
Estimating Predictive Uncertainty in
Gastrointestinal Image

Segmentation

Felicia Jacobsen

Thesis submitted for the degree of
Master in Biological and Medical Physics

60 credits

Department of Physics
The Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2022





Estimating Predictive Uncertainty
in Gastrointestinal Image

Segmentation

Felicia Jacobsen



© 2022 Felicia Jacobsen

Estimating Predictive Uncertainty in Gastrointestinal Image
Segmentation

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/


Abstract

Deep learning models are known to achieve state-of-the-art performance
in numerous applications. Applying these models to the medical field
can relieve demanding workloads and decrease the number of observa-
tional oversights in diagnostics. Despite this, deep learning models are
considered to exhibit a “black box” nature due to their complex structure
and lack of transparency, interpretability, and explainability to how they
arrived at a decision. These attributes are crucial to establish trust and re-
liability between the users and model.

We investigated the use of computer-aided detection of polyps in the gas-
trointestinal tract using segmentation models. To increase explainability
behind the model prediction, we adopted two existing uncertainty esti-
mation methods, Monte Carlo (MC) dropout and deep ensembles. We
further explored these using two state-of-the-art deep learning architec-
tures, U-Net and ResUNet++, trained with two different loss metrics, bi-
nary cross-entropy and dice similarity coefficient (DSC). The uncertainty
estimates were visualized as heatmaps, showing spatial uncertainties for
the predicted segmentation mask. Our results show that deep ensembles
provide informative uncertainty representations that connect large uncer-
tainties to misclassified pixels. Additionally, we established a correlation
between the large uncertainty estimates and the corresponding pixels that
are likely to be misclassified. MC dropout was insufficient at providing
such information to its uncertainty representations.

Out of all the combinations tested, our results show that using the U-Net
based deep ensemble trained with the DSC metric gave the overall high-
est score in terms of the mean DSC during test time. Deep ensembles were
also able to increase this test score when increasing the ensemble size, giv-
ing a DSC score equal to 0.8172 using an ensemble size of 16. We conclude
that uncertainty estimation, using deep ensembles, can improve the un-
derstanding of deep learning models that can aid users to make informed
decisions on whether to trust a model’s predictions.
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Chapter 1

Introduction

1.1 Motivation

Decision-making is imperative in modern medicine. Medical experts must
not only rely on their knowledge, but also on their experience and clini-
cal judgment to determine the best course of action that can benefit the
patients. Despite this, human perception largely influences the decision-
making process. Recognizing visual objects through human perception is
not only something one can learn but occurs outside of one’s own con-
sciousness. Decision-making by deep learning (DL) models [76] is in con-
trast quite different, and their ability to recognize high-level features is
based on a whole different aspect of factors. With the increasing number
of large medical datasets [13, 18, 63, 68], the availability of the graphics
processing units (GPUs), combined with the state-of-the-art DL architec-
tures [47, 126, 133], DL models have gained large popularity in the medical
field due to their ability to recognize medical data [44, 59], proving their
clinical relevance.

As of today, colorectal cancer (CRC) is the third most prevalent cancer type
worldwide and is the second most common cancer-related death [130].
CRC typically starts with a small benign growth inside the lining of the
colon or rectum, referred to as polyps, which over time can become ma-
lignant. Polyps are often small and show few signs of or no symptoms.
In many cases, patients with CRC are known to experience no symptoms
in the earlier cancer stages [83]. Common symptoms like blood in stool,
abdominal pain, diarrhea or change in bowel movements do not reveal
themselves until later stages. Such medical scenarios can potentially de-
lay treatment, meaning that the cancer can progress to lethal stages before
the symptoms have been revealed. Early detection, identification, and re-
moval of polyps at an early stage are thus highly beneficial for preventing
mortality against CRC [124].
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Today, colonoscopy is the gold standard for such screenings [124]. How-
ever, studies show that this technique can leave up to approximately 28%
of polyps undetected [86, 95]. Computer-aided detection (CAD) is de-
signed to decrease observational oversights and has been integrated into
clinical workflows of diagnostic mammography more than two decades
ago [111]. CAD systems can be utilized by medical experts for automatic
polyp segmentation in colonoscopy screening. Segmentation is a tech-
nique used to highlight polyps from images or videos, which can act as
a second tool in colonoscopy screenings. This second observer can poten-
tially reduce the number of undetected polyps and thus provide improved
prognosis to patients [10]. Besides the medical advantages, CAD can also
reduce physician workloads, increase efficiency at clinics while being cost-
effective, verify and assess the quality of earlier examinations, and train
inexperienced physicians and medical students. Moreover, CAD is cost-
efficient because the use of a computer rather than a second human ob-
server has the advantage of reducing the demand for trained physicians.

With the increasing availability of large colonoscopy datasets [4, 5, 106,
125], several different DL approaches have shown to be highly effec-
tive and capable in detecting polyps. Segmentation models have been
shown to be able to achieve impressive results in pixel-level detection of
polyps [65, 66]. Other approaches include the use of bounding boxes to
detect polyps [91, 109, 148]. These DL-based approaches were in all cases
able to obtain a state-of-the-art performance. Despite this, these DL mod-
els have been considered “black boxes” due to their complex structure and
their lack of explainability. They do not provide additional information on
why they arrived at a specific decision [26, 54]. Because they lack the ability
to explain their reasoning, they do not reveal their strengths or weaknesses
in the decision-making process.

Explainability can assist developers in preventing future disasters pro-
vided by predictive models because strengthening the understanding of
their predictions may suggest ways of improving them. Even though ex-
plainability is needed in many fields, it is an especially crucial property in
high-risk predictions where the cost of making a wrong decision can deter-
mine the future of human life and health. In medicine, doctors are held ac-
countable for their decisions by being required to explain and justify how
they arrived at a specific diagnosis. Just as humans are held accountable
for this reason, predictive models must also provide such explanations to
obtain this accountability. CAD systems that miss these important aspects
raise questions on how they can be accepted in the clinics.

Explainable artificial intelligence (XAI) aims at answering these questions.
XAI methods are to bestow the understanding of why artificial intelli-
gence (AI) models arrive at a particular decision by developing methods
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that provide interpretability, transparency and explainability to these de-
cisions. The benefits of XAI methods can help to integrate humans into
the decision-making process of DL models, mend legal issues, foster trust,
verify the diagnosis and provide complimentary information to help and
assist physicians in treatment planning.

With the DL models’ “black box” property, modeling their predictive un-
certainty is hence a non-trivial task. Uncertainty provides explainability
by adding additional information to the corresponding model decision
and can be used by medical experts to gain insights into its prediction. Un-
certainty estimates can be used to critically assess if the model gives over-
confident predictions. Many researchers have attempted to quantify the
uncertainty of DL models [100]. The result is a variety of approaches [37].
Two of these approaches propose methods of extracting the uncertainty
using an ensemble of DL models [35, 73]. Additionally, ensembling re-
sulted in a performance increase in terms of generalizability. This thesis
contributes to the field of XAI by extending explainability to medical im-
age segmentation by adapting the two existing state-of-the-art uncertainty
estimation methods in a segmentation use-case. We focus on the use of
polyp segmentation models to represent the uncertainty estimates as spa-
tially distributed uncertainty representations to segmentation predictions.

1.2 Problem Statement

Despite the recent advances in achieving state-of-the-art performance by
DL-models in detecting polyps by colonoscopy imaging, there still lacks
research on explainability in these models. The work in this thesis is
motivated by the lack of explainability in DL, and we attempt to contribute
to XAI by providing predictive uncertainty estimates by answering the
following research question:

RQ1 How can the predictive uncertainty estimates improve the under-
standing of the model prediction?

We aim to solve this research question with the following three research
objectives:

Objective 1 Explore how uncertainty estimates connect the model predic-
tion with the input features.

Objective 2 Explore how the use of different loss functions affect the
model predictions and the corresponding uncertainty.

Objective 3 Use two different architectures to examine if the uncertainty
estimation performance is affected by the model architecture.

3



These research objectives act as sub-tasks which help us to explore and
extract the full potential from the uncertainty estimation methods adapted
in this thesis.

1.3 Scope and Limitations

The scope of this thesis is limited to answering the research question de-
fined in Section 1.2 by estimating the predictive uncertainties in automated
polyp segmentation. The scope is divided into three main objectives. The
first objective is to explore how uncertainty estimates connect the model
prediction with the input features. The second is to explore the use of dif-
ferent loss functions to observe how and if the uncertainty estimates are
affected by the different loss functions. The third and final objective is to
examine how the performance of the uncertainty estimation method is af-
fected by using different DL-based model architectures.

We consider several limitations for the scope of this thesis. The first is to
limit the number of model architectures that are explored with. Some re-
quirements that were set a priori, was that the trained models must be able
to reach the state-of-the-art performance to prove their potential in clinical
workflows. Showing what these models are capable of will support the
motivations stated in Section 1.1. We limit the amount of hyperparameter
tuning knowing that extensive tuning techniques are known to be both
memory- and time-consuming. Even though extensive tuning methods
are sometimes needed to achieve state-of-the-art performance, we argue
that these types of achievements are beyond the scope of this thesis.

Memory constraints were another limiting factor in this thesis. This re-
sulted in using smaller images as input to the models and utilize both
half and single-precision during training, as explained in Section 3.1.4 and
Section 3.3.4. The resources used were also shared with other researchers,
meaning that the experiments could not be performed at any time. This
was also a time-consuming factor because the shared resources were not
always available.

Due to the lack of publicly available annotated datasets, the experiments
conducted in this thesis were originally limited to three datasets and their
corresponding sizes and quality. And because of time-constraints, we lim-
ited our experiments to one of the three datasets.

The last limitation is the time constraints, which limits the exploration of
model architectures and loss functions, the number of training iterations,
the number of trained models in an ensemble, hyperparameter tuning,
and the number of uncertainty-extracting methods used. In the case of
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less time restrictions, we explain potential future work in Chapter 6.

1.4 Research Methods

A research methodology is a set of specific procedures used to systemat-
ically and theoretically present, process and analyze the information pro-
vided in a research study. We have adapted Association for Computing
Machinery’s (ACM) research methodology [20] for the research presented
in this thesis. This research methodology was presented in a specific re-
port provided by a task force. The purpose of this report was to provide
a detailed description of the discipline of computing and to propose a
new teaching paradigm also known as the Computing Curricula model
for computing disciplines.

This methodology argues that the discipline of computing should be split
into three fundamental processes: theory, abstraction, and design. The
way the research in this thesis is presented is consistent with each of these
three processes of the computing discipline.

1.5 Ethical Considerations

Ethical considerations are a set of principles that should be followed in hu-
man research. These considerations include maintaining voluntary precip-
itation, informed consent, anonymity, confidentiality, integrity, and trans-
parency, maintaining the minimum potential for harm and completely
avoiding research misconduct.

Two of these were the key ethical considerations and the most relevant
for the research conducted in this thesis:

Anonymity We do not know the identities of the participants from whom
the data is collected. Personally identifiable data or metadata were
neither collected nor presented in this research.

Research misconduct No data presented in this thesis were either falsi-
fied or made up. Manipulation of data analyses and misrepresenta-
tion of the results were in no way conducted in this thesis.

By following these key ethical considerations for human research, one can
maintain scientific integrity and protect the rights of research participants.
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1.6 Main Contributions

This thesis contributes to the field of XAI by testing and extending exist-
ing state-of-the-art uncertainty estimation methods to a segmentation use-
case. We pose three research objectives given in Section 1.2, which aid us
in solving RQ1. We summarize the main contributions behind this thesis
by sequentially repeating and explaining how these were met. Lastly, we
revisit and answer RQ1.

Objective 1: Explore how uncertainty estimates connect the model prediction
with the input features.

This objective is supported by our exploration of two different uncertainty
estimation methods, Monte Carlo (MC) dropout and deep ensembles. We
extended these approaches to a segmentation use-case by testing and com-
paring these methods. By doing so, we were able to establish connections
between the information given in the uncertainty estimates and their cor-
responding predictions given by the DL model. More specifically, we ob-
served that the areas of high uncertainties had corresponding predictions
that were more likely to be incorrectly classified. Only one of these meth-
ods was able to establish such connections.

Objective 2: Explore how the use of different loss functions affect the model
predictions and the corresponding uncertainty.

Testing uncertainty estimation techniques on models trained with differ-
ent loss functions allowed us to reach this objective. By doing so, we were
able to explore uncertainty estimation techniques based on different model
training characteristics. We observed that for all cases, using dice similar-
ity coefficient (DSC) loss during training outperformed the corresponding
models based on binary cross-entropy (BCE) loss, even though BCE is cat-
egorized as a proper scoring function. The purpose of this objective was
to explore the uncertainty estimation techniques in different scenarios to
investigate how to fully utilize these.

Objective 3: Use two different architectures to examine if the uncertainty es-
timation performance is affected by the model architecture.

Like the second objective, the purpose of this objective was to fully ex-
plore these uncertainty estimation techniques to fully utilize the adapted
uncertainty estimation techniques in a segmentation use-case. We adapt
two different state-of-the-art model architectures, U-Net and ResUNet++,
to see how these affect the results of the uncertainty estimation methods.
We found that the former architecture type outperformed the latter in all
cases. Without the use of extensive and resource-demanding hyperpa-
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rameter tuning techniques, we know that this objective leaves a topic for
further investigation.

Reaching these research objectives helps us to explore and extend these
existing uncertainty estimation techniques, which may motivate further
development of these methods in the future. More importantly, meeting
these objectives aids us in answering the following research question:

RQ1: How can the predictive uncertainty estimates improve the understanding
of the model prediction?

We answer this question by testing each combination of two uncertainty
estimation techniques, trained with different loss functions, and based on
two different convolutional neural network (CNN) architectures. The re-
sulting uncertainty representations were visualized as heatmaps, which
shows spatially distributed predictive uncertainty estimates by a DL
model. We were able to show that the uncertainty representations given
by the deep ensemble method give important correlations between the
predicted segmentation masks and the corresponding uncertainty repre-
sentations. We know that these correlations are also consistent with the
previous general understanding of uncertainty. Thus, to clearly answer
our research question, we argue that the uncertainty representations given
by the deep ensemble method are indeed able to improve the understand-
ing of the model prediction.

The uncertainty representations given by the deep ensemble method show
that the areas of large uncertainty estimates correspond to pixels in the
predicted mask that are more likely to be misclassified. The uncertainty
estimates given by MC dropout was unsuccessful at providing such cor-
relations.

Meeting these research objectives and concluding our results by answer-
ing the research question lay the foundation for the main contributions
given by this thesis. We claim that these contributions add value to the
field of XAI which is consistent with our motivations stated in Section 1.1.
Considering our main findings, we know that these explanations can help
to improve the understanding of the model prediction that can be used
to make more informed decisions on whether to trust a model’s predic-
tions. We hope that this work leaves motivation for further development
for explainability- and uncertainty estimation methods.
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1.7 Thesis Outline

This thesis is divided into six chapters. The following summary gives a
brief introduction to the next five chapters.

Background: Chapter 2 presents the background, which provides a de-
scription of the theoretical framework that supports the methods used in
this thesis.

Methods: Chapter 3 gives detailed descriptions of the experimental re-
search process behind this thesis. This chapter supports the results in
this thesis by acting as a roadmap to the reached research conclusions and
gives explanations to why a specific approach was chosen, and how it led
to the answers to the research questions. Discussion of obstacles and their
solutions, descriptions of how results were collected, and how it was ana-
lyzed are also provided in this chapter.

Results: The main results from the experimental methods explained in
Chapter 3 are given in Chapter 4. The results are provided with a descrip-
tion of the main observations, and the additional details and results can be
found in the appendices.

Discussion: In Chapter 5, the results from the previous chapter are put into
context, and conclusions are drawn. The results were interpreted consid-
ering the known information, and connections between research questions
and the results are also provided. Finally, the results were also discussed
in a broader context.

Conclusion: Chapter 6 provides the reader with the summarized findings.
Finally, we discuss how our findings have laid a foundation for potential
future work.
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Chapter 2

Background

The necessary theoretical background behind the methods used in this
thesis is presented in this chapter. Section 2.1 provides a medical
perspective, which contains information about the digestive system, CRC,
and screening methods of polyps. Section 2.2 gives an overview on
the potential of CAD technologies today. Section 2.3 covers information
about the datasets used in this thesis and descriptions on how they were
collected. Sections 2.4, 2.5, 2.6 and 2.7 contain detailed descriptions of the
algorithms used in this thesis. The theory on algorithms describes how
they can make representations of and recognize the data. Section 2.8 and
2.9 contain details about the concepts of ethics and explainability in DL.
The latter section explains why explainability is important, its relevance
in the medical field, and summarizes the most relevant explainability
methods of today. Section 2.10, introduces the relevant research and
methods that were adapted and tested in this thesis. Finally, Section 2.11
provides a summary of this chapter.

2.1 Medical Background

Polyps are a central topic in this thesis. Therefore, this section is dedicated
to the medical background behind CRC. An example image taken from
the test dataset of the MediaEval challenge from 2021 can be viewed
in Figure 2.1. Here, we see several polyps spread across a small area
inside the colon. More information on this challenge can be found in the
published research paper in Appendix B [61]. The medical background
on polyps includes their hallmarks, treatment, occurrence, and clinical
screening methods.
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Figure 2.1: An example image taken from the test dataset of the MediaEval
2021 challenge (see Paper B.1 for further details).

2.1.1 The Gastrointestinal Tract

The gastrointestinal (GI) tract spans from the mouth to the anus and in-
cludes all organs of the digestive system: mouth, pharynx, esophagus,
stomach, small intestine, large intestine, and rectum. The GI tract is re-
sponsible for four main processes: digestion, secretion, absorption, and
motility [87].

Digestion starts at the mouth, where food is broken down into smaller
compounds by the teeth and gets mixed with saliva [138, p. 372]. The food
passes the pharynx, which is the organ that connects the mouth with the
esophagus [138, p. 373]. The esophagus is a muscular tube that moves
food from the pharynx to the stomach using muscle movements called
peristalsis [138, p. 372]. The stomach is a J-shaped muscular sac that ex-
tends from the esophagus to the small intestine [138, p. 376]. It stores the
food and breaks it down further. Peristaltic movements induce the release
of a hormone called gastrin, which triggers the secretion of highly acidic
digestive juices [138, p. 34]. These juices contain pepsin and acid, the for-
mer is an enzyme responsible for breaking down proteins of the food in
the stomach, and the latter are responsible for killing bacteria and activat-
ing pepsin [138, p. 377].

The small intestine is a roughly 6 meter long tube that spans from the
stomach to the large intestine [138, p. 378]. The lining of the small intes-
tine has finger-like projections called villi, and their function is to increase
the surface area of the small intestine [138, p. 51]. The villi are covered
in microvilli which further increases the surface area for food absorption.
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Nutrients from food pass into the bloodstream and lymph via the small
intestine walls [138, p. 378]. Water from the digested food is absorbed in
the large intestine. The large intestine is made up of an approximately
1.5-meter long muscular tube called the colon [138, p. 285]. Its function is
to absorb water, minerals, vitamins and to eliminate indigestible material.
No digestion takes place in the colon, only secretion of mucus to lubricate
the passage of fecal material [138, p. 285]. Fecal material is formed from
fiber and other undigested materials. The end of the colon connects to the
rectum, which receives waste and pushes it out of the body through the
anus.

2.1.2 Colorectal Cancer

Cancer cells divide uncontrollably in the cell cycle. In these cells, the DNA
that is responsible for transcribing proteins responsible for cell cycle reg-
ulation have become damaged. These damages correspond to mutations,
and if not repaired, the division mechanisms allow for cells to divide un-
controllably [138, p. 327]. Some cells with non-regulated cell cycles are
categorized as cancerous, specifically the ones with uncontrollable cell di-
vision. Once these cells have become cancerous, their functioning cannot
return to normal. The immune system will often destroy them, but some-
times it is not able to recognize them as cancerous, especially with age [138,
p. 61].

Cancerous cells can form abnormal growths of tissue, called tumors. Tu-
mors are either cancerous (malignant) or non-cancerous (benign). Benign
tumors are known to not grow as rapidly as malignant ones. They do not
spread to nearby tissues, nor do they grow back once removed from the
body [138, p. 61]. In malignant tumors, cancer cells can break away from
the tumor and travel through nearby blood or lymph vessels to distant re-
gions of the body, allowing them to form new tumors at different sites [138,
p. 61]. This is different from when cancer cells spread to nearby organs
because the lymphatic system is a network that covers the entire body.
Hence, cancer cells with access to the lymphatic system are referred to as
metastasis or metastatic cancer and are regarded as an advanced stage of
cancer. Depending on where the cancer spreads, metastatic lesions can
become the deadliest form of secondary tumors. Metastatic cancer is the
most fatal cancer stage and estimated to be responsible for about 90% of
all cancer deaths [122, p 215].

A polyp is a benign cancer growth that specifically grows inside the colon.
Specific types of benign tumors are known to later become malignant [122,
p 211]. Hence, this also yields for polyps, and they are thus surgically re-
moved once detected. Also, 95% of CRC cases are believed to arise from
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polyps [88, p 678]. A typical medical scenario is that CRC occurs with the
development of cancerous cells in a polyp. The polyp starts growing in
the inner lining of the colon, the mucosa. Here, it can grow outward to the
outer layers of the colon, which can connect the cancer cells to the blood
or lymph vessels. When the cancer has advanced to these vessels, it is able
to metastasize [122, p 222]. Early detection of polyps is therefore crucial
for prognosis and survival [124].

Polyps can grow in several different areas along the GI tract, and they
vary in size and shape, and look like protruding round lumps. Some grow
on a stalk, and others protrude directly from the mucosa. Specific polyp
types and characteristics increase their possibility of becoming cancerous.
These characteristics include the size of the polyp or if there are three or
more polyps located in the same area. Polyps are divided into four main
groups: mucosal adenomatous polyps, mucosal serrated polyps, mucosal
nonneoplastic polyps, and submucosal lesions. Of all polyps removed,
over 70% are adenomatous, and the remainder are serrated polyps. They
are removed because 95% of all CRC cases are believed to arise from these
specific polyp types [88, p 678].

2.1.3 Screening of Colorectal Cancer

Due to the potential negative consequences of having polyps in the
colon, screening and removal before they develop into CRC or having
metastasized are crucial. Colonoscopy is currently the gold standard for
detecting and removing polyps [88, p 679]. It is an invasive procedure that
requires a long flexible tube with a camera and light source attached to the
end. This tool is called a colonoscope. It is inserted through the mouth
or anus and can be used to screen the entire colon and rectum. The polyp
can be removed during the colonoscopy, using different instruments, such
as a wire loop, which are inserted through the tube. Other instruments
used to remove polyps are biopsy forceps or electric current. Patients in
the US who do not have an increased risk of CRC are recommended to
undergo this procedure at least every 10 years, and for patients that have
an earlier incidence of polyps, or an increased hereditary risk of CRC, it is
recommended to have a colonoscopy every 3 to 5 years [9]. This usually
differs between different countries, often depending on infrastructure
and availability of personnel. Colonoscopy devices and experts that can
perform the procedure are sparse and often the bottle neck for national
screening programs. With CAD, the doctors are supported in their task
via automatic analysis to be more efficient, which is considered as a crucial
factor to enable population wide screening.
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2.2 Computer Aided Detection

CAD technologies have the potential to automate and relieve clinical
workflows. To do so, the system must be able to detect diseases and reduce
the number of false negatives. With this considered, this technology can
relieve workflows by replacing a second human observer [10]. Thus, it
can be able to decrease the demand for more physicians working with the
same task.

2.2.1 History of Computer Aided Detection

Exploring with the use of computers to solve problems in medicine started
in the 1950s. From around this time, two studies [78, 140] tested the use of
patient symptom- and laboratory test results data for computers to gener-
ate a diagnostic outcome. In the first study, Ledley et al. [78] analyzed the
reasoning process behind traditional medical diagnosis for this analytical
process to be inherited in computers. In the second study, Weiss et al. [140]
used the results from their disease classification to predict recommended
treatment strategies, and this approach was later successfully integrated
into a consultant program, which assisted diagnosis and long-term treat-
ment of glaucoma.

In the 1960s, there were multiple studies on CAD in medical imaging. At
the same time, it was expected that computers were able to replace human
experts in detecting medical abnormalities. This is because it was assumed
that computers outperformed humans at these tasks [25].

Today, CAD is considered as an assisting tool in the diagnostic process
which acts as a second observer where human experts are included [142].
Most approaches in CAD of modern time are based on DL-models. Many
of them are described in the following section.

2.2.2 Recent Developments of Computer Assisted Polyp
Detection

Computer assisted polyp detection has been an active research topic over
the last two decades [135]. Even to this day, there are many research pa-
pers on this topic that get published each year. The work listed below
are only a few examples from the enormous amount of research studies
on this topic. Even with these few examples, the listed work is still rep-
resentative of this active research field. For example, Polyp-Alert [139] is
a real-time visual feedback tool that detects polyps by recognizing their
edges. This software is designed to be used during routine colonoscopy
screenings. Other recent developments in polyp detection consist of the
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recent progress in detecting bounding boxes containing polyps [91, 109,
148], as mentioned in Section 1.1. Other developments contain the classi-
fication of polyps. There is also recent research on DL-based polyp clas-
sification showing state-of-the-art performance [101, 147]. For example,
Komeda et al. [71] were able distinguish between adenomatous and non-
adenomatous polyps. Some of the results from these classification tasks
showed that the model was able to outperform human experts. The num-
ber of appearances of popular colonoscopy datasets such as Kvasir-SEG
and CVC-ClinicDB are also growing at an increasing pace each year.1

Other work focuses on the lack of annotated polyp datasets [67, 137]. For
example, Thapa et al. [137] have developed an active learning approach
to pixel level polyp annotation, whereas Ji et al. [67] have developed a
per-frame annotated video polyp dataset consisting of over 158.690 image
frames.

More recently, there is a growing interest in pixel-level classification
known as semantic segmentation [64, 79, 143]. In these research prob-
lems, the model output is a pixel-wise annotated image where the classes
represent objects of interest. In medicine, these annotations can for exam-
ple correspond to lesions. New DL architectures specifically designed to
segment these polyps [36, 65, 66, 85] have shown to provide near-exact
predicted annotations of the polyps. These results show how DL models
provide enormous value in a clinical scenario because these predictions
can help to decrease the number of observational oversights. Even with
these few examples of research on polyp segmentation mentioned here,
there is still numerous works on this research topic today.

