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Abstract

Soccer games are rich with events that form the basis for creating high-
lights, game analysis, player and team statistics, game commentary,
and more. Such events needs to be annotated. At present, stakeholders
spend a large amount of time and money to do this manually. In recent
years, machine learning models have shown promise in this regard, po-
tentially being able to fully automate this task in the future, without
human intervention. However, most models have a difficulty spotting
events that are happening off-screen, i.e., interesting events that are
not shown in the video broadcast, because of some choice made by the
broadcast producers. An example of this can be a Kick-off not being
shown after a Goal because of replays.

In this thesis, we present a new idea combining three machine
learning models to better spot off-screen events in soccer broadcasts.
We train the different machine learning models on what we define as
three different dimensions of context: A Past dimension, where a model
can use an event happening in the present to inform what happened
in the past; a Present dimension, where a model is able to recognise
the event happening in the present; and a Future dimension, where a
model can use the event happening in the present to inform what will
happen in the near future. To do this, we will leverage the rules of
soccer to define relationships between events, alter the dataset that we
are evaluating our models on, and finally combine these models in a
data fusion layer.

We evaluate these models on the SoccerNet-v2 dataset, and
compare it to an existing action spotting model, to see how our
model compares when it comes to the task of action spotting, focusing
specifically on spotting off-screen events. We also define two real-life
use cases where such an action spotting model might be applied, and
compare the results to the existing action spotting model.

Our results show that our best performing model improves the off-
screen spotting for some types of events, and that our model is able to
produce a higher recall than the existing model, when applied to a use
case of generating statistics from soccer games.
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Chapter 1

Introduction

1.1 Background and motivation

In sports, soccer leagues are among the most valuable in the world.
The European soccer market had an estimated total revenue of 28.9
billion euros in 2018/2019 [31], while the 20 largest clubs generated a
combined revenue of 8.2 billion euros in the 2019/2020 season [1].

Soccer games contains events that both professional actors and fans
have an interest in. Events form the basis for creating highlights,
analysis, and game and player statistics. Extracting information from
the games is both time-consuming and expensive, since it is a manual
operation performed by humans.

In recent years, efforts have been made in trying to automate the
annotation of sport videos using event detection. A well working
system for this task would greatly decrease both the time and cost of
producing such annotations.

In 2018, SoccerNet [18] was released, which offered a highly
scalable dataset with 764 hours of video, and 6,637 annotated events
distributed across the three classes Goals, Cards, and Substitutions.
The authors of this paper presented two tasks to further stimulate
research in the field; classifying events in one-minute trimmed
videos, and spotting events throughout a game. SoccerNet also
defined a generalised evaluation metric, called the Average-mAP,
which produces a single number to represent the performance of a
machine learning model evaluated on the dataset. SoccerNet provided
a baseline for the two tasks, with an Average-mAP score of 49.7% for
event spotting, and an Average-mAP of 67.8% for classification.

Following this, a convolutional neural network (CNN) was presen-
ted by Rongved et al. [35, 38], that increased the Average-mAP for
classification on trimmed video clips to 88.4%. Improvements were also
made to the baseline for event spotting. A context-aware loss-function
proposed by Cioppa et al. [12], managed to increase the Average-mAP
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to 62.5%. This model leveraged the temporal distance between a po-
tential spotting to its ground truth when penalising the model dur-
ing training. Efforts have also been made to combine audio and video
streams [49] to improve upon the baselines set by SoccerNet.

In late 2020, a new version of SoccerNet, SoccerNet-v2 [11],
was released. SoccerNet-v2 extended the amount of annotations
to ∼300,000, expanding upon the event spotting classes as well as
introducing classes related to video production. Giancola & Ghanem
[19] developed a feature pooling method, NetVLAD++, that improved
upon the baseline of the event spotting (called action spotting in
SoccerNet-v2) task by 12.7 percentage points, to reach an Average-
mAP of 53.4%. The winner of the action spotting contest [16], Baidu
research [54], managed to achieve an Average-mAP of 74.84%, by fine-
tuning feature extractors on soccer clips.

In soccer broadcasts, events can happen off-screen, as a result of
replays or other choices made by the broadcast producers. These off-
screen events happen in the game, but are not shown in the video
stream broadcast to the viewer. An example may be a Kick-off event
after a Goal, which has not been shown due to replays of the Goal itself.
Common for most efforts working with SoccerNet-v2, is that the models
perform worse when spotting off-screen events. Our observation is also
that very little research focuses explicitly on off-screen action spotting.
For most real-life scenarios where we need to annotate events in soccer,
it is important to capture these off-screen events. One could argue
that the most important events in soccer are most often shown on-
screen, since it is in the interest of the broadcast producers to show
these events. For a statistical system however, it is also important
to capture the off-screen events. We suspect that the challenge of
predicting off-screen events can be generalised to many other computer
vision applications, where the events that needs to be captured require
a deeper understanding than the visual features alone can provide.
An exciting prospect is therefore to consider how one can improve
a machine learning models ability to spot off-screen events in soccer
broadcasts.

1.2 Problem statement
Today, machine learning models focused on annotating soccer events
perform worse when annotating events that happen off-screen, and
little research is focused on off-screen action spotting. This thesis aims
to explore one possible way for a machine learning model to better be
able to predict off-screen events.

Recent advances in deep-learning based action recognition has
shown that we are able to develop models that can correctly classify
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events that are happening on-screen quite well. In soccer, it is easy for
humans to understand what has happened off-screen, because we have
a strong sense of context throughout the game. This seems to be more
challenging for machine learning models, as context is not necessarily
informed by visual features alone. This thesis aims to explore the fol-
lowing question:

Can we leverage the strictly defined rules of soccer to develop a machine
learning model that better understands the context of the game and per-
form better when predicting off-screen events?

Based on this question, we identify the following objectives for our
thesis:

Objective 1 Research and develop an approach that leverages the
rules of soccer to better spot off-screen events in soccer broad-
casts.

Objective 2 Implement a model that follows the selected approach.

Objective 3 Analyse the performance of our model, and compare it to
an existing SoccerNet-v2 action spotting model.

Objective 4 Analyse the applicability of our model to practical use
cases, and compare the results to that of an existing action
spotting model.

1.3 Scope and limitations
Within the domain of action recognition in soccer broadcasts, it is
challenging for machine learning models to have the same sense of
context as humans have. Training a machine learning model also
requires large amounts of training data. In this thesis we have limited
our dataset to SoccerNet-v2, with its 764 hours of soccer clips. We
have also limited the events we are considering to the 17 different
classes of events annotated for the action spotting task, which are
detailed further in Section 3.2. We have based all our implemented
models on NetVLAD++ [19], which is available through the SoccerNet-
v2 development kit (devkit). For our experiments, our models needs
to convert the raw video clips into features. We have used the pre-
extracted features made available through the SoccerNet-v2 devkit.
In this thesis, we only consider the task of action spotting, defined in
SoccerNet-v2 [11] as the task of temporally grounding an event in a
soccer clip, and classifying which event it is.
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During the development of our models, we have used the Average-
mAP evaluation function provided by the SoccerNet-v2 devkit. This
evaluation function provides a score for the performance overall
(spotting both visible and off-screen events), as well as visible only, and
off-screen only. Later on, we compare our best performing model to the
baseline using the F1 score, precision and recall evaluation metrics.
Here we will also consider the three categories of visibility: all, visible
and off-screen. Although we discuss all three categories in our work,
the most important is the off-screen metric, which reflects how the
models perform when spotting off-screen actions.

In this thesis we only consider the action spotting performance of
machine learning models. We have therefore not done any system
benchmarks, or made any significant efforts to optimise hardware
utilisation.

1.4 Research methods
In this thesis, we use the research methodology proposed by ACM
[14], which include three paradigms when it comes to computing as
a research discipline. Each paradigm has a set of steps that should be
followed when conducting research, and the steps should be iterated
when necessary. The individual paradigms might also include elements
of the other paradigms, and are therefore not completely independent
of each other.

Theory The theory paradigm is rooted in mathematics and follows
four steps; definition, theorem, proof and interpretation of results.
The definition is the characterisation of the object of study, and
the theorem step includes hypothesising possible relationships
between these objects. In the proof step, the relationships
are determined to be true or false and finally the results are
interpreted.

Abstraction Abstraction, or modelling, is rooted in the experimental
scientific method and contains four stages. The first is to form
a hypothesis, then create a model in order to make a prediction.
The next stage is to design an experiment and collect data, and
finally analyse the results.

Design The design paradigm is rooted in engineering and has four
steps for setting up a system to solve a problem. First, the
requirements should be stated, then the specifications should be
stated. The next step is to design and implement the system and
before finally testing the system.
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Our thesis uses a combination of these paradigms. We develop
experimental prototypes of a system and conduct our experiments
in an iterative fashion. Each experiment begins with forming a
hypothesis in accordance with the abstraction paradigm. Then, we
design and implement the system before testing it, in accordance with
the design paradigm. Finally, we analyse the results, conforming
again to the abstraction paradigm. At the next step, when we are
forming our next hypothesis, we try to include insights gained from
the previous iterations. We will build upon hypothesis’ and models
which yield good results and seem interesting for further research.
Elements of the theory paradigm such as definition are also applied,
when describing theoretical concepts from machine learning, and when
formally defining phenomena in the dataset and our machine learning
models.

1.5 Main contributions
As we discussed in Section 1.2, we will leverage the rules of soccer to
create a machine learning model that better predicts off-screen events
in soccer broadcasts. Throughout the work of this thesis, we present
the following main contributions:

• We define an intuition for how we can introduce a sense of context
into a machine learning model, for it to better be able to spot
off-screen events in a soccer broadcast. We identify relationships
between events in soccer, and describe how these can be used as
the basis for creating three dimensions of context in soccer. From
this, we discuss how the dataset can be manipulated to train three
separate models that reflect the different dimensions of context.
We design a new model architecture that trains and combines a
Past, Present and Future model to better predict off-screen events
in soccer.

• We iteratively use the existing SoccerNet-v2 labels to create
new labels that are used to train the Past and Future models.
Furthermore, we create a data fusion layer that combines the
output of the aforementioned models to create one final model
output. In order to combine these models in the best way, we
experiment with data fusion algorithms, and implement sliding
window algorithms with different window sizes.

• We evaluate our model using the existing Average-mAP evalu-
ation function, and compare the results to a set baseline model.
Our best performing model achieves a higher performance when

5



spotting off-screen events for four of the 17 classes in SoccerNet-
v2.

• We define two practical use cases for action spotting models
within the soccer domain, and use precision, recall and F1 score
as evaluation metrics. When used for statistics, our model
achieves a higher recall score. When used for game commentary,
we only considered action spotting on off-screen events. Our
results showed that our model achieved a higher precision for
two classes, and a higher recall for three classes compared to the
baseline.

These contributions address the question and objectives in our problem
statement, and presents new ideas for how one can better spot
off-screen events in soccer broadcasts. Our results show promise,
hopefully facilitating further development of our combined machine
learning model architecture. Furthermore, we think that our work
explores an exciting challenge in computer vision as a whole, which
is understanding how a machine learning model can understand the
context within the domain it is applied to. Our code is available here:
https://github.com/Brynjard/Masterthesis

1.6 Thesis outline
Chapter 2 - Background In this chapter, we introduce theoretical
concepts and definitions required to understand our work throughout
the thesis. We present related works within the field of activity recog-
nition and action spotting, and provide a context for the work that has
contributed to the current state-of-the-art models within the field. We
divide these into two sections, focusing first on action spotting in gen-
eral, and then on action spotting off-screen events. Towards the end of
this chapter we provide an overview of datasets that have facilitated
progression in the field.

Chapter 3 - Methodology In our methodology chapter, we first intro-
duce the SoccerNet-v2 dataset. Then we introduce our intuition behind
how context in soccer is formed. We also define relationships between
interesting events in soccer, and present our ideas for how these rela-
tionships can be leveraged to introduce context into our models. We
present our baseline model, and choices we have made in terms of hy-
perparameters, and data fusion techniques. Finally, we detail how we
have evaluated our models.

Chapter 4 - Experiments & Results In this chapter, we present our
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experiments and results. We compare our results to the baseline us-
ing two different evaluation methods, and compare them in light of
their applicability to real-life use cases. We also analyse our results,
and draw possible conclusions in terms of the behaviour of our mod-
els. Finally, we reflect on our work and discuss some shortcomings and
choices we have made throughout this thesis.

Chapter 5 - Conclusions In the conclusions chapter, we summarise
our work, outline our main contributions, and discuss ideas for future
work building on this thesis.
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Chapter 2

Background

2.1 Introduction
In this chapter, we will define relevant theory, related literature and
terminology used as background knowledge for this thesis. We start
by defining machine learning and the two most relevant paradigms
for this thesis. We will also define classification as a general machine
learning problem. Furthermore, we define neural networks and other
technical concepts relevant for video processing in machine learning.
As our topic is related to action spotting in soccer videos, we define
relevant terms such as events, action spotting and event visibility.
We also present a definition for what context in soccer is. We
present current related work in the field of event detection and action
recognition, and finally provide an overview of datasets for video
understanding in general, and for the soccer domain. Towards the end
of this chapter, we address ethical considerations related to our work.

2.2 Machine Learning
Machine learning can be defined as computer systems and algorithms
that learn and improve from experience. Mohri et al. [34] defines
experience in this context, as past information available to the system.
A key concept in machine learning is that the systems learning process
is not explicitly programmed by the designer of the system. Recent
years have seen new applications for machine learning surface at an
increasing rate. A major contribution to this revolution in machine
learning applications is the increase in, and availability of computing
power. The growing amount of data available in the world [32] has
also helped research and the success of machine learning applications.
A machine learning system can often be categorised under one of
three paradigms: Supervised learning, unsupervised learning, and
reinforcement learning. In the field of video event detection, most
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research effort has been focused on supervised and unsupervised
learning.

2.2.1 Supervised Learning
Supervised learning is a learning paradigm in which the model is
provided with a set of observations, and each observations correct
target. The system then tries to generalise on this data to provide
the correct target for new, unseen data. In other words, given a set of
unseen data-points {x1,. . . ,xn} and a set of targets {y1,. . . ,ym} the goal of
the model is to correctly map each xi to their correct target, yi.

2.2.2 Unsupervised Learning
In unsupervised learning there are no targets provided with the
observations. It is purely up to the system to cluster or categorise the
data in different groups, based on common traits and patterns found in
the data by the model.

2.3 Classification
Classification is a set of problems in which the main goal is to correctly
map a set of observations to their correct class or classes. An important
aspect of a classification problem is that it is discrete. The complete set
of possible classes define all possibilities of the solution, and each input
observation evaluates to one class or a combination of classes [32]. A
classical classification problem is that of image recognition. In image
recognition, an image is provided as an input, and the goal of the model
is to correctly map this image to one, or several classes depending on
the task. The model would initially be fed with a (preferably) large
amount of images with their correct classes attached. After a certain
training period, the model should then be able to map (with a certain
error-margin) new images to their correct class. One attempt from the
model to map an input to a class is usually called a prediction.

2.4 Neural networks
In the context of this thesis, we limit the scope of neural networks and
deep learning to supervised learning. In a neural network, each data-
point (input) is represented as a set of features {x1,. . . ,xn}. For any
given task, a pre-processing step is required, in which the input data
is transformed into features. For image classification, this might be to
represent each pixel in the image as a real number. In Figure 2.1, each
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left-most node represents a feature. Each feature is a real-numbered
value representing some attribute of the input. The goal of the model,
is to correctly predict a correct target, t based on a combination of
features. A neural network consists of three or more layers of connected
nodes, where the first layer, called the input layer, are the features
representing the data-point. The last layer is the target-space, which
can be one node, or several, depending on the problem we are trying
to solve. In the case of Figure 2.1, each prediction will be one of
two possibilities. In between these layers are one or more layers of

Input layer Hidden layer Output layer
(predictions)

Weights
connecting each

node to each
subsequent node
in the next layer

Figure 2.1: A simple neural network architecture for a classification
problem. The network consists of three input nodes representing three
features for one datapoint, three nodes in a hidden layer, and two nodes
in the output layer.

hidden nodes. Each layer starting with the input nodes, are fully
connected to the next layer through weights, which are real numbers
that are initialised at the start of the training phase. In Figure 2.1,
each node in the hidden layer has three weights connecting it to all
nodes in the previous layer, and two weights connecting it to the next
layer. The network feeds forward the values from one layer to the
next, through a dot product function of each preceding node and the
corresponding weight, to the current node. For a given node in the
hidden layer in Figure 2.1, this fed forward value is the sum of three
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products. In this figure, each feed-forward step is a left-to-right process
over each consecutive layer. For each node in each layer, the forward
fed value from the previous layer is processed through an activation
function, before moving on to the next layer. This continues until
the last layer, and we get the prediction from our model. An error-
function then calculates the cost of our prediction (how wrong we were)
and propagates that error backwards, by updating the weights of each
layer. This continues through a number of iterations or epochs, or until
some other exit criteria is met. This is how the neural network learns.

Consider the following neural network based on Figure 2.1:
The left-most input layer with features {x1,. . . ,xn}, one hidden layer of
nodes {z1,. . . ,zm}, and one layer of output nodes, {y1,. . . ,yo}. The weights
connecting the input layer and the hidden layer is a matrix, v, of size
n×m. The weights connecting the hidden layer to the output layer, w,
is a matrix of size m× o. In the feed-forward phase of the algorithm,
we calculate the activation for each node in the hidden layer, as well
as for the output-layer. For any given node zj in the hidden layer, we
calculate the dot product of each node in the preceding layer with the
corresponding weights as such:

zj =
n=3

∑
i=1

xivij

This value is then processed by an activation function g, to give
the activation of zj: g(zj). This process is repeated between the
hidden layer and the output layer, resulting in a vector of activations
{y1,. . . ,yo}, which represent the predictions made by our models. This
vector can take many forms, depending on the problem we are trying
to solve. In this case, our vector has a length of two.

In the backwards-phase of the algorithm, our predictions y, is first
compared to a target-vector {t1,. . . ,to}. Depending on the problem
at hand, an error function, L(y, t) calculates the error-rate of our
predictions, which sets the basis for how our weights are adjusted.
Marshland [32] defines one such error function, the sum-of-squares
function, as such:

L(y, t) =
1
2

N

∑
k=1

(yk − tk)
2

The backwards-phase of the algorithm, consists of computing the
gradients of the error in respect to the weights, so that we can adjust
the weights as to minimise the error.
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2.5 Deep learning
Deep learning describes a subset of machine learning algorithms that
utilises several hidden layers in a model (like a neural network) that
can be fine-tuned to optimise its problem-solving capabilities. For each
layer in the deep learning model, the input from the previous layers
build upon each other and become more and more sophisticated [3].

2.6 Convolutional neural networks
In recent years, a subset of neural networks, called Convolutional
Neural Networks (CNN) has been used with much success. In the
realm of image and video detection, CNNs have showed huge improve-
ments compared to other models [2]. A CNN can be implemented
through various architectures. Features can either be extracted by so-
called feature engineering, or they be can be learned by a module of the
model architecture.

One integral part of the CNN are the convolutional layers. As seen
in Figure 2.2, a 2 x 2 filter, K, slides over the input, X, from left to
right, top to bottom. Each step outputs the dot-product between K and
the submatrix of X, which is one value in the featured matrix, M. The
purpose of this layer is to extract the relevant features from the input.
CNNs also utilise parameter sharing, which decreases the number of
calculations in the convolutional layer. With parameter-sharing, each
node in the convolutional layer uses the same weights. In Figure 2.2,
K is shared amongst all nodes in M.
At different layers in the CNN, a non-linearity function is normally
applied to the featured matrix. This is often implemented as the ReLU-
function:

ReLU(x) =

{
0, if x < 0
x, otherwise

Pooling is another important part of the CNN architecture. As can
be seen in Figure 2.3, pooling reduces the amount of features in the
matrix. In this case, a 2 x 2 filter slides over the matrix, disregarding
all values but the largest in its current scope, effectively reducing
four values to one. This is called max-pooling. Pooling reduces the
complexity and amount of calculations that our CNN needs to process.
There are other variations of pooling as well, such average-pooling,
which averages the values in its current scope.

The final building block of the CNN is the fully connected layer. This
layer is fully connected to each activation in both the previous and the
next layer, much like in a traditional neural network. Different CNN
architectures comprise of different combinations of these layers.
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Figure 2.2: Illustrating how a 2 x 2 filter, K, convolves over an input-
matrix X in a CNN, resulting in the featured matrix, M. For simplicity’s
sake, this convolutional layer uses a stride of 2, although a stride of 1
is more normal.

2.7 Principal Component Analysis

Most applications and experiments with machine learning models
require large amounts of data. In the context of video analysis, the
features we are working with are often large in number of dimensions,
resulting in a large amount of data needing to be processed and
calculated when training a model. The curse of dimensionality [32] also
states that as the number of dimensions grow, the size of the training
data also needs to grow. The result of this is that the machine learning
model needs a lot of time and space in terms of computing power
to undergo sufficient training. Principal component analysis (PCA)
is an algorithm that transforms the data into a lower dimensional
representation, while retaining as much information in the data as
possible [32].
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2.8 Computer vision
Computer vision is related to making computer models that are able to
see and gain an understanding of the visual world, by processing sensor
data from images and videos. In the early days of artificial intelligence
research, tasks involved with object recognition in images were seen
as trivial, compared to tasks related to higher reasoning and planning
[46]. These tasks have later proven to be quite challenging, with a
large portion of the related problems not yet solved with satisfactory
results. In soccer, computer vision has multiple applications, from
object recognition to game understanding. Use of object recognition
in soccer broadcasts includes player localisation and tracking, ball
tracking and field lines localisation [47, 21].

2.9 Non-maximum suppression
In computer vision tasks in general, and for object detection or
event recognition specifically, a common challenge is that the machine
learning model outputs predictions and bounding boxes that are
overlapping. In the context of object detection, this overlap can be
defined as the intersect-over-union between bounding boxes, and in
event recognition it can be defined as several predictions of the same
class being within a set time window. Non-maximum suppression is an
algorithm which filters these predictions/bounding boxes, and outputs
the ones that are of most likely to be correct. This algorithm works
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under the assumption that predictions or bounding boxes that are
overlapping, are most likely predicting the same observation.

2.10 Event definition
In an attempt to suitably define an action in the context of computer
vision, Chen et al. [10] argues that an action contains four aspects: an
agent, an intention, a bodily movement, and one or more side-effects.
Defining the start and end of an action is not completely unproblematic
- Sigurdsson et al. [42] showed how temporally localising activities
is an ambiguous task. By re-annotating the Charades [41] and
MultiTHUMOS [52] datasets, they found that their agreement with
the ground truth were only 72.5% and 58.7% timeIoU respectively.
Conveniently, soccer has a strict and defined rule-set for events such
as Goal, which is the exact moment when the ball crosses the goal-line.
This lets us adhere to SoccerNet’s [18] definition of an event, as an
action temporally anchored with a single timestamp.

2.11 Action spotting
Introduced with the release of SoccerNet [18], event spotting is the task
of temporally anchoring an event in an untrimmed video. Given a
temporal tolerance, δ, a candidate for spotting is considered correct, if it
is within the δ of the ground truth. Event spotting is therefore the task
of classifying what event is taking place, as well as when. In SoccerNet-
v2 [11], this task is referred to as action spotting. In this thesis, we will
use action spotting, but use the terms action and event interchangeably
when talking about events as defined in Section 2.10. We will also use
the terms action spotting and spotting interchangeably.

