanism was actually initiated by us to prevent data corruption, but the waiting
time for a mutex made threads idle, thus the increase in encoding latency. IO operations was
another factor which also applies here. Usually a thread would context switch to release system
resources for other threads to fetch, but there are no threads waiting for system resources when
applying 4 threads for encoding of 2X2 and 4X4 tiles. However, using 8X8 tiles 4 threads was
the best case, since the waiting time for mutexes and IO operations has been drastically reduced
as a consequence of lower processing time to encode each tile. Though the results we got
from the different test did satisfy the 3 second threshold indicating real time encoding, we did
prove that adaptive encoding of tiles reduced the bandwidth requirement by a huge margin,
by exploiting the Region of Interest in virtual cameras of course. We also provided another
settings which would further reduce the storage consumption, but the trade off is between
encoding latency and compression efficiency.

8.1.3 Hardware Encoding: Design and Implementation

In chapter 5, we proposed the usage of hardware encoders to find if there are any difference
between specialized hardware and general purpose CPU which used the software encoder
x264. We encountered a slight problem during our implementation of the hardware encoder
due to a restriction that was applied to the GeForce and low Quadro GPUs with the new
NVIDIA drivers. It was solved but it was a necessity to acquire a licence key and downgrade
several drivers for NVENC to work. We have discussed some of the issues with NVENC,
such as CUDA context, resolutions bugs, and several tests of different encoders parameters. A
detailed overview of how to implement a working prototype was also mentioned.

8.1.4 Case Study: Hardware Encoding

In chapter 6, we extensively tested the hardware encoders. There was some issues that was not
mentioned in the chapter. It seems if we try to execute the hardware encoder right after each
other there could be a bug were allocating a CUDA context would require significant time. The
results from this case study were not in our expectation. We thought the performance would
be on par or a little lower than x264. But there were many factors which made it like that.
Using NVENC we had to convert YUV 4:2:2 to its native pixel format NV12, this conversion
would prove to be a huge overhead. We discovered that a CUDA context can be shared among
a given number of GPU threads, and how many threads which can run concurrently with
NVENC is decided by the size of a tile. In every test using only 2 GPU threads gave us the best
performance.

8.1.5 Case Study: Software Encoding combined with Hardware Encoding

In chapter 7, we wanted to further increase the performance with the use of both encoders
simultaneously. With the experimentation the results we got was a significant decrease in

78

encoding latency. Which can be proven that our system can be scaled with the use of additional
hardware.

8.2 Main Contributions

During this thesis we have made several contributions related to tiling, cost of overhead and
reduction of bandwidth which will be described under.

Scalability of the system

We have shown in chapter 7 that our prototype can scale up by integrating hardware
component and software component and the performance was significantly better that all
previous attempts of optimizations.

Tiling module

Our main contribution is the design and implementation of the tiling module, and analysis
of the different tiling approaches as described in chapter 3. This module is able to separate a
panorama video into a given number of tiles.

Analysis of the overhead produced as a consequence of tiling

We had experimented with difference tiling approaches combined with different encoding
schemes and analysed the overhead produced during these tests.

Techniques for reducing the bandwidth consumption

In chapter 4 we have shown a way to further reduce the consumption of storage thus
bandwidth. But the trade off is the increased in encoding latency.

Analysis of between hardware encoder and software encoder

We experimented with NVIDIAs hardware encoder NVENC and software encoder x264. We
compared the results between them in terms of latency and CPU usage.

Paper in proceedings

We have a paper in proceedings for the 21st International Packet Video Workshop (PV
2015)[17]. The paper discusses the overall process of the system, and this thesis emphasises
the server side of the system. The discussion about the server side design and implementation
in the paper was the thesis initial phase thus it did not have any comparisons with NVENC.

8.3 Conclusion

Even though we could not achieve real time encoding with the hardware we used for testing.
However, the processing requirement has an upper bound and the number of users does
does affect us. Thus we do not have scaling issue. We have proven that the system can be
improved significantly by utilizing additional hardware. We have succeeded in showing the
overhead produced as a consequence of tiling. We have also presented how much reduction of

79

storage space thus bandwidth can be obtained by using an adaptive tiling approach. Thus our
conclusion is that adaptive tiling of panorama video stream can be applied in real life, we have
succeeded to satisfy the problems/statements that we declared in chapter 1.

8.4 Future Works

test the system with larger data sizes

During this thesis, the data sizes were limited due to video segments having only a duration of
3 seconds.

