
Middleware Mobility Services for
Self-adaptive Multimedia Processing in
Ubiquitous Computing Environments

Francisco Javier Velázquez-García

April 30, 2019

Thesis submitted for the degree of Philosophiae Doctor

Abstract

The introduction of mobile computing devices made it possible for users to bring
their running applications into different physical environments, sometimes sur-
rounded by other devices with different multimedia capabilities. However, de-
spite the advances in distributed systems and mobile computing, the development
of multimedia applications that can use a changing set of heterogeneous devices
seamlessly, continues to be very difficult. We identify two main reasons for this
difficulty. First, the inherent unpredictability of changes in the user environment,
the application runtime environment, and network conditions. Second, typical
inter-process communication (IPC) mechanisms, such as the Berkeley Unix sock-
ets or the standardized Portable Operating System Interface (POSIX) shared mem-
ory, are not designed for mobile applications.

For users to take advantage of the changing set of surrounding devices, the
applications (or parts of them) should be present in each device. However, pre-
installing and configuring all applications in all devices the users might want to
use, results impractical, especially if the receiving devices change frequently. Al-
ternatively, seamless fine-grained application mobility can enable users to move
their applications on demand, as the users encounter new devices.

This thesis presents research to ease the development of multimedia appli-
cations that can move to different devices in a fine-grained and seamless man-
ner, while preserving multimedia sessions that produce or consume multimedia
streams, as in video conferencing applications. We aim to develop components
for a middleware that is based on an autonomic adaptation loop, and a framework
that offers an Application Program Interface (API), which embodies an abstract
design for mobile multimedia applications adhering to the ubiquitous computing
paradigm.

The middleware is designed to use multi-dimensional utility functions that al-
low users and developers of multimedia components to do a preference elicitation,
and select the multimedia pipeline configuration that fulfills the preference of the
user in a given context. The architectural constraints applied to modeled pipelines
as graphs mitigate the combinatorial explosion when autonomously creating the
variability search space of pipelines. This approach enables multimedia applica-
tions to apply adaptation techniques unforeseen at design time.

We also provide an API for two IPC mechanisms with mobility services. The
first service allows Berkeley Unix sockets to migrate between devices; this service
uses commodity hardware, e.g. a smartphone, as a proxy to hide the mobility of
endpoints from legacy applications. The second service shares the data needed
by distributed components among collaborative devices; this service aggregates
the available CPU and bandwidth resources by implementing a publish-subscribe
(PUB/SUB) mechanism that enables devices to share the data that they are already
consuming.

The proposed services are evaluated by applying analytical and experimental
research methods including testing of prototypes. In conclusion, the resulting
services at middleware-level are a step forward to detach multimedia applications
from the host device at run time, and move them to heterogeneous devices in a
seamless and transparent manner. Further research in this direction will enable
users to take full advantage of the constantly changing set of multimedia-capable
devices that surround them.

ii

Acknowledgments

I am grateful with many people and organizations that have made this PhD thesis
possible. Everyone here named helped me in one way or another. I would like to
thank my family, for being supportive of all what I want to do. Specially moti-
vating is my father’s unbreakable willpower for education and knowledge, as the
foundation for progress in his life, despite all the adversities he faced during his
school time in the poor countryside of Mexico, and while continuing his education
in Mexico City without any financial or moral support from his family.

I would like to thank my supervisors, Prof. Frank Eliassen, Dr. Håkon Stens-
land Kvale, and Prof. Pål Halvorsen for all their mentorship, advice and feedback.
The advice and support from them made possible the continuation and comple-
tion of this thesis. I would like to thank the master students I co-supervised:
Håvard Andersen Stigen, Haakon Wilhelm Ravik, Goran Karabeg, Andič, and
Tomas Gryczon. They helped me to improve my understanding of the topics we
discussed.

I would like to thank Dr. Kristoffer Robin Stokke for helping me to see alter-
natives when I was stuck. My stay in Simula Research Laboratory was short, but
I am very thankful to everybody in the CASPER research group for sharing their
knowledge, working culture, and motivating me to finish this dissertation. Espe-
cial thanks to Dr. David Hayes and PhD candidate Jørgen Dokken for the fruitful
discussions on mathematics, Dr. Petra Filkukova, and master students Hugo Wal-
lenburg, and Asad Sajjad Ahmed. I am also grateful with Lena Zhuk for giving
me all the needed emotional and moral support during the most difficult years of
my PhD.

I would like to thank the GStreamer community for all what I have learned
from them about multimedia processing and values of Free Libre Open Source
Software (FLOSS), and the GStreamer Foundation for financing my visit to the
hack festival in Sweden on the Spring of 2018. I am grateful with Rubén Darío
Romero y Cordero Gavilanes for introducing me to Varnish Software, and being a

iii

supportive colleague and friend for many years. Varnish Software employed me in
a part-time position that provided me the flexibility and financial support after my
research funding finished. I am thankful to my colleagues in Varnish Software for
constantly motivating me to finish this dissertation. Discussions on mathematics
with Dr. Pål Hermunn Johansen were of great help, as well as the agreements
with Espen Braastad on flexibility of working hours. I also would like to thank
my current employer Make.TV for the time flexibility to prepare the defense of
my thesis.

I would also like to express my gratitude to Prof. Thomas Plagemann and
Dr. Ellen Munthe-Kaas for giving me the opportunity to become a PhD student.
From the DMMS research group, I would like to thank my colleagues Fabrice
Starks for the many hours of philosophical discussions on what means to be a
PhD student, Stian Sjøli, Hans V. Hansen, Piotr Strebny, Piotr Kamisińkski, and
Azadeh Abdolrazaghi. I also would like to thank Vasileios Mavroeidis from the
PSE research group for the many interesting discussions and for borrowing his
desk for months.

iv

Contents

I Overview 1

1 Introduction 3
1.1 Motivation and Background . 3
1.2 Problem Statement . 6
1.3 Scope . 7
1.4 Research Methods . 9

1.4.1 Informational Phase . 9
1.4.2 Propositional and Analytical Phases 10
1.4.3 Evaluative Phase . 10

1.5 Main Contributions . 11
1.6 Thesis Structure . 13

2 Use Cases, Assumptions and Requirements 15
2.1 Use Case – Video Conferencing in Transit 15
2.2 Assumptions and Out of Scope 16
2.3 Requirements . 17

2.3.1 Functional requirements 18
2.3.2 Non-functional requirements 20

2.4 Summary . 21

3 Background and Related Work 23
3.1 Variability of Multimedia Presentations 25
3.2 Adaption of Multimedia Presentations 25
3.3 Decision-making for Adaptation of Multimedia Presentations . . . 28
3.4 Context-awareness . 29
3.5 Detachment of Applications from Host Devices 30
3.6 Mobile IPC Mechanisms for Processes in Different Devices 32
3.7 Data Sharing for Distributed Mobile Multimedia Applications . . 32

v

3.8 Reduction PIM Overhead in Multi-device Applications 33

3.9 Scalability Issues in Ubiquitous Computing 34

3.10 Summary . 34

4 Summary of Research Papers and Author’s Contributions 35
4.1 TRAMP and MAPE-K . 39

4.2 P1 – Dynamic Adaptation of Multimedia Presentations for Video-
conferencing in Application Mobility 41

4.3 P2 – Autonomic Adaptation of Multimedia Content Adhering to
Application Mobility . 43

4.3.1 Multi-dimensional Utility Functions 46

4.3.2 Examples of Multi-dimensional Utility of Pipeline Variant 49

4.4 P3 – DAMPAT: Dynamic Adaptation of Multimedia Presentations
in Application Mobility . 50

4.5 P4 – SOCKMAN: Socket Migration for Multimedia Applications 53

4.6 P5 – Efficient Data Sharing for Multi-device Multimedia Appli-
cations . 55

4.7 P6 – Migration of Fine-grained Multimedia Applications 56

4.8 Related Master Theses . 58

4.8.1 M1 – A Real-Time Video Retargeting Plugin for GStreamer 59

4.8.2 M2 – Negotiation and Data Transfer for Application Mo-
bility . 59

4.8.3 M3 – Adaptation trigger mechanism 60

4.8.4 M4 – Component-based multimedia application for fine-
grained migration . 61

4.8.5 M5 – User Space Socket Migration for Mobile Applications 62

4.9 Summary . 63

5 Conclusions 65
5.1 Summary of Main Contributions 65

5.2 Critical Review and Open Issues 66

5.3 Future Work . 67

5.4 Future Research . 68

vi

II Research Papers 71

6 P1 – Dynamic Adaptation of Multimedia Presentations for Videocon-
ferencing in Application Mobility 73
6.1 Introduction . 74

6.2 Design . 76

6.2.1 Multimedia pipeline model 77

6.2.2 Plan Phase . 78

6.2.3 Execution Phase . 80

6.3 Implementation . 80

6.3.1 Filter components per functional stage 81

6.3.2 Linking connectors . 81

6.3.3 Dynamic reconfiguration 81

6.4 Evaluation . 82

6.4.1 Plan phase . 83

6.4.2 Execution phase . 84

6.5 Related work . 84

6.6 Conclusions . 86

7 P2 – Autonomic Adaptation of Multimedia Content Adhering to Ap-
plication Mobility 87
7.1 Introduction . 88

7.2 The DAMPAT system . 90

7.2.1 Monitor, Analyze, Plan, and Execute (MAPE) phases . . . 90

7.2.2 Phase 1: Monitor . 91

7.2.3 Phase 2: Analysis . 92

7.2.4 Phase 3: Plan . 93

7.2.5 Phase 4: Execute . 99

7.3 Evaluation . 100

7.3.1 Plan phase . 101

7.3.2 Execution phase . 102

7.4 Related Work . 103

7.5 Conclusions . 104

vii

8 P3 – DAMPAT: Dynamic Adaptation of Multimedia Presentations in
Application Mobility 105
8.1 Introduction . 106
8.2 Design and implementation . 107

8.2.1 Multimedia pipeline model 108
8.2.2 Control of combinatorial growth due to compositional and

parameterization variability 109
8.2.3 Control path combinations 110
8.2.4 Variant selection . 111
8.2.5 Linking connectors . 112

8.3 Evaluation . 113
8.3.1 Time spent to create entire search space 115
8.3.2 Variant selection . 116

8.4 Related work . 117
8.5 Conclusions . 117

9 P4 – SOCKMAN: Socket Migration for Multimedia Applications 119
9.1 Introduction . 120
9.2 Requirement Analysis . 121
9.3 Design . 123

9.3.1 Vertical or Horizontal Handover 123
9.3.2 Placement of SOCKMAN 123
9.3.3 Connection Handover Technique 124
9.3.4 Legacy Application Support 125
9.3.5 Connection (Re-)establishment 127
9.3.6 Architecture . 127
9.3.7 Socket Migration Scenario 129

9.4 Evaluation . 131
9.4.1 Socket Migration Time 131
9.4.2 Latency Overhead . 132
9.4.3 Throughput . 133
9.4.4 CPU Load . 134
9.4.5 Summary . 135

9.5 Related Work . 135
9.6 Conclusions . 137
9.7 Acknowledgment . 138

viii

10 P5 – Efficient Data Sharing for Multi-device Multimedia Applications139
10.1 Introduction . 140
10.2 Related Work . 141
10.3 Design . 143
10.4 Implementation . 149
10.5 Evaluation . 150
10.6 Conclusions . 153

11 P6 – Migration of Fine-grained Multimedia Applications 155
11.1 Introduction . 155
11.2 Design . 157
11.3 Status and Challenges . 158

III Appendix 161

A Errata 163

B Additional Use Cases 165
B.1 Augmented Reality . 165
B.2 Travel Assistance . 166
B.3 Mobile Application between Fixed Devices 166
B.4 Video Conferencing at Home . 166
B.5 Video Conferencing in Transit and Modality Change 166

ix

List of Figures

3.1 Types of adaptation of multimedia data 26
3.2 Types of media modalities and their adaptation types 27

4.1 Overview of research work and proposed architecture as middleware 38
4.2 Proposed solution as distributed autonomous adaptation loop . . . 40
4.3 Plot on time spent to build multimedia pipelines 43

6.1 Graph abstraction of multimedia pipeline before adaptation 77
6.2 Graph abstraction of multimedia pipeline after adaptation 78
6.3 Example of functional stages . 79

7.1 Structure of MAPE-K control loop 91
7.2 Multigraph representation of multimedia pipelines 94
7.3 Graph abstraction of multimedia pipeline before and after adaptation 95
7.4 Example of functional stages and functional path 96
7.5 Contextual multimedia pipeline 99

8.1 Functional stage {s}i, and paths w1, w′
1 and w2 109

9.1 Socket migration using proxy-based forwarding. 125
9.2 Migration scenario using proxy-based forwarding tunnels 126
9.3 The SOCKMAN architecture consisting of four modules. 127
9.4 Data flow path in SOCKMAN using three devices. 128
9.5 Message passing during socket migration 130
9.6 CPU load of SOCKMAN and proxy 134

10.1 Example of data flow in a video conferencing application 141
10.2 Example of collaboration in data sharing 145
10.3 Data sharing system overview 146
10.4 Coordinator Interfaces . 147

xi

10.5 Data sharing packet layout . 148
10.6 Control traffic example with one producer and two consumers. . . 148
10.7 Experiment setup for data propagation 151

A.1 Errata of Figure 6.2 . 163
A.2 Errata of Figure 7.3 . 164

xii

List of Tables

1.1 The space of networked applications 8

3.1 Traditional process migration and multimedia application mobility 31

4.1 Overview of research work and research questions 36
4.2 Enforcement of functional path combinations and BRGC 45
4.3 Scenarios for assignment of utilities 49
4.4 Example of automatic distribution of priorities 50
4.5 Overall utility of a pipeline for a given context and priority 50

6.1 Experiments of time in Plan phase 83
6.2 Experiments of time in Execution phase 84

8.1 Levels of functional stages . 109
8.2 Response time to create one pipeline variant 114
8.3 Reduction of compositional variability 115

9.1 Measurements related to data loss in SOCKMAN 132
9.2 Related work of SOCKMAN . 135

10.1 Application Component API . 147
10.2 Hardware and software used in testbed 150
10.3 Latency of data segments from different consumers 151
10.4 Delay from different producers and consumers 152
10.5 Application Overhead . 152

xiii

Glossary

application mobility mobility type where users can move their running applica-
tions across multiple heterogeneous devices in a seamless manner. i, xv,
xix, 17–19, 41, 42, 44, 62, 75, 87, 105–107, 117

architectural constraint design knowledge from the application developer with
the purpose to reduce combinatorial growth by limiting configuration vari-
ability. i, 78, 108–110

calm computing approach to ubiquitous computing, where computing moves
back and forth between the center and periphery of the user’s attention
[198]. 18

compositional variability alternatives in components (v ∈ V), input (i ∈ v.I),
and output (o ∈ v.O) connectors. 78, 108

content-based action of transforming content to adapt to device capabilities. 74,
77, 106

context any information that characterizes the user surroundings, preferences,
application running environment, or network conditions, which impacts the
functional and non-functional requirements of an application. i, xix, xx,
xxiii, xxvi, 4, 6, 16–19, 36, 45–47, 61, 67

context-aware extensive and continuous use of any information that character-
izes the user surroundings or application running environment, which im-
pacts the processing of multimedia presentations. 4, 19, 76, 86, 107, 117

destination device host computer device where an application resumes execution
after application mobility is done. 8, 102

device host computer where an application or process runs. xvi, xxiii, 3, 8

xv

distributed shared memory data communication abstraction where memory seg-
ments are shared amongst a set of devices. 141

everyday device commodity devices including smartphones, desktop computers,
tablets, and smart TVs. 107

fidelity application-specific output quality. 74, 77, 106

framework a set of services provided by an API that embodies an abstract design
for solutions to a number of related problems in application mobility. i, 7,
9, 10, 17, 39, 44, 58, 63, 65

functional path in graph theory terms, path is an abstraction of the sequentially
connected components that process a stream to do a certain task, e.g., cap-
ture video from a webcam and send it over the network. 11, 44, 45, 95

functional stage group of components by functionality. 11, 44, 45, 52, 79, 109

GStreamer open source multimedia framework that provides a library for con-
structing graphs of media-handling components. 11, 43, 45, 59, 75, 81, 83,
105–108, 112–115, 117, 118

GStreamer element basic building block for a media pipeline in the GStreamer
multimedia framework, e.g. encoder or video sink. In this thesis, a GStreamer
element is equivalent to a specific implementation of a multimedia pipeline
component. 17

I/O input or output communication between a computer device and its users,
other devices (via a network) or the outside world. The hardware used as
interface to do this is called peripheral. 4, 8, 12, 16, 17, 27, 29–31, 33, 42,
52

JIT Just In Time compiler. 17

K knowledge created and used by the phases in the Monitor, Analyze, Plan, and
Execute (MAPE) adaptation control loop. 50, 51, 58, 90

locality data that has been accessed recently has a temporal locality, data in a
near memory address has a spatial locality. 8, 145

xvi

middleware software that mediates between an application program, and hosting
operating system or a network, it manages the interaction across heteroge-
neous computing platforms. i, xviii, 4, 7, 10, 12, 15, 17, 19, 39, 44, 45, 51,
54, 56–58, 63, 65

mobile application applications whose processes can migrate between devices.
i, 8, 11, 51, 59, 62

modality of a particular sense from the sensory system, as senses of sight, hear-
ing, taste and touch. 4, 5, 16, 74, 75, 77, 106, 108–112, 114, 115, 117

multimedia any collection of data including text, graphics, images, video (mov-
ing images presented as a sequence of static images), audio, tactile modali-
ties or any system for processing or interacting with such data. 26

multimedia application application that processes data in one or more distinct
multimedia modalities. i, 3, 51, 87

multimedia content something (e.g. a person, object or scene) selected by, e.g.
an artist, a photographer or multimedia developer, for multimedia represen-
tation . 26, 51, 66

multimedia pipeline sequentially connected components that process multime-
dia presentations. i, 42, 52, 66, 67, 75–77, 105–108, 117, 163, 164

multimedia presentation multimedia content composed by a collection of me-
dia. xvii, 7, 26, 31, 51, 65, 74, 75, 105–107, 117

NaN an IEEE floating point representation used to detect an unwanted pipeline
variant. 47, 50

NP Nondeterministic Polynomial time, property of computational decision prob-
lems solvable by a nondeterministic Turing Machine in a number of steps
that is a polynomial function of the size of the input (see [98] for full defi-
nition). xvii

NP-hard a property of computational search problems, solving an NP-hard prob-
lem in polynomial time would make it possible to solve all problems in class
NP in polynomial time (see [98] for full definition). 11, 25, 42, 66, 85, 89

xvii

POSIX A set of IEEE standards designed to provide application portability be-
tween Unix variants. IEEE 1003.1 defines a Unix-like operating system
interface. 12

paradigm an example, model or pattern containing the assumptions, ways of
thinking, and methodology that are commonly accepted and shared by mem-
bers of a discipline, group or scientific community. i, xix, 3, 4, 23, 39, 65,
73, 87, 105, 140

parameterization variability different configuration of pipeline components due
to the properties of components themselves (v.P), properties of input (i.P)
and output (o.P) connectors, and properties of modalities (m.P). 78, 108

path sequence of successive edges through a graph (where a vertex is never vis-
ited more than once); abstraction of the sequentially connected components
to process one multimedia stream. 110

platform 1. Support software for a particular activity, as in “This program pro-
vides a platform for application mobility”. 2. Specific combination of hard-
ware, operating system or compiler, as in “this middleware manages the
interaction between applications and heterogeneous computing platforms”.
xvii, 4, 21

preference elicitation process where the autonomic manager clearly defines the
utility of a pipeline variant based on the preferences of the user and devel-
oper of pipeline component. i, 46

process migration technique whereby an active process is moved from one ma-
chine to another, while continuing normal execution and communication.
58

PUB/SUB publish-subscribe pattern originally proposed in [145]. ii, 12, 25, 56,
66

retargeting process of adapting an image or video from one screen resolution to
another to fit different displays. 74, 77, 106

safety predicate every component in a multimedia pipeline is always able to pro-
cess data in synchrony to their reference clock, and the current configuration
provides a high enough utility to the user. 18, 19, 61

xviii

SeamCrop retargeting of videos which combines cropping and seam carving
(content-aware image resizing). 29, 59

self-adaptive application that reacts to changes in the context by changing its
safety predicate accordingly. 18, 41, 44, 51, 65

self-awareness application that is able to monitor and analyze its context. 18, 19,
42, 44, 65

self-configuration application that reacts to context changes, and change the con-
nections or components of the application, to restore or improve the safety
predicate. 18, 41, 44, 65

self-managing ability to make decisions w.r.t. context changes to maintain, im-
prove or restore the safety predicate without human intervention. 44

self-optimization application that improves (maximize or minimize) the value of
a predefined objective function. 18, 19, 41, 44, 65

service work performed or offered by an entity, such a server or a software library.
ii, 3, 4, 15, 19, 20, 65

source device host computer device where an application executes before appli-
cation mobility starts. 7, 8

stub a routine that does not need to contain any code, but it is only present to
prevent errors when linking a program with a run-time library. 68

subgraph subgraph that represents one multimedia pipeline, g ∈ G′. 111

system the entire computer system, including I/O devices, the supervisor pro-
gram or operating system and possibly other software. 6, 8, 9, 15, 16, 166,
167

ubiquitous computing paradigm where computing is made to appear anywhere
and anytime, meaning that users, applications and devices are nomadic, and
spontaneous interactions are a norm. i, 3, 7, 11–13, 18, 39, 62, 65, 66

utility degree to which a particular configuration variant has the potential to sat-
isfy the user’s needs. The value of a utility is a real number between zero
(worse) and one (best). xx, 46

xix

peripheral any part of a computer device other than the CPU or working mem-
ory, e.g., cameras, monitors, speakers, microphones, keyboards, joysticks,
mice, disks, printers, scanners, to mention just a few [98]. xvi, 5, 15–17,
27, 29, 30, 33, 58

utility function mathematical relation such that each variation in the context of
the application and the user is associated with a real number between zero
and one. 46

xx

Acronyms

API Application Program Interface. i, ii, xvi, 5, 7, 12, 17, 19, 38, 39, 44, 45, 51,
54–59, 62, 65, 67, 127, 137, 140, 142, 146, 150, 153, 156, 165

BRGC Binary Reflected Gray Code. 45, 80, 97, 110, 116

CORBA Common Object Request Broker Architecture. 33

DAMPAT Dynamic Adaptation of Multimedia Presentations in Application Mo-
bility. 39, 44–46, 51–53, 60, 87, 88, 90, 104, 105, 107, 108, 110, 111, 113,
115–118

DSM Distributed Shared Memory. 33, 141–144, 158

DSPL Dynamic Software Product Line. 34, 50, 51, 76, 105, 107

ECA event-condition-action. 98, 103

GUI Graphical User Interface. 166

HTPC home theater PC. 3, 16, 18, 30

HW hardware. 150–152

I/O Input/Output. xvi, 4, 8, 12, 16, 17, 27, 29–31, 33, 42, 52, 74, 78, 89, 90, 92,
101, 106, 120, 155, 157

IBM International Business Machines. 23

IP Internet Protocol. 7, 54, 55, 120, 121, 124–131, 136, 137, 156, 158

IPC inter-process communication. i, ii, 12, 24, 36, 38, 54, 57, 62, 66, 150

xxi

JIT Just In Time. xvi, 17, 39, 58

JVM Java Virtual Machine. 33, 58

K Knowledge. xvi, 23, 39, 40, 50, 51, 58, 90

MAPE Monitor, Analyze, Plan, and Execute. xvi, 23, 39, 40, 42, 44, 50, 51, 58,
61, 63, 76, 90, 105, 107, 108

NaN Not-a-Number. xvii, 47, 50

NP nondeterministic polynomial type. xvii

PDA Personal Digital Assistant. 16

PIM Personal Information Management. 12, 24, 33, 36, 37, 41, 57, 60

POSIX Portable Operating System Interface. i, xviii, 12, 56, 67, 127, 137, 150

PUB/SUB publish-subscribe. ii, xviii, 12, 25, 56, 66

QoE Quality of Experience. 17, 18, 20

QoS Quality of Service. 17, 18, 68

SOCKMAN SOCKet Migration for multimediA applicatioNs. 32, 55, 67, 119,
121, 123, 131, 137, 159

TCP Transmission Control Protocol. 7, 11, 54, 57, 62, 66, 120, 124, 125, 128–
130, 133–137, 150

TRAMP TRAMP Real-time Application Mobility Platform. 39, 57, 58, 120,
129, 153, 156, 157

UDP User Datagram Protocol. 7, 11, 54, 57, 62, 66, 120, 121, 125, 126, 128,
131, 133, 136, 137, 150, 158

VoD Video on Demand. 59

xxii

Symbols

α response time spent to create one pipeline with functional stages. 116

β time spent to filter vertices in functional stage. 115, 116

C1 first consumer of data. 151, 152

C2 second consumer of data. 151, 152

C3 third consumer of data. 151, 152

DL average data loss. 132

E set of edges that represents the connection or pipe between the output and input
connectors of two pipeline components. 77, 94, 97, 108, 111

ε weight of property p ∈ P . This symbol is equivalent to we. Rank, priority and
importance are synonyms of weight in this thesis. xxvi, 47, 48, 50

G multigraph that represents all possible multimedia pipelines in a host device.
77, 94, 108

Γ set of paths {w}i for the same modality. 110

g subgraph that represents one multimedia pipeline, g ∈ G′. xxiv, 45, 46, 97–99

G′ set of subgraphs that represents one or many multimedia pipelines for a given
context, G′ ∈ G. xxiv, 45, 46, 97, 111

g.P set of properties in a subgraph that represents a pipeline. 46

g.p variable that contains value of property in subgraph. xxv, 47, 98, 111

xxiii

H all weighted utility elements h. 47, 48

h weighted utility element τ . xxiv, 47, 48

i.P parameterization variability of input connector i. 46, 78, 95

i index of element in a set, or input connector i ∈ v.I . xi, 109, 110

i input connector of component (i ∈ v.I). xxiv

k number of paths for the same modality, defined by application developer. 101,
110

Λ multi-dimensional utility. 48, 49

υ multi-dimensional utility. 48–50

ld direct data transfer from multimedia application to legacy application. 132

lp data transfer from mobile multimedia application to legacy application through
proxy. 132

M set of modalities {m}i. 97, 108, 114

m modality of stream, e.g., audio, video or text, m ∈M . 108, 110

m.P parameterization variability of modality. 46, 78, 95

n number of independent variables that constitute the dimensional space of the
overall utility function of a pipeline. 48, 49

n maximum index number of set of graphs g ∈ G′. 97

n cardinality of set of paths Γ for the same modality. 101, 110, 116

n network delay. 152

R set of the real numbers. 46, 48, 49

η time needed to create all paths {w}i. 116

O order of computational complexity, number of steps or arithmetic operations,
i.e., big O notation. 101, 110, 116

xxiv

o application (middleware) overhead. 152

o.P parameterization variability of output connector. 46, 78, 95

PL minimum number of packet loss. 132

P probability of additional packet loss. 132

P original producer or source of data. 151, 152

p property of multimedia pipeline. 46

P set of properties in a pipeline. 46, 80, 94, 97, 98

σ weighted utility function. 47

s functional stage. 109, 114, 115

Θ all functions θ to get the weighted utility. 47, 48

t total producer-to-consumer delay. 152

T all possible instantiation of utility elements. xxv, 46, 49

τ instantiation of utility element of T . xxiv, 46–48

θ function to get weighted utility. xxv, 47

tr time to reinstate the socket state. 131

ts time to export the socket state. 131

Υ overall weighted multi-dimensional utility. 48, 112

µ utility function. 46, 47

ut instantiation of one dimensional utility function that takes two arguments: u.p
and g.p. 47, 98, 111

u user variable that contains preferred values of properties p. 47, 111

u.p variable that contains value of preferred property specified by the user, or
measured value from user’s physical environment. xxv, 47, 98, 111

xxv

u.p.we priority of property (u.p) given by the user. 98, 111

V set of vertices v that represents components of a pipeline. 77, 94, 108, 115

v.P parameterization variability of vertices. 46, 78, 95

v vertex that represents a pipeline component, v ∈ V . xv, xxiv, xxvi, 97

W set of paths. 45, 97, 110, 116

w sequence of connected components that process one stream, w ∈ W , i.e., func-
tional path. 45

we weight of property p ∈ P . This symbol is equivalent to ε. Rank, priority and
importance are synonyms of weight in this thesis. xxiii, 47, 98

X representation of all possible instantiated context x. 46, 47

x instantiation of context. 46

xxvi

Part I

Overview

1

Chapter 1

Introduction

In this chapter, we establish the context of the thesis. Section 1.1 explains the
motivation and background. Section 1.2 states the problem statement and the
research questions. Section 1.3 describes the aim of the thesis and application
domains targeted in this work. Section 1.4 outlines the research methods applied
in this thesis, and research phases. Section 1.5 describes the contributions of this
thesis and summarizes the conclusions based on results from research publications
included in Part II. Section 1.6 describes the structure of this thesis.

1.1 Motivation and Background

Since the origins of electronic computers, there has been a constant development
of multimedia-capable devices, multimedia applications, and Internet services.
The introduction of mobile computing devices allowed users to bring their running
applications on the move. Consequently, the users’ environment, including the
surrounding devices, change more often during one multimedia session.

In this context, one of the main motivations for users to use different devices
during a multimedia session is precisely the difference in characteristics among
the devices, e.g. the larger display of a home theater PC (HTPC), or the mobility
of a smartphone despite its smaller display or less available bandwidth. However,
typical applications continue to be bound to the device where the application starts
execution, and just a few applications implement multimedia session management
services.

Ubiquitous computing is the paradigm where computing is made to appear
anywhere and anytime, meaning that users, applications and devices are nomadic,

3

and spontaneous interactions are a norm. This paradigm enhances computer use
by making many computers available throughout the physical environment while
making them effectively invisible to the user. Ubiquitous computing has been
discussed since the beginning of the nineties [196], but its vision can be traced
back to the mid-1970s [166]. However, we have not yet managed to fully realize
it.

Pervasive computing takes ubiquitous computing as a prerequisite and empha-
sizes (1) mobile data access [41, 143], (2) the mechanisms needed for supporting
a community of nomadic users [28, 110] including context-awareness [143], and
(3) seamless integration across heterogeneous platforms. Many efforts within the
pervasive computing community, distributed systems, and mobile computing have
been done to create frameworks [176, 170, 125, 123, 120, 108, 78, 76, 64, 18, 11,
203, 86, 110], platforms [163, 188], middleware solutions [92, 63, 79, 28, 162,
148], programming languages [25, 109], services [149, 43], and protocols [127,
46, 189].

Despite these efforts, the development of applications adhering to the ubiq-
uitous computing paradigm continues to be hard. This situation will continue
as long as developers continue to view mobile devices as mini-desktop computers,
applications as programs that run on these mini-desktops, and the application con-
text as a static virtual space where a user enters to perform a task and stays there
until the task is finished [17]. Therefore, we research how to provide mechanisms
to ease the development of mobile multimedia applications that can be separated
or joined during a multimedia session. In this way, the applications can use de-
vices with different Input/Output (I/O) communication interfaces to produce or
consume multimedia content in the modality (e.g. audio, video, text, or tactile)
that is supported by the device, and preferred by the user in a given context. This
context includes the user physical environment, user preferences, application run-
ning environment, and network conditions.

Mobility in ubiquitous computing can be both: physical, related to users or
devices; or logical, related to processes or data. We argue that physical and logical
mobility has to be supported by applications. For this, we suggest that multimedia
applications should provide services for (1) user mobility to detach users from
devices, (2) fine-grained application mobility to detach applications from devices
in a fine-grained manner, and (3) host mobility to detach devices from the network
access point used to establish a connection.

Solutions for user mobility can be traced back to the late 1950s when John
McCarthy described timesharing systems, and user mobility was supported by thin

4

stateless client terminals [185]. This approach, however, requires the application
to be pre-installed in a much broader variety of devices today. Moreover, if the
application (or parts of it) moves to heterogeneous devices, or if the mobile device
changes its point of attachment between networks, the application will need to
adapt in many ways.

To the best of our knowledge, modern multimedia applications and Web ser-
vices provide partial solutions to achieve user, application, and host mobility
seamlessly. For example, popular multimedia applications, such as YouTube or
Spotify, rely on the ubiquity of Web browsers to implement server-based mobility
services at the session layer. However, the use of mainstream browsers has two
significant limitations. First, browsers prevent applications from taking advantage
of devices without displays. Second, browsers implement a device abstraction
layer that prevents the application from processing or using non-standard modali-
ties or peripherals, e.g., haptic devices.

Application mobility relying only on Application Program Interfaces (APIs)
from Web services additional limitations. Application developers still must pro-
vide an application for each device that the users might want to use, and the users
must configure the applications before receiving a redirected multimedia session.
At the same time, if the application does not have access to services at the session
layer for redirection of multimedia sessions, the mobility of physical or logical
endpoint connections of Internet has to be done at a lower layer.

Furthermore, the solutions from popular applications are designed to consume
multimedia content, but not to produce and consume content at the same time,
such as in video conferencing applications. Thus, we claim that the current mo-
bility mechanisms are not enough for modern multimedia applications to adhere
to ubiquitous computing.

This PhD thesis presents the work to provide mobility services at different le-
vels for the development of multimedia applications that adhere to the ubiquitous
computing paradigm. The motivation of this work is based on the observation that
users of popular multimedia applications are exposed to a dynamically changing
set of devices with different form factors and purposes [53]. However, even if
the users have the rights to use the surrounding devices, the users cannot take
advantage of the devices and their heterogeneity, because most applications to-
day cannot be moved between devices under ongoing multimedia sessions in a
seamless manner.

5

1.2 Problem Statement

Digital multimedia continues to rise in popularity due to (1) the broader availabil-
ity of multimedia-capable devices, (2) the increase of mobile multimedia-capable
devices, and (3) the more access points to the Internet at steadily higher speed
rates. However, the development of applications in this paradigm continues to be
a hard problem, because the context in which the application will be used is un-
known at design time, and it can change at run time. Consequently, users cannot
take advantage of the changing availability and heterogeneity of the surrounding
devices in a seamless manner.

This thesis addresses four research questions. The reasoning for each question
is based on literature research and incomplete evidence from observations of state-
of-the-art solutions. In Questions 1 and 3, we refer to the efficient property as
location-independence, transparency, and seamlessness.

Research Question 1: How can distributed and fine-grained mobile multime-
dia applications efficiently adapt the production and consumption of multi-
media content in the presence of heterogeneous devices and changing user
preferences?

If multimedia applications want to produce multimedia content, the internal
mechanisms of the application to capture content must be adapted according to
the host device and user preferences. Similarly, the presentation of content should
be in a suitable and legible format for the hardware that reproduces it.

Research Question 2: How can developers of mobile multimedia applications
detach function calls from specific auxiliary software that device drivers or
software components provide?

In order for applications to run in heterogeneous devices, the developer should
not make any assumptions about the display size or device capabilities, or even
that there is a display at all. For example, a video conferencing application may
move to the audio system of a car, even if the car does not process the video
stream.

Research Question 3: How can mobile multimedia applications continue com-
munication over Internet in an efficient manner, without managing the con-
nection handover at the session layer?

6

Web services can help to manage connection handover at the session layer,
but this approach introduces additional round trips that reduces the time budget
for interruptions in multimedia applications. At the transport layer, Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP) endpoint connections
are tightly coupled with the device and network identity, i.e., quadruple of Internet
Protocol (IP) address and port at each connection endpoint. This quadruple is
broken when the application wants to continue a connection in a different host.

Research question 4: How can distributed components of mobile multimedia
applications have access to multimedia content over the Internet, without
saturating the host and local network resources, and meeting the strict mul-
timedia deadlines?

Multimedia applications commonly access data in local memory, or from the
network at fast enough speed to meet strict multimedia deadlines. In ubiquitous
computing, users change devices while using an application, and the needed data
by the applications should be readily available in a location-independent manner.
If many remote components require the same data from one device, two conditions
must be satisfied. First, all components must have a network route that has enough
bandwidth and provides high enough end-to-end throughput. Second, the source
device must have enough (bandwidth and CPU) resources to serve the data to all
other components.

To address these research questions, we propose a middleware and a frame-
work with an API. The scope of the proposals are presented in Section 1.3. Other
identified research questions including topics of security, privacy, trust, integra-
tion, failure detection, and spontaneous interoperability are described as future
work in Section 5.3.

1.3 Scope

This thesis aims to ease the development of multimedia applications that adhere
to the ubiquitous computing paradigm. To this end, we focus on how to provide
middleware services to application developers, so they are freed from the burden
of low-level complexity unrelated to the business logic of their applications. The
main services, which we work on in this thesis, provide (1) adaptation of the
processing and collection of multimedia content, i.e., multimedia presentations,

7

(2) mobility of Internet endpoint connections, and (3) efficient data distribution
for distributed multimedia applications.

We target distributed mobile applications that produce and consume multi-
media content in commodity hardware. By mobile applications we refer to fine-
grained (i.e., not monolithic) applications that adhere to the application mobility
paradigm [204]. We focus on the mobility scheme where users move the applica-
tion (or parts of it) from one device (source device) to another (destination device)
with a push policy.

To make possible the delivery of this thesis with the allocated resources, we
restrict the amount of work by focusing on scenarios for mobile video conferenc-
ing. As an example, think on a user that moves a video conferencing applica-
tion from the desktop computer at home to the car computer while in transit to
work, and again to the meeting room’s video conferencing system when arriv-
ing at work. Depending on the available devices and user preferences, the user
commands the application (or parts of it) to move to the device with the preferred
I/O communication interfaces. If needed, the application reconfigures and adapts
itself autonomously, allowing the multimedia session to continue seamlessly.

Table 1.1 shows the space of networked applications (a slight adaptation the
classification given in [25]). Space I represents the non-distributed, static mul-
timedia applications such as a traditional local chess video game. Space II rep-
resents the distributed, static applications such as typical client-server applica-
tions or peer-to-peer applications, e.g. Skype. Space III represents the non-
distributed, mobile applications designed for load distribution, exploitation of re-
source (temporal and spatial) locality, or resource sharing, such as monolithic ap-
plications using virtual machines or microkernels as in Amoeba and Sprite [59],
or VAMNET [32]. Space IV represents the distributed, mobile applications such
as YouTube (where mobility is provided by server-based multimedia session man-
agement), or applications implemented in Emerald [109] or Obliq [26, 40]. This
thesis targets applications in space IV. The detailed requirement analysis for our
targeted applications is presented in Section 2.3.

Table 1.1: The space of networked applications
Distributed II (e.g. Skype) IV (e.g. YouTube)
Non- I (e.g. local III (e.g. Migratory
Distributed chess video game) microkernels)

Static Mobile

8

1.4 Research Methods

Research methods in computer science are the logical schemes to systematically
find well-founded answers to the fundamental question underlying all comput-
ing; “What can be (efficiently) automated?” [54]. New findings (as the outcome
of applying these methods) are then presented in many forms including theories,
algorithms, models, and frameworks for system implementation. In computing,
three research methods are defined, i.e., theory, abstraction (modeling), and de-
sign; but they are intrinsically intertwined [54].

The research in this thesis has a stronger focus on the design research method.
To this end, we follow four research phases (defined in [80]): informational,
propositional, analytical, and evaluative. We iterate these phases as we find unex-
pected results or flaws during the development of the thesis.

The naming and categories of research methods in [54] and [80] differ, but we
map the commonalities between the definitions in the following manner. The sci-
entific and analytical methods map to the theory method, the engineering method
maps to the design method, and the empirical method maps to the abstraction
(modeling) method. The following subsections describe each phase in the re-
search for this thesis.

1.4.1 Informational Phase

In this phase, we do observations on how common multimedia applications are
developed and used today, how the mobility of users change their surrounding
multimedia-capable devices during one multimedia session, and what are the lim-
itations to take advantage of those devices in a seamless manner. Then, we re-
search state-of-the-art solutions in different computing disciplines. The result of
this phase is the problem statement and the research questions (in Section 1.2),
goals (in Section 1.3), and requirements (in Chapter 2).

In Chapter 3 we discuss approaches in the research literature that are relevant
beyond the Informational phase. After gathering and aggregating the informa-
tion, and refining the search scope, we stayed updated in different manners. We
subscribed to updates from different sources, mainly ACM Digital Library, IEEE
Xplore Digital Library, and Google Scholar. We also created query alerts in the
Stack Overflow network to receive updates on challenges that application devel-
opers of multimedia applications face.

In addition to literature research, the author of this thesis participated in five

9

international academic conferences, and three international industry conferences.
The specific participation in the academic conferences consisted in the presen-
tation and discussion of papers [95, 96, 194, 191, 193, 192], and the discussion
of this PhD thesis proposal in [139, 186]. The specific partition in the indus-
try conferences was the presentation and discussion of two lightning talks [199,
190], and attendance to [68], where the Open Media devroom track is particularly
relevant. We also conducted research field by participating to six international
hack-festivals [85, 91, 88, 84, 89, 90] related to the development of the state-of-
the-art multimedia framework GStreamer. In the next phase, we propose solutions
for later analysis and evaluation.

1.4.2 Propositional and Analytical Phases

In this phase, we propose the middleware and the framework illustrated in Fig-
ure 4.1 to answer the research questions in Section 1.2. We subdivide the research
questions in concerns of the system, and provide an analysis for each concern
in Chapter 3. Then, we analyze the proposed middleware and framework in Chap-
ter 4; this analysis is based on data obtained from system performance evaluation
of implemented prototypes, and mathematical analysis especially for the proposed
parts not implemented.

1.4.3 Evaluative Phase

To evaluate our proposals, we write programs to do performance analysis mea-
surements, and do the mathematical analysis to distinguish from casual observa-
tions and validate the non-implemented parts. When results were not as expected,
and depending on where any discrepancies arose, we went back to earlier phases
(Informational, Propositional or Analytical). Admittedly, the iterations to previ-
ous phases could be more exhaustive; however, the evaluation design in this thesis
aims at satisfying the answers to the research questions, rather than optimizing the
answers.

The nature of each proposed solution demands a different selection of metrics
and evaluation techniques. The collection of papers in this thesis evaluates the
propositions in the corresponding metrics.

10

1.5 Main Contributions

The main contribution of this thesis is the realization of the propositions to achieve
fine-grained multimedia mobile applications adhering to the ubiquitous comput-
ing paradigm, and the knowledge obtained from this realization. The requirement
analysis, design, prototype implementation, and evaluation of the propositions that
attend to the four research questions identified in this thesis are building blocks in
the contributions of this thesis.

The main realized services in this thesis provide adaptation of multimedia
presentations by reconfiguring the sequentially connected components that pro-
cess multimedia streams, i.e., GStreamer pipelines, and their topology [193, 192,
191]; migration of TCP and UDP sockets [194]; and data distribution for dis-
tributed multimedia components [95]. These services remove the burden of ap-
plication developers to create multimedia applications adhering to the ubiquitous
computing paradigm, thus achieving the aim of this thesis (stated in Section 1.3).

To enable mobile applications to adapt, we conclude that they must be able to
self-configure at load and design time. Self-configuration at load time is neces-
sary because application developers should not hardcode their design to specific
software or hardware dependencies. Self-configuration at run time is necessary
because users’ preferences or physical environment can change during a multime-
dia session, or because the context at the other end of the communication channel
can change.

To enable applications to adapt to context changes, we propose to character-
ize the parameters that represent users’ physical environment, user preferences,
applications’ runtime environment and networks conditions. This approach helps
to convey the idea that the construction of multimedia pipelines must take into
consideration the current capabilities of the human user as ultimate source or sink
component.

Autonomous adaptation of multimedia pipelines is a complex and hard task. It
is complex because it requires many low-level mechanisms for memory manage-
ment, such as clock synchronization, data flow control, component instantiation,
and components’ state management. It is hard due to the combinatorial explosion
when testing the available components in a device. We conclude that architectural
constraints mitigate the NP-hardness of combinatorics within the time limits of
soft real-time requirements. These constraints are namely the grouping of compo-
nents by functionality, i.e., functional stages, and the abstraction of sequentially
connected components that process a stream to do a certain task, i.e., functional

11

paths, e.g. capture video from a webcam and send it over the network.
The ubiquitous computing paradigm implies context changes including the

variation of available or appropriate I/O communication interfaces of devices and
users (e.g. hearing or sight impairments due to physical or contextual constraints).
To efficiently adapt to these variations, we argue that different adaptation tech-
niques, including fidelity, modality, content-based, and retargeting adaptation,
are required. Once the combinatorial explosion involved in the autonomous re-
configuration of multimedia pipelines is controlled, applications can take advan-
tage of the adaptation techniques unknown at design time.