For DL-based CAD systems, the primary goal is to obtain a model ready
to be put into clinical workflows to make clinically relevant predictions
on unseen data. This means that one wants to obtain a model capable
of making predictions that are on par with an experienced endoscopists.
In addition to this, one must consider the fact that making false nega-
tive (FN) predictions is dangerous in diagnostics. Therefore, one must
completely avoid such predictions by making the CAD system sensitive
enough, but at the same time keeping the number of false positives (FPs)
to a minimum. As mentioned in Section 1.1, this goal has already been
reached where CAD has been successfully integrated in commercial diag-
nostic mammography imaging.

Despite the research achievements of CAD in colonoscopy, the lack of

1The number of times Kvasir-SEG have been used in different published research
papers can be viewed on https://paperswithcode.com/dataset/kvasir-seg, and https://
paperswithcode.com/dataset/cvc-clinicdb for CVC-ClinicDB

14

https://paperswithcode.com/dataset/kvasir-seg
https://paperswithcode.com/dataset/cvc-clinicdb
https://paperswithcode.com/dataset/cvc-clinicdb


explainability and interpretation in DL-models are important limitations
when evaluating their implementation in the clinical workflows where the
typical end-users have little knowledge of AI. Their ability to outperform
medical experts is not sufficient because their limitations make them un-
trustworthy to these end-users. There are also many potential ethical is-
sues such as employment issues, privacy issues, racial bias in data, lack of
trust and accountability which must be considered before real-world de-
ployment. Racial bias, trust, and accountability are the three main ethical
considerations discussed in Section 2.8.

XAI is a research field with the focus on developing methods that can ex-
tract explainability from DL-based CAD systems. Why is explainability
important, one could ask. It can enable humans to understand predictions
provided by AI, which efficiently enables humans to make informed deci-
sions. Explainability can also provide confidence in the model prediction
by providing clarity in the mechanics behind the model’s reasoning. DL
models have earlier shown to make predictions based on the inappropri-
ate reasoning [75]. In such cases, explainability methods revealed how
these mistakes were made, which can help in avoiding similar problems
in the future. With this, explainability systems reduces the need to hire
more AIdevelopers for guidance and assistance because these systems en-
able observers to understand decisions of DL models.

Explainability methods thus enable users to take advantage of what AI has
to offer where trust between the AI system and the users has been estab-
lished. Despite the enormous potential advantages of explainability, there
is still much to be done. New explainability methods come with the chal-
lenging task of figuring out whether an explanation is correct or not. In
addition, many of explanations are qualitative, which make them difficult
to interpret. There is also no generic procedure to interpreting qualitative
pixel-wise explainability representations, which is still an open research
question. Therefore, there is still much to be done in the field of XAI.

2.3 Datasets

To train a model with the properties described in Section 2.2, one expects
the training data to represent the typical characteristics of most data in-
stances [39, p. 26]. With this considered, the trained model is expected
to recognize unseen instances. In medicine, this corresponds to obtaining
data that covers all general medical scenarios that can occur on a popu-
lation level. Patient characteristics such as age, gender, and ethnicity, etc.
should optimally also be considered.

For the sake of reproducibility, the work in this thesis includes the use
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of a publicly available dataset to enable others to reproduce the exper-
iments conducted. This thesis includes the use of one well known and
commonly used dataset containing image frames and their correspond-
ing segmentation masks collected from colonoscopy examinations. The
following datasets used for model training and evaluation are: Kvasir-
SEG [106]. Additionally, we mention two other datasets which are central
in the research on segmentation in colonoscopy imaging, namely CVC-
ClinicDB [4] and ETIS-Larib Polyp DB [125]. An overview of the men-
tioned datasets is given in Table 2.1.

Table 2.1: Table summarizes the main features of the segmentation
datasets used in this thesis.

Kvasir-SEG CVC-ClinicDB ETIS-Larib

Size 1000 612 196
Resolution 720× 576–1, 920× 1, 072 384× 288 1, 225× 966
Contain annotations Yes Yes Yes
Contain bounding boxes Yes No No

2.3.1 Kvasir-SEG

Kvasir-SEG is a publicly available dataset consisting of 1,000 colonoscopy
images containing annotated polyps provided by experienced endo-
scopists. The annotations are in the form of binary segmentation masks,
which highlight the polyps. The dataset also includes .json files which cor-
respond to the bounding boxes surrounding the polyps.

The dataset is an extension of the Kvasir dataset [106], which is also rooted
in the largest GI dataset, Hyper-Kvasir [5], consisting of a collection of
about one million image and video frames of the GI tract. The dataset was
made in collaboration between Simula Research Laboratory, the Norwe-
gian Cancer Registry and Vestre Viken Health Trust (VV) in Norway. The
images are gathered from colonoscopy examinations at VV. The segmen-
tation masks are annotated and verified by experienced endoscopists from
VV and the Norwegian Cancer registry.

The images in the dataset vary from 720× 576 up to 1, 920× 1, 072 pixels.
The ground truth segmentation masks consist of white and black pixels.
The white pixels represent the polyp tissue, and the black pixels represent
areas that are not part of the polyp, which is also called the background.
The bounding boxes represent the region of interest, which defines the
border pixels of the polyps. The region of interest coordinates in the .json
files were used to make the ground truth segmentation masks.
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The original images in the dataset, where some examples can be viewed
in figure 2.2, contain a small green box also called an anchor object of the
scope guide (used to determine where the scope is during the procedure)
in the bottom left or right corner of the image as seen in Figure 2.1. These
green anchor objects were later covered by a black corner object, as seen in
Figure 2.2, to avoid the potential case where a prediction model learns to
associate the anchor object with the target [51].

Figure 2.2: Three example images extracted from the Kvasir-SEG
dataset [106]. From the left column: (1) represents the original images
from the colonoscopy, (2) represents their corresponding ground truth an-
notations, and (3) represents their bounding boxes.

2.3.2 CVC-ClinicDB

The CVC-ClinicDB dataset consists of 612 image frames of size 384× 288
and their corresponding ground truth segmentation masks. This dataset
contains numerous examples of polyps. The database was made in collab-
oration with Bernal et al. [4], along with the Hospital Clinic of Barcelona.
The database was introduced as the training dataset of the ISBI 2015 Chal-
lenge on Automatic Polyp Detection Challenge in Colonoscopy Videos.

The images in the dataset are from various parts of the GI tract. They
were extracted from 25 different videos from standard colonoscopy exam-
inations. When collecting the images, the objective was to collect different
images of the same polyps but from different angles.
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2.3.3 ETIS-Larib Polyp DB

The ETIS-Larib Polyp DB consists of 196 image frames of size 1, 225× 966
and their corresponding ground truth segmentation masks [125]. The im-
ages in this dataset were collected from colonoscopy videos using wireless
capsule endoscopy, which utilizes a small wireless camera in the shape of
a small pill. It is designed to take images of the GI tract and transmit data
to a nearby receiver. The images in this dataset are extracted from a total
of 34 different video sequences containing 44 different polyps.

There is minor variation to the polyps in this dataset, and many are of
small size in contrast to the variety of polyps in the Kvasir-SEG dataset.

2.4 Neural Networks

Neural networks (NNs) are utilized in AI and machine learning problems
to model complex relationships in data. NNs are commonly seen in com-
puter vision [115], natural language processing [21] and weather forecast-
ing [112] tasks.

NNs can recognize complex underlying relationships in large data of high-
dimensional nature. Given some input x, and the corresponding output y,
the goal is for the NN to produce the correct output given an input, with
the following mapping function

f (x) = y. (2.1)

Equation 2.1 represents the aim of all NNs, which is to approximate
some unknown mapping function f . This section introduces one of the
fundamental building blocks of NNs that can produce these mappings,
which are the affine transformations and activation functions.

2.4.1 Feed-forward Neural Networks

Feed-forward NNs consist of multiple layers. One such layer consists of
stacks of neurons. Each neuron has learnable weights and biases (i.e., pa-
rameters) and a non-linear activation function. The input along with the
parameters are used in the computation of an affine transformation [145].
In this affine transformation, the linear transformation is represented by
the weighted sum of the inputs and the translation is represented by the
added bias. A non-linear activation function is then applied to the affine
transformation. Non-linear relationships in the mapping 2.1 is represented
by activation functions, which is further described in Section 2.4.2.

Figure 2.3 represents one example of a feed-forward NN architecture.
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Figure 2.3: Computational graph of a fully connected feed-forward NN
containing four input neurons, three hidden layers, and two output
neurons.

The intermediate column stacks of neurons placed between the input layer
(first layer) and output layer (last layer) are referred to as hidden layer. The
input to each individual neuron in the first layer, as pictured in Figure 2.3,
represents a feature from the input data. This can for example be an image
pixel, height coordinate, or temperature.

Neurons in hidden layers that are not placed immediately after the input
layer get their input from neurons from an neighboring upstream layer. In
a fully connected NN architecture, the outputs from all the neurons in layer
l− 1 are passed to each neuron in layer l, such that each individual neuron
in the two layers are connected.

The information passed from a stack of n neurons in layer l − 1 to layer
l containing m neurons in a fully connected network can be represented
by [39, p. 283]

al(X) = σl(W lX + bl), (2.2)

where W l ∈ Rm×n denotes the weight matrix, with m rows for each
input neuron from layer l, and n columns for the number of neurons
in layer l − 1. The bias vector is represented by b ∈ Rm×1, such that
one vector element gets added to each neuron in layer l. The raw input
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column vector has one row per instance, which is represented by X ∈
Rn×1. The non-linear activation function in layer l, σl, is added after the
affine transformation, which is applied elementwise, i.e., one instance at
a time [145]. The output of layer l is represented by al(X), such that the
output in the next layer l + 1 is represented by

al+1(al) = σl+1(W l+1al + bl+1), (2.3)

where the affine transformation (in the rightmost parenthesis) connects the
neurons in layer l, represented by al, with the neurons in the next layer,
al+1, and the activation function σl+1 transforms al before being passed
to layer l + 1. In more general terms, the information that propagates
through hidden layers, represented by Equation 2.3, is a chain of affine
transformations and activations between previous layers.

In summary, what happens when information traverses a NN is the fol-
lowing: (i) a series of matrix-matrix multiplications, (ii) affine transforma-
tions, and (iii) non-linear activations between layers. This series of calcu-
lations that start at the first hidden layer and end at the output layer are
referred to as the forward propagation, or the forward pass.

2.4.2 Activation Functions and Universal Approximators

Without the activation functions between each layer, the information that
is passed forward in a NN will only be a series of affine transforma-
tions. Linearity is a strong assumption and is rarely the case in large high-
dimensional datasets. The activation functions add non-linearity, which is
a mechanism shown to work well for complex data. This is the reasoning
behind why NNs are said to be universal approximators.

NNs have the ability to capture complex patterns in data with their hid-
den layers [72, 135]. The following studies show that for certain assump-
tions, such as a specific choice of activation function and number of lay-
ers, NNs can approximate any continuous function. Cybenko [14] shows
that a NN with at least one hidden layer using the Sigmoid activation
function can approximate any continuous function. The capability of ap-
proximating any continuous function has been proven universally for all
non-polynomial activation functions [50], such as the Rectified Linear Unit
(ReLU) function.

The property of universal approximation for continuous functions has also
been proven for CNNs and recurrent neural networks [120]. For example,
Zhou [149] argues that universality applies to deep CNNs, and can hence
approximate any continuous function up to an arbitrary accuracy if the
depth of the CNN is large enough.
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2.4.3 Gradient Descent Optimization

Randomly initialized NNs will in most cases not be able to approximate
the mapping in Equation 2.1. For it to do so, the parameters are itera-
tively adjusted with an optimization algorithm called gradient descent
(GD) [114]. The end-goal for such an algorithm is to converge at a min-
imum relative to some scoring function. For problems in DL and machine
learning, this scoring function is referred to as the loss function. Minimiz-
ing the loss function is the fundamental part to a training regimen for a
NN, referred to as backpropagation. The name arrives from the fact that the
output from a forward pass propagates backwards in the network relative
to the trajectory of a forward pass. One forward- and backpropagation of
data is referred to as one epoch. Note that there are several variations of
GD, which all are described by the end of this section.

For some input, x, the output from the forward pass, ŷ, is compared to
the true output y. The loss function, C(ŷ, y), computes a measure of their
dissimilarity. The goal is to let the GD algorithm converge at a minimum
loss value. The gradients of the stored parameters from the forward pass
with respect to C are computed in backpropagation. These gradients give
information on how changing the model parameters will change C.

The partial derivatives of the stored parameters from the hidden layer l
with respect to C are given by

∂C
∂W l

jk
and

∂C
∂bl

jk
, (2.4)

where W l
jk denotes the weight element from the k-th neuron in the (l− 1)-

th layer to the j-th neuron in the l-th layer. W l
jk is an element of the weight

matrix W l. This notation also applies to the bias element bl
jk.

The values in Equation 2.4 can be vectorized to represent the gradients
of an entire set of input data. Suppose θ represents some column vector
[θ1, θ2, ..., θn]T. Its corresponding multivariate gradient is represented by
∇C(θ), such that

∇C(θ) =
[

∂C(θ)
θ1

,
∂C(θ)

θ2
, ...,

∂C(θ)
θn

]T

, (2.5)

where ∇C(θ) represents the entire loss gradient computed for the output
vector ŷ and the ground truth y.

If the gradients in Equation 2.4 are vectorized equivalent to that of Equa-
tion 2.5, then each element of the weight matrices and bias vectors of layer
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l are updated at iteration t such that

W l
t+1 = W l

t − η · ∇C(W l
t ), (2.6a)

bl
t+1 = bl

t − η · ∇C(bl
t). (2.6b)

Equations 2.6 can be derived from the Taylor expansion of C(θ).

For the case where ŷ represents the outputs for the entire dataset x passed
to a NN, the GD algorithm in equations 2.6 is referred to as batch GD.

Note that many DL frameworks such as PyTorch [103, 104] and Tensor-
Flow [1] handle gradient computation of NNs by automatic differentia-
tion [3]. In short, automatic differentiation in these frameworks is done
by compiling the network operations to a computational graph. The mul-
tiderivatives are obtained by computing the partial derivatives between
each node in the graph, and then multiplying the connecting nodes to-
gether as an approximation to the multivariate chain rule.

The parameters are updated with respect to the loss, measuring the per-
formance of the network at each iteration. Thus, the network parameters
adapt more of the underlying patterns of the training data with each itera-
tion. Therefore, the NN parameters are said to be learnable, as mentioned
at the beginning of Section 2.4.1

Figure 2.4: This figure illustrates the concept of a gradient descent
algorithm for one dimension using an adaptive learning rate.

In Equations 2.6, η denotes the learning rate hyperparameter. Its function
is illustrated in Figure 2.4. This defines the step size at each training
iteration in the direction of the negative gradient. A too small learning
rate requires many iterations before convergence but using a too large
learning rate can cause the algorithm to overshoot and fluctuate around
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the minimum, or in other cases cause the algorithm to diverge from
the minimum. Introducing learning rate schedulers [15] to the training
scheme is one way of avoiding problems of either a too large or too small
learning rate. This method reduces the learning rate by some pre-defined
schedule, e.g., by reducing the learning rate by a factor n for every m
epochs if the loss has not improved by some threshold.

Mini-Batches and Stochastic Gradient Descent

Computing the gradients of the loss function for a substantial amount of
input data is computationally expensive and time inefficient. Dividing
the entire training data into mini-batches and updating the parameters
with respect to one mini-batch reduces iteration time [145]. This is be-
cause it requires less computational capacity and hence increases time effi-
ciency. An increasing convergence time is a negative consequence of using
mini-batches. For the case of selecting instances randomly into the mini-
batches, the optimization scheme is referred to as stochastic mini-batch GD
or mini-batch stochastic gradient descent (SGD). Using a different mini-batch
with every iteration brings some stochastic variation to the computed loss
because every mini-batch is a random combination of different inputs. Us-
ing mini-batch SGD comes with the benefit of computational efficiency.

Using mini-batches introduces the batch size as one additional hyperpa-
rameter to the optimization scheme. The batch size is the amount of train-
ing data for one batch. When choosing a batch size equal to a single train-
ing instance, the algorithm is known as SGD [69].

Momentum Optimization

There are several methods that can be added to the GD algorithm to
shorten the computation time of one optimization step but can also handle
saddle points of loss functions [16]. Many methods utilize momentum [110]
to accelerate convergence time. Different adaptations of momentum leads
to several versions of GD, such as Root Mean Square Propagation (RM-
SProp) and Adaptive Moment Estimation (Adam) [70].

The concept of momentum was introduced in the momentum optimiza-
tion algorithm [107]. The momentum vector takes the previous gradients
into account when computing the gradient. This is done by computing
the exponentially decaying moving average of past gradients. The local
gradient (multiplied by η) is subtracted from the momentum vector. Mo-
mentum speeds up convergence in GD by increasing their ability to escape
plateaus and ravines of loss surfaces [132]. In momentum optimization,
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the parameter vector θ is updated by [145]

mt = βmt−1 + η · ∇C(θt), (2.7a)
θt+1 = θt −mt, (2.7b)

where mt represents the momentum vector for iteration t, and β ∈ [0, 1]
represents the momentum scaling parameter which scales the grade of
momentum. θ represents the objective network parameter vector used the
optimization.

RMSProp

RMSProp2 is a GD-based optimization algorithm that requires little tuning
of the learning rate hyperparameter due to having an adaptive step size.
The gradients for each iteration can vary in magnitude, which leads to
difficulty in determining a global learning rate. The local gradient is
scaled by the most recent gradients by being divided by an exponentially
decaying average of squared gradients, such that [145]

st = γst−1 + (1− γ)∇C(θt)⊗∇C(θt), (2.8a)

θt+1 = θt −
η√
st
⊗∇C(θt), (2.8b)

where⊗ represent the Kronecker product [146]. Equations 2.8 ensures that
each step size adapts by adjusting to the steepness of the slope of the loss
surface. The additional hyperparameter, the decay rate, γ, controls the
grade of adjusting/scaling, and is typically set to 0.9 [117]. Thus, even for
small local gradients, scaling the gradient becomes significant in escaping
plateaus and saddle points in the direction needed.

Adam

Adam [70] is an optimization method combining the features of momen-
tum optimization and RMSProp. Adam can be viewed as an extension
of RMSProp by including momentum. Utilizing both momentum and an

2The algorithm was introduced by Hinton et al. in 2012 in a lecture in a course on
NNs. It is also famous for not being published despite being a popular GD method. The
lecture can be found at slide 29 on the following url: https://www.cs.toronto.edu/~tijmen/
csc321/slides/lecture_slides_lec6.pdf
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adaptive step size is mathematically represented by [145]

mt = β1mt−1 − (1− β1)∇C(θt), (2.9a)
st = β2st−1 − (1− β2)∇C(θt)⊗∇C(θt), (2.9b)

m̂t =
mt

1− βt
1

, (2.9c)

v̂t =
vt

1− βt
2

, (2.9d)

θt+1 = θt −
η√
v̂t
⊗ m̂t. (2.9e)

Equation 2.9a represents the exponentially decaying average and Equa-
tion 2.9b represents the adapting step size from RMSProp. Since mt and
st are initialized by zeros, the authors behind Adam argue that the pa-
rameters are biased towards zero. Because of that, Equation 2.9c and
2.9d represent the bias-corrected computations that adjust for this, and the
bias-corrected terms are hence used to update the parameters θ in Equa-
tion 2.9e.

2.4.4 Initialization of Neural Networks

Building a NN requires a choice of parameters to the hidden layers. The
weights are typically initialized by some distribution. He initialization [48]
(also called Kaiming initialization) and the initialization proposed by
Xavier Glorot and Yoshua Bengio [41] are the most commonly used
initialization methods. They are similar, but the former is an initialization
scheme drawn from a zero-centered Gaussian distribution, scaled by√

2/nl, such that
W l ∼ N (0,

√
2/nl−1), (2.10)

where W l is the weight matrix in the hidden layer l, nl−1 is the number of
neurons in the previous hidden layer l− 1, andN represents the Gaussian
distribution. This division is done elementwise to the matrix.

Xavier Glorot and Yoshua Bengio’s initialization draws weight values
from the uniform distribution in [−1, 1], scaled by 1√nl−1

, such that

W l ∼ U
[
− 1√

nl−1
,

1√
nl−1

]
, (2.11)

where U represents the uniform distribution. Both initialization schemes
initialize all the bias vectors with zeros.

2.4.5 Overfitting in Neural Networks

Overfitting is a common problem of NN training [96]. This occurs after
the NN has adjusted its model parameters during training and becomes
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too well-tailored onto the training data [39, p. 28]. The resulting NN is
deemed overfitted to the training data, such that it is can capture the noise
of the training data. This makes the NN unable to generalize onto unseen
data. Hence, an overfitted model will obtain a high score by predicting on
the training instances, but a low score on unseen instances.

Variance and Bias

The generalization error of machine learning models can be characterized
in terms of its variance and bias [39, p. 136]. Variance is a metric that
represents the dispersion in a given dataset by computing the distance
from a given instance relative to the dataset mean. A dataset with large
amounts of noise will have a high variance, which is why variance is often
mentioned in the context of overfitting. In mathematical terms, the sample
variance is represented by

Var(x) =
1

N − 1

N

∑
i=1

(xi − x̄)2, (2.12)

where x̄ represents the dataset or sample mean, xi represents a single
instance, and N represents the sample size. A model with a high variance
is said to be an overfitted model [39, p. 136]. In the opposite case,
where the model has not yet captured the underlying characteristics of
the training data, the model is said to underfit the training data due to a
large bias [39, p. 30]. Bias is a metric which represents the systematic error
of predictions given by a model [39, p. 136]. This is given by

Bias(ŷi) = E[ŷi]− yi, (2.13)

where yi denotes a ground truth instance, and E[ŷi] represents the mean
prediction of yi given by multiple model predictions. A common scenario
for a high-bias model is that it has stopped training before it was able to
learn the characteristics of the training data.

Dividing the Dataset

A common practice in DL is to divide the total dataset into three parts:
a training, validation and test dataset. The training set is used to train
and update the model parameters. The validation set is held back dur-
ing gradient computation but used during the training phase only for the
forward pass in order to tune the configuration of hyperparameters in the
model [39, p. 32].

The test set is held back until the final one-time evaluation of the trained
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model. Hence, the loss function during evaluation can be used as an un-
biased scoring metric based on this last evaluation to assess its general-
ization quality [39, p. 31]. The use of loss functions as scoring metrics is
described in Section 2.7.

Bias-Variance Tradeoff

Bias and variance are conflicting metrics. Hence, one cannot simultane-
ously minimize both. In model training, the aim is to obtain a balance
between the two. A common procedure is to compute the model loss with
respect to the training data and another loss with respect to the valida-
tion data with each training iteration. The model becomes more biased
toward the validation set for each iteration but tracking the training- and
validation loss set for each iteration can assist in detecting overfitting in
NNs [38].

For each iteration, the training loss will typically become smaller and
smaller, and thus leading to an overfitted model with high variance. The
validation loss will reduce up to a certain point of iteration but will in-
crease because the model becomes more unable to generalize. However,
stopping model training too early leads to a model of high bias. With the
tradeoff between bias and variance during model training, the goal is to
continue training until validation loss is minimized [39, p. 142].

2.5 Convolutional Neural Networks

For larger images, regular feed-forward NNs become inefficient. Introduc-
ing convolutional layers (referred to as convolutions) to the feed-forward
NN architecture gives rise to CNNs. They are a class of NNs specifically
designed to analyze image data. Because convolutions have been proven
to capture the characteristics of image data, almost every application in the
field of computer vision is based off the use of CNNs. These applications
include object detection, image segmentation, image classification, image
reconstruction, video tracking, etc.

One large-scale CNN, AlexNet [72], showed large improvements com-
pared to previous networks, and won the 2012 ImageNet Large Scale Vi-
sual Recognition Challenge [19]. Shortly after acquiring the state-of-the-
art performance, CNNs gained a large surge in popularity. The success
of AlexNet spurred papers that proposed more innovative CNN architec-
tures that have long ago surpassed its performance, such as VGGNet [126],
GoogLeNet [133] and ResNet [47].

This section starts off by introducing the most fundamental building
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blocks of a CNN, before diving into the most modern architectural CNN
designs of today’s time described in the next section.

2.5.1 Convolutional Layer

The convolution operation in a convolutional layer invokes two important
principles that exploit the characteristics of images [145]:

1. Locality, meaning that only a small local area of the image is used to
compute the corresponding hidden representations.

2. Translation invariance, meaning that the CNN should be indepen-
dent to translation of the input image, meaning that the network
should react the same to a patch in the image, no matter where in
the image it appears.

Images given as input to CNNs are multidimensional arrays that are re-
ferred to as tensors. The images are typically four-dimensional tensors
where two dimensions represents the spatial dimensions, one dimension
represents the color channel since images have RGB values representing
colors in the image, and one dimension representing the batch size.

Another contrast to the NNs introduced earlier is that the layers of CNNs
are not fully connected. Given this, each neuron in, e.g., the first hidden
layer is only connected to a small part of the input image. The connections
are small, localized regions referred to as a local receptive field for a neuron.
Having a restricted receptive field means that the first principle is invoked.
This mechanism allows for the network to learn many small low-level fea-
tures, then assemble these into high level-features in the deeper parts of
the networks [39].

Each neuron in a hidden layer learns a small patch of the image, where
the neuron and the image patch are connected by a weight matrix and
an overall bias. The local receptive field slides across the input image (or
over each image patch illustrated by the empty black square in Figure 2.5)
and looks for the same feature at different locations in the image since
each neuron in a hidden layer shares the same parameters. The neuron’s
shared weights and bias are represented by a tensor, called a kernel. Its
size is equal to the local receptive field, referred to as the kernel size. For
example, in Figure 2.5, the kernel size is 3× 3. Thus, the network does not
need separate detectors (kernels) looking for the same feature [82], which
significantly reduces the number of parameters in a CNN. This level of
parameter sharing invokes the second principle.
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Figure 2.5: The figure illustrates a convolutional layer of one input channel
and filter size of 1. The leftmost matrix (in gray) represents the input
tensor, the middle matrix (purple dots) represents the kernel, and the
rightmost matrix (in blue) represents the output tensor.