2.12 Event visibility
In soccer broadcasts, events of interest can happen off-screen, as a
result of the choices made by the broadcast producers. Usually, this
is the result of replays. After a Goal is scored, the producers might
choose to show several replays, before the broadcast returns back to
showing the game in real-time. After these replays, the game might
have started. Between the Goal and the end of the replays, a Kick-off
might have occurred that was not shown in the broadcast. The Kick-off
in this instance, has happened off-screen. Throughout a soccer game,
several events will happen off-screen as a consequence of the broadcast
producers choices.
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In the SoccerNet-v2 dataset, each annotated event has an attribute
called visibility. This is set to either visible or not shown. Visible events
describe events that are shown in the broadcast, while not shown
events are not shown in the broadcast. We prefer to refer to use the
term off-screen events when referring to not shown events. In this
thesis we will therefore use off-screen to describe not shown events,
except for places where we are directly referring to the value of the
visibility attribute of an annotation in the dataset.

2.13 Context in soccer

Context is a relative term. We feel that it is important to define what
we mean by context in soccer, since this is mentioned throughout this
thesis. For a machine learning model to better be able to spot off-screen
events, we believe that the model needs to have an understanding
of the context of the game. We define context in this sense, as
an understanding of how events in soccer are influenced by what
happened in the past, and how events influence what happens in the
future, within a single game.

2.14 Related work

2.14.1 Activity recognition & action spotting

The previous decade saw large advancements in the field of action
recognition and event detection. At the start of the previous decade,
research was beginning to make the available datasets for action
recognition obsolete. The datasets were too limited in their classes
to represent the vast variety of human actions in the real world, and
the video-clips themselves were too controlled in terms of video quality,
camera movement, and human actions [45]. UCF101 [45] and HMDB
[29] sought to change this, by introducing datasets with a higher
number of classes, video quality variety, and sheer volume of content.
These datasets included a wide range of classes, including sports,
body-motion, inter-human interaction, and human-object interaction.
Following the success of CNNs applied to image classification [28],
Karpathy et al. [26] provided an extensive empirical evaluation of
using CNNs on a large-scale video dataset. They achieved significantly
better results than contemporary models, and showed that CNNs were
able to generalise to other datasets as well. By applying their model
to the UCF101[45] dataset, they were able to improve the baseline by
19.4 percentage points.
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In the field of general human activity understanding, Activ-
ityNet [7] presented a large scale dataset with a total number of 849
untrimmed hours of video, containing 203 activity classes. Three
benchmark tasks were introduced with the dataset: predicting activ-
ities in untrimmed videos, where each video might contain several
activities, predicting the correct label of trimmed videos containing one
activity, and detecting all activities in untrimmed videos, with tem-
poral start and end times for each activity. Comparing their model to
other state-of-the-art models [17, 26, 45, 29], ActivityNet had a signific-
antly lower benchmark, reflecting the difficulty of the novel challenges
introduced with this dataset.

A common challenge when working on computer vision problems, is
to procure enough labelled data [25]. To sufficiently train a model,
a significant amount of training data is required. Labelling data
requires a human effort, which makes it an expensive procedure.
A semi-supervised algorithm has been proposed [25] to reduce the
amount of annotated data needed for training. This model can, with
a limited amount of labelled test data, produce results matching those
of the state-of-the-art models that fully utilises supervised learning.
By training a CNN with the 3D ResNet 18 architecture on the
UCF101 [45], Kinetics [27], and HMDB51 [30] datasets, the algorithm
can outperform other state-of-the-art supervised models. Another
solution to the problem of limited labelled data was proposed by
Brattoli et al. [5] which uses Zero-shot (ZSH) learning, that is able to
generalise well to other problems where the classes are not known. The
model was trained once on the Kinetic dataset [27] and then tested on
different datasets with different classes. The authors used a trainable
3D CNN network to learn visual features, as opposed to other ZSH
methods, that uses pretrained feature extraction. Using a training set
with a high diversity of classes, this model proved to outperform other
state-of-the-art models where training data and test data overlaps.

In 2018, the SoccerNet dataset was introduced in a paper by
Giancola et al. [18]. Along with the dataset, the authors provided
a baseline for event recognition and action spotting on the classes of
Goals, Substitution and Cards. They achieved an Average-mAP of
49.7% for the action spotting task. This dataset, and its novel tasks,
facilitated further research into video understanding in the soccer
domain.

Cioppa et al. [12] proposed a context-aware loss-function that
increased this baseline from 49.7% to 62.5% for the action spotting
task. This loss-function utilises the temporal distance of a given frame
from the closest ground truth action frame for each class. The basic
idea is that frames that are temporally close to the ground truth
action, contain more relevant information than the frames further
away. Because of this, frames with a high temporal distance to the
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ground truth that predict an action, incur a high loss. Frames that are
temporally close to the ground truth and that predicts an action, incur
a low loss. Furthermore, frames that are close to the ground truth that
do not predict an action, also incur a high loss. While this loss-function
improved upon the previous baseline, the loss-function saw a reduction
in Average-mAP minutes before and after the half-time break. As the
authors stated, the network requires padding at the beginning and end
of the halves, which may contribute to the reduction in performance.
The model also saw a reduction in performance when actions are in
close proximity. This was speculated to be a result of a reduced number
of visual cues such as replays, or in the case of two consecutive actions,
where the replay of the first action is shown after the second action has
happened. Vats et al. [51] achieved comparable results using a multi-
tower temporal convolutional network. Since different events can occur
over different time spans, the towers have different receptive fields to
account for this. The model was tested on both ice-hockey and soccer
datasets, but the results were better on SoccerNet, where the model
achieved an Average-mAP of 60.1% for action spotting. Vanderplaetse
& Dupont [49] proposed using both audio and video for action spotting
in soccer videos. Most work has been done using only data from videos.
The authors trained the video feed and audio stream separately and
then used merge methods to fuse the models. Video-only performed
better than audio-only, except for classifying Goals, while the combined
multimodal approach outperformed both. Rongved et al. [36] used
multimodal approaches as well. They experimented with different
models and both late and early model fusion. Using a multimodal
approach with audio and video features improved the performance for
Goal events, but not for Cards and Substitutions.

Efforts has also been concentrated on developing models that
perform real-time spotting. Rongved et al. [35] experimented with
a CNN with end-to-end training on SoccerNet. Although this model
had a lower detection accuracy than the state-of-the-art, it performed
well when tolerance for time estimation was low. Their model also
had a significantly lower delay than the current state-of-the-art,
showing promising results towards the goal of reaching real-time
action spotting and event recognition in soccer. Tomei et al. [48]
devised RMS-net, a network for action spotting that achieved an
Average-mAP 67.8%. They built on the work by Cioppa et al. [12], and
the idea that the most relevant visual cues occur just after an event.
During training, the network is paired with a masking strategy to focus
on the relevant portions of the input data.

Minoura et al. [33] achieved an Average-mAP of 81.6% using
a Transformer model [50]. The transformer model was adapted to
capture context over longer time periods and similar scenes in soccer
videos.
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SoccerNet-v2, an extension to the SoccerNet dataset, was released
in 2020 [11]. Together with the dataset, Deliége et al. [11] set a
baseline for the task of action spotting using the context aware loss-
function from Cioppa et al. [12]. The Average-mAP achieved was
40.7%.

Giancola & Ghanem created a pooling method named NetVLAD++ [19],
based on NetVLAD [4], to improve the results on action spotting. The
proposed pooling method, compared to for example max pooling, is
trainable. The pooling layer uses k-means to learn clusters from the
features in the training data, extracting low-level semantical inform-
ation from the frames it is trained on. Furthermore, for each window
of frames that the model processes, NetVLAD++ aims to extract mean-
ingful information from the window as a whole, by aggregating the fea-
tures with respect to the average distance of each feature to its closest
cluster. NetVLAD++ also considers the order of the frames, with the
idea that temporal context before and after an event contains informa-
tion related to the event. Two different events may have similar frames
just before the event took place, while the frames just after differs, and
vice versa. At the time of publication, Giancola & Ghanem achieved a
state-of-the-art Average-mAP of 53.4% for the action spotting task.

Zhou et al. from Baidu research achieved impressive results [54]
on the SoccerNet-v2 dataset using features extracted from a feature-
extractor trained on soccer clips. Rather than training a model on the
features extracted by ResNet [20], pretrained on ImageNet [13], the
Baidu research team trained several action recognition models on the
clips of SoccerNet videos, before extracting the features. Combined
with a Transformer [50] model, the research team won the SoccerNet-
v2 competition for action spotting with an Average-mAP score of
79.28% and 47.8% for shown and off-screen events respectively, and
a total Average-mAP score of 73.77% [16].

2.14.2 Off-screen event detection
In SoccerNet-v2, the binary visibility attribute was introduced to the
annotated events. The authors ran 4 action spotting models [18, 49,
12] on the new dataset, and reported the Average-mAP results for both
visible and off-screen events. All models had lower performance for
off-screen, compared to visible events. The new benchmark, set using
the CALF model [12], achieved an Average-mAP score of 42.1% and
29.0% for spotting visible and off-screen events respectively. Since
these method were previously developed for SoccerNet, which did not
include the visibility of events, none of the methods were created with
any special considerations for off-screen events.

At the time of publishing, Giancola & Ghanem presented a new
state-of-the-art model [19], achieving an Average-mAP score of 53.4%,
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59.4% and 34.8% when spotting all, visible, and off-screen events
respectively. They argued that off-screen actions are challenging to
learn from. In the future, they encouraged researching models that
reach a higher level of understanding of the soccer broadcast [19].

Since we started writing this thesis, several models have been
developed that achieved a higher Average-mAP than NetVLAD++
when spotting off-screen events [16]. To the best of our knowledge,
we have not been able to find any sources in the literature that
explicitly focus on improving off-screen action spotting. The authors
of SoccerNet-v2 argue that it is challenging to spot off-screen events,
since this requires analysis beyond a frame-by-frame basis, and
requires the model to consider the context before and after the actions
occur. We therefore think that this is an important and intriguing area
of the field to research further.

2.15 Datasets
Deep-learning models have shown to be highly scalable with large
datasets. The last two decades have seen demand rising for more and
more complex datasets for video understanding with deep-learning.
Available datasets in the 2000s were limited by the fact that they were
recorded in controlled conditions (fixed camera angles, limited back-
ground noise, etc) and did not represent the real world [8]. In the early
2010s, several datasets were introduced that had non-controlled back-
grounds and illumination [45, 29]. Advancement in the field of action
spotting were also facilitated, with the release of THUMOS14 [17],
a dataset with a total of 24 hours of temporally untrimmed videos,
with 6,000 temporally anchored activities, distributed over 20 classes.
ActivityNet [7] introduced a large-scale dataset for human activity un-
derstanding in videos. Totalling 849 hours of video, where 68.8% of
those contain general human activities distributed among 203 activ-
ity classes. ActivityNet utilised YouTube to gather video material, and
hired manual workers to label the untrimmed videos, as well as an-
notating temporal boundaries for activities in the videos. Yu et al. re-
leased a dataset with 222 soccer videos from the World Cup, Asian Cup,
European Championship and the English Premier League [19]. The
videos each consist of one half of a soccer game and are approximately
45 minutes in length. The videos have three types of annotations: video
shots, event detection and player tracking. The video shot annotations
consist of start and ending frame number for the shot, type of video
shot, and shot transition type. The annotations for event detection con-
sist of a label for the event type and a start and end point. There are
eleven different event types in the dataset and a total of 6,850 event
annotations. Annotations for player tracking consist of 1,908 frames
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with a bounding box for players.
SoccerNet introduced the first large-scale soccer focused dataset for

activity detection. SoccerNet consists of a total of 500 games, with 764
hours of video and 6,637 action annotations, distributed among three
classes, Goals, Yellow/red card and Substitutions. The 500 games are
collected from the 6 biggest European soccer competitions, over the
course of three seasons. Each game consists of two untrimmed videos,
one for each half of the game. Games are collected from online sources,
and event annotations with a 1-minute margin of error are collected
from parsing match reports from the respective leagues websites. This
annotation process makes the dataset highly scalable. For a more
accurate annotation, manual labour provided annotations down to the
second of the event occurring, according to the rules defined in soccer.
SoccerDB [24] built upon this dataset by expanding it with 7 additional
classes and 76 new games, while using only half of the games from
SoccerNet. The dataset does not provide full videos of the games,
but smaller video segments with annotations. In 2019, Pappalardo et
al. [37] released a dataset of soccer logs describing match events from
seven large soccer competitions. The dataset does not contain video,
but has annotations for seven event types that can be used for event
detection.

The recently released SoccerNet-v2 [11] expanded upon the Soccer-
Net dataset. Although the quantitative amount of videos remains un-
changed from the first version, the amount of annotations were signi-
ficantly increased, from ∼6,000 to ∼300,000 annotations. SoccerNet-v2
expanded the categories of annotations with camera shots and replays.
The number of classes for action spotting was also increased from 3 to
17.

Compared to other soccer-related databases [24, 53, 37], SoccerNet-
v2 provides the most comprehensive dataset available for work related
to action spotting and event detection in soccer broadcasts.

2.16 Ethical Considerations
In this section, we discuss the relevant ethical considerations that need
to be addressed when researching and developing a machine learning
model for activity recognition in sports.

When we are working on a machine learning model that is based
on imaging data, we must consider the possibility that the model is
not able to generalise well to unseen data. This is especially true
if the training data is not representative of the population [39]. In
the context of our work, we consider this a realistic scenario. The
SoccerNet-v2 dataset, which has been exclusively used to train our
model, only contains data from the top leagues in Europe [11]. The
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geographical limitation of this might lead to certain ethnicities being
under-represented in the dataset. The result might be that the
machine learning model works less well when applied to other leagues
and geographically situated soccer teams. As such, other leagues than
the top European leagues might not be able to reap the benefits of such
a system. In a hypothetical scenario in which an action spotting model
is used to gather statistics for a team to analyse, the disadvantage
might become quite significant.

Following this, it is important to consider the availability of action
spotting systems applied to real-life scenarios. One could argue that
applying, and taking full advantage of machine learning models in
soccer, requires resources and technical proficiency not available to all
soccer teams. This could therefore lead to an unfairness in which only
the most resourceful leagues and teams are able to use such models,
which would increase an already existing performance advantage.

Throughout the work in this thesis, we have aimed to be as
transparent in our research as possible. This includes the following:

• Presenting our results objectively, without leaving out key figures
and numbers.

• Explaining our reasoning behind the analyses of these results.

• To the best of our knowledge, discuss the shortcomings of our
results, as well as our work and analysis, and how these
shortcomings might affect the results.

2.17 Summary
In this chapter, we have presented relevant paradigms in machine
learning for this thesis, as supervised learning and unsupervised
learning. We have introduced classification tasks, as they are a
common problem within the domain of supervised learning. We
have learned that computer vision tasks are related to machines
understanding the visual world. We have presented the general
ideas behind neural networks and CNNs, which are important for
understanding how many modern algorithms for video and image
understanding work. Deep learning, a sub-set of machine learning
algorithms that utilises a deep-layered architecture to better solve
problems, has shown great promise and practical applicability in recent
years.

We defined an event in soccer as an action happening at an exact
point in time. We defined action spotting as the task of classifying
which event takes place, and when, in a soccer clip. We have detailed
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what event visibility in SoccerNet-v2 is, and presented a definition for
what context in soccer means.

Automating action spotting in videos has seen great improvements
in recent years with new datasets and methods. During the last two
decades, relevant datasets in activity understanding in videos has
gone from the non-realistic [8], to the comprehensive [7], and into the
domain specific [11]. With the release of SoccerNet and SoccerNet-v2,
several papers have contributed to the task of action spotting [12, 51,
49, 19, 54]. Still, most of these machine learning models perform worse
when spotting off-screen events, and none focus explicitly on these
events. By the end of this chapter, we discussed the relevant ethical
considerations for this thesis. In the next chapter, we will describe
our ideas for a machine learning model that can better spot off-screen
events.
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Chapter 3

Methodology

3.1 Introduction

Today, events in soccer videos are annotated manually by human
operators. This is a time-consuming and costly process. Using
machine learning to automate this, could greatly decrease these costs.
Furthermore, researching this field could potentially generalise to
other domains of computer vision and bring new insights into machine
learning as a whole. One of the biggest factors that contribute to
furthering computer vision research is the increasing sophistication,
size, and data quality of available datasets for model training. Since
the release of SoccerNet [18], we have seen large improvements in
terms of action spotting in soccer videos [12, 48, 54]. In 2021,
SoccerNet-v2 [11], an extension to the SoccerNet dataset was released.
SoccerNet-v2 increased the total number of annotations for action
spotting from ∼6,600 to ∼110,000, and increased the target-space from
3 classes, to 17 classes. Following the release of this dataset, a new
state-of-the-art model was presented [54] that increased the Average-
mAP score from 67.8% to 74.8%.

When spotting actions, our observation is that most research efforts
are focused on either using visual data on a frame-by-frame basis, or
using multimodal approaches combining audio and video data [49]. An
exception to this is Cioppa et al. [12], which uses the temporal distance
from a frame to its closest ground truth action to penalise its model
during training. These efforts does not put much emphasis on the
understanding of the larger context in the game, or the relationship
between different types of events in soccer. Furthermore, little effort is
focused on explicitly spotting off-screen events. We believe that most
existing models perform worse when spotting off-screen events as a
result of this. We want to study how we can train machine learning
models to learn the relationship between different events in soccer.
We want to see how this impacts the performance of action spotting
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in general, and specifically how this impacts spotting off-screen events
in the dataset.

In this chapter, we will present our new idea for better spotting off-
screen events in soccer. We propose a model architecture combining
three individual models, each learning their own separate dimension
of context in a soccer game. We will first describe the dataset,
with its limitations and specifications. We will also describe the
intuition behind our ideas. Then, we will discuss how we can use
event relationships in soccer to support this intuition, and present the
Past, Present and Future contextual dimensions that together form a
contextual understanding of what is happening in a soccer game. We
will present how we have manipulated the dataset to facilitate training
three different models on these contextual dimensions. Following this,
we will detail how we can combine these models to create a model
architecture with enhanced off-screen action spotting capabilities. We
will also describe the existing model we have used as a baseline for
our research. We will present how we have combined our different
machine learning models in terms of data fusion, and the choices that
were made in regards to hyper-parameters. We will finally present
how most models using the SoccerNet dataset are evaluated, how we
evaluate our models, and provide a summary at the end of this chapter.

3.2 The SoccerNet-v2 dataset
SoccerNet-v2 is a dataset containing 500 soccer games, as they
were broadcast, totalling 764 hours, with ∼300,000 timestamped
annotations [11]. As in SoccerNet, the games span three different
seasons (14/15, 15/16 and 16/17), the five biggest national leagues in
Europe (La Liga in Spain, English Premier League (EPL) in England,
Ligue 1 in France, Serie A in Italy, and Bundesliga in Germany) as
well as the annual UEFA Champions League competition. Table 3.1
shows the distribution of games per season and league. SoccerNet-
v2 is an extension of SoccerNet [18], which contained the same set
of soccer games, but only included ∼6,600 annotations. Compared to
the first version of SoccerNet, SoccerNet-v2 has expanded the target-
space in action spotting from 3 to 17 classes. These 17 classes represent
some of the most important events in soccer. Each event is annotated
with a single timestamp, and the timestamps are defined in the
supplementary material of SoccerNet-v2 [11] as:

• Ball out of play: Moment when the ball crosses one of the outer
field lines.

• Throw-in: Moment when the player throws the ball.
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Game distributions

League Season Total
14/15 15/16 16/17

EN - English Premier League 6 49 40 95
ES - La Liga 18 36 63 117
FR - Ligue 1 1 3 34 38
DE - Bundesliga 8 18 27 53
IT - Serie A 11 9 76 96
EU - Champions League 37 45 19 101

Total 81 160 259 500

Table 3.1: Distribution of games across different leagues and seasons
in the SoccerNet-v2 dataset.

• Foul: Moment when the foul is committed.

• Indirect free-kick: Moment when the player shoots, to resume the
game after a foul, with no intention to score.

• Clearance (goal kick): Moment when the goalkeeper shoots.

• Shots on target: Moment when the player shoots, with the
intention to score, and the ball goes in the direction of the goal
frame.

• Shots off target: Moment when the player shoots, with the
intention to score, but the ball does not go in the direction of the
goal frame.

• Corner: Moment when the player shoots the corner.

• Substitution: Moment when the replaced player crosses one of the
outer field lines.

• Kick-off : Moment when, at the beginning of a half-time or after a
goal, the two players in the central circle make the first pass.

• Yellow card: Moment when the referee shows the player the
yellow card.

• Offside: Moment when the side referee raises his flag.

• Direct free-kick: Moment when the player shoots, to resume the
game after a foul, with the intention to score or if the other team
forms a wall.
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• Goal: Moment when the ball crosses the line.

• Penalty: Moment when the player shoots the penalty.

• Yellow then red card: Moment when the referee shows the player
the red card.

• Red card: Moment when the referee shows the player the red
card.

At this point it is important to note that we do not feel that these
classes represent every interesting event in soccer, and as such it
can be seen as a limitation of the dataset. For example, players
can be awarded a yellow or red card without committing a foul, by
excessively yelling at the referee or other players. These events are
often controversial and interesting to viewers. In this case, SoccerNet-
v2 will only have annotated the yellow card. We nevertheless adhere
to the aforementioned 17 classes in this thesis.

Some of the event names used may cause some confusion, since they
have a different meaning in other contexts. The term Ball out of play
has a looser definition in the rules of the game, article 9.1 [23], where
it says that the ball is out of play when the play has been stopped
by the referee as well as when the ball crosses the outer field line.
A Clearance is often used to describe the act a player performs when
the player kicks the ball away from the goal they are defending. The
Clearance event in SoccerNet-v2 is called a Goal kick in the laws of the
game, article 16 [22]. There may also be a difference between the free-
kicks, Indirect free-kick and Direct free-kick, annotated in SoccerNet-v2
and their definition according to the rules of the game. In SoccerNet-
v2, the difference between Indirect free-kick and Direct free-kick is the
intention to score. In the rules of the game, the difference between the
free kicks is the fouls for which they were awarded. According to soccer
rules, a player is not allowed to score directly from an Indirect free-
kick. Because of this, a Direct free-kick following the rules of soccer,
may be annotated as an Indirect free-kick if it takes place far from
the opponents goal and the player chooses to pass to a teammate. In
order to avoid confusion, we will refer to the SoccerNet-v2 definitions
when using the names in the list above throughout this thesis, unless
explicitly stated otherwise.

In the SoccerNet-v2 dataset, there are 110,458 annotated actions,
averaging 221 actions per game, or one action every 25 seconds.
There are also two other categories of annotations: Camera shots
and replays. Camera-annotations represent a change in camera, and
replay-annotations are timestamps of replays in the broadcast. Since
we are only considering action spotting, camera and replay annotations
are outside the scope of this thesis, and are ignored in our work.
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Each game is divided into two videos, one for each half, which leads
to a total of 764 hours of video. Each annotated action also contains a
visibility-attribute (visible/not shown), indicating if the action is shown
in the broadcast or not. For example, if a Goal triggers one or more
replays, the following Kick-off might happen off-screen. The Kick-
off event after the goal is off-screen in the broadcast and is therefore
tagged as not shown. Another example might be that the production of
the broadcast chooses to show a close-up video of a player, as a Throw-
in is happening. Figure 3.1 shows the distribution of all the different
classes, and how these are distributed between visible and off-screen.
This is also presented with raw numbers in Table 3.2.