The separation of what functionality is needed versus how this functionality
is implemented (just as in the principles of networking protocols and layers or
declarative programming), enforces the design of applications that are not hard-
coded to specific device software or hardware. As a result, these applications have
the write once, run everywhere characteristic.

The proposed middleware and API is a step forward making applications mo-
bile, which in turn gives the applications the install once, configure once char-
acteristic, and reduces the overhead of users’ Personal Information Management
(PIM). For applications to provide continuous multimedia services over the Inter-
net, we propose location-independent inter-process communication (IPC) mech-
anisms between processes running in different devices. For this, we design and
implement mechanisms for socket migration as part of the functionality provided
by an API that resembles the Portable Operating System Interface (POSIX).1-
2008 [182]. Based on results from the evaluation, we conclude that the resources
of today’s smartphones (i.e., commodity hardware) are sufficient to use these de-
vices as proxies that hide the mobility of endpoint connections by forwarding
packets.

In the ubiquitous computing paradigm, users change devices while using the
same application. For this to work, the needed data by the applications should be
readily available in a location-independent manner. Multimedia applications com-
monly access data in local memory, or from the network at fast enough speed to
meet strict multimedia deadlines. The proposed API provides location-independent
data access is an efficient IPC mechanism to share data between processes. If the
processes run in different devices, they access the data via an automatically estab-
lished mesh network and a publish-subscribe (PUB/SUB) [145] service. Based on
results from evaluation, we conclude that sharing the multimedia data that devices
are already consuming is an efficient approach to aggregate the available CPU and
bandwidth resources in ubiquitous computing.

12

The detailed aspects of these contributions have been peer-reviewed and pub-
lished in four papers in conference proceedings [192, 193, 191, 194], one work-
shop paper [95], and one abstract paper [96]. Chapter 4 presents a summary of
the papers. Part II includes these papers in the typesetting format of this thesis.
For the original publication format, we refer the reader to the publisher’s website,
specified in the respective bibliography’s entry. Additionally, five co-supervised
master theses, based on the research questions identified during the research of
this thesis, are described in Chapter 4.

1.6 Thesis Structure

There are three parts in this thesis. Part I establishes the context of the thesis, and
develops the thread that links the research publications. After this introductory
Chapter 1, we describe use cases, assumptions, and the requirements analysis in
Chapter 2. Chapter 3 presents the background and related work. The sections
in the chapter are titled after the separation of concerns of the research ques-
tions. Chapter 4 is the summary of six research papers published in international
peer-reviewed proceedings. The author’s contributions per paper are stated in the
corresponding section. Chapter 5 presents the conclusions, summarizes the con-
tributions, and gives a critical review of the research papers. This chapter also
states open issues, future work, and future research.

Part II is the compilation of the research publications that addresses the prob-
lem statement. Namely, how to ease the development and use of mobile multime-
dia applications that adhere to the ubiquitous computing paradigm.

As supportive material, the Glossary, Acronyms, and Symbols sections are
prior to Part I. Part III contains an errata and additional use cases.

13

Chapter 2

Use Cases, Assumptions and
Requirements

This chapter presents one use case that helps to exemplify the aim (stated in Sec-
tion 1.3). Section 2.1 presents one use case and how application developers (using
our proposed framework) can implement an application for this use case; this sec-
tion also details the scope of the targeted application domain. Section 2.2 states
the services we take for granted as part of the middleware we propose; these as-
sumptions are out-of-scope work in this thesis. Section 2.3 details the functional
and non-functional requirements of the middleware. Section 2.4 summarizes the
chapter.

2.1 Use Case – Video Conferencing in Transit

Alice exchanges urgent messages with her colleagues. In many cases, she needs
to participate in video conferencing sessions regardless of whether she is at work,
at home or in transit. Typically, she is surrounded by different multimedia-capable
devices everywhere at any time. For example, besides having her smartphone next
to her, she is surrounded by (1) a desktop computer and a laptop with typical
multimedia capabilities and peripherals if she is at home, (2) a display monitor
and a car audio system if she is in transit by car, (3) a laptop and a shared CPU
in a high performing computer if she is in transit by train, and (4) several dedi-
cated multimedia devices (large displays, high resolution cameras, high sensitive
microphones, speakers, joysticks, and haptic devices) if she is at work.

Depending on the available devices and activity, she commands the video con-

15

ferencing application (or parts of it) to move to the device with the preferred In-
put/Output (I/O) communication interfaces. If needed, the application adapts and
re-configures itself autonomously, allowing the multimedia session to continue
seamlessly.

The previous use case (and those in Appendix B) share the following char-
acteristics. Users have access to many different devices with multimedia com-
puting capabilities, including different multimedia I/O interfaces. During one
multimedia session, the context (any information that characterizes the user sur-
roundings, preferences, application running environment, or network conditions,
which impacts the functional and non-functional requirements of an application)
can change. For example, the set of available devices, the device that is preferred
or needed, or modalities (audio, video, text, or tactile) for interaction.

In these scenarios, it is impossible for application developers to predict the
characteristics of all devices that will surround the user. Instead, we propose an
API that developers can use to implement the services by describing them at a
high-level. The scope of services we refer to is similar to the following examples.
Render video from the network, capture image from a camera and render it in a
display, capture image from a camera and send it over the network, capture audio
and render it on speakers, capture audio and send it over the network, and capture
movements from a haptic device and send it over the network.

The scope of multimedia modalities envisioned in the use cases is text, im-
ages, audio, video, and tactile. The scope of heterogeneous device types includes
laptops; desktop computers, and the typical I/O peripherals; dedicated computers
as servers; home theater PC (HTPC); smartphones; multimedia devices in cars,
trains, airplanes, and refrigerators; joysticks; haptic devices such as the ones in the
Da Vinci Surgical System [57]; digital cameras; portable music players; Personal
Digital Assistants (PDAs); tables; voice recorders; and GPS devices. Appendix B
describes more ambitious use cases, which can leverage on the research from this
dissertation, and are expected to become reality in the next decade.

2.2 Assumptions and Out of Scope

The behavior, functionality, and services described in this section are assumed.
The design and implementation of the services are out of scope of this thesis.

We assume that the host devices involved in application mobility are con-
nected in an overlay network, as implemented by the coordinator proposed in [95]

16

(summarized in Section 4.6, and included in Chapter 10). Services to open con-
nections through firewalls and Network Address Translators (NAT) are assumed
to be implemented.

To achieve application mobility, the computer program should be able to ex-
ecute in the (possibly heterogeneous) receiving device. In this thesis, we have
chosen to develop in the C programming language because most targeted devices
usually include C compilers, and manufacturers of I/O peripherals usually pro-
vide libraries to be used by programs written in C. Therefore, when we say that an
application moves from one device to another, we assume that the source code of
the application is moved together with its dynamic state, and a Just In Time (JIT)
C compiler in the middleware cross-compiles the code. Then, the middleware
imports the dynamic state of the application and resumes execution.

The host devices have the middleware pre-installed; this middleware provides
services for code mobility and JIT compilation. The middleware also implements
services to monitor the user’s physical environment, application runtime environ-
ment, and network conditions, i.e., context. Privacy and security issues are not
taken into consideration in this thesis. The authors in [60, 140] discuss security
issues for process migration-aware systems, which is related to the approach in
this thesis.

We assume programmers want to concentrate on the business logic of the
application to provide usability, high Quality of Service (QoS), and high Qual-
ity of Experience (QoE), rather than implementing low-level autonomic mecha-
nisms. We do not design or implement mechanisms for QoS, nor evaluate per-
formance properties of QoE. QoS for multimedia processing is taken cared by
internal mechanisms of third-party multimedia components, i.e., GStreamer ele-
ments. QoS for communication is left to protocol implementations at the transport
or session layer, e.g., TCP, SIP, SCTP or RTSP.

2.3 Requirements

This section defines the expected services, i.e., service statement, of the frame-
work to support application mobility, and constraints that the middleware must
obey, i.e., constraint statements. The service statements constitute the middle-
ware’s functional requirements. Functional requirements describe the scope of the
services provided by the middleware or Application Program Interface (API). The
constraint statements constitute the middleware’s non-functional requirements [132].

17

2.3.1 Functional requirements

We translate the assumed goals of applications developers, i.e., usability and high
QoE, as a safety predicate based on two requirements. First, the collection of
multimedia streams have to be processed on time and in synchrony to a reference
clock (skew no longer than tens of milliseconds [177]). Second, the configuration
of components has to provide a high enough utility to the user, where utility func-
tions define the user utility. Developers of components of multimedia pipelines
define the utility functions.

To satisfy the safety predicate in application mobility, we identify four self-*
properties as requirements: self-adaptive, self-configuration, self-optimization,
and self-awareness. Further requirements are obtained from iterations in the In-
formational phase (in Section 1.4.1), in particular, from literature [48, 143, 153,
132], and participation in six international hack-festivals of the GStreamer multi-
media framework [85, 91, 88, 84, 89, 90]. Next, we state each requirement and
give arguments for them.

Self-adaptive: Applications should react to changes in the context by changing
their safety predicate accordingly. Calm computing, also known as calm tech-
nology or disappearing computing, is the part of ubiquitous computing that talks
about removing the distraction of using multi-device applications [198, 197]. Mo-
bile applications should select the appropriate interface, based on the user physi-
cal environment, user preferences, application runtime environment, and network
conditions. The multimedia presentation selected in this manner is specific to an
interface modality and form factor. Particularly distinctive in this thesis, appropri-
ate selection does not imply to achieve the highest QoS or use the newest device
or the latest network technology1. Similarly, think about the users that prefer to
watch a movie in their smartphone on the go, instead of staying at the leaving
room to watch the movie with higher quality in an HTPC system.

Self-configuration: Applications should react to context changes, and change
the connections or components of the application, to restore or improve the safety
predicate. Application developers should know what services their applications
need, without necessarily knowing how low-level mechanisms work. In a similar

1 This assumption attends to the observation from authors in [104] who state that users pre-
ferred to turn off the 4G capabilities or their mobile phones when 4G was rolled out, because 3G
was more stable, fast enough, and used less battery.

18

manner, we assume that users are interested in using what the services provide,
not finding out how to configure the application.

Self-optimization: Applications should maximize the utility provided to the
user by either maximizing or minimizing the value of a predefined objective func-
tion of components. If the user changes her or his environment or preferences,
the middleware should treat such changes as a threat to the safety predicate and
addresses them. For example, when a DASH (Dynamic Adaptive Streaming over
HTTP) component, that proactively checks the available resources, optimizes its
parameterization to process the highest bitrate for the given available resources.

Self-awareness: In order to make decisions on adaptation, the middleware should
use its context (users’ physical environment, users’ preferences, users’ states, and
application running environment) extensively. “A pervasive computing system
that strives to be minimally intrusive has to be context-aware, and must modify
its behavior based on this information” [166]. It is impossible to predict at any
given point in time all future variations in context. Therefore, the collection of
context-aware data should be in an open and extensible manner. The framework
should provide APIs with abstract services that hide specific devices or sensors.

Persistent communication over the Internet: Communication should resume
transparently when an application is moved between devices or networks. The
mobility of connection endpoints or point of attachment to a network should not
break a multimedia session.

Decentralized solutions: Application mobility should not depend on server-
based mobility services. Centralized solutions add time overhead due to round-
trip-time, and introduces risks for bottlenecks and one point of failure.

High-level service specification: Application developers should be able to spec-
ify multimedia processing as high-level services. It is unrealistic to expect that
developers will know how to configure each component needed for multimedia
processing, especially when the developers do not know on which devices the
applications will be used. Similarly, developers should not invest time on (re-
)designing or (re-)implementing mechanisms to enable application mobility.

19

High-level user preferences specification: Users must inform the application
in one way or another what are their preferences or intention, so the application
has information to act on, and adapt accordingly, e.g. a user that prefers video over
audio or vice versa. Users should be able to provide this information at different
levels, because the more technical input from the user, the more expertise from
them is needed, and this imposes an entrance barrier for non-expert users. Since
user’s attention is a limited resource [204], users should not be required to specify
a preference for every single parameter or component. That is, the application
should be able to adapt with incomplete information from the user.

2.3.2 Non-functional requirements

Non-functional requirements are constraints on the development and implementa-
tion of the services we propose to aid multimedia applications to become mobile.
The level of adherence to these constraints determines the software’s quality. The
construction of prototypes helped us to see additional requirements. In this work,
we device non-functional requirements as follow.

Freeze time: Program load freeze time should be in the order of hundreds of
milliseconds. A tolerable delay in multimedia applications is the amount of time
users are willing to wait before giving up on communication. Studies on QoE [16,
21, 160, 105, 97] discuss the service interruption in the order of hundreds of mil-
liseconds as reasonable before users get annoyed. In peer-to-peer applications,
where one peer might not be aware of the application mobility action of the other
peer, hundreds of milliseconds continue to be valid. However, if the user is aware
that an application is being moved, we assume users can tolerate a higher inter-
ruption time.

Throughput: The data transfer rate and processing should be sufficient to achieve
seamless multimedia processing. Throughput is not only dependent on the avail-
able network bandwidth, but also on the packet processing capabilities of the de-
vices involved. Since we can not change the hardware capabilities of devices, our
software design and implementation must be efficient to fulfill the soft real-time
requirements of multimedia applications. We aim for throughput of at least 1.5
Mbps, because it is the recommended bandwidth for video calling in high defini-
tion (HD) in Skype [174], and the recommended broadband connection in Netflix
[141], two prevalent popular applications.

20

General non-functional requirements: We do not discuss explicitly other typ-
ical requirements for software development, but we consider them during the de-
sign and evaluation of the prototypes. These requirements are code reusability,
reliability, modularity, separation of concerns, resource efficiency, ease of build-
ing, ease of deployment, and platform independence.

2.4 Summary

In this chapter, we have described a use case as a hypothetical scenario that can
take place at the office, school, home, or while in transit: walking, driving, or
being a passenger in public transport. The chapter also outlines functional and
non-functional requirements for the proposed services in this thesis.

More services than the ones proposed in this thesis are needed to fully realize
the vision of ubiquitous computing. Sections 5.2 to 5.4 describes the identified
services that can be built on top of the prototypes and results of this thesis.

21

Chapter 3

Background and Related Work

In this chapter, we examine the most recent approaches, techniques and thinking in
the computing disciplines relevant to fine-grained mobile multimedia applications
adhering to the ubiquitous computing paradigm. We summarize the identified
gaps in the current solutions, and areas that have remained unsolved. This chapter
is the outcome after visiting several times the Informational phase Section 1.4.1,
and is the ground for the research questions presented in Section 1.2. The content
in this chapter is an additional contribution to the related work of each published
research paper.

One could argue that most parts of the systems needed to realize the ubiqui-
tous paradigm have been already developed. However, this paradigm will remain
unrealized as long as developers continue to view mobile computing devices as
mini-desktop computers, applications as programs that start and end execution on
those mini-desktops, and the application runtime environment as “a virtual space
that a user enters to perform a task and leaves when the task is finished” [17]. Two
projects with the vision to change this view are PIMA (mentioned in [17]), and
Mobile Gaia [171], however, these projects are inactive at the time of doing the
research in this thesis.

International Business Machines (IBM) was a precursor in autonomic com-
puting [100]. IBM is the company behind the initial proposal of the MAPE-K
autonomic adaptation loop model, and developed an autonomic computing toolkit
to ease the development of autonomous applications. However, IBM stopped the
development of the toolkit in 2004, the source code is unavailable, and based on
the information in [102, 103], its latest version did not include mechanisms for
autonomic adaptation of multimedia processing.

The motivation of this thesis is similar to the work in the ABLE research group

23

[51], in particular, the project Rainbow [73, 44]. Architecture-based adaptive sys-
tems, such as Rainbow [44], provide features to enforce certain architectural con-
straints. However, the multimedia adaptation in Rainbow defines the adaptation
of multimedia presentations at design time, and adaptation is coordinated at the
session layer. Thus, Rainbow’s solution does not allow the use of multimedia
adaptation types unknown at design time. The authors in Rainbow do not address
mobility without changing the standard Internet protocols, nor take into consider-
ation the context of users, applications, and network.

We have proposed the reconfiguration of multimedia pipelines to achieve adap-
tation of multimedia presentations. Consequently, the type of architectural con-
straints proposed in Rainbow is impractical for the abstraction of multimedia pi-
pelines as multigraphs.

Aura [176], an architectural framework for user mobility in ubiquitous com-
puting environments, addresses ubiquitous computing by making user tasks first-
class entities. Aura claims that resource adaptation is best addressed at task-level;
therefore it represents user tasks as a collection of services and context observa-
tions that allows tasks to be configured and adapted to the environment. However,
Aura does not discuss strict deadlines, which is are a fundamental requirement in
our use cases. Examples of tasks as abstract services in Aura are edit text and
play video. In Aura, applications are pre-installed in every device that users can
use; this approach, however, does not scale in ubiquitous computing because the
applications must be ported and installed on every potential task-receiving device.

Gaia [171] is an operating system that provides a collection of services to man-
age heterogeneous devices and services. Gaia is designed to ease the development
of user-centric, resource-aware, multi-device, and context-sensitive mobile appli-
cations. However, Gaia-applications run in the Gaia operating system only; this
does not meet our platform independence requirement, and reduces the available
libraries and mechanisms that ease the development of multimedia applications.

In summary, we have not found any system that can provide all the mecha-
nisms for multimedia applications to adhere to the ubiquitous computing paradigm.
Thus, we proceed to discuss the related work in relation to the concerns of the
research questions addressed in this thesis. The concerns are: variability of mul-
timedia presentations, context-awareness, detachment of applications from host
devices, adaption of multimedia presentations, decision-making for adaptation
of multimedia presentations, mobile inter-process communication (IPC) mech-
anisms for processes in different devices, data sharing for distributed mobile mul-
timedia applications, reduction of Personal Information Management (PIM) over-

24

head in multi-device applications, and scalability issues in ubiquitous computing.

3.1 Variability of Multimedia Presentations

The autonomic construction of multimedia pipelines introduces a variability prob-
lem with combinatorial (NP-hard) complexity. Reducibility in combinatorial prob-
lems has been much addressed [118, 152, 36, 12, 150, 151, 112, 35], and in
theory, many heuristic techniques can limit the variability problem in the multi-
media pipelines abstraction, i.e., directed graphs. However, autonomous linking
and reconfiguration of multimedia components are complex tasks in themselves,
especially in fine-grained mobility scenarios, where each media stream should be
able to be processed in different devices while in synchrony to a clock.

The authors in [61] address three challenges: heterogeneity, variability and ef-
ficient delivery of video in content-based networks. Their adaptation scheme cre-
ates different multimedia representations using scalable coding in content-based
network overlays, and they use multi-dimensional utility-functions for video se-
lection. Utility functions take as arguments QoS: temporal (framerate), lumi-
nance and chrominance quality; user preferences: region of interest; and avail-
able resources: network bandwidth and CPU utilization. The authors implement a
publish-subscribe (PUB/SUB) [145] protocol as an alternative to adaptive bitrate
streaming systems to select a different version of the video. Also, their system
limits QoS variations across image regions by constraining the quality deviation.
However, their proposal does not handle delay or seamless adaptation, and does
not discuss when or how a receiver should transit from one configuration to an-
other. Thus, to the best of our knowledge, none of the papers above cited address
variability of context-aware systems and complexity of multimedia pipelines to
make the decision on which configuration is the most suitable for a given situa-
tion.

3.2 Adaption of Multimedia Presentations

We argue that the needed adaptation type for multimedia applications adhering to
the ubiquitous computing paradigm is unknown at design time. To understand the
complexity of adaptation of multimedia, and the coverage of related work in this
topic, we first define the terms multimedia, multimedia content, and multimedia
presentation. Then, we illustrate the different types of adaptation in multimedia in

25

Figure 3.1. Figure 3.2 maps these adaptation types to the multimedia modalities
targeted in this thesis.

Multimedia is any collection of data including text, graphics, images, video
(moving images presented as a sequence of static images), audio, tactile modali-
ties or any system for processing or interacting with such data. Multimedia content
is something (e.g. a person, object or scene) selected by, e.g. an artist, a photog-
rapher or multimedia developer, for multimedia representation . A multimedia
presentation is multimedia content composed by a collection of media.

There are many types of adaptation of multimedia data. Figure 3.1 shows a
diagram of how adaptation types are related. For example, an application can se-
lect a specific modality, say video, and then apply any of the three fundamental
adaptation types: spatial, temporal, or quantization. Spatial adaptation applies to
modalities with graphic content, and further adaptation can be applied: complex-
ity, content, and other. Spatial adaptation includes retargeting algorithms, such as
the one described in [161] (summarized in Section 4.8.1). Complexity adaptation
combines spatial, temporal or quantization adaptation [167]. Content adaptation
analyzes the data to determine, for example, detect important regions and remove
those less important.

Selectin Midality

Fundamental Spatal

Spatal Tempiral QuantiatinFirmat Cimplexity Cintent Other

Figure 3.1: Types of adaptation of multimedia data

Figure 3.2 shows the relation between media modalities and the type of adap-
tation that can be applied to them. For example, temporary adaptation can be ap-
plied to video by changing the number of frames per second, or audio by changing
the sample rate, but it does not make sense to apply it to text modality. An ex-
ample of other modalities is tactile produced or consumed by joysticks or other
haptic devices.

26

Fidelity Adaptaton Metrics

Spatal Temporary Quantzaton Content Other

Media Modality

Video Audio Text Other

Figure 3.2: Types of media modalities and their adaptation types

Modality selection by merely ignoring already processed media streams, but
not stopping its processing, results in a waste of relatively significant amount of
resources. This waste of resources is especially relevant when the video modality
is processed without anyone consuming it. To evaluate the relevance of this waste
of resources, we measured1 the amount of CPU time and data processed to repro-
duce video and audio from a file in a video player. The measurements show that
the processing components for video consume about 80% of CPU time, and 97%

of the processed data (already decompressed).
WebRTC [189] continues to create the expectation that it provides a one-fit-all

adaptation mechanism (including mobile applications in the ubiquitous computing
paradigm). WebRTC, however, targets multimedia to be consumed on the Web,
and the typical content is usually authored for presentation on specific platforms.
The main components of WebRTC include several JavaScript APIs for multimedia
presentation. JavaScript expands the capabilities of Web browsers, but it cannot
take advantage of specific Input/Output (I/O) communication peripherals in het-
erogeneous systems. This limitation was mentioned in the year 2000 by [17],
and continues to be true at the time of writing this thesis. Therefore, JavaScript
and the use of Web browsers as a platform for the development of multimedia
applications represent a step backward in ubiquitous computing. In summary, re-
lated work on adaptation of multimedia presentations covers only a subset of the
adaptation types presented in Figure 3.1.

1Source code for multimedia pipeline profiler available on https://gitlab.com/
francisv/gst-instruments

27

https://gitlab.com/francisv/gst-instruments
https://gitlab.com/francisv/gst-instruments

3.3 Decision-making for Adaptation of Multimedia
Presentations

GStreamer [86] implements rules to automatically build pipelines (or parts of
them) in GStreamer elements such as decodebin, playbin, and encodebin. The
components used to build the pipeline are selected according to the rank assigned
to each component; this rank is assigned by consensus among the core developers
of the GStreamer framework. The input and output connectors of the components
(pads in GStreamer terminology) are instantiated or created based on the input
stream or sink component selected by the application developer at design time.
The parameterization of the components and connectors is set according to the in-
put stream or selected sink component, and the order of enumerated values for the
parameters. The rules in the GStreamer elements for automatic pipeline building
are, however, not enough for autonomous mobile applications for the following
three reasons. (1) They build only one pipeline, meaning that all other possible
valid pipeline variants are untested, and it is taken for granted that the only built
pipeline is the one that provides the highest utility to the user. (2) The selection
of components in the pipeline does not take into consideration the user physical
environment, user preferences or network conditions. (3) The automatically built
pipelines cannot be re-configured.

The Adaptation Management Framework (AMF) proposed by [169] provides
a dynamic adaptation mechanism to automatically adapt content and services to
a user’s current capabilities, i.e., device and environment capabilities and their
individual preferences. AMF uses graphs to represent their adaptation configura-
tions, and uses the Dijkstra algorithm to determine the shortest path through the
graph from the node representing the original content to the node representing
the adapted content. However, the decision-making algorithm of AMF aims at
optimal service based on time and service cost (price) only.

Jannach et al. [108] present a decision-making algorithm as planning se-
quences. They measure effectiveness based on the number of steps of the adapta-
tion plan, not on properties of adaptation types. The reasoning engine works with
arbitrary sets of predicate symbols. Consequently, the introduction of new types
of predicates does not require changes in their planning algorithm. Their algo-
rithms try to maximize the user’s experience for a given environment, i.e., device
capabilities, network conditions, and user preferences. They use three methods
to call adaptation mechanisms: Web services interfaces, Java interfaces, and dy-
namic invocation of C/C++ implementations. However, the proposed mechanisms

28

are implemented within the application, and the description of multimedia content
and available adaptation mechanisms is accessed from a server. Furthermore, the
authors do not analyze the processing time of their solution, and they do not dis-
cuss any scalability issue.

3.4 Context-awareness

We argue that the use of contextual information provided by sensors in multimedia-
capable devices is adequate to make an autonomous decision on how to adapt.
This decision is based on research in the semantic gap [107, 106], ubiquitous
computing [196], user-centric systems [171, 52, 37, 121, 52], and context-aware
systems [55, 176, 67, 56, 110, 153].

The semantic gap in multimedia processing states that there is a disparity be-
tween the stored multimedia content and the information that multimedia systems
have to process that content in a meaningful way. The authors in [107, 106] pro-
pose that in order to process multimedia content in a meaningful manner, the sys-
tem in question should use context (metadata) information to act accordingly. For
example, if the system knows that the data being processed is of a person speak-
ing in a room, and if an available video retargeting component, e.g., SeamCrop,
is annotated as a good match for video conferencing in rooms, then the system
is able to autonomously select the SeamCrop and perform retargeting adaptation
for small displays. In [196], Weiser claims that if computers use context, such as
location, they can adapt their behavior in significant ways without requiring even
a hint of artificial intelligence. Thus, the extensive use of context and metadata
annotation aid to close the semantic gap.

To prove the feasibility of this contextual approach, we analyze the readily
available source of context in our targeted application domain. In Unix systems,
the proc pseudo-filesystem [34, 142] provides an interface to kernel data struc-
tures, which contains the context of the process (running environment including
information on I/O peripherals; availability, and configuration of hardware, and
software resources). Mobile phones include devices to collect information about
the user environment, such as GPS, accelerometer, microphones, and light sen-
sors.

Quality of service-aware component Architecture (QuA) [8, 79] uses run-time
models, utility functions [2], QoS prediction, and service planning. QuA does not
provide a comprehensive context management middleware but may use a context

29

middleware similar to the one provided by MADAM [74, 3] or use the context
model of QuAMobile [6, 7]. However, neither QuA nor QuAMobile adapts ap-
plications based on different device capabilities at run time, but only bandwidth
fluctuations.

Some works have relied on ontologies, and the metadata specification of MPEG-
7 and MPEG-21 Digital Item Adaptation (DIA) framework to model context. [76,
93, 92, 205, 146, 43, 130] use ontologies, [205, 20] use MPEG-7, and [130, 20,
201, 123] use MPEG-21 DIA. Although we could reuse some of these models,
they yield to much higher complexity than ours. Also, the query time in ontology-
based context models is over 100 ms in all reported results. Therefore, we regard
the overhead of ontologies as impractical for our use cases. In addition, MPEG-21
DIA considers only a narrow set of user preferences for multimedia selection and
adaptation [155]. In summary, we do not base our framework in such standards
because they do not address the problem of dynamic and autonomous adaptation.

3.5 Detachment of Applications from Host Devices

Application mobility [204] gives users the freedom to decide where applications
should execute, and introduces opportunities for augmenting the available re-
sources including different I/O communication peripherals, memory and commu-
nication channels. However, applications are usually only developed and tested
for a specific device class, e.g., smartphones, and have to be adapted for other
device classes, e.g., home theater PC (HTPC) or laptop. Also, typical auxiliary
software from device drivers or software components tightly couples the applica-
tion to the device, which creates a portability problem.

Application mobility has been addressed in many forms by the distributed
computing community; these forms include process migration, remote execution,
cloning processes, object migration, code mobility, and mobile agents [140]. Pro-
cess migration is the technique where an active process is moved from one ma-
chine to another. After migration, the process must continue normal execution and
communication. The original motivation for process migration was the resource
scarcity, reduce the burden of system administration, user time sharing in expen-
sive mainframes, workload distribution, and fault resilience, especially for long
processing tasks, where the unexpected or force termination represented an unac-
ceptable or very expensive lost of data. By contrast, the motivation for application
mobility in this thesis is to enable users to take advantage of the surrounding het-

30

erogeneous multimedia-capable devices during a multimedia session.

Table 3.1 presents a comparison of characteristics of applications in traditional
process migration and application mobility for multimedia applications. The dif-
ferences shown in the table make very difficult to directly apply findings from
previous work in process migration onto the development of mobile multimedia
applications adhering to the ubiquitous paradigm.

Table 3.1: Differences of characteristics between traditional process migration
and application mobility for multimedia applications

Characteristic Traditional process Application mobility
migration for multimedia applications

Component Monolithic tasks Polylithic tasks
Freezing time No specific constraints Under hundredths

of milliseconds
Media type One media type Multimedia
Interaction Non-interactive Interactive
Device Homogeneous Heterogeneous

Transparent remote execution in the presence of heterogeneous devices re-
quires support that is as complex as in transparent heterogeneous process migra-
tion [175]. Remote execution does not work in case a user wants to move the
entire application without leaving dependencies in the source device.

Recent efforts in cloning processes are CloneCloud [45] and DPartner [208],
which exploit clouds infrastructures to mitigate resource poverty of mobile de-
vices. However, they do not address multimedia applications requirements and
the applications developed in those systems cannot access the differences in I/O
capabilities of devices because those differences are hidden away by their virtual
machines based on the JVM.

Object migration was initially designed for small-scale and homogeneous lo-
cal area networks [204]. Emerald [109] and Obliq [25] are programming lan-
guages designed with object migration capabilities. However, the low adoption
of these programming languages results in no available components related to the
adaptation of multimedia presentations.

Code mobility is assumed to operate in large-scale and heterogeneous net-
works [204]. Various design paradigms, such as code on demand, remote evalua-
tion, and mobile agents, have been proposed to enable code mobility [70]. How-
ever, code mobility or mobile agents that are implemented in languages such as

31

Java (e.g. [81]), Telescript, or Tcl/Tk [140], lose access to device heterogeneity
due to hardware abstraction at language-level.

In summary, proposals for application mobility from distributed computing are
helpful in providing underlying migration services, but inadequate to detach ap-
plications from devices and provide seamless application mobility for multimedia
applications in ubiquitous computing. Moreover, to the best of our knowledge, we
are unaware of current efforts from the industry on detachment between applica-
tions and devices. To the contrary, companies such as Apple continue to develop
device-specific applications as a competitive advantage, e.g., Facetime, iTunes,
and iMovie, which represents a step backward in ubiquitous computing.

3.6 Mobile IPC Mechanisms for Processes in Differ-
ent Devices

The mobility of Internet endpoint connections has been widely researched [127,
147, 31, 30, 137, 24, 99, 117, 207, 71] (discussed in Section 9.5). However, to the
best of our knowledge, no connection handover system provides the requirements
needed for moving Internet endpoint connections of multimedia applications in
our use cases. Namely, low handover time, high throughput, legacy application
support, portability, and independence from special infrastructure support.

More recent efforts by Apple, the Network.framework [82], moves the trans-
port layer from kernel to user-space, just as SOCKMAN (summarized in Sec-
tion 4.5 and included in Chapter 9) does. Network.framework implements mech-
anisms for transparent connection reestablishment, but does not support legacy
applications. Moreover, their solution is supported only in the operating systems
iOS, macOS, and tvOS, i.e., operating systems from Apple; these operating sys-
tems are tailored for devices from Apple, and their source code is closed and
proprietary.

3.7 Data Sharing for Distributed Mobile Multime-
dia Applications

Ubiquitous computing implies a variety of hardware with different architectures
and its private memory. If components of multimedia applications are expected
to move to different devices, the middleware must include mechanisms to share

32

the needed data stream over the network. The main paradigms for data sharing in
distributed systems as middleware are document-based (Web pages), file-system-
based, object-based, and coordination-based [181]. The first two paradigms are
not relevant to our target domain (e.g. video conferencing applications), because
the shared data include streams, not only (static) documents or files.

The most relevant related work in object-based middleware approaches for
our uses cases is Common Object Request Broker Architecture (CORBA) [195,
172]. CORBA is a specification that provides a standard message interface be-
tween distributed objects, and it has been used to implement object-based middle-
ware [202]. It has been defined by experts in the field of mobile components, but
it has failed to enable universal interoperability due to its complexity [28].

Related work in coordination-based middleware (presented in Section 10.2)
discusses Linda [75], LIME [156], SPREAD [49], Munin [23, 42], and the scal-
able tuple space model in [47]. These systems propose different mechanisms to
achieve Distributed Shared Memory (DSM) [128, 129], but none of them can pro-
vide the low latency needed for multimedia applications.

3.8 Reduction of Personal Information Management
(PIM) Overhead in Multi-device Applications

People use multiple devices due to different form factors and modes of interacting
(keyboard, mouse, stylus, finger, or multi-touch), device portability, task com-
pletion time, having one computer for work and another for home, software and
operating system differences, or transitioning from an old device to a new de-
vice [53]. The overhead of PIM is reduced if the user does not have to install and
configure the same application in all devices that the user wants to use. Our moti-
vation for reduction of PIM is similar to PIMA in [17]. However, their project is
server-based and uses Java for implementation. Consequently, the required Java
Virtual Machine (JVM) prevents application mobility to take advantage of specific
I/O peripherals. Moreover, PIMA does not take into multimedia processing, and
the project is inactive at the time of doing the research for this thesis.

Another way to reduce the overhead of PIM is the use of servers as in
Cloud4all [146] or practically any other cloud services from the industry. Cloud
computing approaches can be of aid to the application mobility approach, but
cloud computing is not sufficient because the applications must be pre-installed.

33

Otherwise, it defeats the purpose of seamless use of devices in ubiquitous com-
puting.

3.9 Scalability Issues in Ubiquitous Computing

The inherent variability of availability and differences of devices, and changes
of user context and preferences in ubiquitous computing demands applications to
adapt in uncountable ways. We address this variability as a variability manage-
ment problem in Dynamic Software Product Line (DSPL).

The authors in [35] address combinatorial complexities of variability manage-
ment with heuristics methods. The authors describe a greedy approach to calculate
the utility of only promising variants, and discard the evaluation of functions with
low weight values. In this approach, utility functions are divided into a stable
and an unknown part. The stable part is evaluated, and only those variants with
an already known high utility value are kept. Low and high values are defined
by the application developer, component developer, or user, or can be calculated
based on the distribution of known utility values in the search space. As a result,
the unknown part is evaluated only for those variants with already known (stable)
utility values. Consequently, the number of evaluated variants is reduced into the
linear domain.

The authors in [1] propose models to enforce multi-constraint that allows the
shortest path to be found in polynomial time. Their approach is validated through
a real-world example implementing adaptive scenarios in the domain of mobile
computing. For this purpose, the authors propose linear programming, in particu-
lar, simplex or interior-point methods.

3.10 Summary

In this chapter, we have discussed the background and related work on the con-
cerns addressed in this thesis. The content in this chapter presented additional
related work to what is discussed in Part II. Each of the efforts described in this
chapter can be applied on application mobility adhering to the ubiquitous comput-
ing paradigm, but they only address a piece of a larger puzzle. We conclude that
the difference in motivation, design decisions, and implementation approaches in
these efforts, make very challenging to integrate previous solutions.

34

Chapter 4

Summary of Research Papers and
Author’s Contributions

This chapter describes the relationship between the problem statement (stated
in Section 1.2), the aim (stated in Section 1.3), and how the published research
papers (included in Part II) contribute to solve the problem statement. The au-
thor’s contributions are stated in the corresponding section of each paper in this
chapter.

The complexity of integral solutions for ubiquitous computing makes very
difficult to draw a line on the area where each research paper contributes to answer
the research questions. In order to see the relation between each research question
and each paper, we map specific concerns in the questions, the papers, and the
MAPE-K phases in Table 4.1. The table also contains five co-supervised master
theses, whose projects were created as a result from the ongoing research of this
PhD thesis. Mnemonics starting with ‘P’ refer to research papers, mnemonics
starting with ‘M’ refer to the master theses.

P1 to P6 are summarized in Sections 4.2 to 4.7 and included in Chapters 6
to 11. The master theses M1 to M5 are summarized in the context of this PhD
thesis in Sections 4.8.1 to 4.8.5. For the full text of the master theses, we refer the
reader to the citation in the corresponding section.

In Table 4.1, we make a distinction on when the solution is to be used: at
design, load or run time. We also group the parts that belong to the framework or
the middleware.

P1 addresses Research Questions 1 and 2. It addresses the detachment of
applications from their host device and scalability issues. It is part of the Plan and
Execute phase in the MAPE-K model, and the middleware solution at run time.

35

Table 4.1: Overview of research work in relation to research questions, separation
of concerns, MAPE-K phases, framework and middleware

Framework Middleware
Research Concern MAPE-K Design Load Run
question time time time
1 Variability Plan P2 P3
1,2 Context Monitor, P2 P2

Analyze
2 Detach Execute P2, P3 P1, P2, P3

application P4, P5 P4, P5, P6
from device P6, M2 M2

1 Adapt Analyze, P2 P3 P1, M1,
multimedia Plan, M3
presentation Execute

1 Decision-making Plan P3, M2 P3 P3, M2
3 IPC in different Execute P4, P6 P4, P6 P4, P6,

device M5 M5
4 Data sharing Execute P5, P6 P5, P6 P5, P6
1 Reduce PIM hassle Execute M2 P6, M2
1 Scalability issues Plan, P2 P2, P3 P1

Execute

36

P2 is the most comprehensive paper in this thesis. It addresses Research
Questions 1 and 2. It addresses the variability of pipeline configurations, context-
awareness, detachment of applications from host devices, adaptation of multime-
dia presentations, and scalability issues in the autonomous creation of the variabil-
ity search space. It is part of the all phases in the MAPE-K model, the framework
and middleware design at design, load and run time.

P3 addresses Research Questions 1 and 2. It addresses the variability of con-
figurations, the detachment of applications from host devices, the adaptation of
multimedia presentations, decision-making, and scalability issues. It is part of
all phases of the MAPE-K model except the Monitor phase, the framework and
middleware at design, load and run time.

P4 addresses Research Questions 2 and 3. It addresses the detachment of
applications from host devices, and IPC mechanisms between distributed multi-
media components. It is part of the Execute phase in the MAKE-K model, the
framework and middleware at design, load and run time.

P5 addresses Research Questions 2 and 4. It addresses the detachment of ap-
plications from the host devices, and data sharing between distributed multimedia
components. It is part of the Execute phase in the MAPE-K model, the framework
and middleware at design, load and run time.

P6 gives an overview of all research questions. It addresses the detachment
of applications from host devices, IPC mechanisms and data sharing between dis-
tributed multimedia components, and the reduction of hassle in Personal Informa-
tion Management (PIM). It is part of the Execute phase in the MAPE-K model,
the framework and middleware at design, load and run time.

M1 addresses Research Question 1. It addresses the concern on how to adapt
multimedia presentations. It is part of the Analyze, Plan, and Execute phases in
the MAPE-K model, and the middleware at run time.

M2 addresses Research Questions 1 and 2. It addresses the concerns of de-
tachment of applications from host devices, decision-making, and reduction of
PIM hassle. It is part of the Plan and Execute phases in the MAPE-K model, the
framework and middleware at design and run time.

M3 addresses Research Question 1, more specifically how to adapt multimedia
presentations. It is part of the Analyze, Plan, and Execute phases in the MAPE-K
model, and the middleware at run time.

M4 is a proof of concept of the design decision for component-based applica-
tions as mobile applications and the middleware. We discuss it when we describe
Figure 4.1.

37

M5 addresses Research Question 3 on how to enable inter-process communi-
cation (IPC) mechanisms in distributed components of multimedia applications.
It is part of the Execute phase in the MAPE-K phase, the framework at design
time, and the middleware at run time.

The proposed middleware relies on the hardware abstraction provided by the
Application Program Interface (API) of device drivers, and offers an API, which
encapsulates the mechanisms for the autonomous adaptation of the application as
part of a framework. The offered API reduces the burden of developing mobile
multimedia applications. The middleware behaves in a resource-aware manner by
adapting the processes accordingly. Figure 4.1 presents the relation between the
research papers and the master theses in the middleware or application layer.

Application Layer

Autonomic Manager

as Middleware

(P2, P3, P6)

Socket migration (P4, P6, M5)

Distributed data sharing (P5, P6)

Other applications (M4)Video conference application (P1) ...

Negotiation protocol (M2)

Software mobility (P6)

Hardware Abstraction

and Service Layer
Operating System

Multimedia pipelines (P1, P2, P3)

Adaptation trigger (M3)

Seamcrop (M1) Overlay network (P5, P6)

API

API

Figure 4.1: Overview of research work and proposed architecture as middleware

P2, P3, and P6 discuss the design and implementation of the autonomic man-
ager as middleware. P1, P2, and P3 present implementation of dynamic recon-
figurable multimedia pipelines at the middleware layer. P1 also implements a
prototype to test the proposed solutions. P4, P6 and M5 present the design and
implementation of socket migration service. P5 and P6 describe the design and
implementation of two services, the distributed data sharing by multimedia com-
ponents, and needed overlay network to have access between the involved devices.

38

P6 also introduces the approach of software mobility, i.e., application mobility,
taken in this thesis.

M1 presents the design and implementation of the service to do online video
retargeting in the Seamcrop service. M2 presents the design and implementation
of the negotiation protocol to move applications between heterogeneous devices.
M3 describes the design and implementation of the service that starts the adapta-
tion of the application, adaptation can be triggered by context changes in the host
device, or after an application has been moved to another device. Finally, M4 is a
proof of concept of a component-based application for application mobility.

All the services illustrated in Figure 4.1 should work properly when used by
one application. However, due to time limitations, we have not verified this as-
sumption. This verification is an open issue in the current state of the thesis.

The services here discussed are by no means all the needed services to achieve
seamless application mobility. Other identified services include a Just In Time
(JIT) C compiler to achieve portability and mobility of programs, and a component
to enforce security between connections in the overlay network. Moreover, the
library of each service, can be also seen as a mobile component, and it should be
able to move to another device just as a mobile application using the middleware.
These services and their self mobility, however, are not in scope of the thesis but
will be work for the future.

4.1 TRAMP and MAPE-K

The main motivation of this thesis is to enable users to take advantage of the
changing availability and heterogeneity of devices in the ubiquitous computing
paradigm. For this, we proposed the architecture of TRAMP Real-time Applica-
tion Mobility Platform (TRAMP) [96] in an early stage of this thesis. However,
work on the challenges addressed in this thesis showed the need for a clearer sep-
aration between the middleware (initially proposed in [96]), the framework and
APIs offered to application developers.

After revisiting the Informational phase (described in Section 1.4.1) several
times, we propose an evolution of TRAMP that follows the MAPE-K autonomous
control loop model [113]. We called the new proposal as Dynamic Adaptation of
Multimedia Presentations in Application Mobility (DAMPAT) [191]. Therefore,
papers [192, 193, 191] refer to DAMPAT, whereas papers [194, 95, 96] refer to
TRAMP.

