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Abstract

The amount of time critical data sent on the Internet is increasing. As a result, the
networks are in danger of getting congested. When sending time critical data on con-
gested networks, we risk that the data may get too old in buffers, and are to no use
when it arrives at its destination. For example, a late video frame in a video session
or a late position update in games. To prevent delivery of outdated data, we want to
discover and discard outdated network traffic as early as possible. A mechanism to ac-
complish this is late data choice (LDC). With LDC we address the problem at the source
by taking control of our own sending buffer. This thesis explores the possibility to sup-
port LDC in TCP in the Linux network architecture. There is no LDC support in the
TCP implementation in Linux today. Therefore, an implementation of LDC support for
TCP was made and evaluated. When testing, we found that with LDC support in TCP
we can deliver relevant data and drop data we no longer want to or can send. This
makes the utilization of resources much better, as we do not waste them on useless
data. Thus, we can say that LDC support in TCP reduces the perceived latency for the
receiver, and increases useful throughput.
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Chapter 1

Introduction

1.1 Background and motivation

We send more and more data in our computer networks. The amount of time critical
data is also increasing, i.e., especially due to the fact that distributed interactive applic-
ations like online games and high rate streaming of audio and video gain ground as
more people gets a broadband connection to the Internet at home. As a result, the net-
works are in danger of getting congested, and peers may receive data that has gotten
too old in the buffer and therefore are of no value to the receiver. This is because when
networks get congested, data may be delayed in buffers along the path. Packets may
even get dropped and retransmitted if a reliable connection, like Transmission Control
Protocol (TCP), is used. This is just fine for time-independent data. For time-critical
data on the other hand, the situation is different. If the network is congested and time
critical data is delayed, we risk that the data may get too old, and are to no use, when
it arrives at its destination. As an example, consider a late video frame in a video ses-
sion or a late position update in games. As a result, the whole transmission of the data
was useless. To prevent delivery of outdated data, and even free bandwidth, it would
be nice if one could discover and discard network traffic already too old as early as
possible. A mechanism to accomplish this is late data choice (LDC) [9]. With LDC we
address the problem at the source by taking control of our own sending buffer. There
is no LDC support in the TCP implementation in Linux today.

1.2 Problem definition

We want to utilize the network resources on the most relevant data, e.g., in games or
video streams, the relevancy of data rapidly decrease over time. With LDC we can
drop and discard packets that has not been sent before the payload is too old. For
MPEG video streams, one could choose to send the important I-frames and drop less
important B and P-frames if the network is congested and the data got old in the buffer.
In this thesis, we want to explore the possibility to reduce latency and congestion with
LDC support for TCP for time sensitive applications, such as interactive online games
or video conferencing. We want to see if we can reduce latency and congestion by not
sending old data unnecessarily. By doing this we want to see if we can send more
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usable data because resources that ordinarily would be used on outdated data, can
instead be used on new and useful data. LDC is a modification on the sending side of
a connection and should be transparent to the receiver, i.e. it should not be necessary
to alter the receiving side to make LDC work. Thus, we address the question of;

Can late data choice support in TCP reduce latency and increase throughput for
time critical data in congested networks?

1.3 Approach and method

The work on this thesis started with an investigation of the Linux network architecture.
One need to have a knowledge of mechanisms and structures used in the network ar-
chitecture to be able to extend it with new functionality. To get greater insight into LDC,
related work was studied. A design of LDC support in TCP was done and implemen-
ted. Finally, the implementation was evaluated and compared with TCP without LDC
support. The results show that TCP with LDC support can deliver much more relevant
data within given time limits. Thus, giving a lower perceived latency and higher useful
throughput.

1.4 Outline

In chapter 2 we describe how the Linux network architecture, with main focus on
TCP/IP, is implemented. We follow a packet up and down the TCP/IP stack and take
a look at what happens with the packet along the path. Next, in chapter 3, the LDC
mechanism is described in greater detail. We also take a look at some related work in
the field of LDC and partial reliability. Then, in chapter 4, the LDC support in TCP is
presented. First the design is discussed, and in the following section, the implementa-
tion is described in detail. In chapter 5, an evaluation of TCP with and without LDC is
described, and the test results are compared and discussed. Finally, the conclusion is
presented in chapter 6, as well as ideas for further work and development of LDC with
TCP is discussed. There are also two appendices. Appendix A lists an extract of the
source code of the LDC for TCP implementation. Appendix B describes the attached
CD-ROM. The CD-ROM contains all the source code for this thesis.
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Chapter 2

The Linux Network architecture

This chapter starts with a brief introduction to the Linux Operating System. Then the
TCP/IP implementation in the Linux Kernel is explained by following the packet trail
from when a packet enters the network interface card (NIC), passes up and down the
network stack and leaves the NIC again. Details on how TCP connections are set up
and torn down will not be explained, but we will mention it when appropriate. The
kernel version used is 2.6.15.4 [10]. As guide trough the Linux network architecture,
we used sources [14] and [11]. To browse the kernel code, the great code browsing tool
LXR [3] was used.

2.1 The Linux Operating System

Linux is an open source UNIX-like operating system (OS) originally written by Linus
Torvalds from Finland. Now, it is a fully functional OS used all around the world,
used for desktop and server systems by both individuals and businesses. Open source
means that the actual source code is open for the public and free to use and modify.
Because Linux is open source and easily modified, it has become very popular among
students and lecturers in the computer science departments of universities around the
world. With a widely spread and stable OS like Linux, you can easily implement and
test new technologies.

2.1.1 The Kernel

The Linux kernel is a monolithic OS kernel. This means that the whole kernel is loaded
into memory at system start and all kernel code run in kernel mode (privileged mode).
In contrast, a micro-kernel (like Windows NT) is very small and do only the basics
like memory management. Other functionality runs in user mode (restricted mode).
The fact that Linux is monolithic, made it very big and hard to maintain. To solve this
problem, the Linux developers started to use kernel modules.

2.1.2 Kernel Modules

Kernel modules are code that do a specific job. It may be a kernel modification, en-
hancement or a device driver. Unlike in a micro-kernel system, this additional code
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Figure 2.1: Structure of socket buffers (struct sk_buff) [14].

does not run in user mode, but it is loaded into the kernel memory and runs in ker-
nel mode. This leads to fewer context switches than in an micro-kernel system, since
the code in modules do not need to issue system-calls to interact with the kernel. The
additional code in micro-kernel systems have to issue system-calls, as they run in user
mode.

2.2 The Network architecture

In the Linux kernel, all packets are represented by the socket buffer struct sk_buff
(skb), see figure 2.1. As we can see in the figure, skbs are connected in a linked list
with a list head, sk_buff_head, on the top. This makes it a trivial task to traverse
all skbs in a buffer. The skb is passed from layer to layer along the network stack as
it gets processed on the way in and/or out. In the next sections we will see how the
Linux kernel handle the network packets as skbs, starting when a packet arrives at the
NIC.

2.3 Receiving a TCP packet

In this section we describe the journey of an incoming packet, starting at the NIC.
When the NIC has picked up a packet from the wire and is ready to pass it to the OS,
it issues a hardware interrupt, and the data link layer starts processing the packet.

2.3.1 Datalink layer

The interrupt issued at the arrival of a packet, is checked by the interrupt-handling
routine of the NIC’s network driver, so that the appropriate action can be taken. If the
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Figure 2.2: Packet reception [11].

interrupt issued because of an incoming packet, it calls on net_rx() (driver depend-
ent) for further handling. See table 2.1 for functions and source files mentioned in this
section. The net_rx() function uses dev_alloc_skb() to allocate an skb. Then,
as we can see in figure 2.21, the packet data is copied from NIC memory to the socket
buffer in kernel memory. The pointer skb->dev is set to the receiving NIC. Then,
netif_rx_schedule() is called to complete the interrupt handling. Here, a refer-
ence to the device (the receiving NIC) is queued on the (current) CPU’s poll_list,
softnet_data->poll_list. Finally a soft interrupt, NET_RX_SOFTIRQ, is raised.

After a certain time interval, the kernel checks if there is any soft interrupts that
needs handling, and if so, the do_softirq() is called. The CPU then polls the devices
present in its poll_list and calls on poll() (driver dependent) for each device.
The drivers poll() function then calls netif_receive_skb(). If the packet is an
IP-packet netif_receive_skb() will call ip_rcv() and the network layer will
continue the processing.
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Function Source file

dev_alloc_skb() include/linux/skbuff.h, line 1070
icmp_rcv() net/ipv4/icmp.c, line 926
igmp_rcv() net/ipv4/igmp.c, line 863
ip_forward() net/ipv4/ip_forward.c, line 57
ip_local_deliver() net/ipv4/ip_input.c, line 266
ip_local_deliver_finish() net/ipv4/ip_input.c, line 200
ip_mr_input() net/ipv4/ipmr.c, line 1335
ip_rcv() net/ipv4/ip_input.c, line 376
ip_rcv_finish() net/ipv4/ip_input.c, line 334
ip_route_input() net/ipv4/route.c, line 2083
netif_receive_skb() net/core/dev.c, line 1579
netif_rx_schedule() include/linux/netdevice.h, line 833
tcp_rcv_established() net/ipv4/tcp_input.c, line 3725
tcp_rcv_state_process() net/ipv4/tcp_input.c, line 4219
tcp_v4_do_rcv() net/ipv4/tcp_ipv4.c, line 1138
tcp_v4_rcv() net/ipv4/tcp_ipv4.c, line 1189
tcp_v4_send_reset() net/ipv4/tcp_ipv4.c, line 676
udp_rcv() net/ipv4/udp.c, line 1118
do_softirq() kernel/softirq.c, line 116

All line numbers refers to an unchanged 2.6.15.4 source tree.

Table 2.1: Receive functions and their source files

2.3.2 Network (IP) layer

When ip_rcv() receives a packet from the underlying layer, it checks if the size of
the packet is at least as big as an IP header, if it is an IPv4 packet, if the checksum
is correct and if the packet has the correct length. If any of the tests fail, then the
packet is dropped. At this point, the netfilter hook NF_IP_PRE_ROUTING is invoked,
as we can see on the left in figure 2.3. After any procedures at the hook have finished,
ip_rcv_finish() is called.

In ip_rcv_finish(), it is determined where the packet should travel further.
This is done by ip_route_input() setting the skb->dst. ip_rcv_finish() also
checks the packet for any IP options and creates the ip_options struct if needed.
Now it is time to send along the packet by calling skb->dst->input(). It has been
set to one of the following by ip_route_input() (see figure 2.3):

• ip_local_deliver() - Unicast and multicast packets for local delivery.

• ip_forward() - Unicast packets that should be forwarded.

• ip_mr_input() - Multicast packets that should be forwarded (not shown in the
figure).