Figure 3.1: Figure showing the log-scale distribution for visible
(shown) and off-screen (unshown) actions in the SoccerNet-v2 dataset.
Reprinted from [11].

.

The dataset folders are structured after league first, season second,
and game third. Each game has its own folder where labels and
features are stored. Labels are stored in the JSON-format, and there is
one JSON-file for each game. Each label-file contains some metadata
about the game itself, such as the relative path to the game from
the dataset root-folder, a YouTube-URL (if there is any), and a list of
annotations formatted as JSON-objects. Figure 3.2 shows an example
of such an annotation. The gameTime attribute contains information
about which half the action occurred, and at which time (mm:ss). The
label attribute indicates which class the action belongs to, and the
position attribute is the time in milliseconds from the start of the half
where the action occurred. The team attribute indicates which team
performs the action, and lastly, the visibility attribute says whether
the action is visible or off-screen in the broadcast. The team attribute
is not considered in our work for this thesis. SoccerNet [18] provides
high- and low-quality video of all games in the dataset. The SoccerNet-
v2 devkit also provides extracted features for all the games in the
dataset. The SoccerNet-v2 devkit offers a framework of code and
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Class Visible Off-screen Total

Ball out of play 30,450 1,360 31,810
Throw-in 13,448 5,470 18,918
Kick-off 703 1,863 2,566
Indirect free-kick 5,734 4,787 10,521
Clearance 3,590 4,306 7,896
Foul 11,450 224 11,674
Corner 4,229 607 4,836
Substitution 2,341 498 2,839
Offside 1,985 113 2,098
Direct free-kick 1,963 237 2,200
Yellow card 1,866 181 2,047
Shots on target 5,805 15 5,820
Shots off target 5,242 14 5,256
Goal 1,702 1 1,703
Red card 54 1 55
Penalty 173 0 173
Yellow then red card 46 0 46

Total 90,781 19,677 110,458

Percentage 82.2 17.8 100

Table 3.2: The distribution of events in the SoccerNet-v2 dataset. The
events are divided into 17 classes and are either visible or off-screen.

Figure 3.2: An example of an annotation in the SoccerNet-v2 dataset.

APIs, so that one can easily experiment with the dataset and some of
its models out-of-the-box. The features in the devkit were extracted
with a ResNet-152 [20] model, pretrained on ImageNet [13]. This
ResNet-152 model extracts features at 2 fps. Furthermore, the devkit
offers functionality to reduce the dimensions of the features to 512
dimensions, with PCA. However, Giancola and Ghanem [19] argue that
dimensionality reduction with a linear layer is better suited to learn a
linear combination of the frame features. For our work in this thesis,
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we have experimented with both.

3.3 Understanding the context of soccer
As can be seen in Table 3.3, existing models evaluated on the
SoccerNet-v2 dataset perform worse when spotting off-screen events
in comparison to shown events. The difference in performance

Model Total
Average-mAP

Average-mAP
visible

Average-mAP
off-screen

Baidu Research 73.77 79.28 47.84
AlmageLab-RMS 63.49 68.88 38.02
NetVLAD++ 53.40 59.41 34.97

Table 3.3: Performance of three existing models on the test-split of
the SoccerNet-v2 dataset. The columns show model performance when
spotting all visibilities, visible events only, and off-screen events only.

between visible and off-screen events seems reasonable. For example,
NetVLAD++ uses only visual features and it therefore comes as no
surprise that this model performs worse when spotting off-screen
actions. A human counterpart on the other hand, does not rely solely
on the visual features of the game. As an example, consider a Goal that
is followed by several replays. After the replays, when the broadcast
returns to the live game, the players have already started playing. In
this case, we have an off-screen Kick-off event, that occurred during the
replays. For humans it is easy to understand that a Kick-off happened
at some point during the replays, because we have an understanding of
the rules, and the causality between events in the game. For our model
to better be able to spot off-screen events, we believe that our model
has to have some sort of understanding of the context of the game.

Soccer has clearly defined rules, and for most events in the game,
what happened in the past (the event before the current one) or in the
future (the event after the current one) can be derived from the event
currently happening.

3.4 Event relationships in soccer
We believe that current machine learning models perform worse when
spotting off-screen events because they have no sense of context of the
game. We also believe that context in soccer is in large part informed by
the causal relationships between the events of the game. Most events
have a connection to other events according to the rules of the game. An
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example is the Ball out of play event and the Throw-in event. A Throw-
in is awarded when the ball passes over the touchline, which means
that a Throw-in is always preceded by a Ball out of play. A related
example is the Goal event, which is always followed by a Kick-off. We
will utilise these relationships between different events, in order to
better spot off-screen events in soccer videos.

Expanding on these examples, we identify which events may
precede or follow each of the other events from the 17 classes, using
the rules of the game. These relationships will allow us to spot an off-
screen action in the soccer broadcast using the event before or after the
action we are spotting.

More formally, we can define two binary relations over the set of
events from Section 3.2. The first relation is detailed in Figure 3.3.
This relation aRb from event a to event b means that event a leads to
event b. The second relation, xRy, shown in Figure 3.4, means that
event x is a result of event y.

Ball out of play

Clearance

Corner

Throw-in

Shot off target

Substitution Shot on target

Foul

Indirect free-kick

Direct free-kick

Yellow card

Yellow then red card

Penalty

Red card

Offside

Kick offGoal

Figure 3.3: Relation aRb from event a to event b, where event a leads
to event b.

As we can see from Figure 3.3, the Ball out of play event leads to a
Throw-in, Clearance or Corner. The position on the field where the ball
crosses the boundary lines and which player last touched the ball is the
deciding factors of which of the events is going to happen. An Offside
leads to an Indirect free-kick, a Shot off target event leads to Ball out
of play, and a Goal event leads to Kick-off. A Foul can lead to Indirect
free-kick, Direct free-kick, Penalty, Yellow card, Red card, and/or Yellow
then red card. An overview of events in this group can be seen in Table
3.4.
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Corner

Throw-in

Ball out of play

Clearance

Offside

Direct free-kick

Indirect free-kick

Yellow card

Red card

Yellow then red card

Penalty

Foul

Substitution

GoalKick off

Shot off target

Shot on target

Figure 3.4: Relation xRy from event x to event y, where event x is a
result of event y.

Event Followed by

Ball out of play Throw-in, Clearance,
Corner

Foul Indirect free-kick, direct
free-kick, yellow card, red
card, penalty

Offside Indirect free-kick
Shot off target Ball out of play
Goal Kick off

Table 3.4: Soccer events that are followed by other events

In Figure 3.3, we can see that the Foul event has many possible
outcomes and not all are mutually exclusive. Of the possible outcomes,
the three events Indirect free-kick, Direct free-kick and Penalty are
mutually exclusive, and the three events Yellow card, Red card and
Yellow then red card are mutually exclusive events after a Foul. This
means that the action in a single Foul event can cause both a Yellow
card and a Penalty.

Looking at the second relation shown in Figure 3.4, we can see that
the Throw-in event is a result of a Ball out of play event, if the ball
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crosses the touchline. A Kick-off is a restart of play and happens after
a Goal event and at the start of each the half. An Indirect free-kick is
the result of a Foul or an Offside. A Clearance is the result of a Ball
out of play event if the ball crosses the goal line and the last player to
touch the ball was of the attacking team, while a Corner is the result
of a Ball out of play event if the ball crosses the goal line and the last
player to touch the ball was of the defending team.

The remaining events in this group; Direct free-kick, Yellow card,
Red card, Penalty and Yellow then red card are possible results from
the Foul event. An overview of events in this group can be seen in
Table 3.5.

Event Preceded by

Throw-in Ball out of play
Kick-off Goal
Indirect free-kick Foul, Offside
Clearance Ball out of play
Corner Ball out of play
Direct free-kick Foul
Yellow card Foul
Red card Foul
Penalty Foul
Yellow then red card Foul

Table 3.5: Soccer events that are preceded by other events

The events might not happen immediately after one another. There
may be one or more events happening in the time between the two
events that has an identified relationship. An example of such an
event could be a Substitution. A substitution only occurs during a
stoppage in play, and this is typically after a Ball out of play event, but
before the following Throw-in event. In the dataset, we might therefore
find examples of Substitution and other events happening between the
events we have identified as having a relationship.

As mentioned earlier, a Throw-in event is always preceded by a Ball
out of play, but it does not follow that a Ball out of play event is always
followed by a Throw-in. A Ball out of play is followed by either a Throw-
in, Clearance or Corner, depending on where the ball went of of play
and which team the player who last touched the ball belongs to. Since
the labels from the dataset does not contain information about these
relationships, we believe that information about the position of the ball
on the field and the player is captured in the video, and that our model
will use this information to be able to predict the correct event after e.g
a Ball out of play.
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Not all the events in the 17 classes have an identified relationship.
These are Substitution and Shot on target. We will not be able to
predict these events based on the previous or following event. We also
mentioned that a Kick-off event is preceded by the start of each the half
in addition to the Goal event. The start of each half is not a labelled
event, and we will have to consider the edge-cases where our model
predicts a Goal based on a start of the half Kick-off. In our dataset we
may have some exceptions to these rules. As mentioned, cards have
been given without a foul committed and there might be events missed
due to human error.

3.5 Dataset annotation modification
Following the previous section and the event relationships we dis-
covered, we define three dimensions of context. A Present context,
which is an understanding of what is happening in the current frame.
A Past context, which is an understanding of what has happened pre-
viously, based on what is happening in the current frame. A Future
context, which is an understanding of what event will happen next or
in the near future, based on what is happening in the current frame.
We theorise that it is easier to recognise and predict an off-screen event
by combining these dimensions to form a contextual understanding of
what is happening in the game.

We want to train three separate models that learns these three
contextual dimensions to better predict off-screen events. A natural
progression of this, is therefore to consider the training data. In our
dataset, there are ∼500 files with annotations, one for each soccer
game. These files follows the file structure described in Section 3.2.
Our idea is to use the original annotations provided by the SoccerNet-
v2 devkit to train the Present model, and derive the training data
for the Past and Future models from the original annotations. Figure
3.5 shows a basic label-shifting scheme, where we modify the original
annotations so we are able to train our Past and Future models on their
respective contextual dimension.

The green objects in Figure 3.5 represents a list with the original
annotations for a game, including its label, which we will denote
APresent. The annotations are sorted by the position attribute, so that
the first annotation in the list represents the first annotated event
in the game. For the Future model, we first make copies of the
annotations, AFuture, shown as blue objects in the figure. We then
iterate through the AFuture annotations, using an iterator, i, and for
each annotation, we shift the label such that: AFuture[i][”label”] =
Apresent[i+ 1][”label”]. This is done for all AFuture annotations, except the
last one, which represents the last annotated event. This annotation
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remains unchanged, since there are no more following events. We
repeat the process for the annotations used by the Past model, APast,
shown as red objects, except that the labels are shifted such that:
APast[i][”label”] = Apresent[i − 1][”label”]. The first annotation in APast
is not changed, since there are no events preceding it.

At first glance this method is quite naive. From Figure 3.5 we
see that this label-shifting scheme will replace the Kick-off label in
Annotation 2 (Labels-future.json) with Shots on target, since these two
events follow each other in this particular game. There is no semantical
connection between these events in the rules of the game. This is by
design from our part - we want to start with a very naive method, in
the hopes that we will learn from each model, and improve the label-
shifting as we go along with our experiments.

Labels-
present.json

Labels-
future.json

Annotation 1
"label": "Goal"

"label": "Kick-off"

"label": "Shots on
target"

"label": "Ball out of
play"

"label": "Kick-
off"

"label": "Shots on
target"

"label": "Ball out of
play"

"label": "Corner"

Time
Labels-

present.json
Labels-

past.json

"label": "Goal"

"label": "Kick-off"

"label": "Shots on
target"

"label": "Ball out of
play"

"label": "Ball out
of play"

"label": "Goal"

"label": "Kick-off"

"label": "Shots on
target"

Annotation 2

Annotation 3

Annotation 4

Annotation 1

Annotation 2

Annotation 3

Annotation 4

Annotation 1

Annotation 2

Annotation 3

Annotation 4

Annotation 1

Annotation 2

Annotation 3

Annotation 4

Figure 3.5: Basic label-shifting scheme, showing how we shift the label
of an annotation in the Labels-past.json/Labels-future.json files with
the label of the previous/following annotation, to create training data
that reflects the Past and Future contextual dimensions.

3.6 Combining the past, present and fu-
ture to understand context

In the previous section we presented a basic label-shifting scheme as
to create training data for the Past and Future models. Our idea is
that each model (Past, Present, Future) is trained to become an expert
on its contextual dimension. To create an action spotting model that
has a better understanding of the context of the game, we need to
combine these three models. Figure 3.6 shows the architecture of these
combined models. The leftmost NetVLAD++ implementation, named
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NetVLAD ++  
model: Past

NetVLAD ++  
model: Present

NetVLAD ++  
model: Future

Labels-
past.json

Labels-
present.json

Labels-
future.json

results_spotting 
.json

results_spotting 
.json

results_spotting 
.json

Prediction fusion layer

final_ 
results_spotting 

.json

Figure 3.6: Architecture for our three machine learning models. We
train a Past, Present and Future model on their respective labels, before
combining the output from the three models in a prediction fusion
layer, that outputs a final list of combined predictions.

the Past model, is trained to learn what event precedes the one that
is currently shown in the frame of the broadcast, trained on the Past
contextual dimension. This model should predict a frame showing
a Kick-off as a Goal, since we know from the rules of soccer that a
Kick-off is always preceded by a Goal, unless it is the start of the
half, which we describe in more detail in Section 4.6. It is trained
on its own set of labels derived from the labels in the SoccerNet-
v2 devkit, described in Section 3.5, named Labels-past.json. Our
Present model, shown in the middle, will be the eyes of our model,
and spot the actions that are currently happening in the broadcast
based on visual features alone. This model is also a NetVLAD++
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implementation, and its labels, Labels-present.json, are therefore the
same labels as were provided by the SoccerNet-v2 devkit. The Future
model to the right, aims to learn what action follows the one currently
in the frame. Given a frame of a Goal, this model should output a
label of Kick-off. Like the Past model, the Future model also needs its
own, modified set of labels to learn from, Labels-future.json. For each
game these models process, each model outputs their individual file of
predictions, named results_spotting.json. We define a final prediction
fusion layer (fusion layer), that combines the input of these three
models, and uses some form of data fusion to output one prediction file
(final_results_spotting.json), that serves as the combined output from
the three input models. Since we use NetVLAD++ to form the basis of
all of our models, our main challenge lies in configuring the labels for
each model and designing our fusion layer.

3.7 Model selection
We wish to derive our experiments from a model that is as close
to, or the actual state-of-the-art in regards to the action spotting
task of SoccerNet-v2. This model will also be used as our baseline
model, as we want to see if we can improve upon its results. At
the time of writing, the state-of-the-art model, and the winner of
the action spotting task of the SoccerNet-v2 competition [16], is a
solution proposed by Baidu research [54]. Originally, their model used
a Transformer [50], but according to their tech-report, a NetVLAD++
model could achieve similar results. In this thesis, our initial plan
was to derive our experiments from a NetVLAD++-model with Baidu’s
soccer embeddings, and use this model as our baseline. We did however
have issues combining NetVLAD++ with Baidu’s features. Instead,
we will use a NetVLAD++ model with the features provided by the
SoccerNet-v2 devkit as our baseline, and we will also derive our models
from NetVLAD++. The reason for doing this is for the most part
practical. The NetVLAD++ model is included in the SoccerNet-v2
devkit, and is thoroughly documented.

With NetVLAD++, Giancola & Ghanem proposed a novel temporally-
aware pooling-method for action spotting in SoccerNet-v2. Compared
to more traditional pooling methods, such as max pooling (see Section
2.6) or average pooling, this new pooling method is trainable. From a
set of features, NetVLAD++ learns a set of clusters. Using k-means,
NetVLAD++ will use all the features from the dataset, and learn K
clusters, where these clusters will represent a semantic vocabulary
over the dataset. As seen in Figure 3.7, this vocabulary might in-
clude Field camera, Pass, Goalkeeper, Shooting, etc. For a window of
N frames, with N features of dimension D, this pooling method aims
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to extract meaningful features from the whole window, by comparing
the features to their closest cluster-center. The resulting output is a
feature of dimension KxD. Furthermore, the contextual information
in the frames before or after an action, is different in the game of soc-
cer. A Goal action might share some of the same contextual features
as a Shot on target before the goal takes place, but not after, since the
Goal is usually followed by celebration from the scoring team, while
the Shot on goal is not. Considering this, NetVLAD++ has two pooling-
modules, one which pools features before the action takes place, and
one which pools the features after the action takes place. In Figure
3.7, we see that the frames, and therefore features, before and after
the Goal-event are pooled differently, separated by the temporal con-
text in orange and green. The size of the vocabulary is not adapted for
neither pooling module, and the clusters are not shared between them,
therefore enforcing that each modules cluster size is equal.

Figure 3.7: Figure showing how the NetVLAD++ pooling-layer extracts
semantical meaning from a window of frames, using clustering.
Reprinted from Giancola & Ghanem [19]

Giancola & Ghanem argue that this pooling technique provides
more insightful output than more traditional non-trainable pooling
modules. Additionally, how the frames in the soccer clip are ordered are
important for the semantic meaning of the clip. If we reverse the order
of frames in a clip of a Ball out of play, the semantical meaning of the
clip would be changed. Max and average pooling does not consider this,
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and the output from one of these pooling techniques would be same
whether or not the frames were reversed. NetVLAD++ on the other
hand, considers the temporal order in which the frames are processed.
With regards to dimensionality reduction, NetVLAD++ proposes a
learnable linear layer as a better performing alternative to using the
PCA-algorithm. Table 3.6 shows the improvement in performance
using the learnable layer instead of PCA for dimensionality reduction.
In our experiments we will experiment with both.

Pooling method NetVLAD++ NetVLAD++

Encoder PCA Linear layer

I3D 38.1 ±0.1 41.5 ±0.1
C3D 47.2 ±0.2 48.6 ±0.8
ResNet 50.7±0.2 53.3 ±0.2

Table 3.6: Action spotting performance using I3D, C3D and ResNET
video-encoders, averaged over 5 runs with different techniques for
dimensionality reduction.

Figure 3.8 shows the architecture of the NetVLAD++ model. Using
a sliding window approach with a temporal stride of 1 second, the same
pre-trained ResNet-152 features that was presented in SoccerNet [18]
are used. After this, dimensionality reduction is applied. The features
are then processed by the pooling modules. A per-frame multi-label
classifier is then applied to provide actionness for each frame. This
classifier comprises of a single neural layer with sigmoid activation,
and optimised with a cross-entropy loss function. Non-maximum
suppression is then applied, to provide the action spotting.

3.8 Data fusion & ensemble learning
Data fusion can be defined as combining different sources of inform-
ation to improve the quality of the information [9]. Within the scope
of this thesis, our work will to a large degree be focused on combin-
ing the predictions of three different machine learning models in the
hopes of achieving a greater result than any of the models can achieve
individually. To do so, we must consider some form of data fusion.

3.8.1 Late data fusion
Late data fusion is the concept of combining two or machine learning
models after they have been trained on the training data [43]. As can
be seen in Figure 3.9, N-number of models are trained individually
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Figure 3.8: Figure showing the architecture of the NetVLAD++ model
vertically, with the SoccerNet-v2 frames as input at the top. Reprinted
from [19].

on some set of features extracted from a dataset. These models are
then combined in a final layer, which fuses the output of the individual
models together. In this thesis, the features are the same for all
individual models, but the labels on which they train, are not. Finally,
we combine these models in our fusion layer to produce our final
output. Considering the fact that the features are the same for all of
our models, and that it is the training of the models that are different,
we use late data fusion to combine our models.

3.8.2 Ensemble learning
Ensemble learning combines multiple machine learning models to
make a decision (or in our case, set of predictions) [40]. Typically
applied to supervised learning problems, ensemble learning hopes
to achieve a better result than any one model can achieve, by
assuming that the errors or shortcomings of every individual model is
compensated for, by the other models. In our case, we realise that there
is a fine line between ensemble learning and late data fusion, since
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Features Features Features

Model 1 Model 2 Model N

Data fusion

Figure 3.9: Late data fusion. Models 1 - N are trained separately, and
processes new data individually. Each models output serves as input
in the data fusion layer, which combines the different models outputs
by some algorithm.

we use the same set of features for training the models we combine.
Following our presentation of ensemble learning and late data fusion
concepts, one can argue that the biggest difference between them is
that data fusion defines when the data is combined and ensemble
learning defines how it is combined. We have chosen to mention both
concepts as we feel they that they are somewhat overlapping in our
case, and that our implementations build upon a combination of ideas
from both concepts.

3.8.3 Implementation
As mentioned in Section 3.6, we need to use data fusion. We use
late data fusion and combine the output of our Past, Present and
Future models, by using ensemble learning in the form of output fusion
[40]. This seems reasonable, since we have a single data source and
manipulate the labels, rather than the features.

We combine our Past, Present and Future models in a fusion layer
that merges our predictions. These three models may predict the same
event. The only two classes which have informed predictions from only
one model is the Shots on target and Substitution classes, which are
only predicted by our Present model. For the other classes, we may have
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multiple predictions for the same event and we wish to remove these
duplicate prediction to reduce the number of false positive predictions.

First, we have to change the value of the position attribute of the
predictions from our Past and Future models. The predictions from
these models have a position value corresponding to the related event
and not the event we are predicting. We therefore have to decrease the
position value for the predictions from the Past model, and increase the
position value for the predictions from the Future model. The position
value was changed with a value T so that the new position value is
position± T. Both the T and position values are in milliseconds. After
we have adjusted the position of the predictions from the Past and
Future models, we continue merging the predictions. This is explained
in further detail in Section 3.9.2.

3.9 Hyperparameters

Hyper-parameter selection is vital when working with machine learn-
ing models. These choices will affect how well our model is able to learn
and generalise over our chosen problem. In this section we will discuss
which choices were made in regards to hyper-parameters.