By adapting the notation in Section 2.4.1, suppose that layers l − 1 and
l contain one kernel each. Then the input to layer l, represented by the
tensor xl−1

i,j activated by an activation function σl of layer l, is given by

al−1
i,j = σl(xl−1

i,j ), (2.14)

where i, j are iterators over the height and width of the input al−1
i,j . Given

this, the output of the convolutional layer l with kernel size kx× ky is given
by [39, p. 439]

zl
i,j = bl +

kx−1

∑
m=0

ky−1

∑
n=0

W l
m,n ∗ al−1

i+m,j+n, (2.15)

where ∗ is the 1D convolutional operator. This convolutional mapping in
Equation 2.15 is referred to as the feature map [39, p. 436].

If the number of kernels in layer l− 1 (which also corresponds to the num-
ber of output channels Cout of layer l − 1) is larger than one, one must in-
clude a third summing operator to Equation 2.15. Suppose that there are
multiple kernels Cout of layer l. Given this, the weight tensor connecting
layers l − 1 and l is represented by W l ∈ RCout×Cin×kx×ky and bl ∈ RCout ,
and the operator ∗ becomes ?, which represent the 2D convolutional oper-
ator. A collection of kernels in the same layer (also known as the channel
size) is known as a filter [39, p. 436].

In addition to the kernel size hyperparameter of each convolutional layer,
one must also determine the stride. This is the step size of the sliding
window over the image, which can connect differently sized feature maps
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together [39, p. 432]. In Figure 2.5, the stride is equal to 1 because it moves
only one pixel at a time before the convolutional operation at the next loca-
tion. One can imagine that the window starts from the left corner and ends
at the right corner in the input feature map, thus moving in a left-right di-
rection for each row. The stride, together with kernel size, determines the
output feature map from the convolution layer.

To summarize, a convolutional layer applies a trainable filter which con-
sists of multiple kernels, which makes it able to detect multiple features at
once independently of where they appear in the image [39, p. 437].

2.5.2 Pooling

A pooling layer also known as a downscaling layer, reduces the spatial
dimension in a CNN. This downscaling mechanism reduces the compu-
tational cost for all subsequent convolutional layers by reducing the to-
tal number of computations. Pooling layers can drastically minimize the
number of parameters in a CNN by condensing the information in the im-
age [82], thus reducing the need for deeper networks as the receptive field
of each hidden layer increases by doing so. Pooling layers also provide a
slight rotational invariance, a translational invariance at a larger scale, and
scale invariance [39, p. 458].

There are several variants of pooling. For example, average-pooling com-
putes the average of each window, whereas max-pooling computes the
maximum of each window [145]. Average-pooling are more computation-
ally expensive than max-pooling. Given some pre-determined output size,
adaptive average pooling uses the average-pooling operation, in addition
to calculating the correct kernel size to produce the desired output size.
One extreme version of average-pooling is global average-pooling, which
takes the average of an entire feature map [81]. No matter what variant,
pooling operations reduce the output size after each convolutional layer.

Two hyperparameters connected to the computations in pooling layers are
the kernel size and stride of the sliding window. Figure 2.6 demonstrates
the effect of a pooling layer. Note that the stride can also be referred to as
the scale factor as it, together with the kernel size, determines the scaling
of the output tensor relative to the input.

30



Figure 2.6: A two dimensional max-pooling layer with a 3× 3 kernel and
a stride of 3. The spatial dimensions are reduced by a factor 3.

2.5.3 Upsampling

Upsampling layers counteract the operation done by pooling layers. They
do so by increasing the spatial resolution of a feature map. There are
several methods for upsampling. Bilinear upsampling (or bilinear inter-
polation) uses the nearby pixel values to calculate a weighted average of
the new nearest pixel value by using linear interpolations [123]. Nearest-
neighbor upsampling copies the values of the neighboring pixels [99]. Di-
lated convolutions (also called atrous convolutions) use a large kernel size,
where some values are set to zero to minimize the number of parame-
ters [11]. Transposed convolutions (or deconvolutions) inject additional
zero-valued pixels at random locations in the input image before the con-
volutional operation to increase the output resolution [123].

Two hyperparameters connected to all variants of upsampling layers are
the scale factor and stride, which are equivalent to the ones for a convolu-
tional layer. A scale factor of two can double the size of the original image,
a scale factor of three triples it, and so on.

Dilated convolutions include an additional hyperparameter to the scaling
factor, which is the dilation factor. This controls the level of dilation of the
kernel, i.e., the factor of weights set to zero.

2.5.4 Dropout

Dropout is a regularization technique used in DL models [53] to reduce
overfitting of NNs [127]. One applies dropout to a layer by randomly
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ignoring or zeroing out the values of neurons during network training.
Figure 2.7 demonstrates the mechanisms of a dropout layer in a NN.

Figure 2.7: This figure illustrates the effect of a dropout layer in a fully
connected neural network. From the left: (1) a network before dropout, (2)
a network after applying dropout. The circles with red crosses represent
the neurons that are dropped.

One hyperparameter linked to the use of dropout layers is the dropout rate,
which is the probability of one neuron being dropped.

Because of dropout layers, a network of one forward pass can be viewed
as an entirely different network compared to one in the next forward
pass [93]. Hence, the effect of dropout can be represented by an ensemble
of different NNs [127]. Model ensembling has proven to increase model
performance of NNs, as seen in many different applications [24, 136].

2.5.5 Batch Normalization

Batch normalization, or batch-norm, is a technique added to deep CNNs
to provide better gradient flow and avoid exploding gradients. The in-
ventors of batch-norm state that it improves convergence by handling the
internal covariate shift problem [58]. One recent study argues that batch-
norm layers accelerate optimization by smoothing the loss surface [119].
Despite these disagreements on why batch-norm improves training, it has
empirically shown to accelerate optimization [58]. Batch-norm ensures
centering and rescaling of feature maps it is applied to, which hinders di-
vergence due to the controlled magnitude of gradients during training.
Therefore, it is considered a standard practice to include batch-norm lay-
ers in CNNs [47, 65, 66].

As described in the original batch-norm paper, batch-norm should be ap-
plied as a layer after the activation function [58]. At a batch-norm layer, the
input feature map from a previous layer is normalized by subtracting the
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mean and dividing by the standard deviation based of the current mini-
batch statistics. Given this, batch-norm does not work on models where
batch size is set to one as each feature map would become tensors of zeros.

Consider the feature map al
c ∈ B of mini-batch B from the lth layer and

cth channel, as input to a batch-norm layer BN, such that [145]

BN(al
c) = γ · al

c − µ̂B
σ̂B

+ β, (2.16)

where µ̂B and σ̂B is the mean and standard deviation of mini-batch B. The
parameters γ, β are learnable scale and shift parameters, respectively, to
each individual batch-norm layer. These parameters have shown to give
improved results of CNNs [33], and are therefore standard to the batch-
norm layer of TensorFlow and PyTorch.

2.6 Modern Convolutional Neural Networks

CNNs have changed to a great extent since their first introduction in the
1980s [77]. Significant improvements of the performance of CNNs are
achieved through architectural advancements. These innovative architec-
tures exploit skip connections, information across channels, and combine
feature maps of multiple scales.

This section covers several CNNs that introduce the state-of-the-art ar-
chitectural improvements that have influenced many of today’s research
projects [65, 134].

2.6.1 ResNet

The Residual Neural Network (ResNet) paper introduced the concept of
residual learning to CNNs [47]. Residual learning is achieved with skip
connections added to the CNN architecture to avoid the problem of van-
ishing gradients of deeper networks [41]. Skip connections have shown to
efficiently utilize the upstream feature maps, resulting in significant per-
formance boosts compared to deep CNNs that lack them. This was proved
by winning the 2015 ImageNet Large Scale Visual Recognition Challenge.
The simple improvement of including residual learning allows for accel-
erated training, deeper networks and lower convergence.

Instead of learning the underlying mapping 2.1 for each added layer, one
layer can learn the residual mapping f (x) − x from an upstream layer.
When a skip connection connects two blocks of layers in a CNN, as illus-
trated by the dotted lines in Figure 2.8, the downstream block only learns
the residual mapping by using f (x) as input to the activation function.
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Figure 2.8: Skip connections how they are commonly utilized in a CNN.
The solid arrow between each block represents a batch-norm layer (BN),
a ReLU (σ) layer and a convolutional layer (Conv). The dotted arrows
represent the skip connections added to the ReLU layer as input.

As CNNs becomes deeper, the number of non-linear activations increases.
Given this, the high-dimensional loss function surface becomes of more
non-convex nature [16]. Skip connections reduce this effect by zeroing out
weights of intermediate layers, which in turn reduces the non-convex na-
ture of the loss surface.

Each batch-norm layer in the ResNet architecture is followed by a convolu-
tional layer, which is again followed by a ReLU activation layer. For deep
CNNs, this activation function is deemed as a standard activation function
because it handles the vanishing gradient problem. This is because it does
not produce small derivatives. The gradient of ReLU is either 1 for inputs
larger than zero, or 0 for negative inputs. Therefore, multiplying multiple
ReLU derivatives together results in a product of either 0 or 1.

2.6.2 U-Net

U-Net is a CNN architecture originally designed for biomedical image
segmentation [115]. U-Net adapts its name from the illustrative shape of
its U-shaped architecture, as depicted in Figure 2.9.
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Figure 2.9: This figure represents a simple example visualization of the U-
Net architecture performing segmentation of an input image. Each gray
box represents a feature map. The blue boxes represent copied boxes from
the first half of the network added from the skip connections.

The architecture adapts the skip connections from ResNet. The skip con-
nections allow the strength of low-level features to be combined with high-
level features to maintain resolution of the image as it traverses the net-
work, but at the same time maintain the high-level semantics of the image.
U-Net is commonly used as a baseline model in many DL applications. It
is also known for its simple design and for being able to achieve the state-
of-the-art performance with little (a few hundred images) training data
due to using data augmentation methods, more specifically, elastic defor-
mations to the images in order to distort them.

In Figure 2.9, the first half of U-Net architecture learns a set of features.
Each feature can be treated independently. When going deeper into the
network, one ends up with a low-resolution feature map with a large re-
ceptive field containing low-level feature representations. They can con-
tain strong semantic information but usually lack spatial information due
to the low resolution. Due to the strong semantic information contained
within these features, they are considered semantically strong. In contrast
to these, the features at the shallow parts of the network have a higher res-
olution but contain low semantic information and are hence considered
semantically weak.
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As seen in Figure 2.9, the skip connections act as bridges which connect the
semantically strong features in the first half with the semantically weak
features in the second half. Combining these features results in a high-
resolution output containing high-level semantics. Such an output makes
the network suitable at predicting the “what” and the “where” in an im-
age. U-Net a typical network design used in semantic segmentation prob-
lems, where there is a pixel-to-pixel correlation between the input- and
output image.

The first half of the network is considered the encoder part of the network.
The encoder translates the image into a set of semantically strong low-
level features. Learning semantically strong features may correspond to
specific lines or textures in the image. The second half, called the decoder
part of the network, extracts the low-level features to high-resolution fea-
ture maps without losing the semantically strong features. The decoder
consists of concatenating the features from the skip connections at every
third block and upsampling the features by, e.g., transposed convolution
(as included in the original U-Net paper) or bilinear upsampling.

A collection of layers at each height level in Figure 2.9 represents a block.
The first four blocks in the original U-Net architecture have convolutional
layers that consist of a filter size of [64, 128, 258, 512] kernels, respectively.
As more pooling layers are applied in the downsampling part, the pur-
pose of the increasing filter size is to increase the capability of learning
semantically strong features, each with a large receptive field. However,
in the upsampling part, the blocks have a filter size in the exact opposite
order as the downsampling blocks.

Each convolutional layer in the U-Net architecture is followed by a ReLU
activation layer to avoid the problem of vanishing gradients in deep
CNNs.

This encoder-decoder architecture is common in semantic segmentation
problems. Other CNN architectures can be used as an encoder in a seg-
mentation problem as well, such as AlexNet, ResNet or a VGG network.

2.6.3 Squeeze-and-Excitation Network

The squeeze-and-excitation (SE) Network introduces the SE block [56],
which is included in several modern CNN architectures [65, 66]. The SE
block combines the information across channels of the feature map X to
recalibrate the channels of feature maps by dependencies across channels.
Figure 2.10 represents the computations of a SE block.
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Figure 2.10: The SE module of the SE network. The left gray box represents
the original feature map, the second gray box represents the output from
the squeeze module, the leftmost multi-color squeezed box represents the
per-channel weights from the excitation module, and the rightmost multi-
color box represents the original feature map multiplied with the per-
channel weights.

The squeeze part refers to the use of an adaptive average pooling module to
downscale the feature maps at each channel to 1× 1, whereas the excitation
part refers to applying a fully connected linear layer to reduce the num-
ber of channels by a scaling factor r, a ReLU activation layer, followed by a
fully connected layer that maps the number of channels back to its original
number, and lastly a Sigmoid activation layer. The authors of [56] argue
that the Sigmoid layer allows multiple channels to be emphasized at once.
Finally, the channel weights of the excitation are multiplied elementwise
(represented by ⊗ in Figure 2.10) to the original input feature X.

The squeeze module collects the global information of each channel,
whereas the excitation module obtains the per-channel weights.

2.6.4 DeepLabV2

DeepLabV1 [12] is a CNN specifically designed to perform semantic seg-
mentation and addresses the problem of resolution loss of feature maps in
Fully Convolutional Neural Networks (FCNs) by introducing Atrous con-
volutions (or dilated convolutions), whereas DeepLabV2 [11] introduces
atrous spatial pyramid pooling (ASPP) modules to DeepLabV1. The ASPP
block is added to the final feature map of the network to recognize fea-
tures of different scales. Figure 2.11 represents the computations in a ASPP
module.
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Figure 2.11: This figure illustrates an example of an ASPP module with
four blocks containing an atrous convolutional layer with different kernel
sizes and dilation rates. Each feature map is concatenated followed by a
1× 1 convolution.

The ASPP module consists of several atrous convolution layers, each
with different dilation rates, used on the same feature map. Each atrous
convolutional layer is followed by a ReLU and batch-norm layer. Finally,
the outputs of the ASPP module is concatenated along the channel
dimension, followed by a 1× 1 convolution to reduce the channel size.

2.6.5 Attention

The intention of using an attention module in a CNN is to focus more on
the important features and suppress the unnecessary information [141].
The attention mechanism is in mathematical terms a weighted sum of
feature maps. The attention module typically consists of a batch-norm
layer, an activation function and a 2D (1× 1) convolutional layer. It takes
a C × H ×W feature map and outputs a 1× H ×W attention map. The
attention map is multiplied with the original feature map elementwise.
This product is argued to increase representation power by learning which
features to emphasize or to suppress [141].

2.6.6 Segmentation Models

U-Net and ResNet (used as an encoder) are especially popular in semantic
segmentation. Semantic segmentation aims at dividing the entire image
into different semantic classes. In many applications using CNNs, one

38



typically uses fully connected linear layers at the end of the CNN in or-
der to output a vector of class probabilities. However, in segmentation
problems, one instead keeps a fully convolutional neural network (FCN)
architecture to output an entire image. In contrast, the classification is per-
formed per-pixel, making the predictions represent a tensor of probability
scores at each pixel location.

In binary segmentation problems, one is interested in discriminating be-
tween a class of interest and a background class. Hence, the probabil-
ity scores must be mapped to the colormap representing the class value
by thresholding them (typically set by a value of 0.5) to values of 0 or 1,
where 1 traditionally represents the class of interest and 0 represents the
background class.

2.7 Metrics

A loss function is a requirement for computing gradients and updating
the model during the backpropagation. This is a metric that quantifies the
quality of a model output relative to the ground truth.

In binary semantic segmentation, one is interested in classifying all the im-
age pixels into either the class of interest or the background class. Given
this, the following metrics are formulated in terms of binary image seg-
mentation.

The following subsections provide detailed descriptions of common met-
rics used as loss functions and scoring metrics for validating the perfor-
mance of DL models in computer vision. More specifically, three of the
main metrics used in this thesis are presented, including their limitations.

2.7.1 Binary Cross-Entropy

BCE is a scoring metric that measures the difference between two
probability distributions for a set of events [62]. It is used as a loss function
for binary classification problems or in multi-label classification problems.
In mathematical terms, the BCE is defined as

BCE(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ)), (2.17)

where y is a single ground truth variable, and ŷ represents a predicted
value of a predictive model. The elements in the predicted image ŷ are
activated by the Sigmoid activation function before applying BCE, as each
pixel represents the probability of belonging to the background pixel.
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In many cases, it is common for one or multiple classes to be over-
represented in terms of the number of instances. Since BCE evaluates in-
dividual pixels, large objects (areas of pixels belonging to a specific class)
contribute more compared to the smaller ones. To overcome this problem
of class imbalance, one can use the weighted version of BCE where the
weight proportional to the under-represented class is larger relative to the
over-represented class. This is mathematically represented by

W-BCE(y, ŷ) = −(ρ · y log(ŷ) + (1− y) log(1− ŷ)), (2.18)

where ρ represents the weight value for the positive class.

2.7.2 Dice Similarity Coefficient

The DSC, also known as the F1 score or the Sørensen-Dice, is a
commonly used metric in computer vision tasks. The DSC is known
as easy to interpret and implement [113], which measures the spatial
overlap between two samples. It is popularly used in medical image
segmentation [150] and computer vision. Although first introduced in
1945 [23] as a scoring metric, it was not until 2016 it was used as a loss
function for training segmentation models [129]. The DSC is defined as

DSC(y, ŷ) =
2 · TP

(2 · TP) + FP + FN
, (2.19)

where true positive (TP) represents number of correctly predictive pixels.
FP is the number of wrongly predicted positive pixels, and FN is the num-
ber of wrongly predicted negative pixels.

The objective of semantic segmentation is to maximize Equation 2.19,
which represents the degree of overlap. This score ranges from 0, rep-
resenting no overlap, to 1, meaning perfect overlap between the ground
truth segmentation mask y and the predicted segmentation mask ŷ. Fig-
ure 2.12 represents an illustrative figure of what the DSC measures.

Most segmentation problems contain class imbalances, where the num-
ber of background pixels is typically dominating. In such cases, one can
obtain a large score by only predicting the background class. The DSC ad-
dresses this class imbalance problem by not taking the background class
into account.
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Figure 2.12: This figure represents what the DSC computes with two
masks (green and blue circles) as input. The yellow area in the numerator
represents the area where the masks overlap, also know as the the TPs.

DSC measures an overlap, hence its value becomes independent of how
large the area of the TP pixels is. Because of this, it holds the same value
independent of how large or small the ground truth area is, and the DSC
value becomes the same. This is also true for all overlap-based computer
vision metrics.

2.7.3 Intersection Over Union

The intersection over union (IoU), also known as the Jaccard index or
the Similarity coefficient, is a metric commonly used in computer vision
tasks [60]. The IoU is very similar to the DSC, but is in contrast mostly
used as a scoring metric. The IoU measures the degree of overlap between
two distributions. Mathematically, it is defined as

IoU(y, ŷ) =
TP

TP + FP + FN
. (2.20)

In Equation 2.20, the IoU ranges from 0 to 1, like the DSC in Equation 2.19.
The 1 represents a perfect overlap between the two distributions.

The IoU measures the ratio between the shared area of sample ŷ and y,
and the areas which are distinct between the two samples. Figure 2.13
gives a visual illustration of what the IoU measures in terms of segmenta-
tion masks.

IoU adapted as a loss function is referred to as the Jaccard distance. Because
one typically wants to minimize the loss function, the Jaccard distance is
thus formulated in terms of the dissimilarity between the prediction and
ground truth. Since IoU measures the similarity, the dissimilarity is mea-
sured by subtracting the IoU from 1. The same argument also yields for
DSC when using it as a loss function.
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Figure 2.13: The blue circles represent two different input masks. The
figure in the numerator represents the area where the masks overlap, and
the denominator represents the area of union between the two masks.

2.7.4 Limitations of Metrics in Segmentation Problems

Determining a metric for model evaluation and training is an essential step
in segmentation problems. Some metrics are known to be misleading in
these cases. For example, naively adapting the accuracy metric for binary
segmentation, can sometimes be maximizes whilst completely ignoring
the class of interest. This section describes three cases demonstrating the
limitations of the DSC and IoU.

The DSC and the IoU are not considered to be suitable metrics for seg-
mentation problems where the ground truth segmentation masks can be
small relative to the one pixel. Suppose that for a large (i.e., containing
hundreds of pixels) ground truth segmentation mask, the corresponding
two predictions that only differ 1 pixel from the truth will have an approx-
imately similar DSC or IoU score. In the case of a small ground truth mask
containing only 4 positive pixels as shown in Figure 2.14, suppose that
two similar segmentation predictions are made. With only 1 false negative
pixel that differentiates the two predictions results in a difference in DSC
and IoU of 78% and 67%, respectively. A metric where only a few pixels
have such a large influence is considered an undesirable property [113].
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Figure 2.14: The figure illustrates the limitations of DSC and IoU in
segmentation problems.

The DSC and IoU are also known to be susceptible to noise. Noise is rep-
resented by a single false positive pixel far outside the predicted segmen-
tation mask. In fact, wrongly predicting a single positive pixel can have
the same effect as nearly missing an entire object. Hence, these metrics
are dependent on the entire batch and have a large variance. If the entire
dataset size is divisible by the batch size, one can avoid per-batch scores
of high variances.

DSC and IoU are also not able to measure the difference in shapes of seg-
mentation masks. This means that for multiple different predictions of
a ground truth segmentation mask containing different shapes, the same
resulting DSC or IoU is shared between the shapes [113].

Figure 2.15: The figure represents how DSC and IoU are not able to equally
measure over- and under-segmentation in segmentation problems.

The DSC and IoU are not able to equally measure over- and under-
segmentation of the same shape, as illustrated in Figure 2.15. Over-
segmentation is where the predicted segmentation mask has the max-
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imum number of true positives but contains too many false positives.
Under-segmentation is when the predicted segmentation mask only has
too few true positives relative to the number of false negatives [113].

In summary, the IoU and DSC are know to be the most used overlap seg-
mentation metrics. Despite this, they share a common set of limitations.

2.8 Ethical Considerations in Artificial Intelli-
gence

The increasing awareness and urgency for explainability in AI are be-
cause it has become more common for AI technologies to affect our day-
to-day-lives on an increasingly larger scale. The need for efficiency and
effective reasoning is one consequence of the dominance of AI. Although
researchers understand the underlying mathematical principles of such
models, it is difficult to examine their inner function responsible for their
impressive results. The “black box” is the current image of AI research
today because the models consist of complicated NNs which researchers
are unable to interpret.

Given the impressive achievements of detection and diagnosis by AI
models in research, indicating that they will have a positive impact in
medicine. Despite this, real-world deployment of DL models in clinical
workflows are rare, and their “black box”-nature is responsible for many
of the existing key challenges for delivering clinical impact with AI.

Datasets can contain systematic racial bias which ultimately affects the
classifiers trained on these datasets [2, 17, 97]. This has been seen in a CNN
trained to detect melanoma in images of skin lesions. The resulting model
underperformed on images of skin lesions on people of color because the
training data consisted of predominantly fair skinned patients [45]. Cases
such as these show how trained AI models can obtain a potential risk of
unintended bias towards minorities due to bias contained within in the
datasets. Insight into the AI model can help to ensure that the predictions
are unbiased to prevent the existing patterns of exclusion and inequality in
society. An interpretable model which provides such insights can ensure
fairness by preventing possible discrimination against underrepresented
groups [26, 92]. Hence, if such “black box”-approaches are to be used in
the medical domain, they need to be used with knowledge and responsi-
bility.

AI models’ lack of interpretability, explainability, and transparency make
them untrustworthy in medical applications where the risks of decision-
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making tasks are high. AI models have in many cases seen to outperform
or even be on par with experienced physicians [45, 71, 91, 101, 109, 147,
148]. The potential of what they can offer combined with the high risks
of decision-making tasks in the medical domain is one of the strongest ar-
guments in favor of explainability. Explainability can be used as a tool to
increase accountability of AI models. In this context, accountability is de-
fined as the ability to determine whether a decision was made in line with
procedural and substantive standards. Accountability is therefore making
someone responsible if those standards are not met [27].

Explainability is used to reveal the reasoning behind individual decisions
of AI models, which in addition can prevent and rectify errors of predic-
tions. Because explainability can help to increase the accountability of
model predictions, research in XAI will not only help to facilitate the im-
plementation of AI in the medical domain but is also able to establish and
increase trust. Therefore, XAI generally offers enormous opportunities for
the medical domain [55]. For example, it can help to identify systematic
errors and detect results based on wrong assumptions [74, 75]. Hence, the
explanations and interpretations can help to facilitate causality. Some of
the explainability methods in the next section reveal such errors, and they
are some of the most popular methods of explainability used today.

2.9 Explainable Artificial Intelligence

XAI is the research field that aims to obtain an understanding of how an
AI model arrives at a decision. Most DL models lack interpretability due
to their non-linear mappings that process the image from raw pixels to
feature representations, and finally to the final classification. This “black
box” nature of DL models is therefore a considerable drawback when con-
sidering their integration in safety-critical applications, because it hinders
the human experts from being included in their decision. XAI is needed to
establish fairness, causality and trust between the user and the model [26].

Explainability is highly relevant for DL applications such as in medical
diagnostics, because the cost of making wrong predictions can determine
the difference in human life and health. Hence, an explainable medical
diagnosis system is therefore needed to gain trust of both physicians and
patients.

In the medical domain, obtaining a correct prediction with inappropri-
ate reasoning can be dangerous. The AI model should try to extract and
review the same features as the medical experts to make the correct as-
sociations between the disease and its features. With this considered, the
model can be able to support medical experts in making a comprehensive
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assessment of the treatment at hand. Therefore, building systems that can
visualize model decisions, model bias and uncertainty of the prediction
model is of utmost importance to ensure safe decision making and facili-
tate trust between DL models and physicians.

The methods described in the following subsections address the “black
box” problem of DL models and provides a short overview of the differ-
ent well-known methods of XAI.

2.9.1 Feature Visualization

XAI methods can be as simple as visualizing what a CNN really learns.
This method is known as feature visualization [29, 94, 144]. One of exam-
ple of this is depicted in Figure 2.16.

Feature visualizations allow the end-user to observe how the CNN model
learns unique representations based on a set of images, giving insight into
the hidden layers. This technique visualizes the activation of a specific
layer as an input image traverses the model. Erhan et al. [29] argue that
these visualizations can be used to compare learned features across differ-
ent models tested on the same dataset to understand the test error.

Figure 2.16: Results from [29] showing feature visualization of multiple
hidden units in a hidden layer of a NN trained on images containing
handwritten letters.

