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Abstract

Working with modern architectures for high performance applications is increasingly more diffi-

cult for programmers as the complexity of  both the system architectures and software continue to

increase. The level of  hand tuning and native adaptations required to achieve high performance

comes at the cost of  limiting the portability of  the software. For instance, we show that a compute

intensive DCT algorithm performs better on graphic processors than the best algorithm for x86.

In particular, limited portability is true for cyclic multimedia workloads, a set of  programs that

run continuously with strict requirements for high performance and low latency. An example of

a typical multimedia workload is a pipeline of  many small image processing algorithms working

in tandem to complete a particular task. The input can be videos from one or more live cam-

eras, and the output is a set of  video frames with elements from several of  the source videos, for

example as stitched panorama frames or 3D warped video. Such a setup runs continuously and

potentially needs to adapt to various degrees of  changes in the setup without interruptions or

downtime.

To reach the performance goal required by multimedia pipelines, modern, heterogeneous

architectures are considered instead of  the traditional symmetric multi-processing architectures.

We also investigate variations between recent microarchitectures of  symmetric processors to iden-

tify differences that a low-level scheduler must take into account. Further, since multimedia

workloads often need to adapt to various external conditions, e.g., adding another participant

to a video conference, we also investigate elastic and portable processing of  multimedia work-

loads. To do this, we propose a framework design and language, which we call P2G. In the age

of  Big Data, this idea differs from the typical frameworks used for distributed processing, such as

MapReduce and Dryad, in that it is designed for continuous operation instead of  batch process-

ing of  large workloads. We emphasize heterogeneous support and expose parallel opportunities

in workloads in a way that is easy to target since it is similar to sequential execution with mul-

tidimensional arrays. The framework ideas are implemented as a prototype and released as an

open source platform for further experimentation and evaluation.
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Chapter 1

Introduction

1.1 Background

Multimedia processing is a highly relevant topic with regard to today's massive production and

consumption of  multimedia content. For example, Youtube reported1 72 hours of  videos up-

loaded every minute in 2013, and over 4 billion hours of  video watched every month. Similarly

in the mobile domain, 51% of  the traffic was mobile video in 2012 [2]. In order to utilize the

content in a useful manner, it must be processed for the intended use. One such example can be

video broadcasted to millions of  users on streaming sites such as Youtube. Raw video has very

large storage requirement, and is as such very inconvenient to transfer to end users. Instead,

video compression algorithms are used to reduce the storage requirements while preserving most

of  the content's fidelity. Other examples of  multimedia processing algorithms commonly used

on video are color grading, feature extraction, noise reduction, or just about any other imagin-

able operation that can be performed on a video clip. Multimedia processing is of  course not

limited to video; any content such as sound, 3D or sensory data is applicable. There are several

definitions for multimedia with answers depending on who you ask. Although there is no strict

definition, a reasonable explanation of  the term was defined by Steinmetz and Nahrstedt [3]:

''A multimedia system is characterized by computer-controlled, integrated production, manipulation, presen-

tation, storage and communication of  independent information, which is encoded at least through a continuous

(time-dependent) and a discrete (time-independent) medium.''

It is our goal to provide support for continuous and complex multimedia pipelines, allow-

1http://www.youtube.com/yt/press/statistics.html, retrieved April 2013.
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4 Chapter 1. Introduction

ing combinations of  individual algorithms to work together in tandem in a real time system,

such as free view rendering, which enables virtual cameras to create a synthetic view in-between

real shootage and requires large computational resources. Complex pipelines have many inter-

dependencies between individual components, and exploiting parallel opportunities is far from

trivial.

Processing multimedia by itself  is not a new topic, evident by the founding of  the ACM Mul-

timedia conference back in 1993 by the multimedia science community, which is still the leading

conference in the field. Digital multimedia processing is even older than this, with notable main-

stream use of  digital special effects in film and TV such as Tron (1982) and The Abyss (1988).

Even long before ACM Multimedia, the science community established the SIGGRAPH confer-

ence in 1974, which still is the premier conference for publishing research in computer graphics.

Hence, a lot of  research has been done in the field of  multimedia processing to this date. To build

upon and extend the state of  the art in this thesis, we focus on how the specific characteristics

of  multimedia workloads applies to modern computer architectures and their implementations.

In particular, we look at a set of  multimedia workloads that are continuous, iterative, time de-

pendent and highly data parallel. This is not a catch-all, but encompasses common problems

that require significant computational resources, such as video encoding, feature extraction, 3D

reconstruction and many more multimedia problems.

1.1.1 Modern architectures

Computer architectures are changing rapidly, with market leaders launching new processors

every year. The basic structure has been stable for a very long time, but seen from the consumer

side, a significant shift could be observed in the mid 2000s; consumer computers came fitted

with dual core processors such as the Intel Pentium D [4], something that was previously only

available on high end systems and servers before that. For example, Intel provided the Xeon

line of  products that allowed several identical processors to be connected by a bus and work

together as a multicore system. After the Pentium D, chip multiprocessors became a reasonably

priced commodity, that is, several cores on a single chip and has since then been standard in the

consumer marked. The traditional workloads for multicore machines had been compute bound

programs, and with availability of  consumer grade multicore, all programs had to be targeted

for these type of  processors. At the same time, graphics processor units (GPUs) became fully

programmable, previously mainly used for rendering game graphics, and could now be used

for general purpose computing. With Nvidia launching CUDA [5] in 2007, a revolution in low



1.1. Background 5

cost, high performance computing was apparent. The graphics processors were also pioneering

high performance computing, not by being first, but by being available at moderate prices to the

masses. The GPU architecture differs from symmetric processors such as the sole Pentium D

in that processing elements have different capabilities than the main processor, and the whole

system can be seen as a heterogeneous system. Similarly, the Playstation 3 was launched in 2006

and is a great example of  what can be achieved with a heterogeneous architecture as we will

see in later chapters. Even though the consumers first saw these machines in the mid 2000s,

heterogeneous architectures were available long before that in various consumer and specialized

products. One example is the specialized network processor IXP1200 [6] by Intel, which was

launched in 1999, and provided high performance and flexible hardware for network processing

in contrast to the traditional approach of  implementing network functions in hardware. The

flexibility allowed rapid prototyping of  network equipment, otherwise impossible to implement

in software, but also a relatively low cost platform for deploying if  large product volumes were

unfeasible.

Obviously, there are significant challenges in the switch from singlecore to multicore, first

of  all that legacy programs written without a parallel design would get very little benefit from

it at all, other than what the operating system can provide. Synchronization issues and parallel

algorithms became intrinsic parts of  a program's design, which required restructuring or a com-

plete rewrite of  existing programs. Further, handling several types of  memory and caches puts

an additional burden on the programmers writing programs on these architectures. It may be

argued that the switch from single to multi core shifted the burden of  scaling the system from

processor designers to software writers, although the reason for the shift was rather technology

driven. Processor designers were unable to increase the clock frequency of  a single core further,

and to keep consumers satisfied and CPU vendor's current with Moore's law, they put multiple

independent cores on a single chip die. Some architectures such as GPUs have even exceeded

Moore's predictions, putting far more transistors on a chip die than traditional x86 processors.

Our experience with using these architectures for multimedia processing is presented in chap-

ter 2.

1.1.2 Multimedia workloads

Multimedia workloads is a broad term, and to limit the scope of  this thesis, we look at work-

loads that are iterative, time sensitive and revolve around video processing. Video processing

is typically a very data intensive operation, requiring calculations for each individual pixel in a
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video frame. One common operation is video encoding, reducing storage and bandwidth re-

quirements of  video in exchange for decoding complexity. The most prominent video codec

standard today is H.264 [7], defined by ISO and the International Telecommunication Union

(ITU), and used for video displayed on everything from mobile phones to traditional linear TV

broadcasting. Being so popular also means that much research has been done to optimize its

performance, and in the setting of  live video, dedicated hardware encoders are commonly used.

Dedicated encoding hardware solves the encoding problem in production settings in a conve-

nient way, with strict guarantees of  meeting deadlines and with low power requirements. Similar

hardware implementations exist for many multimedia processing workloads used in a production

setting. The main limitation of  hardware implementations is the lack of  flexibility, prohibiting

changes both in workloads and input/output data. In production environments, this static na-

ture may be acceptable, and the advantages of  using tailored hardware is huge, including low

power consumption, high performance, guaranteed real time capabilities and so on. Designing

and fabricating a hardware chip is an expensive and time demanding process and is typically

only done for standardized components such as video codecs and other commonly used filters.

Multimedia workloads developed in software retain flexibility, allowing easy modifications, up-

dates and replacements in comparison to hardware implementations, and in this work, we will

focus on software implementations of  multimedia workloads, running on modern architectures.

In particular, this thesis targets workloads that are data intensive and applicable to video

processing. When we discuss multimedia workloads in this thesis, we mean pipelines of  interde-

pendent filters connected in such a way that in tandem they solve a particular multimedia task

or problem. As an example of  a multimedia workloads, consider the image stitching pipeline

in OpenCV [8] that combines several images into one large panorama, emulating a wide an-

gel shot covering all of  the input images. The pipeline has many distinct multimedia operations

connected with complex dependencies and comprises a series of  filters for estimating parameters

using invariant features, optimizing and correcting the inputs images, and finally compositing

the results into a panorama image. An overview of  this pipeline can be seen in figure 1.1. Im-

plementing the pipeline to execute sequentially is straight forward and the challenge arises when

parallel execution is desired. Because of  the dependencies, some filters must be performed before

others, and ideally, one would want to start the next filter operation as soon as all dependencies

are satisfied from previous operations, i.e., before a filter has been run to completion on all data.

Another problem is the scalability of  input data, that is, adding more input images or higher

resolution yields more computational requirements resulting in more work to be performed by
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the filters. Further, complex filters with non-linear computation time may skew the proportional

amount of  work that will have to be performed in one filter compared to the rest.

Figure 1.1: Image stitching pipeline example available in OpenCV.

1.1.3 Elastic multimedia processing

Elasticity in the realm of  cloud computing refers to dynamic scalability, not to be confused with

elasticity in the networking field. Buyya et. al. [9] defines elastic computing as a system able

to provision additional resources when an application load increases, and release them when

the load decreases. This is a very desirable feature for processing frameworks and indeed for

multimedia processing.

As a motivation for our work, we looked at a specific multimedia processing scenario and

how to best implement this using existing approaches. The basic idea is one or more live video

feeds providing a video source, followed by a black box doing a set of  video processing filters,

and finally a sink providing the output to the end user. In principle, such a system is straight-

forward to implement with each task or block of  data neatly divided among the available CPU

cores with a static schedule processing a continuous flow of  multimedia content. The baseline is
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appropriate for a fixed system, but we can imagine several scenarios where such a setup would

require significant changes or even a full rewrite of  the system to implement the changes:

• Different inputs, e.g., higher resolution video or more simultaneous input streams could

result in exhausting the resources of  a static system. This is in contrast to an elastic system

that can adapt to the requirements.

• Varying resource availability caused by resource sharing in the OS or by virtualization.

• Deadline misses caused by too high processing requirements at times, in a scenario were

the complexity can be tuned (such as in a video encoder).

• If  the problem is too resource intensive to be processed on a single machine, several nodes

can contribute in a distributed system.

Designing and implementing an elastic system that can handle varying input data, hetero-

geneous computational resources and even varying processing goals is a much more challenging

problem than a fixed processing pipeline. The demand for elasticity may not be obvious until the

demand for change arises, e.g., by requiring more input streams than the system was designed

for, or adding a new filter to the pipeline that results in a system not scaling within the acceptable

parameters. In the best case, better hardware can be added to solve the new problem, and in

the worst, a complete rewrite or port to a different platform has to be performed. Depending

on the requirements, providing dynamic scalability to the system may help with planning for

unforeseen usage. Further, elasticity allows the available resources to change during runtime,

enabling resource sharing and virtualization.

The term elastic computing is often used in combination with cloud computing, although

they are not strictly synonymous. Elasticity as such is a feature of  cloud computing, with the term

coined by Amazon as part of  their Elastic Cloud Computing (EC2) platform [10], providing dy-

namic scalability and utilization of  resources at hand. Cloud computing is used in many contexts

including internet clouds such as Amazon's EC2 or in private clouds, for instance Hadoop [11]

clusters. Although elasticity is a basic requirement for cloud computing, we are not focusing on

cloud computing in this thesis.

Many systems exist today for elastic execution of  workloads, with the MapReduce paradigm [12]

being most prominent, but also several others that we will discuss later in this thesis. What we

find in common for most of  them is that they are designed for batch processing instead of  contin-

uous and iterative operations. Even though systems for continuous operations that are suitable
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for multimedia workloads exist, e.g., StreamIT [13], they are not designed to provide solutions

for the scenarios presented above. This does not imply that they cannot be used for this type of

work, but since they are not intrinsically designed for elastic execution of  multimedia workloads,

the programmer basically has to shoehorn the workloads into fitting their model, which leads to

problems both in flexibility and performance. We will go further into this topic when we look at

elastic execution in chapter 3.

1.2 Problem Statement

Modern multicore processors are great for processing multimedia workloads. However, they

require programs that are specifically optimized for the particular architecture. This inhibits

portability and scalability by requiring large refactoring jobs or even complete rewrites when

the programs are highly optimized and written natively for them. In contrast to this, there is

elastic execution design for writing once, running everywhere. Naively, this can be done in a

virtualized or interpreted language, but this does not provide high performance and efficient ex-

ecution of  the workloads. Many systems for elastic execution exist, but they are not tailored for

multimedia workloads, and most of  them are designed for batch (single iteration, non realtime)

processing. Further, fluctuating resources and varying workloads provide a constantly changing

working environment, hence a static design is insufficient. To explore this area of  computing, we

have worked under the following problem statement:

Can a pipeline of  cyclic multimedia workloads be executed by an elastic frame-

work on modern microarchitectures in a portable and efficient manner?

The problem stated in this thesis encompasses how to support multimedia processing on

modern architectures from a system's perspective. In particular, our focus is on elastic computing

and how to take advantage of  computational resources in a dynamic manner adapting to the

system architecture, resource availability and application requirements. To approach this, we

have split the problem into three sub-problems, presented in chapters 2 and 3:

1. Identify key architectual considerations on modern microarchitectures required to process

cyclic multimedia workloads efficiently;

2. Based on these key observations, design a programming model and framework to expose
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parallel opportunities in the workloads for efficient processing, providing elastic execution

capabilities;

3. Implement a prototype and evaluate the prototype's feasibility to solve the problem and

its achieved performance.

1.3 Limitations

To limit the scope of  this thesis to a feasible project within the frame of  a thesis, we have focused

this work on cyclic (or continuous) multimedia workloads that are data intensive and have large

parallel opportunities; even though scheduling is an important aspect of  efficient execution, we

have not considered scheduling strategies in the framework presented in later chapters and left

this as further work. Nor have we had the chance to pursue distributed execution, which falls

naturally within this scope. Since both are important for elastic execution, we have designed

our prototypes and experimental frameworks with these aspects in mind, allowing future work

to expand knowledge within these areas.

1.4 Research Method

The discipline of  computing, computer science is divided into three major paradigms as defined

by the ACM Education Board [14] in 1989. Each of  them have roots in different areas of  science,

although all can be applied to computing. The board states that all paradigms are so intricately

intertwined that it is irrational to say that any one is fundamental in the discipline. The three

paradigms or approaches to computer science are:

• The theory paradigm is rooted in mathematics and comprises defining objects of  study,

hypothesizing relationships among them, determining whether said relationships are true

and interpreting the results. The paradigm is concerned with the ability to describe and

prove relationships among objects.

• The abstraction paradigm is rooted in experimental research and consists of  four stages. In

this paradigm, the scientist forms a hypothesis, constructs a model and makes a prediction,

before designing an experiment and collects data. The paradigm is concerned with the

ability to use those relationships to make predictions that can be compared with the world.
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• The design paradigm is rooted in engineering and involves building a system or device to

solve a given problem. The scientist states requirements and specifications, followed by

design and implementation of  said system. Finally, the system is tested and the steps can

be iterated if  the tests reveal that the system does not meet the requirements. The paradigm

is concerned with the ability to implement specific instances of  the relationships and use

them to perform useful actions.

The ACM board further states that applied mathematicians, computational scientists and

design engineers generally do not have interchangeable skills. All three paradigms are used in

the discipline of  multimedia research, depending on the problem at hand and what one expects

to achieve.

For investigating how to perform efficient multimedia processing on modern architectures,

we first consider the theory paradigm for our research. As the theory paradigm is rooted in math-

ematics, it requires very precise definition and modeling to correctly represent complex depen-

dencies found both in the software of  the multimedia workloads and execution system and the

computer architecture itself. The paradigm is a better fit for isolated problems where objects of

study are limited and all objects are understood. Since we are dealing with what are essentially

black boxes made by CPU vendors, and the complexity of  these boxes is very high, we reject this

paradigm for our work. The second paradigm, abstraction, is heavily used in our field, typically

in combination with simulators. By modelling both the hardware architecture and software in

a simulation, scientists can accurately capture the behaviour and inspect states otherwise not

available in a prototype implementation. The downside with simulators is that they are only as

good as the model used, and in our particular case, there are many black boxes (e.g., hardware),

which not only are very hard to model, but also undocumented and thus impossible to model

accurately. As such, the hardware model has to be a simplification of  the real system behaviour,

and the trade-offs done in the model may or may not be sufficient to validate the hypothesis. The

problem is that one only validates the hypothesis for the model, and not the full system. Hence,

it is impossible to know if  the simulated behaviour is congruent with the real system without ex-

periments. This does not imply that simulations are useless, but rather that they should be used

in combination with prototype implementations when the model is a simplification of  the real

world. Finally, we consider the design paradigm, where a prototype is built and experimental data

are collected from real working systems. This paradigm allows the scientist to specify require-

ments and build prototypes based on them. The prototype is thus evaluated with experiments,

and based on them, the prototype can be updated with several iterations. This can be done in
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combination with simulations to verify the results, or as stand alone experiments. The downside

with the design paradigm is the significant engineering effort required to build working prototypes

that itself  is not scientific work, but still essential to produce final results.

In the problem statement, we said that we investigate modern microarchitectures, and even

though some documentation on them exists, they are still black boxes, created by vendors in

their labs with undocumented as well as unexpected behaviour hidden both in silicon and in

microcode. The undisclosed nature of  this design inhibits detailed models to be made in addi-

tion to their highly complex structure, and a model based simulation would require a high level

of  simplification. Simplifications do not imply that the model is wrong, but deciding if  the sim-

ulation results match reality is up for interpretation. Consequently, we decided to implement

real working prototypes using the design paradigm for the work in this thesis. It requires more

engineering work, but is not limited by inaccurate or simplified models as basis for simulations

of  the systems.

1.5 Main Contributions

The research question posed in section 1.2, states a challenge of  efficient multimedia processing

on modern architectures. We have addressed this problem on several levels, from low level ar-

chitecture specific optimizations to a high level programming model support. The contributions

of  this thesis have been presented at a number of  peer reviewed conference proceedings listed

in full in chapter 4. In addition to the contributions listed below, we have written a number of

other conference and journal papers related to multimedia processing that are not included here

to limit the scope of  this thesis. A summary of  the included contributions follows:

• The Intel IXP architecture was used as a platform for prototype experiments involving

video protocol translation and provided architectual and network protocol insights for a

video streaming workload. The prototype allowed efficient processing on modern hard-

ware, validating a network protocol optimization while benefiting from heterogeneous pro-

cessing using a programmable network processor.

• Scalability and architectual considerations for video encoding were evaluated and com-

pared with the same problems both on IBM's Cell Broadband Engine and NVIDIA's

GPUs. Intel's x86 was used as baseline and the suitability of  different algorithms in addi-

tion to specific memory considerations were quantified and evaluated. Among the lessons
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learned, we saw how algorithms performing better on one architecture were completely

outperformed on others, emphasizing the importance of  allowing different algorithms to

be used interchangeably and dynamically to support portable multimedia pipelines to per-

form efficiently in concert.

• Symmetric multicore processors from different vendors allow a convenient and portable

programming model, but although the interface between implementations is identical,

we show that the scheduling order of  threads and data access patterns severely impacts

performance and the best performing low level schedules depend heavily on the data set,

affinity and micro architecture used. Hence, the best schedule for Intel's CPUs may not

be the best performing schedule for AMD's latest processors.

• Using the knowledge of  structuring and optimizing multimedia workloads for heteroge-

neous systems, we propose P2G, comprising a language and framework that exposes par-

allel opportunities to a runtime system and allows elastic execution of  cyclic multimedia

workloads in an convenient manner. The runtime system allows several levels of  optimiza-

tions to be performed at compile time, runtime or just-in-time.

• A prototype of  the P2G framework is implemented together with several multimedia work-

loads. Finally, the P2G framework is evaluated with micro-benchmark experiments, demon-

strating that the framework is useful for multimedia workloads.

Even though there are many opportunities for further work in several of  these areas, we aim

to show the reader some of  the considerations that are necessary and opportunities available to

process cyclic multimedia workloads on modern multicore architectures in an efficient manner.

The research area, as defined by the problem statement, is very wide and a complete coverage

within a thesis would be impossible. Still, we think our findings ranging from low level issues and

operating system support to high level programming model constitute a significant contribution

to the field and state of  the art.

1.6 Outline

The rest of  the thesis is organized in two parts. Part I gives an introduction to the research papers

and puts them into context, while Part II includes the papers in full. The first part is organized

as follows: In chapter 2, we consider three case studies of  using multimedia workloads on mod-

ern architectures, and draw conclusions on how the workloads have to be structured. We also
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discuss low-level scheduling implications imperative to efficient processing on some modern ar-

chitectures. Further, in chapter 3, we use the knowledge gained to design a parallel processing

framework (P2G), comprising a high level model and runtime that supports processing of  multi-

media workloads on heterogeneous systems. We provide a set of  multimedia workloads written

for the P2G language and present a prototype implementation, covering a subset of  the features

of  the P2G system. The performance is evaluated in a set of  benchmarks and discussed in detail.

This is followed by a overview of  the research papers included in the thesis in chapter 4. Finally,

a conclusion to the thesis is given in chapter 5.



Chapter 2

Architectural considerations

In this chapter, we look at what architecture differences to consider when running multimedia

workloads on modern multiprocessors. We classify and emphasize differences between three

groups of  architectures, and present a case study on using them for multimedia processing. Since

the architectures differ significantly, we have used these case studies as motivation for how to

design a language and runtime in later chapters for portable and elastic multimedia processing

on heterogeneous architectures.

The main differences between the various architectures presented are the amount of  com-

putational resources (ALUs, FPUs, etc.) and memory layout (memory types, caches, latency and

bandwidth). Multimedia workloads are typically heavily data parallel with relatively few inter-

dependencies between small pieces of  data, making heterogeneous architectures with many cores

a perfect match. In their memory layout, we see large variations between processors presenting

both challenges and opportunities for our workloads. In this regard, we have divided common

architectures in three classes based on their memory characteristics and present prominent ex-

amples together with case studies about using this particular types of  architecture for multimedia

workloads.

2.1 Symmetric shared memory architectures

2.1.1 Overview

The most common multicore processor architecture today is symmetric shared memory (SMP).

Examples include Intel x86, ARM Cortex and IBM PowerPC, each with many variations and

manifacturers. With SMPs, all cores are equal (in theory) and has direct access any piece of  data,

15
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regardless if  it resides in system memory or another core's cache. SMPs are easy to program as

most of  the complexity is buried in hardware. An SMP architecture enables any piece of  code

to run on any core, but code and data placement has performance implications, as we will show

in section 2.1.2.

Even though the cores are supposed to be identical, in modern implementations with many

cores on a single package, some cores may share resources or have varying degree of  connectivity

to shared resources such as system memory. For example, the system memory can be segmented

in such a way that only part of  the memory is directly connected to each core, and access to

other parts of  the system memory requires traversal via other cores by a network of  interconnects.

Another example is the AMD Bulldozer architecture where two cores are packaged in a single

module. Two modules share a single floating point unit and are connected by a shared L2 cache.

Depending on the data flow and computational requirements of  the workloads, it is reasonable

to assume that even though the architecture is symmetrical, placement and partitioning of  code

and data can have significant performance implications.

2.1.2 Case study: Cyclic multimedia workloads on x86

There is an ever-growing demand for multimedia processing resources, and the trend is to move

large parallel and distributed computations to huge data centers or cloud computing, which

typically comprise a large number of  commodity x86 machines. As an example, Internet users

uploaded one hour of  video to YouTube every second in January 2012 [15] and each of  these is

encoded using several filters. The filters are arranged as vertices in dependency graphs, where

each filter implements a particular algorithm representing one stage of  a processing pipeline. In

this section, we focus on utilizing available processing resources in the best possible manner for

time-dependent cyclic workloads. This kind of  workload is typical for multimedia processing,

where large amounts of  data are processed through various filters organized in a data-intensive

processing pipeline (or graph).

Several different architectures exist and as we will see in later sections, require very differ-

ent architectural adaptations to fully utilize them for multimedia processing. Now, with the

prevalance of  many-core x86 processors, one may assume that as long as your program is opti-

mized for a particular architecture, it will also perform well on similar microarchitectures (e.g.,

other vendors or generations). In this section we test this assumption for some cyclic multimedia

workloads. For an automatic workload scheduler to be able to get the best performance, it has

to take local knowledge into account. We have therefore experimented with cyclic workloads
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on some prevalent multicore microarchitectures, and structured the execution of  them using dif-

ferent configurations to see how it affects performance. The results from this work were first

presented in an article at IEEE SRMPDS 2012 [16].

Background

Performance implications for scheduling decisions on various microarchitectures have been stud-

ied for a long time. Moreover, since the architectures are constantly being revised, scheduling

decisions that were preferred in the past can harm performance on later generations or com-

peting microarchitectures. We look at implications for four current microarchitectures and how

the order of  execution affects the performance. Of  recent work on x86, Kazempour et al. [17]

looked at performance implications for cache affinity on Clowertown generation processors. It

differs from the latest microarchitectures by having only two layers of  cache and only the 32 KB

L1 D-cache is private to the cores on a chip multiprocessor (CMP). In their results, affinity had no

effect on performance on a single chip since reloading L1 is cheap. When using multiple CMPs,

on the other hand, they found significant differences meriting affinity awareness. With the latest

generation CMPs having significantly larger private caches (e.g., 256 KB on Intel Sandy Bridge,

2 MB on AMD Bulldozer), we can expect different behavior than on Clowertown. In terms of

schedulers that take advantage of  cache affinity, several improvements have been proposed to

the Work Stealing model. Acar et al. [18] have shown that the randomized stealing of  tasks is

cache unfriendly and suggest a model that prefers stealing tasks where the worker thread has

affinity with that task.

In this case-study, we evaluate how a processing pipeline of  real-world multimedia filters runs

on state-of-the-art processors. We expected performance differences between different architec-

tures, but were surprised to find large differences between microarchitectures even within the

same family of  processors (x86) making it is hard to make scheduling decisions for efficient exe-

cution. For example, our experiments show that looking into cache usage and task dependencies

can yield large performance gains. There are also significant differences in the configuration

of  the processing stages, e.g., when changing the amount of  rotation in an image, giving com-

pletely different resource requirements. Based on these observations, it is clear that the low-level

scheduling should not only depend on the processing pipeline with the dependencies between

tasks, but also the specific micro-architecture and the size of  the caches. We discuss why schedul-

ing approaches such as standard work stealing models do not result in an optimal performance,

and we try to give some insights that a future scheduler should follow.
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Design and Implementation

Inspired by prevalent execution systems such as StreamIT [13] and Cilk [19], we look at ways

to execute data-intensive streaming media workloads better and examine how the execution or-

der affects performance. We also investigate how these behave on different processors. Because

we are processing continuous data streams, we are not able to exploit task parallelism, e.g., by

processing independent frames of  a video in parallel; and therefore seek to parallelize within the

data domain. A scenario with embarrassingly parallel workloads, i.e., where every data element

can be processed independently and without synchronization, is video stream processing. We

believe that processing a continuous flow of  video frames is a reasonable example for several em-

barrassingly parallel data bound workloads. In this work, we study two approaches for executing

workloads; they differ by what order the data is accessed to induce effects in cache behaviour,

and as a result the system's performance.

Our sequential approach is a straight-forward execution structure where a number of

filters are processed sequentially (in a pipeline), each frame is divided spatially and processed

independently by one or more threads. In each pipeline stage, the worker threads are created,

started, and eventually joined when finished. This would be the natural way of  structuring the

execution of  a multithreaded media pipeline in a standalone application. Such processing pattern

has natural barriers between each stage of  the pipeline. For a execution system such as StreamIT,

Cilk, Multicore Haskell [20], Threading Building Blocks [21] and others that use a work stealing

model [22], the pattern of  execution is similar to the sequential approach, but this depends

very much on how work units are assigned to worker threads, the workloads that are running

simultaneously and scheduling order. Nevertheless, sequential execution is the baseline of  our

evaluation since it processes each filter in the pipeline in a natural order.

As an alternative approach, we propose using backward dependencies (BD) to execute

workloads. This approach only considers the last stage of  the pipeline for a spatial division among

threads and such avoids the barriers between each pipeline stage. Furthermore, for each pixel in

the output frame, the filter backtracks dependencies and acquires the necessary pixel(s) from the

previous filters. This is done recursively and does not require intermediate pixels to be stored to

memory. Figure 2.1 illustrates dependencies between three frames connected by two filters. The

pixels in frame 2 are generated when needed by filter B using filter A. The BD approach has the

advantage of  only computing the pixels that are needed by subsequent filters. The drawback,

however, is that intermediate data must be re-computed if  they are accessed multiple times be-

cause intermediate results are not stored. These re-computations can be mitigated by using the
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Figure 2.1: Backward dependencies (BD) example for two filters processing frames in a pipeline.
The arrows indicate what pixels are required from the previous frame to generate the current
pixel. Only one pixel's dependencies per frame are illustrated, other pixels have similar depen-
dencies.

intermediate frames as buffer caches between filters, although the overhead of  managing and

checking this buffer cache can be large, which we see later in this section.

The backward route for the BD access pattern is deterministic and will produce the same

result as the sequential approach. The approach has three steps:

1. Select a pixel for computation in the final frame (output image). Pixels can be computed

in parallel, side effect free, on multiple processors.

2. Determine which pixels in intermediate frames need to be computed to produce the se-

lected pixel and compile a list of  pixel dependencies.

3. For each pixel dependency, recursively repeat from step 1 to produce intermediate results

until the dependency refers to the input frame.

The BD approach has the effect that it does not store intermediate results in memory, result-

ing in less memory writes. The drawback is that if  intermediate results are needed more than

once, they must be recalculated. As such, we expect the BD approach to perform better than

sequential when regenerating intermediate results is cheaper than storing and retrieving them

from memory. We can also mitigate this by committing intermediate results to memory, and use

this as a buffer cache when checking dependencies. Managing the cache also requires resources

and we investigate if  this approach is beneficial later on.

The different approaches incur varying cache access patterns. Depending on memory access

patterns, execution structure and CPU microarchitecture, we expect the performance to change.

The sequential approach accesses the buffers within a filter in sequential order, and the prefetch

unit is thus able to predict the access pattern. A drawback of  this approach is that data moved
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between filters do not necessarily reside in the cache of  the core using the data recently. First, this

includes data whose cache line has been evicted and written back to a cache level with increased

access time or memory. This may happen because the data size processed by a filter is larger

than the amount of  cache available, forcing write-back. Other reasons include context switches

and shared caches. Second, output from a previous filter may not have been generated on the

same core as the one that accesses the data, resulting in accesses to dirty cache lines on other

cores. Given the spatial division of  a frame within a filter, this sounds easy to avoid, but an

area of  input to a filter may result in output to a different spatial area, which the processor's

prefetcher may not be able to predict. Thus, re-using the same core for the same part of  a frame

for multiple filters in a pipeline only increases cache locality for filters whose source pixels map

spatially to the destination pixels. To increase cache locality between filters, we also evaluate the

BD approach, where data is accessed in the order needed to satisfy dependencies for the next

filter in the pipeline. This ensures that pixels are accessed in a manner where data in between

filters are likely to reside in the core's cache. That is to say, if  the access pattern is not random,

one can expect BD execution to always access spatially close memory addresses.

Experimental Setup

To evaluate the approaches and find what apporach performs best in a low-level scheduler, we

built an experimental framework supporting the proposed execution structures and wrote a set

of  image processing filters as a case study working on real-world data. The filters were arranged

in different pipelines to induce behaviour differences that can impact performance.

For all experiments we measure computation time exclusively, i.e., the wall clock time of

the parallel execution, excluding I/O and setup time. We use this instead of  CPU time to get

measurements on how good performance is actually possible, since having used only half  of  the

CPU time available does not mean that only half  of  the CPU's resources are utilized (cache,

memory bandwidth, etc.). Also, by not counting I/O time, we remove a constant factor present

in all execution structures, which better captures the results of  this study. Each experiment is run

30 times, and the reported computation time is the average running time. All filters use 32-bit

float computations, and we have strived to reduce overhead during execution, such as removing

function calls in the inner-loop and redundant calculations. Our data set for experiments consists

of  the two standard video test sequences foreman and tractor [23]. The former has a 352x288 pixel

(CIF, 4:2:0) resolution with 300 frames of  YUV data, the latter has 1920x1080 pixels (HD, 4:2:0)

with 690 frames of  YUV data.
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Microarchitecture CPU Cores (SMT) Private Cache Shared Cache
Nehalem Intel i5-750 4 64 kB L1

256 kB L2
8 MB L3

Sandy Bridge Intel i7-2600 4 (8) 64 kB L1,
256 kB L2

8 MB L3

Sandy Bridge-E Intel i7-3930K 6 (12) 64 kB L1,
256 kB L2

12 MB L3

Bulldozer AMD FX 8192 8 (4x2) 64 kB L11,
2 MB L21

8 MB L3

1 Shared between two modules each having a separate integer unit while sharing an FPU.

Table 2.1: CPU microarchitectures used in experiments.

The experiments have been performed on a set of  modern microarchitectures as listed in

table 2.1. The CPUs have 4 to 8 cores and different cache hierarchies: While the Nehalem has

an L3 cache shared by all cores, which operates at a different clock frequency than the cores

and is called the uncore, the Sandy Bridge(-E) has a slice of  the L3 cache assigned to each core

and accesses the other parts using a ring interconnect running at core speed. Our version of  the

Bulldozer architecture consists of  four modules, each containing two cores. On each module, L1

and L2 are shared between the two cores with separate integer units, but with a single shared

FPU.

We have developed a set of  image processing filters for evaluating the execution structures.

The filters are all data-intensive, but vary in terms of  the number of  input pixels needed to

produce a single output pixel. The filters are later combined in various configurations referred

to as pipelines. A short summary of  the filters and their dependencies is given in table 2.2.

The filters are combined in various configurations into pipelines (as in figure 2.1). The eval-

uated pipelines are listed in table 2.3. The pipelines combine the filters in manners that induce

different amounts of  work per pixel, as seen in the table. For some filters, not all intermediate

data are used by later filters and are unnecessary to produce the final output. The BD approach

will not produce these, e.g., a crop filter as seen in pipeline B will not require earlier filters to

produce unused data. Another aspect that we expect to influence the results is cache prefetch-

ing. This means that by having filters that emit data in a different spatial position relative to its

input, e.g., the rotation filter, we expect the prefetcher to contend fetching the relevant data.

Scalability

The pipelines are embarrassingly parallel, i.e., no locking is needed and they should therefore

scale linearly with the number of  cores used. For example, using four cores is expected to yield a
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Blur convolves the source frame with a Gaussian kernel to remove pixel noise.

Sobel X and Y are two filters that also convolve the input frame, but these filters apply the Sobel oper-
ator used in edge detection.

Sobel Magnitude calculates the approximate gradient magnitude using the results from Sobel X and
Sobel Y.

Threshold unset every pixel value in a frame below or above a specified threshold.

Undistort removes barrel distortion in frames captured with wide-angle lenses. Uses bilinear interpo-
lation to create a smooth end result.

Crop removes 20% of  the source frame's height and width, e.g., a frame with a 1920x1080 resolution
would be reduced to 1536x864.

Rotation rotates the source frame by a specified number of  degrees. Bilinear interpolation is used to
interpolate subpixel coordinates.

Discrete discretizes the source frame by reducing the number of  color representations.

Binary creates a binary (two-colored) frame from the source. Every source pixel that is different from or
above zero is set, and every source pixel that equals zero or less is unset.

Table 2.2: Image processing filters used in experiements.
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Pipeline Filter Seq BD BD-CACHED
A Blur 9.00 162.00 9.03

Sobel X 9.00 9.00 9.00
Sobel Y 9.00 9.00 9.00
Sobel Magnitude 2.00 2.00 2.00
Threshold 1.00 1.00 1.00

B Undistort 4.00 10.24 2.57
Rotate 6◦ 3.78 2.56 2.56
Crop 1.00 1.00 1.00

C Undistort 4.00 8.15 2.04
Rotate 60◦ 2.59 2.04 2.04
Crop 1.00 1.00 1.00

D Discrete 1.00 1.00 1.00
Threshold 1.00 1.00 1.00
Binary 1.00 1.00 1.00

E Threshold 1.00 3.19 0.80
Binary 1.00 3.19 0.80
Rotate 30◦ 3.19 3.19 3.19

F Threshold 1.00 3.19 0.80
Rotate 30◦ 3.19 3.19 3.19
Binary 1.00 1.00 1.00

G Rotate 30◦ 3.19 3.19 3.19
Threshold 1.00 1.00 1.00
Binary 1.00 1.00 1.00

Table 2.3: Evaluated pipelines and the average number of  operations performed per pixel with
different execution structures. Filters are defined in table 2.2.
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Figure 2.2: Individually normalized scalability of  pipeline B running the tractor test sequence.
Number of  physical cores in parenthesis.

4x execution speedup. The threads created are handled by the Linux scheduler, which decides

what thread to execute on which CPU (no affinity). Each new thread created works on its own

frame-segment, but the last frame-segment is always processed by the thread that performs the

I/O operations. In the single-threaded execution, both the I/O and processing operations are

performed in the same thread, and therefore also on the same CPU core. Using two threads,

we created one additional thread that is assigned the first half  of  a frame while the I/O thread

processes the last half  of  the frame. We do this to minimize fetching source data from another

core's private cache.

Figure 2.2 shows the relative speedup for the Nehalem, Bulldozer, Sandy Bridge and Sandy
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Figure 2.3: Individually normalized scalability of  pipeline B running foreman test sequence.
Number of  cores in parenthesis.

Bridge-Extreme microarchitectures that process pipeline B with the tractor sequence as input,

comparing the sequential (Seq) and BD executions. Note that the running times of  sequential

and BD are individually normalized to their respective performance on one core, i.e., a higher

value for BD does not necessarily imply better absolute performance than sequential. Looking

at each architecture individually, we see that there is little difference in how the two execution

methods scale on physical cores, but comparing architectures, we see that SB (figure 2.2(b)) is the

only architecture that is able to scale pipeline B perfectly with the number of  physical cores, as

one could expect. SB-E (figure 2.2(c)) performs a little below perfect linear scaling achieved by

its predecessor for this workload, and we see slightly better scalability results for BD execution
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than for sequential execution. On Nehalem (figure 2.2(a)), this pipeline doubles its performance

with two threads, but after this, the increase in speedup per core diminishes. Bulldozer results

(figure 2.2(d)) are even worse; from one to four threads we gain a 3x speedup, but there is not

much to gain from using five to eight threads as we only manage to achieve a 4x speedup using

the maximum number of  cores. Bulldozer has four modules, each with two cores, but each

module has only one FPU, and it is likely that this clamps performance to 4x. To summarize,

the scalability results of  pipeline B with the tractor sequence as input scales relatively well on

Nehalem, Sandy Bridge and Sandy Bridge-Extreme using both execution modes. However,

Bulldozer scales poorly as it only manages a 4x speedup using all of  its eight cores.