1Figures 2.2 through 2.6 are taken from [11]. The kernel version in the figures and the one presented
here are not the same, so some minor differences may occur.
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Figure 2.3: Network layer data path [11].

In this description, we assume that the packet was for local delivery, i.e.,
ip_local_deliver() was called. The only thing ip_local_deliver() does is
to reassemble IP fragments. After that is done, the netfilter hook NF_IP_LOCAL_IN is
invoked. When it returns, ip_local_deliver_finish() is called.

At ip_local_deliver_finish(), it is determined if the packet is intended for
a RAW-IP socket. If not, the transport protocol for further processing has to be determ-
ined. This is done by choosing a transport protocol from the hash table ipprot, using
the protocol ID of the IP header modulo (MAX_INET_PROTOS -1) as the hash value.
These are the most common handling routines for the transport layer:

• tcp_v4_rcv() - Transmission Control Protocol
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• udp_rcv() - User Datagram Protocol

• icmp_rcv() - Internet Control Message Protocol

• igmp_rcv() - Internet Group Management Protocol

If the packet is not sent to a RAW-IP socket or a transport protocol could not be found,
the packet is dropped and an ICMP Destination Unreachable message is returned to
the sender. In this example, we assume further that the packet is a TCP packet and the
tcp_v4_rcv() function will be called to process the packet at the transport layer.

2.3.3 Transport layer

First, tcp_v4_rcv() checks if the packet it got really is for this host. Otherwise, it
is discarded. If the packet was not discarded, it is checked if this packet belongs to
an active socket. If an active socket was found, tcp_v4_do_rcv() is called. If not,
tcp_v4_send_reset() is called to send a RESET segment.

On the left in figure 2.4, we can see tcp_v4_do_rcv() and paths it can take from
there. tcp_v4_do_rcv() checks the state of the connection. We assume that it is
established, TCP_ESTABLISHED, and that tcp_rcv_established() is called. If the
connection was not established, tcp_rcv_state_process() is called to handle the
connection (setup, tear down etc.).

tcp_rcv_established() distinguishes between two paths:

• Fast path is used for trivial packets, that are either pure ACKs, or if it contains
data expected next (Header Prediction). It is used for most of the packets (83% -
100%) [14] and speeds up the performance.

• Slow path handles all the packets not sent the fast path. It has more functionality
to handle all the exceptions.

If the packet took the fast path and is a data packet, the payload is now copied to the
receive memory of the process that owns the connection. Packets in sequence go to the
sk_receive_queue and out of sequence packets to the out_of_order_queue. At
last, the process is notified (sk->sk_data_ready).

2.3.4 Application layer

The applications can now read (e.g. read()) data from their sockets and use it as they
want. There may still be more protocol handling to do if a application layer protocol
like HTTP [1] or RTP [5] is used.

2.4 Sending a TCP packet

We will now look at the operations for sending a packet using TCP and describe its
path through the system.
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Figure 2.4: TCP input processing. [11]

2.4.1 Application layer

Applications use a system-call to send payload over sockets, e.g., send(). The system-
call invokes the tcp_sendmsg() function to send TCP packets. See table 2.2 to see
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Function Source file

dev_queue_xmit() net/core/dev.c, line 1245
ip_finish_output() net/ipv4/ip_output.c, line 203
ip_finish_output2() net/ipv4/ip_output.c, line 163
ip_fragment() net/ipv4/ip_output.c, line 414
ip_output() net/ipv4/ip_output.c, line 274
ip_queue_xmit() net/ipv4/ip_output.c, line 285
qdisc_restart() net/sched/sch_generic.c, line 93
qdisc_run() include/net/pkt_sched.h, line 222
sk_stream_wait_connect() net/core/stream.c, line 51
skb_realloc_headroom() net/core/skbuff.c, line 675
tcp_current_mss() net/ipv4/tcp_output.c, line 680
tcp_fragment() net/ipv4/tcp_output.c, line 448
tcp_push() net/ipv4/tcp.c, line 488
tcp_push_pending_frames() include/net/tcp.h, line 878
tcp_sendmsg() net/ipv4/tcp.c, line 662
tcp_snd_wnd_test() net/ipv4/tcp_output.c, line 840
tcp_transmit_skb() net/ipv4/tcp_output.c, line 265
tcp_write_xmit() net/ipv4/tcp_output.c, line 999

All line numbers refers to an unchanged 2.6.15.4 source tree.

Table 2.2: Send functions and their source files

functions mentioned in this section and their source files.

2.4.2 Transport layer

tcp_sendmsg() copies the payload from user-space memory to kernel memory
and sends the payload as TCP segments. As for incoming packets, the way
this is handled varies on the state of the connection. We assume that it is
established, TCPF_ESTABLISHED. If the connection was not established, the
sk_stream_wait_connect() would be called and further handling would wait
until we got a connection. The next thing tcp_sendmsg() does, is to calculate the
maximum segment size (MSS) by calling tcp_current_mss(). Then, the actual
copying of data is done. Data from user-space is put into socket buffers and added to
the end of the socket’s transmit queue. The packet is then sent by calling tcp_push(),
which in turn calls tcp_push_pending_frames(). See the call sequence in fig-
ure 2.5. tcp_write_xmit(), called from tcp_push_pending_frames(), checks
if the packet needs to be fragmented. If it does, tcp_fragment() is called.
tcp_write_xmit() calls tcp_transmit_skb() as long as it is allowed to do so
by tcp_snd_wnd_test().

tcp_transmit_skb() is completing the TCP segment by building the TCP
header and checksum it. When done, tp->af_specific->queue_xmit(),
which is a pointer to the underlying protocol’s service access point (SAP), is
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Figure 2.5: TCP output processing [11].

called to pass the socket buffer to the IP layer for transmission. In this case
tp->af_specific->queue_xmit() refers to ip_queue_xmit().
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2.4.3 Network (IP) layer

As we can see in figure 2.3, the path through the network layer starts at
ip_queue_xmit() when it receives a socket buffer from the transport layer.
It checks if skb->dst includes a pointer to an entry in the routing cache. If it
does not find a suitable route, the necessary steps to setup a route is taken. We
assume that a route exists. When it is determined where that packet should be
sent, the IP header is allocated and built. At the end of ip_queue_xmit(), the
netfilter hook NF_IP_LOCAL_OUT is invoked. After it has finished, it continues
at skb->dst->output(), that is a function pointer that is set during the routing
process and points to ip_output() for IP packets. ip_queue_xmit2() shown in
the figure does no longer exist.

Here, the packet size is checked. If the size is greater than the MSS,
ip_fragment() is called, otherwise ip_finish_output(). In this example,
we assume no fragmentation is needed.

At this point, the layer-2 packet type is set to ETH_P_IP and a new netfilter hook,
NF_IP_POST_ROUTING, is invoked and continues at ip_finish_output2().

At ip_finish_output2(), the IP handling of packets is finished. First, it checks
if there is enough free space for the hardware header. If not, it allocates head room
with skb_realloc_headroom(). Then, it checks if the skb already has a reference
to the hard header cache. If it has, it copies the layer-2 packet header into the packet-data
space, in front of the IP header. At the end it calls hh->hh_output(skb), which in
this case is a pointer to dev_queue_xmit(). If there was no entry in the hard header
cache, the corresponding address-resolution routine is invoked.

2.4.4 Datalink layer

For each packet dev_queue_xmit() gets, it grabs the device’s queue (qdisc) and
enqueues the socket buffer on it, seen in figure 2.6. Then, it calls qdisc_run().
qdisc_run() calls qdisc_restart() as long as the NIC’s queue is not stopped
(e.g. due to link failure or the tx_ring being full) and qdisc_restart() returns
a value less than 0. In qdisc_restart(), packets get dequeued, and the virtual
function hard_start_xmit() (driver dependent) is called. hard_start_xmit(),
implemented in driver code, places the packet description in the tx_ring and the
drivers tells the NIC that there are packets to send.

When the NIC has transmitted the packets, it (the driver) tells the CPU, with a soft
interrupt, that packets are sent. The packets are put into a completion_queue and
the memory used by the packet data is scheduled for deallocation.

2.5 In-depth study of TCP output

In this section, we will explain the areas where the LDC implementation will alter
the current implementation. This area is mainly a part of the TCP output code in the
kernel. As we are going to take a closer look at, in chapter 4, we want to replace the
existing send buffer.
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Figure 2.6: Transmission of a packet [11].

All data enters the send buffer via tcp_sendmsg() (or do_tcp_sendpages()).
Here, data is copied from user space and put in an skb, and the skb is added at the
tail of the send buffer. See figure 2.7 for the call sequence of the functions mentioned
in this section. Both tcp_write_xmit() and tcp_push_one() take the skb at
the socket’s sk_send_head, if any, and pass it along to tcp_transmit_skb()
for sending. The difference between these two, is that tcp_push_one() (as the
name imply) only send one frame while tcp_write_xmit() send as long it has
data in the buffer or is allowed to send by the congestion control mechanisms.
As for function calls, you have one call to tcp_transmit_skb() and then one
call to update_send_head() in tcp_push_one(), and a loop with calls to the
two same functions in tcp_write_xmit(). update_send_head() sets the
socket’s sk_send_head to the next skb in the send buffer or NULL if empty. To
summarize a bit, we have tcp_sendmsg() and equivalents as producers, and
tcp_write_xmit(), tcp_push_one() and equivalents as consumers.

If sending of packets has stopped due to not enough space in the TCP send win-
dow, it can not continue to send before the window space is opened. As we know, the
window opens when we get ACKs from the other side. ACKs (and other incoming
packets) are, in an established state, handled by tcp_rcv_established(). As we
see in figure 2.7, tcp_rcv_established() calls on tcp_ack() followed by a call
to tcp_data_snd_check() when it receives an ACK. tcp_data_snd_check()
tries to send data in the send buffer, ending up in the transmit-update head loop in
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Figure 2.7: Function graph over a part of TCP output.

tcp_write_xmit().
As we can see, there are many functions interacting with the send buffer. De-

tails on how LDC fits into all this is described in detail in chapter 4, but in short,
the send buffer is not entirely replaced. Packets are moved from the LDC buffer to
the existing send buffer right before they are to be sent, i.e., in tcp_sendmsg() and
update_send_head().

2.6 Summary

In this chapter, we have given a brief introduction to the Linux OS. We have looked
at the TCP/IP implementation in Linux by following a packet up and back down the
TCP/IP stack. The parts of the stack that the LDC implementation will touch are ex-
plained in greater detail. By going into the Linux network architecture, we found that
TCP currently has no mechanism to drop expired data packets. In the next chapter, we
look at the possibility to discover and drop packets that has content that is invalid due
to time restrictions.
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Chapter 3

Late Data choice and related work

In this chapter, the concept of late data choice (LDC) is explained. Also, earlier work
done in the field of late data choice and partial reliability is presented.