3.9.1 NetVLAD++

We want to derive all models from our baseline NetVLAD++ model,
to see if our models and ideas are able to improve upon this model.
For most hyper-parameters, we have therefore chosen to use the
values that resulted in the best performance, according to Giancola
& Ghanem [19]. For the pooling-modules, we use the same amount
of parameters as a traditional NetVLAD [4] pooling layer. As in
NetVLAD++, we have used a window-size of 15 seconds, and K =
64 clusters for the k-means clustering since this resulted in the best
performance. Additionally we have used a centered window of 30
seconds for the non-maximum suppression. An Adam optimiser with
default parameters from PyTorch is used for learning. This optimiser
has a starting learning rate of 10−3, which decays from a factor of 10
after the validation loss does not improve for 10 epochs. Training is
stopped once the learning rate decays below 10−8. For training data,
we have used a training/validation/test split of 300/100/100 for the 500
soccer games. With regards to dimensionality reduction, we have used
both the learnable layer introduces with NetVLAD++, and the PCA
dimensionality reduction supplied in the SoccerNet-v2 devkit.
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3.9.2 Fusion layer

Since we decided to use the NetVLAD++ model as is, most of our
experimentation with hyper-parameters will be done in the fusion
layer. One prominent challenge with this layer is concerning how
we should combine the predictions from our Past, Present and Future
models. For some experiments, we consider a time-window (Tw) before
and after each prediction in the Present model, formally defined as
such: For each prediction in the Present model p, with a timestamp
t, and a label c, if there is a prediction p′, in the Past or Future model
with a timestamp t′ such that t− (Tw/2) <= t′ <= t + (Tw/2), with a
label c′ such that c′ ̸= c, we include p′ in the list of final predictions. We
therefore use our Present model as the basis for our final predictions,
and include the predictions from the Past and Future models that are
not already included in the Present model. To do this, we must find the
optimal Tw. In the experiments where we used this fusion algorithm,
we experimented with values of Tw, and used the value that yielded
the best performance.

Throughout our experiments, a persisting challenge was that our
final output after data fusion had duplicate predictions. What we mean
by this is that within a short time span of seconds, there might be
several predictions of the same class. In soccer, it is not likely that
three goals occur within five seconds of the game. For some of our
experiments, we therefore filtered our predictions on confidence score.
To do this, we must find the confidence thresholds that gives us the
best results. As explained in Section 3.5, our initial idea was to shift
the labels with the event before or after for our Past and Future models
(Figure 3.5) when training our models. In the fusion layer, we need
to change the timestamp of the Past and Future predictions, so that it
happens in the future or past. As an example for the Future model,
if we have predicted a Kick-off in a frame where a Goal originally
occurs, we have to change the timestamp to reflect that the Kick-off
happens some time after the goal. For our early experiments, we used
the average time between events (∼25 seconds) for this. For the above
example, our logic would be the following: When our Future model
has predicted a Kick-off on a Goal frame, that Kick-off will occur 25
seconds in the future. As our experiments progressed, we wanted to
experiment with this time-shifting parameter as well. We calculated
some temporal statistics between relevant events for the Past and
Future models, which can be seen in Table 3.7. Here we can see
the average, median, minimum and maximum time between different
events in the SoccerNet-v2 dataset. When a prediction from the Past
or Future model was added to the final output of our model, we shifted
the time corresponding to this table. For our Future model, this would
mean that if we predicted a Kick-off we would add 55.7 or 41.5 seconds
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Event relationships Avg Median Min Max

Future model relationships

Ball out of play → Throw in,
Clearance, Corner

17.4s 14.7s 0s 582.8s

Foul → Indirect free-kick, Dir-
ect free-kick, Yellow card, Red
card, Penalty event

22.9s 17.1s 0s 302s

Offside→ Indirect free-kick 21s 20s 0s 156s

Goal→ Kick-off 55.7s 55.4s 17s 195s

Past model relationships

Ball out of play← Throw-in 35.1s 24.2s 0s 310s

Goal← Kick-off 55.7s 41.5s 7.3s 205s

Foul, Offside ← Indirect free-
kick

34.6s 24.3s 0s 323s

Ball out of play← Clearance 37.3s 26.3s 0s 475s

Ball out of play← Corner 25.4s 12.1s 0s 287s

Foul← Direct free-kick 33.7s 20.2s 0s 246s

Foul← Yellow card 63.5s 55.2s 2.7s 251s

Foul← Red card 63.5s 108.2s 66s 147s

Table 3.7: Table showing temporal statistics between events that are
related, in accordance to Figure 3.3 and Figure 3.4. These statistics
are calculated by using the time in seconds from the timestamp of an
event, until the timestamp of the next related event in the SoccerNet-
v2 dataset.

to the timestamp depending on whether we were using the average or
median time-shifting for that experiment. We also experimented with
using a weighted median (80%, 90%, 110%) for some experiments. We
also experimented with Tw (from Section 3.9.2) in an overlapping or
non-overlapping sliding window algorithm, which is further explained
in Section 4.6.

3.10 Evaluation metrics
To be able to correctly evaluate the performance achieved by our
models and compare it to the baseline, we need to apply an evaluation
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function that results in numerical values that are unambiguous and
clear.

For the purposes of evaluating our model, we can redefine a
multiclass classification problem (such as ours) to a binary one vs. all
classification problem for each of our 17 classes. In classification, a true
positive (TP) is when a model correctly predicts the presence of a class
in an observation. A false positive (FP) is when a model incorrectly
predicts the presence of a class in an observation. A true negative
(TN) is when a model correctly predicts the absence of a class in an
observation, and a false negative (FN) is when a model incorrectly
predicts the absence of a class in an observation. In the context of
evaluating on the SoccerNet-v2 dataset, we define a true positive as a
correctly predicted class that is predicted with a timestamp within a
tolerance δ, of the ground truth event. A false positive is a prediction
that falsely predicts a class outside of a ground truth event (also
padded with δ), a true negative correctly does not predict an event
when there is none. A false negative is an instance where our model
fails to predict an event of the class within the δ of where a ground
truth event is happening.

It is often beneficial to use more than one evaluation metric to get a
full and comprehensive picture of how our model is performing. For
example, using the well-known evaluation metric accuracy (correct
predictions / total number of predictions) in isolation, does not
necessarily give a correct picture of our performance. Given a
distribution of 90 positive samples and 10 negative samples, our model
will get an accuracy of 90% even if it is only able to predict positive
samples. This will not reflect the models inability to predict negative
samples correctly. The precision of a machine learning model answers
the question How confident can we be that a positive prediction is
correct? and can be defined as such:

Precision = TP/(TP + FP)

Recall is another evaluation metric, that we can formulate as How
many of the positive observations is our model able to capture? and
can be defined as such:

Recall = TP/(TP + FN)

Recall and precision is often combined to form an F1 score, formally
defined as:

F1 = 2 · precision · recall
precision + recall

We will first evaluate our models using a function introduced in
SoccerNet, the Average-mAP function, which uses both precision and
recall to measure the performance of the models. We have chosen to
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use Average-mAP, as it is the function all models evaluated on the
SoccerNet dataset are evaluated with, and it therefore makes it easy
to compare our models to the performance of the baseline model.

3.10.1 Average-mAP

For action spotting, we have to correctly classify which event is taking
place, as well as when the event is happening. This added dimension
of time needs to be considered when evaluating our model. Since it
is challenging (for both human and machine) to pick the exact frame
where the event in the soccer video is happening, a tolerance δ is
introduced, which ranges from 5 - 120 seconds. If a prediction falls
within this tolerance of 2.5 - 60 seconds before or after the ground truth
event, the prediction is considered a true positive. Average-mAP uses
a greedy approach, where each ground truth observation is paired to
its closest prediction. To evaluate the performance of our model, and
calculate the Average-mAP, we do the following:

For a given class, we iterate over 200 confidence thresholds in the
range 0 - 1. For each threshold, we calculate precision and recall.
Furthermore, we calculate the average precision:

Average-Precision(AP) =
T

∑
t=1

(Rt − Rt−1)Pt

Where Rt denotes the recall for a given threshold t, and Pt denotes
the precision for a given threshold. This function calculates the space
under the precision-recall curve from calculating precision and recall
for all thresholds, by an 11 point approximation. This reduces the
precision-recall curve to a single numerical value. We calculate the AP
for all values of δ. Once we have calculated all AP values, we can cal-
culate the Average-AP, which is a trapezoid approximation of the area
under the curve of all AP values. The Average-mAP is then calculated
by averaging the Average-AP across all 17 classes, resulting in a single
numerical value to measure the general action spotting capabilities of
a model across different tolerances of δ:

Average-mAP =
∑C

c=1 Average-APc

C

Figure 3.10 shows how different values of δ in the Average-mAP
function results in different values for true positives, false positives,
and false negatives. In this example, we can see that a greater δ yields
better results.
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GT GTGT

Figure 3.10: Figure showing how the Average-mAP evaluation function
calculates true positives (TP), false positives (FP), and false negatives
(FN) with different δ values. In this example, there are two annotations
(GT), and two predictions. Recreated from [44].

3.10.2 Reflection on alternative evaluation methods

We feel bound to using the Average-mAP evaluation to be able to
compare our experiments to previous work in this domain. We do
however think that it is worth discussing alternative methods of
evaluation, especially when considering real-life applications of these
types of machine learning models. In a real-life scenario within
the domain of soccer, there are several problems we can optimise
a machine learning model for. One such problem is to classify all
events throughout a game, with little or no regard to how accurate
the predictions are in terms of timestamps. For statistics, it is not
important that our model spots when the events occur, only that they
do occur. For automatic highlight production on the other hand, it is
important that the model is able to accurately spot both when and
what action occurs. For most real-life applications, there will be a
trade-off between some dimensions of performance that we need to
consider: Temporal precision, classification accuracy, processing time,
etc. For this reason, we do not think that the Average-mAP method
accurately reflects performance in a real-life scenario. The Average-
mAP considers all δ values from 5-60 seconds, and considers 200
different confidence thresholds between 0 and 1. After conducting the
main parts of our experiments in Chapter 4, we will therefore evaluate
our best model using precision, recall and F1 score for different
confidence thresholds, and compare the results to the baseline model in
the context of practical use cases. We will define two real-life scenarios
in the soccer domain, for which we can apply an action spotting model,
and reflect on the suitability of our model in these scenarios. For these
evaluations and discussions, we will also consider the performance
when spotting visible events where we deem it appropriate. For
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some real-life applications, such as statistics (as mentioned above) the
visibility of the event is not relevant. Also, it seems reasonable to
reflect on how our work might improve the performance of an action
spotting model as a whole.

3.10.3 Baseline model
As mentioned in Section 3.7, we will use the NetVLAD++ model [19] as
the baseline. The overall Average-mAP scores achieved by this model
can be seen in Table 3.8, while the classwise scores can be seen in
Table 3.9. These Average-mAP scores are included in the SoccerNet-v2
devkit and will be used for comparisons when evaluating our models in
Sections 4.2 - 4.6.

Model Total
Average-mAP

Average-mAP
visible

Average-mAP
off-screen

Baseline 53.23 59.24 34.37

Table 3.8: Overall performance of the baseline using the Average-mAP
score. The performance is calculated for all actions, as well as visible
and off-screen actions separately.
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All 79.1 61.2 72.8 69.1 37.7 38.5 40.6 56.8 70.3 68.8 63.8 44.4 56.4 79.9 56.4 3.2 6.0

Visible 86.1 73.1 73.5 76.2 40.2 38.7 40.9 69.3 70.6 72.1 64.6 39.6 65.1 80.6 60.8 25.1 30.7

Off-screen 0.0 55.3 0.0 28.7 11.5 4.4 0.4 44.7 64.8 60.7 35.9 51.7 3.0 73.6 12.4 0.0 0.0

Table 3.9: Average-mAP scores per class for NetVLAD++, which we will
use as the baseline. The scores are split between classes and grouped
by all, visible and off-screen events.

3.11 Summary
In this chapter, we have presented the SoccerNet-v2 dataset in detail
with its limitations. We have established an intuition for how we
believe a machine learning model can better understand the context
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of a soccer game. We discovered the relationships between events
in soccer, and from that defined three dimension of context in a
soccer game. We have also presented how we can manipulate the
SoccerNet-v2 dataset in order to train three different action spotting
models on each of these contextual dimensions. Following this, we
presented our new model architecture that combines a Past, Present
and Future model to better predict off-screen events in soccer. We have
established a baseline model from which we will compare our work to,
and established that our experiments will be derived from this baseline
model. We have also explained some of the theory behind how one
can combine the output of several machine learning models. We have
also presented methods for evaluating our models, so we can compare
them to existing work within this domain. In the next chapter, we
will present our models and results, experimenting with the proposed
combined model architecture in the context of an action spotting model
as a whole, but specifically in the context of spotting off-screen events.
Towards the end of the next chapter we will reflect on our work and
discuss possible shortcomings in our process.
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Chapter 4

Experiments & Results

4.1 Introduction

We propose a new model architecture combining a Past, Present and
Future model in order to better spot off-screen events in soccer. In
Chapter 3, we presented a general idea for how an action spotting
model can better understand the context of a soccer game. We
discovered semantic relations between events in soccer, and defined
three dimensions of context from these relations. From this, we
presented a general label-shifting scheme, so that we can train three
machine learning models on these dimensions of context. We also
discussed a model architecture that combines these three models.

In this chapter, we will present our experiments and results. We
have worked in an iterative way, and started with experiments at a
point where we did not have as deep a knowledge about the domain
and the dataset as we have now. As time went on, we tried to
learn from each experiment, and improve our result in the next
iteration. Our experiments will therefore be presented chronologically,
where the findings from one will form the basis for the next. For
each experiment, we will first explain our intuition and basis for
the experiment. Then, we will present the overall results using the
Average-mAP evaluation function and compare these results to the
NetVLAD++ model we established as a baseline in Section 3.10.3. The
results will also be considered on a class-by-class basis where we see fit
to do so. We will present our results where our models were trained
on the training/validation/test split (300/100/100 games), where the
performance on the test split is the final value we use to compare
the different models. We will analyse our results from the output of
the Average-mAP function, as well as with visualisation tools to try
to understand better why our models perform the way they do. We
will also test our model in more practical use cases, where we evaluate
the models using precision, recall and F1 score. We will analyse these
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metrics individually and on a class-by-class basis where we deem it
interesting to do so. We will also discuss the importance of precision,
recall and F1 score and if it is reasonable to prioritise one over the
other, in light of the use cases. Towards the end of this chapter, we will
discuss some of the choices we have made throughout our experiments,
and reflect on the performance of our models. Finally, we will do a
process review and reflect on future work.

4.2 Model 1 - Baseline model as part of
expert ensemble

As expected, we have seen that state-of-the-art models evaluated
on the SoccerNet-v2 dataset perform worse when spotting off-screen
versus visible events (Table 3.3). Our general idea, as detailed in
Section 3.3, was to combine three expert models to improve this (Figure
3.6). For a given frame showing an event, one model would learn
what event preceded it (Past model), one would learn what event is
currently present in the frame (Present model) and one model would
learn what event will follow in the future (Future model). Part of this
idea is to see if each of these models can learn their specific contextual
dimension (Past, Present or Future) better than our baseline. For our
first experiment, we wanted to check this hypothesis by implementing
a model that became an expert on spotting actions in the present.

For this model, we hypothesised that the Present model could
achieve better results spotting visible events if we trained it using
visible events only, ignoring the off-screen events. Figure 4.1 shows
the difference between a Throw-in that is annotated as visible and
a Throw-in annotated as off-screen. In Figure 4.1, we believe that
teaching our model that a frame of one of the teams coaches (top image)
is a Throw-in, will diminish its understanding of what a Throw-in
looks like when it happens on-screen (bottom image). Furthermore,
we believe that the difference between what is happening in the frame
when an event occurs off-screen, and the typical visual traits of the
actual event is so great, that there is no learnable connection between
the off-screen event, and what is shown on the frame.

For this experiment, we modified a NetVLAD++ model to simply
ignore all off-screen events during training. This was done by removing
every annotation with the visibility attribute set to "not shown" from
the training data. This model was trained with the standard settings
that provided the best results for a NetVLAD++ model, as explained
in Section 3.9.1, using NetVLAD++ pooling modules, a learning rate
of 10−3 and a learned linear layer for dimensionality reduction. The
learning rate plateaued after 81 epochs, stopping the training phase of
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Figure 4.1: Two frames from a game in the SoccerNet-v2 dataset. Top
frame shows the frame at the timestamp of a Throw-in happening off-
screen and the bottom frame shows a Throw-in happening on-screen.

the model.
Table 4.1 shows the overall results of this model (Model 1) compared

to our baseline. With regards to overall performance, Model 1 performs
marginally better than the baseline on visible events only, and has
a drop in performance for the total Average-mAP score compared to
the baseline. Model 1 naturally performed worse than the baseline on
off-screen events, since the model was not trained on any off-screen
events. Figure 4.2 shows the classwise performance of Model 1
compared to our baseline when spotting visible actions. For Throw-
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Model Total
Average-mAP

Average-mAP
visible

Average-mAP
off-screen

Baseline 53.23 59.24 34.37
Model 1 51.88 59.40 28.96

Table 4.1: Overall performance of Model 1 compared to the baseline
using the Average-mAP score. The performance is calculated for all
actions, as well as visible and off-screen actions separately.

Figure 4.2: Classwise Average-mAP scores for Model 1 compared to the
baseline. The Average-mAP scores are for visible events only. The raw
numbers can be found in Table A.1.

in, which is the class with second most annotations in the dataset, we
achieved a higher score than the baseline. Looking back at Table 3.2,
we see that this class has a high number of off-screen events. Based
on this, one might argue that our aforementioned theory has some
merit. Using visible and off-screen events in training might confuse the
model when it is learning how to spot visible actions, if there are a high
number of annotations for off-screen events in the training data. For
the classes Foul, Indirect free-kick, Clearance, Shots on target, Shots
off target, Corner, Substitution, Kick-off, Yellow card, Direct free-kick,
Goal, Penalty and Yellow then red card the difference in performance
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is marginal. Ball out of play is interesting, since our model sees a
performance decrease of about ∼3 percentage points compared to the
baseline. From Table 3.2, we see that this is the most frequent event-
type, and that there are 1360 off-screen annotations. Considering
our observation with the Throw-in class, one would think that our
model would produce better results for this class as well, when we
removed the off-screen annotations. For Red card, our model has a
∼8 percentage points drop in performance. On first glance this might
seem interesting, considering there is only one off-screen annotation
of this class. Upon further inspection though, we do not feel that this
result is very surprising. There are a total of 55 Red card annotations
in the dataset, which makes for an inadequate amount of data to train
a reliable classifier on in this context.

For our initial hypothesis to hold true overall, the classes with a
high number of off-screen events should see an increase in perform-
ance, and the classes with no or a low number of off-screen events
should stay relatively the same. This holds true for some classes, but
not for others. In Figure 3.3 and Figure 3.4, we can see that events of
classes Shots on target and Substitution cannot be inferred from either
the Past or Future model. This means that if we were to implement this
first model as our Present model, we couldn’t utilise the expertise of any
one of our models to predict off-screen events of these classes, since our
Present model is not trained on off-screen events for these classes. Nev-
ertheless, we chose to use this model as our Present model for the time
being. We want to see how this model works together with the Past and
Future models, which will be introduced in the next iteration.

4.3 Model 2 - First multimodal approach
As discussed in Section 3.4, we want to utilise the event relationships
in soccer to spot off-screen events. More specifically, we want to see
if an event currently happening in a broadcast, can be informed from
the event happening before or after it. In order to train the Past and
Future models, we created two new sets of annotations. For the Past
model, we moved the label attribute from one annotation to the next
annotation in the list. This is visualised in Figure 3.5. For the Future
model, the label attribute was moved to the previous annotation in the
list. The labels were shifted without any regard for which event is
annotated and does not use the relationships identified in Section 3.4.
The Past and Future models were trained using all the annotations
in the training data. We did not remove off-screen annotations for
either our Past or Future model. After training, we run the models
on the test dataset, to get three separate prediction files for each game.
The prediction files needed to be combined in order to evaluate the
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performance of a combined model. Before combining the predictions,
we had to change the timestamps of the predictions created by the
Past and Future models. As stated in Section 3.9.2, we calculated the
average time between all events in the dataset to be 25 seconds. We
used this number to subtract 25 seconds from the position attribute
of the predictions made by the Past model, and add 25 seconds to the
position attribute of the predictions made by the Future model.

When merging the predictions in the fusion layer, we use the
predictions made by the Present model as a foundation. For each
prediction in the Past or Future model, we include that prediction if
there is no prediction of the same class within a given time window
Tw in the Present model. The predictions made by the Present model
are used as a foundation since we believe these have a more exact
timestamp. The timestamps of the predictions made by the Past and
Future models are after all approximated and may not be as close to
the ground truth of the actual event.

More detailed, the merging is done as follows. We start with
the Past model and look at each prediction. We use the position
attribute and the time window Tw, to create an interval that ranges
from position − Tw/2 to position + Tw/2. Then, we check if there is a
prediction from the Present model of the same class as the prediction we
are looking at, and has a position attribute value that falls within the
interval we created. If this is the case, we say that the predicted event
from the Past model already exists in our model and look at the next
prediction from the Past model. If no prediction from our Present model
of the same class falls within the interval, we include the prediction
from the Past model in our final output. These steps are repeated for
the predictions made by the Future model. Algorithm 1 details this
further.

We ran evaluation with Tw set to the values [5, 10, 15, 20, 25, 30, 35, 40].
Our overall results are shown in Table 4.2. The overall result rises as
Tw gets larger, but are worse than the baseline when looking at total
Average-mAP. Overall, our best result is when Tw = 40, where the total
Average-mAP is 51.72%. This is 1.51 percentage points lower than the
baseline model. For visible events only, the Average-mAP is higher
than our baseline, but only by 0.06 percentage points. For off-screen
events, our best model has an Average-mAP of 28.77%, which is 5.6
percentage points lower than the baseline score of 34.37%. Overall,
our best model performs worse because of the off-screen events in the
broadcast, which are the events that our Past and Future models are
trying to predict.

Looking closer at the classwise results in Figure 4.3 for the off-
screen events, we can see a couple of classes that Model 2 is much worse
at predicting than the baseline. For the classes Throw-in, Corner, Kick-
off and Offside the baseline outperforms our model by double digits.
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Algorithm 1 Algorithm for including predictions made by the Past and
Future models in our final fusion layer

for p in Past/Future model do
position← p[”position”]
interval ← [position− Tw/2, position + Tw/2]
current_label ← p[”label”]
is_duplicate← False
for p2 in Present model do

timestamp← p2[”position”]
label ← p2[”label”]
if (label == current_label) AND timestamp in interval then

is_duplicate← True
break

end if
end for
if (is_duplicate == False) then

Add p to final model
end if

end for

Model Total
Average-mAP

Average-mAP
visible

Average-mAP
off-screen

Tw = 5s 46.46 53.40 26.02
Tw = 10s 48.57 55.98 26.44
Tw = 15s 50.77 58.36 27.79
Tw = 20s 51.48 59.10 28.45
Tw = 25s 51.60 59.22 28.60
Tw = 30s 51.63 59.25 28.61
Tw = 35s 51.68 59.28 28.67
Tw = 40s 51.72 59.30 28.77

Baseline 53.23 59.24 34.37

Table 4.2: Overall performance of Model 2 with different values for
Tw, using the Average-mAP score. The baseline scores are added for
comparison. The performance is calculated for all actions, as well as
visible and off-screen actions separately.