Looking at scalability when testing pipeline B with the foreman sequence, the results become

far more interesting as seen in figure 2.3. None of  the four microarchitectures are able to achieve

perfect scalability, and standing out is the Bulldozer plot in figure 2.3(d), where we see very little

or no speedup at all using more threads. In fact, the performance worsens going from one to

two threads. We look more closely into the behaviour of  Bulldozer later. Furthermore, we can

see that the BD mode scales better than sequential for the other architectures. From one to two

threads, we get close to twice the performance, but with more threads, the difference between

sequential and BD increases.

To explain why pipeline B scales much worse with foreman as input than tractor, one must

take the differences into account. The foreman sequence's resolution is 352x288 (YUV, 4:2:0),

which leads to frame sizes of  594 kB stored as floats. A large chunk of  this can fit in private

cache on the Intel architectures, and a full frame on Bulldozer. A frame in the tractor sequence

has a resolution of  1920x1080 and requires almost 12 MB of  data, exceeding even L3 size. In

all pipeline stages except the last, data produced in one stage are referenced in the next, and if

the source data does not reside in a core's cache, it leads to high inter-core traffic. Segmenting

the frames per thread, as done when executing the pipelines in parallel, reduces the segments'

sizes enough to fit into each core's private cache for the foreman frames, but not the larger

tractor frames. Not being able to keep a large part of  the frame in a core's private cache require

continuous fetching from shared cache and/or memory. Although this takes time, it is the normal

mode of  operation. When an large part of  a frame such as foreman fits in private cache after

I/O, other cores that shall process this will have to either directly access the other core's private

cache or request eviction to last-level cache on the other core, both resulting in high inter-core

traffic. We were unable to find detailed information on this behaviour for the microarchitectures,

but we can observe that scalability of  this behaviour is much worse than that of  the HD frame
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experiment. Moreover, since the BD mode only creates one set of  worker threads that are used

throughout the lifetime of  that pipeline cycle, and it does its computations in a recursive manner,

the input data is likely to reside in the core's private cache. Also, since the BD mode does not

require storing intermediate results and as such does not pollute the caches, we can see it scales

better than sequential for the foreman tests.

With respect to the other pipelines (table 2.3), we observed similar scalability across all ar-

chitectures for both execution modes and inputs as seen in figure 2.2 and 2.3. In summary, we

have shown that the BD mode provides slightly better scaling than sequential execution for our

data-intensive pipelines on all architectures when the working unit to be processed (in this case

a segment of  a video frame) is small enough to a large extent reside in a core's private cache.

Although scalability is beneficial, in the next section, we will look at the performance relative to

sequential execution and see how BD and sequential perform against each other.

Performance

Our experiments have shown that achieving linear scaling on our data-bound filters is not triv-

ial, and we have seen that it is especially hard for smaller units of  work that mostly fit into a

core's private cache and needs to be accessed on multiple cores. In addition, there are large

microarchitectual differences visible. In this section, we look at the various pipelines as defined

in table 2.3 to see how the sequential execution structure compares to backward dependency on

various microarchitectures.

To compare sequential and BD execution, we have plotted computation time for pipeline A

to G relative to their individual single-threaded sequential execution time using the foreman test

sequence in figure 2.4. The plot shows that sequential execution provides best performance in

most cases, but with some notable exceptions. The BD execution structure does not store and

reuse intermediate pixels in any stage of  the pipeline. Thus, when a pixel is accessed multiple

times, it must be regenerated from the source. For example, if  a filter in the last stage of  a

pipeline needs to generate the values of  a pixel twice, every computation in every stage in the

current pipeline involved in creating this output pixel must be executed twice. Obviously, this

leads to a lot of  extra computation as can be seen from table 2.3, where for instance the source

pixels are accessed 162 times per pixel for the BD approach in pipeline A, but only 9 times for the

sequential approach. This is reflected in the much higher BD computation time than sequential

for pipeline A for all plots in figure 2.4.

When looking at the other pipelines, we can see significant architectural differences. Again,
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Figure 2.4: Execution structure performance using the foreman dataset. Running times are
relative to each pipeline's 1-core sequential time. Lower is better.
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Bulldozer stands out showing that for pipeline D, F, and G, the BD approach performs consid-

erably better than sequential execution using all eight cores. Pipeline D and G perform better

with BD execution, but it is rather unexpected for pipeline F, which does require re-computation

of  many intermediate source pixels. Still, the scalability achieved on Bulldozer for the foreman

sequence was small, as we saw in the scalability section.

The next observation we see is the performance of  pipeline D. This pipeline performs the

same amount of  work regardless of  execution structure, since every intermediate pixel is accessed

only once. Most architectures show better performance for the BD approach, both for one and all

cores. The only exception is the Sandy Bridge-E, which performs slightly worse than sequential

when using 6 cores. A similar behaviour as pipeline D is to be expected from pipeline G since

it requires the same amount of  work for both modes. This turns out not to be the case; for

single-threaded execution on Nehalem and Bulldozer, pipeline G is faster using BD. Using all

cores, also Sandy Bridge performs better using the BD approach. Sandy Bridge-E runs somewhat

faster with sequential execution. We note that Sandy Bridge and Sandy Bridge-E are very similar

architectures, which ought to behave the same way. This turns out not to be the case, and even

this small iteration of  the microarchitecture may require different low-level schedules to get the

highest level of  performance - even for an embarrassingly parallel workload.

To find out if  the performance gain seen with the BD approach is caused by better cache

usage by keeping intermediate data in private caches or by the reduction of  cache and memory

pollution resulting from not storing intermediate results, we looked at pipeline D and G using

BD while storing intermediate data. This mimics the sequential approach, although data is not

referenced again later on, resulting in less cache pressure. Looking at figure 2.5, which shows

pipeline D and G for Sandy Bridge, we can see that for a single core, the overhead of  writing

back intermediate results using BD-STORE results in worse performance than sequential exe-

cution, whereas this overhead diminishes when the number of  threads is increased. Here, the

BD-STORE structure outperforms sequential execution significantly. Accordingly, we ascribe

the performance gain for the BD approach in this case to better private cache locality and usage

than sequential execution.

Backward Dependency with Buffer Cache

Having shown that backward dependency execution structure performs better than sequential

execution in some cases, we look at ways to improve the performance further. The main draw-

back of  BD execution is, as we saw, that intermediate pixels must be recomputed when accessed
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Figure 2.5: Computation time (ms) for foreman on Sandy Bridge storing (BD-STORE) interme-
diate results, but not referencing stored results.

multiple times, evident by pipeline A results. We have also shown that, when doing the same

amount of  work as the sequential approach, BD can perform better such as with pipeline D and

G. In this section, we experiment with adding a buffer cache that keeps intermediate data for

later reuse to mitigate this issue.

Instead of  recursively generating all prior intermediate data when a pixel is accessed, the

system checks a data structure to see if  it has been accessed earlier. To do this without locking,

we set a bit in a bitfield atomically to mark a valid entry in the buffer cache. It is worth noting

that this bitfield consume a considerably amount cache space by using one bit for every pixel,

e.g., about 37 kB for every stage in a pipeline for the foreman sequence. Other approaches for

this buffer cache are possible, including a set of  ranges and tree structures, but this is left for

further work.

The cached results for pipelines A to G (BD-CACHED) using four threads on Sandy Bridge

and processing foreman are shown in figure 2.6. We can see that the BD-CACHED approach

provides better performance than sequential on pipeline B, D and G, but only B performs better

than BD. Pipeline B has rotation and crop stages that reduce the amount of  intermediate pixels

that must be produced from the early filters compared to sequential execution (see table 2.3). In

comparison, pipeline C has also a significant reduction of  intermediate pixel requirements, but

we do not see a similar reduction in computation time. The only difference between pipeline B
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1.51

Figure 2.6: Computation time (ms) for Backward Dependency with buffer cache measured rel-
ative to single threaded sequential and tested with Sandy Bridge using 4 threads and foreman as
input sequence.

and C is the amount of  rotation, with 6◦ for B and 60◦ for C. The skew from rotation for the

pipelines causes long strides over cache lines when accessing neighbouring pixels from previous

stages, which can be hard to prefetch efficiently. Also, parts of  an image segment processed on

a core may cross boundaries between segments, such that high inter-core traffic is required with

sequential execution even though the same core processes the same segment for each stage. This

is avoided with BD and BD-CACHED modes, but we can not predict what mode performs

better in advance.

Affinity

In the scalability section, we saw the diminishing performance when processing the foreman se-

quence with two and three threads on the Bulldozer architecture. When processing our pipelines

in a single thread, we did not create a separate thread for processing, but processed in the thread

that handled the I/O operations. Further, this lack of  scaling was only observed when processing

the low-resolution foreman sequence, for a large part of  the frame could fit inside a core's private

L2 cache. To investigate this further, we did an experiment where we manually specified each

thread's affinity, which implies that we use separate threads doing I/O and processing, even in

single-threaded execution.

Even though we only noticed the lack of  scaling on the Bulldozer architecture, we tested the
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impact of  affinity on the Nehalem and Sandy Bridge architectures as well (we omitted SB-E,

which is very similar to Sandy Bridge). In figure 2.7, we have plotted the results for sequential

processing of  pipeline B while varying the number of  threads. On Nehalem and Sandy Bridge,

we tested two different execution modes, one mode where the processing of  a frame was done

on the same core that executed the I/O thread (IOSAME), while the second mode processed

the frame on a different core than the I/O thread (IODIFF). Since the Bulldozer architecture

has CPU modules, we added an additional mode for this architecture when processing threads

were executed on different CPU modules than the thread handling I/O (MODULEDIFF).

We expected that processing on another core than I/O would increase the processing time,

which was found to be only partially correct: From figure 2.7(a) we see that there are not any

significant difference in processing on the same core as the I/O thread versus a different core

on Sandy Bridge. Much of  the same behaviour is seen on Nehalem using one thread, but when

using two threads there is a large penalty of  pinning these to different cores than the one doing

I/O operations. In this case, using two threads and executing them on different cores than the

I/O operations add so much to the computation time that it is slower than the single threaded

execution.

Looking at the Bulldozer architecture in figure 2.7(c), using only one thread we see that there

are not any significant difference on what core or CPU module the processing thread is placed on.

However as with Nehalem, when using two or more threads the IODIFF and MODULEDIFF

execution modes have a huge negative impact on the performance. Even more unexpected,

IOSAME and IODIFF using three threads are actually slower than IOSAME using two threads,

and the fastest execution using eight threads completes in 1174 ms (omitted in plot), not much

faster than what we can achieve with two threads.

In summary, we have seen that thread affinity has a large impact on Nehalem and Bulldozer

when a large part of  the data fits into the private cache. This can cause the two threads to have

worse performance than a single thread when the data reside in another core's private cache.

On Sandy Bridge, this limitation has been lifted and we do not see any difference due to affinity.

Bulldozer is unable to scale to much more than two threads when the dataset fits into the private

cache, presumably because the private cache is shared between two cores and the cost of  doing

inter-module cache access is too high.
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Figure 2.7: Execution times (ms) of  pipeline B for the foreman video using different thread affinity
strategies (lower is better).
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Discussion

The long-running data-intensive filters described in this section deviate from typical workloads

when looking at performance in terms of  the relatively little computation required per unit of

data. The filters used are primitive, but we are able to show large performance impacts by

varying the order of  execution and determining what core should do what. For such simple

and embarrassingly parallel workloads, it is interesting to see the significant differences on how

these filters perform on modern microarchitectures. As a case study, we chose image processing

algorithms that can intuitively be connected in pipelines. Real-world examples of  such pipelines

can be found in OpenCV [8], node-based software such as the Nuke [24] compositing tool and

various VJ software (digital effects at live events). Other signal processing domains such as sound

processing are applicable as well.

There is a big difference between batch processing and processing a stream of  data. In the

former, we can spread out independent jobs to a large number of  cores, while in the latter we

can only work on a limited set of  data at a time. If  we batch-processed the pipelines, we could in-

stantiate multiple pipelines, each processing frames independently while avoiding the scalability

issues that we experienced with foreman. In a streaming scenario, however, this is not possible.

The results shown in this work are unexpected and confusing. We had not anticipated such

huge differences in how these modern processors perform with our workloads. With the stan-

dard parallel approach for such applications with either sequential execution of  the pipeline or a

work stealing approach, it is apparent that there is much performance to be gained by optimizing

the order of  operations for better cache usage. After all, we observe that the performance of  the

execution modes varies a lot with the behavior of  a filter, e.g, amount of  rotation applied. More-

over, the computation time varies inconsistently with the number of  threads, e.g., performance

halved with two threads and sub-optimal processor affinity compared to a single thread. Thus,

scheduling these optimally based on a-priori knowledge, we conjecture, is next to impossible,

and profiling and feedback to the scheduler must be used to find the best configuration.

One option is to use profile-driven optimizations at compile time [25], where one or more

configurations are evaluated and later used during runtime. This approach does, however, not

work with dynamic content or tasks, i.e., if  the parameters such as the rotation in pipeline B

changes, the system must adapt to a new configuration. Further, the preferred configuration

may even change based on interactions between co-scheduled tasks, e.g., a CPU-bound and

memory-bound task may perform better when co-scheduled than two memory bound tasks [26].

The ideal option then is to have a low-level scheduler that adapts dynamically to varying
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tasks, data, architectural limitations and shared resources. We propose an approach that uses

instrumentation and allows a scheduler to gauge computation times of  specific filters at execution

time. Since the workloads we look at are periodic and long-running, the low-level scheduler can

react to the observations and make appropriate adjustments, e.g., try different execution modes,

data granularity, affinity and co-running competing workloads.

The prevalent approaches used in execution systems today are work stealing variants. Here,

the system typically use a heuristics to increase cache locality such as spawning new tasks in the

same queue; or stealing tasks from the back of  another queue instead of  the front to reduce cache

contention, assuming tasks that are near in the queue are also near in terms of  data. Although

work stealing in its simplicity provides great flexibility, we have shown that the execution order

has a large performance impact on filter operations. For workloads that are long-running and

periodic in nature, we can expect that an adaptive low-level scheduler will outperform the simple

heuristics of  a work stealing scheduler. An adaptive work stealing approach is feasible, where

work units are enqueued to the worker threads based on the preferred execution mode, data

granularity and affinity, while still retaining the flexibility of  the work stealing approach. Such

a low-level scheduler is considered for further work. Another direction that we want to pursue

is building synthetic benchmarks and looking at performance counters to pinpoint the cause of

some of  the effects that we are seeing, in particular with the Bulldozer microarchitecture.

Summary

In this case study, we have looked at run-time considerations for executing (cyclic) streaming

pipelines consisting of  a data-intensive filters for media processing. A number of  different filters

and pipelines have been evaluated on a set of  modern microarchitectures, and we have found

several unexpected performance implications, within the well-known x86-family of  microproces-

sors, like increased performance by backtracking pixel dependencies to increase cache locality

for data sets that can fit in private cache; huge differences in performance when I/O is performed

on one core and accessed on others; and different execution modes perform better depending

on minor parameter variations in filters (or stages in the processing pipeline) such as the num-

ber of  degrees to rotate an image. The implication of  the very different behaviors observed on

the different microarchitectures is a demand for scheduling that can adapt to varying conditions

using instrumentation data collected at runtime.
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2.1.3 Implications

Symmetric cores allows for easy portability of  applications between compatible microarchitec-

tures. From a programmer's perspective, it is easy to see why some prefer using SMP for multi-

media processing, even though the performance might not keep up with that of  heterogeneous

architectures. However, as we have showed in section 2.1.2, achieving high performance might

still require microarchitecture considerations, even though the program is portable and runs on

compatible processors. For multimedia processing, using traditional symmetric cores in combi-

nation with various accelerators is common, further complicating efficient use of  the resources.

As we will see in section 2.2.2, predicting what mode and parameters to use in a portable manner

a priori is difficult. Minor variations in an implementation have a large impact on performance.

Since performance is important, and especially for multimedia operations with realtime require-

ments, optimizing for this problem is an important goal. Since the best configuration is not

known and depends on a large array of  parameters, we think probing configurations combined

with data collection (instrumentation) in a feedback loop is a good option, and is something we

will look further into in the next section.

2.2 Asymmetric exclusive memory architectures

2.2.1 Overview

Another interesting architecture type has exclusive memory tightly coupled to some of  the cores

on a processor. This memory typically runs at core frequency with high bandwidth and low

latency to the core or set of  cores connected to it. The downside is the relatively small amount

of  exclusive memory each core usually has, requiring careful partitioning and planning of  what

data should reside where and when. Typically for this architecture is a host or main processor

with different capabilities than the other cores to manage the full processor's workloads and data.

Exclusive memory in these architectures can be seen as a software managed cache, where the

developer or the runtime is responsible for prefetching data for processing instead of  a fixed

prefetching algorithm implemented in hardware. In contrast to caches, this allows flexible data

management at the cost of  higher programming complexity, enabling developers to only prefetch

data that will actually be used if  this is known in advance.

Several such architectures exist today, with prominent examples including Cell Broadband

Engine [27], various graphics processors and accelerator cards. As graphics processors ad-
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vanced, they have evolved from static graphics functions to highly flexible and programmable

processors suitable for general purpose computing. The dominant API today is CUDA [5] by

Nvidia, which exposes the GPU as a accelerator card for high performance computing. GPUs

typically have several types of  memory and require explicit requests to move data between them.

Similarly to the Cell, this increases the responsibility of  system programmers to correctly uti-

lize memory for maximum performance. In section 2.2.2, we compare using Cell and GPUs to

encode motion JPEG video as an example.

2.2.2 Case study: MJPEG on Cell and GPU

Heterogeneous systems like the STI Cell Broadband Engine (Cell) and PCs with Nvidia graphical

processing units (GPUs) have recently received a lot of  attention. They provide more computing

power than traditional single-core systems, but it is a challenge to use the available resources

efficiently. Processing cores have different strengths and weaknesses than desktop processors,

the use of  several different types and sizes of  memory is exposed to the developer, and limited

architectual resources require considerations concerning data and code granularity.

In this section, we want to learn how to think when the system at our disposal is a Cell or

a GPU for processing multimedia workloads. We aim to understand how to use the resources

efficiently, and point out tips, tricks and troubles, as a small step towards a programming frame-

work and a scheduler that parallelizes the same code efficiently on several architectures. Specifi-

cally, we have looked at effective programming for the workload-intensive yet relatively straight-

forward Motion-JPEG (MJPEG) video encoding task. The MJPEG encoder has many parallel

opportunities, including task, data and pipeline parallelism with limited dependencies, and as

such is perfect for execution on heterogeneous architectures. In the encoder a lot of  CPU cycles

are consumed in the sequential discrete cosine transformation (DCT), quantization and com-

pression stages. On single core systems, it is almost impossible to process a 1080p high definition

video in real-time, so it is reasonable to apply multicore computing in this scenario.

This work was first published in an article presented at NOSSDAV 2010 [28], and was written

in the context of  the latest graphics processors available at the time of  writing. The world of

heterogeneous computing is evolving rapidly with NVIDIA and AMD continuously pushing the

envelope, and in terms of  capabilities of  the cards, much has changed since then. However,

many of  the key insights drawn from this work is still applicable, with the exception of  hardware

specific capabilities. Newer cards have improved the architecture in several ways, but the general

structure and ideas remain the same.
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(a) Cell on PS3 (6 SPEs) (b) GPU on GTX 280

Figure 2.8: Frame encode time for MJPEG implementations sorted by running time.

As a baseline for how important the architectual considerations are for writing efficient pro-

grams for these types of  architectures, we compared 14 different student's adaptations of  the same

motion jpeg video encoder; the performance numbers of  these alone give a good indication of

the complexity of  such a task, and that achieving high performance is far from trivial. Derived

from a sequential codebase, these multicore implementations differ in terms of  algorithms used,

resource utilization and coding efficiency.

Figure 2.8 shows performance results for encoding the ``tractor'' video clip1 in 4:2:0 HD. The

differences between the fastest and slowest solution are 1869 ms and 362 ms per frame on Cell

and GPU, respectively, and it is worth noting that the fastest solutions were disk I/O-bound. To

gain experience of  what works and what does not, we have examined these solutions. We have

not considered coding style, but revisited algorithmic choices, inter-core data communication

(memory transfers) and use of  architecture-specific capabilities.

In general, we found that these architectures have large potentials, but also many possible

pitfalls, both when choosing specific algorithms and for implementation-specific decisions. The

way of  thinking cross-platform is substantially different, making it an art to use them efficiently.

Background

SIMD and SIMT Multimedia applications frequently perform identical operations on large

data sets. This has been exploited by bringing the concept of  SIMD (single instruction, multiple

1Available at ftp://ftp.ldv.e-technik.tu-muenchen.de/dist/test_sequences/1080p/tractor.yuv
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data) to desktop CPUs, as well as the Cell, where a SIMD instruction operates on a short vector of

data, e.g., 128-bits for the Cell SPE. Although SIMD instructions have become mainstream with

the earliest Pentium processors and the adoption of  PowerPC for MacOS, it has remained an art

to use them. On the Cell, SIMD instructions are used explicitly through the vector extensions

to C/C++, which allow basic arithmetic operations on vector data types of  intrinsic values. It

means that the programmer can apply a sequential programming model, but needs to adapt

memory layout and algorithms to the use of  SIMD vectors and operations.

Nvidia uses an abstraction called SIMT (single-instruction, multiple thread). SIMT enables

code that uses only well- known intrinsic types but that can be massively threaded. The run-

time system of  the GPU schedules these threads in groups (called warps) whose optimal size is

hardware-specific. The control flow of  such threads can diverge like in an arbitrary program,

but this will essentially serialize all threads of  the block. If  it does not diverge and all threads

in a group execute the same operation or no operation at all in a step, then this operation is

performed as a vector operation containing the data of  all threads in the block.

The functionality that is provided by SIMD and SIMT is very similar. In SIMD program-

ming, vectors are used explicitly by the programmer, who may think in terms of  sequential

operations on very large operands. In SIMT programming, the programmer can think in terms

of  threaded operations on intrinsic data types.

STI Cell Broadband Engine The Cell Broadband Engine is developed by Sony Computer

Entertainment, Toshiba and IBM. As shown in Figure 2.9, the central components are a Power

Processing Element (PPE) and 8 Synergistic Processing Elements (SPEs) connected by the Ele-

ment Interconnect Bus (EIB). The PPE contains a general purpose 64-bit PowerPC RISC core,

Figure 2.9: Cell Broadband Engine Architecture
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Figure 2.10: Nvidia GT200 Architecture

capable of  executing two simultaneous hardware threads. The main purpose of  the PPE is to

control the SPEs, run an operating system and manage system resources. It also includes a

standard Altivec-compatible SIMD unit. An SPE contains a Synergistic Processing Unit and a

Memory Flow controller. It works on a small (256KB) very fast memory, known as the local

storage, which is used both for code and data without any segmentation. The Memory Flow

Controller is used to transfer data between the system memory and local storage using explicit

DMA transfers, which can be issued both from the SPE and PPE.

Nvidia Graphics Processing Units A GPU is a dedicated graphics rendering device, and

modern GPUs have a parallel structure, making them effective for doing general-purpose pro-

cessing. Previously, shaders were used for programming, but specialized languages are now

available. In this context, Nvidia has released the CUDA framework with a programming lan-

guage similar to ANSI C. In CUDA, the SIMT abstraction is used for handling thousands of

threads.

The GPU generation used in this work is the Nvidia GT200, and is shown in Figure 2.10.

The GT200 chip is presented to the programmer as a highly parallel, multi-threaded, multi-

core processor - connected to the host computer by a PCI Express bus. The GT200 architecture

contains 10 texture processing clusters (TPC) with 3 streaming multiprocessors (SM). A single

SM contains 8 stream processors (SP), which are the basic ALUs for doing calculations. GPUs

have other memory hierarchies than an x86 processor. Several types of  memory with different

properties are available. An application (kernel) has exclusive control over the memory. Each



2.2. Asymmetric exclusive memory architectures 41

thread has a private local memory, and the threads running on the same stream multiprocessor

(SM) have access to a shared memory. Two additional read-only memory spaces called constant

and texture are available to all threads. Finally, there is the global memory that can be accessed by

all threads. Global memory is not cached, and it is important that the programmer ensures that

running threads perform coalesced memory accesses. Such a coalesced memory access requires

that the threads' accesses occur in a regular pattern and creates one large access from several

small ones. Memory accesses that cannot be combined are called uncoalesced.

Experiments

By learning from the design choices of  the implementations in Figure 2.8, we designed experi-

ments to investigate how performance improvements were achieved on both Cell and GPU. We

wanted to quantify the impact of  design decisions on these architectures.

All experiments encode HD video (1920x1080, 4:2:0) from raw YUV frames found in the

tractor test sequence. However, we used only the first frame of  the sequence and encode it 1000

times in each experiment to overcome the disk I/O bottleneck limit. This becomes apparent at

the highest level of  encoding performance since we did not have a high bandwidth video source

available. All programs have been compiled with the highest level of  compiler optimizations

using gcc and nvcc, respectively, for Cell and GPU. The Cell experiments have been tested on a

QS22 bladeserver (8 SPEs, the results from Figure 2.8 were on a PS3 with 6 SPEs) and the GPU

experiments on a GeForce GTX 280 card.

Motion JPEG Encoding The MJPEG format is widely used by webcams and other embed-

ded systems. It is similar to videocodecs such as Apple ProRes and VC-3, used for video editing

and post-processing due to their flexibility and speed, hence the lack of  inter-prediction between

frames. As shown in Figure 2.11, the encoding process of  MJPEG comprises splitting the video

frames in 8x8 macroblocks, and each of  them must be individually transformed to the frequency

domain by forward discrete cosine transform (DCT) and quantized before the output is entropy

coded using variable-length coding (VLC). JPEG supports both arithmetic coding and Huffman

compression for VLC. Our encoder uses predefined Huffman tables for compression of  the DCT

coefficients of  each macroblock. The VLC step is not context adaptive, and macroblocks can

thus be compressed independently. The length of  the resulting bitstream, however, is proba-

bly not a multiple of  eight, and most such blocks must be bit-shifted completely when the final

bitstream is created.
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Figure 2.11: Overview of  the MJPEG encoding process

The MJPEG format provides many layers of  parallelism; starting with the many independent

operations of  calulating DCT, the macroblocks can be transformed and quantized in arbitrary

order, also frames and color components can be encoded separately. In addition, every frame

is entropy-coded separately. Thus, many frames can be encoded in parallel before merging the

resulting frame output bitstreams. This gives a very fine-level granularity of  parallel tasks, pro-

viding great flexibility in how to implement the encoder. It is worth noting that many problems

have much tighter data dependencies than we observe in the MJPEG case, but the general ideas

for optimizing individual parts pointed out in this thesis stand regardless of  whether the problem

is limited by dependencies or not.

The forward 2D DCT function for a macroblock is defined in the JPEG standard for image

component sy,x to output DCT coefficients Sv,u as

Sv,u =
1
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CuCv
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∑
x=0
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y=0

sy,xcos
(2x + 1)uπ

16
cos
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where Cu, Cv = 1√
2

for u, v = 0 and Cu, Cv = 1 otherwise. The equation can be directly

implemented in an MJPEG encoder and is referred to as 2D-plain. The algorithm can be sped

up considerably by removing redundant calculations. One improved version that we label 1D-

plain uses two consecutive 1D transformations with a transpose operation in between and after.

This avoids symmetries, and the 1D transformation can be optimized further. One optimization

uses the AAN algorithm, originally proposed by Arai et al. [29] and further refined by Kovac and

Ranganathan [30]. Another uses a precomputed 8x8 transformation matrix that is multiplied

with the block together with the transposed transformation matrix. The matrix includes the

postscale operation, and the full DCT operation can therefore be completed with just two matrix

multiplications, as explained by Kabeen and Gent [31].

More algorithms for calculating DCT exist, but they are not covered here. We have im-

plemented the different DCT algorithms as scalar single-threaded versions on x86 (Intel Core
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i5 750). The performance details for encoding HD video were captured using oprofile and can

be seen in Figure 2.12. The plot shows that the 1D-AAN algorithm using two transpose oper-

ations was the fastest in this scenario, with the 2D-matrix version as number two. The average

encoding time for a single frame using 2D-plain is more than 9 times that of  a frame encoded

using 1D-AAN. For all algorithms, the DCT step consumed most CPU cycles.

Cell Broadband Engine Experiments Considering the embarrassingly parallel parts of  MJPEG

video encoding, a number of  different layouts is available for mapping the different steps of  the

encoding process to the Cell. Because of  the amount of  work, the DCT and quantization steps

should be executed on SPEs, but also the entropy coding step can run in parallel between com-

plete frames. Thus, given that a few frames of  encoding delay are acceptable, the approach we

consider best is to process full frames on each SPE with every SPE running DCT and quanti-

zation of  a full frame. This minimizes synchronization between cores, and allows us to perform

VLC on the SPEs.

Regardless of  the placement of  the encoding steps, it is important to avoid idle cores. We

solved this by adding a frame queue between the frame reader and the DCT step, and another

queue between the DCT and VLC steps. Since a frame is processed in full by a single proces-

sor, the AAN algorithm is well suited for the Cell. It can be implemented in a straight-forward

manner for running on SPEs, with VLC coding placed on the PPE. We tested the same algo-

rithm optimized with SPE intrinsics for vector processing (SIMD) resulting in double encoding

throughput, which can be seen in Figure 2.13 (Scalar- and Vector/PPE).

Another experiment involved moving the VLC step to the SPEs, offloading the PPE. This

approach left the PPE with only the task of  reading and writing files to disk in addition to dis-
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Figure 2.12: MJPEG encode time on single thread x86
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patching jobs to SPEs. To be able to do this, the luma and chroma blocks of  the frames had to

be transformed and quantized in interleaved order, i.e., two rows of  luma and a single row of

both chroma channels. The results show that the previous encoding speed was limited by the

VLC as can be seen in Figure 2.13 (Scalar- and Vector/SPE).

To get some insight into SPE utilization, we collected a trace (using pdtr, part of  IBM SDK

for Cell) showing how much time is spent on the encoding parts. Figure 2.14 shows the SPE

utilization when encoding HD frames for the Scalar- and Vector/SPE from Figure 2.13. This

distinction is necessary because the compiler does not generate SIMD code, requiring the pro-

grammer to hand write SIMD intrinsics to obtain high throughput. The scalar version uses

about four times more SPE time to perform the DCT and quantization steps for a frame than

the vector version, and additionally 30% of  the total SPE time to pack and unpack scalar data

into vectors for SIMD operations. Our vectorized AAN implementation is nearly eight times

faster than the scalar version.
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Figure 2.13: Encoding performance on Cell with different implementations of  AAN and VLC
placement
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Figure 2.14: SPE utilization using scalar or vector DCT
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With the vector version of  DCT and quantization, the VLC coding uses about 80 % of  each

SPE. This can possibly be optimized further, but we did not pursue this.

The Cell experiments demonstrate the necessary level of  fine-grained tuning to get high per-

formance on this architecture. In particular, correctly implementing an algorithm using vector

intrinsics is imperative. Of  the 14 implementations for Cell in Figure 2.8, only one offloaded

VLC to the SPEs, but this was the second fastest implementation. The fastest implementation

vectorized the DCT and quantization, and the Vector/SPE implementation in Figure 2.13 is a

combination of  these two. One reason why only one implementation offloaded the VLC may

be that it is unintuitive. An additional communication and shift step is required in parallelizing

VLC because the lack of  arbitrary bit-shifting of  large fields on Cell as well as GPU prevents

a direct port from the sequential codes. Another reason may stem from the dominance of  the

DCT step in early profiles, as seen in Figure 2.12, and the awkward process of  gathering profiling

data on multicore systems later on. The hard part is to know what is best in advance, especially

because moving an optimized piece of  code from one system to another can be significant work,

and may even require rewriting the program entirely. It is therefore good practice to structure

programs in such a way that parts are loosely coupled. In that way, they can both be replaced

and moved to other processors with minimal effort.

When comparing the 14 Cell implementations of  the encoder shown in Figure 2.8 to find out

what differentiates the fastest from the medium speed implementations, we found some distin-

guishing features: The most prominent one being not exploiting the SPE's SIMD capabilities,

but also in the areas of  memory transfers and job distribution. Uneven workload distribution

and lack of  proper frame queuing resulted in idle cores. Additionally, some implementations

suffered from small, often unconcealed, DMA operations that left SPEs in a stalled state waiting

for the memory transfer to complete. It is evident that many pitfalls need to be avoided when

writing programs for the Cell architecture, and we have only touched upon a few of  them. Some

of  these are obvious, but not all, and to get acceptable performance out of  a program running

on the Cell architecture may require multiple iterations, restructuring and even rewrites.

GPU Experiments As for the Cell, several layouts are available for GPUs. However, because

of  the large number of  small cores, it is not feasible to assign one frame to each core. The most

time-consuming parts of  the MJPEG encoding process, the DCT and quantization steps, are

well suited for GPU acceleration. In addition, the VLC step can also be partly adapted.

Coalesced memory accesses are known to have large performance impacts. However, few
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Figure 2.15: Optimization of  GPU memory accesses

quantified results exist, and efficient usage of  memory types, alignment and access patterns re-

mains an art. Weimer et al. [32] experimented with bank conflicts in shared memory, but to

shed light on the penalties of  inefficient memory type usage, further investigation is needed.

We therefore performed experiments that read and write data to and from memory with both

un-coalesced and coalesced access patterns [33], and used the Nvidia CUDA Visual Profiler to

isolate the GPU-time for the different kernels.

Figure 2.15 shows that an uncoalesced access pattern decreases throughput in the order of

four times due to the increased number of  memory transactions. Constant and texture memory

are cached, and the performance for uncoalesced accesses to them is improved compared to

global memory, but there is still a three-time penalty. Furthermore, the cached memory types

support only read-only operations and are restricted in size. When used correctly, the perfor-

mance of  global memory is equal to the performance of  the cached memory types. The experi-

ment also shows that correct memory usage is imperative even when cached memory types are

used. It is also important to make sure the memory accesses are correct according to the specifi-

cations of  particular GPUs because the optimal access patterns vary between GPU generations.

To find out how memory accesses and other optimizations affect programs like a MJPEG en-

coder, we experimented with different DCT implementations. Our baseline DCT algorithm is

the 2D-plain algorithm. The only optimizations in this implementation are that the input frames

are read into cached texture memory and that the quantization tables are read into cached con-

stant memory. As we observed in Figure 2.15, cached memory spaces improve performance

compared to global memory, especially when memory accesses are uncoalesced. The second

implementation, referred to as 2D-plain optimized, is tuned to run efficiently, using principles
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from the CUDA Best Practices Guide [34]. These optimizations include the use of  shared mem-

ory as a buffer for pixel values when processing a macroblock, branch avoidance by using boolean

arithmetics and manual loop unrolling. Our third implementation, the 1D-AAN algorithm, is

based upon the scalar implementation used on the Cell. Every macroblock is processed with

eight threads, one thread per row of  eight pixels. The input image is stored in cached texture

memory and shared memory is used for temporarily storing data during processing. Finally, we

look at the 2D-matrix DCT using matrix multiplications where each matrix element is computed

by a thread. The input image is stored in cached texture memory, and shared memory is used

for storing data during calculations.

We know from existing work that to achieve high instruction throughput, branch prevention

and the correct use of  flow control instructions are important. If  threads on the same SM diverge,

the paths are serialized, which decreases performance. Loop unrolling is beneficial on GPU

kernels and can be done automatically by the compiler using pragma directives. To optimize

frame exchange, asynchronous transfers between the host and GPU were used. Transferring

data over the PCI Express bus is expensive, and asynchronous transfers help us reuse the kernels

and hide some of  the PCI Express latency by transferring data in the background.

To isolate the DCT performance, we used the CUDA Visual Profiler. The profiling results

of  the different implementations can be seen in Figure 2.16, and we can observe that the 2D-

plain optimized algorithm is faster than AAN. The 2D-plain algorithm requires significantly

more computations than the others, but by correctly implementing it, we get almost as good

performance as with the 2D-matrix. The AAN algorithm, which does the least amount of  com-

putations, suffers from the low number of  threads per macroblock. A low number of  threads per

SM can result in stalling, where all the threads are waiting for data from memory, which should

be avoided.

This experiment shows that for architectures with vast computational capabilities, writing a

good implementation of  an algorithm adapted for the underlying hardware can be as important

as the theoretical complexity of  an algorithm.

The last GPU experiment considers entropy coding on the GPU. As for the Cell, VLC can

be offloaded to the GPU by assigning a thread to each macroblock in a frame to compress the

coefficients and then store the bitstream of  each macroblock and its length in global memory. The

output of  each macroblock's bitstream can then be merged either on the host, or by using atomic

OR on the GPU. For the experiments here, we chose the former since the host is responsible for

the I/O and must traverse the bitstream anyway. Figure 2.17 shows the results of  an experiment
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Figure 2.17: Effect of  offloading VLC to the GPU

that compares MJPEG with AAN DCT with VLC performed on the host and on the GPU,

respectively. We achieved a doubling of  the encoding performance when running VLC on the

GPU. In this particular case offloading VLC was faster than running on the host. It is worth

noting that by running VLC on the GPU, the entropy coding scales together with the rest of

the encoder with the resources available on the GPU. This means than if  the encoder runs on a

machine with a slower host CPU or faster GPU, the encoder will still scale.

Discussion

Heterogeneous architectures like Cell and GPU provide large amounts of  processing power, and

achieving encoding throughputs of  480 MB/s and 465 MB/s, respectively, real-time MJPEG

HD encoding may be no problem. However, an analysis of  the many implementations of

MJPEG available and our additional testing show that it is important to use the right concepts

and abstractions, and that there may be large differences in the way a programmer must think.

The architectures of  GPU and Cell are very different, and in this respect, some algorithms

may be more suited than others. This can be seen in the experiments, where the AAN algo-



2.2. Asymmetric exclusive memory architectures 49

rithm for DCT calculation performed best on both x86 and Cell, but did not achieve the highest

throughput on GPU. This was because of  the relatively low number of  threads per macroblock

for the AAN algorithm, which must perform the 1D DCT operation (one row of  pixels within a

macroblock) as a single thread. This is only one example of  achieving a shorter computation time

through increased parallelity at the price of  a higher, sub-optimal total number of  operations.

The programming models used on Cell and GPU mandate two different ways of  thinking

parallel. The approach of  Cell is very similar to multi-threaded programming on x86, with the

exception of  shared memory. The SPEs are used as regular cores with explicit caches, and the

vector units on the SPEs require careful data structure consideration to achieve peak perfor-

mance. The GPU model of  programming is much more rigid, with a static grid used for blocks

of  threads, and only synchronization through barriers. This hides the architecture complexity,

and is therefore a simpler concept to grasp for some programmers. This notion is also strength-

ened by the better average GPU throughput of  the implementations in Figure 2.8. However, to

get the highest possible performance, the programmer must also understand the small details of

the architecture to avoid pitfalls like warp divergence and uncoalesced memory accesses.

Deciding at what granularity the data should be partitioned is very hard to do correct a

priori. The best granularity for a given problem differs with the architecture and even different

models of  the same architecture. One approach towards accomplishing this is to try to design

the programs in such a way that the cores are seldom idle or stall. In practice, however, multiple

iterations may be necessary to determine the best approach.

Similar to data decomposition, task decomposition is hard to do correctly in advance. In

general, a rule of  thumb is to write modular code to allow moving the parts to other cores.