39

Figure 4.2 shows components of mobile multimedia applications as managed
elements, and how they can move in a fine-grained manner to different devices.
The solution contains an autonomic manager; a software component configured
by application developers using high-level goals. This manager separates the con-
cerns of the challenges in four phases: Monitor, Analyze, Plan, and Execute,
which create and share information (Knowledge). The manager uses the moni-
tored data from sensors and created knowledge in the system to analyze, plan and
execute the low-level actions that are necessary to achieve the goals specified by
application developers and users. The effectors apply the actions. A more detailed
description of the MAPE-K model is in Section 7.2.1.

Other application

Origin Device (Smartphone)

Video conference application

Preview video application

Receiving Device (HD Camcoder)

Video capture

Tactile movement capture

Receiving Device (Haptic Controller)

Autonomic manager

Monitor Execute

Analyze Plan

Knowdlege

EffectorsSensors

Managed element

Figure 4.2: Proposed solution as distributed autonomous adaptation loop

40

4.2 P1 – Dynamic Adaptation of Multimedia Pre-
sentations for Videoconferencing in Application
Mobility

Authors: Francisco Javier Velázquez-García, Pål Halvorsen, Håkon Kvale Stens-
land, and Frank Eliassen

Authors’ Contributions: Velázquez-García did the design, implementation, eval-
uation, and writing of this paper. Halvorsen, Stensland, and Eliassen super-
vised the work involved to publish this paper. Supervision included discus-
sion on arguments, paper structure, and text to improve the clarity of some
parts of the paper.

Reference in Bibliography: [193]

Included in: Chapter 6

Address or Attends to:

• Research Questions 1 and 2 (stated in Section 1.2).

• Concerns in the Plan and Execute phases on how to detach mobile applica-
tions from host devices, how to adapt multimedia presentations, and how to
address scalability issues (see Table 4.1).

• Adaptation at run time handled by the middleware (see Table 4.1).

• Prototype1 as middleware and application layers (see Figure 4.1).

Summary and Thesis Relevance

For multimedia applications to adhere to the ubiquitous computing paradigm,
we propose application mobility. We argue that application mobility mitigates
the overhead of PIM if the applications are designed and implemented in a way
that: (1) applications provide self-adaptive, self-configuration, self-optimization,

1Source code available on https://gitlab.com/francisv/gstreamer-prototypes
and https://gitlab.com/francisv/gstreamer-devel-tests/blob/ubuntu_

branch/tests/benchmarks/complexity.c

41

https://gitlab.com/francisv/gstreamer-prototypes
https://gitlab.com/francisv/gstreamer-devel-tests/blob/ubuntu_branch/tests/benchmarks/complexity.c
https://gitlab.com/francisv/gstreamer-devel-tests/blob/ubuntu_branch/tests/benchmarks/complexity.c

and self-awareness properties, and (2) users have the means to provide their pref-
erences without expert knowledge of the properties of the multimedia pipeline
configuration.

The self-adaptive property in application mobility implies adaptation in two
aspects. First, the internal configuration of the application should self-configure
according to the available software and hardware Input/Output (I/O) interfaces.
Second, the presentation of multimedia content has to adapt to the user preferences
and the user’s physical environment.

In paper [191] (summarized in Section 4.4 and included in Chapter 8) we in-
troduced the proposal to achieve adaptation by configuring multimedia pipelines.
For this, we investigated and designed architectural constraints to control the NP-
hardness of combinatorial growth caused by compositional and parameterization
variability when autonomously testing and linking multimedia pipelines. How-
ever, it remained a concern on the overhead time to execute the Plan phase (in
the Monitor, Analyze, Plan, and Execute (MAPE) model); this overhead time can
introduce intolerable delays if introduced precisely when the adaptation is needed.

In this paper, we investigate how to improve the efficiency of the autonomous
adaptation loop by reducing the time spent in the Plan and Execute phase. For
that purpose, we measured the time spent in different steps when building multi-
media pipelines in the GStreamer multimedia framework. The variable factors in
the measurements are the pipeline topology, the number of components in the pi-
peline, and the number of processed buffers in the pipeline. The instance of mea-
surements in Figure 4.3 shows that component instantiation spends the longest
amount of time.

The instantiation time of each component is longer if the component requires
services from hardware. Also, the number of queries involved to negotiate the
capabilities of components is dependent on the query handlers implemented in
each component. Thus, the unpredictability of time spent by queries, as presented
in Tables 6.1 and 6.2. Based on these observations, the goal of this paper is to
avoid the re-instantiation of components and duplication of queries as much as
possible.

The proposed approach presented this paper is to reconfigure multimedia pipe-
lines (change topology or components) in the GStreamer framework while keep-
ing the instantiated components in memory as long as they will continue to be
tested. A direct effect is the reduction of time spent in re-instantiating compo-
nents and handling duplicated queries.

42

 0.01

 0.1

 1

 10

 1 10 100 1000

S
e
co

n
d

s

Number of Forks Per Tee

Measurements instantiating 2048 components with different topologies

Component instantiation
State change
Processing 1000 buffers
Component destruction

Figure 4.3: Measurements of time spent to build GStreamer multimedia pipelines.
The plot shows the time to instantiate and destroy GStreamer components, change
their state, and process n number of buffers in the entire pipeline. To change the
topology, the number of source connectors (forks) per component increases in
quadratic order. The axes are in logarithmic scale.

4.3 P2 – Autonomic Adaptation of Multimedia Con-
tent Adhering to Application Mobility

Authors: Francisco Javier Velázquez-García, Pål Halvorsen, Håkon Kvale Stens-
land, and Frank Eliassen

Authors’ Contributions: Velázquez-García designed, implemented, and evalu-
ated the work presented in this paper. Halvorsen, Stensland, and Eliassen
co-supervised the work on this paper by debating the arguments in the pa-
per, discussing structure and arguments flow; they also suggested text to
convey the content in a clearer manner.

Reference in Bibliography: [192]

Included in: Chapter 7

Address or Attends to:

43

• Research Questions 1 and 2 (stated in Section 1.2).

• Concerns in Monitor, Analyse, Plan and Execute phases on how to address
variability of multimedia pipelines, how to model the context that has im-
pact producing or consuming multimedia content, how to detach mobile
applications from host devices, how to adapt multimedia presentations, and
how to address scalability issues (see Table 4.1).

• API to be used at design time provided as a framework, and adaptation at
load and run time handled by the middleware (see Table 4.1).

• Mathematical analysis of utility functions and prototype23 middleware (see Fig-
ure 4.1).

Summary and Thesis Relevance

In [96] (summarized in Section 4.7 and included in Chapter 11), we introduced
the initial research questions of this thesis and the initially proposed middleware.
Further research during the work of this thesis brought the need for a clearer sep-
aration of concerns to address the complexity of autonomous systems. For this
purpose, we implement an autonomic adaptation loop following the MAPE model
(see Section 4.1). We call the result middleware and framework as DAMPAT ini-
tially introduced in [191] (summarized in Section 4.4 and included in Chapter 8).
In this paper, we present the holistic motivation, design, implementation, and eval-
uation of DAMPAT.

We revisit the autonomous (self-managing) properties required to achieve ap-
plication mobility adhering to the ubiquitous computing paradigm. The identified
self-managing properties are self-adaptive, self-configuration, self-optimization,
and self-awareness.

In [191], we illustrate how developers can specify a group of components by
functionality in what we call functional stages at three different levels of knowl-
edge (see Table 8.1). In this paper, we define the term functional path as an
abstraction of the sequentially connected components that process a stream to do
a certain task, e.g. capture video from a webcam and send it over the network.
Functional paths allow application developers to provide a clearer intention in a

2Source code available on https://gitlab.com/francisv/gstreamer-prototypes.
3Implementation of context models as MySql relational database models available on https:

//gitlab.com/francisv/dampat.

44

https://gitlab.com/francisv/gstreamer-prototypes
https://gitlab.com/francisv/dampat
https://gitlab.com/francisv/dampat

Table 4.2: Enforcement of functional path combinations using the BRGC al-
gorithm. In this example, there are two functional paths involved: W1 and W2.
The functional path W1 has two possible pipeline configurations w1, w

′
1, and the

functional path W2 has only one possible pipeline configuration w2.
Bit 000 001 011 010 110 111 101 100

strings
Subsets {0} {w2} {w′

1, w2} {w′
1} {w1, w

′
1} {w1, w

′
1, w2} {w1, w2} {w1}

|W1| 0 0 1 1 2 2 1 1
|W2| 0 1 1 0 0 1 1 0

Subgraph Not g1 g2 g3 Not Not g4 g5
∈ G′ valid valid valid

high-level manner on which path variants should be included in an autonomously
created pipeline.

The application developer can define functional paths following the format
of Unix configuration files in the proposed implementation. The configuration
defines vertices that represent one or more pipeline components. Those vertices
are implemented as single components or as functional stages. Functional stages
are implemented with the GStreamer API to construct bins.

The proposed API allows application developers to specify how many path in-
stances should be instantiated in parallel. In practice, the middleware controls the
amount of possible functional paths with the Binary Reflected Gray Code (BRGC)
algorithm [126]. Table 4.2 is an example of how this algorithm is applied to the
set of all available paths in W . In this example, there are two functional paths
involved, W1 and W2. The functional path W1 has two possible configurations
w1, w

′
1, and the functional path W2 has only one possible configuration w2. The

resulting set of subgraphs G′ = {g1, . . . , gn} creates the variant search space, i.e.,
possible pipeline configurations.

In this paper, we also describe in detail what is contained in the modeled con-
text (see Section 7.2.2). We define context as any information that characterizes
the user surroundings, preferences, application running environment, or network
conditions, which impacts the functional and non-functional requirements of an
application. Thus, we argue that multimedia applications should take into consid-
eration the ultimate source or sink in a multimedia pipeline, even if it is a human
being. An abstraction to this argument is illustrated in Figure 7.5.

For autonomous decision-making, DAMPAT allows users to express weighted
preferences of properties of the application, e.g. properties of components in a
multimedia pipeline. Thus, users can provide their preferences at their level of

45

knowledge of the internal configuration of the application. DAMPAT uses multi-
dimensional utility functions to autonomously select the pipeline variant that pro-
vides the highest utility for a given context. The description of variant selection
in Section 7.2.4 is brief due to space constraints in the publication of this paper.
Thus, we include a more detailed explanation on the design and application of
utility functions in the next section.

4.3.1 Multi-dimensional Utility Functions

DAMPAT uses multi-dimensional weighted utility functions as a means to spec-
ify the objectives that guide the adaptation logic. Utility functions allow users
and developers of multimedia components to provide their preferences. For ex-
ample, a user that prefers two-channels audio processing when using headphones,
or a developer of an audio component that prefers (i.e., recommends) to config-
ure the component to process six channels when possible. The process where the
autonomic manager clearly defines the utility of a pipeline variant based on the
preferences of the user and developer is often called preference elicitation [178].
Each pipeline variant is represented as a subgraph g ∈ G′, and each variant pro-
vides a (multi-dimensional weighted) utility.

Utility (τ) is the degree to which a particular pipeline variant has the potential
to satisfy the user’s needs. This utility is computed as a scalar mapping of
the operational parameters for the component. τ is an element of T in the
mapping.

Utility function (µ) is the mathematical relation such that each variation in the
context (x ∈X) of the application or the user (environment and preferences)
is associated with a real number. Each component in a multimedia pipeline
has a set of properties (p ∈ P), i.e., parameterization variability represented
by v.P , i.P , o.P , m.P , and each property has an associated utility function
(µ). The mapping of the utility function, which is denoted by Equation (4.1),
is the rule, by which a uniquely defined element τ ∈ T is assigned to every
element of x ∈ X , and to every element of p ∈ P .

µ : X × P → T (4.1)

The domain of X and P is the set of the real numbers R, as Equations (4.2)
and (4.3). The set of properties P is part of the pipeline description represented as
a subgraph g ∈ G′. The set of properties in a pipeline is also represented as g.P .

46

X = {x ∈ R | x ∈ X} (4.2)

P = {p ∈ R | p ∈ P, P ∈ G′} (4.3)

Utility functions (µ), represented in Equation (4.4), are specific per multime-
dia component. Developers of components implement the utility functions. An
example of such implementation is ut, which takes two arguments: the preferred
property value u.p ∈ X specified by the user u, and the corresponding property
value g.p provided by the component in the pipeline variant being evaluated. For
more details about ut see Sections 7.2.4 and 8.2.4.

τ = µ(x) (4.4)

The range of utility functions is normalized to result between zero (worse) and
one (best), as Equation (4.5). Utility values of a variant under different contexts
are unrelated; likewise, utility values of different variants under the same context
are unrelated. Utility functions are evaluated at run time because the values of
arguments depend on the input stream and context while using the application.

µ = {µ(x) | 0 ≤ µ(x) ≤ 1} (4.5)

Priorities (ε or we) represent the level of interest, preference, weight or rank of
specific properties of a pipeline variant. Users provide priorities to express
the relevance of, for example, media modalities, bitrate (quality) of video,
or number of audio channels. A property with low priority means that this
property does not help the configuration to satisfy the user preferences. A
negative priority (represented by Not-a-Number (NaN)) indicates that this
property is undesired, for example, a negative video modality means that
no variant with video processing should be selected at all. The value of the
priority is a real number normalized to be between zero (lowest priority),
one (highest priority), or the NaN value to reject the entire pipeline that is
characterized by an unwanted property (negative priority).

Weighted utility function (σ) is a function of two variables, priority, i.e., weight
(ε), and utility (τ), as Equation (4.6). The mapping of σ is denoted by Equa-
tion (4.7), by which a uniquely defined weighted utility element h ∈ H is
assigned to every prioritized (weighted) utility element θ ∈ Θ. θ represents

47

the function that takes two arguments (priority and utility). The domain of
Θ is [0, 1], as Equation (4.8), where R2 represents a two-dimensional vari-
able space. The co-domain (or range) of H is also [0, 1] as Equation (4.9).
The weighted utility function σ(ε, τ) is the scalar product of the weight (ε),
and the utility (τ), as in Equation (4.10).

h = σ(ε, τ) (4.6)

σ : Θ→ H (4.7)

Θ = {(ε, τ) ∈ R2 | 0 ≤ ε ≤ 1, 0 ≤ τ ≤ 1} (4.8)

σ = {σ(ε, τ) | 0 ≤ σ(ε, τ) ≤ 1} (4.9)

σ(ε, τ) = ε · τ (4.10)

Multi-dimensional weighted utility (Υ) is the sum of the weighted utilities H
of all components in a pipeline. That is, the multi-dimensional weighted
utility of one pipeline (υ ∈ Λ) is equal to the output of the function Υ,
as Equations (4.11) and (4.12), where the argumentH is the set of weighted
utility functions h, as Equation (4.6). Equation (4.13) is the mapping of Υ,
by which a uniquely defined υ ∈ Λ is assigned to every element h ∈H . The
domain and co-domain of Υ is [0, 1], as Equations (4.14) and (4.15), where
n in Equation (4.14) is the n-dimensional space of independent variables to
compute the overall utility of a pipeline.

υ = Υ(H) (4.11)

Υ(H) =
l∑

j=1

h (4.12)

Υ: H → Λ (4.13)

48

Table 4.3: Scenarios for assignment of utilities T of properties {p}l=3
j=1 for differ-

ent contexts {x}l=3
j=1

Context {x} Video (p1) Audio (p2) Text (p3)
1 0.8 1 1
2 0 1 0

H = {h ∈ Rn | h ∈ H, 0 ≤ h ≤ 1} (4.14)

Υ = {Υ(H) | 0 ≤ Υ(H) ≤ 1} (4.15)

4.3.2 Examples of Multi-dimensional Utility of Pipeline Vari-
ant

Tables 4.3 to 4.5 show some scenarios to exemplify the definition in Section 4.3.1.
Table 4.5 uses the values in Tables 4.3 and 4.4. Table 4.3 shows the utility pro-
vided by different properties in one pipeline variant for different situations (con-
texts). p1 is the property of video modality, p2 is the property of audio modality,
and p3 is the property of text modality.

Table 4.4 shows how weights are normalized between zero and one. By de-
fault, the weight of all properties sum 1, and are equally important, as shown in
Scenario 1. If the user adjusts one weight, the autonomic manager ensures the sum
of the weights is always equal to 1. The difference adjusted by the user is added
or subtracted among all other weights. In this way, the manager preserves the
relation to previous adjustments of importance. In Scenario 2, if the user wants
to assign 0.70 as the priority for video, the manager normalizes the weights by
calculating the difference (0.7 − 0.33 = 0.37) and dividing it by the remaining
weights, then the result is subtracted from ε2 and ε3. Scenario 3 exemplifies the
negation of modalities, where the user does not want the video modality. Note
that the negation of a modality is different than assigning a weight equal to 0 as in
Scenario 4. A weight with value 0 means that a given property will not be taken
into account when calculating the overall multi-dimensional utility.

Table 4.5 shows some instances of the overall multi-dimensional weighted
utility (υ ∈ Λ) for one pipeline in a given context (as in Table 4.3) and priority
(as in Table 4.4). Combination 1 shows the equivalence when assigning the same
weight to all utilities. Combination 2 shows how the overall utility changes when

49

Table 4.4: Scenarios for automatic assignment of priorities {ε}l=3
j=1.

Scenario Description ε1 ε2 ε3
∑l=3 εj=1

1 No priorities specified 0.33 0.33 0.33 1.00
2 Prefers video 0.70 0.15 0.15 1.00
3 NaN for unwanted video NaN 0.5 0.5 1.00
4 Do not care about video 0 0.5 0.5 1.00

the user adjusts the priorities. Combinations 3 and 4 show the difference between
assigning a NaN or 0 value as the weight for a property. Combination 5 shows the
utility of a pipeline that does not contain (process) an unwanted property.

Table 4.5: Overall multi-dimensional weighted utility of one pipeline for a given
context (in Table 4.3) and priority (in Table 4.4).

Combination Utilities in Priority (weight) υ
context scenario scenario

1 1 1 0.924
2 1 2 0.86
3 1 3 NaN
4 1 4 1
5 2 3 0.50

4.4 P3 – DAMPAT: Dynamic Adaptation of Multi-
media Presentations in Application Mobility

Authors: Francisco Javier Velázquez-García and Frank Eliassen

Authors’ Contributions: Velázquez-García did the design, prototype implemen-
tation, evaluation and writing of this paper. Eliassen supervised the work for
this publication. A major contribution from Eliassen was his advise to rely
on Monitor, Analyze, Plan, and Execute (MAPE)-Knowledge (K) model,
and Dynamic Software Product Lines (DSPLs) as research base.

Reference in Bibliography: [191]

Included in: Chapter 8

Address or Attends to:

50

• Research Questions 1 and 2 (stated in Section 1.2).

• Concerns in Monitor, Analyse, Plan and Execute phases on how to address
variability of pipelines, how to detach mobile applications from host de-
vices, how to adapt multimedia presentations, how to make autonomous
decisions on pipeline configurations, and how to address scalability issues
(see Table 4.1).

• API to be used at design time provided as a framework, and adaptation at
load and run time handled by the middleware (see Table 4.1).

• Mathematical analysis and prototyping4, as middleware (see Figure 4.1).

Summary and Thesis Relevance

For multimedia applications to adhere to the ubiquitous computing paradigm,
they must be able to self-adapt to the receiving device. For this adaptation to
happen autonomously, we argue that the application (or services used by the ap-
plication) must make autonomous decisions based not only on the software and
hardware in the receiving device, but also on the user preferences and users’ phys-
ical environment. Our initial middleware designed in [96] (summarized in Sec-
tion 4.7, and included in Chapter 11) considers the components needed to offer
mobility services for process migration (i.e., mobile applications), however, it
does not explain how the middleware performs autonomous decision-making.

In this paper, we present how to separate the concerns to tackle the complex-
ity of autonomous self-adaptive mobile applications by following the MAPE-K
autonomic adaptation loop model. The proposed solution based on this model
is referred to as DAMPAT. DAMPAT follows the DSPL engineering approach.
DAMPAT aims to provide the services needed by the middleware to support au-
tonomous parameter setting (i.e., parameterization variability), component re-
placement (i.e., compositional variability), and component redeployment (e.g.
socket migration).

Multimedia content is presented in a collection of multimedia streams. The
specific configuration of the stream collection is called multimedia presentation.
To adapt to a very large number of heterogeneous multimedia devices, we argue

4Source code available on https://gitlab.com/francisv/gstreamer-devel-tests,
https://gitlab.com/francisv/gstreamer-devel-tests-2, and https://gitlab.
com/francisv/gstreamer-devel-tests-3

51

https://gitlab.com/francisv/gstreamer-devel-tests
https://gitlab.com/francisv/gstreamer-devel-tests-2
https://gitlab.com/francisv/gstreamer-devel-tests-3
https://gitlab.com/francisv/gstreamer-devel-tests-3

that mobile multimedia applications should self-configure. In this way, applica-
tions can process the streams according to the specific I/O interfaces of the host
device in use. Our approach to achieve this adaptation is to adapt the multimedia
pipeline that processes the multimedia streams.

The design and implementation of capability negotiation mechanisms for mul-
timedia pipelines is a complex task. Therefore, we investigated state-of-the-art
multimedia frameworks including GStreamer [86], VLC5, Qt6, and FFmpeg7.
Based on easiness, documentation, implemented components to build pipelines
with different characteristics, I/O support in heterogeneous devices, distributed
pipelines support (as in [116]), cross-platform support, and framework redistri-
bution size, we decided to leverage the mechanisms of GStreamer. In addition,
GStreamer is written in C, which makes it a good choice as research base due
to language transparency when implementing: (1) graph routines in GNU Linear
Programming Kit [134], (2) optimization to the decision-making algorithm in lin-
ear or mix integer linear programming (MILP) in GNU MathProg [136, 135], or
(3) reformulation of the decision-making algorithm into the classical satisfiability
problem (SAT) in [133].

The autonomic creation of the variability search space of possible multime-
dia pipeline configurations has in principle an exponential growth due to: (1) the
uncontrollable number of available pipeline components, i.e., compositional vari-
ability, and (2) the uncontrollable number of parameterization possibilities per
component, i.e., parameterization variability. DAMPAT mitigates the exponential
growth by applying architectural constraints; it reduces compositional variabil-
ity in functional stages (see Section 8.2.2), and control path combinations based
on modalities (see Section 8.2.3). Developers of applications can adjust these
constraints by describing the stages at their level of expertise, e.g. a developer
can represent a pre-processing stage, which will match the metadata descriptors:
protocol handler, parser, demuxer and decoder. Then, if components of the neigh-
boring stages are compatible, they are linked (see Table 8.1).

Evaluation of this paper shows that the time to create an adaptation plan can
be in the order of a few seconds. This time overhead is introduced at load time
(when the application is loaded in the host device, or when the components in the
device are updated). In the case where the user starts the application, we expect
the user will not notice it, because a multithreading or multitasking application

5https://www.videolan.org/
6https://www.qt.io/
7https://ffmpeg.org/

52

https://www.videolan.org/
https://www.qt.io/
https://ffmpeg.org/

would allow the user to perform other tasks while the Plan phase is executed.
However, the time overhead can become annoying if the Plan phase is executed as
the adaptation is required during a multimedia session. Therefore, the algorithms
involved in the creation of the adaptation must be improved, or the adaptation
plan must be created before adaptation is needed. We address the first alternative
in [192] (summarized in Section 4.3, and included in Chapter 7).

For the second alternative (to create the variability search space on before-
hand) we propose two approaches. First, the autonomic manager can send the
metadata of the input stream to the collaborating devices where the application
can be potentially moved, so DAMPAT can create the search space before adap-
tation is needed. Second, the autonomic manager can perform the planning phase
entirely on a model of pipelines, such as in models@runtime [22]; for this, the de-
signer of the model should abstract the capability negotiation mechanisms needed
for autonomous configuration of the application, especially for multimedia pipe-
lines. The work for these approaches, however, is left as future work.

GStreamer uses the GLib [184] library, and GLib uses the GIO library [183].
Thus, in order to transparently use the mechanisms for socket migration [194]
(proposed solutions for Research Question 3), or data sharing [95] (proposed so-
lutions for Research Question 4), we must integrate them in the GIO library. This
integration is left as future work.

4.5 P4 – SOCKMAN: Socket Migration for Multi-
media Applications

Authors: Francisco Javier Velázquez-García, Håvard Stigen Andersen, Hans Vatne
Hansen, Vera Goebel and Thomas Plagemann

Authors’ Contributions: Velázquez-García co-supervised the master thesis [9],
which was the starting point for this paper. Velázquez-García wrote the
version not accepted at the Middleware Conference 2012. For this submis-
sion, Velázquez-García, in collaboration with the co-authors, improved the
content of the thesis mainly by studying the results thoroughly, adding new
evaluation metrics and a new evaluation scenario, adding related work, and
presenting results in a clearer manner. Both co-authors, Velázquez-García
and Hansen, rewrote the not accepted version of the paper to achieve greater
clarity. The paper was published at ConTel 2013 conference, and it was

53

presented by Velázquez-García. Goebel and Plagemann co-supervised the
work for the paper by discussing the arguments and structure of the paper.

Reference in Bibliography: [194]

Included in: Chapter 9

Address or Attends to:

• Research Questions 2 and 3 (stated in Section 1.2).

• Concerns in Execute phase on how to detach mobile applications from host
devices, and how to provide IPC mechanisms for mobile applications with
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
connections.

• API to be used at design time provided as a framework, and adaptation at
load and run time handled by the middleware (see Table 4.1).

• Prototype8 as middleware (see Figure 4.1).

Summary and Thesis Relevance

In order to enable distributed components to communicate in a location-independent
manner, we identify the following requirements: low connection handover time,
sufficient throughput for the targeted application domain, portability, no modifi-
cations to the communications protocols used in the Internet, and no servers to
manage connections handover. To the best of our knowledge, none of the related
work (detailed in Section 3.6 and Section 9.5) meets all the identified require-
ments.

As part of the proposed middleware, we decided to provide the service for
endpoint mobility at the transport protocol layer, because it allows to meet the
requirements above mentioned, and it obeys the end-to-end principle [165] in sys-
tem design. The design of the DARPA Internet standard protocols implemented
in Berkeley Unix sockets, i.e., TCP and UDP, tightly couple the device and net-
work identity with a 5-tuple of Internet Protocol (IP) address, port, and protocol
at each endpoint of the connection. This 5-tuple represents the major challenge
when addressing the mobility of endpoint connections at the transport layer.

8Source code available upon request at https://gitlab.com/francisv/sockman.

54

https://gitlab.com/francisv/sockman

To address this challenge, we design, implement and evaluate a service called
SOCKMAN, which reconfigures the 5-tuple of sockets that are moved to another
device. The migrated sockets preserve the transport protocol state, and their mo-
bility is hidden behind a proxy that tunnels entire IP packets through the proxy.
As a result, applications using the services from SOCKMAN can interact with
legacy applications.

The modification of standard implementations at the transport protocol layer
for transparent use of legacy applications is an approach used by production-
quality solutions such as in SuperSockets of Dolphin [58]. Thus, SOCKMAN
represents an independent contribution to mobile networking and host mobility.

4.6 P5 – Efficient Data Sharing for Multi-device Mul-
timedia Applications

Authors: Hans Vatne Hansen, Francisco Javier Velázquez-García, Vera Goebel,
Thomas Plagemann

Authors’ Contributions: Velázquez-García participated in discussions through-
out all the process of the paper. Velázquez-García improved the clarity of
the paper in the slides he made for the Middleware 2012 conference; he
presented the paper. Hansen designed, implemented, evaluated and wrote
the paper. Goebel and Plagemann co-supervised the work throughout the
paper.

Reference in Bibliography: [95]

Included in: Section 4.6

Address or Attends to:

• Research Questions 2 and 4 (stated in Section 1.2).

• Concerns in Execute phase on how to detach mobile applications from host
devices, and how to share data over Internet among distributed components.

• API to be used at design time provided as a framework, and adaptation at
load and run time handled by the middleware (see Table 4.1).

55

• Prototype9 as middleware (see Figure 4.1).

Summary and Thesis Relevance

In this paper, we investigate how distributed components of multimedia appli-
cations can share data over the Internet in an efficient manner. The presence of
multiple consumers from one content source can reduce the throughput and avail-
able bandwidth in the source device. For example, think on a video conference
session that moves (and duplicates) the video processing component to several
other devices. Multimedia data distribution in such scenarios should be efficient.

Our solution provides mechanisms to distribute and replicate data segments in
a transparent manner by providing location independent labels that identify mul-
timedia content. The proposed packet layout to transfer data segments (illustrated
in Figure 10.5) masks and hide heterogeneity of data representation in different
architectures. Hence, the middleware provides transparent data access. Location
and data transparency are necessary for the distribution of components of fine-
grained multimedia applications.

The middleware implements mechanisms for data propagation, and it utilizes
latency-optimized trees to distribute CPU and bandwidth usage among partici-
pants. For this purpose, we propose a publish-subscribe (PUB/SUB) [145] solu-
tion that leverages the mechanisms of two systems: (1) the Portable Operating
System Interface (POSIX) shared memory API [182, 115], and (2) the coordina-
tion mechanisms using D-Bus [154].

The evaluation from the implemented prototype shows that the middleware
selects the most efficient distribution path from producer to consumer. As a re-
sult, the local performance avoids the saturation of the data sources and access to
memory is close to regular memory speed.

4.7 P6 – Migration of Fine-grained Multimedia Ap-
plications

Authors: Hans Vatne Hansen, Francisco Javier Velázquez-García, Vera Goebel,
Ellen Munthe-Kaas, Thomas Plagemann

9Source code available upon request at https://gitlab.com/francisv/edsmma.

56

https://gitlab.com/francisv/edsmma

Authors’ Contributions: Velázquez-García, in collaboration with the co-authors,
designed the component-based TRAMP architecture. In particular, Veláz-
quez-García proposed the modules: signaling, policies, and connection han-
dover. The connection handover solution and results presented in this ex-
tended abstract come from [194] (summarized in Section 4.5 and included
in Chapter 9). Velázquez-García and Hansen co-wrote the entire extended
abstract. Velázquez-García, with feedback from the co-authors, made the
poster of the extended abstract, and presented it at the Middleware Confer-
ence 2012. Hansen proposed the module: efficient data sharing memory.
Goebel, Munthe-Kaas, and Plagemann supervised the work of this paper.

Reference in Bibliography: [96]

Included in: Chapter 11

Address or Attends to:

• Research Questions 1, 2, 3 and 4 (stated in Section 1.2).

• Concerns in Execute phase on how to detach mobile applications from host
devices, how to provide IPC mechanisms for mobile applications with TCP
and UDP connections, how to share data over Internet among distributed
components, and how to reduce the hassle of PIM when using multiple
devices.

• API to be used at design time provided as a framework, and adaptation at
load and run time handled by the middleware (see Table 4.1).

• Prototype10 as middleware (see Figure 4.1).

Summary and Thesis Relevance

This paper reports the initial research questions identified in this thesis. The re-
search questions are mapped to the goals of eight components (parts of the middle-
ware): (1) create device communities (addressed in [94]), (2) migrate processes,
(3) perform signalling for process migration (addressed in [10]), (4) achieve trans-
parent connection handover (addressed in [194]), (5) provide efficient data sharing

10Source code available upon request at https://gitlab.com/francisv/edsmma and
https://gitlab.com/francisv/sockman.

57

https://gitlab.com/francisv/edsmma
https://gitlab.com/francisv/sockman

(addressed in [95]), (6) describe and discover application components within de-
vice communities (addressed in [10]), (7) implement policies (addressed in [191]),
and (8) aid users in configuring devices (addressed in [191]).

In an earlier stage of this thesis, we proposed the architecture of a middleware
solution called TRAMP. The focus at this stage was to provide services in the less
intrusive manner, and provide process migration services for legacy applications
without modifications. To achieve process migration, we investigated the Java
Virtual Machine (JVM), in particular, the Dalvik JVM [144] (discontinued since
2014), Maxine [200], Jikes RVM [173, 158, 159, 157, 38, 5, 66], and the Java
framework OSGi [39, 205, 62]. However, after revisiting the Informational phase
several times, we decided not to pursue the use of JVM for three main reasons.
(1) Many multimedia-capable devices do not support Java, such as embedded de-
vices. (2) JVMs use the least-common-denominator approach for exposing user
interfaces, i.e., JVMs do not recognize and utilize non-standard device-specific
peripherals. (3) Java is a proprietary language specification that is susceptible to
copyright law infringement. Instead, we opted to continue the research of the mid-
dleware using the C programming language, which is light-weight and portable
(despite false portability assumptions known as vaxocentrism [185]) to a large
number of multimedia-capable devices. This approach is closer to code mobility
than to process migration. Thus, the design and implementation of a JIT C com-
piler in the middleware are needed. The work to realize code mobility is, however,
future research.

Further research after this paper brought additional research questions on how
to provide services to application developers for the adaptation of multimedia con-
tent at run time, and how to achieve autonomous decision-making. Thus we had
to make a clearer separation of concerns between the framework and APIs offered
to application developers, and a unified autonomous control loop implementation
in the middleware. After revisiting the informational phase (described in Sec-
tion 1.4.1) several times, we proposed an evolution of TRAMP that follows the
MAPE-K model [113].

4.8 Related Master Theses

This section briefly summarizes five master theses whose research questions were
identified as part of this PhD thesis. These theses are supportive work that at-
tends to the research questions stated in Section 1.2. The theses are presented in

58

chronological order.

4.8.1 M1 – A Real-Time Video Retargeting Plugin for GStreamer

Authors: Haakon Wilhelm Ravik

Supervisors: Francisco Javier Velázquez-García and Thomas Plagemann

Reference in Bibliography: [161]

Address or Attends to:

• Research Question 1 (stated in Section 1.2).

• Concerns in Plan and Execute phase on how to adapt multimedia presenta-
tions.

• Adaptation at run time handled by the middleware (see Table 4.1).

• Prototype11 as middleware (see Figure 4.1).

In this PhD thesis, we leverage the GStreamer multimedia framework because
it provides an API to develop components for multimedia pipelines. The code base
of GStreamer already contains a large number of pipeline components that provide
different adaptation types (see Figure 3.1 for an overview of types of adaptation of
multimedia data), and it provides mechanisms for building multimedia pipelines.
However, this code base does not contain any retargeter. Therefore, Ravik de-
signed, implemented, and evaluated a video retargeter (SeamCrop) for adaptation
of Video on Demand (VoD) services as a GStreamer component. The availability
of this component in the initial search space of components in a host device allows
mobile applications to adapt the presentation of videos in small displays.

4.8.2 M2 – Negotiation and Data Transfer for Application Mo-
bility

Authors: Marko Andic

Supervisors: Francisco Javier Velázquez-García and Thomas Plagemann

11Source code available upon request at https://gitlab.com/francisv/GstSeamCrop.

59

https://gitlab.com/francisv/GstSeamCrop

Reference in Bibliography: [10]

Address or Attends to:

• Research Questions 1 and 2 (stated in Section 1.2).

• Concerns in Execute phase on how to detach the application from host de-
vice, and how to reduce the hassle of PIM when using multiple devices.

• Capability negotiation at run time handled by the middleware (see Table 4.1).

• Prototype12 as middleware (see Figure 4.1).

When several applications are running concurrently in one device or in the
collaborating devices, the applications are competing for the available resources,
and thus adaptation should be coordinated. The protocol designed, implemented,
and evaluated by Andic allows DAMPAT to exchange data for decision-making
on whether an application can be moved to a remote device or not. The proposed
protocol eases the implementation of policies to evaluate whether the mobility of
the application is worth it or not. This work also handles the data transfer of static
and dynamic data of applications (or processes).

The protocol is also useful in such use cases to select the computer where a
multimedia pipeline can perform best. For example, if the pipeline is described
to use a special math co-processor, GPU or supercomputer, the protocol can se-
lect the most appropriate target computer. As a conclusion of this master thesis,
we argue that negotiation protocols based on Session Initiation Protocol (SIP) are
suitable for fine-grained mobile multimedia applications that adhere to the ubiq-
uitous paradigm.

4.8.3 M3 – Adaptation trigger mechanism

Authors: Goran Karabeg

Supervisors: Francisco Javier Velázquez-García and Thomas Plagemann

Reference in Bibliography: [111]

Address or Attends to:
12Source code available upon request at https://gitlab.com/francisv/

negotiation-protocol.

60

https://gitlab.com/francisv/negotiation-protocol
https://gitlab.com/francisv/negotiation-protocol

• Research Question 1 (stated in Section 1.2).

• Concerns in Analyse, Plan, and Execute phase on how to adapt multimedia
presentations.

• Capability negotiation at run time handled by the middleware (see Table 4.1).

• Prototype13 as middleware (see Figure 4.1).

Mobile multimedia applications require mechanisms to trigger adaptation of
multimedia presentations not only when the application moves to a heterogeneous
device, but also when the context change (while running the application) in the
same device. The mechanisms to trigger adaptation of multimedia presentations
in the same device were designed, implemented, and evaluated in the master thesis
by Karabeg. The work of this thesis is part of the Analyse phase (in the MAPE
model), and is responsible for identifying when the application configuration does
not support the current safety predicate anymore (explained in Section 7.2.3).

4.8.4 M4 – Component-based multimedia application for fine-
grained migration

Authors: Tomas Gryczon

Supervisors: Francisco Javier Velázquez-García, Hans Vatne Hansen, and Thomas
Plagemann

Reference in Bibliography: [83]

Address or Attends to:

• Research Questions 1 and 2 (stated in Section 1.2).

• Concerns in Execute phase on how to detach applications from devices in a
fine-grained manner.

• Prototype14 at application layer (see Figure 4.1).

13Source code available upon request at https://gitlab.com/francisv/
trigger-mechanism.

14Source code available upon request at https://gitlab.com/francisv/
component-based-mmm-app.

61

https://gitlab.com/francisv/trigger-mechanism
https://gitlab.com/francisv/trigger-mechanism
https://gitlab.com/francisv/component-based-mmm-app
https://gitlab.com/francisv/component-based-mmm-app

In this PhD thesis, we argue that fine-grained application mobility is needed to
take advantage of the heterogeneous multimedia-capable devices in the ubiquitous
computing paradigm. Thus, we have argued that application developers should
split their applications into components that can be executed in different devices,
i.e., components implemented to run as independent processes in the operating
system. Gryczon designed, implemented and evaluated a multimedia application
following this separation of components into processes to show the suitability of
this approach.

4.8.5 M5 – User Space Socket Migration for Mobile Applica-
tions

Authors: Håvard Stigen Andersen

Supervisors: Francisco Javier Velázquez-García, Hans Vatne Hansen, Vera Goebel,
and Thomas Plagemann

Reference in Bibliography: [9]

Address or Attends to:

• Research Question 3 (stated in Section 1.2).

• Concerns in Execute phase on how to provide IPC mechanisms for mobile
applications with TCP and UDP connections.

• API to be used at design time provided as a framework, and adaptation at
load and run time handled by the middleware (see Table 4.1).

• Prototype15 as middleware (see Figure 4.1).

In this PhD thesis, we argue that mobility at application-level, i.e., application
mobility, is part of the solution to realize the vision of ubiquitous computing.
One part of applications are their sockets; hence sockets must move together with
their applications. Andersen designed, implemented, and evaluated mechanisms
to hide the mobility of TCP and UDP sockets between devices. In this way, mobile
applications can interact with legacy applications.

15Source code available upon request at https://gitlab.com/francisv/
socket-migration.

62

https://gitlab.com/francisv/socket-migration
https://gitlab.com/francisv/socket-migration

4.9 Summary

In this chapter, we summarized the already published research work that has been
done in the direction of the aim of this thesis: ease the development of multime-
dia applications that adhere to the ubiquitous computing paradigm. The author’s
contribution per work has also been stated.

We have illustrated in Figure 4.2 how the MAPE autonomous adaptation loop
model separates the concerns of the proposed middleware. Table 4.1 shows the
relation between the research questions, concerns, phases (in the MAPE model),
framework (concerns at design time), and middleware (concerns at load time and
run time). Figure 4.1 presents the relation of research work as building blocks in
the implemented middleware.

63

Chapter 5

Conclusions

We summarize in Section 5.1 what we have learned from the work in this thesis
and the significance of the results. The core of the thesis is the proposed mid-
dleware and Application Program Interfaces (APIs) that provides new modes of
action for others to achieve fine-grained application mobility that adheres to the
ubiquitous computing paradigm. Application mobility is an efficient and scalable
way to enable users to take advantage of the dynamically changing set of sur-
rounding devices during a multimedia session; this statement is supported by the
results summarized in Chapter 4. We provide a critical review and open issues
in Section 5.2, future work Section 5.3, and future research in Section 5.4.

5.1 Summary of Main Contributions

We have proposed a novel middleware and framework for fine-grained mobile
multimedia applications. The middleware is designed as an autonomic adapta-
tion loop and chooses the variant that provides the highest utility for the user
at load and run time. The framework provides an API that simplifies software
development by allowing the developer to pass high-level goals of services as
arguments. The framework allows developers to capture (at design time) the vari-
ability of user physical environment, user preferences, application runtime envi-
ronment, and network conditions. The implemented mechanisms encapsulated in
the APIs give access to resources in a location-independent and seamless manner.
Applications using the proposed API and middleware acquire the self-adaptive,
self-configuration, self-optimization, and self-awareness properties.

To achieve adaptation of multimedia presentations in the ever-growing diver-

65

sity of heterogeneous multimedia devices in a timely manner, we propose to adapt
multimedia pipelines. We contribute with a series of architectural constraints to
address complex and NP-hard problems introduced by the inherent unexpected
variability in ubiquitous computing. By complex problems, we refer to the diffi-
culty level of detail to ensure multimedia pipelines are correctly built and reconfig-
ured in an autonomic manner, while media streams are processed efficiently and
in synchrony. By NP-hard problems we refer to the combinatorial explosion in the
variability of multimedia components and their parameterization. Evaluation of
prototypes, implemented in the GStreamer multimedia framework, demonstrates
that the reconfiguration of multimedia pipelines approach allows a seamless use
of different adaptation types that may even be unknown at design time.

Application mobility implies the mobility of connection endpoints. How-
ever, the widely adopted protocols Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) in Internet do not provide the needed mobility. To ad-
dress this problem, we contribute with a proxy-based socket migration service that
allows efficient continuity of TCP and UDP endpoint connections. This service
meets communication requirements of multimedia applications.

In application mobility, components of multimedia applications that access
data from the local memory should also be able to access it from the network at
a fast enough speed to meet strict multimedia deadlines. For that, we contribute
with the creation of an inter-process communication (IPC) service that allows
efficient data sharing across devices. The service creates an overlay network that
connects the devices hosting the distributed application, and act as an application
collaborator, by implementing a publish-subscribe (PUB/SUB) service, to share
data. As a result, fine-grained applications running in different devices are able
not only to process multimedia content in a distributed manner, but also to support
associated computing and communication tasks.

In a greater context, the contributions from this thesis are also relevant to ap-
plications that seek to increase the availability of resources. For example, applica-
tions in cyber foraging [15] seeking to increase the capabilities of resource-limited
mobile devices, or applications in cloud computing.

5.2 Critical Review and Open Issues

To ease the development of multimedia fine-grained mobile applications, we have
implemented, designed and evaluated services that are to be used by application

66

developers. Admittedly, the implementation is of prototype quality, meaning that
it requires more implementation to catch all types of errors when probing invalid
pipelines. A more robust error handling will ensure that the created variability
search space will contain only those pipelines that can process streams without
errors.

Due to time constraints in the implementation, the prototypes to verify each
proposed service, calls only the functions of the library in question. For example,
the prototypes involving multimedia pipelines (see Section 4.2) do not call the
functions from the proposed APIs for socket migration (see Section 4.5) or data
sharing (see Section 4.6). That is, the use of all services by one application is
unverified.

For a transparent use of the API, i.e., be compliant with legacy software, the
current implementation of the connection handover service (see Section 4.5) must
not only resemble the Portable Operating System Interface (POSIX).1-2008 spec-
ification, but must conform to it. An alternative is to integrate the current imple-
mentation to the GIO library [183] (used by GLib [184]).

In general, the source code should be improved to integrate the services in one
middleware in a plug-and-play fashion. In this way, the services can become as
mobile as the applications running on it. Documentation should be added and the
source code not yet public should be published, so other academics and developers
can use, study, share and improve it.