First, we have Throw-in, where our model scores 12.2 percentage
points (p.p.) lower than the baseline for off-screen events. The score
for Corner is 15.89 p.p. lower, the score for Kick-off is 11.96 p.p. lower,
and the score for Offside is 15.8 p.p. lower than the baseline. Our
model does not outperform the baseline in any of the classes when
considering off-screen events only. With Model 2, we tried to see if the
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Figure 4.3: Classwise Average-mAP scores for Model 2 where TW = 40,
compared to the baseline. The figure is separated in three subplots for
different visibility of the events. The classes on the x-axis are the same
for all three subplots. The raw numbers can be found in Table B.1.

events before and after an event may be used to predict the event, but
these results are not promising. A reason may be that our approach
for shifting labels was too basic, since we just shifted the label with the
nearest events label. The different events may not have any connection
and might also be too far apart in time. Two succeeding events in our
dataset may be a Substitution and then a Foul three minutes later.
These events do not have any connection with each other.
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Our idea for merging the predictions made by the different models
using the time window, was that it would prevent the same event
from being predicted twice. When looking at the final prediction list,
we can see which model the predictions came from. When counting
the predictions from the run with Tw set to 40, it turned out that
99.12% of the predictions came from the Present model. The Past and
Future models contributed with only 0.5% and 0.38%, respectively. The
numbers are shown in Table 4.3, which also shows that there were a
total of 480,526 predictions from the combined model. Looking closer
at the predictions, there are many predictions in close proximity time
wise, from different classes and with low confidence scores. Since we
used the Present model as a foundation, and only include predictions
not already found within a time frame, few predictions will be included
from the Past and Future models. As an example, a Goal prediction
from the Present model with a confidence score of 0.001 would be
included over a Goal prediction from the Past model with a confidence
score of 0.9.

Model n predictions %

Past 2,408 0.50

Present 476,314 99.12

Future 1,804 0.38

Total 480.526 100.0

Table 4.3: Contributions from the Past, Present and Future models to
the final output of Model 2, with Tw = 40. 476,314 predictions, which
is 99.12% of the total number of output predictions in Model 2, comes
from the Present model.

Model 2 served as our first multimodal approach, where we had
to create an algorithm for fusing our three models outputs together.
We have seen that our results are quite poor compared to the baseline.
With the current data fusion algorithm, we also see that the Future and
Past model only contributes with 0.88% of the total final predictions
of our model. We believe there are two main reasons for this poor
performance. First off, this poor performance can be attributed to the
way we shifted the labels for our Past and Future models. In the course
of a game of soccer, not all events following each other will adhere
to the relationships defined in Section 3.4. Secondly, we have used
the average time between all events in all games in the SoccerNet-
v2 dataset to shift the timestamp of events predicted by the Past and
Future models. This will naturally create errors, since the time elapsed
between different events in soccer varies by a great degree.
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4.4 Model 3 - Refining time-shifting for
predictions produced by the Past and
Future models

Our second model yielded poor results, but gave us familiarity with
how we could approach combining the Past, Present and Future
models from a technical perspective, and started the process of
uncovering some of the challenges and pain-points going forward. After
experimenting with Model 2, it became evident for us that that there
are especially two areas of improvement where we have an intuitive
idea for how we can potentially progress.

First off, shifting every label with the one preceding/following it for
the Past and Future models, did not work. As mentioned in Section
3.4, there are specific rules as to what event follows another, and for
some events, we cannot inform the previous or following event from
the current one at all. More importantly, we want the Past and Future
models to learn and predict two different sets of classes. A Throw-
in event is valuable for our Past model, since a Throw-in is always
preceded by a Ball out of play. On the other hand, a Throw-in is not
valuable for our Future model, since it is impossible to say what follows
a Throw-in in open play. We therefore need to fine-tune these models,
so they are not trained to learn events that are not relevant for their
contextual dimension. Using our labels from Model 2, we filtered the
labels for our Past and Future models. For our Past model, we only
included annotations with labels of the following classes: Throw-in,
Kick-off, Indirect free-kick, Clearance, Corner, Direct free-kick, Yellow
card, Red card, Penalty, and Yellow then red card. For the Future
model, we only included annotations with these labels: Ball out of play,
Foul, Offside, Goal, Shots off target. As in our previous experiments,
we trained these models with the standard hyper-parameters from
NetVLAD++ [19]. The learning rate for both our Past and Future
models plateaued after 71 epochs, where training was stopped. After
training, we realised that even though we have strictly defined which
annotations our models can train on, they will still try to spot actions
that are of an invalid class for their respective model. Therefore, we
needed to filter the predictions for our Past and Future models in our
fusion layer. For our Future model, this means removing all predictions
of classes Ball out of play, Foul, Substitution, Shots on target, etc. As
discussed, our Future model cannot with certainty predict a Ball out of
play from the events preceding it.

Our second challenge is related to time shifting. Our method for
shifting the timestamp of the events is based on the average time
between events in soccer (∼25 seconds) and will need to be fine-tuned.
Recalling Table 3.7, we see that the average and median time between
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different events are quite different. Calculated over all annotations in
the training set, we hypothesise that these values will more accurately
reflect the time between different events. In the fusion layer, we
therefore shift the timestamp of our prediction according to this table.
For each prediction in our Past model, we map the class of that
prediction to the corresponding average or median time between an
event of that class and preceding events, and subtract this value from
the timestamp of our predictions. For our Future model, we add this
value to the timestamp of our predictions. We experimented with using
both the average, and median time between different events, and found
there was little difference between them in terms of performance. Our
intuition is that median time is more suited, since a lot of unexpected
and irregular things can happen between events in soccer, such as
injuries, arguing between players, crowds rushing the field etc. Our
thinking is that these things can influence the average time between
events severely, and therefore using the median time can give a more
general representation of how much time passes between two given
events. In Table 3.7, there is also a large difference between the
shortest and longest time between the events. The presence of outliers
might also skew the average time, and not reflect the most suitable
time between events. For these reasons, we decided to use the median
time in our fusion layer.

With Model 2, we discovered that when we were fusing the outputs
from our three models (Past, Present, Future) as in Algorithm 1, the
predictions from our Past and Future models were mostly ignored.
With Model 3, we used a much simpler method for combining our input
streams. We simply concatenated all three models predictions, without
any filtering algorithm. For this reason, we did not need to tune our
time window parameter Tw, as discussed in Section 3.9.2. The overall
results were significantly poorer than that of our baseline, as can be
seen in Table 4.4.

Model Total
Average-mAP

Average-mAP
visible

Average-mAP
off-screen

Baseline 53.23 59.24 34.37
Model 3 46.14 52.53 24.89

Table 4.4: Overall performance of Model 3 compared to the baseline
using the Average-mAP score. The performance is calculated for all
events, visible events, and off-screen events separately.

Figure 4.4 shows that our model has the biggest drop in perform-
ance compared to the baseline when spotting Throw-in for all visibil-
ity metrics. When looking at the Throw-in predictions in Figure 4.5,
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Figure 4.4: Classwise Average-mAP scores for Model 3, compared to
the baseline. The figure is separated in three subplots for different
visibility of the events. The classes on the x-axis is the same for all
three subplots. The raw numbers can be found in Table C.1.

we can see that Model 3 contains quite a few more predictions than
our baseline model. Considering the Average-mAP evaluation method,
Model 3 will consequentially produce more false positives. We can also
see that Model 3, for the most part, is more imprecise than the baseline.

In Figure 4.5, we have a visible Throw-in event temporally
annotated just before the 35:00 timestamp, indicated by a blue vertical
bar. In the subplot for the baseline predictions, we can see that a
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Baseline
predictions

Model 3
predictions

Figure 4.5: Visualising Throw-in predictions from Model 3 and the
baseline for a game in the SoccerNet-v2 dataset, during a 5-minute
period. The labels on the x-axis are timestamps from the game (mm:ss).
The height of the dotted bars are determined by the confidence score of
the prediction. The top subplot shows the predictions of Model 3, with
predictions from the Past, Present and Future models, while the bottom
subplot shows predictions from the baseline.

prediction for that Throw-in event is temporally located at the correct
timestamp. In the subplot for Model 3, a prediction for the event is
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close to the annotation, but not as precise as the prediction from the
baseline.

We do see some promise in our work, since our Future model (teal
dotted line, top subplot) has a prediction that is not too far off from
the off-screen ground truth event temporally located around the 37:00
timestamp. Overall, it seems that Model 3 produces an abundance of
false positives when spotting actions. During a period of four minutes
of open play in the same game as in Figure 4.5, the baseline model
predicted three Corner events, where there were none, while Model 3
predicted seven Corner events.

In this experiment, we changed our label-shifting scheme before
training to account for the relationships presented in Figures 3.3 and
3.4. This was done so that the Past and Future models are only trained
on events that are relevant for their specific contextual dimension.
We also disregarded our fusion algorithm, and simply concatenated
the predictions made by all of our three models. We also shifted the
timestamp of the predictions from our Past and Future models with
the median time between events. The result of this was a poorer
performance than Model 2, and a higher number of predictions than
our baseline model produces. We suspected that these changes created
an abundance of false positives in the predictions made by our model.

4.5 Models 4.1, 4.2, 4.3 - Modifying label-
shifting scheme

Following our experiment with Model 3, there were several areas
fit for improvement. In Figure 3.3 and Figure 3.4, we established
the relationships between different classes of events in soccer. As
suspected in Section 3.4, after investigating the annotations in the
training data, we observed that the events in these relationships do
not always follow each other directly. For example, a certain type of
Ball out of play will always lead to a Throw-in, but there can be events
happening in-between. A Ball out of play event can be followed by
a Red card, a Yellow card and a Substitution before we finally get a
Throw-in. This is perfectly possible in the game of soccer, since there
might be an argument between players and the referee in the time
between the Ball out of play and Throw-in, leading to the cards shown.
This also prolongs the time between the Ball out of play and Throw-
in events, even though they are still related. If we were to use the
label-shifting scheme introduced in Figure 3.5 on the aforementioned
example, a Substitution event would be mapped to a Throw-in label
in our Future model. In this experiment, we introduced new logic
for shifting our labels. For our respective Past and Future models,
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we iterated through all the original annotations. If the label L is
appropriate for the model (e.g. Ball out of play for the Future model, or
Kick-off for the Past model), we checked the two following or preceding
annotations (depending on if we are working with the Future or Past
model), and see if we found the annotation with the label connected to
L as defined in Section 3.4. In the preceding example for our Future
model, this would be finding a Throw-in, Clearance or Corner label in
one of the two annotations following the Ball out of play label L, or a
Goal label within the two annotations before a Kick-off for our Past
model. If this condition was upheld, we replaced L with the label of
the appropriate annotation. If the condition is not upheld, we ignored
the annotation with the label L. There can of course be more than
two events happening in between the two related events. We assumed
that this situation is less common, and since we were using the median
time between events (as presented in Table 3.7), we believed that the
time elapsed between the related events in these situation exceed the
median time, so we discarded them from the training set. Another
adjustment that was done for this model, was that we wanted to train
our Past and Future models on visible events only. The reasoning
behind this, is the following: If we want our Future model to use a Ball
out of play frame to learn that the next event is for example a Throw-in,
that Ball out of play event needs to be visible. This follows our intuition
from Model 1. We therefore discarded all off-screen annotations from
the training data used by our new Past and Future models.

Figure 4.6 shows the performance of this model (Model 4.1) after
training. As in our previous experiments, all other NetVLAD++
hyperparameters remained unchanged. As can be seen, the results are
for the most part, comparable, or worse to those of Model 3. Looking
at Figure 4.7, it is challenging to draw any conclusions. Comparing the
predictions produced by the models for a 5-minute period shows that
predictions from both models are fairly equal.

We wanted to make some further modifications to this model.
Recalling that our Present model has a lower performance than
our baseline (Table 4.1), we exchanged our Present model for an
out-of-the-box NetVLAD++ model, trained on both visible and off-
screen annotations. Table 4.5 shows the performance of this model
(Model 4.2), compared to Model 3. The performance has increased
considerably for off-screen events, indicating that our Present model
has a considerable influence on our performance when spotting off-
screen events.

In Figure 4.8, a classwise comparison with Model 3 shows some
interesting results. When we looked at the predictions for the classes
with the most improvement in performance (Throw-in, Offside, Corner
etc.) we got surprisingly little visual cues as to how this improvement
in performance took place. Like with Model 4.1, the predictions look
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Figure 4.6: Classwise Average-mAP scores for Model 4.1, compared to
Model 3 and the baseline. The figure is separated in three subplots for
different visibility of the events. The classes on the x-axis are the same
for all three subplots. The raw numbers can be found in Table D.1.

very similar between Model 4.2 and Model 3.
Figure 4.9 shows how Model 4.2 compares to Model 3 when

predicting Kick-off events during a 5-minute period. An off-screen
Kick-off (green line) event is temporally located around the 03:00
minute mark. The Present model in Model 4.2 (red dotted line) is able
to spot this more precisely than Model 3. This seems reasonable as
the Present model in Model 4.2 is now an out-of-the-box NetVLAD++
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Model 3 predictions

Model 4.1 predictions

Figure 4.7: Visualising Throw-in predictions from Model 4.1 and Model
3 for a game in the SoccerNet-v2 dataset, during a 5-minute period.
The labels on the x-axis are timestamps from the game (mm:ss). The
height of the dotted bars are determined by the confidence score of
the prediction. The top subplot shows the predictions from Model
4.1, with predictions from the Present and Future models, while the
bottom subplot shows predictions from Model 3, with predictions from
the Present and Future models.
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Model Total
Average-mAP

Average-mAP
visible

Average-mAP
off-screen

Model 4.2 47.9 53.7 29.7
Model 3 46.1 52.5 24.9
Baseline 53.2 59.2 34.4

Table 4.5: Overall performance of Model 4.2 compared to Model 3
and the baseline using the Average-mAP score. The performance
is calculated for all actions, as well as visible and off-screen actions
separately.

model, trained on both visible and off-screen events. It performs better
than the Present model in Model 3, which is worse at spotting off-screen
events, since it has not been trained on off-screen annotations. This is,
of course a single example, but one might think that this is the case for
a larger number of events. When comparing Table 4.6 to Table 4.3, our
Past and Future models now contributes more to the overall number
of predictions in Model 4.2 after data fusion. However, concatenating
all our predictions made by the Past and Future models does reduce
our overall performance compared to the baseline, and the way we fuse
these predictions together is a potential area of improvement.

Model n predictions %

Past 111,924 12.9

Present 476,314 54.9

Future 279,310 32.2

Total 867,548 100.0

Table 4.6: Contributions from the Past, Present and Future models to
the final output of Model 4.2. 54.9% of the total number of predictions
in the output of Model 4.2 comes from the Present model.

For Model 4.1 and Model 4.2, we made two assumptions: The first
being that our Past/Future models should only be trained on visible
annotations. This makes sense from a human perspective, but the
results from Section 4.2, and replacing our Present model for an out-
of-the-box NetVLAD++ model in Model 4.2, suggests otherwise. The
second assumption we made, was that related events more often than
not have a maximum of two other events between them. For our
last iteration of this experiment (Model 4.3), we challenged these
assumptions. Before training our Past and Future models, we adjusted
our label-shifting scheme so that we included off-screen annotations,
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Figure 4.8: Classwise Average-mAP scores for Model 4.2, compared to
Model 3 and the baseline. The figure is separated in three subplots for
different visibility of the events. The classes on the x-axis are the same
for all three subplots. The raw numbers can be found in Table E.1.

and increased the number of events we look at before and after our
current event to 10. This means that we consider the situations where
there are 3, 4, . . . 10 events between the two related events. Table
4.7 shows a slight improvement in performance, compared to Model
4.2. Figure 4.10 shows that Throw-in, Yellow card and Offside are
the classes with the biggest increase in performance when spotting off-
screen events. These are all classes with a relatively high frequency of
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Model 3 predictions

Model 4.2 predictions

Figure 4.9: Visualising Kick-off predictions from Model 4.2 and Model
3 for a game in the SoccerNet-v2 dataset, during a 5-minute period.
The labels on the x-axis are timestamps from the game (mm:ss). The
height of the dotted bars are determined by the confidence score of
the prediction. The top subplot shows the predictions from Model
4.2, with predictions from the Present and Future models, while the
bottom subplot shows predictions from Model 3, with predictions from
the Present and Future models.
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Model Total
Average-mAP

Average-mAP
visible

Average-mAP
off-screen

Model 4.3 48.5 54.3 30.3
Model 4.2 47.9 53.7 29.7
Baseline 53.2 59.2 34.4

Table 4.7: Overall performance of Model 4.3 compared to Model 4.2
and the baseline using the Average-mAP score. The performance
is calculated for all actions, as well as visible and off-screen actions
separately.

off-screen events. Model 4.3 has the biggest drop in performance when
spotting Goal, which is a class with only one off-screen event in the
dataset.

Table 4.8 shows that the contributions from each of the Past, Present
and Future models in Model 4.3 has the same distribution as in Model
4.2, although there are a few more predictions made by the Past
and Future models. We used Model 4.3 as the basis for our next
experiments.

Model n predictions %

Past 112,079 12.9

Present 476,161 54.9

Future 279,642 32.2

Total 867,882 100.0

Table 4.8: Contributions from the Past, Present and Future models to
the final output of Model 4.3. 54.9% of the total number of predictions
in the output of Model 4.3 comes from the Present model.

For Models 4.1, 4.2 and 4.3, we were able to get further confirmation
that training a model on visible events only, does not improve its ability
to spot the events that it is trained on. Rather, it seems to decrease the
performance. By replacing our Present model from Section 4.2 with
an out-of-the-box NetVLAD++ model, we also learned that a Present
model trained on both visible and off-screen data increases overall
performance of our model. When shifting the labels for our Past and
Future models, we have learned that including the relevant events
that have a connection to the 10 previous or following events gives
us a small improvement in performance, compared to when we only
look at the two previous or following events. Model 4.3 still produces
too many predictions, since we are concatenating the output from our
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Figure 4.10: Classwise Average-mAP scores for Model 4.3, compared to
Model 4.2 and the baseline. The figure is separated in three subplots
for different visibility of the events. The classes on the x-axis are the
same for all three subplots. The raw numbers can be found in Table
F.1.

Past, Present and Future models. In the next experiment, we will try
to create a data fusion algorithm which is improved from the one in
Section 4.3, so that we do not include too many predictions, but at the
same time utilise the predictions made by our Past and Future models.
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4.6 Models 5.1 & 5.2 - Improving the data
fusion algorithm

As we started working on a better data fusion algorithm, we discovered
that our Past model exhibited some peculiar behaviour. When
inspecting the predictions (after training, but before our fusion layer),
we discovered that the Past model had predictions with a negative
position value. In practice, this means that the model is predicting
events temporally located before the game has started. We believe that
this comes as a result of our Past model learning to predict a Goal
event in the past, when it sees a Kick-off event. Since every half of
every game starts with a Kick-off, a plausible consequence might be
that our Past model predicts Goal events that happen before the first
Kick-off has been performed. We filtered out all predictions that had a
negative position value. This reduced the total number of predictions
made by the Past model after data fusion with ∼1300 predictions, and
increased our action spotting results, as can be seen from Model 5.1 in
Table 4.9.

Model Total
Average-mAP

Average-mAP
visible

Average-mAP
off-screen

Model 5.1 50.8 56.4 33.7
Model 4.3 48.5 54.3 30.3
Baseline 53.2 59.2 34.4

Table 4.9: Overall performance of Model 5.1 compared to Model 4.3 and
the baseline using the Average-mAP score. In Model 5.1, predictions
with a negative timestamp value was removed. Predictions with a
negative value for the timestamp are predictions of events taking place
before the game has started, which is not possible. The performance
is calculated for all actions, as well as visible and off-screen actions
separately.

With this issue resolved, we continued working on improving the
fusion layer. We theorised that simply concatenating our three models
predictions creates too many false positives. Within a given time
frame, we wanted to keep one prediction of each class that had the
highest confidence score, as to rely on the expertise of the individual
Past, Present and Future models. We implemented this using a non-
overlapping (Figure 4.11) and overlapping (Figure 4.12) sliding window
algorithm with a variable window-size of t.

These algorithms slides a window of size = t across the temporal
dimension of the game, and filters out all predictions for each class that
does not have the highest confidence score of the predictions within the
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Figure 4.11: Non-overlapping sliding window fusion algorithm. The
topmost figure shows Goal, Kick-off and Throw-in predictions before
applying the algorithm, the bottom figure below the blue arrow shows
the same predictions after filtering.

window. The difference between them is that the start and end of each
window is configured differently. For the non-overlapping approach in
Figure 4.11, the start of the window is right after the preceding window
ends. For the overlapping approach, the start and end of each window,
is defined as position ± t/2 for each prediction, effectively creating
one window per prediction in the model. In terms of efficiency, the
non-overlapping methods requires far fewer calculations and windows,
and is therefore more efficient. The reason for implementing a non-
overlapping and overlapping approach, is because we were concerned
that two predictions of the same class at the end of one window, and
at the start of the next, would not be filtered against each other in the
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Figure 4.12: Overlapping sliding window fusion algorithm. The
topmost figure shows Goal, Kick-off and Throw-in predictions before
applying the algorithm, the bottom figure below the blue arrow shows
the same predictions after filtering.

non-overlapping approach. In Figure 4.11, we can see that two of the
three Kick-off predictions remain after the filtering. Realistically, two
Kick-off events will not happen that frequently, but since each window
does not overlap, this might happen. In Figure 4.12, we can see that the
same three Kick-off events are filtered down to one which is intuitively
more correct. We experimented with different values of t, ranging from
1 second to 40 seconds, naming this Model 5.2. Table 4.10 shows an
overview of the best performing results. Despite our suspicions, our
non-overlapping algorithm yielded the best results with t = 15 seconds.
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Model Total
Average-mAP

Average-mAP
visible

Average-mAP
off-screen

Overlap, t=1s 50.4 56.1 33.1
Overlap, t=5s 50.3 55.8 33.1
Overlap, t=15s 49.9 55.2 32.5
No overlap, t=15s 51.2 56.8 34.3

Table 4.10: Overall performance of Model 5.2 using the Average-mAP
score. The rows reflects using our overlapping or non-overlapping
fusion algorithm, as well as different values of t. The performance
is calculated for all actions, as well as visible and off-screen actions
separately.

Figure 4.13 shows a classwise comparison to the baseline. Our
model performs worse than the baseline overall, and especially
when spotting visible events. For the off-screen events, there are
improvements to some classes. In Figure 4.14, we can see that the
Future model from Model 5.2 (teal dotted line, top subplot) is able
to more precisely spot an off-screen Clearance between the 41:00 and
42:00 minute marks. In this case, the prediction from our Future model
is more accurate, and has a higher confidence score than the baseline
model, which is the red dotted line, in the lower subplot.

Our belief is that the drop in performance for the visible actions
comes as a result of our Past and Future models making predictions
on visible actions, where our Present model is more accurate. Since
we also filter our predictions on confidence score, it is likely that our
Past and Future models wins out over the Present model when spotting
some events that are visible. Ideally, our Past and Future models
should supplement our Present model when spotting off-screen events
only. A challenge with this is that our models does not distinguish
between visibility when predicting an event, making it difficult for us
to programmatically enforce this. Table 4.11 shows the contributions of
the different models after the fusion layer. We can see that the Present
and Future models has a higher relative contribution than the Past
model, compared to Model 4.3 (Table 4.8). We theorised that this is an
effect of how our fusion algorithms are designed. It seems reasonable
that the Present model has a higher number of predictions with a high
confidence score, since it is trained on more data and more classes
than our Past and Future models. It also makes sense that the Past
models contribution is diminished, given that we filtered out ∼1300
predictions made by this model when we removed predictions with a
negative position value.