Visualizing features is an optimization problem, and by doing so one must
find the input that maximizes the activation-specific trained feature map
of a CNN. Given this, one chooses an image to optimize, uses it as input
to a trained CNN, creates a loss based on the negative of the model output
and the feature map of interest, and finally adds L2 regularization and to-
tal variation loss. The input image is thus iteratively optimized using GD
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to maximize the effect of a feature map.

In practice, one finds the maximum activation by searching through a set
of training images, then selects the set that maximizes the activation. The
methods introduced in the sections below have been shown to provide in-
sights during model training, and one method shows how XAI approaches
can reveal systematic biases of a specific class in a classification task.

2.9.2 Grad-CAM

Feature attribution methods are an additional concept of XAI. One such
gradient-based approach called Grad-CAM (Gradient-weighted class acti-
vation mapping) has become popular over the last few years [121]. This
is part of XAI because feature attributions explain how much each fea-
ture contributed to a prediction of a specific class. Grad-CAM works by
choosing a convolutional layer in a CNN and then examining the gradient
information flowing through that layer.

This technique uses the gradients of a classification score with respect to
the feature map activations of a convolutional layer. The gradients are
then global average-pooled to obtain the per-neuron importance weights.
The authors of Grad-CAM argue that the weights capture the important
values of a specific feature map for a specific class. The original paper ap-
plies Grad-CAM to the last fully connected layer because it has the best
compromise between high-level semantics and spatial information. De-
spite this, the technique can in principle be applied to any layer in a CNN.
The result can be visualized as a heatmap and provided to a human ob-
server for verification and validation in order to gain insights into what
the model has learned.

Class activation maps allow the user to verify if a specific part of the in-
put image may have “confused“ the network, causing it to make a wrong
prediction. Recent adaptations of Grad-CAM have shown state-of-the-art
performance in DL-based classification and detection on medical data.

Hicks et al. [52] show how Grad-CAM can provide explainability in a
CNN classifying sex from electrocardiograms (ECGs). Their results show
how the trained network analyzes the ECG like a trained cardiologist. De-
tecting sex from ECGs alone is known to be a near impossible task for
human experts, but their results show that they were successful with an
89% accuracy. Some of their results are shown in Figure 2.17

47



Figure 2.17: This figure shows one example of the use of Grad-CAMs in
ECGs [52].

Panwar et al. [102] propose a Grad-CAM approach in lung X-ray images.
They adapted a transfer-learning approach on binary classification be-
tween Covid-19 and non-Covid-19 positive patients, obtaining an accu-
racy of approximately 96%. Non-Covid-19 positive patients had either
Pneumonia or other pulmonary diseases. The authors utilized Grad-CAM
to make heatmap representations on the X-ray’s. Their results revealed
that the patients diagnosed with Pneumonia had greater chances of being
classified as a false positive by the DL algorithm.

One non-CNN approach, such as the one provided by He et al. [49], pro-
poses a feed-forward NN architecture to classify post-operative complica-
tions after lung cancer surgery. Their training data were based on tabular
patient data consisting of 36 features. They included the use of Grad-CAM
to perform feature selection such that they were able to rank the features
according to their importance.

2.9.3 Layer-Wise Relevance Propagation

One popular feature attribution method is by using Layer-Wise Relevance
Propagation (LRP) [74]. By propagating the model output backwards
through the model, one can find the relevance score (attribution) for each
layer. Each relevance score for each input pixel can be mapped to a col-
ormap, and hence be used to visualize the feature attribution in terms of a
heatmap.

One groundbreaking reveal provided by the LRP method showed that the
winners of the PASCAL Visual Object Classes (VOC) Challenge [31] were
able to predict the class “horse” because these horse images contained a
copyright watermark [75]. Hence, the model was trained based on the
wrong association, and removal of the watermark in the horse images
resulted in misclassification. This result demonstrates how a model can
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make predictions based on the incorrect associations. Models that learn
these wrong associations are commonly referred to as “Clever Hans” pre-
dictors, which are named after the horse that was able to count [118]. It
was however later revealed that the horse was in fact not able to perform
these calculations, but gave this impression based off the questioners’ re-
actions.

2.10 Uncertainty Estimation

In applications where DL models give high-stake predictions, one requires
the model to not only give accurate predictions, but also give some in-
formation about the quality of the prediction. For prediction models, the
quality of prediction corresponds to their predictive uncertainty estimates.
Uncertainty can be used to assess the undesirable behavior of a trained
model. For segmentation problems, the pixel-wise uncertainty estimates
can help at verifying the pixels that were omitted during thresholding, and
allow for human experts to review the predictions and the model itself to
prevent potential silent failures by a DL model.

The two main approaches demonstrate how to estimate predictive uncer-
tainties of deep NNs by ensembling. Before going into these methods, the
idea behind ensembling will be introduced.

2.10.1 Ensembling

The main idea behind ensembling is to aggregate the strength of indepen-
dent models to obtain a collective higher score than that of a single base-
line model. The strength of each model is also believed to complement
one another, where some weaknesses will cancel out. This intuition is also
given in the Jury theorem. This proves that, under certain assumptions,
the increasing the number of voters increases the probability of arriving
with the correct verdict compared to that of a single voter [30]. This be-
havior is also demonstrated in the Wisdom of the Crowd effect [131], which
relies on the ensembles’ ability to filter out the noise of individual voters
to get closer to the ground truth.

Ensembling in AI today can be summarized into two main steps. The first
is to train different models, and the second is to combine their predictions.
What differs the models can be the model architecture, the use of different
training data, different training regimes, different initialization schemes,
etc. One can combine the predictions by averaging them, or by custom
voting rules. The two famous ensembling techniques are boosting [34] and
random forest [7].
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Ensemble methods have often been shown to outperform any single clas-
sifier [24], and are seen to win large DL competitions [136].

2.10.2 Monte Carlo Dropout

A paper by Yarin Gal et al. [35] from 2016 added another reason to
use dropout other than the benefit of reducing overfitting of NNs [127].
This paper showed that training a deep NN with dropout layers is
mathematically equivalent to Approximate Bayesian inference in deep
Gaussian processes [39, p. 360]. Given this, they introduce a technique
called MC dropout to estimate the predictive uncertainty of a deep NN
using dropout during inference time. This method can also increase model
performance. The following algorithm describes the procedure of MC
dropout:

1. Train a base model (deep NN) containing dropout layers.

2. Predict on a test set using the trained model with dropout layers
turned on.

3. Repeat step 2, N times.

4. Compute the mean and variance of the N predictions.

For a classification problem, the mean predictions are equivalent to the
mean probability provided by the N models. The variance of the N prob-
abilities (or predictions) represents the estimated predictive uncertainty of
the baseline model.

The use of MC dropout during inference time can be interpreted as an
ensemble of different models, with the different dropout layers that dif-
ferentiate them. Figure 2.18 represents the pipeline of collecting a mean
prediction with an ensemble of dropout models, where the dotted frame
contains the ensemble of MC dropout models. Using MC dropout em-
power the wisdom of the crowd-phenomenon without the necessity of train-
ing multiple deep NNs to construct the ensemble.
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Figure 2.18: This diagram represents an illustration of the MC dropout
pipeline. The networks inside the dotted rectangle represent the ensemble
of the trained baseline model where some neurons are dropped out during
inference time.

2.10.3 Deep Ensembles

Lakshminarayanan et al. [73] propose an ensembling approach to extract
the estimated predictive uncertainty called a deep ensemble. This method is
an alternative method to estimating the predicted uncertainties of an en-
semble of deep NNs. Fort et al. [32] show how ensembles perform well on
out-of-distribution samples such as for example adversarial examples [43].
This is because their random parameter initialization enforces different
loss trajectories during training of each model in the ensemble, where the
results are diverse predictions. This is further elaborated and discussed in
Chapter 5.

An example illustration of building a deep ensemble is depicted in Fig-
ure 2.19. Note that this pipeline does not include preprocessing steps, data
augmentation or adversarial training that can be additionally added to the
pipeline. The models in the deep ensemble have equal architecture and are
trained separately on the same training data.
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Figure 2.19: This diagram represents the deep ensemble pipeline, which
consists of an ensemble size of N models.

One method to ensure calibration of the models in the ensemble is to use a
proper scoring rule as a loss function during training [73]. Cross-entropy
loss is defined as a strictly proper scoring rule, but the DSC is not [42]. Ad-
ditionally, one must define the model architecture of the base model and
determine the ensemble size, which is the number of models (deep NNs)
in the ensemble.

Each individual model is initialized and trained independently, with the
same training dataset and the same set of hyperparameters during train-
ing. Furthermore, each trained model is used for independent prediction
of the test dataset. The predictions are converted to probabilities with a
Sigmoid activation function (for a binary problem), and the average prob-
abilities of each of the models in the deep ensemble are computed to con-
struct the final output. For semantic segmentation, the output after aver-
aging is thresholded to discriminate between the two classes. The variance
of the predicted probabilities of each model represents the estimated pre-
dictive uncertainties.

Lakshminarayanan et al. [73] conclude that the recommended ensemble
size is 5, because it dramatically reduces the test loss compared to a single
baseline model. For cases where the ensemble size is larger than 5, the
score will reduce but fluctuate somewhat. They also argue that adversar-
ial training can help reduce the loss on some datasets, but only for some
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metrics, and is therefore not strictly necessary in all cases.

2.11 Summary

This chapter contains medical background on CRC, colonoscopy, CAD in
medicine, including an overview of popular colonoscopy datasets used
today. In addition, we dive deep into DL tools and describe important
concepts of XAI, such as ethics and popular explainability methods used
today.

The first three sections in this chapter have a focus on the medical back-
ground. Section 2.1 gives a medical overview of CRC and its screening
methods. The next section, Section 2.2, contains an overview of CAD in
recent history and today. Section 2.3 contains information of three com-
monly used colonoscopy datasets containing polyps and pixel-wise anno-
tations of these.

The four next sections, sections 2.4, 2.5, 2.6 and 2.7, introduce theory on
NNs, CNNs, modern CNNs, and common metrics used in computer vi-
sion. These four components assemble the toolbox for all the experiments
conducted in this thesis.

The last part in this chapter largely focuses on XAI. Section 2.8 gives the
reader an overview of the ethical considerations of the lack of explain-
ability in DL and the importance of XAI. Section 2.9 introduces common
explainability methods used today in the context of various use-cases. The
last section on XAI, Section 2.10, introduces two important research papers
as their research methods introduced in these papers were adapted in this
thesis for further development.

The purpose behind this chapter is for the reader to obtain necessary
prior knowledge and therefore be able to understand the importance of
DL-based CAD in medicine. In addition, the reader obtains a general
overview of how explainable methods can determine the future of DL-
based CAD in clinical workflows. With this extensive background, the
reader can fully understand the experimental methods which are de-
scribed in the next chapter.
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Chapter 3

Methods

Detecting the cause of an error when building a large project or framework
can become extremely difficult if everything works up until a certain point.
Meeting obstacles along the road requires that one must try to detect the
error by performing a large amount of many small inspections along the
pipeline. These inspections include reporting the sub-products along the
pipeline, which can for example correspond to performance metrics, ten-
sor shapes, paths, iteration number, etc., which are reported back to the
programmer. Sometimes, one can also take mathematical operations for
granted by, for example, mixing the order of operations that is mathemat-
ically in-equivalent to the intended operation. These mistakes can be hard
to detect but may be more obvious to a researcher that has a perspicuous
understanding of what the results should look like.

This chapter describes the experimental setup for producing the results
presented in this thesis. Describing these methods aims to connect the
theory presented in Chapter 2 with the results which are presented later
in Chapter 4. Appendix A contains information on how all source code
related to this thesis can be found.

3.1 Resources

This section contains the details and descriptions of all the supporting
tools used to conduct the experiments introduced in this thesis. These
tools include the software, hardware and dataset used. We also provide
explanations as to why one framework was preferred instead of the other
and try to describe the reasoning behind the choices we made.

3.1.1 The Dataset

The dataset used in this thesis is Kvasir-SEG [106]. We used this for
training, validating and testing each DL model. This dataset underwent
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the same experiments, including preprocessing steps and dataset splits for
each training regimen corresponding to a CNN. Due to time restrictions,
we excluded the use of other annotated polyp datasets, such as CVC-
ClinicDB [4] and ETIS-Larib Polyp DB [125] described in Section 2.3.

3.1.2 Software

This section describes the software specifications and frameworks that
were used to produce the results in this thesis. All the hardware was pro-
vided by the Simula Research Laboratory.

The programming language Python 3.7.31 has been used to conduct all
experiments. Python is a general-purpose programming language that
enables fast implementation of various tasks. It is open-source, which al-
lows for continuous independent development of many popular frame-
works. One can easily organize, preprocess and visualize data which
makes Python a natural choice for many researches. Combined with the
open-source machine learning libraries such as PyTorch [104], Keras2 and
TensorFlow [1], Python becomes a powerful tool and thus a natural choice
for the experiments conducted in this thesis.

We use PyTorch [104] as a supporting framework for implementing CNN
architectures and metrics, preprocessing steps of images, constructing it-
erable data loaders, building training- and evaluation pipelines, and data
visualization. PyTorch is an open-source DL tensor framework which sup-
ports computational graphs to easily move tensors between the central
processing unit (CPU) and the GPU. PyTorch also supports automatic dif-
ferentiation as explained in Section 2.4.3.

Other researchers may prefer Keras combined with TensorFlow for DL
experiments, but in contrast to PyTorch, they do not utilize dynamic com-
putational graphs. Instead, they utilize static graphs, which require that
all graph nodes, i.e., variables such as loss function and other parame-
ters must be defined at the start of each execution. The graph is rebuilt
and reused for each session. Not only can this be inconvenient for other
applications, such as in NLP, but also when debugging. For example, de-
bugging a NN implementation without defining the loss function, which
is often the use-case for many researchers, can be difficult in the Keras and
Tensorflow environment.

The computational graphs are built dynamically in PyTorch, which allows
for flexible debugging and modification of the internals of the graph any-

1Full Python documentation can be found on https://docs.python.org/3/
2Keras documentation can be found on https://keras.io/
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time during development. One drawback is that the graph is rebuilt after
each iteration, meaning that each execution takes more time as compared
to static graphs. Since implementation of large NNs was a major topic in
this thesis, PyTorch allows for more efficient debugging due to its use of
dynamic graphs and was thus a natural choice for conducting the experi-
ments presented in this thesis.

3.1.3 Hardware

All experiments have been performed on the eX3 computing cluster
established by the Simula Research Laboratory. More specifically, all
models were trained on an NVIDIA Tesla V100 GPU3 with 16 GB random
access memory (RAM). The eX3 infrastructure has four Intel Xeon Gold
6130 processors. Each of these high-performance processors is a 64-bit 16-
core x86 multi-socket server microprocessor.

3.1.4 Memory Constraints

Each model was trained on a GPU that had a RAM of 32 GB. With this
considered, a set of measures had to be taken to train the deep and
highly memory-consuming CNNs. First, the input images were resized
to 256× 256 to reserve memory for training (compute the gradients) the
DL model. Second, a batch size of 32 was used to relieve memory. Third
and lastly, we trained the model with mixed precision on the GPU, which
is a memory-efficient computation scheme described in Section 3.3.4.

3.2 Preprocessing

This section contains the details on all preprocessing steps of the images
before they were used in model training, validating and testing. Note
that we did not include any postprocessing steps, as they are commonly
included in DL competitions to further increase performance.

3.2.1 Normalization

Image transformations were used as a preprocessing technique to adjust
the original pixel intensities of an image. The original input images con-
tain RBG color channels where the pixels of each channel can have differ-
ent intensity values ranging from 0 to 255. Normalization is a method for
re-scaling intensity values to a predefined range. Common normalization
techniques in image processing include re-scaling or clipping.

3More information about the NVIDIA Tesla V100 can be found on https://www.nvidia.
com/en-us/data-center/v100/
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Data standardization is one approach to normalizing an image. We used
this technique to each input image to adjust the intensity values of each
color channel to lie in the range ∈ [0, 1]. Normalizing the color channels is
done by subtracting the mean and dividing the by standard deviation for
each pixel using the statistics based on a specific color channel. Standard-
ization is useful when combining features of different magnitude across
different dimensions. If we do not scale the input images, the magnitude
of the learned feature maps can vary for each feature map. Therefore,
during optimization, multiplying the learning rate in the feature maps at
different dimensions can significantly differ from another. The result can
be the effect of overcompensating a feature in one dimension, whereas we
undercompensate a feature in a different dimension. This effect is not ideal
for the case of getting stuck in a local minimum because the optimization
algorithm has difficulties at centering on a set of weights in the loss sur-
face. With this considered, one can introduce per-weight learning rates to
avoid this effect but consequently, introducing more hyperparameters to
the training scheme is unfavorable as it makes the task of hyperparame-
ter tuning more complicated as compared to having less hyperparameters.

To avoid this, normalization is deemed as a standard practice in DL [108,
116]. One known issue related to color normalization is that the result-
ing image can become too unnatural and not resemble the original image.
However, for the use of the Kvasir-SEG dataset we argue in favor of color
normalization to adjust for the changing lighting conditions as commonly
seen in colonoscopy images where a bright light is usually used. An ex-
ample of these bright flashlight-like spots can be seen in Figure 2.1 and
Figure 2.2.

The standard deviation and mean of all color channels were only calcu-
lated for the training dataset, which is 80% of the total Kvasir-SEG dataset,
i.e., consisting of 800 images. Dataset statistics should not be calculated for
datasets that are used for evaluation. The training should be completely
independent of the test dataset to evaluate its generalizability. Since the
model is trained on the images in a specific scale or representation, the val-
idation and test dataset must also match those representations. Hence, the
validation and test data are transformed to PyTorch tensors like the train-
ing data. Each element in these tensors are normalized based on the train-
ing data statistics for each corresponding color channel. The image pixel
values were transformed to tensors using pytorch.ToTensorV2 from the
Albumentations library [8] in Python.
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3.2.2 Resizing

As mentioned in Section 3.1.4, each image and its corresponding mask
were resized to 256 × 256 as a part of the preprocessing. We did this
to relieve memory during training. To conserve image information, we
purposely avoided image cropping. This resizing process was also done
to the validation- and test dataset.

3.2.3 Dataset Splitting

We split each of the three datasets into three separate parts as described
in Section 2.4.5. We take 80% (or 800 images) of the total dataset into the
training set, 10% (or 100 images) into the validation set, and 10% into the
test set. This ratio is common in various different applications, which is
referred to as the Pareto principle [28], stating that 80% of consequences
come from 20% of the causes. This ratio is especially common in machine
learning because it has empirically contributed in many cases to reduce
overfitting and train models that generalize well onto unseen data. Gho-
lamy et al. [40] argues mathematically to why this is the case.

The datasets are split by building a random permutation array. Its indices
range from 0 to the total size of Kvasir-SEG minus one. The filenames of
the entire dataset are sorted according to the random permutation array
by indexing. By doing so, the permutation array represents a random or-
der of indices for the filenames to be sorted by. Once the filenames are
randomized by the permutation array, the images and their correspond-
ing masks are put into separate folders. The training-, validation-, and
test dataset are assigned its own folder. The purpose behind folder sepa-
ration is to prevent data leakage, e.g., when some instances that belong to
the test dataset get mixed into the training set. Due to folder separation,
the split is held constant in each experiment.

The training- and validation data are shuffled before each time they are
loaded into a model. During training, the loss surface is fixed for a cer-
tain training dataset, where it can contain multiple local minimums and
saddle points. In such optimization problems, the optimizer is less likely
to escape these points. To mitigate this problem, we use a GD variant us-
ing mini-batches combined with shuffling of the batches at each iteration.
Hence, we shuffle both the training and validation data for each iteration
during training to reduce the possibility of repeatedly being stuck in local
minimum.
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3.2.4 Data Augmentation

As explained in Section 2.3, the use of large datasets to obtain gener-
alizable NNs is a prerequisite for their success. Data augmentation is
a standard technique in computer vision to mimic the effect of large
datasets [105]. This is utilized by transforming an image using a random
combination of different transformation techniques. The different trans-
formations can for example include translating the image, cropping, flip-
ping, resizing, or using color jitter that randomly transform the brightness,
contrast and saturation. As we are limited to 1, 000 images that are within
the Kvasir-SEG dataset, we include data augmentation to obtain a model
capable of generalizing when performing predictions on other data out-
side of the training dataset.

Data augmentation is only done for training data. The data augmenta-
tion transformations are performed on-the-fly for each time the training
data is loaded into the model at the beginning of each forward pass. Con-
sidering this, the model can learn a larger variety of features than those
provided in the original training set. These additional features, provided
with transformations, are introduced with each training iteration.

Each augmentation is assigned with a probability, which represents the
likelihood of a transformation being applied to an image. Thus, multi-
ple transformations can be simultaneously applied to the same image. We
use the random rotation transformation method with a limit of 35 degrees
counterclockwise with a corresponding probability of 10%, a horizontal
flip transformation that horizontally flips the image with a probability of
50%, and a vertical flip with a 10% probability. We limited the number
of possible transformations to three as we do not intend to distort the im-
ages too much such that the augmentations completely destroys the im-
portant features that characterize the polyps. The augmentations were
implemented using the Albumentations library [8].

3.3 Model Training

To develop a baseline model to construct an ensemble to estimate the pre-
dictive uncertainty with the MC dropout- and deep ensemble methods.
We develop the model based on the input data described in Section 2.3,
the preprocessing steps explained in Section 3.2 including the data aug-
mentation techniques described in Section 3.2.4.

This section contains the descriptions of the training regimen of all base-
line models used in the experiments. To explain why we arrived at this
training regimen, we introduce the aims and goals of model training. Af-
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terwards, we dive further into the details of building the training pipeline.
This pipeline consists of model selection, mixed-precision training, hyper-
parameter tuning and assessment of the overfitting problem which are de-
scribed in each of the following sections.

3.3.1 Aims and Goals

The main aims and goals of the training regimen for all the baseline
models are the following:

Aim 1 Train a baseline model sufficient for polyp segmentation in
colonoscopy images.

Aim 2 Utilize and test the state-of-the-art CNN architectures designed for
semantic segmentation to reach Aim 1.

All model training and evaluation were conducted on hardware that is
generally regarded as consumer-grade.

3.3.2 Model Selection

The first step in constructing a training pipeline is to decide upon a model
architecture. This choice will have a direct impact on the segmentation
quality. We ultimately decided on only using two different model architec-
tures. This section contains the descriptions of the process behind model
selection.

Model depth, which is the number of layers in a NN architecture, was
prioritized in the model selection process. Depth increases the amount of
filters, meaning that we increase the chances of learning feature-maps that
corresponds to the polyp features. This is essential for polyp recognition as
it directly affects the number of learned feature maps after training. With
this considered, we decided beforehand to prioritize model depth in the
model selection process. A memory constraint of 32 GB of RAM during
training was also an important consideration, but in this case, we chose
to reserve as much memory to model depth because training a deep NN
requires a large amount of memory for gradient computation.

The pixels in the input and its corresponding annotation have a one-to-
one correspondence. This is because one pixel classified as the polyp in
prediction mask must desirably represent the pixel belonging to a polyp
in the input image. With this considered, an encoder-decoder structure
was not only strictly necessary to upsample the prediction mask back to
its input size, but also contain downsampling layers to obtain a large re-
ceptive field. Therefore, we consider an encoder-decoder structure as an
important requirement to the process of model selection in order to utilize
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a model suitable to perform semantic segmentation.

There is no generic way of selecting a model and its hyperparameters.
One common procedure is to start with a rough guess based on similar ex-
periences. This can also be based on third-party experiences such as a lec-
ture course, blog post or a research paper of a similar problem. We chose
ResUNet++ as one of the two models for this exact reason. This is be-
cause the original research paper that proposed this architecture used the
same dataset as the one used in this thesis, i.e., Kvasir-SEG. Moreover, Re-
sUNet++ was specifically designed for automatic polyp segmentation and
has an encoder-decoder structure. Since ResUNet++ was able to achieve
state-of-the-art performance on the same datasets used in this thesis, we
used the same set of hyperparameters as in the research paper [66] as a nat-
ural starting point for the manual hyperparameter tuning process. We also
consider ResUNet++ to meet the requirement of model depth in addition
to having an encoder-decoder architecture suitable for semantic segmen-
tation.

ResUNet++ consists of residual blocks (or skip-connections), squeeze and
excitation blocks, ASPP, and attention blocks. Figure 3.1 represents a
block-diagram of the ResUNet++ architecture, where the ASPP module
inside the dotted box represents the bridge that connects the encoder (the
top four blocks in Figure 3.1) and the decoder (the bottom four blocks in
the same figure). The encoder consists of four encoder blocks and three SE
blocks. The SE module is described in Section 2.6.3, and ASPP is described
in Section 2.6.4.

The input and output of each encoder block are added to a sum by a skip
connection, which is passed to a SE block. The feature map from the last
encoder block is passed to a ASPP block which acts as a bridge to combine
filters at differently sized receptive fields. The three last encoder blocks
contain strided convolutional layers which reduce the feature map size by
a factor of 2 [66].

The decoder blocks contain skip connections, which adds the feature map
from each encoder block to a concatenation layer (pink rectangles in Fig-
ure 3.1) in the decoder block. This is also done for the skip connections to
each attention layer in the decoder block. The attention block consists of
a miniature version of an encoder-decoder structure. The output feature
map from the mini encoder-decoder block is multiplied with the attention
map. The attention mechanism is explained in Section 2.6.5.
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Figure 3.1: The ResUNet++ architecture. Each colored rectangle represents
a specific module. Orange represents a two-dimensional convolutional
layer, green represents a combination of a batch-norm layer and a ReLU
layer, light blue represents an addition operation, pink represents a
concatenation of feature maps, purple represents an attention layer, red
represents an ASPP module, dark blue represents an upsampling layer,
yellow represents a SE block and gray represents a Sigmoid activation.
The top modules represents the encoder, the middle ASPP module
represents the bridge, and the modules at the bottom represents the
decoder.

Each attention map is passed to an upsampling layer. We replace the
nearest-neighbor upsampling technique, which is the proposed upsam-
pling mechanism in the original ResUNet++ paper [66], with the bilinear
upsampling technique. We argue in favor of using bilinear upsampling
because we want to produce a smoother upsampling in exchange for a po-
tentially larger computation time [6, 46].

