
A self-learning teacher-student
framework for gastrointestinal image

classification

Henrik Løland Gjestang

Thesis submitted for the degree of
Master in Computational Science

(Imaging and Biomedical Computing)
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2020

A self-learning teacher-student
framework for gastrointestinal

image classification

Henrik Løland Gjestang

c© 2020 Henrik Løland Gjestang

A self-learning teacher-student framework for gastrointestinal image classification

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Medical data is growing at an estimated 2.5 exabytes per year [1]. However, medical
data is often sparse and unavailable for the research community, and qualified medical
personnel rarely have time for the tedious labeling work required to prepare the data.
New screening methods of the gastrointestinal (GI) tract, like video capsule endoscopy
(VCE), can help to reduce patients discomfort and help to increase screening capabilities.
One of the main reasons why VCE is not more commonly used by medical experts is the
amount of data it produces. A high level of extra work is required by the physicians who,
depending on the patient, have to look at more than 50,000 frames per examination. To
make VCE more accepted and useful data analysis methods such as machine learning
can be very useful.

Even if a lot of frames are collected per patient they are most of the time showing
normal tissue without any relevant finding. This introduces another problem, namely
that it is difficult to train a machine learning based method using this data. Existing
models often struggle with the challenge of not having enough data that contains
anomalies. This often leads to overfitted and not generalisable models. Our work
explores ways to help existing models to overcome this problem by utilising a popular
sub-category of machine learning called semi-supervised learning. Semi-supervised
learning uses a combination of labeled and unlabeled data which allows us to take
advantage of large amounts of unlabeled data.

In this thesis, we introduce our proposed semi-supervised teacher-student framework.
This framework is built specifically to take advantage of vast amount of unlabeled data
and consists of three main steps: (1) train a teacher model with labeled data, (2) use the
teacher model to infer pseudo labels with unlabeled data, and (3) train a new and larger
student model with a combination of labeled images and inferred pseudo labels. These
three steps are repeated several times by treating the student as a teacher to relabel the
unlabeled data and consequently training a new student.

We demonstrate that our framework can be of use for classifying both, VCE and
endoscopic colonoscopy images or videos. We demonstrate that our teacher-student
model can significantly increase the performance compared to traditional supervised-
learning-based models. We believe that our framework has potential to be a useful
addition to existing medical multimedia systems for automatic disease detection, because
new data can be continuously added to improve the models performance while in
production.

i

ii

Acknowledgements

I would like to thank my supervisors P̊al Halvorsen and Michael Riegler for all the help
and motivation which has kept me going throughout my thesis, and for the opportunity
of working on this research topic. I also wish to express my gratitude towards the two
PhD student; Steven Hicks and Vajira Thambawita. Thank you for all your help, advice
and support, of which I was blessed with during late nights, weekends, holidays and a
global pandemic. You are the wisest men I ever knew, yet, no question felt too stupid
to ask.

I would also like to thank my parents, Heidi and Brede, and my sister Agnete, for
all the support and encouragement I have received both before, and during the thesis.
Without you, none of this would have been possible.

iii

iv

Contents

List of Figures xi

List of Tables xiii

1 Introduction 3

1.1 Background and Motivation . 3

1.2 Problem statement . 4

1.3 Scope and limitations . 5

1.4 Research methods . 6

1.4.1 Theory . 6

1.4.2 Abstraction . 6

1.4.3 Design . 7

1.5 Main Contributions . 7

1.6 Thesis Outline . 9

2 Background 11

2.1 Medical scenario . 11

2.1.1 The digestive system . 12

2.1.2 Colorectal Cancer and Screening 13

2.1.3 Traditional Endoscopy . 14

2.1.4 Wireless Capsule Endoscopy . 16

2.1.5 Remote diagnostic . 21

2.2 Datasets . 21

2.2.1 ImageNet . 21

2.2.2 Available endoscopy datasets . 22

2.2.3 Kvasir-V2 . 22

2.2.4 Hyper-Kvasir . 24

2.2.5 Augere Medical AS . 27

2.2.6 Class imbalance in dataset . 28

2.3 Deep learning . 30

2.3.1 Machine learning types . 30

2.3.2 Convolutional Neural Network . 33

2.3.3 Gradient descent optimization algorithms 36

2.3.4 ResNet . 39

v

2.3.5 EfficientNet . 39

2.3.6 Self learning with noisy student . 42

2.4 Model evaluation . 43

2.4.1 Dataset splitting . 44

2.4.2 Performance metrics . 45

2.4.3 Cross validation . 47

2.5 TensorFlow Framework . 47

2.5.1 tf.keras . 47

2.5.2 tf.data . 48

2.6 Related work . 48

2.6.1 Object tracking . 49

2.6.2 Segmentation . 50

2.6.3 Mapping . 51

2.7 Summary . 52

3 Methodology 55

3.1 Data collection . 55

3.1.1 Privacy, Legal and Ethics Issues 56

3.1.2 Kvasir-Capsule . 56

3.2 Data pipeline . 60

3.2.1 Splitting and resize images . 61

3.2.2 Loading images into the pipeline 62

3.2.3 Optimize performance . 63

3.2.4 Shuffle the dataset . 65

3.2.5 Repeat . 66

3.2.6 Data augmentation . 67

3.2.7 Batching . 69

3.2.8 Handling dataset class imbalance 70

3.3 Training and parameter tuning . 74

3.3.1 Batch size . 74

3.3.2 Weight initialization . 75

3.3.3 Learning rate . 76

3.4 Teacher-student architecture . 79

3.4.1 Python implementation of system 80

3.4.2 Generating new pseudo labels . 85

3.4.3 Feature drifting . 88

3.4.4 Evaluation methods and metrics 91

3.5 Summary . 92

4 Experiments and results 93

4.1 Experiment management . 93

4.1.1 Keeping track of experiments . 94

4.1.2 Evaluation method and metrics . 94

4.1.3 Hardware details . 96

vi

4.1.4 Network architecture . 97
4.1.5 Network parameters . 98
4.1.6 Labeled and unlabeled dataset . 101

4.2 Optimizing the teacher model . 101
4.2.1 Benefits of pre-trained weights . 101
4.2.2 Re-sampling versus weighting classes 103
4.2.3 Effect of varying image resolution 105
4.2.4 Neural network dimensions . 108
4.2.5 Models ability to learn class features 110

4.3 Teacher-student model on Hyper-Kvasir 114
4.3.1 Evaluation metrics . 114
4.3.2 Model complexity: iterative training 114
4.3.3 Noising the student . 116

4.4 Teacher-student model on Kvasir-Capsule 117
4.4.1 Importance of good dataset split 118
4.4.2 Unlabeled dataset . 121
4.4.3 Evaluate Kvasir-Capsule results . 122
4.4.4 Noisy student experiments . 122

4.5 Summary . 128

5 Conclusions and Further Work 131
5.1 Summary . 131
5.2 Contributions . 132
5.3 Further work . 133

Bibliography 137

vii

viii

List of Figures

1.1 Image of a video capsule . 3

2.1 An overview of the terms used to describe the digestive system 13
2.2 Image from Kvasir-V2 dataset of a polyp in the colon 15
2.3 Image of a fiber optic endoscope with explanation of different parts of the

tool . 15
2.4 Distinction of the nomenclature relating to capsules, wirelessness and video 19
2.5 Images taken with VCE from stomach and small intestine 19
2.6 Video capsule endoscopy equipment manufactured by Olympus 20
2.7 Number of labeled samples for each of the 23 classes in Hyper-Kvasir dataset 25
2.8 Example of a segmented image from Hyper-Kvasir dataset 27
2.9 Augere Medical tagging tool screen capture 28
2.10 Two popular resampling methods . 29
2.11 Workflow of supervised machine learning. 31
2.12 Reinforcement learning: Agent and environment. 32
2.13 Different model scaling methods . 41
2.14 A visualization of the splits . 44
2.15 Illustration of how object in two frames is tracked with a bounding box . 50
2.16 An example of Deep EndoVO accuracy . 52

3.1 Image examples of the various labeled classes for images 57
3.2 Distribution of labeled samples per class in the Kvasir-Capsule dataset . . 58
3.3 Pipeline for training model . 60
3.4 The input pipeline . 61
3.5 Naive pipeline. 63
3.6 Pipeline with prefetching. 64
3.7 Naive pipeline with mapping. 65
3.8 Pipeline with parallel mapping. 65
3.9 Pipeline with cache. 66
3.10 The effect of data augmentation on sample image. 67
3.11 The effect of reduced data augmentation on sample image. 69
3.12 EfficientNetB0 with custom top . 75
3.13 Learning rate with inverse time decay . 77
3.14 Effect of inverse time decay on training and validation loss. 78
3.15 Illustration of the Noisy student method 79

ix

3.16 Number of images of interest found in unlabeled dataset 85

3.17 Class distribution development after two additions of pseudo labels. . . . 87

3.17 Generated pseudo label by teacher model trained on labeled data 90

3.18 Pseudo labels of the hemorrhoids class, generated by teacher 1 and teacher 2 91

4.1 Scatter plot of precision and recall . 96

4.2 Confusion Matrix of a EfficientNet model trained on Hyper-Kvasir dataset 97

4.3 Similarities between impacted-stool and polyps classes 99

4.4 Example where the model accuracy for training data greatly outperforms
the accuracy for testing data . 100

4.5 Loss computed on training and validation data using carefully initialized
weight bias compared against zero initial bias 103

4.6 EfficientNetB0 trained with different layer weights initialization 104

4.7 Confusion matrix from model trained on resampled data 106

4.8 Loss and accuracy calculated on training and validation data respectively
for a EfficientNetB4 model . 106

4.9 ROC curve with results for baseline, weighted and resampled models
trained on a binary version of Hyper-Kvasir 107

4.10 Accuracy and loss calculated on Hyper-Kvasir labeled training data for
three models . 108

4.11 Model accuracy and loss during training for different image resolutions . . 109

4.12 Different resolutions for input pipeline images. 109

4.13 Four EfficientNet models with different network dimensions 111

4.14 Data prediction for Averaged ResNet-152 + DenseNet-161 113

4.15 Inferred pseudo labels of Hyper-Kvasir unlabeled dataset comparison . . . 113

4.16 F1-score measured per class in teacher-student model after 6 iterations . . 115

4.17 Precision, recall, and F1-score for teacher-student model 115

4.18 Average weighted F1-score for different EfficientNets 117

4.19 Noisy student compared against un-noised student 118

4.20 Trailing frames taken from Angiectasia class of Kvasir-Capsule dataset . . 119

4.21 Accuracy and loss from training and validation dataset after 18 epoch of
training on Kvasir-Capsule dataset . 119

4.22 Accuracy and loss from training and validation dataset after 15 epoch of
training on Kvasir-Capsule . 121

4.23 Accuracy and loss computed on the split 0 and split 1 during training of
3 iterations of teacher and student models for 25 epochs 121

4.24 Accuracy and loss computed on the validation data during training of 3
iterations of teacher and student models for 25 epochs 124

4.25 Averaged accuracy and F1-score for both splits after 3 iterations of
switching out the teacher with the student 124

4.26 Weighted average score for recall, precision and F1-score for teacher-
student models run for 3 iterations . 125

4.27 Averaged accuracy and F1-score for both splits after 3 iterations of
switching out the teacher with the student 126

x

4.28 Confusion matrix created by testing the last student model on split 1 of
Kvasir-Capsule dataset . 127

4.29 Preview of pseudo labels from Kvasir-Capsule unlabeled dataset 129

xi

xii

List of Tables

2.1 List of the most common types of endoscopy. 17
2.2 Existing colonoscopy image and video datasets 23
2.3 An overview of VCE datasets from the GI tract 24
2.4 Kvasir-V2 classes . 24
2.5 Hyper-Kvasir class descriptions . 26
2.6 EfficientNet performance results on ImageNet 42
2.7 Confusion matrix layout for a binary classifier 45
2.8 Segmentation results on the ISBI cell tracking challenge in 2015 51

3.1 Distribution of samples per class before and after dataset re-sampling . . 72
3.2 Hyper-Kvasir class weights . 74
3.3 Max batch size for each EfficientNet model 76

4.1 Classification report generated by system 95
4.2 Validation report for a sample of generated pseudo label. 98
4.3 System specifications . 99
4.4 List of weights use during experiment . 105
4.5 Metrics for three models, with three different methods of handling class

imbalance . 105
4.6 Noised student metrics from training on Hyper-Kvasir 117
4.7 Two fold dataset split of Kvasir-Capsule dataset 120
4.8 Noised student metrics from training on Kvasir-Capsule 125
4.9 Noised student metrics from training on Kvasir-Capsule 126
4.10 Validation report for a sample of generated pseudo label. 128

xiii

xiv

1

2

Chapter 1

Introduction

1.1 Background and Motivation

Colorectal cancer (CRC) is the third most common cause of cancer mortality for both
men and women [2], and it is a condition where early detection is of clear value for the
ultimate survival of the patient. As statistics show that 15% of male and female above
50 years are at risk, the procedure is recommended on a regular basis (every 3-5 years)
for the population over 50, and from an earlier age for high-risk groups.

Figure 1.1: Image of a video capsule1.

Colonoscopy is a demanding procedure requiring an significant amount of time by
specialized physicians, in addition to the discomfort and risks inherent in the procedure.
Traditional methods based on colonoscopy are not cost-effective for population-based
screening purposes, so only about 2− 3% of the target population is reached at present.
The cost of a population screening program is prohibitively expensive. Colonoscopy
is the most expensive cancer screening process in the US, with annual costs of $10
billion dollars ($1100 per person) [3]. In Norway we have similar costs of around $1000
per person, with a time consumption of about 1 doctor-hour and 2 nurse-hours per

1Image Credit: Medtronic

3

examination.

By researching an automatic system for a camera pill, the aim is to greatly increase
the number of patients that can be examined, i.e., making the public health care system
more scalable and cost effective, while at the same time reducing the need for intrusive
procedures like ”bottom-up” examinations like colonoscopy.

In this thesis, we aim to design and develop a system for analyzing medical images
from a camera pill, as seen in Figure 1.1. The pill is swallowed and records video of
the entire digestive system. The goal is to be able to detect different irregularities in
the patients digestive system, like a colon polyp, erosions, blood, etc. by using machine
learning and other relevant tools. However, medical data is often sparse and unavailable
to the research community, and qualified medical personnel rarely have time for the
tedious labelling work. In this respect, we have gathered our own dataset with video
capsule data provided by Department of Medicine at Bærum Hospital, Vestre Viken
Hospital Trust in Norway. Still, some pathological findings in the data are very rare
and are only represented by tens of samples. Because of this lack of labeled data, we
look to a branch of Artificial Intelligence (AI) called semi-supervised learning, which can
take advantage of large amounts of unlabeled data to further improve upon traditional
supervised models. The semi-supervised learning algorithm is to train a model on labeled
data, then use the model to predict image labels, called pseudo labels, from a corpus
of unlabeled images, then finally train a new and improved model on the combination
of labeled images and pseudo labels. We call this self-learning framework for a teacher-
student framework because we first train a model on the labeled data (the teacher),
and then use the teacher to train a student which eventually becomes better than the
teacher.

1.2 Problem statement

Based on the background and motivation presented in the previous section, we decided
to look into how unlabeled medical data can help to improve computer-aided diagnostic
in the GI tract. The research question we want to answer in this project is the following:

Can a semi-supervised teacher-student framework improve on traditional
supervised models by incorporating inferred pseudo labels into the labeled
training data in the field of gastrointestinal tract endoscopy?

Because of the nature of highly sparse and skewed labeled medical datasets we are
especially interested in if this method can create models which are better at classifying
minority classes or otherwise improve the class imbalance problem. From our research
question, we define the objectives targeted by this thesis as follows:

Objective 1 Collect data for a video capsule endoscopy dataset of both labeled and
unlabeled images from the gastrointestinal tract, with a skewed balance of class
samples to represent real world scenario. This dataset should be used for testing
our framework.

4

Objective 2 Provide a implementation of a teacher-student framework for multiclass
image classification based on the novel EfficientNet architecture, with a suite of
evaluation tools to help with further analysis.

Objective 3 Use various model hyper-parameters and framework setting to get a better
understanding of the effect which is caused by combining pseudo labels with
original training images, and map performance gains by using various network
dimensions.

To meet these three objectives we must undergo literature searches, research and
development. Because of this, we also decided to define two requirements which we
should consider when developing the dataset and teacher-student framework. The two
requirements are as follows:

Requirement 1 All data and code used to complete this project should be open source,
and easily accessible.

Requirement 2 The technology and tools used to create our teacher-student framework
should be mature and widely tested in the field of deep learning. This will ensure
all programming libraries used are well documented and easily available for others
such that our results are reproducible.

1.3 Scope and limitations

Based on the described problem statement, the scope of this thesis is to focus on the
completion of our three main objectives, which act as the initial steps of answering
the research question introduced in Section 1.2. The first objective is to create a
dataset of labeled and unlabeled images from the gastrointestinal tract taken with video
capsule endoscopy. The second objective is to develop a semi-supervised teacher-student
framework and corresponding framework for validation the results. We will be using the
largest, to the best of our knowledge, colonoscopy dataset Hyper-Kvasir to do preliminary
testing and validation and then test on our capsule endoscopy dataset and compare the
results. The last main objective is to find suitable parameters to use for our model
training and framework settings.

Considering the scope of this thesis, we will limit ourselves to use the novel family of
EfficientNets. The EfficientNet architecture uses compound scaling to uniformly scale
network width, depth and resolution to create an optimal network that capture all fine-
grained features of an image. By using different compound scaling coefficients we can
easily compare different network dimensions for our teacher-student framework. Had we
had more time and resources we would have tested with many different architectures to
find the optimal one.

An additional limiting factor is the low temporal information achieved by the video
capsule endoscopy data which we received from Vestre Viken Hospital Trust. This
limitation is due to battery and frame-rate trade-offs made by the device manufacturer

5

and for this reason we opted to create a system which only handles still frames and not
video.

Another limiting factor is the computer memory on the machines we have used to
run our experiments. Due to time constraints and other limited resources we prioritized
not to go deeper with code optimization, but rather to take other actions like image
resolution reduction and model downscaling.

1.4 Research methods

For this thesis, we have decided to use the Association for Computing Machinerys
(ACMs) methodology for our research. In the spring of 1986 ACM president Adele
Goldberg and ACM Education Board Chairman Robert Aiken appointed a task force
with the prime objective of describing the core fundamentals of computer science and
computer engineering into a detailed report [4].

The report describes three major paradigms which represent different areas of
competence in the field of computer science and computer engineering. Some will argue
that the different paradigms are implicitly based on an assumption that one of the
three processes is the most fundamental, but as we will see, the three paradigms are
so intricately intertwined that it is irrational to say that one is the most fundamental.
Below, we give a brief description of each paradigm and discuss how our work fits into
each of them.

1.4.1 Theory

The first paradigm, Theory, is deeply rooted in mathematics and is concerned with
the ability to describe and prove relationships among objects. The paradigm consist of
the following four steps; (i) characterize objects of study (definition), (ii) hypothesize
possible relations among them (theorem), (iii) determine whether the relationships are
true (proof), and (iv) interpret the results found.

In this thesis we support this paradigm by touching upon the theory behind
machine learning and convolutional neural networks. We identify the problems regarding
multiclass classification on small datasets with skewed class balance and propose
theoretical solutions which later are tested in practice.

1.4.2 Abstraction

The second paradigm is abstraction. Abstraction is a form of modeling and is rooted in
the experimental scientific method. This paradigm is concerned with the ability to use
the relationships found in the theory paradigm to make predictions that then can be
compared to the real world. It has four steps, which are described as follows; (i) form
a hypothesis, (ii) construct a model and make a prediction, (iii) design an experiment
and collect data, and (iv) analyze the results.

Our work support the abstraction paradigm by analyzing the relationship between
the convolutional neural networks and its predicted results. Using this information we

6

identify problems regarding class imbalance, overfitting and lack of generalisability. By
forming a hypothesis, we then reran the experiments with additional data input noise,
and interpreted how the change in dataset affected the models performance.

1.4.3 Design

The third paradigm, design, is rooted in engineering and consist, like the others, of four
main steps listed below. The design paradigm is concerned with the ability to implement
specific instances of those relationships and use them to perform useful actions. The
following four steps will help an engineer to construct a device or system to complete
a given task; (i) state requirements, (ii) state specifications, (iii) design and implement
the system, and (iv) test the system.

This paradigm is supported by the completion of our teacher-student framework.
This framework was extensively used throughout the thesis to conduct a plethora of
experiments.

1.5 Main Contributions

Over the course of this thesis, we have researched and developed a semi-supervised
teacher-student framework for classification of pathological findings and anatomical
landmarks in the gastrointestinal tract. This framework focus on using a large corpus
of unlabeled images exported from video capsule endoscopy taken during patient
examinations at Bærum hospital, by iteratively inferring pseudo labels and combining
them with the labeled training images to increase model performance. As defined in our
problem statement in Section 1.2, we set two requirements which our framework should
meet to be considered finished (within the context of this thesis). We will reiterate the
requirements and describe how our system meets them:

Requirement 1 All data and code used to complete this project should be open source,
and easily available.

This requirement is supported by our dataset publication “Kvasir-Capsule, a Video
Capsule Endoscopy Dataset” [5], and our provided GitHub repository2. Our initial
experiments and research are done on another open source dataset, Hyper-Kvasir3 [6].

Requirement 2 The technology and tools used to create our teacher-student framework
should be mature and widely tested in the field of deep learning. This will ensure
all programming libraries used are well documented and easily available for others
such that our results are reproducible.

2https://github.com/henriklg/master-thesis
3https://datasets.simula.no/hyper-kvasir/

7

https://github.com/henriklg/master-thesis
https://datasets.simula.no/hyper-kvasir/

This requirement is supported by our proposed teacher-student framework introduced
in Section 3.4. We have chosen to create own implementations of methods which
was possible in a timely manner. This reduce library dependencies and framework
complexity. Other libraries we have used are well used in the domain of deep learning,
and are well documented.

With these requirements fulfilled, we look at how our teacher-student framework
solves the three research objectives which define the work that should have been done
over the course of this thesis.

Objective 1 Collect data for a video capsule endoscopy dataset of both labeled and
unlabeled images from the gastrointestinal tract, with a skewed balance of class
samples to represent real world scenario. This dataset should be used for testing
our framework.

This objective is supported by our creation of a gastrointestinal dataset, Kvasir-
Capsule [5], containing a total of 44,260 manually labeled images with bounding boxes
around the respective finding, split into 13 classes for pathological findings, anatomical
landmarks and quality of mucosal view. The annotation was performed by three MSc
student, supervised by an expert endoscopist with many years in the field. Whenever the
MSc student encountered an issue, the endoscopist reviewed the case. We also include
the 44 videos used for extraction of labeled images, as well as 72 videos which are not
labeled and thus useful for unsupervised and semi-supervised machine learning system or
to generate more labeled images by other qualified personnel in the future. All videos are
taken by video capsule endoscopy during a number of examinations at Bærum Hospital in
Norway, between the year 2016 and 2018. The Kvasir-Capsule dataset is available from
the Open Science Framework (OSF) accessible via the link https://osf.io/dv2ag/.

Objective 2 Provide a implementation of a teacher-student framework for multiclass
image classification based on Google’s novel EfficientNet architecture with a suite
of evaluation tools.

This objective is supported by our proposed teacher-student framework presented
in Section 3.4, which use a teacher model, based on Google’s EfficientNet architecture,
to create pseudo labels from unlabeled endoscopy images, which are then combined
with original labeled training data. Next, we create a larger student model with more
stochastic noise, and inject the input pipeline with noise transformations, like image
translation, rotation and variances in brightness, saturation etc, to create a larger
and more noisy student model. This noised student model learn more features from
the combined dataset of labeled images and inferred pseudo labels, than the smaller
teacher model. This process is then iterated a couple of times to further increase model
performance.

Objective 3 Use various model hyper-parameters and framework setting to get a better
understanding of the effect which is caused by combining pseudo labels with original
training images, and map performance gains by using various network dimensions.

8

https://osf.io/dv2ag/

This last objective is supported by our research made in Chapter 4, where we present
a detailed analysis and ablations of various design choices, such as architecture, hyper-
parameters, class imbalance equalizing methods, image input resolution and more. When
performing such experiments we measure cross-entropy loss, model accuracy, recall,
precision and F1-score during training and create easy-to-diagnose plots and reports
for every model. The data is split in suitable folds and used for training and validation
to ensure good validity. Based on this performed analysis, we derive a configuration of
our teacher-student framework which improve on the baseline performance of our initial
EfficientNet models by 3.2% for Hyper-Kvasir and 4.7% for Kvasir-Capsule.

Through the work produced in this thesis, and by answering the stated research
objectives, we have learned the value of using pre-trained network weights to greatly
reducing training time, importance of sampling a imbalanced dataset to help the model
generalize better during training, how changes in image resolution speed up training at
the cost of model performance, and the various effects of changing network dimensions.
With this knowledge we then designed and developed a self-learning teacher-student
framework. This semi-supervised teacher-student framework, trained on sparsely and
skewed labeled video capsule endoscopy images and traditional endoscopy images,
has shown the ability to improve on traditional supervised models in our conducted
experiments with varying results. With more tuning of the framework settings and more
data for both training and validation, this self-learning paradigm of machine learning
can have profound effects on the future of computer-assisted diagnose in the medical
domain.

1.6 Thesis Outline

This thesis is split into five chapters. Chapters one and two are mostly to introduce the
reader to the topic and to fill in the necessary knowledge to understand the rest of the
thesis. In the last chapter, we conclude on our findings and discuss our findings and
propose further work. The papers that have been referenced in the thesis is added in
the bibliography at the very end. The chapters in this thesis are summarized below:

• In Chapter 2, we discuss the literature that focus on the topic of the digestive
system, patient screening, endoscopy, endoscopy datasets, and deep learning used
for automated lesion detection in computer systems.

• In Chapter 3, we present the details of design, implementation of our semi-
supervised image classification system and the processing and collection of data.

• In Chapter 4, we present the experiments we have conducted with the different
image datasets, and the results

• In Chapter 5, we provide a comprehensive overview of the results found and discuss
what that contributes to the field and propose some further work.

9

10

Chapter 2

Background

In recent years, there have been many proposed methods to use automated object
tracking, segmentation, and deep learning to produce a better, and cheaper health care
system [7]–[10]. Many of these methods are considered state of the art systems within
the fields of deep learning. One requirement for such a system to work in reality is a
good flow of data. Ideally, all the data should be labeled by a doctor before it is used
for training deep neural networks, but this is rarely the case. We propose a method that
takes advantage of this unlabeled data which is more readily available.

In this chapter, we will present the necessary background and related works to
understand how such a semi-supervised model can be built. This will be covered over two
main parts; one where we go through the related works and background to understand
the medical aspect of this topic and the other will cover the technical use of deep learning
in mission-critical fields such as the medical domain.

We begin with the digestive system and how it operates to aid the human body
with digestion of food. Next we will cover disease detection by using various types of
endoscopes. We will look at how the current state of lesion detection and how it could
be improved by using deep learning.

In the next part we will focus on deep learning and its various architectures and
building blocks. To fully understand this we need to have a look at its inner workings
and outputs. We begin with looking at a basic three layer fully-connected network and
build from there up to Convolutional Neural Networks (CNN) and some of the most
advanced architectures recently proposed. This will give a good understanding of how
and why we use deep learning to classify medical images.

2.1 Medical scenario

Detecting irregularities in the digestive system (Figure 2.1) is a difficult and time-
consuming task, which require expert knowledge. To fully understand the necessity
of an automated system for detection lesions in the gastrointestinal tract we will go
through the medical aspect of our problem statement, beginning with the anatomical
explanation of the digestive tract. Then we will get to know the details of lesions in the
small intestine, and the equipment currently in use to observe them.

11

2.1.1 The digestive system

The digestive system is made up of the gastrointestinal tract (GI tract), and the liver,
pancreas and gallbladder. The GI tract is a series of hollow organs joined in a long and
twisting tube beginning at your mouth and end with the anus, covering a distance of
about nine meters. This is possible because the small intestine is very twisty. The GI
tract is controlled by the brain through nerves and hormones. Organs that make up the
GI tract is the mouth, esophagus, stomach, small intestine, large intestine and rectum.

The main purpose of the digestive system is so that the cells in the body can extract
the nutrients from the food we eat and dispose of the waste which the body can’t
process. Special cells helps absorb the nutrients and cross the intestinal lining into
the bloodstream. The circulatory system carries simple sugars, vitamins, salts, amino
acids and glycerol to the liver which processes, stores, and deliver them back into the
circulatory system which transports the nutrients to wherever in the rest of the body it
is needed. The body uses amino acids, fatty acids and sugars to build substances needed
for growth, energy and cell repair for example.

Clinicians commonly divide the gastrointestinal tract in upper and lower regions
called upper gastrointestinal tract and lower gastrointestinal tract. The upper
gastrointestinal tract consist of mouth, esophagus, stomach and duodenum while the
lower gastrointestinal tract consist of most of the small intestine, large intestine and
rectum. Each organ in the GI tract helps to move the food and liquid forward throughout
the body while its being broken into smaller parts. Next we will explain the function
for each organ in the GI tract in the order of which food is processed.

1. Mouth; this is where food enters the GI tract and where the digestive process
begin. After being split apart by chewing the food is swallowed and enters the
esophagus.

2. Esophagus; after the swallow the brain signals the esophagus to begin the
peristalsis, which is the process of contraction and relaxation of muscles that
propagates the food (now called bolus, a ball of saliva and food) down towards
the stomach. At the bottom of the esophagus you’ll find a sphincter which opens
to let the food into the stomach and normally keep the fluids in the stomach from
traveling back up the esophagus.

3. Stomach; upon entering the stomach the stomach muscles begin to mix the bolus
with gastric acid which begins the digestion of proteins. The stomach is lined with
gastric folds, which helps the stomach to expand to hold about one liter of food.
After an hour or two the pyloric valve opens and the contents (called chyme, a
liquid of partially digested food and acids) are emptied into the small intestine.

4. Small intestine; the small intestine mix chyme from the stomach with digestive
juices from the pancreas, liver and intestine and push the mixture forward for
further digestion. The small intestine is divided into three sections; duodenum,
jejunum and ileum. The walls of the small intestine, covered with intestinal villi

12

(to increase the absorption area), absorb 95% of the nutrients, and carries it to
the bloodstream. Whats left, the waste product, move into the large intestine by
the peristalsis forces.

5. Large intestine; undigested parts of food, fluids and old cells from the GI tract
lining enters the large intestine. The large intestine absorbs water, salts, sugars
and vitamins back into the blood in the colon and changes the waste from liquid
into stool.

6. Rectum; the rectum stores stool until it is pushed out of anus during a bower
movement.

Figure 2.1: An overview of the terms used to describe the digestive system1.

2.1.2 Colorectal Cancer and Screening

The GI tract may be home to a multitude of diseases, including infections, inflammations
and cancers. Given our problem statement and the severity of the disease, we will
focus on colorectal cancer (CRC). See Section 3.1 for list of other diseases from the

1By Mariana Ruiz, edited by Joaquim Gaspar. Released into public domain by author.
https://en.wikipedia.org/wiki/File:Digestive_system_diagram_edit.svg

13

https://en.wikipedia.org/wiki/File:Digestive_system_diagram_edit.svg

datasets we have used during our experiments. One of the most substantially significant
factors for lowering morbidity and mortality in GI tract diseases are early screening and
treatment [2], [11]. In this section, we will therefore explain the importance of screening
and the difficulties that the current methods inflict upon the medical sector.

A study from 2014 found that CRC were the leading cause of cancer death in the
United States in the late 1940 and early 1960 [2], but CRC mortality has since been
slowly decreasing due to historical changes in risk factors (E.g decreased smoking and
red meat consumption) and better use of screening and early treatment. Today CRC is
the third most common cause of cancer death in both men and women.

Another study used a micro-simulation called MISCAN-COLON [12] to simulate the
2,000 U.S population with regards to the CRC risk factor prevalence, screening use,
and treatment use. They used the model to project age-standardized CRC mortality
from the year 2000 to 2020 for three intervention scenarios and found that without any
changes the risk factor would decrease by 17% by the year 2020. However, if the use of
screening was improved to 70% of the population and the use of chemotherapy increased
for all age groups, then the reduction of CRC mortality was estimated to be close to
50% by the year 2020. They found that the highest contributor to the reduced mortality
rate was high level of screening (23%).

At the current state of screening the patient is relying on a doctor’s ability to correctly
spot early signs of cancer, most commonly polyps (See Figure 2.2), which are abnormal
tissue growth often taking the shape of a mushroom. This is a problem as it has been
proven that the person who perform the procedure can be more important than the
most important health factors, like age and gender [13]. Most screening occurs through
endoscopy examinations and is uncomfortable for the patient and require about one
medical-doctor-hour and two nurse-hours and cost $1100 USD per person in the US [3].
This could be improved by the use of cheaper screening methods like Video Capsule
Endoscopy (VCE), which collect patient data and transfer it back to the hospital, and
Artificial Intelligence (A.I), which assist a doctor to diagnose the data.

2.1.3 Traditional Endoscopy

The most common way of screening patients is with a endoscope. When this tool is
used by a professional some of the irregularities that can be spotted are; Colon polyp,
Colorectal Cancer, Ulcerative Colitis, Crohn’s Disease, Familial adenomatous polypsis,
Diverticulosis and Diverticula Bleeding. See Section 2.1.2 for a more detailed list of
diseases.

The basic technology behind the modern endoscope was developed in the early 1950s
by English physicist Harold Hopkins and his student Narinder Kapany which let light
travel through flexible pieces of glass, now known as optical fibers [14]. These fibers,
as many as 50,000 optic fibers, can be packed very dense and allow for light to be
transported over long distances with a high resolution. Later iterations of the endoscope
allows for recording images through an added camera recorder connected at the end of
the tool, water pipes, control cables and operation channels. See Figure 2.3 for a detailed
look at the endoscope and its functions.

14

Figure 2.2: Image from Kvasir-V2 dataset of a polyp in the colon, taken with a fiber-optic
endoscope (Section 2.2.3). The polyp is seen in the middle of the image as a reddish mushroom
of excess mucosa tissue.

Figure 2.3: Image of a fiber optic endoscope with explanation of different parts of the tool.
Bottom right show a cross section of the operating tube with dedicated channels for air/water,
light, fibers and tools.2.

The clever design of the tool allows it to be used for both ends of the GI tract, but
also ears, nose and urinary tract. See Table 2.1 for a more detailed list of endoscope

2Image credit: Jacaranda Physics 1 2nd Edition c© John Wiley & Sons, Inc.

15

types. There are also some special forms of endoscopy which combines an endoscope with
other medical applications, like fluoroscopy and ultrasound, to take medical imaging of
special tricky parts of the body.

When the endoscope is inserted into the mouth and throat it is called upper
endoscopy and if it is inserted through the anus it is called lower endoscopy.

Upper endoscopy

An upper endoscopy is a procedure used to examine the upper gastrointestinal tract, that
is the mouth, esophagus, stomach and duodenum (the beginning of the small intestine).
A specialist, called a gastroenterologist, use endoscopy to diagnose and, sometimes, treat
conditions that affect the upper part of the digestive system. Upper endoscopy is often
performed while the patient is conscious. But sometimes the patient receives a local
anesthetic in the form of a spray to the back of the throat, or the patient can be fully
sedated. This procedure is sometimes performed in the hospital or emergency room to
identify acute bleeding and problems with swallow and breathing.

Lower endoscopy

An lower endoscopy is a procedure used to examine the lower gastrointestinal tract,
which is most of the small intestine, the large intestine and the rectum. The procedure
may include rectum and entire colon, in which case it is a colonoscopy, or just the rectum
and sigmoid colon, then it is called a sigmoidoscopy. Treatments that may be performed
in the lower digestive system include biopsy (collecting tissue sample), polyp removal,
cauterize a bleeding vessel and other medical procedures.

An endoscopy is usually a safe procedure, and the risk of serious complications is
very low. Rare complications are; an infection in the part of the body the endoscope is
used, or piercing or tearing in an organ, or bleeding, or reaction to the sedation used.

2.1.4 Wireless Capsule Endoscopy

Before the year 2000 the only option you had to visualize the food pipe, stomach,
duodenum, colon and terminal ileum (see Figure 2.1 for details) was to use a fiber-
optic endoscope. These cables have to carry fiber optic bundles, water pipes, operations
channel and control cables. Although these cables can be quite flexible there is a limit for
how far they can advance into the small bowel. This method cause pain and discomfort
for the patient, and there was a clinical need for an improved method.