Also, a fine granularity is beneficial, since small modules can be merged again, and also be

executed repeatedly with small overhead. Offloading is by itself  advantageous as resources on

the main processor become available for other tasks. It also improves scalability of  the program

with new generations of  hardware. In our MJPEG implementations, we found that offloading

DCT/quantization and VLC coding was advantageous in terms of  performance on both Cell

and GPU, but it may not always be the case that offloading provides higher throughput.

The encoding throughput achieved on the two architectures was surprisingly similar. Al-

though, the engineering effort for accomplishing this throughput was much higher on the Cell

and was mainly caused by the tedious process of  writing a SIMD version of  the encoder. Porting

the encoder to the GPU in a straight-forward manner without significant optimizations for the

architecture yielded a very good offloading performance compared to native x86. This indicates
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that the GPU is easier to use, but to reap the full potential of  the architecture, one must have the

same deep level of  understanding as with the Cell architecture.

Related work

Heterogeneous multi-core platforms like the Cell and GPUs have attracted a considerable amount

of  research that aims at optimizing specific applications for the different architectures such as [35]

and [36]. However, little work has been done to compare general optimization details of  different

heterogeneous architectures. Amesfoort et al. [37] have evaluated different multicore platforms

for data-intensive kernels. The platforms are evaluated in terms of  application performance,

programming effort and cost. Colic et al. [38] look at the application of  optimizing motion

estimation on GPUs and quantify impact of  design choices. The workload investigated in this

work is different from the workload we benchmarked in our experiments, but they show a similar

trend as our GPU experiments. They also conclude that elegant solutions are not easily achiev-

able, and that it takes time, practice and experience to reap the full potential of  the architectures.

Petrini et al. [39] implement a communication-heavy radiation transport problem on Cell. They

conclude that it is a good approach to think about problems in terms of  five dimensions and par-

titioning them into: process parallelism at a very large scale, thread-level parallelism that handles

inner loops, data-streaming parallelism that double-buffers data for each loop, vector parallelism

that uses SIMD functions within a loop, and pipeline parallelism that overlaps data access with

computations by threading. From our MJPEG implementations we observed that programmers

had difficulties thinking parallel in two dimensions. This level of  multi-dimensional consider-

ations strengthens our statement that intrinsic knowledge of  the system is essential to reap full

performance of  heterogeneous architectures.

Summary

Heterogeneous, multicore architectures like Cell and GPUs may provide the resources required

for real-time multimedia processing. However, achieving high performance is not trivial, and in

order to learn how to think and use the resources efficiently, we have experimentally evaluated

several issues to find the tricks and troubles.

In general, there are some similarities, but the way of  thinking must be substantially different

- not only compared to an x86 architecture, but also between the Cell and the GPUs. The

different architectures have different capabilities that must be taken into account both when

choosing a specific algorithm and making implementation-specific decisions. A lot of  trust is
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put on the compilers of  development frameworks and new languages like Open CL, which are

supposed to be a recompile-only solution. However, to tune performance, the application must still

be hand-optimized for different versions of  the GPUs and Cells available.

2.2.3 Implications

The asymmetric exclusive memory architectures provide very high performance, but at the cost

of  complex and time consuming software adaptations for the target architecture. Additionally,

the relatively small amount of  fast exclusive memory require careful planning of  memory flows,

and programs with low data locality may not run well on these type of  architecture. Multimedia

operations, such as the MJPEG encoding in section 2.2.2 are often good candidates for high

performance on these with high data locality, and with algorithms that can easily be data par-

allelized, e.g., with vector instructions. As with the asymmetric shared memory architectures,

major challenges are portability and elasticity, but memory flow to exclusive memory types re-

quires strict attention too. One unexpected finding in the study was that the theoretically fastest

algorithm for DCT (FastDCT) was not the best performing algorithm on GPU, in contrast to for

Cell. Further, the data granularity chosen had a significant impact on the performance, which

further complicates portability. Deciding what the correct code and data granularity should be

is very hard to do without trial and error, since it differs with architecture and even different

models of  the same architecture (microarchitectures).

2.3 Asymmetric shared memory architectures

2.3.1 Overview

Asymmetric shared memory architectures have processing elements with varying features that

can all access a shared memory. The cores may vary by instruction set, clock frequency, capa-

bilities or other features and are interconnected in a number of  ways. Having shared memory,

even though the processing elements varies, enables programmers to directly access data on all

cores allowing for convenient inter process communication. There are several good reasons to

have asymmetric cores in a modern architecture. For example, by having specialized capabilities

enabling efficient processing of  particular workloads such as network traffic, vector mathematics

or cryptographic functions, performance can be increased considerably. Another reason is to

avoid duplicating unneeded capabilities, e.g., vector instructions may not be needed on process-
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ing elements that only work on scalar data. Further, clock frequencies can be scaled to match

resource requirements and power budgets.

One example of  asymmetric shared memory architectures is the IXP architecture, originally

developed by Intel and now owned by Netronome, designed for high throughput, low latency

network processing. The IXP2400 has 8 specialized network processors called µ engines, coupled

with an ARM core running a traditional operating system. Several memory types are available

including SRAM, DRAM and CAM, all with different properties, but available for direct use

by the different processing elements. More details of  this is given in section 2.3.2, where we

look at a particular application of  network processing on this architecture. Asymmetric cores

are particularly interesting in the domain of  low power devices since unneeded capabilities can

be disabled on some of  the cores to reduce power consumption. One example of  this is the

Tegra 3 processor from Nvidia with what they refer to as Variable Symmetric Multiprocessing

[40]. In this processor, the asymmetry is in the manufacturing technology of  the cores, i.e., one

or more cores use fast switching gates allowing high throughput (and clock frequency), while

others use power efficient gates limiting clock frequency, with the benefit of  low power usage

when little computational resources are required. The Tegra 3 processor has four fast cores, and

one companion (slow) core, and in this implementation, the switch from one to four or vice versa

is transparent to the software.

2.3.2 Case study: Video protocol translation on IXP

Streaming services are today almost everywhere available. Major newspapers and TV stations

make on-demand and live audio/video (A/V) content available, video-on-demand services are

becoming common and even personal media are frequently streamed using services like pod-

casting or uploading to streaming sites such as YouTube.

The discussion about the best protocols for streaming has been going on for years. Initially,

streaming services on the Internet used UDP for data transfer because multimedia applications

often have demands for bandwidth, reliability and jitter than could not be offered by TCP. To-

day, this approach is impeded with middleboxes in Internet service providers (ISPs), by firewalls

in access networks and on end-systems. ISPs reject UDP because it is not fair against TCP traffic,

many firewalls reject UDP because it is connectionless and requires too much processing power

and memory to ensure security. It is therefore fairly common to use HTTP-streaming, which de-

livers streaming media over TCP. The disadvantage is that the end-user can experience playback

hiccups and quality reductions because of  the probing behavior of  TCP, leading to oscillating
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throughput and slow recovery of  the packet rate. A sender that uses UDP would, in contrast to

this, be able to maintain a desired constant sending rate. Servers are also expected to scale more

easily when sending smooth UDP streams and avoid dealing with TCP-related processing.

To explore the benefits of  both TCP and UDP, we experiment with a proxy that performs

a transparent protocol translation. This is similar to the use of  proxy caching that ISPs employ

to reduce their bandwidth, and we do in fact aim at a combined solution. There are, however,

too many different sources for adaptive streaming media that end-users can retrieve data from

to apply proxy caching for all of  them. Instead, we aim at live protocol translation in a TCP-

friendly manner that achieves a high perceived quality to end-users. Our prototype proxy is

implemented on an Intel IXP2400 network processor and enables the server to use UDP at the

server side and TCP at the client side.

In this section, we describe our IXP2400 implementation of  a dynamic transport proto-

col translator. Preliminary tests comparing HTTP video streaming from a web-server and

RTSP/RTP-streaming from the komssys video server show that, in case of  some loss, our so-

lution using a UDP server and a proxy later translating to TCP delivers a smoother stream at

play out rate while the TCP stream oscillates heavily. This work was first presented at ACM

Multimedia 2007 [41], and later demonstrated live at ACM NOSSDAV 2008 [42].

Related Work

Proxy servers have been used for improved delivery of  streaming media in numerous earlier

works. Their tasks include caching, multicast, filtering, transcoding, traffic shaping and priori-

tizing. In this work, we want to draw attention to issues that occur when a proxy is used to trans-

late transport protocols in such a way that TCP-friendly transports mechanisms can be used in

backbone networks and TCP can be used in access networks to deliver streaming video through

firewalls. Krasic et al. argue that the most natural choice for TCP-friendly traffic is using TCP it-

self [43]. While we agree in principle, their priority progress streaming approach requires a large

amount of  buffering to hide TCP throughput variations. In particular, this smoothing buffer is

required to hide the rate-halving and recovery time in TCP's normal approach of  probing for

bandwidth that grows proportionally with the round-trip time. To avoid this large buffering re-

quirement at the proxy, we would prefer an approach that maintains a more stable packet rate

at the original sender. The survey presented in [44] shows that TFRC is a reasonably good

representative of  the TCP-friendly mechanisms for unicast communication. Therefore, we have

chosen this mechanism for the following investigation.
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Figure 2.18: System overview

With respect to the protocol translation that we describe here, we do not know of  much

existing work, but the idea is similar to the multicast-to-unicast translation [45]. We have also

seen voice-over-IP proxies translating between UDP and TCP. In these examples, a packet is

translated from one type to another to match the various parts of  the system, and we here look

at how such an operation performs in the media streaming scenario.

Translating proxy

An overview of  our protocol translating proxy is shown in figure 2.18. The client and server

communicates by the proxy, which transparently translates between HTTP and RTSP/RTP.

Both peers are unaware of  each other.

The steps and phases of  a streaming session follows: The client sets up a HTTP streaming

session by initiating a TCP connection to the server; all packets are intercepted by the proxy,

and modified before passing it on to the streaming server. The proxy also forwards the TCP

3-way handshake between client and server, updating the packet with the server's port. When

established, the proxy splits the TCP connection into two separate connections that allow for

individual updating of  sequence numbers. The client sends a GET request for a video file. The

proxy translates this into a SETUP request and sends it to the streaming server using the TCP

port of  the client as its proposed RTP/UDP port. If  the setup is unsuccessful, the proxy will

inform the client and close the connections. Otherwise, the server's response contains the con-

firmed RTP and RTCP ports assigned to a streaming session. The proxy sends a response with an

unknown content length to the client and issues a PLAY command to the server. When received,

the server starts streaming the video file using RTP/UDP. The UDP packets are translated by

the proxy as part of  the HTTP response, using the source port and address matching the HTTP

connection. Because the RTP and UDP headers combined are longer than a standard TCP

header, the proxy can avoid the penalty of  moving the video data in memory, thus permitting

reuse of  the same packet by padding the TCP options field with NOPs. When the connection
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Figure 2.19: ENP-2611 from RadiSys with an IXP2400 Network Processor. The ENP-2611 is a
PCI-X card working independently of  the host computer. It allows DMA transfers to and from
the host computer using the PCI bus.

is closed by the client during or after playback, the proxy issues a TEARDOWN request to the

server to avoid flooding the network with excess RTP packets.

Implementation

Our prototype is implemented on a programmable network processor using the IXP2400 chipset [46].

The chipset is a second generation, highly programmable network processor (NPU) and is de-

signed to handle a wide range of  access, edge and core network applications. The basic elements

include a 600 MHz XScale (ARM compatible) core running Linux or VxWorks, eight 600 MHz

special packet processors called microengines (µEngines), several types of  memory and different

controllers and buses.

With respect to the different CPUs, the XScale is typically used for the control plane (slow

path), while the µEngines perform general packet processing in the data plane (fast path). The

three memory types are used for different purposes, according to access time and bus bandwidth,

the 256 MB SDRAM is used for packet store, the 8 MB SRAM for meta-data, tables and stack

manipulation, and the 16 kB scratchpad (on-chip) for synchronization and inter-process com-

munication. The physical interfaces are customizable, and can be chosen by the manufacturer

of  the device where the IXP chipset is integrated. The number of  network ports and the network

port type are also customizable.

The major functional blocks of  the IXP2400 architecture are shown in figure 2.20. The

µEngines are grouped together in clusters of  four, which can communicate by next-neighbour

registers internally. In normal configurations, two µEngines are reserved for low-level network

receive and transmit functions, leaving six µEngines available for application usage.

The SDK includes a specialized C compiler for the MicroC language where the µEngines
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Figure 2.20: IXP2400 architecture overview. The figure is from an Intel product brief  on
IXP2400 [1]

can be programmed. MicroC is a C-like language allowing rapid development and reuse of  code.

Synchronization and message passing between the cores can be performed as atomic operations

on dedicated hardware channels known as scratch rings. Using a NPU for a network application

allows processing on network wire speed, in the case of  the IXP2400, up to 2.5 GBps, with very

low latency [1]. Such performance can be achieved due to the dedicated architecture for network

processing, and software implementation. Packet processing can be done with a limited proto-

col stack, allowing minimal processing overhead both for extracting information and updating

network packets. This makes network processors ideal for high-performance, low-complexity

network operations like statistics collection, deep packet inspection, or packet rewriting.

The transport protocol translation operation2 is shown in figure 2.21. The protocol trans-

lation proxy uses the XScale core and one µEngine application block. In addition, we use two

µEngines for the receiving (RX) and the sending (TX) blocks. Incoming packets are classified

by the µEngine based on the header. RTSP and HTTP packets are enqueued for processing on

2Our proxy also performs proxying of  normal RTSP sessions and transparent load balancing between streaming
servers, but this is outside of  the scope of  this work. We also have unused resources (µEngines) enabling more
functionality.
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Figure 2.21: Protocol translator packet flow on the IXP2400

the XScale core (control path) while the handling of  RTP packets is performed on the µEngine

(fast path). TCP acknowledgements with zero payload size are processed on the µEngine for

performance reasons.

The main task of  the XScale is to set up and maintain streaming sessions, but after the ini-

tialization, all video data is processed (translated and forwarded) by the µEngines. The proxy

supports a partial TCP/IP implementation, covering basic features. This is done to save both

time and resources on the proxy.

To be fair to competing TCP streams, we implemented congestion control for the client loss

experiment. TFRC [47] computation is used to determine the bandwidth available for streaming

from the server. TFRC is a specification for best effort flows competing for bandwidth, designed

to be reasonable fair to other TCP flows. The outgoing bandwidth is limited by the following

formula:

X =
s

R ∗
√

2 ∗ b ∗ p
3 + (tRTO ∗ 3 ∗

√
3 ∗ b ∗ p

8 ∗ p ∗ (1 + 32 ∗ p2))

where X is the transmit rate in bytes per second, s is the packet size in bytes, R is the RTT

in seconds, b is the number of  packets ACKed by a single TCP acknowledgment, p is the loss

event rate (0-1.0), and tRTO is the TCP retransmission timeout. The formula is calculated on a

µEngine using fixed point arithmetic. Packets arriving at a rate exceeding the TFRC calculated

threshold are dropped.

We are aware that this kind of  dropping has different effects on the user-perceived quality
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than sender-side adaptation. We have only made preliminary investigations on the matter and

leave it for future work. In that investigation, we will also consider the effect of  buffering for at

most 1 RTT.

Network Experiments and Results

We investigated the performance of  our protocol translation proxy compared to plain HTTP-

streaming in two different settings. In the first experiment, we induced unreliable network behav-

ior between the streaming server and the proxy, while in the second experiment, the unreliable

network connected proxy and client. We performed several experiments where we examined

both the bandwidth and the delay while changing both the link delays (0 - 200 ms) and the

packet drop rate (0 - 1 %). We used a web-server and an RTSP video server using RTP stream-

ing, running on a standard Linux machine. Packets belonging to end-to-end HTTP connections

made to port 8080 were forwarded by the proxy whereas packets belonging to sessions initiated

by connection made to port 80 were translated. The bandwidth was measured on the client

by monitoring the packet stream with tcpdump. Only the server-proxy loss experiments are

reprinted here, and for the full evaluation consult the paper [41].

The results from the test where we introduced loss and delay between server and proxy are

shown in figure 2.22. The plot show that our proxy that translates transparently from RTP/UDP

to TCP achieves a mostly constant rate for the delivered stream. Sending the HTTP stream from

the server, on the other hand, shows large performance drops when the loss rate and the link delay

increase.

Discussion

Even though our proxy seems to give better, more stable bandwidths, there is a trade-off, be-

cause instead of  retransmitting lost packet (and thus old data if  the client does not buffer), the

proxy fills the new packet with new updated data from the server. This means that the client

in our prototype does not receive all data, and some artifacts may be displayed. On the other

hand, in case of  live and interactive streaming scenarios, delays due to retransmission may in-

troduce dropped frames and delayed play out. This can cause video artifacts, depending on the

codec used. However, this problem can easily be reduced by adding a limited buffer per stream

sufficient for one retransmission on the proxy.

One issue in the context of  proxies is where and how it should be implemented. For this study,

we have chosen the IXP2400 platform as we earlier have explored the offloading capabilities
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(a) HTTP streaming

(b) Protocol translation

Figure 2.22: Achieved bandwidth varying drop rate and link latency with 1% server-proxy loss

of  such programmable network processors. Using such an architecture, the network processor

is suited for many similar operations, and the host computer could manage the caching and

persistent storage of  highly popular data served from the proxy itself. However, the idea itself

could also be implemented as a user-level proxy application or integrated into the kernel of  an

intermediate node performing packet forwarding at the cost of  limited scalability and a potential

higher latency.

Summary

Both TCP and UDP have their strengths and weaknesses. In this case study, we used a proxy

that performed transparent protocol translation to utilize the strengths of  both protocols in a

streaming scenario. It enabled the server to use UDP on the server side and TCP on the client

side. The server gained scalability by not having to deal with TCP processing. On the client side,
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the TCP stream was not discarded and passed through firewalls. The experimental results show

that our protocol transparent proxy achieved translation and delivers smoother streaming than

HTTP-streaming.

2.3.3 Implications

The shared memory of  these architectures make them easy to program, but at the potential

cost of  unnecessary memory transfers by prefetching to local caches. Further, cache coherency

protocols themselves consume resources and may inhibit scalability. Heterogeneous cores may

require several versions of  the same code to be written depending on what processing element

that executes it. In terms of  multimedia processing, shared memory is beneficial with regard to

programmability, but may be unnecessary when the data access patterns are highly local. We

saw in section 2.3.2 how using shared memory provided flexible data transfers between the cores

in combination with a hardware assisted FIFO for signaling. However, the asymmetric cores also

require specialized tools, compilers and a complicated development environment forcing soft-

ware to be written from scratch for the architecture. The advantage gain of  such an architecture

thus depends on the application; the highly optimized hardware capabilities and low latency

benefits may outweigh the programming complexity when they are needed. It is fairly obvious

that writing the protocol translating proxy software on a standard Linux box would require sig-

nificantly less effort, but performing at line speed 1 Gbps and beyond is not something easily

accomplished on a standard PC until recently. As such, the asymmetric architectures provide

great flexibility and performance at the cost of  portability of  the application.

2.4 Portability, scalability and performance

What we see in common for all these architectures is that code partitioning, code placement and

data locality all have huge effect on the achieved performance. The implication is that major

architecture adaptations are required at the cost of  portability. The typical scenario is a static

schedule made with consideration to the architecture, e.g., tied to a specific GPU generation or

CPU vector extensions instruction set, requiring duplication of  effort to run on other hardware.

A static schedule and code partition works fine in a dedicated processing scenario where one

machine is set to perform one particular task continuously. However, if  we change the workload

(e.g., higher image resolution or a new stage in a pipeline), the static schedule may have to be

remade, and depending on how the programs are structured, require a significant amount of
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work. Similarly, if  the available computational resources change, e.g., by running on different (but

compatible) hardware or by sharing resources with other applications, the static schedule may fail

as well. In summary, we have seen that using different architectures for processing multimedia

workloads can provide significant performance, but the cost of  portability and scalability is high,

requiring significant architecture adaptations to perform, or in some cases a complete rewrite of

the workload.

The biggest challenge we saw was the very different memory layouts in the various architec-

tures. This was even a problem with various implementations of  the traditional x86 architecture

resulting in different programs performing better depending on if  it was running on an AMD

or Intel processor - even though the instruction sets are identical. Much larger differences were

observed when running on more exotic hardware such as the Cell Broadband Engine or Graphic

Processors, were data partitioning in suitable chunks for processing played a huge role in the effi-

ciency. In other words, having the relevant data ready to go when needed is imperative, and this is

true whether we have a explicitly managed cache such as the local storage on Cell, or advanced

hardware prefetching algorithms such as on Intel's Sandy Bridge microarchitecture.

By recognizing the limitations of  the architectures, we will unify the differences in the next

chapter, and propose a system for generalizing multimedia workloads in such a way that they can

easily be ported between heterogeneous architectures. Further, such a system can help provide

elasticity to scale resource usage to workload requirements and help various workloads share

computational resources.

2.5 Summary

In this chapter, we have looked at case studies showcasing architecture considerations when

running multimedia workloads on modern processors. Obtaining high performance requires

detailed architecture knowledge and adaptations to the target architecture and severely limits

portability of  stand alone workloads. As such, using a framework that can provide dynamic

scheduling for executing these types of  workloads may provide better portability and dynamic

resource usage.
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Chapter 3

The P2G Framework

Inspired by the results of  the previous chapter, we see a large potential for creating an abstraction

for the low level architecture in such a way that we can retain the performance of  hand-tuned

multimedia applications while simultaneously providing portability to heterogeneous architec-

tures. We found no existing system that provides such support, and to achieve this, we developed

the P2G framework, an experimental platform for elastic execution and runtime scheduling of

multimedia workloads, intrinsically designed with the following basic functions:

Abstractions suitable for multimedia workloads. Although multimedia workloads come

in many forms, we pursue a suitable model for expressing workloads that transform dense

data, typically expressed as matrices or similar structures. This is very different from

MapReduce and other batch data processing models used in many elastic and distributed

frameworks today.

Runtime support for running on heterogeneous architectures. Heterogeneous architec-

tures present challenges otherwise not encountered in traditional computing. These in-

clude mapping the correct workloads to computational resources, but also dealing with

multiple binary interfaces and instruction sets.

System elasticity allows the system to adapt to varying external conditions (resources), mean-

ing that when available computational resources fluctuate, the runtime should continu-

ously optimize the performance to match the available resources. System elasticity can

be caused by sharing resources with other applications in a virtual machine, or executing

multiple independent workloads executed on the system concurrently.

63
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Workload elasticity allows the workload's computational requirements to change during run-

time and the system should adapt to maximize the performance. Examples include dy-

namically adding or removing input streams (such as cameras), or modifying the pipeline

while running. This is similar to system elasticity, but in contrast to the external events in

system elasticity, the cause of  change is internal.

Intrinsic soft real-time capabilities. Exposing deadlines directly in the framework allows

the runtime to deal with deadline misses in a graceful manner, including mitigation tech-

niques and down-prioritization of  less important tasks.

Many frameworks and systems exist for elastic execution of  batch workloads, but to our

knowledge, no framework exists designed with these properties in mind. As such, we devel-

oped the P2G framework to experiment and evaluate whether these properties are achievable

from a system's perspective.

The P2G project was developed in a collaboration of  several PhD and Master students, and

has many aspects that are not fully evaluated in this thesis, including support for distributed ex-

ecution. In this chapter, we present the background and motivation for creating the framework,

as well as design considerations and related work. In the last part of  the chapter (section 3.5),

we explain our prototype implementation and an evaluation of  the prototype. The P2G project

was first presented at IEEE SRMPDS, a workshop co-located with ICPP 2011 [48], and the

prototype was later demonstrated live at ACM Multimedia 2011 [49] and Eurosys 2011 [50].

3.1 Related Work

A lot of  research has been dedicated to addressing the challenges introduced by parallel and

distributed programming. This has led to the development of  a number of  tools, programming

languages and frameworks to ease the development effort.

For example, several solutions have emerged for simplifying distributed processing of  large

quantities of  data. We have already mentioned Google's MapReduce [12] and Microsoft's Dryad [51].

In addition, there are IBM's System S and the accompanying programming language SPADE [52].

Yahoo has also implemented a programming language with their PigLatin language [53]. Other

notable systems that provide increased language support are Cosmos [54], Scope [55], CIEL [56],

SNAPPLE [57] and DryadLINQ [58]. These high-level languages provide easy abstractions for

the developers in an environment where mistakes are hard to correct.
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Dryad, Cosmos and System S have many properties in common. They all use directed graphs

to model computations and execute them on a cluster. System S also supports cycles in graphs,

while Dryad supports non-deterministic constructs. However, not much is known about these

systems, since no open implementations are freely available. MapReduce on the other hand has

become one of  the most-cited paradigms for expressing parallel computations. While Dryad and

System S use a task-parallel model, MapReduce uses a data-parallel model based on keys and

values. There are several implementations of  MapReduce for clusters [11], multi-core [59], the

Cell BE architecture [60], and also for GPUs [61]. Map-Reduce-Merge [62] adds a merge step

to process data relationships among heterogeneous data sets efficiently, operations not directly

supported by the original MapReduce model. In Oivos [63], the same issues are addressed, but

in addition, this system provides a more expressive, declarative programming model. Finally, re-

ducing the layering overhead of  software running on top of  MapReduce is the goal of  Cogset [64]

where the processing architecture is changed to increase performance.

An inherent limitation of  MapReduce, Dryad and Cosmos is their inability to model iterative

algorithms. In addition, the rigid MapReduce semantics does not map well to arbitrary prob-

lems [62], which may lead to unnaturally expressed solutions and decreased performance [65].

The limited support for iterative algorithms has been mitigated in HaLoop [66], a fork of  Hadoop

optimized for batch processing of  iterative algorithms where data is kept local for future iterations

of  the MapReduce steps. Furthermore, the programming model of  MapReduce is designed for

batch processing huge datasets, and not well suited for multimedia algorithms.

Kahn Process Network-based (KPN) frameworks are one alternative to batch processing

frameworks. KPNs support arbitrary communication graphs with cycles and are determin-

istic. However, in practice, very few general-purpose KPN runtime implementations exist.

Known implementations include the Sesame project [67], the process network framework [68],

YAPI [69] and our own Nornir [70]. These frameworks have several benefits, but for applica-

tion developers, the KPN model poses some challenges, particularly in a distributed scenario. To

mention some issues, a distributed version of  a KPN implementation requires distributed dead-

lock detection and a developer must specify communication channels between the processes

manually.

An alternative framework based on a process network paradigm is StreamIt [71], which com-

prises a language and a runtime system for simplifying the implementation of  stream programs

described by a graph that consists of  computational blocks (filters) with a single input and output.

Filters can be combined in fork-join patterns and loops, but must provide bounds on the number
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of  produced and consumed messages, so a StreamIt graph is actually a synchronous data-flow

process network [72]. The compiler produces code that can make use of  multiple machines or

CPUs, whose number is specified at compile-time, i.e., a compiled application cannot adapt to

resource availability.

The processing and development of  distributed multimedia applications is inherently more

difficult than traditional sequential batch applications. Multimedia applications have strict per-

formance requirements, and real-time awareness is necessary, especially in a live scenario. For

multimedia applications that enable live communication, iterative processing is essential. Also,

elastic scaling with the available resources becomes imperative when the workload, requirements

or machine resources change. All of  the existing frameworks have some shortcomings that are

difficult to address, and the traditional batch processing frameworks come up short in our mul-

timedia scenario. Next, we present our ideas for a new framework for distributed real-time

multimedia processing.

3.2 Basic idea

The idea of  P2G was born out of  the observation that most distributed processing framework

lack support for real-time multimedia workloads, and that many of  them sacrifice either data or

task parallelism, two orthogonal dimensions for expressing parallelism. With data parallelism,

multiple CPUs perform the same operation over multiple disjoint data chunks. Task parallelism

uses multiple CPUs to perform different operations in parallel. Several existing frameworks

optimize for either task or data parallelism, not both. In doing so, they limit the ability to express

parallelism of  a given workload. For example, MapReduce and its related approaches provide

considerable power for parallelization, but they also restrict runtime processing to the domain

of  data parallelism [73]. Functional languages such as Erlang [74] and Haskell [75] and the

event-based Specification and Description Language (SDL) [76], map well to task parallelism.

However, functional languages fail because the step from math formulas to recursive formulation

is too hard for most programmers and using global state is excessively hard, and thus not very

suited for multimedia workloads.

In our prior work with the system Nornir [70], we improved on many of  the shortcomings of

the traditional batch processing frameworks, like MapReduce [12] and Dryad [51]. Nornir was

not designed for multimedia processing specifically, and implements instead the general concept

of  KPN. KPNs are deterministic; each execution of  a process network produces the same output



3.2. Basic idea 67

given the same input. KPNs support also arbitrary communication graphs (with cycles/itera-

tions), while frameworks like MapReduce and Dryad restrict application developers to a parallel

pipeline structure and directed acyclic graphs. However, Nornir is task-parallel, and the pro-

grammer must add data-parallelism explicitly. Furthermore, as a distributed, multi-machine

processing framework, Nornir still has some challenges. For example, the message-passing com-

munication channels, connecting exactly one sender and one receiver, are modeled as infinite

FIFO queues. In real-life distributed implementations, however, queue length is limited by avail-

able memory. A distributed Nornir implementation would therefore require a distributed dead-

lock detection algorithm. Another issue is the complex programming model. The KPN model

requires the application developer to specify the communication channels between the processes

manually. This requires the developer to think differently than for other distributed frameworks.

With the P2G approach presented here, we build on the knowledge gained from develop-

ing Nornir and address the requirements from multimedia workloads, with inherent support for

deadlines. A particularly desirable feature for processing multimedia workloads includes auto-

matically combined task and data parallelism. Intra-frame prediction in H.264 AVC, for ex-

ample, introduces many dependencies between sub-blocks of  a frame, and together with other

overlapping processing stages, these operations have a high potential for benefiting from both

types of  parallelism. We demonstrated the potential in earlier work with Nornir and showed

great parallelization potential in processing arbitrary dependency graphs.

Multimedia algorithms, being cyclic in nature, exhibit many pipeline-parallel opportunities.

Exploiting them is hard because intrinsic knowledge of  fine-grained dependencies is required,

and structuring programs in such a way that pipeline parallelism can be used is difficult. Thies

et al. [77] wrote an analysis tool for finding parallel pipeline opportunities by evaluating mem-

ory accesses assuming that the behaviour is stable. They evaluated their system on multimedia

algorithms and gained significantly increased parallelism by utilizing the complex dependencies

found. In the P2G framework, application developers model data and task dependencies explic-

itly, and this enables the runtime to automatically detect and take full advantage of  all parallel

opportunities without manual intervention.

A major source of  non-determinism in other languages and frameworks lies in the arbitrary

order of  read and write operations to and from memory. The source of  this non-deterministic be-

havior can be removed by adopting strict write-once semantics for writing to memory [78]. Lan-

guages that take advantage of  this concept, also known as single assignment, include Erlang [74]

and Haskell [75]. It enables schedulers to determine when code depending on a memory cell is
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runnable. This is a key concept that we adopted in P2G. While write-once semantics are con-

venient for a scheduler's dependency analysis by allowing the dependency tree to be expanded

into a DAG, it is not straight-forward to think about multimedia algorithms in functional terms

such as the language of  Erlang or Haskell. Therefore we invented a new and different approach

for P2G.

Multimedia algorithms are often formulated in terms of  cycles of  sequential transformation

steps. They act on multi-dimensional arrays of  data (e.g., pixels in a picture) and provide fre-

quently very intuitive data partitioning opportunities (e.g., 8x8-pixel macro-blocks of  a picture).

Prominent examples are the computation-heavy MPEG-4 AVC encoding [79] and SIFT [80]

pipelines. Both are also examples of  algorithms whose consecutive steps provide data decom-

position opportunities at different granularities and along different dimensions of  input data.

Consequently, P2G should allow programmers to think in terms of  arrays without loosing write-

once semantics.

3.2.1 Flexible partitioning using fields

The P2G system is designed to be flexible, both for the workload writer and from a runtime

perspective. To achieve this, we provide flexible partitions of  data, termed field, to abstract data

access. A field allows workload writers to access data elements in a similar way as traditional

multi-dimensional arrays, but with an important restriction: Data elements can only be written

once.

This simple restriction forms the core of  the P2G idea. By supporting the familiar concept

of  multi-dimensional arrays in combination with sequential code blocks performing work on

the fields, we provide programmers with a simple to use interface for workloads. At the same

time, the write-once semantics is very powerful; it allows the runtime system to analyze code and

data dependencies completely at the finest level of  granularity without manual specification. As

such, by using fields to describe a workload instead of  traditional arrays, the runtime can analyze

exactly what data is required to perform the next step and also determine the operations that

can be executed in parallel without side effects. The fields allow the system to perform flexible

partitioning of  data at runtime. Further, code dependencies are also exposed when using the

fields because code can only run when the field elements it depends upon have been written to.

Since this can only happen once, the execution of  a code block can start as soon as the field is

written to. Note that since the values in a field will never change once set, it is safe to make a

copy of  the content and run the code in isolation, e.g. on a different core or another machine.
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Figure 3.1: One kernel reading data from Field A, applies a function and writes the result to
Field B. Note that most elements of  Field B is empty, and cannot be read by another kernel until
written to, resulting in an implicit dependency.

We call these code blocks kernels.

Kernels have strict dependencies that must be fully satisfied before execution. The depen-

dencies are specified as fetch operations on a number of  field elements. As a result of  execution,

the kernel outputs a number of  elements in one or more fields using store operations, which in

turn satisfy dependencies for other kernels. See figure 3.1 for an example on how this is done.

The kernels and fields are central concepts of  the P2G idea, and in combination they give the

runtime full knowledge of  data and code dependencies without manually specifying these in an

additional meta language. This allows the runtime to make side-effect free decisions on where a

particular kernel should be run, when it is able to run, and what data must have been produced

by earlier kernels for it to be able to run. The write-once requirement of  fields ensures determin-

istic output regardless of  execution order and where a kernel executes. The dependency analysis

can be performed at runtime, at compile time or in a combination and allows the runtime great

flexibility on the way in which it executes a workload.

In its basic form, a kernel describes the transformation of  one or more multi-dimensional

input fields to output fields. The fields provide virtual access to data regardless of  where it actually

resides, e.g., the the data can be in memory, on disk or on a remote machine. Reading or writing

data from or to fields forms implicit dependencies, which are used to control execution of  the

workload. The fields can be of  any number of  dimensions, and we do not restrict the access

pattern. This allows us to read or write in arbitrary order, which forms dependencies on the

exact data needed. An example is shown in figure 3.2, where a stencil kernel accesses a 2D field.

This notion of  arbitrary access is inspired by Cray's Chapel language [81], which allows complex

reading and writing of  multidimensional arrays. Chapel, however, does not have the assumption

of  write-once semantics, which makes it a very different language and framework than P2G.
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Kernel

Field A Field B

Figure 3.2: 2D-Field A is input to our stencil kernel, resulting in Field B. Dependencies are
resolved as needed, so not all data in Field A need to be stored for the kernel to run, allowing
side effect free execution.

3.2.2 Write-once semantics

The fields have strict write-once semantics, implying that a particular data point will never change.

If  a kernel tries to read an unwritten data point, the dependency analyzer will stall this kernel

until the required data is written. This is in contrast to a traditional blocking read, which stalls at

the time of  read - P2G does not even try to run the kernels when dependencies are not satisfied.

The write-once policy further implies that two kernels will never write to the same location in

memory. The write-once policy has several benefits, easily exploited in our framework: First, the

execution is deterministic regardless of  execution order, allowing the scheduler to run kernels in

any order (as long as the dependencies are satisfied). This property is common in functional pro-

gramming languages, and allows us to avoid sorting execution order of  kernel instances. Second,

the property of  write-once semantics allows side-effect free parallelism. Since kernels running

in parallel will never write to the same location in memory, they can run in total isolation with-

out synchronization, allowing us to move a kernel to another core or another machine entirely

without considering parallel synchronization other than through fields. This enables convenient

execution on exclusive memory architectures as we saw in section 2.2, letting the scheduler know

that all dependencies are satisfied before execution. Third, since we have fine-grained depen-

dencies on the smallest units of  data, we can start the execution of  kernels that read from a field

produced by another kernel before all elements in this field are written.

Using write-once semantics of  the fields, we try to combine the side-effect free and efficient ex-

ecution of  functional programming languages, with the ease of  programming multimedia work-

loads in imperative programming languages. We see the kernels as functional blocks that trans-

form one field into another. The write-once semantics of  the fields forms an implicit dependency

graph between all elements of  the fields. The dependencies can be further expanded into a di-
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rected acyclic graph at runtime and analyzed in many ways before execution. How this is done

is an implementation question, and we describe this further in section 3.5 covering our prototype

implementation.

3.2.3 Kernels

A kernel is the other basic building block in the P2G framework. Kernels perform fetch and store

operations on fields, and apply a transformation of  the input data to the output. As such, kernels

can be seen as mathematical functions, and we have designed the P2G language to support

traditional imperative code to do the transformation. This transformation code can be written

in any language as long as appropriate bindings are provided. In the prototype covered later, we

use a C++ binding for writing kernel code.

A kernel describes the dependencies between fields and their elements and is written using

relative terms, e.g., it takes two subsequent elements in a 1D-field as input and outputs one

element to another 1D-field. A specific instance of  this kernel, taking a specific pair of  field

elements as inputs and another field element as output is called a kernel instance. Splitting a field

into smaller units for use in a single kernel instance is called field slicing and is a concept that we

adopted from the Python programming language [82]. Since kernel instances rely only on fields,

they can be executed in arbitrary order once the dependencies are satisfied. Multiple versions of

a kernel can be defined providing code for different architectures or implementations, allowing a

GPU version of  a specific kernel to co-exist with an x86 version. Note that after an instance of  a

kernel version has run, another version of  the same instance cannot execute since they will store

the result to the same field elements. As such, the dependencies for running a specific kernel

instance are only satisfied once.

3.2.4 Aging

Having the kernels and fields as defined above, we can apply transformations on the input data

in a deterministic manner. However, to support cyclic workloads, which were a goal from the

beginning, we need a mechanism for handling continuous data streams. To support this, we

introduce the concept of aging fields. The age adds a new dimension to all fields, allowing us to

add a new age to a field when a new round in a cycle starts. The concept of  aging allows us to

keep strict write-once semantics while at the same time enabling us to support arbitrarily long

cycles.
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3.2.5 P2G Goals

Together, the these four basic ideas form the design of  the P2G framework:

• The use of multi-dimensional fields as the central concept for storing data in P2G to achieve

straight-forward implementations of  complex multimedia algorithms.

• The use of write-once semantics for the fields to achieve deterministic behavior and side-effect

free parallelism.

• The use of kernels that process slices of  fields to achieve data decomposition.

• The use of runtime dependency analysis at a granularity finer than entire fields to achieve task

decomposition along with data decomposition.

Within the boundaries of  these basic ideas, P2G should be easily accessible for programmers

who only need to write isolated, sequential pieces of  code embedded in kernel definitions. The

multi-dimensional fields offer a natural way to express multimedia data, and provide a direct way

for kernels to fetch slices of  a field in as fine granularity as possible, supporting data parallelism.

P2G is designed to be language independent, although, we have defined a C-like language that

captures many of  P2G's central concepts. As such, the P2G language is inspired by many exist-

ing languages. In fact, Cray's Chapel [81] language antedates many of  P2G's kernel language

features in a more complete manner. P2G adds, however, write-once semantics and support

for multimedia workloads. Furthermore, P2G programs consist of  interchangeable language

elements that formulate data dependencies between implicitly instantiated kernels, which are

(currently) written in C/C++. The biggest deviation from most other modern language designs

is that the P2G kernel language makes both message passing and parallelism implicit and allows

users to think in terms of  sequential data transformations.