3.1 Why and what?

The reason to have control over the transmission buffer is to have the ability to ensure
that we send the most relevant data at the moment. In general, this mean that we do
not want to use resources on data that for some reason (e.g. congested network) has
not been transmitted yet, and will have no value to the receiver if transmitted. For
instance, in games or video streams, the relevancy of data rapidly decrease over time.
With mechanisms like LDC you may remove, or update the content of, packets that
have not been sent before the payload is too old. For video streams, one could choose
to send the important I-frames and drop less important B and P-frames if the network
is congested, and for games outdated events can be dropped.

LDC is the property to provide a generic control over the transmit buffer [9]. When
an application has control over its transmit buffer, it has the ability to modify or remove
data in the buffer.

A related term is partial reliability which is defined as a partially reliable transport
service “that allows the user to specify, on a per message basis, the rules governing
how persistent the transport service should be in attempting to send the message to
the receiver” [12]. For instance, partial reliability in SCTP is a mechanism that allows a
sender to signal to its peer that it should no longer expect to receive one or more data
chunks. The other part to partial reliability is to give packets a parameter that states
how long the data it contains is valid. This is called timed reliability.

The main difference between LDC and partial reliability, is when you need to decide
the validity of packet data. With partial reliability you set a time to live on your data
when you send a packet (i.e., put data in the transmit buffer). With LDC you do not set
any time to live on the packet while sending, but you can remove it from the transmit
buffer later. LDC may be more flexible than partial reliability, since you have direct
access to the transmit buffer. With LDC, you do not just have the ability to drop a
packets, but you can alter the data directly in the buffer if you want to, or maybe
just remove a part of the packet data. Thus, partial reliability does not give the same
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Figure 3.1: Empty packet ring [9].

Figure 3.2: User adds packets, shift-
ing user_i and umod_i. Packets 0-6
are owned by the kernel [9].

flexibility and dynamic behavior as the LDC approach, but gives the ability to not send
outdated packets.

3.2 Related work

In this section, we take a look at some related work that has mechanisms to handle
time critical data. The DCCP API for LDC [9] lets applications remove packets directly
from the send buffer. The SCTP Partial Reliability Extension [13] lets applications give
its packet a time to live. Another mechanism, Priority-Progress streaming [8], does
prioritized sending of video in adaption windows, allowing to scale the send rate after
available bandwidth. Finally, a solution to prevent data from getting old in the send
buffer by dynamically adjusting the TCP send buffer size is presented [4].

3.2.1 DCCP API for LDC

The Datagram Congestion Control Protocol (DCCP) [7] is a unreliable transport layer
protocol. It provides bidirectional unicast connections of congestion-controlled unreli-
able datagrams. It is suitable for applications that transfer fairly large amounts of data
and that can benefit from control over the tradeoff between timeliness and reliability.
To add support for LDC, the DCCP API for LDC [9] was developed.

The foundation in this solution is the packet ring. It is a shared memory segment
that applications use to send packets (put packet records on), and the kernel uses to
fetch packets to send to the NIC. The packet ring is an array of packet records and has
four indexes; two for enqueued and empty, and two for late packet modification, see
figure 3.1.

The packet records are data structures representing packets. They consists of a
pointer to the actual packet data, the size and some flags. The user_dead flag is used by
the applications to mark the packet as dead. If the flag is set, the kernel will elegantly
skip the packet and move to the next. When using this technique to delete packets, the
application does not need to remove the packet and shift other packets in the ring. The
flag kern_acked is set when the kernel has got an ACK on a sent packet. The flag is used
to inform the application that the packet is successfully sent. The last flag is named
user_seq and is a local sequence number. If the application sets this flag, the kernel can
inform the application when or if a packet has been ACKed even if the packet ring has
wrapped and the kern_acked flag is overwritten.

As already mentioned, the packet ring has four indexes. Two owned by the ker-
nel and two owned by the application. The two kernel indexes are dev_i and kern_i.
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Figure 3.3: Kernel processes packets
0 and 1 and sends them to the device,
shifting kern_i [9].

Figure 3.4: User marks packet 1, 3
and 5 as dead. Note that no in-
dex movement is needed and mark-
ing packet 1 as dead is safe [9].

Figure 3.5: User wants to alter
previously-sent packets, moves
umod_i. Packets 3-6 are safe to
modify [9].

Figure 3.6: Like figure 3.5, but the
kernel moved kern_i simultaneously
with the user moving umod_i. Only
packets 5 and 6 are safe to modify [9].

The device index, dev_i, points at the oldest packet record enqueued for device trans-
mission. The kernel index, kern_i, points at the oldest packet record that the kernel
has not processed yet. umod_i and user_i are the two application indexes. The user
modification index, umod_i, is the only index that can move backwards. It points at
oldest packet record that the application can safely modify. The user index, user_i,
points immediately above the newest packet record that application has put on the
ring. A packet with index i, where dev_i ≤ i < kern_i, has been processed by the kernel
and is waiting to be sent by the NIC. The application should not modify the packet.
When kern_i ≤ i < umod_i, the packet is available for kernel processing, but it has not
been sent to a NIC. The application should not modify the packet without moving the
umod_i backwards. Figures 3.1 through 3.6 show several examples of packet rings.

The API was implemented by Lai and Kohler as a part of their experimental in-
kernel DCCP protocol implementation that runs in Linux 2.4.20. In their prototype, the
buffers that contained actual packet data was allocated from shared memory between
user space and kernel space that they called packet zones. For sending data "direct from
disk" (e.g., a video stream), they loaded data directly into a packet buffer using raw
disk or raw file support to avoid unnecessary copying of data.

Their hypothesis was that the packet ring used with DCCP would give low latency
and high throughput in addition to LDC. Tests showed that applications that used the
copy-free API outperformed comparable UDP applications by up to 60%. By reducing
user-kernel crossings, it can further improve the performance by up to 71%. If you run
a MPEG streaming server, you will get congestion control, low packet delay and LDC
at the same time. The LDC enables the MPEG server to deliver more important frames
(I-frames), as it can choose to drop less important frames (B and P-frames).

17



3.2.2 SCTP Partial Reliability Extension

Stream Control Transmission Protocol (SCTP) [13] is a reliable transport layer protocol
protocol. It offers the following services to its users: Acknowledged error-free non-
duplicated transfer of user data, data fragmentation to conform to discovered path
MTU size, sequenced delivery of user messages within multiple streams, with an op-
tion for order-of-arrival delivery of individual user messages, optional bundling of
multiple user messages into a single SCTP packet, and network-level fault tolerance
through supporting of multi-homing at either or both ends of an association.

The SCTP Partial Reliability Extension (PR-SCTP) [12] is, as the name states, a par-
tial reliability extension to the SCTP protocol. It provides mechanisms that allows an
SCTP endpoint to signal to its peer that it should move the cumulative ACK point
forward. If you have an SCTP connection where both sides support this extension, it
can provide a partially reliable data transmission service. One example of a partially
reliable service provided by this extension is timed reliability. This service provides a
mechanism to applications that allows them to set a time to live on packet. The time to
live indicates the duration of time that the sender should try to transmit or retransmit
the message before it eventually is dropped. This functionality is an extension of the
lifetime parameter that already exist in the SCTP protocol.

3.2.3 Priority-Progress streaming

Another mechanism to prevent sending of too old data is Priority-Progress stream-
ing (PPS) [8]. PPS combines data re-ordering and dropping to maintain timeliness of
streaming in the face of unpredictable throughput. It is used to stream video. A min-
imal scalable compression format, derived from MPEG-1 video, called SPEG (Scalable
MPEG) was developed to be used with PPS. SPEG transcodes MPEG coecients to a set
of levels, one base level and three enhancement levels. Each original MPEG frame is
divided into four application level data units (ADU), one for each level. The ADUs are
classified and given priority by a Priority Mapper based on what kind of frame (I,B or
P) it is and the level. The ADUs are grouped in streaming data units (SDU), one SDU per
priority level. How the ADUs are grouped depends on how we want to scale quality.
ADUs may be grouped to support frame drop or spatial drop.

The PPS algorithm is best effort. It allows the congestion control mechanism to
decide appropriate sending rates. When the sending rate is low, the timeliness of
the stream is maintained by dropping low-priority data, before they would otherwise
reach the network. In this way, the amount of higher-priority data sent automatically
matches the rate decisions of the congestion control mechanism. The PPS algorithm
works by subdividing the time-line of the video into disjoint intervals called adapta-
tion windows. PPS sends SDUs belonging to the current window. It starts by sending
the SDUs with the highest priority, and continues to send SDUs with decreasing pri-
ority. If there are SDUs left when the window has passed, they are dropped. We con-
tinue at the next window with a new set of SDUs, starting by sending the SDU with
the highest priority.
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3.2.4 Dynamically adjusting the TCP send buffer size

In the paper Supporting Low Latency TCP-Based Media Streams [4] Goel, Krasic, Li and
Walpole studied the feasibility of using TCP for low-latency media streaming. Their
idea is to adapt the TCP send buffer size based on TCP’s congestion window. The
desired effect is a reduced application perceived network latency.

They investigated the protocol latency, i.e. socket to socket latency and found that
a significant portion of the delay occurred due to the TCP send buffer. They also found
that this delay could be eliminated by making some simple modifications to the TCP
send buffer. The modifications were to dynamically adjust the send buffer size accord-
ing to the current window size (CWND). A new socket option, SO_TCP_MIN_BUFwith
the parameters A and B, was introduced so the modification could be enabled on a per
socket basis. The option limits the send buffer to A*CWND+MIN(B,CWND) at any given
time. The send buffer size will always be at least CWND since A must be ≥ 1 and B≥ 0.
They called a SO_TCP_MIN_BUF stream with the parameters A and B a MIN_BUF(A,B)
stream.

Three different experiments with different buffer sizes were ran; MIN_BUF(1,0),
MIN_BUF(1,3) and MIN_BUF(2,0). Their results showed that MIN_BUF(1,0) and
MIN_BUF(1,3) streams had similar latencies and these latencies were much smaller
than a MIN_BUF(2,0) stream or a regular TCP stream. While MIN_BUF(1,0) showed
30% loss in throughput, MIN_BUF(1,3) suffers less than 10%. Thus MIN_BUF(1,3)
represents a good latency-throughput compromise. Their conclusion was that their
experiments results showed that their simple idea reduced protocol latency and
significantly improved the number of packets that could be delivered within 200 ms
and 500 ms thresholds.

3.3 Summary

In this chapter, the expression LDC has been explained and the similarities and differ-
ences with partial reliability were also mentioned.