Using several CPU simultanously

Video encoding is CPU bounded in most cases as we can observe in this thesis. Thus we could
try to do video encoding on xenon processor on a mainboard which supports several CPUs on
it.

Try to combine different specialized hardware

Computers nowadays has a an integrated GPU on their CPU which can be used for encoding.
Thus you could combine a dedicated GPU with the integrated GPU, and if there are still
CPU resources left, use the remaining for encoding too. T This property refers to how well a
system can scale up by integrating hardware and software components supplied from different
designers or vendors. This calls for using components with a standard, open architecture and
interface. In the software area, this is called portability.

HEVC

High Efficiency Video Coding, which is a successor to H.264/MPEG-4 AVC is said to double
the data compression ratio compared to its predecessor. We could apply the file format as a
standard in our system to further reduce the production of overhead as a consequence of tiling,
thus reducing the bandwidth consumption. x265 encoder is implemented and supported in
both ffmpeg and NVENC 5.0.

NVENC SDK

Implement it with a newer version of NVENC SDK on a newer hardware, in asynchronous
mode. For further optimization experiment with cudaarray, though it is not yet supported.

Newer Tiling approaches

A tile does not necessary need to be in square or rectangle form, experiments with different
shapes to find the overhead cost and find out the pros and cons.

Newer Hardware

The main flaw of hardware encoders are its inability to update it codec, thus if there are new
findings where the corresponding codec can be optimized, it cannot be applied to the hardware
encoder. Therefore, test the program with newer hardware.

80

Different hardware encoders

We have mentioned some hardware encoders in this thesis. We could try to design and
implement a new encoder where we can divide the workload by using more than just one
hardware encoder for encoding. This approach seems to have potential to reduce the latency.

81

82

Appendices

83

Appendix A

ffmpeg version 2.5.git Copyright (c) 2000-2015 the FFmpeg developers
built on Feb 12 2015 16:15:06 with gcc 4.7 (Ubuntu/Linaro 4.7.3-2ubuntu1 12.04
configuration: –enable-libx264 –enable-nvenc –enable-gpl –enable-nonfree
libavutil 54. 16.100 / 54. 16.100
libavcodec 56. 20.100 / 56. 20.100
libavformat 56. 18.101 / 56. 18.101
libavdevice 56. 4.100 / 56. 4.100
libavfilter 5. 7.101/ 5. 7.101
libswscale 3. 1.101 / 3.1.101
libswresample 1. 1.100 / 1.1.100
libpostproc 53. 3.100 / 53.,3.100

Table 1: FFmpeg version we used and its configuration

Table 2: Machine configurations

CPU Intel Core i7-4700
RAM 8GB
DISK SSD
GPU GeForce GTX750 Ti
NVENC API Version NVENC SDK 3.0
GPU driver version NVIDIA driver version 334.21
CUDA driver version CUDA compilation tools, release 6.0, V6.0.1

85

Appendix B

The implementation can be fetched from the following repository:
https://bitbucket.org/hoangbn/master-implementation

86

Bibliography

[1] 4K as standard in 2017. URL: http://www.trustedreviews.com/news/toshiba-suggests-4k-tvs-
will-be-mainstream-by-2017.

[2] A. Shafiei, Q. M. K. Ngo, R. Guntur, M. K. Saini, C. Pang, and W. T. Ooi, “Jiku live,” in Proc.
of ACM MM, 2012, p. 1265.

[3] Adaptive Bitrate Streaming. URL: http://en.wikipedia.org/wiki/Adaptive_bitrate_streaming.

[4] Apple’s HLS. URL: https : / / developer . apple . com / library / ios / documentation /
NetworkingInternet/Conceptual/StreamingMediaGuide/Introduction/Introduction.html.

[5] Chrominance. URL: http://en.wikipedia.org/wiki/Chrominance.

[6] CUDA Context. URL: http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#
context.

[7] Detailed Overview Of NVENC ENcoder API. URL: http://on-demand.gputechconf.com/gtc/
2014/presentations/S4654-detailed-overview-nvenc-encoder-api.pdf.

[8] Difference between Sequential and Parallel Programming. URL: https://mivuletech.wordpress.
com/2011/01/12/difference-between-sequential-and-parallel-programming/.

[9] Different YUV. URL: http://www.fourcc.org/yuv.php.

[10] Douglas E Comer, David Gries, Michael C Mulder, Allen Tucker, A Joe Turner, Paul R Young,
and Peter J Denning. “Computing as a discipline”. In: Communications of the ACM 32.1 (1989),
pp. 9–23.