In summary, we have opted for an idea that allows programmers to focus on data transfor-

mations in a sequential manner, while simultaneously providing enough information for dynam-

ically adapting the data and task parallelization. As an end result of  our considerations, P2G's

fields look mostly like global multi-dimensional arrays in C, although their representation in

memory may deviate, i.e., they need not be placed contiguously in the memory of  a single node,

can be distributed across multiple machines or may not exist in memory at all. Although this

looks contrary to our message-based KPN approach used in Nornir [83], it maps well when slices

of  fields are interpreted as messages and the run-queues of  worker threads as KPN channels. An
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Figure 3.3: Overview of  the architecture in a distributed P2G system.

obvious difference is that fields can be read as often as necessary, but this can be interpreted as

an invisible copying KPN process.

3.3 Architecture

As shown in figure 3.3, the P2G architecture consists of  a master node and an arbitrary num-

ber of execution nodes. Each execution node reports its local topology (a graph of  multi-core and

single-core CPUs and GPUs, connected by various kinds of  busses and other networks) to the

master node. Finally, the master node compiles this information into a global topology of  avail-

able resources. As such, the global topology can change during runtime as execution nodes are

dynamically added and removed to accommodate changes in the global load.

Input: m_data[0 : n− 1]
Output: p_data[0 : n− 1]
while true do

mul2 kernel:
for i← 0 to n do

p_data[i]← m_data[i] ∗ 2
end
plus5 kernel:
for i← 0 to n do

m_data[i]← p_data[i] + 5
end

end
Algorithm 1: Mul-Sum example workload



74 Chapter 3. The P2G Framework

The P2G system is designed to handle distributed computing as well as processing on a single

machine. To optimize throughput, we propose using a two-level scheduling approach: On the

master node, we have a high-level scheduler, and on the execution node(s), we use a low-level

scheduler. The operating system scheduler is decoupled by pinning thread affinity, hence the

P2G low-level schedulers can anticipate and mitigate cache affinity issues, whose importance

we saw in section 2.1.2. Further, an instrumentation daemon provides detailed execution per-

formance parameters to the scheduler in realtime, allowing the scheduler to make appropriate

decisions based on performance data. The high-level scheduler is only used for distributed com-

puting, and is responsible for assigning and distributing work units to the different nodes. This

idea of  using a two level scheduling approach is not new. It has also been considered by Roh et

al. [84], who have performed simulations of  parallel scheduling decisions for instruction sets of  a

functional language. Simple workloads are mapped to various simulated architectures, using a

"merge-up" algorithm, which is equivalent to our low-level scheduler, and "merge-down" algo-

rithm, which is equivalent to our high-level scheduler. These algorithms cluster instructions in

such a way that parallelism is not limited. Their conclusion is that utilizing a merge-down strat-

egy often is better. Although distributed execution in the P2G system is an interesting goal, we

do not thoroughly cover the topic in this thesis. Details on how distributed computing support

can be added to the P2G framework can be found in Paul Beskow's thesis [85], who co-authored

the P2G design and focused on the distributed aspect of  the framework.

3.4 Programming model

The program model of  P2G allows flexible task, data and pipeline parallelism using kernels and

fields as basic constructs. Throughout this section, we use a very simple example, which we

refer to as the mul-sum workload, to demonstrate how the framework is designed. The mul-sum

workload is a very simple workload that takes an array of  integers as input. Every integer is

first multiplied by two by the mul2 kernel and stored to an intermediate array. Elements of  this

array are in turn increased by 5 by the plus5 kernel, producing a new array. This array is used as

input to the mul2 kernel again, and the workloads run continuously. Pseudocode of  the mul-sum

workload is listed as algorithm 1.

The mul-sum workload does not do very useful work, but it allows us do demonstrate various

features of  the P2G framework. P2G can derive an implicit dependency graph from the kernels

and fields, more specifically from the access patterns on fields imposed by fetch and store state-
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Figure 3.4: Implicit dependency graph of  the mul-sum workload.

ments. An illustration of  the implicit dependency graph as seen by the P2G scheduler is shown

in figure 3.4. In addition to the mul2 and plus5 kernels, we have a kernel for initialization and a

kernel that continuously prints the field values to screen. The implicit dependency graph deter-

mines the fields that are required for a kernel to run, and the fields that are produced as a result

of  execution. There is no termination condition for this workload, hence it will run indefinitely

once started.

During runtime, the implicit dependency graph is expanded to form a dynamically created

directed acyclic dependency graph (DC-DAG), as seen in figure 3.5. This expansion from a

cyclic graph to a directed acyclic graph occurs as a result of  our write-once semantics. As such,

we can see how P2G is designed to unroll loops without introducing implicit barriers between

iteration. We have chosen to call each such unrolled loop an Age, as introduced in section 3.2.4.

The low-level scheduler can then use the DC-DAG to combine tasks and data to reduce overhead

introduced by P2G and to take advantage of  specialized hardware, such as GPUs. It can then

try different combinations of  these low-level scheduling decisions to improve the throughput of

the system.

We can see how this is accomplished in figure 3.5. When moving from Age=1 to Age=2, we see

how the low-level scheduler has made a decision to reduce data parallelism. In P2G, kernels fetch

slices of  data, and initially mul2 was defined to work on each single field entry in parallel, but in

Age=2, the low-level scheduler has decreased the granularity of  the fetch statement to encompass

the entire field. It could also have split the field in two, leading to two kernel instances of mul2,

working on distinct sets of  the field.
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Figure 3.5: Dynamically created directed acyclic dependency graph (DC-DAG). The scheduler
makes decisions to reduce task and data parallelization, which are reflected in the dynamically
created graph for every age (iteration).

This granularity reduction is inspired by what Ian Foster introduced as Agglomeration in his

book [86]. Agglomoration means combining tasks into larger tasks, and in this case we reduce

data parallelism based on a scheduler decision. To reduce the overhead of  executing tasks with

small units of  data, the runtime can combine them into larger units.

Moving from Age=2 to Age=3, we see how the low-level scheduler has made a decision to

decrease the task parallelism. This is possible because the mul2 and plus5 kernels effectively form

a pipeline, information that is available from the implicit graph. By combining these two tasks,

the individual store operations of  the tasks are deferred until the data has been fully processed

by each task. If  the print kernel was not present, storing to the intermediate field m_data could be

circumvented entirely.

Finally, moving from Age=3 to Age=4, we can see how a decision to decrease both task and

data parallelism has been taken. This renders this single kernel instance effectively into a clas-

sical for-loop, working on each data element of  the field, with each task (mul2, plus5) performed

sequentially on the data.

P2G makes such runtime adjustments dynamically to both data and task parallelism, based

on the possibly oscillating resource availability and the reported performance monitoring.

3.4.1 Kernel language

From our experience with Nornir, we came to the realization that expressing workloads in a

framework capable of  supporting such complex graphs without a high-level language is a diffi-

cult task. We have therefore developed a kernel language to express relationships between kernels

and fields. An implementation of  the mul-sum workload is outlined in figure 3.6, with a C++

equivalent listed in figure 3.7.
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Kernel definitions:
init:

  local int32[] values;

  %{

    int i = 0;

    for( ;i < 5; ++i )

    {

      put( values, i+10, i );

    }

  %}

  store m_data(0) = values;

mul2:

  age a;

  index x;

  local int32 value;

  fetch value = m_data(a)[x];

  %{

    value *= 2;

  %}

  store p_data(a)[x] = value;

print:

  age a;

  local int32[] m, p;

  

  fetch m = m_data(a);

  fetch p = p_data(a);

  

  %{

  for(int i=0; i < extent(m, 0);)

    cout << get(m, i++) << " ";

  cout << endl;

  for(int i=0; i < extent(p, 0);)

    cout << get(p, i++) << " ";

  cout << endl;

%}

plus5:

  age a;

  index x;

  local int32 value;

  fetch value = p_data(a)[x];

  %{

    value += 5;

  %}

  store m_data(a+1)[x] = value;

Field definitions:

int32[] p_data age;

int32[] m_data age;

Figure 3.6: Mul-Sum workload kernel and field definitions



78 Chapter 3. The P2G Framework

void print( int *in, int num )
{

for( int i = 0; i < num; ++i )
std::cout << in[i] << "␣";

std::cout << std::endl;
}

void mul2(int *in, int *out, int num)
{

for (int i = 0; i < num; ++i)
out[i] = in[i] * 2;

}

void plus5(int *in, int *out, int num)
{

for (int i = 0; i < num; ++i)
out[i] = in[i] + 5;

}

int main()
{

int m_data[5] = { 10, 11, 12, 13, 14 };
int p_data[5];

int num = sizeof(m_data) / sizeof(m_data[0]);

while( true )
{

mul2(m_data, p_data, num);

print( m_data, num );
print( p_data, num );

plus5(p_data, m_data, num);
}
return 0;

}

Figure 3.7: C++ equivalent of  mul/sum example
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In the current version of  our system, P2G is exposed to the developer through this kernel

language. The language itself  is not an integral part and can be replaced easily. However, it exposes

several foundations of  the P2G design. Most important are the kernel and field definitions, which

describe the code and interaction patterns in P2G.

A kernel definition's primary purpose is to describe the required interaction of  a kernel in-

stance with an arbitrary number of  fields (holding the application data) through the fetch and

store statements. As such, a field serves as an interaction point for kernel definitions, as can be

seen in figure 3.4.

Fields in P2G have a number of  properties, including a type and a dimensionality. Another

property is, as mentioned above, aging, which allows kernels to be cyclic while maintaining write-

once semantics in such cyclic execution. Aging enables unique storage to the same position in

a field several times, as long as the age increases for each store operation (as seen in figure 3.5).

In essence, this adds a dimension to the field and makes it possible to accommodate iterative

algorithms. Additionally, it is important to realize that fields are not connected to any single

node, and can be fully localized or distributed across multiple execution nodes (as seen in figure

3.3).

In defining the interaction between kernels and fields, it is encouraged that the program-

mer expresses the finest possible granularity of  kernel definitions, and, likewise, the most precise

slices possible for the kernel within the field. This is encouraged because it provides the low-level

scheduler more control over the granularity of  task and data decomposition. Aided by instru-

mentation data, it can reduce scheduling overhead by combining several instances of  a kernel

that process different data, or several instances of  different kernels that process data in sequence

(as seen in figure 3.5). The scheduler makes its decisions based on the implicit dependency graph

and instrumentation data.

An important aspect of  multimedia workloads is the ability to express deadlines, e.g., where

it does not make sense to encode a video frame if  the playback time has moved past a certain

point in the video-stream. Consequently, we have implemented language support for expressing

deadlines. In principle, a deadline gives the application developer the option of  defining a global

timer: timer t1. This timer can then be polled, and updated from within a kernel definition, for

example t1+100ms or t1 = now. Given a condition based on a deadline such as t1+100ms, a

timeout can occur and an alternate code-path can be executed. Such an alternate code-path is

executed by storing to a different field than in the primary path, leading to new dependencies

and new behavior. Currently, we have basic support for expressing deadlines in the kernel lan-
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guage, but the semantics of  these expressions require refinement, as their implications can be

considerable.

3.4.2 Runtime

Following from the previous discussions, we can extent the concept of  kernel definitions to kernel

instances. A kernel instance is the unit of  code that is executed during runtime, and the number of

kernel instances executed in parallel for a given kernel definition depends on its fetch statements,

known only at runtime.

To clarify, a kernel instance works on an arbitrary number of  slices of  fields, depending on the

number of  fetch statements of  the kernel definition. For example, looking at figures 3.5 and 3.6,

we can see how the mul2 kernel, given its fetch statement on m_data with age=a and index=x fetches

only a single element of  the data. Thus, since the m_data field consists of  five data elements,

this means that P2G can execute a maximum possible x kernel instances simultaneously per age,

giving a*x mul2 kernel instances. As we have seen, this number can be decreased by the scheduler

making mul2 work over larger slices of  data from m_data.

With P2G we support implicit resizing of  fields. This can be witnessed by looking at the

kernel definition of print in figure 3.6. Initially, the extents of m_data and p_data are not defined,

but with each iteration of  the for-loop in init the local field values is resized locally, leading to a resize

of  the global field m_data when values is stored to it. These extents are then propagated to the

respective fields effected by this resize, such as p_data. Following the discussion from the previous

paragraph, such an implicit resize can lead to additional kernel instances being dispatched.

It is worth noting that a kernel instance is only dispatched when all its dependencies are

fulfilled, i.e., the data it fetches has been stored in the respective fields and elements. Looking at

figures 3.5 and 3.6 again, we can see that mul2 stores its result in p_data with age=a and index=x.

This means that once mul2 has stored its results to p_data with index=2 and age=0, the kernel

instance plus5 with the fetch statement fetch(0)[2] can be dispatched. To summarize, the print

kernel instance working on age=0 becomes runnable when all the elements of m_data and p_data

for age=0 have been stored. Once it has become runnable, it is dispatched and runs only once.

3.4.3 Discussion

In P2G, we encourage the programmer to describe the workload in as fine granularity as pos-

sible, both in the functional and data composition domains. The low-level scheduler has an
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understanding of  both composition domains and deadlines. Given this information, the low-

level scheduler can minimize overhead by combining functional components and slices of  data

by adapting to its available resources, be it local cores, or even GPU execution units. Schedul-

ing problems have been researched since the dawn of  computer science and there are many

approaches on how the low-level scheduler can achieve this, including heuristics-, graph- and

feedback-based scheduling techniques. We believe the feedback based scheduling is most promis-

ing for the low-level scheduler after observing the widely varying performance implications of

scheduler decisions in chapter 2. Subsequently, we design our prototype to react to changes in

measured performance. The runtime can estimate overhead and throughput to evaluate if  tasks

and data should be combined into larger units or executed in a different order. This should

be a constant effort by the runtime to optimize performance, and since the best behaviour is

unknown, the low-level scheduler is free to probe for better configurations and continuously

evaluate performance at runtime.

Write-once semantics on fields incur a large penalty if  implemented naively, both in terms of

memory usage and data cache misses. However, as the fields are virtual and do not even have

to reside in continuous memory, the compiler and runtime are free to optimize field usage. This

includes re-using buffers for increased cache locality when old ages are no longer referenced,

and garbage collecting old ages. The explicit programming model of  P2G allows the system to

anticipate what data is needed in the future, which can be used for further optimizations.

Given the complexity of  multimedia workloads and the (potentially) heterogeneous resources

available in a modern topology, and in many cases, no knowledge of  the underlying capabilities of

the resources (common in modern cloud services), mapping these complex multimedia workloads

manually to the available resources becomes an increasingly difficult task. This is particularly the

case where resource availability fluctuates, such as in modern virtual machine parks. With batch

processing, where the workloads are frequently not associated with an intrinsic deadline, the

task is solved by frameworks such as MapReduce and Dryad. However, processing continuous

streams such as iterative multimedia algorithms in an elastic manner requires new frameworks;

P2G is a step in that direction.

In the next section, we describe a prototype with some of  the P2G ideas implemented in addi-

tion to workloads and benchmarks. The P2G prototype provides, among other tings, opportuni-

ties to experiment with scheduling, instrumentation, runtime optimizations, and heterogeneous

support which we consider applicable in other frameworks as well.
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3.5 Evaluation of  the P2G framework

With the express goal of  providing and abstraction of  the underlying architecture from P2G

workloads, we designed a language that explicitly exposes all parallel opportunities for iterative

multimedia workloads and allows a compiler and runtime system to make informed decisions

on parallel opportunities that are worth exploring. This shifts the performance tuning burden

from the programmer (workload writer) to the compiler and runtime (collectively referred to

as the framework or P2G). Given a workload defined in the kernel language, we will in this

section discuss how to execute it, as well as some of  the optimization opportunities available to

the framework. We will present a working P2G prototype for multicore x86 and evaluate its

characteristics.

3.5.1 Prototype Implementation

To verify the feasibility of  the P2G framework presented in this thesis, we have implemented a

prototype version for x86. The prototype consists of  a compiler for the kernel language and a

runtime that can execute P2G programs on multi-core linux machines.

Compiler To parse and run kernel language files, an interpreting runtime was first consid-

ered and discarded for both performance and practical reasons. Programs written for the P2G

system are designed to be platform-independent and feature blocks of  code written in C or C++.

Heterogeneous systems are specifically targeted, but many of  these require a custom compiler for

the native blocks, such as nVIDIA's nvcc compiler for the CUDA system and IBM's XL compiler

for the Cell Broadband Engine. For this reason, we decided to write a compiler that transforms

P2G programs into C++ files, which are further compiled and linked with native code blocks, in-

stead of  generating binaries directly. This approach gives us less control over the resulting object

code, but we gain the flexibility and sophisticated optimization of  the native platform compilers,

and a much more lightweight P2G compiler. Depending on the target architecture, using the

native compiler may be necessary to even run programs at all, since low-level documentation is

not available. The P2G compiler works also as a compiler driver for the native compiler and

produces complete binaries for programs that run directly on the target system.

Runtime The runtime prototype implements the basic features of  a P2G execution node,

including multi-dimensional field support, implicit resizing of  fields, instrumentation and parallel

execution of  kernel instances on multiple processors, using the implicit dependency graph formed
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by kernel definitions. However, at the time of  writing, the prototype runtime does not yet have a

full implementation of  deadline expressions. This is because the semantics of  the kernel language

support for this feature are not fully defined yet.

The prototype targets a node with multiple processors. It is designed as a push-based sys-

tem using event subscriptions on field operations. Kernel instances are executed in parallel and

produce events on store statements, which may require resize operations. A kernel subscribes to

events related to fields that it depends on, i.e., fields referenced to by the kernel's fetch statements.

When receiving such a storage event, the runtime finds all new valid combinations of  age and

index variables that can be processed as a result of  the store statement, and puts these into a per-

kernel ready queue. This means that the ready queues contain always the maximum number of

parallel instances that can be executed at any time, only limited by unfulfilled data dependencies.

The low-level scheduler consists of  a dependency analyzer and kernel instance dispatcher.

Using the implicit dependency graph, the dependency analyzer adds new kernel instances to a

ready queue, which later can be processed by the worker threads. Dependencies are analyzed in

a dedicated thread, which handles events emitted from running kernel instances whenerver store

and resize operations are performed on fields. Kernel instances are executed by a worker thread

dispatched from the ready queue. They are scheduled in an order that prefers the execution of

kernel instances with a lower age value (older kernel instances). This ensures that no runnable

kernel instance is starved by others that have no fetch statements or by groups of  kernels that

satisfy their own dependencies in aging cycles, such as the mul2 and plus5 kernel in figure 3.6.

The runtime is written in C++ and uses the blitz++ [87] library for high-performance multi-

dimensional arrays. The source code for the P2G compiler and runtime can be downloaded from

http://www.p2gproject.org/.

3.5.2 Workloads

We have implemented a few workloads commonly used in multimedia processing to test the

prototype implementation. The P2G kernel language is able to expose both the data and task

parallelism of  the programs to the P2G system, so the runtime is able to adapt execution of  the

programs to suit the target architecture.

K-means clustering K-means clustering is an iterative algorithm for cluster analysis that

aims to partition n datapoints into k clusters where each datapoint belongs to the cluster with

the nearest mean value. As shown in figure 3.8, the P2G k-means implementation consists of  an
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Figure 3.8: Overview of  the K -means clustering algorithm

init kernel, which generates n datapoints and stores them in the datapoints field. Then, it selects

k of  these datapoints randomly, as the initial means, and stores them in the centroids field. Next,

the assign kernel fetches a slice of  data, a single datapoint per kernel instance, the last calculated

centroids, and stores this datapoint in the cluster of  the closest centroids using the Euclidean

distance calculation. Finally, the refine kernel fetches a cluster, calculates its new mean and stores

this information in the centroids field. The kernel definitions of assign and refine form a loop

that gradually leads to a convergence in centroids, at which point the k-means algorithm has

completed.

Motion JPEG Motion JPEG (MJPEG) is a video coding format using a sequence of  separately

compressed JPEG images. The MJPEG format provides many layers of  parallelism, well-suited

for illustrating the potential of  the framework. We focused on optimizing the discrete cosine

transform (DCT) and quantization part as this is the most compute-intensive part of  the codec.

The read + splitYUV kernel reads the input video in YUV-format and stores the data in three

global fields, yInput, uInput, and vInput. The read loop ends when the kernel stops storing into the

next age, e.g., at the end of  the file. In our scenario, three YUV components can be processed

independently of  each other and this property is exploited by creating three kernels, yDCT, uDCT

and vDCT, one for each component. From figure 3.9, we see that the respective DCT kernels

depend on one of  these fields.

The encoding process of  MJPEG comprises splitting the video frames into 8x8 macro-blocks.

For example, given the CIF resolution of  352x288 pixels per frame used in our tests, this gener-

ates 1584 macro-blocks of  Y (luminance) data, each with 64 pixel values. This makes it possible

to create 1584 instances per age of  the DCT kernel transforming luminance. The 4:2:2 chroma
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Figure 3.9: Overview of  the MJPEG encoding process

4-way Intel Core i7
CPU-name Intel Core i7 860 2,8 GHz
Physical cores 4
Logical threads 8
Microarchitecture Nehalem (Intel)

8-way AMD Opteron
CPU-name AMD Opteron 8218 2,6 GHz
Physical cores 8
Logical threads 8
Microarchitecture Santa Rosa (AMD)

Table 3.1: Overview of  test machines

sub-sampling yields 396 kernel instances from both the U and V (chroma) data. Each of  these

kernel instances stores the DCT'ed macro-block into global result fields yResult, uResult and vRe-

sult, respectively. Finally, the VLC + write kernel stores the MJPEG bit-stream to disk.

3.5.3 Evaluation

We have run tests with the workloads MJPEG and K -means (described in section 3.5.2). Each

test was run on a 4-way Core i7 and an 8-way Opteron (see table 3.1 for hardware specifications)

ranging from 1 worker thread to 8 worker threads with 10 repetitions per worker thread count.

The results of  these tests are reported in figures 3.11 and 3.10, which show the mean running

time in seconds for each machine for a given thread count with standard deviation reported as

error-bars.

In addition, we have performed micro-benchmarks for each workload, summarized in ta-

bles 3.2 and 3.3. The benchmarks summarize the number of  kernel instances dispatched per

kernel definition, dispatch overhead and time spent in kernel code.
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Figure 3.10: Workload execution time for Motion JPEG

Motion JPEG The Motion JPEG workload is run on the standard test sequence Foreman en-

coded in CIF resolution. We limited the workload to process 50 frames of  video.

As we can observe in figure 3.10, P2G is able to scale close to linearly with the resources it has

available. In P2G, the dependency analyzer of  the low-level scheduler runs in a dedicated thread.

This affects the running time when moving from 7 to 8 worker threads, where the eighth thread

shares resources with the dependency analyzer. To compare, the standalone single threaded

MJPEG encoder, upon which the P2G version is based, has a running time of 30 seconds on the

Opteron machine and 19 seconds on the Core i7 machine. Note that both the standalone and

P2G versions of  the MJPEG encoder use a naive DCT calculation, there are versions of  DCT

that can improve performance significantly, such as FastDCT [29].

From table 3.2, we can see that time spent in kernel code is considerably higher than the

dispatch overhead for the kernel definitions. The dispatch time includes allocation or reallocation

of  fields as part of  the timing operation. As a result, init and read/splitYUV have a considerably

higher dispatch time than the *DCT operations.
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Kernel Instances Dispatch Time Kernel Time
init 1 69.00 µs 18.00 µs
read/splityuv 51 35.50 µs 1641.57 µs
yDCT 80784 3.07 µs 170.30 µs
uDCT 20196 3.14 µs 170.24 µs
vDCT 20196 3.15 µs 170.58 µs
VLC/write 51 3.09 µs 2160.71 µs

Table 3.2: Micro-benchmark of  MJPEG encoding in P2G
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Figure 3.11: Workload execution time for K -means

We can also see that the most CPU-time is spent in the kernel instances of yDCT, uDCT and

vDCT, which is the computationally intensive part of  the workload. This indicates that decreasing

data and task granularity, as discussed in section 3.4, has little impact on the throughput of  the

system. This is because most time is already spent in kernel code.

Note that even though there are 51 instances of  the read/write kernel definitions, only 50

frames are encoded, because the last instance reaches the end of  the video stream.
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Kernel Instances Dispatch Time Kernel Time
init 1 58.00 µs 9829.00 µs
assign 2024251 4.07 µs 6.95 µs
refine 1000 3.21 µs 92.91 µs
print 11 1.09 µs 379.36 µs

Table 3.3: Micro-benchmark of  k-means in P2G

K-means The K -means workload is run with K=100 using a randomly generated data set

containing 2000 datapoints. The K -means algorithm is not run until convergence, but with 10

iterations. If  we do not define this break-point it is undefined when the algorithm converges, and

we introduced this condition to ensure that we get a relatively stable running time for each run.

As seen in figure 3.11, the K -means workload scales to 4 worker threads. After this, the

running time increases with the number of  worker threads. This can be explained by the fine

granularity of  the assign kernel definition, as witnessed when comparing the dispatch time to

the time spent in kernel code. This leads to the serial dependency analyzer becoming a bottle-

neck in the system. As discussed in section 3.4, this condition could be alleviated by decreasing

the granularity of  data-parallelism, in effect leading to each kernel instance of assign working

on larger slices of  data. By doing so, we would increase the ratio of  time spent in kernel code

compared to dispatch time, and reduce the workload of  the dependency analyzer. The reduction

in work for the dependency analyzer is a result of  the lower number of  kernel instances being

run.

The two different test machines behave somewhat differently in that the Opteron suffers

more than the Core i7 when the dependency analyzer saturates a core. The Core i7 is able to

increase the frequency of  a single core to mitigate serial bottlenecks, and we think this is why the

Core i7 suffers less when we meet the limitations dictated by Amdahl's law. The considerable

time init spends in kernel code is because it generates the data set.

3.5.4 Discussion

We have provided an implementation of  a P2G execution node that together with our workloads

demonstrates a real working system. The limitations of  the prototype are obvious: no support for

heterogeneous architectures, static scheduling, no distributed or deadline support and a depen-

dency analyzer with limited scalability. Still, given the huge amount of  time to evaluate design

and implementation alternatives and the immense engineering effort required for implementing
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an unproven framework like P2G, we are satisfied with getting this far. We have succeeded at

implementing a working prototype capable of  executing multimedia workloads, and showed that

it is possible to express workloads within the basic concepts of  P2G. The runtime was a complex

endeavor with several large components working together, including a dependency analyzer,

compiler, code generator, field storage containers and more. The prototype implementation is

a first attempt at leveraging the P2G concepts in a working system, and there is much ongoing

work in further improving this system.

Usability One fundamental idea presented in this chapter is designed to expose all available

parallelization opportunities of  workloads to the P2G runtime using kernels and fields. Since

there can be fewer computational resources available than parallelization opportunities, the

framework is designed in such a way that the granularity is reduced to the parallel resources.

This is in contrast to approaches such as auto parallelization, where parallel opportunities are

inferred by dependencies, or conventional threading, where the parallel usage is static. The ker-

nels and fields provide a way to expose parallelization opportunities, and to connect them to

code and data. The kernel language is not a significant contribution in this work as we are not

language designers and have little prior experience in this area. However, the kernel language al-

lows workload writers to use the P2G framework with little knowledge of  the internal details, and

by enabling support for embedded code, provide an option for directly porting native C/C++

code to the P2G framework. We think this outweighs the burden of  using a new language for

workload writers, but have not investigated this further.

The main advantage of  using the P2G framework instead of  writing natively for the target

architecture is portability. Everything that the framework provides can also be done by manually

writing native code, for example with OpenMP, and even distributed support, e.g., with MPI.

The portability allows a workload writer to expose her workload without targeting a specific

architecture (or even microarchitecture as we saw), and let the framework adapt it to the machine.

This is similar to a traditional compiler, but the P2G idea is to abstract the concepts further and

let the runtime optimize the execution. Like Oracle's Java [88], we enable portability, but in a

much more abstract manner, allowing executing on architectures with exotic memory layouts

and instruction sets (heterogeneous architectures).

Proof  of  concept Many of  the ideas of  P2G are preliminary and untested, and especially the

runtime is merely a proof  of  concept. We wanted to provide a framework for early and con-

venient experimentation of  novel ideas for execution, scheduling, instrumentation and so forth,
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which will be future work built on top of  the contributions in this thesis. As such, the prototype

implementation presented is lacking in terms of  P2G functionality and is not yet optimized for

performance. Still, it provides a fundament for further experimentation and development of  the

core concepts. By developing the prototype, we tried many ways for designing a framework,

resulting in a number of  dead ends before we settled onto the design presented here.

One obvious question is why we did not base our work on an existing codebase or framework,

both in terms of  reducing engineering work and increasing usability. The answer is that we did

not find anything that at the time could solve the challenges stated in the problem statement.

Furthermore, we wanted to evaluate the concepts of  kernel and fields to find out if  we were able

to express multimedia workloads within those concepts, and if  they were usable as fundamental

concepts. Another reason is that by having designed and implemented the entire system from

scratch, we understand the issues better, enabling us isolate and understand results better. This

will make it easier to contribute individual concepts, techniques and results from the P2G frame-

work to other similar execution systems. For a production environment, designing and writing

the framework from scratch is a modest idea, at best, but from our exploratory and experimen-

tation approach, we were able to understand the system in a more complete manner by doing

this.

Limitations of  the framework The P2G framework language and runtime are designed for

a particular set of  workloads, i.e., continuous multimedia workloads with real time requirements

running on heterogeneous architectures. This does not imply dense data processing, although the

current prototype runtime supports only this, since the fields are implemented as matrices. The

concept of  fields does not limit the implementation, and a field could be implemented as a graph

or even as a distributed hash table across several nodes. Experimenting with abstract concepts

for fields is left as further work. The framework prototype currently uses a dependency analyzer

running in a single thread and consumes a relatively large amount of  computational resources.

This can be improved by optimizing the dependency analyzer itself, but also by implementing

granularity reduction such that kernel instances are grouped in larger units, limiting the number

of  dependencies.

The realtime aspect of  the framework is also unfinished, with the timer interface not fully

defined, and deadline avoidance and mitigation schemes to be developed. Still, the entire frame-

work was designed with this in mind, and the initial ideas of  P2G are continuously expanded as

development continues.
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Other workloads The P2G framework is designed for a particular set of  workloads, i.e., cyclic

multimedia data processing. This will typically mean transformation of  dense data by applying a

series of  filters. An example of  such a workload is SIFT [89] to extract image features, comprising

a series of  compute intensive filters in sequence. Although the P2G design can be used for such

workloads, it may serve limited usefulness in describing other workloads. We have not thoroughly

evaluated the implications of  our design on many workloads, but have found that it can be used

constructively for some workloads. Further evaluations of  this are left as further work.

Feedback based scheduling We have not evaluated different scheduling strategies in the

P2G framework yet, but we know the scheduler must have little overhead and perform well un-

der different conditions. The fundamental concept for low level scheduling in P2G is reactive

behaviour; by constantly instrumenting the system's behaviour, we plan to tune the framework's

parameters based on feedback about the current state. The reason for this is observations demon-

strated in chapter 2, wich show that the best order of  execution, and correct granularity of  data

and code is next to impossible to predict in advance, and depends heavily on externalities such

as system load and usage of  shared resources, as well as the microarchitecture of  choice. The

details of  such a scheduler are currently under investigation by another PhD candidate. We have

earlier compared static scheduling algorithms such as graph/hypergraph partitioning, and com-

pared this to work stealing-based scheduling in [90]. Graph partitioning and similar approaches

require significant resources to resolve. They may be applicable for high level scheduling, which

is not expected to require rescheduling very often. Scheduling on the node itself  should ben-

efit from a simpler heuristic-based scheduler that can take advantage of  the runtime feedback

to reduce the time between scheduling events as well as minimizing the computational cost of

scheduling.

Run-time optimization The current prototype does not take advantage of  the many op-

portunities for runtime optimizations. We expect programmers to write their programs in an

architecture-independent manner in addition to exposing as much of  the parallelization oppor-

tunities as possible. This means that efficient runtime optimization is imperative to achieve per-

formance similar to hand optimized programs natively written for the target architecture. We

saw this in the experiments, where the dispatch overhead for launching k-means kernel instances,

together with the dependency analyzer inhibited the scalability of  the system. In the prototype,

kernel instances are created 1:1 with the expressions in the kernel language, also all fetches/s-

tores incur actual memory transfers. The runtime implementation has significant freedom to
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transform these statements into optimized machine code, e.g., by merging kernel instances or by

removing unnecessary memory transfers by analyzing what kernels that refers to what parts of

the virtual fields. One of  the most promising opportunities going forward in this regard is using

just-in-time compilation (JIT) to compile the workloads dynamically as needed. Another PhD

candidate and his students are currently investigating using LLVM [91] to add JIT compilation

to the framework. Since this is ongoing work, we do not know how this will work, but we hope

to get close to native performance combined with the advantages of  elasticity and architecture

abstractions.

Other optimization opportunities include the execution order of  kernel instances as we saw in

section 2.1.2. As it turned out, the better-performing order of  execution did not only depend on

the type of  workload being executed, but also on the target microarchitecture and generation of

processor at hand. We claim that predicting what performs better in advance is nearly impossible,

and as such, is better left to a runtime scheduler that takes advantage of  continuously generated

instrumentation data. Investigating this in the P2G system is a very interesting area for going

further, as the implications affect other systems as well.

3.5.5 Summary

With P2G, we have proposed a new flexible framework for automatic parallel, real-time process-

ing of  multimedia workloads. We encourage the programmer to specify parallelism in as fine

a granularity as possible along the axes of  data and task decomposition. Using our kernel lan-

guage, this decomposition is expressed through kernel definitions and fetch and store statements

on fields. This language is independent from the P2G runtime and can easily be replaced. A

workload defined in our kernel language is compiled for execution in P2G. This workload can

then be partitioned by the high-level scheduler of  a P2G master node, which then distributes

partitions to P2G execution nodes and runs the tasks locally. Execution nodes can consist of

heterogeneous resources. A low-level scheduler at the execution nodes then adapts the partial

(or full) workload to run optimally using resources at hand. Feedback from the instrumentation

daemon at the execution node can lead to repartitioning of  the workload (a task performed by the

high-level scheduler). The aim is to bring the ease of  batch-processing frameworks to multimedia

workloads.

In this work, we have presented an execution node capable of  running on a multi-way ar-

chitecture. Our experiments running on a prototype show the potential of  our ideas. However,

there still remains a number of  vectors for optimization. In the low-level scheduler, we have
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identified that combining task and data to minimize overhead introduced by P2G is a first rea-

sonable modification. Additionally, completing the implementation of  a fully distributed version

is in the pipeline. Also, writing workloads for heterogeneous processing cores like GPUs and non-

cache coherent architectures like IBM's Cell Architecture is a further consideration. Currently,

we are investigating appropriate mechanisms for both high- and low-level scheduling, garbage

collection, fat binaries, resource profiling and monitoring, and efficient migration of  tasks.

While a number of  optimizations remain, we have shown that P2G is feasible, through the

implementation of  this execution node, and the successful implementation of  multimedia work-

loads, such as MJPEG and k-means. With these workloads, we have shown that it is possible

to express multimedia workloads in the kernel language and we have implemented a prototype

of  an execution node in the P2G framework that is able to execute kernels and scales with the

available resources.
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Chapter 4

Papers and Contributions

4.1 Overview of  the research papers

The research work done during my PhD period has revolved around systems support for mul-

timedia, and has included a wide area of  research, ranging from low level I/O scheduling and

up to video codec optimizations. Although somewhat unstructured, it has enabled me to col-

laborate with several colleagues on highly interesting topics as we seized the opportunities when

we saw them. Eventually, we focused on the topic of  processing multimedia workloads on mod-

ern architectures, and have thus selected four papers as the main contributions to this thesis.

Our nexus is the P2G framework [92], a system and language designed and built from scratch,

allowing multimedia workloads to run on modern hardware in a portable manner and demon-

strated live at Eurosys [50] and ACM Multimedia [93]. To support this, we also present three

papers [16,28,42] about multimedia processing and architecture considerations on varying mod-

ern architectures for building a portable runtime. The findings in these latter papers allowed us

to design the P2G system with enough flexibility and expressive power to support the workloads,

as well as providing insights into how the runtime must be designed to run on different archi-

tectures. Although the other papers [90, 94--100] we wrote are multimedia systems related, we

have limited the thesis to four papers as we find these easier to combine as a single work. The

main papers are presented chronologically in the following sections.

95
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4.2 Paper I: Transparent Protocol Translation for Stream-

ing

Abstract The transport of  streaming media data over TCP is hindered by TCP's probing be-

havior that results in the rapid reduction and slow recovery of  the packet rates. On the other

side, UDP has been criticized for being unfair against TCP connections, and it is therefore often

blocked out in the access networks. In this paper, we try to benefit from a combined approach

using a proxy that transparently performs transport protocol translation. We translate HTTP

requests by the client transparently into RTSP requests, and translate the corresponding RT-

P/UDP/AVP stream into the corresponding HTTP response. This enables the server to use

UDP on the server side and TCP on the client side. This is beneficial for the server side that

scales to a higher load when it doesn't have to deal with TCP. On the client side, streaming over

TCP has the advantage that connections can be established from the client side and data streams

are passed through firewalls. Preliminary tests demonstrate that our protocol translation delivers

a smoother stream compared to HTTP-streaming where the TCP bandwidth oscillates heavily.

Lessons learned This paper, written as a network research paper, explores using an asym-

metric multicore processor (Intel IXP) to process a novel network protocol translation technique

in real-time. Although, the main contribution of  this paper is the network aspect, using the IXP

architecture for real-time processing allowed us to do our technique on the data plane, hence

providing minimal latency overhead and high bandwidth, compared to a software proxy. Ex-

perimenting with the IXP also gave us insights into the level of  flexibility required for our P2G

framework to properly function with such architectures. With IXP having multiple (incompati-

ble) instruction sets and compilers, in combination with partly shared, partly exclusive memory

mapped to the cores, having abstracted memory in our framework became obvious.

Author's Contributions Espeland contributed significantly to the overall design, implemen-

tation and evaluation of  this work. Together with Lunde, he implemented the proxy from scratch.

Further, Espeland designed the experimental setup and performed the experiments to evaluate

the proposed solution. Evaluation of  the experiments and the rest of  the paper writing were done

in collaboration with the other authors.

Published in Proceedings of  the 15th International Multimedia Conference (MM), ACM,

2007.
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4.3 Paper II: Tips, Tricks and Troubles: Optimizing for

Cell and GPU

Abstract When used efficiently, modern multicore architectures, such as Cell and GPUs, pro-

vide the processing power required by resource demanding multimedia workloads. However, the

diversity of  resources exposed to the programmers, intrinsically requires specific mindsets for ef-

ficiently utilizing these resources - not only compared to an x86 architecture, but also between

the Cell and the GPUs. In this context, our analysis of  14 different Motion-JPEG implementa-

tions indicates that there exists a large potential for optimizing performance, but there are also

many pitfalls to avoid. By experimentally evaluating algorithmic choices, inter-core data com-

munication (memory transfers) and architecture-specific capabilities, such as instruction sets, we

present tips, tricks and troubles with respect to efficient utilization of  the available resources.

Lessons learned The second paper is an architecture paper where we basically wanted to

investigate if  porting multimedia algorithms to different heterogeneous architectures would give

acceptable performance and thus could be done in a suitable manner using cross compiling, just

in time, or other techniques for efficient and portable execution of  multimedia workloads on such

architectures. Among the findings, we saw that although the theoretically most efficient algo-

rithm performed best on one architecture, a very different (and theoretically slower) algorithm

significantly outperformed this on other architectures. Thus, we could conclude that for running

optimized and portable workloads in the P2G framework, we would need support for multiple

versions of  workloads providing different algorithmic implementations in our system. Although

not yet realized in the prototype runtime, this was an intrinsic requirement in the framework.