Several related work and studies on the subject have been presented and we have
learned some different concepts on how to deal with the problem that packets stay
too long in the send buffer and may grow old while waiting to be sent out on the
wire. The DCCP API for late data choice lets an application modify the buffer content
directly, thus enabling it to remove or modify packets not yet sent. The SCTP Partial
Reliability Extension gives applications the ability to timestamp their messages so that
they will be dropped if not sent within that time limit. Priority-Progress streaming was
another mechanism described. It divides a video stream into adaption windows and
give small pieces of the video different priority. By sending high-priority data first, it
can drop low-priority data if it was not sent before the adaption window had passed.
The last solution we looked at was to dynamically adjust the TCP send buffer size.
This solution prevents an application from ever ending up in the situation where it has
too many packets in the send buffer, by reducing the send buffer size while the CWND
decreases.

As TCP is the most used protocol on the Internet today, it would clearly be handy to
have LDC support in it. In the next chapter we will take a look at our implementation
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for LDC support in TCP in the Linux network architecture.

20



Chapter 4

Late data choice support in TCP

In this chapter, the design of the LDC support in TCP is presented. The principles
and structures that makes up the system are described. Secondly, the implementa-
tion details are presented, i.e., what is modified in the kernel and how the module is
implemented.

4.1 Design

The main design of TCP LDC is inspired by the DCCP API for late data choice, see
section 3.2.1. The primary functionality we wanted was to be able to go back in the
send buffer and delete (or modify) a packet that has not been sent yet. We also wanted
to keep the existing TCP stack intact (and usable) while providing late data choice
support. To achieve this, we decided to leave the existing TCP stack untouched as
much as possible.

To support the ability to go back and delete (or modify) a packet that has been sent
by an application, but not yet put on the wire, we decided that a send buffer in shared
memory (shared between user and kernel space) would be a nice and clean solution.
See figure 4.1 for a design overview.

4.1.1 The packet ring

The heart of the TCP LDC implementation is the packet ring. This packet buffer “re-
places” the original packet buffer. It resides in shared memory, i.e., both the kernel and
the application can access the buffer directly. This enables an application to “send”
packets without issuing a system call. It just places the data directly in the buffer.
When an application has put a packet in the packet ring, it notifies the kernel, if it is
not already sending packets. Applications send and drop packets, notify the kernel,
etc. with the aid of a LDC user space library. When the kernel receives a notification
from the application, as described in section 4.2.1, it will start sending packets and con-
tinues to send as long as there are packets in the buffer that are ready to be sent. The
kernel will obey the usual TCP congestion control and stop sending if the sending win-
dow is full. When the kernel stops to send for some reason, it will set a kern_notify
flag so the application knows whether it has to notify the kernel or not, when adding
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Figure 4.1: TCP LDC design

packets to the buffer.

4.1.2 Replacing the existing socket buffer

As TCP is a fairly complex protocol, a new buffer would have to support all the fea-
tures of TCP (like congestion avoidance and retransmit). It would lead to an unneces-
sary complex design (and redundant implementation) to actually replace the existing
buffer. Also, much of the output part of the TCP stack would have to be rewritten/ex-
tended to support a new buffer as it depend on the existing. Because of that, the new
buffer would be placed on top of the existing buffer. To prevent the LDC buffer from
leading to even more delay and not getting the ability to delete or modify the pack-
ets, the TCP LDC buffer is not just put on-top of the existing buffer, it is integrated.
With TCP LDC all unsent packets will be in the TCP LDC buffer, making it possible
to modify/delete packets. Only one packet, the next to be sent, will be in the exist-
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Figure 4.2: TCP LDC packet ring and indexes

ing send buffer. Packets in the TCP LDC buffer is just data, with a minimal TCP LDC
header, and packets in the original send buffer is skbs. Thus, packets that are moved
to the original buffer is wrapped as skbs on the fly. This will be explained in greater
detail in section 4.2.

4.1.3 Indexes and flags

There are three indexes used by the packet ring.

• kern_i - the kernel index. Only updated by the kernel.

• umod_i - the user modification. Only updated by the application.

• user_i - the user index. Only updated by the application.

Slots with index iwhere kern_i ≤ i < umod_i are packets ready to send. Slots
with index i where umod_i ≤ i < user_i are packets that the application freely
can modify/delete. The next slot where the application can add a packet is at index
user_i. Slots with index i where user_i ≤ i < kern_i are free slots/sent pack-
ets. During normal operation, umod_i equals user_i. umod_i is only decremented
(to the index where the target packet is), when the application wants to modify or
delete a packet, in order to hold back the kernel. See figure 4.2 for a graphical repres-
entation of the TCP LDC packet ring and indexes.

There are two types of flags; kernel_flag and user_flag. Is is only one
kernel_flag and it is in the structure that describes the packet ring, struct
packet_head. If kernel_flag is set, the kernel is not sending packets and needs to
be notified to start sending. Every packet in the packet ring has a user_flag. If the
user_flag is set, the packet is tagged as deleted, and the kernel will skip it while
sending. This is very similar to how it is done in the DCCP API for LDC, shown in
figure 3.4.
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4.1.4 Security

In this section, we will discuss some security issues that one may need to address to
make TCP LDC more robust. In principle, an application can only hurt itself by setting
invalid values in indexes etc. However, a robust kernel implementation should not
let the users make (at least stupid and obvious) errors. A careless application may for
instance, for some unknown reason, modify the kern_i index. To prevent undefined
situations, the kernel may want to keep its own copy of that index. The kernel may also
want to keep copies of the user indexes, to check that a change looks sane. At least, a
basic sanity check, e.g., assuring that kern_i ≤ umod_i ≤ user_i is always true,
should be implemented.

4.2 Implementation of TCP LDC in the Linux kernel

In this section, the actual implementation of TCP LDC is explained. The implementa-
tion of LDC support in TCP consist of the following: A module, various changes to the
kernel to interface with the module and a user space library.

4.2.1 Modifications of the kernel

To make TCP LDC work, the kernel itself has been modified in several places. In most
cases, it is just an EXPORT_SYMBOL to make functions and variables needed by the TCP
LDC module available. Other changes are the implementation of TCP_LDC option in
setsockopt() and getsockopt(). The last thing that is implemented outside the
module is the notification interface. See table 4.1 for a list of functions mentioned in
this section and their source files.

setsockopt()

To be able to define a socket as a TCP LDC socket, a new option, TCP_LDC, was defined
on the TCP level (SOL_TCP). The option values for the TCP_LDC option are the buf-
fer size, in number of packets, and the packet size, in bytes. The kernel will try to
allocate a buffer, sized packets * packetsize (+ meta-data), for the application. Be aware
that setsockopt() may fail setting the TCP_LDC option if there are not enough free
memory. If tcp_setsockopt() gets a TCP_LDC, it does three things:

• Loads the tcp_ldc module if not already loaded (see section 4.2.2 for details on
the module).

• Sets the SOCK_LDC flag on the socket to indicate that this socket is now a LDC
capable socket.

• Calls tcp_set_ldc() in the tcp_ldc module with the option value as para-
meter.
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Function Source file

__tcp_push_pending_frames() net/ipv4/tcp_output.c, line 1079
get_unmapped_area() mm/mmap.c, line 1331
insert_vm_struct() mm/mmap.c, line 1963
kmem_cache_alloc() mm/slab.c, line 2803
memset() lib/string.c, line 447
skb_add_data() include/linux/skbuff.h, line 1119
skb_copy_to_page() include/net/sock.h, line 1056
tcp_getsockopt() net/ipv4/tcp.c, line 1934
tcp_ioctl() net/ipv4/tcp.c, line 404
tcp_push_pending_frames() include/net/tcp.h, line 878
tcp_sendmsg() net/ipv4/tcp.c:662
tcp_setsockopt() net/ipv4/tcp.c, line 1690
tcp_write_xmit() net/ipv4/tcp_output.c, line 999
update_send_head() net/ipv4/tcp_output.c, line 54
vmalloc_32() mm/vmalloc.c, line 554

All line numbers refers to a unchanged 2.6.15.4 source tree.

Table 4.1: Functions mentioned in section 4.2 and their source files

getsockopt()

In getsockopt(), the same option (at the same level) as in setsockopt() is used.
When tcp_getsockopt()gets a TCP_LDC, it puts the user space address to the shared
buffer (packet ring) in parameter for the return value, given by the user. Now, the
application has access to the packet ring and can start placing packets in it.

Notifications

When the application adds packets to the packet ring (and kernel is not currently send-
ing packets) it has to tell the kernel that there now is work to do. To notify the kernel,
a special ioctl() request for TCP LDC sockets, SIOCTCPLDCNTF, was implemented.
If the kern_notify flag is set when the application is adding a packet to the packet
ring, it should notify the kernel. Note that the application does not have to notify the
kernel even if the kern_notify flag is set. It may choose to fill the packet ring a bit (or
even completely full) before letting the kernel loose on the ring. When tcp_ioctl()
receives a SIOCTCPLDCNTF request, it calls ldc_notify() in the tcp_ldc module.

4.2.2 The TCP LDC kernel module

The TCP LDC module, named tcp_ldc (net/ipv4/tcp_ldc.c), is the core implement-
ation of TCP LDC. It implements buffer initialization and handling, sending packets
and removing deleted packets on behalf of the application.