While conducting the experiments in this section, we discovered

76



Figure 4.13: Classwise Average-mAP scores for Model 5.2, compared
to the baseline. The figure is separated in three subplots for different
visibility of the events. The classes on the x-axis are the same for all
three subplots. The raw numbers can be found in Table G.1.

an anomaly in our Past model, where it had a series of predictions
with a negative timestamp. Removing these predictions improved
the performance of our model. We were also able to create two
versions of a sliding window algorithm for our fusion layer. The best
results were obtained when using the non-overlapping algorithm, and
a window-size of 15 seconds. These two improvements gave us our best
performing model, Model 5.2. This model achieved a higher Average-
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Baseline predictions

Model 5.2 predictions

Figure 4.14: Visualising Clearance predictions from Model 5.2 and the
baseline for a game in the SoccerNet-v2 dataset, during a 5-minute
period. The labels on the x-axis are timestamps from the game (mm:ss).
The height of the dotted bars are determined by the confidence score of
the prediction. The top subplot shows the predictions from Model 5.2,
with predictions from the Present and Future models, while the bottom
subplot shows predictions from the baseline.

mAP than the baseline when spotting off-screen Throw-in, Indirect
free-kick, and Yellow card events, and when spotting visible Clearance
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Model n predictions %

Past 62,081 10.8

Present 321,523 56.1

Future 189,867 33.1

Total 573,471 100.0

Table 4.11: Contributions from the Past, Present and Future models
to the final output of Model 5.2, where we used the non-overlapping
sliding window algorithm in the fusion layer with t = 15s. 56.1 % of
the total number of output predictions in Model 5.2 comes from the
Present model

and Yellow then red card events.

4.7 Alternative evaluation for real-life ap-
plications

As mentioned in Section 3.10.2, we will evaluate our best performing
model, Model 5.2, using precision, recall and F1 score, and reflect on
its suitability to real-life scenarios.

4.7.1 Use case: Generating statistics
In soccer, there is a long-standing tradition of recording statistics from
games. These statistics have value for bookmakers, athletes, managers
and fans alike. In this scenario, we defined statistics as a record of
all events happening throughout a game, limited to the 17 classes
of SoccerNet-v2, and disregarding the timestamp of the events. In
other words, a record of the events in a game without any information
on when the events happened. Throughout all our experiments, we
have found it challenging to correctly change the timestamps of the
predictions made by the Past and Future models. This evaluation is
therefore a way to see if our model is competitive in a context where
we eliminate this challenge. For each game, and for each class, with
a number of annotated events, X, and a number of predictions made
by our model, Y, we defined the true positive, false positive, and false
negative values of the models output as such:

TP =

{
Y, if X ≥ Y
X, otherwise
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FP = Y− TP

FN = X− TP

In the context of this use case, calculating TP, FP and FN is trivial.
Since we disregarded the timestamps of the events, every prediction of
a class is a TP, as long as the number of predictions does not exceed the
number of annotations for that class. Every prediction beyond that, is
a false positive. Lets consider an example, where we have a game in
the dataset with two Goal annotations, and our model outputs three
Goal predictions. Since we did not consider the temporal tolerance
δ (described in Section 3.10.1), and the timestamps of the events to
calculate true positives, we only considered the number of predictions
and the number of annotations for each class. In this example, we
have two TPs, and one FP. Shortcomings of this calculation is further
discussed in Section 4.8.4. We did not define true negative, as this
is every frame in a game where our model correctly does not spot an
action.

If we recall Section 3.10, we defined precision as answering the
question How confident can we be that a positive prediction is correct?
and recall as How many of the positive observations is our model able
to capture? In the context of this use case, one could argue that both
metrics are of equal importance. We need to capture all events of all
classes, and at the same time not capture too many. This seems like a
challenging proposition, given the precision-recall trade-off that states
that as one increases, the other decreases [6]. For this reason, we think
that the F1 score is the most suitable metric to measure which models
performs best for the given use case, given that it is the harmonic
mean between precision and recall. We will therefore discuss all three
metrics mentioned above, but use the F1 score to determine which
model is best suited for the use case.

4.7.2 Results
As we saw in Table 4.11, Model 5.2 makes a total of 573,471 predictions
for the 100 games in the test set, which is higher than the 22,551
annotations for the same games. Our model includes all predictions
made, regardless of the confidence score of the predictions. When only
including predictions at different confidence threshold, the number of
relevant predictions drops by a large margin from confidence threshold
0 to 0.1, as seen in Figure 4.15. Between threshold 0.1 to 0.9, the
decline is more gentle. From Table 4.12, we can see that the number of
predictions made by our model at a confidence threshold between 0.6
and 0.7 is close to 22,551, the actual number of events in the test set.

When choosing a confidence threshold, we are making a trade-off
between precision and recall, and therefore we start by looking at the
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Figure 4.15: The figure shows how the number of predictions are
reduced as the confidence threshold increases. The rapid decrease in
number of predictions from confidence threshold 0.0 to 0.1, for both our
model and the baseline, shows that there are a lot of predictions with
low confidence score below 0.1.

scores at different thresholds.
In Figure 4.16, we have plotted the precision score for our model,

against confidence thresholds from 0 to 0.95. We included the
baseline model as well. The baseline has a higher precision score at
all confidence thresholds, though the gap is closing at a confidence
threshold of 0.9. At this threshold, both models makes few predictions
and the predictions made are likely to be true positives. If we have
fewer predictions than the number of annotations for a class in a given
game, there will be zero false positive predictions for that class and
the precision score will be 1. From Table 4.12, we see that the total
number of predictions at confidence threshold 0.9 is 6,799, lower than
the number of annotations.

The gap between our precision scores might be explained by the
fact that our model makes more predictions than the baseline, as seen
in Figure 4.15 and have more false positive predictions. In our fusion
layer, where we merge the Past, Present and Future model, we tried to
remove duplicate predictions, but the algorithm is not perfect.
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Confidence
threshold

Number of predictions

Model 5.2 Baseline

0.0 573,471 476,161
0.1 126,360 82,225
0.2 82,651 52,944
0.3 60,503 38,902
0.4 46,107 29,987
0.5 35,399 23,460
0.6 27,006 18,454
0.7 20,003 14,166
0.8 13,590 10,002
0.9 6,799 5,309

Table 4.12: Comparing the total number of predictions made by Model
5.2 and the baseline model, when filtering the predictions on different
confidence thresholds.

Figure 4.16: Comparing the precision scores for our model and
the baseline, when filtering the predictions on different confidence
thresholds.

In Figure 4.17, we can see that all classes except Yellow then red
card and Red card have the highest precision at confidence threshold
0.9 as well. For Yellow then red and Red card, the precision scores
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are not applicable beyond a confidence threshold of 0.2 and 0.1
respectively. This is because there are no predictions for these classes
with a confidence score above 0.2, and the precision score cannot be
calculated. We feel confident that this is because there are few training
instances of these classes, which leads to low-confident predictions
made by our model.

Figure 4.17: Classwise precision scores for our model, when filtering
our predictions on different confidence thresholds. The raw numbers
can be found in Table H.1.

Figure 4.18 shows the recall score at the same thresholds as Figure
4.16. Our model has the same recall score as the baseline up to a
confidence threshold of about 0.25, but at higher thresholds our model
has higher recall-values than the baseline. This is expected, as our
model is designed to spot more events by including the off-screen
predictions from our Past and Future models. This means that we will
have less false negatives, or missed predictions, and this increases the
recall score.

On a classwise basis, we can see from Figure 4.19 that the optimal
confidence threshold is at 0.0 for all classes. At 0.0, our model is
able to capture all events from all classes. Because of the precision-
recall trade-off [6], a confidence threshold of 0.0 would greatly decrease
the precision of our model. We can also see that the performance of
Yellow then red card and Red card is not applicable with a confidence
threshold of above 0.1 and 0.2 respectively. Ball out of play is one of
the classes with the highest recall across confidence thresholds. Ball
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Figure 4.18: Comparing the recall scores for our model and the
baseline, when filtering the predictions on different confidence
thresholds.

out of play is the class with the most annotations by far, and it seems
reasonable that this contributes to the ability of our model to be able
to learn to spot more events from that class than most others. For
confidence thresholds between 0.8 and 0.9, we can see that most classes
has a significant drop in recall. We observe that Ball out of play has a
large drop in recall score from 0.8 to 0.9. From Figure 4.15 we can
see that the number of predictions made by our model is less than
the number of annotations in the test set (22,551) with confidence
thresholds above 0.6. This will increase the amount of false negatives.
We believe that since Ball out of play is the most frequent class in the
test set, the recall for this class will be penalised more than the other
classes, as the confidence thresholds increase beyond 0.6. When the
number of true positive predictions start to diminish, the number of
false negative predictions will increase proportionate to the relative
distribution of the class in the test set. This could also explain why the
Throw-in class has an almost identical drop in recall from confidence
threshold 0.8 to 0.9, considering that it is the class with the second
largest amount of annotations in the test set.

Figure 4.20 shows the F1 score at different thresholds. Our model
outperforms the baseline when the confidence threshold is higher than
about 0.67, but the highest F1 score is achieved by the baseline model.
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Figure 4.19: Classwise recall score for our model, when filtering the
predictions on different confidence thresholds. The raw numbers can
be found in Table H.2.

Figure 4.20: Comparing F1 score between our model and the baseline,
when filtering predictions on different confidence thresholds.
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The gap in score between our model and the baseline is larger when
we are looking at the precision scores in Figure 4.16 compared to the
recall scores in Figure 4.18. Because of this, the baseline has a higher
F1 score than our model at the maximum on the F1-curve. Our model
and the baseline also reaches their maximum F1 score at different
confidence thresholds since the intersection of the precision and recall
curves differ for our model and the baseline. When looking at the

Figure 4.21: Classwise F1 score for our model, when filtering the
predictions at different confidence thresholds. The raw numbers can
be found in Table H.3.

classwise F1 scores for our model in Figure 4.21 and the baseline in
Figure 4.22, we can see that there is a disparity between the optimal
confidence threshold for most classes. Since our objective for this use
case is to maximise the F1 score, we filtered the predictions of each
class based on different confidence thresholds. The optimal confidence
threshold for each class was chosen by finding the confidence threshold
with the highest F1 score (for visible and off-screen events combined)
from 10 intervals between 0 and 1. This was done independently
for both our model and the baseline model. The results of these
adjustments can be seen in Table 4.13. The baseline model achieves
an F1 Score of 87.2%, which is slightly higher than 86.2%, the F1 score
achieved by our model. The baseline also achieves a 2.4 p.p higher
precision at 88%, compared to 85.6% for our model. In terms of recall,
our model scores 0.4 p.p higher at 86.7%, while the baseline achieved
87.2%. The improvement in recall comes as a result of our model
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Figure 4.22: Classwise F1 score for the baseline, when filtering the
predictions at different confidence thresholds. The raw numbers can
be found in Table H.4.

having a higher number of true positives than the baseline. In this use
case, this is to be expected, since our model outputs more predictions
than the baseline. The difference in precision can be explained by the
fact that the baseline model has 635 fewer false positives than our
model.

In this evaluation we have evaluated our model against the baseline
using precision, recall, and F1 score. We have also filtered the models
(our model and the baseline) predictions on the confidence thresholds
that give the highest F1 score for each individual class. This reduces
the amount of false positives in both models, and gives a number of
predictions closer to the number of annotations in the test dataset.
After filtering the predictions on the optimal confidence thresholds,
we saw that the baseline achieved the highest precision and F1 score,
while our model had the highest recall. We have stated that the
preferred model for this use case is the one with the highest F1 score,
and must therefore conclude that the baseline model is the preferred
model in this use case.

4.7.3 Use case: Game commentary
We want to formulate a use case for an action spotting model where we
have to consider the timestamp of the annotations. For many real-

87



Model 5.2 Baseline

True positives 19,552 19,459
False positives 3,278 2,643
False negatives 2,999 3,092

Precision 0.856 0.880
Recall 0.867 0.863

F1 Score 0.862 0.872

Table 4.13: Comparing outcomes and evaluation metrics between
Model 5.2 and the baseline model. The number of true positive, false
positive and false negative predictions are compared, as well as the
precision, recall and F1 score evaluation metrics.

life applications, this is important, and it lets us also evaluate the
capabilities our model has to correctly spot off-screen events.

Soccer broadcasters like ESPN often offer information about events
in a soccer match in the form of textual match commentaries [15].
These commentaries have information about match events, often with
a one minute granularity. The event information contains what event
has happened, which player(s) are involved in the event, which teams
are involved, and at what time the event occurred. We therefore want
to evaluate Model 5.2s performance on a similar, albeit simplified use
case. In our simplified use case, we do not consider which team, or
which player performs an action, and constrain ourselves to the 17
classes in SoccerNet-v2. In short, the models output a list of predicted
events with a timestamp. We define true positives, false positives,
and false negatives as we did for SoccerNet-v2 evaluation in Section
3.10, and set a fixed temporal tolerance of δ = 60 seconds. From these
numbers, we can calculate precision, recall and F1 score overall, and
for each class. Since each ground truth observation is matched with the
closest prediction, as explained in Section 3.10.1, we can see how our
model performs on off-screen events only. We will focus on off-screen
events and compare our results with the baseline model, as this is the
primary focus of this thesis. As in our previous use case evaluation, we
will filter the predictions of each class on the confidence threshold that
provide the best F1 score (all visibilities) for that particular class.

4.7.4 Results
Figure 4.23 shows the F1 scores over different confidence thresholds
and grouped by visibility. The baseline has the overall highest F1
score, but our model does outperform the baseline at higher confidence
thresholds. Our model performs best when spotting off-screen events
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(a) F1 score for all events (b) F1 score for visible events (c) F1 score for off-screen events

Figure 4.23: Comparing F1 score between our model and the baseline,
when filtering predictions on different confidence thresholds. Each
figure shows the F1 score for different visibility metrics (all, visible,
and off-screen from left to right).

only. We see in Figure 4.23c that our model has a higher F1 score
than the baseline for more confidence thresholds than in Figure 4.23a
and 4.23b. In Figure 4.23c, our model starts performing better than
the baseline when the confidence threshold is above ∼0.6, while for
figures 4.23a and 4.23b those confidence thresholds are ∼0.76 and
∼0.8 respectively. As we did in Section 4.7.1, we find the confidence
threshold which gives the highest F1 score (all visibilities) per class.
For this use case, we calculated the F1 score for 200 confidence
thresholds for each class. The confidence threshold which resulted in
the highest F1 score per class is used from this point onward. The
confidence thresholds are independent for each model and can be seen
in Table 4.14.
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Baseline 0.60 0.48 0.51 0.36 0.44 0.35 0.32 0.78 0.46 0.70 0.55 0.38 0.70 0.67 0.46 0.03 0.08
Model 5.2 0.76 0.68 0.54 0.42 0.60 0.35 0.32 0.84 0.46 0.72 0.66 0.36 0.70 0.68 0.46 0.03 0.08

Table 4.14: Comparing the confidence thresholds that gives the highest
F1 score on a classwise basis, for Model 5.2 and the baseline.

Looking at precision and recall, which contributes to the F1 score,
we see that there are differences between the classes. In Figure 4.24,
the precision and recall for predictions for off-screen events is plotted
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per class for both the baseline and our model. Seven of the classes,
namely Shots on target, Shots off target, Direct free-kick, Goal, Penalty,
Yellow then red card and Red card has a score of 0 for both precision
and recall. For Goal, Penalty, Yellow then red card and Red card this
is because there are no off-screen events for these classes in the test
set. Table 4.15 show that the sum of true positive and false negative
predictions for these classes are zero. For Shots on target, Shots off
target and Direct free-kick, neither our model, nor the baseline manages
to correctly produce any true positive predictions.

(a) Precision for off-screen events (b) Recall for off-screen events

Figure 4.24: Comparing precision and recall between our model and
the baseline, when spotting off-screen events. For this figure, the
predictions of each class are filtered on the confidence thresholds that
yielded the highest F1 score for that class.

Our model has a higher precision score than the baseline for Corner
and Yellow card, as can be seen in Figure 4.24a. The baseline has
a higher score for multiple classes, but the difference is greatest for
Throw-in. From Figure 4.25, we can see that for the Corner class, our
model has about 80% less false positive predictions than the baseline.
Our model has less true positive and more false negative predictions as
well, which does have a negative impact on the score, but the difference
for TP and FN are much lower than the false positives.

For Yellow card, there is no difference between the number of true
positive and false negative predictions, but our model has about 50%
less false positives. In Table 4.14, we see that the confidence threshold
used by the baseline model for the Yellow card class is 0.11 lower
than our model. More predictions with lower confidence score may be
included from the baseline model and this can explain the additional
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True Positive
Model 5.2 192 547 20 628 383 0 0 72 27 219 4 6 0 0 0 0 0
Baseline 198 621 11 669 456 0 0 79 27 172 4 5 0 0 0 0 0

False Positive
Model 5.2 122 574 12 867 435 14 10 10 24 155 18 34 56 8 3 44 18
Baseline 105 347 5 783 512 14 10 18 24 79 28 27 56 8 3 44 18

False Negative
Model 5.2 90 521 20 389 470 1 2 46 65 138 27 15 17 0 0 0 0
Baseline 84 447 29 348 397 1 2 39 65 185 27 16 17 0 0 0 0

n predictions
Model 5.2 404 1642 52 1884 1288 15 12 128 116 512 49 55 73 8 3 44 18
Baseline 387 1415 45 1800 1365 15 12 136 116 436 59 48 73 8 3 44 18

Table 4.15: Comparing outcomes and predictions between Model 5.2
and the baseline. The numbers are split between classes and grouped
by true positives, false positives, false negatives outcomes, as well as
the number of predictions made.

false positive predictions.
From Figure 4.25, we can see that our model performs worse for

all the outcomes when predicting Throw-in. Our model has less true
positive predictions, more false positive, and false negative predictions.
The largest difference is for false positive predictions, where our model
has ∼40% more than the baseline, and this number does contribute
to the precision score. In Section 3.9.2, we discussed how our Future
and Past model shift the timestamp of the actions that are predicted
in the past/future. We suspect that this timestamp-shifting scheme is
imprecise, leading to false positive predictions. In Figure 4.26, we see
one example of where the Future model (teal dotted line, top subplot)
predicts a false positive Throw-in event, right after the 37:15 mark.
Our model uses a sliding window approach to filter out all but the
most confident prediction for each class in 15 second windows. From
Figure 4.26, we see that the aforementioned FP prediction from our
Future model right after the 37:15 mark, and the TP prediction from
our Present model (red dotted line, top subplot) right before the 37:00
mark, are too far apart to be filtered against each other. It seems
reasonable that a larger window-size than 15 seconds could reduce the
amount of FP predictions for this class. We tuned this window-size
to achieve the best possible Average-mAP score - given more time, we
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would have liked to experiment more with our data fusion algorithm to
optimise for these new evaluation metrics.

Figure 4.25: Relative difference for TP, FP and FN between the
baseline and our model, with respect to the baseline. Only classes
where there is a difference in at least one of the possible prediction
outcomes are included. A positive percentage indicates that our model
has a higher number of instances of that metric than the baseline.

For the recall score in Figure 4.24b, our model achieves a higher
score for the Foul, Kick-off and Offside classes. The baseline
outperforms our Model 5.2 of the classes Ball out of play, Throw-in,
Indirect free-kick, Clearance and Corner. The recall score for Foul is
almost twice as high for our model compared to the baseline. In Figure
4.25, we can see that our model have over 40% more true positive
predictions and over 40% less false negative predictions. Both of these
numbers contribute to the large difference in recall score. Our model
does have about 60% more false positive predictions as well, but this
does not affect the recall score. As depicted in Figure 3.4, there are
6 types of events (Indirect free-kick, Direct free-kick, Penalty, Yellow
card, Red card, Yellow then red card) that are preceded by a Foul. This
leads us to believe that our Past model will produce more predictions of
this class (both FP and TP) than the baseline model. This is especially
beneficial when spotting off-screen events, since our Past model can
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Model 5.2 predictions

Baseline predictions

Figure 4.26: Visualising Throw-in predictions from Model 5.2 and the
baseline for a game in the SoccerNet-v2 dataset, during a ∼3-minute
period. The labels on the x-axis are timestamps from the game (mm:ss).
The height of the dotted bars are determined by the confidence score of
the prediction. The top subplot shows the predictions from Model 5.2,
with predictions from the Present and Future models, while the bottom
subplot shows predictions from the baseline.

leverage 6 types of events that are mostly visible (Table 3.2), to predict
an off-screen event in the past.

The predictions for Kick-off follows the same pattern as those for
Foul. Our model has more true positives and false positives, and less
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false negatives. Although the pattern is the same, the differences are
relatively smaller than for the Foul class. The number of predictions
for Kick-off is higher than the number of Foul predictions, which
means that each number of Kick-off predictions have less impact on
the relative difference. As we saw in Figure 3.1, Kick-off is a class
with more off-screen than visible events. This is often due to the
broadcast production showing replays of a goal after it is scored. On
the other hand, there are almost no off-screen Goal events. Our Future
model should predict a Kick-off after every predicted Goal event. Our
conclusion from this is that our Future model utilises visible events
(Goal) to predict off-screen Kick-off events. Intuitively, this would
make our model predict more Kick-off events than the baseline, which
only uses the visual features of the off-screen Kick-off. In Section 4.2,
we theorised that the disparity between what is shown in the frames
and the event that is happening off-screen is quite large, which would
make it more challenging to correctly classify an off-screen event based
on the visual features alone. Figure 4.27 shows one instance where
the Future model in Model 5.2 (teal dotted line, top subplot) is able
to provide a true positive for an off-screen Kick-off event, which the
baseline is not able to spot.

For the Throw-in class, the recall score is lower for our model, as
were the case for the precision score. We have about 10% less true
positives and 10% more false negative predictions. Looking at total
number of predictions, our model has more than the baseline, even
though our model uses a 0.2 higher confidence threshold. We believe
the higher confidence threshold reduces the amount of true positives
compared to the baseline, since potential true positive predictions with
lower confidence score gets removed. Usually, a higher confidence
threshold should also reduce the amount of false positive predictions,
but this is not the case for our model. We believe there are two
reasons for this: the changing of the timestamp of the predictions
made by our Future model, and the size of the sliding window used
in the fusion layer. In Section 3.8.3, we described how we need to
change the timestamp of the predictions made by our Past and Future
models. We added the median time between all Ball out of play and
Throw-in events to the timestamp of our Throw-in predictions made
by the Future model. Throw-in is an event that may have multiple
occurrences in a short span of time. The amount of time passing from
the Ball out of play until the Throw-in is taken may differ greatly each
time as we can see in Table 3.7. Because of this difference, the use
of median time to change the timestamp may not place the event at
the correct timestamp. This may lead to imprecise predictions made
by our Future model with regards to the timestamp. Our fusion layer
is designed to remove these imprecise predictions, but may fail at this
due to the size of the sliding window. The sliding window for removing
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Model 5.2 predictions

Baseline predictions

Figure 4.27: Visualising Kick-off predictions from Model 5.2 and the
baseline for a game in the SoccerNet-v2 dataset, during a ∼5-minute
period. The labels on the x-axis are timestamps from the game (mm:ss).
The height of the dotted bars are determined by the confidence score of
the prediction. The top subplot shows the predictions from Model 5.2,
with predictions from the Present and Future models, while the bottom
subplot shows predictions from the baseline.

duplicate events is only 15 seconds, which may lead to the fusion layer
failing to filter out duplicate events from our Present and Future model,
if the timestamp is off. This can explain the high number of false
positive predictions.
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We can see from Figure 4.25 that our model predicts ∼20% more
false negatives, and ∼20% less false positives and true positives than
the baseline for the Clearance class. The lower recall score for our
model can be explained by the distribution of false negatives and
true positives. We can see from Figure 4.28 that when we filter
the predictions for Model 5.2 on the confidence threshold (top right
subplot), our model fails to predict the off-screen Clearance around the
09:45 mark. If we do not filter the predictions from Model 5.2 on the
confidence threshold (bottom right subplot), we see that our model is
able to predict the same Clearance. When looking at the predictions
between the 09:45 mark and the 13:00 mark in the bottom right
subplot, and the lack of predictions in the same timespan in the top
right subplot, we speculate that filtering the predictions on confidence
thresholds reduces the amount of false positives in our model. When
measuring recall, this is irrelevant, as false positives does not impact
the score. For Clearance, the confidence threshold for our model is 0.60,
and for the baseline it is 0.44. This might explain why the baseline
(top left subplot) does not filter out its true positive prediction for
the Clearance at around the 09:45-minute mark, while Model 5.2 (top
right subplot) does. In general, we believe that filtering the Clearance
predictions on these confidence thresholds leads to our model having
less true positives and more false negatives than the baseline, thus
reducing the Clearance recall score for Model 5.2.