Re-usability of  code became important at this point since one may have to integrate an existing

code base into the runtime. Obviously, reusing existing code inhibits portability since it is not

written in such a way that it can be optimized or ported by a runtime. Still, we saw this as an

important feature and designed the framework to target existing compilers, allowing libraries to

be linked in at the cost of  portability. With such a design, critical parts can be exposed in our

framework while parts that are not sensitive to performance can easily be reused in the system.

Although inhibiting to portability, it makes the framework much more practical.

Author's Contributions Espeland contributed significantly to the design, implementation

and evaluation of  this work. Together with Stensland, he designed the experiments and evalu-
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ated the results. He performed much of  the implementation work and wrote the paper text in

collaboration with the other authors.

Published in The 20th International Workshop on Network and Operating Systems Support

for Digital Audio and Video (NOSSDAV), ACM, 2010.

4.4 Paper III: P2G: A Framework for Distributed Real-

Time Processing of  Multimedia Data

Abstract The computational demands of  multimedia data processing are steadily increas-

ing as consumers call for progressively more complex and intelligent multimedia services. New

multi-core hardware architectures provide the required resources, but writing parallel, distributed

applications remains a labor-intensive task compared to their sequential counter-part. For this

reason, Google and Microsoft implemented their respective processing frameworks MapReduce,

as they allow the developer to think sequentially, yet benefit from parallel and distributed exe-

cution. An inherent limitation in the design of  these processing frameworks is their inability to

express arbitrarily complex workloads. The dependency graphs of  the frameworks are often lim-

ited to directed acyclic graphs, or even pre-determined stages. This is particularly problematic

for video encoding and other algorithms that depend on iterative execution. With the Nornir

runtime system for parallel programs, which is a Kahn Process Network implementation, we

addressed and solved several of  these limitations. However, it is more difficult to use than other

frameworks due to its complex programming model. In this paper, we build on the knowledge

gained from Nornir and present a new framework, P2G, designed specifically for developing

and processing distributed real-time multimedia data. P2G supports arbitrarily complex depen-

dency graphs with cycles, branches and deadlines, and provides both data- and task-parallelism.

The framework is implemented to scale transparently with available (heterogeneous) resources,

a concept familiar from the cloud computing paradigm. We have implemented an (interchange-

able) P2G to ease development. In this paper, we present a proof  of  concept implementation of

a P2G execution node and some experimental examples using complex workloads like Motion

JPEG and K-means clustering. The results show that the P2G system is a feasible approach to

multimedia processing.
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Lessons learned The third paper presents the framework designed from all our ideas and

experience collected through a wide area of  multimedia systems research. Although the frame-

work is far from complete, it provides an experimental platform for promising ideas and the

prototype runtime evaluated as part of  this work allowed us to try out our assumptions on a real

system. One of  the interesting things we discovered with the prototype was the effect of  data

set granularity and the execution order of  kernel instances. Predicting what was the correct work

size to maximize performance was hard, if  not impossible, since it depends on so many issues,

e.g., occupancy, cache coalescing, memory bandwidth and other shared resources in the system.

Using feedback based scheduling, monitoring resources and making decisions on these, seemed

to be the most promising way going forward. The predominant method of  similar frameworks is

work stealing, an algorithm providing little or no structural requirements to the order of  execu-

tion of  workloads. As such, we investigated this effect further in the next paper by isolating the

scheduler from the framework. The P2G framework was also demonstrated live at Eurosys [50]

and ACM Multimedia [93].

Author's Contributions Espeland contributed significantly to the design, implementation

and evaluation of  this work. Espeland and Beskow developed most of  the P2G ideas together,

while Beskow focused on the high-level concepts for distributed computing in P2G, Espeland

designed and developed the low level mechanisms of  the framework. Evaluation and micro-

benchmarking were done by Espeland and Beskow, and the paper text were written in collabo-

ration with all of  the authors.

Published in Proceedings of  the International Workshop on Scheduling and Resource Man-

agement for Parallel and Distributed Systems (SRMPDS) - The 2011 International Conference

on Parallel Processing Workshops, IEEE, 2011.

4.5 Paper IV: Low-level Scheduling Implications for Data-

intensive Cyclic Workloads on Modern Microarchi-

tectures

Abstract Processing data intensive multimedia workloads is challenging, and scheduling and

resource management are vitally important for the best possible utilization of  machine resources.
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In earlier work, we have used work-stealing, which is frequently used today, and proposed im-

provements. We found already then that no singular work-stealing variant is ideally suited for

all workloads. Therefore, we investigate in more detail in this paper how workloads consisting

of  various multimedia filter sequences should be scheduled on a variety of  modern processor

architectures to maximize performance. Our results show that a low-level scheduler additionally

cannot achieve optimal performance without taking the specific micro-architecture, the place-

ment of  dependent tasks and cache sizes into account. These details are not generally available

for application developers and they differ between deployments. Our proposal is therefore to use

performance monitoring and dynamic adaption for the cyclic workloads of  our target multimedia

scenario, where operations are repeated cyclically on a stream of  data.

Lessons learned In the fourth paper presented in this thesis, we looked at how execution

order affects performance on modern x86 processors. We tested processors from two vendors

using a set of  multimedia workloads, and among the unexpected results, we found that the best

execution order depends not only on the workload, but on the microarchitecture (vendor and

generation specific), and the utilization of  shared resources. Drawing conclusions on what is a

single best scheduler in the P2G framework seemed futile, and this strengthen our belief  that a

feedback based approach, as suggested in paper III, where system resources are monitored is the

way forward.

Author's Contributions Espeland contributed significantly to the design, implementation

and evaluation of  this work. Espeland designed and evaluated the experiments together with

Olsen. Espeland wrote the evaluation framework while Olsen wrote most of  the workloads.

Writing the paper were done jointly by the authors.

Published in Proceedings of  the International Workshop on Scheduling and Resource Man-

agement for Parallel and Distributed Systems (SRMPDS) - The 2012 International Conference

on Parallel Processing Workshops (ICPPW), IEEE, 2012.

4.6 Other publications

Several other papers were published at journals and conferences in the PhD period. We did not

include all of  them here to limit the scope of  this thesis. Instead, we will give a short summary of

the contributions in them.
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Nornir The first two papers, was included as part of  Zeljko Vrba's thesis in published in 2009,

introduced the Nornir framework [90] and exposed limitations to work stealing schedul-

ing [94]. The papers serve as a motivation to the research presented in this thesis, and

although I contributed to the papers, it was mainly Vrba's work and is as such not included

in this thesis. The Nornir framework used Kahn Process Networks (KPN) for execution

on multicore x86 machines and although they provided great flexibility, using KPNs was

challinging for programmers writing workloads. Still, the flexibility of  KPNs had a large

impact on the design of  our P2G framework. For instance, we found it imperative to have

a practical kernel language, even for prototyping to handle more complex workloads. We

also learned what type of  schedulers are suitable in the P2G setting; graph partitioning

schedulers provide great balance, but their computational overhead proved way too high

for kernel instance scheduling. Also, the modifications to the work stealing scheduler in-

spired us to investigate the impact of  execution order, resulting in paper IV and important

knowledge for further designing a P2G scheduler.

Game server In another system called LEARS [96], we designed and evaluated a scheme for

lockless scalability for gameservers. The approach allowed massively multiplayer online

game servers with much more scalability than traditional gameservers and hence more

players within an unpartitioned area. The LEARS prototype was demonstrated live at

Netgames [100] in 2011. In the context of  P2G, this type of  scalable game server would

be a perfect workload going further. MMO game servers require high levels of  elasticity

and high performance. Currently, the P2G prototype is not feature complete enough to

support this workload, but should be so in the future.

Video Codec During our research with the VP8 codec in collaboration with group members

doing research on adaptive streaming, we looked at the performance issues when encoding

video segments at various quality layers [95, 97]. To address this, we proposed modifying

the motion estimation algorithm of  the encoder such that motion vectors are reused in

different quality outputs. Although this leads to a slight degradation in quality, the per-

formance benefit is huge with a significant reduction in processing demands. In this work,

dynamic adaptation or elasticity is also key and experimenting with complex codecs in the

P2G prototype is a clear goal going further.

Disk I/O Finally, we worked on I/O performance optimizations by improving file tree traversal

performance by scheduling in user space [98,99]. The proposed technique ordered direc-
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tory tree requests by the logical block order on disk, significantly improving performance

on file tree traversal operations. This optimization is not possible in kernel space using the

standard POSIX API, since too few I/O operations are issued at a time for the scheduler

to efficiently optimize tree traversal. With dirty file systems, we gained up to four times the

performance compared to regular file tree traversal. In this work, we demonstrated clearly

the advantage of  having several schedulers, a low-level (OS) scheduler ordering disk I/O

after block order within the I/O queue, but also (as we added) a high-level scheduler, sort-

ing file requests with a complete overview of  the big picture. This approach, translated to

task scheduling, has been fully adapted to the P2G framework, separating a fast and effi-

cient low-level scheduler with a more complex high-level scheduler with detailed system

instrumentation.



Chapter 5

Conclusion

Working with modern architectures for high performance applications is increasingly more dif-

ficult for programmers as the complexity of  both the system architectures and software continue

to increase. As we showed in our Cell and GPU work [28], the level of  hand tuning and native

adaptations required to achieve performance comes at the cost of  limiting the portability of  the

software. Several abstractions, languages and frameworks exist, but they are typically not written

for cyclic multimedia workloads, and to shoehorn this type of  workloads in frameworks designed

for batch processing present a number of  challenges by itself.

5.1 Summary

In this work, we have looked at considerations fundamental to achieving performance on promi-

nent modern architectures and used this to design a framework for processing cyclic multimedia

workloads. The results were presented in three case studies, analyzing architecture considera-

tions for three machine architectures all requiring very different use of  memory. In particular,

we have used an MJPEG encoder as an example on Cell and GPU architectures to evaluate dif-

ferent ways to structure the workload on the architectures [28]. We also did experiments on an

IXP2400 network processor with a novel application for transparently translating RTP/UDP to

HTTP/TCP video streaming data in real time [41,42]. Using the heterogeneous processing el-

ements on the IXP allowed low latency and high bandwidth network traffic, but at considerable

implementation complexity for such a specialized architecture resulting in very low portability

of  the workload to other platforms. In the last case study, we investigated how the execution

order of  order-independent elements affected performance and if  we could observe differences
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between various microarchitectures of  the same CPU family [16]. We found that, indeed, the

best execution order was not static for a given workload and depended on the cache hierarchy

that varied between CPU vendors and even CPU generations from the same vendor.

Using the knowledge gained from the case studies, we designed a framework for writing and

executing multimedia workloads in an architecture-agnostic manner [50,92,93]. The framework

distinguishes itself  by exposing task, data and pipeline parallelism of  the workloads in a way that

allows the framework to tune granularity at compile or runtime instead of  leaving this to the pro-

grammer. Further, the framework is specifically designed for multimedia workloads and provide

intrinsic support for this domain with data abstractions and using time as a dependency. This

allows the framework to exhibit great flexibility in execution of  multimedia workloads to accom-

modate for heterogeneous architectures, fluctuating resource availability, real time support and

even distributed execution. Some of  the fundamental ideas of  the framework were implemented

in a prototype of  the framework with a successful demonstration running on multicore x86. Al-

though many aspects of  the P2G ideas remains untested, it serves as a foundation for further

experiments with executing pipelines of  cyclic multimedia workloads on modern microarchitec-

tures. The P2G project is still running, and currently, one PhD candidate and several students

are working on refining the concepts and improving the prototype implementation, and it will

be interesting to see what is possible with the framework.

5.2 Concluding remarks

Throughout this work, we have focused on system issues encountered when working with multi-

media workloads on modern architectures. Since the commonly used and available architectures

have diversified in the last years, frameworks, languages, middleware and other tools have and

probably will become even more important for unifying the architecture differences. This is or-

thogonal to the recent popularity of  batch processing frameworks such as MapReduce, Dryad,

etc., which are designed for the age of Big Data, but do not solve the problems encountered with

cyclic multimedia processing on modern architectures. As such, we believe this work addresses

a rather unique problem.

With regard to performance, it is unrealistic to expect as good performance from a workload

running in a framework, automatic optimized for a target architecture as a workload natively

hand optimized by a competent programmer. It may be possible to provide directives that hint

the system of  what to do, but one problem with them is that since the language is architecture
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agnostic, they may not make sense in other configurations than what the programmer used. Fur-

ther, in cases of  resource sharing, virtualization and distributed execution, they may not improve

performance at all since the conditions vary. A better approach may be to provide architecture

specific optimizations that can be used by the runtime when applicable, even though they are

not portable. We hope this should allow the framework to achieve close to the performance seen

by natively written workloads.

Even though the P2G framework ideas and prototype are far from completed, we think we

have made contributions to how such a framework should be designed and what considerations

need to be applied for providing support for the diverse nature of  modern microarchitectures.

This is a field of  rapid development and many active researchers and we expect many frame-

works, languages and runtimes to come and go in this area. Although most of  them will never be

used in a production environment, they are essential for providing working knowledge on what

is a good design and what is not, as defined in the design paradigm [14] of  research methods.

Going back to the problem statement, we wanted to investigate if  a pipeline of  cyclic multi-

media workloads could be executed by an elastic framework on modern microarchitectures in

a portable and efficient manner. With this ambitions goal, we considered architectual details

for doing so [16,28,41,42], and in turn designed and implemented an execution framework for

such workloads [50, 92, 93]. The framework is designed for portable and elastic execution, and

although we have not implemented all features intended for the prototype yet, we have published

an open source platform for evaluation and experimentation of  the P2G ideas. Thus, the work

presented here is proof-of-concept and shows that we can design and implement a framework

that supports the target workload scenario.

5.3 Future work

The possibilities for future work in this domain are many, and we will only highlight a few that

can be seen as likely next steps.

• From a low-level perspective, we see the scheduling of  kernel instances as an interesting

direction. From the work presented in chapter 2, we saw the importance the order of

execution had, and that some execution orders even performed better on different mi-

croarchitectures. By using feedback-based scheduling using fine grained instrumentation

data, we could design a scheduler that adapted to the available CPU resources at a very
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detailed level. Modern CPU instrumentation provide details of  exact cache behaviour and

memory transfers, which could be used as input to a smart low level scheduler.

• Another interesting venue is combing this with real time scheduling, using the provided

deadlines in a speculative manner; high and low complexity versions of  the workloads

could be executed simultaneously (if  resources permit), providing a fail safe if  the high

complexity version should not finish in time. With heterogeneous architectures, schedulers

would have to take careful attention to what processors are used for what workloads and

in particular what resources are exhausted benefits from clever co-scheduling.

• Extending or possibly rewriting our prototype for CUDA should also present interesting

research opportunities, not to mention even more exotic architectures such as IBM's Cell

architecture.

• Moving up in the stack, the framework is designed to support distributed execution, pro-

viding a whole new level of  scheduling complexity. Scaling beyond a single machine is

necessary to work with large data sets, particularly in real time, and designing two-level

schedulers that efficiently work together in such a framework is likely to present a number

of  interesting research opportunities.

This is just a few of  the ideas we have for future work within the P2G framework. We have

spent considerable time developing the framework and prototype, and we look very much for-

ward to see how the ideas presented here stand up to experiments going forward.



Bibliography

[1] Intel Corporation. Intel(r) ixp2400 network processor product brief. http://www.

intel.com/design/network/prodbrf/279053.htm.

[2] Cisco. Cisco Visual Networking Index : Global Mobile Data Traffic Forecast Update ,

2012 – 2017. Technical report, 2013.

[3] Ralf  Steinmetz and Klara Nahrstedt. Multimedia: computing, communications, and applications.

Prentice-Hall International, 1995.

[4] Patrick Schmid. The Pentium D: Intel's Dual Core Silver Bullet Previewed, 2005.

[5] Nvidia. Nvidia cuda programming guide 2.3.1, August 2009.

[6] Intel. Intel® IXP1200 Network Processor Family: Hardware Reference Manual. Intel Corporation,

2001.

[7] T Wiegand, G J Sullivan, G Bjontegaard, and A Luthra. Overview of  the H.264/AVC

video coding standard. Circuits and Systems for Video Technology, IEEE Transactions on,

13(7):560--576, July 2003.

[8] G Bradski. The OpenCV Library. Dr. Dobb's Journal of  Software Tools, 2000.

[9] Rajkumar Buyya, James Iroberg, and Andrzej M. Goscinski. Cloud Computing: Principles

and Paradigms. John Whiley & Sons, 2011.

[10] Amazon Inc. Amazon Elastic Compute Cloud (EC2). Amazon Inc.,

http://aws.amazon.com/ec2/, 2008.

[11] Apache Hadoop. http://hadoop.apache.org/.

107

http://www.intel.com/design/network/prodbrf/279053.htm
http://www.intel.com/design/network/prodbrf/279053.htm
http://hadoop.apache.org/


108 Bibliography

[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large

clusters. In Proceedings of  the USENIX Symposium on Operating Systems Design and Implementation

(OSDI), pages 10--10, 2004.

[13] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A language

for streaming applications. In Proceedings of  the 11th International Conference on Compiler Con-

struction, CC '02, pages 179--196, London, UK, UK, 2002. Springer-Verlag.

[14] D E Comer, David Gries, Michael C Mulder, Allen Tucker, A Joe Turner, and Paul R

Young. Computing as a discipline. Commun. ACM, 32(1):9--23, January 1989.

[15] YouTube. Holy nyans! 60 hours per minute and 4 billion views a day

on youtube. http://youtube-global.blogspot.com/2012/01/holy-nyans-60-hours-per-

minute-and-4.html, January 2012.

[16] Havard Espeland, Preben N. Olsen, Pal Halvorsen, and Carsten Griwodz. Low-Level

Scheduling Implications for Data-Intensive Cyclic Workloads on Modern Microarchitec-

tures. In 2012 41st International Conference on Parallel Processing Workshops, pages 332--339.

Ieee, September 2012.

[17] Vahid Kazempour, Alexandra Fedorova, and Pouya Alagheband. Performance Implica-

tions of  Cache Affinity on Multicore Processors. Lecture Notes in Computer Science, 5168:151-

-161, 2008.

[18] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of  work stealing.

In Proceedings of  the twelfth annual ACM symposium on Parallel algorithms and architectures, SPAA

'00, pages 1--12, New York, NY, USA, 2000. ACM.

[19] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,

Keith H. Randall, and Yuli Zhou. Cilk: an efficient multithreaded runtime system. In

Proceedings of  the fifth ACM SIGPLAN symposium on Principles and practice of  parallel programming,

PPOPP '95, pages 207--216, New York, NY, USA, 1995. ACM.

[20] Simon Marlow, Simon Peyton Jones, and Satnam Singh. Runtime support for multicore

haskell. SIGPLAN Not., 44(9):65--78, August 2009.

[21] Intel Corporation. Threading building blocks. http://www.

threadingbuildingblocks.org.

http://www.threadingbuildingblocks.org
http://www.threadingbuildingblocks.org


Bibliography 109

[22] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for mul-

tiprogrammed multiprocessors. In Proceedings of  ACM symposium on Parallel algorithms and

architectures (SPAA), pages 119--129, 1998.

[23] XIPH. XIPH.org Test Media, 2012. http://media.xiph.org/video/derf/.

[24] The Foundry. Nuke. http://www.thefoundry.co.uk/products/nuke/.

[25] Pohua P. Chang, Scott A. Mahlke, and Wen-Mei W. Hwu. Using profile information to

assist classic code optimizations. Software: Practice and Experience, 21(12):1301--1321, 1991.

[26] Alexandra Fedorova, Sergey Blagodurov, and Sergey Zhuravlev. Managing contention for

shared resources on multicore processors. Commun. ACM, 53(2):49--57, February 2010.

[27] IBM, Sony, and Toshiba. Cell Broadband Engine Programming Handbook. IBM, 2008.

[28] Håkon K. Stensland, Håvard Espeland, Carsten Griwodz, and Pål Halvorsen. Tips, tricks

and troubles: optimizing for cell and gpu. In Proceedings of  the 20th international workshop on

Network and operating systems support for digital audio and video, pages 75--80. ACM Press, 2010.

[29] Y. Arai, T. Agui, and M. Nakajima. A fast dct-sq scheme for images. Transactions of  IEICE,

E71(11), 1988.

[30] M. Kovac and N. Ranganathan. JAGUAR: A fully pipelined VLSI architecture for JPEG

image compression standard. Proceedings of  the IEEE, 83(2), 1995.

[31] Ken Cabeen and Peter Gent. Image compression and the discrete cosine transform. In

Math 45. College of  the Redwoods.

[32] Westley Weimer, Michael Boyer, and Kevin Skadron. Automated dynamic analysis of

cuda programs. In Third Workshop on software Tools for MultiCore Systems (STMCS), 2008.

[33] Alexander Ottesen. Efficient parallelisation techniques for applications running on gpus

using the cuda framework. Master's thesis, Department of  Informatics, University of  Oslo,

Norway, May 2009.

[34] Nvidia. Nvidia cuda c programming best practices guide 2.3, June 2009.

[35] Vipin Sachdeva, Michael Kistler, Evan Speight, and Tzy-Hwa Kathy Tzeng. Explor-

ing the viability of  the Cell Broadband Engine for bioinformatics applications. Parallel

Computing, 34(11):616--626.



110 Bibliography

[36] M.L. Curry, A. Skjellum, H.L. Ward, and R. Brightwell. Accelerating Reed-Solomon

coding in RAID systems with GPUs. In International Parallel and Distributed Processing Sympo-

sium (IPDPS), April 2008.

[37] Alexander van Amsesfoort, Ana Varbanescu, Henk J. Sips, and Rob van Nieuwpoort.

Evaluating multi-core platforms for hpc data-intensive kernels. In ACM Conference on Com-

puting Frontiers (ICCF), 2009.

[38] Aleksandar Colic, Hari Kalva, and Borko Furht. Exploring NVIDIA-CUDA for video

coding. In ACM SIGMM conference on Multimedia systems (MMSys), 2010.

[39] Fabrizio Petrini, Gordon Fossuma, Juan Fernandez, Ana Lucia Varbanescu, Mike Kistler,

and Michael Perrone. Multicore surprises: Lessons learned from optimizing Sweep3D

on the Cell Broadband Engine. In International Parallel and Distributed Processing Symposium

(IPDPS). IEEE, March 2007.

[40] Nvidia. Variable SMP – A Multi-Core CPU Architecture for Low Power and High Per-

formance. pages 1--16. Nvidia Whitepaper, 2011.

[41] Håvard Espeland, Carl Henrik Lunde, Håkon Kvale Stensland, Carsten Griwodz, and

Pål Halvorsen. Transparent protocol translation for streaming. In Proceedings of  the 15th

international conference on Multimedia - MULTIMEDIA '07, pages 771--774, New York, New

York, USA, 2007. ACM Press.

[42] Håvard Espeland, Carl Henrik Lunde, Håkon Kvale Stensland, Carsten Griwodz, and Pål

Halvorsen. Transparent protocol translation and load balancing on a network processor

in a media streaming scenario. In Proceedings of  the 18th International Workshop on Network

and Operating Systems Support for Digital Audio and Video - NOSSDAV '08, pages 129--130, New

York, New York, USA, 2008. ACM Press.

[43] Buck Krasic and Jonathan Walpole. Priority-progress streaming for quality-adaptive mul-

timedia. In Proceedings of  the ACM Multimedia Doctoral Symposium, October 2001.

[44] Jörg Widmer, Robert Denda, and Martin Mauve. A survey on TCP-friendly congestion

control. Special Issue of  the IEEE Network Magazine "Control of  Best Effort Traffic", 15:28--37,

February 2001.



Bibliography 111

[45] Peter Parnes, Kåre Synnes, and Dick Schefström. Lightweight application level multicast

tunneling using mtunnel. Computer Communication, 21(515):1295--1301, 1998.

[46] Intel Corporation. Intel IXP2400 network processor datasheet, February 2004.

[47] M Handley, S Floyd, J Padhye, and J Widmer. TCP Friendly Rate Control (TFRC):

Protocol Specification. RFC 3448 (Proposed Standard), January 2003.

[48] Håvard Espeland, Paul B. Beskow, Hakon K. Stensland, Preben N. Olsen, Stale Kristof-

fersen, Carsten Griwodz, and Pal Halvorsen. P2G: A Framework for Distributed Real-

Time Processing of  Multimedia Data. In 2011 40th International Conference on Parallel Pro-

cessing Workshops, pages 416--426. Ieee, September 2011.

[49] Paul B. Beskow, Håkon K. Stensland, Håvard Espeland, Espen A. Kristiansen, Preben N.

Olsen, Ståle Kristoffersen, Carsten Griwodz, and Pål Halvorsen. Processing of  multime-

dia data using the P2G framework. In Proceedings of  the 19th ACM international conference on

Multimedia - MM '11, pages 819--820, New York, New York, USA, November 2011. ACM

Press.

[50] Paul B Beskow, Håvard Espeland, Håkon K Stensland, Preben N Olsen, Ståle Kristof-

fersen, Espen A Kristiansen, Carsten Griwodz, and Pål Halvorsen. Distributed Real-Time

Processing of  Multimedia Data with the P2G Framework. Technical report, 2011.

[51] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: dis-

tributed data-parallel programs from sequential building blocks. In Proc. of  ACM EuroSys,

pages 59--72, New York, NY, USA, 2007. ACM.

[52] Bugra Gedik, Henrique Andrade, Kun-Lung Wu, Philip S. Yu, and Myungcheol Doo.

Spade: the system s declarative stream processing engine. In Proceedings of  the 2008 ACM

SIGMOD international conference on Management of  data, SIGMOD '08, pages 1123--1134,

New York, NY, USA, 2008. ACM.

[53] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew

Tomkins. Pig latin: a not-so-foreign language for data processing. In Proc. of  ACM SIG-

MOD, pages 1099--1110, New York, NY, USA, 2008. ACM.

[54] C. Nicolaou. An architecture for real-time multimedia communication systems. Selected

Areas in Communications, IEEE Journal on, 8(3):391--400, 1990.



112 Bibliography

[55] Ronnie Chaiken, Bob Jenkins, Per-Aake Larson, Bill Ramsey, Darren Shakib, Simon

Weaver, and Jingren Zhou. Scope: easy and efficient parallel processing of  massive data

sets. Proc. VLDB Endow., 1:1265--1276, August 2008.

[56] Derek Murray, Malte Schwarzkopf, and Christopher Smowton. Ciel: a universal execu-

tion engine for distributed data-flow computing. In Proceedings of  Symposium on Networked

Systems Design and Implementation (NSDI), 2011.

[57] Daniel Waddington, Chen Tian, and KC Sivaramakrishnan. Scalable lightweight task

management for mimd processors. In Proceedings of  Systems for Future Multi-Core Architectures

(SFMA), 2011.

[58] Yuan Yu, Micahel Isard, Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson, Pradeep Gunda,

and Jon Currey. Dryadlinq: A system for general-puropose distributed data-parallel com-

puting using a high-level language. In Proceedings of  Operating Systems Design and Implementation

(OSDI), 2008.

[59] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos

Kozyrakis. Evaluating MapReduce for multi-core and multiprocessor systems. In Proc. of

IEEE HPCA, pages 13--24, Washington, DC, USA, 2007. IEEE Computer Society.

[60] M. de Kruijf  and K. Sankaralingam. MapReduce for the Cell BE architecture. University

of  Wisconsin Computer Sciences Technical Report CS-TR-2007, 1625, 2007.

[61] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong Wang.

Mars: a MapReduce framework on graphics processors. In Proc. of  PACT, pages 260--

269, New York, NY, USA, 2008. ACM.

[62] Hung chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-reduce-merge:

simplified relational data processing on large clusters. In Proc. of  ACM SIGMOD, pages

1029--1040, New York, NY, USA, 2007. ACM.

[63] Steffen Viken Valvåg and Dag Johansen. Oivos: Simple and efficient distributed data

processing. In Proc. of  IEEE International Conference on High Performance Computing and Commu-

nications (HPCC), pages 113--122, 2008.



Bibliography 113

[64] Steffen Viken Valvåg and Dag Johansen. Cogset: A unified engine for reliable storage and

parallel processing. In Proc. of  IFIP International Conference on Network and Parallel Computing

Workshops (NPC), pages 174--181, 2009.

[65] Ẑeljko Vrba, Pål Halvorsen, Carsten Griwodz, and Paul Beskow. Kahn process networks

are a flexible alternative to mapreduce. High Performance Computing and Communications, 10th

IEEE International Conference on, 0:154--162, 2009.

[66] Yingyi Blu, Bill Howe, Magdalena Balazinska, and Michael Ernst. Haloop: Efficient

iterative data processing on large clusters. In Proceedings of  International Conference on Very

Large Data Bases (VLDB), 2010.

[67] Mark Thompson and Andy Pimentel. Towards multi-application workload modeling

in sesame for system-level design space exploration. In Stamatis Vassiliadis, Mladen

Berekovic, and Timo Hämäläinen, editors, Embedded Computer Systems: Architectures, Model-

ing, and Simulation, volume 4599 of Lecture Notes in Computer Science, pages 222--232. Springer

Berlin / Heidelberg, 2007.

[68] Alex G. Olson and Brian L. Evans. Deadlock detection for distributed process networks.

In in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP), pages 73--76, 2006.

[69] E. A. De Kock, G. Essink, W. J. M. Smits, and P. Van Der Wolf. Yapi: Application mod-

eling for signal processing systems. In In Proc. 37th Design Automation Conference (DAC'2000),

pages 402--405. ACM Press, 2000.

[70] Zeljko Vrba, Pål Halvorsen, Carsten Griwodz, Paul Beskow, Håvard Espeland, and Dag

Johansen. The Nornir run-time system for parallel programs using Kahn process networks

on multi-core machines - a flexible alternative to MapReduce. Journal of  Sumpercomputing,

27(1), 2010.

[71] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploiting coarse-grained

task, data, and pipeline parallelism in stream programs. In ASPLOS-XII: Proceedings of  the

12th international conference on Architectural support for programming languages and operating systems,

pages 151--162, New York, NY, USA, 2006. ACM.

[72] T.M. Lee, E.A.; Parks. Dataflow process networks. Proceedings of  the IEEE, 83(5):773--801,

1995.



114 Bibliography

[73] Ian Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software En-

gineering. Addison-Wesley, 1995.

[74] Joe Armstrong. A history of  Erlang. In Proc. of  ACM HOTL III, pages 6:1--6:26, 2007.

[75] Paul Hudakand John Hughes, Simon Peyton Jones, and Philip Wadler. A history of

Haskell: being lazy with class. In Proc. of  ACM HOTL III, pages 12:1--12:55, 2007.

[76] ITU. Z.100, 2007. Specification and Description Language (SDL).

[77] William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. A practical approach

to exploiting coarse-grained pipeline parallelism in c programs. In Proceedings of  the 40th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 40, pages 356--369,

Washington, DC, USA, 2007. IEEE Computer Society.

[78] R.S.N. Arvind, R.S. Nikhil, and K. Pingali. I-structures: Data structures for parallel

computing. TOPLAS, 11(4):598--632, 1989.

[79] ISO/IEC. ISO/IEC 14496-10:2003, 2003. Information technology - Coding of  audio-

visual objects - Part 10: Advanced Video Coding.

[80] David G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of  Computer Vision, 60:91--110, 2004.

[81] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. Parallel programmability

and the Chapel language. International Journal of  High Performance Computing Applications,

23(3), 2007.

[82] Guido Van Rossum and Fred L Drake. The Python Library Reference. Python Software

Foundation, 2013.

[83] �Eljko Vrba, Pal Halvorsen, Carsten Griwodz, Paul Beskow, and Dag Johansen. The

Nornir Run-time System for Parallel Programs Using Kahn Process Networks. 2009 Sixth

IFIP International Conference on Network and Parallel Computing, pages 1--8, October 2009.

[84] Lucas Roh, Walid A. Najjar, and A. P. Wim Böhm. Generation and quantitative eval-

uation of  dataflow clusters. In ACM FPCA: Functional Programming Languages and Computer

Architecture, New York, NY, USA, 1993. ACM.



Bibliography 115

[85] Paul B. Beskow. Parallel programming models and run-time system support for interactive multimedia

applications. PhD thesis, University of  Oslo, March 2013.

[86] Ian Foster. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software En-

gineering, volume 5. Addison-Wesley Longman Publishing Co., Inc., 1995.

[87] Todd L. Veldhuizen. Arrays in blitz++. In Proceedings of  the Second International Symposium

on Computing in Object-Oriented Parallel Environments, ISCOPE '98, pages 223--230, London,

UK, 1998. Springer-Verlag.

[88] James Gosling, Bill Roy, Guy Steele, Gillad Bracha, and Alex Buckley. The Java Language

Specification: Java SE 7 Edition. Oracle America Inc., 2013.

[89] Park Jae-Han, Park Kyung-Wook, Baeg Seung-Ho, and Baeg Moon-Hong. SIFT: A Pho-

tometric and Scale Invariant Feature Transform. International Conference on Pattern Recognition

ICPR, pages 1--4, 2008.

[90] Željko Vrba, Håvard Espeland, Pål Halvorsen, and Carsten Griwodz. Job Scheduling

Strategies for Parallel Processing. 5798:280--299, October 2009.

[91] C Lattner and V Adve. LLVM: A compilation framework for lifelong program analysis &

transformation. International Symposium on Code Generation and Optimization 2004 CGO 2004,

57(c):75--86, 2004.

[92] Håvard Espeland, Paul B. Beskow, Hakon K. Stensland, Preben N. Olsen, Stale Kristof-

fersen, Carsten Griwodz, and Pal Halvorsen. P2G: A Framework for Distributed Real-

Time Processing of  Multimedia Data. In 2011 40th International Conference on Parallel Pro-

cessing Workshops, pages 416--426. Ieee, September 2011.

[93] Paul B. Beskow, Håkon K. Stensland, Håvard Espeland, Espen A. Kristiansen, Preben N.

Olsen, Ståle Kristoffersen, Carsten Griwodz, and Pål Halvorsen. Processing of  multime-

dia data using the P2G framework. In Proceedings of  the 19th ACM international conference on

Multimedia - MM '11, pages 819--820, New York, New York, USA, November 2011. ACM

Press.

[94] Ž Vrba, H Espeland, P Halvorsen, and Carsten Griwodz. Limits of  work-stealing schedul-

ing. In Job Scheduling Strategies …, 2009.



116 Bibliography

[95] Håvard Espeland, Håkon Kvale Stensland, Dag Haavi Finstad, and Pål Halvorsen. Re-

ducing Processing Demands for Multi-Rate Video Encoding. International Journal of  Multi-

media Data Engineering and Management, 3(2):1--19, 2012.

[96] Kjetil Raaen and Havard Espeland. LEARS: A Lockless, Relaxed-Atomicity State Model

for Parallel Execution of  a Game Server Partition. In Parallel Processing …, pages 382--389.

Ieee, September 2012.

[97] Dag H. Finstad, Hakon K. Stensland, Havard Espeland, and Pal Halvorsen. Improved

Multi-Rate Video Encoding. In 2011 IEEE International Symposium on Multimedia, pages

293--300. Ieee, December 2011.

[98] Carl Henrik Lunde, Håvard Espeland, Håkon Kvale Stensland, and Pal Halvorsen. Im-

proving file tree traversal performance by scheduling I/O operations in user space. In

2009 IEEE 28th International Performance Computing and Communications Conference, pages 145-

-152. Ieee, December 2009.

[99] Carl Henrik Lunde, Håvard Espeland, Håkon K. Stensland, Andreas Petlund, and Pål

Halvorsen. Improving disk i/o performance on linux. In UpTimes - Proceedings of  Linux-

Kongress and OpenSolaris Developer Conference, 2009.

[100] Kjetil Raaen, Havard Espeland, Hakon Kvale Stensland, Andreas Petlund, Pal

Halvorsen, and Carsten Griwodz. A demonstration of  a lockless, relaxed atomicity state

parallel game server (LEARS). In 2011 10th Annual Workshop on Network and Systems Support

for Games, pages 1--3. Ieee, October 2011.



Part II

Research Papers





Paper I: Transparent Protocol

Translation for Streaming

Title: Transparent Protocol Translation for Streaming [42].

Authors: H. Espeland, C. H. Lunde, H. K. Stensland, C. Griwodz, and P. Halvorsen.

Published: Proceedings of  the 15th International Multimedia Conference (MM), ACM, 2007.

119



120 . Paper I: Transparent Protocol Translation for Streaming



Transparent Protocol Translation for Streaming
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ABSTRACT

The transport of streaming media data over TCP is hindered
by TCP’s probing behavior that results in the rapid reduc-
tion and slow recovery of the packet rates. On the other side,
UDP has been criticized for being unfair against TCP con-
nections, and it is therefore often blocked out in the access
networks. In this paper, we try to benefit from a combined
approach using a proxy that transparently performs trans-
port protocol translation. We translate HTTP requests by
the client transparently into RTSP requests, and translate
the corresponding RTP/UDP/AVP stream into the corre-
sponding HTTP response. This enables the server to use
UDP on the server side and TCP on the client side. This is
beneficial for the server side that scales to a higher load when
it doesn’t have to deal with TCP. On the client side, stream-
ing over TCP has the advantage that connections can be es-
tablished from the client side, and data streams are passed
through firewalls. Preliminary tests demonstrate that our
protocol translation delivers a smoother stream compared
to HTTP-streaming where the TCP bandwidth oscillates
heavily.

Categories and Subject Descriptors

D.4.4 [OPERATING SYSTEMS]: Communications Man-
agement—Network communication

General Terms

Measurement, Performance

1. INTRODUCTION
Streaming services are today almost everywhere available.

Major newspapers and TV stations make on-demand and
live audio/video (A/V) content available, video-on-demand
services are becoming common and even personal media are
frequently streamed using services like pod-casting or up-
loading to streaming sites such as YouTube.

c©ACM, (2007). This is the author’s version of the work.
It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in Pro-
ceedings of the 15th international conference on Multimedia (2007),
http://doi.acm.org/10.1145/1291233.1291407

The discussion about the best protocols for streaming has
been going on for years. Initially, streaming services on the
Internet used UDP for data transfer because multimedia ap-
plications often have demands for bandwidth, reliability and
jitter than could not be offered by TCP. Today, this ap-
proach is impeded with filters in Internet service providers
(ISPs), by firewalls in access networks and on end-systems.
ISPs reject UDP because it is not fair against TCP traf-
fic, many firewalls reject UDP because it is connectionless
and requires too much processing power and memory to en-
sure security. It is therefore fairly common to use HTTP-
streaming, which delivers streaming media over TCP. The
disadvantage is that the end-user can experience playback
hiccups and quality reductions because of the probing be-
havior of TCP, leading to oscillating throughput and slow
recovery of the packet rate. A sender that uses UDP would,
in contrast to this, be able to maintain a desired constant
sending rate. Servers are also expected to scale more easily
when sending smooth UDP streams and avoid dealing with
TCP-related processing.

To explore the benefits of both TCP and UDP, we ex-
periment with a proxy that performs a transparent proto-
col translation. This is similar to the use of proxy caching
that ISPs employ to reduce their bandwidth, and we do in
fact aim at a combined solution. There are, however, too
many different sources for adaptive streaming media that
end-users can retrieve data from to apply proxy caching for
all of them. Instead, we aim at live protocol translation in a
TCP-friendly manner that achieves a high perceived quality
to end-users. Our prototype proxy is implemented on an
Intel IXP2400 network processor and enables the server to
use UDP at the server side and TCP at the client side.