The tcp_ldc module has these main functions, which are described in the next
paragraphs.
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int tcp_set_ldc(struct sock *sk, char __user *optval, int optlen)

This function is called when an application defines its socket as an LDC socket (with
the setsockopt() call). When the application want to LDC enable its socket, it passes
along a pointer to a variable with the desired packet ring size, in number of packets
and the packet size. After the variable value is copied to kernel space, we allocate
some memory to fit a struct ldc_packet_ring (see listing 4.1) at sk->ldc_ring.
As we now have a pointer to the packet ring in the socket, we are able to reach the
packet ring every time we get a call in the module. A pointer to the socket, sk, is
always included as one of the parameters in calls to functions in the module. After the
socket has its LDC data in place, we call ldc_pkt_buffer_alloc() to do the actual
work with allocating and mapping the packet ring. When we are finished allocating
the actual packet ring, the module will “sleep” until it gets a notification from the
application. See appendix A.1 for the full source code for this function.

s t r u c t ldc_packet_r ing {
s t r u c t ldc_ring_head * ring_head ;
s t r u c t ldc_packet * packet_ring ;

/ * B u f f e r addr in u s e r s p a c e * /
void * ldc_pkt_buffer_uaddr ;
/ * B u f f e r addr in k e r n e l s p a c e * /
void * ldc_pkt_buf fer ;
/ * Al igned s i z e * /
i n t l d c _ p k t _ s i z e ;

}

Listing 4.1: The ldc_packet_ring struct

int ldc_pkt_buffer_alloc(struct ldc_packet_ring *lpr, int rsize, int psize)

This function allocates and shares the packet ring between the kernel and the applica-
tion. It receives the requested ring size, given in packets, as a parameter. The first thing
this function does is to calculate the size of the ring i bytes:

b u f f e r _ s i z e = s izeof ( s t r u c t ldc_ring_head )
+ ( r s i z e * s izeof ( s t r u c t ldc_packet ) )
+ ( r s i z e * ps ize ) ;

s i z e = PAGE_ALIGN( b u f f e r _ s i z e ) ;

As you can see, the size is page aligned. This means that the size is rounded up
to the next page boundary. The reason for doing this is that memory is mapped
at a per page basis, and to assure that no one else will interfere with our ring, we
make sure we use whole pages. Now, it is time to allocate some memory. This is
done by the helper function ldc_rvmalloc(). When the memory is allocated
we call kmem_cache_alloc() to grab a virtual memory area cache, vma. The
vma will be used to describe the allocated memory (the packet ring) and later
merged with the application’s virtual memory. Now, we find some free space

26



Figure 4.3: Mapping memory into the application’s memory space

with the size of the (page aligned) packet ring in the application’s address space
(get_unmapped_area()). Then, we map the packet ring in the vma, which is done
by the helper function ldc_remap_buffer(). The next thing to do is to initialize
the packets, see listing 4.2. This is done by calculating the kernel- and user-space
address, and set the values in the ldc_packet structs. Then, we merge our new
vma with the application’s address space, see figure 4.3, this is done with a call to
insert_vm_struct(). The user space address is stored in the socket so it can
be retrieved with getsockopt(). Finally, we initialize the ring with some default
values. Setting all indexes to zero and setting the kern_flag.1 See appendix A.2 for
the full source code for this function.

s t r u c t ldc_packet {
i n t user_seq ;
unsigned i n t kern_f lag : 2 ;
unsigned i n t u s e r _ f l a g : 2 ;
i n t s i z e ;
char * data ; / * P o i n t e r t o t h e d a t a in USER SPACE * /
char * kdata ; / * P o i n t e r t o t h e d a t a in KERNEL SPACE * /
i n t o f f s e t ;

1See section 4.2.4 for some interesting issues encountered while implementing this function.
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}

Listing 4.2: The ldc_packet struct

int ldc_notify(struct sock *sk)

Since the packet ring is shared between the application and the kernel, we do not use
the normal write/send etc system-calls to send packets, but we just put them in the
packet ring (with some help of the LDC user space library). To start sending packets,
we need to notify the kernel to tell it that packets now exist in the buffer. We need to no-
tify the kernel when the kern_flag is set (this is set by the module on initialization of
an LDC socket, and every time the buffer get empty). The kernel is notified by the user
space call ldc_notify() (see section 4.2.3). The notification itself is implemented
as an ioctl() call. To notify with ioctl(), you issue a request SIOCTCPLDCNTF
(0x894b) on the socket’s fd. When the kernel receives a SIOCTCPLDCNTF, it calls
ldc_notify() in the tcp_ldc module. ldc_notify() is a very simple function
that clears the kern_flag and calls ldc_sendmsg() to start sending packets. See
appendix A.3 for the full source code for this function.

int ldc_sendmsg(struct sock *sk)

ldc_sendmsg() is a slightly modified tcp_sendmsg(). Instead of taking what
to send as a parameter (like tcp_sendmsg() does), ldc_sendmsg() sends the
next packet from the LDC packet ring. It uses ldc_next_pkt() to get the index
in the packet ring of the next packet to send. Since the buffer is shared, and it
has a kernel space address, the helper functions, ldc_skb_add_data() and
ldc_skb_copy_to_page(), are used to add data to skbs.

As with tcp_sendmsg(), ldc_sendmsg() makes a skb and inserts it into the
sockets sk_write_queue before calling tcp_push_pending_frames() etc. This
behavior is kept (as discussed in section 4.1.2) to support retransmissions without al-
tering that part of the TCP code. If the packet in the LDC packet ring is larger than the
size allowed for the skb at the moment, the packet is split up and copied into several
skbs. The allowed size of the skbs are determined by the current maximum segment
size, mss_now.

int ldc_next_pkt(struct sock *sk)

ldc_next_pkt() is used to determine the index of the next packet to send. It uses
kern_i as the starting point, as this is the index to the next packet to send. The reason
for having the ldc_next_pkt() function is that there are two conditions where you
can not simply return the kern_i value. These two are when the buffer is empty and
when a packet is deleted. The very first action taken is to check whether the buffer is
empty or not. If not, we check whether the packet at kern_i has the user_flag set
or not. If not, we return kern_i. If user_flag were in fact set, then the packets is
ignored and kern_i is incremented, by one, and we start all over. If the buffer is not
empty after removing any deleted packets, kern_i is returned. If the ring is empty,
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the notification flag, kern_flag, is set and -1 i returned. See appendix A.4 for the
full source code for this function.

struct sk_buff *ldc_update_send_head(struct sock *sk, struct tcp_sock *tp, struct
sk_buff *skb)

As discussed in section 4.1.2, the existing socket buffer is not 100% replaced. Only the
part holding unsent packets is replaced. We still use the original buffer to do retransmit
etc. To accomplish this, update_send_head() calls ldc_update_send_head()
for LDC sockets when the send buffer is empty. As described in section 2.5,
update_send_head() is called in tcp_write_xmit(). tcp_write_xmit() is
called when new packets are to be sent and when the sending window grows (both
cases via __tcp_push_pending_frames()). The original update_send_head()
has the trivial task of just fetching the next skb in queue. The problem for LDC sockets
is that there are only packets in the send buffer when a packet from the ring buffer
was just wrapped as one or more skbs. Our unsent packets are in the packet ring. To
address this, ldc_update_send_head() is called for LDC sockets if the send buffer
is empty, see listing 4.3. See appendix A.5 for the full source code for this function.

s t a t i c i n l i n e void update_send_head ( s t r u c t sock * sk , s t r u c t
tcp_sock * tp , s t r u c t sk_buff * skb )

{
sk−>sk_send_head = skb−>next ;
i f ( sk−>sk_send_head == ( s t r u c t sk_buff * )&sk−>

sk_write_queue )
i f ( sock_f lag ( sk , SOCK_LDC) )

sk−>sk_send_head = ( * ldc_update_send_head ) ( sk , tp ,
skb ) ;

else
sk−>sk_send_head = NULL;

tp−>snd_nxt = TCP_SKB_CB( skb )−>end_seq ;
tcp_packets_out_ inc ( sk , tp , skb ) ;

}

Listing 4.3: Modified update_send_head()

ldc_update_send_head() takes the next (if any) packet from the ldc packet ring
(calling ldc_next_pkt()), puts it in one or more (new) skbs, entails them in the
socket’s send buffer, and sets sk->sk_send_head to the new skb, or NULL if there
are no packets to send (empty buffer). The actual work of allocating new skbs and
entailing them in the send buffer, is done by the function ldc_make_new_skb().
The index of the packet in the LDC packet ring to entail in the send queue, is passed as
a parameter.

struct sk_buff *ldc_make_new_skb(struct sock *sk, int idx)

As the work that has to be done by ldc_make_new_skb() is pretty similar to what
ldc_sendmsg() does, it also is based on tcp_sendmsg(). ldc_make_new_skb()
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is a more modified version of tcp_sendmsg() than ldc_sendmsg(). We do not call
tcp_push_pending_frames(), and etc., since we already are in a sending state.
So, instead of starting a transmission, we return a pointer to the new skb (or NULL if
we failed for some reason). We also use the helper functions ldc_skb_add_data()
and ldc_skb_copy_to_page() for the same reasons as in ldc_sendmsg(). If
the packet in the LDC packet ring is larger than mss_now, the packet will be split
into several skbs. All the skbs will be entailed in the send buffer. In those cases,
ldc_make_new_skb() will return the pointer to the first skb it entailed in the send
buffer. update_send_head() will take care of all the skbs in the send buffer before
calling ldc_update_send_head() (and with that ldc_make_new_skb()) to entail
more skbs.

Helper functions

• ldc_rvmalloc() - Allocates memory for the packet ring. Assures that the
size is page aligned, uses vmalloc_32() to allocate memory and clears it with
memset().

• ldc_rvfree() - Frees packet ring memory. Only a wrapper for vfree().

• ldc_remap_buffer() - Maps the packet ring in a vma. Uses vmalloc_to_page()
for all page aligned addresses in the allocated memory to get a struct page.
Uses vm_insert_page() on each page to map them in the vma.

• ldc_skb_add_data() - Adds data to an skb. It is a modified
skb_add_data() to enable the from address to be a kernel space address.

• ldc_skb_copy_to_page() - Adds data to an skb. It is a modified
skb_copy_to_page() to enable the from address to be a kernel space address.

4.2.3 The TCP LDC user space library

A user space library was implemented to assist the application programmer. The func-
tions provided by the library helps the programmer to set up a LDC socket, send pack-
ets via LDC and drop packets.

struct ldc_packet_ring *ldc_init(int socket, int ring_size, int packet_size)

This functions initializes the socket as a LDC socket. It receives the socket, the desired
ring size in packets, and the packet size as parameters. ldc_init() starts by allocat-
ing memory for the ldc_packet_ring struct. Then, it uses setsockopt(), with the
TCP_LDC option, to tell the kernel about the desired ring and packet size. Thereafter, it
uses getsockopt() to get the address to the packet ring. The pointers to ring_head
and packet_ring are set in ldc_packet_ring, and the pointer to the struct is re-
turned. If setsockopt() or getsockopt() fails, the memory allocated is freed and
NULL is returned.
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int ldc_send(struct ldc_packet_ring *lpr, int user_seq, void *addr, int size, int notify)

The ldc_send() function “sends” packets, i.e., adding packets to the ring buffer. It
uses addr and size to copy the data into the packet ring at index user_i, if the
buffer is not full. If size is larger than the packet size requested in ldc_init(),
several packets are added to the ring. Note that all packets added to the packet ring
in one ldc_send() call, will get the same user_seq. For each packet added to the
ring, user_i is incremented by one, and umod_i is set to the same value as user_i.
If notify is non-zero and the kern_flag is set, the kernel will be notified (with
ioctl()). ldc_send() returns the amount of data “sent”, i.e., added to the packet
ring.

int ldc_drop(struct ldc_packet_ring *lpr, int user_seq)

ldc_drop() searches the packet ring for one or more packets with sequence num-
ber user_seq, and mark them as deleted by setting the user_flag. The number
of marked packets are returned. Note that one or more of the packets marked, may
already been sent.