We can see from Figure 4.25 that our model predicts less false
negatives and more true positives than the baseline, leading to our
model achieving a higher recall for Offside. For the Corner class,
the opposite is true - the baseline predicts more true positives and
false positives and less false negatives compared to our model. This
also leads to a better recall for the baseline model. In this use case
evaluation, we have re-introduced the timestamp dimension for our
predictions. This lets us pair each annotation to its closest prediction,
and look at the performance achieved by our model on all, visible
and off-screen events. We saw that in terms of F1 score, our model
performs best when spotting off-screen events. We focused our analysis
on spotting off-screen events only. Since we have trained our Past and
Future models on labels according to Figure 3.3 and Figure 3.4, we
speculate that Model 5.2 is better able to spot off-screen events for
classes like Foul and Kick-off, since the Past and Future models in
Model 5.2 leverages other, mostly visible events, when spotting these
classes.
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Model 5.2 predictions,  
filtered on confidence threshold

Baseline predictions,  
filtered on confidence threshold

Model 5.2 predictions,  
not filtered on confidence threshold

Figure 4.28: Visualising Clearance predictions from Model 5.2 and the
baseline for a game in the SoccerNet-v2 dataset, during a 3.5-minute
period. The labels on the x-axis are timestamps from the game (mm:ss).
The height of the dotted bars are determined by the confidence score
of the prediction. The top-left subplot shows the predictions of the
baseline, when filtered on the confidence threshold found in Table
4.14. The top-right subplot shows the predictions of Model 5.2, with
predictions from the Present model, after they have been filtered on the
confidence threshold. The bottom-right subplot shows the predictions
of Model 5.2, with predictions from the Present and Future models,
without filtering the predictions on the confidence threshold.

4.8 Discussion
We have analysed our results continually throughout our experiments.
In this section, we will discuss our findings, as well as some of the
shortcomings and main challenges in our work.

4.8.1 Model implementation

As mentioned in Section 1.3, we did not perform any system bench-
marks. For our experiments and implementations, we used the CPUs
of an Nvidia DGX-2, which contains dual Intel Xeon Platinum 8168,
2.7 GHz 24-core CPUs.
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4.8.2 Baseline models
We have defined our baseline as an out-of-the-box run of the
NetVLAD++ model, first presented in [19]. The SoccerNet-v2 devkit
provides the results of 6 runs of this model. For our initial models
in Sections 4.2 - 4.6, our baseline model were the results of one of
these runs (Baseline A). For Section 4.7.1 and 4.7.3 we used our Present
model, as presented in Section 4.5, as our baseline model (Baseline B).
This was an out-of-the-box NetVLAD++ model, trained with the hyper-
parameters that gave Giancola & Ghanem the best performance. The
reason for doing this, was that the 6 NetVLAD++ runs provided by the
SoccerNet-v2 devkit only contained the results of the runs, and not the
actual prediction-files. We therefore had to use a different baseline for
Sections 4.7.1 and 4.7.3, since we needed these predictions in order to
calculate true positives, false positives and false negatives. Table 4.16
shows a comparison of the results of these two baseline models.

Model Total
Average-mAP

Average-mAP
visible

Average-mAP
off-screen

Baseline A 53.23 59.24 34.37
Baseline B 53.40 59.27 35.26

Table 4.16: Comparing the performance of the two baselines we have
used during our experiments, split by results when spotting all, visible,
and off-screen events.

4.8.3 Model evaluation
We have evaluated our models for two purposes. First, we have
measured the performance achieved by our models against the
NetVLAD++ model, using the Average-mAP function to analyse how
our efforts compares to existing models evaluated on the SoccerNet-
v2 dataset. Secondly, we have used F1 score, precision and recall to
see how our model would perform in two simplified real-life scenarios.
This provides insight as to how our model would perform in a
practical application. Using Average-mAP as an evaluation metric
is challenging because of its generality. It is challenging to draw
conclusions on what the model is specifically doing, since Average-
mAP considers a range of confidence intervals and variants of the
temporal tolerance, δ. Using precision, recall and F1 score for each
visibility, and on a classwise basis, facilitates more detailed analysis
on what the strengths and weaknesses of our models are. In Section
4.7.1, we discussed how both precision and recall are import metrics
to evaluate a machine learning model. Because of the precision-recall
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trade off, we argued that the F1 score is the most suitable metric to
evaluate performance achieved by our models against the baseline,
since it considers both precision and recall. The reason for this is
that we considered precision and recall to be equally important for
the use cases we defined. In both use cases, we deemed it as equally
important to both capture all instances (recall), and at the same time
not capture too many (precision). On reflection, we argue that a
reduction in precision is acceptable for a higher recall. Until a perfect
action spotting system is developed, a human operator will always be
required to review and edit the results of the model when applied to
a real-life scenario. We think that it is more important then, that the
model is able to spot all actions that are of interest in a game, than
it is to provide less false positives. If a model has a recall of ∼1 and
a low precision, the human task is to remove false positives from the
models output. If a model has a higher precision and a lower recall,
the human would have go through the whole game manually, double-
checking that the model did not miss any interesting actions. In that
case, a machine learning model is superfluous, and it is as efficient to
have a human operator go through the game from start to finish and
annotate the relevant events. It is important to note that we consider
this to be true for this specific scenario. Given another domain, or even
use case, another evaluation metric might be more favourable.

As can be seen in Table 4.12, one of the challenges when evaluating
our model in Section 4.7, was that the number of predictions made
by the model were far greater than the annotations in the dataset,
especially with lower confidence scores. Our solution to this was to
filter out the predictions on a classwise basis based on the confidence
threshold that gave the optimal F1 score for that particular class.
Looking back at Figures 4.23 and 4.20, the general observation is that
our model has a higher F1 score than the baseline with high confidence
thresholds. If we were to set a fixed confidence threshold of lets say
0.8, our model would perform better than the baseline. However, we
wanted to see how much we could optimise F1, precision and recall.
To do this, we filtered each class individually (for our model and the
baseline) on the confidence threshold that would give the optimal F1
score for that particular class, as per Table 4.14. This increases the
overall F1 score of both our model and the baseline, and did not make
our model perform better than the baseline.

4.8.4 Limitations in use cases
In our use case for generating statistics, we disregarded the timestamp
of the events. This may lead to unintended results, where two wrong
predictions make a right one. We can illustrate this with an example.
We have a game where there is only one Goal annotation. This goal
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is scored in the second half, after 60 minutes. Our model has a Goal
prediction 10 minutes into the first half, and no goal predictions in the
second half. Usually this would count as a false positive prediction
in the first half, and a false negative prediction in the second half.
Instead, we will have a true positive prediction for the Goal class in
this game and no false positives or false negatives.

In an actual real-life application of generating statistics, the team
that performs the action would naturally be an important part. If we
predict 4 goals in a game, we would want to know how many goals were
scores by each team. This is needed in order to determine the score of a
game, if the game ended 2-2, 4-0 or 3-1. For our model and the baseline
to be used within this scenario, we had to simplify this approach and
ignore which team performs the action.

In Section 4.7.3 we evaluated our model in terms of a serving as
a game commentary service. Since we considered the timestamps of
the events, we were able to measure F1 score, precision and recall on
all, visible and off-screen events. This allowed us to perform a more
detailed analysis than in the previous use case. Realistically, when
measuring the performance of a model for this use case, we would
not discern between visible and off-screen performance, since both are
equally important for the system. Since our thesis is mostly focused on
improving the off-screen action spotting performance, and since we had
time constraints to consider, we chose to focus our efforts on analysing
how our model performed on off-screen events in this use case.

4.8.5 Duplicate events
During the evaluation for our last use case in Section 4.7.3, we
discovered some anomalies in the dataset. Throughout this thesis we
have calculated that there are a total of 22,551 annotations in the test
dataset. During our last evaluation, we found that 41 of these are
duplicates, and that in reality there are 22,510 unique annotations in
the test dataset. We derived our evaluation function from the Average-
mAP function provided in the SoccerNet-v2 devkit. We discovered
that during the processing of this function, a total of 41 annotations
were filtered out from the set of labels. Upon further inspection, we
found that the Average-mAP-function uses the gameTime attribute of
the annotations instead of the position attribute. Since there can only
be one event of any class happening in one frame, we found that the
Average-mAP filtered 41 annotations that had the same gameTime
values, but different position values.

Table 4.17 shows how these duplicates are distributed across the 17
classes in the dataset. For most classes, the amount of duplicates are
quite small, except for Goal, where 11 of our original 337 annotations
are duplicates. We sampled some of the games where we found a
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Class Original
annotations

Without
duplicates

Number of
duplicates

Kick-off 514 513 1
Goal 337 326 11

Substitution 579 564 15
Shots on target 1175 1171 4
Shots off target 1058 1057 1

Clearance 1631 1630 1
Ball out of play 6460 6459 1

Throw-in 3809 3808 1
Foul 2414 2413 1

Yellow card 431 426 5

Table 4.17: Overview of the number of duplicate annotations for each
class in SoccerNet-v2 test dataset.

Figure 4.29: Two duplicate Goal annotations from a game between
Manchester City and Barcelona, from the 2014-2015 Champions
League cup.

difference between the annotations in the Goal class, and found that
the original annotations had more Goal annotations than the final
score of the game. Figure 4.29 shows one such example. We can see
that there are two Goal annotations that share the same gameTime,
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team and visibility attributes. We do not think that this has had an
effect on the performance achieved by our models.

4.8.6 Present model in Models 2 and 3
For our first model (Section 4.2) we introduced the idea of training the
Present model on visible data only. In Sections 4.3 and 4.4 we continued
to use our first model as our Present model, despite the poor results in
Model 1. This was done in part because we wanted to see if our ideas
in Section 4.2 held some merit when we introduced a Past and Present
model. After Section 4.4 we saw that the results were seemingly held
back by this poor Present model, and decided to change it.

4.8.7 Repeatability of results
As mentioned in Section 4.8.2, the SoccerNet-v2 devkit provided
us with five runs (training and evaluation on the test-set) of the
NetVLAD++ model. When looking at this model, we see that there
are some variations in the Average-mAP score for some of the classes
between the different runs. Since we have evaluated the performance
achieved by our models on a class-by-class basis, we would ideally have
liked to average the class-by-class results of our models over several
runs. Unfortunately, we did not have the time or resources to do so,
and therefore our models are trained once.

4.8.8 Final reflections on model performance
In Sections 4.2 - 4.6 we have evaluated our models using the Average-
mAP method. This lets us compare our efforts in these sections to that
of the baseline, as well as other models evaluated on the SoccerNet-v2
dataset. Looking at Table 4.18 we can see that our best performing
model, Model 5.2, has a comparative performance to the baseline when
spotting off-screen events, but that it is worse in total, and when
spotting visible events only. Looking at the classwise comparison
between these models in Figure 4.13, we see that Model 5.2 has a
comparative or worse performance for all classes except Clearance for
the overall performance. When spotting visible events only, Model 5.2
is for the most part worse than the baseline, except for Clearance.
When spotting off-screen events, Model 5.2 has a higher score than the
baseline on classes Throw-in, Indirect free-kick, Clearance, and Yellow
card. When looking at the leader-board for the competition presented
in SoccerNet-v2 [16], we can see that our baseline stands at number
four for the action spotting task, evaluated on the test dataset. The
best performing model [54] achieved an Average-mAP of 73.77, 79.48

102



and 47.84 for total, visible and off-screen respectively. From this we can
safely conclude that our best performing model is not competitive to
the current state-of-the-art models when evaluating with the Average-
mAP method.

Model Total
Average-mAP

Average-mAP
visible

Average-mAP
off-screen

Baseline 53.23 59.24 34.37
Model 5.2 51.17 56.85 34.31

Table 4.18: Overall performance of Model 5.2 compared to the baseline,
split by spotting all events, visible events only, and off-screen events
only.

In Section 4.7.1 we evaluated our model and the baseline in terms
of F1 score, precision and recall and concluded that F1 score was
the final metric used to evaluate which model performed best. From
Figure 4.20 we can see that the baseline achieved the highest total
F1 score of ∼0.84, but that our model has a higher F1 score when
confidence thresholds are above ∼0.67. Choosing a confidence threshold
for a use case such as the one mentioned above is difficult. If it is
too low, a humans job of filtering out all the false positives will be
tedious considering that there are ∼500,000 predictions spread across
100 games. If the confidence threshold is too high, we risk losing true
positives. In Section 4.7.1, we filtered our predictions on the confidence
thresholds that yielded the best F1 score on a classwise basis. The
results of this can be seen in Table 4.13. Although the differences
are marginal, we can see that our model has a higher recall, and that
the baseline has a higher precision and F1 score. As we discussed in
Section 4.8.3, we believe that a lower precision can be accepted when
it yields a higher recall. To conclude the analysis of the use case in
Section 4.7.1, we therefore argue that our model is most suitable.

For our evaluation in Section 4.7.3, we only considered off-screen
events in-depth. It is therefore more challenging to draw any
conclusions as to what model is overall the most suited to that
particular use case. We see from Table 4.15 that for 5 classes, the
baseline is able to capture more true positives than our model. Our
model is able to capture more true positives for 3 of the classes.
Again, we think that an overall high recall (being able to capture
true positives) is the most important aspect if one were to apply
an imperfect machine learning model in these use cases, given our
arguments in Section 4.8.3. If we were to assume that the baseline is
also able to capture more true positives of the visible events, we think
it is safe to say that the baseline model is preferable to our model in

103



this use case.

4.8.9 Generalising our idea to other applications
For our evaluation in Section 4.7.1, our model was a able to achieve
a higher recall than the baseline. From our evaluation in Section
4.7.3 we saw that our model was able to achieve a higher recall
(Figure 4.24) when spotting off-screen events for Foul, Kick-off, and
Offside. By comparing Model 5.2 to the baseline in Figure 4.13, we
also saw that our model was able to achieve a higher Average-mAP
score for Throw-in, Indirect free-kick, Clearance, and Yellow card when
spotting off-screen events. We believe there is some merit to our
idea of combining machine learning models trained on three different
contextual dimensions, and we believe that this idea can be generalised
to other domains besides soccer. We believe that our architecture can
add value to a system if the activity adheres to the following general
description:

• The actions that takes place, and the order in which they take
place are defined by a strict set of rules.

• The video recording or camera capture of the activity is produced
so that some events happen off-screen.

It is important to note that if the video of the activity is able
to capture all interesting events, we deem it more fitting to focus
efforts on improving the neural networks and its more traditional
action recognition capabilities. As our experiments have shown, it is
challenging to combine the Past, Present and Future models, and it is
challenging to create the correct timestamps for the events produced
by the Past or Future models.

4.9 Retrospect of process
During the initial research-phase of this thesis, we spent a lot
of effort getting a firm grasp of the theoretical principles behind
neural networks, CNNs and other algorithms, such as PCA and Non-
maximum suppression. Therefore, our knowledge and familiarity with
the SoccerNet-v2 dataset and the NetVLAD++ model, came in large
part as a result of our experiments. This, together with our iterative
process of experimenting on each model, has in large part made our
work a situation of learning on the job, so to speak. It was quite
late in our working process that we actually learned the details of the
Average-mAP evaluation function.
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After reviewing the results in Sections 4.2 through 4.6, we would
have liked to spend more time iterating and experimenting with our
models using the evaluation metrics used in Sections 4.7.1 and 4.7.3,
namely precision, recall and F1 score. These evaluations arguably
provided more opportunities in terms of analysis, compared to the more
generalised Average-mAP method. Our experience was that it was
easier to draw conclusions in terms of how our model achieved their
results using these metrics. One side-effect of using Average-mAP
evaluation during development of our models, was that our ideas for
improvement between each model in Sections 4.2 through 4.6 were in
large part based on intuition and our understanding of soccer, and were
not as data-driven as we might have preferred.

In the beginning of our practical part of this thesis, we had
some challenges combining the NetVLAD++ model with the features
provided by Baidu [54]. In retrospect, we would have liked to have
spent some more time on this, since the result would have given us a
baseline model closer to the current state-of-the-art.

4.10 Summary
In this chapter, we have presented our experiments and results for
action spotting on the SoccerNet-v2 dataset, with a focus on spotting
off-screen events. In our initial experiments, we have evaluated the
performance achieved by our models against the performance of our
baseline, the NetVLAD++ model, using the Average-mAP function.
These experiments had varying results, but shows promise, since our
model achieved an improved score when spotting off-screen events for
some classes.

In the second part of this chapter, we have evaluated our best
performing model and the baseline using precision, recall and F1 score,
in the context of two simplified real-world applications for an action
spotting model. Overall, we showed that the baseline model achieved
a higher F1 score, but that our model shows promise, as it achieves a
higher recall for our statistics use case, and a higher recall on some
specific classes for our game commentary use case.

In the last part of this chapter, we discussed some of the shortcom-
ings, limitations and choices we have made in our work, as well as
making some concluding reflections on the performance achieved by
our models. We discussed the pros and cons of evaluating with the
Average-mAP method, or using precision, recall and F1 score. From
this, we also concluded that recall is the most important evaluation
metric for our two simplified use cases. Following this, we argued that
our best performing model is the most appropriate one for the statist-
ics use case. We also briefly presented an anomaly we found in the
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SoccerNet-v2 dataset. Towards the end of this chapter, we discussed
how our new idea of combining three models can be applied to other
domains. Lastly, we reflected on our process throughout this thesis,
and how we would have liked to have done things differently.
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Chapter 5

Conclusions

5.1 Summary

Today, the performance of models spotting soccer events are worse
when spotting off-screen events, compared to event that are visible in
the broadcast. Also, little research is explicitly focused on spotting off-
screen events in soccer.

In this thesis, we have presented an intuition for what an
understanding of context is in soccer. We have identified relationships
between soccer events and used these relationships to create three
models that, combined, could make better predictions for off-screen
events. We conducted a number of experiments, and made changes in
order to improve the performance of our models. We also compared the
performance achieved by our model, against an existing action spotting
model evaluated on the SoccerNet-v2 dataset.

After our initial experiments we evaluated best performing model
in the context of practical use cases and compared our model to the
baseline. For our statistics use case, we found that our model overall do
predict more correct events, but this comes at the cost of more incorrect
predictions as well. In our second use case, game commentary, we
compared the performance achieved by our model to the performance
of the baseline when spotting off-screen events. Although the baseline
was able to capture more true positives for most classes, we saw
promise in the fact that our model managed to outperform the baseline
for some classes when spotting off-screen events. Towards the end of
this thesis we have discussed some of the shortcomings and limitations
of our work, as well as some of the choices we have made throughout
our work. We also discussed how our new model architecture can be
applied to other activities with strict rules, where interesting events
are happening off-screen. Finally, we reflected on our working process
throughout this thesis.
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5.2 Main contributions
As described in Section 1.2, we endeavoured to develop a machine
learning model that was able to leverage the strict rules of soccer
to better spot off-screen events. In order to solve this problem, we
divided the task into objectives, which we can use to illustrate our
contributions:

• We defined an intuition for how we can introduce a sense of
context into a machine learning model, for it to better be able
to spot off-screen events in a soccer broadcast. We identified
relationships between events in soccer, and described how these
can be used as the basis for creating three dimensions of context
in soccer. From this, we discussed how the dataset can be
manipulated to train three separate models that reflect the
different dimensions of context. We designed a new model
architecture that trains and combines a Past, Present and Future
model to better predict off-screen events in soccer.

• We iteratively used the existing SoccerNet-v2 labels to create
new labels that are used to train the Past and Future models.
Furthermore, we created a data fusion layer that combines the
output of the aforementioned models to create one final model
output. In order to combine these models in the best way,
we experimented with data fusion algorithms, and implemented
sliding window algorithms with different window sizes. From
this, we found that it is challenging to combine these three
models.

• We evaluated our model using the existing Average-mAP evalu-
ation function, and compared the results to our baseline. Our best
performing model achieved a higher performance when spotting
off-screen events for Throw-in, Indirect free-kick, Clearance, and
Yellow card.

• We defined two practical use cases, statistics, and game comment-
ary for action spotting models within the soccer domain, and used
precision, recall and F1 score as evaluation metrics. Upon reflec-
tion, we argued that a higher recall is preferable until a perfect
machine learning model is developed. When used for statistics,
our model achieved a higher recall score compared to the baseline.
When used for game commentary, we only considered spotting
off-screen events. Our results showed that our model achieved a
higher precision for Corner and Yellow card, and a higher recall
for Foul, Kick-off and Offside compared to the baseline.
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These contributions serve to address the question and objectives in our
problem statement. In this thesis, we have presented new ideas for how
one can improve action spotting on off-screen events. Our results show
promise, hopefully facilitating further development of our combined
machine learning model architecture. Furthermore, we think that our
work explores an exciting challenge in computer vision as a whole,
which is understanding how a machine learning model can understand
the context within the domain it is applied to.

5.3 Future work
For future work, the time-shifting for our Past and Future models
predictions can be improved. We believe more accurate timestamps
would make those models perform better. One exciting prospect would
be to introduce the time-shifting as an element when training the
models. Including the time between events in the training of the model,
might make the model learn what time period should be used for the
time-shifting.

It would also be interesting to use a different model than
NetVLAD++ [19] to train the Past, Present and Future model. As stated
in Section 3.7, NetVLAD++ is not state-of-the-art anymore, and using
a Transformer model like Baidu research [54] might achieve better res-
ults.

As mentioned in Section 4.8.7, we were not able to train and
evaluate our models more than once. In the future, it would be
interesting to see the results of our model averaged over several runs.

We also suspect that the fusion algorithm in the fusion layer
can be improved. Introducing a weighting system to decide which
predictions are used from which model could be interesting. When
there are competing predictions between the three models (Past,
Present, Future), the one who is included in the final predictions would
come from the model that can make the most informed decision by some
metrics.