We have earlier shown the benefits of combining the use
of TFRC in the backbone with the use of TCP in access net-
works [1]. In the experiments presented in that paper, we
used course-grained scalable video (scalable MPEG (SPEG)
[4]) which makes it possible to adapt to variations in the
packet rate. To follow up on this idea, we describe in this
paper our IXP2400 implementation of a dynamic transport
protocol translator. Preliminary tests comparing HTTP
video streaming from a web-server and RTSP/RTP-streaming
from the komssys video server show that, in case of some
loss, our solution using a UDP server and a proxy later trans-
lating to TCP delivers a smoother stream at play out rate
while the TCP stream oscillates heavily.

2. RELATEDWORK
Proxy servers have been used for improved delivery of
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Figure 1: System overview

streaming media in numerous earlier works. Their tasks in-
clude caching, multicast, filtering, transcoding, traffic shap-
ing and prioritizing. In this paper, we want to draw atten-
tion to issues that occur when a proxy is used to translate
transport protocols in such a way that TCP-friendly trans-
ports mechanisms can be used in backbone networks and
TCP can be used in access networks to deliver streaming
video through firewalls. Krasic et al. argue that the most
natural choice for TCP-friendly traffic is using TCP itself [3].
While we agree in principle, their priority progress stream-
ing approach requires a large amount of buffering to hide
TCP throughput variations. In particular, this smoothing
buffer is required to hide the rate-halving and recovery time
in TCP’s normal approach of probing for bandwidth which
grows proportionally with the round-trip time. To avoid
this large buffering requirement at the proxy, we would pre-
fer an approach that maintains a more stable packet rate at
the original sender. The survey of [7] shows that TFRC is a
reasonably good representative of the TCP-friendly mecha-
nisms for unicast communication. Therefore, we have chosen
this mechanism for the following investigation.

With respect to the protocol translation that we describe
here, we do not know of much existing work, but the idea is
similar to the multicast-to-unicast translation [6]. We have
also seen voice-over-IP proxies translating between UDP and
TCP. In these examples, a packet is translated from one type
to another to match the various parts of the system, and we
here look at how such an operation performs in the media
streaming scenario.

3. TRANSLATING PROXY
An overview of our protocol translating proxy is shown

in figure 1. The client and server communicates by the
proxy, which transparently translates between HTTP and
RTSP/RTP. Both peers are unaware of each other.

The steps and phases of a streaming session follows. The
client tries to set up a HTTP streaming session, by initiat-
ing a TCP connection to the server. All packets are inter-
cepted by the proxy, and modified before passing it on to the
streaming server. The proxy also forwards the TCP 3-way
handshake between client and server, updating the packet
with the server’s port. When established, the proxy splits
the TCP connection into two separate connections that al-
low for individual updating of sequence numbers. The client
sends a GET request for a video file. The proxy translates
this into a SETUP request and sends it to the streaming
server using the TCP port of the client as its proposed
RTP/UDP port. If the setup is unsuccessful, the proxy will
inform the client and close the connections. Otherwise, the
server’s response contains the confirmed RTP and RTCP
ports assigned to a streaming session. The proxy sends a
response with an unknown content length to the client and
issues a PLAY command to the server. When received, the
server starts streaming the video file using RTP/UDP. The
UDP packets are translated by the proxy as part of the

Figure 2: Packet flow on the IXP2400

HTTP response, using the source port and address matching
the HTTP connection. Because the RTP and UDP headers
combined are longer than a standard TCP header, the proxy
can avoid the penalty of moving the video data in mem-
ory, thus permitting reuse of the same packet by padding
the TCP options field with NOPs. When the connection is
closed by the client during or after playback, the proxy is-
sues a TEARDOWN request to the server to avoid flooding
the network with excess RTP packets.

4. IMPLEMENTATION
Our prototype is implemented on a programmable net-

work processor using the IXP2400 chipset [5], which is de-
signed to handle a wide range of access, edge and core ap-
plications. The basic features include a 600 MHz XScale
core running Linux, eight 600 MHz special packet proces-
sors called micro-engines (µEngines), several types of mem-
ory and different controllers and busses. With respect to the
different CPUs, the XScale is typically used for the control
plane (slow path) while µEngines perform general packet
processing in the data plane (fast path).

The transport protocol translation operation1 is shown in
figure 2. The protocol translation proxy uses the XScale
core and one µEngine application block. In addition, we use
two µEngines for the receiving (RX) and the sending (TX)
blocks. Incoming packets are classified by the µEngine based
on the header. RTSP and HTTP packets are enqueued for
processing on the XScale core (control path) while the han-
dling of RTP packets is performed on the µEngine (fast
path). TCP acknowledgements with zero payload size are
processed on the µEngine for performance reasons.

The main task of the XScale is to set up and maintain
streaming sessions, but after the initialization, all video data
is processed (translated and forwarded) by the µEngine.
The proxy supports a partial TCP/IP implementation, cov-
ering only basic features. This is done to save both time and
resources on the proxy.

To be fair with competing TCP streams, we implemented
congestion control for the client loss experiment. TFRC [2]
computation is used to determine the bandwidth available
for streaming from the server. TFRC is a specification for
best effort flows competing for bandwidth, designed to be
reasonable fair to other TCP flows. The outgoing bandwidth
is limited by the following formula:

X =
s

R ∗

q

2 ∗ b ∗
p

3
+ (tRT O ∗ 3 ∗

q

3 ∗ b ∗
p

8
∗ p ∗ (1 + 32 ∗ p2))

1Our proxy also performs proxying of normal RTSP sessions
and transparent load balancing between streaming servers,
but this is outside of the scope of this paper. We also have
unused resources (µEngines) enabling more functionality.
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(a) HTTP and translation results (b) HTTP streaming (c) Protocol translation

Figure 3: Achieved bandwidth varying drop rate and link latency with 1% server-proxy loss

where X is the transmit rate in bytes per second, s is the
packet size in bytes, R is the RTT in seconds, b is the number
of packets ACKed by a single TCP acknowledgment, p is the
loss event rate (0-1.0), and tRTO is the TCP retransmission
timeout. The formula is calculated on a µEngine using fixed
point arithmetic. Packets arriving at a rate exceeding the
TFRC calculated threshold are dropped.

fects on the user-perceived quality than sender-side adapta-
tion. We have only made preliminary investigations on the
matter and leave it for future work. In that investigation,

RTT.

5. EXPERIMENTS AND RESULTS
We investigated the performance of our protocol transla-

tion proxy compared to plain HTTP-streaming in two dif-
ferent settings. In the first experiment, we induced unre-
liable network behavior between the streaming server and
the proxy, while in the second experiment, the unreliable
network connected proxy and client. We performed several
experiments where we examined both the bandwidth and
the delay while changing both the link delays (0 - 200 ms)
and the packet drop rate (0 - 1 %). We used a web-server
and an RTSP video server using RTP streaming, running on
a standard Linux machine. Packets belonging to end-to-end
HTTP connections made to port 8080 were forwarded by
the proxy whereas packets belonging to sessions initiated by
connection made to port 80 were translated. The bandwidth
was measured on the client by monitoring the packet stream
with tcpdump.

5.1 Server-Proxy Losses
The results from the test where we introduced loss and

delay between server and proxy are shown in figure 3. Fig-
ure 3(a) shows a 3D plot where we look at the latency that
w
delays. Additionally, figures 3(b) and 3(c) show the respec-
tive results for the HTTP and protocol translation scenarios
when keeping the loss rate constant at 1% (keeping the link
delay constant gives similar results). The plots show that
our proxy that translates transparently from RTP/UDP to
TCP achieves a mostly constant rate for the delivered stream.
Sending the HTTP stream from the server, on the other
hand, shows large performance drops when the loss rate
and the link delay increase. From figures 3(b) and 3(c),

Figure 4: TCP cubic congestion vs. TFRC

we see also that the translation provides a smoother stream
whereas the bandwidth oscillates heavily using TCP end-to-
end.

5.2 Proxy-Client Losses
In the second experiment, loss and delay are introduced

between the proxy and the client, and the data rate is lim-
ited according to TFRC measuring RTT and packet loss

calculated rate of TFRC are dropped and that TCP retrans-
missions contains only data with zero values.

In figure 4, we first show the average throughput of stream-
ing video from a web-server using cubic TCP congestion con-
trol compared with our TCP implementation using TFRC.
As expected, the TFRC implementation behaves similar (fair)
to normal TCP congestion control with a slightly more pes-
simistic approach. Moreover, figure 5 is a plot of the re-
ceived packets’ interarrival time. This shows that the delay
variation of normal TCP congestion control increases with

again that that our proxy gives a stream without large vari-
ations whereas the bandwidth oscillates heavily using TCP
throughout the path.

6. DISCUSSION
Even though our proxy seems to give better, more stable

mitting lost packet (and thus old data if the client does not

data from the server. This means that the client in our pro-
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Figure 5: Average interarrival delay and variation with proxy-client loss

totype does not receive all data, and some artifacts may be
displayed. On the other hand, in case of live and interactive
streaming scenarios, delays due to retransmission may intro-
duce dropped frames and delayed play out. This can cause
video artifacts, depending on the codec used. However, this
problem can easily be reduced by adding a limited buffer
per stream sufficient for one retransmission on the proxy.

One issue in the context of proxies is where and how it
should be implemented. For this study, we have chosen the
IXP2400 platform as we earlier have explored the offload-
ing capabilities of such programmable network processors.
Using such an architecture, the network processor is suited
for many similar operations, and the host computer could
manage the caching and persistent storage of highly pop-
ular data served from the proxy itself. However, the idea
itself could also be implemented as a user-level proxy appli-
cation or integrated into the kernel of an intermediate node
performing packet forwarding.

The main advantage of the scheme proposed in this pa-
per is a lower variation in bandwidth and interarrival times
in an unreliable network compared to normal TCP. It also
combines some of the benefits of HTTP streaming (firewall
traversal, client player support) with the performance of
RTP streaming. The price of this is uncontrolled loss of
data packets that may impact the perceived video quality
more strongly than hiccups.

HTTP streaming may perform well in a scenario where
a stored multimedia object is streamed to a high capac-
ity end-system. Here, a large buffer may add a small, but
acceptable, delay to conceal losses and oscillating resource
availability. However, in the case where the receiver is a
small device like a mobile phone or a PDA with a limited
amount of resources, or in an interactive scenario like con-
ferencing applications where there is no time to buffer, our
protocol translation mechanisms could be very useful.

The server-proxy losses test can be related to a case where
the camera on a mobile phone is used for streaming. Mobile
devices are usually connected to unreliable networks with
high RTT. The proxy-client losses test can be related to a
traditional video conference scenario.

In the experiment, we compare a normal web-server stream-
ing video with a RTP server (komssys) to a client by encap-
sulating the video data in HTTP packets on a IXP network
card close to the video server. The former setup runs a
simple web-server on Linux, limiting the average bandwidth
from user-space to the video’s bit rate.

Using RTP/UDP from the server through the backbone
to a proxy is also an advantage for the resource utilization.
RTP/UDP packets reduce memory usage, CPU usage and

overhead in the network compared to TCP. This combined
with the possibility of sending a single RTP/UDP stream to
the proxy, and make the proxy do separation and adapta-
tion of the stream to each client can reduce the load in the
backbone. Therefore the proxy should be placed as close to
the clients as possible, e.g. in the ISP’s access network, or
in a mobile provider’s network.

7. CONCLUSION
Both TCP and UDP have their strengths and weaknesses.

In this paper, we use a proxy that performs transparent
protocol translation to utilize the strengths of both protocols
in a streaming scenario. It enables the server to use UDP on
the server side and TCP on the client side. The server gains
scalability by not having to deal with TCP processing. On
the client side, the TCP stream is not discarded and passes
through firewalls. The experimental results show that our
protocol transparent proxy achieves translation and delivers
smoother streaming than HTTP-streaming.
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ABSTRACT

When used efficiently, modern multicore architectures, such
as Cell and GPUs, provide the processing power required by
resource demanding multimedia workloads. However, the
diversity of resources exposed to the programmers, intrinsi-
cally requires specific mindsets for efficiently utilizing these
resources - not only compared to an x86 architecture, but
also between the Cell and the GPUs. In this context, our
analysis of 14 different Motion-JPEG implementations indi-
cates that there exists a large potential for optimizing per-
formance, but there are also many pitfalls to avoid. By ex-
perimentally evaluating algorithmic choices, inter-core data
communication (memory transfers) and architecture-specific
capabilities, such as instruction sets, we present tips, tricks
and troubles with respect to efficient utilization of the avail-
able resources.

Categories and Subject Descriptors

D.1.3 [PROGRAMMING TECHNIQUE]: Concurrent
Programming—Parallel programming

General Terms

Measurement, Performance

1. INTRODUCTION
Heterogeneous systems like the STI Cell Broadband En-

gine (Cell) and PCs with Nvidia graphical processing units
(GPUs) have recently received a lot of attention. They pro-
vide more computing power than traditional single-core sys-
tems, but it is a challenge to use the available resources
efficiently. Processing cores have different strengths and
weaknesses than desktop processors, the use of several dif-
ferent types and sizes of memory is exposed to the devel-
oper, and limited architectual resources require considera-
tions concerning data and code granularity.

We want to learn how to think when the multicore system
at our disposal is a Cell or a GPU. We aim to understand

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’10, June 2–4, 2010, Amsterdam, The Netherlands.
Copyright 2010 ACM 978-1-4503-0043-8/10/06 ...$10.00.

(a) Cell on PS3 (6 SPEs) (b) GPU on GTX 280

Figure 1: Runtime for MJPEG implementations.

how to use the resources efficiently, and point out tips, tricks
and troubles, as a small step towards a programming frame-
work and a scheduler that parallelizes the same code effi-
ciently on several architectures. Specifically, we have looked
at effective programming for the workload-intensive yet rel-
atively straight-forward Motion-JPEG (MJPEG) video en-
coding task. Here, a lot of CPU cycles are consumed in the
sequential discrete cosine transformation (DCT), quantiza-
tion and compression stages. On single core systems, it is
almost impossible to process a 1080p high definition video in
real-time, so it is reasonable to apply multicore computing
in this scenario.

Our comparison of 14 different implementations on both
Cell and GPU gives a good indication that the two consid-
ered architectures are complex to use, and that achieving
high performance is not trivial. Derived from a sequential
codebase, these multicore implementations differ in terms of
algorithms used, resource utilization and coding efficiency.
Figure 1 shows performance results for encoding the “trac-
tor” video clip1 in 4:2:0 HD. The differences between the
fastest and slowest solution are 1869 ms and 362 ms per
frame on Cell and GPU, respectively, and it is worth not-
ing that the fastest solutions were disk I/O-bound. To gain
experience of what works and what does not, we have exam-
ined these solutions. We have not considered coding style,
but revisited algorithmic choices, inter-core data communi-
cation (memory transfers) and use of architecture-specific
capabilities.

In general, we found that these architectures have large
potentials, but also many possible pitfalls, both when choos-
ing specific algorithms and for implementation-specific de-
cisions. The way of thinking cross-platform is substantially
different, making it an art to use them efficiently.

1Available at ftp://ftp.ldv.e-technik.tu-muenchen.de/
dist/test sequences/1080p/tractor.yuv
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2. BACKGROUND

2.1 SIMD and SIMT
Multimedia applications frequently perform identical op-

erations on large data sets. This has been exploited by bring-
ing the concept of SIMD (single instruction, multiple data)
to desktop CPUs, as well as the Cell, where a SIMD in-
struction operates on a short vector of data, e.g., 128-bits
for the Cell SPE. Although SIMD instructions have become
mainstream with the earliest Pentium processors and the
adoption of PowerPC for MacOS, it has remained an art to
use them. On the Cell, SIMD instructions are used explic-
itly through the vector extensions to C/C++, which allow
basic arithmetic operations on vector data types of intrinsic
values. It means that the programmer can apply a sequen-
tial programming model, but needs to adapt memory layout
and algorithms to the use of SIMD vectors and operations.

Nvidia uses an abstraction called SIMT (single-instruction,
multiple thread). SIMT enables code that uses only well-
known intrinsic types but that can be massively threaded.
The runtime system of the GPU schedules these threads
in groups (called warps) whose optimal size is hardware-
specific. The control flow of such threads can diverge like
in an arbitrary program, but this will essentially serialize all
threads of the block. If it does not diverge and all threads
in a group execute the same operation or no operation at
all in a step, then this operation is performed as a vector
operation containing the data of all threads in the block.

The functionality that is provided by SIMD and SIMT
is very similar. In SIMD programming, vectors are used
explicitly by the programmer, who may think in terms of
sequential operations on very large operands. In SIMT pro-
gramming, the programmer can think in terms of threaded
operations on intrinsic data types.

2.2 STI Cell Broadband Engine
The Cell Broadband Engine is developed by Sony Com-

puter Entertainment, Toshiba and IBM. As shown in Fig-
ure 2, the central components are a Power Processing Ele-
ment (PPE) and 8 Synergistic Processing Elements (SPE)
connected by the Element Interconnect Bus (EIB). The PPE
contains a general purpose 64-bit PowerPC RISC core, ca-
pable of executing two simultaneous hardware threads. The
main purpose of the PPE is to control the SPEs, run an
operating system and manage system resources. It also in-
cludes a standard Altivec-compatible SIMD unit. An SPE
contains a Synergistic Processing Unit and a Memory Flow
controller. It works on a small (256KB) very fast memory,
known as the local storage, which is used both for code and
data without any segmentation. The Memory Flow Con-
troller is used to transfer data between the system memory
and local storage using explicit DMA transfers, which can
be issued both from the SPE and PPE.

Figure 2: Cell Broadband Engine Architecture

Figure 3: Nvidia GT200 Architecture

2.3 Nvidia Graphics Processing Units
A GPU is a dedicated graphics rendering device, and

modern GPUs have a parallel structure, making them ef-
fective for doing general-purpose processing. Previously,
shaders were used for programming, but specialized lan-
guages are now available. In this context, Nvidia has re-
leased the CUDA framework with a programming language
similar to ANSI C. In CUDA, the SIMT abstraction is used
for handling thousands of threads.

The latest generation available from Nvidia (GT200) is
shown in Figure 3. The GT200 chip is presented to the
programmer as a highly parallel, multi-threaded, multi-core
processor - connected to the host computer by a PCI Express
bus. The GT200 architecture contains 10 texture process-
ing clusters (TPC) with 3 streaming multiprocessors (SM).
A single SM contains 8 stream processors (SP) which are
the basic ALUs for doing calculations. GPUs have other
memory hierarchies than an x86 processor. Several types of
memory with different properties are available. An applica-
tion (kernel) has exclusive control over the memory. Each
thread has a private local memory, and the threads running
on the same stream multiprocessor (SM) have access to a
shared memory. Two additional read-only memory spaces
called constant and texture are available to all threads. Fi-
nally, there is the global memory that can be accessed by all
threads. Global memory is not cached, and it is important
that the programmer ensures that running threads perform
coalesced memory accesses. Such a coalesced memory access
requires that the threads’ accesses occur in a regular pattern
and creates one large access from several small ones. Mem-
ory accesses that cannot be combined are called uncoalesced.

3. EXPERIMENTS
By learning from the design choices of the implementa-

tions in Figure 1, we designed experiments to investigate
how performance improvements were achieved on both Cell
and GPU. We wanted to quantify the impact of design de-
cisions on these architectures.

All experiments encode HD video (1920x1080, 4:2:0) from
raw YUV frames found in the tractor test sequence. How-
ever, we used only the first frame of the sequence and encode
it 1000 times in each experiment to overcome the disk I/O
bottleneck limit. This becomes apparent at the highest level
of encoding performance since we did not have a high band-
width video source available. All programs have been com-
piled with the highest level of compiler optimizations using
gcc and nvcc, respectively, for Cell and GPU. The Cell ex-
periments have been tested on a QS22 bladeserver (8 SPEs,
the results from Figure 1 were on a PS3 with 6 SPEs) and
the GPU experiments on a GeForce GTX 280 card.
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Figure 4: Overview of the MJPEG encoding process

3.1 Motion JPEG Encoding
The MJPEG format is widely used by webcams and other

embedded systems. It is similar to videocodecs such as Ap-
ple ProRes and VC-3, used for video editing and postpro-
cessing due to their flexibilty and speed, hence the lack of
inter-prediction between frames. As shown in Figure 4, the
encoding process of MJPEG comprises splitting the video
frames in 8x8 macroblocks, each of which must be indi-
vidually transformed to the frequency domain by forward
discrete cosine transform (DCT) and quantized before the
output is entropy coded using variable-length coding (VLC).
JPEG supports both arithmetic coding and Huffman com-
pression for VLC, our encoder uses predefined Huffman ta-
bles for compression of the DCT coefficients of each mac-
roblock. The VLC step is not context adaptative, and mac-
roblocks can thus be compressed independently. The length
of the resulting bitstream, however, is probably not a multi-
ple of eight, and most such blocks must be bit-shifted com-
pletely when the final bitstream is created.

The MJPEG format provides many layers of parallelism;
Starting with the many independent operations of calulating
DCT, the macroblocks can be transformed and quantized in
arbitrary order, also frames and color components can be en-
coded separately. In addition, every frame is entropy-coded
separately. Thus, many frames can be encoded in parallel
before merging the resulting frame output bitstreams. This
gives a very fine-level granularity of parallel tasks, provid-
ing great flexibility in how to implement the encoder. It is
worth noting that many problems have much tighter data
dependencies than we observe in the MJPEG case, but the
general ideas for optimizing individual parts pointed out in
this paper stand regardless of whether the problem is limited
by dependencies or not.

The forward 2D DCT function for a macroblock is defined
in the JPEG standard for image component sy,x to output
DCT coefficients Sv,u as

Sv,u =
1

4
CuCv

7
X

x=0

7
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sy,xcos
(2x + 1)uπ

16
cos

(2y + 1)vπ

16

where Cu, Cv = 1
√

2
for u, v = 0 and Cu, Cv = 1 otherwise.

The equation can be directly implemented in an MJPEG
encoder and is referred to as 2D-plain. The algorithm can
be sped up considerably by removing redundant calcula-
tions. One improved version that we label 1D-plain uses
two consecutive 1D transformations with a transpose opera-
tion in between and after. This avoids symmetries, and the
1D transformation can be optimized further. One optimiza-
tion uses the AAN algorithm, originally proposed by Arai
et al. [1] and further refined by Kovac and Ranganathan [5].
Another uses a precomputed 8x8 transformation matrix that
is multiplied with the block together with the transposed
transformation matrix. The matrix includes the postscale
operation, and the full DCT operation can therefore be com-
pleted with just two matrix multiplications, as explained by
Kabeen and Gent [2].

More algorithms for calculating DCT exist, but they are

not covered here. We have implemented the different DCT
algorithms as scalar single-threaded versions on x86 (Intel
Core i5 750). The performance details for encoding HD
video were captured using oprofile and can be seen in Figure
5. The plot shows that the 1D-AAN algorithm using two
transpose operations was the fastest in this scenario, with
the 2D-matrix version as number two. The average encoding
time for a single frame using 2D-plain is more than 9 times
that of a frame encoded using 1D-AAN. For all algorithms,
the DCT step consumed most CPU cycles.

3.2 Cell Broadband Engine Experiments
Considering the embarrassingly parallel parts of MJPEG

video encoding, a number of different layouts is available
for mapping the different steps of the encoding process to
the Cell. Because of the amount of work, the DCT and
quantization steps should be executed on SPEs, but also the
entropy coding step can run in parallel between complete
frames. Thus, given that a few frames of encoding delay
are acceptable, the approach we consider best is to process
full frames on each SPE with every SPE running DCT and
quantization of a full frame. This minimizes synchronization
between cores, and allows us to perform VLC on the SPEs.

Regardless of the placement of the encoding steps, it is
important to avoid idle cores. We solved this by adding a
frame queue between the frame reader and the DCT step,
and another queue between the DCT and VLC steps. Since
a frame is processed in full by a single processor, the AAN
algorithm is well suited for the Cell. It can be implemented
in a straight-forward manner for running on SPEs, with VLC
coding placed on the PPE. We tested the same algorithm
optimized with SPE intrinsics for vector processing (SIMD)
resulting in double encoding throughput, which can be seen
in Figure 6 (Scalar- and Vector/PPE).

Another experiment involved moving the VLC step to the
SPEs, offloading the PPE. This approach left the PPE with
only the task of reading and writing files to disk in addition
to dispatching jobs to SPEs. To be able to do this, the luma
and chroma blocks of the frames had to be transformed and
quantized in interleaved order, i.e., two rows of luma and a
single row of both chroma channels. The results show that
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the previous encoding speed was limited by the VLC as can
be seen in Figure 6 (Scalar- and Vector/SPE).

To get some insight into SPE utilization, we collected a
trace (using pdtr, part of IBM SDK for Cell) showing how
much time is spent on the encoding parts. Figure 7 shows
the SPE utilization when encoding HD frames for the Scalar-
and Vector/SPE from Figure 6. This distinction is necessary
because the compiler does not generate SIMD code, requir-
ing the programmer to hand-code SIMD intrinsics to obtain
high throughput. The scalar version uses about four times
more SPE time to perform the DCT and quantization steps
for a frame than the vector version, and additionally 30% of
the total SPE time to pack and unpack scalar data into vec-
tors for SIMD operations. Our vectorized AAN implemen-
tation is nearly eight times faster than the scalar version.

With the vector version of DCT and quantization, the
VLC coding uses about 80 % of each SPE. This can possibly
be optimized further, but we did not find time to pursue this.

The Cell experiments demonstrate the necessary level of
fine-grained tuning to get high performance on this archi-
tecture. In particular, correctly implementing an algorithm
using vector intrinsics is imperative. Of the 14 implemen-
tations for Cell in Figure 1, only one offloaded VLC to the
SPEs, but this was the second fastest implementation. The
fastest implementation vectorized the DCT and quantiza-
tion, and the Vector/SPE implementation in Figure 6 is a
combination of these two. One reason why only one imple-
mentation offloaded the VLC may be that it is unintuitive.
An additional communication and shift step is required in
parallelizing VLC because the lack of arbitrary bit-shifting
of large fields on Cell as well as GPU prevents a direct port
from the sequential codes. Another reason may stem from
the dominance of the DCT step in early profiles, as seen
in Figure 5, and the awkward process of gathering profil-
ing data on multicore systems later on. The hard part is
to know what is best in advance, especially because mov-
ing an optimized piece of code from one system to another
can be significant work, and may even require rewriting the
program entirely. It is therefore good practice to structure
programs in such a way that parts are coupled loosely. In
that way, they can both be replaced and moved to other
processors with minimal effort.

When comparing the 14 Cell implementations of the en-
coder shown in Figure 1 to find out what differentiates the
fastest from the medium speed implementations, we found
some distinguising features: The most prominent one be-
ing not exploiting the SPE’s SIMD capabilities, but also in
the areas of memory transfers and job distribution. Uneven
workload distribution and lack of proper frame queuing re-
sulted in idle cores. Additionally, some implementations suf-
fered from small, often unconcealed, DMA operations that
left SPEs in a stalled state waiting for the memory trans-
fer to complete. It is evident that many pitfalls need to be
avoided when writing programs for the Cell architecture, and
we have only touched upon a few of them. Some of these are
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Figure 7: SPE utilization using scalar or vector DCT
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obvious, but not all, and to get acceptable performance out
of a program running on the Cell architecture may require
multiple iterations, restructuring and even rewrites.

3.3 GPU Experiments
As for the Cell, several layouts are available for GPUs.

However, because of the large number of small cores, it is
not feasible to assign one frame to each core. The most time-
consuming parts of the MJPEG encoding process, the DCT
and quantization steps, are well suited for GPU acceleration.
In addition, the VLC step can also be partly adapted.

Coalesced memory accesses are known to have large per-
formance impacts. However, few quantified results exist,
and efficient usage of memory types, alignment and access
patterns remains an art. Weimer et al. [11] experimented
with bank conflicts in shared memory, but to shed light on
the penalties of inefficient memory type usage, further in-
vestigation is needed. We therefore performed experiments
that read and write data to and from memory with both
uncoalesced and coalesced access patterns [7], and used the
Nvidia CUDA Visual Profiler to isolate the GPU-time for
the different kernels.

Figure 8 shows that an uncoalesced access pattern de-
creases throughput in the order of four times due to the
increased number of memory transactions. Constant and
texture memory are cached, and the performance for un-
coalesced accesses to them is improved compared to global
memory, but there is still a three-time penalty. Furthermore,
the cached memory types support only read-only operations
and are restricted in size. When used correctly, the per-
formance of global memory is equal to the performance of
the cached memory types. The experiment also shows that
correct memory usage is imperative even when cached mem-
ory types are used. It is also important to make sure the
memory accesses are correct according to the specifications
of particular GPUs because the optimal access patterns vary
between GPU generations.

To find out how memory accesses and other optimiza-
tions affect programs like a MJPEG encoder, we experi-
mented with different DCT implementations. Our baseline
DCT algorithm is the 2D-plain algorithm. The only opti-
mizations in this implementation are that the input frames
are read into cached texture memory and that the quan-
tization tables are read into cached constant memory. As
we observed in Figure 8, cached memory spaces improve
performance compared to global memory, especially when
memory accesses are uncoalesced. The second implemen-
tation, referred to as 2D-plain optimized, is tuned to run
efficiently using principles from the CUDA Best Practices
Guide [6]. These optimizations include the use of shared
memory as a buffer for pixel values when processing a mac-
roblock, branch avoidance by using boolean arithmetics and
manual loop unrolling. Our third implementation, the 1D-
AAN algorithm, is based upon the scalar implementation
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used on the Cell. Every macroblock is processed with eight
threads, one thread per row of eight pixels. The input im-
age is stored in cached texture memory, shared memory is
used for temporarily storing data during processing. Finally,
the 2D-matrix DCT using matrix multiplications where each
matrix element is computed by a thread. The input image
is stored in cached texture memory, and shared memory is
used for storing data during calculations.

We know from existing work that to achieve high instruc-
tion throughput, branch prevention and the correct use of
flow control instructions are important. If threads on the
same SM diverge, the paths are serialized which decreases
performance. Loop unrolling is beneficial on GPU kernels
and can be done automatically by the compiler using pragma
directives. To optimize frame exchange, asynchronous trans-
fers between the host and GPU were used. Transferring data
over the PCI Express bus is expensive, and asynchronous
transfers help us reuse the kernels and hides some of the PCI
Express latency by transferring data in the background.

To isolate the DCT performance, we used the CUDA Vi-
sual Profiler. The profiling results of the different imple-
mentations can be seen in Figure 9, and we can observe that
the 2D-plain optimized algorithm is faster than AAN. The
2D-plain algorithm requires significantly more computations
than the others, but by correctly implementing it, we get al-
most as good performance as with the 2D-matrix. The AAN
algorithm, which does the least amount of computations,
suffers from the low number of threads per macroblock. A
low number of threads per SM can result in stalling, where
all the threads are waiting for data from memory, which
should be avoided.

This experiment shows that for architectures with vast
computational capabilities, writing a good implementation
of an algorithm adapted for the underlying hardware can be
as important as the theoretical complexity of an algorithm.
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Figure 10: Effect of offloading VLC to the GPU

The last GPU experiment considers entropy coding on the
GPU. As for the Cell, VLC can be offloaded to the GPU by
assigning a thread to each macroblock in a frame to com-
press the coefficients and then store the bitstream of each
macroblock and its length in global memory. The output of
each macroblock’s bitstream can then be merged either on
the host, or by using atomic OR on the GPU. For the experi-
ments here, we chose the former since the host is responsible
for the I/O and must traverse the bitstream anyway. Fig-
ure 10 shows the results of an experiment that compares

MJPEG with AAN DCT with VLC performed on the host
and on the GPU, respectively. We achieved a doubling of
the encoding performance when running VLC on the GPU.
In this particular case offloading VLC was faster than run-
ning on the host. It is worth noting that by running VLC on
the GPU, the entropy coding scales together with the rest of
the encoder with the resources available on the GPU. This
means than if the encoder runs on a machine with a slower
host CPU or faster GPU, the encoder will still scale.

4. DISCUSSION
Heterogeneous architectures like Cell and GPU provide

large amounts of processing power, and achieving encoding
throughputs of 480 MB/s and 465 MB/s, respectively, real-
time MJPEG HD encoding may be no problem. However, an
analysis of the many implementations of MJPEG available
and our additional testing show that it is important to use
the right concepts and abstractions, and that there may be
large differences in the way a programmer must think.

The architectures of GPU and Cell are very different, and
in this respect, some algorithms may be more suited than
others. This can be seen in the experiments, where the
AAN algorithm for DCT calculation performed best on both
x86 and Cell, but did not achieve the highest throughput
on GPU. This was because of the relatively low number of
threads per macroblock for the AAN algorithm, which must
perform the 1D DCT operation (one row of pixels within a
macroblock) as a single thread. This is only one example
of achieving a shorter computation time through increased
parallelity at the price of a higher, sub-optimal total number
of operations.

The programming models used on Cell and GPU mandate
two different ways of thinking parallel. The approach of
Cell is very similar to multi-threaded programming on x86,
with the exception of shared memory. The SPEs are used
as regular cores with explicit caches, and the vector units
on the SPEs require careful data structure consideration to
achieve peak performance. The GPU model of programming
is much more rigid, with a static grid used for blocks of
threads, and only synchronization through barriers. This
hides the architecture complexity, and is therefore a simpler
concept to grasp for some programmers. This notion is also
strengthened by the better average GPU throughput of the
implementations in Figure 1. However, to get the highest
possible performance, the programmer must also understand
the nitty details of the architecture to avoid pitfalls like warp
divergence and uncoalesced memory accesses.

Deciding at which granularity the data should be parti-
tioned is very hard to do correct a priori. The best granular-
ity for a given problem differs with the architecture and even
different models of the same architecture. One approach to-
wards accomplishing this is to try to design the programs
in such a way that the cores are seldom idle or stall. In
practice, however, multiple iterations may be necessary to
determine the best approach.

Similar to data partitioning, code partitioning is hard to
do correctly in advance. In general, a rule of thumb is to
write modular code to allow moving the parts to other cores.
Also, a fine granularity is beneficial, since small modules
can be merged again, and also be executed repeatedly with
small overhead. Offloading is by itself advantageous as re-
sources on the main processor become available for other
tasks. It also improves scalability of the program with new
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generations of hardware. In our MJPEG implementations,
we found that offloading DCT/quantization and VLC cod-
ing was advantageous in terms of performance on both Cell
and GPU, but it may not always be the case that offloading
provides higher throughput.

The encoding throughput achieved on the two architec-
tures was surprisingly similar. Although, the engineering
effort for accomplishing this throughput was much higher
on the Cell. This was mainly caused by the tedious pro-
cess of writing a SIMD version of the encoder. Porting the
encoder to the GPU in a straight-forward manner without
significant optimizations for the architecture yielded a very
good offloading performance compared to native x86. This
indicates that the GPU is easier to use, but to reap the full
potential of the architecture, one must have the same deep
level of understanding as with the Cell architecture.

5. RELATEDWORK
Heterogeneous multi-core platforms like the Cell and GPUs

have attracted a considerable amount of research that aims
at optimizing specific applications for the different architec-
tures such as [9] and [4]. However, little work has been done
to compare general optimization details of different hetero-
geneous architectures. Amesfoort et al. [10] have evaluated
different multicore platforms for data-intensive kernels. The
platforms are evaluated in terms of application performance,
programming effort and cost. Colic et al. [3] look at the
application of optimizing motion estimation on GPUs and
quantify impact of design choices. The workload investi-
gated in this paper is different from the workload we bench-
mark in our experiments, but they show a similar trend as
our GPU experiments. They also conclude that elegant solu-
tions are not easily achievable, and that it takes time, prac-
tice and experience to reap the full potential of the architec-
ture. Petrini et al. [8] implement a communication-heavy ra-
diation transport problem on Cell. They conclude that it is
a good approach to think about problems in terms of five di-
mensions and partitioning them into: process parallelism at
a very large scale, thread-level parallelism that handles inner
loops, data-streaming parallelism that double-buffers data
for each loop, vector parallelism that uses SIMD functions
within a loop, and pipeline parallelism that overlaps data
access with computations by threading. From our MJPEG
implementations we observed that programmers had diffi-
culties thinking parallel in two dimensions. This level of
multi-dimensional considerations strengthens our statement
that intrinsic knowledge of the system is essential to reap
full performance of heterogeneous architectures.

6. CONCLUSION
Heterogeneous, multicore architectures like Cell and GPUs

may provide the resources required for real-time multimedia
processing. However, achieving high performance is not triv-
ial, and in order to learn how to think and use the resources
efficiently, we have experimentally evaluated several issues
to find the tricks and troubles.

In general, there are some similarities, but the way of
thinking must be substantially different - not only compared
to an x86 architecture, but also between the Cell and the
GPUs. The different architectures have different capabili-
ties that must be taken into account both when choosing a
specific algorithm and making implementation-specific deci-

sions. A lot of trust is put on the compilers of development
frameworks and new languages like Open CL, which are sup-
posed to be a “recompile-only” solution. However, to tune
performance, the application must still be hand-optimized
for different versions of the GPUs and Cells available.
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Abstract—The computational demands of multimedia data
processing are steadily increasing as consumers call for pro-
gressively more complex and intelligent multimedia services.
New multi-core hardware architectures provide the required
resources, but writing parallel, distributed applications remains
a labor-intensive task compared to their sequential counter-part.
For this reason, Google and Microsoft implemented their respec-
tive processing frameworks MapReduce [10] and Dryad [19], as
they allow the developer to think sequentially, yet benefit from
parallel and distributed execution. An inherent limitation in the
design of these batch processing frameworks is their inability to
express arbitrarily complex workloads. The dependency graphs
of the frameworks are often limited to directed acyclic graphs,
or even pre-determined stages. This is particularly problematic
for video encoding and other algorithms that depend on iterative
execution.

With the Nornir runtime system for parallel programs [39],
which is a Kahn Process Network implementation, we addressed
and solved several of these limitations. However, it is more
difficult to use than other frameworks due to its complex pro-
gramming model. In this paper, we build on the knowledge gained
from Nornir and present a new framework, called P2G, designed
specifically for developing and processing distributed real-time
multimedia data. P2G supports arbitrarily complex dependency
graphs with cycles, branches and deadlines, and provides both
data- and task-parallelism. The framework is implemented to
scale transparently with available (heterogeneous) resources, a
concept familiar from the cloud computing paradigm. We have
implemented an (interchangeable) P2G kernel language to ease
development. In this paper, we present a proof of concept
implementation of a P2G execution node and some experimental
examples using complex workloads like Motion JPEG and K-
means clustering. The results show that the P2G system is a
feasible approach to multimedia processing.

I. INTRODUCTION

Live, interactive multimedia services are steadily growing

in volume. Interactively refined video search, dynamic par-

ticipation in video conferencing systems and user-controlled

views in live media transmissions are a few examples of

features that future consumers will expect when they consume

multimedia content. New usage patterns, such as extracting

features in pictures to identify objects, calculation of 3D

depth information from camera arrays, or generating free-

view videos from multiple camera sources in real-time, add

further magnitudes of processing requirements to already

computationally intensive tasks like traditional video encoding.

This fact is further exacerbated by the advent of high-definition

videos.

Many-core systems, such as graphic processor units (GPUs),

digital signal processors (DSPs) and large scale distributed

systems in general, provide the required processing power, but

taking advantage of the parallel computational capacity of such

hardware is much more complex than single-core solutions. In

addition, heterogeneous hardware requires individual adapta-

tion of the code, and often involve domain specific knowledge.

All this places additional burdens on the application developer.