4.2.4 Implementation choices and issues

In this section, we discuss some choices made and issues encountered while imple-
menting the LDC support for TCP.

How to notify?

An alternative method for kernel notification was implemented. The alternative hi-
jacks any calls ending up in tcp_sendmsg() (like write() and send()). It does
not matter what you try to send (it would just be ignored). The kernel would check if
the fd used is a TCP LDC socket, if it is, it will only call ldc_notify() and return
(just as the ioctl() way of notifying the kernel). This alternative was developed for
debugging purposes. At some point in the development, it was desirable to try a new
way of notifying. This notification mechanism still exist in the implementation of TCP
LDC. It may be nice to have this call for compatibility reasons. If one used the regu-
lar write() or send() calls, the data would end up in the send buffer (and not the
packet ring) and would be prioritized over the data in the ring buffer, due to the way
update_send_head() works.

The packet ring - a problem area

The shared buffer was first implemented as just a meta-data ring, the actual packet
data was not shared. Packet data could be anywhere in the applications user space
memory, and only the address and size were added to the packet ring. It was the
application that allocated the shared memory (page aligned, only one page in size)
and passed the address to the kernel with the setsockopt() call. The kernel would
map the address given from the application into its address space. The functions
ldc_sendmsg() and ldc_make_new_skb() used the regular skb_add_data()
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Figure 4.4: User space memory in kernel context

and skb_copy_to_page() calls. skb_add_data() and skb_copy_to_page()
use the regular copy_from_user() calls to copy data, that fitted nicely with the rest
of the design. The implementation seemed to work, but only almost. Sometimes the
functions that copied data from user space returned BAD ADDRESS. After some debug-
ging and investigation, the reason became pretty obvious. When we received an ACK
from the other side of the connection, ldc_update_send_head() would be called
if the sending window opened enough to send a packet. Here we found the prob-
lem; when ldc_update_send_head() called the copy functions, they would return
BAD ADDRESS because the kernel was in an interrupt, and thus in kernel context. In
that context, there is no reference to the user space memory of the application owning
the socket. As we do not have that necessary reference, we do not know which user
space to copy from, see figure 4.4. So, when the address and size was fetched from the
packet ring and passed to the copy functions, the functions did not know what to do.
As a result, the packet ring implementation was redesigned to the solution used now,
described in section 4.2.2.

Performance

While doing some initial testing, the implementation performed very poor. The
highest rates achieved, were approximately 250 kbit/s. The initial implementation
had a packet size-limit of 1460 bytes (based on a 1500 bytes MTU and 40 byte
headers). The user space function ldc_send() always notified the kernel when the
kern_flag was set. It seemed that the performance was poor due to the fact that the
application never got ahead of the kernel. The application would add a packet and
notify the kernel right away, and the kernel sent the packet and sat the kern_flag.
Thus, when the application added the next packet, it had to notify the kernel again.
This send-notify loop seemed to hold back the send rate. Therefore, these two sections
were modified in an attempt to increase the performance. The packet size-limit was
removed, and instead the user selects the maximum packet size while initializing
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the LDC socket with ldc_init(). The function ldc_send() got a new parameter,
notify, that tells the function if it should notify the kernel or not. This enables the
application to fill the buffer before sending. By filling the buffer, we get a head-start
on the kernel and may reduce the need for notifications. When the modifications were
done, new tests were run. Now it was able to send at rates above 3 Gbit/s, a distinct
improvement.

4.3 Summary

In this chapter, the design of the LDC support in TCP was presented. The principles
and structures that makes the system were described, and the implementation details
were presented. We saw what is modified in the kernel and how the module is imple-
mented. We also took a look at some implementation choices and issues. In the next
chapter, an evaluation of TCP with and without LDC support is given.
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Chapter 5

Testing

In this chapter, we evaluate the LDC support for TCP. Test results are compared and
discussed. The goal was to find out if we with LDC support could send only relevant
data, within a given time limit, and discard old data from the send buffer. By only
sending relevant data we assure that the send buffer do not contain outdated data,
and this makes it easier to hold deadlines. It was not the intention to find out how
much resources, CPU cycles, memory etc., the LDC support for TCP uses compared to
regular TCP with these tests.

5.1 Test setup

The evaluations were carried out on a test setup with three computers; one sender, one
network emulator and one receiver. See figure 5.1 for a visualization of the test setup.
NetEm [6] was used on the middle machine as network emulator. Two programs were
written to run the tests, one sender and one receiver. The sender simulates a media
server that streams data with a rate of 1 Mbit/s divided into 8 layers of 128 kbit/s
(1 Mbit = 1024 kbit = 220 bit). The first layer of the stream is the base layer. To play
any content at all, the receiver needs a complete base layer. The other 7 layers are
enhancement layers. Layer 2 (enhancement layer 1) extends layer 1 (the base layer),
layer 3 (enhancement layer 2) extends layer 2 and so on, see figure 5.2. The more
layers the receiver gets, the better the quality of the media will be. As the layers are
dependent on each other, they have to be received in the correct order. E.g., if you
received layer 1, 2, 3 and 5, you can not use layer 5 since you are missing layer 4. The
layers must also be received in a timely manner. If they are received too late, they can
not be used. The sender application sends one layer of 128 kbit every 1/8 second, i.e.
a total of 1 Mbit/s. The receiver is a very simple application. It receives data from
the sender for 60 seconds, and print some statistics. When the receiver has finished, it
outputs how much data it got, the average receiving rate, and the layer distribution.
The layer distribution show how much data the receiver got on each layer.

Four tests were run, with different network emulator configurations, both with and
without LDC support. The four network emulator configurations were:

• No rate limit, no loss.

• 1024 kbit/s, 5% loss.
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Figure 5.1: Test setup

Figure 5.2: Layered video

• 512 kbit/s, 5% loss.

• 256 kbit/s, 5% loss.

Some may find a loss percentage of 5 to be artificially high, but this is done on purpose
to provoke delays due to retransmissions.

5.1.1 TCP setup

The test setup for TCP without LDC support, i.e. regular TCP, consisted of the sender
application, the network emulator and the received application as described. In Linux,
the NewReno [2] TCP variant is the default. The sender application has two modes. In
the no-ldc mode, it uses the regular send() system call instead of ldc_send().

5.1.2 TCP LDC setup

The same three parts of the test setup already mentioned, were used in the evaluation
of TCP with LDC support. The only difference was the sender mode. As the regular
TCP sender mode used the send() system call, the TCP LDC sender mode used the
ldc_send() and ldc_drop() from the TCP LDC user space library described in
section 4.2.3. In TCP LDC mode, the sender application would do some additional
tasks to just sending data. After it had sent one time window of data, 1 second in
this application, it would check if we still had packets in the packet ring. If we had,
they would be dropped, starting at the least significant enhancement layer, and drop
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(a) No rate limit, no loss (b) 1024 kbit/s, 5% loss

(c) 512 kbit/s, 5% loss (d) 256 kbit/s, 5% loss

Figure 5.3: TCP test results

as many layers as needed in a descending order. When done, we would start on a new
time window by sending the base layer.

5.2 Results

In this section the results from the evaluation runs are presented. The results from the
tests with regular TCP are presented first, and then we take a look at the results from
the TCP with LDC support tests.
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5.2.1 TCP results

The tests were run ten times and the values presented here is the average of these ten
runs. As described in section 5.1, we had four configurations. In figure 5.3 you can
see the results we got with regular TCP. The first test was with no rate limit and no
loss, shown in figure 5.3(a). Here we received 983040 bytes for each layer, a total of 7.5
MB. 983040 bytes = 128 kbit/s * 60 sec. This tells us that we got the entire stream of
1 Mbit/s the whole 60 seconds. When we in the next test run introduced a rate limit
of 1024 kbit/s and 5% loss, shown in figure 5.3(b), we got a total of 6.32 MB, evenly
distributed on the eight layers. The reason for the even distribution is that we do not
drop any packets. Since TCP is a reliable protocol, we get all the data from all the
layers we send. If you take a close look at the figure, you may see that the data is not
entirely even distributed, the least significant layers have just a bit less data. This is
because we send one second of data from one layer at the time, starting at the base
layer. When the 60 seconds has passed, it is random where in the send process we
are, but we know that we always sent the most significant layers first. Figure 5.3(c)
show the results from the tests with 512 kbit/s rate limit and 5% loss. We got a total of
3.35 MB with this configuration, also evenly distributed between the layers. The last
test, with a rate limit of 256 kbit/s and 5% loss, shown in figure 5.3(a), gave a total of
1.73 MB data transferred.

In a streaming point of view, only the test with no rate limit and no loss is good
enough. We can only play back the length of the received base layer. In a situation
with real-time streaming, we would not be able to play back the media at all. This is
because we after just a short amount of time would start to receive the base layer data
too late. With TCP we would get the full quality of the whole stream, since we have all
the layers. Unfortunately, we will have no use of that quality when the data is received
at a too slow rate.

5.2.2 TCP LDC results

The evaluation of TCP with LDC support used the same four configurations as for
regular TCP, and also here the values presented are an average of ten runs. Test results
for TCP with LDC is presented in figure 5.4. The results for the no limitation test,
shown in figure 5.4(a), are identical to the regular TCP ones. In the next test, with 1024
kbit/s rate limit and 5% loss, the LDC effect is shown, see figure 5.4(b). In this test we
got 6.24 MB, a bit less than with regular TCP. Possible reasons for this are discussed
in section 5.2.3. Although we got a little less data in the same time period than with
regular TCP, the data we observe at the receiver is much more relevant. The base layer,
layer 1, is full, meaning that we can present the media at the receiver in the correct
time-frame. The figure clearly illustrate the effect we wanted to achieve, which is that
the most significant layers are prioritized and the less significant layers are given less
priority. This effect is a result of dropping packets still in the send buffer, after the time
window has passed. The two last test configurations, 512 kbit/s and 256 kbit/s with
5% loss, shown in figures 5.4(c) and 5.4(d), also show the same effect. The base layer is
full and the amount of data received on every layer gradually decrease as they become
less significant. The amount of data received in the two last tests were 3.34 MB and
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(a) No rate limit, no loss (b) 1024 kbit/s, 5% loss

(c) 512 kbit/s, 5% loss (d) 256 kbit/s, 5% loss

Figure 5.4: TCP LDC test results

Regular TCP TCP with LDC Difference

1024 kbit/s, 5% loss 862.47 kbit/s 851.96 kbit/s 1.22%
512 kbit/s, 5% loss 457.72 kbit/s 456.30 kbit/s 0.31%
256 kbit/s, 5% loss 235.88 kbit/s 235.24 kbit/s 0.27%

Table 5.1: Receive rate

1.72 MB.
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5.2.3 Comparison

The results show that we can deliver a lot more relevant data with LDC, than with
regular TCP. As already mentioned in section 5.2.1, the data delivered by regular TCP,
in the settings with limitations, is not very usable. If we were to implement a layered
streaming architecture with regular TCP, we would have to check available resources
before sending a layer, and not after as our test application does. So a direct com-
parison between the results may not be completely fair. Nevertheless, the test results
clearly states that streaming of layer encoded media greatly benefits from LDC sup-
port. Let us also take a look at the performance, the measured throughput. We men-
tioned in the previous two sections how much data the test application received in each
configurations. We discovered that we with LDC received a bit less data than without
LDC. If we convert the amount of data to throughput, we get the values shown in
table 5.1. As we can see, TCP with LDC appears to be a bit slower than regular TCP. We
have not done any investigation on why we get these results, but we have discussed
some possible reasons. In the first place, data in the LDC packet ring is wrapped in
skbs just in time before it is sent, and this may introduce an extra delay. In contrast,
with regular TCP we already have the data ready as skbs in the send buffer. Another
reason may be the fact that we are actually dropping packets. In our test applications,
we have a LDC packet size equal to data for one layer in one second, i.e., 128 kbit. So
when we are dropping packets, we may not fully utilize the available bandwidth. This
may be tuned with different LDC packet sizes. The important thing to remember is
that even if we have a bit lower throughput with LDC support compared with regular
TCP, all the data received with LDC support is usable in contrast to the data received
with regular TCP. A good throughput is useless if the data transmitted is already too
old.

