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Abstract

Quantitative analysis is used in an increasing amount to get an edge over
competitors in football, and one of the largest providers of data is Opta
Sports. In particular, they provide “event data”, which are annotations of
every event in a match.

In this thesis, we ask whether it is possible to extract higher-level events
from the Opta event data, and whether it is possible to do e�ciently in a
database. We also examine the performance characteristics of some options
of mapping the XML data to databases, and querying it, to find which of
the options is the most e�cient for storing and querying the Opta data in
general.

We find that it is indeed possible to extract higher level-events from
the data, and in particular find that a relational approach using recursive
common table expressions is an e�cient way of doing it.

We further find the most e�cient of the evaluated options for storing and
querying our data to be a relational approach, using PostgreSQL’s JSONB
column type for storing sparse attributes.
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Chapter 1

Introduction

1.1 Motivation
Quantitative analysis has become an important part of the football analysis
ecosystem the last decade. Football has become more competitive, and better
tools are available now than were before. By using novel player tracking
technology, or by manual collection, data from matches are available in larger
volumes and at an increasing granularity.

Such detailed data has a wide range of possible uses. It may be used by
trainers and team analysts to improve their player training and team tactics.
But it is also used by bookmakers for setting odds, and even by gamblers to
reduce their risk and increase earnings.

Some of the most detailed data available today is match event data, which
are annotations of every on-ball event throughout a match. One supplier of
such data is Opta Sports, which, through an agreement with the Norwegian
Center of Football Excellence, has supplied us with data from the Norwegian
Tippeligaen, the Europa League and Champions League.

For producing match event data, Opta employs two operators covering a
team each, later checked by a third. The data is then distributed in feeds
with di�erent focus and levels of detail.

This kind of data can be used to create new and novel statistics, but
the more novel the statistic, the more computationally demanding the query
becomes.

1.2 Problem Definition
The overall goal of this thesis is to aid the Norwegian Center of Football
Excellence in using the Opta event data e�ciently for analysis, which could
ease their work in helping Norwegian football teams succeed abroad and at
home. Opta data is already beginning to be used to locate simple events for
match analysis. It could relieve analysts of considerable amounts of manual
classification work if it is possible to also extract higher-level semantics, that
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is situations defined by patterns of events, in matches using the event data
provided by Opta.

Because of the potential scale of the data, performance will also be an
issue. When working with data from several seasons of a competition, and
possibly many competitions, the amount of data will be in the order of tens
of gigabytes. Querying data on this scale is usually most practically done
with some sort of database system.

Therefore, the right choice and use of database tools will be essential for
computing novel statistics to gain new insights in reasonable time.

In summary, we will try to answer the following questions:

1. Is it possible to extract higher-level events from the Opta event data,
and can it be done e�ciently?

2. How should one map the Opta event data to a database to get the most
performant querying?

1.3 Limitations
While the overall goal of this thesis is to find the most e�cient way to
represent Opta data, we cannot test every database system or every schema,
so the scope is limited to the databases and schemas outlined in section 1.6.

Furthermore, the results are only applicable to our benchmark workload,
and while we chose the benchmark queries specifically to try to emulate a
probable real-world workload, it will realistically only cover a small subset of
possible workloads. Specifically, the benchmarking is geared towards o�ine
analysis, and we concern ourselves only with read operations. All data is
assumed to have been batch loaded prior to the benchmarks.

The result of the thesis will likely only be of use as a guideline to
developers for interfacing with the Opta data. It will likely be of little use to
non-developers.

1.4 Research Method
This thesis will follow the design paradigm proposed by the Association for
Computing Machinery’s (ACM) Task Force on the Core of Computer Science
[1]. We will design a system for benchmarking our database options and
querying our data, then implement the system and database schemas, then
use the benchmarking system to measure our database options, and lastly
compare our results.
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1.5 Main Contributions
Through this work, we provide insight into the performance and characteris-
tics of di�erent ways to represent Opta XML data in database systems. We
develop a benchmark, and test several approaches to storing and querying
Opta’s event data.

We explore whether it is possible to extract higher-level semantics from
the event data, and we evaluate approaches to doing so e�ciently.

In section 1.2, we asked two questions which we have answered as follows:

1. Is it possible to extract higher-level events from the Opta event data,
and can it be done e�ciently?
Yes, we have found that this is possible. We have constructed queries,
both for a relational and a graph based database, to extract two types
of situations that are characterized by a certain pattern of events.
Firstly, we have shown that we can identify compound events of a
constant length, and in addition we found that it was possible to
identify compound events of unbounded length. We have also shown
that it can be done e�ciently with the use of Recursive Common Table
Expressions.