5.3 Future Work

We have presented in Section 7.2.1 the data model for capturing the variability of
context1. However, the engineering work to implement the actual mechanisms to
collect, aggregate and analyze the data, is still to be done. If these mechanisms are
not designed and implemented efficiently, there is a risk of overloading the sys-
tem. For this task, we suggest to research monitoring tools as first-class citizen as
in [33, 29]. Once monitoring data is collected, an important engineering question
is how to make this information available to the applications in a way that satisfies
best practices of software engineering.

The implementation of the socket migration service, called SOCKMAN (sum-
marized in Section 4.5 and included in Chapter 9), can be extended by adding, for

1Implementation of context models as MySql relational database models available on https:
//gitlab.com/francisv/dampat.

67

https://gitlab.com/francisv/dampat
https://gitlab.com/francisv/dampat

example, support for window scaling. Also, the current evaluation of state preser-
vation in TCP connections is valid, but its performance evaluation cover just in a
few test cases. Further scenarios should be evaluated as suggested in [4].

Much work, e.g. [64, 7, 131, 8], has been done on autonomous decision
making based on Quality of Service (QoS). In this thesis, autonomous decision-
making is made by calculating the utility of multimedia pipeline variants, and
selecting the variant with the highest utility in a given context. If the utility func-
tions, developed by the developers of the components, take into consideration the
performance properties of QoS, then the utility provided by the component should
affect the overall multi-dimensional utility function, defined in Equation (4.12).
The implementation and evaluation of such behavior are, however, left as future
work.

5.4 Future Research

Checkpointing mechanisms typically used in process migration systems [140] are
needed to achieve code mobility (as in Section 2.2); these mechanisms handle
the static and dynamic state of processes in the operating system. Developers of
new applications can explicitly define the static and dynamic parts, but it might
not be trivial to identify what comprises the static and dynamic parts in legacy
applications, especially if the application was written by someone else. Thus, we
suggest research in how stub-generation tools can generate application-specific
interfaces that help developers to identify parts of legacy applications that have
to be updated to become migration-aware. For this, the source code of the legacy
application in question has to be available. An example of this approach is in [14].

Applications that amplify the capabilities of resource-limited devices by of-
floading computation to a server are said to use the cyber foraging technique [15,
72]. Cyber foraging has two remain challenges [13]. First, it misses a compelling
application. Second, setup and maintenance of the servers, i.e., surrogates. The
mobility of multimedia pipelines and migration of endpoint Internet connections
can help developers of cyber foraging applications to enable similar use cases to
the ones described in Section 2.1 and Appendix B, but using surrogates. The sec-
ond challenge is not present when developing mobile applications as described
in this thesis, because the applications are moved to devices that the user would
in principle trust, and the distributed data sharing solution (see Section 4.6) ag-
gregates the CPU and bandwidth resources of the devices that the user trust. Re-

68

search in how the proposed solutions in this thesis can help cyber foraging can
bring insights on the trade-offs between using surrogates or moving applications
to devices with the middleware pre-installed.

Authors in [206] explain how to model and parse conditional user preferences
defined in semi-natural rules, and the authors claim that ontology-based quantita-
tive models for this purpose are feasible. We would like to explore the benefits
of this approach, instead of the direct user preference input of property and value
tuples as in our context model.

69

Part II

Research Papers

71

Chapter 6

P1 – Dynamic Adaptation of
Multimedia Presentations for
Videoconferencing in Application
Mobility

Authors: Francisco Javier Velázquez-García, Pål Halvorsen, Håkon Kvale Stens-
land, and Frank Eliassen

Published in: International Conference on Multimedia and Expo (ICME 2018)

Reference in Bibliography: [193]

Abstract: Application mobility is the paradigm where users can move their run-
ning applications to heterogeneous devices in a seamless manner. This mo-
bility involves dynamic context changes of hardware, network resources,
user environment, and user preferences. In order to continue multimedia
processing under these context changes, applications need to adapt not only
the collection of media streams, i.e., multimedia presentation, but also their
internal configuration to work on different hardware. We present the per-
formance analysis to adapt a videoconferencing prototype application in a
proposed adaptation control loop to autonomously adapt multimedia pipe-
lines. Results show that the time spent to create an adaptation plan and
execute it is in the order of hundreds of milliseconds. The reconfigura-
tion of pipelines, compared to building them from scratch, is approximately
1000 times faster when re-utilizing already instantiated hardware-dependent

73

components. Therefore, we conclude that the adaptation of multimedia pi-
pelines is a feasible approach for multimedia applications that adhere to
application mobility.

6.1 Introduction

Application mobility is a paradigm that impacts the means to produce or consume
multimedia content when an application is moved into a different running environ-
ment [204]. For example, suppose a user is participating in a videoconferencing
session using a mobile device while commuting. When the user arrives in her
office, she continues the same session by moving the application to a dedicated
office videoconferencing device with different I/O interfaces.

Proper support for application mobility with dynamic adaptation is very ad-
vantageous for users and developers of multimedia applications. Users can take
advantage of different device capabilities as they become available in their envi-
ronment, without interrupting ongoing multimedia sessions. Application develop-
ers can take advantage of already available mechanisms to ease the development
of applications that are able to execute in, and move to, devices with character-
istics that were unknown at design time, and that require adaptation beyond pre-
defined profiles. Such mechanisms should provide internal reconfiguration due to
different components in the receiving device, migration of connection end points,
protocols for process migration, efficient distributed shared memory, and security
under migration, among other.

In this paper, we address the dynamic adaptation of multimedia content in
application mobility. In such mobility situations, two aspects of multimedia ap-
plications need to be adapted; multimedia content, composed of a collection of
media streams, i.e., a multimedia presentation; and internal configuration to work
on different hardware.

In videoconferencing use cases, each peer acts as a producer and consumer of
multimedia content. Therefore, adaptation is required when producing or consum-
ing content. We evaluate a videoconferencing prototype application that simulates
not only the consumption of multimedia content as in [191], but also the produc-
tion of multimedia content.

Multimedia content can be adapted into different multimedia presentations by
different adaptation types, namely fidelity, modality, content-based, or retargeting
adaptation. In order to adapt to the very large diversity of devices and situations

74

while satisfying user preferences and QoS requirements, applying only one adap-
tation type is not enough. Yet, the more adaptation types are applied to some
content, the more variants of it are created; and this situation can rapidly become
a scaling and management issue.

Multimedia presentations are processed by sequentially connected compo-
nents, a.k.a. multimedia pipelines. Depending on the needed adaptation type,
streams in multimedia presentations can be adapted either by tuning the param-
eters of the components in the pipeline, changing the components themselves,
or changing the topology of the pipeline. The mechanisms needed to manage
multimedia pipelines have been addressed by different multimedia frameworks.
However, to the best of our knowledge, GStreamer [86] is the only open source
framework that actively maintains the mechanisms to create, manage, and dy-
namically reconfigure multimedia pipelines. Therefore, we have leveraged the
mechanisms of GStreamer with a runtime adaptation control loop.

GStreamer includes an implementation for pipeline generation on player startup,
but this cannot be used out-of-the-box in applications adhering to application mo-
bility because; 1) pipelines are generated at startup with modality selection as
only reconfiguration alternative during runtime, and 2) the pipeline generation is
designed to consume multimedia content, not to transcode or produce it.

In order to autonomously create, and reconfigure multimedia pipelines, the
combinatorial growth (of the ever growing number of pipeline components, and
the large number of tunable parameters of pipeline components) has to be con-
trolled. The contribution of this paper is the design, implementation, and per-
formance analysis of the creation and execution of adaptive multimedia pipelines
adhering to the mobility paradigm as part of a proposed adaptation control loop.
We address the combinatorial growth by allowing developers to introduce design
knowledge as architectural constraints. In comparison to the vanilla GStreamer
framework [86], Infopipes [27], PLASMA [122] or Kurento [65], our approach
enables the application developers and users to introduce high-level goals, without
requiring deep knowledge of all components and their configuration details.

Multimedia applications following our approach are able to handle multiple
modality streams, and they are able to autonomously adapt them either by tuning
parameters of already instantiated components, changing components, or chang-
ing the topology of the application’s multimedia pipeline. The measured adap-
tation time is up to hundreds of milliseconds when instantiating pipelines from
scratch, and pipeline reconfiguration is about 1000 times faster when re-utilizing
already instantiated hardware-dependent components.

75

The rest of the paper is organized as follows. In Section 6.2, we first ex-
plain the engineering approach, adaptation model, and multimedia pipeline model.
Then, we describe how multimedia presentation variants (that constitute the vari-
ability search space) are created. Section 6.3 describes the main GStreamer mech-
anisms used to make the videoconferencing prototype, and their limitations for
supporting application mobility. In Section 6.4, we evaluate the plan and exe-
cution phase of the proposed system, and discuss the scalability problems. Sec-
tion 6.5 compares the results with related work. Finally, Section 6.6 concludes that
reconfiguration of pipelines is a feasible approach to adapt multimedia presenta-
tions in application mobility, and it has two main advantages: avoids time over-
head of hardware instantiation more than once, and mitigates the unpredictability
of query mechanisms in GStreamer.

6.2 Design

The proposed system adopts the Dynamic Software Product Line (DSPL) engi-
neering approach. In DSPL, designing a runtime adaptive system is considered to
be a variability management problem, where variability of the system is captured
at design time, and the best product variant is selected at runtime. Best is the vari-
ant that produces the highest utility according to the current contextual situation.
In this paper, the utility function is out of scope, and we refer the interested reader
to our previous work [191] for details.

To break down the concerns of the system, we follow the Monitor, Analyze,
Plan, and Execute (MAPE)-K adaptation control loop [113]. In the MAPE model,
the Monitor phase collects information from the sensors provided by the managed
multimedia pipeline, and user’s context, and preferences. The Analyze phase uses
the data of the Monitor phase to assess the situation. When the Analyze phase
detects that the utility provided by the current pipeline configuration is below
a given threshold, it starts the Plan phase to generate an adaptation plan. The
Execute phase applies the generated adaptation plan on the managed pipeline.
Knowledge is created, and shared by all phases, and it holds information that
impacts the production or consumption of multimedia presentations by the user
or application. These phases constitute the context-aware autonomic adaptation
manager of the system, which controls the managed multimedia pipeline. In this
paper, we focus on the proposed Plan and Execute phases, and exemplify their use
for a videoconferencing use case.

76

(g)

(d)

(i)

(c)

(h)

(e)

(b)

(f)

(a)

w4, w5 w4

w1,w2

w3 w2, w3

w1, w5

Figure 6.1: Abstraction of pipeline of videoconferencing peerA that produces and
consumes audio and video modality.

6.2.1 Multimedia pipeline model

Multimedia presentations are processed by sequentially connected components,
i.e., multimedia pipelines. Depending on the needed adaptation type, i.e., fidelity,
modality, content-based, or retargeting adaptation, streams in multimedia presen-
tations can be adapted either by: 1) tuning the parameters of the components in the
pipeline, e.g., changing the lowres property of GStreamer H.265 decoder com-
ponent avdec_h265 to select which resolution to decode images; 2) changing
the components themselves, e.g., replacing GStreamer components vp9enc with
x265enc; or 3) changing the topology of the pipeline, e.g., removing components
that process video (at the producer and consumer) when the user is driving.

Multimedia pipelines can be modeled as directed acyclic multigraphs G =

(V ,E). In this abstraction, V is the set of vertices that represents the compo-
nents in the pipeline, and E is the set of edges that represents a connection or
pipe between the output, and input connectors of two pipeline components. As an
example, Figure 6.1 is a graph abstraction of the pipeline that produces, and con-
sumes content in: audio and video modalities, in peer A of a videoconferencing
application. Peer A communicates with peer B (not shown in the figures). Figure
6.1 shows 5 abstractions of paths. The functionality of each path is as follows.

Pathw1 captures video from the webcam, and renders it in the display. Pathw2

captures video from the webcam, and sends it over the network. Path w3 captures
audio from the microphone, and sends it over the network. Path w4 receives audio
from the network card, and sends it to the audio card for reproduction. Path w5

receives video from the network card, and renders it the display.

Suppose that peer B (communicating with peer A) has moved the application
to a device without audio capabilities, and triggers pipeline reconfiguration in both

77

audiosrc

webcamsrc

networksinkmuxer

videomixer

videosinknetworksrc

splitter

audio

to text

w5, w6

w1,w2

w7

w1, w5, w7

w2, w7

videomixerdemuxer

w6

audiosink
text to audio

Figure 6.2: Abstraction of pipeline of videoconferencing peer A that has adapted
to a peer without audio capabilities.

peers. Figure 6.2 shows the adapted pipeline in peer A to produce and consume
text modality instead of audio. As a result, peers A and B transfer data containing
video and text modalities, which in turns saves bandwidth. Note that, in this
example, the user’s I/O interfaces in peer A do not change. In Figure 6.2, path
w4 has adapted to path w6, and path w3 has adapted to path w7. Paths w6, and w7

convert text modality to audio, and audio to text respectively.

Each needed component in a pipeline can have more than one candidate,
which is referred to as compositional variability. For example, the components
v4l2src, and uvch264src can be alternative candidates for capturing video
from the web camera.

In a similar manner, every vertex has parameterization variability due to assignable
property values of vertices (v.P), connectors (i.P , and o.P), and modalities (m.P).
Compositional, and parameterization variability can create a rapid growth of com-
plexity due to combinatorial explosion.

6.2.2 Plan Phase

In the Plan phase, the adaptation manager creates variants of valid multimedia pi-
pelines, and selects the best one for a given context. By a valid multimedia pipe-
line, it is meant a pipeline with adequate configuration for the available resources,
so that buffers arrive on time at the final sink. The Plan phase also reduces the
variability growth by allowing the designer of the multimedia application to intro-
duce architectural design knowledge, i.e., architectural constraints [77].

78

(s1)

uvch264src

v4l2src

kmssink

glimagesink

waylandsink

ximagesink(s3)(s2) (s4)

Figure 6.3: Example of functional stages {s}4, for path w1 (captures video from
the webcam, and renders it in the display). In this example, w1 has eight possible
combinations.

Control of combinatorial growth due to compositional, and parameterization
variability

We arrange the multigraph abstraction in a sequence of functional stages that de-
fines the functionality of each processing step needed in a path. Application de-
velopers define functional stages to filter components by functionality, and the
developers can specify the stages at different levels of accuracy as explained in
our previous work in [191]. The stages act as architectural constraints per mul-
timedia stream path to enforce directed graphs, and avoid unnecessary checks of
connectors compatibility, which are most likely to fail.

As exemplified in Figure 6.3, a developer can provide the functional stage s1
to group the components that capture video, and s4 to group the components to
render video. Stage s2 is a specific component to fix the desired output of s1, and
s3 does conversion of color space. These stages are part of the stages belonging
to path w1 that captures video from the webcam, and renders it in a X11 window.

Control path combinations

Due to the compositional variability in functional stages, multimedia streams may
have a set of alternative configuration for one path. For example, Figure 6.3 shows
the candidates v4l2src, or uvch264src for the path that renders the video cap-
tured by the camera. In order to restrict path combinations, we introduce an ar-
chitectural constraint to limit the path combinations, where the upper bound of
allowed path combinations is specified by the application developer.

In our previous work [191], we showed that when the developer decides to
restrict path configurations to one in an application with three needed paths; e.g.,

79

video rendering, video transmission, and audio transmission, the combinatorial
growth is reduced to the polynomial form.

To enforce the path combination constraint, the adaptation manager computes
the Binary Reflected Gray Code (BRGC) algorithm (explained in in [191]). The
output of the BRGC algorithm is a set of subgraphs G′ = {g1, . . . , gn} that com-
poses the variant search space. Each element g ∈ G′ represents a pipeline that can
be instantiated in the Execution phase. g contains the description of the properties
P of each vertex in g, the set of modalities M occurring in g, the properties P of
each modality, and the set of edges E in G′. G′ is part of the knowledge base of
the system, and its elements are used as input for the utility function used in the
decision making process.

6.2.3 Execution Phase

The task of the Execution phase is to safely introduce, remove, or re-configure
components in the pipeline. Mechanisms to create, manage, and dynamically re-
configure multimedia pipelines include: connectors compatibility check, stream
flow control for linking and unlinking connectors, stream flow control to handle
delayed buffers in sinks due to limitations in local resources or bandwidth, pi-
peline state management, components instantiation, and memory allocation type
check to avoid memory copying. For this purpose, we leverage the GStreamer
mechanisms.

We assume states of components and pipelines are preserved when moving
between devices by using check-pointing, store, and transfer state mechanisms at
the stack level. In the case of changing components, state is preserved by reading
the timestamps of the stream being processed. Sections 6.3.2, and 6.3.3 explain
how a given plan is executed as creation or reconfiguration of a pipeline.

6.3 Implementation

In this section, we present the implementation of an application that contains mul-
timedia pipeline components used for production, and consumption of multimedia
content. In order to be able to adapt multimedia presentations processed even in
embedded systems, such as multimedia systems in cars or airplanes, we address
the instantiation and reconfiguration of multimedia pipelines at C programming
language level. Since videoconferencing applications act as server, and client at

80

the same time, we implement, and evaluate a videoconferencing prototype. The
prototype leverages GStreamer 1.15 (GIT).

The prototype is designed for multimedia pipelines with one, two or three
multimedia paths. Path 1 (w1) captures video from the webcam, renders it in a
X11 window. It has two functional stages: one for video capture, and another
for video rendering. Path 2 (w2) simulates video transmission by encoding the
captured data, storing it in a file. It has one functional stage for video capture.
Path 3 (w5) simulates close captioning by displaying a clock overlay of the host
in the X11 window. It has one functional stage for video rendering. Combination
of candidate paths are restricted to 1.

6.3.1 Filter components per functional stage

The adaptation manager reads the metadata of components in order to match, and
filter those components that are compatible with the metadata in functional stages,
as describe in Section 6.2.2. In principle, compatibility checking can be done by
checking the properties in the metadata registry. However, some components such
as opusdec, and vp9dec, define their output connector based on the input stream
and required output, because not all input streams may have the necessary meta-
data to help determine the output format. Therefore, either manual configuration,
such as setting a capsfilter component with values
video/x-raw,format=(string)YUY2, or the use of default values of com-
ponents is needed for some pipelines.

6.3.2 Linking connectors

In order to check compatibility between connectors, the adaptation manager uses
the GStreamer queries query-caps and accept-caps to check the processing
capabilities of connectors. In [191], we have analyzed how the current approach of
GStreamer, to register parameterization variability in components, can potentially
introduce scalability issues in the autonomous creation of the variability search
space. Therefore, we evaluate this behaviour in Section 6.4.

6.3.3 Dynamic reconfiguration

In the Execution phase, there is the choice for the application manager to either
create the pipeline from scratch or reconfigure it. The pipeline is described in

81

a graph g as explained in Section 6.2.2. One goal of the Execution phase is
to reuse the already instantiated components when possible. For example, when
the user of the videoconferencing application prefers close captioning instead of
audio modality, the path for audio modality is removed, and the path for close
captioning is added to the video rendering path.

In this prototype, we implement both alternatives; to build a pipeline from
scratch, and to reconfigure a running pipeline. To build the pipeline from scratch,
the adaptation manager execute the plan by doing the steps in Sections 6.3.1,
and 6.3.2. To reconfigure a pipeline, we describe next the challenges of dynamic
reconfiguration, and the solutions the adaptation manager implements.

The adaptation manager assumes multiple paths should be processed simul-
taneously, for example, to encode audio, and video in parallel. To ensure this
behaviour, the adaptation manager creates a thread per path by inserting a queue
component.

If a component is removed while it is processing a buffer, the thread pro-
cessing the path can potentially enter in a deadlock state, because some other
component in the path might indefinitely wait for the expected data to arrive.
For this, the adaptation manager blocks the data flow in the preceding connec-
tor of the component that will be removed, and install a callback to be noti-
fied about the states of the data flow. The callback we use in GStreamer is
GST_PAD_PROBE_TYPE_IDLE. After removing, and adding components, the adap-
tation manager synchronizes the state of all components to avoid deadlocks.

A typical race condition when reconfiguring pipelines occurs when a certain
component in the pipeline waits for some timestamp or other specific data that
was in the buffer or a just removed component. The adaptation manager handles
this situation by flushing the buffers of the components to be removed.

When reconfiguring a pipeline, compatibility check is triggered. This process
can be time consuming, or can require input from the user to define the format of
the new configuration. To ease this situation, the application developer should de-
fine the preferred format of a stream by adding functional stages or capsfilter
components as described in Sections 6.2.2 and 6.3.1.

6.4 Evaluation

In this section, we evaluate the scalability performance of the Plan, and Execution
phase for the videoconferencing prototype that simulates the production and con-

82

Table 6.1: Experiments of time in Plan phase
Exp Path Funct. Path Num. Total Repeated Avg. 3rd Qu.

Stages cand. comp. queries queries (ms) (ms)
1 w1 2 8 8 2984 736 10.2 10.5
2 w5 1 2 9 832 86 0.1 0.1
3 w2 2 8 8 1624 648 10.1 10.2

sumption of multimedia content. As a testbed, we use a computer that resembles
hardware characteristics of commodity hardware. The computer is a MacBook
Pro 7,1 with Intel Core 2 Duo CPU P8800 at 2.66GHz running the 64-bit Ubuntu
17.10 operating system. The initial search space has 1420 pipeline components.

A start timestamp is recorded right after initializing the application graphi-
cal interface, GStreamer library, setting up internal path lists, registering pipeline
components, and loading standard plugins. After the pipeline is built, an end

timestamp is recorded. The difference between end, and start is the response
time to build one pipeline variant. For the experiments of pipeline reconfigura-
tion, the start, and end timestamps are taken before and after reconfiguration is
done.

We count the number of queries query-caps , and number of queries
accept-caps in all experiments since they have been identified as scalability
factors in [191]. We run a set of experiments starting from 10 to 100 repetitions
to observe difference in response times, and 75% quantile (“3rd Qu.” column in
the Tables 6.1 and 6.2). Results from varying repetitions show differences in the
order of nanoseconds, which we regard as negligible.

6.4.1 Plan phase

The key factors that influence the measurements of experiments for creating the
search space are; the number of functional stages per path, number of compo-
nents in the pipeline, and number of allowed path combinations. The values of
these factors, and results of the experiments are summarized in Table 6.1. An ap-
proximation of the time to create the entire search space is the sum of the average
for every candidate path, which results in 162.6 ms (8×10.2+10.1×8+0.1×2).

Although the number of components in experiments 1 and 3 are the same, the
number of total and repeated queries vary. The response time of experiments 1
and 3 are very similar, and greater than in experiment 2 because most of the time
was taken to instantiate the component for the video camera.

83

Table 6.2: Experiments of time in Execution phase
Exp Path Exec. Prev. Num. Total Repeated Avg. 3rd Qu.

comb. type exp. comp. queries queries (ms) (ms)
4 w1 scratch N/A 8 287 76 1.2 1.3
5 w1, w5 scratch N/A 9 358 105 1.2 1.3
6 w1, w2 scratch N/A 13 429 131 1.3 1.3
7 w1, w5, w2 scratch N/A 14 529 173 1.2 1.3
8 w1, w5 reconf 4 9 83 47 0.008 0.002
9 w1 reconf 8 8 41 23 0.001 0.001

10 w1, w2 reconf 4 13 190 70 0.066 0.076
11 w1 reconf 10 8 0 0 0.001 0.004

6.4.2 Execution phase

For the reconfiguration experiments, the number of components that are before,
and after a reconfiguration point are also key factors. We identified a clear pattern
of approximately 1 ms faster when reconfiguring a pipeline (instead of building it
from scratch). We present only a selection of all combinations in Table 6.2 due
to space limits. The values of the relevant factors, and results are summarized in
Table 6.2.

Results in Table 6.2 show that reconfiguration of pipelines is approximately
1000 faster than creating the pipeline for scratch. This speed gain is mainly be-
cause hardware-dependent components do not have to be re-instantiated. The
queries used to reconfigure pipelines continue to be unpredictable, mostly due
to the different implementation of handlers for the accept-caps query in the
pipeline components. Experiments 9 and 11 show that removing paths by recon-
figuration can use 0 queries.

Results from reconfiguring pipelines in our prototype are clearly better than
building pipelines from scratch. However, the implementation of more generic
reconfiguration mechanisms in the Execution phase is more complex. Therefore,
one should evaluate the trade-off between the benefit of the speed gain in re-
configuring pipelines against building pipelines from scratch, and the complexity
associated to implement either approach for a given application domain.

6.5 Related work

The code base of GStreamer includes an implementation for pipeline generation
on player startup, but this cannot be used out-of-the-box in applications adhering

84

to application mobility because: pipelines are generated at application startup with
modality selection as the only reconfiguration alternative during runtime; and the
pipeline generation is designed to consume multimedia content, not to produce or
transcode it.

Solutions for different architectures of infrastructures dealing with configura-
tion or parameterization variability, as in the case of Infopipes [27] or
PLASMA [122], will present an exponential growth, which is a NP-hard prob-
lem. Neither Infopipes nor PLASMA discusses how to limit this growth. We did
not leverage Infopipes or PLASMA because their authors do not define or im-
plement the needed mechanisms to create, manage, and dynamically reconfigure
multimedia pipelines.

The Infopipes abstraction [119, 27] simplifies the task of building distributed
streaming applications by providing basic elements such as pipes, filters, buffers,
and pumps. Infopipes, as opposite to our work, triggers adaptation based on vari-
ations of resources of CPU and bandwidth only. Adaptation is achieved by adjust-
ing the parameters of elements, but not by changing them or changing the path of
the stream.

PLASMA [122] is a component-based framework for building multimedia ap-
plications. PLASMA relies on: a hierarchical compositional, similar to functional
stages (Section 6.2.2); and a reconfiguration model, similar to the Execution phase
(Section 6.2.3). PLASMA describes the mechanisms needed to build and recon-
figure pipelines at runtime at a high level. However, they do not talk about the
needed mechanisms to synchronize multiple streams, namely, clock synchroniza-
tion, multi-threading management, and memory management. The authors do not
describe how to specify multiple streams or media types, therefore, we regard
their work valid for monomedia, not multimedia.

To implement dynamic reconfiguration of multimedia pipelines, the applica-
tion developer needs deep understanding of: data flows between connectors, com-
patibility check, multi-threaded data processing, among other mechanisms. The
Kurento platform [65] has developed an agnostic component1 to ease the devel-
opment of automatic conversion of media formats for dynamic pipeline adapta-
tion. However, this component has specific Kurento’s library dependencies for
WebRTC media servers that make impractical to use it to develop other type of
applications.

1https://github.com/Kurento/kms-core/blob/master/src/gst-plugins/
kmsagnosticbin3.h

85

https://github.com/Kurento/kms-core/blob/master/src/gst-plugins/kmsagnosticbin3.h
https://github.com/Kurento/kms-core/blob/master/src/gst-plugins/kmsagnosticbin3.h

6.6 Conclusions

In this paper, we have presented the design, prototype implementation, and eval-
uation of the Plan, and Execution phases of a proposed context-aware autonomic
system to adapt multimedia pipelines. Our evaluation shows that the average time
spent to create the variability search space in the Plan phase is in the order of
hundreds of milliseconds. The execution of the selected plan is in the order of
milliseconds when building the pipeline from scratch, and approximately 1000

times faster when reconfiguring a pipeline and re-utilizing the already instantiated
hardware-dependent components. Reconfiguration of pipelines also mitigates the
unpredictability of queries in GStreamer compatibility check mechanisms. As fu-
ture work, we propose to apply the reconfiguration mechanisms to speed up the
creation of the variability search space.

86

Chapter 7

P2 – Autonomic Adaptation of
Multimedia Content Adhering to
Application Mobility

Authors: Francisco Javier Velázquez-García, Pål Halvorsen, Håkon Kvale Stens-
land, and Frank Eliassen

Published in: Distributed Applications and Interoperable Systems (DAIS 2018)

Reference in Bibliography: [192]

Abstract: Today, many users of multimedia applications are surrounded by a
changing set of multimedia-capable devices. However, users can move their
running multimedia applications only to a pre-defined set of devices. Ap-
plication mobility is the paradigm where users can move their running ap-
plications (or parts of) to heterogeneous devices in a seamless manner. In
order to continue multimedia processing under the implied context changes
in application mobility, applications need to adapt the presentation of mul-
timedia content and their internal configuration. We propose the system
DAMPAT that implements an adaptation control loop to adapt multime-
dia pipelines. Exponential combinatorial growth of possible pipeline con-
figurations is controlled by architectural constraints specified as high-level
goals by application developers. Our evaluation shows that the pipeline
only needs to be interrupted a few tens of milliseconds to perform the re-
configuration. Thus, production or consumption of multimedia content can

87

continue across heterogeneous devices and user context changes in a seam-
less manner.

7.1 Introduction

Multi-device environments with heterogeneous multimedia capabilities are com-
mon environments for many people. However, users of multimedia applications
can offload their applications or redirect multimedia sessions only to a limited
set of pre-defined devices or running environments. This limitation is due to the
current paradigm where multimedia applications are designed to start and end ex-
ecution in the same device. One approach to solve this limitation is to develop
applications that adhere to the application mobility paradigm [204]. In this paper,
we refer to such applications as mobile applications.

Application mobility is the paradigm where users can move parts of their run-
ning applications across multiple heterogeneous devices in a seamless manner.
This paradigm involves context changes of hardware, network resources, user en-
vironment, and user preferences. If such context changes occur during an ongoing
multimedia session, the application should adapt: (1) the presentation of the mul-
timedia content to fulfill user preferences, and (2) the internal configuration of the
application to continue execution in a different running environment.

To move the process of the application from one device to another during
runtime, and during an ongoing multimedia session, the needed mechanisms, such
as for process migration [140], should be part of DAMPAT. In this paper, we do
not address these mechanisms, but focus on the aspects to adapt the presentation
of multimedia content.

Multimedia content is composed by a collection of media streams and modal-
ities; e.g., video, audio, and text; which makes a specific multimedia presentation.
If a mobile application aims to adapt multimedia presentations in a variety of
ways, such as bitrate adaptation, modality adaptation, or content retargeting, the
more complex it is for developers to design and implement it. Creating complex
computing systems that adapt themselves in accordance with high-level guidance
from humans (developers or users) has been recognized as a grand challenge,
and has been widely studied by the autonomous computing scientific commu-
nity [100]. Yet, multimedia mobile applications introduce new scenarios and new
challenges. For example, in a videoconferencing use case, suppose the user Al-
ice is using a mobile device while commuting. When she arrives in her office, she

88

wishes to continue the same videoconferencing session by moving parts of the ap-
plication to a dedicated office videoconferencing system. The new challenges in
autonomic computing in this scenario are: (1) changes in availability or appropri-
ateness of I/O interfaces to produce or consume multimedia content, (2) changes
in application running environment, (3) strict deadlines of multimedia systems,
(4) changes in user’s physical environment, and (5) changes of user preferences.

It is fair to assume that usability and high QoE are among the main goals of
developers of multimedia applications. We translate these goals as a safety predi-
cate based on two requirements: (1) the collection of multimedia streams has to be
processed on time and in synchrony to a reference clock, and (2) the configuration
of components has to provide a high enough utility to the user, where user utility
is defined by a utility function provided by the developer. To satisfy this safety
predicate in application mobility, we identify four self-* properties as require-
ments: (1) Self-adaptive: applications should react to changes in the context by
changing their safety predicate accordingly. (2) Self-configuration: applications
should react to context changes, and change the connections or components of
the application, to restore or improve the safety predicate. (3) Self-optimization:
applications should improve (maximize or minimize) the value of a predefined
objective function. (4) Self-awareness: applications should be able to monitor
and analyze its context.

To meet these requirements, we propose the system DAMPAT: Dynamic Adap-
tation of Multimedia Presentations in Application Mobility. The goal of DAMPAT
is two-fold. The first goal is to reduce the development burden when creating
context-aware applications that autonomously adapt the presentation of multime-
dia content. The second goal is to allow users to (easily) influence the selection of
the best configuration at runtime, where best is defined as the configuration that
produces the highest utility according to the current contextual situation and user
preferences.

DAMPAT follows the Dynamic Software Product Lines (DSPL) engineering
approach [19]. In DSPL, designing a runtime adaptive system is considered to be a
variability management problem, where the variability of the system is captured at
design time. In our approach, the sequences of components to process multimedia
streams are seen as pipelines. Therefore, the variability depends on the number of
available components, their tuning parameters, and the topology alternatives. This
variability creates a combinatorial explosion and makes the problem NP-hard.

The main contribution of this paper is a holistic presentation of the motivation,
design, implementation and evaluation of the functional relation between parts of

89

DAMPAT. This paper presents: (1) the model of available, appropriate and pre-
ferred I/O interfaces of users and multimedia-capable devices, (2) how functional
stages and functional paths control exponential growth due to component, param-
eterization, and topology variability of multimedia pipelines, (3) the definition of
high-level multimedia pipelines, and (4) the definition of a multi-dimensional util-
ity function that takes into consideration context changes for decision making of
pipeline selection. For completeness, related contributions for DAMPAT in [191]
and [193] are also presented.

Results from evaluating a videoconferencing prototype show that the time to
create the adapted pipeline from scratch is in the order of tenths of milliseconds
in average. The time to reconfigure a pipeline can be as much as 1000 faster than
building the pipeline from scratch. Therefore, we conclude that adaptation of mul-
timedia pipelines is a viable approach to seamlessly adapt multimedia content in a
variety of ways, e.g., bitrate, modality, and content retargeting (using components
such as [161]), in the application mobility paradigm.

In the remainder of the paper, Section 7.2 explains the main challenges of de-
sign and implementation decisions of the proposed system. Section 7.3 evaluates
the parts of the system that can negatively impact the seamlessness of multimedia
mobile applications. Section 7.4 compares DAMPAT with related work. Finally,
Section 7.5 concludes the paper.

7.2 The DAMPAT system

Our system adopts the DSPL engineering approach. In order to separate the con-
cerns of DAMPAT, we follow the Monitor, Analyze, Plan, and Execute (MAPE)-
K adaptation control loop [113], where K is the knowledge created and used across
the MAPE phases (see Figure 7.1). Next, we describe in a top-down manner
how the Monitor, Analyze, Plan, and Execute (MAPE)-Knowledge (K) loop is
applied in Dynamic Adaptation of Multimedia Presentations in Application Mo-
bility (DAMPAT).

7.2.1 Monitor, Analyze, Plan, and Execute (MAPE) phases

Figure 7.1 represents an autonomic manager, a managed element, sensors, and
effectors. The autonomic manager is a software component configured by human
developers using high-level goals. It uses the monitored data from sensors and
internal knowledge of the system to plan and execute the low-level actions that are

90

Autonomic manager

wl

Managed element

Sensors Effectors

Figure 7.1: Structure of Monitor, Analyze, Plan, and Execute (MAPE)-K control
loop

necessary to achieve these goals. The autonomic manager separate the adaptation
concerns in four phases: Monitor, Analyze, Plan, and Execute, which create and
share information (Knowledge) that impacts the production or consumption of
multimedia content. These phases are explained in Sections 7.2.2 to 7.2.5.

The managed element represents any software or hardware resource that is
given autonomic behaviour by coupling it with an autonomic manager. In DAMPAT,
the managed element is a multimedia pipeline.

Sensors refer to hardware or software devices that collect information about
the running environment of the managed element. DAMPAT also collects infor-
mation about: the user’s available human senses, e.g., a noisy environment pre-
vents a user from producing or consuming audio; user preferences, e.g., always
activate close captioning; and modality appropriateness, e.g., no video modality
while driving.

The data to asses the availability or appropriateness of modalities can be col-
lected by, for example, setting parameters via a graphical user interface, or com-
plex event processing subsystems. The implementation of these mechanisms,
however, is out of scope of this paper. Finally, effectors in Figure 7.1 carry out
changes to the managed element.

7.2.2 Phase 1: Monitor

In order for the autonomic manager to relieve humans of the responsibility of
directly managing the managed element, the autonomic manager needs to col-
lect data to recognise failure or suboptimal performance of the managed element
and effect appropriate changes. Monitoring gives DAMPAT the self-awareness

91

property, which it is a prerequisite for self-optimization and self-configuration.
Monitoring involves capturing properties of the environment, either external or
internal, e.g., user surroundings or running environment, and physical or virtual,
e.g., noise level or available memory. This variation of data sources and data types
makes the monitored context multi-dimensional.

For the Monitor phase, we group the information that can impact the process-
ing or appropriateness of multimedia presentations in two categories. (1) User
context: set of I/O capabilities of user to produce or consume multimedia con-
tent, physical environment, and user preferences. As for user input capabilities,
we consider hearing, sight, and touch senses as interfaces to support audio, video,
text, and tactition modalities. As for user output capabilities, we consider speak-
ing, and touching availabilities as interfaces to support audio, and tactition modal-
ities. User context registers user preferences, which are predicates that express ad-
ditional user constraints or needs. (2) Application context: application running
environment including I/O capabilities to produce or consume multimedia con-
tent. As for device input capabilities, we consider microphone, camera, keyboard
and tangible (haptic) interfaces. As for device output capabilities, we consider
display, loudspeaker, and tangible interfaces. The model also contains software
and hardware descriptors for dependencies of pipeline components. Software de-
scriptors include the available software components to build multimedia pipelines,
such as encoders, parsers, and encryptors. Hardware descriptors include CPU,
GPU, battery, memory, and network adapters.

The design of DAMPAT also takes into account context that impacts the appro-
priateness of modalities in a given situation, namely, current activity, geograph-
ical location, physical environment, date, and time. The information needed to
estimate the modality appropriateness is taken from both, user- and application-
context. The monitored data is part of the knowledge K in DAMPAT.

7.2.3 Phase 2: Analysis

We say that an application is in a legal or consistent configuration in a given
context, when the corresponding safety predicate holds. A safety predicate in ap-
plication mobility is not only violated by bugs or failures in software or hardware,
as in traditional scenarios in autonomic computing, but also by changes in user
and application context, that change the initial high-level goal of the application.
For example, when a user changes preferences from audio to text modality due to
a noisy environment or when an audio card is not longer available in a multimedia

92

session after an application has moved.

To meet the self-adaptive requirement in DAMPAT, we declare two charac-
teristics of safety predicates: (1) safety predicates hold if a pipeline configuration
is adequate for the available resources of the application running environment so
that buffers arrive on time in the final sink, and (2) safety predicates might change
with changes in context.

Therefore, if the user changes her environment or preferences, the autonomic
manager treats such changes as a threat to the safety predicate and addresses them.
In a more obvious manner, if the application moves to another device where the
initial configuration cannot continue execution, the autonomic manager addresses
this problem as well. The self-optimization requirement is met by objective func-
tions implemented in components. For example, a DASH (Dynamic Adaptive
Streaming over HTTP) component that proactively checks the available resources
to optimize its parameterization and process the highest bitrate.

The problem-diagnosis component in the Analysis phase analyzes the data
collected in the Monitor phase. This component can evaluate whether the safety
predicate holds. If the safety predicate is violated, it means that a problem is de-
tected, and the Plan phase is started. The implementation of the problem-diagnosis
component can be, for example, implemented based on a Bayesian network. This
implementation is left as future work.

The current design of the Analysis phase of DAMPAT, takes into consideration
the monitored data of the device where an application starts execution (source),
and the device where the application will be moved to (destination). As future
work, we plan to incorporate the special purpose negotiation protocol in [10] to
aggregate the monitored data of all the surrounding devices to which an applica-
tion can move.

7.2.4 Phase 3: Plan

In the Plan phase, the autonomic manager creates variants of multimedia pipe-
lines, and selects the best one among the ones that guarantee to hold the safety
predicate in the current context. The Plan phase addresses the challenge of com-
binatorial explosion of pipeline variants caused by compositional and parameteri-
zation variability. In the current state of DAMPAT, the Plan phase assumes infinite
resources of application running environment, and do not consider other applica-
tions running in the same device.

93

P, m, m.P

in

P, m, m.P

o1

P, m, m.P

om

v1, v1.P
e1=

(v1.o1,

v2.i1)P, m, m.P
i1

en=

(v1.om,

v2.iu)

P, m, m.P

i1

P, m, m.P

iu

P, m, m.P

o1

P, m, m.P

ov

v2, v2.P

Figure 7.2: Multigraph that shows vertices v1, v2 ∈ V representing pipeline com-
ponents. P represent a set of properties, i and o represent input and output con-
nectors, m ∈M the supported modalities by the connectors, and e ∈ E represent
links or pipes between connectors.

Multimedia pipeline model

Multimedia pipelines are built with components that are linked with compatible
connectors, and process streams in a sequential order. Multimedia pipelines can be
modeled as directed acyclic multigraphs G = (V ,E). In this abstraction, V is the
set of vertices v that represent the pipeline components, and E is the set of edges
e that represents the connection or pipe between the output and input connectors
of two vertices. Each edge has a modality type m, and multiple edges (e ∈ E)

connecting components of the same components can have different modalities.
Therefore, multigraphs have a set of modalities M .

Figure 7.2 illustrates a simplified version of two connected pipeline compo-
nents representing a multigraph G. Each component v has a set of input connec-
tors v.I and output connectors v.O. Connectors are the interfaces of components.
Data flows from one component’s output connector v.O to another component’s
input connector v.I . The specific data type (modality) that the component can
handle is described in the component’s connectors.

Pipeline components for the same functionality might have different imple-
mentations, for example; (1) the components vp8dec and avdec_vp8 are two
different implementations of the VP8 decoder, and (2) the components glimagesink,
and waylandsink are two different implementations that differ in hardware of-
floading and memory allocation (among many other differences). Therefore, in
the multimedia pipeline model represented in Figure 7.2, each component v can
have more than one implementation candidate, and some components can dynam-
ically (on-demand) create a set of input (i ∈ v.I) or output (o ∈ v.O) connectors.
We refer to this configuration variability as compositional variability. In a sim-
ilar manner, every component has parameterization variability due to assignable

94

(h)

(d)

(j)

(c)

(i)

(f)

(b)

(g)

(a)
w5, w6 w6

w1,w2

w7 w2, w7

w1, w5, w7

(e)

(b) (k)

(l)

(m)

(h)

(d)

(j)

(c)

(i)

(f)

(b)

(g)

(a) w4, w5 w4

w1,w2

w3 w2, w3

w1, w5

(e)

Adapt

Figure 7.3: Graph abstraction of multimedia pipeline of one videoconferencing
peer before and after adaptation. On the left, pipeline that consumes and produces
video and audio. On the right, pipeline that consumes video and text from a peer
that cannot process audio, this pipeline allows its user to produce and consume au-
dio by changing the text-to-audio and audio-to-text modalities. The vertices repre-
sent the following components: (a) networksrc, (b) demuxer, (c) audiosink,
(d) webcamsrc, (e) splitter, (f) videomixer, (g) videosink, (h) audiosrc,
(i) muxer, (j) networksink, (k) text-to-audio, (l) audio-to-text, and (m)
text-overlay. {w}71 represent functional paths.

property values of components (v.P), connectors (i.P and o.P) and modalities
(m.P). Compositional and parameterization variability can create a rapid growth
of complexity due to combinatorial explosion.

Typically, multimedia presentations are composed by more than one multime-
dia stream, e.g., video and audio stream. In our multimedia model, a path is a
sequence of successive edges through the graph (where a vertex is never visited
more than once) for a given stream. In complex multimedia pipelines, a stream
can be split or mixed, increasing or reducing the numbers of streams. For exam-
ple, a video stream that is split to be (1) rendered in a display, and (2) sent over a
network card, or a video and audio streams that are multiplexed to be sent through
a network card. Therefore, we define the term functional path as the path w of one
stream from its original source to its final sink. For example, in the left pipeline
of Figure 7.3, there are five functional paths, w1, w2, w3, w4, and w5, where paths
w4, w5 share source (a), w1, w2 share the source (d), w1, w5 share sink (g), and
w2, w3 share sink (j). The right part of the figure is explained in Section 8.3.