5.3 Discussion

As shown by the test results presented, TCP with LDC support does a great job provid-
ing mechanisms to the sender application that enables it to only send relevant data.
This is very nice for the receiver, since all the data it get is relevant and can be used.
Since the LDC support it self has no logic for dropping packets, this has to be handled
by the application. This is very flexible, but the drawback is that the application must
have a good drop algorithm to have useful results. Improper use of the LDC support
may lead to unwanted results, like the results in figure 5.5 show. As you can see, we
got very little data in the middle layers when the bandwidth is limited. This is clearly
bad, since we can not use data from a higher level if we do not have data from the
underlying layers, in that time window. In this particular example the time window is
equal to 1/8 sec, one layer, and we drop packets waiting in the packet ring. By doing
this we risk dropping the layer just sent, e.g layer 4, and then make room for layer 5.
So to make LDC useful, the application programmer must know what she does.

As the test results show, applications that send data with a limited lifetime, like
media and game servers, may benefit from LDC support in TCP. Existing TCP-based
applications can easily adopt LDC support while continuing to use their already imple-
mented TCP architecture with minimal modification. After defining the application’s
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Figure 5.5: Results from an application that used LDC improperly

socket as a LDC socket, there are only two modifications needed, that is the actual
sending of packets and adding logic for dropping packets when they are outdated. As
discussed further in section 6.3, one may want to implement functionality that lets the
kernel drop packets automatically, making logic for dropping packets in the applica-
tion unnecessary in the simplest cases.

Please note that the test results, presented in section 5.2, does not say anything
about timing and timeliness on the delivery of packets. This means that some of the
packets may have been delivered to late because of delays in the network or because
it was lost and retransmitted. However, we observed that the whole base layer was
delivered within the time of the test run when LDC was used. This indicates that only
minor delays may have occurred.

5.4 Summary

In this chapter, TCP with and without LDC support was evaluated. The test results
were compared and discussed. We found that we can deliver relevant data, and drop
useless data from the packet ring with LDC support in TCP. This enables the receiver
to playback the media in a timely manner and only reduce the quality if not all layers
are delivered. The next chapter presents the main conclusion. Ideas for further work
with LDC support for TCP are also presented.
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Chapter 6

Conclusion and further work

In this chapter, we first summarize what was done to support LDC in TCP and how it
was done. Then, a conclusion is given, before we end this thesis by presenting some
ideas for further development of the LDC support for TCP.

6.1 Summing up

To add LDC support to TCP, a modification to the Linux kernel was made. This modi-
fication was designed after a thorough examination of the existing network architec-
ture in Linux. After the implementation was done, several tests were run to evaluate
the implementation. The tests show that LDC support in TCP increase the amount of
relevant data that can be delivered, by dropping data no longer relevant due to time
constraints.

6.2 Conclusion

In this report we wanted to examine if we with LDC support in TCP could reduce
latency and increase throughput for time critical data in congested networks. The res-
ults presented in chapter 5 clearly states that we can deliver more relevant data with
TCP with LDC than with TCP without LDC. However, we can not document any re-
duced per packet latency, nor document any increased throughput. Actually, we have
measured a bit lower throughput with LDC than without. What we have observed is
that we by dropping outdated data, are able to send more usable data with LDC. Thus,
the perceived latency for the receiver will be lower, since we, as an example, always
get the whole base layer and thereby get a continuous playback. We can for the same
reason claim that we have a better utilization of the throughput, giving us a higher use-
ful throughput with LDC than without. Based on this, we conclude that LDC support
in TCP actually reduce the latency and increase the throughput for time critical data in
congested networks.
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6.3 Further work

In this section some ideas for further development of the LDC support for TCP are
presented and discussed. One may want to expand the functionality of the LDC sup-
port timestamping of packets and give them deadlines. If they are not sent within
the deadline, then the kernel can drop the packets automatically, like in SCTP [12]. It
may also be desirable to include dropping of retransmissions. However, this implies a
modification to the receiving side of a connection due to sequence numbers. In SCTP
you have mechanisms to tell the receiver to no longer wait for the given sequence
numbers. Similar mechanisms has to be implemented in TCP to support dropping of
retransmissions.

An idea for further testing of the LDC support presented in this report, is to im-
plement and run tests where one modifies data in the packet ring directly, instead of
just dropping packets. The needed functionality to achieve this is implemented but not
tested.

If the LDC support is to go into the Linux kernel production tree, it would be wise to
do more testing and maybe do some improvements and optimizations in some places.
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Appendix A

Source code

This appendix lists source code for some of the TCP LDC functions mentioned in this
thesis. For the full source, please refer to the provided CD-ROM described in ap-
pendix B.

A.1 tcp_set_ldc()

/ * T h i s f u n c t i o n i s c a l l e d by t c p _ s e t s o c k o p t ( ) t o i n i t

* t h e LDC s u p p o r t f o r t h e s o c k e t .

* /
i n t _ t c p _ s e t _ l d c ( s t r u c t sock * sk , char __user * optval , i n t opt len )
{

DPRINT ( (KERN_EMERG "TCP_LDC : [%lu ] * * _ t c p _ s e t _ l d c ( s t r u c t sock *
sk = 0x%lx , char __user * optval = 0x%lx , i n t opt len = %d ) \n" ,

j i f f i e s ,
( long unsigned i n t ) sk ,
( long unsigned i n t ) optval ,
opt len ) ) ;

i n t r e t ;
i n t usr_vaules [ 2 ] ;

copy_from_user ( usr_vaules , optval , opt len ) ;

i f ( usr_vaules [ 0 ] < 0 || usr_vaules [ 1 ] < 0)
return −EINVAL ;

i f ( ( sk−>ld c_r ing = kmalloc ( s izeo f ( s t r u c t ld c_pack e t_r ing ) ,
GFP_KERNEL) ) == NULL)

return −ENOMEM;

DPRINT ( (KERN_EMERG "TCP_LDC : [%lu ] Got r i n g _ s i z e : %d and
pack e t_s ize : %d from app\n" ,

j i f f i e s ,
usr_vaules [ 0 ] ,
usr_vaules [ 1 ] ) ) ;
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r e t = l d c _ p k t _ b u f f e r _ a l l o c ( sk−>ldc_r ing , usr_vaules [ 0 ] ,
usr_vaules [ 1 ] ) ;

i f ( r e t ) {
DPRINT ( (KERN_EMERG "TCP_LDC : [%lu ] Got %d from

l d c _ p k t _ b u f f e r _ a l l o c ( ) \n" ,
j i f f i e s ,
r e t ) ) ;

return r e t ;
}

s o c k _ s e t _ f l a g ( sk , SOCK_LDC) ;

return 0 ;
}

A.2 ldc_pkt_buffer_alloc()

/ * The f o l l w i n g f u n c t i o n i s b a s e d on a r c h / i a 6 4 / k e r n e l / per fmon . c and

* h t t p : / / www. ussg . iu . edu / h y p e r m a i l / l i n u x / k e r n e l / 0 5 1 2 . 0 / 1 0 3 8 . html

*
* T hi s f u n c t i o n w i l l a l l o c a t e a l d c p a c k e t b u f f e r and remap i t i n t o

* t h e u s e r a d d r e s s s p a c e o f t h e t a s k

* /
s t a t i c i n t l d c _ p k t _ b u f f e r _ a l l o c ( s t r u c t ld c_pack e t_r ing * lpr , i n t

r s i z e , i n t ps ize )
{

s t r u c t mm_struct *mm = current−>mm;
s t r u c t vm_area_struct *vma = NULL;
unsigned long s i z e ;
void * pkt_buf ;
i n t b u f f e r _ s i z e , i ;

/ *
* t h e f i x e d h e a d e r + r e q u e s t e d s i z e and a l i g n t o page boundary

* /
b u f f e r _ s i z e = s izeo f ( s t r u c t ldc_ring_head )

+ ( r s i z e * s izeo f ( s t r u c t ldc_packet ) )
+ ( r s i z e * ps ize ) ;

s i z e = PAGE_ALIGN( b u f f e r _ s i z e ) ;

DPRINT ( ( " packet b u f f e r r s i z e=%d s i z e=%lu bytes\n" , b u f f e r _ s i z e ,
s i z e ) ) ;

/ *
* We do t h e e a s y t o undo a l l o c a t i o n s f i r s t .