Skip connections are also located between each decoder block as seen in
Figure 3.1. The upsampled feature map is concatenated with the feature
map from one encoder block before being passed to a double convolu-
tional block. The feature map from each concatenation layer in a decoder
block is added to the output of each decoder block by a skip connection.
The final block in the decoder consists of an ASPP module, a 1× 1 convo-
lution and a Sigmoid activation layer to construct bounded probabilities
in the [0, 1] range.

We also wanted to include a simpler model in contrast to ResUNet++
for comparison in the experiments we conducted. Considering this, we
chose U-Net as the second model architecture for experiments of uncer-
tainty estimation. We consider U-Net to meet the requirements of model
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depth and having an encoder-decoder structure. We implemented the
exact model architecture as proposed in the original U-Net paper [115],
but replaced all transposed convolutions with bilinear interpolation lay-
ers, which is described in Section 2.5.3. We did so to avoid checkerboard
artifacts, which are commonly seen in models containing transposed con-
volutions. Checkerboard artifact comes from a two-dimensional uneven
overlap when using a kernel size that is not divisible by the stride [98].
The uneven overlap intensifies for each time the kernel is multiplied with
the pixel, resulting in a checkerboard-like pattern in terms of pixel inten-
sities.

When experimenting with model architectures, we wanted to train a
model that was able to obtain a high DSC based on the test data. We con-
sider a high DSC of being a value above 70%, because this is what we in-
terpret to be a model sufficient for generalization, and thus also a trained
baseline model sufficient for polyp segmentation as described by the aims
and goals in Section 3.3.1. Considering this aim, we experienced that U-
Net and ResUNet++ obtained a high score above 70% during model train-
ing with the same hyperparameters as in [66]. We were unable to reach a
high DSC score during training in some of the experiments. Due to mem-
ory and time constraints, we were unable to use extensive hyperparameter
tuning techniques in order to achieve a high DSC score during model eval-
uation. This is not only mentioned later in Section 3.3.5, but also further
elaborated when discussing our results in Chapter 5.

The two model architectures also meet Aim 2 as we defined by the aims
and goals prior to model training in Section 3.3.1. They have both shown
state-of-the-art performance in various applications [66, 115].

For each CNN architecture implementation, we avoid the direct imple-
mentation of the Sigmoid layer directly into the output layer of each model
architecture. Instead, we combine the Sigmoid layer to the loss computa-
tions. The reason for this will be explained in Section 3.3.5.

3.3.3 Model Implementation

The model architectures were implemented using the torch.nn names-
pace, which provides layers and modules such as dropout-, two-
dimensional convolution-, activation- and batch-norm layers. Model ar-
chitectures and specific modules such as the ASPP block,the SE block
and the attention block were implemented as a subclass from the
torch.nn.Module .4 Hence, a CNN architecture is implemented as a mod-

4See the documentation on this PyTorch base class on https://pytorch.org/docs/stable/
generated/torch.nn.Module.html.
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ule consisting of other modules. This structure enables the user to de-
fine blocks as a module that can be frequently incorporated into the ar-
chitecture without repeatedly defining its structure each time it is reused.
Considering this implementation structure, the process of managing large-
scale NN implementations becomes significantly easier.

The model or module architecture is defined inside the __init__ method
and allows us to initialize the attributes of the class. In addition, the for-
ward pass computations must be defined within each module as a method
which contains specific computation. The forward pass computations will
be executed when the model is called upon as an instance.

3.3.4 Mixed Precision Training

As mentioned in section 3.3.2, we wanted to prioritize model depth when
training a model. Due to the memory constraints we described in Sec-
tion 3.1.4, we needed to save some memory on the GPU for training such
a model. Mixed-precision training enables us to do so. PyTorch sup-
ports automatic mixed precision training. It is called “mixed precision”
because it switches between half- and single-precision, i.e., 16- and 32 bits.
Two benefits of using mixed precision are a significantly shorter training
time and lower memory requirements. Micikevicius et al. [90] show that
utilizing mixed precision training on deep CNNs (AlexNet, InceptionV2,
ResNet50 etc.) on large datasets maintained the same accuracy as with
single-precision using the same set of hyperparameters. Mixed precision
training is only fully utilized on GPUs with tensor cores. The hardware
used in this thesis, described in section 3.1.3, have tensor cores. Tensor
cores have been optimized for performing the computation of a matrix-
matrix multiplication of two half-precision square matrices and an addi-
tion of a third half- or single-precision matrix. Since these types of compu-
tations are common in all NNs, the use of tensor cores is intended to speed
up the training time of NNs.

All training computations in PyTorch are by default performed using
single-precision (or FP32). Mixed precision training is the technique of
using half-precision (or FP16) for specific computations during training,
without causing the model to diverge. Divergence occurs because some
gradients fall below the half-precision range since they become zero due
to rounding errors.

To maintain the ability for model convergence and model accuracy during
mixed precision training, one keeps a “master copy” of the FP32 weights,
and a corresponding copy of the FP16 weights. The weights and activa-
tions of the forward pass, and the weight and activation gradients of back-
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propagation are computed using the FP16 copy. In the last step where the
weights are updated, the FP16 weight gradients from backpropagation are
applied to the original FP32 copy to update the weights, thus resulting in a
FP32 weight matrix. This step prevents underflow during model training.

All optimization operations are done using the FP32 master copies to
maintain accuracy. Despite these operations, we are still able to speed
up the training time and reduce the memory capacity. Since some gradi-
ents become too small to be represented in FP16 as mentioned earlier, the
product of multiplying a small gradient with a small learning rate can be-
come zero during optimization, thereby unfavorably affecting the model
accuracy.

Loss scaling is another step in mixed precision training to prevent under-
flow. Scaling up the small gradients will preserve values that will not
be represented in FP16 range. Scaling the gradients by some factor en-
sures model convergence and maintains accuracy as compared to full FP32
training. Scaling the loss before backpropagation is an efficient method of
scaling all the gradients by the chain-rule in backpropagation. The loss
must be unscaled before gradient update. The pipeline for the process of
mixed-precision training is illustrated in Figure 3.2.

Figure 3.2: This flowchart represents the mixed precision training pipeline.
The blue boxes represent the FP32 variables, and the green boxes represent
the FP16 variables.
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Now that the general idea of how mixed precision training should be fully
utilized has been explained, the rest of this section contains the technical
details on how this was implemented.

Autocasting means automatically converting specific variables to a de-
sired precision to improve GPU performance. Wrapping the forward
pass calculations inside the torch.cuda.amp.autocast context manager
enables autocasting for these computations. Autocasting is thread-local
which must be considered when working with parallelization on multi-
ple GPUs. An example of using an autocast-wrapper is illustrated on
lines 3–6 in Listing 3.1. The next step is to scale the loss using the
torch.cuda.amp.GradScaler module to create scaled gradients for back-

propagation. Even though the scaled gradients flow through backpropa-
gation, the backpropagation itself is not done inside the autocast context
manager. The default initial scale factor in PyTorch is 65536.0 (216). The
gradients are then unscaled and used in the optimizer before it updates its
parameters, such that the scale factor does not hamper the learning rate.

The torch.cuda.amp.GradScaler module automatically detects and
stops overflows or underflows by checking if the gradients contain infs
(infinity values) or NaNs (Not a Number), and if not, the scaling factor
grows with a factor of 2. For the case of infs or NaNs being detected, the
optimizer skips the current step, and the scale factor is reduced by a factor
of 2.0 and the optimizer skips the currents step to avoid corrupting the
parameters. An example of using such a scaler is illustrated in Listing 3.1.

Listing 3.1 represents an example pseudo-code for integrating mixed-
precision training.

1 scaler = torch.cuda.amp.GradScaler ()
2 for input , target in data:
3 # forward pass
4 with torch.cuda.amp.autocast ():
5 output = model(input)
6 loss = criterion(output , target)
7 end
8 # backpropagation
9 optimizer.zero_grad ()

10 scaler.scale(loss).backward ()
11 scaler.step(optimizer)
12 scaler.update ()
13 end

Listing 3.1: Pseudo-code for using an autocasting wrapper and scaling
gradients.

66



In Listing 3.1, line 9 represents zeroing out previous gradients, line 10
represents the loss scaling, line 11 represents updating the gradients, and
line 12 represents updating the scale factor.

3.3.5 Hyperparameter Tuning

Due to the time and memory constraints explained in Sections 1.3 and
3.1.4, we did not utilize extensive hyperparameter tuning techniques dur-
ing model training. Some of these extensive methods involve using K-
fold cross validation [128] or grid-search algorithms [80]. These methods
are known to be computationally expensive, time-consuming and require
enormous amounts of memory because we need to store the model pa-
rameters for each fold or grid element corresponding to a specific hyper-
parameter configuration.

Instead of using extensive tuning schemes, we chose to tune hyperparam-
eters manually by using almost the same set of hyperparameters as in the
ResUNet++ paper [66]. This is because this model was able to obtain the
state-of-the-art results using the same dataset as explained in Section 3.3.2.
In this paper, the resulting test scores from training ResUNet++ was a DSC
of 0.8133 on Kvasir-SEG. Hence, we found that using these parameters
was a natural starting point for the manual hyperparameter tuning pro-
cess. After the manual tuning process of the hyperparameters for each
baseline model, the hyperparameters were held constant for each baseline
model across the ensemble.

We chose a batch size of 32 for training the following models:

- U-Net.

- ResUNet++.

- Dropout-modified ResUNet++.

- Dropout-modified U-Net.

Note that each of these models were each trained using BCE and DSC as
loss functions. For one deep ensemble, we used a total of (ensemble size×
epochs) training iterations. Finally, we train one dropout-modified U-
Net and one dropout-modified ResUNet++ each for the two different loss
functions.

Parameter Initialization

For weight and bias initialization of each layer in each of the CNNs,
we use the default parameter initialization provided in PyTorch which
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is the Gaussian He initialization scheme described in Section 2.4.4 for all
convolutional layers. We utilize He initialization such that the variance
of activations across all layers are the same during each forward pass.
This stability will help in avoiding vanishing and exploding gradients
during backpropagation. This initialization scheme was also used in the
original deep ensemble paper [73], and we wanted to be consistent with
this approach to be able to reproduce these results.

Optimizer

We chose the Adam optimizer described in Section 2.4.3 for training each
model in List 3.3.5. Adam was chosen to avoid getting stuck in sub-
optimal endpoints such as saddle points or local minimums, as it includes
the use of momentum and an adaptive learning rate. Adam is also pre-
ferred before other optimizers as we have had several previous satisfac-
tory experiences with using this optimizer. We used Adam with its default
parameters provided by PyTorch except the learning rate.

The default PyTorch values of Adam is a βt
1 = 0.9 and βt

2 = 0.999 in
the Adam algorithms (i.e., equations 2.9). To facilitate numerical stability,
a small floating-point value of 10−8 is added to the denominator of Equa-
tion 2.9e.

We did not use the default initial learning rate for Adam. Instead, the
initial learning rate for all training schemes is set to a value of 10−4. This
was the learning rate value which resulted in the quickest and most sta-
ble convergence when tracking the validation loss value for each epoch
during training.

Learning Rate Scheduler

We used no learning rate scheduler in training for the following models:

- The ensemble of U-Nets trained with BCE and DSC.

- The ensemble of ResUNet++ trained with DSC.

- Dropout-modified ResUNet++ with DSC.

- Dropout-modified U-Net with DSC.

The reason for not using learning rate schedulers for training on these
models is because they were able to reach a high DSC that we defined
at the start of Section 3.3.5. We did not consider using learning rate sched-
ulers to further increase the DSC, as we already reached our end-goal of
training. In addition to this, we have already used adaptive learning rate
optimizers (Adam), as described earlier instead of adjusting the learning
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rate manually. We also have good experience with only using adaptive
learning rate optimizers from past similar experiments.

Training ResUNet++ with BCE loss was ultimately the most difficult to
optimize out of all the models in List 3.3.5, both with and without dropout
layers. Therefore, we included a learning rate scheduler into training
the deep ensemble of ResUNet++ models trained with BCE. We used
optim.lr_scheduler.CosineAnnealingWarmRestarts to periodically ad-

just the learning rate during model training. It utilizes the cosine func-
tion as a learning rate scheduler in addition to warm restarts. By warm
restarts one means that the learning rate is reverted to its original value.
Loshchilov et al. [84] was the first to introduce the concept of warm
restarts, but with the combination with SGD. One can in practice com-
bine warm restarts with any optimizer.

We decided upon this specific learning rate scheduler because we wanted
to combine the strengths of having both a large and small learning rate.
Using a large learning rate means that one increases the chances of effec-
tively escaping sub-optimal minima but using a small learning rate will
potentially allow the algorithm to converge to a near-true optimal point.

There are three main hyperparameters related to cosine annealing with
warm restarts. The first is the minimum learning rate which we set to
10−8 as we wanted to avoid the case of potentially increasing convergence
time. The second hyperparameter is T0, which is the number of iterations
until each warm restart, and we set this value to 20. The third hyperpa-
rameter is the multiplication factor that we want to multiply with T0 to
increase or decrease the number of warm restarts for a specific number of
training iterations. We use the default multiplication factor, which is equal
to 1.

Tracking Overfitting

We track the loss over the validation set and the loss of the training set by
each epoch. We visualized this using Matplotlib [57]. During each epoch,
after computing the training loss and updating the model parameters (i.e.,
weights and biases), we compute the training- and validation loss by sum-
ming the loss over each mini-batch and dividing it by the batch size. Thus,
we obtain the mean loss over its corresponding dataset. We compute the
training- and validation loss for each epoch and save these to a list. Af-
terwards, we visualize these in a plot showing the loss vs. epochs, which
from hereon are referred to as loss-plots.

By analyzing the loss-plot, we observed if the validation loss started to
increase for the predetermined number of epochs. We observed that there
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were some general fluctuations in the loss, but overall, it did not start to
increase for 150 epochs. Hence, we did not continue training for any of the
models past the point of 150 epochs to sustain generalizability.

Loss Functions and Evaluation Metrics

BCE and DSC were separately used as loss functions during training. This
is because we wanted to compare a model trained with a proper scoring
rule to a model which is not. In addition, we wanted to compare a loss
function that handles class imbalance (i.e., DSC) to a one that does not
(i.e., BCE). Class imbalance is an especially important factor to consider for
polyp segmentation, as many polyps appear small from the colonoscopy
images. Hence, we are curious to see how BCE affects the model perfor-
mance compared to DSC.

As evaluation metrics for evaluating the model at each epoch during
training and during testing, we used DSC for evaluation metrics for each
trained model. We compute the mean DSC based on the entire validation
set to evaluate the model performance during training, whereas during
test time, the mean DSC is computed based on the test dataset.

We avoided direct implementation of a Sigmoid layer to the last layer of
U-Net and ResUNet++. Instead, we used nn.BCEWithLogitsLoss which
combines a Sigmoid layer and BCE loss in a single class. This was to se-
cure numerical stability and was recommended by the PyTorch documen-
tation.5. With this considered, included elementwise Sigmoid computa-
tions in each image tensor, followed by a threshold which transformed
each tensor element into values representing class labels before comput-
ing the DSC.

3.4 Uncertainty Estimation

This section provides the reader with all details on implementing the
two main methods for estimating uncertainty, MC dropout and deep en-
sembles. The main steps include adding dropout layers to facilitate MC
dropout, the tuning of hyperparameters, training, saving and loading
models, prediction stacking, and visualization.

Both uncertainty-extraction pipelines heavily focus on the part of loading
the pre-trained weights into CNNs. Therefore, Section 3.4.2 is dedicated to
describing common pitfalls one should be careful of when loading model
weights onto the GPU device.

5The documentation of the BCE loss module used can be found on https://pytorch.
org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
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3.4.1 Monte Carlo Dropout Implementation

As described in Section 3.3.2, we decided upon ResUNet++ and U-
Net architectures as the baseline models for the uncertainty estimation
methods. To facilitate MC dropout, we modified these model architectures
with dropout layers as these do not originally contain any dropout layers.
We adapt the same approach as DeVries et al. [22] by implementing
one dropout layer to each of the five intermediate blocks in the U-Net
architecture. The dropout-modified U-Net is illustrated in Figure 3.3
where the green rectangles represent the dropout layers. A total of five
dropout layers are added to U-Net.

Adding Dropout Layers

Furthermore, we modify ResUNet++ with dropout layers to facilitate MC
dropout. We do so by adding one dropout layer after the second and third
SE block in the encoder structure, and a dropout layer to each of the two
intermediate decoder blocks after the concatenation. See Figure 3.4 for
reference where a black rectangle represents the dropout layer. Hence, we
add a total of four dropout layers to ResUNet++.

Figure 3.3: Figure represents the modified U-Net architecture containing
dropout layers.

Tuning Dropout Rate

To determine the dropout rate, we tracked the validation DSC for the
dropout-modified U-Net and ResUNet++. We did so for a total of 150

71



epochs using different dropout rates equal to 0.0 (which is equivalent to
using no dropout layers), 0.1, 0.3, and 0.5. The goal behind the use of many
candidate dropout rates was to determine the optimal dropout rate for the
two dropout-modified models. We conducted a total of four experiments
as we tuned the dropout rate using the DSC and BCE loss metrics for train-
ing the two models. From all experiments on U-Net, the dropout rate of
0.1 in the dropout layers resulted in the highest validation DSC out of the
other dropout rates. Hence, we chose this dropout rate for the dropout-
modified U-Net. When training the dropout-modified ResUNet++ with
DSC loss, we used a dropout rate of 0.1 because the effect of dropout did
not seem to make a significant difference to the evaluation during training.
When training ResUNet++ with BCE loss, we found that a dropout rate
of 0.3 gave the highest validation score during training, after 90 epochs.
With this considered, we decided to use this dropout rate and stop train-
ing after 90 epochs where we reached the trained model corresponding to
the highest validation score. Considering the results of these experiments,
we ended up using the dropout rate of 0.1 for all ensembles except for
the dropout-modified ResUNet++ trained with BCE loss where we used a
dropout rate of 0.3.

Many NN architectures with dropout layers may contain different
dropout rates corresponding to different dropout layers throughout the
network. Due to the time-demanding labor of tuning the dropout rate
for each dropout layer, we restricted ourselves to only include a global
dropout rate for each model.

Saving and Loading Models

After determining the placement of dropout layers in the models and their
corresponding dropout rate, we proceeded by training the two dropout-
modified models. We used the preprocessing steps and data augmen-
tations for the input training data as explained in Section 3.2 and Sec-
tion 3.2.4.

For training, we used two different loss functions, DSC and BCE, which
resulted in a total of four training sessions for each dropout-modified
model. We used a total of 150 epochs when training each dropout-
modified model, with the exception of training the dropout-modified Re-
sUNet++ with BCE loss, in which we used 90 epochs.
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Figure 3.4: Figure represents the dropout-modified ResUNet++ architec-
ture.

After the last epoch, the model parameters were saved as a Python dic-
tionary object using torch.save(checkpoint, PATH) where checkpoint
contains dictionary objects that represent the model parameters, the cur-
rent epoch, or the optimizer state. The dictionary object ensures that each
saved tensor value is mapped to its corresponding layer. This dictionary
object is saved in a .pt-file and then loaded into a model architecture in-
stance. Note that one must define the original model architecture which
corresponds to the tensors in the dictionary.

One can additionally save the state of the optimizer. By doing so, one can
proceed with the training process later. The saved model can, at a later
point in time, be loaded and used for prediction on other datasets. An
example of how to load a saved model in PyTorch is shown in Listing 3.2.

1 # load model
2 device = torch.device("cuda")
3 model = ModelArchitecture ().to(device)
4 checkpoint = torch.load(PATH , map_location =

device)
5 model.load_state_dict(checkpoint["

model_state_dict"])

Listing 3.2: Code example that demonstrates how to load a saved model
on a specific device.

Once a model is loaded, one must call model.eval() to freeze batch-
norm and dropout layers before evaluating the model upon prediction. To
facilitate MC dropout, we want to keep dropout layers on or in training-
mode during evaluation. We must define a module that ensures this
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mechanism. Such a module is defined in Listing 3.3, by enabling the
dropout layers on line 5.

1 def enable_dropout(model):
2 # enable dropout layers
3 for m in model.modules ():
4 if m.__class__.__name__.startswith("

Dropout"):
5 m.train()

Listing 3.3: Listing represents a module that enables dropout layers during
inference time.

Prediction Stacking

With a model that can be loaded and a module that enables dropout,
we have the necessary tools to facilitate MC dropout. When using
MC dropout, we define the number of forward passes during inference
time as the ensemble size. The model predicts on the exact same
test dataset for each forward pass. We load the model weights into
their corresponding model architecture, call enable_dropout(model) and
compute the prediction inside a loop, which is ensemble size-long. The
predictions corresponding to one input image is collected at each forward
pass and stacked together along a dimension that is ensemble size-long. It
is important that the predictions that are stacked together correspond to
the same input image. The process of prediction stacking is visualized in
Listing 3.4 and also described in Paper B.2.

1 def stack_predictions(x):
2 K = []
3 # loop over models in ensemble
4 for model in ensemble:
5 prediction = model(x)
6 K.append(prediction)
7 # transform to probabilities
8 K = Sigmoid(K)

Listing 3.4: The listing represents pseudo-code for prediction stacking by
each model in an ensemble.

We transform each element in the stacked tensor using the Sigmoid func-
tion to obtain the predicted probabilities, which is illustrated on line 8
in Listing 3.4. The elementwise mean is taken along the ensemble size-
dimension. Thus, we obtain a mean prediction tensor corresponding with
a size equal to the original input image size. Each element in the predic-
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tion tensor is thresholded to represent a class label. The threshold value
is equal to 0.5. We could in practice calibrate this value for this specific
problem, but instead use the most common threshold value in binary and
multi-level classifications due to time restrictions. Calibrating this thresh-
old value leaves a topic for further research.

The variances from the sigmoided stacked tensor are computed. We nor-
malize each variance tensor to be in the range of [0, 1] and mapped to a col-
ormap matplotlib.pyplot.imshow(im, cmap="turbo") . We prefer the
Turbo colormap which is a rainbow colormap which clearly accentuates
the areas of high variance as compared to other colormaps in Matplotlib.
We observe that this type of colormap allows for quick visual assessment
as it provides high-contrast and smoothly varying transitions to images.
This colormap is also known to be color blindness friendly. The values
in this colormap can be viewed in Figure 3.5, where the red colors repre-
sent the pixels with high values of variance and blue pixels represent low
values of variance. We will refer to these images as uncertainty heatmap
representations as they represent the spatial areas containing values of ei-
ther agreement or disagreement between the models in the ensemble.

Figure 3.5: This colorbar represents the values in the Turbo colormap from
the Matplotlib library.

3.4.2 Deep Ensemble Implementation

The main idea behind deep ensembles is to extract the uncertainty from
a NN, where each network in the ensemble is an independently trained
model. This process involves two main steps: (i) training an ensemble
consisting of a baseline model and (ii) combining the predictions. Each
model in the ensemble focuses on the same training and validation set
throughout training. After each model in the ensemble is trained, the set
of predictions based off the same test data is averaged across each model
in the ensemble. The variance across each model prediction will represent
the estimate predictive uncertainty.

We start by separately training each model. Each baseline model in the
ensemble is trained with the same configuration of hyperparameters. We
trained U-Net with DSC loss with the same hyperparameters (except the
loss) as U-Net trained with BCE loss. For ResUNet++ trained with DSC,
we used the same set of hyperparameters as ResUNet++ trained with BCE,
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except that we must use a learning rate scheduler when training with BCE
loss. This learning rate scheduler and the set of hyperparameters used for
each model is described in Section 3.3.5.

A total of 16 separate models in each ensemble were trained. By start-
ing the deep ensemble experiments by training a total of 5 U-Nets with
DSC loss, we found a trend of increasing validation DSC with the increas-
ing ensemble size. With this taken into account, we decided to increase
the ensemble size up to 16 models to fully capture this trend, with a hope
of maximally increasing the ensemble performance as much as possible.
With the trend that we captured in the first generated deep ensemble of 16
U-Nets, we decided to keep the number 16 fixed for the next ensembles.
Memory- and time constraints as mentioned in sections 1.3 and 3.1.4 also
influenced this choice. The results from the first experiments using a deep
ensemble of 5 baseline models can be found in Appendix B [61].

Each model was saved as a .pt-file, equivalent to the saving process ex-
plained in Section 3.4.1. Each ensemble was saved in a folder based on the
same baseline model and loss, such that the algorithm can loop through
an entire folder when one wants to load in a ensemble. Upon loading,
we freeze the batch-norm layers by calling upon model.eval() , and each
model in the ensemble predicts on the test data.

Prediction Stacking

Each prediction collected from a model is stacked along a dimension
which represents the ensemble size. The Sigmoid activation function is
used to transform the stacked predictions to probability values. The mean
is computed along the ensemble size-dimension to obtain the average pre-
diction by each model in the ensemble. We threshold each element in the
mean prediction tensor by 0.5 to obtain the class labels. We were not able
to calibrate this value due to time restrictions, but this opens a topic for
future investigation. The elementwise variance is computed along the en-
semble size-dimension from the previous stacked probability tensor. This
process is illustrated in Listing 3.4, which is equivalent to the prediction
stacking described in the MC dropout pipeline.

The variance tensor is normalized to lie in the range [0, 1] to se-
cure readability. We map the variance tensors to the colormap
matplotlib.pyplot.imshow(im, cmap="turbo") provided by the Mat-

plotlib [57] library.
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Pitfalls in Ensemble Learning

The procedure of loading in a trained ensemble and combining its predic-
tions is poorly documented in literature. With this considered, much time
was invested into debugging and managing the loading and prediction
process of deep ensembles. One must be careful when loading in different
models because we noticed strange behaviors during this process. More
specifically, we unintentionally used the same .pt-file upon loading model
parameters into a defined model architecture. We noticed this problem be-
cause the DSC remained constant with the ensemble size and the variance
for each prediction was equal to 0 across the ensemble. The only solu-
tion to this problem was to separately load the model parameters into the
model architecture during the forward pass method. Loading the different
model parameters outside the forward pass method caused the algorithm
to load in the same model parameters even though the algorithm looped
through different .pt-files.