Pipelines have a set of behavioral and interaction rules that aim to minimize
the processing latency of the stream in the pipeline. Mechanisms to create, man-
age and dynamically reconfigure multimedia pipelines include: connector com-
patibility check, connector linking, stream flow control to handle delayed buffers
in sinks due to limitations in local resources or bandwidth, pipeline state man-
agement, components instantiation, and memory allocation type check to avoid
memory copying. To the best of our knowledge, GStreamer [86] is the only free

95

(s1)

uvch264src

v4l2src

kmssink

glimagesink

waylandsink

ximagesink(s3)(s2) (s4)

Figure 7.4: Example of functional path (w) that captures video from a webcam
and renders it in a display. In this example, w has four functional stages ({s}41)
and eight possible path combinations.

and open source, multi-platform, multimedia framework actively implementing
and maintaining these mechanisms. Therefore, we leverage GStreamer pipelines
in DAMPAT.

Control of combinatorial growth due to compositional and parameterization
variability

We arrange functional paths (W) in a sequence of functional stages (s ∈ S)
that group components by functionality, e.g., file sources, demuxers or decoders.
Functional stages act as architectural constraints to enforce directed graphs, and
they avoid unnecessary checks of connector’s compatibility, which are most likely
to fail. An architectural constraint is defined as the design knowledge introduced
by the application developer with the purpose to reduce combinatorial growth (by
limiting configuration variability).

For example, in Figure 7.4, the developer defines a functional path (w) to
capture video taken from a webcam, and render it in a display. This functional
path is defined with four functional stages (s1, s2, s3, s4). The functional stage
s1 groups the components that capture video, stage s2 is a specific component to
fix the desired output of s1, s3 does conversion of color space, and s4 groups the
components to render video. In this example, since there are two candidates in s1,
and four candidates in s4, there are 8 possible functional paths.

Functional stages are defined at different levels, where deeper levels filter com-
ponents more accurately. In this way, application developers can define high-level
architectures of multimedia pipelines without knowing the details of each func-
tional stage. For example, developers can define a pre-processing stage that auto-
matically includes components of the type of protocol handlers, parsers, and video
converters. For further details about this approach, the reader is referred to [191].

GStreamer multimedia components and enumerated parameters have a rank

96

to describe their priority with competing candidates. Functional stages is a list of
stages, where each stage is a list of candidates sorted by rank, just as the vanilla
auto plugin strategies in the GStreamer do, and build the variability search space
of functional paths by sequentially testing each sorted candidate. As a result, the
produced search space is a sorted list of functional paths.

Linking the connectors across the defined functional stages produces a unix-
style configuration file that is part of the knowledge of DAMPAT. This file con-
tains the settings of all configuration options for every component in the functional
stage. Listings 7.1 and 7.2 show snippets of the configuration file for one func-
tional path in Figure 7.4.

Listing 7.1: Snippet 1 of w1.conf

1 [f u n c t i o n a l −p a t h]
2 name= webcam2disp lay
3 v e r t i c e s = v i d e o s r c , f i l t e r , \
4 t e e , queue , g l i m a g e s i n k

Listing 7.2: Snippet 2 of w1.conf

6[v e r t e x v i d e o s r c]
7name= v 4 l s r c 0
8o u t p u t−conn= v 4 l s r c 0 . s r c . 0
9d e v i c e = / dev / v id eo 0

Control of functional path combinations

Due to the compositional variability in functional stages, functional paths may
have a set of alternative paths, consequently, alternative topologies. In order to re-
strict path combinations, the application developer can introduce an architectural
constraint with specifying the bound of allowed path combinations per functional
path. The combinatorial growth of this approach is evaluated in Section 7.3.1.

To enforce the path combination constraint, the autonomic manager computes
the Binary Reflected Gray Code (BRGC) algorithm. The output of the BRGC
algorithm is a set of subgraphs G′ = {g}n1 that creates the variant search space.
Each element g ∈ G′ represents a pipeline that can be configured in the Execute
phase. Each pipeline (g) has the set of properties (P ∈ v) of each component (v ∈
g), the set of modality types (M ∈ g) processed by the pipeline, the properties of

each modality (P ∈ M), and the set of edges E ∈ g. In practice, the description
of each g is stored in a configuration file similar to Listings 7.1 and 7.2, but its
values are the location of files describing the set of functional paths (W ∈ g). G′

is part of the knowledge base of DAMPAT, and its elements are used as input for
the utility function used in the decision making process.

97

Variant selection

The autonomic manager evaluates the variants in the search space and selects the
alternative that matches best the goals defined by the application developer, user
preferences, and contextual information. The challenge in this selection is how
to define high-level goals and how to trade off conflicting contextual information.
High-level goals are usually expressed using event-condition-action (ECA) poli-
cies, goal policies or utility function policies [100]. ECA policies suffer from the
problem that all states are classified as either desirable or undesirable. Thus, when
a desirable state cannot be reached, the system does not know which among the
undesirable states is least bad. Goal policies require planning on the part of auto-
nomic manager and are thus more resource-intensive than ECA policies. Utility
functions allow a quantitative level of desirability to each context. Therefore, we
use multi-dimensional utility functions.

The proposed multi-dimensional utility function [191] is composed of func-
tions defined for the properties that describes the pipeline (g.P). Developers of
pipeline components define and implement the component and its utility function.
Since the overall pipeline utility is calculated based on the components that form
the pipeline, the more utility functions are implemented in the components, the
better overall estimation can be calculated. Utility functions take as argument two
property-value tuples, one argument represents the user preference (u.p), and the
other argument is the property value (g.p) obtained from the running environment,
e.g., hardware characteristics or metadata of stream. As a result, the signature of
utility functions in components are of the form ut(u.p, g.p).

If a modality is unavailable or inappropriate for a user in a given context, the
modality is marked as negative. Therefore, pipeline variants matching negative
modalities do not provide the highest utility, and thus they are not selected. One
analogy to see this approach, is to think of the human senses as connectors (in-
terfaces). In this analogy, DAMPAT matches the best compatibility between the
possible pipeline configurations to use the computer’s interfaces, and the human’s
interfaces. Figure 7.5 illustrates this analogy in a oversimplified pipeline that pro-
cesses video and audio modalities.

Weights (we) Weights are provided by users to (easily) influence the selection
of the configuration at runtime. Weights help to trade off conflicting interests,
and they can be seen as ranks or importance associated to a property, i.e., u.p.we.
For example, suppose a user prefers video-resolution=4K (2160 progressive)

98

Final sink

Device: Human

Hearing: true

Noise: 60 db

Sight: true

Light: 500 lums

Audio Sink
Device:
speakers
(alsa)

audio/x-raw

channels: 2

 Video Sink

Device:
display
(NV17)

video/x-raw

colors: RGB

Source

audio/x-vorbis

channels: 2

rate: 48000

video/x-vp8

width: 854

heigh: 480

Figure 7.5: Oversimplified pipeline to make an analogy of a human consumer
as a component in a multimedia pipeline. In this analogy, the input connectors
(interfaces) of a human consumer are the hearing and sight senses. DAMPAT
selects the pipeline variant with connectors that are compatible with the available
and appropriate user interfaces in a given context.

and framerate=60fps. In case a device can reproduce either 1080p at 60 fps,
or 4k at 30 fps, weights are used to rate the alternatives. Thus, the resulting
weighted multi-dimensional utility function is Υ(u, g) =

∑l
j=1 ut(u.pj, g.pj) ·

u.pj.we [191].

Finally, if all the pipelines in the variability search space provide 0 utility,
DAMPAT interprets this situation as if adaptation is impossible for the given con-
text. If the application cannot continue execution in the current running environ-
ment, DAMPAT stops the application.

7.2.5 Phase 4: Execute

The task of the this phase is to safely introduce, remove, or re-configure compo-
nents in the pipeline according to the selected subgraph g, i.e., pipeline variant
with highest utility for a given context. g contains the description of the pipeline
variant to be executed (described in Section 7.2.4). Then, the autonomic manager
decides between create the pipeline from scratch or reconfigure it. The Execute
phase meets the self-configuration requirement in DAMPAT.

The autonomic manager compares the current pipeline configuration (if al-
ready instantiated) with the new selected variant. In our implementation design,
the autonomic manager executes the diff Linux command with the .conf files
from the current and new graph descriptors as arguments. If the output of diff
includes changes in source components in the pipeline, the new variant is instanti-
ated from scratch, because new sources typically require several changes that are
more complex to automate, and thus are prone to errors.

99

Dynamic reconfiguration

If a component is removed while it is processing a buffer, the thread processing the
stream can potentially enter in a deadlock state, because some other component(s)
in the path might indefinitely wait for the expected data to arrive. To prevent this
situation, the autonomic manager blocks the data flow in the preceding connector
of the component that will be removed, and installs a callback to be notified about
the state changes in the data flow. After changing components, the state of all
components is synchronized to avoid deadlocks.

A potential race condition when reconfiguring pipelines occurs when a com-
ponent in the pipeline waits for some timestamp or other specific data that was in
the buffer or a just removed component. The adaptation manager handles this sit-
uation by flushing the buffers of the components to be removed. If the Execution
phase fails to instantiate the selected variant, DAMPAT blacklist the just failed
variant, and runs the variant selection process again.

State preservation for stream processing is achieved by reading the timestamps
of the stream. We assume that states of components and pipelines are preserved
when moving between devices. This can be achieved, for example, by implement-
ing component’s interfaces that retrieve and store the state of the components.

7.3 Evaluation

In this section, we present and discuss the evaluation of the time overhead that
has a direct impact in multimedia session interruption. In principle, this overhead
is the time to select and execute the plan, either by instantiating a pipeline from
scratch or reconfiguring it. However, if the variability search space is not ready by
the time adaptation is needed, its creation can also add interruption time. Results
of experiments are from two evaluations from our previous work in [191], and
[193].

For completeness, we briefly describe both prototypes and the experiments. In
evaluation 1 [191], we evaluate the Plan phase to adapt a video player prototype
application that consumes video and audio modalities. The experiments evaluate
the creation of the search space with four and six functional stages, and an initial
repository of 1379 pipeline components.

In evaluation 2 [193], we evaluate the Plan and Execution phases of a video-
conferencing prototype application that simulated the production and consump-
tion of: video, audio, and text modalities. The pipeline in this evaluation is of

100

a peer videoconferencing application that has to adapt since (for any reason) its
peer cannot process audio any longer. However, the user of this pipeline prefers
to interact with the audio I/O interfaces of the device. The initial and reconfigured
pipeline of this evaluation is the same as in Figure 7.3. The initial repository is of
1420 pipeline components.

As a testbed, evaluations 1 and 2 use the same computer that resembles hard-
ware characteristics of commodity hardware. The computer is a MacBook Pro 7,1
with Intel Core 2 Duo CPU P8800 at 2.66GHz running the 64-bit Ubuntu 17.10
operating system.

7.3.1 Plan phase

In this section, we discuss results from our previous work ([191] and [193]) to
create the variability search space, and to select the variant with highest utility.
The main scaling factors that influence the time spent when creating the search
space are: (1) the time to instantiate components with hardware dependencies, (2)
the query handlers in GStreamer components to check the processing capabilities
of connectors, (3) the length of the pipeline, (4) the number of functional stages
per functional path, and (5) the number of candidates per stage.

Results from the evaluations show that the time to create the entire variability
search space is between the order of a few seconds and hundreds of milliseconds.
Observations about the number of queries are: number of queries does not have a
linear correlation with the number of functional stages or number of components
in each stage due to the different implementations of query handlers in the in-
volved components, and number of queries increases as the path length increases
due to the recursion of queries.

To evaluate the scalability issues when combining functional paths, we use
binomial coefficients to calculate how many unsorted combinations exist to select
k ≥ 0 path configurations. That is

(
n
k

)
+ ... +

(
n
0

)
, where n is the cardinality

of the set of configurations for a specific path definition. As a result, when the
developer decides to restrict functional path configurations to one (k = 1) in an
application with three needed paths; e.g., video rendering, video transmission, and
audio transmission (n = 3), the combinatorial growth is reduced to the polynomial
form of O(nk), i.e., O(3).

Evaluation and analysis of the multi-dimensional utility function, described in
Section 7.2.4, shows that its complexity is linear. Since the maximum number
of pipeline variants in our experiments are below 300, a brute force approach

101

to find the variant with the highest utility does not introduce intolerable service
interruption. However, greedy techniques, such as Serene Greedy [168], should
be implemented in DAMPAT to tackle larger search spaces. The implementation
of greedy techniques, however, is left as future work.

7.3.2 Execution phase

In this section, we discuss results from our previous work ([191] and [193]) that
evaluates the time to execute a plan by two means: by instantiating a pipeline from
scratch or by reconfiguring it. The main factors when instantiating a pipeline
from scratch are the same as in the Plan phase, but not when reconfiguring a
pipeline. Reconfiguration of pipelines is faster mainly due to the re-utilization
of already instantiated components with hardware dependencies, and the need
for less queries to check compatibility of components’ connectors. However, the
reduction of queries does not correlates linearly. The removal of functional paths
reduces the number of queries drastically, in some cases 0 queries needed, as
opposed to instantiating the adapted pipeline from scratch. Therefore, further
implementation of DAMPAT should aim at removing functional paths only by
reconfiguration.

Results show that the execution of a plan (involving functional paths with sim-
ilar characteristics as in Figure 7.3) is under 10 ms when instantiating a pipeline
from scratch. There is a clear pattern of approximately 1000 times faster (from
tens of milliseconds to tens of microseconds) when reconfiguring a pipeline, if the
already instantiated hardware-dependent components are reused.

The speed gain from pipeline reconfiguration over instantiating pipelines from
scratch is applicable when adaptation occurs in the same device. Clearly, if an
application is moved from one device to another, the components with hardware
dependencies have to be initialized in the destination device. Therefore, in such
mobility cases, there are no advantages in reconfiguring a pipeline.

Reconfiguration in the same device is, however, still a valid use case in peer to
peer mobile applications, such as in the videoconferencing use case illustrated in
Figure 7.3. Pipeline reconfiguration can be also very advantageous when creating
the variability search space, specially in the current design of DAMPAT where the
variability search space is created based on local components only. In order for
DAMPAT to know whether reconfiguration is a better alternative (than instanti-
ation from scratch), pipeline components must be annotated to indicate whether
they have hardware dependencies or not. This annotation and the creation of the

102

variability search space using the reconfiguration mechanisms are future work.

7.4 Related Work

MUSIC [93] is a development framework for self-adapting applications in ubiq-
uitous computing environments; it follows the MAPE-K reference model, and it
uses utility functions for adaptation decision making. MUSIC combines component-
based software engineering with service-oriented architectures (SOA) to allow ap-
plications on mobile devices to adapt to and benefit from discoverable services in
their proximity. Applications in MUSIC can offload services to devices in close
vicinity; these close devices must, however, have pre-installed the MUSIC middle-
ware and application-specific components. Therefore, the application developer
has to be aware of the characteristics of the devices where applications can move.
As a result, the set of devices constituting the ubiquitous environment is defined at
design time of the application. Hallsteinsen et al. [93] recognized that support for
multimedia content adaptation in a challenging research alley, and left it as future
work.

PLASMA [122] is a component-based framework for building adaptive multi-
media applications. This framework relies on a hierarchical composition, similar
concept to levels in functional stages (described in Section 7.2.4), and a recon-
figuration model, similar to the Execute phase (Section 7.2.5). The authors de-
scribe at a high-level the mechanisms needed to build and reconfigure pipelines.
However, they do not discuss the needed mechanisms to process multiple me-
dia types in synchrony. Therefore, we regard their design valid for adaptation of
only one stream. PLASMA does not handle any scalability issue due to parame-
terization or compositional variability. PLASMA is implemented in DirectShow
(moved to Windows SDK in 2005), which implies support for devices running
Windows operating systems only. Adaptation policies in PLASMA are based on
event-condition-actions (ECA), and they are triggered on changes of hardware re-
sources only, e.g., bandwidth fluctuations, but not changes between devices, there-
fore PLASMA-applications do not adhere to the application mobility paradigm.

Infopipes [27] provides abstractions to build distributed streaming applica-
tions, that adapt based on resource monitoring, such as CPU and bandwidth.
Therefore, adaptation is achieved by adjusting the parameters of components only,
and it limits the adaptation types that can be achieved with compositional variabil-
ity. The authors define pipelines with pipes, filters, buffers, and pumps, but do not

103

define the mechanisms to process multiple streams in synchrony.

7.5 Conclusions

We have identified the self-adaptive, self-optimization, self-configuration, and
self-awareness properties as requirements for multimedia applications to adapt
the presentation of multimedia content across the multimedia-capable devices
that surround users. To ease the development of multimedia applications that
meet these requirements, we have presented DAMPAT, which follows the MAPE
adaptation control loop, and DSPL engineering approach. DAMPAT enables ap-
plication developers and users to describe the application goals at their level of
expertise via: configuration files (functional stages, and functional paths), user
preferences, and importance of preferences. This approach allows users of mo-
bile applications to take advantage of heterogeneous devices that were unknown
at design time. DAMPAT makes decisions at runtime on how to adapt multimedia
presentations; it enables modality adaptation, and any other adaptation technique
implemented in the pipeline components such as bitrate adaptation, or content
retargeting.

The main contribution of this paper is the holistic presentation of the moti-
vation, design, implementation, and evaluation of DAMPAT. Evaluation shows
that the average time spent to adapt multimedia pipelines is in the order of mil-
liseconds. This delay is acceptable when users of mobile applications have to
physically move their attention and control from one device to another.

As future work, we plan to explore the creation of a model to quantify the
effects of the previous configuration when reconfiguring a pipeline; as first ap-
proach, we suggest to do analysis of variance, and regression in experiments to
process more than three media types. To create this model, we plan to investigate
what are the currently available GStreamer components that can be instantiated in
a sample of multimedia devices in typical homes, offices and public transportation
in industrialized countries. Additionally, we plan to add more managed elements
to adapt different parts of mobile applications, e.g., reconfiguration of endpoint
connections.

104

Chapter 8

P3 – DAMPAT: Dynamic Adaptation
of Multimedia Presentations in
Application Mobility

Authors: Francisco Javier Velázquez-García and Frank Eliassen

Published in: 2017 IEEE International Symposium on Multimedia (ISM)

Reference in Bibliography: [191]

Abstract: Application mobility is the mobility type where users can move their
running applications across multiple heterogeneous devices in a seamless
manner. This mobility involves dynamic context changes of hardware,
network resources, user environment and user preferences. State-of-the-
art adaptive applications adapt in multiple ways to a subset of scenarios
in application mobility, however, adaptation of multimedia presentations is
rather limited to the selection of pre-processed variants of multimedia pre-
sentations. We propose DAMPAT for GStreamer to autonomously adapt
multimedia pipelines for a given context. DAMPAT adopts the Dynamic
Software Product Line (DSPL) engineering approach, and separates the
concerns of the system by following the Monitor, Analyze, Plan, and Ex-
ecute (MAPE) model. DAMPAT limits the combinatorial explosion of pi-
pelines variability by introducing architectural constraints. Results from
evaluation show that DAMPAT can adapt multimedia pipelines adhering to
the application mobility paradigm in the order of hundreds of milliseconds.

105

8.1 Introduction

Application mobility [204] impacts the means to produce or consume multimedia
content when an application is moved into different running environments. On
the one hand, different device capabilities might have different I/O interfaces, and
on the other hand, user context determine the appropriateness of certain media
presentation modalities. In such situations, multimedia content, composed of a
collection of media streams, i.e., a multimedia presentation, needs to be adapted.

Application mobility is very advantageous for users and developers of mul-
timedia applications. Users can take advantage of different multimedia device
capabilities as they become available in their environment, without breaking on-
going multimedia sessions. Developers can create applications that are able to
execute in, or move to, devices with characteristics that were unknown at design
time.

One problem to address when developing multimedia applications that adhere
to application mobility is how to adapt multimedia presentations. Multimedia pre-
sentations can be adapted by different adaptation types, namely fidelity, modality,
content-based, or retargeting adaptation. However, applying only one adaptation
type is not enough to adapt to the very large diversity of devices and situations
while satisfying user preferences and QoS requirements. Yet, the more adapta-
tion types are applied to a multimedia presentation, the more variants of it can be
created, and this situation can rapidly become a scaling and management issue.

Multimedia presentations are processed by sequentially connected compo-
nents, a.k.a. multimedia pipelines. Depending on the needed adaptation type,
streams in multimedia presentations can be adapted either by tuning the param-
eters of the components in the pipeline, changing the components themselves,
or changing the topology of the pipeline. The mechanisms needed to manage
multimedia pipelines have been addressed by different multimedia frameworks.
However, to the best of our knowledge, GStreamer [86] is the only open source
framework that allows the development of pipeline components and full-fledged
multimedia applications. GStreamer includes an implementation for pipeline gen-
eration on player startup, but this cannot be used out-of-the-box in applications ad-
hering to application mobility because; 1) pipelines are generated at startup with
modality selection as only reconfiguration alternative during runtime, and 2) the
pipeline generation is designed to consume multimedia content, not to transcode
or produce it.

The problem statement we address in this paper is: how to automate the adap-

106

tation of GStreamer multimedia pipelines in application mobility, while limiting
the combinatorial growth due to 1) the ever growing number of pipeline compo-
nents, and 2) the large number of tunable parameters of pipeline components. In
addition, pipeline selection by comparison among a very large number of alterna-
tives can produce an unacceptable time overhead in everyday devices, which can
deteriorate the quality of experience of users in multimedia applications. There-
fore, pipeline selection should be done in a timely manner.

We propose the runtime adaptive system called DAMPAT: Dynamic Adap-
tation of Multimedia Presentations in Application Mobility for GStreamer. The
goal of DAMPAT is two-fold. First, it reduces the development burden when cre-
ating autonomic context-aware adaptive pipelines that adhere to the application
mobility paradigm. Second, users can easily influence the selection of the pipe-
line variant that produces the highest utility for the user according to the current
contextual situation and user preferences.

Our contribution in this paper is the design, prototype implementation and
evaluation of that part of the system creating multimedia pipeline variants, and se-
lecting the best one for a given context. Results from performance measurements
combined with performance analysis of the involved algorithms show that adap-
tation of multimedia pipelines is a viable approach for adaption of multimedia
presentations in the application mobility paradigm.

8.2 Design and implementation

Application mobility goes hand in hand with context changes. In order to adapt
multimedia streaming presentations to these changes, we design the runtime adap-
tive system DAMPAT, which includes a context-aware autonomic adaptation man-
ager, and a managed multimedia pipeline. By context-aware, we refer to the
extensive and continuous use of any information that characterizes the user sur-
roundings or application running environment, which impacts the processing of
multimedia presentations.

DAMPAT follows the DSPL engineering approach [19]. In DSPL, designing
a runtime adaptive system is considered to be a variability management problem,
where variability of the system is captured at design time, and the best product
variant is selected at runtime. We define best as the variant that produces the
highest utility according to the current contextual situation. In order to break down
the concerns for building the adaptation manager, we follow the MAPE adaptation

107

control loop [113].

In this paper, we concentrate on the Plan phase of the MAPE model. In this
phase, the adaptation manager creates variants of valid multimedia pipelines and
selects the best one for a given context. By valid multimedia pipelines we mean
a pipeline with adequate configuration for the available resources, so that buffers
arrive on time at the final sink.

8.2.1 Multimedia pipeline model

Multimedia pipelines are built with components that process streams in a sequen-
tial order. Mechanisms to create, manage and dynamically reconfigure multime-
dia pipelines include: connectors compatibility check, connectors linking, stream
flow control to handle delayed buffers in sinks due to limitations in local resources
or bandwidth, pipeline state management, components instantiation, and memory
allocation type check to avoid memory copying. To the best of our knowledge,
GStreamer is the only open source multimedia framework actively maintaining
these mechanisms. Therefore, we implement DAMPAT for GStreamer pipelines.

Multimedia pipelines can be modeled as directed acyclic multigraphs G =

(V ,E). In this abstraction, V is the set of vertices that represents the components
in the pipeline, and E is the set of edges that represents a connection or pipe be-
tween the output and input connectors of two pipeline components. Each edge has
a modality type m, and multiple edges can have different modalities. Therefore,
multigraphs have a set of modalities M .

Pipeline components might have different implementations, e.g., components
with and without hardware offloading, or components with and without use of ho-
mogeneous shared memory allocation. Therefore, each component can have more
than one candidate, which is referred to as compositional variability. In a similar
way, every vertex has parameterization variability due to assignable property val-
ues of vertices, connectors and modalities. Compositional and parameterization
variability can create a rapid growth of complexity due to combinatorial explo-
sion. To reduce the variability growth, we limit the possible configurations by
allowing the designer of the multimedia application to introduce architectural de-
sign knowledge, which is commonly referred to as architectural constraints [77].

The use of architectural constraints reduces the number of pipeline variants to
consider when searching for the best variant. For the variant selection, we apply
multi-dimensional utility functions that allow DAMPAT to take into consideration

108

s1 s2 s3 s4 s5 s6 s7

w1': audio

w2: video

w1 : audio

Figure 8.1: Functional stage {s}i, and paths w1, w′
1 and w2

Table 8.1: Levels of functional stages
L. 1 pre-processing retargeter post processing
L. 2 source handler Input Format Handler converter adaptation type Filters Format handler Sink Handler
L. 3 protocol source parser demuxer decoder video modality content fidelity stream mixer encoder muxer payload session sink

handler handler converter adaptation adaptation adaptation selector encoder manager handler

multiple user preferences, and resolve conflicting or mutually dependent concerns
among user preferences, user context, and application running environment.

8.2.2 Control of combinatorial growth due to compositional
and parameterization variability

We arrange the multigraph abstraction in a sequence of functional stages, that
group components by functionality, e.g., file sources, demuxers or decoders. Func-
tional stages act as architectural constraints to enforce directed graphs, and they
avoid unnecessary checks of connectors compatibility, which are most likely to
fail, e.g., compatibility checks between components in stages s1 and s7 in Fig-
ure 8.1. Combinatorial growth is further limited by restricting how many distinct
paths of sequentially connected components can process one stream, e.g., only
one path is allowed to process audio. Control of path combinations is discussed
in Section 8.2.3.

Functional stages are defined at different levels, where deeper levels filter com-
ponents more accurately. For example, Table 8.1 represents stages at three levels
for a video server pipeline. In the table, stage pre-processing lists components that
match with metadata descriptors such as: protocol handler, parser, demuxer and
decoder. Then, if the neighboring output and input connectors are compatible,
they are linked.

If the adaptation manager creates one pipeline variant for each combination
of possible values of the properties of components, connectors, and modalities,
the variant search space is in principle in the order of a million different pipeli-

109

nes. Therefore, in order to limit the parameterization variability, DAMPAT allows
the application developer to specify a list of typical values for a set of common
scenarios.

8.2.3 Control path combinations

Due to the compositional variability in functional stages, multimedia streams may
have a set of alternative paths W= {w}i. Alternative paths for the same modality
are identified with the prime symbol, as in ′

1 in Figure 8.1. However, a pipeline
with such a topology, e.g., decoding one stream to multiple different formats in
parallel, is unlikely in typical multimedia applications for the application domain
we target.

In order to remove pipelines with undesirable path combinations, DAMPAT
introduces an architectural constraint to limit the path combinations, where the
upper bound of allowed path combinations is specified by developers of applica-
tions. We use binomial coefficients to calculate how many unsorted combinations
exist to select k ≥ 0 paths for the same modality. That is,

(
n
k

)
+ ...+

(
n
0

)
, where n

is the cardinality of the set of paths Γ for the same modality m. As a result, when
the developer defines k, the combinatorial growth is reduced to the polynomial
form of O(nk).

Equation 8.1 generalizes the architectural constraint to limit path combina-
tions by denoting the subset of paths W ′ for the same modality, such that the
cardinality of W ′ is less or equal to the number of allowed paths k specified by
the developer. Then, the number of valid pipelines in the variant search space, i.e.,
|G′|, is the product of the allowed combinations of paths per modality. In case that
a developer defines as valid path combinations to only those with at most one path
per modality (k = 1), the creation of the variant space has multi-linear growth.

|G′| =
∏
m∈M

(|{W ′ ⊆ Γm | |W ′| ≤ k}|) (8.1)

To enforce the path combination constraint, the adaptation manager generates
the power set P(W) in the form of bit strings of all paths in graph G by using the
Binary Reflected Gray Code (BRGC) algorithm [126, p. 174], and then counts
how many paths with the same modality exist in a subset. If a modality counter is
greater than k, the subset is invalid. BRGC has exponential growth O(2|W |), but
the resulting search space is constrained to the complexity resulting from Equation
8.1.

110

The resulting set of subgraphs G′ creates the variant search space. Each el-
ement subgraph ∈ G′ contains the description of the properties of each pipeline
component in subgraph, the set of modalities occurring in subgraph, the properties
of each modality, and the set of edges E in G′. The elements of G′ are used as
input for the utility function used in the decision making process.

8.2.4 Variant selection

The adaptation manager has to select one variant from the variant search space.
The challenge in this selection is to trade off conflicting user preferences and con-
textual information. For this purpose, we adopt multi-dimensional utility func-
tions from [2].

In DAMPAT, a multi-dimensional utility function is composed of functions
defined for each component property. Utility functions are defined by the devel-
oper of the component, and they take two arguments; the preferred property value
u.p specified by the user u, and the corresponding property value g.p provided by
the component in the pipeline variant being evaluated. The signature of a dimen-
sional utility function is of the form ut(u.p,g.p).

Users might not provide a preferred value for every single property, there-
fore, the adaptation manager sets a any value for such cases. In this way, de-
velopers of utility functions can describe which property values give a higher
utility even when there is no user preference. For example, the utility function
ut(any, channels = 6) could be defined to give a higher utility than
ut(any, channels = 2) in an audio sink component. Utility functions return
floating point values between 0 and 1 when evaluated.

Finally, the adaptation manager computes the overall utility of the pipeline
variant as the weighted sum of the dimensional utility functions, where each
weight u.p.we indicates the importance of each preferred property u.p. By default
all properties are equally important, but a user may change this by adjusting the
weights. DAMPAT ensures the sum of the weights is always equal to one. When
a user assigns a preferred value to a property, the adaptation manager assigns the
default weight as follows.

Every already assigned weights are divided by the number of weights plus 1

(for the new preference). The quotient is subtracted from its dividend, and the
result becomes the new value of the previously assigned weight. The sum of the
quotients of all previously assigned weights is the value for the new generated

111

weight value. In this way, the manager preserves the relation to previous adjust-
ments of importance, and keeps the sum of weights to 1.

The resulting utility Υ from all involved utility functions is given by Equation
8.2, where pj , j = 1, . . . , l, are the properties. Equation 8.2 has linear complexity.

Υ(u, g) =
l∑

j=1

ut(u.pj, g.pj) · u.pj.we (8.2)

8.2.5 Linking connectors

The prototype leverages GStreamer 1.13.0 (GIT). The adaptation manager links
components of neighboring functional stages if the intersection of modality types
and modality properties of output and input connectors is not empty. Compati-
bility checking in GStreamer components is done by intersecting the modalities
and their properties of connectors. Therefore, the larger the number of supported
modalities and properties, the more operations to obtain the intersection. The cur-
rent approach in GStreamer to avoid a costly check of compatibility is to group
values in ranges when possible, e.g., framerate : [0, 2147483647]. Con-
sequently, when a linked pipeline is requested to process a stream, GStreamer
must instantiate every component sequentially to double check whether the spe-
cific requested parameterization is supported.

In order to check compatibility between connectors, the adaptation manager
uses the GStreamer query query-caps to check the processing capabilities of
connectors. This query is recursive in the way that a received query in a compo-
nent is sent to the next component in the pipeline to make sure the next connectors
can be configured in a compatible manner. Then, if compatible, a query is sent to
the next component down the pipeline, and so on.

A second GStreamer query called accept-caps is used to confirm whether
the format of the stream can be handled by the component. If the developer of the
component does not implements a proper handler for accept-caps, the default
behavior of GStreamer is to create a recursive query-caps query again. There-
fore, the current approach of GStreamer to register parameterization variability in
components, can potentially introduce scalability issues in the autonomous cre-
ation of the variability search space. The performance effect of this limitation is
evaluated in Section 8.3.

In principle, compatibility checking can be done by checking the properties
of GStreamer elements in their metadata registry. However, some elements such

112

as convertors, decoders and encoders define their output connector based on the
input stream and required output, because not all input streams may have the
necessary metadata to help determine the output format. Therefore, either manual
configuration or a specific architectural constraint, such as a filter component with
well defined properties, is needed for the some pipelines.

A consequence of this GStreamer limitation is that the adaptation manager
cannot create the variability search space before knowing the input stream, and
the manager might not be able to autonomously select components that require
manual configuration. One way the manager can mitigate this problem is by;
1) sending the metadata of the input stream (as soon as the manager knows it)
to the accessible devices where the application can potentially be moved, and
2) restricting the output connectors based on the available final sink components
in the device. In this way, the creation of the search space can be done before
adaptation is needed.

8.3 Evaluation

We evaluate DAMPAT by measuring the performance of the implemented proto-
type and analyze the validity of the design for parts not yet implemented. Mea-
surements include the performance of mechanisms needed to filter components in
functional stages, check components compatibility, and link them.

As threshold for a service interruption not being considered annoying by a hu-
man user, [97] considers 3 seconds. However, we presume a more flexible budget,
because users have to spend additional time to physically move their attention and
control from one device to another.

As testbed we use a computer that resembles hardware characteristics of ev-
eryday mobile devices. The computer is a MacBook Pro 7,1 with Intel Core 2
Duo CPU P8800 at 2.66GHz running the 64-bit Ubuntu 14.04 operating system.

The factors that affect performance when creating the search space of pipelines
are the number of functional stages with compositional variability, the number of
actual candidate components per stage, and the number of modalities. For this
evaluation, we use the stages needed for modalities contained in two typical test
multimedia streams, one for audio and one for video.

As initial repository, we use 1379 components. The functional stages used
in our experiments are those defined in the application playbin3 of GStreamer.
Experiment 1 has four functional stages with compositional variability, and one

113

Table 8.2: Response time to create one pipeline variant
Resp. time (ms) Queries’ Resp. time (ms)

Functional stages without log overhead Num. Total Repeated response with log overhead
Exp. s1 s2 s3 s4 s5 s6 |M | Avg. Stdev comp. queries queries time (ms) Avg. Stdev

1 3 3 3 3 N/A N/A 1 34 2 17 111 28 50 139 4
2 3 3 3 3 3 3 2 280 28 27 208 112 250 449 29
3 7 7 7 7 N/A N/A 1 9 1 17 107 8 43 36 3
4 7 7 7 7 7 7 2 283 17 27 207 6 161 317 35

audio modality. Experiment 2 has six functional stages with compositional vari-
ability, and audio and video modalities. To identify the time needed to filter the
components per functional state, we measure the time spent to create one pipeline
variant with the same topologies and number of components as Experiment 1 and
2, but no variability per stage. That is, there is only one pipeline component per
stage in Experiment 3 and 4.

A start timestamp is recorded right after initializing the GStreamer library,
setting up internal path lists, registering pipeline components, and loading stan-
dard plugins. After the pipeline is built, an end timestamp is recorded. The dif-
ference between end and start is the response time to build one pipeline variant
with compositional variability.

As input streams we use two files; Hydrate-Kenny_Beltrey.ogg with au-
dio modality for Experiment 1 and 3, and sintel_trailer-480p.webm with
audio and video modalities for Experiment 2 and 4. We run a set of experiments
starting from 10 to 1000 repetitions to observe difference in response times and
standard deviation. Results from varying repetitions show differences in the order
of milliseconds, which we regard as negligible.

Table 8.2 summarizes the experiments, presents the response time to create
one pipeline variant, and shows how many queries are involved to create the pi-
peline. Query measurements are done with the tracing subsystem of GStreamer.
In the table, 3indicates that there is compositional variability in the stage, and
7indicates the opposite. “N/A” indicates that the stage is not applicable.

Experiment 1 and 3, and Experiment 2 and 4, use the same components to
build their respective pipeline. Response time in the last three columns include the
time overhead spent by logging traces to obtain the query measurements. Evalu-
ated queries are accept-caps and query-caps. The worst tracing overhead is
169 ms (449− 280) in Experiment 2. This means that queries can be answered up
to 1.6 times faster than the measured time when removing the tracing overhead.

Table 8.2 shows that typical pipeline variants can be built between 9 ms and
283 ms in average, depending on the compositional variability and components

114

Table 8.3: Reduction of compositional variability
s1 s2 s3 s4 s5 s6 β

|V | in Exp. 1 2 1 2 2 N/A N/A 17 ms
|V | in Exp. 2 2 1 2 2 3 2 28 ms

involved. The time difference between Experiment 1 and 3, and the difference
between Experiment 2 and 4, is the overhead caused by the compositional vari-
ability in functional stages. Experiment 4 presents the maximum average response
time of 283 ms, and Experiment 2 presents the maximum standard deviation of 28

ms, both measurements have audio and video modalities. Response time is much
larger for pipelines with video modality because they instantiate a Xv-based video
sink component, which require more resources.

If we remove the instantiation time needed to initialize components with hard-
ware dependencies, the response time to build pipeline variants in GStreamer de-
pends on the topology and the number of components in paths due to the potential
duplication of query recursion. Therefore, despite the linear complexity of the
recursion queries in GStreamer, query measurements in Experiments 1-4 in Ta-
ble 8.2 show that queries and the implementation of their handlers are the scaling
factors when creating the variability search space.

8.3.1 Time spent to create entire search space

The design of DAMPAT allows the creation of the variant search space by incre-
mentally changing previously created variants, such as in the MUSIC approach
[93]. However, since the current implementation of DAMPAT is based on
GStreamer, the needed queries and their recursion do not allow to re-utilize the op-
erations to link connectors and verify parameters. Thus, this evaluation re-utilizes
only the operations to filter components per functional stage.

Table 8.3 presents the number of resulting filtered components (|V |) in Exper-
iment 1 and 2, and the time the filtering process took (β). Since, the input stream
in Experiment 1 visits all stages, the maximum number of paths is 8. The input
stream in Experiment 2 has two modalities; the audio modality visits stages s1,
s2, s3, and s5, and the video modality visits stages s1, s2, s4, and s6. Therefore,
there are 12 paths for audio, and 8 paths for video, that is a maximum number of
20 paths in total in Experiment 2.

The time spent to create the entire search space is calculated in two steps.
First, we calculate the time to create all possible paths. Second, we calculate the

115

time spent to compute all valid path combinations.

Step 1: All possible paths An approximation to the time needed to create all
paths is equal to η = |W | · (α − β) + β, where |W | is the number of all possible
paths for each experiment, α is the response time spent to create one pipeline with
functional stages, and β is the time spent to filter components in functional stages.
Results are η = 153 ms (|W | = 8, α = 34 ms, and β = 17 ms) for Experiment 1,
and η = 5 s (|W | = 20, α = 280 ms, and β = 28 ms) for Experiment 2.

Step 2: All valid path combinations Based on the number of filtered candi-
dates presented in Tables 8.3, and evaluating Equation 8.1 with k = 1, the com-
plete search space in Experiment 1 contains 9 path combinations, and the search
space in Experiment 2 contains 273 combinations. The number of path combina-
tions represent the maximum number of all pipeline variants.

DAMPAT uses the BRGC algorithm to enforce Equation 8.1. We evaluate
the complexity of the BRGC algorithm O(2|W |), with |W | = 8 for Experiment 1
and |W | = 20 for Experiment 2. The resulting number of operations needed by
BRGC are 256, and 1, 048, 576. These operations can be performed in the order
of microseconds in commodity hardware, such as the testbed described in this
section. Therefore, we consider the time to combine all paths as negligible, and
we conclude that the time spent to create the entire variability search space is in
average 153 ms for audio input streams, and 5 seconds for video streams. This
time is within the time budget as discussed at the beginning of this section.

8.3.2 Variant selection

The multi-dimensional utility function in Equation 8.2 maximizes the satisfaction
of the user by selecting the variant with the highest utility value. The scaling
performance of the variant selection depends on; 1) the complexity of the multi-
dimensional utility function (Equation 8.2), 2) the complexity of each utility func-
tion per property, 3) the data structure to store the newly computed utility values of
each pipeline variant, and 4) the complexity of the sorting and searching algorithm
to select the variant with the highest utility.

The complexity of Equation 8.2 is linear. However, since the developers of
pipeline components provide the utility function per property, DAMPAT cannot
control the complexity of those functions. Typical lists as data structures, sorting
algorithms with complexity O(n2), and search algorithms with complexity O(n)

116

do not represent an issue for the maximum variant search space from Experiment
1 and 2 (273 variants). However, if the search space is expected to increase in
several orders of magnitude, other algorithms are needed. For such cases, the
evaluation time of utility functions can be reduced by applying heuristics, and
optimize the data structures, sort and searching algorithm.

8.4 Related work

The graph-based multimedia framework GStreamer [87] provides the mechanisms
needed to build, manage and dynamically reconfigure multimedia pipelines. These
mechanisms are analogue to most abstractions described in Infopipes [27]. How-
ever, since the framework is not designed to develop applications that migrate be-
tween heterogeneous devices during execution, it cannot be used out-of-the-box
to design applications adhering to the application mobility paradigm.

State of the art approaches such as [170] does not discuss how to create com-
plex graphs to represent processing of multimedia presentations in modern mul-
timedia applications. Other adaptive systems such as [78, 93] achieve modality
selection by ignoring already processed media streams, removing UI components
or simply muting the audio card or switching off the display, which results in a
waste of relatively significant amount of resources. Our measurements show that
processing components for video and audio consume about 80% and 20% of CPU
time independently, and 97% and 3% of processed data respectively.

8.5 Conclusions

In this paper we have presented the design, prototype implementation and eval-
uation of the planning phase of the context-aware autonomic adaptation system
called DAMPAT. DAMPAT enable developers to implement mobile applications
adhering to the application mobility paradigm without the burden of designing
and implementing the mechanisms for autonomous context-aware adaptation of
multimedia presentations. Users of applications developed in DAMPAT can move
their applications during runtime to take advantage of the dynamically changing
heterogeneous devices that surround them, while taking into consideration their
preferences. Evaluation of DAMPAT shows that the average time to create the
variability search space for typical audio and video streams is in average 153 ms,
and 5 seconds respectively. This time, however, can still be eliminated by creating

117

the search space before adaptation is needed. For this, the input stream has to be
known. As future work, we propose the evaluation of DAMPAT with multiple
adaptation types, and perform the planning phase entirely on a model of pipelines
as in models@run.time.

Acknowledgment

This work would not be possible without valuable discussions with Prof. Thomas
Plagemann, and Ellen Munthe-Kaas. We also would like to thank the GStreamer
community for sharing their knowledge.

118

Chapter 9

P4 – SOCKMAN: Socket Migration
for Multimedia Applications

Authors: Francisco Javier Velázquez-García, Håvard Stigen Andersen, Hans Vatne
Hansen, Vera Goebel and Thomas Plagemann

Published in: The 12th International Conference on Telecommunications (Con-
TEL 2013)

Reference in Bibliography: [194]

Abstract: The dynamically changing set of multimedia capable devices in the
vicinity of a user can be leveraged to create new ways of experiencing mul-
timedia applications through migrating parts of running multimedia appli-
cations to the most suited devices. This paper addresses one of the core
challenges of application migration, i.e., migration of transport protocol
state that is maintained by the endpoints of established connections. Our
solution fulfills the stringent temporal requirements of multimedia applica-
tions and enables migratable applications to interact with legacy applica-
tions, e.g., a migratable video player together with YouTube. The core idea
of our solution, called SOCKMAN, is to provide a middleware service to
hide that proxy-based forwarding is used to migrate connection endpoints,
i.e. sockets, and to maintain an end-to-end perspective for the applications.
The evaluation of the SOCKMAN implementation shows that SOCKMAN
meets multimedia application requirements, preserves transport protocol
state, and performs well on low-end devices, like mobile phones.

119

9.1 Introduction

The popularity of multimedia applications such as YouTube, Spotify, and Netflix
has been steadily increasing during several years. Some years back multimedia
applications were confined to powerful and stationary computers. However, this
situation has changed, because now there are many more multimedia capable de-
vices in the market. These devices have different capabilities related to computa-
tional power, size and quality, I/O interfaces, and mobility; and range from smart
phones to desktop computers and media centers. These different devices typically
serve different purposes and as such many users own and use several devices.

First steps towards an integration of these devices into one media system to
leverage the device diversity can be seen in products like Apple TV. Users can
redirect media streams from their smartphone, tablet, or PC to devices physically
connected to Apple TV, e.g. TV screen, Hi-Fi stereo equipment. However, solu-
tions of this kind have limitations, since they require preinstalled applications and
work only for a static set of devices.