*
* l d c _ r v m a l l o c ( ) , c l e a r s t h e b u f f e r , so t h e r e i s no l e a k
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* /
pkt_buf = ldc_rvmalloc ( s i z e ) ;
i f ( pkt_buf == NULL) {

DDPRINT ( ( "Can ’ t a l l o c a t e packet b u f f e r\n " ) ) ;
return −ENOMEM;

}

DPRINT ( ( " pkt_buf @%p\n " , pkt_buf ) ) ;

/ * a l l o c a t e vma * /
vma = kmem_cache_alloc ( vm_area_cachep , SLAB_KERNEL) ;
i f ( ! vma) {

DDPRINT ( ( " Cannot a l l o c a t e vma\n" ) ) ;
goto error_kmem ;

}
memset (vma , 0 , s izeo f ( * vma) ) ;

/ *
* p a r t i a l l y i n i t i a l i z e t h e vma f o r t h e p a c k e t b u f f e r

* /
vma−>vm_mm = mm;
vma−>vm_flags = VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE

;
vma−>vm_page_prot = PAGE_SHARED;

/ *
* Now we have e v e r y t h i n g we need and we can i n i t i a l i z e

* and c o n n e c t a l l t h e d a t a s t r u c t u r e s

* /

lpr−>ld c_pk t_buf fe r = pkt_buf ;
lpr−>l d c _ p k t _ s i z e = s i z e ; / * a l i g n e d s i z e * /
lpr−>ring_head = pkt_buf ;
lpr−>packet_r ing = pkt_buf + s izeo f ( s t r u c t ldc_ring_head ) ;
/ * S e t t h e b u f f e r s i z e ( in p a c k e t s ) * /
lpr−>ring_head−>r i n g _ s i z e = r s i z e ;
lpr−>ring_head−>pack e t_s ize = ps ize ;
DPRINT ( (KERN_EMERG "TCP_LDC : [%lu ] I n i t the ldc_ring_head \n" ,

j i f f i e s ) ) ;
lpr−>ring_head−>kern_i = 0 ;
lpr−>ring_head−>k e rn_f lag = 1 ;
lpr−>ring_head−>umod_i = 0 ;
lpr−>ring_head−>u s e r _ i = 0 ;

/ *
* L e t ’ s do t h e d i f f i c u l t o p e r a t i o n s n ext .

*
* now we a t o m i c a l l y f i n d some a r e a in t h e a d d r e s s s p a c e and

* remap t h e b u f f e r in i t .
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* /
down_write(& current−>mm−>mmap_sem ) ;

/ * f i n d some f r e e a r e a in a d d r e s s space , must have mmap sem h e l d

* /
vma−>vm_start = get_unmapped_area (NULL, 0 , s ize , 0 , MAP_PRIVATE|

MAP_ANONYMOUS) ; / * Do we need MAP_SHARED and n ot MAP_PRIVATE
? * /

i f (vma−>vm_start == 0UL) {
DPRINT ( ( " Cannot f ind unmapped area f o r s i z e %ld\n " , s i z e ) ) ;
up_write(& current−>mm−>mmap_sem ) ;
goto e r r o r ;

}
vma−>vm_end = vma−>vm_start + s i z e ;
vma−>vm_pgoff = vma−>vm_start >> PAGE_SHIFT ;

DPRINT ( ( " al igned s i z e=%ld , hdr=%p mapped @0x%l x \n" , s ize , pkt_buf
, vma−>vm_start ) ) ;

/ * can on ly be a p p l i e d t o c u r r e n t t a s k , need t o have t h e mm
semaphore h e l d when c a l l e d * /

i f ( ldc_remap_buffer (vma , ( unsigned long ) pkt_buf , vma−>vm_start ,
s i z e ) ) {
DPRINT ( ( "Can ’ t remap b u f f e r\n " ) ) ;
up_write(& current−>mm−>mmap_sem ) ;
goto e r r o r ;

}

/ * I n i t t h e p a c k e t s * /
fo r ( i = 0 ; i < r s i z e ; i ++) {

lpr−>packet_r ing [ i ] . data = ( void * ) vma−>vm_start + s izeo f (
s t r u c t ldc_ring_head ) + ( r s i z e * s izeo f ( s t r u c t

ldc_ring_head ) ) + ( ps ize * i ) ;
lpr−>packet_r ing [ i ] . kdata = pkt_buf + s izeo f ( s t r u c t

ldc_ring_head ) + ( r s i z e * s izeo f ( s t r u c t ldc_ring_head ) ) +
( ps ize * i ) ;

}

/ *
* now i n s e r t t h e vma in t h e vm l i s t f o r t h e p r o c e s s , must be

* done with mmap l o c k h e l d

* /

ins e r t_vm_s t ruct (mm, vma) ;
mm−>total_vm += s i z e >> PAGE_SHIFT ;
vm_stat_account (vma−>vm_mm, vma−>vm_flags , vma−>vm_file ,

vma_pages (vma) ) ;
up_write(& current−>mm−>mmap_sem ) ;
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/ *
* k e e p t r a c k o f u s e r l e v e l v i r t u a l a d d r e s s

* /
lpr−>ldc_pkt_buffer_uaddr = ( void * ) vma−>vm_start ;

return 0 ;

e r r o r :
kmem_cache_free ( vm_area_cachep , vma) ;

error_kmem :
l d c _ r v f r e e ( pkt_buf , s i z e ) ;

return −ENOMEM;
}

A.3 ldc_notify()

/ * T h i s f u n c t i o n g e t c a l l e d when t h e u s e r wants t o

* n o t i f y t h e k e r n e l a b o u t new p a c k e t s in t h e r i n g

* /
i n t _ l d c _ n o t i f y ( s t r u c t sock * sk )
{

DPRINT ( (KERN_EMERG "TCP_LDC : [%lu ] * * _ l d c _ n o t i f y ( s t r u c t sock * sk
= %l x ) \n " , j i f f i e s , ( long unsigned i n t ) sk ) ) ;

/ * C l e a r i n g t h e f l a g * /
sk−>ldc_r ing −>ring_head−>k e rn_f lag = 0 ;

return ldc_sendmsg ( sk ) ;
}

A.4 ldc_next_pkt()

/ * T h i s f u n c t i o n f i n d s t h e n ext p a c k e t t o

* send . Returns −1 i f t h e b u f f e r i s empty .

* /
i n t ldc_next_pkt ( s t r u c t sock * sk )
{

DPRINT ( (KERN_EMERG "TCP_LDC : [%lu ] * * _ldc_next_pkt ( s t r u c t sock *
sk = %l x ) \n" , j i f f i e s , ( long unsigned i n t ) sk ) ) ;

i n t r e t = −1;
s t r u c t ld c_pack e t_r ing * l p r = sk−>ld c_r ing ;
i n t pkt = lpr−>ring_head−>kern_i ;

/ * S k i p i n g d e l e t e d p a c k e t s * /
while (LDC_BUFFER_NOT_EMPTY ( lpr−>ring_head ) && lpr−>packet_r ing [

pkt ] . u s e r _ f l a g ) {
DPRINT ( (KERN_EMERG "TCP_LDC : Delet ing packet :

user_seq = %d , idx = %d\n" , lpr−>packet_r ing [ pkt ] . user_seq
, pkt ) ) ;
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LDC_INCP( lpr−>ring_head , kern_i ) ;
pkt = lpr−>ring_head−>kern_i ;

}

i f (LDC_BUFFER_NOT_EMPTY ( lpr−>ring_head ) ) {
/ * Yes , we have p a c k e t ( s ) t o send !

* I n c c r e m e n t i n g t h e p o i n t e r so we a r e

* r e a d y f o r t h e n ext round .

* /
r e t = pkt ;
DPRINT ( (KERN_EMERG "TCP_LDC : Sending packet :

user_seq = %d , idx = %d\n" , lpr−>packet_r ing [ pkt ] . user_seq ,
pkt ) ) ;

LDC_INCP( lpr−>ring_head , kern_i ) ;
} else {

/ * No p a c k e t ( s ) t o send .

* S e t t i n g t h e k e r n _ f l a g .

* /
DPRINT ( (KERN_EMERG "TCP_LDC : [%lu ] * B U F F E R E M P T Y

! * S e t t i n g the k e rn_f lag *\n" , j i f f i e s ) ) ;
lpr−>ring_head−>k e rn_f lag = 1 ;

}

return r e t ;
}

A.5 ldc_update_send_head()

/ * T h i s f u n c t i o n i s c a l l e d by u p d a t e _ s e n d _ h e a d ( ) i f t h e c u r r e n t

* s o c k e t i s a LDC−s o c k e t .

* /
s t r u c t sk_buff * _ldc_update_send_head ( s t r u c t sock * sk , s t r u c t

tcp_sock * tp ,
s t r u c t sk_buff * skb )

{
DPRINT ( (KERN_EMERG "TCP_LDC : [%lu ] * * _ldc_update_send_head (

s t r u c t sock * sk = %lx , s t r u c t tcp_sock * tp = %lx , s t r u c t
sk_buff * skb = %l x ) \n" ,

j i f f i e s ,
( long unsigned i n t ) sk ,
( long unsigned i n t ) tp ,
( long unsigned i n t ) skb ) ) ;

/ * The r e g u l a r u p d a t e _ s e n d _ h e a d f i r s t we c h e c k i f we have a

* p a k c e t a t skb−>n ext . For LDC s o c k e t s p a c k e t s w i l l end up

* t h e i f t h e r e g u l a r w r i t e / send e t c i s used t o send p a c k e t s

* or i f we have a p a c k e t with s i z e > mss and t h e p a c k e t was

* s p i l t i n t o s e v e r a l s k b s . I f t h e r e was no p a c k e t a t

* skb−>n ext and t h e s o c k e t i s a TCP LDC s o c k e t , t h i s f u n t i o n
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* w i l l b e c a l l e d .

* /

s t r u c t sk_buff * new_skb ;
i n t pkt = ldc_next_pkt ( sk ) ;

i f ( pkt < 0) {
/ * No p a c k e t s in t h e LDC p a c k e t r i n g . * /
new_skb = NULL;

} else {
/ * We have p a c k e t s in t h e LDC p a c k e t r i n g . Make skb and

* i n s e r t i t i n t o t h e send b u f f e r ( r e t u r n t o

* u p d a t e _ s e n d _ h e a d ) .

* /
new_skb = ldc_make_new_skb ( sk , pkt ) ;
i f ( ! new_skb ) {

/ * Something f a i l e d . P erhaps memory?

* Decrement ing k e r n _ i and s e t t i n g k e r n _ f l a g

* /
DPRINT ( (KERN_EMERG "TCP_LDC : [%lu ] ldc_make_new_skb ( )

FAILED ! DECR packet po inte r and s e t t i n g the k e rne l
f l a g .\ n" , j i f f i e s ) ) ;

LDC_DECP( sk−>ldc_r ing −>ring_head , kern_i ) ;
sk−>ldc_r ing −>ring_head−>k e rn_f lag = 1 ;

}
}

DPRINT ( (KERN_EMERG "TCP_LDC : [%lu ] ldc_update_send_head ( )
re turns %l x \n" , j i f f i e s , skb ) ) ;

return new_skb ;
}
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Appendix B

The CD-ROM

A CD-ROM is attached to the back-cover of this thesis. It contains all the source code
for the TCP LDC implementation and test applications. The CD-ROM has the follow-
ing diretory structure:

/
|- src/

|- linux-2.6.15.4-tcpldc/ - A full Linux source tree with
| the LDC modifications
|- test_apps/ - The test applications
|- tcpldclib/ - The user space library
|- patch/ - A kernel patch for 2.6.15.4

that provides LDC support

Enjoy!
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