That is why in the year 2000 Iddan et al. developed a new type of video-telemetry
capsule endoscope which the patients were able to swallow [15], [16]. This capsule can
travel through the entire digestive system because it has no external wires, fiber-optic
bundles or cables of any sorts. The capsule travels by peristalsis, a radially symmetrical
contraction and relaxation of muscles that propagates in a wave down through the
gastrointestinal tract. This process takes from 10 to 48 hours. For as long as the
battery allows, usually in the range of 6 to 15 hours, the capsule transmits images on a
regular interval to eight abdominal receivers and stores the data on a portable solid state

16

17

Procedure Name of tool Area/organ viewed Insertion point

Anoscopy Anoscope Anus and/or rectum Anus

Arthroscopy Arthroscope Joints Incision at the joint

Bronchoscopy Bronchoscope Trachea, windpipe and the
lungs

Mouth

Colonoscopy Colonoscope Colon and large intestine Anus

Colposcopy Colposcope Vagina and cervix Vagina

Cystoscopy Cystoscope Inside of bladder Urethra

Esophagoscopy Esophagoscope Esophagus Mouth

Gastroscopy Gastroscope Stomach, duodenum Mouth

Hysteroscopy Hysteroscope Uterus Vagina

Laparoscopy Laparoscope Stomach, liver or other abdom-
inal organs

Incision in the abdomen

Laryngoscopy Laryngoscope Larynx Mouth

Neuroendoscopy Neuroendoscope Areas of the brain Incision in the skull

Proctoscopy Proctoscope Rectum and sigmoid colon Anus

Sigmoidoscopy Sigmoidoscope Sigmoid of colon Anus

Thoracoscopy Thoracoscope Pleura Incision in the chest

Table 2.1: List of the most common types of endoscopy.

recorder, which is carried on the patients belt. Some vendors, of which CapsoVision is
one, have opted for a design which uses local flash storage to save the collected images
directly on the device and therefore eliminates the need for abdominal receivers and
wireless transmission of data. Writing data directly to flash storage has some drawbacks:
(1) it is not possible to observe the area being imaged before after the capsule has passed,
and (2) the need for a special docking station that enables access to the flash storage.

Endoscopic capsules are divided by terms of their application and is used to diagnose:
(1) the esophagus; (2) the small intestine; (3) the large intestine. Depending on
application they differ in areas like operating time, imaging frequency and number of
cameras. To diagnose the esophagus the capsule travels a short distance in a short time
and it is common to use a capsule with cameras on opposite ends, and capture images
in high frequency. This comes at a cost of operating time. For a clinician to diagnose
the small and large intestine the most significant feature is operating time, and it is
therefore common to use a single camera with lower imaging frequency to reduce the
drain on battery.

Nomenclature used in the field of capsule endoscopy

We have conducted deep literature searches in the domain of video capsule endoscopy
and found that there is different terms commonly in use. The terms are often confused
and used interchangeably by different researcher, papers and institutes. Consequently
in this thesis, they will all be referred to as VCE. We have chosen this because not all
capsules are wireless, and we believe local capsule storage is key to reach our goal of
cheap and efficient population screening, more on this in Section 2.1.5. From a variety
of literature searches we have found these five different terms in use (summarized in
Figure 2.4):

• VCE: Video Capsule Endoscopy - capsule endoscopy including an imaging device
such as a CCD (the capsule does not have to be wireless);

• WVE: Wireless Video Endoscopy (not necessarily a capsule);

• CE: Capsule Endoscopy - endoscopic capsule (not necessarily wireless);

• WCE: Wireless Capsule Endoscopy (not necessarily containing an image sensor);

• WVC: Wireless Video Capsule.

Two example images taken by VCE are presented in Figure 2.5. By triangulating
the signal strength and the location of the receivers taped on the body it is possible to
roughly estimate the position of the capsule. This is however not very precise and can
not tell us the rotation or direction of the capsule. Regardless, that information will
not be available for us in this study as we only have access to the images themselves.
By looking at some of the anatomical landmarks in the images we still might be able

18

Figure 2.4: Distinction of the nomenclature relating to capsules, wirelessness and video.

(a) Stomach (b) Small intestine

Figure 2.5: Images from Kvasir-Capsule (See Section 3.1.2) dataset taken with VCE. Figure 2.5a
show a image taken from the patients stomach, and Figure 2.5b show a image taken from the
small intestine.

to predict when the capsule exits the stomach through the pylorus, as we are most
interested in images taken from the small intestine.

There is ongoing research done in the field of map prediction (see Section 2.6.3)
which could be of great interest for VCE technology as it would allow us to better
predict the location of a disease inside the patients abdomen, as well as enable the
clinician processing the video to see the orientation of the capsule.

VCE devices come in a variety of different versions. Depending on travel speed
through the GI tract, the purpose of the device and the localization, it will capture
between 1 and 30 images every second, produced with pixel resolution in the range of
256 × 256 to 512 × 512. They are specialized for different parts of the GI tract and
are produced by different vendors. The most known manufactures are Given Imaging
(Medtronics), Ankon Technologies, Chongqing Science, IntroMedic, CapsoVision and

19

Olympus.
The data used for this study is collected by the Olympus Endocapsule 10 System3

using the Olympus EC-S10 endocapsule (Figure 2.6a) and the Olympus RE-10
endocapsule recorder (Figure 2.6b). This system has a 160◦ wide-angle lens, a light
source, a minimum of 12 hours battery life (sometimes up to 20 hours), captures between
80,000 and 140,000 images and user friendly functionalities like Omni-selected Mode.
Omni-selected Mode skips images that overlay with previous ones and therefore reduce
review time for clinicians. To reduce drain on battery the light source will only emit
light just as the camera is taking a picture. Its dimensions are 11 mm (diameter) × 26
mm (length) and it weight 3.3 gram.

(a) EC-S10 endocapsule (b) RE-10 endocapsule recorder

Figure 2.6: Video capsule endoscopy equipment manufactured by Olympus. Figure 2.6a shows
a image of the swallowable capsule, from where our VCE data is taken, and Figure 2.6b show
the receiving unit which stores the data transmitted by the endocapsule.

A typical video collected by VCE examination lasts a few hours. A clinician must
watch the entire video to make a diagnosis because in a typical clinical situation there
is no indication of which part of the GI tract they need to search for damaged tissue,
polyps, bleeding, etc. The capsule moves through the tract by two forces, gravity and
bowel movements. In the small intestine there is two types of bowel movements: (1)
peristaltic and (2) staple (segment). The first type is responsible for transit of food
and is pretty linear movement, while the latter is responsible for mixing of food and is
therefore much more chaotic in nature. These movements sometimes ceases temporarily
as the muscles in the intestine relaxes. The result is an video which is highly diverse
with moments of stillness, camera obscured by food debris and moments of chaotic
movements. These effects can cause rapid changes in the imaging area. As such, the

3https://www.olympus-europa.com/medical/en/Products-and-Solutions/Products/Product/

ENDOCAPSULE-10-System.html

20

https://www.olympus-europa.com/medical/en/Products-and-Solutions/Products/Product/ENDOCAPSULE-10-System.html
https://www.olympus-europa.com/medical/en/Products-and-Solutions/Products/Product/ENDOCAPSULE-10-System.html

clinician watching the video will often have to speed up the footage, slow it down, and
sometimes watch it frame by frame. Consequently, there is ongoing research related
to the implementation of image analysis and processing methods allowing automatic
video analysis. Such a automatic analysis system could greatly shorten the time for
diagnosis and reduce the cost related to clinician salary. In practice this means that the
clinician watch a few minutes of video with the pathologies detected by the software.
To understand how such a software could be created we need to take a look at deep
learning, which is discussed in the next section.

2.1.5 Remote diagnostic

A topic of which have peaked in interest, as the technology which drives the incremental
progress of the VCE engineering and the autonomous video classification tools advances,
is the adoption of remote diagnostics. This would, in the near future, allow for patients
to use their own devices, such as an iPhone or a tablet, to receive e-medical service
from their local doctor or hospital. The patient order a VCE device online, swallows
it, and the device will save images to its non-volatile memory which is then transferred
to the doctor or hospital through the patients device via the internet. The doctor or
hospital uses video analysis tools to further reduce burden on the physician and cost of
the procedure itself. As no doctor-nurse-hours are spent during examinations, and the
endoscopist can use computer-aided assistance for diagnosing the patient video, this has
the potential to make the public health care system more scalable and cost effective.

2.2 Datasets

The datasets used in our experiments are Kvasir v2 [17] and Hyper-Kvasir [6]. This
section will demonstrate the main differences between the two datasets and explain
how they can be found and used for fact checking. Both datasets are collected using
endoscopic equipment at Vestre Viken Health Trust (VVHT) in Norway. The VVHT
consists of 4 hospitals and provides health care for 470,000 people. One of the hospitals
is Bærum Hospital, which has a large gastroenterology department from where the data
is collected.

We will also go through some other publicly and restrictively available datasets, and
explain why there is a need for a novel wireless video endoscopy capsule dataset. We will
introduce Augere Medical, and their tagging tool implementation which we have used
to label our VCE videos. In the later part of this section we will discuss some of the
difficulties of the aforementioned datasets.

In Section 3.1.2 in the next chapter, we will introduce how we gathered data and
created a new VCE dataset, Kvasir-Capsule [5].

2.2.1 ImageNet

Deng, Dong, Socher, et al. introduced a database called ImageNet in 2009. This database
was coined for the academic world of researchers and students, to be used for visual

21

object recognition and classification software research. It contains more than 14 million
hand-annotated images in more than 20,000 classes. Each category contain from a
hundred samples to some thousand. Since 2010, the ImageNet project have held a
yearly competition, the ImagNet Large Scale Visual Recognition Challenge (ILSVR),
where teams compete to create a classifier which can correctly classify as many images
as possible.

The reason we introduce the ImageNet database is because of its widespread usage
in the academic world. State of the art models often compare their results on the open
source ImageNet database, and release the weights created by the model. These weights
contain the image features learned by a specific network, and can be transferred to a
different network to stimulate better and faster learning.

2.2.2 Available endoscopy datasets

There is a great number of publicly available endoscopy datasets online, and some that
are restricted. To further improve detection rates in automated gastrointestinal analyze
tools there is a demand for large amounts of data for different use cases, and since
medical data often is scarce, or restricted, we introduce Kvasir-Capsule dataset, currently
in development. This dataset is among the few publicly available VCE datasets, see
Table 2.3 for an overview. Traditional colonoscopy have been around for longer and have
been under more research. Therefore colonoscopy datasets are easier to find publicly,
see Table 2.2 for a list of these datasets. This can benefit the ongoing automated VCE
analysis as deep learning models can be tested and pretrained on them.

2.2.3 Kvasir-V2

The Kvasir multiclass dataset [17] contains images from inside the gastrointestinal (GI)
tract. The samples are classified into three important anatomical landmarks and three
clinically significant findings. In addition it has two classes related to the removal
procedure of polyps. The dataset is sorted and annotated is performed by medical
doctors. The class names and findings for each class is given in Table 2.4. One of the
most important aspects of the Kvasir dataset is that it makes it easy to reproduce and
compare results in scientific computing.

The dataset consists of 4,000 images, annotated and verified by experienced
endoscopists. In Table 2.4 we have listed all eight classes from anatomical landmarks,
pathological findings, and endoscopic procedures. Each class have 500 samples, and are
explained in more medical detail in Table 2.5 together with the classes from Hyper-Kvasir
as all Kvasir v2 classes are a subset of Hyper-Kvasir dataset.

4https://www.endoatlas.net/ea/AtW01/106.aspx
5http://www.endoatlas.org/index.php
6http://www.gastrolab.net/index.htm

22

https://www.endoatlas.net/ea/AtW01/106.aspx
http://www.endoatlas.org/index.php
http://www.gastrolab.net/index.htm

Dataset Name Data
Source

Findings Size Status Description

CVC-
ClinicDB [19]

Colonoscopy Polyps 612 still images
from 29 different
sequences with
polyp mask

Available From 29 different se-
quences with polyp
mask (ground truth)

ASU-Mayo
Clinic
Colonoscopy
Video DB [20]

Colonoscopy Polyps 20 videos for
training and 18
for testing

Copyrighted 10 videos with polyp
detection, 10 videos
without polyps, GT
available

CVC colon
DB [21]

Colonoscopy Polyps 300 frames with
ROI

By explicit permis-
sion

15 short colonoscopy
sequences (different
studies)

ETIS-Larib
Polyp DB [22]

Colonoscopy Polyps 196 images By request 196 images with GT

GI Lesions
in Regular
Colonoscopy
Data Set [23]

Colonoscopy GI lesions 76 instances Available 15 serrated adeno-
mas, 21 hyperplastic
lesions, 40 adenomas

The Atlas of
Gastrointestinal
Endoscopy4

Endoscopy GI lesions 2259 images Available Esophagus, Stom-
ach, Duodenum and
Ampulla, Capsule
Endoscopy, Inflamma-
tory Bowel Disease,
Colon and Ileum and
some Miscellaneous

WEO Clini-
cal Endoscopy
Atlas5

Endoscopy GI lesions 152 images By explicit permis-
sion

One image per lesion

GASTROLAB6 Endoscopy GI lesions Several hundreds
of images and
several tenths of
videos

Discontinued Partially damaged and
unavailable dataset

Kvasir-V2 [17] Various GI le-
sions &
landmarks

8,000 images, 8
classes, 1,000 im-
ages per class

Available, public,
free for research
and educational
purposes

See Section 2.2.3 for
the description

Hyper-Kvasir [6] Endoscopy GI le-
sions and
landmarks

10,662 labeled im-
ages, 373 videos
and 99,417 unla-
beled images

Available, public,
free for research
and educational
purposes

See Section 2.2.4

Nerthus [24] Colonoscopy GI cleans-
ing

5,525 frames
extracted from
the 21 videos, 4
classes, from 500
to 2,700 frames
per class

Available, public,
free for research
and educational
purposes

Bowel preparation
dataset

Medico [25] Various GI lesions,
landmarks
and find-
ings

14,033 images, 16
classes, from 4 to
2,331 images per
class

Available, public,
free for research
and educational
purposes

Heavily unbalanced

Table 2.2: Existing colonoscopy image and video datasets taken from the GI tract. These
datasets may not include all available datasets, but were the ones we could find after an extensive
literature search.

23

Name Findings Size Status Description

KID [26] Angiectasia, bleeding,
inflammations, polyps

2,500+ im-
ages + 47
videos

Discontinued Open academic

GIANA’17 [27] Angiectasia 600 images Available,
by request

Includes ground truth
segmentation masks

CAD-CAP [28] Normal, Vascular Le-
sions and Inflamma-
tory Lesions

25,000 im-
ages

Discontinued Available by request

Kvasir-
Capsule [5]

GI lesions, landmarks
and findings

44,260 im-
ages with
ROI, 13
classes and
2.6 million
unlabeled
images

Available,
public, free
for research
and edu-
cational
purposes

Ours, See Section 3.1.2
for detailed descrip-
tion.

Table 2.3: An overview of VCE datasets from the GI tract which were discovered during our
extensive literature search. Kvasir-Capsule is ours dataset.

Type Name

Anatomical landmark

Z-line

Pylorus

Cecum

Pathological finding

Esophagitis

Polyps

Ulcerative colitis

Polyp removal
Dyed and lifted polyp

Dyed resection margins

Table 2.4: Kvasir-V2 classes grouped into anatomic landmarks, pathological findings, and
endoscopic procedures.

2.2.4 Hyper-Kvasir

The Hyper-Kvasir dataset [6] is one of the largest medical datasets available, containing
110.079 images and 373 videos of anatomical landmarks and pathological findings, as
well as normal GI tract images. Resulting in more than 1.1 million images and video
frames all together. The dataset contain four parts, labeled images, unlabeled images,
segmented images and lastly, videos. In total the dataset is 70 GB in size, but can be
downloaded and stored in parts from Simula7.

All the data is fully anonymized and approved by Privacy Data Protection Authority,
and all experiments were performed in accordance with the relevant guidelines and
regulations of the Regional Committee for Medical and Health Research Ethics - South
East Norway, and the GDPR.

7https://datasets.simula.no/hyper-kvasir/

24

https://datasets.simula.no/hyper-kvasir/

The Hyper-Kvasir dataset is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaption, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the
original authors and the source.

Labeled images

Hyper-Kvasir contains 10,662 labeled images. The images are split into 23 different
classes, and are stored in a folder with the same name as its corresponding class. All of
the images are stored in JPEG format [34], which means it has some image quality loss
but quite insignificant compared to the reduction in file size. Like in situations most
often encountered the classes has a different number of samples, this is a challenge in
the medical field because some findings occur more often than others. In Table 2.5 we
have summarized the classes and their description, organized after which part of the GI
tract the images are taken.

41

646

1148

1002 989

6 9

131

1009 999
932

403

260

1028

391

764

53 35

201

11

443

28

133

0

200

400

600

800

1000

1200
#images per class for the labeled images

Figure 2.7: Number of labeled samples for each of the 23 classes in Hyper-Kvasir dataset.
Under each bar is one example image of that class.

Unlabeled images

This part of the dataset contains 99,417 unlabeled images. When extracted they can
be found in a separate subfolder. The images are accompanied with extracted global
features and clusters assignments in Hyper-Kvasir GitHub repository8.

8https://github.com/simula/hyper-kvasir

25

https://github.com/simula/hyper-kvasir

26

GI location and type Class Description

Landmarks in upper GI

normal-z-line
the anatomical junction between the squamous epithelium of
the esophagus and columnar epithelium of the stomach.

retroflex-stomach
the endoscope is retroflexed, looking back to visualize the
cardia and fundus in the upper parts of the stomach.

pylorus
the anatomical junction between the stomach and duodenal
bulb.

Findings in upper GI

esophagitis-a

Reflux esophagitis is an inflammation mostly affecting the
lower third of the esophagus, near the Z-line. Graded A to D by
severity according to the Los Angeles (LA) classification [29].
(A) mucosal breaks shorter than 5mm.

esophagitis-b-d

(B) mucosal breaks longer than 5mm that does not extend
between the tops of two mucosal folds, (D) one (or more)
mucosal break that is continuous between the tops of two
or more mucosal folds and involves more than 75% of the
circumference.

barretts-short-segment

Barrett’s esophagus represents a metaplastic transformation of
the squamous epithelium of the esophagus into a gastric like
columnar epithelium and are graded according to the Prague
classification [30].

barrets
short segment is characterized by a longitudinal extension of
less than 3 cm.

Landmarks in lower GI

ileum
the distal 2/3 of the small bowel, recognized by visible
intestinal villi.

cecum
the proximal end of the large bowel and is characterized by the
visualization of the appendiceal orifice and the ileo-cecal valve.

retroflex-rectum
the endoscope is retroflexed in the rectum to visualize the
dentate line and the circumference of the proximal orifice of
the anal canal.

Bowel cleansing lower GI

bbps-0-1

the degree of bowel cleansing during a colonoscopy is described
by the Boston Bowel Preparation Scale (BBPS) [31]. (0) no
mucosa seen due to solid stool; (1) portions of the mucosa of
the colon segment seen.

bbps-2-3

(2) minor amount of residual staining, small fragments of stool
and/or opaque liquid; (3) entire mucosa of colon segment seen
well with no residual staining, small fragments of stool or
opaque liquid.

impacted-stool
Sometimes stool is impacted in these diverticula and may
increase the risk of diverticulitis.

Findings in lower GI

ulcerative-colitis-grade-1
a chronic inflammatory bowel disease often debuting in the
twenties. Classified according to the Mayo Score [32]. (1) Mild
with erythema, decreased vascular pattern, mild friability.

ulcerative-colitis-grade-2
(2) Moderate with erythema, absent vascular pattern, mild
friability, erosions.

ulcerative-colitis-grade-3 (3) Severe with spontaneous bleeding, ulceration.

ulcerative-colitis-0-1
classes in-between the Mayo Score, where it is difficult to
determine the exact class. (0) Inactive where the mucosa only
has normal vascular patterns.

ulcerative-colitis-1-2 findings in-between grade 1 and 2.

ulcerative-colitis-2-3 findings in-between grade 2 and 3.

polyps
most frequently neoplastic lesions of the large bowel. They
have mainly three different shapes, protruding in the lumen,
flat or excavated according to the Paris Classification [33].

dyed-lifted-polyps
images of polyps lifted with submucosal injection using a
solution containing indigo carmine.

dyed-resection-margins
the resection margins and site appears blue due to the indigo
carmine solution, after resection of dyed polyps with a snare.

hemorrhoids pathologically swollen veins in the anus or lower rectum.

Table 2.5: Hyper-Kvasir types, class names, and their corresponding medical description.

Segmented images

Hyper-Kvasir includes images with corresponding segmentation masks and bounding
boxes for 1,000 images from the polyp class. The segmentation masks depicts the polyp
tissue for the corresponding image pixel. The bounding box is defined as the outermost
pixels of the found polyp, and for the corresponding images are stored in a JavaScript
Object Notation (JSON) file. The Region of Interest (ROI) are represented by the white
mask while the black does not contain polyp pixels. In Figure 2.8 we can see an example
of the segmented Kvasir images, with both the original image and the segmentation
mask for that same image.

Figure 2.8: Example of a segmented image from Hyper-Kvasir dataset This figure in particular
show a image from the polyp class, and its segmented mask is shown in the right image.

Videos

In total there are 373 videos provided in the dataset, corresponding to 11.62 hours
of videos and about 1 million video frames that can be converted to images. The file
format for the videos are Audio Video Interleave (AVI). The video portion of the dataset
is 38.6GB in file size. In addition to the video folder there is a Comma-Separated Values
(CSV) file provided, containing the videos IDs and findings. Video ID contains the
corresponding video file name, and the finding contain the description of the pathological
finding in the video.

2.2.5 Augere Medical AS

Augere Medical As is a team of technologists and physicians dedicated towards reducing
variability between physicians based in visual observation, use deep learning to increase
early detection rates and finally to reduce the cost of health care and less aggressive
interventions and treatments.

27

As a shared partner with Simula we were allowed to utilize their in-house developed
tagging tool for medical videos. This tool allows for real-time playback of VCE videos,
as well as to go frame by frame. We annotate each finding for numerous videos with
bounding boxes which specify pixel coordinates for the relevant finding. Then we tag the
rest of the videos as unlabeled so they can be separated upon export from the tagging
tool. In Figure 2.9 is a screen capture of the tagging tool in use.

Figure 2.9: Augere Medical tagging tool screen capture. The current frame show a angiectasia
and its respective bounding box. Bottom of the image show various buttons for going frame-by-
frame, backwards, skipping frames etc. The option bar at the right show settings for marking a
frame as a finding or video segment. The tool also display a timeline-like bar for showing where
in the videos there are markings and allow for ”scrubbing” through portions of the video.

2.2.6 Class imbalance in dataset

Class imbalance typically refers to a problem with classification problems where the
classes in the models training data are not represented equally. In the medical imaging
domain this is very common for two reasons: (1) there are a lot more healthy patients
than there are sick ones, and (2) for a specific unhealthy patient, there are a lot more
images of healthy mucosa than there are images of pathological findings. As an example
you could have a VCE video which has been carefully analyzed by a clinical expert and
each frame is tagged with either being in class 1; healthy, or class 2; unhealthy. Of
this dataset 10,000 frames have no findings, and 50 of them have confirmed pathological
findings. You could then use this data to train a model to have 99% accuracy which
sounds great, but in reality the model only achieves these impressive results because it
classifies all the data as class 1; healthy.

28

Imbalanced dataset pose a challenge for predictive algorithms as most learning
algorithms are based on the assumption of an equal number of samples for each class.
This results in models that have poor predictive performance, especially for minority
class or classes. This is a great problem to overcome because in many medical datasets
the minority class is the most important and therefore more sensitive for classification
errors.

There are different methods to combat this class imbalance problem:

• Collect more data.

• Changing the performance metric.

• Resample the dataset.

• Introduce class penalties.

It is a laboring, time consuming and expensive task to collect more data for medical
image classifications projects because a clinical expert is required to manually validate
the data.

Dataset re-sampling

In Figure 2.10 are two naive but effective methods of handling class imbalance;
oversample and undersample. Oversampling repeatedly sample data from the minority
class until reaching the desired amount, while undersampling sample the dataset
same amount of data from the majority class to match the minority class [35], [36].
Oversampling can cause overfitting when used with traditional Machine Learning (ML)
methods like linear classifiers [36], but in the setting of deep learning, oversampling shows
better compatibility than undersampling which is missing a lot of information from the
unused data [37].

Original dataset Oversampled dataset

Copies of the
minority class

(a) Oversampling

Original dataset Undersampled dataset

Samples of
majority class

(b) Undersampling

Figure 2.10: Two popular resampling methods. Oversampling (2.10a) make copies of the
minority class until all classes have the same amount of samples, and undersampling (2.10b
sample from the majority class until it reaches the same amount of samples as the minority
class.

Weighting the classes

Class weights balances our data by altering the weight that each training example carries
when computing the loss. Like dataset sampling, it is useful if the dataset consist of few,

29

but otherwise important images for a minority class. We want the minority class to hold
more weight because otherwise it won’t effect the weights of the model during training,
and the model will instead put more emphasis on the data which is easy to classify.

The main advantage of using class weights to compute the loss over re-sample the
dataset is that instead of duplicating or removing images we only need to assign the
class with a weight.

2.3 Deep learning

As apposed to using regular optic-fiber endoscopy, it can be difficult to know the location
and orientation of the capsule when it is traveling through the digestive system. In a
paper by Zou et al. it is shown that by using Deep Convolutional Networks (DCNN)
it is possible to classify the digestive organs in wireless capsule endoscopy with about
95% classification accuracy on average [38]. The DCNN-based VCE digestive organ
classification system is constructed of three stages of convolution, pooling and two fully-
connected layers. This is illustrated in Figure 3 in the paper [38]. The main steps of
this convolutional neural network are described in detail in Section 2.3.2.

2.3.1 Machine learning types

In deep learning it is common to differentiate between three types of machine learning
models, supervised learning, unsupervised learning and reinforcement learning. In this
section, we will go through them and explain how they function and which use cases suites
them best. In addition we will introduce a combination of supervised and unsupervised
learning, called semi-supervised learning.

Supervised learning

The first category of machine learning is supervised learning. If you imagine yourself
work under supervision of a leader or boss, it would mean someone is present and judging
whether you are doing the correct work. Similarly to this, when a learning algorithm is
under supervision is has a fully labeled dataset to work on; continuously updating the
algorithm whether the answer is correct or wrong after every test.

Fully labeled dataset means that for every sample in the dataset, it is known what
the true answer is to the problem at hand. As an example; if the dataset is images
to classify you can think of it as having the correct answer written on the back of the
image, but the algorithm will pick up the image front side up, and not look at the correct
answer until after making a prediction.

This method is best suited for classification problems and regression problems, where
there is a set of available reference points or a ground truth with which to train the
algorithm, but this is not always accessible, or too expensive to create.

30

Figure 2.11: Workflow of supervised learning; 1. the dataset is labeled by observers; 2. the
samples is split into training and test sets; 3. algorithm is learning on the training set; 4. checking
the predictions on the ’unseen’ test set to understand how the model performs.

Unsupervised learning

Large, cleanly labeled datasets are not always easy to come by. And sometimes the
answers we are looking for are not discrete, but discontinuous and hard to define. This
is where unsupervised learning comes in.

In unsupervised learning, the algorithm is handed non-labeled data without any
instructions on what to do with it. It is the algorithms job to automatically find which
features that best separates the data and find a structure within it. An example of a
problem well suited for unsupervised learning is; using anomaly detection to discover
unusual data points in a dataset, like fraudulent bank transactions.

It is common to further categorize unsupervised learning into four additional groups;

• Clustering: The deep learning model looks for data that are similar to each other
and group them together.

• Anomaly detection: Used to flag outliers in a dataset. Samples that does not
fit well in with the rest.

• Association: The model looks at how a certain feature of a data sample correlates
with other features.

• Auto-encoders: Auto-encoders take input data, compress it into code and then
try to recreate that same input data only using the compressed code.

Since the training data has not been reviewed by a human beforehand it is difficult to
say with certainty how good the final model perform like it is with supervised learning.
But for problem areas where there is little to none labeled data it is a valuable tool.

Semi-supervised learning

This is not its own category, but a combination of the two categories just mentioned.
It is good for dealing with problems where you have some labeled data and a lot of
unlabeled data.

31

Many real world problems fall into this problem as large, fully labeled datasets are
difficult to obtain. To create one is both expensive and time consuming and often require
domain experts like analysts or doctors. Whereas unlabeled data is cheap and easy to
collect and store.

Our problem is in this realm and is therefor also a good example of a semi-supervised
problem. We have a relatively small dataset of labeled medical images and almost an
unlimited quantity of unlabeled images.

The goal of the semi-supervised machine learning technique is to make best
predictions on unlabeled data. This is done by first using a trained supervised model
to best predict unlabeled data and then feed that back into the supervised learning
algorithm as training data. Then use the newly trained model to make predictions on
the new unseen data. To get the best result this process can be repeated until accuracy
converges.

Reinforcement learning

In Reinforcement Learning (RL) algorithms learn how to react to the environment on
their own and is neither supervised nor unsupervised. Instead the algorithm rely on
being able to monitor response of its action and measure against a defined ”reward”.

Reinforcement learning is a type of machine learning where AI agents are attempting
to find the optimal way through an environment, to accomplish a set goal or to improve
on a specific task. As the agent take an action in the environment it receives a reward,
as seen in Figure 2.12. If the action improved on the last agent state it gets a positive
reward and if the new state of the agent is worse than the previous it get a negative
reward. The goal is to predict which next step to take to get the biggest final reward.

Figure 2.12: Reinforcement learning: Agent attempts to find the optimal way through an
environment, and receives a positive reward if the action was led the agent to a better position
and a negative reward if t he new position is worse than the initial.

To make these predictions the agent need to rely on what it has previously learned,
and be able to explore uncharted territory. For example if the first option for the agent
is to pick a left or right turn on a road which leads to two different cities, and it gets a
positive reward for picking left, the agent will never explore the other city. Therefore the
agent must try to maximize the cumulative reward and not only the immediate reward.

32

To achieve good cumulative reward the algorithm must iterate over the problem many
times. For each iteration, and each round of feedback, the agents strategy incrementally
improves. This works really good for problems that can be simulated, where iterating
the problem only cost computer power. A good example of a good RL problem is video
games and autonomous driving.

2.3.2 Convolutional Neural Network

Convolutional Neural Networks (CNNs) is a category of neural networks which has
proven to be very efficient in image recognition and classification. CNN have a wide
application in image and video recognition due to its two main characteristics; feature
extraction and classification. The CNN method was first published by Lecun et al. in
1998 [39], yet his work went mostly unnoticed for fourteen years before it was proven to
be of a great value. The publicly accepted implementation of the CNN was first seen
during ImageNet Computer Vision competition where this method managed to achieve
an accuracy of 84.7% when classifying 1,2 million images from 1,000 distinct classes
with top-1 and top-5 error rates of 37, 5% and 17, 0% respectively, which far surpassed
all other models at the time [40]. Today, the CNN is widely used and has by far surpassed
human level of performance in classifying images [41]–[43].

The four most common building blocks in a Convolutional Neural Network:
convolution layer, non linearity, pooling layer, and finally a fully connected layer. In
the next sections, we will explain their respective function and purpose. These might be
the most important building blocks of a CNN, but to build a network which competes
with the best in class networks it is required to use more complex methods like dropout,
batch normalization, skip layers and more. Due to the scope of our thesis we have not
chosen to dedicate own sections for them.

Convolution layer

The first step in a convolutional neural network is to extract features from the input
image. This is done to preserve the relationship between pixels by learning image features
using filters, or kernels. As a result, the network learn filters that activate when it detects
some specific patterns or features.

The convolution of f and g is written as f ∗ g, and is defined as the integral of the
product of the two functions after one (usually the filter) is reversed and shifted.

(f ∗ g)(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ (2.1)

Non Linearity (ReLU)

Rectified Linear unit function, known as simply ReLU, is an activation function
represented by equation (2.2). It sets all negative numbers to zero, by discarding them
from the activation map entirely. In this way, ReLU increases the nonlinear properties

33

of the decision function and thus of the overall network without affecting the receptive
fields of the convolution layer.

ReLU(x) = max(0, x) (2.2)

Pooling layer

Pooling layers are applied to reduce the number of parameters when the images are
considerably large. Spatial pooling, or merely down sampling, reduces the dimensionality
of each image but it keeps the important information. The most used down sampling
is max pooling. It extracts the largest element from the rectified feature map and thus
reduces computational complexity of the algorithm. In addition average pooling is also
frequently used, this method computes the average value of the input map. The input-
output model is denoted as:

yi = f(pool(xi)) (2.3)

Fully-connected layer

In a FC-layer every neuron in one layer is connected to every neuron in the previous
layer. It is here the high-level reasoning is done. The activation function in the neurons
is a sigmoid or tanh function.

f(z) =
1

1 + exp(−z)
or f(z) = tanh(z) =

ez − e−z

ez + e−z
(2.4)

At the end of FC-layer we have an activation function such as softmax (equation 2.7)
to calculate probability of the predicted classes.

Feed Forward

In the feed forward algorithm input image will be processed through all the layers in
the neural network. The first layer will be a convolution layer, containing K filters F 1

i ,
i = 1, ...,K, of size k × k and a bias b1. The image will be convoluted with each filter,
and the bias is added.

ẑli = I ∗ F̂ li + bl, (2.5)

where ∗ (asterisk) is the convolution operator in equation 2.1. The final output of
each convolutional layer l is al,

âli = f(zli), (2.6)

where f represents the ReLU activation function. After going through the
convolution layer, the next layer could be a pooling layer, which will reduce the spatial
dimensionality either by using the max value or the average value. Before getting our
final output ŷ, we need to collect the outputs from all the filters, which will be an input

34

to a fully connected layer. The fully connected layer use the softmax activation function
to classify the input image, much like a neural network would. The softmax function is
an accepted standard probability function for a multiclass classifier [44]. The total sum
of the probabilities will always add up to 1 when using softmax.

σ(z)j =
ezj∑K
k=1 e

zk
for j = 1, ...,K. (2.7)

To calculate the error of the forward propagation it is common to use cross-entropy
error function.

C(ŷ) = −
N∑
i=1

tilog(yi) (2.8)

Backpropagation

Starting from the last layer L, we calculate the derivative of the loss function (function
2.8) with regards to the activation function in order to update the weights. Computing
the gradient of the loss function yields

∂C

∂yi
= − ti

yi
(2.9)

We also require the gradient of the output of the final layer yi with regards to the
input zLk of the activation function (equation 2.7)

∂yi

∂zLk
=

{
yi(1− yi), i = k

−yiyk, i 6= k
(2.10)

Now with regards to zLi

∂C

∂zLi
=

N∑
k

∂C

∂yk

∂yk
∂zLi

=
∂C

∂yi

∂yi

∂zLi
−

N∑
k

∂C

∂yk

∂yk
∂zLi

=− ti(1− yi) +
∑
k 6=i

tkyi

=yi − ti

(2.11)

And finally with regards to the weights

∂C

∂wijL
= (yi − ti)aL−1

j (2.12)

35

where âL−1
j is the vectorized output from the previous layer. From here, we will

propagate the error throughout the layers. The error with regards to the input aLi to
the fully connected layer is:

δL−1 =
∂C

∂aLi
=

N∑
i

(yi − ti)wLji (2.13)

Thus the error is propagated backwards through each layer. If max pooling was used
in a pooling layer, the error will only be propagated to the input that had the highest
value in the forward pass. The other values will be set to zero. If average pooling was
used, the error is averaged in the backwards pass. In equation 2.13 al is the output of a
convolutional layer l. Since a convolutional layer is always preceded and followed by a
activation layer, the input to layer l is al−1 = σ(zl). Now consider the error with regards
to zl.

δlij =
∂C

∂zlij

=
′∑
i

′∑
j

∂C

∂zl+1
i′j′

∂zi′j′

∂zlij

=
∑
i′

∑
j′

δl+1
i′j′

∂(Ŵσ(zl) + bl+1)

∂zlij

= δl+1 ∗ROT180(wl+1)σ′(zl)

(2.14)

Having found the error, the gradient of the cost function with regards to the weights is

∂C

∂wlij
= δlij ∗ σROT180(zl−1

ij) (2.15)

2.3.3 Gradient descent optimization algorithms

Gradient descent is one of the most used algorithms to perform backpropegation
optimization, especially in the case of neural networks. In this section, we are going
to look at the different variants of gradient descent, as well as introducing the most
common variants.

Gradient descent is the process of minimizing the objective function J(θ) param-
eterized by a models parameters θ ∈ IRd by updating the parameters in the opposite
direction of the gradient of the objective function ∇θJ(θ) with regards to the param-
eters. The learning rate determines the length of the step towards the minimum. In
layman terms we follow the slope of the surface (which is created by the aforementioned
objective function) downhill until the only way to go is up.

There are three variants of gradient descent. The difference between the three is how
much data is being used when computing the gradient of the objective function. When

36

we use a lot of data to compute the gradient we get a good accuracy but at the cost of
computational complexity which again leads to longer time to perform an update.

• Batch Gradient Descent: all training samples are used to create one batch.

• Stochastic Gradient Descent: batch size is one element of the training data.

• Mini-Batch Gradient Descent: batch size is more than one sample and less
than the size of the entire dataset

Batch gradient descent computes the gradient of the cost with regards to the
parameters θ for the entire dataset with all its samples:

θ = θ − η · ∇J(θ) (2.16)

where η is the learning rate. Because we compute the gradients for the entire dataset this
is slow and consume a lot of memory. This makes it problematic for image classification
tasks.