A similar problem occurred once we visualized the DSC for different en-
semble sizes. We noticed that iterating through an ensemble size of 1 to
16 using a list of paths where the pre-trained model weights were stored,
caused the algorithm to load in the same model parameters for each model
in the ensemble. But when manually changing, i.e., defining the ensemble
size by having a fixed list of paths, resulted in a different DSC for one en-
semble size compared to the DSC for another ensemble size. To overcome
this problem, the ensemble size was sent into the deep ensemble class as
a parameter using a bash script which loops over the different ensemble
sizes and redefines the directory for each iteration. After completing these
experiments, we found that the model.load_state_dict() (given in List-
ing 3.2) or the torch.load(PATH) method serializes this Python dictio-
nary object6. We know that the serialized data is bound to the path, but
we made sure to de-serialize this object before loading. Despite this, we
suspect that our loading problem stems from this serializing mechanism,
resulting a path or directory that cannot be redefined for each iteration.
Our results support this claim because when we tried to re-define paths,
the same model weights gets loaded in for a defined ensemble size. The
cause of this pitfall leaves a topic for further investigation.

3.5 Summary

These methods were motivated by the lack of explainability in DL. We
argue that uncertainty estimates can provide explainability to non-DL ex-
perts by delivering additional information about the inner mechanics be-

6https://pytorch.org/tutorials/beginner/saving_loading_models.html
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hind their decision-making process. Providing explainability in the form
of uncertainty estimates can be used to critically assess if the model gives
overconfident results. The need for explainability and transparency to the
model decision can be used by medical experts to establish accountability
and trust between the model and user. The potential gain from explain-
ability methods is the possible integration of DL models in medical clinics
to prevent observational oversights which may improve prognosis upon
diagnosis.

In this chapter, we presented the main methods behind the process of
training deep CNNs to estimate their predictive uncertainties. These
methods include the preprocessing steps of the input data, hyperparame-
ter tuning, model selection, model training, mixed-precision training and
implementation of the MC dropout- and deep ensemble pipeline. The pre-
processing steps may vary depending on the problem at hand. For exam-
ple, data augmentations are not strictly necessary in the rare case of having
millions of training examples. The process of tuning hyperparameters is
a non-trivial task and the becomes increasingly difficult with the number
of hyperparameters. Tracking loss is one efficient method to avoid overfit-
ting during model training. Mixed-precision training can become strictly
necessary for training deep CNNs when being restricted by memory. We
finish this chapter by describing important pitfalls of ensemble prediction
on the GPU. The models were used to construct a set of different ensem-
bles which we were able to extract the predictive uncertainties in terms
of spatial heatmap representations. The corresponding results from these
methods will be presented in the next chapter.
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Chapter 4

Results

In this chapter, we present the results from tuning, testing and uncertainty
estimation of DL models. The majority of the results is based on the test
dataset, as these reflect the level of generalization from the trained models.
Many of these results include the uncertainty representations which we
extracted from an ensemble using MC dropout and a deep ensemble using
the hold-out test set based on the Kvasir-SEG dataset.

4.1 The Effect of Dropout Rate

In this section, we present the results from training and tuning the dropout
models. We include the uncertainty heatmap representations based off the
MC dropout pipeline.

The following figures represent the results of the effect of using differ-
ent dropout rates to each dropout-modified model architecture. These are
depicted in Figure 4.1 and Figure 4.2. This effect is measured in terms of
the DSC based on the mean prediction on the Kvasir-SEG validation set
consisting of 100 images after each training iteration. We observe the DSC
for each epoch for different colors corresponding to a specific dropout rate
value. Blue corresponds to a model with no dropout layers, orange corre-
sponds to a dropout rate equal to 0.1, green corresponds to a dropout rate
of 0.3, and red corresponds to a dropout rate of 0.5.

Figure 4.1 represents the dropout rate effect of a dropout-modified U-Net
model trained with the BCE loss, and the same applies for Figure 4.2 but
trained using the DSC loss.

Figures 4.3 and 4.4 represent the results from training ResUNet++ with
different dropout rates. Figure 4.3 represents the dropout-modified Re-
sUNet++ model using different dropout rates and trained with the BCE
loss, and the same applies for Figure 4.4 but trained with the DSC loss.
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Figure 4.1: The result of dropout-modified U-
Net trained with BCE loss and validated on
Kvasir-SEG validation set on each epoch.

Figure 4.2: The result of dropout-modified U-
Net trained with DSC loss and validated on
Kvasir-SEG validation set on each epoch.

Figure 4.3: The result of dropout-modified Re-
sUNet++ trained with BCE loss and validated on
Kvasir-SEG validation set on each epoch.

Figure 4.4: The result of dropout-modified Re-
sUNet++ trained with DSC loss and validated on
Kvasir-SEG validation set on each epoch.

4.2 Predictions and Uncertainty Heatmaps

This section contains the resulting predictions and their corresponding
uncertainty representations based on the Kvasir-SEG test data. These re-
sults are based on two different uncertainty estimation approaches, MC
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dropout and deep ensembles. We mainly include images based on en-
sembles with an ensemble size of 16. To enable easy comparison later in
Chapter 5, we display the results from these approaches side-by-side. The
results corresponding to MC dropout are displayed on the left, whereas
the results from the deep ensemble are displayed on the right in figures 4.5,
4.6, 4.7 and 4.8. The mean DSC from test time corresponding to these im-
ages are displayed in Table 4.2 and Table 4.1.

Figure 4.5 corresponds to the original input images, ground truth masks,
predicted masks and uncertainty representations. These results are based
on three randomly chosen original input images from the Kvasir-SEG
dataset and were generated using MC dropout and a deep ensemble. In
both methods, U-Net is used as the baseline model and trained using DSC
loss with an ensemble size of 16. These results are from Paper B.2.

MC Dropout Deep Ensemble
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Figure 4.5: Three original input images from Kvasir-SEG, the actual
annotations, predicted annotations, and their corresponding predictive
uncertainties. These images were generated using MC dropout and deep
ensembles with U-Net as the baseline model trained with the DSC as the
loss function. We display the results from the two methods side-by-side.

Figure 4.6 contains original input images, ground truth masks, predicted
masks and uncertainty representations based on three input images
from the Kvasir-SEG test dataset. The predicted masks and uncertainty
representations were generated using MC dropout and a deep ensemble,
each with an ensemble size of 16. In both ensembles, U-Net is used as the
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baseline model and trained with the BCE loss.

MC Dropout Deep Ensemble
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Figure 4.6: Three original input images from Kvasir-SEG, ground truth
annotations, predicted annotations, and their corresponding predictive
uncertainties. These images were generated using MC dropout and deep
ensembles with U-Net as the baseline model trained with the BCE loss
function.

Figure 4.7 displays the original input images, ground truth masks,
predicted masks and uncertainty representations corresponding to two
ResUNet++ based ensembles trained with DSC loss. These results are
based on three images from the Kvasir-SEG test dataset. The two
ensembles were generated using the MC dropout- and deep ensemble
method. In both approaches, the predicted masks and uncertainty
representations were generated using an ensemble size of 16 with
ResUNet++ as the baseline model trained with DSC loss.
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Figure 4.7: Three original input images, ground truths, predictions
and uncertainty heatmaps based on the Kvasir-SEG test dataset. The
predictions correspond to an ensemble of 16 MC dropout ensemble of
ResUNet++ as baseline. The baseline model is trained with DSC loss.

Figure 4.8 contains the original input images, ground truth masks,
predicted masks and uncertainty representations corresponding to the
MC dropout ensemble and the deep ensemble. These ensembles were
based on ResUNet++ as the baseline model and trained with the BCE
loss function. These images are based on the three input images (top
row) from the Kvasir-SEG test dataset. The predictions and uncertainty
representations correspond to outputs using the MC dropout and deep
ensemble approach. Both methods are based on an ensemble size of 16.
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Figure 4.8: Three original input images, ground truths, predictions
and uncertainty heatmaps based on the Kvasir-SEG test data. These
predictions correspond to an ensemble of 16 MC dropout models with
ResUNet++ used as baseline. The baseline model is trained with BCE loss.

The resulting predicted segmentation mask and uncertainty representa-
tions corresponding to the use of different loss functions from figures 4.5,
4.6, 4.7 and 4.8 are displayed side-by-side depending on the model archi-
tecture in Section 4.3.

Table 4.1 represents the mean DSC score based on the Kvasir-SEG test
dataset. These results are based on different MC dropout ensembles from
using two different dropout-modified model architectures, ResUNet++
and U-Net. Each model was trained with two loss functions, DSC and
BCE, during training. These results correspond to an ensemble of 16 base-
line models.
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Table 4.1: The summarized mean test DSC from an ensemble generated by
MC dropout using 16 forward passes with different CNN architectures as
baseline models.

DSC Baseline Model Loss Metric

0.7190 ResUNet++ DSC
0.2850 BCE
0.7538 U-Net DSC
0.7505 BCE

Table 4.2 represents the summarized results from a deep ensemble using
two different CNN architectures as baseline models, ResUNet++ and U-
Net, trained with different loss functions, DSC and BCE, during training.
These results correspond to an ensemble size of 16.

Table 4.2: The summarized mean test DSC from a deep ensemble with an
ensemble size of 16 using different CNN architectures as baseline models.

DSC Baseline Model Loss Metric

0.7370 ResUNet++ DSC
0.3346 BCE
0.8172 U-Net DSC
0.8034 BCE

Figure 4.9 represents the 16 individual predicted masks from an deep
ensemble of ResUNet++ models with an ensemble size of 16 trained
with DSC loss. The right image represents the uncertainty representation
corresponding to the 16 individual predictions from the left side in the
figure. This figure is from a submitted research paper given in Paper B.2.
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Figure 4.9: The right image represents the uncertainty representation
based on 16 individual predictions shown on the left. These images are
based on the ResUNet++ deep ensemble.

4.3 Comparing Ensembles Trained with Differ-
ent Loss

In this section, we collect the images from the previous section and display
them side-by-side for easy comparison in the next chapter.

Figure 4.10 displays the collected results by using U-Net as the baseline
model in the two different uncertainty estimate methods. We focus on the
comparison of general trends in the results between the use of two dif-
ferent loss functions, DSC and BCE. Left labels indicate their respective
loss function. These images are also displayed in figures 4.5 and 4.6. We
emphasize that the DSC-based results are based on another set of input
images that the BCE-based results. These are still displayed here to com-
pare general trends.
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Figure 4.10: We display the results from different U-Net-based ensembles
using different loss functions, DSC and BCE.

We collect the results from Figure 4.7 and Figure 4.8 which are displayed
as a single figure in Figure 4.11. We emphasize that the DSC-based results
are based on another set of input images that the BCE-based results. These
images are displayed together to compare general trends. These results
are based on the two different uncertainty estimation approaches, MC
dropout and deep ensembles, with ResUNet++ as the baseline model
using an ensemble size of 16.
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Figure 4.11: We display the results from different ensembles based on
ResUNet++ as baseline using different loss functions, DSC and BCE.

4.4 Performance of MC Dropout and Deep En-
sembles

In this section, we summarize the performance in terms of the mean test
DSC of MC dropout and deep ensemble with different values of ensemble
sizes ranging from 1–16. We split into two figures, where Figure 4.12 rep-
resents ensembles with U-Net used as the baseline model, and Figure 4.13
represents the ensembles with ResUNet++ as the baseline model.

We borrowed inspiration from Mehrtash et al. [89] to visualize the results
given in figures 4.12 and 4.13. More specifically, one specific figure from
their paper displays the loss vs. the ensemble size for the same baseline
model but trained with different loss functions.
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Figure 4.12: The mean DSC during test time for
MC dropout ensembles and deep ensembles us-
ing U-Net as the baseline model. The different
ensembles are trained with different loss func-
tions.

Figure 4.13: The mean DSC during test time
for MC dropout ensembles and deep ensembles
based on ResUNet++ using different loss func-
tions.

One important note is the DSC values given by the different MC dropout
ensembles in Table 4.1, do not correspond to correspond to the values
given in Figure 4.12 and Figure 4.13 because of the randomness given by
dropout layers at each test run.

4.5 Summary

In this chapter, we presented the results from the experiments which we
described and explained in Chapter 3. Section 4.1 contains the results from
tuning the dropout rate hyperparameter for the dropout-modified CNNs,
U-Net and ResUNet++, trained with different loss functions.

In Section 4.2 we presented the results from the two uncertainty estima-
tion approaches, MC dropout and deep ensembles, for the two CNN ar-
chitectures trained with two different loss functions, DSC and BCE. We
displayed the results from the two different uncertainty estimation meth-
ods side-by-side. We do so to make the methods easily comparable as we
discuss the differences of these results in Chapter 5. Figures 4.5, 4.6, 4.7
and 4.8 represent these figures. Each of these figures is based on 3 original
images from the Kvasir-SEG test dataset. Tables 4.1 and 4.2 represent the
corresponding test scores from the entire test dataset. Lastly, Figure 4.9
represents the 16 different predicted masks corresponding to each of the
models in a deep ensemble. Their corresponding uncertainty representa-
tion is given on the right side of the figure. These predictions including
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the uncertainty estimate are based on a deep ensemble consisting of 16
ResUNet++ models trained with DSC loss.

In Section 4.3, we collect images from Section 4.2 and collect the results
corresponding to the same CNN architecture but based on different loss
metrics during training. The results corresponding to a specific configu-
ration of baseline model and loss metric are based on different input im-
ages. Despite this, they are displayed together to capture general trends
between the methods.

Section 4.4 contains the summarized test results from the trained ensem-
bles based on the two different CNNs, U-Net and ResUNet++. The test
DSC is displayed for different ensemble sizes ranging from 1 to 16. Fig-
ure 4.12 represents the DSC scores for different ensemble sizes from a U-
Net-based MC dropout ensemble and a deep ensemble trained with DSC
and BCE. Figure 4.13 and Figure 4.12 represent performance for different
ensemble sizes in terms of the mean DSC, using U-Net and ResUNet++,
respectively.

These results displayed in this chapter are visualized to emphasize the
difference in uncertainty representation, prediction, and performance, us-
ing two different uncertainty estimation methods. We also include the use
of two different CNN architectures each trained with two different loss
functions for further comparison. These results provided in this chapter
lay the foundation of the discussions presented in the next chapter.
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Chapter 5

Discussion

In this chapter, we discuss the results given in Chapter 4 given by
the experiments described in Chapter 3. We focus on the comparison
between uncertainty estimation approaches with the use of different CNN
architectures. These models were trained with different loss functions for
further comparison. Furthermore, we repeat the research objectives and
research question defined in Chapter 1. We explain why these results
reached our objectives and answer the research question. These answers
aim to provide the readers with the main contributions behind this thesis.

5.1 Dropout Rate

In Figure 4.1 and 4.2, we see that an increasing dropout rate results in
a lower DSC score for the validation dataset during training. For U-
Net trained with the BCE and DSC loss, a dropout rate of 0.1 and us-
ing no dropout gave approximately the same validation DSC score for
each epoch. We ended up using a dropout rate of 0.1 because we needed
dropout layers to facilitate MC dropout. Until approximately 40 epochs,
the DSC for a dropout rate of 0.0 and 0.1 increases steeply. The increase
in DSC stabilizes after this point. The models corresponding to larger
dropout rates seem to have a high variance in the DSC between each
epoch, which indicates a instability of large regularization provided by
large dropout rates.

Figure 4.3 represents the dropout rate tuning for ResUNet++ trained with
BCE. Figure 4.4 represents the tuning of the corresponding model but
trained with DSC. For Figure 4.3, we observe that the largest dropout
rate of 0.5, resulted in the lowest validation score during training. De-
spite this, we see that the overall highest DSC score was obtained using a
dropout rate of 0.3 around the 90th epoch. We therefore save the model
corresponding to a dropout rate of 0.3 after 90 epochs as this model con-
verges at the highest validation score around this area as compared to the
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different models with other dropout rates. For the dropout-modified Re-
sUNet++ trained with DSC, we observe that the model behaves roughly
the same during training and converges independently of dropout rate.
Thus, we chose to use the model corresponding to a dropout rate of 0.1
for the MC dropout experiments because we wanted to limit the effect of
regularization by using larger dropout rates.

5.2 Deep Ensemble and MC Dropout with U-Net

We discuss our results presented in Chapter 4 with a focus on Section 4.2
and Section 4.3, which contains the predicted segmentation masks and
corresponding uncertainty representations based on MC dropout and
the deep ensemble uncertainty estimation methods. This section only
focuses on the U-Net based ensembles for the two uncertainty estimation
methods.

5.2.1 U-Net Trained with DSC

We regard the predicted masks and uncertainty representations given by
the U-Net based MC dropout ensemble and deep ensemble trained with
DSC in Figure 4.5. Our immediate observation is that the deep ensembles
give predicted segmentation masks that are more similar to the ground
truth compared to the predictions provided by MC dropout. This obser-
vation is also supported by the fact that the mean DSC scores based on the
Kvasir-SEG test dataset which are given in Table 4.1 and Table 4.2. From
these, we see that the MC dropout gives a mean DSC score of 0.7538 and
the deep ensemble gives a mean DSC equal to 0.8172.

When observing the uncertainty representations given by MC dropout in
Figure 4.5, we notice that the uncertainty estimates are elusive and there-
fore give little information about the uncertainty corresponding to the
model prediction. Considering this, we regard these uncertainty estimates
as difficult to interpret due to the low and few uncertainty values across
the uncertainty representations. Despite these elusive uncertainty repre-
sentations, we see that the areas of high uncertainty values correspond to
pixels gathered around the border of the predicted segmentation mask.
These results indicate that the MC dropout ensemble agrees upon the pix-
els corresponding to the predicted polyp. Despite this, there are few to
no uncertainty estimates in the majority of the areas that correspond to FP
or FN pixels. Instead, the uncertainty estimates are concentrated around
the boundary of the FP and FN areas. However, inside these areas, we
see no direct connection between the incorrectly classified pixels and the
corresponding uncertainty values. We would like to see large uncertainty
estimates inside the incorrectly predicted regions. Considering this, as this
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uncertainty estimation method lacks this property, this estimation method
is not sufficient for this specific case.

We now observe large areas of high and low uncertainty values across
the uncertainty representations given by the deep ensemble in Figure 4.5.
These values are a contrast to the low and few uncertainty estimates given
by the MC dropout approach. Like the uncertainty representations given
by the MC dropout approach, there are areas of medium to high uncer-
tainty values concentrated around the pixels which correspond to the bor-
der of the predicted polyp. However, the deep ensemble includes uncer-
tainty values located at the same area which corresponds to the edge of
the anchor object in the bottom left corner as well. These results indicate
that the ensemble recognizes the polyp border and the corner anchor ob-
ject. As a result, the deep ensemble can predict large amounts of TPs and
true negatives (TNs) despite having large quantities of corresponding un-
certainty estimates. In some of the areas with large uncertainty estimates,
we see that a large amount of these pixels are being misclassified. In other
words, these areas correspond to FP and FN predictions in the predicted
segmentation mask, indicating that the large uncertainty estimates and
their corresponding pixels are likely to be misclassified in the predicted
mask. Due to these results, we suspect a connection between the large un-
certainty estimates and the corresponding pixels that are misclassified in
the predicted segmentation masks.

5.2.2 U-Net Trained with BCE

Figure 4.6 shows the resulting predictions and uncertainty estimates given
by the MC dropout ensemble and the deep ensemble using U-Net trained
with BCE as the baseline model. The predicted masks given by the MC
dropout and deep ensemble method seems to be of similar quality, but
in contrast to the deep ensemble predictions, the noise (i.e., white pix-
els outside of the polyp area) inside the MC dropout predictions indicate
that these predictions have a higher mean DSC score. The results given in
Table 4.1 and Table 4.2 support this observation, where the MC dropout
ensemble have a mean DSC of 0.7505, whereas the deep ensemble have a
mean DSC of 0.8034.

When observing the uncertainty representations in Figure 4.6, we first no-
tice that the uncertainty estimates from the MC dropout ensemble are not
prominent when compared to the uncertainty estimates given by the deep
ensemble. Again, the areas which correspond to non-zero uncertainty val-
ues given by MC dropout are focused on the border of the predicted polyp,
like what we observed in Figure 4.5. Additionally, we observe uncertainty
values at the areas which correspond to noise in the predicted masks, indi-

93



cating a disagreement in the confidence between the models in the ensem-
ble. For the uncertainty representations given by the deep ensemble, we
see different values of uncertainty estimates across the entire uncertainty
estimation, except for the area which corresponds to the inside the pre-
dicted polyp in the predicted mask. High values of uncertainties are not
only gathered around the polyp border, but also around the black or green
anchor object in the bottom left corner of the input image. We also notice
that the largest areas of zero uncertainty are located inside the predicted
polyp mask and inside the anchor object, indicating that the deep ensem-
ble recognizes these objects and is able to correctly classify these. This
indication is supported by the fact that these areas are correctly classified
in the predicted segmentation mask.

5.2.3 Comparing DSC and BCE for U-Net

We observe the predicted masks and the uncertainty representations given
by the MC dropout method with U-Net used as baseline. We focus on the
comparison between the MC dropout ensemble trained with DSC and for
the MC dropout ensemble trained with BCE. These corresponding results
are gathered in Figure 4.10. We see that there is little difference between
the uncertainty representations from using two different loss functions
due to their elusive nature. For both cases, we see that the few pixels corre-
sponding to uncertainty values given by the DSC-trained MC dropout en-
semble have higher values (yellow pixels) than the uncertainty estimates
given by BCE-trained MC dropout ensemble (cyan or light blue pixels).
However, for the predicted masks, we see a difference in quality between
the two MC dropout ensembles. We see this quality difference because the
predicted masks have small areas of FPs branching out from the TP areas
for the ensemble trained with DSC. In contrast, the ensemble trained with
BCE give predicted masks that seem closer to the ground truth but contain
more noise. Despite these differences, the DSC score during test time are
highly similar for the two MC dropout ensembles, with DSC scores equal
to 0.7538 and 0.7505 given in Table 4.1.

We examine the results from the deep ensemble using U-Net as baseline
trained with DSC and the results from the deep ensemble trained with
BCE in Figure 4.10. Based on these results, we observe the difference in
quality between the two approaches given in the predicted masks. The
predicted masks that correspond to the BCE-trained ensemble appear to
be highly similar to the ground truth masks, and the predicted masks
given by the DSC-trained ensemble are not as close to the ground truth.
This is because they have small regions of FP pixels branching far outside
the TP regions. Despite these misclassified pixels, the mean DSC scores
in Table 4.2 are not representative in these six examples. Additionally, we
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observed numerous prediction masks containing noise for each of the in-
dividual models in the BCE-trained deep ensemble. Since this noise is
missing in the mean predictions, we know that the individual models in
the ensemble were able to cancel out this noise. Consequently, we see large
values of uncertainties spread across the uncertainty representations. To
investigate this further, we would like to display each of the individual
predictions provided by a deep ensemble to see how the noise is canceled
out. We were not able to display these results this way due to time re-
strictions. Additionally, we believe that MC dropout are not sufficient at
canceling out this noise due to the little diversity between each model in
the ensemble.

We examine the uncertainty estimates given from the U-Net based deep
ensemble in Figure 4.5 with DSC as loss, and for the corresponding en-
semble but trained with BCE as loss in Figure 4.6. The uncertainty esti-
mates with DSC are concentrated around in the areas which correspond
to the borders of the predicted polyp mask. For the BCE-trained ensem-
ble, the areas of high uncertainties appear far outside the boundary of the
predicted polyp mask as well. We suspect that these high uncertainty es-
timations arise from the white writing in the left side of the image and the
glares from the light of the endoscopy probe. Despite these high uncer-
tainty estimates in these areas, the ensemble cancels out these probabilities
which may correspond to misclassified pixels after thresholding.

In Figure 4.5 and Figure 4.6, we see that the predicted uncertainty masks
for theBCE-trained ensembles are closer to the ground true masks com-
pared to the predictions given by the DSC-trained ensembles, which is
regardless of the uncertainty estimation method. The overall mean DSC
score contradicts this observations as the DSC-trained ensembles gave the
highest DSC score compared to the corresponding BCE-trained ensembles.
We must consider the fact that the sets of three and three predictions that
we displayed in these figures are not representative of the entire batch.

5.3 Deep Ensemble and MC Dropout with Re-
sUNet++

We discuss our results given in Section 4.2 and Section 4.3, which
contains the predicted segmentation masks and their corresponding
uncertainty representations based on the MC dropout and the deep
ensemble uncertainty estimation methods. This section only focuses on
the ResUNet++ based ensembles in each of the uncertainty estimation
methods.
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5.3.1 ResUNet++ Trained with DSC

From examining the results from the DSC-trained ensembles in Figure 4.7,
we notice that the predicted masks corresponding to the deep ensemble
have more FPs as compared to the number of FNs. For the predictions
given by the MC dropout method, the leftmost image has more FNs com-
pared to FPs, but for the other two predictions it appears to be the opposite
case. It is challenging to estimate which of these sets of predictions corre-
spond to the highest mean DSC score based on these two sets of results
alone, but from Table 4.1 and Table 4.2, the deep ensemble predictions
give a mean DSC of 0.7370, and the MC dropout ensemble give a mean
DSC of 0.7190. These scores indicate that the deep ensemble of 16 models
gave the best performance when compared to 16 MC dropout models.

Regarding the uncertainty representations in Figure 4.7, we see the same
pattern as observed in Figure 4.5 and Figure 4.6, where the uncertainty es-
timates given by MC dropout are unclear and difficult to interpret due to
their elusive nature. We also notice that, for the rightmost uncertainty im-
age, there are some uncertainty estimates in some of the areas which cor-
respond to the predicted FNs. Note that this is not consistent for the other
uncertainty representations, more specifically for the leftmost uncertainty
image, where some of the areas of zero uncertainty values correspond to
FN predictions. We acknowledge that this is the least desirable outcome,
where we have misclassified pixels with corresponding low uncertainties
indicating an overall high confidence among the models in the ensemble.

For the uncertainty representations given by the deep ensemble in Fig-
ure 4.7, we see several large areas corresponding to high uncertainty val-
ues. For the leftmost deep ensemble uncertainty representation, the large
areas of uncertainty, specifically the red pixels, correspond to FN predic-
tions in the predicted mask. We see that the majority of the pixels corre-
sponding to large uncertainties are misclassified. Other pixels of large un-
certainty are, however, correctly classified. For the rightmost uncertainty
representation, we especially notice large uncertainty values both far out-
side and at large areas near the border of the actual polyp. Additionally,
the majority of pixels which correspond to the actual polyp have zero un-
certainty values. We see a similar connection for the results given by the
DSC-trained U-Net based deep ensemble as observed in Figure 4.5. These
results strongly indicate that the pixels which correspond to the largest
values of uncertainties are more likely to be misclassified based on these
results given by the deep ensemble method. In contrast to the MC dropout
ensemble, the deep ensemble provide a is a desirable property by assign-
ing low uncertainties both inside the polyp and the background, i.e., ob-
vious TPs and TNs, and high uncertainties to the FPs and FNs. This is
useful information to a medical expert, as the model appears more critical
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towards the misclassified regions.