As a consequence, several frameworks have emerged that aim

at making distributed application development and processing

easier, such as Google’s MapReduce [10] and Microsoft’s

Dryad [19]. These frameworks are limited by their design

for batch processing of large amounts of data, with few

dependencies across a large cluster of machines. Modifications

and enhancements that address bottlenecks [8] together with

support for new types of workloads and additional hard-

ware exist [9], [16], [31]. It is also worth mentioning that

new languages for current batch frameworks have been pro-

posed [29], [30]. However, the development and processing of

distributed multimedia applications is inherently more difficult.

Multimedia applications also have stricter requirements for

flexibility. Support for iterations is essential, and knowledge of

deadlines is often imperative. The traditional batch processing

frameworks do not support this.

In our Nornir runtime system for parallel processing [39],

we addressed many of the shortcomings of the batch process-

ing frameworks. Nornir is based on the idea of Kahn Process

Networks (KPN). Compared to MapReduce-like approaches,

Nornir adds support for arbitrary processing graphs, determin-

istic execution, etc. However, KPNs are designed with some

unrealistic assumptions (like unlimited queue sizes), and the

Nornir programming model is much more complex than that

of frameworks like MapReduce and Dryad. It demands that

the application developer establishes communication channels

manually to form the dependency graph.

In this paper, we expand on our visions and present our

initial ideas of P2G. It is a completely new framework for

distributed real-time multimedia processing. P2G is designed
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to work on continuous flows of data, such as live video

streams, while still maintaining the ability to support batch

workloads. We discuss the initial ideas and present a proof-

of-concept prototype1 running on x86 multi-core machines.

We present experimental results using concrete multimedia

examples. Our main conclusion is that the P2G approach is a

step in the right direction for development and execution of

complex parallel workloads.

II. RELATED WORK

A lot of research has been dedicated to addressing the

challenges introduced by parallel and distributed program-

ming. This has led to the development of a number of

tools, programming languages and frameworks to ease the

development effort.

For example, several solutions have emerged for simplifying

distributed processing of large quantities of data. We have

already mentioned Google’s MapReduce [10] and Microsoft’s

Dryad [19]. In addition, you have IBM’s System S and ac-

companying programming language SPADE [13]. Yahoo have

also implemented a programming language with their PigLatin

language [29], other notable mentions for increased language

support is Cosmos [26], Scope [6], CIEL [25], SNAPPLE [40]

and DryadLINQ [41]. The high-level languages provide easy

abstractions for the developers in an environment where mis-

takes are hard to correct.

Dryad, Cosmos and System S have many properties in

common. They all use directed graphs to model computations

and execute them on a cluster. System S also supports cycles

in graphs, while Dryad supports non-deterministic constructs.

However, not much is known about these systems, since no

open implementations are freely available. MapReduce on the

other hand has become one of the most cited paradigms for

expressing parallel computations. While Dryad and System

S use a task parallel model, MapReduce uses a data-parallel

model based on keys and values. There are several imple-

mentations of MapReduce for clusters [1], multi-core [31],

the Cell BE architecture [9], and also for GPUs [16]. Map-

Reduce-Merge [8] adds a merge step to process data rela-

tionships among heterogeneous data sets efficiently, operations

not directly supported by the original MapReduce model. In

Oivos [35], the same issues are addressed, but in addition, this

system provides a more expressive, declarative programming

model. Finally, reducing the layering overhead of software

running on top of MapReduce is the goal of Cogset [36] where

the processing architecture is changed to increase performance.

An inherent limitation in MapReduce, Dryad and Cosmos

is their inability to model iterative algorithms. In addition,

the rigid MapReduce semantics do not map well to all types

of problems [8], which may lead to unnaturally expressed

solutions and decreased performance [38]. The limited support

for iterative algorithms has been mitigated in HaLoop [5], a

fork of Hadoop optimized for batch processing of iterative

1The P2G source code and workload examples are available for download
from http://www.p2gproject.org/.

Figure 1. Overview of nodes in the P2G system.

algorithms where data is kept local for future iterations of the

MR steps. However, the programming model of MapReduce

is designed for batch processing huge datasets, and not well

suited for multimedia algorithms. Finally, Google’s patent on

MapReduce [11] may prompt commercial actors to look for

an alternative framework.

KPN-based frameworks are one such alternative. KPNs

support arbitrary communication graphs with cycles and are

deterministic. However, in practice, very few general-purpose

KPN runtime implementations exist. Known implementations

include the Sesame project [34], the process network frame-

work [28], YAPI [22] and our own Nornir [39]. These frame-

works have several benefits, but for application developers, the

KPN model has some challenges, particularly in a distributed

scenario. To mention some issues, a distributed version of a

KPN implementation requires a distributed deadlock detec-

tion and a developer must specify communication channels

between the processes manually.

An alternative framework based on a process network

paradigm is StreamIt [15], which comprises a language and a

runtime system for simplifying the implementation of stream

programs described by a graph that consists of computational

blocks (filters) with a single input and output. Filters can be

combined in fork-join patterns and loops, but must provide

bounds on the number of produced and consumed messages,

so a StreamIt graph is actually a synchronous data-flow

process network [23]. The compiler produces code that can

make use of multiple machines or CPUs, whose number is

specified at compile-time, i.e., a compiled application cannot

adapt to resource availability.

The processing and development of distributed multime-

dia applications is inherently more difficult than traditional

sequential batch applications. Multimedia applications have

strict requirements and knowledge of deadlines is necessary,

especially in a live scenario. For multimedia applications that

enable live communication, iterative processing is essential.

Also, elastic scaling with the available resources becomes

imperative when the workload, requirements or machine re-

souces change. Thus, all of the existing frameworks have some

short-comings that are difficult to address, and the traditional

batch processing frameworks simply come up short in our

multimedia scenario. Next, inspired by the strengths of the

different approach, we present our ideas for a new framework

for distributed real-time multimedia processing.
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III. BASIC IDEA

The idea of P2G was born out of the observation that

most distributed processing framework lack support for real-

time multimedia workloads, and that data or task parallelism,

two orthogonal dimensions for expressing parallelism, is often

sacrificed in existing frameworks. With data parallelism, mul-

tiple CPUs perform the same operation over multiple disjoint

data chunks. Task parallelism uses multiple CPUs to perform

different operations in parallel. Several existing frameworks

optimize for either task or data parallelism, not both. In

doing so, they can severely limit the ability to express the

parallelism of a given workload. For example, MapReduce

and its related approaches provide considerable power for

parallelization, but restrict runtime processing to the domain of

data parallelism [12]. Functional languages such as Erlang [3]

and Haskell [18] and the event-based SDL [21], map well

to task parallelism. Programs are expressed as communicating

processes either through message passing or event distribution,

which makes it difficult to express data parallelism without

specifying a fixed number of communication channels.

In our multimedia scenario, Nornir improves on many of the

shortcomings of the traditional batch processing frameworks,

like MapReduce and Dryad. KPNs are deterministic; each

execution of a process network produces the same output

given the same input. KPNs support also arbitrary com-

munication graphs (with cycles/iterations), while frameworks

like MapReduce and Dryad restrict application developers

to a parallel pipeline structure and directed acyclic graphs

(DAGs). However, Nornir is task-parallel, and data-parallelism

must be explicitly added by the programmer. Furthermore,

as a distributed, multi-machine processing framework, Nornir

still has some challenges. For example, the message-passing

communication channels, having exactly one sender and one

receiver, are modeled as infinite FIFO queues. In real-life

distributed implementations, however, queue length is limited

by available memory. A distributed Nornir implementation

would therefore require a distributed deadlock detection al-

gorithm. Another issue is the complex programming model.

The KPN model requires the application developer to specify

the communication channels between the processes manually.

This requires the developer to think differently than for other

distributed frameworks.

With P2G, we build on the knowledge gained from devel-

oping Nornir and address the requirements from multimedia

workloads, with inherent support for deadlines. A particu-

larly desirable feature for processing multimedia workloads

includes automatic combined task and data parallelism. Intra-

frame prediction in H.264 AVC, for example, introduces many

dependencies between sub-blocks of a frame, and together

with other overlapping processing stages, these operations

have a high potential for benefiting from both types of par-

allelism. We demonstrated the potential in earlier work with

Nornir, whose deterministic nature showed great paralleliza-

tion potential in processing arbitrary dependency graphs.

Multimedia algorithms being iterative by nature exhibit

many pipeline parallel opportunities. Exploiting them are hard

because intrinsic knowledge of fine-grained dependences are

required, and structuring programs in such a way that pipeline

parallelism can be used is difficult. Thies et al. [33] wrote

an analysis tool for finding parallel pipeline opportunities by

evaluating memory accesses assuming that the behaviour is

stable. They evaluated their system on multimedia algorithms

and gained significantly increased parallelism by utilizing the

complex dependencies found. In the P2G framework, applica-

tion developers model data and task dependencies explicitly,

and this enable the runtime to automatically detect and take

full advantage of all parallel opportunities without manual

intervention.
A major source of non-determinism in other languages and

frameworks lies in the arbitrary order of read and write opera-

tions from and to memory. The source of this non-deterministic

behavior can be removed by adopting strict write-once seman-

tics for writing to memory [4]. Languages that take advantage

of the concept of single assignment include Erlang [3] and

Haskell [18]. It enables schedulers to determine when code

depending on a memory cell is runnable. This is a key concept

that we adopted for P2G. While write-once-semantics are well-

suited for a scheduler’s dependency analysis, it is not straight-

forward to think about multimedia algorithms in the functional

terms of Erlang and Haskell. Multimedia algorithms tend to be

formulated in terms of iterations of sequential transformation

steps. They act on multi-dimensional arrays of data (e.g.,

pixels in a picture) and provide frequently very intuitive

data partitioning opportunities (e.g., 8x8-pixel macro-blocks

of a picture). Prominent examples are the computation-heavy

MPEG-4 AVC encoding [20] and SIFT [24] pipelines. Both are

also examples of algorithms whose subsequent steps provide

data decomposition opportunities at different granularities and

along different dimensions of input data. Consequently, P2G

should allow programmers to think in terms of fields without

loosing write-once-semantics.
Flexible partitioning requires the processing of clearly dis-

tinct data units without side-effects. The idea adopted for P2G

is to use kernels as in stream processing [15], [27]. Such

a kernel is written once and describes the transformation of

multi-dimensional fields of data. Where such a transformation

is formulated as a loop of equal steps, the field should instead

be partitioned and the kernel instantiated to achieve data-

parallel execution. Each of these data partitions and tasks can

then be scheduled independently by the schedulers, which can

analyze dependencies and guarantee fully deterministic output

independent of order due to the write-once semantics of fields.
Together, these observations determined four basic ideas for

the design of P2G:

• The use of multi-dimensional fields as the central con-

cept for storing data in P2G to achieve straight-forward

implementations of complex multimedia algorithms.

• The use of kernels that process slices of fields to achieve

data decomposition.

• The use of write-once semantics to such fields to achieve

deterministic behavior.
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• The use of runtime dependency analysis at a granularity

finer than entire fields to achieve task decomposition

along with data decomposition.

Within the boundaries of these basic ideas, P2G should be

easily accessible for programmers who only need to write

isolated, sequential pieces of code embedded in kernel def-

initions. The multi-dimensional fields offer a natural way to

express multimedia data, and provide a direct way for kernels

to fetch slices of a field in as fine a granularity as possible,

supporting data parallelism.

P2G is designed to be language independent, however, we

have defined a C-like language that captures many of P2G’s

central concepts. As such, the P2G language is inspired by

many existing languages. In fact, Cray’s Chapel [7] language

antedates many of P2G’s features in a more complete manner.

P2G adds, however, write-once semantics and support for

multimedia workloads. Furthermore, P2G programs consist

of interchangeable language elements that formulate data

dependencies between implicitly instantiated kernels, which

are (currently) written in C/C++.

The biggest deviation from most other modern language

designs is that the P2G kernel language makes both message

passing and parallelism implicit and allows users to think in

terms of sequential data transformations. Furthermore, P2G

supports deadlines, which allows scheduling decisions such as

termination, branching and the use of alternative code paths

based on runtime observations.

In summary, we have opted for an idea that allows pro-

grammers to focus on data transformations in a sequential

manner, while simultaneously providing enough information

for dynamically adapting the data and task parallelization.

As an end result of our considerations. P2G’s fields look

mostly like global multi-dimensional arrays in C, although

their representation in memory may deviate, i.e., they need not

be placed contiguously in the memory of a single node, and

may even be distributed across multiple machines. Although

this looks contrary to our message-based KPN approach used

in Nornir, it maps well when slices of fields are interpreted

as messages and the run-queues of worker threads as KPN

channels. An obvious difference is that fields can be read as

often as necessary.

IV. ARCHITECTURE

As shown in figure 1, the P2G architecture consists of

a master node and an arbitrary number of execution nodes.

Each execution node reports its local topology (a graph of

multi-core and single-core CPUs and GPUs, connected by

various kinds of buses and other networks) to the master node,

which combines this information into a global topology of

available resources. As such, the global topology can change

during runtime as execution nodes are dynamically added and

removed to accommodate for changes in the global load.

To maximize throughput, P2G uses a two-level scheduling

approach. On the master node, we have a high-level sched-

uler (HLS), and on the execution node(s), we use a low-

level scheduler (LLS). The HLS can analyze a workloads

Figure 2. Intermediate implicit static dependency graph

Figure 3. Final implicit static dependency graph

store and fetch statements, from which it can generate an

intermediate implicit static dependency graph (see figure 2)

where edges connecting two kernels through a field can be

merged, circumventing the need for a vertex representing the

field (as seen in figure 3). From the intermediate graph, the

HLS can then derive a final implicit static dependency graph

(see figure 3). The HLS can then use a graph partitioning [17]

or search based [14] algorithm to partition the workload into

a suitable number of components that can be distributed to,

and run, on the resources available in the topology. Using

instrumentation data collected from the nodes executing the

workload the final graph can be weighted with this profiling

data during runtime. The weighted final graph can then be

repartitioned, with the intent of improving the throughput in

the system, or accommodate for changes in the global load.

Given a partial workload (such as partition A from figure 3),

an LLS at an execution node is responsible for maximizing lo-

cal scheduling decisions. We discuss this further in section V,

but figure 4 shows how the LLS can combine tasks and data

to minimize overhead introduced by P2G, and take advantage

of specialized hardware, such as GPUs.

This idea of using a two level scheduling approach is not

new. It has also been considered by Roh et al. [32], where they

have performed simulations on parallel scheduling decisions

for instruction sets of a functional language. Simple workloads

are mapped to various simulated architectures, using a "merge-
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up" algorithm, which is equivalent to our LLS, and "merge-

down" algorithm, which is equivalent to our HLS. These

algorithms cluster instructions in such a way that parallelism

is not limited, their conclusion is that utilizing a merge-down

strategy often is better.

Data distribution, reporting, and other communication pat-

terns is achieved in P2G through an event-based, distributed

publish-subscribe model. Dependencies between components

in a workload are deterministically derived from the code

and the high-level schedulers partitioning decisions, and direct

communication occurs.

As such, P2G relies on its combination of a HLS, LLS,

instrumentation data and the global topology to make best

use of the performance of several heterogeneous cores in a

distributed system.

V. PROGRAMMING MODEL

The programming model of P2G consists of two central

concepts, the implicit static dependency graph (figures 2

and 3) and the dynamically created directed acyclic depen-

dency graph (DC-DAG) (figure 4). We have also developed a

kernel language (see figure 5), to make it easier to develop

applications using the P2G programming model, though we

consider this language to be interchangeable.

The example we use throughout this discussion consists of

two primary kernels: mul2 and plus5. These two kernels form

a pipeline where mul2 first multiples a value by 2 and stores

this data, which plus5 then fetches and increases by 5, mul2

then fetches the data stored by plus5, and so on. The print

kernel runs orthogonally to these two kernels and fetches and

writes the data they have produced to cout. In combination,

these three kernels form a cycle. The kernel init runs only

once and writes some initial data for mul2 to consume. The

kernels operate on two 1-dimensional, 5 element fields. The

print kernel writes {10, 11, 12, 13, 14}, {20, 22, 24, 26, 28} for

the first age and {25, 27, 29, 31, 33}, {50, 54, 58, 62, 66} for

the second, etc (as seen in figure 4). As such, the first iteration

produces the data: {10, 11, 12, 13, 14}, {20, 22, 24, 26, 28}

and {25, 27, 29, 31, 33}, and the second iteration produces

the data: {50, 54, 58, 62, 66} and {55, 59, 63, 67, 71}, etc.

Since there is no termination condition for this program it runs

indefinitely.

A. Dependency graphs

The intermediate implicit static dependency graph (as seen

in figure 2) is derived from the interaction between fields and

kernel definitions, more precisely from the fetch and store

statements of a kernel definition. This intermediate graph can

be further refined by merging the edges of kernels linked

through a field vertex, resulting in a final implicit static

dependency graph, as depicted in figure 3. This final graph

can serve as input to the HLS, which can use it to determine

how best to partition the workload given a global topology.

The graph can be further weighted using instrumentation data,

to serve as input for repartitioning. It is important to note

that these weighted graphs can serve as input to static offline

analysis. For example, it could be used as input to a simulator

to best determine how to initially configure a workload, given

various global topology configurations.

During runtime, the intermediate implicit static dependency

graph is expanded to form a dynamically created directed

acyclic dependency graph, as seen in figure 4. This expansion

from a cyclic graph to a directed acyclic graph occurs as a

result of our write-once semantics. As such, we can see how

P2G is designed to unroll loops without introducing implicit

barriers between iteration. We have chosen to call each such

unrolled loop an Age. The LLS can then use the DC-DAG

to combine tasks and data to reduce overhead introduced by

P2G and to take advantage of specialized hardware, such as

GPUs. It can then try different combinations of these low-level

scheduling decisions to improve the throughput of the system.

We can see how this is accomplished in figure 4. When

moving from Age=1 to Age=2, we can see how the LLS has

made a decision to reduce data parallelity. In P2G, kernels

fetch slices of data, and initially mul2 was defined to work on

each single field entry in parallel, but in Age=2, the LLS has

decreased the granularity of the fetch statement to encompass

the entire field. It could also have split the field in two, leading

to two kernel instances of mul2, working on disparate sets of

the field.

Moving from Age=2 to Age=3, we see how the LLS

has made a decision to decrease the task parallelity. This is

possible because mul2 and plus5 effectively form a pipeline,

information that is available from the static graphs. By com-

bining these two tasks, the individual store operations of the

tasks are deferred until the data has been fully processed by

each task. If the print kernel was not present, storing to the

intermediate field m_data could be circumvented in its entirety.

Finally, moving from Age=3 to Age=4, we can see how

a decision to decrease both task and data parallelity has

been taken. This renders this single kernel instance effectively

instance into a classical for-loop, working on each data el-

ement of the field, with each task (mul2, plus5) performed

sequentially on the data.

P2G makes runtime adjustments dynamically to both data

and task parallelism based on the possibly oscillating resource

availability and the reported performance monitoring.

B. Kernel language

From our experience with developing Nornir, we came

to the realization that expressing workloads in a framework

capable of supporting such complex graphs without a high-

level language is a difficult task. We have therefore developed

a kernel language. An implementation of a simple workload is

outlined in figure 5, with a C++ equivalent listed in figure 6.

In the current version of our system, P2G is exposed to the

developer through this kernel language. The language itself

is not an integral part and can be replaced easily. However, it

exposes several foundations of the P2G design. Most important

are the kernel and field definitions, which describe the code

and interaction patterns in P2G.
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Figure 4. Dynamically created directed acyclic dependency graph (DC-DAG)

Kernel definitions:
init:

  local int32[] values;

  %{

    int i = 0;

    for( ;i < 5; ++i )

    {

      put( values, i+10, i );

    }

  %}

  store m_data(0) = values;

mul2:

  age a;

  index x;

  local int32 value;

  fetch value = m_data(a)[x];

  %{

    value *= 2;

  %}

  store p_data(a)[x] = value;

print:

  age a;

  local int32[] m, p;

  

  fetch m = m_data(a);

  fetch p = p_data(a);

  

  %{

  for(int i=0; i < extent(m, 0);)

    cout << get(m, i++) << " ";

  cout << endl;

  for(int i=0; i < extent(p, 0);)

    cout << get(p, i++) << " ";

  cout << endl;

%}

plus5:

  age a;

  index x;

  local int32 value;

  fetch value = p_data(a)[x];

  %{

    value += 5;

  %}

  store m_data(a+1)[x] = value;

Field definitions:

int32[] p_data age;

int32[] m_data age;

Figure 5. Kernel and field definitions

A kernel definition’s primary purpose is to describe the

required interaction of a kernel instance with an arbitrary

number of fields (holding the application data) through the

fetch and store statements. As such, a field serves as an

interaction point for kernel definitions, as can be seen in

figure 2.

An important aspect of multimedia workloads is the ability

to express deadlines, where it does not make sense to encode

a frame if the playback has moved past that point in the

void print( int *data, int num )

{

for( int i = 0; i < num; ++i )

std::cout << data[i] << " ";

std::cout << std::endl;

}

int main()

{

int m_data[5] = { 10, 11, 12, 13, 14 };

int p_data[5];

while( true )

{

for( int i = 0; i < 5; ++i )

p_data[i] = m_data[i] * 2;

print( m_data, 5 );

print( p_data, 5 );

for( int i = 0; i < 5; ++i )

m_data[i] = p_data[i] + 5;

}

return 0;

}

Figure 6. C++ equivalent of mul/sum example

video-stream. Consequently, we have implemented language

support for expressing deadlines. In principle, a deadline gives

the application developer the option of defining a global

timer: timer t1. This timer can then be polled, and updated,

from within a kernel definition, for example t1+100ms or

t1 = now. Given a condition based on a deadline such as

t1+100ms, a timeout can occur and an alternate code-path

can be executed. Such an alternate code-path is executed by

storing to a different field then in the primary path, leading to

new dependencies and new behavior. Currently, we have basic

support for expressing deadlines in the kernel language, but

the semantics of these expressions require refinement, as their

implications can be considerable.

Fields in P2G have a number of properties, including a type

and a dimensionality. Another property is, as mentioned above,

aging, which allows kernels to be iterative while maintaining

write-once semantics in such cyclic execution. Aging enables

unique storage to the same position in a field several times,
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as long as the age increases for each store operation (as seen

in figure 4). In essence, this adds a dimension to the field

and makes it possible to accommodate iterative algorithms.

Additionally, it is important to realize that fields are not

connected to any single node, and can be fully localized or

distributed across multiple execution nodes (as seen in figure

1).

In defining the interaction between kernels and fields, it is

encouraged that the programmer expresses the finest possi-

ble granularity of kernel definitions, and, likewise, the most

precise slices possible for the kernel within the field. This is

encouraged because it provides the low-level scheduler more

control over the granularity of task and data decomposition.

Aided by instrumentation data, it can reduce scheduling over-

head by combining several instances of a kernel that process

different data, or several instances of different kernels that

process data in sequence (as seen in figure 4). The scheduler

makes its decisions based on the implicit static dependency

graph and instrumentation data.

C. Runtime

Following from the previous discussions, we can extrapolate

the concept of kernel definitions to kernel instances. A kernel

instance is the unit of code that is executed during runtime,

and the number of kernel instances executed in parallel for a

given kernel definition depends on its fetch statements.

To clarify, a kernel instance works on an arbitrary number of

slices of fields, depending on the number of fetch statements

of the kernel definition. For example, looking at figure 4 and

5, we can see how the mul2 kernel, given its fetch statement on

m_data with age=a and index=x fetches only a single element

of the data. Thus, since the m_data field consists of five

data elements, this means that P2G can execute a maximum

possible x kernel instances simultaneously per age, giving a*x

mul2 kernel instances. Though, as we have seen, this number

can be decreased by the scheduler making mul2 work over

larger slices of data from m_data.

With P2G we support implicit resizing of fields, this can

be witnessed by looking at the kernel definition of print in

figure 5. Initially, the extents of m_data and p_data are not

defined, as such, with each iteration of the for-loop in init

the local field values is resized locally, leading to a resize

of the global field m_data when values is stored to it. These

extents are then propagated to the respective fields impacted

by this resize, such as p_data. Following the discussion from

the previous paragraph, such an implicit resize can lead to

additional kernel instances being dispatched.

It is worth noting that a kernel instance is only dispatched

when all its dependencies are fulfilled, i.e., that the data it

fetches has been stored to the respective fields and elements.

Looking at figure 4 and 5 again, we can see that mul2 stores

its result to p_data with age=a and index=x. This means that

once mul2 has stored its results to p_data with index=2 and

age=0, this means that the kernel instance plus5 with the fetch

statement fetch(0)[2] can be dispatched. In our system, each

kernel instance is only dispatched once, due to our write-once

semantics. To summarize, the print kernel instance working

on age=0 becomes runnable when all the elements of m_data

and p_data for age=0 have been stored. Once it has become

runnable, it is dispatched and runs only once.

VI. PROTOTYPE IMPLEMENTATION

To verify the feasibility of the P2G framework presented

in this paper, we have implemented a prototype version. The

prototype consists of a compiler for the kernel language and

a runtime that can execute P2G programs on multi-core linux

machines.

A. Compiler

Programs written for the P2G system are designed to be

platform independent and feature native blocks of code written

in C or C++. Heterogeneous systems are specifically targeted,

but many of these require a custom compiler for the native

blocks, such as nVIDIA’s nvcc compiler for the CUDA system

and IBM’s XL compiler for the Cell Broadband Engine. We

decided to compile P2G programs into C++ files, which can be

further compiled and linked with native code blocks, instead

of generating binaries directly. This approach gives us less

control of the resulting object code, but we gain the flexibility

and sophisticated optimization of the native compilers, result-

ing in a lightweight P2G compiler. The P2G compiler works

also as a compiler driver for the native compiler and produces

complete binaries for programs that run directly on the target

system.

B. Runtime

The runtime prototype implements the basic features of a

P2G execution node, including multi-dimensional field sup-

port, implicit resizing of fields, instrumentation and parallel

execution of kernel instances on multiple processors using

the implicit dependency graph formed by kernel definitions.

However, at the time of writing, the prototype runtime does

not yet have a full implementation of deadline expressions,

this is because the semantics of the kernel language support

for this feature is not fully defined yet.

The prototype targets a node with multiple processors. It is

designed as a push-based system using event subscriptions on

field operations. Kernel instances are executed in parallel and

produce events on store statements, which may require resize

operations. A kernel subscribes to events related to fields that

it depends on, i.e., fields referenced to by the kernels fetch

statements. When receiving such a storage event, the runtime

finds all new valid combinations of age and index variables

that can be processed as a result of the store statement, and

puts these in a per-kernel ready queue. This means that the

ready queues contain always the maximum number of parallel

instances that can be executed at any time, only limited by

unfulfilled data dependencies.

The low-level scheduler consists of a dependency analyzer

and kernel instance dispatcher. Using the implicit dependency

graph, the dependency analyzer adds new kernel instances to

a ready queue, which later can be processed by the worker
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Figure 7. Overview of the K-means clustering algorithm

threads. Dependencies are analyzed in a dedicated thread

which handles events emitted from running kernel instances

that notifies on store and resize operations performed on fields.

Kernel instances are executed by a worker thread dispatched

from the ready queue. They are scheduled in an order that

prefers the execution of kernel instances with a lower age value

(older kernel instances). This ensures that no runnable kernel

instance is starved by others that have no fetch statements or

by groups of kernels that satisfy their own dependencies in

aging cycles, such as the mul2 and plus5 kernel in figure 5.

The runtime is written in C++ and uses the blitz++ [37]

library for high-performance multi-dimensional arrays. The

source code for the P2G compiler and runtime can be down-

loaded from http://www.p2gproject.org/.

VII. WORKLOADS

We have implemented a few workloads commonly used in

multimedia processing to test the prototype implementation.

The P2G kernel language is able to expose both the data and

task parallelism of the programs to the P2G system, so the

runtime is able to adapt execution of the programs to suit the

target architecture.

A. K-means clustering

K-means clustering is an iterative algorithm for cluster

analysis which aims to partition n datapoints into k clusters in

which each datapoint belongs to the cluster with the nearest

mean. As shown in figure 7, the P2G k-means implementation

consists of an init kernel, which generates n datapoints and

stores them to the datapoints field. Then, it selects k of these

datapoints randomly, as the initial means, and stores them to

the centroids field. Next, the assign kernel fetches a slice of

data, a single datapoint per kernel instance, the last calculated

centroids, and stores this datapoint to the cluster of the closest

centroids using the euclidean distance calculation. Finally,

the refine kernel fetches a cluster, calculates its new mean

and stores this information in the centroids field. The kernel

definitions of assign and refine form a loop which gradually

leads to a convergence in centroids, at which point the k-means

algorithm has completed.

B. Motion JPEG

Motion JPEG (MJPEG) is a video coding format using a

sequence of separately compressed JPEG images. The MJPEG

Figure 8. Overview of the MJPEG encoding process

4-way Intel Core i7
CPU-name Intel Core i7 860 2,8 GHz
Physical cores 4
Logical threads 8
Microarchitecture Nehalem (Intel)

8-way AMD Opteron

CPU-name AMD Opteron 8218 2,6 GHz
Physical cores 8
Logical threads 8
Microarchitecture Santa Rosa (AMD)

Table I
OVERVIEW OF TEST MACHINES

format provides many layers of parallelism, well suited for

illustrating the potential of the framework. We focused on op-

timizing the discrete cosine transform (DCT) and quantization

part as this is the most compute-intensive part of the codec.

The read + splitYUV kernel reads the input video in YUV-

format and stores the data in three global fields, yInput, uInput,

and vInput. The read loop ends when the kernel stops storing

to the next age, e.g., at the end of the file. In our scenario,

three YUV components can be processed independently of

each other and this property is exploited by creating three

kernels, yDCT, uDCT and vDCT, one for each component.

From figure 8, we see that the respective DCT kernels are

dependent on one of these fields.

The encoding process of MJPEG comprises splitting the

video frames into 8x8 macro-blocks. For example, given the

CIF resolution of 352x288 pixels per frame used in our tests,

this generates 1584 macro-blocks of Y (luminance) data, each

with 64 pixel values. This makes it possible to create 1584

instances per age of the DCT kernel transforming luminance.

The 4:2:2 chroma sub-sampling yields 396 kernel instances

from both the U and V (chroma) data. Each of these kernel

instances stores the DCT’ed macro-block into global result

fields yResult, uResult and vResult. Finally, the VLC + write

kernel store the MJPEG bit-stream to disk.

VIII. EVALUATION

We have run tests with the workloads Motion JPEG and

K-means (described in section VII). Each test was run on a

4-way Core i7 and an 8-way Opteron (see table I for hardware

specifications) ranging from 1 worker thread to 8 worker

threads with 10 iterations per worker thread count. The results

of these tests are reported in the figures 10 and 9, which show

the mean running time in seconds for each machine for a given

thread count with standard deviation reported as error-bars.
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Figure 9. Workload execution time for Motion JPEG

Kernel Instances Dispatch Time Kernel Time

init 1 69.00 µs 18.00 µs

read/splityuv 51 35.50 µs 1641.57 µs

yDCT 80784 3.07 µs 170.30 µs

uDCT 20196 3.14 µs 170.24 µs

vDCT 20196 3.15 µs 170.58 µs

VLC/write 51 3.09 µs 2160.71 µs

Table II
MICRO-BENCHMARK OF MJPEG ENCODING IN P2G

In addition, we have performed micro-benchmarks for each

workload, summarized in the tables II and III. The benchmarks

summarize the number of kernel instances dispatched per

kernel definition, dispatch overhead and time spent in kernel

code.

A. Motion JPEG

The Motion JPEG workload is run on the standard test

sequence Foreman encoded in CIF resolution. We limited the

workload to process 50 frames of video.

As we can observe from figure 9, P2G is able to scale close

to linearly with the resources it has available. In P2G, the

dependency analyzer of the LLS runs in a dedicated thread.

This affects the running time when moving from 7 to 8

worker threads. Where the eighth thread shares resources with

the dependency analyzer. To compare, the standalone single

threaded MJPEG encoder on which the P2G version is based

upon has a running time of 30 seconds on the Opteron machine

and 19 seconds on the Core i7 machine. Note that both the

standalone and P2G versions of the MJPEG encoder use a

naive DCT calculation, there are versions of DCT that can

significantly improve performance, such as FastDCT [2].

From table II, we can see that time spent in kernel code

is considerably higher compared to the dispatch overhead for

the kernel definitions. The dispatch time includes allocation

or reallocation of fields as part of the timing operation. As

a result, init and read/splitYUV have a considerably higher

dispatch time then the *DCT operations.

We can also see that the majority of CPU-time is spent

in the kernel instances of yDCT, uDCT and vDCT, which

is the computationally intensive part of the workload. This
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Figure 10. Workload execution time for K-means

indicates that decreasing data and task granularity, as discussed

in section V-A, has little impact on the throughput of the

system. This is because the majority of time is already spent

in kernel code.

Note that even though there are 51 instances of the read-

/write kernel definitions, only 50 frames are encoded, because

the last instance reaches the end of the video stream.

B. K-means

The K-means workload is run with K=100 using a randomly

generated data set containing 2000 datapoints. The K-means

algorithm is not run until convergence, but with 10 iterations.

If we do not define this break-point it is undefined when the

algorithm converges, and as such, we have introduced this

condition to ensure that we get a relatively stable running time

for each run.

As seen in figure 10, the K-means workload scales to 4

worker threads. After this, the running time increases with

the number of worker threads. This can be explained by the

fine granularity of the assign kernel definition, as witnessed

when comparing the dispatch time to the time spent in kernel

code. This leads to the serial dependency analyzer becoming

a bottle-neck in the system. As discussed in section V-A, this

condition could be alleviated by decreasing the granularity

of data-parallelism, in effect leading to each kernel instance

of assign working on larger slices of data. By doing so, we

would increase the ratio of time spent in kernel code compared

to dispatch time and reduce the workload of the dependency

analyzer. The reduction in work for the dependency analyzer

is a result of the lower number of kernel instances being run.

The two different test machines behave somewhat differ-

ently in that the Opteron suffers more than the Core i7 when

the dependency analyzer saturates a core. The Core i7 is able

to increase the frequency of a single core to mitigate serial

bottlenecks, and we think this is why the Core i7 suffers less

when we meet the limitations dictated by Amdahl’s law.

The considerable time init spends in kernel code is because

it generates the data set.
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Kernel Instances Dispatch Time Kernel Time

init 1 58.00 µs 9829.00 µs

assign 2024251 4.07 µs 6.95 µs

refine 1000 3.21 µs 92.91 µs

print 11 1.09 µs 379.36 µs

Table III
MICRO-BENCHMARK OF K-MEANS IN P2G

C. Summary

We have shown that our prototype implementation of an

execution node is able to scale with the available resources,

as seen in figure 9 and 10. Our initial results indicate that the

functionality of decreasing the granularity of task and data

parallelity, as discussed in section V-A, is important to ensure

full resource utilization.

IX. DISCUSSION

Even though support for deadlines is not yet fully imple-

mented in the P2G runtime, the concept of deadlines formed an

integral part of our design goal. The intention behind deadlines

is to accommodate for live multimedia workloads, where real-

time requirements are mission essential. Varying conditions

over time, both in the workload and topology, may effect

scheduling decisions: such as termination, branching and the

use of alternative code paths based on runtime observations.

This is similar to SDL, but unlike contemporary high perfor-

mance languages.

In P2G, we encourage the programmer to describe the work-

load in as fine granularity as possible, both in the functional

and data decomposition domains. The low-level scheduler

has an understanding of both decomposition domains and

deadlines. Given this information, the low-level scheduler can

minimize overhead by combining functional components and

slices of data by adapting to its available resources, be it local

cores, or even GPU execution units.

Write-once semantics on fields incurs a large penalty if

implemented naively, both in terms of memory usage and

data cache misses. However, as the fields are virtual and do

not even have to reside in continuous memory, the compiler

and runtime are free to optimize field usage. This includes

re-using buffers for increased cache locality when old ages

are no longer referenced, and garbage collecting old ages.

The explicit programming model of P2G allows the system

to anticipate what data is needed in the future, which can be

used for further optimizations.

Given the complexity of multimedia workloads and the

(potentially) heterogeneous resources available in a modern

topology, and in many cases, no knowledge of the underlying

capabilities of the resources (which is common in modern

cloud services), mapping these complex multimedia workloads

manually to the available resources becomes an increasingly

difficult task, and at some point, even impossible. This is par-

ticularly the case where resource availability fluctuates, such

as in modern virtual machine parks. With batch processing,

where the workloads frequently are not associated with some

intrinsic deadline, this task is solved, with frameworks such as

MapReduce and Dryad. However, for processing continuous

streams such as iterative multimedia algorithms in an elastic

manner requires new frameworks; P2G is a step in that

direction.

X. CONCLUSION

With P2G, we have proposed a new flexible framework for

automatic parallel, real-time processing of multimedia work-

loads. We encourage the programmer to specify parallelism in

as fine a granularity as possible along the axes of data and task

decomposition. Using our kernel language this decomposition

is expressed through kernel definitions and fetch and store

statements on fields. This language is independent from the

P2G runtime and can easily be replaced. Given a workload

defined in our kernel language it is compiled for execution

in P2G. This workload can then be partitioned by the high-

level scheduler of a P2G master node, which then distributes

partitions to P2G execution nodes which runs the tasks locally.

Execution nodes can consist of heterogeneous resources. A

low-level scheduler at the execution nodes then adapted the

partial (or full) workload to run optimally using resources

at hand. Feedback from the instrumentation daemon at the

execution node can lead to repartitioning of the workload (a

task performed by the high-level scheduler). The aim is to

bring the ease of batch-processing frameworks to multimedia

workloads.

In this paper we have presented an execution node capable

of running on a multi-way architecture. This results from our

experiments running on this prototype show the potential of

our ideas. However, there still remains a number of vectors

for optimization. In the low-level scheduler we have identified

that combining task and data to minimize overhead introduced

by P2G is a first reasonable modification. Additionally, com-

pleting the implementation of a fully distributed version is

in the pipeline. Also, writing workloads for heterogeneous

processing cores like GPUs and non-cache coherent architec-

tures like Intel’s SCC is a further consideration. Currently, we

are investigating appropriate mechanisms for both high- and

low-level scheduling, garbage collection, fat binaries, resource

profiling and monitoring, and efficient migration of tasks.

While a number of optimizations remain, we have deter-

mined that P2G is feasible, through the implementation of

this execution node, and the successful implementation of

multimedia workloads, such as Motion JPEG and k-means.

With these workloads we have shown that it is possible to

express multimedia workloads in the kernel language and we

have implemented a prototype of an execution node in the P2G

framework that is able to execute kernels and scales with the

available resources.
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Abstract—Processing data intensive multimedia workloads is
challenging, and scheduling and resource management are vitally
important for the best possible utilization of machine resources.
In earlier work, we have used work-stealing, which is frequently
used today, and proposed improvements. We found already then
that no singular work-stealing variant is ideally suited for all
workloads. Therefore, we investigate in more detail in this paper
how workloads consisting of various multimedia filter sequences
should be scheduled on a variety of modern processor architec-
tures to maximize performance. Our results show that a low-
level scheduler additionally cannot achieve optimal performance
without taking the specific micro-architecture, the placement
of dependent tasks and cache sizes into account. These details
are not generally available for application developers and they
differ between deployments. Our proposal is therefore to use
performance monitoring and dynamic adaption for the cyclic
workloads of our target multimedia scenario, where operations
are repeated cyclically on a stream of data.

I. INTRODUCTION

There is an ever-growing demand for processing resources,
and the trend is to move large parallel and distributed compu-
tations to huge data centers or cloud computing. For example,
Internet users uploaded one hour of video to YouTube every
second in January 2012 [19], an increase of 25% in the last
8 months. Each of these is encoded using several filters that
are arranged as vertices in dependency graphs and where each
filter implements a particular algorithm representing one stage
of a processing pipeline. In our research, we focus on utilizing
available resources in the best possible manner for this kind
of time-dependent cyclic workloads. The kind of workload
is typical for multimedia processing, where large amounts of
data are processed through various filters organized in a data-
intensive processing pipeline (or graph). Such workloads are
supported by for example the OpenCV framework [4].