Stochastic gradient descent (SGD) is performs a parameter update for each
sample in the dataset, not the entire dataset. It is computed by:

θ = θ − η · ∇θJ(θ;xi; yi) (2.17)

where xi and yi are one training sample. This sample-wise update of gradients leads to
a lot of redundant computations, but unlike batch gradient descent it does one update
at a time and is therefore much faster.

Mini-Batch gradient descent is a combination of batch gradient descent and
stochastic gradient descent. It performs one update for every mini-batch of training
samples:

θ = θ − η · ∇θJ(θ;x(i:i+n); y(i:i+n)) (2.18)

where n is the number of samples in every mini-batch. The benefits of using mini-
batches is twofold; (1) it reduces variance of parameter updates as gradient are averaged
over multiple samples, which can lead to more stable convergence; and (2) very
computationally efficient compared to batch gradient descent and stochastic gradient
descent.

However, mini-batch gradient descent comes with some challenges. It can be difficult
to chose a suitable learning rate. Low learning rate leads to slow convergence and too
high learning rate can cause the loss to skip over the minimum. To combat this one can
use learning rate schedules which adjust the learning rate during training according to a
pre-defined set of rules. But these schedules must also be tuned manually to achieve good
performance and fail to adapt to the next dataset. Another problem is that even when
setting a good learning rate scheduler the learning rate applies equally to all parameter
updates. In the case of a highly imbalanced dataset it is better to tweak how much and
how often the parameters is updated.

37

Momentum based learning algorithms

Momentum [45] fixes one of the main problems with normal SGD, which is that is will
often get stuck in in saddle points [46] and converge slowly in ravines. Momentum
accelerate SGD in the correct directions and dampens oscillations. These oscillations is
common in ravine-like areas where instead of moving parallel to the walls in the ravine it
will oscillate perpendicular while only taking small steps in the correct directions. The
way momentum does this is by adding a fraction γ of the update vector of the past time
step to the current update vector:

vt = γvt−1 + η∇θJ(θ) (2.19)

θ = θ − vt (2.20)

The fraction γ is usually set to a value in the range of 0.9. Using momentum almost
always leads to a better and faster convergence than in the case of using standard SGD.

Another version of SGD with momentum which has gained a lot of popularity is called
Nesterov momentum, or Nesterov Accelerated Gradient (NAG) [47]. NAG add a notion
of in which direction is best for the next update. In the case that we are converging fast
on a local minimum normal momentum might have enough momentum to overshoot the
minimum, and there is a need for a way to slow down when before the hill slopes up
again. NAG achieves this by computing θ − γvt−1 which gives an approximation of the
next position of where the parameters are going to be. This allows NAG to look ahead
by calculating the gradient with regards to future position of parameters:

vt = γvt−1 + η∇θJ(θ − γvt−1) (2.21)

Adaptive gradient based learning algorithms

Adagrad (ADAptive GRADient algorithm) [48] improves upon stochastic gradient
descent with momentum with an adaptive learning rate tailored to the parameters. For
features in the mini-batch which occurs frequently it will perform smaller updates (lower
learning rate) to the parameters and for features which occurs rarely it will perform
larger updates. This makes Adagrad algorithm good for handling imbalanced datasets
and sparse data. The way Adagrad calculates the learning rates for every parameter at
every time step is by:

θt+1 = θi −
η√

Gt + ε
� gt (2.22)

where Gt is a diagonal matrix witch holds the sum of the squares of the past gradients
with regard to all parameters θ along its diagonal, ε is a small value to avoid division by
zero and gt is the gradient at time step t, gt = ∇θJ(θt).

Momentum & adaptive gradient based learning algorithms

One flaw with Adagrad is that by storing the sum of the squares of the past gradients,
which are all positive, the denominator grows ever large. Eventually the learning rate

38

will shrink towards zero and the network won’t be able to learn any more additional
knowledge.

Adaptive Moment Estimation (Adam) [49] store an exponentially decaying average of
past squared gradients which reduces the aggressive decreasing learning rate of Adagrad.
This is also done in optimization algorithms like Adadelta and RMSprop. But Adam
also store an exponentially decaying average of past gradients mt which is similar to
momentum. The way Adam update its parameters is:

θt+1 = θt −
η√
v̂t + ε

m̂t (2.23)

where v̂ and m̂ is computed by:

v̂t =
vt

1− βt2
, m̂t =

mt

1− βt1
(2.24)

mt and vt are estimates of the first order moment and the second order moment of
the gradients. Upon initialization the authors, Kingma and Ba, discovered that biased
towards zero, so to counteract the bias they instead compute v̂ and m̂ with a factor, β,
which the authors propose default values of 0.9 for β1 and 0.999 for β2.

2.3.4 ResNet

Residual Network (ResNet) [50] is in a way an upgraded form of previously mentioned
Convolutional Neural Networks. This architecture enable the model to have hundreds
of layers. The original CNN would succumb to to the ”vanishing gradient” problem,
meaning that during the backpropegation the weights that minimizes the loss function
would multiplied so many times that the gradient becomes smaller and smaller. In this
case adding more layers will no longer lead to better performance and in some cases even
degrade model performance.

What makes this architecture so efficient for high number of layers is ”identity
shortcut connections”. ResNet stacks up these connections which is initially don’t do
anything. During training these layers are skipped, and the model uses the activation
functions from previous layers. This compresses the model down to only a few layers at
the beginning of training, this enables faster learning. When the model trains again all
the layers are expanded again and the ”residual” parts of the network explore more and
more of the feature space of the source image.

ResNet outperforms shallower networks and are easy to implement in TensorFlow,
Keras etc. And is therefor very popular in computer vision tasks. In the years after
its authors published the model many new and prominent versions of the architectures
have emerged.

2.3.5 EfficientNet

Convolutional neural networks (Section 2.3.2) are often developed according to some
specification, and later re-purposed and scaled up for other projects. However, training

39

deep neural networks becomes difficult as depth increases [51], [52]. In deep convolutional
neural networks the many non-linear transformations in conventional feed-forward
network architectures lead to poor propagation of activations and gradients, often called
’vanishing gradient problem’. This performance degradation problem was attributed
to the fact that very deep models are hard to optimize, and the optimizer is not able
to converge to a correct minimum of the loss function. To overcome this ResNet [53]
introduced shortcut connections between convolutional blocks that allow the gradients
to flow more easily through the network. This development of residual networks allows
for network to be hundreds of layers deep. These networks have reached state of the
art performance many times in the past, but they require tedious manual tuning, and
multiple weeks of training.

EfficientNets [54] focuses on improving the accuracy of the state of the art models
even further, but also on increasing the efficiency of the model by tweaking the scaling.
There are three different dimensions which can be scaled in a CNN; depth (d), width (w),
and resolution (r). Depth parameter is the amount of layers there are in the network.
Width is how wide the network is. One measure of width is how many channels are in
the images - usually three, one channel each for red, green and blue, or one for gray-scale
images. Resolution is the number of pixels for height and width of the source image.

• Depth scaling; the most common way of scaling a neural network is to add or
remove layers in the model. Number of layers in a model usually range from
just a couple to a hundred. The reason larger models perform well is that they
capture more complex features and generalize better than smaller models. But
due to vanishing gradients in very deep neural networks it is a limit for how many
layers a model can hold. Even when avoiding the problem of vanishing gradients
adding more layers won’t always help, and ResNet with 1,000 layers has similar
performance as ResNet with 100 layers.

• Width scaling; very deep residual networks has a problem of diminishing feature
reuse, and therefore the networks are slow to train [55]. Widening the network is
done by increasing filter sizes in the convolutional layer or to add more kernels.
But with very shallow and wide networks accuracy saturates quickly.

• Resolution scaling; the third option is change the pixel resolution of the input
image. Reducing the spatial resolution of an image will decrease the performance
score of a CNN [56]. But the accuracy gain diminished very quickly for medium
to high resolution images.

Scaling in computer vision tasks is usually fixed, and set so that a given model
performs optimally on a given tasks. Tan et al. proposed a novel technique which use
compound scaling to uniformly scale network width, depth and resolution to create an
optimal network that capture all fine-grained features of an image. In Figure 2.13 is
a visualization created by Tan and Le, the authors of the paper, which depicts how
compound scaling adjusts the network dimensions. This automatic scaling is achieved
by the inclusion of a compound coefficient φ that uniformly scales network width, depth,

40

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (e) compound scaling

#channels

layer_i

resolution HxW

wider

deeper

higher
resolution

higher
resolution

deeper

wider

Figure 2. Model Scaling. (a) is a baseline network example; (b)-(d) are conventional scaling that only increases one dimension of network
width, depth, or resolution. (e) is our proposed compound scaling method that uniformly scales all three dimensions with a fixed ratio.

and resolution with a set of fixed scaling coefficients. For
example, if we want to use 2N times more computational
resources, then we can simply increase the network depth by
αN , width by βN , and image size by γN , where α, β, γ are
constant coefficients determined by a small grid search on
the original small model. Figure 2 illustrates the difference
between our scaling method and conventional methods.

Intuitively, the compound scaling method makes sense be-
cause if the input image is bigger, then the network needs
more layers to increase the receptive field and more channels
to capture more fine-grained patterns on the bigger image. In
fact, previous theoretical (Raghu et al., 2017; Lu et al., 2018)
and empirical results (Zagoruyko & Komodakis, 2016) both
show that there exists certain relationship between network
width and depth, but to our best knowledge, we are the
first to empirically quantify the relationship among all three
dimensions of network width, depth, and resolution.

We demonstrate that our scaling method work well on exist-
ing MobileNets (Howard et al., 2017; Sandler et al., 2018)
and ResNet (He et al., 2016). Notably, the effectiveness of
model scaling heavily depends on the baseline network; to
go even further, we use neural architecture search (Zoph
& Le, 2017; Tan et al., 2019) to develop a new baseline
network, and scale it up to obtain a family of models, called
EfficientNets. Figure 1 summarizes the ImageNet perfor-
mance, where our EfficientNets significantly outperform
other ConvNets. In particular, our EfficientNet-B7 surpasses
the best existing GPipe accuracy (Huang et al., 2018), but
using 8.4x fewer parameters and running 6.1x faster on in-
ference. Compared to the widely used ResNet-50 (He et al.,
2016), our EfficientNet-B4 improves the top-1 accuracy
from 76.3% to 83.0% (+6.7%) with similar FLOPS. Besides
ImageNet, EfficientNets also transfer well and achieve state-

of-the-art accuracy on 5 out of 8 widely used datasets, while
reducing parameters by up to 21x than existing ConvNets.

2. Related Work
ConvNet Accuracy: Since AlexNet (Krizhevsky et al.,
2012) won the 2012 ImageNet competition, ConvNets have
become increasingly more accurate by going bigger: while
the 2014 ImageNet winner GoogleNet (Szegedy et al., 2015)
achieves 74.8% top-1 accuracy with about 6.8M parameters,
the 2017 ImageNet winner SENet (Hu et al., 2018) achieves
82.7% top-1 accuracy with 145M parameters. Recently,
GPipe (Huang et al., 2018) further pushes the state-of-the-art
ImageNet top-1 validation accuracy to 84.3% using 557M
parameters: it is so big that it can only be trained with a
specialized pipeline parallelism library by partitioning the
network and spreading each part to a different accelera-
tor. While these models are mainly designed for ImageNet,
recent studies have shown better ImageNet models also per-
form better across a variety of transfer learning datasets
(Kornblith et al., 2019), and other computer vision tasks
such as object detection (He et al., 2016; Tan et al., 2019).
Although higher accuracy is critical for many applications,
we have already hit the hardware memory limit, and thus
further accuracy gain needs better efficiency.

ConvNet Efficiency: Deep ConvNets are often over-
parameterized. Model compression (Han et al., 2016; He
et al., 2018; Yang et al., 2018) is a common way to re-
duce model size by trading accuracy for efficiency. As mo-
bile phones become ubiquitous, it is also common to hand-
craft efficient mobile-size ConvNets, such as SqueezeNets
(Iandola et al., 2016; Gholami et al., 2018), MobileNets
(Howard et al., 2017; Sandler et al., 2018), and ShuffleNets

Figure 2.13: Different model scaling methods. (a) baseline network example; (b,c,d)
conventional scaling which change one dimension of network width, depth, or resolution. (e)
compound scaling method which uniformly scales all three dimensions with a fixed ratio.

and resolution:

depth: d = αφ

width: w = βφ

resolution: r = γφ

(2.25)

Where α·β2·γ2 ≈ 2, and α ≥ 1, β ≥ 1, γ ≥ 1. α, β, γ are constants that can be determined
by a small grid search and φ is a user-specified coefficient that controls how many
resources are available for model scaling. The cost of floating point operations (FLOPS)
of a regular convolution operation is proportional to d,w2, r2, which means that when
the network depth is doubled, the FLOPS are doubled as well. When width or resolution
are doubled the FLOPS increase by four times. Because of this exponential growth in
computational cost of increasing the network dimensions the authors of EfficientNet set
a constraint such that for any φ, the total FLOPS don’t exceed 2φ.

The network architecture is not changed when scaling up or down dimensions, so the
effectiveness of the model relies heavily on the baseline network. The authors performed
a neural architecture search using the AutoML MNAS framework [57], which is used
to find well suited architectures for mobile devices, and must therefore be efficient and
perform well. The resulting architecture use mobile inverted bottleneck convolution
(MBConv), similar to MobileNetV2 [58] and MnasNet [59]. Given the base network the
authors fixed the compound coefficient φ = 1 and did a grid search to find the optimal
values for α, β, γ. For the baseline network B0, the optimal values found are α = 1.2,
β = 1.1, and γ = 1.15. The next step was to fix the values for α, β, γ and experiment
with different values of φ which produced EfficientNetsB1-B7.

Compared to other state of the art networks, scaled EfficientNet models consistently
reduce parameters and FLOPS by an order of magnitude. See Table 2.6 for a summary

41

Model Top-1 Acc #Params #FLOPS

EfficientNet-B0 0.773 5.3M 0.39B
EfficientNet-B1 0.792 7.8M 0.70B
EfficientNet-B2 0.803 9.2M 1.0B
EfficientNet-B3 0.817 12M 1.8B
EfficientNet-B4 0.830 19M 4.2B
EfficientNet-B5 0.837 30M 9.9B
EfficientNet-B6 0.842 43M 19B
EfficientNet-B7 0.844 66M 37B

Table 2.6: EfficientNet performance results on the popular benchmark dataset, ImageNet. Top-
1 accuracy increase with larger compound coefficient, at the cost of more parameters to update
each training step. All models are scaled from baseline model EfficientNetB0 using different
compound scaling coefficients.

of ImageNet performance with the respective numbers of parameters and Flops for each
of the members of EfficientNet Family, models B0-B7.

2.3.6 Self learning with noisy student

Self-training is one of the most common semi-supervised (Section 2.3.1) methods used.
Self-training means to use a trained supervised model, called a teacher, to select a subset
of the unlabeled data by filtering out the predictions, also known as pseudo labels, using
a threshold. These new pseudo labels are combined with the original labeled dataset
and a new model, called a student model, is trained on the combined dataset. This can
be repeated multiple times until the system converges, and thereby fully utilizing the
wast amounts of unlabeled data to increase model performance.

In recent years, semi-supervised learning have been used in many different
domains [60]–[63]. Although producing prominent results, these models have low
accuracy and high entropy during early stages of training, and consistency training
regularizes the model towards high entropy predictions which prevents it from achieving
high accuracy [64].

Xie, Luong, Hovy, et al. proposed a novel self-training framework better suited to
work well at scale and their model achieved 88.4% top-1 accuracy on ImageNet, which
is 2.0% better than the previous state of the art model [64]. They found that that
for self-training to work well at scale, the student model should be noised during its
training while the teacher model should not be noised while generating pseudo labels.
Noisy student improve self-training in two distinct ways: (1) it makes the student larger
than, or at least equal to, the teacher so the student can learn from a larger dataset, and
(2) it add noise to the student, forcing the student to better generalize on the unlabeled
dataset and thereby learn more. The authors used multiple types of noise to improve
the student models ability to generalize such as RandAugment data augmentation [65]
as input noise, and dropout [66], stochastic depth [67] as model noise. Injecting noise on
the input data has the benefit of enforcing local smoothness in the decision function on

42

both labeled and unlabeled images. The student must be able to correctly classify the
images with data augmentation transformations and this invariant constraint helps the
student model to learn beyond the teacher, and make predictions on more difficult data.
When model noise such as stochastic depth and dropout are used, the teacher behaves
like an ensemble while it generates pseudo labels, whereas the student are forced to
mimic a more powerful ensemble model. Below is the noisy student algorithm in more
detail:

1. Learn teacher model θt∗ which minimizes the cross entropy loss on labeled images

1

n

n∑
i=1

`(yi, f
noised(xi, θ

t)) (2.26)

2. Use an unnoised teacher model to generate soft or hard pseudo labels for unlabeled
images

ỹi = f(x̃, θt∗),∀i = 1, ...,m (2.27)

3. Learn an equal-or-larger student model θs∗ which minimizes the cross entropy loss
on labeled images and unlabeled images with noise added to the student model

1

n

n∑
i=1

`(yi, f
noised(xi, θ

s)) +
1

m

m∑
i=1

`(ỹi, f
noised(x̃i, θ

s)) (2.28)

4. Iterative training: use the student model as a teacher and go back to step 2.

Where {(x1, y1), (x2, y2), ..., (xn, yn)} is the labeled images and {x̃1, x̃2, ..., x̃m} is the
unlabeled images.

The noisy student algorithm also works better with data filtering and balancing. The
data is filtered by excluding the images the model has low confidence on since they are
usually out of domain images. Balancing is used to assure the distribution of unlabeled
images match the distribution of the labeled training set. Because the number of samples
per class in ImageNet is also uniformly distributed they make sure to balance samples
per class for the unlabeled dataset as well. This is done by taking images with the
highest confidence for classes with too many samples, and duplicating images for classes
with too few images.

To train the teacher and student models Xie, Luong, Hovy, et al. use EfficientNet
(See Section 2.3.5) as the baseline model and further scale up EfficientNetB7 and obtain
EfficientNetL2. EfficientNetL2 is deeper and wider than EfficientNetB7 but uses lower
resolution, which enables the model to process more unlabeled images.

2.4 Model evaluation

Data is simply stimuli on a neural network, and a prediction is a reaction of that stimuli.
It is difficult to fully understand why we ended up with one specific model after completed

43

training opposed to another, and the reasons for why a particular decision was made. In
this section, we will discuss some of the most common metrics used for evaluation, why
it is not recommended to train on all of the available data, and some ways to test how
good the trained model actually performs.

2.4.1 Dataset splitting

A model can be trained to fit some assortment of data, but to understand the level of
assurance the model have on the data you need to test it on data which the model has
not seen during learning. Therefore it is common to split the data into three parts:

1. Training dataset; this set should contain most of the samples in the dataset, and is
the data used to fit the model. Model sees and learns from this data. Depending
on how much data available should be in the range 60− 80% of the total number
of samples.

2. Validation dataset; used to update the higher level hyperparameters during
training. The model does not learn from this data, but is nonetheless incorporated
into the final model because the model sees it, and update parameters based upon
the evaluation of model fit. To get good mid-training evaluations the dataset
should contain in the range of 10− 20% of the training data.

3. Test dataset; this dataset is hidden from the model during training and is used
to provide an unbiased evaluation of a final model fit. Can be binned to contain
carefully sampled data which spans all the features the model should have learned
or be randomly selected from the original dataset. The size of the test dataset is
usually the same size as the validation dataset (10− 20%).

In Figure 2.14 is an example of a dataset split where 60% is used as training data and
each validation and test dataset contain 15% of the samples. How the dataset should be
split to achieve optimal results vary on model size and how much samples you have to
train on. For the case of a large model it would most likely require a substantial amount
of data while models with very few hyperparameters is often more easy to validate and
tune, so you can get away with reducing the size of the validation set.

Train Validation Test

Figure 2.14: A visualization of the dataset splits used for all our experiments except for those
performed on Kvasir-Capsule, as discussed further in Section 4.4.1. In this figure, the data is
split 60 − 15 − 15, meaning 60% is marked as training data, 15% is marked as validation data
etc.

44

2.4.2 Performance metrics

While training a model is key, how the model generalizes on unseen data is an equally
important aspect that should be considered in every machine learning project. It is
vital to know whether the model actually works and, consequently, if we can trust its
predictions. In the upcoming few sections, we will introduce some of the baseline metrics
used to estimate the generalization accuracy of a model on future unseen data.

Confusion matrix

Confusion Matrix (CM) is a table used to describe the performance of a model on a set of
test data with known true values. Every row in the confusion matrix table represents the
instances in a predicted class while every column represents the instances in an actual
class. In a confusion matrix the correct predictions are found along the diagonal line
starting in the top left corner and ending in bottom right. Numbers outside this line is
incorrect predictions. Confusion matrix is especially useful for calculating true positives
(TP), false positive (FP), false negative (FN) and true negative (TN). In Table 2.7 is a
layout of the CM for a binary classifier model. In the quadrant with TP, FP, FN and
TN is the corresponding number of predicted and true class samples.

Actual class
Class 1 Class 2

P
re

d
cl

as
s Class 1 TP FP

Class 2 FN TN

Table 2.7: Confusion matrix layout for a binary classifier, where TP = True Positive; FP =
False Positive; FN = False Negative and TN = True Negative.

Accuracy

Accuracy (ACC) of a model is the degree of closeness of measurement of a quantity to
the quantity’s true value. That is, the accuracy is the proportion of correct predictions
among the the total number of samples, given as a percentage. The way to calculate the
accuracy is

accuracy =
TP + TN

TP + TN + FN + FP
(2.29)

Recall

Recall, also known as sensitivity, is the models ability to find all the relevant cases in the
dataset. It is a especially important measure for imbalanced datasets. The definition
for recall is the number of true positives divided by the number of true positive plus the
number of false negatives

recall =
TP

TP + FN
(2.30)

45

Precision

Precision (PREC) is the closeness of measurements to each other. While recall expresses
the ability to find all relevant instances in the dataset, precision expresses the proportion
of the data points the model says were relevant that actually were relevant. It measures
the percentage of predicted samples classified as true, which were correctly classified.
Precision is defined as the number of true positives divided by the number of true
positives plus the number of false positives.

precision =
TP

TP + FP
(2.31)

F1-score

F1-score, also known as F-measure, is a combination of Recall and Precision. To create
a balanced classification model which is good at both find relevant cases (recall) and
relevant cases that are actually relevant (precision), the best practice is to calculate the
F1 score during training and make changes to maximize its value. F1 score is calculated
with the formula:

F1-score = 2 · precision · recall

precision + recall
(2.32)

ROC Curve

Receiver Operating Characteristics (ROC) is one of the most important methods of
checking a binary classification models performance. ROC is a probability curve which
tells how well the model is capable of distinguish between two classes. It is plotted with
true positive rate (TPR) on the y-axis against false positive rate (FPR) on the x-axis
at various threshold settings. The more area under the curve, the better the model
perform. TPR and FPR is defined by

TPR = Recall =
TP

TP + FN
(2.33)

FPR = 1− Specifity =
FP

TN + FP
(2.34)

When scoring a classifier based on ROC curves it is often accompanied by a AUC
value. AUC stand for area under curve, and represents the degree of separability. A
perfect classifier has a AUC of 1 which means all classes are correctly classified and it
has a perfect degree of separability. A AUC of 0.5 looks like a diagonal line across the
ROC plot and means the classifier has no class separation capacity whatsoever. AUC of
0 means the classifier has the worst degree of separability, in fact, so bad that all classes
are classified incorrectly.

While ROC Curves are mostly used for measuring performance of binary classifiers
it is possible to use for multi-class models as well. For multi-class models we plot N
number of ROC curves for N number of classes. Each ROC curve is a representation of
the models ability to separate one class from all of the remaining (N-1) classes.

46

2.4.3 Cross validation

If the dataset used for training is to small to hold off an independent test set to measure
the performance of the finished model cross validation is a good option. A popular cross
validation method called K-Fold Cross Validation works by dividing the dataset into K
splits, and one of these splits become the test data, and another one is the validation
data. The rest, K-2, splits are then used as training data. Next, the error estimation is
averaged over all k trials to get total effectiveness of the model. This way, every data
point get to be in a validation set once, and in the training set K-1 times. By training
on all the data the bias introduced to the model is reduced since it learns from all the
data and it reduces variance because all the data is also used for validation.

Another popular evaluation method is to use an independent dataset for testing the
model. This allows the model to train from all data points in the dataset, but also have
a large corpus of data for testing the models fit, given the features of both datasets
overlap. In a musical instrument recognition system a trained model achieved over 90%
accuracy when tested on a subset of the original data (cross validation) but when using
cross-dataset validation the model only reached accuracy in the 20− 60% range [68].

2.5 TensorFlow Framework

TensorFlow (TF) [69] is an open source library for machine learning created by Google. It
is supported by a great community of software engineers and receive incremental updates
and addons. We utilize TensorFlow through Python3 [70], which provide a convenient
front-end API for building applications and frameworks and a high-performance back-
end built in C++. The name TensorFlows arrives from tensors and flowcharts. This
is because it takes input as a multi-dimensional array, known as tensors. These tensors
are then used to create flowcharts - structures that describe how data moves through
a series of processing nodes. Each node is a mathematical operation like addition or
multiplication, and each connection between nodes is a tensor.

TensorFlows architecture works in three parts: (1); preprocessing the data, (2); build
the model and (3); train and evaluate the model. This is a big benefit when working on
complex data because TensorFlow is a tool which can encompass the workflow for most
projects.

In late 2019 TensorFlow 2.0 was released. This was a large update and revamped
the framework in many ways. Among the new features was easier model training with
the tighter integration of relatively simple Keras [71] API which was integrated into
TensorFlow. This introduces a new level of abstraction for machine learning developers.

2.5.1 tf.keras

Keras was introduced as a high level API built into TensorFlow 2.0. In this update,
Keras’ backend was also switched from running on multiple machine learning frameworks

8Application Programming Interface (API) is a set of functions and procedures allowing the creation
of application that access features or data of another application.

47

to only run TensorFlow. It has three key advantages over TensorFlow native: (1); it is
user friendly in that it has a consistent interface optimized for common use cases and
provides clear feedback for the user. (2); It is modular and composable, so that it is
easier to stitch configurable building blocks together. And (2); it is easy to extend with
new layers, metrics, loss functions etc.

2.5.2 tf.data

The tf.data API enable the user to build complex input pipelines. As mentioned earlier
in the section Tensorflow works in three parts, and the tf.data API is the first step in
building and training a model in TensorFlow, which is the preprocessing of data. In the
case of a model trained on images the pipeline API might aggregate data from files in
a file system, apply random perturbations to each image, and merge those images into
batches used for training. The API allows to build system which handles large amount of
data, reads from a variety of different file formats and perform complex transformations.

This is mainly possible because of the tf.data.Dataset which is an abstraction that
represents a sequence of elements, or in our case images. In such a image pipeline each
element might consist of just a image, or a pair of image and its corresponding class
label.

2.6 Related work

We have earlier in this chapter presented the reader with a large portion of the most
vital related works for this project. Next we will introduce a bit wider range of related
research in the domain of medical image recognition and tracking in the GI tract. This
research is outside of the scope of our project, but regardless important for the field. We
hope future advancements in the field allow for systems to be built which includes many
of the subjects we will discuss next. But first we will look at some related research to
deep neural networks and semi-supervised learning.

Zhu et al. have made a computer-aided lesion9 detection system which uses a trainable
feature extractor, also based on a CNN, and feed the generic features to a Support Vector
Machine which enhance the generalization ability [72]. This method greatly outperform
the earlier methods based on color and texture features. However we believe that by
using neural networks to do the decision making we can further improve this detection
system.

Yuan et al. have accomplished an average overall recognition accuracy of 98.0% for
detecting polyps in VCE images by using a deep feature learning method, named stacked
sparse autoencoder with image manifold constraint (SSAEIM). This method is built on
a Sparse auto-encoder (SAE), a symmetrical and unsupervised neural network. It is
an encoder–decoder architecture where the encoder network encodes pixel intensities
as low dimensional attributes, while the decoder step reconstructs the original pixel

9a region in an organ or tissue which has suffered damage through injury or disease, such as a wound,
ulcer, abscess, or tumor.

48

intensities from the learned low-dimensional features [73]. Detecting colorectal polyps
are important because they are precursors to cancer, which may develop if the polyps
are left untreated. Where we hopefully can build on this method is by using a larger
dataset with pathology proof of other irregularities.

Jia et al. present a new automatic bleeding detection strategy based on a deep
convolutional neural network and evaluate their method on an expanded dataset of
10,000 VCE images [74]. Gastrointestinal tract bleeding is the most common abnormality
in the tract, but also an important symptom or syndrome of other pathologies such as
ulcers, polyps, tumors and Crohn’s disease. Their method for detecting bleeding have
an increase of around 2 percentage in F1 score, up to 0.9955. This method and its high
score in somewhat limited to bleeding, and not very good at detecting other lesion. Our
goal is to develop a method for using deep learning to find more generalized pathologies
in the gastrointestinal tract.

Wu and Prasad propose semi-supervised deep learning for hyperspectral image
classification, which uses limited labeled data and abundant unlabeled data to train
a deep neural network. The paper describe a learning framework that use deep
convoluational recurrent neural networks (CRNN) for hyperspectral image classification
by treating each hyperspectral pixel as a spectral sequence [60]. They use all available
data together with the pseudo labels (cluster labels) to pre-train the CRNN and then
fine tune with the labeled data. They test their proposed system on spectral satellite
images and their method outperforms state-of-the-art supervised and semi-supervised
learning methods for hyperspectral classification.

Yalniz, Jégou, Chen, et al. present a study of semi-supervised learning with large
convolutional neural networks based on the ResNet50 architecture, and proposed a
pipeline based on the student-teacher paradigm. Some key findings of their study were;

1. Training with a teacher/student paradigm produces a better model for fixed
complexity problems.

2. Fine tune the model with labeled data only.

3. Large scale unlabeled datasets are key to good performance.

4. Build a balanced distribution of pseudo labels.

Next we will go through some other important aspects which we believe is vital to
achieve the goal of efficient screening of large populations.

2.6.1 Object tracking

Object tracking is one of the harder problem to overcome in computer vision and is key to
achieving good results in endoscopic video analysis. Tracking algorithms are developed
to determine the movement of the object or objects in each video frame. The algorithm
has to take into account the dynamic environment such as differences in lightning,
occlusions and scaling changes. Also the absence of any prior knowledge to the object

49

and its position further increase the complexity of the problem. Zhang et al. proposed an
approach for visual tracking in videos that learns to predict the bounding box locations
of a target object at every frame in the paper “Deep Reinforcement Learning for Visual
Object Tracking in Videos” [76]. While other models depends on the capability of a
CNN to learn a good feature representation for the target location in the new frame,
which means that the model only tracks properly if the target lies in the spatial vicinity
of the previous prediction. This is not always the case for VCE videos, where the lens
of the camera can suddenly and unpredictably rotate towards the wall of the intestine.
This method integrates convolutional network with recurrent network, and builds up
a spatial-temporal representation of the video which means that the model is able to
predict the target object’s location over time.

Figure 2.15: Illustration of how object in two frames is tracked with a bounding box10.

Our hope is that by implementing an object-tracking algorithm we can use it to
classify irregularities in the colonoscopy video, and then track that object in the later
frames until it disappear out of frame. This will hopefully help with reducing the
robustness of the network so that the classifier will not have to check every frame for
irregularities.

2.6.2 Segmentation

Image segmentation is the process of partitioning a image into multiple segments of
pixel, usually each segment describing some feature of the image or an entire object
or class of objects. The goal of segmentation is to simplify the image and make it
easier to analyze or further process. Ronneberger et al. propose a method in the paper
“U-Net: Convolutional Networks for Biomedical Image Segmentation” [77] for using a
network and training strategy that relies on the strong use of data augmentation to use
the available labeled samples more efficiently. This network outperform the old method
of sliding-window-convolution by a great deal. They extend the ”fully convolutional
network” [78] such that it works with very few training images and yields more precise

10https://www.learnopencv.com/goturn-deep-learning-based-object-tracking/

50

https://www.learnopencv.com/goturn-deep-learning-based-object-tracking/

segmentation. The way this is achieved is to supplement a contracting network by
successive layers, where instead of using pooling operators, upsampling operators are
used. This means that these successive layers increase the resolution of the output. The
high resolution features from the contracting path are combined with the up-sampled
output to localize objects and with that a convolution layer can then learn to produce
more precise output based on this information.

Another important feature in this architecture is that in the upsampling portion of
the network there is also large number of feature channels. These channels allow the
network to pass on context information to the higher resolution layers.

A common problem in training neural networks are too little labeled training data.
This is also the case for us. We require a lot of medical data, and personnel with the
expertise to correctly label our data are of high demand and they usually have very little
time for projects like these. This is why Ronneberger et al. use different methods of data
augmentation to generate more training data. They apply elastic deformations to the
available images, and this allows the network to learn invariance to such deformations
without the need to see these transformations in the annotated image corpus. Which is
particular important in biomedical segmentation since deformation used to be the most
common variation in tissue and realistic deformations can be simulated efficiently [77].
By doing this Ronneberger et al. were able to achieve very good results (Table 2.8).

Name PhC-U373 DIC-HeLa

IMCB-SG (2014) 0.2669 0.2935
KTH-SE (2014) 0.7953 0.4607
HOUS-US (2014) 0.5323 -
second-best 2015 0.83 0.46
u-net (2015) 0.9203 0.7756

Table 2.8: Segmentation results on the ISBI cell tracking challenge in 2015.

2.6.3 Mapping

As mentioned in Section 2.1.4, a concern when processing the images taken with a VCE
is not having the spatial data you get when using a normal fiber-optic endoscope. This
is why Turan et al. has recently made substantial progress in converting passive capsule
endoscopes to active capsule robots, enabling more accurate, precise, and intuitive
detection of the location and size of the diseased areas by developing reliable real time
pose estimation functionality of the capsule with Deep Recurrent Convolutional Neural
Networks (RCNN) [79]. See Figure 2.16 for an example.

This architecture uses inception modules for feature extraction and a RNN for
sequential modelling of motion dynamics to regress the robot’s orientation and position
in real time. By taking multiple of RGB Depth images with time stamps it can calculate
the 6-DoF pose of the capsule without the need of any extra sensors. For obtaining the
depth images Turan et al. use the shape from shading (SfS) technique of Ping-Sing and

51

Shah [80]. This model outperforms state-of-the-art models like LSD SLAM and ORB
SLAM.

(a) Training data vs ground truth. (b) Test data vs ground truth.

Figure 2.16: An example of Deep EndoVO accuracy [79]11

2.7 Summary

In this chapter, we have discussed the background and related works of the fields related
to our three primary research objectives. This include a introduction to the digestive
system and more specific the GI tract, where we we have looked at different types of
endoscopy. Regular screening of the GI tract is essential for the discovery of disease,
which may be life-threatening. We have seen that most screening examinations of the
upper and lower GI tract are performed by traditional endoscopy, which cause discomfort
for the patient. Then we looked at the video capsule endoscopy, which are performed
by swallowing a wireless video capsule and a video feed is transmitted to a receiver and
stored for later diagnose. We then explored some of the currently available dataset taken
by both traditional endoscopy and VCE.

After covering the medical background, we began looking into the use of machine
learning in the domain of medical image recognition. We started with a brief introduction
into the different types of machine learning and introduced the term semi-supervised
learning. Next, we went a bit deeper into the backbones of a convolutional neural
network, presenting common building blocks and how image data ”flow” through the
network in both directions to update the network parameters. We then looked at gradient
descent optimization methods before venturing into more complicated architectures such
as Google’s EfficientNet. We then put that into the context of this thesis by looking at
self learning with Noisy Student which was used as inspiration for our work. At the end
of the chapter we introduced some background for model evaluation, the TensorFlow
ML framework and some other interesting related works.

In conclusion, we have learned that there is a clinical need for a more efficient
approach to patient screening, and machine learning has an essential part in achieving

11Image credits: paper authors: Turan, Almalioglu, Araujo, et al.

52

this. A dominant obstacle is the lack of annotated VCE datasets, and a lack of
frameworks for handling severe class imbalances. Based on this, we researched and
developed a semi-supervised teacher-student framework which use self learning by first
training sparse labeled images, then generating pseudo labels from a large corpus of
unlabeled images, combining these labels with the labeled images, and training a larger
model on the combined images. This framework is presented in the next chapter.

53

54

Chapter 3

Methodology

We developed a semi-supervised teacher-student based image classification system to
take advantage of the wast amounts of unlabeled data, and thereby, reduce the estimated
cost of creating medical classification models. As we discussed in Section 3.2.8, medical
datasets are often highly skewed, and rarely contain enough labeled data. First, we
discuss the process of collecting and labeling data and the challenges that entails. Next
we discuss the inner workings of the input pipeline which provides images to the model,
and our choice of network architecture and its hyper-parameters. Finally we discuss
the various tools and technologies used for the implementation of the teacher-student
framework. Here we will mostly argue the reasoning behind our choices of technologies,
describe how they effected development of our teacher-student framework, and discuss
the premise of which they were chosen.