2. How should one map the Opta event data to a database to get the most
performant querying?
We found that using a relational approach was the more performant
than using a graph based approach. Specifically, we found that using
the JSONB column type of PostgreSQL was a very e�cient way of
storing the sparse attributes that are “qualifiers” in the opta event
data.

1.6 Outline
This thesis consists of 7 chapters, and 2 appendices:

Chapter 2: Background

We begin by giving an overview of the current state of football analytics,
before detailing the structure of the Opta data. Then we look at di�erent
types of database systems, and ways of measuring their performance, before
we look at some previous work in the field.

Chapter 3: Experiment Design

In chapter 3, we describe our benchmarking system, and design our
benchmark queries. Then we look at which metrics our benchmark should
measure, and list our test environment.
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Chapter 4: Relational Approach

Chapter 4 is where we benchmark our relational database, PostgreSQL. We
design two schemas, then accompanying queries, before benchmarking them
and analyzing the results.

Chapter 5: Graph Approach

In chapter 5, we benchmark our graph database, Neo4j. Like in the previous
chapter, we design the schema and accompanying queries, then benchmark
them and analyze the results.

Chapter 6: Comparison

In this chapter, we compare the results of the graph approach with the best
schema from the relational approach.

Chapter 7: Conclusion

Finally, in chapter 7, we conclude the thesis by summarizing our findings and
listing some possible future work.
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Chapter 2

Background

This chapter will present the state of football analytics leading to the need
for performant database solutions. Further, it will provide a thorough
introduction to the format of the Opta XML match event data and common
approaches for querying XML data. Then it will discuss approaches to
benchmarking databases and database systems, before providing an overview
of previous relevant work.

2.1 The Current State of Football Analytics
Football in general, and Norwegian football specifically, has evolved from an
amateur pastime to a big-business, professional sport through the last half
century. TV advertising ensure that teams have billion-euro budgets, but
also the stakes that come with it. Fortunes can be made in the sport now,
both by the participants and, owing to the sport’s increased exposure, also
by bookmakers and gamblers.

Football is a relatively unstructured sport, so detailed statistics and data-
based analysis has not evolved as naturally as in more structured sports, like
baseball, where events are easily defined and counted, and thorough use of
statistics already has proven success [2].

In recent years, however, increased data availability and the sport’s
ballooning economy has brought about many innovations in the field. Today
conferences are held [3][4], and new ideas like Expected Goals[5] and using
machine learning to classify playing styles [6] are emerging fast.

Because of the game’s nature, it is hard to analyze situations without
having a lot of data. For example, evaluating a player’s action in a situation
is not only dependent on easily observable metrics like the current score
and the match clock, but also on the player’s location on the pitch and,
even more complicating, the locations and movements of all of the other
players on the pitch. E.g. a player’s actions may be limited by an opposing
player approaching, and his passing options are defined by the locations of
his teammates.
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Opta records only the location of events, and their definition of events
is usually limited to events involving the ball. As such, we only know the
location of the event, and therefore only the location of the players involved
in the event.

Opta is limited by the manual data collection, but recent developments
have been made to automate player tracking. Video analysis has been
leveraged to track players through camera arrays through systems like Stats
LLC’s SportVU [7], but although these systems are steadily improving, the
nature of video analysis means they are still inaccurate and computationally
demanding. Bagadus [8][9][10] and its ZXY Sport Tracking subsystem [11]
aims to remove these inaccuracies by using wearable sensors to track the
players. The obvious drawback to this is its limited prevalence, as this is a
system that requires physical setup in each stadium.

Opta’s data is reliant only on a regular broadcast feed of each match it
covers, and in addition to event locations also includes the types of events that
occurred. So although analysis requiring complete player tracking remains
out of bounds for the Opta event data, their event classification makes the
data an indispensable source for football analysts.

2.2 Opta Data Structure
This section gives an overview of the relevant parts and structure of the Opta
data. The data is distributed as XML [12] files grouped into feeds, and each
subsection below will explain each of the relevant feeds, and the significance
of each XML element and some important attributes.

The XML files make heavy use of numerical values which have to be
cross-referenced with proprietary documentation [13] provided by Opta to
have any meaning.