To process large data sets in general, several frameworks
have emerged that aim at making distributed application
development and processing easier, such as Google’s MapRe-
duce [6], IBM’s System S [11] and Microsoft’s Dryad [13].
However, these frameworks are limited by their design for
batch processing with few dependencies across a large cluster
of machines. We are therefore currently working on a frame-
work aimed for distributed real-time multimedia processing
called P2G [7]. In this work, we have identified several
challenges with respect to low level scheduling. The de facto

standard is a variant of work-stealing scheduling [2], for
which we have earlier proposed modifications [17]. We see
challenges that have not been addressed by this, and in our
work of designing an efficient scheduler, we investigate in this
paper how to structure parallel execution of multimedia filters
to maximize the performance on several modern architectures.

Performance implications for scheduling decisions on var-
ious microarchitectures have been studied for a long time.
Moreover, since the architectures are constantly being revised,
scheduling decisions that were preferred in the past can harm
performance on later generations or competing microarchitec-
tures. We look at implications for four current microarchi-
tectures and how order of execution affects performance. Of
recent work, Kazempour et al. [14] looked at performance
implications for cache affinity on Clowertown generation
processors. It differs from the latest microarchitectures by only
having two layers of cache, where only the 32 KB L1 D-
cache is private to the cores on a chip multiprocessor (CMP).
In their results, affinity had no effect on performance on a
single chip since reloading L1 is cheap. When using multiple
CMPs, on the other hand, they found significant differences
meriting affinity awareness. With the latest generation CMPs
having significantly larger private caches (e.g., 256 KB on
Sandy Bridge, 2 MB on Bulldozer), we can expect different
behavior than on Clowertown. In terms of schedulers that take
advantage of cache affinity, several improvements have been
proposed to the Work Stealing model. Acar et al. [1] have
shown that the randomized stealing of tasks is cache unfriendly
and suggest a model that prefers stealing tasks where the
worker thread has affinity with that task and gains increased
performance.

In this paper, we present how a processing pipeline of real-
world multimedia filters runs on state-of-the-art processors.
That there are large performance differences between differ-
ent architectures is to be expected, but we found so large
differences between modern microarchitectures even within
the same family of computers (x86) making it hard to make
scheduling decisions for efficient execution. For example, our
experiments shows that there are huge gains to be earned
looking into cache usage and task dependencies. There are also
huge differences in the configuration of the processing stages,
e.g., when changing the amount of rotation in an image, giving
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completely different resource requirements. Based our these
observations, it is obvious that the low-level scheduling should
not only depend on the processing pipeline with the dependen-
cies between tasks, but also the specific micro-architecture and
the size of the caches. We discuss why scheduling approaches
such as standard work stealing models do not result in an
optimal performance, and we try to give some insights that a
future scheduler should follow.

II. DESIGN AND IMPLEMENTATION

Inspired by prevalent execution systems such as StreamIT
[16] and Cilk [3], we look at ways to execute data-intensive
streaming media workloads better and examine how different
processing schemes affect performance. We also want to
investigate how these behave on different processors. Because
we are processing continous data streams, we are not able
to exploit task parallelism, e.g., by processing independent
frames of a video in parallel and therefore seek to paral-
lelize within the data domain. A scenario with embarrassingly
parallel workloads, i.e., where every data element can be
processed independently and without synchronization, is video
stream processing. We believe that processing a continous
flow of video frames is a reasonable example for several
embarrassingly parallel data bound workloads.

Our sequential approach is a straight-forward execution
structure in which a number of filters are processed sequen-
tially in a pipeline, each frame is processed independently by
one or more threads by dividing the frame spatially. In each
pipeline stage, the worker threads are created, started, and
eventually joined when finished. This would be the natural
way of structuring the execution of a multithreaded media
pipeline in a standalone application. Such processing pattern
has natural barriers between each stage of the pipeline. For a
execution system such as Cilk [10], Multicore Haskell [15],
Threading Building Blocks [12] and others that use a work
stealing model [2], the pattern of execution is similar to
the sequential approach, but this depends very much on that
way in which work units are assigned to worker threads,
the workloads that are running simultaneously and scheduling
order. Nevertheless, sequential execution is the baseline of our
evaluation since it processes each filter in the pipeline in a
natural order.

As an alternative execution structure, we propose using
backward dependencies (BD) to execute workloads. This
approach only considers the last stage of the pipeline for a
spatial division among threads and such avoids the barriers
between each pipeline stage. Furthermore, for each pixel in the
output frame, the filter backtracks dependencies and acquires
the necessary pixel(s) from the previous filters. This is done
recursively and does not require intermediate pixels to be
stored to memory. Figure 1 illustrates dependencies between
three frames connected by two filters. The pixels in frame
2 are generated when needed by filter B using filter A. The
BD approach has the advantage of only computing the pixels
that are needed by subsequent filters. The drawback, however,
is that intermediate data must be re-computed if they are

Figure 1. Backward dependencies (BD) example for two filters processing
frames in a pipeline. The arrows indicate which pixels are required from the
previous frame to generate the current pixel. Only one pixel’s dependencies
per frame are illustrated, other pixels have similar dependencies.

accessed multiple times because intermediate results are not
stored. These re-computations can be mitigated by using the
intermediate frames as buffer caches between filters, although
the overhead of managing and checking this buffer cache can
be large, which we see later in the paper.

The different approaches incur varying cache access pat-
terns. Depending on memory access patterns, execution struc-
ture and chosen CPU microarchitecture, we expect the perfor-
mance to change. The sequential approach accesses the buffers
within a filter in sequential order, and the prefetch unit is thus
able to predict the access pattern. A drawback of this approach
is that data moved between filters do not necessarily reside in
the cache of the core using the data last. First, this includes
data whose cache line has been evicted and written back to a
cache level with increased access time or memory. This may
happen because the data size processed by a filter is larger
than the amount of cache available, forcing write-back. Other
reasons include context switches and shared caches. Second,
output from a previous filter may not have been generated on
the same core as the one that accesses the data, resulting in
accesses to dirty cache lines on other cores. Given the spatial
division of a frame within a filter, this sounds easy to avoid,
but an area of input to a filter may result in output to a different
spatial area, which the processor’s prefetcher may not be able
to predict. Thus, re-using the same core for the same part of
a frame for multiple filters in a pipeline only increases cache
locality for filters whose source pixels map spatially to the
destination pixels.

To increase cache locality between filters, we also evaluate
the BD approach, where data is accessed in the order needed
to satisfy dependencies for the next filter in the pipeline. This
ensures that pixels are accessed in a manner where data in
between filters are likely to reside in the core’s cache. That is
to say, if the access pattern is not random, one can expect BD
execution to always access spatially close memory addresses.

III. EXPERIMENTAL SETUP

To evaluate the approaches and find which performs best
in a low-level scheduler, we built an experimental framework
supporting the proposed execution structures and wrote a set
of image processing filters as a case study working on real-
world data. The filters were arranged in different pipelines to
induce behaviour differences that can impact performance.

All experiments measure exclusively computation time, i.e.,
the wall clock time of the parallel execution, excluding I/O
and setup time. We use this instead of CPU time to further
measurements on how good performance is actually possible,
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Microarchitecture CPU Cores
(SMT)

Private
Cache

Shared
Cache

Nehalem Intel
i5-750

4 64 kB L1
256 kB L2

8 MB L3

Sandy Bridge Intel
i7-2600

4 (8) 64 kB L1,
256 kB L2

8 MB L3

Sandy Bridge-E Intel
i7-3930K

6 (12) 64 kB L1,
256 kB L2

12 MB L3

Bulldozer AMD FX
8192

8 (4x2) 64 kB L11,
2 MB L21

8 MB L3

1 Shared between two modules each having a separate integer unit while
sharing an FPU.

Table I
MICROARCHITECTURES USED IN EXPERIMENTS.

since having used only half of the CPU time available does not
mean that only half of the CPU’s resources are utilized (cache,
memory bandwidth, etc.). Also, by not counting I/O time, we
remove a constant factor present in all execution structures,
which we believe better captures the results of this study. Each
experiment is run 30 times, and the reported computation time
is the average All filters use 32-bit float computations, and
overhead during execution, such as removing function calls in
the inner-loop and redundant calculations, has been removed.
Our data set for experiments consists of the two standard video
test sequences foreman and tractor [18]. The former has a
352x288 pixel (CIF, 4:2:0) resolution with 300 frames of YUV
data, the latter has 1920x1080 pixels (HD, 4:2:0) with 690
frames of YUV data.

The experiments have been performed on a set of modern

microarchitectures as listed in table I. The CPUs have 4 to
8 cores, and have rather different cache hierarchies: While
the Nehalem has an L3 cache shared by all cores, operates
at a different clock frequency than the cores and is called
the uncore, the Sandy Bridge(-E) has a slice of the L3 cache
assigned to each core and accesses the other parts using a
ring interconnect running at core speed. Our specimen of the
Bulldozer architecture consists of four modules, each of which
containing two cores. On each module, L1 and L2 are shared
between the two cores with separate integer units but a single
shared FPU. We expected that these very different microarchi-
tectures found and used in modern computing would produce
very different program behaviour, and we have investigated
how media workloads should be structured for execution on
each of them to achieve the best performance.

We have developed a set of image processing filters for
evaluating the execution structures. The filters are all data-
intensive, but vary in terms of the number of input pixels
needed to produce a single output pixel. The filters are later
combined in various configurations referred to as pipelines. A
short summary of the filters and their dependencies is given
in table II.

The filters are combined in various configurations into
pipelines (as in figure 1). The tested pipelines are listed in
table III. The pipelines combine the filters in manners that
induce different amounts of work per pixel, as seen in the
table. For some filters, not all intermediate data are used by
later filters and are unnecessary to produce the final output.

Blur convolves the source frame with a Gaussian kernel to remove pixel
noise.
Sobel X and Y are two filters that also convolve the input frame, but
these filters apply the Sobel operator used in edge detection.
Sobel Magnitude calculates the approximate gradient magnitude using
the results from Sobel X and Sobel Y.
Threshold unset every pixel value in a frame below or above a specified
threshold.
Undistort removes barrel distortion in frames captured with wide-angle
lenses. Uses bilinear interpolation to create a smooth end result.
Crop removes 20% of the source frame’s height and width, e.g., a frame
with a 1920x1080 resolution would be reduced to 1536x864.
Rotation rotates the source frame by a specified number of degrees.
Bilinear interpolation is used to interpolate subpixel coordinates.
Discrete discretizes the source frame by reducing the number of color
representations.
Binary creates a binary (two-colored) frame from the source. Every source
pixel that is different from or above zero is set, and every source pixel
that equals zero or less is unset.

Table II
IMAGE PROCESSING FILTERS USED.

Pipeline Filter Seq BD BD-CACHED
A Blur 9.00 162.00 9.03

Sobel X 9.00 9.00 9.00
Sobel Y 9.00 9.00 9.00
Sobel Magnitude 2.00 2.00 2.00
Threshold 1.00 1.00 1.00

B Undistort 4.00 10.24 2.57
Rotate 6◦ 3.78 2.56 2.56
Crop 1.00 1.00 1.00

C Undistort 4.00 8.15 2.04
Rotate 60◦ 2.59 2.04 2.04
Crop 1.00 1.00 1.00

D Discrete 1.00 1.00 1.00
Threshold 1.00 1.00 1.00
Binary 1.00 1.00 1.00

E Threshold 1.00 3.19 0.80
Binary 1.00 3.19 0.80
Rotate 30◦ 3.19 3.19 3.19

F Threshold 1.00 3.19 0.80
Rotate 30◦ 3.19 3.19 3.19
Binary 1.00 1.00 1.00

G Rotate 30◦ 3.19 3.19 3.19
Threshold 1.00 1.00 1.00
Binary 1.00 1.00 1.00

Table III
EVALUATED PIPELINES AND THE AVERAGE NUMBER OF OPERATIONS

PERFORMED PER PIXEL WITH DIFFERENT EXECUTION STRUCTURES.

The BD approach will not produce these, e.g., a crop filter as
seen in pipeline B will not require earlier filters to produce
unused data. Another aspect that we expect to influence the
results is cache prefetching. This means that by having filters
that emit data in a different spatial position relative to its input,
e.g. the rotation filter, we expect the prefetcher to contend
fetching the relevant data.

IV. SCALABILITY

The pipelines are embarrassingly parallel, i.e., no locking
is needed and they should therefore scale linearly with the
number of cores used. For example, using four cores is
expected to yield a 4x execution speedup. The threads created
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Figure 2. Individually normalized scalability of pipeline B running the tractor test sequence. Number of physical cores in parenthesis.
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Figure 3. Individually normalized scalability of pipeline B running foreman test sequence. Number of cores in parenthesis.

are handled by the Linux scheduler, which decides which
thread to execute on which CPU (no affinity). Each new thread
created works on its own frame-segment, but the last frame-
segment is always processed by the thread that performs the
I/O operations. In the single-threaded execution, both the I/O
and processing operations are performed in the same thread,
and therefore also on the same CPU core. Using two threads,
we created one additional thread that is assigned the first half
of a frame while the I/O thread processes the last half of
the frame. We do this to minimize fetching source data from
another core’s private cache.

Figure 2 shows the relative speedup for the Nehalem,
Bulldozer, Sandy Bridge and Sandy Bridge-Extreme microar-
chitectures that process pipeline B with the tractor sequence
as input, comparing the sequential (Seq) and BD executions.
Note that the running times of sequential and BD are indi-
vidually normalized to their respective performance on one
core, i.e., a higher value for BD does not necessarily imply
better absolute performance than sequential. Looking at each
architecture individually, we see that there is little difference
in how the two execution methods scale on physical cores,
but comparing architectures, we see that SB (figure 2(b)) is
the only architecture that is able to scale pipeline B perfectly
with the number of physical cores, as one could expect. SB-
E (figure 2(c)) performs a little below perfect linear scaling
achieved by its predecessor for this workload, and we see
slightly better scalability results for BD execution than for
sequential execution. On Nehalem (figure 2(a)), this pipeline
doubles its performance with two threads, but after this, the
increase in speedup per core diminishes. Bulldozer results
(figure 2(d)) are even worse; from one to four threads we gain
a 3x speedup, but there is not much to gain from using five to
eight threads as we only manage to achieve a 4x speedup using
the maximum number of cores. Bulldozer has four modules,
each with two cores, but each module has only one FPU, and

it is likely that this clamps performance to 4x. To summarize,
the scalability results of pipeline B with the tractor sequence
as input scales relatively well on Nehalem, Sandy Bridge and
Sandy Bridge-Extreme using both execution modes. However,
Bulldozer scales poorly as it only manages a 4x speedup using
all of its eight cores.

Looking at scalability when testing pipeline B with the
foreman sequence, the results become far more interesting as
seen in figure 3. None of the four microarchitectures are able to
achieve perfect scalability, and standing out is the Bulldozer
plot in figure 3(d), where we see very little or no speedup
at all using more threads. In fact, the performance worsens
going from one to two threads. We look more closely into
the behaviour of Bulldozer in section VII. Furthermore, we
can see that the BD mode scales better than sequential for the
other architectures. From one to two threads, we get close to
twice the performance, but with more threads, the difference
between sequential and BD increases.

To explain why pipeline B scales so much worse with
foreman as input than tractor, one must take the differences
into account. The foreman sequence’s resolution is 352x288
(YUV, 4:2:0), which leads to frame sizes of 594 kB stored
as floats. A large chunk of this can fit in private cache on
the Intel architectures, and a full frame on Bulldozer. A frame
in the tractor sequence has a resolution of 1920x1080 which
requires almost 12 MB of data, exceeding even L3 size. In all
pipeline stages except the last, data produced in one stage are
referenced in the next, and if the source data does not reside in
a core’s cache, it leads to high inter-core traffic. Segmenting
the frames per thread, as done when executing the pipelines
in parallel, reduces the segments’ sizes enough to fit into each
core’s private cache for the foreman frames, but not the larger
tractor frames. Not being able to keep a large part of the
frame in a core’s private cache require continuous fetching
from shared cache and/or memory. Although this takes time,
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it is the normal mode of operation. When an large part of a
frame such as foreman fits in private cache after I/O, other
cores that shall process this will have to either directly access
the other core’s private cache or request eviction to last-level
cache on the other core, both resulting in high inter-core traffic.
We were unable to find detailed information on this behaviour
for the microarchitectures, but we can observe that scalability
of this behaviour is much worse than that of the HD frame
experiment. Moreover, since the BD mode only create one set
of worker threads which are used throughout the lifetime of
that pipeline cycle, and it does its computations in a recursive
manner, the input data is likely to reside in the core’s private
cache. Also, since the BD mode does not require storing
intermediate results and as such does not pollute the caches,
we can see it scales better than sequential for the foreman
tests.

With respect to the other pipelines (table III), we observed
similar scalability across all architectures for both execution
modes and inputs as seen in figure 2 and 3. In summary, we
have shown that the BD mode provides slightly better scaling
than sequential execution for our data-intensive pipelines on
all architectures when the working unit to be processed (in this
case a segment of a video frame) is small enough to a large
extent reside in a core’s private cache. Although scalability is
beneficial, in the next section, we will look at the performance
relative to sequential execution and see how BD and sequential
perform against each other.

V. PERFORMANCE

Our experiments have shown that achieving linear scaling
on our data-bound filters is not trivial, and we have seen that
it is especially hard for smaller units of work that mostly
fit into a core’s private cache and needs to be accessed on
multiple cores. In addition, there are large microarchitectual
differences visible. In this section, we look at the various
pipelines as defined in section III to see how the sequential
execution structure compares to backward dependency on
various microarchitectures.

To compare sequential and BD execution, we have plot-
ted computation time for pipeline A to G relative to their
individual single-threaded sequential execution time using
the foreman test sequence in figure 4. The plot shows that
sequential execution provides best performance in most cases,
but with some notable exceptions. The BD execution structure
does not store and reuse intermediate pixels in any stage of
the pipeline. Thus, when a pixel is accessed multiple times, it
must be regenerated from the source. For example, if a filter
in the last stage of a pipeline needs to generate the values of
a pixel twice, every computation in every stage in the current
pipeline involved in creating this output pixel must be executed
twice. Obviously, this leads to a lot of extra computation as
can be seen from table III, where for instance the source
pixels are accessed 162 times per pixel for the BD approach
in pipeline A, but only 9 times for the sequential approach.
This is reflected in the much higher BD computation time than
sequential for pipeline A for all plots in figure 4.

When looking at the other pipelines, we can see some very
significant architectural differences. Again, Bulldozer stands
out showing that for pipeline D, F, and G, the BD approach
performs considerably better than sequential execution using
all eight cores. Pipeline D and G perform better with BD
execution, but it is rather unexpected for pipeline F, which does
require re-computation of many intermediate source pixels.
Still, the scalability achieved on Bulldozer for the foreman
sequence were miniscule, as we saw in section IV.

The next observation we show is the performance of
pipeline D. This pipeline performs the same amount of work
regardless of execution structure, since every intermediate
pixel is accessed only once. Most architectures show better
performance for the BD approach, both for one and all cores.
The only exception is the Sandy Bridge-E which performs
slightly worse than sequential when using 6 cores. A similar
behaviour as pipeline D is to be expected from pipeline G
since it requires the same amount of work for both modes.
This turns out not to be the case; for single-threaded execution
on Nehalem and Bulldozer, pipeline G is faster using BD.
Using all cores, also Sandy Bridge performs better using
the BD approach. Sandy Bridge-E runs somewhat faster with
sequential execution. We note that Sandy Bridge and Sandy
Bridge-E are very similar architectures which ought to behave
the same way. This turns out not to be the case, and even this
small iteration of the microarchitecture may require different
low-level schedules to get the highest level of performance -
even for an embarrassingly parallel workload.

To find out if the performance gain seen with the BD ap-
proach is caused by better cache usage by keeping intermediate
data in private caches or by the reduction of cache and memory
pollution resulting from not storing intermediate results, we
looked at pipeline D and G using BD while storing intermedi-
ate data. This mimics the sequential approach, although data is
not referenced again later on, resulting in less cache pressure.
Looking at figure 5, which shows pipeline D and G for Sandy
Bridge, we can see that for a single core, the overhead of
writing back intermediate results using BD-STORE results
in worse performance than sequential execution, whereas this
overhead diminishes when the number of threads is increased.
Here, the BD-STORE structure outperforms sequential exe-
cution significantly. Accordingly, we ascribe the performance
gain for the BD approach in this case to better private cache
locality and usage than sequential execution.
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Figure 5. Computation time (ms) for foreman on Sandy Bridge.
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Figure 4. Execution structure performance using the foreman dataset. Running times are relative to each pipeline’s 1-core sequential time. Lower is better.

VI. BACKWARD DEPENDENCY WITH BUFFER CACHE

Having shown that backward dependency execution struc-
ture performs better than sequential execution in some cases,
we look at ways to improve the performance further. The main
drawback of BD execution is, as we saw, that intermediate
pixels must be recomputed when accessed multiple times,
evident by pipeline A results. We have also shown that, when
doing the same amount of work as the sequential approach,
BD can perform better such as with pipeline D and G. In this
section, we experiment with adding a buffer cache that keeps
intermediate data for later reuse to mitigate this issue.

Instead of recursively generating all prior intermediate data
when a pixel is accessed, the system checks a data structure to
see if it has been accessed earlier. To do this without locking,
we set a bit in a bitfield atomically to mark a valid entry in
the buffer cache. It is worth noting that this bitfield consume
a considerably amount cache space by using one bit for every
pixel, e.g. about 37 kB for every stage in a pipeline for the
foreman sequence. Other approaches for this buffer cache are
possible, including a set of ranges and tree structures, but this
is left for further work.

The cached results for pipelines A to G (BD-CACHED)
using four threads on Sandy Bridge and processing foreman
are shown in figure 6. We can see that the BD-CACHED ap-
proach provides better performance than sequential on pipeline

B, D and G, but only B performs better than BD. Pipeline
B has rotation and crop stages that reduce the amount of
intermediate pixels that must be produced from the early
filters compared to sequential execution (see table III). In
comparison, pipeline C has also a significant reduction of
intermediate pixel requirements, but we do not see a similar
reduction in computation time. The only difference between
pipeline B and C is the amount of rotation, with 6◦ for B and
60◦ for C. The skew from rotation for the pipelines causes long
strides over cache lines when accessing neighbouring pixels
from previous stages, which can be hard to prefetch efficiently.
Also, parts of an image segment processed on a core may
cross boundaries between segments, such that high inter-core
traffic is required with sequential execution even though the
same core processes the same segment for each stage. This is
avoided with BD and BD-CACHED modes, but we can not
predict which mode performs better in advance.

VII. AFFINITY

In section IV, we saw the diminishing performance when
processing the foreman sequence with two and three threads
on the Bulldozer architecture. When processing our pipelines
in a single thread, we did not create a separate thread for
processing, but processed in the thread that handled the I/O
operations. Further, this lack of scaling was only observed

154



1.51

Figure 6. Computation time for Backward Dependency with buffer cache
measured relative to single threaded sequential and tested with Sandy Bridge
using 4 threads and foreman as input sequence.

when processing the low-resolution foreman sequence, for a
large part of the frame could fit inside a core’s private L2
cache. To investigate this further, we did an experiment where
we manually specified each thread’s affinity, which implies
that we use separate threads doing I/O and processing, even
in single-threaded execution.

Even though we only noticed the lack of scaling on the
Bulldozer architecture, we tested the impact of affinity on the
Nehalem and Sandy Bridge architectures as well (we omitted
SB-E, which is very similar to Sandy Bridge). In figure 7, we
have plotted the results for sequential processing of pipeline B
while varying the number of threads. On Nehalem and Sandy
Bridge, we tested two different execution modes, one mode
where the processing of a frame was done on the same core
that executed the I/O thread (IOSAME), while the second
mode processed the frame on a different core than the I/O
thread (IODIFF). Since the Bulldozer architecture has CPU
modules, we added an additional mode for this architecture,
in which processing threads were executed on different CPU
modules than the thread handling I/O (MODULEDIFF).

We expected that processing on another core than I/O would
increase the processing time, which was found to be only
partially correct: From figure 7(a) we see that there are not
any significant difference in processing on the same core as
the I/O thread versus a different core on Sandy Bridge. Much
of the same behaviour is seen on Nehalem using one thread,
but when using two threads there is a large penalty of pinning
these to different cores than the one doing I/O operations. In
this case, using two threads and executing them on different
cores than the I/O operations adds so much to the computation
time that it is slower than the single threaded execution.

Looking at the Bulldozer architecture in figure 7(c), using
only one thread we see that there are not any significant
difference in which core or CPU module the processing thread
is placed on. However as with Nehalem, when using two
or more threads the IODIFF and MODULEDIFF execution
modes have a huge negative impact on the performance. Even
more unexpected, IOSAME and IODIFF using three threads
are actually slower than IOSAME using two threads, and the
fastest execution using eight threads completes in 1174 ms
(omitted in plot), not much faster than what we can achieve
with two threads.

In summary, we have seen that thread affinity has an
enormous impact on Nehalem and Bulldozer when a large

part of the data fits into the private cache. This can cause the
two threads to have worse performance than a single thread
when the data reside in another core’s private cache. On Sandy
Bridge, this limitation has been lifted and we do not see any
difference due to affinity. Bulldozer is unable to scale to much
more than two threads when the dataset fits into the private
cache, presumably because the private cache is shared between
two cores and the cost of doing inter-module cache access is
too high.

VIII. DISCUSSION

The long-running data-intensive filters described in this
paper deviate from typical workloads when looking at per-
formance in terms of the relatively little computation required
per unit of data. The filters used are primitive, but we are
able to show large performance impacts by varying the order
of execution and determining which core should do what.
For such simple and embarrassingly parallel workloads, it is
interesting to see the significant differences on how these filters
perform on modern microarchitectures. As a case study, we
chose image processing algorithms, which can intuitively be
connected in pipelines. Real-world examples of such pipelines
can be found in OpenCV [4], node-based software such
as the Nuke [9] compositing tool and various VJ software.
Other signal processing domains such as sound processing are
applicable as well.

There is a big difference between batch processing and
processing a stream of data, where in the former we can spread
out independent jobs to a large number of cores, while in the
latter we can only work on a limited set of data at a time. If
we batch-processed the pipelines, we could instantiate multiple
pipelines, each processing frames independently while avoid-
ing the scalability issues that we experienced with foreman.
In a streaming scenario, however, this is not possible.

The results shown in this paper are both unexpected and
confusing. We had not anticipated such huge differences in
how these modern processors perform with our workloads.
With the standard parallel approach for such applications with
either sequential execution of the pipeline or a work stealing
approach, it is apparent that there is much performance to
be gained by optimizing the order of operations for better
cache usage. After all, we observe that the performance of
the execution modes varies a lot with the behavior of a filter,
e.g, amount of rotation applied by a filter. Moreover, it varies
inconsistently with the number of threads, e.g., performance
halved with two threads and sub-optimal processor affinity
compared to a single thread. Thus, scheduling these optimally
based on a-priori knowledge, we conjecture, is next to im-
possible, and profiling and feedback to the scheduler must be
used to find the best configuration.

One option is to use profile-driven optimizations at compile
time [5], where one or more configurations are evaluated and
later used during runtime. This approach does, however, not
work with dynamic content or tasks, i.e., if the parameters such
as the rotation in pipeline B changes, the system must adapt
to a new configuration. Further, the preferred configuration
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Figure 7. Execution times (ms) of pipeline B for the foreman video using different thread affinity strategies (lower is better).

may even change based on interactions between co-scheduled
tasks, e.g., a CPU-bound and memory-bound task may perform
better when co-scheduled than two memory bound tasks [8].

The preferred option then is to have a low-level scheduler
that adapts dynamically to varying tasks, data, architectural
limitations and shared resources. We propose an approach
that uses instrumentation and allows a scheduler to gauge
computation times of specific filters at execution time. Since
the workloads we look at are periodic and long-running, the
low-level scheduler can react to the observations and make
appropriate adjustments, e.g., try different execution modes,
data granularity, affinity and co-running competing workloads.

The prevalent approaches used in execution systems today
are work stealing variants. Here, the system typically use a
heuristics to increase cache locality such as spawning new
tasks in the same queue; or stealing tasks from the back of
another queue instead of the front to reduce cache contention,
assuming tasks that are near in the queue are also near in
terms of data. Although work stealing in its simplicity provides
great flexibility, we have shown in this paper that execution
order has a large performance impact on filter operations.
For workloads that are long-running and periodic in nature,
we can expect that an adaptive low-level scheduler will out-
perform the simple heuristics of a work stealing scheduler.
An adaptive work stealing approach is feasible though, where
work units are enqueued to the worker threads based on the
preferred execution mode, data granularity and affinity, while
still retaining the flexibility of the work stealing approach.
Such a low-level scheduler is considered for further work.
Another direction that we want to pursue is building synthetic
benchmarks and looking at performance counters to pinpoint
the cause of some of the effects that we are seeing, in particular
with the Bulldozer microarchitecture.

IX. CONCLUSION

In this paper, we have looked at run-time considerations for
executing (cyclic) streaming pipelines consisting of a data-
intensive filters for media processing. A number of different
filters and pipelines have been evaluated on a set of modern
microarchitectures, and we have found several unexpected per-
formance implications, within the well-known x86-family of
microprocessors, like increased performance by backtracking
pixel dependencies to increase cache locality for data sets that
can fit in private cache; huge differences in performance when
I/O is performed on one core and accessed on others; and
different execution modes perform better depending on minor
parameter variations in filters (or stages in the processing
pipeline) such as the number of degrees to rotate an image.
The implication of the very different behaviors observed on

the different microarchitectures is a demand for scheduling
that can adapt to varying conditions using instrumentation data
collected at runtime. Our next step is therefore to design such
a low-level scheduler in the context of our P2G processing
framework [7].
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Live demonstrations

Processing of  Multimedia Data using the P2G Framework

Title: Processing of  Multimedia Data using the P2G Framework [93].

Authors: P. Beskow, H. K. Stensland, H. Espeland, E. A. Kristiansen, P. N. Olsen, S. B.

Kristoffersen, C. Griwodz, and P. Halvorsen.

Published: Proceedings of  the 19th ACM international conference on Multimedia (MM), ACM,

2011.

Summary: A live demonstration of  the P2G framework encoding video and dynamically adapt-

ing to the available resources was presented at ACM Multimedia.

A Demonstration Of  a Lockless, Relaxed Atomicity State

Parallel Game Server (LEARS)

Title: A Demonstration Of  a Lockless, Relaxed Atomicity State Parallel Game Server (LEARS)

[100].

Authors: K. Raaen, H. Espeland, H. K. Stensland, A. Petlund, P. Halvorsen, and C. Griwodz.

Published: Workshop on Network and Systems Support for Games (NetGames), IEEE / ACM,

2011.

Summary: A live demonstration of  the LEARS lockless game server was presented at NetGames.
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Transparent protocol translation and load balancing on a

network processor in a media streaming scenario

Title: Transparent protocol translation and load balancing on a network processor in a media

streaming scenario [42].

Authors: H. Espeland, C. Lunde, H. K. Stensland, C. Griwodz, and P. Halvorsen.

Published: Proceedings of  the 18th International Workshop on Network and Operating Sys-

tems Support for Digital Audio and Video - NOSSDAV '08.

Summary: A live demonstration of  the proxy was presented at NOSSDAV.



Other research papers

The Nornir run-time system for parallel programs using

Kahn process networks on multi-core machines - A flexi-

ble alternative to MapReduce

Title: The Nornir run-time system for parallel programs using Kahn process networks on multi-

core machines - A flexible alternative to MapReduce [90].

Authors: Z. Vrba, P. Halvorsen, C. Griwodz, P. Beskow, H. Espeland, and D. Johansen.

Published: The Journal of  Supercomputing, Springer, 2010.

Abstract: Even though shared-memory concurrency is a paradigm frequently used for devel-

oping parallel applications on small- and middle-sized machines, experience has shown

that it is hard to use. This is largely caused by synchronization primitives that are low-

level, inherently nondeterministic, and, consequently, non-intuitive to use. In this paper,

we present the Nornir run-time system. Nornir is comparable to well-known frameworks

such as MapReduce and Dryad that are recognized for their efficiency and simplicity. Un-

like these frameworks, Nornir also supports process structures containing branches and

cycles. Nornir is based on the formalism of  Kahn process networks, which is a shared-

nothing, message-passing model of  concurrency. We deem this model a simple and deter-

ministic alternative to shared-memory concurrency. Experiments with real and synthetic

benchmarks on up to 8 CPUs show that per- formance in most cases scales almost linearly

with the number of  CPUs, when not limited by data dependencies. We also show that

the modeling flexibility allows Nornir to outperform its MapReduce counter-parts using

well-known benchmarks.
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Limits of  work-stealing scheduling

Title: Limits of  work-stealing scheduling [94].

Authors: Z. Vrba, H. Espeland, P. Halvorsen, and C. Griwodz.

Published: Job Scheduling Strategies for Parallel Processing (14th International Workshop),

Springer, 2009.

Abstract: The number of  applications with many parallel cooperating processes is steadily in-

creasing, and developing efficient runtimes for their execution is an important task. Sev-

eral frameworks have been developed, such as MapReduce and Dryad, but developing

scheduling mechanisms that take into account processing and communication require-

ments is hard. In this paper, we explore the limits of  work stealing scheduler, which has

empirically been shown to perform well, and evaluate load-balancing based on graph par-

titioning as an orthogonal approach. All the algorithms are implemented in our Nornir

runtime system, and our experiments on a multi-core workstation machine show that the

main cause of  performance degradation of  work stealing is when very little processing time,

which we quantify exactly, is performed per message. This is the type of  workload where

graph partitioning has the potential to achieve better performance than work-stealing.

Reducing Processing Demands for Multi-Rate Video En-

coding: Implementation and Evaluation

Title: Reducing Processing Demands for Multi-Rate Video Encoding: Implementation and

Evaluation [95].

Authors: H. Espeland, H. K. Stensland, D. H. Finstad, and P. Halvorsen

Published: International Journal of  Multimedia Data Engineering and Management (IJM-

DEM) 3(2):1-19, IGI Global, 2012.

Abstract: Segmented adaptive HTTP streaming has become the de facto standard for video

delivery over the Internet for its ability to scale video quality to the available network

resources. Here, each video is encoded in multiple qualities, i.e., running the expensive
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encoding process for each quality layer. However, these operations consume both a lot of

time and resources, and in this paper, the authors propose a system for reusing redundant

steps in a video encoder to improve the multi-layer encoding pipeline. The idea is to

have multiple outputs for each of  the target bitrates and qualities where the intermediate

processing steps share and reuse the computational heavy analysis. A prototype has been

implemented using the VP8 reference encoder, and their experimental results show that

for both low- and high-resolution videos the proposed method can significantly reduce the

processing demands and time when encoding the different quality layers.

LEARS: A Lockless, Relaxed-Atomicity State Model for

Parallel Execution of  a Game Server Partition

Title: LEARS: A Lockless, Relaxed-Atomicity State Model for Parallel Execution of  a Game

Server Partition [96].

Authors: K. Raaen, H. Espeland, H. Stensland, A. Petlund, P. Halvorsen, and C. Griwodz.

Published: Proceedings of  the International Workshop on Scheduling and Resource Manage-

ment for Parallel and Distributed Systems (SRMPDS) - The 2012 International Confer-

ence on Parallel Processing Workshops, IEEE, 2012.

Abstract: Supporting thousands of  interacting players in a virtual world poses huge challenges

with respect to processing. Existing work that addresses the challenge utilizes a variety of

spatial partitioning algorithms to distribute the load. If, however, a large number of  players

needs to interact tightly across an area of  the game world, spatial partitioning cannot sub-

divide this area without incurring massive communication costs, latency or inconsistency.

It is a major challenge of  game engines to scale such areas to the largest number of  players

possible; in a deviation from earlier thinking, parallelism on multi-core architectures is ap-

plied to increase scalability. In this paper, we evaluate the design and implementation of

our game server architecture, called LEARS, which allows for lock-free parallel processing

of  a single spatial partition by considering every game cycle an atomic tick. Our prototype

is evaluated using traces from live game sessions where we measure the server response

time for all objects that need timely updates. We also measure how the response time for
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the multi-threaded implementation varies with the number of  threads used. Our results

show that the challenge of  scaling up a game-server can be an embarrassingly parallel

problem.

Improved Multi-Rate Video Encoding

Title: Improved Multi-Rate Video Encoding [97].

Authors: D. H. Finstad, H. K. Stensland, H. Espeland, and P. Halvorsen

Published: Proceedings of  the International Symposium on Multimedia (ISM), IEEE, 2011.

Abstract: Adaptive HTTP streaming is frequently used for both live and on-Demand video

delivery over the Internet. Adaptiveness is often achieved by encoding the video stream in

multiple qualities (and thus bitrates), and then transparently switching between the qual-

ities according to the bandwidth fluctuations and the amount of  resources available for

decoding the video content on the end device. For this kind of  video delivery over the

Internet, H.264 is currently the most used codec, but VP8 is an emerging open-source

codec expected to compete with H.264 in the streaming scenario. The challenge is that,

when encoding video for adaptive video streaming, both VP8 and H.264 run once for each

quality layer, i.e., consuming both time and resources, especially important in a live video

delivery scenario. In this paper, we address the resource consumption issues by proposing

a method for reusing redundant steps in a video encoder, emitting multiple outputs with

varying bitrates and qualities. It shares and reuses the computational heavy analysis step,

notably macro-block mode decision, intra prediction and inter prediction between the in-

stances, and outputs video in several rates. The method has been implemented in the VP8

reference encoder, and experimental results show that we can encode the different qual-

ity layers at the same rates and qualities compared to the VP8 reference encoder, while

reducing the encoding time significantly.
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Improving File Tree Traversal Performance by Scheduling

I/O Operations in User space

Title: Improving File Tree Traversal Performance by Scheduling I/O Operations in User space

[98].

Authors: C. H. Lunde, H. Espeland, H. K. Stensland, and P. Halvorsen.

Published: Proceedings of  the 28th IEEE International Performance Computing and Com-

munications Conference (IPCCC), IEEE, 2009.

Abstract: Current in-kernel disk schedulers provide efficient means to optimize the order (and

minimize disk seeks) of  issued, in-queue I/O requests. However, they fail to optimize

sequential multi-file operations, like traversing a large file tree, because only requests from

one file are available in the scheduling queue at a time. We have therefore investigated a

user-level, I/O request sorting approach to reduce inter-file disk arm movements. This

is achieved by allowing applications to utilize the placement of  inodes and disk blocks to

make a one sweep schedule for all file I/Os requested by a process, i.e., data placement

information is read first before issuing the low-level I/O requests to the storage system.

Our experiments with a modified version of  tar show reduced disk arm movements and

large performance improvements.

Improving Disk I/O Performance on Linux

Title: Improving Disk I/O Performance on Linux [99].

Authors: C. H. Lunde, H. Espeland, H. K. Stensland, A. Petlund, and P. Halvorsen.

Published: UpTimes - Proceedings of  Linux-Kongress and OpenSolaris Developer Confer-

ence, GUUG, 2009.

Abstract: The existing Linux disk schedulers are in general efficient, but we have identified two

scenarios where we have observed a non-optimal behavior. The first is when an applica-

tion requires a fixed bandwidth, and the second is when an operation performs a file tree

traversal. In this paper, we address both these scenarios and propose solutions that both

increase performance.
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