The motivation behind our teacher-student framework is to reduce the cost of
creating a good and reliable classification model in the medical sector. This cost is
most often caused by one dominant factor; a large, labeled and balanced dataset is
essential to develop a high performing classification system. The doctor-hours needed
and the lack of medical personnel to perform the cumbersome and tedious data labeling
makes this task very expensive and time consuming. We propose a framework which
will make use of unlabeled data to improve model performance and thereby reduce cost.

As with most modern software projects, our teacher-student framework is not written
from scratch, but with the aid of various tools, libraries and frameworks. We have focused
on only using these aids if they meet our requirements, which are (1) being open-source
and easily accessible, and (2) the technology should be mature and widely tested in the
field.

3.1 Data collection

As discussed in Section 2.2, there is number of publicly available datasets online, and
some which are restricted. Some of these datasets are difficult to access, and there is
a need for more publicly available datasets which are diverse and well documented. To
assist the field of research within medical computer assisted analysis tools the datasets
need to be large and well annotated. Some of the mentioned datasets lack adequately

55

documented, annotated samples from a good source and is not well suited for our
research. Thus, as a vital part of our research, we aim to produce a collection of well
annotated and adequately big dataset that can be used not only in this study, but also
contribute to the research community and have a impact on the research comparability
in future. We achieve this by collecting medical data, sorting and annotating it and
making the dataset publicly available and free to use.

3.1.1 Privacy, Legal and Ethics Issues

To obtain medical patient data from a hospital in Norway is very difficult and not straight
forward. All medical data is considered personal and is therefore strongly protected
from unauthorized use and distribution by the Privacy Data Protection Authority. A
medical study conducted at two academic hospitals in Southern California from May
2017 to September 2018 found that most patients are willing to share their data and bio-
specimens for research purposes [81]. Regardless of the patient opting in to share their
data and bio-specimens, it is still difficult for researchers to access it due to strict General
Data Protection Regulation (GDPR) laws [82]. The GDPR requires that patients provide
consent for clinical data use for research.

We solved this problem by collaborating with a number of Norwegian hospitals and a
research company, mainly Vestre Viken Hospital Trust and Augere Medical AS. Through
Augere Medical, we got in contact with Vestre Viken Hospital Trust (a hospital in
Norway), allowing us to download anonymous data from hospital systems and transfer
it using a secure media to our facility. Upon downloading the data, we further stripped
the metadata files for potential information regarding patients like time stamps and
dates.

The study was approved by the Privacy Data Protection Authority. It was exempted
from approval from the Regional Committee for Medical and Health Research Ethics -
South East Norway. Since the data is anonymous, the dataset is publicly shareable based
on Norwegian and GDPR laws.

3.1.2 Kvasir-Capsule

The VCE videos were collected prospectively from consecutive clinical examinations
performed at the Department of Medicine at Bærum Hospital, Vestre Viken Hospital
Trust in Norway between February 2016 and January 2018 with an Olympus VCE
system. Initially we received 44 VCE videos, which were first analyzed by a trained
clinician, whom selected thumbnails of region of interests of both lesions and normal
findings as part of their clinical work. Later, we received an additional 74 videos which
were used for unlabeled data.

Originally, the videos were captured at a variable frame rate of 3-5 frames per second
(FPS), in a resolution of 336× 336, and encoded using H264 (MPEG-4 AVC, part 10).
The videos are exported in AVI format using the Olympus system’s export tool packaged
and encapsulated in the same H264 format, i.e., the frame formats are the same, but the
frame rate specification is changed to 30 FPS by the export tool.

56

Prior to being exported the videos were anonymized by removing all metadata and
renaming the files with randomly generated filenames. A few videos had to be shortened
to cut out images taken during the examination prior to entering the mouth of the
patient. After that the videos are uploaded to Augere Medical AS1 tagging tool. Three
MSc students went through all the frames of the videos in collaboration with an expert
endoscopist and labeled and marked findings with bounding boxes. When the students
encountered images they were uncertain of, the expert reviewed the case.

When all 44 videos had been labeled, the dataset was exported from Augere Medical
tagging tool and split into folders for each class. The number of images per class are
given in Figure 3.2, and in Figure 3.1 are example images taken from each class of the
labeled dataset.

angiectasias blood erosion erythematous foreign bodies

polyp pylorus reduced mocusal view ulcer

hermatin Ileocecal valve lymphoid hyperplasia normal mucosa

Figure 3.1: Image examples of the 13 various labeled classes for images and their corresponding
class names.

Additionally, we provide a comma separated value (CSV) file named image-labels.csv
that gives the mapping between an image (filename), the label for each image, the
corresponding video it originate from, and the video frame number. The Kvasir-
Capsule [5] dataset will be an open-source dataset available for others scientists, and will
later be grown to include more VCE videos, and more labeled and unlabeled samples.
Kvasir-Capsule dataset is available from the Open Science Framework (OSF) accessible

1https://augere.md/

57

https://augere.md/

via the link https://osf.io/dv2ag/.

Labeled images

In total, the dataset contains 44,260 labeled images stored using the PNG format, where
Figure 3.2 shows the 13 different classes representing the labeled images and the number
of images in each class. We defined three main categories of findings, namely anatomical
landmarks, quality of mucosal view, and pathological findings. The classes are structured
according to the category of finding.

Each class and the images belonging to it is stored in the corresponding folder of the
category it belongs to. As observed in Figure 3.2, the number of images per class is not
balanced. This is a global challenge in the medical field because some findings occur
more often than others, and adds a challenge for researchers since methods applied to
the data should also be able to learn from a small amount of training data.

866

446

439

259

776

12

1417

592

34606

65

1529

2399

854

0 5000 10000 15000 20000 25000 30000 35000

Angiectasia

Blood

Erosion

Erythematous

Foreign bodies

Hermatin

Ileocecal valve

Lymphoid hyperplasia

Normal mucosa

Polyps

Pylorus

Reduced mocusal view

Ulcer

Figure 3.2: The distribution of labeled samples per class in the Kvasir-Capsule dataset.

Anatomical landmarks

Anatomical landmarks are characteristics of the GI tract used for orientation during
endoscopic procedures. Furthermore, they are used to confirm the complete extent of
the examination. We have labeled two classes of anatomical landmarks which delineates
the proximal and distal end of the small bowel. The pylorus is the anatomical junction
between the stomach and duodenal bulb and is a sphincter (circular muscle) regulating
the emptying of the stomach into the duodenum. The ileocecal valve marks the transition
from the small bowel to the large bowel and is a valve preventing reflux of colonic
contents, stool, back into the small bowel.

58

https://osf.io/dv2ag/

Quality of mucosal view

A complete visualization of the mucosa is crucial to ensure one discovers all pathological
findings. For the quality of mucosal view assessment, we have labeled two classes from
normal images without any other findings. Normal mucosa depicts relatively clean small
bowel mucosa with healthy villi and no pathological findings. This class can also double
as a ”normal” class versus the pathological findings classes (see below). The class reduced
mucosal view shows small bowel content reducing the view of the mucosa, like stool or
bubbles, meaning the mucosa can not be adequately assessed.

Pathological findings

All parts of the GI tract can be affected by abnormalities or findings due to disease,
and the small bowel is no exception. Abnormalities, called pathological findings, in the
small bowel can be seen both as irregular content in the mucosal lumen or as changes
to the mucosal surface. These findings are classified according to the Minimal Standard
Terminology, defined by the World Endoscopy Organization [83].

Normally, the small bowel contains only a certain amount of yellow or brown liquid
in some cases the color of the liquid change and become red because of bleeding from
abnormalities either in the upper GI tract or the small bowel and cause the appearance
of fresh blood in the lumen. In cases with minimal bleeding, one may observe small
black stripes called hematin on the mucosal surface. Foreign bodies like tablet residue or
retained capsules can also be observed in the lumen. Typical mucosal changes, sometimes
cover lager segments, such as a reddish appearance called erythematous mucosa. The
mucosal wall can also have different focal lesions, which can be flat, excavated or
protruding compared to the surface of the normal mucosa. The flat lesions represented
in the Kvasir-Capsule dataset are angiectasias; small superficial dilated vessels causing
chronic bleeding and subsequently anaemia. It mostly occurs in people with chronic heart
and lung diseases [84]. Excavated lesions erode to different extents the surface of the
mucosa. Most common are erosions, covered by a tiny fibrin layer, while larger erosions
are called ulcers. As an example, Crohn’s disease is a chronic inflammation of the small
bowel characterized by ulcers and erosions of the mucosa. It may cause strictures of
the lumen, making the absorption and passage of nutrients difficult [85]. The classes
of protruding lesions in this dataset are polyps, that may be precancerous lesions, and
lymphoid hyperplasia, which represents normal lymphoid tissue in the mucosal wall.

Unlabeled images

Later, we received an additional 74 videos from Vestre Viken Hospital Trust, taken from
examinations around the same time as the initial 44 videos. These videos were not
annotated but used for generating the unlabeled images for our project. In total there
are 2.6 million unlabeled images exported from the 74 unlabeled videos. The original
videos are included in the dataset. We hope this can be used for other semi-supervised
research projects, where the temporal information of the data is also included in the
experiment, or to generate more labeled data with the help of medical experts.

59

Videos

In addition to the labeled images, all 118 videos used for extracting frames are included
in the dataset in MP4 format. These videos were processed exactly the same as the
videos used for generating the annotated image dataset. The videos use the same codex,
and same frame-rate and resolution. This is to make sure the labeled and unlabeled
dataset are compatible.

3.2 Data pipeline

The input pipeline is implemented in TensorFlows [69] data.Dataset library. This was
chosen over datagenerator due to the easy of use, but later became an issue due to the
complexity and some diffuse runtime errors. The main benefits by using data.Dataset
is that all data is handled in tensors and computation is automatically distributed to
the Graphical Processor Unit (GPU) which enhance the load distribution of processing
power. In Figure 3.3 is a course look at how our network is trained and the scripts
used to do so. The input pipeline sits between the training and test dataset and the
TensorFlow model.

pipeline.py

path_to/test

path_to/val

path_to/train

evaluate_model.py

E
ffi

ci
en

tN
et

trained_model.h5Training data

Validation data

Testing data

model metrics

build_dataset.py

Figure 3.3: The pipeline used for training our models. The scripts in this figure are available
on GitHub2.

All the code for handling the data pipeline is managed in a separate script called
pipeline.py. The input pipeline outline can be seen in Figure 3.4. In this figure, we
visualize the different paths of data used for training, and data used for testing and
validation. The main difference in the two paths is that training data is resampled to
create a uniform distribution of samples, and augmented to create small variations in
the images to help the model generalize better.

2https://github.com/henriklg/master-thesis

60

https://github.com/henriklg/master-thesis

Create list of image
paths

Test and val data

Tr
ai

n
da

ta

Read, decode and
resize images

Re-sample from
training data

Tr
ai

n
da

ta

Test and val dataCache
Shuffle
Repeat

Batch and prefetch

Augment training data

Val

Test

Train

Figure 3.4: The input pipeline we use for providing our network with image-label pairs during
training. The red connections represent the path of the training data.

3.2.1 Splitting and resize images

Although not strictly a part of the input pipeline itself, preprocessing is a vital step
in machine learning as the quality of the data and the useful information that can be
derived from it directly affects the ability of our model to learn.

Initially the dataset was split into three; training data, test data, and validation
data. This was done by using tf.data.Dataset core operations take and skip. The take
function, when called upon, returns a sub-dataset with the same number of samples as
the number it receives as a argument. Skip function returns a sub-dataset where it skips
the number of elements as stated in input argument and return the remaining samples.

>>> dataset = tf.data.Dataset.range (10)

>>> dataset = dataset.skip (7)

>>> list(dataset.as_numpy_iterator ())

[7, 8, 9]

Listing 3.1: Demonstration of Dataset.skip, used to split a dataset object into subsets.

However, because of the imbalanced dataset we have been working with, this turned
out to drop minority classes in some runs. This happened because the take and skip
methods picks samples from the entire dataset as whole, and not per class. In Hyper-
Kvasir, the class with smallest number of samples, called a minority class, is hemorrhoids
with 6 samples. Depending on the random shuffling for each run these samples would
often all end up in one of the dataset splits and not be represented in the other two.
To mitigate this issue, we created a separate script for pre-splitting dataset into sub
folders for each, training, testing and validation dataset. The outline of this script is
given below.

for every class name in directories:

sort the images

shuffle the filenames

split the class into train , test and val

for each split_ds in datasets:

for filename in sub -split:

resize and save the image

Listing 3.2: Pseudo code for critical parts of build dataset.py. Used for resizing and splitting a
dataset.

61

We split the data into 60% training data, and leave 15% for test data and validation
data respectively. To make the split reproducible we first sort the data in alphabetically
order after filenames then use seeded random to shuffle the filenames so the three datasets
contains a random assortment of images from the original dataset. In this step, we also
reduce the image dimensions to 256 × 256 pixels to make the data easier to use during
the next preprocessing steps. For downscaling the images, we use a resize function
from the highly optimized library OpenCV [86], with a bilinear interpolation. We used
OpenCV because for this particular task it was about 30% faster than Pillow [87], another
popular Python imaging library. However, this downscaling might introduce aliasing and
artifacts to the images as the Hyper-Kvasir’s median image dimensions are 768 × 576
pixels, which means we are reducing the dimensions with a factor of three. Area based
interpolation [88] or Gaussian resampling, with a suitable chosen radius, may give better
results. This is something I would like to have tested if we had more time.

Another benefit we get from running all images through this processing script is
the reduction in dataset file size. In Hyper-Kvasir this size reduction correspond to a
magnitude in total file size reduction, from 28 gigabytes to 2.8 gigabytes. This helps to
efficiently load the images into the pipeline during training.

At this step it would be natural to also apply normalization to the images, but
TensorFlow handles this gracefully while reading the images from disk, so we have opted
to leave this out of the script. To normalize an image in the context of machine learning
means to squeeze the pixels values into a range from zero to one. This is done because
usually when reading an image from disk it is represented with an integer value between
0 and 255. Although this integer value can be directly represented to the neural network
models, this can result in challenges during training like slower learning. Finally the
images are saved to a corresponding directory for each train, test and validation data in
the given output directory.

Because Kvasir-Capsule dataset contain frames taken from video we had to take this
into account when splitting the dataset. What will happen if special care is not taken is
we will see models which perform better than expected when tested on the test dataset,
but might be under performing when used in production. This happens because nearly
identical images from the same video and finding will be split among both the training
dataset and the testing dataset, and the model therefore ’sees’ the test data. This is
why we split Kvasir-Capsule in a way no same finding are in both splits.

3.2.2 Loading images into the pipeline

To efficiently read and process the images in the pipeline we use TensorFlow’s function
list files from the tensorflow.data API. This function creates a Python iterable dataset
object of all files matching a glob pattern. An example of a glob pattern could be
”/source/datasets/*.jpg”. In this example, the ”*.jpg” is a wildcard followed by a
image format extension, which means that a dataset will be created out of all JPEG
images inside the ”datasets” directory. This function then returns a dataset of strings
corresponding to filenames. Although not strictly necessary because the images were
randomly shuffled before being split into train, test and validation datasets, the filenames

62

are shuffled again upon entering the dataset. This is repeated three times for each of
the train, test and validation datasets. If we get 5 samples from this dataset of strings
this is how they would be represented:

>>> for path in dataset.take (5):

>>> print (path)

tf.Tensor(b’/normal -cecum/cc6ed77fbc04.jpg’, shape =(), dtype=string)

tf.Tensor(b’/polyps /119100 adf1de.jpg’, shape =(), dtype=string)

tf.Tensor(b’/esophagitis/f3be6279f5f7.jpg’, shape =(), dtype=string)

tf.Tensor(b’/dyed -lifted -polyps/dfb00c142d.jpg’, shape =(), dtype=string)

tf.Tensor(b’/dyed -lifted -polyps/aa0268867b.jpg’, shape =(), dtype=string)

Listing 3.3: Tensor representation of image filepaths to the original location of dataset samples.

Next we apply a transformation function to each element of the dataset to create
image-label pairs from the list of filepaths. This transformation function does three
things; one-hot encodes the label based on the parent directory; decodes the image so
the image is represented with a tensor with dimensions (image width, image height, color
channels); resize the image to the correct dimensions. Once we have a dataset object we
can transform it into a new dataset by chaining method calls on the dataset object.

3.2.3 Optimize performance

To build an efficient pipeline requires that the GPU is provided data at the correct time.
If the GPU is waiting to receive data, the pipeline is not optimized and training a model
will take longer. Preferably the pipeline delivers data for the next step before the current
step has finished.

The main steps involved in training a model is (1); opening a image file from storage,
(2); reading the data from that file and (3); sending the data through the model and
update the weights. If these operations are performed in synchronous and sequential
order the model can not train while it is waiting idle for an image to be opened and
read. Therefore the training step time is the sum of all three steps, see Figure 3.5.

Figure 3.5: The time spent for reading a file from storage, opening the contents of the file, and
running the image through the network - the naive method, in which every step is performed in
sequential order.

63

The tf.data API has a couple of approaches that aim to make this as fast as possible.
The first one is prefetching. Prefetching overlaps the preprocessing and model execution
of a training step. While the model is executing training step s, the input pipeline is
reading the data for step s+ 1. Doing so reduces the training step time by a significant
amount as seen on Figure 3.6. Because we are using a tf.data.Dataset object for holding
all our images it is very easy to introduce prefetching to the pipeline. The tf.data API
provides the tf.data.Dataset.prefetch transformation which decouple the time when data
is produced by the central processing unit (CPU) from the time when data is consumed
by the GPU.

Figure 3.6: The time spent for reading a file from storage, opening the contents of the file,
and running the image through the network - with image prefetching. With prefetching, the
CPU can prepare images to the network while the GPU is updating the weights for the previous
image.

We rely heavily on data augmentation to help the model to generalize and not overfit.
This is done when preparing the data by using tf.data.Dataset.map transformations,
which applies a user-defined function to each element of the input dataset. Because the
samples are independent of one another, the process can be run in parallel across multiple
CPU cores. The tf.data API provides a num parallel calls argument to specify the level
of parallelism, this argument can be set manually or automatically. We have chosen
to go with the automatic delegation, which sets the level of parallelism on runtime.
See Figure 3.7 for the naive approach, and Figure 3.8 for overhead when using parallel
mapping.

The last step, we take to optimize the training efficiency is to cache the dataset to
local storage (an NVMe Solid State Drive in our case). This will save some operations,
like opening and reading data, from being executed each epoch during training of the
model. When the dataset is cached, the images will be opened, read and in our case some
pre-processing are performed, the first epoch during training, and the following epochs
will reuse the data stored in the local cache. See Figure 3.9 for an example of how this
affects time consumption. We split the pre-processing steps into two steps. The first step
is applied before caching the dataset and the last step is performed after. This is done
because some pre-processing steps are to be performed on every element of the dataset
in a deliberate way, and some steps are randomized every time the process is applied.

64

Figure 3.7: Naive pipeline, here the times spent on opening, reading, pre-processing and update
network weights, steps sum together for a single iteration.

Figure 3.8: Here you can see pre-processing steps overlap, and the overall time for each iteration
is reduced due to CPU parallelism.

The mapping that are applied before the caching is: read the label and one-hot encode
to integer, read and decode the image, normalize image and resize image dimensions.
The mappings that are performed after caching is: shuffling, batching, augmenting.

3.2.4 Shuffle the dataset

We shuffle the data to reduce variance and to make sure the model remains general
and less overfit. This is especially important as our dataset is sorted by class. In
our pipeline the data is shuffled twice for redundancy. We can afford this because the
tf.data API has a low computational performance hit the way it applies the shuffle
transformation. The pipeline shuffles the entire list of image filepaths initially, and
then a shuffle transformation is applied a second time after the dataset is cached, this
ensure that the dataset is shuffled between every epoch during training as well. This is

65

Figure 3.9: Cached pipeline, here the pre-processing is only executed during the first training
step, and in the following steps the data is accessed from cache.

important because we have the risk of creating batches that are not representative of
the overall dataset, and therefore gradient estimate will be off.

TensorFlow’s data API have a dedicated shuffle function which randomly shuffles
the elements of the input dataset. It does this by filling a buffer of n elements, then
randomly sample elements from this buffer, replacing the selected elements with new
elements. For perfect shuffling of the entire dataset we use n > total samples. The
argument reshuffle each iteration is set to True so every epoch get a unique batch of
images. Another method of creating unique batches is to first repeat the dataset, then
shuffle and create batches.

3.2.5 Repeat

In some situations it is desirable to extend the dataset with duplicates of past samples.
One example of this is for oversampling the dataset. We use the repeat function from
the tf.data API to ”infinitely” repeat the dataset samples.

>>dataset = tf.data.Dataset.from_tensor_slices ([1, 2, 3])

>>dataset = dataset.repeat ()

>>list(dataset.as_numpy_iterator ())

[1, 2, 3, 1, 2, 3, 1, 2, 3,]

Listing 3.4: Demonstration of Dataset.repeat, which repeats the dataset indefinitely.

This repeat transformation is applied after caching and shuffling, so that we are
sure the model sees every sample of the dataset each epoch. We then apply image
augmentation at random to each dataset sample so for every finished epoch during
training every image is shown once, with a distinctive augmentation filter. Because the
dataset is infinitely repeated we must specify how many steps the model should iterate
during training, or else it would not know where to stop iterating through the dataset
object.

66

Figure 3.10: The effect of data augmentation on an image from Hyper-Kvasir. Image taken from
barrets-short-segment class. In this example, the augmentations performed are a bit excessive
to underline the effects.

3.2.6 Data augmentation

The datasets we will be performing our experiments on, like many medical domain
datasets, share a common unbalanced data problem. That is images of the target classes,
only appear in a very small portion of the the entire dataset. Having a large amount of
labeled images is important for the performance of all medical image classification models
to effectively learn. Data augmentation overcomes this issue by artificially inflating the
training set with label preserving transformations. This helps the model to generalize
better and to overfit less - overall a more robust model.

This augmented data is acquired by performing a series of pre-processing transfor-
mations to existing data. These transformations can include horizontal and vertical
flipping of the image, skewing, cropping, rotating and much more. By doing this, the
augmented data is able to simulate a variety of subtly different data points, as opposed
to just duplicating the same data over and over. In Figure 3.10 we have taken one Im-
age from the Hyper-Kvasir dataset and created a tf.data.Dataset object which has then
been repeated and gone through the same data augmentations that we use in the input
pipeline for the training data.

This is especially important in the medical domain of VCE videos due to two reasons;
(1), the camera capsule will orient itself randomly as it travels through the small
intestine, and the model have to able to detect a polyp regardless of the orientation
and (2), we have a very uneven class balance within the dataset and oversample the
minority classes requires some sort of data augmentation to reduce overfitting. Data

67

augmentation will however not solve all data problems, but it has been proven to be
very effective for training neural networks. By implementing data augmentation in our
pipeline we saw that during training the model would overfit far less. The augmentation
transformation we use is as follow:

• Flip; mirroring the images across its vertical or horizontal axis. It is
computationally efficient and easy to implement as it only requires rows or columns
of image matrices to be reversed.

• Rotation; rotates the image around its center via mapping each pixel (x, y) of an
image to (x′, y′) with the following transformation(

x′

y′

)
=

(
cosθ −sinθ
sinθ cosθ

)(
x
y

)
(3.1)

We find that setting θ to a random number between −30 degrees and +30 degrees
give good results.

• Crop; pad the image by adding black pixels around the image and then randomly
crop it back down to the original image dimensions. We have chosen that the
image is padded with 20% of its original dimensions. For example a image with
the dimensions 128× 128 will be padded with 25 pixels.

• Brightness; convert RGB image to float representation, adjusts the brightness,
and then convert the image back to original data type. We have set a value,
max delta = 0.25, and randomly pick a value from the interval [-max delta,
max delta] which is the amount to add to the pixel values.

• Saturation; converts the image to HSV, adds an offset to the saturation channel
and then converts the image back to RGB. The offset is randomly selected from
the interval [lower, upper]. In our experiments we have set the interval to [0.6,
1.5].

• Contrast; converts images to float representation, adjusts their contrast, and then
converts them back to the original data type. Contrast is adjusted independently
for each channel of each image. This is done by computing the mean of the
image pixels for each channel and then adjusts component x of each pixel to
(x−mean) ∗ contrast factor +mean. Where contrast factor is randomly picked
from the interval [lower, upper] = [0.6, 1.5].

To selectively choose how much the dataset is augmented during training of a model
we have implemented a system which dial back the aforementioned parameters by a
percentage. This enables us to train the teacher model with very little augmentation
and then increase the image augmentations for the student model. In Figure 3.11 is an
example of a batch of 12 images which is shown to the network during training.

One possible draw-back from using data augmentation is the network might miss
important features during training if those features are cropped or rotated out of view.

68

Figure 3.11: The effect of reduced data augmentation on images from Hyper-Kvasir dataset.
Here the effect of cropping is reduced by padding the image with 10% of its original dimensions,
and rotation is reduced to max 10 degrees.

With this in mind we use cropping and rotation with care. For cropping we dial back
the padding to just 10% and rotation is dialed back to only 10 degrees rotation at most.

In recent years, automated augmentation strategies have led to state-of-the-art
results in image classification and object detection [65], [89]. These novel automated
augmentation policies have shown to improve accuracy, model robustness, and
performance on semi-supervised learning for image classification without no additional
computational cost at inference time. Due to time constraint we did not test this on our
network, but is something we would like to implement in future studies.

tf.image

We have used tf.image API from TensorFlow for all our data augmentations within
the input pipeline. This module contains functions for image processing and decoding-
encoding operations, and use little computational overhead. All functions that select
a random value from an interval have the option to be seeded so that our data is
reproducible.

3.2.7 Batching

The batch size is a hyperparameter that defines the number of samples to work through
before updating the internal model parameters. At the end of each batch, the image
predictions are compared to the expected output of the model and an error is calculated.

69

The update algorithm use that error to improve the model, e.g move down along the
error gradient. In the domain of machine learning is is common to name the learning
algorithm based on three criterion:

• Batch Gradient Descent: all training samples are used to create one batch.

• Stochastic Gradient Descent: batch size is one element of the training data.

• Mini-Batch Gradient Descent: batch size is more than one sample and less
than the size of the entire dataset

Like with the rest of the operations performed in the input pipeline, TensorFlow
tf.data API have its own module for batching a dataset. This module have two
parameters, one for batch size, and the other for whether the last batch should be
dropped in the case it has fewer elements than set by the first parameter. Since our
input pipeline repeats the dataset we never run into the issue of having batches which
are truncated, so we set this to False.

>>>dataset = tf.data.Dataset.range (8)

>>>dataset = dataset.batch(3, drop_remainder=True)

>>>list(dataset.as_numpy_iterator ())

[array ([0, 1, 2]), array([3, 4, 5])]

Listing 3.5: Demonstration of how Dataset.batch works. Notice how [6, 7] is missing because
drop remainder is set to True.

One advantage of using mini-batch gradient descent is that it requires less memory. In
our case the complete dataset will not fit in memory regardless so batch gradient descent
is not possible to test. Another advantage is that typically networks train faster, achieves
better training stability and generalization performance with mini-batches [90]. Masters
and Luschi found that when experimenting with different batch sizes on ImageNet,
CIFAR-10 and CIFAR-100, batch sizes of 32 or less provides more up-to-date gradient
calculations, which yields more stable and reliable training. Other scientific papers also
support that batch size of 32 is a good choice [91], [92]. We find that the limiting factor for
setting the batch size is GPU memory, especially for larger models like EfficientNetsB2-
B7. All models are trained on NVIDIA GTX 1080 Ti with 11GB of video memory,
which can endure at most 64 images with dimensions of 256 × 256 being trained on
EfficientNetB0 which has 5.3 million parameters.

3.2.8 Handling dataset class imbalance

To combat the class imbalance in our dataset, we experimented with two methods
for handling skewed classes. The first thing we tested, which was also the easiest to
implement with TensorFlow was class weighting. Weighting the classes means that we
calculate a score for every class within the dataset, and during training of the network
each classes weight is carried when computing the loss. Normally each class has a weight
of 1, but we don’t want this because of the nature of class imbalance. Instead, if there are
twice as many samples in class A than in class B, we give class A a weight score which is

70

half that of class B. The second method was to sample from the training dataset during
model training. This ensures the model is fed with images from an uniform distribution
of the overall training data. Next we will discuss the two methods and how they were
implemented. By running preliminary experiments further discussed in Section 4.2.2,
we discovered that sampling the dataset by using uniform distribution of samples from
each class gave better results than using class weighting.

Re-sampling

Sampling the training dataset is handled by a resample() module inside pipeline.py.
This module takes the training dataset as input parameter and then split the dataset
into as many separate datasets as there are classes. Because the dataset is stored in
a tf.data.Dataset object this must be done according to the tf.data API. We use a
transformation method which filters out all image, sample pairs not belonging to the
according class. Doing so gives us a python list of dataset objects for each class,
containing all original samples for that class. The next step is to cache this list of
datasets to reduce computational strain when we later want to iterate over the dataset
again. Lastly we repeat every dataset so for each class in the list there is infinite array-like
structure of repeating samples. TensorFlow has a convenient function for interleaving
elements at random from a list of datasets which we use to go from having a list of
repeating datasets to one datasets which produces a uniform distribution of randomly
picked image and label pairs when iterated over. The process is over when all classes
have the same distribution of 1

k , where k is the number of classes. This means that the
minority classes are over-sampled and the majority classes are under-sampled. When
creating this interleaved dataset, TensorFlow use a seeded random number to sample
from the datasets to make our results reproducible.

datasets = []

for i in range(num_classes):

Get all samples from class i [0 -> num_classes], repeat the dataset

indefinitely and store in datasets list

data = ds.filter(lambda img , lab: lab==i)

data = data.cache(cache_dir+’{}_ds’.format(i))

data = data.repeat ()

datasets.append(data)

target_dist = [1.0/ num_classes] * num_classes

balanced_ds = tf.data.experimental.sample_from_datasets(

datasets , target_dist , seed=conf["seed"]

)

Listing 3.6: A demonstration of how we sample from the dataset. We first create a list with one
dataset per class, repeat all datasets and sample from them according to a target distribution
which in our case is 1

23 for Hyper-Kvasir dataset with its 23 classes.

When we run this on Hyper-Kvasir dataset we get the following output. Here we
see that the classes are highly unbalanced. The class with least samples is hemorrhoids
with a ratio of 0.0005 samples, while the class bbps-2-3 have a ratio of 0.1077, that is

71

on a order of two magnitudes more samples. The output from after the oversampling
shows that all classes have close to the same distribution of 1

23 = 0.04348.

Class Before After

barretts-short-segment 0.0049 0.0411

retroflex-stomach 0.0716 0.0450

ulcerative-colitis-0-1 0.0032 0.0459

ulcerative-colitis-grade-3 0.0125 0.0441

esophagitis-b-d 0.0244 0.0444

dyed-resection-margins 0.0928 0.0419

hemorrhoids 0.0005 0.0403

normal-z-line 0.0875 0.0392

esophagitis-a 0.0378 0.0445

ulcerative-colitis-1-2 0.0009 0.0462

barretts 0.0038 0.0409

bbps-2-3 0.1077 0.0463

ileum 0.0008 0.0435

bbps-0-1 0.0606 0.0416

impacted-stool 0.0122 0.0445

cecum 0.0947 0.0430

ulcerative-colitis-grade-2 0.0416 0.0458

ulcerative-colitis-2-3 0.0025 0.0406

pylorus 0.0938 0.0456

retroflex-rectum 0.0366 0.0440

ulcerative-colitis-grade-1 0.0188 0.0424

polyps 0.0965 0.0426

dyed-lifted-polyps 0.0940 0.0465

Table 3.1: Distribution of samples per class before and after dataset re-sampling. After
sampling the dataset every class should have the same distribution.

This worked well during our initial experimentation with small datasets. But as we
later discovered, there is a problem with the way this sampling method is implemented.
tf.data.experimental.sample from datasets requires a separate tf.data.Dataset per class,
this is solved by using the filter mapping in a loop over each class of the dataset to create
one dataset per class, but results in all the data being loaded N times, where N is the
number of classes. Our worst case scenario is when loading the Hyper-Kvasir dataset
with its 23 classes, which leads to Nc = N2 = 529 classes being loaded into memory at
once. For large training datasets this leads to high memory consumption and we were
limited to use image resolution of 128 × 128 pixel during training when the training
dataset exceed approximately 10,000 images. Testing done in Section 4.2.3 show that
lowering the resolution from 256×256 pixels to 128×128 pixels have minimal impact on

72

_, cnt = class_distribution(ds, conf["num_classes"])

total = cnt.sum()

weights = total / (cnt*conf["num_classes"])

Set weights lower than 1.0 to 1

weights[weights <1.0] = 1.0

class_weights = dict(enumerate(weights))

Listing 3.7: A demonstration of how class weights are calculated according to equation 3.2.

class_weights = {

"class 0": 0.5,

"class 1": 0.25,

etc ...

#}

model.fit(train_ds , epochs =10, batch_size =32, class_weight=class_weight)

Listing 3.8: An example class weight dictionary is given to Keras’ fit function, and a
hypothetical class weight dictionary for presenting purposes.

model performance, but further decrease in resolution have increasingly larger penalty.
This issue could be solved by using tf.data.experimental.rejection resample which only
loads the dataset once and drop elements from the dataset to achieve balance, however
with the structure of our dataset we did not get this function to work.

Class weights

Computing the class weights is handled by ’get class weights’ method in create model.py.
This method return the class weights for each class as a python dictionary, which can
be directly into TensorFlow’s model training method. The way we calculate the class
weights for our data is by the following formula.

wj =
n

knj
(3.2)

where wj is the weight to class j, n is the total number of observations, nj is the number
of observations in class j, and k is the total number of classes. This is implemented in
Python in Listing 3.7.

In tf.Keras we then feed the class weights as a dictionary to the model.fit function,
like shown in Listing 3.8. This tell Keras that class 0 should hold 50% of the weight
for the loss function since it is more important than class 1 which we accordingly set
to 25%. In the case of Hyper-Kvasir dataset the computed class weights we use for our
experiments are given in Table 3.2.

Notice that the minimum range for class weights are set to 1.0. This is done to
increase the weights of the minority classes while holding the larger classes constant.

73

Class Weight

0 8.75911
1 1.0
2 13.5036
3 3.48481
4 1.7807
5 1.0
6 81.0217
7 1.0
8 1.14924
9 46.2981

10 11.5745
11 1.0

Class Weight

12 54.0145
13 1.0
14 3.5614
15 1.0
16 1.04544
17 17.0572
18 1.0
19 1.18713
20 2.31491
21 1.0
22 1.0

Table 3.2: Hyper-Kvasir class weights. All weights below 1.0 are set to a minimum of 1 to hold
the majority classes constant.

We trained a few models without this minimum class weight, but achieved same results.
We found that when weighting the classes the model learns slower in some cases while
not learning at all in other cases. The experiments are discussed in more detail in
Section 4.2.2 were we present all the results and findings. We could have tested this
more but because sampling the dataset was less prone to these errors we use sampling
for the rest of our experiments.

3.3 Training and parameter tuning

In this section, we will discuss how we trained the teacher model to be able to classify
the training data. We will also discuss some of the limiting factors of training large
models. In Table 4.3, is a overview of the system we used to train our models.

3.3.1 Batch size

Due to memory limitations, we are forced to reduce the batch size when training with
larger models or higher input image resolutions. If we run with a too large batch size the
model will not fit in memory and we get a Out of Memory (OOM) Error. In Table 3.3
is a overview of the maximum allowed batch sizes we are using for which models during
training on our system. In this table, we trained the model seen in Figure 3.12 with the
EfficientNet for 8 different network dimensions and measured the maximum batch size
which would fit in memory as well as the average time spent on a single iteration of the
training data (one epoch) for two different image resolutions. Here we see that batch
size and training time is proportional to the number of pixels in the input image. When
we test different hyper-parameters we use the same model, only switching out the base
layer for other variants of EfficientNet.

74

efficientnet-b0_input: InputLayer
input:

output:

[(?, 128, 128, 3)]

[(?, 128, 128, 3)]

efficientnet-b0: Model
input:

output:

(?, 128, 128, 3)

(?, 4, 4, 1280)

global_average_pooling2d_4: GlobalAveragePooling2D
input:

output:

(?, 4, 4, 1280)

(?, 1280)

dropout_2: Dropout
input:

output:

(?, 1280)

(?, 1280)

dense_5: Dense
input:

output:

(?, 1280)

(?, 512)

dropout_3: Dropout
input:

output:

(?, 512)

(?, 512)

dense_6: Dense
input:

output:

(?, 512)

(?, 23)

Figure 3.12: EfficientNetB0 with custom top consisting of pooling layer, dropout layers and
dense layers.