By overcoming these limitations, we envision a platform to support multime-
dia applications that can migrate (parts of) running applications between various
devices belonging to a media system. The number of devices in the system may
change dynamically, because of the mobility of users and devices. For example,
a user watching a football match on a smartphone on a train is able to migrate
video and audio to a home media center after coming home. In this example, the
smartphone and the home media center dynamically form one media system.

Migration of (parts of) running multimedia applications requires proper solu-
tions for process migration fulfilling the requirements of multimedia applications.
Therefore, we investigate process migration in TRAMP [96] to provide a platform
to develop applications that can migrate running (parts of) applications seamlessly.
In this way, users of multimedia applications can benefit from a broader choice of
best suited devices in their vicinity. Other process migration advantages such as
install once configure once and load balancing can additionally improve the qual-
ity of experience.

In this paper we address one core problem of process migration: How to mi-
grate transport protocol state that is maintained by the endpoints of established
connections. These endpoints are typically represented in the operating system
as sockets. Migration of the transport protocol state is technically challenging,
because of three main reasons: (1) The widely adopted transport control proto-
col (TCP) and user datagram protocol (UDP) do not support mobility. Mobile IP

120

cannot be applied in the context of process migration, because it does not transfer
the transport protocol state when redirecting the IP end-to-end path to the new
location of a mobile device. (2) Connection handover must meet strict deadlines
of multimedia applications to avoid service interruption and not affect quality of
experience. (3) Throughput must be sufficient to support multimedia traffic, if
enough network bandwidth is available.

We present in this paper a solution for seamless connection handover during
process migration, called SOCKMAN. SOCKMAN provides a middleware ser-
vice and a proxy to migrate connection endpoints, i.e. sockets. SOCKMAN as a
middleware service is portable, i.e., it can run on different hardware and operating
system platforms, and the proxy hides migration of endpoints from legacy appli-
cations. SOCKMAN is a handover system that achieves socket migration using
the proxy-based forwarding technique. In order to preserve the transport protocol
state after socket migration, SOCKMAN transfers entire IP packets in UDP tun-
nels between the middleware and the proxy. This makes it possible to obey the
end-to-end principle in the Internet. Our evaluation shows that SOCKMAN intro-
duces minimal delay and consumes a moderate amount of CPU resources, even on
low-end devices like smart phones. The SOCKMAN middleware and the proxy
forwarding can be used without negative impact on the quality of experience for
the users. The evaluation demonstrates that SOCKMAN preserves the transport
protocol state after socket migration.

In order to motivate and explain the main contributions of this work, i.e. de-
sign, implementation and evaluation of SOCKMAN, we identify in Section 9.2
the requirements that SOCKMAN must fulfill for multimedia applications. Sec-
tion 9.3 describes the SOCKMAN design that consists of a middleware service
and a proxy. Section 9.4 evaluates SOCKMAN, and Section 9.5 studies related
work. Finally, Section 9.6 presents conclusions and outlines future work.

9.2 Requirement Analysis

The requirements for connection handover systems originate from applications.
Previous connection handover systems for file transfer and instant messaging ap-
plications have different requirements than a connection handover system for mul-
timedia applications. We have identified the following five requirements for our
connection handover system based on requirements for multimedia applications:
(1) low handover time, (2) high throughput, (3) legacy application support, (4)

121

portability, and (5) no special infrastructure support. In the following paragraphs,
we motivate and describe each of these requirements in more detail.

Low handover time: The handover time must be sufficiently low to avoid ser-
vice interruption and decreased quality of experience for the users. For example,
migrating an audio application should be perceived as a seamless action when
switching speakers. We characterize handover as seamless when it takes less than
100 ms, a number also used in the literature [16, 105].

High throughput: The throughput must be high enough to support multimedia
traffic, provided enough network bandwidth is available. However, the throughput
is not only dependent on the available network bandwidth, but also on the packet
processing capabilities of the devices involved. Since we can not change hardware
capabilities of devices, our software design and implementation must be efficient
in order to fulfill the requirement for high throughput. We aim for throughput of at
least 1.5 Mbps, because it is the recommended downstream bandwidth for Netflix
[141] and Hulu [101], two popular multimedia applications for video streaming.

Legacy application support: The system must support communication with
applications that are unaware of the connection handover system. We have no
control over the server parts of applications such as YouTube, but users should be
able to use these services. This means that our system must be able to transpar-
ently communicate with these types of applications.

Portability: The system must be portable across heterogeneous devices. Dif-
ferent types of devices have different software and hardware platforms. Two dif-
ferent mobile platforms are iOS and Android, and several operating systems exist
for desktop devices, such as GNU/Linux, Windows and Mac OS. Since users
might own devices running on different platforms, it is essential for our system to
be portable.

No special infrastructure support: The system must work with available net-
work infrastructure and should not require special services from Internet service
providers. Since we can not change the Internet infrastructure, but the multime-
dia applications we target rely on it, our system has to work with current network
technology and equipment.

These requirements are the foundation for the SOCKMAN design described
in the next section.

122

9.3 Design

In this section we describe the major design decisions of SOCKMAN, present
its architecture and describe a socket migration scenario. The five major de-
sign decisions concern: (a) whether SOCKMAN should use vertical or horizontal
handover, (b) where it should be placed (operating system, as middleware or in
the multimedia applications using it), (c) whether connection handover should
be achieved with packet spoofing, host-to-host migration support or with proxy-
based forwarding, (d) how transparency to legacy applications can be achieved,
and (e) whether to utilize a make-before-break or break-before-make approach.

9.3.1 Vertical or Horizontal Handover

Connection handover is the process by which an active connection endpoint changes
its point of attachment to a network. There are two main types of connection han-
dover, horizontal- and vertical handover. Horizontal handover is handover using
the same point of attachment to a network, e.g. a mobile phone moving between
different network cells, or a laptop moving between wireless access points belong-
ing to the same network. Horizontal handover is performed in the lower layers of
the OSI model by network administrators. Vertical handover is handover using
different network attachments, e.g. moving from a 802.11 network to a cellular
network such as 3G, or as in our case, migrating a part of an application to a new
device with another point of attachment to a network. Another reason why we
create SOCKMAN as a vertical handover solution is that we do not have control
over layer 1,2 and 3 in the OSI model which is required for horizontal handover.

Vertical handover solutions can be categorized as connection management or
socket migration systems. Connection management systems make new endpoints
for communication and reset state after migration, while socket migration systems
keep state intact by moving the endpoints from one device to another. Connection
management is unsuitable for SOCKMAN, because it requires modification in
both ends of communication channels, breaking the requirement for legacy appli-
cation support. Socket migration does not rely on support from network operators
or Internet service providers.

9.3.2 Placement of SOCKMAN

There are different alternatives where SOCKMAN can be placed, in the operating
system as a kernel module, as middleware or as a part of a multimedia application.

123

Connection handover can be accomplished in any of these, but since we have the
portability requirement and want to be able to use SOCKMAN on heterogeneous
devices, we can not design SOCKMAN as a kernel module. Placing SOCKMAN
as an integrated part of multimedia applications can severely limit its potential.
A general service that can be used by many applications has larger potential, and
can be tested and verified once and used by any type of application. This leaves
middleware as the most suitable placement for SOCKMAN.

9.3.3 Connection Handover Technique

According to Kuntz and Rajan [117], three techniques for socket migration exist:
packet spoofing, host-to-host migration support and proxy-based forwarding.

Packet spoofing takes place when a client sends packets with a forged source
address and port number. The server sends replies back to the forged address, and
the client intercepts the replies. This can enable a migrated client application to
preserve a connection by pretending it never moved. Examples of systems using
this technique are SockMi [24] and Netfilter live migration [99]. Packet spoofing
is not suitable in our scenario, because it only works in un-switched networks
where devices are able to see each others packets.

Host-to-host migration happens when a client sends its new IP address and
port number to the server, and the server updates its endpoint correspondingly.
This connection handover technique is used in MIGSOCK [117], Reliable Sockets
(Rocks) [207], and Migratory TCP (M-TCP) [179]. Host-to-host migration is
not suitable in our scenario, because it requires both ends of the communication
channel to be migration-aware, breaking the requirement for legacy application
support.

Proxy-based forwarding is illustrated in Figure 9.1. The figure shows a sce-
nario where a proxy acts on behalf of a multimedia application. Using a proxy
allows the multimedia application to migrate without informing the legacy ap-
plication. Proxy-based forwarding systems do not need any special infrastruc-
ture support and can support legacy applications. This means that a proxy-based
forwarding solution fulfills our needs without breaking any of the identified re-
quirements. An overview of related work in proxy-based forwarding systems is
provided in Section 9.5.

124

Figure 9.1: Socket migration using proxy-based forwarding.

9.3.4 Legacy Application Support

The connections between the multimedia applications and the proxy must be hid-
den from the legacy applications in order to support the envisioned application
mobility. One option to achieve this transparency is to use two distinct connec-
tions: one from the multimedia applications to the proxy and another from the
proxy to the legacy applications. This option duplicates the connection control
overhead and breaks the end-to-end principle. A more suitable option is to tunnel
packets between the multimedia applications and the legacy applications using
the proxy only as a forwarder. The multimedia application uses the middleware
to connect to the legacy application through the proxy. The proxy does not alter
the packets going through it. In this way, the endpoints can handle all connection
management and the proxy can use the socket state maintained by the multime-
dia applications. We choose to tunnel packets from the multimedia applications
in UDP packets, because it avoids the double reliability of sending TCP packets
inside TCP packets. In other words, the payload of the UDP packets are entire
transport layer packets, i.e. UDP/IP or TCP/IP packets, comprising packet header

125

and payload. In this way, completeness and correctness of data is verified only in
the endpoints and not in the proxy.

SOCKMAN requires all connections to be initiated by the multimedia appli-
cations. This one-way connection establishment is required because the proxy
needs a forwarding table in order to know where to forward packets coming from
the legacy applications. However, this is not a limitation for clients of multimedia
applications, because client-server connections are initiated by clients. Figure 9.2
shows a socket migration scenario using proxy-based forwarding and tunneling of
packets.

Figure 9.2: Migration scenario using proxy-based forwarding and UDP/IP tun-
nels.

126

9.3.5 Connection (Re-)establishment

Our final design decision concerns the sequence of connection establishment and
tear-down, where break-before-make and make-before-break are two alternative
techniques [138]. Systems using make-before-break establish new connections
before they tear down old connections, and correspondingly, systems using break-
before-make have only one connection active at a time. The make-before-break
technique can achieve less packet loss and delay than the break-before-make ap-
proach, but it requires a more complex design and implementation. SOCKMAN
uses the break-before-make technique, because of its simplicity, and because it
can fulfill all requirements for low connection handover time.

9.3.6 Architecture

The SOCKMAN architecture consists of two main components and four internal
modules. The two main components are the middleware and the proxy. It is
possible to separate the middleware and proxy components, but they are integrated
in SOCKMAN, because they share several functions, described below.

Figure 9.3: The SOCKMAN architecture consisting of four modules.

Figure 9.3 shows the SOCKMAN architecture and data flow paths. We have
separated the concerns of SOCKMAN into four minimal and efficient modules:

The Transport & IP Controller module provides an Application Pro-
gram Interface (API) similar to POSIX sockets where multimedia applications

127

can use functions like send() and receive() to communicate with legacy ap-
plications. The component currently contains UDP and basic TCP functionality,
but any transport protocol can be placed in this controller. When data from a
multimedia application comes into the controller, appropriate headers are added
depending on the transport protocol and current socket state (sequence numbers
etc). After the headers are added, the packets are sent to the dispatcher. Packets
coming in the opposite direction are delivered to the multimedia application.

The Dispatcher module handles internal data flow by passing data between
components. The dispatcher receives a function call from the external migrator
component about when and where to migrate sockets. It notifies the proxy about
when and where sockets migrate using the standard TCP implementation in ker-
nel. In addition, it sends and receives the state information necessary to rebuild
sockets. Socket state is also exchanged using the standard TCP implementation
in kernel. The size of a UDP socket state is 32 bytes and the size of a TCP socket
state is 96 bytes so it always fits in one packet.

The Tunnel Handler module is responsible for the data sent between the
middleware and the proxy. It maintains UDP tunnels, shown in Figure 9.2, and
sends the encapsulated packets created by the Transport & IP Controller.
Since UDP connections are stateless, the proxy does not need to handle packet
loss and hence consumes little CPU resources.

The Raw Packet Handler module is used by the proxy to send and receive
IP packets to and from the legacy applications.

Figure 9.4: Data flow path in SOCKMAN using three devices.

Figure 9.4 shows how data flows between the SOCKMAN modules. In one

128

direction, the middleware sends data from the multimedia application through the
Transport & IP Controller, the Dispatcher, and the Tunnel Handler.
The Tunnel Handler sends the data to the proxy on another device where the
Tunnel Handler receives it and sends it to the Dispatcher, Raw Packet

Handler, and in turn to the legacy application on device C. In the opposite direc-
tion, the data flows from the legacy application to the multimedia application in
reverse order.

An external migrator module calls a function in SOCKMAN informing it
about when and where to migrate sockets. It is not a part of SOCKMAN, but uses
an open API to initiate socket migration. The migrator performs checkpointing of
application state (excluding socket state), sends and receives application state, and
stops and starts applications. This module is currently subject to ongoing research
in the TRAMP project.

To summarize, the middleware uses the Transport & IP Controller, the
Dispatcher and the Tunnel Handler, while the proxy uses the
Tunnel Handler, the Dispatcher and the Raw Packet Handler. The mi-
grator is an external component using the SOCKMAN API to initiate socket mi-
gration.

9.3.7 Socket Migration Scenario

Figure 9.2 illustrates a socket migration scenario in SOCKMAN, with four devices
involved. The multimedia application is running on device A and is migrated
to device B. The legacy application is running on device C. The middleware is
running on device A and device B. The proxy is running on a dedicated device, but
in other scenarios it is possible that the proxy runs on device A or device B. The
multimedia application is communicating with a legacy application using TCP.
The socket migration process starts when a user wants to migrate a multimedia
application from device A to device B. An external migrator is used to stop, send,
and resume the application. In addition, the migrator uses the SOCKMAN API to
inform the Dispatcher where it is migrating to, so that the proxy can be updated.
Figure 9.5 shows the messages being sent between the devices involved.

Data is being continuously sent from the legacy application running on device
C to the multimedia application running on device A, via the proxy. For simplicity,
we consider only unidirectional communication in this scenario, but bidirectional
communication is supported in SOCKMAN. Device A acknowledges the data.

The user decides to migrate the multimedia application to device B, and the

129

Figure 9.5: Message passing during socket migration. Fixed lines illustrate regu-
lar traffic, gray background illustrates tunneled traffic, and dotted lines illustrate
migrate call and socket state sent using the standard TCP implementation in ker-
nel.

migrator uses the API, provided by the Dispatcher, to initiate migration. The
Dispatcher establishes two dedicated connections using the standard TCP im-
plementation in kernel, one to device B and one to the proxy. The middleware uses
these two connections to inform the proxy about the IP address and port number
of device B, and to send the socket state to device B. The socket state consists of
the IP addresses and port numbers, sequence numbers, and a buffer of unacknowl-
edged outgoing packets. Unacknowledged incoming packets that are lost during
migration are retransmitted by the sender when using a reliable transport protocol.

SOCKMAN starts buffering data from the proxy after the socket is rebuilt on
device B. Once the application resumes, SOCKMAN flushes the buffered data

130

and end-to-end communication resumes. The data is now tunneled via the proxy
to device B, which has taken over the transmission control responsibility. Thus,
data is received and acknowledged.

SOCKMAN is implemented using the C programming language. It is com-
piled and tested on GNU/Linux, and can be compiled on Mac OS with only mi-
nor modifications. However, because of limitations on raw sockets in Windows,
compiling SOCKMAN on Windows requires more work. For a more detailed
description about the SOCKMAN design and implementation, we refer to [9].

9.4 Evaluation

In this section we evaluate SOCKMAN to show that it fulfills the multimedia
requirements. We use the following metrics: socket migration time, latency over-
head, throughput and CPU load. The workload consists of a streaming server
representing the legacy application, streaming data with 100 bytes payload to a
multimedia application over UDP. The testbed consists of one low-end device
and three high-end devices. The low-end device has an Intel Atom N270 CPU
with 1.6 GHz and 2 virtual cores, 2 GB of RAM and a 100 Mbps network inter-
face. It is running the 32 bit version of Ubuntu Linux 11.11. The high-end devices
have Intel Core i7 CPUs with 2.93 GHz and 8 virtual cores, 4 GB of RAM and a
1 Gbps network interface. They are running the 64 bit version of Ubuntu Linux
11.04. All devices are located in the same local area network.

9.4.1 Socket Migration Time

Socket migration time is the time it takes from starting to export the socket state
of a multimedia application ts, to the time the socket is reinstated on a different
device tr, calculated as socket_migration_time = tr − ts. We determine ts
and tr by migrating a socket using UDP between two high-end devices, device
A and device B in Figure 9.2. The proxy is running on the low-end device, and
the legacy application is running on another high-end device. The external mi-
grator component is emulated and interaction with the Migration API is done via
the command-line interface. Device A exports the socket state, informs the proxy
about the IP address and port of the new device, and sends the socket state to de-
vice B. This results in two packets being sent from device A, one to the proxy and
one to device B. Device B imports the socket state. Both ts and tr are registered in
device A, ts when the Migration API receives a migrate call, and tr when device

131

B has confirmed that the socket is rebuilt. We repeat the experiment 12 times and
measure the average socket migration time in this setup to be 0.593 ms with a
standard deviation of 0.061 ms. This time is clearly below our limit of 100 ms for
connection handover, which is tolerable by most users of multimedia applications
[16, 105].

Table 9.1: Average data loss DL in kilobytes, minimum number of lost packets
PL, and probability P of an additional packet loss for four migration times and
three bitrates.

Socket Migration Time 0.593 ms (measured) 1 ms (LAN) 10 ms (MAN) 100 ms (WAN)
Bitrate (Stream) DL PL P DL PL P DL PL P DL PL P
192 kbps (MP3) 0.014 0 0.013 0.024 0 0.020 0.240 0 0.167 2.400 1 0.642
1.5 Mbps (Netflix) 0.114 0 0.106 0.192 0 0.159 1.920 1 0.338 19.200 13 0.135
9.8 Mbps (DVD) 0.744 0 0.689 1.254 1 0.038 12.544 8 0.745 125.440 85 0.815

The physical location of the proxy influences the socket migration time. High
latency between the middleware device and the proxy device will give a high
socket migration time. This is because the migration call must be sent from mid-
dleware to proxy, as illustrated in Figure 9.5. Therefore, the placement of the
proxy is critical to achieve a low socket migration time.

In order to get an intuition about the potential packet loss during socket migra-
tion, we present Table 9.1 with calculated numbers for four migration times and
three bitrates. The metrics in the table are the average data loss DL in kilobytes,
the minimum number of lost packets PL and the probability P of an additional
packet loss. The migration time of 0.593 ms is given by our measurements, while
1 ms, 10 ms and 100 ms are estimated socket migration times in typical LAN,
MAN and WAN networks respectively. The bitrates in the table are examples for
typical multimedia applications.

9.4.2 Latency Overhead

The latency overhead is the time difference between a direct data transfer from
the multimedia application to the legacy application ld and the same data transfer
through the proxy lp, calculated as latency_overhead = lp − ld. We determine
ld and lp by comparing the network latency with and without the proxy. The mul-
timedia application and legacy application run on two high-end devices and the
proxy runs on the low-end device. The ping tool is used to determine the network
latency. It is done by summing the latency between the multimedia application
and the proxy, and between the proxy and the legacy application. This addition of

132

two link latencies is emulating a one-hop link. We compare this with an end-to-
end transmission between the multimedia application and the legacy application
over the proxy. The results show that using a proxy does introduce latency over-
head, but that the overhead introduced in our scenario is negligible for multimedia
applications. In our scenario the proxy overhead when running on the low-end
device is 0.175 ms. Larger overheads can occur if the proxy is far away from the
shortest path between the multimedia application and the legacy application.

9.4.3 Throughput

To measure the throughput of SOCKMAN, we run the multimedia application
and the legacy application on two high-end devices, and the proxy on the low-
end device. Packets are sent over UDP in both directions to verify that this has
no impact on performance. We determine that the proxy is the limiting factor
in the experiment and that it can process up to 20000 packets per second before
packets are dropped. 20000 packets per second with 100 bytes payload is over 15
Mbps, which is more than the requirement of 1.5 Mbps. To determine the limits of
SOCKMAN we increase the payload from 100 bytes to 1400 bytes, which is close
to the maximum transmission unit of the network. With this payload, we are able
to achieve full network utilization of 1 Gbps, meaning that SOCKMAN is able to
utilize the full network capacity if the payload and packet size is appropriate, and
that the requirement for throughput is met even on resource constrained devices.

To gain insights on how SOCKMAN can perform using a kernel implementa-
tion of TCP we compare the SOCKMAN TCP implementation in user space with
a kernel implementation of TCP. Measurements are performed in the low-end de-
vice. To simulate a realistic scenario, a 5,460 kB file is sent over a typical residen-
tial WLAN (802.11g). We assume that the actual throughput for the file transfer
will be substantially lower than 54 Mbps (the maximum theoretical throughput in
802.11g networks) due to wireless interference from nearby networks, competing
flows, and CPU utilization in sending or receiving devices affect the achievable
throughput. In addition, TCP window size and round trip time impact bandwidth
utilization in TCP connections [4]. The measurements show that the SOCKMAN
TCP implementation achieves an average throughput of 5.41 Mbps with a standard
deviation of 1.237 Mbps. The kernel implementation achieves a higher average
throughput of 19.593 Mbps with a standard deviation of 0.852 Mbps. One reason
for this difference is the lack of TCP options, such as window scaling and TCP
timestamps, in the SOCKMAN TCP implementation.

133

9.4.4 CPU Load

In order to measure the CPU load of the SOCKMAN middleware and proxy,
and the SOCKMAN TCP implementation in user-space, separate experiments are
done on the low-end device using the top tool.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5000 10000 15000 20000

C
P

U
 L

o
a
d

Incoming Packets Per Second

Proxy
Middleware

Figure 9.6: CPU load of the SOCKMAN middleware and proxy running on the
low-end device.

The CPU load of the SOCKMAN middleware and proxy is visualized in Fig-
ure 9.6. It shows that both the middleware and proxy can process up to 20000
packets per second without exhausting the CPU, meaning that it is possible to run
SOCKMAN on resource constrained devices, such as smart phones.

The CPU load of the SOCKMAN implementation of TCP is measured in two
experiments. First, a large file is sent from the legacy application to the multi-
media application without controlling the bit-rate. In this experiment, the SOCK-
MAN implementation of TCP has an average CPU load of 138% (where 200% is
maximum because of the two virtual cores in the low-end device) with a standard
deviation of 3.916%, while the kernel implementation has an average CPU load
of 4% with a standard deviation of 0%. One reason for the higher CPU utilization
in this experiment is busy waiting when the TCP window is full. This situation
can be avoided by performing a blocking operation instead. Second, a 1.5 Mbps
stream is sent from the legacy application to the multimedia application. In this
experiment, the SOCKMAN implementation of TCP has an average CPU load of
9%, while the kernel implementation has an average CPU load of 1%.

134

9.4.5 Summary

The results from the evaluation show that SOCKMAN fulfills the following re-
quirements for multimedia applications: short socket migration time, high through-
put, and low latency. The results from the CPU load experiment show that SOCK-
MAN can run on devices with limited processing capabilities. Using SOCKMAN,
multimedia applications can migrate their sockets and continue communication
with legacy applications without decreased quality of experience for the users.

9.5 Related Work

Table 9.2: State-of-the-art – N/A means that we do not have enough information
to determine whether a requirement is fulfilled or not, PBF means proxy-based
forwarding, PS means packet spoofing, and HHMS means host-to-host migration
support.

System Handover Throughput Legacy Portability No Special Category Handover Technique
Time Applications Infrastructure

Support
SMP [127] No Yes Yes No Yes PBF Connection Management
Zap [147] No Yes Yes No Yes PBF Socket Migration

UPMT [31, 30] Yes Yes Yes No Yes PBF Connection Management
MSOCKS [137] No Yes Yes No Yes PBF Connection Management

SockMi [24] N/A N/A Yes No Yes PS Socket Migration
Netfilter Live migration [99] N/A No Yes No Yes PS Socket Migration

MIGSOCK [117] Yes Yes No No Yes HHMS Socket Migration
Rocks [207] Yes Yes No Yes Yes HHMS Socket Migration
TCP-R [71] Yes Yes No No Yes HHMS Connection Management

Related work is summarized and compared in Table 9.2. This table shows
state-of-the-art systems with respect to the requirements identified in Section 9.2,
their category and their connection handover technique. First, we analyze in-
sights from Table 9.2, and later we detail key differences between proxy-based
forwarding systems, SMP [127], Zap [147], UPMT [30, 31], MSOCKS [137],
and SOCKMAN.

Table 9.2 shows that all systems do not require special infrastructure support.
Proxy-based systems can achieve enough throughput, support legacy applications,
but do not support portability. Packet spoofing solutions support legacy appli-
cations but not portability. Host-to-host migration support systems always meet
handover time and throughput requirements, but none support legacy applications.

SMP [127] is a proxy-based forwarding system that aims to avoid frame loss in
MPEG4 streaming applications. It uses two connections, one between the stream-
ing server and the proxy, and another between the proxy and the client. SMP

135

does not migrate transport protocol state, but establishes a new TCP connection
between the proxy and the client after migration. It maintains end-to-end con-
nections by modifying TCP packets in the proxy. SOCKMAN avoids this type
of processing overhead in the proxy by forwarding unmodified IP packets. Addi-
tional overhead is introduced in SMP by using a MySQL database to keep track of
application locations. The authors claim that this database introduces an overhead
of 200 ms. The NS2 evaluation of SMP shows that the total migration time is in
the order of seconds. This delay does not meet our handover time requirement.

Zap [147] migrates groups of processes, which decouples processes from de-
pendencies of host operating systems. Processes using Zap connect through vir-
tual addresses, which are mapped to physical addresses. In that way, migrated
applications continue using the same virtual address before and after migration. A
proxy maintains the mapping, between the virtual- and the physical address of pro-
cesses. Zap breaks the Internet end-to-end principle because the proxy maintains
session connectivity by modifying TCP sequence and acknowledgment numbers.
In SOCKMAN, the end nodes are responsible for maintaining session connectiv-
ity, i.e. transport protocol state. Evaluation of Zap shows that migrating a 363
kilobyte telnet application takes a disproportional amount of time considering its
small size. This is because Zap sends a message to the remote end of the connec-
tion to inform it about the new location of telnet, and because the remote end of
the connection must set up address translation rules. On migration request, a TCP
connection must be established between the proxy and the device where processes
are migrated to. This introduces overhead of the time spent by the three-way TCP
handshaking during connection establishment. SOCKMAN avoids this overhead
by using connectionless UDP tunnels between the middleware and the proxy.

UPMT [31, 30] achieves connection handover for applications running on
multihomed devices. If a user of a mobile phone loses wireless connectivity,
UPMT can hand over connections to the cellular network. Since UPMT does
not migrate applications, it does not transfer the transport protocol state to other
devices. Moreover, UPMT is composed by components in user- and kernel space,
this does not comply with the portability requirement. The SOCKMAN design is
influenced by the IP in UDP tunnels technique used in UPMT.

MSOCKS [137] is a solution for connection management of multihomed de-
vices. MSOCKS does not migrate transport protocol state, but creates a new TCP
connection between the proxy and the new point of attachment to the network. As
described for SMP and Zap, the proxy maintains session connectivity, manages
the end-to-end connection by modifying TCP headers. According to the authors,

136

the overhead is minimal, because it is done in the kernel. Lastly, MSOCKS limits
applications to use only TCP connections.

Therefore, to the best of our knowledge, no connections handover systems ful-
fill all our requirements. SOCKMAN has the following advantages over the pre-
sented systems: (1) It migrates transport protocol state, (2) it introduces minimal
overhead in the proxy, (3) it avoids connection establishment overhead by using
connectionless UDP tunnels, (4) it supports different types of transport protocols,
and (5) it hides socket migration from legacy applications.

9.6 Conclusions

Users can experience multimedia applications in new ways if parts of the applica-
tions can migrate seamlessly to the most suitable devices in the vicinity of a user,
e.g. moving video to a big-screen TV and audio to a Hi-Fi stereo system. In this
paper, we address one core challenge of this type of migration, i.e. the migration
of connection end-points, by designing, implementing and evaluating a connec-
tion handover system called SOCKMAN. The core idea of SOCKMAN is to use
a proxy-based forwarding technique to forward entire IP packets in tunnels, hid-
ing migration from legacy applications. The proxy forwards IP packets without
modifying them. This preserves the transport protocol state and obeys the Internet
end-to-end principle.

The evaluation shows that SOCKMAN fulfills the multimedia requirements of
low handover time, high enough throughput, and legacy application support. In
our experiments, SOCKMAN achieves an average socket migration time of 0.593
ms, a maximum latency overhead in the proxy of 0.271 ms, and full network
utilization of 1000 Mbps when using appropriate packet sizes. In addition, the
evaluation shows that SOCKMAN is able to run on resource constrained devices,
such as smart-phones, without exhausting their CPU resources.

Open issues include rewriting the SOCKMAN API to accurately resemble the
POSIX equivalent functions, extending the one-way initiation with support for
two-way connection establishment, and implementation specific improvements
like removing busy waiting to improve performance. Future work includes sup-
port for NAT traversal, design of a proxy placement algorithm, and managing
security issues such as authentication, authorization and encryption.

137

9.7 Acknowledgment

The authors would like to thank Ellen Munthe-Kaas, Piotr Srebrny and the anony-
mous reviewers from ConTEL 2013 for valuable feedback.

138

Chapter 10

P5 – Efficient Data Sharing for
Multi-device Multimedia
Applications

Authors: Hans Vatne Hansen, Francisco Javier Velázquez-García, Vera Goebel,
Thomas Plagemann

Published in: Proceedings of the Workshop on Multi-device App Middleware
2012

Reference in Bibliography: [95]

Abstract: By utilizing the complementary advantages in screen size, network
speed and processing power, the computing devices we own can work to-
gether and provide a better user experience. By separating the concerns of
an application into components responsible for distinct tasks, these com-
ponents can run on the different devices where they perform best. As a
step towards multi-device applications, we have designed, implemented and
tested a collaboration platform for application data sharing, optimized for
low producer-to-consumer delay. Distribution trees are built automatically
by our system based on latency, and the total producer-to-consumer delays
measured in our experiments are below the delay requirements for multime-
dia applications.

139

10.1 Introduction

Mark Weiser’s vision of ubiquitous computing [196] has become true in the quan-
titative aspect. Many of us are surrounded by computing devices like laptops,
smart-phones, tablets and home media centers. However, the qualitative part of
Weiser’s vision regarding seamless and unconscious collaboration between de-
vices is unfulfilled. We aim to come one step closer to this vision by enabling
multi-device multimedia applications. To maximize the Quality of Experience,
applications should be able to leverage the complementary properties of the sur-
rounding devices, like screen size, network speed and processing power. For ex-
ample, we want to use the largest screen nearby when having a video-conference.
However, the available devices might change during run-time. It is necessary to
develop a solution that allows running parts of an application on different devices
at different times. This requires to separate the concerns of an application into
components such that each component is responsible for a distinct task. Further-
more, a collaboration platform is needed to enable the components of a single
application that run on different devices to efficiently cooperate. In the future, the
components should not be bound to one device, but be able to migrate depending
on context and user preferences.

Low latency is a crucial requirement for a collaboration platform because
we want to use it for multimedia applications. Real-time traffic, such as video-
conferencing, multi-player network games and user-interface actions require data
transfer latency between 100 and 200 ms, depending on the type of application
[16, 160, 21]. We aim to support all of these types of applications and target data
transfer with a latency of less than 100 ms.

It is also important that the provided collaboration platform and API is easy
to use. Application developers should focus on making great applications, not
on underlying data propagation and component cooperation. The natural way
for programmers to access data is through memory, and an approximation to this
standard paradigm is needed.

We address the challenges related to a collaboration platform, because it is the
foundation for multi-device, multimedia applications. Our solution that fulfills the
multimedia application domain requirements is described, and we present the fol-
lowing contributions: (1) A component model for fine-grained applications. (2)
Design and implementation of the collaboration platform and its location trans-
parent API. (3) Evaluation of the platform’s performance with respect to the mul-
timedia application domain.

140

Results from measurements with 15 real devices are evaluated to analyze the
producer-to-consumer latencies and overhead of our system. Further issues, like
discovery of devices, device selection, trust relations between devices and migra-
tion of running components are subject to ongoing work and out of the [sic] scope
of this paper. In Figure 10.1 we show an example of how a video-conferencing
application can benefit from our framework.

CONVERSTAION

TRANSCODED

AUDIO & VIDEO

USER-INPUT

WEB-CAM DATA
VIDEO

Internet

Figure 10.1: Separation of concerns and data flow in an example video-
conferencing application.

A permanently connected desktop computer without power constraints com-
municates with all conference participants through the Internet, ensuring a reliable
connection and real-time transcoding of incoming and outgoing data streams. Au-
dio and video is played on a hi-fi equipped media center with a large screen at-
tached for optimal quality of experience. The user interacts with an easy to use
touchscreen tablet, and the tablet can also display small video thumbnails of all
the participants in the conversation.

The remainder of the paper is structured as follows: Section 10.2 gives an
overview of related work. Sections 10.3 and 10.4 describe the design and imple-
mentation of our collaboration platform, while Section 10.5 presents our evalua-
tion and results. Section 10.6 concludes the paper and outlines future work.

10.2 Related Work

Distributed Shared Memory (DSM) is a data communication abstraction where
memory segments are shared amongst a set of devices. This abstraction can sim-
plify the programming of distributed components. Several DSM systems have
been proposed, and much research has gone into minimizing network traffic and

141

reducing latency between components in DSM systems. One possible optimiza-
tion is to share only the data structures that need to be used by more than one
component. This strategy reduces bandwidth by minimizing the amount of data
that must be shared. Another optimization is to replicate the shared data on mul-
tiple devices, minimizing the latency when locating and retrieving data [180].

Linda [75] is one coordination model for DSM. It allows sharing of passive
data tuples, like (“foo”, 1337, 42), through a simple API. The main drawback
of Linda-based systems is that they trade performance for consistency by using
blocking operations. In addition, most of the Linda-based systems, like JavaS-
paces [69] and TSpaces [124], are statically centralized with one node responsible
for all data. This is not suitable for our collaboration platform because of the
inherent churn in personal device federations.

DSM has also been used in ad hoc mobile environments, similar to our per-
sonal device federations, where devices can join and leave at any time. One ap-
proach for handling this churn is to dynamically distribute the data. Lime (Linda
in a Mobile Environment) is such a system, where components make their data
available to other currently connected components [156]. However, since each
data structure is only managed by one device, devices with popular data can be-
come overloaded and suffer from throughput and latency impairments.

SPREAD (Spatial PRogramming Environment for Ambient computing De-
sign) [49] follows a similar approach where components can write to their own
data segments, but read data segments from all components running on connected
devices. The main drawback of SPREAD is that it uses a read-driven strategy
where data is only propagated to consumers on explicit request. This uses less
bandwidth since data is only sent to devices when needed, but increases the la-
tency because of the blocking read request. This approach is not suitable for
real-time, multimedia data.

Munin [23, 42] is a shared variable system utilizing multiple consistency pro-
tocols tailored to different types of shared data. Shared data in Munin is annotated
with an access pattern and the system tries to choose the optimal consistency
protocol suited to that pattern. The access pattern that is most similar to our col-
laboration platform is the producer-consumer pattern, where data is produced by
one thread and consumed by a fixed set of other threads. Munin uses release con-
sistency to minimize the number of required messages to keep data consistent.
Release consistency postpones propagation of data until a release is performed al-
lowing updates to be queued at the expense of higher latency. Buffering is accept-
able for certain types of parallel programs, but not for multimedia applications.

142

The system most similar to our collaboration platform is presented in [47].
Corradi et al. use a hierarchical data distribution model where data is only ac-
cessible within a certain scope. Like our solution, they build distribution trees,
but the way the trees are built differs. Their solution attempts to define a scalable
replication scheme with a limited scope, while we focus on performance, rather
than scalability. Corradi et al. separate “execution nodes” (producers/consumers)
from “memory nodes” (replicators) and try to optimize the replication in order to
minimize coordination efforts, but still have data coherence. For our small fed-
erations of personal devices, a distinction between execution nodes and memory
nodes seem unrealistic as we do not have enough available devices.

We have seen that decoupling in time and space is provided by several DSM
systems, but that none of the reviewed systems can provide the low latency we
need for multimedia applications.

10.3 Design

We have designed a collaboration platform where application components can
share data segments in a location transparent fashion within a small federation of
personal devices. Distribution trees are created for each individual data segment
and optimized for low producer-to-consumer delay. The separation of concerns
for our system, and the derived design choices, are presented in this section.

A component is one distinct part of an application, and different components
can work together to form a complete application, such as the video-conferencing
example in Figure 10.1. Components can run locally on one machine or be dis-
tributed over a network, and in order to cooperate and function as one, components
need to share data with each other. There are no restrictions on what a compo-
nent can do or what type of data it produces, consumes or shares in our system.
This is decided by the application component developers. However, the design
is tailored for applications with real-time requirements. Data is exchanged using
a flexible DSM solution where producers associate identifiers called labels with
data they wish to share. As an example, a 100 ms buffer of a video stream can
be associated with the label webcam_buffer. The size of data segments can range
from bytes to megabytes depending on the individual application components. In
the video-conferencing example, we know that the bit-rate for most commonly
available MPEG-2 encoded video assets is 3.75 Mbps [160]. A 100 ms buffer in
this scenario needs 48 kB. Smaller data segments, such as a signal from a remote

143

control, can be as small as 1 byte. Data can be shared in two ways using our sys-
tem. First, it is possible to use one label for each data segment in the application
component. This is practical when different consumers are interested in different
parts of the producing component’s data. The other approach is to publish one
large data segment representing everything a component produces. For example,
metadata like a frame counter can occupy the first 4 bytes, while the remaining
bytes can contain the actual frame.

Typical users own a small set of devices that need to cooperate with each
other in order to achieve ubiquitous computing [53]. Our collaboration platform
creates a federation of a user’s devices by forming a peer-to-peer overlay. This
overlay has a full mesh topology. A full mesh has direct connections between
all devices and yields high performance. Albeit this topology does not scale, it
suits small federations of personal devices. Trust in the users’ federations can be
achieved by simple security mechanisms like pre-shared keys, but the details of
these techniques are out of scope for this paper.

Another concern is how the distributed components communicate. Produc-
ing components do not need to know how many consumers they have, nor where
the consumers are located. Location transparency is needed, and the coordination
effort must be abstracted away from the individual components. The two main
communication paradigms in concurrent computing are message passing and dis-
tributed shared memory. While message passing is more flexible, only DSM can
provide decoupling in time and space. We use DSM because of the need for
loose coupling. Russello et al. classify DSM systems using the following set
of categories [164]: Statically centralized, fully replicated, statically distributed,
dynamically centralized and structurally replicated.

Our collaboration platform utilizes a structurally replicated schema where
consumers have two roles. In addition to being consumers, they also act as repli-
cators of data. The distribution trees are built based on latency, one tree for each
data segment. This mechanism provides redundancy and full decoupling between
producers and consumers. Full memory space sharing is not possible because our
collaboration platform is intended to run on heterogeneous devices, so we focus
on shared data segments.

Concurrency is an issue in shared data systems when several producers want
to write to the same data segment. The standard solution to this problem is to
introduce locks, which in turn leads to blocking. This is a suboptimal solution
for real-time data. We allow only one producer per data segment as an alternative
to locks. This avoids blocking, but application developers need to be aware of

144

this in advance and implement their components accordingly, e.g., by adding a
dynamic suffix to the label. Label description and discovery is out of the scope of
this paper.

Our collaboration platform can be used for all types of distributed applications,
but the distribution system is optimized for multimedia applications. As latency is
crucial in multimedia applications such as video-conferencing, our collaboration
platform exploits locality to efficiently retrieve data. When an application compo-
nent needs a data segment that is not already replicated locally by other compo-
nents, a lookup message is broadcasted to the other devices. Every consumer that
has this data replies with its delay (in ms) from the original producer. Our collabo-
ration platform obtains the data from the device with lowest latency, when taking
network delay and intermediate hops into account. This approach, described in
Algorithm 1, finds the path with the lowest possible latency at the given time, but
changes in network conditions may require subsequent re-organization of the dis-
tribution tree. Re-balancing the distribution tree in such events is left for future
work.

Example: Video-Conferencing 3 Devices 5 Components

API

APPLICATION COMPONENT

E.G VIDEO PREVIEWER

APPLICATION COMPONENT

E.G USER-INPUT CAPTURE

API

APPLICATION COMPONENT

E.G. COM. MANAGER

APPLICATION COMPONENT

E.G. TRANSCODER

APIAPPLICATION COMPONENT

E.G VIDEO PREVIEWER

COORDINATOR

COORDINATOR

COORDINATOR

NETWORK

Figure 10.2: Collaboration platform example with three devices and five compo-
nents working together.

Our collaboration platform consists of two parts, shown in Figure 10.2 and

145

10.3: A coordinator and the individual application components.

Coordinator

Data ManagerDistribution ManagerOverlay Manager

Application ComponentApplication

Middleware

Low Level Operating System & Network

API

Figure 10.3: System Overview

The coordinator is the main component in our architecture. It is responsible for
communication and data management. It has three modules, shown in Figure 10.3.
The overlay manager is responsible for setting up the network connections in
the personal device federation. All devices have connections to all other devices.
The distribution manager is responsible for creating the distribution trees
based on latencies and sending and receiving of data. The data manager is
responsible for receiving data from application components and delivering data to
them when new data segments are produced.

There are two input interfaces to the coordinator, shown as black dots in Fig-
ures 10.2 and 10.4. The local component interface is the components’ link to the
coordinator. The accepted messages form the coordinator API and is used by ap-
plication developers to share and access data segments between components. The
API consists of the following four functions:

A pure producer will use the Initialize and Publish functions, while a
pure consumer will use the Initialize and either Get or Subscribe func-
tions. More complex scenarios where components both produce and consume
data segments are possible. The data propagation with Subscribe uses a write-
driven strategy where producing and replicating devices immediately send data to
its subscribers whenever new data becomes available. This is most relevant for

146

Get

Publish

Subscribe

DAT

YEP

GET

SUB

Coordinator

LOCAL

COMPONENTS

DISTRIBUTED

COORDINATORSInitialize

LOOKUP

PUB

API

CONTROL MESSAGES

Figure 10.4: Coordinator Interfaces

Function Description
Initialize Associate a label to a data segment
Publish Make data segment available to other components
Get Receive the current instance of the data segment
Subscribe Receive continuous data segment updates

Table 10.1: Application Component API

multimedia applications. If a producer wants to buffer several data segments, this
has to be temporary stored in a different part of memory before being copied to
the shared memory structure. Get uses a read-driven strategy where the consumer
decides when it needs an update of a data segment, relevant for slower paced
application domains.

The distributed coordinators’ interface is used for underlying control messages
between coordinators. These messages are not visible to the application compo-
nents. The control messages are:

PUB: The receiver is informed that the sender can be used as a source for the data
segment identified by the given label.

LOOKUP: The receiver is queried by the sender whether it has the data segment
for the given label.

YEP: The receiver registers one possible source for the data segment identified

147

by the given label, and the sender’s latency to the original producer.

GET: The sender asks the receiver to send the current instance of the data segment
corresponding to the label.

SUB: The sender asks the receiver to send the data segments corresponding to the
label continuously.

DAT: The receiver gets a data segment for the given label.

CONTROL MESSAGE LABEL PAYLOAD

E.G 1.641 MSE.G WEBCAM_BUFFERE.G YEP

SIZE

E.G 48 KB

Figure 10.5: Packet Layout

When a coordinator is receiving many control packets, the packet handling
time is increased. This can affect the latency when answering LOOKUP messages.
Latency can also be affected by underlying network delay. A typical scenario
where control messages are sent between coordinators is shown in Figure 10.6.