2.2.1 The F24 Event Feed
The F24 event feed is the most detailed of the feeds. It contains information
about every event in a match.

Games

The most basic grouping in the event feed is the Game element, of which each
file contain only one. Its attributes hold most of the match metadata, and
the element itself contains all the events. A short excerpt can be seen in
listing 2.1.

Events

The most interesting part of the feed is the events, of which an example is
provided in listing 2.2. An event will always have one of currently 70 possible
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Listing 2.1: The opening Game tag from the 2016 Champions League final
1 <Game id ="851530" away_team_id ="175" away_team_name =" Atlé

tico de Madrid " competition_id ="5" competition_name ="
Champions League " game_date ="2016 -05 -28 T19 :45:00"
home_team_id ="186" home_team_name =" Real Madrid " matchday
="13" period_1_start ="2016 -05 -28 T19 :50:04"
period_2_start ="2016 -05 -28 T20 :53:08" period_3_start
="2016 -05 -28 T21 :47:22" period_4_start ="2016 -05 -28 T22
:06:21" period_5_start ="2016 -05 -28 T22 :29:19" season_id
="2015" season_name =" Season 2015/2016" >

type_ids to signal its event type. It will also contain the time at which the
event occurred relative to the period’s kick-o� and the time and date it
was recorded by Opta, what player was involved (if any), and the x and
y coordinates on the pitch. It will often also contain several sub-elements,
which will be introduced in the next section.

Listing 2.2: The opening tag of a sample event
1 <Event id ="33868766" event_id ="4" type_id ="5" period_id ="1"

min ="0" sec ="8" player_id ="19927" team_id ="186" outcome
="0" x ="69.8" y ="101.8" timestamp ="2016 -05 -28 T19
:50:13.199" last_modified ="2016 -05 -28 T20 :06:50" version
="1464462410263" >

Events are recorded for every touch of the ball, substitutions, passes,
goals, delays, formation changes, out of play balls, and so on. Each game
will contain an average of about 1700 events.

Qualifiers

Qualifiers are sub-elements added to events to provide more detail. For a
pass, the event will contain information like the coordinates of the passer.
Additionally qualifiers will be associated with the event to show details like
the intended recipient of the pass and his coordinates, the angle of the pass
relative to the direction of play, whether the pass was chipped, or if it was an
assist for a goal. There are currently 292 possible types of qualifiers, some
of which may signify di�erent things depending on the type of their parent
event.

Listing 2.3: A sample qualifier
1 <Q id ="495608885" qualifier_id ="56" value =" Left" />

An example of how qualifiers are applied to events in a real match, can
be seen in listing 2.5, which shows a foul event (type_id="4") followed by a
card event (type_id="17") with a yellow qualifier (qualifier_id="31").
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Listing 2.4: The beginning of a match in an F24 event feed
1 <Game id ="851530" away_team_id ="175" away_team_name =" Atlético

de Madrid " competition_id ="5" competition_name =" Champions
League " game_date ="2016 -05 -28 T19 :45:00" home_team_id

="186" home_team_name =" Real Madrid " matchday ="13"
period_1_start ="2016 -05 -28 T19 :50:04" period_2_start
="2016 -05 -28 T20 :53:08" period_3_start ="2016 -05 -28 T21
:47:22" period_4_start ="2016 -05 -28 T22 :06:21"
period_5_start ="2016 -05 -28 T22 :29:19" season_id ="2015"
season_name =" Season 2015/2016" >

2 <Event id ="2002501076" event_id ="1" type_id ="34" period_id
="16" min ="0" sec ="0" team_id ="186" outcome ="1" x ="0.0"
y ="0.0" timestamp ="2016 -05 -28 T18 :31:20.871"
last_modified ="2016 -05 -28 T19 :41:33" version
="1464460892677" >

3 <Q id ="1844398382" qualifier_id ="194" value ="17861" />
4 <Q id ="1971617116" qualifier_id ="44" value ="1, 2, 2, 3,

2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5" />
5 <Q id ="1687357007" qualifier_id ="197" value ="239" />
6 <Q id ="1983652265" qualifier_id ="131" value ="1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11, 0, 0, 0, 0, 0, 0, 0" />
7 <Q id ="1071094016" qualifier_id ="130" value ="4" />
8 <Q id ="1300398263" qualifier_id ="59" value ="1, 15, 12,