Based on this table, empirical testing and research papers [90], [93] we chose to use a
rather low batch size in the range of 16-32. This was selected as it yielded good training
performance and allow us to fit the entire batch in memory on our local system, for even
the largest model, if we limit the input image resolution to 128×128. The way we chose
input image resolution is further discussed in Section 4.2.3. This was less of an issue
in later experiments run on Kvasir-Capsule as we utilized a fully capable AI enabled
system called Nvidia DGX-2.

3.3.2 Weight initialization

The weights was initialized with weights pretrained on ImageNet with AutoAugment [89].
The weights we used were downloaded from GitHub3. This GitHub repository contain

3https://github.com/Callidior/keras-applications/releases

75

https://github.com/Callidior/keras-applications/releases

Model
128× 128 256× 256

Batch Size Time Batch Size Time

EfficientNetB0 256 15 64 61
EfficientNetB1 128 21 32 91
EfficientNetB2 128 22 32 98
EfficientNetB3 128 28 32 113
EfficientNetB4 64 38 16 153
EfficientNetB5 64 52 16 206
EfficientNetB6 32 72 8 288
EfficientNetB7 32 95 8 400

Table 3.3: Max batch size and average epoch time for each EfficientNet model with image
dimensions 128× 128 and 256× 256 respectively, for our hardware. Time is given in seconds.

pretrained weights for ImageNet with and without the use of AutoAugment, as well
as options to download the weights both with and without a top, which is the fully
connected layer at the top of the network. We use the weights which does not include
the top, as we are using our own fully connected layer because our output layer has 23
nodes instead of ImageNets 1,000 nodes. The reason our output layer have 23 nodes is
because there is 23 classes in the Hyper-Kvasir dataset. We further tested with random
initialized weights as well as initializing student models with the weights from the teacher
model but was not better than using ImageNet weights. See experiments in Section 4.2.2.

3.3.3 Learning rate

Many models train better if learning rate is gradually reduced during training. In the
beginning of our experiments, we used SGD with learning rate which followed a inverse
time decay which means that the learning rate is decreased by the hyperbolic function

η =
η0

1 + dr · stepds
(3.3)

Where η is the learning rate, η0 is the initial learning rate, dr is decay rate (how quickly
the learning rate drops), step is an integer which is incremented for each iteration and
ds is decay step, or how often to apply the decay. This yielded great improvements over
normal SGD. However, empirical testing showed that Adam gave far greater performance
over SGD with learning rate scheduler. We held on to the learning rate scheduler as we
switched the optimizer to Adam, which has an built in adaptive learning rate. We find
that by using Adam with a inverse time decay schedule, we get a model which has a less
fluctuating loss during training. In Figure 3.14 we have trained two models, identical
except in Figure 3.14a the learning rate is set to η = 0.001 during all 30 epochs, while
in Figure 3.14b the learning rate starts at η0 = 0.01, and then gradually lowers itself for
every epoch and reaches 0.001 by epoch 20, and finally 0.0007 at epoch 30, where the
models stop training. In Figure 3.13 is a visualization of the learning rate with inverse
time decay learning rate scheduler, going from η0 = 0.01 and ending at η = 0.0007 in

76

the 30th epoch with dr = 0.2. With regards to the accuracy, both models performed
equally well at the end of the thirty epochs. However, the model trained with the use of
inverse time decay scheduler learns slower than the model trained without inverse time
decay scheduler.

0 5 10 15 20 25 30
Epoch

0.002

0.004

0.006

0.008

0.010

Le
ar

ni
gn

 ra
te

Learning Rate development during training

Figure 3.13: Learning rate with inverse time decay. η0 = 0.01 and η30 = 0.001. Decay rate is
set to 0.25.

When using a learning rate scheduler, the model is slow to converge. With reasonable
initial weights the loss will reach its lowest point after around ten epochs, whereas when
tested with Adam with its adaptive learning rate the loss is at its lowest after only
2-3 epochs. Because of this the training takes much longer when using the likes of a
learning rate scheduler with inverse time decay. Another critical issue we experienced
by using Adam with inverse time decay scheduler was that for some experiments the
model would freeze during training and cease to update the weights. This would cause
us to re-initialize the model and start training from scratch.

For the rest of our experiments we used Adam with learning rate set to 0.001, which
is the default value in Keras. We leave β1 = 0.9, β2 = 0.99 and ε = 1e−07 as the default
as well.

77

78

0 5 10 15 20 25 30
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training and Validation Accuracy

Training Accuracy
Validation Accuracy

0 5 10 15 20 25 30
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Training and Validation Loss
Training Loss
Validation Loss

(a) Learning rate set to 0.001 for all epochs.

0 5 10 15 20 25 30
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training and Validation Accuracy

Training Accuracy
Validation Accuracy

0 5 10 15 20 25 30
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Training and Validation Loss
Training Loss
Validation Loss

(b) Learning rate set by inverse time decay learning rate scheduler.

Figure 3.14: Effect of learning rate inverse time decay on the computed accuracy and loss
during training. Here both models (EfficientNetB0) are trained using Adam as optimizer, batch
size of 128, with data augmentation and sampling, and 20% dropout on the final layers.

3.4 Teacher-student architecture

The next step is to use the trained model, which we from here on out will call the teacher
model, to infer pseudo labels from the unlabeled dataset, then train a student model
on the combination of the pseudo labels and the original labeled dataset, and finally we
switch the teacher with the student and repeat in an iterative process. This process is
shown in Figure 3.15. Our system is based upon the noisy-student paper discussed in
Section 2.3.6, but with main focus on improving class imbalance in the medical image
classification domain.

Train teacher model
with iterative data

Infer pseudo-labels
on unlabeled data

Train equal-or-
larger student model
with combined data
and noise injected

Make the student a
new teacher

Data augmentation
Dropout

Stochastic depth

Polyp Pylorus Cecum

......

Figure 3.15: Illustration of the Noisy student method. Example images taken from Kvasir-V2
dataset [17].

The specific implementation we use is the family of EfficientNets (Section 2.3.5)
release v1.1.0 by qubvel4. This tf.keras implementation comes with pre-trained weights
for both ImageNet and Noisy-Student. We use the weights trained on ImageNet with
AutoAugment which are made open source by the authors of EfficientNet on the official
github repository5.

The inputs to our system are both labeled and unlabeled images. We use the open
source dataset Hyper-Kvasir (Section 2.2.4), this dataset contains 10,662 labeled images
and 99,417 unlabeled images taken from colonoscopy examinations. unlike commonly
used datasets for benchmark state of the art models this dataset is more representative
of a real world classification problem where there rarely is (1) enough data and (2) same
number of samples for each class.

4https://github.com/qubvel/efficientnet
5https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet

79

https://github.com/qubvel/efficientnet
https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet

conf = {

Dataset settings

"data_dir": ’./kvasir -capsule/labeled_splits/’,

"unlab_dir": ’./kvasir -capsule/unlabeled/’,

"ds_info": ’kvacap ’,

"neg_class": None ,

"augment": ["flip","brightness","contrast","rotate"],

"resample": True ,

"class_weight": False ,

"shuffle_buffer_size": 2000,

"seed": 2511,

"outcast": None ,

Model settings

"weights": "imagenet",

"num_epochs": 20,

"batch_size": 8,

"img_shape": (256, 256, 3),

"learning_rate": 0.001 ,

"optimizer": ’Adam’,

"final_activation": ’softmax ’,

Callbacks

"tensorboard": False ,

"decay_rate": 0,

"checkpoint": False ,

"early_stopp_patience": 5,

Misc

"verbosity": 1,

"keep_thresh": 0.90,

"pseudo_thresh": 2000,

"class_limit": 200000 ,

"cache_dir": "./ cache",

}

Listing 3.9: An example of the configuration dictionary which stores framework and model
specific parameters.

3.4.1 Python implementation of system

In this section, we look at some of the details of our system implementation in the
programming language Python. This will hopefully help the reader, if familiar with
coding, to understand the inner working of the system, some of the results produced in
the next chapter, and some of our limitations. All of the code for this project is available
at GitHub6.

The first step in our implementation is to create a configuration dictionary which
holds all system-specific parameters like learning rate, batch size, augmentation settings,
growth limit of training dataset, and more. The configuration dictionary, as seen in
Listing 3.9, contain four parts: dataset settings, model settings, callback settings and
miscellaneous settings. Next we will go through the four categories in more detail.

6https://github.com/henriklg/master-thesis

80

https://github.com/henriklg/master-thesis

1. In the dataset settings are parameters specific to the dataset and how it is
handled before reaching the end of the input pipeline. Outcast takes a list of
classes to exclude from the training, validation and test dataset objects. Seed
is the number which are used for all random number generators in Numpy
and TensorFlow. Shuffle buffer size determines how well the data is shuffled.
Class weight and resample decides which action to take against class imbalance.
Augment takes a list of image adjustments to apply to the training data. Negative
class parameter determine if the dataset is binary, and if so, which class to set as
negative class - the remaining classes are set as positive. Dataset info is a name
for which dataset is used. Data and unlabeled directories point to the location of
each folder which contain the dataset images.

2. The model settings are data variables which establish the parameters for the
model to be used for training. Final activation layer sets which activation function
to use for the final dense layer, namely softmax for multiclass and sigmoid for
binary. Optimizer determines the algorithm to be used for computing loss.
Learning rate is the parameter for how large step size to take in the direction
of least cost. Image size is the image resolution, and also the width of the models
input layer. Batch size determines how many images to show the network before
updating the network weights. Epochs is the number of times to run the dataset
through the network before terminating training.

3. Callbacks settings contain some settings for creating a callback which are
used during training. TensorBoard7 is Tensorflow’s dashboard tool, which allows
users to visualize their TensorFlow models, plot quantitative metrics about their
execution, and show additional data like images that pass through the models.
Decay rate a parameter which sets the decay rate for inverse time decay learning
rate scheduler. When set to zero it is disabled. Checkpoint is a setting for saving
checkpoints during training. Early stopping monitor the validation loss, and stop
the training if it don’t decrease within the given number of epochs.

4. Miscellaneous settings are settings which don’ fit into any of the aforementioned
categories. Verbosity parameter sets the level of informational output from the
program. Keep threshold is a parameter which determines the threshold for which
a image is added as a pseudo label, and if below this threshold it is determined to
be out of domain. For most of our experiments this threshold is set to 90%, but
is something we would have liked to experimented with other parameters. Pseudo
threshold is a parameter for setting the max number of samples per class during
iterative training and injection of pseudo labels. Class limit value determines how
many images to sample from the unlabeled dataset upon generating the pseudo
labels. If set to zero it will use the full dataset. Cache directory parameter set the
location to store the dataset object’s cache to speed up training.

7https://www.tensorflow.org/tensorboard

81

https://www.tensorflow.org/tensorboard

teacher = {

"name": "teacher",

"model": "EfficientNetB0",

"aug_mult": 0.1,

"dropout": 0.1

}

student = {

"name": "student",

"model": "EfficientNetB6",

"aug_mult": 0.8,

"dropout": 0.3

}

models_list = [teacher , student , teacher , student , teacher , student]

Listing 3.10: Additional setting dictionary for each the teacher and student model.

In addition to the aforementioned settings, there are a couple more model specific
settings which are defined separate from the rest. These settings determine the difference
of the teacher and student model, every other setting is the same for both. See
Listing 3.10 for an example of teacher-student settings. The model parameter sets the
network architecture to use. Augmentation multiplier set the level of augmentation to
apply to the training data. Zero is no augmentation. We set the teacher to have 10%
augmentation and the student to have 80% augmentation. Dropout is mostly determined
by which EfficientNet network we use, but we also apply some dropout to the last few
dense layers in the network. In this example, we apply 10% dropout to the teacher and
30% dropout to the student. Lastly we create a list of how many teacher and student
models to iterate over.

The code in Listing 3.11 represents the main execution order of our system. It
consist of a for-loop which iterates over the teacher and student models, and for each
iteration the settings specific to the teacher or student is copied to the main configuration
dictionary. If it is the first iteration in the loop, which means the first teacher model, the
program will call on the method which prepare the input pipeline to get ready to read,
open, resample, cache, shuffle, repeat, augment, batch, and finally prefetch the training
images. For the rest of the iterations, meaning all models except for the first teacher, the
pipeline is reconfigured to accept a combination of original training data and generated
pseudo labels, which go through the same preparation steps as before. In the final line
of the for-loop the program calls run iteration method which we will discuss next.

The run iteration method in Listing 3.12 handles model initialization and model
training and evaluation. After the model is trained the method generate, sort, and
resample, the new pseudo labels. The new labels are then combined with the previous
training images, and finally, the pseudo labels which are added to the training images
are then removed from the dataset object of unlabeled images. In the following section,
we will discuss in more detail what happens inside this method.

82

83

for idx , curr_model in enumerate(models_list):

Update settings and hyper -parameters

iteration = int((np.floor(idx /2.0))) # 0,0,1,1 etc

dir_name = str(iteration)+’_’+curr_model["name"]

conf["log_dir"] = "./logs /{}/{}".format(project_time , dir_name)

Copy model hyper -parameters to config dictionary

for (key , value) in curr_model.items():

conf[key] = value

Prepare the dataset

if idx is 0:

If first iteration: create dataset

ds = create_dataset(conf)

ds["unlab"] = create_unlab_ds(conf)

ds_bin = [tf_bincount(ds["clean_train"],conf["num_classes"])]

ds["combined_train"] = ds["clean_train"]

else:

Rest of iterations: refresh training data

ds["train"] = prepare_for_training(

ds=ds["combined_train"],

ds_name=’train_ ’+dir_name ,

conf=conf ,

cache=True

)

Run one iteration of teacher -student semi -supervised training

run_iteration(conf , ds , ds_bin , sanity)

Listing 3.11: Code excerpt from our framework backbone which handles switching out datasets
and models during the iterative training, mostly by calling on other custom methods.

84

def run_iteration(conf , ds , datasets_bin , sanity):

model = create_model(conf)

callbacks = create_callbacks(conf)

class_weights = get_class_weights(ds["train"], conf)

history = model.fit(

ds["train"],

steps_per_epoch = conf["steps"]["train"],

epochs = conf["num_epochs"],

validation_data = ds["val"],

validation_steps = conf["steps"]["val"],

class_weight = class_weights ,

callbacks = callbacks ,

)

Evaluate the model

evaluate_model(model , history , ds, conf)

Generate pseudo labels from unlabeled dataset

count = {"findings": 0, "total": 0}

pseudo = {"pred_list": [], "lab_list": [], "name_list": []}

pseudo , count = generate_labels(

pseudo , count , ds["unlab"], model , conf

)

Sort pseudo labels in order of highest confidence to lowest

pseudo_sorted = custom_sort(pseudo)

Sample from pseudo labels , and combine with training data

datasets_bin , added_samples = resample_and_combine(

ds , conf , pseudo , pseudo_sorted ,

datasets_bin , limit=conf["class_limit"]

)

Remove pseudo labels from unlabeled dataset

ds["unlab"] = reduce_dataset(ds["unlab"], remove=added_samples)

Listing 3.12: The run iteration method handles one step in the iterative teacher-student
framework. It sets up the model, callbacks, potential class weights, train and evaluate the
model, generates pseudo labels, sorts them, and combine them with the training data to be used
by the model in the next iteration. Lastly the combined pseudo labels are removed from the
unlabeled data to stop them from being generated in multiple iterations.

3.4.2 Generating new pseudo labels

We generate pseudo labels from the corpus of unlabeled data by iterating over it and
running every image through our predictive model. For the first iteration through the
unlabeled dataset, it is the teacher model which handles the predictions, and the second
time it’s the student. This is the most time consuming process of our system, and
depending on the size of the unlabeled dataset and the depth of the model, it can take
from half an hour to many hours for each run through the dataset. For Hyper-Kvasir,
with its almost one hundred thousand unlabeled images and the shallowest EfficientNet
model (EfficientNetB0), the process takes roughly forty minutes. The model predicts a
probability distribution over the set of classes. The class with the best score is checked
against a set threshold; if above this threshold the image is deemed to be of interest and
marked to bee incorporated into the training data, and if it is below the threshold it is
assumed to be out of domain and rejected. In the case of class probability above the set
threshold we mark the image by adding it’s file path, together with its suggested label
and probability score to a python dictionary. The dictionary of pseudo labels is saved
to file system so that the system can easily be resumed from any point in the event of a
system failure.

In Figure 3.16 is a plot outputted by the system every 500 image throughout the
predictive procedure. In this plot, every bar is representing the number of marked
images of interest and its corresponding class name. This particular run is obtained
from a student model in one of my experiments.

barretts-s
hort-se

gment

retroflex-stomach

ulcerative-colitis-
0-1

ulcerative-colitis-
grade-3

esophagitis-b
-d

dyed-resection-margins

hemorrhoids

normal-z-li
ne

esophagitis-a

ulcerative-colitis-
1-2

barretts
bbps-2-3 ileum

bbps-0-1

impacted-stool
cecum

ulcerative-colitis-
grade-2

ulcerative-colitis-
2-3

pylorus

retroflex-rectum

ulcerative-colitis-
grade-1

polyps

dyed-lifte
d-polyps

0

1000

2000

3000

4000

5000

6000

7000

8000

Nu
m

be
r o

f s
am

pl
es

89

6305

389

3591

344
783

5 215 3 54 191 2

725

3265

0

2526

4

915

2446

399
0

7845

36

Relevant samples found in unlabeled dataset
Number of samples in class

Figure 3.16: The number of images of interest found from the unlabeled dataset. In this figure,
we processed 99 thousand images in the Hyper-Kvasir unlabeled dataset and kept all samples
which had greater than 90% probability of belonging to one of the 23 classes in the labeled
dataset.

When we use the trained teacher model to generate new pseudo labels from the
dataset we set a threshold for which the predicted image is saved if it is above the set

85

sorted_list = list(zip(pred , lab , name))

sorted_list.sort(key=lambda x: x[0], reverse=True)

pred_sorted = [row[0] for row in sorted_list]

lab_sorted = [row[1] for row in sorted_list]

name_sorted = [row[2] for row in sorted_list]

Listing 3.13: Implementation of parts of a custom sorting method. A dictionary is sorted in
decreasing order according to the first element of the dictionary, which in our case is the models
class probabilities.

value. Here we have two options, either to set the threshold low and extract a large
dataset with high uncertainty, but get the most of our minority classes. Or we can
set the threshold high, and gather a dataset with lower uncertainty, but might miss
more samples for the minority classes. In our experiments we have set the threshold
relatively high due to prevent too many images added, and running out of memory,
which occasionally happened on our system.

The next step is to sort the images of interest in descending order, so the first images
are the ones the model has the highest confidence in. Reason for this is so the system
can select the best pseudo labels in the case of adding a subset and not all. To handle
the sorting, we implemented a custom sorting method, the critical part is showed in
Listing 3.13. The sorting method first unpack the dictionary with relevant findings,
then sort everything with respect to the probabilities.

The sorted samples from the unlabeled dataset is then resampled based on
the original distribution of samples in the training data, or by a set threshold in
the configuration dictionary. Since the original training dataset is resampled (See
Section 3.2.8) we also want the the dataset to be resampled to mimic the previous
distribution of samples. This is achieved in two steps; first, for every class of the
generated pseudo labels we only add a particular number of samples corresponding
to the dissimilarity between the respective class and the majority class. The motive
for this is to reduce the effect of class imbalance for the next model. As an example,
given a dataset with a majority class of 100 samples, we keep adding new pseudo labels
until every class has 100 samples and the process is saturated. See Figure 3.17 for a
visualization of this process. In this figure, each same colored column represents the
number of samples in the training dataset. The first column (blue) is number of samples
for each class in the original training dataset, second column (orange) is the total number
of samples after combining the original training dataset with the first round of generated
pseudo labels, and so on. For the third class from the left (ulcerative-colitis-0-1) we see
from Figure 3.16 that the model found 389 new samples, and in the dataset distribution
(Figure 3.17 third green column from left) we see that all 389 samples were added to the
dataset. While for the fourth class from the right (retroflex-rectum) the model found
399 new pseudo labels but only added 113 of them before being fully saturated.

For further improvements in efficiency, a method for active resampling can be
implemented. This method would find new pseudo labels with prediction score higher

86

barretts-s
hort-se

gment

retroflex-stomach

ulcerative-colitis-
0-1

ulcerative-colitis-
grade-3

esophagitis-b
-d

dyed-resection-margins

hemorrhoids

normal-z-li
ne

esophagitis-a

ulcerative-colitis-
1-2

barretts
bbps-2-3 ileum

bbps-0-1

impacted-stool
cecum

ulcerative-colitis-
grade-2

ulcerative-colitis-
2-3

pylorus

retroflex-rectum

ulcerative-colitis-
grade-1

polyps

dyed-lifte
d-polyps

0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f s
am

pl
es

438

803

431

803 803 803

12

803

347

68

311

803 798 803

91

803

380

803 803 803

146

803 803
Iter 0
Iter 1
Iter 2

Figure 3.17: Class distribution of training dataset through two iterations of adding new pseudo
labels generated by the teacher. Blue bars are the initial training dataset. The threshold for
the max amount of samples per class is set by the majority class which in this case is BBPS-2-3
with its 803 original samples.

than the set threshold and replace pseudo labels with lower probability score instead of
concatenating them to the other labels.

Subsequently, we create a new tf.data.Dataset of the combined training dataset and
generated pseudo labels. And before we switch the teacher model with the student model
and start the process over, we send the new training dataset containing pseudo labels
through parts of the input pipeline to sample the dataset to get a uniform distribution of
class samples. In this step, the dataset is also passed through the normal transformations
to augment the images, cache, and batch the dataset.

Inspecting the inferred pseudo labels

Since the unlabeled dataset does not contain labels, it is difficult to fully comprehend
the results of the extracted data and professional verification is necessary. We create a
module to visualize the different pseudo labels generated by the teacher model. This
module insert six pseudo labels from each class into a figure with one row for each class.
If the teacher found less than six pseudo labels then black images are inserted instead.
Above each image is the probability score produced by the model. The images are sorted
according to probability score in descending order to make sure the endoscopist sees the
most prominent samples, which also is the same order the generated pseudo labels are
injected into the training data for the next model to train on.

We have contacted a field expert to verify some of our results after generating pseudo

87

labels from the unlabeled dataset. The report we presented to the expert endoscopist is
seen in Figure 3.17.

In Table 4.2 on page 98, we provide a report given by a medical physician which shows
how well this particular teacher model correctly classified pseudo labels. Occasionally
the pseudo label samples generated by the aforementioned module did not adequately
transfer confidence in the models ability to correctly learn important class features. To
solve this we added a second module which output a grid of generated pseudo labels for
a given class. This made it easier to inspect and verify that the model had picked up
good features.

3.4.3 Feature drifting

After generating new pseudo labels with the teacher student and training the student
model, we noticed that the minority classes had a tendency to drift away from its
originally learned features. An example of this is seen in Figure 3.18. In this example,
we have first trained the teacher on the labeled data and used it to generate pseudo
labels from the unlabeled dataset. We then resampled and combined the new pseudo
labels with the original labeled training data and initialized a student model with the
same parameters as the teacher model to train on it. Then in Figure 3.18b, we see that
when the teacher model is replaced by the student model and we run the process again,
the teacher in the second iteration have learned different features than the initial teacher
model.

One remark which we suspect is connected to the previously mentioned feature
drifting is that most of our experiments inherit a common predicament, is that for
the smallest minority classes the model don’t seem to be able to correctly learn the class
features. In the case of Figure 3.18, the respective class have only 6 samples in the
original dataset, of which only 4 is accessible by the training dataset. This causes the
predictive model in turn to add either samples distant in feature space, or not add any
samples from the unlabeled dataset at all. In either case this is not good for our system
as it depends on the initial classes being learned carefully so the model have the means
for predicting new and relevant samples. This in turn leads to 2 distinct cases;

1. No new samples are added from the unlabeled dataset.

2. Unwanted samples are added.

In the first case (1) the predictive model did not find new samples from the unlabeled
dataset. This is most likely because the class have too few samples to train a model which
generalize well. Consequence of this is the predictive model will come up short if the
threshold THH is set relatively high, like THH = 0.90. Tweaking the threshold value
more could moderately improve the results, but we chose to not follow this thread.

For the second case (2) the model learns some features with high confidence, but
perhaps not the important features relative to the particular class. Then when we
run the model over the unlabeled dataset it will find new samples within the learned
feature space and the samples are added to the training dataset. These unwanted new

88

89

conf: 1.0 conf: 0.998 conf: 0.998 conf: 0.993 conf: 0.988 conf: 0.986

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.998

conf: 1.0 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999

conf: 0.955 conf: 0.944 conf: 0.941 conf: 0.938 conf: 0.934 conf: 0.93

conf: 0.993 conf: 0.985 conf: 0.955 conf: 0.927 conf: 0.916

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 0.999 conf: 0.999

conf: 0.987 conf: 0.986 conf: 0.983 conf: 0.981 conf: 0.979 conf: 0.974

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 0.999

conf: 1.0 conf: 1.0 conf: 1.0 conf: 0.999 conf: 0.999 conf: 0.999

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 0.997 conf: 0.996 conf: 0.996 conf: 0.992 conf: 0.992 conf: 0.989

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 0.999 conf: 0.999 conf: 0.998 conf: 0.998 conf: 0.998 conf: 0.998

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

90

conf: 1.0 conf: 0.998 conf: 0.998 conf: 0.993 conf: 0.988 conf: 0.986

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.998

conf: 1.0 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999

conf: 0.955 conf: 0.944 conf: 0.941 conf: 0.938 conf: 0.934 conf: 0.93

conf: 0.993 conf: 0.985 conf: 0.955 conf: 0.927 conf: 0.916

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 0.999 conf: 0.999

conf: 0.987 conf: 0.986 conf: 0.983 conf: 0.981 conf: 0.979 conf: 0.974

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 0.999

conf: 1.0 conf: 1.0 conf: 1.0 conf: 0.999 conf: 0.999 conf: 0.999

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 0.997 conf: 0.996 conf: 0.996 conf: 0.992 conf: 0.992 conf: 0.989

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 0.999 conf: 0.999 conf: 0.998 conf: 0.998 conf: 0.998 conf: 0.998

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

Figure 3.17: Generated pseudo label by teacher model trained on labeled data. The images
which are blacked out represents no detected pseudo labels for that class.

conf: 1.0 conf: 0.998 conf: 0.998 conf: 0.993 conf: 0.988 conf: 0.986

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.998

conf: 1.0 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999

conf: 0.955 conf: 0.944 conf: 0.941 conf: 0.938 conf: 0.934 conf: 0.93

conf: 0.993 conf: 0.985 conf: 0.955 conf: 0.927 conf: 0.916

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 0.999 conf: 0.999

conf: 0.987 conf: 0.986 conf: 0.983 conf: 0.981 conf: 0.979 conf: 0.974

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 0.999

conf: 1.0 conf: 1.0 conf: 1.0 conf: 0.999 conf: 0.999 conf: 0.999

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 0.997 conf: 0.996 conf: 0.996 conf: 0.992 conf: 0.992 conf: 0.989

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 0.999 conf: 0.999 conf: 0.998 conf: 0.998 conf: 0.998 conf: 0.998

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

(a) Generated pseudo label from the hemorrhoids class with its class probabilities above each image.
Generated by teacher in iteration 1.

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 0.998 conf: 0.996 conf: 0.995 conf: 0.995 conf: 0.994 conf: 0.991

conf: 1.0 conf: 1.0 conf: 0.999 conf: 0.999 conf: 0.998 conf: 0.998

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.999 conf: 0.998 conf: 0.991

conf: 1.0 conf: 1.0 conf: 1.0 conf: 0.999 conf: 0.998 conf: 0.998

(b) Generated pseudo label from the hemorrhoids class with its class probabilities above each image.
Generated by teacher in iteration 2.

Figure 3.18: Pseudo labels of the hemorrhoids class, generated by teacher 1 and teacher 2 from
Hyper-Kvasir unlabeled dataset.

samples have a especially large impact on the minority classes because so few samples
are available, and adding a large amount of new samples are simply adding noise for the
student model which again will learn unimportant features.

To improve upon the performance we suggest the following changes; (1), collect more
data for the minority classes, this will help the model learn the correct features. (2),
do K-fold validation splits, or cross dataset validation to have more data available for
training.

3.4.4 Evaluation methods and metrics

To evaluate our semi-supervised teacher-student model we create a script, evalu-
ate model.py, which is part of the training pipeline. This script is initiated for every
iterative step in our teacher-student system. This way every model is evaluated equally,
and the system is more transparent when it comes to tracking changes in performance,
or to monitor performance gain during program execution.

The scripts takes the trained model, TensorFlow’s training history, and the test
dataset as input. The test dataset is filtered to only include the images and is then run
through the model to create an array of predicted labels. With the predicted labels and
true labels we generate a confusion matrix with the python package scikit-learn [94], and
generate a classification report which includes metrics for recall, precision, F1-score and
accuracy. The scripts also generates and saves plots of the loss and accuracy metrics
from model training.

If the model is configured for handling binary datasets the ROC-curve and its AUC
value is generated and saved. The ROC curve is a great diagnostic tool that helps in
the interpretation of binary models, but it can be misleading in cases with severe class
imbalance and few samples in the minority classes. This is because a small number
of correct or incorrect predictions can result in a large change in the ROC Curve

91

or ROC AUC score. Precision-recall curves (PR curves) are recommended for highly
skewed domains where ROC curves may provide an excessively optimistic view of the
performance [95]. However, this was considered out this projects scope due to time
constraints.

3.5 Summary

In this chapter, we have presented the work of creating a VCE dataset, Kvasir-Capsule,
and the details of how it was gathered from hospital examinations, labeled by three
MSc students and verified by a endoscopist expert. This dataset relates back to the
first research objective as stated in Section 1.2, which stated the need for a open source
labeled VCE dataset from the GI tract. Class imbalance is a common issue for image
classification tasks, and we have in this chapter taken direct actions to minimize the
effect introduced in the models performance. An efficient and specialized input pipeline
was then introduced which handles sparse medical image data with ease. This pipeline
was used to deliver images to a EfficientNet model which we manually tuned to a point
were the results were deemed sufficient.

The next step was to develop the semi-supervised teacher-student framework, which
by introducing pseudo labels from the unlabeled image corpus to the training data makes
the input training data less sparse. By experimenting with a open-source colonoscopy
dataset, Hyper-Kvasir, we discovered and discussed some flaws in the system. The
development of this framework relates back to the second research objective, where we
stated the need for self-learning framework to incorporate the vast amounts of unlabeled
medical images. In the next chapter, we will look at our conducted experiments with
the framework, and discuss the results.

92

Chapter 4

Experiments and results

Artificial intelligence is predicted to have profound effects on the future of video capsule
endoscopy technology. The potential lies in improving anomaly detection while reducing
manual labor. However, medical data is often sparse and unavailable to the research
community, and qualified medical personnel rarely have time for the tedious labeling
work. In this respect, we presented Kvasir-Capsule, a large VCE dataset of labeled and
unlabeled images of the GI tract, and a self-learning teacher-student framework in the
previous chapter. Recent work in the machine learning community has shown great
improvements regarding unlabeled data value, and semi-supervised learning algorithms
are successfully applied in different medical image analysis[96] using self-learning [97],
[98].

In this chapter, we look at using our teacher-student framework introduced in the
previous chapter, for the analysis of semi-supervised learning on gastrointestinal tract
endoscopy with the purpose of discovering potential methods of improving the quality of
models trained on Hyper-Kvasir, and perform initial experiments with the newly created
Kvasir-Capsule dataset. Taking advantage of the large amounts of unlabeled data could
potentially lead to higher quality models for a given dataset, and to put this theory to the
test, we will do extensive analysis of our framework on both datasets. Before presenting
our results, we first look at some important evaluation method and metrics to define
and standardize our testing methods, then we will move on to some initial testing to
ensure our teacher models behave as expected. In the final part of this chapter we
will run experiments with iterative teacher-student training on both Hyper-Kvasir, and
Kvasir-Capsule.

4.1 Experiment management

While working on this thesis, we have found that getting good results from a single model
trained on a single dataset is one thing, but keeping all experiments and corresponding
results and findings organized and having a process that lets us draw valid conclusions
from them is quite another. This is why we have dedicated this first section to lay some
ground rules to standardize further experiments. At later stages when we will be training
up to 12 models for a single experiment this become essential for keeping up an efficient

93

workflow. Another benefit of proper experiment management is that our results will be
easier to reproduce for others. Next, we will discuss how we have chosen to keep track of
our experiments, and then move on to some important evaluation methods and metrics.

4.1.1 Keeping track of experiments

Training multiple networks using a wide range of hyperparameters can become chaotic.
To overcome this issue, we have all our hyperparameters stored in a single python
dictionary which easily can be stored in a configuration file. This dictionary handles all
framework parameters, like the number of added unlabeled samples and how the number
changes during the iterative process of a teacher-student model. One of the parameters
in this configuration dictionary is where the log directory is placed. For every run we
dedicate a directory for saving all plots, lists, evaluation metrics and trained models and
its weights so that we can keep track of what experiments have been run in the past,
and what the results where. This log directory became very handy in the case of ’out of
memory’ errors, in which we could go back and load a trained model, or pseudo labels
generated from running through the unlabeled dataset, saving us from having to run
experiments multiple times.

4.1.2 Evaluation method and metrics

To evaluate whether or not the model performance increase during training, we monitor
sparse categorical cross-entropy. Ideally, we would also monitor other metrics like recall,
precision and F1-score during training but due to time constraints we were not able to
implement this. Instead we focus on measure the metrics on the test dataset after the
model is trained.

The model evaluation script, model evaluation.py, generates a classification report as
seen in Table 4.1 which presents precision, recall and F1-score per class, and the support
for each given class. The metrics for each class are also given as macro and weighted
averages.

To visualize how the model perform against each other we use the data from the
classification report, see Figure 4.1. This figure has data points for each class of the
teacher (red) and student (blue) models for three iterations of switching the teacher
with the student. Figure 4.1a has a linear regression model fit for each teacher and
student, while Figure 4.1b has a plot of the contours to make it easier to spot where the
bulk of the data points are located.

From the matrix we get by measuring how well the model perform on the test dataset
we can create a confusion matrix to visualize the performance further. Figure 4.2 is an
example of such a confusion matrix generated for every model trained by our system.
This particular confusion matrix is generated after training on the Hyper-Kvasir dataset
which has 23 classes and is therefore quite large. The diagonal line going from top left
to bottom right is the data points which have been correctly classified. The colors in
the confusion matrix represents the percentage of total samples.

To verify the performance of how well our teacher model selected pseudo labels from

94

Class Precision Recall F1-score Support

barretts-short-segment 0.250 0.125 0.167 8
retroflex-stomach 0.966 0.983 0.974 115

ulcerative-colitis-0-1 0.133 0.333 0.190 6
ulcerative-colitis-grade-3 0.778 0.350 0.483 20

esophagitis-b-d 0.692 0.692 0.692 39
dyed-resection-margins 0.883 0.913 0.898 149

hemorrhoids 0.000 0.000 0.000 1
normal-z-line 0.770 0.836 0.801 140
esophagitis-a 0.441 0.426 0.433 61

ulcerative-colitis-1-2 0.000 0.000 0.000 2
barretts 0.333 0.143 0.200 7
bbps-2-3 0.987 0.896 0.939 173

ileum 0.000 0.000 0.000 2
bbps-0-1 0.970 0.990 0.980 97

impacted-stool 0.543 0.950 0.691 20
cecum 0.949 0.974 0.961 152

ulcerative-colitis-grade-2 0.627 0.552 0.587 67
ulcerative-colitis-2-3 0.000 0.000 0.000 5

pylorus 0.974 0.980 0.977 150
retroflex-rectum 0.859 0.932 0.894 59

ulcerative-colitis-grade-1 0.375 0.290 0.327 31
polyps 0.967 0.948 0.958 155

dyed-lifted-polyps 0.905 0.887 0.896 151

accuracy 0.855 1610
macro avg 0.583 0.574 0.567 1610

weighted avg 0.858 0.855 0.854 1610

Table 4.1: Classification report generated by system after training of model. At the bottom in
the table are a summary of accumulated metrics.

the unlabeled dataset we had an expert endoscopist review the predicted pseudo labels
outputted by our system. The system-generated report we tested is seen in Figure 3.17
on page 90. The physician found that the results varied depending on the specified class.
For some classes all of the generated pseudo labels were correctly classified, and some
classes had mixed results and for one class the model had not been able to correctly
learn the relevant image features and would therefore not predict any pseudo labels. In
Table 4.2 is a summary of the report made by the expert endoscopist. As a metric for
comparing the review with a later pseudo label report we note that the system correctly
classified 60.14% of the images according to the endoscopist.

From the verification report it is especially noticeable that the model has not
correctly learned the features of the class impacted-stool since no images were found
in the unlabeled data. This problem persisted through all our experiments. In some

95

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0
Re

ca
ll

model
student
teacher

(a) Linear regression fit.