5.3.2 ResUNet++ Trained with BCE

In Figure 4.8 we see the results given by the ResUNet++ based ensemble
using MC dropout and deep ensemble. For the predicted masks and un-
certainty representation given by the MC dropout method, we see large
areas of zero uncertainty. These areas correspond pixels in the predicted
segmentation mask that appear to be over-segmented and thus have FP
predictions outside the border corresponding to TP, i.e., where the actual
polyp is located. Large areas of FP corresponding to over-segmentation
have a corresponding zero to low uncertainty in the uncertainty represen-
tation, which indicates an overconfident model. This is undesirable as the
property of overconfidence makes predictions models unable to general-
ize onto unseen data instances. Users can benefit from properly quantified
uncertainties, by increased trust and reliability to the model predictions.
This prerequisite proper uncertainty estimation methods, which do not as-
sign high confidence to poor predictions. Unfortunately, we see this draw-
back in MC dropout based on an overconfident baseline model.

From examining the predictions and uncertainty representations given by
deep ensemble in Figure 4.8, we see predicted TPs corresponding to the
border of the ground truth polyp masks, but the model is unable to pre-
dict the inside of these borders. The result is a border of TPs filled with
FNs. However, we observe a spread of large uncertainty values inside of
these borders. Additionally, these correctly predicted borders correspond
to zero uncertainty values in the uncertainty representations. We do not
know if each of individual models in the ensemble were able to recog-
nize the true polyp border, or if they were able to perform this way due
to their diversity. This level of diversity can cancel out incorrectly clas-
sified predictions. Additionally, we see that the models largely focuses
on the recognized edges in the prediction masks. Not only do we see
this in the predictions, but further so in the uncertainty representations
containing uncertainties at the many edges both around the polyp or in
the background. Moreover, despite the poor quality in the predicted seg-
mentation masks, the uncertainty estimates reflect a connection to the pre-
diction masks which we have seen earlier in previous experiments with
deep ensembles (see Figure 4.5 and Figure 4.7). More specifically, there
is a connection between the large uncertainty estimates in the incorrectly
predicted areas, and the zero (or low) uncertainty estimates corresponding
to the correctly predicted areas.
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5.3.3 Comparing DSC with BCE for ResUNet++

The resulting predictions and uncertainty estimates from the ensembles
using ResUNet++ as the baseline model are displayed in figures 4.7 and
4.8. These results are displayed together in Figure 4.11. Our first obser-
vation is that the predictions given by the DSC-trained ensembles are of
much higher quality than the BCE-trained ensembles. This is also sup-
ported by the results in tables 4.1 and 4.2, where the DSC-trained ensem-
ble give a mean DSC score of 0.7190 and 0.7370 for the MC dropout en-
semble and the deep ensemble, respectively. In contrast, the BCE-trained
ensembles give a mean DSC score of 0.2850 and 0.3346. The uncertainty
estimates that correspond to these low scores are given in Figure 4.8. In
this figure, we observe are high values of uncertainty across the entire un-
certainty representation, except the areas inside or near the ground truth,
i.e., where the polyps are located. We argue that an ensemble that con-
tains underfitted models that are unable to learn feature representations
from the training dataset, should be able to produce large uncertainty es-
timates. This reflects the fact that the models make predictions that are far
from the ground truth.

For the predicted masks given by the MC dropout ensemble given in Fig-
ure 4.11, we see the difference in quality where the DSC-trained model
is far superior to the predictions given by the BCE-trained model. The
former model gave a mean DSC score of 0.7190, whereas the latter gave
a mean DSC of 0.2850. These poor-quality predictions correspond to a
model that was able to obtain a low DSC score of 0.4379 during train-
ing. These results strongly indicate that the baseline model is underfitted,
which means that it was unable to learn the feature representations that
characterize the polyp.

Regarding the uncertainty representations from the MC dropout ensem-
bles trained with different loss functions in Figure 4.11, we notice that
the areas of uncertainty by the DSC-trained model do not have a clear
connection to the pixels that are incorrectly classified. This observation is
supported by the fact that several FN and FP pixels have a corresponding
zero uncertainty in the uncertainty representation. However, it appears to
be a clear connection between the ground truth polyp border, including
other borders that, for the untrained eye, seem similar to that of a polyp
border (see the second input image from the left in Figure 4.7), and the
areas of moderate to low uncertainty values.

For the results given by the BCE-trained MC dropout model in Figure 4.11,
we see a connection between the areas of high uncertainty and the pre-
dicted TNs. We also observe a similar connection between the areas of
low to zero uncertainty and the FPs. For an ideal case of having a prop-
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erly trained segmentation model that is neither underfitted or overfitted,
one expects its corresponding uncertainty representations to have high un-
certainty estimates for the incorrectly predicted areas (i.e., FNs and FPs),
and low uncertainty for the correct predictions (i.e., TPs and TNs). Since
the uncertainty representations lack this property, we conclude that these
estimations give little to no value because the prediction model is over-
confident in the misclassified predictions. We suspect that the reason in
this case, is that the model is underfitted. These models are considered
to be unable to learn the right associations by focusing on the irrelevant
features. Hence, this may be the reason why the low uncertainty estimates
are focused on the incorrect predictions and why the large uncertainty es-
timates are focused on the correct predictions. We are curious to see how
models intentionally trained to be overfitted and underfitted affect the un-
certainty representations, which leaves an open research topic for future
investigation.

Observing the results by the DSC-trained ResUNet++ based deep ensem-
bles in Figure 4.11, we see areas of large uncertainty estimates concen-
trated around the predicted segmentation mask and that some of these
areas are more likely to be incorrectly classified. The background area and
most of the area inside of the predicted polyp mask have zero uncertainty.
In contrast, the BCE-trained ensemble in the images below have uncer-
tainty estimates spread all over the image. There is a clear connection be-
tween the predicted TP and the areas of zero uncertainty. The areas which
correspond to FPs have corresponding large uncertainty estimates. Since
the ensemble correctly predicts the borders of the polyps and because of
the connection between incorrect predictions and large uncertainty esti-
mates, we suspect that the deep ensemble was somewhat able to learn
some of the features corresponding to the polyps. We suspect that these
learned features correspond to the border or edges of the polyp because of
the correctly predicted areas in the predicted mask.

Based on the uncertainty estimates and the mean DSC score during test
time, the ResUNet++ ensembles trained with BCE indicate underfitting.
We were unsuccessful in tuning the hyperparameters for these models to
converge for the number of epochs we were restricted to due to time con-
straints. Using extensive hyperparameter tuning techniques such as grid
search is a topic for further investigation. We notice that large areas of
high uncertainty are common in both cases, i.e., for the MC dropout en-
semble and the deep ensemble trained with BCE. In contrast to the deep
ensemble, there is no connection between the incorrect predictions and the
large uncertainty estimates provided by MC dropout. Instead, we observe
a connection between the incorrect predictions and the low uncertainty
estimates, and between the correct predictions and the high uncertainty
estimates. We conclude that this unwanted behavior is due to a highly
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underfitted model.

5.4 Performance and Comparison of MC Dropout
and Deep Ensembles

Regarding the performance in terms of the DSC during test time by the U-
Net based ensembles in Figure 4.12, we notice a large increase in terms of
the mean DSC for the two deep ensembles. In contrast, this behavior does
not apply for the two MC dropout ensembles which appear to have ap-
proximately the same DSC score for each ensemble size ranging from 1 to
16. For the MC dropout ensembles and deep ensembles, using DSC as loss
during training corresponds to the highest performance for both ensem-
ble types even though this function is not defined as a proper scoring rule.
For the DSC-trained deep ensemble, the optimal ensemble size is 7, which
corresponds to the overall highest DSC during test time. Although, en-
semble sizes of 6–16 give similar performance. For the BCE-trained deep
ensemble, the optimal ensemble size is equal to 13.

For the performance of the ResUNet++ based ensembles in Figure 4.13,
we notice a similar behavior as for the U-Net based ensembles where the
DSC score varies for the ensemble size in deep ensembles, but this behav-
ior do not apply to the MC dropout ensembles. The optimal ensemble size
is equal to 13 and 5 DSC- and BCE-trained deep ensembles, respectively.
Regardless of the uncertainty estimation method and baseline model, we
see that the DSC-based ensembles give an overall higher performance than
the BCE-trained ensembles.

Independent of the ensemble type, the ensembles based on the ResUNet++
architecture perform worse than the U-Net based ensembles. The results
from the original ResUNet++ paper [66] contradict our results as they were
able to obtain a higher DSC score for the ResUNet++ compared to the U-
Net model. Both were trained and tested based on the exact same dataset,
Kvasir-SEG. As we performed relatively little hyperparameter tuning for
the two model architectures, we know that these contradictory results
leave a topic for further investigation. However, for this specific config-
uration of hyperparameters, U-Net baseline model obtained the highest
performance in all cases. To further investigate this, we need to reproduce
the results given in the original ResUNet++ paper if possible.

Our results strongly suggests that the MC dropout method does not in-
crease the performance with increasing ensemble size. With this consid-
ered, we argue that the purpose of utilizing MC dropout for this specific
use-case is mainly to extract spatial uncertainty representations. We are
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unsure how the different ensemble sizes will directly affect the quality of
the uncertainty representations provided by MC dropout. This is because
all uncertainty representations in this thesis are based on an ensemble size
of 16. Despite, increasing the ensemble size for MC dropout is not com-
putationally expensive in terms of memory and time as we only save and
load one single model. On the other hand, using deep ensembles gives the
benefit of both increasing the performance during test time and the quality
of the uncertainty representations. The main drawback is time consump-
tion if the models are trained one at a time, or the large demand for hard-
ware (GPUs) if the models are to be trained in parallel.

We argue that the increasing performance provided by deep ensembles
is caused by the diverse nature among the models in the ensemble. We
can observe this diversity between each prediction in Figure 4.9. Since the
models are separately initialized and trained, it is expected that the mod-
els converge to a similar endpoint after training. The separate training can
allow these models to obtain a completely different set of weights. This is
analogous to how two individuals can arrive at the same solution using
different thinking strategies. With this separate training scheme, we in-
tuitively know that the number of candidate loss surfaces during training
will increase with the ensemble size. We argue that this level of diversity is
the main contribution behind the increasing performance, which depends
on the increasing ensemble size. This is because a diverse set of mod-
els are collectively more likely to arrive closer to the optimal convergence
point. In contrast, we argue that the models in a MC dropout ensemble
are highly correlated because each model is generated based on the one
trained baseline model. Thus, each model in the ensemble is based on the
exact same loss surface during training and has no other candidate func-
tions to increase the chance of arriving at the optimal convergence point.
The models in the MC dropout ensemble are not separately trained as for
the models in the deep ensemble, which prerequisites a less diverse set
of predictions. We argue that the lack of diversity in the predictions pro-
vided by MC dropout is the reason to why this approach is outperformed
by deep ensembles.

In addition to arguing that the diversity of an ensemble increases the total
performance, we also argue that the level of diversity between the models
across an ensemble highly affects the quality of the uncertainty representa-
tions. Intuitively, less model diversity in the ensemble means leads to less
diverse predictions. As we already have seen for the resulting uncertainty
representations by MC dropout, the resulting uncertainties between the
models in the ensemble become obscure and elusive. These unclear un-
certainty representations give little information and are therefore hard to
interpret. However, for uncertainty representations provided by deep en-
sembles, the information given in these images indicates what parts of the
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image the ensemble struggles to recognize and correctly classify. These
parts are also more likely to be incorrectly classified. Considering this cor-
relation, we argue that these uncertainty representations are intuitive to
visually assess and interpret. For the predicted segmentation masks given
by deep ensembles, the diverse set of models across the ensemble combine
their strengths and are hence able to cancel out their weaknesses. For ex-
ample, if one model incorrectly classifies a pixel where the predicted pre-
thresholded probability falls just below the threshold of 0.5, the resulting
prediction will be incorrectly classified. If the other models in the ensem-
ble, however, predict a probability above this threshold, the incorrect pre-
diction will be canceled out by the other models. The resulting predictions
correspond to a TP pixel. This is what we mean when we argue that a di-
verse set of models in an ensemble can cancel out their weaknesses. We
also use this argument to explain the reason why the performance stabi-
lizes right below the maximum DSC score when increasing the ensemble
size seen in Figure 4.12 and Figure 4.13.

MC can also become unfavorable in applications where one does not want
to include dropout layers to the model architecture. Regularization by
dropout is not always wanted and can thus become challenging when
lacking the computational power and memory to facilitate performance
increase and uncertainty estimation by deep ensembles.

Considering all the above arguments, we conclude that the deep ensemble
approach is more favorable compared to the MC dropout method. This is
because it is able to provide interpretable explanations behind the model
predictions. In addition, they hold the property of diversity between the
models in the ensemble which can increase the total performance when
increasing the ensemble size. Deep ensembles have the drawbacks of be-
ing more computationally expensive and time consuming compared to the
MC dropout approach.

5.5 Problem Statement Revisited

We will revisit our research questions which were defined in Chapter 1 by
first discussing our research objectives. We will repeat these and sequen-
tially explain how we reached these research objectives.

Objective 1: Explore how uncertainty estimates connect the model prediction
with the input features.

This research objective is supported by the fact that we were able to ex-
plore relations between the uncertainty representations and the predicted
segmentation masks with different uncertainty estimation approaches.
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For the deep ensemble approach, we found that the incorrectly classified
areas in the predicted segmentation masks have a corresponding high un-
certainty estimation. We were not able to establish similar relations for the
properly trained MC dropout ensembles. Despite the uncertainty estima-
tion approach used, we were able to find that the areas containing values
of uncertainty estimates were concentrated around the border of the pre-
dicted segmentation mask.

Objective 2: Explore how the use of different loss functions affect the model
predictions and the corresponding uncertainty.

We were able to reach the second objective by exploring two different loss
functions, DSC and BCE, during training for different ensemble types. By
doing so, we were able to explore uncertainty estimation techniques based
on different model training characteristics. Overall, the DSC-trained en-
sembles outperformed the BCE-trained ones in terms of the mean DSC
score during test time„ even though BCE is categorized as a proper scoring
function. In addition, the predicted segmentation masks contained more
noise for BCE-trained ensembles regardless of the type of uncertainty es-
timation approach. However, the deep ensemble was able to cancel out
a majority of this noise which we experienced for each of the individual
models in the ensemble. As a result of noise, the uncertainty estimates of
varying size was spread across the uncertainty representations.

For the DSC-trained ensembles, we observe more outlying FP pixels
branching outside of the TP areas. For the uncertainty representations,
there are larger areas of uncertainty estimates spread across the entire un-
certainty representation when using with the BCE-trained deep ensemble.
These values correspond to mainly moderately low uncertainty values. In
contrast, for the DSC-trained deep ensemble we see more concentrated
areas of large uncertainty estimates around the predicted segmentation
masks. For MC dropout, we observe little difference between the un-
certainty representations provided by the DSC-trained ensemble and the
BCE-trained ensemble. All these observations summarize our main find-
ings after reaching the second research objective.

Objective 3: Use two different architectures to examine if the uncertainty es-
timation performance is affected by the model architecture.

This third research objective was reached by comparing the performance
in terms of the mean DSC during test time for the two uncertainty esti-
mation techniques, using two different CNN architectures, U-Net and Re-
sUNet++. All ensembles based on the U-Net architecture outperformed
the ensembles based on ResUNet++, regardless of the uncertainty estima-
tion method used. These results contradict the results given in previous
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studies and since our findings are based on the lack of extensive hyper-
parameter tuning techniques, we believe that this leaves a new research
objective that can be further investigated in future research.

We have now revisited the research objectives defined at the start of this
thesis. The aim behind these objectives was to aid us in answering the
main research question. Answering RQ1 leaves the reader with the main
contributions from the conducted research. We repeat our main research
question:

RQ1: How can the predictive uncertainty estimates improve the understanding
of the model prediction?

We answer this question by testing each combination of two uncertainty
estimation techniques, trained with different loss functions, and based on
two different CNN architectures. We argue that the uncertainty represen-
tations provided by the deep ensemble approach can provide intuitive ex-
planations that can be interpreted by non-DL experts. This is because they
contain information about areas that are more or less likely to be incor-
rectly classified by the DL model. Pixels in the predicted segmentation
mask that have corresponding large uncertainty estimates are more likely
to be incorrectly classified. Additionally, the pixels corresponding to low
uncertainty estimates are more likely to be correctly classified. We claim
that these correlations between the prediction and its corresponding un-
certainty representation is information that a typical end-user will expect
based on the general understanding of uncertainty. Based on this claim,
we conclude that these uncertainty representations are easy to interpret
and hence provide useful explanations to non-DL experts and can there-
fore help to improve the understanding behind the model prediction.

With the results given by the MC dropout approach, we found that the
resulting uncertainty estimates are both elusive and hence difficult to in-
terpret. Additionally, we did not find clear correlations between the un-
certainty estimates and the pixel areas that are incorrectly predicted in
the corresponding predicted segmentation masks. We thus conclude that
this approach is insufficient at providing explanations to the model pre-
dictions, and therefore lack at improving understating behind DL-based
model predictions to users.

We answer this research question through testing and extending two pop-
ular uncertainty estimation techniques by comparing them in a segmenta-
tion use-case. This answer lays the foundation for the main contributions
given in this thesis. Reaching our research objectives solves our research
question by testing uncertainty estimation techniques in different scenar-
ios. These scenarios include the use of different loss functions and model
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architectures. We claim that these results bring value to the field of DL and
XAI, and is therefore consistent with the motivation stated in Chapter 1.
This is supported by the fact that we were able to show how segmentation
models can detect polyps based on colonoscopy imaging and additionally
provided informative explanations behind the model output in the form
of uncertainty representations given by one of the uncertainty estimation
techniques that we tested.

5.6 Summary

In this chapter, we have pointed out and discussed our main findings from
the results presented in Chapter 4. First, we analyzed and discussed the
reasoning behind the experiments of tuning the dropout rate in Section 5.1.
For all models, we ended up using the dropout rate at the epoch which
corresponded to the maximum DSC during validation.

Furthermore, in Section 5.2 we describe the main findings from the two
uncertainty estimation techniques, MC dropout and deep ensembles, with
the use of U-Net as the baseline model. We compare the two uncertainty
estimation techniques by analyzing and discussing their corresponding
predicted segmentation masks and the uncertainty estimations. Lastly, we
compared the use of different loss functions, BCE and DSC, by observing
the quality in predictions and uncertainty representations. Despite the un-
certainty estimation technique, the use of DSC during training resulted in
the highest mean DSC score during test time in all cases.

In Section 5.3, we analyzed the main findings from using the ResUNet++
architecture as the baseline model for the two uncertainty estimation ap-
proaches. We focus on discussing the main differences in the predictions
and uncertainty representations from these two approaches. We also claim
to see large quality differences in using the different loss functions during
training.

Moreover, we focus on the difference in performance and the overall com-
parison between the two uncertainty estimation techniques in Section 5.4.
The main conclusions based on our findings are contained within this sec-
tion.

Lastly, in Section 5.5 we revisit the research objectives and main research
question which we defined at the beginning of this thesis. We discuss how
the conducted experiments, and their results meet these objectives and an-
swer the research question based on our main findings.
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Chapter 6

Conclusion

This chapter summarizes the conclusions based on our main findings. We
repeat and answer our problem statement defined in Section 1.2, which
lays the foundation for the main contributions given by this thesis. Lastly,
we discuss our views on the potential future work which can be extended
from the research presented in this thesis.

6.1 Summary

DL-based CAD systems can bring significant value to clinical work-
flows by decreasing the number of observational oversights in diagnos-
tic medicine. These systems are considered “black boxes” due to their
lack of explainability and transparency to their decision-making process.
Considering these issues, medical experts lack knowledge and trust in the
model output. Not only are these attributes important in high-risk ap-
plications where the model output can determine the future of human
life and health, but they can include human observers into the decision-
making process by revealing potential systematic biases or inappropriate
correlations between the disease and outcome. Therefore, explainability
can help to prevent potential disasters in the future. By being motivated
by the general lack of explainability methods in DL, we adapted and ex-
tended two existing popular uncertainty estimation techniques by com-
paring them in a segmentation use-case. We included the use of two dif-
ferent CNN architectures and two different loss functions for further com-
parison.

We presented visual uncertainty representations as heatmaps based on
segmentation masks that highlight polyps from colonoscopy images. We
trained, validated and tested two CNN models based on the Kvasir-SEG
dataset. For uncertainty estimation, we adapted MC dropout and deep
ensembles and compared them. Additionally, we included two different
loss metrics, DSC and BCE, for training each model. Later on, we answer
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our research question by testing each combination of the two uncertainty
estimation techniques, trained with different loss functions, and based on
two different CNN architectures.

Our results show that MC dropout was insufficient at providing inter-
pretable uncertainty representations and lacks at connecting the uncer-
tainty estimates at the misclassified regions. This method was not able
to increase the performance during test time, which contradicts with the
results given in previous studies. However, when using the second tech-
nique, we have shown that this method was able to provide visually inter-
pretable and informative uncertainty representations by connecting large
uncertainty estimates to predictions that are more likely to be misclassi-
fied. MC dropout was unsuccessful at providing such correlations. In ad-
dition, the deep ensembles were able to obtain higher performance during
test time when increasing the ensemble size. Our main results consist of
predicted segmentation masks and their corresponding uncertainty repre-
sentations.

6.2 Contributions

We revisit the main contributions stated in Section 1.6 by repeating and
answering RQ1. Below, we sequentially repeat and answer these research
objectives, which helps solve our main research question.

Objective 1: Explore how uncertainty estimates connect the model prediction
with the input features.

This objective is supported by our exploration of different uncertainty es-
timation methods in a segmentation use-case. We established connections
in the information provided by the uncertainty representations and their
corresponding predictions. These connections only apply to one of the
two approaches that we tested, the deep ensemble method. The other
approach, MC dropout, was insufficient at establishing such correlations,
and therefore did not provide useful and informative uncertainty esti-
mates.

Objective 2: Explore how the use of different loss functions affect the model
predictions and the corresponding uncertainty.

Including the use of different loss functions, DSC and BCE, during train-
ing, allowed us to meet this objective. By doing so, we were able to explore
uncertainty estimation techniques based on different model training char-
acteristics. Overall, using DSC as loss during training resulted in a model
that outperformed the corresponding BCE-trained models. Not only did
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DSC provide better predictions in terms of the test score, but in contrast to
BCE, it also provided clearer uncertainty estimates corresponding to areas
that are more or less likely to be correctly classified.

Objective 3: Use two different architectures to examine if the uncertainty es-
timation performance is affected by the model architecture.

Like the second objective, this third objective aims at testing uncertainty
estimation methods based on different model characteristics. In this case,
these characteristics correspond to different CNN architectures. This ob-
jective is supported by the fact that we explored the use of different CNN
architectures. By doing so, we investigated if and how each model affects
the performance of the two uncertainty estimation approaches. Overall,
U-Net outperformed ResUNet++, which contradicts the results presented
in a previous study. This leaves a topic for further investigation due to the
contradictory results.

Our work aims at extending explainability by providing predictive un-
certainty estimates. As we see above, we proposed the three research ob-
jectives above to aid us in answering the following research question:

RQ1: How can the predictive uncertainty estimates improve the understanding
of the model prediction?

We answer this question by testing each combination of two uncertainty
estimation techniques, trained with different loss functions, and based on
two different CNN architectures. The spatially distributed uncertainty es-
timations were visualized as heatmaps. We claim that the uncertainty rep-
resentations provided by the deep ensemble approach give explanations
that can be interpreted by non-DL experts because these uncertainty es-
timations act as our existing general understanding of uncertainty in sci-
ence. To clearly answer our research question, we argue that uncertainty
representations provided by deep ensembles are indeed able to improve
the understanding of the model prediction based on our findings.

The other uncertainty estimation approach, MC dropout, was unable to
improve the understanding of the model prediction by its uncertainty rep-
resentations. This is because we found that the resulting uncertainty esti-
mates were difficult to interpret. The information given in the uncertainty
estimates did not correlate with the model predictions.

Reaching our objectives and answering the research question lay the foun-
dation of the main contributions behind this thesis. We argue that these
contributions add value to the field of XAI, which is consistent with the
motivations behind this thesis stated in Section 1.1. Applying uncertainty
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estimation to semantic segmentation shows that we were able to extract
explanations capable of adding more information to the model predic-
tions. These explanations can help to improve the understanding of the
model prediction, which can be used to make more informed decisions
on whether to trust a model’s predictions. We hope that this work leaves
motivation for further development for explainability- and uncertainty es-
timation methods to further increase the trust and acceptance of DL-based
CAD in the future.

6.3 Future Work

Our main research question can be extended in potential future work. One
can include a user study for uncertainty representations to be tested and
evaluated by actual medical doctors in real clinical workflows. Together
with experienced colonoscopists and other clinicians, we can study their
user behaviors and needs when using automated polyp detection that
provides uncertainty representations. This allows us to evaluate and
establish the true potential of uncertainty estimations in a real clinical
scenario. Additionally, we would like to use uncertainty estimation
techniques to calibrate important parameters such as the threshold value
used during model prediction, or the weight factor used in different
loss functions like the weighted BCE. We would also like to study how
the uncertainty estimates are affected if we change or remove specific
layers or entire modules inside a CNN architecture. Extending existing
uncertainty estimation methods using other voting techniques also leaves
an interesting research topic. Lastly, we would like to develop our own
novel uncertainty estimation technique, based on the main strengths of
what we learned from these existing uncertainty estimation methods.
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Appendix A

Source Code

The source code related to all experiments mentioned in this thesis are
made publicly available on the following GitHub repository: https://
github.com/feliciajacobsen/PolypSegmentation/. This repository include all
preprocessing steps, model classes, training, validation, testing, and the
entire deep ensembles- and MC dropout pipelines.
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Predictive Uncertainty Masks from Deep Ensembles in
Automated Polyp Segmentation

Felicia Ly Jacobsen1
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ABSTRACT
This paper presents the submission of team F-HOST for the Medico:
Transparency in Medical Image Segmentation task held at Media-
Eval 2021. We propose a U-Net-based ensemble model for solving
the automatic polyp segmentation task and interpret the predictions
using a specific method for obtaining uncertainty. Our predicted
segmentation masks show a mean Dice score of 45.01% based on
the test data. The corresponding uncertainties show systematic
errors towards the training data, which indicates overfitting.