[11] FFmpeg Locking Mechanism. URL: http://www.mail-archive.com/libav-user@mplayerhq.hu/
msg03730.html.

[12] FFmpeg Locking Mechanism solution. URL: http://stackoverflow.com/questions/15366441/
ffmpeg-which-functions-are-multithreading-safe.

[13] Ffmpeg thread safety. URL: http://libav-users.943685.n4.nabble.com/Threads-safe-issue-with-
ffmpeg-c-td945683.html.

[14] FFmpeg threading optimimzation implementation - Frame slicing. URL: http ://ffmpeg .org/
doxygen/trunk/frame__thread__encoder_8c_source.html#l00227.

[15] FFmpeg with NVENC support. URL: https://github.com/Brainiarc7/ffmpeg_libnvenc.

[16] File writing. URL: http://www.cplusplus.com/reference/fstream/fstream/.

[17] Vamsidhar Reddy Gaddam, Hoang Bao Ngo, Ragnar Langseth, Carsten Griwodz, Dag
Johansen and Pål Halvorsen. ‘Tiling of Panorama Video for Interactive Virtual Cameras:
Overheads and Potential Bandwidth Requirement Reduction’. In: (2014).

[18] H.264. URL: https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC.

[19] H.264 Encoders. URL: http://compression.ru/video/codec_comparison/h264_2012/mpeg4_
avc_h264_video_codecs_comparison.pdf.

87

http://www.trustedreviews.com/news/toshiba-suggests-4k-tvs-will-be-mainstream-by-2017
http://www.trustedreviews.com/news/toshiba-suggests-4k-tvs-will-be-mainstream-by-2017
http://en.wikipedia.org/wiki/Adaptive_bitrate_streaming
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/Introduction/Introduction.html
http://en.wikipedia.org/wiki/Chrominance
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#context
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#context
http://on-demand.gputechconf.com/gtc/2014/presentations/S4654-detailed-overview-nvenc-encoder-api.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4654-detailed-overview-nvenc-encoder-api.pdf
https://mivuletech.wordpress.com/2011/01/12/difference-between-sequential-and-parallel-programming/
https://mivuletech.wordpress.com/2011/01/12/difference-between-sequential-and-parallel-programming/
http://www.fourcc.org/yuv.php
http://www.mail-archive.com/libav-user@mplayerhq.hu/msg03730.html
http://www.mail-archive.com/libav-user@mplayerhq.hu/msg03730.html
http://stackoverflow.com/questions/15366441/ffmpeg-which-functions-are-multithreading-safe
http://stackoverflow.com/questions/15366441/ffmpeg-which-functions-are-multithreading-safe
http://libav-users.943685.n4.nabble.com/Threads-safe-issue-with-ffmpeg-c-td945683.html
http://libav-users.943685.n4.nabble.com/Threads-safe-issue-with-ffmpeg-c-td945683.html
http://ffmpeg.org/doxygen/trunk/frame__thread__encoder_8c_source.html#l00227
http://ffmpeg.org/doxygen/trunk/frame__thread__encoder_8c_source.html#l00227
https://github.com/Brainiarc7/ffmpeg_libnvenc
http://www.cplusplus.com/reference/fstream/fstream/
https://en.wikipedia.org/wiki/H.264/MPEG-4_AVC
http://compression.ru/video/codec_comparison/h264_2012/mpeg4_avc_h264_video_codecs_comparison.pdf
http://compression.ru/video/codec_comparison/h264_2012/mpeg4_avc_h264_video_codecs_comparison.pdf

[20] Pål Halvorsen, Simen Sægrov, Asgeir Mortensen, David K. C. Kristensen, Alexander
Eichhorn, Magnus Stenhaug, Stian Dahl, Håkon Kvale Stensland, Vamsidhar Reddy
Gaddam, Carsten Griwodz and Dag Johansen. Efficient Implementation and Processing of
a Real-time Panorama Video Pipeline. 2013. URL: http://home.ifi.uio.no/paalh/publications/
files/mmsys2013-bagadus.pdf.

[21] Brian Harvey and Matthew Wright. Sequential Programming. 1999. URL: https://www.eecs.
berkeley.edu/~bh/ssch20/part6.html.

[22] HTTP Live Streaming. URL: http://en.wikipedia.org/wiki/HTTP_Live_Streaming.

[23] Wei Tsang Ooi Hui Wang Vu-Thanh Nguyen and Mun Choon Chan. ‘Mixing Tile
Resolutions in Tiled Video: A Perceptual Quality Assessment’. In: (2014).