0.0 0.2 0.4 0.6 0.8 1.0
Precision

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

(b) Contour plot

Figure 4.1: Scatter plot of precision and recall for teacher (red) and student (blue) models
after three iterations. Each data point represents a class.

experiments impacted-stool would be classified as the class polyps which share similar
features. This is seen in Figure 4.3. Here the two selected samples have overlapping
features, and the dividing boundary which separates the two classes are further clouded
by the color changing augmentation performed on the training data. For further tweaking
of our system we believe that fine-tuning the augmentation performed by the input-
pipeline, or use AutoAugment to automatically search for improved data augmentation
policies, would effect the models ability to separate the classes better.

4.1.3 Hardware details

To ensure that our results are easily reproducible, we include the hardware specifications
used for all training and evaluation sessions. We have used two separate systems,
one which is equipped with commercial grade hardware easily accessible (Table 4.3)
and the other is a powerful Nvidia DGX-2 AI system capable of 2-petaFLOPS
tensor performance. The DGX-2 AI system is part of Simula Research Laboratories
heterogeneous cluster and has dual Intel(R) Xeon(R) Platinum 8168 CPU@2.70GHz,
1.5TB of DDR4-2667MHz DRAM, 32TB of NVMe scratch storage, and 16 of NVIDIAs
Volta 100 GPUs interconnected using Nvidias NVlink fully non-blocking crossbars switch
capable of 2.4TB/s of bisectional bandwidth. The system are running Ubuntu 18.04 LTS
OS and use Cuda version 10.1.243. All experiments run on this system are performed
on a single Volta 100 GPU equipped with fast 32GB HBM memory. This was needed
because we ran into video memory issues when training with full image resolution on
large networks, and main memory issues when growing the training dataset with pseudo
labels fetched from a large corpus of unlabeled images.

96

barr
ett

s-s
hort

-se
gment

ret
rof

lex
-sto

mach

ulce
rat

ive
-co

litis
-0-1

ulce
rat

ive
-co

litis
-grad

e-3

eso
phagitis

-b-d

dyed
-re

sec
tion

-m
arg

ins

hem
orr

hoid
s

norm
al-z

-lin
e

eso
phagitis

-a

ulce
rat

ive
-co

litis
-1-2

barr
ett

s

bbps-2
-3

ileu
m

bbps-0
-1

impact
ed-sto

ol
cec

um

ulce
rat

ive
-co

litis
-grad

e-2

ulce
rat

ive
-co

litis
-2-3

pylo
rus

ret
rof

lex
-re

ctu
m

ulce
rat

ive
-co

litis
-grad

e-1
poly

ps

dyed
-lift

ed-poly
ps

Predicted labels

barr
ett

s-s
hort

-se
gment

ret
rof

lex
-sto

mach

ulce
rat

ive
-co

litis
-0-1

ulce
rat

ive
-co

litis
-grad

e-3

eso
phagitis

-b-d

dyed
-re

sec
tion

-m
arg

ins

hem
orr

hoid
s

norm
al-z

-lin
e

eso
phagitis

-a

ulce
rat

ive
-co

litis
-1-2

barr
ett

s

bbps-2
-3

ileu
m

bbps-0
-1

impact
ed-sto

ol

cec
um

ulce
rat

ive
-co

litis
-grad

e-2

ulce
rat

ive
-co

litis
-2-3

pylo
rus

ret
rof

lex
-re

ctu
m

ulce
rat

ive
-co

litis
-grad

e-1

poly
ps

dyed
-lift

ed-poly
ps

Tr
ue

 la
be

ls

50.0%
4/8

25.0%
2

12.5%
1

12.5%
1

86.1%
99/115

0.9%
1

0.9%
1

1.7%
2

10.4%
12

33.3%
2/6

16.7%
1

16.7%
1

33.3%
2

65.0%
13/20

5.0%
1

30.0%
6

20.5%
8

15.4%
6/39

2.6%
1

59.0%
23

2.6%
1

81.2%
121/149

18.8%
28

0.0%
0/1

100.0%
1

3.6%
5

78.6%
110/140

14.3%
20

3.6%
5

14.8%
9

37.7%
23

47.5%
29/61

0.0%
0/2

100.0%
2

14.3%
1

28.6%
2

57.1%
4/7

87.3%
151/173

4.0%
7

8.7%
15

0.0%
0/2

100.0%
2

1.0%
1

99.0%
96/97

100.0%
20/20

0.7%
1

0.7%
1

94.1%
143/152

0.7%
1

3.3%
5

0.7%
1

1.5%
1

16.4%
11

1.5%
1

3.0%
2

44.8%
30/67

6.0%
4

4.5%
3

20.9%
14

1.5%
1

20.0%
1

60.0%
3

0.0%
0/5

20.0%
1

1.3%
2

0.7%
1

98.0%
147/150

1.7%
1

98.3%
58/59

12.9%
4

6.5%
2

16.1%
5

22.6%
7

41.9%
13/31

0.6%
1

0.6%
1

0.6%
1

1.9%
3

0.6%
1

1.3%
2

3.2%
5

1.9%
3

87.1%
135/155

1.9%
3

7.3%
11

92.7%
140/151

Confusion matrix

0%

20%

50&

75%

100%

Figure 4.2: Confusion Matrix of a EfficientNet model trained on Hyper-Kvasir dataset with
23 classes. The columns represents the models predicted labels and the rows represent the true
dataset label.

4.1.4 Network architecture

For our experiments, we are more concerned with the possibility of improving medical
image classification tasks with greatly imbalanced datasets than getting state-of-the-art
results. We therefore use the tested and proven EfficientNet for our training, instead of
creating a custom model architecture. This network suits us good for three reasons; (1),
pretrained ImageNet weights are made accessible by the author, (2) compound coefficient
scaling makes it easy to test different network dimensions, and (3) it handles large
datasets well. The EfficientNets (B0-B7) are used for all our experiments to standardize
the testing and not introduce more levels of uncertainty. This EfficientNet networks is
then connected with a pooling layer, a dropout layer, a fully connected layer, another
dropout layer and finally a output layer.

97

Class Wrong classification Correct classification

barrets-short-segment 2,3,6 1,4,5

retroflex-stomach 1,2,3,4,5,6

ulcerative-colitis-0-1 1,2,3,4,5,6

ulcerative-colitis-grade-3 1,2,3,4,5,6

esophagitis-b-d 1,6 2,3,4,5

dyed-resection-margins 1,2,3,4,5,6

hemorrhoids 6 1,2,3,4,5

normal-z-line 1,2,3,4,5,6

esophagitis-a 1,3,4,5 2,5,6

ulcerative-colitis-1-2 1,2,3,4,5

barretts 1,2,3,4,5,6

bbps-2-3 1,2,3,4,5,6

ileum 1, 6 2,3,4,5

bbps-0-1 2,3,4,5,6 1

impacted-stool

cecum 4 1,2,3,5,6

ulcerative-colitis-grade-2 1 2,3,4,5,6

ulcerative-colitis-2-3 1,3,5,6 2,4

pylorus 1,2,3,4,5,6

retroflex-rectum 1,2,3,4,5,6

ulcerative-colitis-grade-1 1,2,3,4,5,6

polyps 2,4 1,3,5,6

dyed-lifted-polyps 1,2,3,4,5,6

Total samples 55 83

Table 4.2: Validation report for Figure 3.17 made by an expert endoscopist. ”1” represent the
left pseudo label from the corresponding class, ”2” represent the second pseudo label etc. The
class ”impacted stool” had no generated pseudo labels.”

The EfficientNet network is especially flexible because of its use of compound
coefficient scaling. The compound scaling coefficient allows us to up-scale and down-scale
our network, and introduce more or less stochastic noise to our model. By introducing
less noise to the smaller teacher model than to the bigger student model the system will
perform better than by using the same network size for both models [64].

4.1.5 Network parameters

For labeled images we re-scale the images to 128 × 128 pixels to reduce memory usage
during training. For the smallest model, EfficientNetB0 with 4.7 million parameters,
we use a batch size of 128 by default and reduce the batch size when we could not fit

98

(a) Impacted stool (b) Polyps

Figure 4.3: Similarities between impacted-stool and polyps classes. Samples taken from
impacted-stool and polyps classes of Hyper-Kvasir dataset.

Level Category Name Version

Hardware

GPU Nvidia GTX 1080 ti

CPU Intel i7-8700K 3.7GHz

Memory G.SKill 3200MHz 32GB

Software

Operating System Ubuntu Focal Fossa 20.04

Library

Python 3.7.6

TensorFlow 2.1.0

Keras 2.3.1

Cuda 10.1.243

cuDNN 7.6.5

Table 4.3: A table showing the system specifications (hardware and software) for the machine
used for training and evaluation sessions of the smaller networks.

the model into the memory. For the largest model, EfficientNetB7 with 65.4 million
parameters, we reduce the batch size to 32. We find that using a batch size of 256, 128,
64 and 32 leads to the same performance as long as the dataset are resampled. When
the data have dominant class imbalances the smaller batch sizes would lead to faster
overfitting than the large ones.

We determine the number of training steps and the learning rate schedule by the
batch size for labeled images. The training steps used are calculated by

steps =
ds size

bs
(4.1)

99

where ds size is the number of samples in the given train/test/val dataset and bs is the
value for batch size we are using. We find that the network have tendencies to overfit
the training data when we use a large value for epochs (see Figure 4.4 for an example).
Because of this we use early stopping from the tf.keras.callbacks.EarlyStopping package.
This monitors the validation loss during training, and if the model do not improve for
5 epochs the training is terminated and the epoch with the lowest loss, and therefor
the best weights, is restored. Depending om model size we use, this would happen
somewhere around epoch number 30. The larger model would take longer to hit early
stopping threshold than the smaller ones.

0 10 20 30 40 50 60
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training and Validation Accuracy

Training Accuracy
Validation Accuracy

0 10 20 30 40 50 60
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Training and Validation Loss
Training Loss
Validation Loss

Figure 4.4: Example where the model accuracy for training data greatly outperforms the
accuracy for testing data.

The optimizer we use is for our experiments are Adam [49], we use this optimizer
because it has shown to perform well for image classification tasks in other studies.
Compared to SGD algorithm, we get a stable accuracy gain for every epoch and the loss
and accuracy converges quickly. By default in Keras, the learning rate for Adam is set
to 0.001, this is a good starting point for us as well. Although Adam uses an adaptive
learning rate we tested our model with a inverse time decay learning rate scheduler with
η = 0.01 as initial learning rate, and by an hyperbolic function we gradually reduce the
learning rate to slightly below 0.001. This gave slower convergence and confirmed Adam
without learning rate scheduler was a superior option.

We find that by using dropout and image augmentation, the model generalizes much
better on the validation data, and the teacher model is better at learning the features for
the minority classes, which are only represented by a few samples in the training data.
For training the teacher model, we use image augmentation multiplier set to 10% and
10% dropout for the final dense layer, and after switching the teacher with the student
we increase the image augmentation multiplier to 80% and 30% dropout.

100

4.1.6 Labeled and unlabeled dataset

We conduct experiments on Hyper-Kvasir dataset since it is open-source and to the best
of our knowledge, the largest colonoscopy dataset available. We filter the images into
three datasets for training, testing and validation purposes. The data is split so that 60%
of the images go to training, 15% go to test data and the remaining 15% go to validation.
The training dataset is reduced to 128× 128 pixels with bilinear interpolation, shuffled,
batched and augmented.

The unlabeled dataset contain 100 thousand images, and the corpus of images are
taken from a wide variety of colonoscopies. This dataset is used for generating new
pseudo labels which will later be concatenated with the training data. Due to memory
and time restrictions we only keep the images which get a probability score for one of the
domain classes of 90% and above, the images which receive a lower probability score are
considered out of domain images. We then sort the unlabeled data by the probability
score within each of Hyper-Kvasir’s 23 classes.

4.2 Optimizing the teacher model

A vital part of our teacher-student framework is pseudo label quality. In this regard, we
have chosen to dedicate this section for experimenting with different ways to tweak the
teacher model to a point where we are pleases after doing a visual inspection of generated
pseudo labels. Additionally, an expert endoscopist has also reviewed the labels.

We begin with looking at initialization of model weights and biases, next we take a
look at how different class imbalance countermeasures effect the model performance. In
the final experiments of this section we test with multiple different image resolutions and
neural network dimensions, before summarizing the results and discussing the quality of
pseudo labels generated by the teacher model thus far.

4.2.1 Benefits of pre-trained weights

There are many different practices when it comes to initializing the layer weights in
neural networks. The reason to why adequate weight initialization is so important
in training deep neural nets is to prevent layer activation outputs from exploding or
vanishing during the course of the forward passes. If this happens, gradients of the loss
function will either be too large or too small to flow backwards, and the network takes
longer to converge or could stop learning completely. We use a pre-defined model which
handles the layer weights initialization for us, and it has three options; (1) train from
scratch, (2) initialize the model with weights trained on ImageNet, and (3) initialize the
model with weights trained on Noisy-Student.

We did some initial experimenting with setting a better initial bias for our model,
due to the imbalance of our dataset. We followed A Recipe for Training Neural Networks
by Karpathy who discuss the importance of initialize the layer weights correctly. From
this, we derive the following equation:

101

output_bias = tf.keras.initializers.Constant(output_bias)

global_average_layer = GlobalAveragePooling2D ()

output_layer = Dense(1, activation=conf["final_activation"],

bias_initializer=output_bias)

resnet50_model = tf.keras.Sequential ([

resnet_model_top ,

global_average_layer ,

output_layer])

Listing 4.1: Example code used for creating a model with a given output bias for the final layer.
The top model we use here is a ResNet50 model.

p0 =
pos

(pos+ neg)
=

1

1 + e−b0

b0 = −loge
(

1

p0
− 1

)
b0 = loge

(
pos

neg

) (4.2)

where pos is the number of positive samples and neg is the number of negative
samples. For testing purposes, we then select all normal-cecum images as negative class
and all other classes from Kvasir-V2 as positive. By doing this we have seven times
as many positive images as negative. Next we enter this into equation 4.2 and find
b0 = 1.946. To create our model with the initialized final layer weight we use the code
from Listing 4.1. In Figure 4.5 we have plotted calculated model loss for training and
validation data for two models, the first has no added initial bias, and the second have
initial bias b0 = 1.946. From these results we see that there is a large difference in
validation loss on the first epoch, but the two models performance equalize quickly.
Because of these results we decided to not go any further with setting initial biases.

The following experiments regard the usage of pre-trained weights. We found that
training on Hyper-Kvasir datasets yield best results when using EfficientNet initialized
with ImageNet weights, trained using AutoAugment. When we began our venture, these
weights were not yet available, and we instead used the original EfficientNet weights.
We observed that the model would initialize the training with slightly lower loss when
trained with ImageNet-AutoAugment weights. Due to this observation we used these
weights for the remaining duration of the study.

We also tested initializing the teacher model with original noisy-student weights but
found that loss were fluxing more early in training. When trained for same number
of epochs as with ImageNet weights the model would perform worse on the evaluation
data, with lower accuracy and lower recall. Also, the weights would cause an worse loss
estimate for the first epochs.

As part of this experiment we also tested with initializing the teacher model with
no pretrained weights and train from scratch. As seen in Figure 4.6, this reduces the

102

0 2 4 6 8
Epoch

10 1

100

101

Lo
ss

Train Zero Bias
Val Zero Bias
Train Careful Bias
Val Careful Bias

Figure 4.5: Loss computed on training and validation data using carefully initialized weight
bias compared against zero initial bias.

training speed, and after 20 epochs of training we got a 15% lower accuracy than when
training with ImageNet weights. EfficientNet’s building block, MBconv, are initialized
with a normal distribution for its normal and depth-wise convolutional layers, and it’s
dense layers are initialized with a uniform distribution.

The authors of the noisy-student paper remarked that initializing the student with
the weights from the teacher model yielded as good results as training from scratch. We
did not test this, because it was out of our scope, but is something we want to study at
a later time.

4.2.2 Re-sampling versus weighting classes

Given our research topic, it is important to measure how well the model behaves on
imbalanced data, and what measures can be taken to improve the model. In this
experiment, we want to train three classifiers with three different methods of handling
imbalanced distribution of class samples. The first one is a baseline test where we will
omit any class imbalance counter measures, the second classifier is trained with class
weighting and the third test is with a classifier trained on data sampled in a uniform
distribution. See Section 3.2.8 for a more detailed explanation of how the experiments
were carried out.

103

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
Validation Accuracy

none
imagenet
noisy-student

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Validation Loss
none
imagenet
noisy-student

Figure 4.6: EfficientNetB0 trained for 20 epochs with different layer weights initialization.
The data points are collected from measuring the model performance on the validation set
during training. Blue line; no pretrained weights, red line; pretrained weights on ImageNet with
AutoAugment, green line; pretrained weights from noisy-student.

This will help us to determine which method is best suited for handling the class
imbalance of our semi-supervised learning algorithm. For our sampling method, we chose
a uniformly distribution of samples which means minority classes are oversampled and
majority classes are undersampled depending on the size of the class, see Section 3.2.8
for how this was implemented. For class weighting, we found each weight as explained
in Section 3.2.8, and the weights are found in Table 4.4. To fully understand which
method perform better we have conducted a total of three experiments. In the first
experiment we created a new binary class dataset of Hyper-Kvasir to create a ROC
curve (Section 2.4.2). We marked the original class pylorus as negative, and all the
remaining 22 classes were marked as positive. We chose pylorus as the negative class
because from earlier experiments we know this class have well defined features which are
easy to learn by the model. The final dense layer in the model were changed from softmax
to a sigmoid and we then trained the model with data augmentation and dropout, for
15 epochs. In the second experiment, we used the full multiclass Hyper-Kvasir dataset,
and the models final dense layer with sigmoid activation function were switched back
to a softmax activation function. Multiclass dataset makes it more difficult to create
a ROC curve so we instead look at training loss and accuracy. With this new output
layer and dataset we repeat the previous experiment, for the three baseline, weighted
and resampled models. The final experiment were conducted to verify we achieved the
same results on Kvasir-Capsule dataset.

We found that the model trained on the resampled dataset performed better than
both the baseline model and the model trained with weighted classes. In Figure 4.9, we
have visualized the ROC curve from the first experiment where a new binary dataset was
created. Here we see the model with resampled data slightly outperformed the baseline

104

Name Samples Weight

Lymphoid Hyperplasia 224 9.3091
Foreign Bodies 590 2.9459

Ulcer 272 6.4646
Erosion 206 8.8658

Blood 22 93.091
Pylorus 938 2.1449

Angiectasia 771 2.5434
Erythematous 132 14.322

Reduced Mucosal View 932 2.1014
Normal mucosa 15,853 0.1209
Ileo-cecal valve 1120 1.6743

Table 4.4: The weights used for computing loss in backwards propagation while training the
model in Figure 4.8 and the amount of samples for each class in the training dataset. The weights
are calculated as explained in Section 3.2.8. In the middle column is the number of samples in
the training data which the network use to update its parameters, and it is these numbers which
are used for calculating the class weights.

model, and the model trained with weighted classes performed the worst. We also include
the accuracy, loss, recall, precision and AUC for all three models in Table 4.5, as well
as the confusion matrix for the model trained on the resampled dataset, in Figure 4.7.
The second experiment on Hyper-Kvasir is visualized in Figure 4.10 and gave almost the
same results as the first, but in this experiment, the baseline model perform as good as
the resampled model. For the final verification experiment, we trained a model using
weighted classes on the Kvasir-Capsule dataset. The results are seen in Figure 4.8. The
respective weights for each class are found in Table 4.4. In this experiment, the model
was trained on split 0 with EfficientNetB4 model for 25 epochs. Here we see how the
model fails to learn from the training data when using class weights.

Accuracy Loss Recall Precision AUC

Baseline 0.9925 0.0294 0.9951 0.9965 0.9993
Weighted 0.8719 0.4040 0.8608 0.9976 0.9846

Resampled 0.9931 0.0200 0.9979 0.9945 0.9995

Table 4.5: Accuracy, loss, recall, precision and AUC metrics for three models, with three
different methods of handling class imbalance.

4.2.3 Effect of varying image resolution

In Section 2.3.5, we discussed the diminishing effect of image resolution for model
performance. In this section, we want to test how model performance degrade for a
reduction in image resolution in colonoscopy images. This will enable us to chose an

105

0 1
Predicted label

0
1

Ac
tu

al
 la

be
l

tn
2222

fp
182

fn
5

tp
2591

Confusion matrix @0.50

500

1000

1500

2000

2500

Figure 4.7: Confusion matrix from model trained on resampled data.

0 5 10 15 20 25
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training and Validation Accuracy
Training Accuracy
Validation Accuracy

0 5 10 15 20 25
Epoch

0

10

20

30

40

Lo
ss

Training and Validation Loss
Training Loss
Validation Loss

Figure 4.8: Loss and accuracy calculated on training and validation data respectively for a
EfficientNetB4 model trained for 25 epochs with weighted classes. The weights are listed in
Table 4.4.

image resolution to use for further experiments, which suits our requirements of (1)
being large enough to allow the network to learn the proper features and (2) fit a batch
of images in GPU memory.

The ImageNet weights are trained on images with resolution of 224 × 224, so to
make sure pre-trained ImageNet do not bias our model towards any particular image
resolution we randomly initialize the weights and train from scratch. Because our model
do not get any assistance from pre-trained weights we increase the number of epochs

106

107

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
False positives [%]

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Tr
ue

 p
os

iti
ve

s [
%

]

Train Baseline
Val Baseline
Train Weighted
Val Weighted
Train Resampled
Val Resampled

Figure 4.9: ROC curve with results for baseline, weighted and resampled models trained on
a binary version of Hyper-Kvasir where the anatomical landmark ”pylorus” is positive and all
other classes are marked as negative.

0 2 4 6 8 10 12 14
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
Training Accuracy

baseline
weighted
resampled

0 2 4 6 8 10 12 14
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

Training Loss
baseline
weighted
resampled

Figure 4.10: Accuracy and loss calculated on Hyper-Kvasir labeled training data for three
models. Baseline model uses neither class weighting nor resampling. Weighted model use class
weighting and resampled model resample the training dataset.

to 40. We train four models based on the EfficientNetB4 network, with batch size of
16, augmentation multiplier set to 0.7 and learning rate at 0.001. We then measure
the accuracy and loss of the model during training of four models. Only difference is
input image resolution which starts at 32× 32 pixels, then 64× 64, 128× 128 and finally
256 × 256, see Figure 4.12 for an example of the different input image resolutions. We
find that the model which performs overall better than the rest is the one trained on
images with the highest resolution of 256× 256. 128× 128 and 64× 64 both performed
just slightly below the initial model, and finally the model trained on 32×32 pixels were
not able to converge during the 40 epochs. In Figure 4.11 you’ll see the model accuracy
and loss development during training for the four models.

From this data, we chose to use 128× 128 pixel images because model performance
is almost on pair with 256 × 256 pixel images while reducing the training time to a
fraction of the time compared to 256× 256 pixels as well as to reduce the video memory
consumption. This will allows us to train bigger models and run more experiments due
to faster training.

4.2.4 Neural network dimensions

Depending on the dataset it is important to select a model of proper specifications for
the classification problem at hand. In this section, we want to test how different network
dimensions effect the models ability to correctly predict labels from the test images. Due
to time and computation constraints we run the experiments on down-scaled images
with pixel dimensions of 128× 128. We used this resolution due to preliminary findings
explained in Section 4.2.3.

In this experiment, we do not use iterative training like we do later in Section 4.3.

108

109

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Accuracy on validation data
32
64
128
256

0 5 10 15 20 25 30 35 40
Epoch

1

2

3

4

Lo
ss

Loss on validation data
32
64
128
256

Figure 4.11: Model accuracy and loss measured on the validation dataset during training.
Blue: 32× 32, Orange: 64× 64, Green: 128× 128 and Red: 256× 256.

32 64 128 256

Figure 4.12: Each image starting from right contain four times as many pixels then the one
to the left. For each reduction of image resolution, less feature information is available. Image
taken from ’ulcerative colitis grade 3’ class of Hyper-Kvasir dataset.

We set up a script which creates and train a EfficientNet model of types B0, B2, B4
and finally B6. For this study we randomly initialize the weights for each model, instead
of using the pretrained ImageNet weights. The pretrained weights could potentially
introduce model bias, where one models weights are favored over another model and
therefore perform better. This means the networks will train a bit slower and perhaps
not perform as good as with the pretrained weights. For this experiment that is fine
because we want to look at the deviations in the data, which will become clearer as
the model train slower. In Figure 4.13 we have trained the models for 40 epochs each
on Hyper-Kvasir dataset, and plotted the accuracy and loss for training (4.13a) and
validation (4.13b) data during training.

As we expected, the smaller models converge faster and achieve higher training
accuracy because the smaller networks have fewer parameters to update. Based on
these observations, it seems likely that smaller models perform better than larger ones,
but as we can see in Figure 4.13b, this is not the case. We see that while terminal training
accuracy increase by 16.5% when going from the most complex to the least complex,
the accuracy only vary by a couple of percentages on the validation data, which makes
it non-significant. This is because the more complex models tend to generalize better
and therefore perform better on unseen data than the smaller model. For the case of
the smaller models they start to overfit the training data due to less model noise, such
as stochastic depth and dropout.

We have studied the learning speed and accuracy for different network dimensions of
the EfficientNet family and found that networks with small compound coefficients, like
EfficientNetB0 and B2, converge faster on the training data used to update its weights,
but are also less capable of generalizing the data and therefore cause more overfitting.
Increasing the networks compound coefficient, like in EfficientNetB4 and B6, makes the
model slower to converge on the training data due to its greater amount of parameters
and stochastic noise. In turn, the larger networks will generalize better and perform
better on unseen data.

4.2.5 Models ability to learn class features

A main focus for developing a medical detection assistance system is good reliability.
To have good reliability means that our system will perform good in a wide variety of
situations, in which physicians (the end-user) and the patient can trust the system.

A underlying requirement for this is that the predictive model have learned the
feature space of all its detectable classes. Upon training a model on labeled data, or
a combination of labeled data and generated pseudo labels, we compute the F1-score
for each of the classes. See Table 4.1 for one of the generated classification reports
accompanied by its computed F1-scores. Preferably we would see high F1-scores for
each class, which would imply that the model correctly predicts most of the images
in the test dataset correctly. In reality this is difficult to achieve as no model learns
class features uniformly. Imbalanced datasets complicate the issue further as the test
dataset can deviate from the represented samples within the training data, and number
of samples per class, also known as the ’support’, can range from single to triple digit.

110

111

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training Accuracy

EfficientNetB0
EfficientNetB2
EfficientNetB4
EfficientNetB6

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Training Loss
EfficientNetB0
EfficientNetB2
EfficientNetB4
EfficientNetB6

(a) Accuracy and loss on training data

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Validation Accuracy

EfficientNetB0
EfficientNetB2
EfficientNetB4
EfficientNetB6

0 5 10 15 20 25 30 35 40
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Validation Loss
EfficientNetB0
EfficientNetB2
EfficientNetB4
EfficientNetB6

(b) Accuracy and loss on validation data

Figure 4.13: Four EfficientNet models with different network dimensions (compound
coefficient). In Figure (a) we compute accuracy and loss on the training dataset, and in (b)
we compute accuracy and loss on validation dataset. Blue line is EfficientNetB0, orange is
EfficientNetB2, green is EfficientNetB6 and red is EfficientNetB6.

As a worst case scenario, our test dataset represent the class hemorrhoids by a single
sample. If the model correctly classifies the lone image depicting hemorrhoid, the class
attains a perfect F1-score, correspondingly the class attains a F1-score of zero if the
image is miss-classified. Because of this all class scores are weighted based on the test
dataset support.

We use a combination of the metrics from the classification report with visual
inspection of the inferred pseudo labels to estimate the models learning aptness.
Visual inspection is done by examining the generated pseudo labels from the unlabeled
dataset to look for irregularities which the training data does not represent. From an
extensive search through different network dimensions and hyperparameters, we find that
particular classes are harder for the model to learn than others. Among the classes which
the model repeatedly perform less well than expected is barretts, hemorrhoids, ulcerative-
colitis, esophagitis and impacted-stool. The classes which repeatedly gives good results
on the test dataset and generates promising pseudo labels is retroflex stomach, retroflex
rectum, dyed-resection-margins, normal-z-line, bbps, cecum, pylorus, and finally dyed-
lifted-polyps and normal polyps.

What separates the well performing classes from the below average is a blend of
lower number of class samples and more diffuse and harder to learn features. As shown
in previous experiments in this section, we have utilized methods to counteract the
performance hit brought on by such a sparse and skewed dataset, but they do not solve
all problems.

Class distribution in unlabeled dataset

A benefit of using a publicly available dataset is that we have the option to compare
our model results with other research. The authors of Hyper-Kvasir paper, Borgli,
Thambawita, Smedsrud, et al., presented the results of how pre-trained networks
predicted the unlabeled images. They predicted labels for the unlabeled images using
Pre-Trained DenseNet-161 and Averaged ResNet-152 + DenseNet-161 to form an idea of
the data distribution of the unlabeled data. The authors distribution of predicted images
are found in Figure 4.14, here we have average the number of samples from two models
trained on different data splits, both from Averaged ResNet-152 + DenseNet-162. They
found a large portion of the predictions were assigned to normal pylorus, while a smaller
number of predictions were assigned to the classes hemorrhoids and ulcerative colitis
grade 1-2. This is similar to our results in Section 4.2.5.

In Figure 4.15, we present a bar chart combining the distribution found by the
authors of the Hyper-Kvasir dataset with our own findings from a model trained on
EfficientNetB0 architecture on labeled images and then generated pseudo images from
the unlabeled dataset. The distribution of class-samples fit quite well, which in turn
mean that the two models have learned many of the same image features during training.

The predictions on the unlabeled images are very similar to the class-level accuracy
of the model trained on labeled images. We can therefore assume that the classes which
achieved a high number of correct predictions on the labeled images will perform similarly
on the unlabeled images.

112

113

barretts-s
hort-se

gment

retroflex-stomach

ulcerative-colitis-
0-1

ulcerative-colitis-
grade-3

esophagitis-b
-d

dyed-resection-margins

hemorrhoids

normal-z-li
ne

esophagitis-a

ulcerative-colitis-
1-2

barretts
bbps-2-3 ileum

bbps-0-1

impacted-stool
cecum

ulcerative-colitis-
grade-2

ulcerative-colitis-
2-3

pylorus

retroflex-rectum

ulcerative-colitis-
grade-1

polyps

dyed-lifte
d-polyps

0

5000

10000

15000

20000

Nu
m

be
r o

f s
am

pl
es

183

10780

1038
2362

3410
1636

2

8784

2928

4
870 1406

164
1516

56

12442

5688

68

23290

1670 2200

17442

1524

Figure 4.14: Data prediction for Averaged ResNet-152 + DenseNet-161 on unlabeled images
from Hyper-Kvasir dataset made by the authors. The authors trained the model on two data-
splits, here we have averaged the samples for each split.

barretts-s
hort-se

gment

retroflex-stomach

ulcerative-colitis-
0-1

ulcerative-colitis-
grade-3

esophagitis-b
-d

dyed-resection-margins

hemorrhoids

normal-z-li
ne

esophagitis-a

ulcerative-colitis-
1-2

barretts
bbps-2-3 ileum

bbps-0-1

impacted-stool
cecum

ulcerative-colitis-
grade-2

ulcerative-colitis-
2-3

pylorus

retroflex-rectum

ulcerative-colitis-
grade-1

polyps

dyed-lifte
d-polyps

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f s
am

pl
es

18
3

10
78

0

10
38 23

62 34
10

16
36

2

87
84

29
28

4

87
0 14
06

16
4 15

16

56

12
44

2

56
88

68

23
29

0

16
70 22
00

17
44

2

15
24

69
1

11
88

2

67
5 21

05 27
15

25
16

18
2

81
17

22
25

11
6 17

32

33
1 11

53

13
1

0

94
99 11

21
5

22
9

19
30

7

19
33

51
75

15
18

5

23
03

Paper distribution
Own distribution

Figure 4.15: Inferred pseudo labels of Hyper-Kvasir unlabeled dataset from the authors of
Hyper-Kvasir and model used in our system. Blue: Authors model trained on Averaged ResNet-
152 + DenseNet-161. Orange: EfficientNetB0, architecture used in our system.

4.3 Teacher-student model on Hyper-Kvasir

In this section, we detail how we tested different parameters for our system. We first
run experiments with the well tested, open-source Hyper-Kvasir [6] dataset, and in the
following section we will experiment with the new Kvasir-Capsule [5] VCE dataset.

In these experiments performed on Hyper-Kvasir, we chose to use early stopping to
make sure we got a optimal teacher and student model after their respective training
session. However this was not used in later experiments with Kvasir-Capsule because it
became harder to compare results when the model training terminated at inconsistent
times. Early stopping is used during training of both teacher and student models to
ensure low loss on validation data at the termination of training. We use a high early
stopping patience of 10 epochs. To minimize how much the model overfits the data we
introduce a low amount of noise in the form of data augmentation and dropout for the
teacher, and a large amount of noise for the student. By using early stopping the final
model weights are selected from the last 10 epochs with the lowest validation loss.

4.3.1 Evaluation metrics

To understand how the model behaves after being injected with inferred pseudo labels,
we continuously check in on F1-score during the experiments. Why we focus on F1-score
is explained in Section 4.1.2. We tested with some different methods for visualize model
performance. Initially we measured F1-score for each class of the dataset and studied
how the class-metrics developed. An example of this is seen in Figure 4.16. This was a
bit chaotic, as we get a lot of data points to compare, and the individual classes do not
express the overall performance of the system.

For the rest of our experiments, we instead average out the metrics for all the classes
and weight them against the support. In Figure 4.17, you see a teacher-student model
trained on EfficientNetB0 for 6 iterations. With this method it is easier to notice the
performance progression at the end of each iteration.

4.3.2 Model complexity: iterative training

In this section, we want to test how different model dimensions effect how well our
system performs. To do this, we opted to run four experiments. We use EfficientNet
with different model dimensions, all other hyper-parameters are the same for all four
experiments. We select four of the eight available versions of EfficientNet due to time
constraints. Each experiment takes about 10 hours to complete. Because we select
every other version of EfficientNet we get about a doubling of model parameters each
iteration. For every experiment, we run three iterations of swapping the student with
the teacher, and we measure the performance of both the teacher model and the student
model for a total of 6 data points per experiment. In this experiment, the teacher model
and student model are equal. The model hyperparameters are batch size 16, learning
rate 0,001, image resolution 128 × 128, 30 epochs with early stopping, augmentation

114

115

barretts-s
hort-se

gment

retroflex-stomach

ulcerative-colitis-
0-1

ulcerative-colitis-
grade-3

esophagitis-b
-d

dyed-resection-margins

hemorrhoids

normal-z-li
ne

esophagitis-a

ulcerative-colitis-
1-2

barretts
bbps-2-3 ileum

bbps-0-1

impacted-stool
cecum

ulcerative-colitis-
grade-2

ulcerative-colitis-
2-3

pylorus

retroflex-rectum

ulcerative-colitis-
grade-1

polyps

dyed-lifte
d-polyps

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Iteration 0 - avg 0.85
Iteration 1 - avg 0.86
Iteration 2 - avg 0.84
Iteration 3 - avg 0.88
Iteration 4 - avg 0.84
Iteration 5 - avg 0.81

Figure 4.16: F1-score measured per class in teacher-student model after 6 iterations. In the
legend is the weighted average F1-score for each iteration.

0 1 2 3 4 5
Iteration

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

W
ei

gh
te

d
av

er
ag

e
sc

or
e

Precision
Recall
F1-score

Figure 4.17: Precision, recall, and F1-score for teacher-student model trained with equal teacher
and student. Network used is EfficientNetB0. The datapoints are a weighted average of every
class in dataset.

multiplier 0.5, weights initialized with ImageNet and Pseudo label threshold 0.90. The
four experiments run are with the following networks;

• EfficientNetB0 with 4.7 million parameters total,

• EfficientNetB2 with 8.5 million parameters total,

• EfficientNetB4 with 18.6 million parameters total and,

• EfficientNetB6 with 42.2 million parameters total.

For each of the four runs, we collect the classification report generated by measuring
the model on the test dataset (See Table 4.1 for an example). From this report we
can read the change in model accuracy, precision, recall and F1-score. The F1-score
is a good measure for how our model handles class imbalance. If the system improves
from injecting generated pseudo labels into the training data we should see an increase
in F1-score. Because of feature drifting (mentioned in Section 3.4.3) we anticipate the
F1-score will drop given enough iterations of swapping the teacher and student models.

In Figure 4.18, are the collected data points for each experiment. Had the different
network dimensions effected the teacher/student system we would expect to see a clear
separation of the data points. However, we see that the data points are close together and
in no particular order with respect to network width, depth and resolution. Another
observation is that in general the student, albeit being equal to the teacher, seem to
perform better on average. EfficientNetB2 and EfficientNetB4 does not reach a point
where the inferred pseudo labels have clouded the models ability to perform well on the
test data, while EfficientNetB0 and EfficientNetB6 see a noticeable reduction in F1-score
on the last couple iterations (down 8.0%).