14, 3, 4, 19, 8, 9, 11, 7, 6, 10, 13, 18, 20, 22, 23"
/>

9 <Q id ="283877491" qualifier_id ="227" value ="0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0" />

10 <Q id ="1508462225" qualifier_id ="30" value ="28411 , 88483 ,
39563 , 61256 , 18522 , 17861 , 37055 , 44989 , 19927 ,

36903 , 14937 , 88477 , 60025 , 39790 , 107593 , 93127 ,
80209 , 100180" />

11 </Event >
12 ...
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Listing 2.5: Example of foul and subsequent card event in an F24 feed
1 <Event id ="1227128966" event_id ="105" type_id ="4" period_id

="1" min ="9" sec ="44" player_id ="88483" team_id ="186"
outcome ="0" x ="56.2" y ="10.7" timestamp ="2016 -05 -28 T19
:59:48.996" last_modified ="2016 -05 -28 T20 :00:39" version
="1464462038194" >

2 <Q id ="155783154" qualifier_id ="152" />
3 <Q id ="1837853712" qualifier_id ="13" />
4 <Q id ="1762606589" qualifier_id ="285" />
5 <Q id ="819241028" qualifier_id ="56" value =" Right" />
6 <Q id ="1569714366" qualifier_id ="233" value ="80" />
7 <Q id ="199342494" qualifier_id ="265" />
8 </Event >
9 <Event id ="1721898852" event_id ="106" type_id ="17" period_id

="1" min ="10" sec ="9" player_id ="88483" team_id ="186"
outcome ="1" x ="0.0" y ="0.0" timestamp ="2016 -05 -28 T20
:00:13.890" last_modified ="2016 -05 -28 T23 :45:51" version
="1464475551081" >

10 <Q id ="185245862" qualifier_id ="13" value ="243" />
11 <Q id ="967262012" qualifier_id ="31" />
12 </Event >

2.2.2 The F9 Match Results Feed

The F9 feed contains match results, or summaries. It is mostly extended
match metadata and precomputed aggregations of the F24 event feed, but
also contains some useful information not easily available elsewhere, like the
number of minutes each player played.

The aggregation provided is mostly counts of each event type per player,
e.g. showing that the home team’s goalkeeper touched the ball 38 times and
had 17 accurate passes out of a total of 35.

2.2.3 The F40 Squad Feed

The F40 feed has one entry per season per competition, and contains the
team squads for the season. It also lists any transfers, in or out, and team
and player metadata. An example is show in appendix A.1.

2.3 Overview of Database Systems
Choosing the right database model for the task is the first and most
fundamental thing to consider, but also not straightforward. In later
chapters, we will use both a graph database and a relational database. This
section gives an overview of the merits of each of the two classes of databases.
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2.3.1 Relational Database

The relational database is the most popular choice of database worldwide
[14], and there is little reason to think that football analysis is any di�erent.
In fact, Opta themselves use a relational database for their internal database
[15][16]. Therefore, it is an obvious choice for our benchmark.

Relational databases store their data in tables of columns and rows, and
most often use Structured Query Language (SQL) for querying.

2.3.2 Graph Database

Graph databases represent data in terms of nodes, edges and properties
instead of tables of columns and rows. Because it allows for traversing
the data directly instead of searching for foreign keys, it has a theoretical
advantage on queries with many join-operations.

If we, for a named player, want to find the names of every player he has
successfully dribbled, the relational approach and graph approach would be
quite di�erent. The relational approach would be to search the players table
by name, then use the player’s ID to search the events table for dribbling
events involving the player, then use these IDs to search the qualifiers table
for any qualifiers linked to these events and containing a player id. Finally,
we can scan the players table to find the names of the players. This amounts
to

2e

p

log(p) + log(e) + log(q)

comparisons, where e is the number of events, p is the number of players and
q is the number of qualifiers.

A graph database, on the other hand, has the property that following
links or edges happens in constant time, so it would start by locating the
player node with the matching name, then follow the links to each event,
then from each dribbling event follow the links to any qualifiers, and finally
from the qualifiers with a link to a player, follow the link to this player’s
node. This should amount to roughly

log(p) +
e

p

comparisons.
While both approaches have the same general complexity of O(log(n)),

the constant factors should give the graph database a clear theoretical
advantage, which will increase with queries involving more tables/joins and
node types. On the other hand, as we will see in later chapters, this may
change when indexes and other query optimization techniques are applied.
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2.3.3 Query Complexity
When analyzing query performance, it is useful to be able to say something
about its complexity. This section outlines some of the most common
operations in query executions in databases, along with their complexity.