[24] Hyper-Threading. URL: https://en.wikipedia.org/wiki/Hyper-threading.

[25] IBP Reordering. URL: http://blog.monogram.sk/janos/2008/06/08/b-frames-in-directshow/.

[26] Images and Pixels. URL: https://processing.org/tutorials/pixels/.

[27] ISO/IEC JTC 1. URL: https://en.wikipedia.org/wiki/ISO/IEC_JTC_1.

[28] ITU Telecommunication Standardization Sector Video Coding Experts Group. URL: https://en.
wikipedia.org/wiki/ITU-T.

[29] K. Q. M. Ngo, R. Guntur, and W. T. Ooi, “Adaptive encoding of zoomable video streams based
on user access pattern,” in Proc. of MMSys, 2011, p. 211.

[30] Hassan Bin Tariq Khan and Malik Khurram Anwar. Quality-aware frame skipping for
MPEG-2 video based on interframe similarity. URL: http : / /www . idt .mdh . se / utbildning /
exjobb/files/TR0527.pdf.

[31] M. A. Wilhelmsen, H. K. Stensland, V. R. Gaddam, P. Halvorsen, and C. Griwodz, “Performance
and Application of the NVIDIA NVENC H.264 Encoder,” URL: http://on-demand.gputechconf.
com/gtc/2014/poster/pdf/P4188_real-time_panorama_video_NVENC.pdf.

[32] Microsoft. Image Stride. URL: https://msdn.microsoft.com/en-us/library/windows/desktop/
aa473780(v=vs.85).aspx.

[33] Microsoft. YUV 8-Bit YUV formats for Video Rendering. 2008. URL: https://msdn.microsoft.
com/en-us/library/windows/desktop/dd206750(v=vs.85).aspx.

[34] Mutual exclusion. URL: https://en.wikipedia.org/wiki/Mutual_exclusion.

[35] NVENC limitation. URL: https://devtalk.nvidia.com/default/topic/800942/gpu-accelerated-
libraries/session-count-limitation-for-nvenc-no-maxwell-gpus-with-2-nevenc-sessions-/.

[36] NVIDIA. NVENC - NVIDIA hardware video encoder documentation. http : / / developer .
download . nvidia . com/compute /nvenc / v5 . 0_beta /NVENC_DA- 06209 - 001_v06 . pdf.
2014.

[37] NVIDIA. NVENC - NVIDIA hardware video encoder package. https://developer.nvidia.com/
nvidia-video-codec-sdk.

[38] NVIDIA. NVENC - NVIDIA Performance. https://developer.nvidia.com/sites/default/files/
akamai/cuda/files/CUDADownloads/NVENC_AppNote.pdf.

[39] NVIDIA. NVIDIA GTX750 TI. http :// international . download .nvidia . com/geforce - com/
international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf. 2014.

[40] P. Halvorsen, S. Sægrov, A. Mortensen, D. K. Kristensen, A. Eichhorn, M. Stenhaug, S. Dahl, H.
K. Stensland, V. R. Gaddam, C. Griwodz, and D. Johansen, “Bagadus: An integrated system for
arena sports analytics – a soccer case study,” in Proc. of ACM MMSys, Mar. 2013, pp. 48–59.

88

http://home.ifi.uio.no/paalh/publications/files/mmsys2013-bagadus.pdf
http://home.ifi.uio.no/paalh/publications/files/mmsys2013-bagadus.pdf
https://www.eecs.berkeley.edu/~bh/ssch20/part6.html
https://www.eecs.berkeley.edu/~bh/ssch20/part6.html
http://en.wikipedia.org/wiki/HTTP_Live_Streaming
https://en.wikipedia.org/wiki/Hyper-threading
http://blog.monogram.sk/janos/2008/06/08/b-frames-in-directshow/
https://processing.org/tutorials/pixels/
https://en.wikipedia.org/wiki/ISO/IEC_JTC_1
https://en.wikipedia.org/wiki/ITU-T
https://en.wikipedia.org/wiki/ITU-T
http://www.idt.mdh.se/utbildning/exjobb/files/TR0527.pdf
http://www.idt.mdh.se/utbildning/exjobb/files/TR0527.pdf
http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4188_real-time_panorama_video_NVENC.pdf
http://on-demand.gputechconf.com/gtc/2014/poster/pdf/P4188_real-time_panorama_video_NVENC.pdf
https://msdn.microsoft.com/en-us/library/windows/desktop/aa473780(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa473780(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd206750(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd206750(v=vs.85).aspx
https://en.wikipedia.org/wiki/Mutual_exclusion
https://devtalk.nvidia.com/default/topic/800942/gpu-accelerated-libraries/session-count-limitation-for-nvenc-no-maxwell-gpus-with-2-nevenc-sessions-/
https://devtalk.nvidia.com/default/topic/800942/gpu-accelerated-libraries/session-count-limitation-for-nvenc-no-maxwell-gpus-with-2-nevenc-sessions-/
http://developer.download.nvidia.com/compute/nvenc/v5.0_beta/NVENC_DA-06209-001_v06.pdf
http://developer.download.nvidia.com/compute/nvenc/v5.0_beta/NVENC_DA-06209-001_v06.pdf
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/CUDADownloads/NVENC_AppNote.pdf
https://developer.nvidia.com/sites/default/files/akamai/cuda/files/CUDADownloads/NVENC_AppNote.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf

[41] Pipeline(Computing. URL: https://en.wikipedia.org/wiki/Pipeline_(computing).

[42] QPSNR and SSIM program. URL: http://qpsnr.youlink.org/.

[43] R. Guntur and W. T. Ooi, “On tile assignment for region-of-interest video streaming in a wireless
LAN,” in Proc. of NOSSDAV, 2012, p. 59.

[44] Race Condition. URL: https://en.wikipedia.org/wiki/Race_condition.

[45] Werner Robitza. Constant Rate Factor. URL: http://slhck.info/articles/crf.

[46] SavantSmartView. URL: http : / /dealers . savantav . com/portal /SavantSandbox/Released%
20User%20Guides/009-1108-00%20SmartView%20Tiling%20User%20Guide.pdf.

[47] Scaling virtual camera services to a large number of users. URL: http://home.ifi.uio.no/paalh/
publications/files/mmsys2015-gaddam.pdf.

[48] Marius Tennøe, Espen Helgedagsrud, Mikkel Næss, Henrik Kjus Alstad, Håkon
Kvale Stensland, Vamsidhar Reddy Gaddam, Dag Johansen, Carsten Griwodz and Pål
Halvorsen. Efficient Implementation and Processing of a Real-time Panorama Video Pipeline.
2013. URL: http://home.ifi.uio.no/paalh/publications/files/ism2013-bagadus.pdf.

[49] Transcoding. URL: http://en.wikipedia.org/wiki/Transcoding.

[50] Understanding YUV formats. URL: https://www.ptgrey.com/KB/10092.

[51] V. R. Gaddam, R. Langseth, S. Ljødal, P. Gurdjos, V. Charvillat, C. Griwodz, and P. Halvorsen,
“Interactive zoom and panning from live panoramic video,” in Proc. of ACM NOSSDAV, 2014,
pp. 19:19–19:24.

[52] Video Codec. URL: https://en.wikipedia.org/wiki/Video_codec.

[53] Video Encoding General. URL: http://www.heywatchencoding.com/what-is-video-encoding.

[54] Video Encoding General 2. URL: http://help.encoding.com/knowledge-base/article/what- is-
video-encoding/.

[55] W.-C. Feng, T. Dang, J. Kassebaum, and T. Bauman. Supporting region-of-interest cropping
through constrained compression. ACM Transactions on Multimedia Computing, Communic-
ations and Applications, 7(3):17:1–17:16, Aug. 2011.

[56] x264 Presets. URL: https://trac.ffmpeg.org/wiki/Encode/H.264.

[57] YUV. URL: http://en.wikipedia.org/wiki/YUV.

89

https://en.wikipedia.org/wiki/Pipeline_(computing)
http://qpsnr.youlink.org/
https://en.wikipedia.org/wiki/Race_condition
http://slhck.info/articles/crf
http://dealers.savantav.com/portal/SavantSandbox/Released%20User%20Guides/009-1108-00%20SmartView%20Tiling%20User%20Guide.pdf
http://dealers.savantav.com/portal/SavantSandbox/Released%20User%20Guides/009-1108-00%20SmartView%20Tiling%20User%20Guide.pdf
http://home.ifi.uio.no/paalh/publications/files/mmsys2015-gaddam.pdf
http://home.ifi.uio.no/paalh/publications/files/mmsys2015-gaddam.pdf
http://home.ifi.uio.no/paalh/publications/files/ism2013-bagadus.pdf
http://en.wikipedia.org/wiki/Transcoding
https://www.ptgrey.com/KB/10092
https://en.wikipedia.org/wiki/Video_codec
http://www.heywatchencoding.com/what-is-video-encoding
http://help.encoding.com/knowledge-base/article/what-is-video-encoding/
http://help.encoding.com/knowledge-base/article/what-is-video-encoding/
https://trac.ffmpeg.org/wiki/Encode/H.264
http://en.wikipedia.org/wiki/YUV