4.3.3 Noising the student

As discovered by Xie, Luong, Hovy, et al., it is better to use noise when training the
student model [64]. In the following experiment, we compare how an equal teacher
and student perform against a noisy-student. We use data from a previous experiment
(Section 4.3.2) for teacher-student models trained without noise added to the student.
In this data, both the teacher models and student models are equal.

We inject noise into the student during training by adding part model noise, and
part input noise. The model noise is from using the larger EfficientNetB6 with more
30% dropout on the final dense layers, and the input noise is by augmenting the input
image by 50% (as described in Section 3.2.6) during training. For the teacher, we used
the smaller EfficientNetB0 with 10% dropout and 10% image augmentation.

From Figure 4.19, we see that the experiment with a noised student performs better
than the averaged results for similar teachers and students models with different network
dimensions. From the initial teacher model to the best performing model at the third
iteration we have increased the weighted F1-score by 3.2% by doing iterative training
with a noised student. In Table 4.6 are the results fro accuracy, weighted F1-score and
macro F1-score for each iteration of the noisy student experiment.

116

0 1 2 3 4 5
Iteration

0.82

0.84

0.86

0.88

W
ei

gh
te

d
F1

-s
co

re
EfficientNetB0
EfficientNetB2
EfficientNetB4
EfficientNetB6

Figure 4.18: Average weighted/micro F1-Score per class, for different model dimensions of
EfficientNetB0, EfficientNetB2, EfficientNetB4 and finally, EfficientNetB6.

Iteration Accuracy Weighted F1 Macro F1

0 0.855 0.854 0.567

1 0.850 0.846 0.567

2 0.865 0.867 0.592

3 0.871 0.860 0.549

4 0.893 0.886 0.605

5 0.840 0.840 0.556

Table 4.6: Accuracy, weighted F1-score and macro F1-score produced by iterative training with
a noised student model on Hyper-Kvasir dataset. See Figure 4.19 for a visualization of weighted
F1-score metric.

4.4 Teacher-student model on Kvasir-Capsule

In this section, we take a look at the new Kvasir-Capsule dataset, and test if a semi-
supervised teacher-student model is able to take advantage of highly skewed and sparse
labeled and unlabeled data collected from the VCE videos. First, do this we will have
to introduce a new method of splitting the data because we are dealing with images
exported from video and not independent endoscopy images like in Hyper-Kvasir. Due

117

0 1 2 3 4 5
Iteration

0.84

0.85

0.86

0.87

0.88
W

ei
gh

te
d

av
er

ag
e

F1
-s

co
re

Avg B0-B6
Noisy student

Figure 4.19: Comparing how the model perform when noise is injected into the student. The
blue line represent an average of an earlier experiment run with same teacher and student models
with EfficientNetB0, B2, B4 and B6. Their respective results are found in Figure 4.18. The other
line show the results after 3 iterations of our teacher-student framework with noise added to the
student.

to the change in data split, we also need a new evaluation method to fully understand
how the framework perform. We will present and discuss our experiments, and in the
next chapter we will answer our main research question.

4.4.1 Importance of good dataset split

Hyper-Kvasir dataset, unlike Kvasir-Capsule, is a collection of colonoscopy images taken
from a wide range of examinations and therefore the images within this dataset have
little connection other than being annotated into its 23 classes. Kvasir-Capsule however,
contain images which are annotated in video form and exported to single frame images.
And because the VCE device will sometimes travel quickly, and sometimes slowly, many
images will have little variation in them. As an example the output from the tagging
tool can have a large number of frames, but of those frames only a few represents unique
cases of findings or anatomical landmarks.

In our first experiments with the Kvasir-Capsule we split the dataset into train, test
and validation data the same way we did with Hyper-Kvasir - which was to pick 60%
of samples from every class and use for training data, then 15% for validation data and

118

Figure 4.20: Trailing frames taken from Angiectasia class of Kvasir-Capsule dataset. In these
frames the video capsule is barely moving and therefore produces very similar images of the same
finding.

the remaining samples were used for testing. We then trained a test model and quickly
discovered that the model (EfficientNetB0) performed much better than expected. In
Figure 4.21 are the accuracy and loss for both the training and the test split. Here we see
that after only a few epochs of training the model reaches 90% accuracy on the unseen
test data.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training and Validation Accuracy

Training Accuracy
Validation Accuracy

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Training and Validation Loss
Training Loss
Validation Loss

Figure 4.21: Accuracy and loss from training and validation dataset after 18 epoch of training
on Kvasir-Capsule dataset. In this figure, the images are split at random and because of this the
model sees the validation and test data.

The reason this model over-perform is due to the before-mentioned data splitting.
Many samples contain near identical information as they are gathered from the same
finding in the same video and because the dataset is split at random for every class
the near identical images are represented in all 3 splits of the data, which means that
in a sense the model sees the test data while training. In Figure 4.20 we see one such
example. In this figure, there are four samples taken from the angiectasia class were the
VCE device is sitting idle and therefore produces very similar images.

To fix this issue we split the data again, this time we made sure samples from any
given finding were only included in one split. By doing this another issue arose; some

119

classes have few unique findings. This means if a class contain 100 images, but all are
from the same finding and therefore can’t be split, it is not much better than having
a class with a single image. We therefore had to drop hematin and polyp from the
dataset before running our experiments. In Table 4.7 we have listed the two splits with
the number of samples for each class, with the hematin and polyp classes which were
excluded. In Figure 4.22 are the initial results when training on the data using this new
method of splitting. In this figure, the model do not perform nearly as good on the test
data as the previous run, even when trained using a larger network (EfficientNetB6),
but this is expected because of the change in data splitting method. We see that the
accuracy and loss for training data is quite similar for the different data split methods
and this is likely due to the model ’seeing’ the same data despite the change in the
training dataset. Because of scarce sample size we also dropped the testing dataset split
and use only two equal size splits, one for training and another for validation. Then we
swap the splits used for training and validation, train the model again so it learns from
all samples and average the results from the two models.

Class split 0 split 1

Lymphoid Hyperplasia 224 368
Foreign Bodies 753 23

Ulcer 709 145
Erosion 207 232
Pylorus 592 937

Ileo-cecal valve 2,343 1,846
Blood 22 424

Angiectasia 795 71
Hematin 12 0

Erythematous 127 132
Polyp 55 10

Reduced Mucosal View 915 1,484
Normal mucosa 16,618 17,988

Table 4.7: Two fold dataset split of Kvasir-Capsule dataset. Hematin and polyp were not used
in our training because of few samples in those classes.

As a last step, we ran an iterative teacher-student experiment two times on the
data and monitored the accuracy and loss computed on the verification dataset. The
experiment is run two times because we need to separate for which split we use for
training and which is used for validation. In the first run we train on split 0 and validate
on split 1, and in the second run we switch the data and train on split 0 and validate on
split 1. The results are seen in Figure 4.23. In this figure, we can see that after training
a total of 12 models, 6 on each each split and using the remaining split as validation,
the models perform better when being trained on split 1. The accuracy is higher and
the loss is lower for this split. This is not by any means a significant finding, but is the
reason to why it is important to train on both splits and then average the results.

120

0 2 4 6 8 10 12 14
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Training and Validation Accuracy

Training Accuracy
Validation Accuracy

0 2 4 6 8 10 12 14
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Training and Validation Loss
Training Loss
Validation Loss

Figure 4.22: Accuracy and loss from training and validation dataset after 15 epoch of training
on Kvasir-Capsule dataset. In this figure, the data have been carefully split to not include
samples from same finding in more than one split.

0 5 10 15 20 25
Epoch

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

Ac
cu

ra
cy

Average validation accuracy split_0 and split_1

split_0
split_1

0 5 10 15 20 25
Epoch

2.0

2.5

3.0

3.5

4.0

Lo
ss

Average validation loss split_0 and split_1
split_0
split_1

Figure 4.23: Accuracy and loss computed on the split 0 and split 1 during training of 3
iterations of teacher and student models for 25 epochs. The results are then averaged for the
models trained on each respective split. Split 0 represents the average results of models trained
on split 0 and validated on split 1 and vice versa.

4.4.2 Unlabeled dataset

In Kvasir-Capsule, there is a total of 2.6 million unlabeled images. Having a large amount
of unlabeled data is necessary for better performance when it comes to semi-supervised
iterative training [64], however with limited time and resources we have opted to use a
subset of the unlabeled dataset. The subset was selected from the 2.6 million images by
picking 200,000 images in the input pipeline. We pick images at random to make sure

121

we create a new corpus which represents the available data in the 74 videos not used for
annotation. To make our findings reproducible we seed the random number generator,
which makes the input pipeline produce the same subset of unlabeled images for both
splits of the dataset. More details of the unlabeled data are found in Section 3.1.2 where
we have discussed how the data were collected.

By doing this we, effectively double the amount of unlabeled data in comparison with
Hyper-Kvasir dataset, at the expense of higher memory usage and time consumption
during training. With the smaller teacher model it is estimated to take 28 hours to
fully iterate the unlabeled dataset on our system, with 24-26 images per second, and the
larger student model would take approximately 42 hours to run through all 2.6 million
images, with 16-18 images per second. By limiting ourselves to use 200,000 unlabeled
images it takes 2 hours for the teacher model and 3 hours for the student model.

4.4.3 Evaluate Kvasir-Capsule results

Due to the new splits introduced with Kvasir-Capsule dataset, we essentially run the full
experiments on both splits, using one split for training and the other for validation and
vice versa. This has both advantages and disadvantages over using a three way split of
training, validation and testing data. Our model now learn from all of the data, and no
information is hidden within the test data. However, we no longer leave a subset of the
data out of the loop to be used for testing how well the model perform on unseen data,
making system verification more difficult.

To evaluate our system trained on two data splits we duplicate the split used for
model verification and feed it to the evaluation pipeline (See Figure 3.3 for visualization
of the training pipeline) and compare the classification report produced by the evaluation
script and the history of model metrics generated by TensorFlow during training. We
will then present the results for both splits and the average of the two.

System verification is a vital stepping stone to implement machine learning in the
medical sector, but due to time limitations we have deemed this out scope for this project
and instead we leave the reader with some comments on how we would go about further
testing our system for the Kvasir-Capsule dataset. We propose to use cross-dataset
validation to increase confidence in the system. Other VCE datasets like GIANA [27]
includes findings of angiectasias from the small intestine and could be used for testing of
the systems ability to correctly detect that specific finding. Because of the lack of other
available VCE datasets we also propose to use colonoscopy datasets like Kvasir-v2 [17]
and Hyper-Kvasir [6] for verification of pylorus detection.

4.4.4 Noisy student experiments

An issue we encountered when running our teacher-student framework on the Kvasir-
Capsule dataset was that due to the larger number of samples in the dataset we could
no longer run our system on the largest EfficientNetB7 model. From earlier experiments
in Section 4.2.4, we have found that model performance do not vary much in the largest
networks and we chose to train the student model with EfficientNetB4. We then ran

122

our program on both splits of the Kvasir-Capsule dataset and created an average of
the results. Next we will discuss two experiments we conducted on the Kvasir-Capsule
dataset.

Growing classes to 500 samples

In our first experiment, we chose to set the parameter ”class limit” to 500. This choice
was made because we have experienced from earlier that adding too many pseudo labels
to the training data increase the memory usage of the system. The image resolution
were set to 335 by 336 pixels and model training are set to 25 epochs for both teacher
and student model. We ran the experiments for three iterations. Because we wanted
to analyze the model history of the accuracy and loss during training we disabled early
stopping, and ran the teacher and student models for 25 epochs each.

In Figure 4.24, we have included the history of training and loss validation generated
by all the models during training. We notice that the training accuracy varies between
50% and 70%. This is lower than the results which were obtained from running
experiments on Hyper-Kvasir dataset. We suspect the reason for this is that Kvasir-
Capsule dataset has even higher class imbalance than Hyper-Kvasir. Another factor is
that although having higher number of samples, the quality per sample is lower due to
the fact that the dataset is exported from video rather than various examination images
like Hyper-Kvasir. This is discussed in more detail in Section 4.4.1. We also see in
Figure 4.24 that the loss calculated on the validation data is increasing on average for
all models and the models are overfitting the training data. In an effort to eliminate the
increasing loss, we introduce early stopping again, and add more pseudo labels in later
experiments.

We monitor F1-scores and accuracy for all models during execution of our program,
and if these values are averaged after training on both splits of the data we can create a
plot of the system development during the iterations of switching out the teacher with a
student and see the effect of injecting pseudo labels into the training data. Such a plot
is seen in Figure 4.25. In this figure, we can see that the performance gains are poor.
The first teacher model achieve a rather impressive accuracy and weighted F1-score of
around 70%, but in the following iterations the combined performance of the system is
declining. The second student model improve upon the second teacher model, but still
worse than the initial datapoint taken before any pseudo labels are introduced to the
training data.

Growing classes to 1500 samples

In this experiment, we configured the model to terminate training after 10 epochs if the
validation loss has not improved. At the termination of training the model then load the
weights from the epoch with the lowest computed loss. This help reduce overfitting and
increase the models ability to generalize on the data. Another setting we changed in this
experiment is the variable which determine the threshold for maximum pseudo labels to
combine with each class. In this experiment, we raise the value from 500 maximum total

123

0 5 10 15 20 25
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Validation accuracy

0_teacher
0_student
1_teacher
1_student
2_teacher
2_student

0 5 10 15 20 25
Epoch

2

3

4

5

Lo
ss

Validation loss
0_teacher
0_student
1_teacher
1_student
2_teacher
2_student

Figure 4.24: Accuracy and loss computed on the validation data during training of 3 iterations
of teacher and student models for 25 epochs.

0 1 2 3 4 5
Iteration

0.60

0.62

0.64

0.66

0.68

0.70

W
ei

gh
te

d
av

er
ag

e
sc

or
e

Average F1 and Accuracy metrics for split0 and split1
Accuracy
F1-Score

Figure 4.25: Averaged accuracy and F1-score for both splits after 3 iterations of switching out
the teacher with the student.

samples per class to 1500 samples. This mean that while the program is running the
classes will continue to grow as the models find more pseudo labels from the unlabeled
images, until the combined amount of samples in each class reach 1500. At that point

124

Iteration Accuracy Weighted F1

0 0.697 0.709

1 0.641 0.666

2 0.588 0.636

3 0.658 0.673

4 0.621 0.653

5 0.602 0.657

Table 4.8: Accuracy and weighted F1-score produced by iterative training with a noised student
model on Kvasir-Capsule dataset. See Figure 4.25 for a visualization of the metrics.

no more pseudo labels are added.

In Figure 4.26, we see an visualization of Recall, Precision and F1-score averaged for
three iterations of our teacher-student system. We can see for both splits, the precision
metric are always above the recall metric. In the case were the models are trained on
split 1 (Figure 4.26b), the F1-score increase with the student models, and mainly because
the rise in recall. The precision metric is less effected by the injection of pseudo labels.
This also strengthen our theory introduced in Section 4.4.1 that the system perform
better when trained on split 1 and validated on split 0. This is perhaps not a significant
discovery but further confirm our suspicion of an uneven dataset split.

0 1 2 3 4 5
Iteration

0.60

0.65

0.70

0.75

W
ei

gh
te

d
av

er
ag

e
sc

or
e

Precision
Recall
F1-score

(a) Trained on split 0 and validated on split 1

0 1 2 3 4 5
Iteration

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

W
ei

gh
te

d
av

er
ag

e
sc

or
e

Precision
Recall
F1-score

(b) Trained on split 1 and validated on split 0

Figure 4.26: Weighted average score for recall, precision and F1-score for teacher-student
models run for 3 iterations on both splits of Kvasir-Capsule dataset.

In the Figure 4.27, created from the same experiment, we averaged the accuracy and
F1-score for both splits. In Table 4.9, we listed the corresponding metric values. Here we
see that the model accuracy and average weighted F1-score increase as pseudo labels are
injected into the training data. When the experiment terminated, the weighted F1-score
had increased by 4.7%. We observe that the larger student models appear to perform
better than the smaller teacher models on average. And at the last student model in
the last iteration both averaged model accuracy and averaged weighted F1-score are up

125

from the initial point.

0 1 2 3 4 5
Iteration

0.62

0.64

0.66

0.68

0.70

W
ei

gh
te

d
av

er
ag

e
sc

or
e

Average F1 and Accuracy metrics for split0 and split1
Accuracy
F1-Score

Figure 4.27: Averaged accuracy and F1-score for both splits after 3 iterations of switching out
the teacher with the student.

Iteration Accuracy Weighted F1

0 0.634 0.657

1 0.629 0.676

2 0.630 0.664

3 0.655 0.687

4 0.618 0.666

5 0.695 0.704

Table 4.9: Accuracy and weighted F1-score produced by iterative training with a noised student
model on Kvasir-Capsule dataset. See Figure 4.27 for a visualization of the metrics.

These results appear very promising but it is important to point out the shortcomings
of our system as well. In Figure 4.28, we include a confusion matrix produced by the
final student model which were trained on split 1. In the displayed confusion matrix
we can see that there are a lot of false positives for normal mucosa and pylorus classes
by the darker column for these two classes especially. These two classes in particular
hold a majority of the VCE images. The pylorus class contain 1,529 images, and normal
mucosa contain 34,606 images. When these classes are randomly sampled in the input

126

pipeline over many epochs the models learn to generalize the classes better than the
minority classes and thereby predicts labels of majority classes.

Lym
phoid

 Hyperp
las

ia

For
eig

n Bodies Ulce
r

Eros
ion

Pyl
oru

s
Bloo

d

Angiec
tas

ia

Eryt
hem

ato
us

Reduced
 Mucos

al V
iew

Norm
al m

ucos
a

Ileo
-ce

cal
 va

lve

Predicted labels

Lym
phoid

 Hyperp
las

ia

For
eig

n Bodies

Ulce
r

Eros
ion

Pyl
oru

s

Bloo
d

Angiec
tas

ia

Eryt
hem

ato
us

Reduced
 Mucos

al V
iew

Norm
al m

ucos
a

Ileo
-ce

cal
 va

lve

Tr
ue

 la
be

ls

46.9%
105/224

1.3%
3

29.9%
67

21.9%
49

0.5%
3

21.5%
127/590

0.5%
3

25.4%
150

4.7%
28

47.3%
279

8.5%
23/272

14.7%
40

62.9%
171

0.7%
2

1.1%
3

9.9%
27

2.2%
6

0.5%
1

16.5%
34

6.8%
14/206

8.3%
17

7.3%
15

10.2%
21

39.8%
82

10.7%
22

0.9%
8

2.9%
27

6.2%
58

73.5%
689/938

0.1%
1

0.4%
4

0.1%
1

15.9%
149

0.1%
1

68.2%
15

4.5%
1/22

13.6%
3

13.6%
3

0.1%
1

41.6%
321

10.6%
82

0.4%
3

43.5%
335/771

0.1%
1

3.6%
28

18.2%
24

0.8%
1

36.4%
48

5.3%
7/132

39.4%
52

1.6%
15

4.5%
42

0.2%
2

13.1%
122

10.0%
93/932

68.9%
642

1.7%
16

0.9%
143

2.9%
466

0.0%
4

0.7%
107

4.9%
776

0.1%
14

0.4%
64

0.1%
18

3.1%
485

86.2%
13667/15853

0.7%
109

1.1%
12

1.2%
14

11.4%
128

18.3%
205

0.2%
2

17.2%
193

40.9%
458

9.6%
108/1120

Confusion matrix

0%

20%

50&

75%

Figure 4.28: Confusion matrix created by testing the last student model on split 1 of Kvasir-
Capsule dataset.

In Figure 4.29, we include a generated report of top six pseudo labels from each class
in Kvasir-Capsule unlabeled dataset, generated by the initial teacher model. In this
preview of inferred pseudo labels we can analyze the quality of predicted labels, which is
useful to diagnose the teacher-student framework. An expert endoscopist reviewed the
pseudo label report, and the results are given in in Table 4.10. Here we see the majority
of the generated pseudo labels are correctly classified, but for some classes the teacher
model have a hard time. This could be linked to having a sparse and skewed dataset.
Of the 66 shown pseudo labels, 69.69% are correctly classified. The endoscopist who
reviewed the labels noted that for lymphoid hyperplasia class the hyperplasia is floating
in the lumen and not on the mucosa and therefore not miss-classified. The labels from
foreign bodies are off food left-overs, so it is a question of class definition. Images from

127

blood labels are deep red in color, but could potentially be from other factors. And
finally, pseudo labels from ileo-cecal valve are difficult to verify without having access to
the video from with the images are originating from.

Class Wrong classification Correct Classification

Lymphoid Hyperplasia 1,2,3,4,5,6

Foreign Bodies 1,2,3,4,5,6

Ulcer 1,2,3,4,5,6

Erosion 1,4,5,6 2,3

Pylorus 4,5,6 1,2,3

Blood 1,2,3,4,5,6

Angiectasia 1,2,3,4,5 6

Erythematous 1,2,3,4,5,6

Reduced mucosal view 1,2,3,4,5,6

Normal mucosa 1,2,3,4,5,6

Ileo-cecal valve 2,3 1,4,5,6

Total samples 20 46

Table 4.10: Validation report for Figure 4.29 made by an endoscopist expert. ”1” represent
the left pseudo label from the corresponding class, ”2” represent the second pseudo label etc.

Each row holds images with the six highest model confidences, in descending order
from left to right. Quality of the displayed pseudo labels vary from class to class and
in some cases, image to image. The inferred pseudo labels of ulcer class have very
similar images, likely from the same video and finding. When combined with the original
training data, these six images only really count as a single image because of the overlap
in image information, as discussed in Section 4.4.1. The images of the class erythematous
are potentially also from the same video, but in these images we see more variation in the
form of capsule rotation and translation between frames. These images provide better
pseudo labels for the next student model due to the image feature variation.

4.5 Summary

In this chapter, we presented our experiments leading up to defining a suitable set
of hyper-parameters for our teacher and student models, and then the experiments we
performed on the teacher-student framework itself. For our initial experiments conducted
to find a suitable network configuration we primarily focused on Hyper-Kvasir dataset
because it allowed us to compare our results along the way with previous works. Then
when our framework was completed we ran some initial tests with the same dataset
before moving on to our VCE dataset, Kvasir-Capsule. Initial experiments conducted
on Hyper-Kvasir were useful for comparing dataset balancing methods such as resample
and class weighting, model weight initialization, input image resolution, and network

128

129

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 0.999 conf: 0.998 conf: 0.998 conf: 0.998 conf: 0.998

conf: 0.998 conf: 0.996 conf: 0.994 conf: 0.994 conf: 0.993 conf: 0.993

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 0.999 conf: 0.999 conf: 0.998 conf: 0.998 conf: 0.997 conf: 0.996

conf: 0.997 conf: 0.997 conf: 0.997 conf: 0.997 conf: 0.996 conf: 0.996

conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0 conf: 1.0

conf: 1.0 conf: 0.999 conf: 0.998 conf: 0.998 conf: 0.997 conf: 0.996

Figure 4.29: A preview of pseudo labels from Kvasir-Capsule unlabeled dataset, generated by
the first teacher model. Each row is pseudo labels of the respective class, as stated by the left
column. The model confidence is given above each image, rounded to four digits.

dimensions. When the framework was complete we experimented with parameters
such as teacher-student model dimensions during iterative training, adding noise to
the student model, evaluation methods, and the amount of pseudo labels to combine
with the classes. The experiments conducted in this chapter relate back to our last
research objective in Section 1.2, where we wanted to experiment with various model
hyper-parameters and framework settings to get a better overview of their effects on
performance, and thereby, obtain a better understanding of the self-learning process of
such a framework which could result in knowledge to better improve performance.

After conducting our initial experiments, we found that using pre-trained weights
greatly outperform training from scratch when it comes to both model accuracy and
training time, re-sampling the dataset had enormous benefits over calculating class
weights, small reduction in image resolution have little impact on model performance
but allow for much larger models to be trained, and finally, small networks train faster
but are worse at generalizing. Our main findings from conducting experiments on the
teacher-student framework on Hyper-Kvasir dataset were that for four different network
dimensions for both teacher and student model, the second student achieved the best
results on average and all four model dimensions performed very similar. Adding noise in
the form of input image augmentation and larger model with more dropout, increased the
performance further. When testing our framework on Kvasir-Capsule, we experimented
with different thresholds for combining pseudo labels with the training data. We found
that adding more pseudo labels increased the performance.

130

Chapter 5

Conclusions and Further Work

5.1 Summary

Semi-supervised learning is of great interest in machine learning and data mining because
it can use readily available unlabeled data to improve supervised learning tasks when the
labeled data are scarce or expensive. This is often the case for the medical domain where
image annotation require trained specialists. The total world population is increasing
every year, and as a consequence, we perform more colonoscopies than ever before. The
demand for better systems for medical diagnosis will follow this trend. Previous work
in development of medical multimedia system show that providing real-time assistance
during colonoscopy improves the chance of successful treatment, if the initial observation
of disease indicators can be made visually at a early stage, preferably before patients
notice any symptoms. But, for these systems to reach its full potential there is still a
need for larger collection of multimedia, including the likes of VCE videos, and better
high-level deep learning approaches for visual feature inspection [100].

We have during this thesis presented a teacher-student framework that take
advantage of the vast amounts of unlabeled data by first training the teacher model
on labeled images, use the teacher model to generate pseudo labels on unlabeled images,
and train the student model on the combination of labeled images and pseudo labeled
images. We iterate this algorithm a few times by treating student as a teacher to relabel
the unlabeled data. By adding noise to the student we force the student to learn beyond
the teacher to make prediction with more difficult images.

To be able to test and evaluate our semi-supervised teacher-student framework, we
created a VCE dataset called Kvasir-Capsule [5], consisting of 118 examination videos
provided by Bærum Hospital in Norway. 44 of these videos were carefully annotated into
13 classes of pathological findings, anatomical landmarks and quality of mucosal view
resulting in a labeled dataset of 44,260 images. The remaining videos were exported to
2.6 million unlabeled images as part of the dataset.

131

Our main research question asked in Section 1.2 was as follows:

Can a semi-supervised teacher-student framework improve on traditional
supervised models by incorporating inferred pseudo labels into the labeled
training data in the field of gastrointestinal tract endoscopy?

After conducting our experiments, we can say with good confidence that with proper
tuning and enough labeled data it is very much possible. Our results showed an overall
increase in F1-score of 3.2% for the Hyper-Kvasir dataset, and 4.7% for Kvasir-Capsule
VCE dataset. However, we were not able to conclusively validate performance increase on
Kvasir-Capsule dataset, seeing as small changes in framework settings caused unexpected
changes in the iterative training. With more testing and validation we believe our
framework has potential to be a useful addition to existing medical multimedia systems
for automatic disease detection.

5.2 Contributions

As discussed in the problem statement in Section 1.2, we derived three research
objectives. Below, we restate each objective together with a description of how our
work solves the stated problems.

Objective 1 Collect data for a video capsule endoscopy dataset of both labeled and
unlabeled images from the gastrointestinal tract, with a skewed balance of class
samples to represent real world scenario. This dataset should be used for testing
our framework.

This objective is supported by our creation of a gastrointestinal dataset, Kvasir-
Capsule [5], containing a total of 44,260 manually labeled images with bounding boxes
around the respective finding, split into 13 classes for pathological findings, anatomical
landmarks and quality of mucosal view. The annotation was performed by three MSc
student, supervised by an expert endoscopist with many years in the field. Whenever the
MSc student encountered an issue, the endoscopist reviewed the case. We also include
the 44 videos used for extraction of labeled images, as well as 72 videos which are not
labeled and thus useful for unsupervised and semi-supervised machine learning system or
to generate more labeled images by other qualified personnel in the future. All videos are
taken by video capsule endoscopy during a number of examinations at Bærum Hospital in
Norway, between the year 2016 and 2018. The Kvasir-Capsule dataset is available from
the Open Science Framework (OSF) accessible via the link https://osf.io/dv2ag/.

Objective 2 Provide a implementation of a teacher-student framework for multiclass
image classification based on the novel EfficientNet architecture, with a suite of
evaluation tools to help with further analysis.

132

https://osf.io/dv2ag/

This objective is supported by our proposed teacher-student framework presented
in Section 3.4 which use a teacher model, based on Googles EfficientNet architecture,
to create pseudo labels from unlabeled endoscopy images, which are then combined
with original labeled training data. Next, we create a larger student model with more
stochastic noise, and inject the input pipeline with noise transformations, like image
translation, rotation and variances in brightness, saturation etc, to create a larger
and more noisy student model. This noised student model learn more features from
the combined dataset of labeled images and inferred pseudo labels, than the smaller
teacher model. This process is then iterated a couple of times to further increase model
performance.

Objective 3 Use various model hyper-parameters and framework setting to get a better
understanding of the effect which is caused by combining pseudo labels with original
training images, and map performance gains by using various network dimensions.

This last objective is supported by our research made in Chapter 4, where we present
a detailed analysis and ablations of various design choices, such as architecture, hyper-
parameters, class imbalance equalizing methods, image input resolution and more. When
performing such experiments we measure cross-entropy loss, model accuracy, recall,
precision and F1-score during training and create easy-to-diagnose plots and reports
for every model. The data is split in suitable folds and used for training and validation
to ensure good validity. Based on this performed analysis, we derive a configuration of
our teacher-student framework which improve on the baseline performance of our initial
EfficientNet models by 3.2% for Hyper-Kvasir and 4.7% for Kvasir-Capsule.

Through the work produced in this thesis, and by answering the stated research
objectives, we have learned the value of using pre-trained network weights to greatly
reducing training time, importance of sampling a imbalanced dataset to help the model
generalize better during training, how changes in image resolution speed up training at
the cost of model performance, and the various effects of changing network dimensions.
With this knowledge we then designed and developed a self-learning teacher-student
framework. This semi-supervised teacher-student framework, trained on sparsely and
skewed labeled video capsule endoscopy images and traditional endoscopy images,
has shown the ability to improve on traditional supervised models in our conducted
experiments with varying results. With more tuning of the framework settings and more
data for both training and validation, this self-learning paradigm of machine learning
can have profound effects on the future of computer-assisted diagnose in the medical
domain.

5.3 Further work

The work done in this thesis shows that self-learning semi-supervised approaches like our
teacher-student model are promising, but also that there is potential for improvements
and that there is still much work that can be done. Some of the improvements which

133

would show immediate progress is to gather larger VCE datasets, and to do experiments
to gain a better understanding of how to take full advantage of sparsely labeled datasets
when combined with vast amounts of unlabeled data. Below, we propose some further
work:

Better image preprocessing and cleanup Kirkerød, Borgli, Thambawita, et al.
proposed a method which use a Generative Adverserial Network (GAN) to remove
artifacts like scope guide and black borders from the training data and as a result allows
networks to generalize to a greater extent and achieve higher accuracy [101]. Kvasir-
Capsule [5] has less artifacts than the medical data used for evaluating the preprocessing
tool developed in the thesis, but nonetheless, it would be interesting to test how the
removal of black borders around the VCE images would effect the performance of our
system. This is something we would have tested if we had more time. We also noticed
the trained models would sometimes select pseudo labels from the unlabeled dataset
which contained mostly static noise, such as from periods of bad connection between
the capsule and the receiving unit. This leads us to believe that some data filtering
beforehand which would remove such noisy images would be beneficial for our models.

Sample from generated pseudo labels Because the unlabeled images from Kvasir-
Capsule are extracted from videos there are large amounts of similar images containing
large overlap in image features. This causes the teacher-student model to include images
which are very similar, and can in some cases be many images from the same video and
the same finding. In short, this means while 100 new pseudo labels are combined with
the respective class, it actually only contain several similar images of the same finding,
sometimes also from the same angle, see Figure 4.20 for an example. This could be
further improved by including a pseudo label evaluation method before introducing the
sample to the training data. We imagine such an evaluation method would hinder many
similar images to be included and instead pick images from the next in line finding from
the unlabeled dataset.

Human-in-the-loop From some of our experiments with Kvasir-Capsule dataset,
we noticed that the model struggles to learn the correct features of the classes with
fewest samples, and therefore often will produce out of domain pseudo labels. In the
case of extreme sparse data, or extremely skewed, it could be a human-in-the-loop, a
specialized physician, which would be presented some of the generated pseudo labels
with the highest confidence, and manually discard the worst labels.

Better validation methods and metrics Because of the immense class imbalance
which we face with medical datasets, we need to use a large amount of the dataset
for training, and in some cases, only keeping a couple of samples hidden away for
cross validation can harm the features learned by the model. Cross dataset validation
would have a great impact on this because more of the data is used for training. Time
constraints did not allow us to implement this but is something we would like to test in
the future. In the case of medical domain image classification and the class imbalances

134

which follows it is especially important to ensure the model have learned the classes
well. In our studies, we rely heavily on F1-score computed on the test dataset after
training. We believe our models would benefit from computing macro F1-score during
training on the test dataset and select the epoch with best F1-score to use for its final
weights instead of lowest loss. For some of the classes in our datasets, we noticed that
particular models had difficulties in learning some classes with overlap in image features,
and in other classes, we suspect even though it correctly classified the images it might
have focused on unimportant features. Therefore, we suggest that in further studies
the system would benefit from implementing class activation maps (CAM) to verify the
model is learning relevant features.

Fine tune on labeled data In Section 2.6, we presented some of the findings made
by Yalniz, Jégou, Chen, et al. They pre-trained the student model and later fine-tuned
on the initial labeled data to circumvent potential labeling errors introduced by the
unlabeled data [75]. We believe that fine-tuning the student model could improve our
method as we have found that in some cases where the labeled data is sparse, and the
teacher model therefore struggle to learn the class features which then means the pseudo
labels generated by the model is of lower quality.

135

136

Bibliography

[1] B. Bilbao-Osorio, S. Dutta, and B. Lanvin, “The Global Information
Technology Report 2014”, p. 369, 2014 (cit. on p. i).

[2] A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer Statistics”,
CA: A Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010.
[Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.3322/caac.20073 (visited
on 05/23/2019) (cit. on pp. 3, 14).

[3] E. Rosenthal, “The $2.7 Trillion Medical Bill”,
The New York TimesHealth, Jun. 1, 2013. [Online]. Available:
https://www.nytimes.com/2013/06/02/health/colonoscopies-explain-

why-us-leads-the-world-in-health-expenditures.html (visited on
08/03/2020) (cit. on pp. 3, 14).

[4] D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, P. R. Young,
and P. J. Denning, “Computing as a discipline”,
Communications of the ACM, vol. 32, no. 1, pp. 9–23, Jan. 1, 1989. [Online].
Available: https://doi.org/10.1145/63238.63239 (visited on 03/16/2020)
(cit. on p. 6).

[5] P. H. Smedsrud, H. Gjestang, O. O. Nedrejord, E. Næss, V. Thambawita,
S. Hicks, H. Borgli, D. Jha, T. J. D. Berstad, S. L. Eskeland, M. Lux,
H. Espeland, A. Petlund, D. T. D. Nguyen, E. Garcia-Ceja, D. Johansen,
P. T. Schmidt, M. A. de Lange Thomas Riegler, and P. Halvorsen,
“Kvasir-Capsule, a video capsule endoscopy dataset”, Aug. 2020.
[Online]. Available: https://osf.io/gr7bn/
(cit. on pp. 7, 8, 21, 24, 57, 114, 131, 132, 134).

[6] H. Borgli, V. Thambawita, P. H. Smedsrud, S. Hicks, D. Jha, S. L. Eskeland,
K. R. Randel, K. Pogorelov, M. Lux, D. T. D. Nguyen, D. Johansen,
C. Griwodz, H. K. Stensland, E. G. Ceja, P. T. Schmidt, H. L. Hammer,
M. Riegler, P. Halvorsen, and T. de Lange, “Hyper-Kvasir: A Comprehensive
Multi-Class Image and Video Dataset for Gastrointestinal Endoscopy”,
Open Science Framework, preprint, Dec. 20, 2019.
[Online]. Available: https://osf.io/mkzcq (visited on 02/19/2020)
(cit. on pp. 7, 21, 23, 24, 112, 114, 122).

137

https://onlinelibrary.wiley.com/doi/abs/10.3322/caac.20073
https://www.nytimes.com/2013/06/02/health/colonoscopies-explain-why-us-leads-the-world-in-health-expenditures.html
https://www.nytimes.com/2013/06/02/health/colonoscopies-explain-why-us-leads-the-world-in-health-expenditures.html
https://doi.org/10.1145/63238.63239
https://osf.io/gr7bn/
https://osf.io/mkzcq

[7] S. A. Hicks, “Mimir: An Automatic Reporting and Reasoning System for
Screening of the Gastrointestinal Tract Using Deep Neural Networks”, 2018.
[Online]. Available: https://www.duo.uio.no/handle/10852/65179 (visited
on 08/22/2019) (cit. on p. 11).

[8] R. Jensen, “Polyp Detection using Neural Networks - Data Enhancement and
Training Optimization”, 2017 (cit. on p. 11).

[9] J. Wei, A. Suriawinata, L. Vaickus, B. Ren, X. Liu, J. Wei, and S. Hassanpour,
“Generative Image Translation for Data Augmentation in Colorectal
Histopathology Images”, p. 17, 2019 (cit. on p. 11).