For practical uses, making use of the team-attribute from the
SoccerNet-v2 dataset could bring a new dimension to the statistics and
game commentary use cases. As we discussed in Section 4.8.4, knowing
which team scored a goal is needed to obtain the final result of a game.
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Appendix A

Model 1 - additional results

As mentioned in Section 4.2, we hypothesised that a model could
achieve better results for spotting visible events if we trained the model
using visible events only, ignoring the off-screen events. In order to
test this, we removed all off-screen events from the training data and
trained a new model using visible events only. The classwise results
for this model (Model 1) can be seen in Table A.1.
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Model 1 83.3 78.8 73.0 76.7 40.8 39.5 40.9 69.8 70.7 73.5 65.0 42.7 66.1 79.5 61.2 25.6 22.8

Baseline 86.1 73.1 73.5 76.2 40.2 38.7 40.9 69.3 70.6 72.1 64.6 39.6 65.1 80.6 60.8 25.1 30.7

Difference -2.8 5.8 -0.6 0.5 0.6 0.8 0.1 0.5 0.1 1.4 0.4 3.1 0.9 -1.1 0.4 0.5 -8.0

Table A.1: Comparing Average-mAP scores per class between Model 1
and the baseline. The Average-mAP scores are for visible events only.
A positive difference means that Model 1 performed better, a negative
difference means the baseline performed better.
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Appendix B

Model 2 - additional results

In Section 4.3, we experimented with our first multimodal approach.
We created an algorithm, detailed in Algorithm 1, that combines pre-
dictions from our Past, Future and Present models. We experimented
with different values for Tw, defined in Section 3.9.2, where Tw = 40
achieved the highest overall Average-mAP score. Table B.1 shows the
Average-mAP scores for Model 2 with Tw = 40 and the baseline.
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All
Model 2 77.2 54.4 71.3 68.9 37.5 39.3 40.5 50.4 70.3 67.0 64.5 38.9 56.2 78.6 56.6 2.7 4.8
Baseline 79.1 61.2 72.8 69.1 37.7 38.5 40.6 56.8 70.3 68.8 63.8 44.4 56.4 79.9 56.4 3.2 6.0

Difference -1.9 -6.7 -1.5 -0.2 -0.2 0.8 0.0 -6.4 0.0 -1.7 0.6 -5.4 -0.2 -1.3 0.2 -0.5 -1.2

Visible
Model 2 83.3 78.7 72.3 76.4 40.6 39.5 40.9 69.8 70.6 73.5 65.0 42.5 66.1 79.4 61.2 25.6 22.8
Baseline 86.1 73.1 73.5 76.2 40.2 38.7 40.9 69.3 70.6 72.1 64.6 39.6 65.1 80.6 60.8 25.1 30.7

Difference -2.8 5.6 -1.2 0.2 0.4 0.8 0.0 0.5 0.1 1.3 0.4 2.9 0.9 -1.1 0.4 0.5 -8.0

Off-screen
Model 2 0.0 43.1 0.0 25.1 10.8 3.5 0.2 28.8 63.2 48.8 29.3 35.9 1.3 71.9 12.3 0.0 0.0
Baseline 0.0 55.3 0.0 28.7 11.5 4.4 0.4 44.7 64.8 60.7 35.9 51.7 3.0 73.6 12.4 0.0 0.0

Difference 0.0 -12.2 0.0 -3.6 -0.6 -0.9 -0.2 -15.9 -1.6 -12 -6.7 -15.8 -1.7 -1.7 -0.2 0.0 0.0

Table B.1: Classwise Average-mAP results for Model 2 where TW = 40,
compared to the baseline. The results are split between classes and
grouped by all, visible and off-screen events. A positive difference
means that Model 2 performed better, a negative difference means the
baseline performed better.
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Appendix C

Model 3 - additional results

Model 3 was presented in Section 4.4, where we changed the label-
shifting scheme for the training data. The new label-shifting scheme
utilises the event relationships discussed in Section 3.4, which means
that the Past and Future models were only trained using relevant
events. The predictions from all three models where concatenated,
without use of any data fusion algorithm. The Average-mAP scores
for Model 3 and the baseline is presented in Table C.1.
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Model 3 68.4 24.0 67.6 69.3 36.2 39.3 40.6 42.4 57.1 57.9 61.0 25.9 54.6 77.1 53.5 2.9 6.7
Baseline 79.1 61.2 72.8 69.1 37.7 38.5 40.6 56.8 70.3 68.8 63.8 44.4 56.4 79.9 56.4 3.2 6.0

Difference -10.7 -37.2 -5.3 0.2 -1.5 0.8 0.0 -14.3 -13.2 -10.8 -2.8 -18.5 -1.8 -2.8 -3.0 -0.3 0.7

Visible
Model 3 74.7 40.0 68.4 76.7 38.9 39.5 40.9 58.7 57.8 63.3 61.6 23.8 64.1 78.2 57.7 22.8 26.1
Baseline 86.1 73.1 73.5 76.2 40.2 38.7 40.9 69.3 70.6 72.1 64.6 39.6 65.1 80.6 60.8 25.1 30.7

Difference -11.4 -33.1 -5.1 0.5 -1.3 0.8 0.0 -10.7 -12.8 -8.9 -2.9 -15.8 -1.0 -2.4 -3.1 -2.3 -4.6

Off-screen
Model 3 0.0 17.9 0.0 25.6 11.7 3.5 0.2 25.1 52.2 46.1 28.6 30.4 1.4 69.3 11.6 0.0 0.0
Baseline 0.0 55.3 0.0 28.7 11.5 4.4 0.4 44.7 64.8 60.7 35.9 51.7 3.0 73.6 12.4 0.0 0.0

Difference 0.0 -37.4 0.0 -3.1 0.3 -0.9 -0.2 -19.5 -12.6 -14.6 -7.4 -21.3 -1.6 -4.3 -0.8 0.0 0.0

Table C.1: Classwise Average-mAP results for Model 3, compared to
the baseline. The results are split between classes and grouped by all,
visible and off-screen events. A positive difference means that Model 3
performed better, a negative difference means the baseline performed
better.
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Appendix D

Model 4.1 - additional results

With Model 4.1, presented in Section 4.5, we made some changes to
the training data for the Past and Future models. We modified our
label-shifting scheme to check the two preceding/following annotations
for an annotation of a related event, instead of just the first
preceding/following annotation. This was done to account for the
fact that related events does not always directly follow/precede each
other in a game, but might have other unrelated events happening
in between. We also trained our Past and Future models on visible
events only, by discarding all off-screen annotations from the training
data used by those models. The Average-mAP scores for Model 4.1 and
Model 3 are presented in Table D.1.
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Model 4.1 71.1 20.1 71.3 69.3 37.6 39.3 40.6 40.7 57.8 57.1 56.7 27.2 53.8 76.1 54.9 2.9 6.4
Model 3 68.4 24.0 67.6 69.3 36.2 39.3 40.6 42.4 57.1 57.9 61.0 25.9 54.6 77.1 53.5 2.9 6.7
Baseline 79.1 61.2 72.8 69.1 37.7 38.5 40.6 56.8 70.3 68.8 63.8 44.4 56.4 79.9 56.4 3.2 6.0

Visible
Model 4.1 77.8 38.5 72.3 76.7 40.7 39.5 40.9 56.4 58.7 61.7 57.3 25.4 63.2 77.3 59.2 22.4 24.2
Model 3 74.7 40.0 68.4 76.7 38.9 39.5 40.9 58.7 57.8 63.3 61.6 23.8 64.1 78.2 57.7 22.8 26.1
Baseline 86.1 73.1 73.5 76.2 40.2 38.7 40.9 69.3 70.6 72.1 64.6 39.6 65.1 80.6 60.8 25.1 30.7

Off-screen
Model 4.1 0.0 14.7 0.0 25.6 10.9 3.5 0.2 24.9 50.2 47.9 26.1 30.9 1.7 66.8 11.8 0.0 0.0
Model 3 0.0 17.9 0.0 25.6 11.7 3.5 0.2 25.1 52.2 46.1 28.6 30.4 1.4 69.3 11.6 0.0 0.0
Baseline 0.0 55.3 0.0 28.7 11.5 4.4 0.4 44.7 64.8 60.7 35.9 51.7 3.0 73.6 12.4 0.0 0.0

Table D.1: Classwise Average-mAP results for Model 4.1, compared to
Model 3 and the baseline. The results are split between classes and
grouped by all, visible and off-screen events.
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Appendix E

Model 4.2 - additional results

In Model 4.2, we replaced the Present model used in Model 4.1 with
the NetVLAD++ model, trained using all events in the dataset. The
classwise Average-mAP scores achieved by this modification, and the
classwise Average-mAP scores of the baseline, can be seen in Table E.1.
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Model 4.2 69.7 44.6 71.7 69.8 39.0 39.1 40.9 47.9 57.0 55.6 52.6 34.5 53.5 76.4 54.1 4.7 3.7
Model 3 68.4 24.0 67.6 69.3 36.2 39.3 40.6 42.4 57.1 57.9 61.0 25.9 54.6 77.1 53.5 2.9 6.7
Baseline 79.1 61.2 72.8 69.1 37.7 38.5 40.6 56.8 70.3 68.8 63.8 44.4 56.4 79.9 56.4 3.2 6.0

Visible
Model 4.2 75.7 59.1 72.5 76.1 41.5 39.2 41.4 59.4 57.9 59.0 53.0 29.7 60.9 77.3 58.3 27.7 24.8
Model 3 74.7 40.0 68.4 76.7 38.9 39.5 40.9 58.7 57.8 63.3 61.6 23.8 64.1 78.2 57.7 22.8 26.1
Baseline 86.1 73.1 73.5 76.2 40.2 38.7 40.9 69.3 70.6 72.1 64.6 39.6 65.1 80.6 60.8 25.1 30.7

Off-screen
Model 4.2 0.0 38.0 0.0 35.8 11.9 3.9 0.2 37.1 51.4 48.8 31.3 41.9 2.8 70.1 12.6 0.0 0.0
Model 3 0.0 17.9 0.0 25.6 11.7 3.5 0.2 25.1 52.2 46.1 28.6 30.4 1.4 69.3 11.6 0.0 0.0
Baseline 0.0 55.3 0.0 28.7 11.5 4.4 0.4 44.7 64.8 60.7 35.9 51.7 3.0 73.6 12.4 0.0 0.0

Table E.1: Classwise Average-mAP results for Model 4.2, compared to
Model 3 and the baseline. The results are split between classes and
grouped by all, visible and off-screen events.
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Appendix F

Model 4.3 - additional results

For Model 4.3, we challenged some assumptions made when creating
Models 4.1 and 4.2. First, we trained the Past and Future models
on all events, both visible and off-screen, as this gave better results
for the Present model. Secondly, we increased the number of
preceding/following annotations to check for an annotation of a related
event. This number was increased from 2 to 10 and the process is more
detailed in Section 4.5. Table F.1 shows the classwise Average-mAP
scores for Model 4.3.
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Model 4.3 70.9 49.2 67.7 69.8 38.7 39.1 40.9 49.2 56.5 57.9 52.0 37.4 55.7 76.0 54.7 2.9 6.3
Model 4.2 69.7 44.6 71.7 69.8 39.0 39.1 40.9 47.9 57.0 55.6 52.6 34.5 53.5 76.4 54.1 4.7 3.7
Baseline 79.1 61.2 72.8 69.1 37.7 38.5 40.6 56.8 70.3 68.8 63.8 44.4 56.4 79.9 56.4 3.2 6.0

Visible
Model 4.3 76.8 62.6 68.5 76.1 41.0 39.2 41.4 60.7 57.4 62.0 52.1 32.8 63.7 77.0 59.1 24.1 28.6
Model 4.2 75.7 59.1 72.5 76.1 41.5 39.2 41.4 59.4 57.9 59.0 53.0 29.7 60.9 77.3 58.3 27.7 24.8
Baseline 86.1 73.1 73.5 76.2 40.2 38.7 40.9 69.3 70.6 72.1 64.6 39.6 65.1 80.6 60.8 25.1 30.7

Off-screen
Model 4.3 0.0 42.5 0.0 35.8 12.1 3.9 0.2 37.9 51.9 48.7 33.6 43.6 2.7 68.7 12.4 0.0 0.0
Model 4.2 0.0 38.0 0.0 35.8 11.9 3.9 0.2 37.1 51.4 48.8 31.3 41.9 2.8 70.1 12.6 0.0 0.0
Baseline 0.0 55.3 0.0 28.7 11.5 4.4 0.4 44.7 64.8 60.7 35.9 51.7 3.0 73.6 12.4 0.0 0.0

Table F.1: Classwise Average-mAP results for Model 4.3, compared to
Model 4.2 and the baseline. The results are split between classes and
grouped by all, visible and off-screen events.
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Appendix G

Model 5.2 - additional results

In Section 4.6, we discovered predictions with a negative timestamp,
which were removed in Model 5.2. We also experimented with new
fusion algorithms, using both overlapping and non-overlapping sliding
windows, as well as different values for the window size t. In Table G.1,
the classwise Average-mAP scores are presented for Model 5.2 with a
non-overlapping fusion algorithm and t = 15 seconds.

118



B
al

lo
ut

of
pl

ay

T
hr

ow
-i

n

Fo
ul

In
d.

fr
ee

-k
ic

k

C
le

ar
an

ce

Sh
ot

s
on

ta
r.

Sh
ot

s
of

ft
ar

.

C
or

ne
r

Su
bs

ti
tu

ti
on

K
ic

k-
of

f

Ye
llo

w
ca

rd

O
ff

si
de

D
ir

.f
re

e-
ki

ck

G
oa

l

Pe
na

lt
y

Ye
l.

to
R

ed

R
ed

ca
rd

All
Model 5.2 77.7 61.3 72.4 69.7 40.1 39.1 41.0 53.9 63.7 58.7 54.2 40.6 56.9 78.3 54.1 3.9 4.5
Baseline 79.1 61.2 72.8 69.1 37.7 38.5 40.6 56.8 70.3 68.8 63.8 44.4 56.4 79.9 56.4 3.2 6.0

Difference -1.4 0.1 -0.4 0.6 2.4 0.6 0.4 -2.9 -6.6 -10.1 -9.6 -3.8 0.5 -1.5 -2.3 0.7 -1.5

Visible
Model 5.2 84.0 68.5 73.3 76.1 42.5 39.3 41.4 65.0 63.8 63.1 54.4 36.8 65.0 79.3 58.5 30.8 24.7
Baseline 86.1 73.1 73.5 76.2 40.2 38.7 40.9 69.3 70.6 72.1 64.6 39.6 65.1 80.6 60.8 25.1 30.7

Difference -2.1 -4.5 -0.3 -0.1 2.3 0.6 0.5 -4.4 -6.8 -9.0 -10.1 -2.8 -0.1 -1.2 -2.3 5.7 -6.0

Off-screen
Model 5.2 0.0 57.8 0.0 35.0 13.3 3.9 0.2 43.4 63.9 48.9 45.1 46.6 2.9 72.4 12.6 0.0 0.0
Baseline 0.0 55.3 0.0 28.7 11.5 4.4 0.4 44.7 64.8 60.7 35.9 51.7 3.0 73.6 12.4 0.0 0.0

Difference 0.0 2.6 0.0 6.3 1.9 -0.4 -0.1 -1.3 -0.9 -11.9 9.2 -5.1 -0.1 -1.1 0.2 0.0 0.0

Table G.1: Classwise Average-mAP results for Model 5.2 compared
to our baseline. Model 5.2 uses a non-overlapping fusing algorithm
and t = 15s. The results are split between classes and grouped by
all, visible and off-screen events. A positive difference means that
Model 5.2 performed better, a negative difference means the baseline
performed better.
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Appendix H

Precision, recall and F1 score
per class for statistics use
case

In Section 4.7.1, we defined a use case for evaluating Model 5.2 in a
more practical context. We defined predictions as true positive, false
positive or false negative in order to calculate precision, recall and F1
score. In Table H.1, precision scores are calculated per class for Model
5.2 at different confidence thresholds. Table H.2 contains recall scores
per class for Model 5.2 at different confidence thresholds. In Table H.3,
F1 scores for Model 5.2 are calculated per class for different confidence
thresholds, while Table H.4 has the same F1 scores calculated for the
NetVLAD++ baseline.
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0.0 0.18 0.11 0.07 0.07 0.05 0.04 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00
0.1 0.26 0.20 0.14 0.14 0.13 0.22 0.29 0.12 0.40 0.11 0.13 0.11 0.10 0.12 0.28 0.00 0.21
0.2 0.32 0.29 0.23 0.24 0.20 0.34 0.45 0.17 0.62 0.19 0.25 0.37 0.20 0.23 0.46 NaN 0.00
0.3 0.38 0.37 0.35 0.38 0.29 0.48 0.62 0.22 0.79 0.28 0.38 0.70 0.33 0.35 0.60 NaN NaN
0.4 0.43 0.46 0.50 0.58 0.40 0.67 0.80 0.29 0.89 0.39 0.53 0.84 0.45 0.48 0.79 NaN NaN
0.5 0.50 0.57 0.70 0.84 0.58 0.83 0.89 0.38 0.93 0.53 0.67 0.97 0.56 0.61 0.91 NaN NaN
0.6 0.59 0.70 0.89 0.97 0.81 0.95 0.96 0.52 0.97 0.66 0.79 1.00 0.64 0.75 0.92 NaN NaN
0.7 0.72 0.84 0.99 0.98 0.97 1.00 0.99 0.69 1.00 0.78 0.89 1.00 0.70 0.90 0.95 NaN NaN
0.8 0.92 0.96 1.00 0.99 1.00 1.00 1.00 0.88 1.00 0.90 0.97 1.00 0.77 0.95 1.00 NaN NaN
0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00 0.96 0.98 1.00 0.85 1.00 1.00 NaN NaN

Table H.1: Classwise precision scores for Model 5.2, when filtering
the predictions on different confidence thresholds. Our model does not
have any Yellow then red card or Red card predictions with confidence
scores above or equal to 0.2 and 0.3 respectively, giving the value NaN.
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0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.00 0.38
0.2 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.97 1.00 1.00 0.95 1.00 1.00 0.88 NaN 0.00
0.3 1.00 1.00 1.00 0.99 1.00 0.97 0.89 1.00 0.91 1.00 1.00 0.76 0.99 0.98 0.85 NaN NaN
0.4 1.00 1.00 1.00 0.95 1.00 0.87 0.75 1.00 0.80 1.00 0.96 0.49 0.97 0.97 0.80 NaN NaN
0.5 1.00 1.00 0.98 0.79 0.98 0.71 0.54 1.00 0.68 0.99 0.87 0.33 0.91 0.93 0.73 NaN NaN
0.6 1.00 0.98 0.87 0.46 0.88 0.48 0.33 1.00 0.59 0.96 0.80 0.22 0.84 0.85 0.59 NaN NaN
0.7 0.99 0.93 0.63 0.20 0.60 0.27 0.18 0.99 0.50 0.89 0.69 0.16 0.75 0.74 0.49 NaN NaN
0.8 0.92 0.74 0.35 0.06 0.32 0.12 0.06 0.93 0.39 0.74 0.57 0.11 0.64 0.61 0.34 NaN NaN
0.9 0.49 0.39 0.10 0.00 0.10 0.03 0.01 0.76 0.26 0.50 0.35 0.04 0.44 0.35 0.17 NaN NaN

Table H.2: Classwise recall scores for Model 5.2, when filtering the
predictions on different confidence thresholds. Our model does not
have any Yellow then red card or Red card predictions with confidence
scores above or equal to 0.2 and 0.3 respectively, giving the value NaN.
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0.0 0.31 0.20 0.13 0.12 0.09 0.08 0.07 0.06 0.04 0.03 0.02 0.02 0.02 0.02 0.00 0.00 0.00
0.1 0.42 0.34 0.25 0.25 0.24 0.36 0.44 0.21 0.57 0.19 0.24 0.20 0.17 0.21 0.44 0.00 0.27
0.2 0.49 0.45 0.38 0.39 0.34 0.51 0.61 0.29 0.76 0.32 0.40 0.53 0.34 0.38 0.60 NaN 0.27
0.3 0.55 0.54 0.52 0.55 0.45 0.65 0.73 0.36 0.85 0.44 0.55 0.73 0.49 0.52 0.71 NaN NaN
0.4 0.60 0.63 0.67 0.72 0.58 0.76 0.77 0.45 0.84 0.57 0.68 0.62 0.61 0.64 0.80 NaN NaN
0.5 0.67 0.73 0.82 0.81 0.73 0.76 0.67 0.55 0.78 0.69 0.75 0.49 0.69 0.74 0.81 NaN NaN
0.6 0.74 0.81 0.88 0.63 0.85 0.64 0.50 0.68 0.73 0.78 0.80 0.36 0.72 0.80 0.72 NaN NaN
0.7 0.84 0.88 0.77 0.34 0.75 0.42 0.30 0.81 0.67 0.83 0.78 0.28 0.73 0.81 0.65 NaN NaN
0.8 0.92 0.83 0.52 0.11 0.49 0.22 0.11 0.90 0.56 0.81 0.72 0.19 0.70 0.74 0.51 NaN NaN
0.9 0.66 0.56 0.18 0.00 0.18 0.06 0.01 0.85 0.42 0.66 0.51 0.07 0.58 0.52 0.29 NaN NaN

Table H.3: Classwise F1 scores for Model 5.2, when filtering the
predictions on different confidence thresholds. Our model does not
have any Yellow then red card or Red card predictions with confidence
scores above or equal to 0.2 and 0.3 respectively, giving the value NaN.
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0.0 0.38 0.24 0.16 0.15 0.11 0.08 0.07 0.07 0.04 0.04 0.03 0.03 0.03 0.02 0.00 0.00 0.00
0.1 0.56 0.52 0.36 0.37 0.36 0.36 0.44 0.45 0.57 0.32 0.33 0.25 0.26 0.31 0.44 0.00 0.27
0.2 0.66 0.68 0.56 0.54 0.52 0.51 0.61 0.59 0.76 0.48 0.52 0.59 0.41 0.49 0.60 NaN 0.27
0.3 0.74 0.80 0.72 0.72 0.67 0.65 0.73 0.69 0.85 0.61 0.66 0.73 0.53 0.61 0.71 NaN NaN
0.4 0.80 0.88 0.85 0.81 0.79 0.76 0.77 0.77 0.84 0.72 0.75 0.61 0.62 0.70 0.80 NaN NaN
0.5 0.87 0.91 0.89 0.77 0.87 0.76 0.67 0.82 0.78 0.81 0.78 0.49 0.69 0.78 0.81 NaN NaN
0.6 0.93 0.87 0.81 0.54 0.83 0.64 0.50 0.87 0.73 0.80 0.80 0.36 0.73 0.82 0.72 NaN NaN
0.7 0.93 0.79 0.65 0.30 0.66 0.42 0.30 0.90 0.67 0.78 0.78 0.28 0.73 0.80 0.65 NaN NaN
0.8 0.80 0.66 0.43 0.11 0.44 0.22 0.11 0.91 0.56 0.69 0.72 0.19 0.70 0.72 0.51 NaN NaN
0.9 0.49 0.47 0.15 0.00 0.18 0.06 0.01 0.85 0.42 0.56 0.51 0.07 0.58 0.51 0.29 NaN NaN

Table H.4: Classwise F1 scores for our baseline, when filtering the
predictions on different confidence thresholds. The baseline does not
have any Yellow then red card or Red card predictions with confidence
scores above or equal to 0.2 and 0.3 respectively, giving the value NaN.
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