I INTRODUCTION
Polyps are abnormal growths inside the lining of the colon or rec-
tum. They can potentially develop into being malignant, leading to
colorectal cancer, and thereby act as a precursor for cancer. Detect-
ing and removing polyps with colonoscopic polypectomy during or
before further development, will allow for more treatment options
and overall improved prognosis [11].

Currently, the gold standard of finding and removing polyps
is through a procedure called colonoscopy. This procedure is de-
pendent upon differences in skill, experience, and technique of
the endoscopists. However, studies show that up to 28% remain
undetected [8]. Automated semantic segmentation based on deep
learning frameworks can be used as a tool to detect polyps based
on images from colonoscopy examinations. Deep Ensembles can
provide an uncertainty quality of the predicted segmentation, even
for ensembles with five trained models [7]. This method is known
as being easy to implement and being scalable to different deep
learning (DL) frameworks and can additionally improve classifica-
tion error and robustness in terms of dataset shift. In this paper, the
results based on the challenge test data are presented and discussed,
including their corresponding uncertainty mask estimated from a
Deep Ensemble model consisting of five U-Net networks.

II APPROACH
In this section, the approach to the Medico task "Transparency
in Medical Image Segmentation" of the MediaEval 2021 challenge
is presented. All models were trained using the PyTorch frame-
work [9] on an Nvidia Tesla V100 32GB General-Purpose Graphics
Processing Unit (GPGPU).

II.1 Datasets
There is a total of 1, 362 images in the development dataset [5]. We
randomly select 272 for validation and the rest for training. The

Copyright 2021 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).
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test data only consist of a total of 200 images, excluding the ground
truth masks. The dataset is based on the HyperKvasir dataset [2],
but includes additional images and masks.

II.2 Experimental Setup
We used the U-Net architecture as the base model for the Deep
Ensemble, with a total of five U-Nets. The development data was
resized into 256 × 256 pixels before training, due to memory con-
straints and to reduce training time. The training data was split into
batches of 32 images in order to obtain greater training efficiency
as opposed to a larger batch size of, e.g., 64. Data augmentation was
performed on the fly for each training iteration in order to obtain
improved generalization. We use techniques such as blurring, color
jitter, horizontal flip, random rotate 90◦, and vertical flip. Instead
of using transposed convolution in the decoder part of the network
as proposed in the original U-Net paper [10], two-dimensional bi-
linear upsampling is used in order to avoid potential checkerboard
artifacts. All models in the ensemble were trained using an initial
learning rate of 1 · 10−4, with a learning rate scheduler with a mini-
mum learning rate of 1 ·10−7. Each model had a total of 150 training
iterations, using the Adam optimizer [6] and the Dice coefficient
loss. After the last training iteration, the model weights for each
model in the deep ensemble was saved in a .pt format. Hyperparam-
eter tuning was done manually by observing the dice loss on the
validation data as a function of training iterations, and evaluating
the Dice Coefficient (DE), Jaccard Index (JI) and Accuracy.

When performing prediction with the deep ensemble, each indi-
vidual model is loaded, and each predict on the input image from
the test dataset. The element-wise mean is calculated from the
output from each of the models in the ensemble. They are later
pushed through a Sigmoid activation and thresholded into binary
pixel values. The variance provided by the ensemble is used as an
approximation for the uncertainty of each prediction mask. This
is calculated by taking the squared sum of each probability predic-
tion (Sigmoid output) minus the mean probability prediction from
the ensemble. This squared sum is later divided by the number of
models in the ensemble, five in this case.

For subtask 2: "Algorithm Efficiency", the time in seconds was
calculated for the ensemble to make its overall mean prediction for
each of the test images in order to measure the model efficiency
of the ensemble. A Docker image is made, and using this image
will make a .csv file with the image name and its corresponding
prediction time in seconds. The Deep Ensemble will be run on
the challenge organizers’ hardware, and they provide us with the
frames per second (FPS), which is the average number of masks
from the test dataset the ensemble is able to make per second.
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For subtask 3: "Transparent Machine Learning Systems", all
source code is made publicly available on GitHub1, which also
includes the uncertainty images for the prediction masks.

III RESULTS AND ANALYSIS
Table 1 summarizes the results for the Medico subtask 1, includ-
ing the mean DC, mean JI and mean Accuracy for the prediction
masks on the validation data and the official task test data. These
results show that the Deep Ensemble generalize poorly onto the
test data, with a decrease of approximately 55% in the DC score
and 46% decrease in the mean JI when comparing the results from
the validation data on the test data. There is a high variance of DC
score in the individual images from the test images, some get a DC
as high as 0.8935, whereas some images get as low as 0.0000. Higher
performance can be increased by performing more hyperparameter
tuning, training the Deep Ensemble on more training examples
including similar datasets such as for example the CVC-ClinicDB
dataset [4] and the CVC-ColonDB dataset [1]. Additionally, decreas-
ing the number of training iterations can also contribute to a more
generalized ensemble model. Also, as proposed in the original pa-
per [7], adding adversarial training and increasing the number of
models in the ensemble from 5 to 15, may potentially decrease the
prediction error significantly.

Table 1: Results from validation data and test data by the
ensemble model of five U-Nets. The results on predicted test
data were provided by the task organizers.

Mean Mean Mean
Dice Jaccard Index Accuracy

Validation data 0.8226 0.7005 0.9242
Official Test data 0.4501 0.3231 0.8831

For the efficiency subtask, a FPS of 82.9496 was obtained. This
means that the time of approximately 2.4111 seconds in total was
used to generate the masks on the entire test dataset. This result
indicates satisfactory model efficiency, but in return the deep en-
semble is both memory- and time consuming to train.

A set of three randomly chosen images from the test data and
their corresponding prediction masks and uncertainty heatmaps are
shown in Figure 1. The brighter areas in the heatmaps illustrate the
pixels where the models in the ensemble disagree the most. These
results show that the borders of the detected polyps are where
they disagree the most. Furthermore, the two uncertainty heatmaps
(from the left) shows an outlining of a rectangle in the bottom
left corner. Many of the input images in the HyperKvasir dataset
show green rectangles located in the same area, this is information
important to the medical experts. Thus, it is common to observe
several images with green rectangles in the development dataset.
However, note that the input images do not contain these green
rectangles. These results indicate that the ensemble expected these
rectangles, thus showing systematic bias towards the training data.
Increasing the number of training examples, as well as performing

1https://github.com/feliciajacobsen/MediaEval2021

corrections to training images where these rectangles appear by,
e.g., cropping them out may boost model performance.

Figure 1: Examples of the input images from the official test
dataset are shown on the top row. Their corresponding pre-
dicted masks are shown on the middle row, and their uncer-
tainty heatmap representation are on the bottom row. The
prediction masks and uncertainty heatmap are calculated
using the Deep Ensemble of five trained U-Net networks.

IV CONCLUSION AND FUTUREWORK
In this paper, we presented a method of obtaining the approximate
uncertainty values for a set of predicted segmentation masks. The
uncertainty masks provide an uncertainty measure of the perfor-
mance of a U-Net based DL model trained on medical colonoscopy
images of polyps.

A mean Dice score of 0.4501 was obtained on the test data, and
compared to the Dice score of 0.8226 from the validation data, this
indicated that the Deep Ensemble model was being overfitted to
the training data, and thus generalizing poorly onto unseen data.
Increasing the number of training examples by including similar
datasets, decreasing the number of training iterations, increasing
the number of models in the ensemble, as well as including adver-
sarial training may improve generalization. A total average FPS of
82.9496 was obtained on the test data, but came at a high computa-
tional cost when training the Deep Ensemble. In future work, we
will add the aforementioned proposed extensions, as well as experi-
ment and compare to alternative methods such as Masksembles [3]
in order to decrease computational cost of obtaining an ensemble
model.
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Abstract—Deep neural networks have achieved state-of-the-
art performance on numerous applications in the medical field,
with use-cases ranging from automation of mundane tasks to
diagnosis of life threatening diseases. Despite these achievements,
deep neural networks are considered ”black boxes” due to their
complex structure and general lack of transparency in their
decision-making process. These attributes make it challenging
to incorporate deep learning into existing clinical workflows
as decisions often need more support than blind faith in a
statistical model. This paper presents an investigation of un-
certainty estimation for the detection of colon polyps using
deep convolutional neural networks (CNNs). We experiment with
two different approaches to measure uncertainty, Monte Carlo
(MC) dropout and deep ensembles, and discuss the advantages
and disadvantages of both methods in terms of computational
efficiency and performance gain. Furthermore, we apply the two
uncertainty methods to two different state-of-the-art CNN-based
polyp segmentation architectures. The uncertainty is visualized
as heatmaps on the input images and can be used to make
more informed decisions on whether or not to trust a model’s
predictions. The results show that the predictive uncertainties
provide a comparison between different models’ predictions
which can be interpreted as contrastive explanations where the
values are largely influenced by the degree of independence
between the models in the ensemble. We also reveal that MC
dropout is shown to lack at providing contrastive uncertainty
values due to the high correlation between the models’ in the
ensemble.

Index Terms—computer-aided diagnosis, deep learning, ma-
chine learning, segmentation, uncertainty, and explainability.

I. INTRODUCTION

Colorectal cancer (CRC) is currently the third-highest preva-
lent cancer worldwide and is the second most common cancer-
related death [1]. CRC typically starts with a small benign
growth inside the lining of the colon or rectum, called a
polyp, which can become malignant over time. A polyp often
shows few signs of or no symptoms at all [2]. The necessity
for high-standard polyp detection techniques is crucial in
order to improve the prognosis of CRC in patients. Today,
colonoscopy is the gold standard for such preventive screening
programs [3]. However, studies show that up to approximately
28% of polyps are undetected [4], [5].

Computer-aided detection (CAD) systems [6] are designed
to decrease observational oversights and have already been
successfully integrated into diagnostic mammography [7].

Deep learning (DL)-based segmentation can be used to high-
light polyps in images and videos. In these cases, DL can
become the main component in CAD systems which can
be used by medical experts during colonoscopy screenings
to reduce the number of undetected polyps. CAD systems
can also reduce workloads for medical personnel, increase
efficiency at clinics, verify and assess the quality of earlier
examinations, and train inexperienced physicians and medical
students [6], [8]. Moreover, CAD systems is considered cost-
efficient because the use of a computer rather than a second
human observer has the advantage of reducing the demand for
trained physicians [6].

Despite the potential advantages of DL-based CAD, the lack
of explainability and transparency are important limitations in
considering their potential future in clinical practice [9]. DL
models are considered to have a “black box”-nature because
they lack the ability to explain the underlying mechanisms of
their decision-making process [10]. Similar to medical experts,
CAD systems should also be held accountable in order to learn
from their mistakes and to continuously improve.

Explainability and transparency can provide accountability
to DL-based CAD systems which can help to secure the accep-
tance of the integration of DL models in medical clinics [10].
One way of making a model more transparent is by providing
additional information about the model’s uncertainty regarding
a performed prediction, which can aid medical experts in
making more informed decisions when using the CAD system.
Pixel-level uncertainty values can accentuate spatial areas of
contrast between different values of confidence in predictions
given by an ensemble of deep neural networks. In these types
of applications, the uncertainty values can be interpreted as
contrastive explanations that provide a comparison between a
prediction given by one model to another. These explanations
can aid medical experts in evaluating the performance of
different DL models.

In this paper, we provide uncertainty representations based
on predicted segmentation masks generated by a convolutional
neural network (CNN). We experiment with two different
uncertainty estimation approaches using a polyp segmentation
use-case, one based on deep ensembles and the other using
monte carlo (MC) dropout. The two approaches are easily
integrated into existing CNN-based prediction frameworks and
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can aid in providing more information about the prediction of
a given sample. Thus, the main contributions of this paper are
as follows:

1) We estimate the uncertainty of current state-of-the-art
polyp segmentation models and evaluate their predictive
performance using a publicly available dataset.

2) We compare the performance of different segmentation
models across ensembles.

3) We evaluate the uncertainty representations between two
different uncertainty estimation approaches.

II. BACKGROUND AND RELATED WORK

Although DL has shown to be very successful across several
medical domains, there are still cases where it may make
poor or unintelligible predictions. Trust in the underlying DL
models is paramount if DL-based systems are to be prop-
erly integrated into hospitals and clinics. Providing a binary
prediction output based on an arbitrary probability threshold
is insufficient and does not deliver the information needed
for medical professionals to interpret whether the provided
prediction can be trusted or not. Uncertainty estimation has
recently gained much attention in machine learning, especially
for DL-based models [11], [12].

Several approaches to uncertainty estimating of deep neu-
ral networks have been explored, including methods using
Bayesian neural networks [13], ensemble models [14], and
test-time data augmentation [15], [16]. Ghahramani et al. [17]
proposed a method called MC dropout, which utilizes dropout
during test time to approximate Bayesian inference in deep
Gaussian processes. The approach has gained major success
due to its simplicity and not requiring significant changes to
existing neural network architectures. Another popular method
of estimating uncertainty is by using a method called deep
ensembles [18], [19]. Traditional ensemble models use a
collection of models that each make a prediction to a specific
input and come to a consensus using a predetermined set of
rules [20]. We can use these independent predictions to mea-
sure the agreement between the different models, where a high
level of agreement signifies low uncertainty and a low level
of agreement indicates a high level of uncertainty. Lastly, test-
time data augmentation applies simple transformations to the
input data in order to measure the change in prediction when
processed by the model and mimic the effect of larger datasets,
which can provide more generalizable prediction models [21].
Our approach to uncertainty estimation is motivated by the
demand for explainability in DL models.

III. EXPERIMENTS

Using colon polyp segmentation as a use-case, we trained
two deep CNN-based models to automatically segment images
collected from real-world colonoscopies. We use a publicly
available dataset called Kvasir-SEG [22] which consists of
1, 000 colonoscopy images containing polyps and their corre-
sponding annotations. Examples from this dataset are shown
in parts of Figure 2. We randomly split 80% of the total
dataset into the training set, 10% into a validation set, and

10% into the unseen test set. The training set is used to
calculate the standard deviation and mean across the RBG
color channels in order for each dataset to be normalized based
on the training set statistics. The result of normalization is
color channel intensities bounded by the range [0, 1]. Due to
RAM restrictions, we resize all input images to 256×256, use
a batch size set to 32 and utilize mixed-precision training [23].
We set the total training epochs to 150, which based on our
internal testing would ensure convergence during training. We
monitored convergence by tracking the training- and validation
loss values for each iteration.

As mentioned earlier, Kvasir-SEG only consists of 1, 000
image and mask pairs. We thus extended the dataset using
augmentations to increase generalizability. Augmentation is
only applied to the training data and is performed on-the-fly for
each iteration. Each transformation is assigned a probability,
which represents the probability of it being applied to the input
image. Thus, multiple transformations can be simultaneously
applied to the same image. We use a random rotation trans-
formation method with a limit of 35 degrees counterclockwise
with a corresponding probability of 10%, a horizontal flip
transformation that flips the image around horizontally with
a probability of 50%, and a vertical flip of 10%. We limited
the number of possible transformations to three as we avoided
the possibility of distorting the images too much such that they
completely destroys the features characterizing the polyps. The
augmentations were implemented using the Albumentations
library [24].

For uncertainty estimation, we adapt the MC dropout [25]
and the deep ensemble [18] approach to extract the variance
across an ensemble of CNNs trained for automatic polyp
segmentation. The variance is visualized as heatmap represen-
tations representing spatial predictive uncertainty in the pre-
dicted polyp mask, for which a similar approach can be found
in [19]. Furthermore, we trained two different state-of-the-art
CNN architectures as baseline models for the MC dropout and
deep ensemble approach. We compare these models based on
their performances and uncertainty representations in the MC
dropout- and deep ensemble pipeline.

All experiments were implemented in Pytorch [26] and
run on the eX3 computing cluster.1 Among other things, this
computing cluster contains NVIDIA Tesla V100 GPUs with
32 GB of RAM which were used for model training. The code
used for all experiments is publicly available2.

IV. ENSEMBLE MODELS

The primary objective behind deep ensembles is to extract
the uncertainty from the neural network using a combination of
slightly different baseline models. Intuitively, properly trained
models initialized with different weights should converge to a
similar endpoint but may behave differently when applied to
difficult parts of the image. By comparing the differences in
the predictions made by these models, we are able to extract

1https://www.ex3.simula.no/
2https://github.com/feliciajacobsen/PolypSegmentation
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Fig. 1: The left images present the predicted polyp segmentation masks for one image sample generated by each of the 16
different baseline models from the ResUNet++ based deep ensemble. The right image is the corresponding uncertainty map
generated using the predicted masks.

information about what regions of an image the ensemble is
most uncertain about. Measuring uncertainty using the deep
ensemble approach can be broken down into three main steps:

1) Separately train n baseline models.
2) Run the input, yi, through each respective baseline

model to generate n predictions by ŷ = 1
n

∑n
i=1 yi,

where ŷ is the final output of the ensemble.
3) Use the difference across the predictions to measure the

uncertainty of the final prediction.
We apply this deep ensemble approach using two sets of
baseline model architectures, one based on the popular medical
image segmentation architecture U-Net [27], and the other
based on ResUNet++ [8], which is an architecture that has pre-
viously shown good performance on the Kvasir-SEG dataset.
The reason for experimenting with two different baseline
model architectures for uncertainty estimation was to identify
possible differences in uncertainty representations depending
on the baseline model architecture.

The deep ensembles were built using 16 baseline models,
each trained on the same training and validation set. Each
baseline model is based on the same CNN architecture. The
decision to use 16 models was based on manual testing.
Starting at 5 baseline models, we gradually increased the
number of models while monitoring the gained performance
and stopped once the ensemble size did not fit within our
memory constraints. For weight and bias initialization of each
convolutional layer in the CNNs, we use the default parameter
initialization provided in PyTorch, which is the Gaussian
He initialization scheme. We use He initialization with the
intention of initializing the layers such that the variance of
activations across all layers are the same during each forward

pass.

The U-Net-based ensemble were implemented using the ex-
act architecture described in the original U-Net paper [27], but
replaced all transposed convolutions with bilinear interpolation
layers. We did so in order to avoid checkerboard artifacts,
which are seen in models containing transposed convolutions.
For the ResUNet++ based ensemble, the baseline model were
implemented in the same way as described in the original
paper [8].

The hyperparameters were manually tuned and held con-
stant between all 16 baseline models, where we used the
hyperparameters from the original ResUNet++ paper [8] as a
starting point due to the same use-case. For training, weights
were optimized using the Adam optimizer with βt

1 = 0.9
and βt

2 = 0.999, and dice similarity coefficient (DSC) loss
was used to calculate the error. The initial learning rate for
all training schemes was set to 1 · 10−4. This learning rate
value corresponded to the fastest convergence during training.
We used the trained ensemble to make a collective prediction
based on the same set of test data. For one test example,
the predicted probabilities across each model are averaged,
and variance across the ensemble is computed, representing
the estimated predictive uncertainty. This uncertainty is then
visualized as a heatmap, which shows the regions of agreement
and disagreement between the models in the ensemble (red
colors mean higher uncertainty and blue to dark blue means
weak to no uncertainty, respectively). Figure 1 shows the
predicted masks for each of the 16 baseline models and their
corresponding uncertainty representations.
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Fig. 2: Three original input images from Kvasir-SEG, the ground truth segmentation masks, the predicted masks, and their
corresponding predictive uncertainties. These images were generated using MC dropout (left) and deep ensembles (right) with
U-Net as the baseline model.

V. MONTE CARLO DROPOUT

The primary goal of MC dropout is to generate predictions
that can be interpreted as samples from the probabilistic
distribution, more specifically, a probabilistic model called
deep Gaussian Process. A neural network where dropout is
applied during test time allows the model to act as an ensemble
of classifiers and not just one single model. The MC dropout
method can be broken down into three distinct steps:

1) Train a single neural network that contains dropout.
2) Run the input through the model n times with enables

dropout to generate n predictions, where ŷ = 1
n

∑n
i=1 yi

is the final output of the ensemble.
3) Use the difference in the predictions to measure the

uncertainty of the final prediction.
Like the deep ensemble method, U-Net and ResUNet++ are
used as baseline models for MC dropout. We adapt the
MC dropout approach introduced by DeVries et al. [28] by
implementing one dropout layer to each of the five interme-
diate blocks in the U-Net architecture. Hence, a total of 5
dropout layers are added to the architecture, which represents
the dropout-modified U-Net. We do the same approach for
ResUNet++, where 4 dropout layers are added to each inter-

mediate block. The dropout rate is held constant, such that we
have a global dropout rate for each of the dropout-modified
models. The dropout rate is tuned by tracking the training-
and validation loss using different dropout rates ranging from
0–0.5. We found 0.1 to give the highest validation score for
all models trained with different loss functions.

To mimic the effect of model ensembling, the dropout layers
are enabled during test time. The dropout layers provide a
source of randomness such that each model during test time be
viewed as different to the model in the next iteration. During
test time, the model can provide different predictions at each
forward pass given an input. The number of forward passes
can be interpreted as the number of models’ in the ensemble.
The variance across the different predictions in the ensemble
will represent the predictive uncertainty.

VI. PREDICTION STACKING

Each trained model in the ensemble is saved and can be
loaded into a defined model architecture in order to make
a collective prediction. For the case of MC dropout, the
prediction for each forward pass corresponding to a specific
input test image is stacked along a dimension with the length
correspondingly to the ensemble size. Likewise, each of the
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Model Uncertainty DSC

U-Net MC dropout 0.7538
Deep ensemble 0.8172

ResUNet++ MC dropout 0.7190
Deep ensemble 0.7370

TABLE I: The summarized results of MC dropout and deep
ensembles with an ensemble size of 16 in each case. U-Net and
ResUNet++ were used as baseline models. The main results
are the mean DSC based on Kvasir-SEG test data.

trained models in the deep ensembles is loaded into its corre-
sponding model architecture for each model and stacked along
the dimension corresponding to the ensemble size. Loading
in a different model architecture for each model in the deep
ensemble will require more computational capacity than the
process of facilitating MC dropout during test time. It is
important to note that the predictions corresponding to the
exact same input image must be stacked together. The stacked
predictions are averaged across each model in the ensemble
by taking the element-wise mean along the ensemble size
dimension. The result represents the mean prediction by the
ensemble.

The mean prediction corresponding to predicted probabil-
ities is transformed using a threshold equal to 0.5 in order
to represent the class values. The positive class corresponds
to a pixel that belongs to a polyp, and the negative class
corresponds to the background class. Thresholding assigns low
probabilities to the background class and high probabilities to
the polyp class.

The variance is computed from the stacked predicted prob-
abilities along the ensemble size dimension. Each element in
the variance tensor is normalized to lie in the range of [0, 1].
We proceed by mapping the variance tensor to a colormap,
such that it can be interpreted as spatial predictive uncertainties
represented by a heatmap. The Turbo colormap is preferred,
which clearly accentuates the areas of high uncertainty as
compared to other colormaps in Matplotlib. The red color
corresponds to a high uncertainty, the yellow to cyan colors
represent the average values of uncertainties, and the dark
blue color represents low uncertainty. We observe that this
colormap provides an easy visual assessment as it provides
high-contrast and smoothly varying color transitions to the
images.

VII. RESULTS AND DISCUSSION

Looking at Figure 2, we can observe that the predicted
masks are more similar to the actual masks using the deep
ensemble compared to the ensemble generated by MC dropout.
This is also reflected in Table I which displays the different
values of mean DSC based on the Kvasir-SEG test dataset,
where an ensemble size of 16 gave a mean DSC equal to
0.8172, whereas 16 forward passes generated by MC dropout
gave a mean DSC of 0.7538.

In contrast to deep ensembles, we observe from Figure 3
that the MC dropout gave no performance increase in terms
of the test DSC with the increasing ensemble size. However,
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Fig. 3: A graph showing how the performance changed as the
ensemble size increased for the different ensembles each of
different CNN architectures used as baseline models. Note that
the y-axis does not start on 0 to better highlight the differences.

we can see that regardless of the choice of CNN architecture
used in the deep ensemble, increasing ensemble size up to a
value of 7 significantly increases the performance. For a deep
ensemble of ResUNet++ models, we observe an increasing
performance to an ensemble size of 14. In contrast, for a deep
ensemble of U-Nets, we observe no increasing performance
after an ensemble size of 7. But overall, a deep ensemble
of 7 U-Nets gave the best DSC score of 0.8182. Because
only one model is trained for the MC dropout ensemble,
the different models can be interpreted as highly correlated.
For deep ensembles, however, each model in the ensemble is
initialized and trained separately. This level of independence
and diversity is also reflected in the uncertainty values as
observed in figures 1, where the quality of the prediction of the
independently trained model largely varies depending on the
specific model in the deep ensemble. This diversity of models
across the an ensemble indicates a favorable property given the
performance gain. For the results in Figure 2, the uncertainty
representations given by the MC dropout approach are elusive
and obscure. Hence, MC dropout lack at providing contrastive
explanations for this specific use-case.

Regarding the quality of the uncertainty representations
and usability for clinical practice, we conclude that the deep
ensembles are more suitable as they provide more precise in-
formation about the comparison of the performance across the
ensemble. Furthermore, we see that the uncertainties created
using the deep ensemble method offer more information that
can help interpret the results and make them more trustworthy.
By comparing the masks generated by the ensemble model and
corresponding uncertainty masks in Figure 2, we see a clear
indication of which parts of the segmentation masks are most
probably incorrect.
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VIII. CONCLUSION

This paper presented our approach of using deep neu-
ral networks to segment polyps in images collected from
colonoscopies and measure the predictions’ uncertainty using
state-of-the-art uncertainty estimation methods. The presented
results show that the use of deep ensembles not only provides
clear and distinct uncertainty estimates to the predictions,
but also improves the performance in terms of the mean
DSC during test time. In contrast to deep ensembles, the
MC dropout approach has the benefits of high computational
efficiency and low memory requirements. Despite this, the re-
sulting uncertainty estimates are elusive and obscure. Based on
this comparison, we argue that the uncertainty representations
based on deep ensembles can aid medical experts in evaluating
and characterizing the model performance compared to other
models in the ensemble. Integrating DL-based CAD systems,
such as polyp segmentation frameworks, together with predic-
tive uncertainty estimates, can help to build confidence and
trust between the medical experts and these systems. We hope
that this work motivates the inclusion of uncertainty estimation
in medical applications using DL as it could significantly im-
pact whether a model should be trusted or not. For future work,
we plan to verify the usefulness of these masks through a user
study involving experienced colonoscopists and clinicians.
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