PUB

LOOKUP

YEP (0 ms)

SUB

DAT

LOOKUP

YEP (0 ms)

YEP (2 ms)

SUB

DAT

Network Latencies:

Desktop-Media Center:2 ms Media Center-Tablet:3 ms Desktop-Tablet 6 ms

PUB

PUB

Time

Figure 10.6: Control traffic example with one producer and two consumers.

In the example scenario in Figure 10.6 we can see how the coordinator sends
control messages between the devices, and how Algorithm 1 is used by the Media
Center and the Tablet to find their parent in the distribution tree.

In this example the Desktop is producing data and sends a PUB message to the
two other devices. The Media Center needs this data and broadcasts a LOOKUP

148

Algorithm 1: Latency Optimized Parent Selection
Data: A label identifying a data segment.
Result: The data provider with lowest delay for the provided label, or

NULL if no data providers exist.

chosen_parent←− NULL
optimal_delay ←− initial_threshold
start_time←− current_time
foreach peer ∈ mesh do send LOOKUP (label);

foreach received reply Y EP (inherited_delay) do
delay ←− inherited_delay + (current_time− start_time)/2
if delay < optimal_delay then

chosen_parent←− peer
optimal_delay ←− delay

if current_time > start_time+ optimal_delay then
break

message. It gets a YEP response from the Desktop. The reply specifies 0 ms,
meaning that the Desktop is the original producer for this data segment. The
Media Center adds the network latency, measured as the time between sending
the LOOKUP message and receiving the YEP message divided by two, to the 0 ms
and gets 2 ms latency. The Media Center waits 2 ms for a better offer, but gets
no other offers, because the Desktop is the only device with this data segment
available. The Media Center sends a SUB message to the Desktop indicating that
it has chosen it as its parent in the distribution tree for this data segment. The data
then flows from the Desktop to the Media Center. A similar sequence of events
occurs when the Tablet needs the same data segment, but using Algorithm 1, the
Media Center is chosen as its parent. The data flows from the Desktop to the
Media Center, and then to the Tablet, providing the lowest latency possible for
this data segment to both subscribers.

10.4 Implementation

We have implemented our collaboration platform as a user-space daemon in C.
The daemon runs in a stand-alone process and communicates with the applica-
tion components through a shared library. The shared library is implementing
the Initialize, Publish, Subscribe and Get functions described in Section

149

10.3.
The IPC mechanism used between the library and the coordinator is Portable

Operating System Interface (POSIX) Shared Memory. It has high throughput and
low latency and does not use any copying operations, ensuring that data segments
are immediately available to the local components when arriving from the net-
work.

TCP is used as packet transport in order to guarantee that the produced data
segments always arrive, that they arrive in order and that they only arrive once at
each consumer. We have seen that the implications of using TCP instead of UDP
is minimal because all the connections are always open and ready to be used, but
the API can be extended with UDP functionality.

10.5 Evaluation

We have two main goals for our evaluation: 1) Verify that our collaboration plat-
form operates according to the design specified in Section 10.3 and that it supports
a federation of 15 devices. 2) Evaluate the performance of the platform compared
to the requirements of the multimedia application domain. We perform two sets
of experiments, one for each of our evaluation goals. To see that our platform
works, we look at the sent messages and how the distribution tree is formed. To
evaluate the performance of the platform we look at the timestamps of the sent
and received data segments.

We have developed a workload generator consisting of a producing and a con-
suming component sharing a 48 kB data segment, equivalent to a 100 ms buffer of
MPEG-2 encoded video. The producer makes 1000 updates to this data segment
at two different update rates, resulting in 1 Mbps and 5 Mbps throughput. All
updates are timestamped to find the total propagation delay from producer to con-
sumers. Experiments are done twice, sending data from machine A to machine B
and again from B to A in order to correct for unsynchronized clocks.

High Performance HW Low Performance HW
CPU Intel Core i7, 2.93 GHz Intel Pentium 4, 1.60 Ghz
RAM 7926 MB 495 MB
NIC 1000 Mbps 100 Mbps
OS Linux 2.6.18 x86_64 Linux 3.2.0-24 i686

Table 10.2: Hardware and software specifications for the machines used in the
experiments.

150

We use two different sets of machines, labeled High Performance HW and
Low Performance HW in Table 10.2, to find the impact of hardware on our system
performance.

In our first set of experiments we observe that our latency optimization and
replication technique works correctly. Figure 10.7 shows how three devices share
a data segment. P is the original producer and C1, C2 and C3 are consumers.
We have federated 15 devices, but leave the remaining 11 out of Figure 10.7 for
simplicity.

P

C1

C2

C3 P

C1

C2

C3 P

C1

C2

C3

Initial full mesh connections Overprovisioning in P Bandwidth constraints in P

Figure 10.7: Initial experiment setup, data propagation with available bandwidth
in P, and data propagation with limited bandwidth in P where C1 is used as repli-
cator.

When C1, C2 and C3 need a data segment and P has available bandwidth, all
three consumers receive this data segment directly from P. However, when we
repeat the experiment with a bandwidth constraint in P identical to the throughput
of sending data to one consumer, latency is affected and the distribution tree is
constructed differently.

CONSUMERS

C1 C2 C3
P 1.641 ms 39.919 ms 40.597 ms

REPLICATORS C1 4.263 ms 4.103 ms
C2 7.147 ms

Table 10.3: Latency vector for data segments as seen from three different con-
sumers, C1 – C3.

Table 10.3 shows the total producer-to-consumer latencies as observed from
the consumers when bandwidth in P is limited. C1 detects that it can only get
the data segment from P with 1.641 ms delay, and it sets P as its parent in the
distribution tree. At this point P’s bandwidth is exhausted. After this, C2 detects
that it can get the data segment from either P at 39.919 ms delay or C1 at 4.263 ms

151

delay. C2 chooses C1 to be its parent because it has the lowest delay. The same
is true for C3 which has the option to get the data from either P at 40.597 ms, C1
at 4.103 ms delay or C2 at 7.147 ms delay. C3 chooses C1 to be its parent. This
mechanism off-loads P and maintains the lowest possible delay for all consumers.

In our second set of experiments we aim to evaluate the performance of our
architecture. The application overhead is calculated using t − n = o, where t is
the total producer-to-consumer delay and n is the network delay.

The network delay is found using the ping tool and dividing the round trip
times by 2 to get the time it takes for packets to travel in one direction. 50000 byte
packets are used because it is the packet size used in our implementation. Average
delay is found using 1000 packets. The delay between High Performance HW is
1.221ms

2
= 0.6105ms, and the delay between Low Performance HW is 9.172ms

2
=

4.586ms.

High Perf. HW Low Perf. HW
1 Mbps 1.3572 ms 20.0137 ms
5 Mbps 1.4074 ms 27.6731 ms

Table 10.4: Average producer-to-consumer delay with different throughput on
different hardware.

The total producer-to-consumer delay measurements for 1 Mbps and 5 Mbps
are shown in Table 10.4, and the application overhead is shown in Table 10.5.

High Performance HW
1 Mbps 1.3572 ms - 0.6105 ms = 0.7467 ms
5 Mbps 1.4074 ms - 0.6105 ms = 0.7969 ms

Low Performance HW
1 Mbps 20.0137 ms - 4.586 ms = 15.4277 ms
5 Mbps 27.6731 ms - 4.586 ms = 23.0871 ms

Table 10.5: Application Overhead

We have seen that multi-device multimedia applications are easy to build us-
ing our API. Sharing real-time data between different application components is
possible because of our latency optimization and replication technique, and delay
and jitter can be reduced in multimedia applications. Even with Low Performance
HW our collaboration platform can distribute data within the time requirements
for multimedia applications. Without our system, popular data segments could
overload devices and make an entire application unstable. By using our platform,

152

producing components are not bounded by the number of consumers. Instead,
consumers provide additional replication and bandwidth.

10.6 Conclusions

We have designed, implemented and tested a collaboration platform for appli-
cation data sharing, optimized for low producer-to-consumer delay. Distributed
applications are easy to build using our API and application components can
share data while remaining oblivious to the underlying data propagation. Our
experiments show that it is possible to federate 15 devices which is more devices
than any of the subjects owned in [53], and more than one person uses concur-
rently. Distribution trees are built automatically based on latency where the orig-
inal producer is the root node, replicating consumers are inner nodes and pure
consumers are leaf nodes. We have demonstrated that latency increases notice-
ably when bandwidth is exhausted and that this fact can be exploited to provide
load-balancing. The producer-to-consumer delays seen in our experiments are
below 100 ms, which is the delay requirement for most multimedia applications.

The collaboration platform that we have presented is part of an ongoing re-
search project for application migration called TRAMP Real-time Application
Mobility Platform [187]. The presented system is an important part of the project,
and without a system like this, fine-grained application migration is impossible.

Our short-term goal is to re-balance distribution trees when latencies change
dramatically. Our long-term goal is to continue the pursuit of ubiquitous multime-
dia applications by allowing components to migrate between devices and change
where they execute based on context.

153

Chapter 11

P6 – Migration of Fine-grained
Multimedia Applications

Authors: Hans Vatne Hansen, Francisco Javier Velázquez-García, Vera Goebel,
Ellen Munthe-Kaas, Thomas Plagemann

Published in: Proceedings of the Posters and Demo Track, Middleware ’12

Reference in Bibliography: [96]

Abstract: In order to leverage the potential of the device diversity of users, we
aim to provide a middleware solution where parts of a multimedia applica-
tion migrate to different devices and take advantage of more processing
power and different I/O capabilities. The middleware is fully designed,
and partially implemented and evaluated. Preliminary results from location
transparent data distribution and seamless connection handover are promis-
ing with respect to throughput and latency requirements for multimedia ap-
plications.

11.1 Introduction

People own an increasing number of multimedia capable devices, such as smart
phones, laptops and media centers. These devices differ with respect to mobility,
processing power, and I/O capabilities. Current research in the area of multi-
device applications aims to reduce the needed efforts to adapt applications to dif-
ferent I/O capabilities, to allow users to run these applications on most or all of

155

their devices. While this is an important step towards user-friendliness, one in-
herent limitation that we aim to overcome is that multi-device applications are
designed to run on a single device at a time.

We aim to enable future applications to dynamically utilize the devices in the
vicinity for different tasks by running parts of the application on different de-
vices. This is especially beneficial for multimedia applications to leverage the
characteristics of different devices for the different media types. For example, an
application can display the video on the largest available screen and play the audio
on a hi-fi equipped media center, and still function as one application. Therefore,
it is necessary to additionally support migration of application parts, i.e., fine-
grained migration. In order to do this, we retake process migration research in the
context of the new (mobile) devices and multimedia requirements. In particular,
we are developing the TRAMP Real-time Application Mobility Platform which
aims to support fine-grained migration between heterogeneous devices with low
freeze time to improve Quality of Experience and minimize administration efforts
(i.e., install and configure once, and use on all devices). The three core ideas of
TRAMP are:

(1) Efficient data sharing between the application parts, both if they run on
the same device, and on different devices. The idea is to build distribution trees
based on latency where all consumers of data are potential replicators. Since the
location of execution must be transparent to the application developer, a common
abstraction and API for local and remote data sharing is provided by TRAMP.

(2) TRAMP provides mobility transparency in IP networks with a connection
handover system. This system performs socket migration based on proxy for-
warding. It enables applications in migration scenarios to interact with legacy
applications, such as Spotify and Skype.

(3) We leverage the fact that the devices belong to a single user by creating
federations of trusted devices, called device communities. These communities
minimize the configuration complexity for users and provide authentication, au-
thorization and data transfer in communities. A device can belong to several com-
munities, such as personal-devices and work-devices.

Migration has been thoroughly researched in the past [140], however, to the
best of our knowledge, no migration system for fine-grained multimedia appli-
cations exists. Existing migration systems fail to fulfill all requirements of fine-
grained multimedia applications, such as low freeze time, support for heteroge-
neous devices, support for IP mobility, and management of security and trust.

Our vision of pervasive computing is similar to Mobile Gaia [171], but Mobile

156

Gaia does not provide migration and relies on designated and manually configured
coordinators. CloneCloud [45] and MAUI [50] are fine-grained migration systems
that off-load processing from mobile devices to improve processing performance
and conserve battery. However, they do not address multimedia applications re-
quirements and their statically configured servers do not allow these applications
to benefit from the different I/O capabilities of users’ devices.

11.2 Design

Our design is based on insights from the state-of-the-art of fine-grained applica-
tions and previous process migration research. TRAMP targets multimedia ap-
plications and it uses processes as units of execution. Since migration can oc-
cur at any time, developers must be agnostic of when and where processes run.
To minimize this effort, TRAMP provides location transparent communication
mechanisms.

We have designed the TRAMP architecture with components that (1) create
device communities, (2) migrate processes, (3) perform signalling for process mi-
gration, (4) achieve transparent connection handover, (5) provide efficient data
sharing, (6) describe and discover application components within device commu-
nities, (7) implement policies, and (8) aid users in configuring devices.

(1) The community component creates trusted federations of devices. A well-
connected mesh topology is suitable for personal device communities, while DHTs
scales better for larger communities. Certificates and pre-shared keys can provide
authentication, authorization and encryption.

(2) The process migrator component provides functions to export and import
the static and dynamic state in the source node and destination node respectively.
The migrator is responsible for sending this data, killing, and resuming the mi-
grated process. To support heterogeneous devices, an abstraction layer to hide
different architectures is provided. We propose to use virtual machines, because
multimedia applications perform well on heterogeneous mobile devices with cur-
rent virtual machines, such as Android’s Dalvik VM.

(3) The signalling component provides offer/answer mechanisms for process
migration, and negotiates requirements of the migrating component. The signal-
ing protocol can be realized by reusing the Session Initiation Protocol (SIP) with
process migration semantics.

(4) The connection handover component called SOCKMAN ensures that con-

157

nections from the endpoint of a fine-grained application to legacy applications
are preserved after migration [9]. The solution uses a proxy to tunnel entire IP
packets between itself and the migrating component using UDP, preserving the
end-to-end principle.

(5) To achieve efficient data sharing, a Distributed Shared Memory (DSM)
component enables low-latency communication [95]. It provides communication
between local components at speeds equivalent to regular memory operations. In
distributed environments, the data is obtained from replicating devices using a
latency-optimized distribution tree. Components can communicate with all other
components using a location transparent, label-based lookup. This location trans-
parency allows application developers to focus on the task of the component,
rather than implementing distribution and coordination techniques.

(6) The description and discovery component advertises and registers compo-
nents that are available in device communities. It can apply existing protocols
like the Simple Service Discovery Protocol (draft-cai-ssdp-v1-03) or the Service
Location Protocol (RFC 2608).

(7) The policy component contains user preferences and enables autonomous
migration by invoking the migrator component, for example to automatically
move a component when a certain device is in the user’s vicinity. Another use
of policies is to control the availability of components to different migration com-
munities.

(8) The GUI component aids users to configure their devices, to create or join
communities and migrate their applications.

We envision a minimal required set of components to be pre-installed in users’
devices. These are the community component, the migrator and the signaler. All
other TRAMP components can migrate on demand. This simplifies upgrading,
because users only need to update a component on one device and it migrates to
all the other devices.

11.3 Status and Challenges

From the presented architecture, we have designed, implemented and evaluated
the DSM component and the connection handover component. The remaining
components are under development.

In [95] we show that our DSM system works and that it is able to provide data
sharing throughput of 1 – 5 Mbps with less than 30 ms latency. The evaluation of

158

SOCKMAN [9] shows that the average socket migration time is 0.218 ms, and that
the application is able to reach 1 Gbps of throughput. These results indicate that
the evaluated components are suitable for fine-grained multimedia applications.

Open research questions include how to adapt applications to different devices
with respect to e.g. screen size, without involving the application developer. We
aim to reuse insights from multi-device research such as [114]. Another open
question is whether thread migration is better than process migration and if it is
possible to make a virtual machine that runs only threads.

159

Part III

Appendix

161

Appendix A

Errata

In Figures 6.2 and 7.3 there is an error on the description of Path w7. Path w7

should be represented by two paths: w7, w8. Figure A.1 is the correction of Fig-
ure 6.2, which shows the graph abstraction of the multimedia pipeline in one peer
of a video conferencing application before and after adaptation. Figure A.2 is the
correction of Figure 7.3. The caption of Figure A.2 is also improved.

audiosrc

webcamsrc

networksinkmuxer

videomixer

videosinknetworksrc

splitter

audio
to text

w5, w6

w1,w2

w7,w8

w1, w5, w7

w2, w8

videomixerdemuxer

w6

audiosink
text to audio

Figure A.1: Errata of Figure 6.2. Path w7 in Figure 6.2 is detailed as w7, w8 in this
figure.

The mistake in Figure 6.2 is reflected in the text in Section 6.2.1, which reads:

In Figure 6.2, Pathw4 has adapted to Pathw6, and Pathw3 has adapted
to Pathw7. Pathsw6, andw7 convert text modality to audio, and audio
to text respectively.

The correct text should read:

163

In Figure 6.2, Pathw4 has adapted to Pathw6, and Pathw3 has adapted
to Paths w7 and w8. Path w6, converts text to audio, and Paths w7, w8

convert audio to text. Pathw7 renders the converted text to the display,
and Path w8 sends the converted text over the network.

(h)
(d)

(j)

(c)

(i)

(f)

(b)

(g)

(a)w5, w6 w6

w1,w2

w7,w8 w2, w8

w1, w5, w7

(e)

(b) (k)

(l)

(m)
(h)
(d)

(j)

(c)

(i)

(f)

(b)

(g)

(a) w4, w5 w4

w1,w2

w3 w2, w3

w1, w5

(e)
Adapt

Figure A.2: Graph abstraction of the multimedia pipeline in peer A of a video
conferencing application before and after adaptation. On the left, the pipeline con-
sumes and produces video and audio in peer A. Then, peer B for some reason can-
not process audio anymore, but can continue processing video and text. The user
of peer A prefers to interact with audio and video modalities, but no text, and his
host device contains components to convert audio to text (from his microphone)
and text to audio (from the data received from peer B). Therefore, peer A adapts
its pipeline (as shown on the right side of the figure) in a way that it converts the
modalities in components (l) and (k). As a result, the user at peer A continues
the interaction with the application with audio and video modalities, while the user
at peer B interacts with video and text modalities. The vertices in the figure repre-
sent the following components: (a) networksrc, (b) demuxer, (c) audiosink,
(d) webcamsrc, (e) splitter, (f) videomixer, (g) videosink, (h) audiosrc,
(i) muxer, (j) networksink, (k) text-to-audio, (l) audio-to-text, and (m)
text-overlay. {w}81 represent functional paths. Note that path w4 is adapted
into path w6, and path w3 is adapted into paths w7, w8.

164

Appendix B

Additional Use Cases

In this appendix, we describe a series of use cases (hypothetical scenarios) that
exemplify the goals (in Section 1.3), and requirements (in Section 2.3) of this
thesis. We foresee the behavior of the applications in these use cases as if they
were developed with the proposed Application Program Interfaces (APIs) in this
thesis.

B.1 Augmented Reality

Bob suffers of Alzheimer, therefore he carries a wearable computer with eye-
glasses that display the name of the people he encounters. Since the battery and
heat dissipation of the eyeglasses is not optimal for CPU intensive tasks such a
face recognition, the eyeglasses have only installed a light version of the middle-
ware (as specified in Section 11.2), a pipeline for capturing video from a built-in
camera, and a pipeline for rendering the overlays of recognized people. The defi-
nition of the pipeline to perform face recognition is in the eye glasses; this pipeline
is to be moved and instantiated in a device in the vicinity as the patient walks into
different environments.

Similar usages of mobile pipelines for eyeglasses with augmented reality can
be useful for people suffering of autism. With the offloading of pipelines that
use artificial intelligence algorithms, the eyeglasses can display hints on how to
behave in a certain situation. The eyeglasses here envisioned will be an evolution
from current products such as Glass from Google1 or HoloLens 2 from Microsoft2.

1https://developers.google.com/glass/
2https://www.microsoft.com/en-us/hololens/

165

https://developers.google.com/glass/
https://www.microsoft.com/en-us/hololens/

B.2 Travel Assistance

Alice is planning her journey using the travel assistance application as in [93].
She started the application on her mobile device while descending to the station
on the escalator. When she passes a kiosk computer on the train platform, she
accepts the suggestion from the application to take advantage of the kiosk’s larger
and easier to use display instead. Alice moves the video modality to the kiosk.
When Alice walks away from the kiosk, the video modality is back to her mobile
device.

B.3 Mobile Application between Fixed Devices

Bob is doing some edition in a program, e.g. coding, movie editing, or graphic
design. Then, he is asked to present his work to an audience. Bob considers the
audience will understand his work much better if he gives a demo on how he is
doing the actual work. He does not have his laptop at hand, so he moves the
application from the desktop computer in his office to the desktop computer (with
an attached projector) in the meeting room.

B.4 Video Conferencing at Home

Alice starts a video conferencing session with her mother on her desktop com-
puter at home. When Alice’s husband and children arrive at home, Alice moves
the application to the living room in the following manner. The video processing
is moved to the TV, the camera capture is moved to a dedicated wireless webcam,
the audio reproduction is moved to the living room audio system, the audio cap-
ture is moved to the microphone in the wireless webcam, and the Graphical User
Interface (GUI) of application control is moved to her mobile phone.

B.5 Video Conferencing in Transit and Modality
Change

Alice starts a video conferencing session with Bob when she is at home. The
initial configuration of the multimedia session makes Alice and Bob producers
and consumers of video and audio modalities. At home, Alice uses her desktop

166

computer. Bob communicates from a remote office with a dedicated video con-
ferencing system.

Alice has to travel to her office by train, so she moves the application to her
mobile phone. When she enters in a wagon where speaking by telephone is for-
bidden, the application changes the audio modality to text modality. That is, the
application converts the audio from Bob into text, and the text input (from a vir-
tual keyboard on display) from Alice is converted to audio at Bob’s device. When
Alice leaves the wagon, the application resumes the processing of audio modality.

167

Bibliography

[1] Mourad Alia et al. “A Component-Based Planning Framework for Adap-
tive Systems.” In: On the Move to Meaningful Internet Systems 2006:
CoopIS, DOA, GADA, and ODBASE. Berlin, Heidelberg: Springer Berlin
Heidelberg, Oct. 2006, pp. 1686–1704.

[2] Mourad Alia et al. “A Utility-Based Adaptivity Model for Mobile Appli-
cations.” In: Proc. of AINAW (2007). DOI: 10.1109/ainaw.2007.64.

[3] Mourad Alia et al. “Managing Distributed Adaptation of Mobile Applica-
tions.” In: Distributed Applications and Interoperable Systems. Springer
Berlin Heidelberg, June 2007, pp. 104–118. ISBN: 978-3-540-72881-8.
DOI: 10.1007/978-3-540-72883-2_8.

[4] Mark Allman and Aaron Falk. “On the Effective Evaluation of TCP.” In:
SIGCOMM Comput. Commun. Rev. 29.5 (1999), pp. 59–70. DOI: 10.
1145/505696.505703.

[5] B Alpern et al. “The Jikes Research Virtual Machine project: Building an
open-source research community.” In: IBM Systems Journal 44.2 (2005).
DOI: 10.1147/sj.442.0399.

[6] Sten L Amundsen and Frank Eliassen. “A resource and context model for
mobile middleware.” In: Personal and Ubiquitous Computing 12.2 (Oct.
2006).

[7] Sten Lundesgaard Amundsen and Frank Eliassen. “Combined Resource
and Context Model for QoS-Aware Mobile Middleware.” In: Architecture
of Computing Systems - ARCS 2006. Berlin, Heidelberg: Springer Berlin
Heidelberg, Mar. 2006, pp. 84–98. ISBN: 978-3-540-32765-3. DOI: 10.
1007/11682127_7.

169

https://doi.org/10.1109/ainaw.2007.64
https://doi.org/10.1007/978-3-540-72883-2_8
https://doi.org/10.1145/505696.505703
https://doi.org/10.1145/505696.505703
https://doi.org/10.1147/sj.442.0399
https://doi.org/10.1007/11682127_7
https://doi.org/10.1007/11682127_7

[8] S Amundsen et al. “QuA: platform-managed QoS for component archi-
tectures.” In: Proceedings of Norwegian Informatics Conference (NIK).
2004.

[9] Håvard Stigen Andersen. “User Space Socket Migration for Mobile Ap-
plications.” [Online http://urn.nb.no/URN:NBN:no-32922; ac-
cessed: 2018-09-09. MA thesis. Universitetet i Oslo, May 2012.

[10] Marko Andic. “Negotiation and Data Transfer for Application Mobility.”
[Online http://urn.nb.no/URN:NBN:no-48141; accessed: 2018-
09-09]. MA thesis. University of Oslo, 2015.

[11] Z Anwar et al. “Plethora: a framework for converting generic applica-
tions to run in a ubiquitous environment.” In: Mobile and Ubiquitous Sys-
tems: Networking and Services, 2005. MobiQuitous 2005. The Second An-
nual International Conference on. 2005. DOI: 10.1109/MOBIQUITOUS.
2005.47.

[12] Giorgio Ausiello et al. Complexity and Approximation. Combinatorial
Optomization Problems and Their Approximability Properties. Springer
Berlin Heidelberg, 1999. ISBN: 978-3-642-63581-6. DOI: 10.1007/978-
3-642-58412-1.

[13] Rajesh Krishna Balan and Jason Flinn. “Cyber Foraging: Fifteen Years
Later.” In: IEEE Pervasive Computing 16.3 (2017), pp. 24–30. DOI: 10.
1109/mprv.2017.2940972.

[14] Rajesh Krishna Balan et al. “Simplifying cyber foraging for mobile de-
vices.” In: MobiSys ’07: Proceedings of the 5th international conference
on Mobile systems, applications and services. ACM Request Permissions,
June 2007. DOI: 10.1145/1247660.1247692.

[15] Rajesh Balan et al. “The Case for Cyber Foraging.” In: Proceedings of
the 10th Workshop on ACM SIGOPS European Workshop. EW 10. Saint-
Emilion, France: ACM, 2002, pp. 87–92. DOI: 10 . 1145 / 1133373 .
1133390.

[16] M Baldi and Y Ofek. “End-to-end delay analysis of videoconferencing
over packet-switched networks.” In: IEEE/ACM Transactions on Net-
working 8.4 (2000), pp. 479–492. DOI: 10.1109/90.865076.

170

http://urn.nb.no/URN:NBN:no-32922
http://urn.nb.no/URN:NBN:no-48141
https://doi.org/10.1109/MOBIQUITOUS.2005.47
https://doi.org/10.1109/MOBIQUITOUS.2005.47
https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1007/978-3-642-58412-1
https://doi.org/10.1109/mprv.2017.2940972
https://doi.org/10.1109/mprv.2017.2940972
https://doi.org/10.1145/1247660.1247692
https://doi.org/10.1145/1133373.1133390
https://doi.org/10.1145/1133373.1133390
https://doi.org/10.1109/90.865076

[17] Guruduth Banavar et al. “Challenges: an application model for pervasive
computing.” In: Proceedings of the 6th annual international conference
on Mobile computing and networking - MobiCom ’00 (2000). DOI: 10.
1145/345910.345957.

[18] M Bashari, E Bagheri, and W Du. “Dynamic software product line engi-
neering: a reference framework.” In: (Feb. 2016).

[19] Mahdi Bashari, Ebrahim Bagheri, and Weichang Du. “Dynamic Soft-
ware Product Line Engineering: A Reference Framework.” In: Interna-
tional Journal of Software Engineering and Knowledge Engineering 27.2
(2017), pp. 191–234. DOI: 10.1142/S0218194017500085.

[20] P van Beek et al. “Metadata-driven multimedia access.” In: Signal Pro-
cessing Magazine, IEEE 20.2 (2003), pp. 40–52. DOI: 10.1109/MSP.
2003.1184338.

[21] Tom Beigbeder et al. “The effects of loss and latency on user perfor-
mance in unreal tournament 2003 #174.” In: Proceedings of 3rd ACM
SIGCOMM workshop on Network and system support for games. ACM,
2004, pp. 144–151. ISBN: 1-58113-942-X. DOI: 10.1145/1016540.
1016556.

[22] Nelly Bencomo et al. Models@run.time. Foundations, Applications, and
Roadmaps. Springer, July 2014. ISBN: 3319089153.

[23] John K. Bennett, John B. Carter, and Willy Zwaenepoel. “Munin: Dis-
tributed Shared Memory Based on Type-specific Memory Coherence.”
In: SIGPLAN Not. 25.3 (Feb. 1990), pp. 168–176. ISSN: 0362-1340. DOI:
10.1145/99164.99182.

[24] Massimo Bernaschi, Francesco Casadei, and Paolo Tassotti. “SockMi:
A solution for migrating TCP/IP connections.” In: Parallel, Distributed
and Network-Based Processing (PDP), 15th EUROMICRO International
Conference on. 2007, pp. 221–228.

[25] Krishna A. Bharat and Luca Cardelli. “Migratory Applications.” In: Pro-
ceedings of the 8th Annual ACM Symposium on User Interface and Soft-
ware Technology. UIST ’95. Pittsburgh, Pennsylvania, USA: ACM, 1995,
pp. 132–142. ISBN: 0-89791-709-X. DOI: 10.1145/215585.215711.

171

https://doi.org/10.1145/345910.345957
https://doi.org/10.1145/345910.345957
https://doi.org/10.1142/S0218194017500085
https://doi.org/10.1109/MSP.2003.1184338
https://doi.org/10.1109/MSP.2003.1184338
https://doi.org/10.1145/1016540.1016556
https://doi.org/10.1145/1016540.1016556
https://doi.org/10.1145/99164.99182
https://doi.org/10.1145/215585.215711

[26] Krishna Bharat and Marc H. Brown. “Building distributed, multi-user ap-
plications by direct manipulation.” In: Proceedings of the 7th annual ACM
symposium on User interface software and technology - UIST ’94 (1994).
DOI: 10.1145/192426.192454.

[27] Andrew P Black et al. “Infopipes: An abstraction for multimedia stream-
ing.” In: Multimedia Systems 8.5 (2002), pp. 406–419. DOI: 10.1007/
s005300200062.

[28] Gordon Blair and Paul Grace. “Emergent Middleware: Tackling the Inter-
operability Problem.” In: Ieee Internet Computing 16.1 (2012), pp. 78–81.
DOI: 10.1109/MIC.2012.7.

[29] R Bless et al. “The Underlay Abstraction in the Spontaneous Virtual Net-
works (SpoVNet) Architecture.” In: Next Generation Internet Networks,
2008. NGI 2008 (2008), pp. 115–122. DOI: 10.1109/NGI.2008.22.

[30] M Bonola and S Salsano. “Per-application Mobility management: Perfor-
mance evaluation of the UPMT solution.” In: Wireless Communications
and Mobile Computing Conference (IWCMC), 2011 7th International.
July 2011, pp. 2249–2255. DOI: 10.1109/IWCMC.2011.5982892.

[31] Marco Bonola, Stefano Salsano, and Andrea Polidoro. “UPMT: Universal
Per-application Mobility management using Tunnels.” In: GLOBECOM
2009 - 2009 IEEE Global Telecommunications Conference. IEEE, 2009,
pp. 1–8.

[32] Stefan Bosse. “VAMNET: the functional approach to distributed program-
ming.” In: SIGOPS Operating Systems Review 40.3 (July 2006). DOI: 10.
1145/1151374.1151376.

[33] G Bouabene, C Jelger, and C Tschudin. “The Autonomic Network Archi-
tecture (ANA).” In: Selected Areas in Communications, IEEE Journal on
(2010).

[34] Terrehon Bowden et al. The /proc filesystem. https://www.kernel.
org/doc/Documentation/filesystems/proc.txt. [Online; ac-
cessed: 2018-06-30]. June 2009.

[35] G Brataas et al. “Scalability of Decision Models for Dynamic Product
Lines.” In: SPLC (2007).

172

https://doi.org/10.1145/192426.192454
https://doi.org/10.1007/s005300200062
https://doi.org/10.1007/s005300200062
https://doi.org/10.1109/MIC.2012.7
https://doi.org/10.1109/NGI.2008.22
https://doi.org/10.1109/IWCMC.2011.5982892
https://doi.org/10.1145/1151374.1151376
https://doi.org/10.1145/1151374.1151376
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt

[36] Mark Burgess and L Kristiansen. “On the complexity of determining au-
tonomic policy constrained behaviour.” In: Network Operations and Man-
agement Symposium, 2008. NOMS 2008. IEEE (2008), pp. 295–301. DOI:
10.1109/NOMS.2008.4575147.

[37] J Bush, J Irvine, and J Dunlop. “Removing The Barriers to Ubiquitous
Services: A User Perspective.” In: Mobile and Ubiquitous Systems - Work-
shops, 2006. 3rd Annual International Conference on. IEEE, 2006, pp. 1–
5. ISBN: 0-7803-9791-6. DOI: 10.1109/MOBIQW.2006.361746.

[38] Giacomo Cabri, Letizia Leonardi, and Raffaele Quitadamo. “Enabling
Java mobile computing on the IBM Jikes research virtual machine.” In:
Proceedings of the 4th international symposium on Principles and prac-
tice of programming in Java. ACM, 2006, pp. 62–71. ISBN: 3-939352-05-
5. DOI: 10.1145/1168054.1168064.

[39] Julio Cano, Natividad Martinez Madrid, and Ralf Seepold. “OSGi services
design process using model driven architecture.” In: 2009 IEEE/ACS In-
ternational Conference on Computer Systems and Applications (2009).
DOI: 10.1109/aiccsa.2009.5069418.

[40] L Cardelli. “A language with distributed scope.” In: Proceedings of the
22nd ACM SIGPLAN-SIGACT. 1995.

[41] K Carey, K Feeney, and D Lewis. “State of the Art: Policy Techniques
for Adaptive Management of Smart Spaces.” In: State of the Art Surveys
(2003).

[42] John B. Carter, John K. Bennett, and Willy Zwaenepoel. “Implementa-
tion and Performance of Munin.” In: SIGOPS Oper. Syst. Rev. 25.5 (Sept.
1991), pp. 152–164. ISSN: 0163-5980. DOI: 10.1145/121133.121159.

[43] Soraya Ait Chellouche et al. “Context-aware multimedia services provi-
sioning in future Internet using ontology and rules.” In: Network of the Fu-
ture (NOF), 2014 International Conference and Workshop on the (2014),
pp. 1–5. DOI: 10.1109/NOF.2014.7119778.

[44] Shang-Wen Cheng. “Rainbow: Cost-effective Software Architecture-
based Self-adaptation.” PhD thesis. Pittsburgh, PA, USA: Carnegie Mel-
lon University, 2008. ISBN: 978-0-549-52525-7.

173

https://doi.org/10.1109/NOMS.2008.4575147
https://doi.org/10.1109/MOBIQW.2006.361746
https://doi.org/10.1145/1168054.1168064
https://doi.org/10.1109/aiccsa.2009.5069418
https://doi.org/10.1145/121133.121159
https://doi.org/10.1109/NOF.2014.7119778

[45] Byung-Gon Chun et al. “CloneCloud: Elastic Execution between Mo-
bile Device and Cloud.” In: the sixth conference. New York, New York,
USA: ACM Press, 2011, p. 301. ISBN: 9781450306348. DOI: 10.1145/
1966445.1966473.

[46] X.Org Community and X.Or Foundation. X Window System. https://
www.x.org/releases/X11R7.7/. Version 11. [Online; accessed:
2018-08-12]. June 2012.

[47] Antonio Corradi, Franco Zambonelli, and Letizia Leonardi. “A Scalable
Tuple Space Model for Structured Parallel Programming.” In: Proceed-
ings of the Conference on Programming Models for Massively Parallel
Computers. PMMP ’95. Washington, DC, USA: IEEE Computer Society,
1995, pp. 25–32. ISBN: 0-8186-7177-7.

[48] Cristiano Andre da Costa, Adenauer Correa Yamin, and Claudio Fernando
Resin Geyer. “Toward a General Software Infrastructure for Ubiquitous
Computing.” In: IEEE Pervasive Computing 7.1 (Jan. 2008), pp. 64–73.
ISSN: 1536-1268. DOI: 10.1109/mprv.2008.21.

[49] P. Couderc and M. Banatre. “Ambient computing applications: an experi-
ence with the SPREAD approach.” In: 36th Annual Hawaii International
Conference on System Sciences, 2003. Proceedings of the. Jan. 2003. DOI:
10.1109/HICSS.2003.1174830.

[50] Eduardo Cuervo et al. “MAUI: making smartphones last longer with code
offload.” In: Proceedings of the 8th international conference on Mobile
systems, applications, and services. ACM, 2010, pp. 49–62. ISBN: 978-1-
60558-985-5. DOI: 10.1145/1814433.1814441.

[51] Garlan David. ABLE Research Group – Channging Architecture. https:
//www.cs.cmu.edu/~able/index.html. [Online; accessed: 2018-
09-23]. 2018.

[52] Katrien De Moor et al. “Proposed Framework for Evaluating Quality of
Experience in a Mobile, Testbed-oriented Living Lab Setting.” In: Mobile
Networks and Applications 15.3 (2010), pp. 378–391. DOI: 10.1007/
s11036-010-0223-0.

[53] David Dearman and Jeffery S Pierce. “It’s on my other computer!: com-
puting with multiple devices.” In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. New York, NY, USA: ACM,

174

https://doi.org/10.1145/1966445.1966473
https://doi.org/10.1145/1966445.1966473
https://www.x.org/releases/X11R7.7/
https://www.x.org/releases/X11R7.7/
https://doi.org/10.1109/mprv.2008.21
https://doi.org/10.1109/HICSS.2003.1174830
https://doi.org/10.1145/1814433.1814441
https://www.cs.cmu.edu/~able/index.html
https://www.cs.cmu.edu/~able/index.html
https://doi.org/10.1007/s11036-010-0223-0
https://doi.org/10.1007/s11036-010-0223-0

2008, pp. 767–776. ISBN: 978-1-60558-011-1. DOI: 10.1145/1357054.
1357177.

[54] P.J. Denning et al. “Computing as a discipline.” In: Computer 22.2 (Feb.
1989), pp. 63–70. ISSN: 0018-9162. DOI: 10.1109/2.19833.

[55] A K Dey. “Providing architectural support for building context-aware ap-
plications.” PhD thesis. Georgia Institute of Technology, 2000.

[56] Anind K Dey. “Understanding and Using Context.” In: Personal and
Ubiquitous Computing 5.1 (Jan. 2001), pp. 4–7. DOI: 10 . 1007 /

s007790170019.

[57] Simon DiMaio, Mike Hanuschik, and Usha Kreaden. “The da Vinci Sur-
gical System.” In: Surgical Robotics (Nov. 2010), pp. 199–217. DOI: 10.
1007/978-1-4419-1126-1_9.

[58] Dolphin Interconnect Solutions. SuperSockets for Linux Overview.
https : / / www . dolphinics . com / download / WHITEPAPERS /

Dolphin_Express_IX_SuperSockets_for_Linux.pdf. [Online;
accessed: 2018-09-03]. Aug. 2013.

[59] Fred Douglis et al. “A Comparison of Two Distributed Systems: Amoeba
and Sprite.” In: Computing Systems. 1991.

[60] J Echaiz and J R Ardenghi. “Security in process migration systems.” In:
Journal of Computer Science & Technology (2005). Ed. by Ramiro Jordán
and Fernando Tinetti. ISSN: 1666-6038.

[61] Viktor S Wold Eide et al. “Fine granularity adaptive multireceiver video
streaming.” In: Multimedia Computing and Networking 2007 6504 (Jan.
2007), 65040O–65040O–11. DOI: 10.1117/12.709775.

[62] Heinz-Josef Eikerling and Frank Berger. “Design of OSGi Compati-
ble Middleware Components for Mobile Multimedia Applications.” In:
Protocols and Systems for Interactive Distributed Multimedia. Springer
Berlin Heidelberg, Nov. 2002, pp. 80–91. ISBN: 978-3-540-00169-0. DOI:
10.1007/3-540-36166-9_8.

[63] Frank Eliassen et al. “Evolving self-adaptive services using planning-
based reflective middleware.” In: ARM@Middleware (2006), p. 1. DOI:
10.1145/1175855.1175856.

175

https://doi.org/10.1145/1357054.1357177
https://doi.org/10.1145/1357054.1357177
https://doi.org/10.1109/2.19833
https://doi.org/10.1007/s007790170019
https://doi.org/10.1007/s007790170019
https://doi.org/10.1007/978-1-4419-1126-1_9
https://doi.org/10.1007/978-1-4419-1126-1_9
https://www.dolphinics.com/download/WHITEPAPERS/Dolphin_Express_IX_SuperSockets_for_Linux.pdf
https://www.dolphinics.com/download/WHITEPAPERS/Dolphin_Express_IX_SuperSockets_for_Linux.pdf
https://doi.org/10.1117/12.709775
https://doi.org/10.1007/3-540-36166-9_8
https://doi.org/10.1145/1175855.1175856

[64] Ernesto Exposito and Jorge Gómez-Montalvo. “An Ontology-Based
Framework for Autonomous QoS Management in Home Networks.” In:
2010 Sixth International Conference on Networking and Services (ICNS).
IEEE, 2010, pp. 117–122. ISBN: 978-1-4244-5927-8. DOI: 10.1109/
ICNS.2010.24.

[65] L. L. Fernández et al. “Kurento: a media server technology for con-
vergent WWW/mobile real-time multimedia communications support-
ing WebRTC.” In: Proc. of WoWMoM. 2013, pp. 1–6. DOI: 10.1109/
WoWMoM.2013.6583507.

[66] S J Fink, Feng Qian Code Generation, and 2003 CGO 2003 International
Symposium on Optimization. “Design, implementation and evaluation of
adaptive recompilation with on-stack replacement.” In: Code Generation
and Optimization, 2003. CGO 2003. International Symposium on (2003),
pp. 241–252. DOI: 10.1109/CGO.2003.1191549.

[67] J Floch et al. “Using architecture models for runtime adaptability.” In:
IEEE Software 23.2 (2006). DOI: 10.1109/MS.2006.61.

[68] Free and Open Source Software Development European Meeting (FOS-
DEM). [Online https://archive.fosdem.org/2018/; accessed:
2018-08-12]. Brussels, Belgium, 2018.

[69] Eric Freeman, Ken Arnold, and Susanne Hupfer. JavaSpaces Principles,
Patterns, and Practice. 1st. Addison-Wesley Longman Ltd., 1999.

[70] A. Fuggetta, G.P. Picco, and G. Vigna. “Understanding code mobility.” In:
IEEE Transactions on Software Engineering 24.5 (May 1998), pp. 342–
361. ISSN: 0098-5589. DOI: 10.1109/32.685258.

[71] D Funato, K Yasuda, and H Tokuda. “TCP-R: TCP Mobility Support for
Continuous Operation.” In: 1997 International Conference on Network
Protocols. IEEE Comput. Soc, 1997, pp. 229–236. ISBN: 0-8186-8061-X.
DOI: 10.1109/ICNP.1997.643720.

[72] D. Garlan et al. “Project Aura: toward distraction-free pervasive comput-
ing.” In: IEEE Pervasive Computing 1.2 (Apr. 2002), pp. 22–31. ISSN:
1536-1268. DOI: 10.1109/mprv.2002.1012334.

[73] D. Garlan et al. “Rainbow: Architecture-Based Self-Adaptation With
Reusable Infrastructure.” In: Computer 37.10 (2004), pp. 46–54. DOI:
10.1109/mc.2004.175.

176

https://doi.org/10.1109/ICNS.2010.24
https://doi.org/10.1109/ICNS.2010.24
https://doi.org/10.1109/WoWMoM.2013.6583507
https://doi.org/10.1109/WoWMoM.2013.6583507
https://doi.org/10.1109/CGO.2003.1191549
https://doi.org/10.1109/MS.2006.61
https://archive.fosdem.org/2018/
https://doi.org/10.1109/32.685258
https://doi.org/10.1109/ICNP.1997.643720
https://doi.org/10.1109/mprv.2002.1012334
https://doi.org/10.1109/mc.2004.175

[74] K Geihs et al. “A comprehensive solution for application-level adapta-
tion.” In: Software: Practice and Experience 39.4 (Mar. 2009), pp. 385–
422. DOI: 10.1002/spe.900.