[10] B. J. Erickson, P. Korfiatis, Z. Akkus, and T. L. Kline, “Machine Learning for
Medical Imaging”, RadioGraphics, vol. 37, no. 2, pp. 505–515, Feb. 17, 2017.
[Online]. Available:
https://pubs.rsna.org/doi/full/10.1148/rg.2017160130 (visited on
07/02/2020) (cit. on p. 11).

[11] R. Siegel, C. DeSantis, and A. Jemal, “Colorectal cancer statistics, 2014”,
CA: A Cancer Journal for Clinicians, vol. 64, no. 2, pp. 104–117, 2014.
[Online]. Available: https:
//acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21220

(visited on 03/23/2020) (cit. on p. 14).

[12] I. Vogelaar, M. van Ballegooijen, D. Schrag, R. Boer, S. J. Winawer,
J. D. F. Habbema, and A. G. Zauber, “How much can current interventions
reduce colorectal cancer mortality in the U.S.?”,
Cancer, vol. 107, no. 7, pp. 1624–1633, 2006. [Online]. Available: https:
//acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/cncr.22115

(visited on 03/30/2020) (cit. on p. 14).

[13] S. Chen and D. Rex, “Endoscopist Can Be More Powerful than Age and Male
Gender in Predicting Adenoma Detection at Colonoscopy”,
American Journal of Gastroenterology, vol. 102, no. 4, pp. 856–861, Apr. 2007.
pmid: 17222317. [Online]. Available: insights.ovid.com (visited on
03/30/2020) (cit. on p. 14).

[14] A. C. S. Van Heel, “A New Method of transporting Optical Images without
Aberrations”, Nature, vol. 173, no. 4392, pp. 39–39, Jan. 1954.
[Online]. Available: http://www.nature.com/articles/173039a0 (visited on
05/25/2019) (cit. on p. 14).

[15] G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, “Wireless capsule
endoscopy”, Nature, vol. 405, no. 6785, p. 417, May 2000. [Online]. Available:
https://www.nature.com/articles/35013140 (visited on 05/25/2019)
(cit. on p. 16).

138

https://www.duo.uio.no/handle/10852/65179
https://pubs.rsna.org/doi/full/10.1148/rg.2017160130
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21220
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.3322/caac.21220
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/cncr.22115
https://acsjournals.onlinelibrary.wiley.com/doi/abs/10.1002/cncr.22115
17222317
insights.ovid.com
http://www.nature.com/articles/173039a0
https://www.nature.com/articles/35013140

[16] G. Costamagna, S. K. Shah, M. E. Riccioni, F. Foschia, M. Mutignani, V. Perri,
A. Vecchioli, M. G. Brizi, A. Picciocchi, and P. Marano, “A prospective trial
comparing small bowel radiographs and video capsule endoscopy for suspected
small bowel disease”,
Gastroenterology, vol. 123, no. 4, pp. 999–1005, Oct. 1, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0016508502002032

(visited on 08/03/2020) (cit. on p. 16).

[17] K. Pogorelov, P. T. Schmidt, M. Riegler, P. Halvorsen, K. R. Randel,
C. Griwodz, S. L. Eskeland, T. de Lange, D. Johansen, C. Spampinato,
D.-T. Dang-Nguyen, and M. Lux, “KVASIR: A Multi-Class Image Dataset for
Computer Aided Gastrointestinal Disease Detection”,
in Proceedings of the 8th ACM on Multimedia Systems Conference - MMSys’17,
2017, pp. 164–169. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3083187.3083212 (visited on
02/19/2020) (cit. on pp. 21–23, 79, 122).

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database”,
in 2009 IEEE Conference on Computer Vision and Pattern Recognition,
Jun. 2009, pp. 248–255 (cit. on p. 21).

[19] G. Fernández-Esparrach, J. Bernal, M. López-Cerón, H. Córdova,
C. Sánchez-Montes, C. R. de Miguel, and F. J. Sánchez, “Exploring the clinical
potential of an automatic colonic polyp detection method based on the creation
of energy maps”, Endoscopy, vol. 48, no. 9, pp. 837–842, Sep. 2016.
[Online]. Available:
http://www.thieme-connect.de/DOI/DOI?10.1055/s-0042-108434 (visited
on 04/20/2020) (cit. on p. 23).

[20] N. Tajbakhsh, S. R. Gurudu, and J. Liang, “Automated Polyp Detection in
Colonoscopy Videos Using Shape and Context Information”,
IEEE Transactions on Medical Imaging, vol. 35, no. 2, pp. 630–644, Feb. 2016
(cit. on p. 23).

[21] J. Bernal, J. Sánchez, and F. Vilariño, “Towards automatic polyp detection
with a polyp appearance model”,
Pattern Recognition, vol. 45, no. 9, pp. 3166–3182, Sep. 1, 2012.
[Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320312001185

(visited on 04/20/2020) (cit. on p. 23).

[22] J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward embedded
detection of polyps in WCE images for early diagnosis of colorectal cancer”,
International Journal of Computer Assisted Radiology and Surgery, vol. 9, no. 2,
pp. 283–293, Mar. 1, 2014. [Online]. Available:
https://doi.org/10.1007/s11548-013-0926-3 (visited on 04/20/2020)
(cit. on p. 23).

139

http://www.sciencedirect.com/science/article/pii/S0016508502002032
http://dl.acm.org/citation.cfm?doid=3083187.3083212
http://www.thieme-connect.de/DOI/DOI?10.1055/s-0042-108434
http://www.sciencedirect.com/science/article/pii/S0031320312001185
https://doi.org/10.1007/s11548-013-0926-3

[23] P. Mesejo, D. Pizarro, A. Abergel, O. Rouquette, S. Beorchia, L. Poincloux, and
A. Bartoli, “Computer-Aided Classification of Gastrointestinal Lesions in
Regular Colonoscopy”,
IEEE Transactions on Medical Imaging, vol. 35, no. 9, pp. 2051–2063, Sep. 2016
(cit. on p. 23).

[24] K. Pogorelov, K. R. Randel, T. de Lange, S. L. Eskeland, C. Griwodz,
D. Johansen, C. Spampinato, M. Taschwer, M. Lux, P. T. Schmidt, M. Riegler,
and P. Halvorsen, “Nerthus: A Bowel Preparation Quality Video Dataset”,
in Proceedings of the 8th ACM on Multimedia Systems Conference,
Jun. 20, 2017, pp. 170–174. [Online]. Available:
https://doi.org/10.1145/3083187.3083216 (visited on 04/20/2020)
(cit. on p. 23).

[25] K. Pogorelov, M. Riegler, P. Halvorsen, S. Hicks, K. R. Randel,
D. T. Dang Nguyen, M. Lux, O. Ostroukhova, and T. de Lange, “Medico
multimedia task at MediaEval 2018”, Dec. 22, 2018. [Online]. Available:
https://bora.uib.no/handle/1956/20930 (visited on 04/20/2020)
(cit. on p. 23).

[26] A. Koulaouzidis, D. K. Iakovidis, D. E. Yung, E. Rondonotti, U. Kopylov,
J. N. Plevris, E. Toth, A. Eliakim, G. W. Johansson, W. Marlicz,
G. Mavrogenis, A. Nemeth, H. Thorlacius, and G. E. Tontini, “KID Project: An
internet-based digital video atlas of capsule endoscopy for research purposes”,
Endoscopy International Open, vol. 05, no. 6, E477–E483, Jun. 2017.
[Online]. Available:
http://www.thieme-connect.de/DOI/DOI?10.1055/s-0043-105488 (visited
on 04/20/2020) (cit. on p. 24).

[27] H. Bernal J and Aymeric. (2017). Gastrointestinal Image ANAlysis (GIANA)
Angiodysplasia D\&L challenge, [Online]. Available:
https://endovissub2017-giana.grand-challenge.org/home/ (visited on
04/20/2020) (cit. on pp. 24, 122).

[28] R. Leenhardt, C. Li, J.-P. L. Mouel, G. Rahmi, J. C. Saurin, F. Cholet,
A. Boureille, X. Amiot, M. Delvaux, C. Duburque, C. Leandri, R. Gérard,
S. Lecleire, F. Mesli, I. Nion-Larmurier, O. Romain, S. Sacher-Huvelin,
C. Simon-Shane, G. Vanbiervliet, P. Marteau, A. Histace, and X. Dray,
“CAD-CAP: A 25,000-image database serving the development of artificial
intelligence for capsule endoscopy”,
Endoscopy International Open, vol. 08, no. 3, E415–E420, Mar. 2020. [Online].
Available: http://www.thieme-connect.de/DOI/DOI?10.1055/a-1035-9088
(visited on 04/20/2020) (cit. on p. 24).

[29] L. R. Lundell, J. Dent, J. R. Bennett, A. L. Blum, D. Armstrong,
J. P. Galmiche, F. Johnson, M. Hongo, J. E. Richter, S. J. Spechler,
G. N. J. Tytgat, and L. Wallin, “Endoscopic assessment of oesophagitis: Clinical
and functional correlates and further validation of the Los Angeles

140

https://doi.org/10.1145/3083187.3083216
https://bora.uib.no/handle/1956/20930
http://www.thieme-connect.de/DOI/DOI?10.1055/s-0043-105488
https://endovissub2017-giana.grand-challenge.org/home/
http://www.thieme-connect.de/DOI/DOI?10.1055/a-1035-9088

classification”, Gut, vol. 45, no. 2, pp. 172–180, Aug. 1, 1999.
pmid: 10403727. [Online]. Available:
https://gut.bmj.com/content/45/2/172 (visited on 07/05/2020)
(cit. on p. 26).

[30] P. Sharma, J. Dent, D. Armstrong, J. J. G. H. M. Bergman, L. Gossner,
Y. Hoshihara, J. A. Jankowski, O. Junghard, L. Lundell, G. N. J. Tytgat, and
M. Vieth, “The Development and Validation of an Endoscopic Grading System
for Barrett’s Esophagus: The Prague C & M Criteria”,
Gastroenterology, vol. 131, no. 5, pp. 1392–1399, Nov. 1, 2006.
[Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0016508506017914

(visited on 07/05/2020) (cit. on p. 26).

[31] E. J. Lai, A. H. Calderwood, G. Doros, O. K. Fix, and B. C. Jacobson, “The
Boston bowel preparation scale: A valid and reliable instrument for
colonoscopy-oriented research”,
Gastrointestinal Endoscopy, vol. 69, pp. 620–625, 3, Part 2 Mar. 1, 2009.
[Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0016510708019883

(visited on 07/05/2020) (cit. on p. 26).

[32] K. W. Schroeder, W. J. Tremaine, and D. M. Ilstrup, “Coated Oral
5-Aminosalicylic Acid Therapy for Mildly to Moderately Active Ulcerative
Colitis”, New England Journal of Medicine, vol. 317, no. 26, pp. 1625–1629,
Dec. 24, 1987. pmid: 3317057. [Online]. Available:
https://doi.org/10.1056/NEJM198712243172603 (visited on 07/05/2020)
(cit. on p. 26).

[33] H. Inoue, H. Kashida, S. Kudo, M. Sasako, T. Shimoda, H. Watanabe,
S. Yoshida, M. Guelrud, C. J. Lightdale, K. Wang, R. H. Riddell,
M. D. Diebold, R. Lambert, J. F. Rey, M. Jung, H. Neuhaus, A. T. Axon,
R. M. Genta, and J. J. Gonvers, “The Paris endoscopic classification of
superficial neoplastic lesions : Esophagus, stomach and colon.”,
Gastrointest. Endoscopy, vol. 58, S3–S43, 2003. [Online]. Available:
https://serval.unil.ch/notice/serval:BIB_28728 (visited on 07/05/2020)
(cit. on p. 26).

[34] G. Wallace, “The JPEG still picture compression standard”, IEEE Transactions
on Consumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv, Feb. 1992
(cit. on p. 25).

[35] H. He and E. A. Garcia, “Learning from Imbalanced Data”, IEEE Transactions
on Knowledge and Data Engineering, vol. 21, no. 9, pp. 1263–1284, Sep. 2009
(cit. on p. 29).

141

10403727
https://gut.bmj.com/content/45/2/172
http://www.sciencedirect.com/science/article/pii/S0016508506017914
http://www.sciencedirect.com/science/article/pii/S0016510708019883
3317057
https://doi.org/10.1056/NEJM198712243172603
https://serval.unil.ch/notice/serval:BIB_28728

[36] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
Synthetic Minority Over-sampling Technique”,
Journal of Artificial Intelligence Research, vol. 16, pp. 321–357, Jun. 1, 2002.
[Online]. Available:
https://www.jair.org/index.php/jair/article/view/10302 (visited on
06/17/2020) (cit. on p. 29).

[37] M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the class
imbalance problem in convolutional neural networks”,
Neural Networks, vol. 106, pp. 249–259, Oct. 1, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608018302107

(visited on 06/17/2020) (cit. on p. 29).

[38] Y. Zou, L. Li, Y. Wang, J. Yu, Y. Li, and W. J. Deng,
“Classifying digestive organs in wireless capsule endoscopy images based on
deep convolutional neural network”, in Proceedings of the 2015 IEEE
International Conference on Digital Signal Processing (DSP), Jul. 2015,
pp. 1274–1278 (cit. on p. 30).

[39] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition”,
Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998
(cit. on p. 33).

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton,
“ImageNet Classification with Deep Convolutional Neural Networks”,
in Advances in Neural Information Processing Systems 25, 2012, pp. 1097–1105.
[Online]. Available: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf (visited
on 05/31/2019) (cit. on p. 33).

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification”, presented at the
Proceedings of the IEEE International Conference on Computer Vision, 2015,
pp. 1026–1034. [Online]. Available:
https://www.cv-foundation.org/openaccess/content_iccv_2015/html/

He_Delving_Deep_into_ICCV_2015_paper.html (visited on 07/02/2020)
(cit. on p. 33).

[42] L. Chen, S. Wang, W. Fan, J. Sun, and S. Naoi, “Beyond human recognition: A
CNN-based framework for handwritten character recognition”,
in 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR),
Nov. 2015, pp. 695–699 (cit. on p. 33).

[43] D. Ciregan, U. Meier, and J. Schmidhuber,
“Multi-column deep neural networks for image classification”,
in 2012 IEEE Conference on Computer Vision and Pattern Recognition,
Jun. 2012, pp. 3642–3649 (cit. on p. 33).

142

https://www.jair.org/index.php/jair/article/view/10302
http://www.sciencedirect.com/science/article/pii/S0893608018302107
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html

[44] P. Sadowski, “Notes on backpropagation”, 2016. [Online]. Available:
https://www.%20ics.%20uci.%20edu/pjsadows/notes.%20pdf%20(online)

(cit. on p. 35).

[45] N. Qian, “On the momentum term in gradient descent learning algorithms”,
Neural Networks, vol. 12, no. 1, pp. 145–151, Jan. 1, 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608098001166

(visited on 05/29/2020) (cit. on p. 38).

[46] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio,
“Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization”, Jun. 10, 2014. arXiv: 1406.2572 [cs, math, stat].
[Online]. Available: http://arxiv.org/abs/1406.2572 (visited on 05/29/2020)
(cit. on p. 38).

[47] Y. NESTEROV, “A method for unconstrained convex minimization problem
with the rate of convergence o(1/k2̂)”,
Doklady AN USSR, vol. 269, pp. 543–547, 1983. [Online]. Available:
https://ci.nii.ac.jp/naid/20001173129/ (visited on 05/29/2020)
(cit. on p. 38).

[48] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”,
Journal of Machine Learning Research, vol. 12, no. 61, pp. 2121–2159, 2011.
[Online]. Available: http://jmlr.org/papers/v12/duchi11a.html (visited on
05/29/2020) (cit. on p. 38).

[49] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization”,
version 8, Jan. 29, 2017. arXiv: 1412.6980 [cs]. [Online]. Available:
http://arxiv.org/abs/1412.6980 (visited on 05/25/2020)
(cit. on pp. 39, 100).

[50] K. He, X. Zhang, S. Ren, and J. Sun,
“Deep Residual Learning for Image Recognition”, presented at the Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 770–778. [Online]. Available: http://openaccess.thecvf.com/content_
cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html

(visited on 05/29/2020) (cit. on p. 39).

[51] R. K. Srivastava, K. Greff, and J. Schmidhuber,
“Training Very Deep Networks”,
in Advances in Neural Information Processing Systems 28, 2015, pp. 2377–2385.
[Online]. Available:
http://papers.nips.cc/paper/5850-training-very-deep-networks.pdf

(visited on 06/04/2020) (cit. on p. 40).

143

https://www.%20ics.%20uci.%20edu/pjsadows/notes.%20pdf%20(online)
http://www.sciencedirect.com/science/article/pii/S0893608098001166
https://arxiv.org/abs/1406.2572
http://arxiv.org/abs/1406.2572
https://ci.nii.ac.jp/naid/20001173129/
http://jmlr.org/papers/v12/duchi11a.html
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://papers.nips.cc/paper/5850-training-very-deep-networks.pdf

[52] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very Deep Convolutional
Networks for Text Classification”, Jan. 27, 2017.
arXiv: 1606.01781 [cs]. [Online]. Available:
http://arxiv.org/abs/1606.01781 (visited on 06/04/2020) (cit. on p. 40).

[53] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition”, Dec. 10, 2015. arXiv: 1512.03385 [cs]. [Online]. Available:
http://arxiv.org/abs/1512.03385 (visited on 06/04/2020) (cit. on p. 40).

[54] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks”, Nov. 22, 2019.
arXiv: 1905.11946 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/1905.11946 (visited on 03/05/2020) (cit. on p. 40).

[55] S. Zagoruyko and N. Komodakis, “Wide Residual Networks”, Jun. 14, 2017.
arXiv: 1605.07146 [cs]. [Online]. Available:
http://arxiv.org/abs/1605.07146 (visited on 06/04/2020) (cit. on p. 40).

[56] S. Kannojia and G. Jaiswal, “Effects of Varying Resolution on Performance of
CNN based Image Classification An Experimental Study”,
International Journal of Computer Sciences and Engineering, vol. 6,
pp. 451–456, Sep. 30, 2018 (cit. on p. 40).

[57] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and
Q. V. Le, “MnasNet: Platform-Aware Neural Architecture Search for Mobile”,
May 28, 2019. arXiv: 1807.11626 [cs]. [Online]. Available:
http://arxiv.org/abs/1807.11626 (visited on 06/05/2020) (cit. on p. 41).

[58] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted Residuals and Linear Bottlenecks”, Mar. 21, 2019.
arXiv: 1801.04381 [cs]. [Online]. Available:
http://arxiv.org/abs/1801.04381 (visited on 06/05/2020) (cit. on p. 41).

[59] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and
Q. V. Le, “MnasNet: Platform-Aware Neural Architecture Search for Mobile”,
May 28, 2019. arXiv: 1807.11626 [cs]. [Online]. Available:
http://arxiv.org/abs/1807.11626 (visited on 06/05/2020) (cit. on p. 41).

[60] H. Wu and S. Prasad, “Semi-Supervised Deep Learning Using Pseudo Labels for
Hyperspectral Image Classification”, IEEE Transactions on Image Processing,
vol. 27, no. 3, pp. 1259–1270, Mar. 2018 (cit. on pp. 42, 49).

[61] W. Bai, O. Oktay, M. Sinclair, H. Suzuki, M. Rajchl, G. Tarroni, B. Glocker,
A. King, P. M. Matthews, and D. Rueckert, “Semi-supervised Learning for
Network-Based Cardiac MR Image Segmentation”, in Medical Image Computing
and Computer-Assisted Intervention - MICCAI 2017, 2017, pp. 253–260
(cit. on p. 42).

144

https://arxiv.org/abs/1606.01781
http://arxiv.org/abs/1606.01781
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1905.11946
http://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1605.07146
https://arxiv.org/abs/1807.11626
http://arxiv.org/abs/1807.11626
https://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1807.11626
http://arxiv.org/abs/1807.11626

[62] A. Madani, M. Moradi, A. Karargyris, and T. Syeda-Mahmood,
“Semi-supervised learning with generative adversarial networks for chest X-ray
classification with ability of data domain adaptation”, in 2018 IEEE 15th
International Symposium on Biomedical Imaging (ISBI 2018), Apr. 2018,
pp. 1038–1042 (cit. on p. 42).

[63] Q. Liu, L. Yu, L. Luo, Q. Dou, P. A. Heng, and P. A. Heng, “Semi-supervised
Medical Image Classification with Relation-driven Self-ensembling Model”,
IEEE Transactions on Medical Imaging, pp. 1–1, 2020 (cit. on p. 42).

[64] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with Noisy Student
improves ImageNet classification”, Jan. 7, 2020.
arXiv: 1911.04252 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/1911.04252 (visited on 02/14/2020)
(cit. on pp. 42, 43, 98, 116, 121).

[65] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “RandAugment: Practical
automated data augmentation with a reduced search space”, Nov. 13, 2019.
arXiv: 1909.13719 [cs]. [Online]. Available:
http://arxiv.org/abs/1909.13719 (visited on 04/22/2020)
(cit. on pp. 42, 69).

[66] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, p. 30,
(cit. on p. 42).

[67] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger,
“Deep Networks with Stochastic Depth”, in Computer Vision – ECCV 2016,
2016, pp. 646–661 (cit. on p. 42).

[68] P. J. Donnelly and J. W. Sheppard,
“Cross-Dataset Validation of Feature Sets in Musical Instrument Classification”,
in 2015 IEEE International Conference on Data Mining Workshop (ICDMW),
Nov. 2015, pp. 94–101 (cit. on p. 47).

[69] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems”, Mar. 16, 2016.
arXiv: 1603.04467 [cs]. [Online]. Available:
http://arxiv.org/abs/1603.04467 (visited on 05/31/2020)
(cit. on pp. 47, 60).

[70] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. 2009
(cit. on p. 47).

145

https://arxiv.org/abs/1911.04252
http://arxiv.org/abs/1911.04252
https://arxiv.org/abs/1909.13719
http://arxiv.org/abs/1909.13719
https://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467

[71] F. Chollet et al. (2015). Keras,
[Online]. Available: https://github.com/fchollet/keras (cit. on p. 47).

[72] R. Zhu, R. Zhang, and D. Xue, “Lesion detection of endoscopy images based on
convolutional neural network features”, in Proceedings of the 2015 8th
International Congress on Image and Signal Processing (CISP), Oct. 2015,
pp. 372–376 (cit. on p. 48).

[73] Y. Yuan and M. Q.-H. Meng, “Deep learning for polyp recognition in wireless
capsule endoscopy images”,
Medical Physics, vol. 44, no. 4, pp. 1379–1389, Apr. 2017. [Online]. Available:
http://doi.wiley.com/10.1002/mp.12147 (visited on 05/26/2019)
(cit. on pp. 48, 49).

[74] X. Jia and M. Q. Meng, “A deep convolutional neural network for bleeding
detection in Wireless Capsule Endoscopy images”,
in Proceedings of the 2016 38th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Aug. 2016, pp. 639–642
(cit. on p. 49).

[75] I. Z. Yalniz, H. Jégou, K. Chen, M. Paluri, and D. Mahajan, “Billion-scale
semi-supervised learning for image classification”, May 1, 2019.
arXiv: 1905.00546 [cs]. [Online]. Available:
http://arxiv.org/abs/1905.00546 (visited on 06/06/2020)
(cit. on pp. 49, 135).

[76] D. Zhang, H. Maei, X. Wang, and Y.-F. Wang, “Deep Reinforcement Learning
for Visual Object Tracking in Videos”, Jan. 31, 2017.
arXiv: 1701.08936 [cs]. [Online]. Available:
http://arxiv.org/abs/1701.08936 (visited on 05/31/2019) (cit. on p. 50).

[77] O. Ronneberger, P. Fischer, and T. Brox,
“U-Net: Convolutional Networks for Biomedical Image Segmentation”,
in Proceedings of the Medical Image Computing and Computer-Assisted
Intervention, 2015, pp. 234–241 (cit. on pp. 50, 51).

[78] J. Long, E. Shelhamer, and T. Darrell,
“Fully Convolutional Networks for Semantic Segmentation”,
presented at the Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 3431–3440. [Online]. Available:
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/

Long_Fully_Convolutional_Networks_2015_CVPR_paper.html (visited on
06/01/2019) (cit. on p. 50).

[79] M. Turan, Y. Almalioglu, H. Araujo, E. Konukoglu, and M. Sitti, “Deep
EndoVO: A recurrent convolutional neural network (RCNN) based visual
odometry approach for endoscopic capsule robots”,
Neurocomputing, vol. 275, pp. 1861–1870, Jan. 31, 2018. [Online]. Available:

146

https://github.com/fchollet/keras
http://doi.wiley.com/10.1002/mp.12147
https://arxiv.org/abs/1905.00546
http://arxiv.org/abs/1905.00546
https://arxiv.org/abs/1701.08936
http://arxiv.org/abs/1701.08936
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html

http://www.sciencedirect.com/science/article/pii/S092523121731665X

(visited on 05/26/2019) (cit. on pp. 51, 52).

[80] T. Ping-Sing and M. Shah, “Shape from shading using linear approximation”,
Image and Vision Computing, vol. 12, no. 8, pp. 487–498, Oct. 1, 1994.
[Online]. Available:
http://www.sciencedirect.com/science/article/pii/0262885694900027

(visited on 06/01/2019) (cit. on pp. 51, 52).

[81] J. Kim, H. Kim, E. Bell, T. Bath, P. Paul, A. Pham, X. Jiang, K. Zheng, and
L. Ohno-Machado, “Patient Perspectives About Decisions to Share Medical
Data and Biospecimens for Research”,
JAMA Network Open, vol. 2, no. 8, e199550–e199550, Aug. 2, 2019.
[Online]. Available: https:
//jamanetwork.com/journals/jamanetworkopen/fullarticle/2748592

(visited on 04/21/2020) (cit. on p. 56).

[82] (Apr. 27, 2016). EU General Data Protection Regulation,
[Online]. Available: https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:32016R0679 (visited on 07/26/2020)
(cit. on p. 56).

[83] L. Aabakken, A. N. Barkun, P. B. Cotton, E. Fedorov, M. A. Fujino,
E. Ivanova, S.-e. Kudo, K. Kuznetzov, T. de Lange, K. Matsuda, O. Moine,
B. Rembacken, J.-F. Rey, J. Romagnuolo, T. Rösch, M. Sawhney, K. Yao, and
J. D. Waye, “Standardized endoscopic reporting”,
Journal of Gastroenterology and Hepatology, vol. 29, no. 2, pp. 234–240, 2014.
[Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/jgh.12489 (visited on
07/29/2020) (cit. on p. 59).

[84] S. C. Zammit, A. Koulaouzidis, D. S. Sanders, M. E. McAlindon,
E. Rondonotti, D. E. Yung, and R. Sidhu, “Overview of small bowel
angioectasias: Clinical presentation and treatment options”, Expert Review of
Gastroenterology & Hepatology, vol. 12, no. 2, pp. 125–139, 2018.
eprint: https://doi.org/10.1080/17474124.2018.1390429. [Online].
Available: https://doi.org/10.1080/17474124.2018.1390429 (cit. on p. 59).

[85] F. Gomollón, A. Dignass, V. Annese, H. Tilg, G. Van Assche, J. O. Lindsay,
L. Peyrin-Biroulet, G. J. Cullen, M. Daperno, T. Kucharzik, F. Rieder,
S. Almer, A. Armuzzi, M. Harbord, J. Langhorst, M. Sans, Y. Chowers,
G. Fiorino, P. Juillerat, G. J. Mantzaris, F. Rizzello, S. Vavricka, P. Gionchetti,
and o. behalf of ECCO, “3rd european evidence-based consensus on the
diagnosis and management of crohn’s disease 2016: Part 1: Diagnosis and
medical management”,
Journal of Crohn’s and Colitis, vol. 11, no. 1, pp. 3–25, Sep. 2016.
eprint: https://academic.oup.com/ecco-jcc/article-

147

http://www.sciencedirect.com/science/article/pii/S092523121731665X
http://www.sciencedirect.com/science/article/pii/0262885694900027
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2748592
https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2748592
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://onlinelibrary.wiley.com/doi/abs/10.1111/jgh.12489
https://doi.org/10.1080/17474124.2018.1390429
https://doi.org/10.1080/17474124.2018.1390429
https://academic.oup.com/ecco-jcc/article-pdf/11/1/3/26359570/jjw168.pdf
https://academic.oup.com/ecco-jcc/article-pdf/11/1/3/26359570/jjw168.pdf

pdf/11/1/3/26359570/jjw168.pdf. [Online]. Available:
https://doi.org/10.1093/ecco-jcc/jjw168 (cit. on p. 59).

[86] G. Bradski, “The OpenCV library”, Dr. Dobb’s Journal of Software Tools, 2000
(cit. on p. 62).

[87] A. Clark, “Pillow (PIL fork) documentation”, 2015. [Online]. Available: https:
//buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf

(cit. on p. 62).

[88] P. W. Wong and C. Herley, “Area based interpolation for image scaling”,
U.S. Patent 5889895A, Mar. 30, 1999.
[Online]. Available: https://patents.google.com/patent/US5889895A/en
(visited on 05/19/2020) (cit. on p. 62).

[89] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le,
“AutoAugment: Learning Augmentation Strategies From Data”,
presented at the Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 113–123. [Online]. Available: http:
//openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_

Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html

(visited on 05/21/2020) (cit. on pp. 69, 75).

[90] D. Masters and C. Luschi, “Revisiting Small Batch Training for Deep Neural
Networks”, Apr. 20, 2018. arXiv: 1804.07612 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/1804.07612 (visited on 05/22/2020)
(cit. on pp. 70, 75).

[91] Y. Bengio, “Practical recommendations for gradient-based training of deep
architectures”, Sep. 16, 2012. arXiv: 1206.5533 [cs]. [Online]. Available:
http://arxiv.org/abs/1206.5533 (visited on 05/22/2020) (cit. on p. 70).

[92] D. R. Wilson and T. R. Martinez, “The general inefficiency of batch training for
gradient descent learning”,
Neural Networks, vol. 16, no. 10, pp. 1429–1451, Dec. 1, 2003.
[Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608003001382

(visited on 05/22/2020) (cit. on p. 70).

[93] Y. Zhang, H. Qu, C. Chen, and D. Metaxas,
“Taming the noisy gradient: Train deep neural networks with small batch sizes”,
in Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19, Jul. 2019, pp. 4348–4354.
[Online]. Available: https://doi.org/10.24963/ijcai.2019/604
(cit. on p. 75).

148

https://academic.oup.com/ecco-jcc/article-pdf/11/1/3/26359570/jjw168.pdf
https://academic.oup.com/ecco-jcc/article-pdf/11/1/3/26359570/jjw168.pdf
https://doi.org/10.1093/ecco-jcc/jjw168
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://patents.google.com/patent/US5889895A/en
http://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Cubuk_AutoAugment_Learning_Augmentation_Strategies_From_Data_CVPR_2019_paper.html
https://arxiv.org/abs/1804.07612
http://arxiv.org/abs/1804.07612
https://arxiv.org/abs/1206.5533
http://arxiv.org/abs/1206.5533
http://www.sciencedirect.com/science/article/pii/S0893608003001382
https://doi.org/10.24963/ijcai.2019/604

[94] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python”,
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011
(cit. on p. 91).

[95] J. Davis and M. Goadrich,
“The relationship between Precision-Recall and ROC curves”,
in Proceedings of the 23rd International Conference on Machine Learning,
Jun. 25, 2006, pp. 233–240. [Online]. Available:
https://doi.org/10.1145/1143844.1143874 (visited on 07/20/2020)
(cit. on p. 92).

[96] V. Cheplygina, M. de Bruijne, and J. P. W. Pluim, “Not-so-supervised: A
survey of semi-supervised, multi-instance, and transfer learning in medical
image analysis”, Medical Image Analysis, vol. 54, pp. 280–296, May 1, 2019.
[Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1361841518307588

(visited on 07/30/2020) (cit. on p. 93).

[97] I. Misra and L. van der Maaten,
“Self-Supervised Learning of Pretext-Invariant Representations”,
presented at the Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2020, pp. 6707–6717. [Online]. Available:
https://openaccess.thecvf.com/content_CVPR_2020/html/Misra_Self-

Supervised_Learning_of_Pretext-

Invariant_Representations_CVPR_2020_paper.html (visited on 07/30/2020)
(cit. on p. 93).

[98] O. J. Hénaff, A. Srinivas, J. De Fauw, A. Razavi, C. Doersch, S. M. A. Eslami,
and A. van den Oord, “Data-Efficient Image Recognition with Contrastive
Predictive Coding”, Jul. 1, 2020. arXiv: 1905.09272 [cs]. [Online]. Available:
http://arxiv.org/abs/1905.09272 (visited on 07/30/2020) (cit. on p. 93).

[99] A. Karpathy. (Apr. 25, 2019). A Recipe for Training Neural Networks, [Online].
Available: http://karpathy.github.io/2019/04/25/recipe/#2-set-up-
the-end-to-end-trainingevaluation-skeleton--get-dumb-baselines

(visited on 07/31/2020) (cit. on p. 101).

[100] M. Riegler, C. Gurrin, D. Johansen, H. Johansen, P. Halvorsen, M. Lux,
C. Gridwodz, C. Spampinato, T. de Lange, S. L. Eskeland, K. Pogorelov,
W. Tavanapong, and P. T. Schmidt, “Multimedia and Medicine: Teammates for
Better Disease Detection and Survival”,
in Proceedings of the 2016 ACM on Multimedia Conference - MM ’16, 2016,
pp. 968–977. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2964284.2976760 (visited on
08/03/2020) (cit. on p. 131).

149

https://doi.org/10.1145/1143844.1143874
http://www.sciencedirect.com/science/article/pii/S1361841518307588
https://openaccess.thecvf.com/content_CVPR_2020/html/Misra_Self-Supervised_Learning_of_Pretext-Invariant_Representations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Misra_Self-Supervised_Learning_of_Pretext-Invariant_Representations_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Misra_Self-Supervised_Learning_of_Pretext-Invariant_Representations_CVPR_2020_paper.html
https://arxiv.org/abs/1905.09272
http://arxiv.org/abs/1905.09272
http://karpathy.github.io/2019/04/25/recipe/#2-set-up-the-end-to-end-trainingevaluation-skeleton--get-dumb-baselines
http://karpathy.github.io/2019/04/25/recipe/#2-set-up-the-end-to-end-trainingevaluation-skeleton--get-dumb-baselines
http://dl.acm.org/citation.cfm?doid=2964284.2976760

[101] M. Kirkerød, R. J. Borgli, V. Thambawita, S. Hicks, M. A. Riegler, and
P. Halvorsen, “Unsupervised preprocessing to improve generalisation for medical
image classification”, in 2019 13th International Symposium on Medical
Information and Communication Technology (ISMICT), May 2019, pp. 1–6
(cit. on p. 134).

150

	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Problem statement
	Scope and limitations
	Research methods
	Theory
	Abstraction
	Design

	Main Contributions
	Thesis Outline

	Background
	Medical scenario
	The digestive system
	Colorectal Cancer and Screening
	Traditional Endoscopy
	Wireless Capsule Endoscopy
	Remote diagnostic

	Datasets
	ImageNet
	Available endoscopy datasets
	Kvasir-V2
	Hyper-Kvasir
	Augere Medical AS
	Class imbalance in dataset

	Deep learning
	Machine learning types
	Convolutional Neural Network
	Gradient descent optimization algorithms
	ResNet
	EfficientNet
	Self learning with noisy student

	Model evaluation
	Dataset splitting
	Performance metrics
	Cross validation

	TensorFlow Framework
	tf.keras
	tf.data

	Related work
	Object tracking
	Segmentation
	Mapping

	Summary

	Methodology
	Data collection
	Privacy, Legal and Ethics Issues
	Kvasir-Capsule

	Data pipeline
	Splitting and resize images
	Loading images into the pipeline
	Optimize performance
	Shuffle the dataset
	Repeat
	Data augmentation
	Batching
	Handling dataset class imbalance

	Training and parameter tuning
	Batch size
	Weight initialization
	Learning rate

	Teacher-student architecture
	Python implementation of system
	Generating new pseudo labels
	Feature drifting
	Evaluation methods and metrics

	Summary

	Experiments and results
	Experiment management
	Keeping track of experiments
	Evaluation method and metrics
	Hardware details
	Network architecture
	Network parameters
	Labeled and unlabeled dataset

	Optimizing the teacher model
	Benefits of pre-trained weights
	Re-sampling versus weighting classes
	Effect of varying image resolution
	Neural network dimensions
	Models ability to learn class features

	Teacher-student model on Hyper-Kvasir
	Evaluation metrics
	Model complexity: iterative training
	Noising the student

	Teacher-student model on Kvasir-Capsule
	Importance of good dataset split
	Unlabeled dataset
	Evaluate Kvasir-Capsule results
	Noisy student experiments

	Summary

	Conclusions and Further Work
	Summary
	Contributions
	Further work

	Bibliography