	Introduction
	Background
	Problem Definition / Statement
	Limitations
	Research Method
	Main Contributions
	Outline

	Adaptive Encoding of Video Tiles
	Tiling Concept
	Adaptive bitrate streaming
	Summary

	Software Encoding: Design and Implementation
	Introduction
	Video compression
	H.264 / MPEG-4 AVC
	Choosing a software encoder
	x264, a H.264 encoder
	Constant rate factor

	Techniques to reduce the storage space and bandwidth requirement
	Frame Types
	Group of Pictures
	Segmentation and GOP size
	Ffmpeg

	Image Formats
	YUV

	Image Stride
	Initialization pipeline
	Initializing the library and ensure thread safety in ffmpeg
	Opening and decoding a Panorama Video - Demultiplexing and decoding module
	File and folder structure
	Adding task to queue

	Tiling module
	Tiling formations
	Image processing

	Encoding concepts
	Sequential Encoding Concept
	Parallel Tiling Concept
	Threadpool Tiling Concept

	Encoding pipeline implementation
	Initialization
	Allocation of an AVFrame Structure
	Encoder settings
	Choosing a preset
	Setting CRF value
	Storing the media
	Processing and encoding of a tile

	Summary

	Case Study: Software Encoding with libx264
	How experiments are done and measured
	Set-up specifications
	What kind of experiments are conducted and why?

	Sequential Encoding
	Experiment 1: Sequential encoding of panorama video and tiles into multiple qualities
	Experiment 2: Sequential encoding of panorama video and tiles into multiple qualities with FFmpeg optimization
	Summary of Sequential Encoding

	Paralell Encoding
	Experiment 3: Parallel Encoding using the amount of tiles and qualities to decide the number of threads
	Experiment 4: Parallel Encoding using the amount of tiles to decide the number of threads
	Summary of Parallel Encoding

	Thread pool Encoding, Persistent Threads
	Experiment 5: Encoding a Panorama Video using different amount of threads
	Experiment 6: Encoding 2X2 tiles using different amount of threads
	Experiment 7: Encoding 4X4 tiles using different amount of threads
	Experiment 8: Encoding 8X8 tiles using different amount of threads

	Storage consumption
	Reducing bandwidth requirement with the use of tiling
	Further reducing the storage consumption

	Summary

	Hardware Encoding: Design and Implementation
	Introduction
	NVENC
	Pixel formats supported
	YUV420
	NV12

	FFmpeg with NVENC support
	Testing FFmpeg with NVENC support
	Downgrading drivers to open more encoding sessions

	NVENC initialization
	Optimization and reducing unnecessary overhead
	Initializtation of CUDA context
	NVENC Encoding configurations
	Performance bottleneck?
	Allocation of Input and Output buffers for encoding
	Optimization to the intergration of hardware encoder

	Encoding process
	Conversion of a frame
	NVENC resolution bug
	Encoding of a frame - Encoding module

	Summary

	Case Study: Hardware Encoding
	NVENC Encoding
	Limitation
	Experiment 9: Encoding a Panorama Video into multiple qualities with NVENC
	Experiment 10: Encoding 2X2 Tiles into multiple qualities with NVENC
	Experiment 11: Encoding 4X4 Tiles into multiple qualities with NVENC
	Experiment 12: Encoding 8X8 Tiles into multiple qualities with NVENC

	Summary

	Case Study: Software Encoding combined with Hardware encoding
	Introduction
	Setup
	Testing the scalability of our design and implementation
	Experiment 13: Encoding panorama video with x264 and NVENC combined
	Experiment 14: Encoding 2X2 tiles with x264 and NVENC combined
	Experiment 15: Encoding 4X4 tiles with x264 and NVENC combined
	Experiment 16: Encoding 8X8 tiles with x264 and NVENC combined

	Summary

	Conlusion
	Summary
	Software Encoder: Design and Implementation
	Case Study: Software Encoding with libx264
	Hardware Encoding: Design and Implementation
	Case Study: Hardware Encoding
	Case Study: Software Encoding combined with Hardware Encoding

	Main Contributions
	Conclusion
	Future Works

	Appendices