[75] David Gelernter. “Generative communication in Linda.” In: ACM Trans.
Program. Lang. Syst. 7.1 (Jan. 1985), pp. 80–112. ISSN: 0164-0925. DOI:
10.1145/2363.2433.

[76] Vivian Genaro Motti. A computational framework for multi-dimensional
context-aware adaptation. ACM, June 2011. ISBN: 978-1-4503-0670-6.
DOI: 10.1145/1996461.1996545.

[77] Simon Giesecke, Wilhelm Hasselbring, and Matthias Riebisch. “Classify-
ing architectural constraints as a basis for software quality assessment.”
In: Advanced Engineering Informatics 21.2 (2007), pp. 169–179. ISSN:
1474-0346. DOI: 10.1016/j.aei.2006.11.002.

[78] Alejandro Martín Medrano Gil et al. “Separating the Content from the Pre-
sentation in AAL: The universAAL UI Framework and the Swing UI Han-
dler.” In: Advances in Intelligent Systems and Computing (2013), pp. 113–
120. ISSN: 2194-5365. DOI: 10.1007/978-3-319-00566-9_15.

[79] Eli Gjørven et al. “Self-adaptive systems: a middleware managed ap-
proach.” In: SelfMan’06: Proceedings of the Second IEEE international
conference on Self-Managed Networks, Systems, and Services. Springer-
Verlag, June 2006, pp. 15–27. ISBN: 978-3-540-34739-2. DOI: 10.1007/
11767886_2.

[80] Robert L. Glass. “A structure-based critique of contemporary computing
research.” In: Journal of Systems and Software 28.1 (Jan. 1995), pp. 3–7.
ISSN: 0164-1212. DOI: 10.1016/0164-1212(94)00077-z.

[81] Mark S. Gordon et al. “COMET: Code Offload by Migrating Execution
Transparently.” In: 10th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI 2012, Hollywood, CA, USA, October 8-
10, 2012. 2012, pp. 93–106.

[82] Josh Graessley, Tommy Pauly, and Eric Kinnear. “Introducing Net-
work.framework: A modern alternative to Sockets.” In: Apple Worldwide
Developers Conference (WWDC). 2018.

177

https://doi.org/10.1002/spe.900
https://doi.org/10.1145/2363.2433
https://doi.org/10.1145/1996461.1996545
https://doi.org/10.1016/j.aei.2006.11.002
https://doi.org/10.1007/978-3-319-00566-9_15
https://doi.org/10.1007/11767886_2
https://doi.org/10.1007/11767886_2
https://doi.org/10.1016/0164-1212(94)00077-z

[83] Tomas Gryczon. “Component-based multimedia application for fine-
grained migration.” Norwegian. [Online http://urn.nb.no/URN:

NBN:no-44699; accessed: 2018-09-09]. MA thesis. University of Oslo,
2014.

[84] GStreamer Autumn Hackfest. [Online https : / / wiki . gnome .

org/Hackfests/GstAutumnHackfest2016; accessed: 2018-08-12].
Berlin, Germany: GNOME, Oct. 2016.

[85] GStreamer Autumn Hackfest. [Online https : / / wiki . gnome .

org/Hackfests/GstAutumnHackfest2017; accessed: 2018-08-12].
Prague, Czech Republic: GNOME, Oct. 2017.

[86] GStreamer community. GStreamer Open Source Multimedia Framework.
https://gstreamer.freedesktop.org/. [Online; accessed: 2018-
03-29].

[87] GStreamer Open Source Multimedia Framework. GStreamer applica-
tions. 2018.

[88] GStreamer Spring Hackfest. [Online https : / / wiki . gnome .

org/Hackfests/GstHackfest2015; accessed: 2018-08-12]. Staines,
United Kingdom: GNOME, Mar. 2015.

[89] GStreamer Spring Hackfest. [Online https : / / wiki . gnome . org /

Hackfests/GstSpringHackfest2016; accessed: 2018-08-12]. Thes-
saloniki, Greece: GNOME, May 2016.

[90] GStreamer Spring Hackfest. [Online https : / / wiki . gnome . org /

Hackfests / GstSpringHackfest2017; accessed: 2018-08-12]. A
Coruña, Spain: GNOME, May 2017.

[91] GStreamer Spring Hackfest. [Online https : / / wiki . gnome . org /

Hackfests/GstSpringHackfest2018; accessed: 2018-08-12]. Lund,
Sweden: GNOME, May 2018.

[92] Tao Gu, H K Pung, and Da Qing Zhang. “A middleware for building
context-aware mobile services.” In: Vehicular Technology Conference,
2004. VTC 2004-Spring. 2004 IEEE 59th. 2004, pp. 2656–2660. DOI:
10.1109/VETECS.2004.1391402.

178

http://urn.nb.no/URN:NBN:no-44699
http://urn.nb.no/URN:NBN:no-44699
https://wiki.gnome.org/Hackfests/GstAutumnHackfest2016
https://wiki.gnome.org/Hackfests/GstAutumnHackfest2016
https://wiki.gnome.org/Hackfests/GstAutumnHackfest2017
https://wiki.gnome.org/Hackfests/GstAutumnHackfest2017
https://gstreamer.freedesktop.org/
https://wiki.gnome.org/Hackfests/GstHackfest2015
https://wiki.gnome.org/Hackfests/GstHackfest2015
https://wiki.gnome.org/Hackfests/GstSpringHackfest2016
https://wiki.gnome.org/Hackfests/GstSpringHackfest2016
https://wiki.gnome.org/Hackfests/GstSpringHackfest2017
https://wiki.gnome.org/Hackfests/GstSpringHackfest2017
https://wiki.gnome.org/Hackfests/GstSpringHackfest2018
https://wiki.gnome.org/Hackfests/GstSpringHackfest2018
https://doi.org/10.1109/VETECS.2004.1391402

[93] S. Hallsteinsen et al. “A development framework and methodology for
self-adapting applications in ubiquitous computing environments.” In:
Journal of Systems and Software 85.12 (2012), pp. 2840–2859. ISSN:
0164-1212. DOI: 10.1016/j.jss.2012.07.052.

[94] Hans Vatne Hansen, Vera Goebel, and Thomas Plagemann. “DevCom:
Device communities for user-friendly and trustworthy communication,
sharing, and collaboration.” In: Computer Communications 85 (July
2016), pp. 14–27. DOI: 10.1016/j.comcom.2016.02.001.

[95] Hans Vatne Hansen et al. “Efficient Data Sharing for Multi-device Mul-
timedia Applications.” In: Proceedings of the Workshop on Multi-device
App Middleware. Ed. by Christian Fuhrhop, Stephan Steglich, and Ajit
Jaokar. Multi-Device ’12. Montreal, Quebec, Canada: ACM, 2012, 2:1–
2:6. ISBN: 978-1-4503-1617-0. DOI: 10.1145/2405172.2405174.

[96] Hans Vatne Hansen et al. “Migration of Fine-grained Multimedia Appli-
cations.” In: Proceedings of the Posters and Demo Track. Ed. by Eric
Wohlstadter. Middleware ’12. Montreal, Quebec, Canada: ACM, Dec.
2012, 12:1–12:2. ISBN: 978-1-4503-1612-5. DOI: 10.1145/2405153.
2405165.

[97] Tobias Hoßfeld et al. “Quantification of YouTube QoE via Crowdsourc-
ing.” In: Proc. of ISM (Dec. 2011), pp. 494–499. DOI: 10.1109/ISM.
2011.87.

[98] Denis Howe, ed. The Free On-line Dictionary of Computing. http://
foldoc.org/. [Online; accessed: 2018-09-16]. 2018.

[99] Wang Huan et al. “A Mechanism Based on Netfilter for Live TCP Migra-
tion in Cluster.” In: Grid and Cooperative Computing (GCC), 9th Inter-
national Conference on. 2010, pp. 218–222.

[100] Markus C Huebscher and Julie A McCann. “A survey of autonomic com-
puting—degrees, models, and applications.” In: Computing Surveys 40.3
(2008), pp. 7–28. DOI: 10.1145/1380584.1380585.

[101] Hulu. System Requirements. http : / / www . hulu . com / support /
article/166380. [Online; accessed: 19-Aug-2017]. Feb. 2013.

[102] IBM Corporation. Autonomic Computing Toolkit – Developer’s Guide.
https://www.ibm.com/developerworks/autonomic/books/

fpy0mst.htm. [Online; accessed: 2018-09-23]. Aug. 2004.

179

https://doi.org/10.1016/j.jss.2012.07.052
https://doi.org/10.1016/j.comcom.2016.02.001
https://doi.org/10.1145/2405172.2405174
https://doi.org/10.1145/2405153.2405165
https://doi.org/10.1145/2405153.2405165
https://doi.org/10.1109/ISM.2011.87
https://doi.org/10.1109/ISM.2011.87
http://foldoc.org/
http://foldoc.org/
https://doi.org/10.1145/1380584.1380585
http://www.hulu.com/support/article/166380
http://www.hulu.com/support/article/166380
https://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm
https://www.ibm.com/developerworks/autonomic/books/fpy0mst.htm

[103] IBM Corporation. Autononmic Computing Toolkit – Problem Deter-
mination Log/Trace Scenario Guide. https : / / www . ibm . com /

developerworks/autonomic/books/fpv1scn.htm. [Online; ac-
cessed: 2018-09-23]. Aug. 2004.

[104] Selim Ickin et al. “Factors influencing quality of experience of com-
monly used mobile applications.” In: Communications Magazine, IEEE
50.4 (2012), pp. 48–56. DOI: 10.1109/MCOM.2012.6178833.

[105] ITU. ITU-T Recommendation G.114. Tech. rep. International Telecommu-
nication Union, 2003.

[106] Ramesh Jain. “Multimedia information retrieval: watershed events.” In:
MIR ’08: Proceedings of the 1st ACM international conference on Multi-
media information retrieval. ACM, Oct. 2008. DOI: 10.1145/1460096.
1460135.

[107] Ramesh Jain and Pinaki Sinha. “Content without context is meaning-
less.” In: Proceedings of the international conference on Multimedia.
ACM, 2010, pp. 1259–1268. ISBN: 978-1-60558-933-6. DOI: 10.1145/
1873951.1874199.

[108] D Jannach et al. “A knowledge-based framework for multimedia adapta-
tion.” In: Applied Intelligence 24.2 (Apr. 2006), pp. 109–125. DOI: 10.
1007/s10489-006-6933-0.

[109] Eric Jul et al. “Fine-grained mobility in the Emerald system.” In: ACM
Transactions on Computer Systems 6.1 (Feb. 1988), pp. 109–133. DOI:
10.1145/35037.42182.

[110] Swaroop Kalasapur, Mohan Kumar, and Behrooz Shirazi. “Personalized
Service Composition for Ubiquitous Multimedia Delivery.” In: Proceed-
ings of the Sixth IEEE International Symposium on a World of Wireless
Mobile and Multimedia Networks (WoWMoM’05) (2005), pp. 1–6.

[111] Goran Karabeg. “Adaptation trigger mechanism.” [Online http://urn.
nb.no/URN:NBN:no-45558; accessed: 2018-09-09. MA thesis. Univer-
sity of Oslo, June 2014.

[112] Richard M. Karp. “Reducibility Among Combinatorial Problems.” In: 50
Years of Integer Programming 1958-2008 (Nov. 2009), pp. 219–241. DOI:
10.1007/978-3-540-68279-0_8.

180

https://www.ibm.com/developerworks/autonomic/books/fpv1scn.htm
https://www.ibm.com/developerworks/autonomic/books/fpv1scn.htm
https://doi.org/10.1109/MCOM.2012.6178833
https://doi.org/10.1145/1460096.1460135
https://doi.org/10.1145/1460096.1460135
https://doi.org/10.1145/1873951.1874199
https://doi.org/10.1145/1873951.1874199
https://doi.org/10.1007/s10489-006-6933-0
https://doi.org/10.1007/s10489-006-6933-0
https://doi.org/10.1145/35037.42182
http://urn.nb.no/URN:NBN:no-45558
http://urn.nb.no/URN:NBN:no-45558
https://doi.org/10.1007/978-3-540-68279-0_8

[113] J.O. Kephart and D.M. Chess. “The vision of autonomic computing.” In:
Computer 36.1 (2003), pp. 41–50. ISSN: 0018-9162. DOI: 10.1109/mc.
2003.1160055.

[114] R. Kernchen et al. “Intelligent Multimedia Presentation in Ubiquitous
Multidevice Scenarios.” In: MultiMedia, IEEE (2010).

[115] Michael Kerrisk. shm_overview(7) - overview of the POSIX shared mem-
ory. http://man7.org/linux/man-pages/man7/shm_overview.
7.html. [Online; accessed: 2018-06-30]. Dec. 2016.

[116] George Kiagiadakis. ipcpipeline: Splitting a GStreamer pipeline into mul-
tiple processes. https://www.collabora.com/news-and-blog/
blog/2017/11/17/ipcpipeline- splitting- a- gstreamer-

pipeline - into - multiple - processes/. [Online; accessed on:
2018-09-30]. Nov. 2017.

[117] Bryan Knutz and Karthik Rajan. “MIGSOCK: Migratable TCP Socket in
Linux.” MA thesis. Carnegie Mellon University. Information Networking
Institute, 2002.

[118] Bernhard Korte and Jens Vygen. Combinatorial Optimization. Theory
and Algorithms. Springer Science & Business Media, Jan. 2012. ISBN:
3642244882.

[119] Rainer Koster et al. “Infopipes for Composing Distributed Information
Flows.” In: Proc. of M3W. Ottawa, Ontario, Canada, 2001, pp. 44–47.
ISBN: 1-58113-396-0. DOI: 10.1145/985135.985150.

[120] M Kumar et al. “PICO: a middleware framework for pervasive comput-
ing.” In: Pervasive Computing, IEEE 2.3 (2003), pp. 72–79. DOI: 10.
1109/MPRV.2003.1228529.

[121] J Lachner et al. “Challenges Toward User-Centric Multimedia.” In:
Semantic Media Adaptation and Personalization, Second International
Workshop on (2007), pp. 159–164. DOI: 10.1109/SMAP.2007.35.

[122] Oussama Layaida and Daniel Hagimont. “Designing Self-adaptive Multi-
media Applications Through Hierarchical Reconfiguration.” In: Proc. of
Distributed Applications and Interoperable Systems (DAIS). 2005, pp. 95–
107. ISBN: 978-3-540-31582-7. DOI: 10.1007/11498094_9.

181

https://doi.org/10.1109/mc.2003.1160055
https://doi.org/10.1109/mc.2003.1160055
http://man7.org/linux/man-pages/man7/shm_overview.7.html
http://man7.org/linux/man-pages/man7/shm_overview.7.html
https://www.collabora.com/news-and-blog/blog/2017/11/17/ipcpipeline-splitting-a-gstreamer-pipeline-into-multiple-processes/
https://www.collabora.com/news-and-blog/blog/2017/11/17/ipcpipeline-splitting-a-gstreamer-pipeline-into-multiple-processes/
https://www.collabora.com/news-and-blog/blog/2017/11/17/ipcpipeline-splitting-a-gstreamer-pipeline-into-multiple-processes/
https://doi.org/10.1145/985135.985150
https://doi.org/10.1109/MPRV.2003.1228529
https://doi.org/10.1109/MPRV.2003.1228529
https://doi.org/10.1109/SMAP.2007.35
https://doi.org/10.1007/11498094_9

[123] Yong-Ju Lee et al. UMOST : Ubiquitous Multimedia Framework for
Context-Aware Session Mobility. IEEE, 2008. ISBN: 978-0-7695-3134-2.
DOI: 10.1109/MUE.2008.120.

[124] Tobin J. Lehman et al. “Hitting the distributed computing sweet spot with
TSpaces.” In: Comput. Netw. 35.4 (Mar. 2001), pp. 457–472.

[125] Klaus Leopold, Dietmar Jannach, and Hermann Hellwagner. “A Knowl-
edge and Component Based Multimedia Adaptation Framework.” In: Pro-
ceedings of the IEEE Sixth International Symposium on Multimedia Soft-
ware Engineering. IEEE Computer Society, 2004, pp. 10–17. ISBN: 0-
7695-2217-3.

[126] Anany Levitin. Introduction to the Design and Analysis of Algorithms.
ISBN 9780132316811. Pearson Education, Dec. 2011, pp. 172–174.
ISBN: 9780132316811.

[127] Chi-Yu Li et al. “A multimedia service migration protocol for single user
multiple devices.” In: Communications (ICC), 2012 IEEE International
Conference on. June 2012, pp. 1923–1927. DOI: 10.1109/ICC.2012.
6363673.

[128] K. Li. “Shared virtual memory on loosely coupled multiprocessors.” PhD
thesis. Yale University, Jan. 1986.

[129] Kai Li and Paul Hudak. “Memory Coherence in Shared Virtual Memory
Systems.” In: ACM Trans. Comput. Syst. 7.4 (Nov. 1989), pp. 321–359.
ISSN: 0734-2071. DOI: 10.1145/75104.75105.

[130] Ning Li et al. Device and service descriptions for ontology-based ubiq-
uitous multimedia services. ACM, Nov. 2008. ISBN: 978-1-60558-269-6.
DOI: 10.1145/1497185.1497265.

[131] Sten A Lundesgaard, Ketil Lund, and Frank Eliassen. “Utilising Alter-
native Application Configurations in Context- and QoS-Aware Mobile
Middleware.” In: Distributed Applications and Interoperable Systems.
Springer Berlin Heidelberg, June 2006, pp. 228–241. ISBN: 978-3-540-
35126-9. DOI: 10.1007/11773887_18.

[132] Leszek. Maciaszek. Requirements analysis and system design / Leszek A.
Maciaszek. English. 3rd ed. Addison-Wesley Harlow, 2007, xxxvii, 612
p. : ISBN: 9780321440365.

182

https://doi.org/10.1109/MUE.2008.120
https://doi.org/10.1109/ICC.2012.6363673
https://doi.org/10.1109/ICC.2012.6363673
https://doi.org/10.1145/75104.75105
https://doi.org/10.1145/1497185.1497265
https://doi.org/10.1007/11773887_18

[133] Andrew Makhorin. CNF Satisfiability Problem. Linux package glpk-doc.
Aug. 2011.

[134] Andrew Makhorin. GNU Linear Programming Kit – Graph and Network
Routines. Linux package glpk-doc. Mar. 2016.

[135] Andrew Makhorin. GNU Linear Programming Kit – Reference Manual
for GLPK version 4.64. Linux package glpk-doc. Draft. Nov. 2017.

[136] Andrew Makhorin. Modeling Language GNU MathProg – Language Ref-
erence for GLPK version 4.58. Linux package glpk-doc. Draft. Feb. 2016.

[137] D A Maltz and P Bhagwat. “MSOCKS: an architecture for transport layer
mobility.” In: INFOCOM ’98. Seventeenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings. IEEE. Mar.
1998, 1037–1045 vol.3. DOI: 10.1109/INFCOM.1998.662913.

[138] J Manner and M Kojo. RFC 3753 - Mobility Related Terminology. Tech.
rep. Network Working Group, June 2004.

[139] MIDDLEWARE ’12: Proceedings of the 9th Middleware Doctoral Sym-
posium of the 13th ACM/IFIP/USENIX International Middleware Confer-
ence. Montreal, Quebec, Canada: ACM, 2012. ISBN: 978-1-4503-1611-8.

[140] Dejan S Milojičić et al. “Process migration.” In: ACM Computing Surveys
32.3 (2000), pp. 241–299. DOI: 10.1145/367701.367728.

[141] Netflix. Internet Connection Speed Recommendations. https://help.
netflix.com/en/node/306. [Online; accessed: 2018-08-18]. 2013.

[142] Binh Nguyen. Linux Filesystem Hierarchy. http : / / tldp . org /

guides.html. Version 0.65. [Online; accessed: 2018-06-30]. July 2004.

[143] Eila Niemel a and Juhani Latvakoski. “Survey of requirements and so-
lutions for ubiquitous software.” In: Proceedings of the 3rd international
conference on Mobile and ubiquitous multimedia. ACM, 2004, pp. 71–78.
ISBN: 1-58113-981-0. DOI: 10.1145/1052380.1052391.

[144] Hyeong-Seok Oh et al. “Evaluation of Android Dalvik virtual machine.”
In: Proceedings of the 10th International Workshop on Java Technologies
for Real-time and Embedded Systems - JTRES ’12 (2012). DOI: 10.1145/
2388936.2388956.

183

https://doi.org/10.1109/INFCOM.1998.662913
https://doi.org/10.1145/367701.367728
https://help.netflix.com/en/node/306
https://help.netflix.com/en/node/306
http://tldp.org/guides.html
http://tldp.org/guides.html
https://doi.org/10.1145/1052380.1052391
https://doi.org/10.1145/2388936.2388956
https://doi.org/10.1145/2388936.2388956

[145] Brian Oki et al. “The Information Bus: An Architecture for Extensible
Distributed Systems.” In: Proceedings of the Fourteenth ACM Symposium
on Operating Systems Principles. SOSP ’93. Asheville, North Carolina,
USA: ACM, 1993, pp. 58–68. ISBN: 0-89791-632-8. DOI: 10.1145/
168619.168624.

[146] Manuel Ortega-Moral, Ignacio Peinado, and Gregg C Vanderheiden.
“Cloud4all: Scope, Evolution and Challenges.” In: Universal Access in
Human-Computer Interaction. Design for All and Accessibility Practice.
Springer International Publishing, June 2014, pp. 421–430. ISBN: 978-3-
319-07508-2. DOI: 10.1007/978-3-319-07509-9_40.

[147] Steven Osman et al. “The design and implementation of Zap: a system for
migrating computing environments.” In: SIGOPS Oper. Syst. Rev. 36.SI
(2002), pp. 361–376. DOI: 10.1145/844128.844162.

[148] Shumao Ou, Kun Yang, and Jie Zhang. “An effective offloading middle-
ware for pervasive services on mobile devices.” In: Pervasive Mob. Com-
put. 3.4 (2007), pp. 362–385. DOI: 10.1016/j.pmcj.2007.04.004.

[149] P Pantazopoulos, M Karaliopoulos, and I Teletraffic Congress ITC 2011
23rd International Stavrakakis. “Centrality-driven scalable service migra-
tion.” In: Teletraffic Congress (ITC), 2011 23rd International (2011).

[150] Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial Optimiza-
tion: Algorithms and Complexity. Prentice-Hall, Inc., 1982. ISBN: 0-13-
152462-3.

[151] Vangelis Th Paschos. Paradigms of Combinatorial Optimization. Prob-
lems and New Approaches. John Wiley & Sons, Feb. 2013. ISBN:
1118600274.

[152] Vangelis Th. Paschos. Concepts of Combinatorial Optimization. John Wi-
ley & Sons, Dec. 2012. ISBN: 1118600231.

[153] Nearchos Paspallis and George A Papadopoulos. “A pluggable middle-
ware architecture for developing context-aware mobile applications.” In:
Personal and Ubiquitous Computing 18.5 (June 2014), pp. 1099–1116.
DOI: 10.1007/s00779-013-0722-7.

[154] Havoc Pennington et al. D-Bus Specification. https : / / dbus .

freedesktop.org/doc/dbus-specification.html. [Online; ac-
cessed: 2018-06-30]. Mar. 2018.

184

https://doi.org/10.1145/168619.168624
https://doi.org/10.1145/168619.168624
https://doi.org/10.1007/978-3-319-07509-9_40
https://doi.org/10.1145/844128.844162
https://doi.org/10.1016/j.pmcj.2007.04.004
https://doi.org/10.1007/s00779-013-0722-7
https://dbus.freedesktop.org/doc/dbus-specification.html
https://dbus.freedesktop.org/doc/dbus-specification.html

[155] F Pereira and I Burnett. “Universal multimedia experiences for tomor-
row.” In: Signal Processing Magazine, IEEE 20.2 (2003), pp. 63–73. DOI:
10.1109/MSP.2003.1184340.

[156] Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. “LIME:
Linda Meets Mobility.” In: Proceedings of the 21st International Confer-
ence on Software Engineering. ICSE ’99. Los Angeles, California, USA:
ACM, May 1999, pp. 368–377. ISBN: 1-58113-074-0. DOI: 10.1145/
302405.302659.

[157] Raffaele Quitadamo. “The Issue of Strong Mobility: an Innovative Ap-
proach based on the IBM Jikes Research Virtual Machine.” PhD thesis.
University of Modena and Reggio Emilia, Apr. 2008.

[158] Raffaele Quitadamo, Giacomo Cabri, and Letizia Leonardi. “Mobile
JikesRVM: A framework to support transparent Java thread migration.”
In: Sci. Comput. Program. 70.2-3 (2008), pp. 221–240. DOI: 10.1016/
j.scico.2007.07.009.

[159] Raffaele Quitadamo et al. “The PIM: an innovative robot coordination
model based on Java thread migration.” In: Proceedings of the 6th in-
ternational symposium on Principles and practice of programming in
Java. ACM, 2008, pp. 43–51. ISBN: 978-1-60558-223-8. DOI: 10.1145/
1411732.1411739.

[160] Tim Rahrer, Riccardo Fiandra, and Steven Wright. Triple-play Services
Quality of Experience (QoE) Requirements. Tech. rep. TR-126. DSL Fo-
rum, Dec. 2006.

[161] Haakon Wilhelm Ravik. “A Real-Time Video Retargeting Plugin for
GStreamer.” [Online http://urn.nb.no/URN:NBN:no-56335; ac-
cessed: 2018-09-09]. MA thesis. Oslo, Norway: University of Oslo, Sept.
2016.

[162] D Romero. “Context-aware middleware: An overview.” In: Paradigma
(2008).

[163] Romain Rouvoy et al. “MUSIC: an autonomous platform supporting self-
adaptive mobile applications.” In: MobMid ’08: Proceedings of the 1st
workshop on Mobile middleware: embracing the personal communication
device. ACM, Dec. 2008.

185

https://doi.org/10.1109/MSP.2003.1184340
https://doi.org/10.1145/302405.302659
https://doi.org/10.1145/302405.302659
https://doi.org/10.1016/j.scico.2007.07.009
https://doi.org/10.1016/j.scico.2007.07.009
https://doi.org/10.1145/1411732.1411739
https://doi.org/10.1145/1411732.1411739
http://urn.nb.no/URN:NBN:no-56335

[164] Giovanni Russello, Michel Chaudron, and Maarten van Steen. GSpace :
Tailorable Data Distribution in Shared Data Space Systems. Tech. rep.
Technische Universiteit Eindhoven, 2004.

[165] J H Saltzer, D P Reed, and D D Clark. “End-to-end arguments in system
design.” In: ACM Transactions on Computer Systems 2.4 (1984), pp. 277–
288. DOI: 10.1145/357401.357402.

[166] M. Satyanarayanan. “Pervasive computing: vision and challenges.” In:
IEEE Personal Communications 8.4 (2001), pp. 10–17. ISSN: 1070-9916.
DOI: 10.1109/98.943998.

[167] Mihaela van der Schaar and Philip A Chou. Multimedia over IP and Wire-
less Networks. Compression, Networking, and Systems. Academic Press,
July 2011. ISBN: 9780080474960.

[168] Ulrich Scholz and Stephan Mehlhase. “Co-ordinated Utility-Based Adap-
tation of Multiple Applications on Resource-Constrained Mobile De-
vices.” In: Proc. of DAIS. Ed. by Frank Eliassen and Rüdiger Kapitza.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 198–211. ISBN:
978-3-642-13645-0. DOI: 10.1007/978-3-642-13645-0_15.

[169] Merat Shahidi, Ning Li, and A Hamid Aghvami. “Selection algorithm for
multimedia adaptation mechanisms in ubiquitous service environments.”
In: iiWAS ’10: Proceedings of the 12th International Conference on Infor-
mation Integration and Web-based Applications & Services. 2010.

[170] Merat Shahidi, Nika Naghavi, and A. Hamid Aghvami. “Content adaptor
selection models in Adaptation Management Framework.” In: 2011 18th
International Conference on Telecommunications (May 2011). DOI: 10.
1109/cts.2011.5898971.

[171] Jalal Al-Muhtadi Shiva Chetan. “Mobile Gaia: A Middleware for Ad-hoc
Pervasive Computing.” In: Consumer Communications and Networking
Conference. IEEE, 2005, pp. 223–228. ISBN: 0-7803-8784-8. DOI: 10.
1109/CCNC.2005.1405173.

[172] J. Siegel. CORBA 3 fundamentals and programming. Wiley computer pub-
lishing. John Wiley & Sons, 2000. ISBN: 9780471295181.

186

https://doi.org/10.1145/357401.357402
https://doi.org/10.1109/98.943998
https://doi.org/10.1007/978-3-642-13645-0_15
https://doi.org/10.1109/cts.2011.5898971
https://doi.org/10.1109/cts.2011.5898971
https://doi.org/10.1109/CCNC.2005.1405173
https://doi.org/10.1109/CCNC.2005.1405173

[173] José Simão, Tiago Garrochinho, and Luís Veiga. “A checkpointing-
enabled and resource-aware Java Virtual Machine for efficient and ro-
bust e-Science applications in grid environments.” In: Concurrency and
computation: Practice and experience 24.13 (2012), pp. 1421–1442. DOI:
10.1002/cpe.1879.

[174] Skype. How much bandwidth does Skype need? https://support.

skype . com / en / faq / FA1417 / how - much - bandwidth - does -

skype-need. [Online; accessed on: 2018-08-18].

[175] Peter Smith and Norman C. Hutchinson. “Heterogeneous process migra-
tion: the Tui system.” In: Software: Practice and Experience 28.6 (May
1998), pp. 611–639. ISSN: 1097-024X.

[176] Jo a o Pedro Sousa and David Garlan. “Aura: an Architectural Frame-
work for User Mobility in Ubiquitous Computing Environments.” In: Pro-
ceedings of the IFIP 17th World Computer Congress - TC2 Stream / 3rd
IEEE/IFIP Conference on Software Architecture: System Design, Devel-
opment and Maintenance. Deventer, The Netherlands, The Netherlands:
Kluwer, B.V., 2002, pp. 29–43. ISBN: 1-4020-7176-0.

[177] R. Steinmetz. “Human perception of jitter and media synchronization.”
In: IEEE Journal on Selected Areas in Communications 14.1 (Jan. 1996),
pp. 61–72. DOI: 10.1109/49.481694.

[178] Peter Norvig Stuart Russell. Artificial Intelligence. A Modern Approach
[Global Edition]. 3rd. Pearson, 2010. ISBN: 9781292153964.

[179] F Sultan et al. “Migratory TCP: Connection Migration for Service Conti-
nuity in the Internet.” In: 22nd International Conference on Distributed
Computing Systems. IEEE Comput. Soc, 2002, pp. 469–470. ISBN: 0-
7695-1585-1. DOI: 10.1109/ICDCS.2002.1022294.

[180] A S Tanenbaum. Distributed Operating Systems. Prentice-Hall interna-
tional editions. Prentice Hall, 1995. ISBN: 9780131439344.

[181] Andrew S. Tanenbaum and Herbert Bos. Modern operating systems. Pear-
son Prentice-Hall, 2015. ISBN: [9780133591620].

[182] The Austing Group. “IEEE Standard for Information Technology -
Portable Operating System Interface (POSIX(R)).” In: IEEE Std 1003.1,
2004 Edition The Open Group Technical Standard. Base Specifications,
Issue 6. Includes IEEE Std 1003.1-2001, IEEE Std 1003.1-2001/Cor 1-

187

https://doi.org/10.1002/cpe.1879
https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need
https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need
https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need
https://doi.org/10.1109/49.481694
https://doi.org/10.1109/ICDCS.2002.1022294

2002 and IEEE Std 1003.1-2001/Cor 2-2004. Shell (Dec. 2008), pp. 1–
3874. DOI: 10.1109/IEEESTD.2008.7394902.

[183] The GNOME Project. GIO Reference Manual for GIO 2.56.1. https://
developer.gnome.org/gio/2.56/ch01.html. [Online; accessed:
2018-06-30]. 2016.

[184] The GNOME Project. GLib Reference Manual for GLib 2.56.1. https:
//developer.gnome.org/glib/2.56/glib.html. [Online; ac-
cessed: 2018-06-30]. 2018.

[185] The Jargon File 4.4.7. http://www.catb.org/jargon/html/. Ver-
sion 4.4.7. [Online; accessed: 2018-04-26]. Dec. 2003.

[186] Three Minute Thesis (3MT) competition of the IEEE International Con-
ference on Multimedia and Expo (ICME). [Online http : / / www .

icme2018.org/student_participation; accessed: 2018-08-12].
San Diego, California, USA: IEEE, 2018.

[187] TRAMP Project. TRAMP Real-time Application Mobility Platform. World
Wide Web. http://tramp-project.org/. Aug. 2012.

[188] Gareth Tyson et al. “Juno: A Middleware Platform for Supporting
Delivery-Centric Application.” In: ACM Transactions on Internet Tech-
nology V (Jan. 2012).

[189] Justin Uberti and Peter Thatcher. WEB Real Time Communication (WWW,
W3c), "WebRTC". https://webrtc.org/. [Online; accessed: 2018-08-
12]. May 2017.

[190] Francisco Javier Velazquez-Garcia. “DAMPAT: Dynamic Adaptation of
Multimedia Presentations in Application Mobility.” In: GStreamer Con-
ference. [Online https : / / gstreamer . freedesktop . org /

conference / 2017; accessed: 2018-08-12]. Prague, Czech Republic,
Oct. 2017.

[191] Francisco Javier Velázquez-García and Frank Eliassen. “DAMPAT: Dy-
namic Adaptation of Multimedia Presentations in Application Mobility.”
In: Proc. of International Symposion on Multimedia (ISM). Dec. 2017,
pp. 312–317. DOI: 10.1109/ISM.2017.56.

188

https://doi.org/10.1109/IEEESTD.2008.7394902
https://developer.gnome.org/gio/2.56/ch01.html
https://developer.gnome.org/gio/2.56/ch01.html
https://developer.gnome.org/glib/2.56/glib.html
https://developer.gnome.org/glib/2.56/glib.html
http://www.catb.org/jargon/html/
http://www.icme2018.org/student_participation
http://www.icme2018.org/student_participation
https://webrtc.org/
https://gstreamer.freedesktop.org/conference/2017
https://gstreamer.freedesktop.org/conference/2017
https://doi.org/10.1109/ISM.2017.56

[192] Francisco Javier Velázquez-García et al. “Autonomic Adaptation of Mul-
timedia Content Adhering to Application Mobility.” In: Distributed Ap-
plications and Interoperable Systems. Ed. by Silvia Bonomi and Etienne
Rivière. Madrid, Spain: Springer International Publishing, 2018, pp. 153–
168. ISBN: 978-3-319-93767-0. DOI: 10.1007/978-3-319-93767-
0_11.

[193] Francisco Javier Velázquez-García et al. “Dynamic Adaptation of Multi-
media Presentations for Videoconferencing in Application Mobility.” In:
International Conference on Multimedia and Expo (ICME). San Diego,
California, USA, July 2018. DOI: 10.1109/ICME.2018.8486565.

[194] Francisco Javier Velázquez-García et al. “SOCKMAN: Socket Migration
for Multimedia Applications.” In: The 12th International Conference on
Telecommunications (ConTEL). Ed. by K. Pripužić and M. Banek. Zagreb,
Croatia, June 2013, pp. 115–122. ISBN: 978-953-184-180-1.

[195] S. Vinoski. “CORBA: integrating diverse applications within distributed
heterogeneous environments.” In: IEEE Communications Magazine 35.2
(1997), pp. 46–55. ISSN: 0163-6804. DOI: 10.1109/35.565655.

[196] Marc Weiser. “The computer for the 21st Century.” In: IEEE Pervasive
Computing 99.1 (Sept. 1991), pp. 19–25. DOI: 10.1109/MPRV.2002.
993141.

[197] Marc Weiser, R Gold, and J S Brown. “The origins of ubiquitous comput-
ing research at PARC in the late 1980s.” In: IBM Systems Journal 38.4
(1999), pp. 693–696. DOI: 10.1147/sj.384.0693.

[198] Mark Weiser and John Seely Brown. “The Coming Age of Calm Technol-
ogy.” In: Beyond Calculation (1997), pp. 75–85. DOI: 10.1007/978-1-
4612-0685-9_6.

[199] Haakon Wilhelm Ravik and Francisco Javier Velazquez-Garcia. “Gst-
SeamCrop Real-time video retargeting in Nvidia GPU.” In: GStreamer
Conference. [Online https : / / gstreamer . freedesktop . org /

conference/2016; accessed: 2018-08-12]. Berlin, Germany, Oct. 2016.

[200] Christian Wimmer et al. “Maxine: An approachable virtual machine for,
and in, java.” In: Transactions on Architecture and Code Optimization
(TACO) 9.4 (Jan. 2013). DOI: 10.1145/2400682.2400689.

189

https://doi.org/10.1007/978-3-319-93767-0_11
https://doi.org/10.1007/978-3-319-93767-0_11
https://doi.org/10.1109/ICME.2018.8486565
https://doi.org/10.1109/35.565655
https://doi.org/10.1109/MPRV.2002.993141
https://doi.org/10.1109/MPRV.2002.993141
https://doi.org/10.1147/sj.384.0693
https://doi.org/10.1007/978-1-4612-0685-9_6
https://doi.org/10.1007/978-1-4612-0685-9_6
https://gstreamer.freedesktop.org/conference/2016
https://gstreamer.freedesktop.org/conference/2016
https://doi.org/10.1145/2400682.2400689

[201] Min Xu, Jesse S Jin, and Suhuai Luo. Personalized video adaptation based
on video content analysis. ACM, Aug. 2008. ISBN: 978-1-60558-261-0.
DOI: 10.1145/1509212.1509216.

[202] S.S. Yau et al. “Reconfigurable context-sensitive middleware for pervasive
computing.” In: IEEE Pervasive Computing 1.3 (July 2002), pp. 33–40.
ISSN: 1536-1268. DOI: 10.1109/mprv.2002.1037720.

[203] Taewan You and Seungyun Lee. “The Framework for Mobility and Mul-
tihoming Using Overlay Network.” In: 8th International Conference on
Advanced Communication Technology. IEEE, pp. 1803–1806. ISBN: 89-
5519-129-4. DOI: 10.1109/ICACT.2006.206340.

[204] Ping Yu et al. “Application mobility in pervasive computing: A survey.”
In: Pervasive and Mobile Computing 9.1 (2013), pp. 2–17. ISSN: 1574-
1192. DOI: 10.1016/j.pmcj.2012.07.009.

[205] Zhiwen Yu et al. “An OSGi-based infrastructure for context-aware mul-
timedia services.” In: Communications Magazine, IEEE 44.10 (2006),
pp. 136–142. DOI: 10.1109/MCOM.2006.1710425.

[206] Zhiyong Yu et al. “Toward an Understanding of User-Defined Conditional
Preferences.” In: Dependable, Autonomic and Secure Computing, 2009.
DASC ’09. Eighth IEEE International Conference on. 2009, pp. 203–208.
DOI: 10.1109/DASC.2009.52.

[207] Victor C Zandy and Barton P Miller. “Reliable Network Connections.” In:
the 8th annual international conference. ACM Press, 2002, p. 95. ISBN:
158113486X. DOI: 10.1145/570645.570657.

[208] Ying Zhang et al. “Refactoring android Java code for on-demand compu-
tation offloading.” In: Proceedings of the ACM international conference
on Object oriented programming systems languages and applications.
ACM, 2012, pp. 233–248. ISBN: 978-1-4503-1561-6. DOI: 10.1145/
2384616.2384634.

190

https://doi.org/10.1145/1509212.1509216
https://doi.org/10.1109/mprv.2002.1037720
https://doi.org/10.1109/ICACT.2006.206340
https://doi.org/10.1016/j.pmcj.2012.07.009
https://doi.org/10.1109/MCOM.2006.1710425
https://doi.org/10.1109/DASC.2009.52
https://doi.org/10.1145/570645.570657
https://doi.org/10.1145/2384616.2384634
https://doi.org/10.1145/2384616.2384634

	I Overview
	Introduction
	Motivation and Background
	Problem Statement
	Scope
	Research Methods
	Informational Phase
	Propositional and Analytical Phases
	Evaluative Phase

	Main Contributions
	Thesis Structure

	Use Cases, Assumptions and Requirements
	Use Case – Video Conferencing in Transit
	Assumptions and Out of Scope
	Requirements
	Functional requirements
	Non-functional requirements

	Summary

	Background and Related Work
	Variability of Multimedia Presentations
	Adaption of Multimedia Presentations
	Decision-making for Adaptation of Multimedia Presentations
	Context-awareness
	Detachment of Applications from Host Devices
	Mobile IPC Mechanisms for Processes in Different Devices
	Data Sharing for Distributed Mobile Multimedia Applications
	Reduction PIM Overhead in Multi-device Applications
	Scalability Issues in Ubiquitous Computing
	Summary

	Summary of Research Papers and Author's Contributions
	TRAMP and MAPE-K
	P1 – Dynamic Adaptation of Multimedia Presentations for Videoconferencing in Application Mobility
	P2 – Autonomic Adaptation of Multimedia Content Adhering to Application Mobility
	Multi-dimensional Utility Functions
	Examples of Multi-dimensional Utility of Pipeline Variant

	P3 – DAMPAT: Dynamic Adaptation of Multimedia Presentations in Application Mobility
	P4 – SOCKMAN: Socket Migration for Multimedia Applications
	P5 – Efficient Data Sharing for Multi-device Multimedia Applications
	P6 – Migration of Fine-grained Multimedia Applications
	Related Master Theses
	M1 – A Real-Time Video Retargeting Plugin for GStreamer
	M2 – Negotiation and Data Transfer for Application Mobility
	M3 – Adaptation trigger mechanism
	M4 – Component-based multimedia application for fine-grained migration
	M5 – User Space Socket Migration for Mobile Applications

	Summary

	Conclusions
	Summary of Main Contributions
	Critical Review and Open Issues
	Future Work
	Future Research

	II Research Papers
	P1 – Dynamic Adaptation of Multimedia Presentations for Videoconferencing in Application Mobility
	Introduction
	Design
	Multimedia pipeline model
	Plan Phase
	Execution Phase

	Implementation
	Filter components per functional stage
	Linking connectors
	Dynamic reconfiguration

	Evaluation
	Plan phase
	Execution phase

	Related work
	Conclusions

	P2 – Autonomic Adaptation of Multimedia Content Adhering to Application Mobility
	Introduction
	The DAMPAT system
	Monitor, Analyze, Plan, and Execute (MAPE) phases
	Phase 1: Monitor
	Phase 2: Analysis
	Phase 3: Plan
	Phase 4: Execute

	Evaluation
	Plan phase
	Execution phase

	Related Work
	Conclusions

	P3 – DAMPAT: Dynamic Adaptation of Multimedia Presentations in Application Mobility
	Introduction
	Design and implementation
	Multimedia pipeline model
	Control of combinatorial growth due to compositional and parameterization variability
	Control path combinations
	Variant selection
	Linking connectors

	Evaluation
	Time spent to create entire search space
	Variant selection

	Related work
	Conclusions

	P4 – SOCKMAN: Socket Migration for Multimedia Applications
	Introduction
	Requirement Analysis
	Design
	Vertical or Horizontal Handover
	Placement of SOCKMAN
	Connection Handover Technique
	Legacy Application Support
	Connection (Re-)establishment
	Architecture
	Socket Migration Scenario

	Evaluation
	Socket Migration Time
	Latency Overhead
	Throughput
	CPU Load
	Summary

	Related Work
	Conclusions
	Acknowledgment

	P5 – Efficient Data Sharing for Multi-device Multimedia Applications
	Introduction
	Related Work
	Design
	Implementation
	Evaluation
	Conclusions

	P6 – Migration of Fine-grained Multimedia Applications
	Introduction
	Design
	Status and Challenges

	III Appendix
	Errata
	Additional Use Cases
	Augmented Reality
	Travel Assistance
	Mobile Application between Fixed Devices
	Video Conferencing at Home
	Video Conferencing in Transit and Modality Change