Scans

The most basic operation, is the sequential scan. It involves traversing the
entire table, and consequently has a complexity of O(N).

If the table has an index for the columns that we query on, an index
scan is often used. Since the index is ordered, this scan can use a binary
search, which is only O(log(N)).

Joins

A hash join is a type of join that creates a hash map from the smallest
table, then scans the larger table doing look-ups in the hash map. This has
a complexity of O(M +N), since both creating the hash map of the smaller
table and scanning the larger are linear operations [17].

Another approach to joining, is the merge join. It is e�cient if the tables
both have indexes on the joining columns, because it can then just scan the
two tables in parallel, leading to a complexity of O(M + N). However, if
a table doesn’t have an index, it will have to sort the table first, leading to
O(M + Nlog(N)) if one table has an index or O(Mlog(M) + Nlog(N)) if
none of them have [17].

The final join type we will describe, is the nested loop join. It is
theoretically a very expensive join, because it scans the entire second table
for every row in the first, giving an O(MN) complexity. However, if one
of the tables have an index, it can use an index scan instead, and have the
complexity of O(Mlog(N)). This can be quite fast if the unindexed table is
small.

2.4 Previous Work
In this section, we will present previous work related to mapping XML data
to relational databases, then look at work related to comparison of di�erent
databases for specific applications.

2.4.1 Mapping XML to Relational Databases
Florescu and Kossmann [18] compare four simple approaches to mapping
XML to relational databases. Their approaches are based on representing the
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XML document as a graph, where each element is a node, and each element-
sub-element relationship is an edge. Attributes on elements are treated as
sub-elements.

The edge approach stores all of the document’s edges in a single table.
Each row represents an edge, and has an ordinal number to record the order
of the elements, a flag indicating the target type, which could be a reference
to another edge to indicate a sub-element, or a value type such as string or
integer. The rows also have references to its source and target.

The values, or leafs, are stored in separate tables, with one for each value
type.

The universal table approach stores each distinct path from the root
node to a leaf as a row. This means that the universal table has two columns
for each element type in the document: an ordinality column and a target
column. The target column points to a value in the value table or to a
sub-element in the universal table.

They note that this approach is denormalized. It stores a lot of redundant
information, and each row is likely to store many nulls for columns it doesn’t
use.

The binary approach groups all edges with the same value in the same
table. Each of these tables contain four columns: an ordinal number to
record the order of the elements, a target type in the same way as for the
edge approach, and references to the edges source and target, The values are
stored in separate tables in the same way as in the previous approaches.

The binary inline approach is the same as the binary approach, but
instead of referencing values in separate tables, the values are stored directly
in the edge tables. This means having a column for each possible data type,
and removing the flag column indicating the target type. Leaves will be
distinguished by having null as their target reference value.

Their experiments found the binary inline approach to outperform the
others in almost every way. It required the least disk space, and it was the
most performant for nearly all of their benchmark queries.

2.4.2 Comparing Databases
Angles et al. [19] compare five di�erent databases for application to
social networks. They create a micro-benchmark with several domain-specific
queries modelled after common interactions with known social networks.
Their data-schema consists of persons with a few attributes, and friend
connections between each other. Each person may also like any number
of web pages, which also has some attributes. They measure the data
loading and query execution time. Several di�erent types of databases are
benchmarked, including both relational and graph databases.

They found that all of their tested databases were able to complete
the queries within reasonable time, except for reachability queries. In the
reachability queries, like “Get the friends of the friends of a given person P”,
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they found a gap between the graph databases and the relational databases
emerged when the number of hops was larger than 4.

Jouili and Vensteenberghe [20] present GDB, a distributed graph
database benchmarking framework, and compare the performance of Neo4j,
Titan, OrientDB and DEX. They test both load and traversal workloads, and
additionally benchmark the databases’ performance with a large number of
concurrent requests.

They found Neo4j to outperform all of the other databases in traversal
workloads. In a read-only intensive workload where they queried for vertices
by property, they found Neo4j and OrientDB slightly ahead of the others. In
intensive write workloads, they found Neo4j and Titan significantly inferior
to the others.

2.5 Summary
In this chapter, we have gone through an overview of the background for the
thesis. We presented the current state of football analytics, then described
the Opta event data in some detail. Further, we looked at the classes of
database that will be relevant for the later chapters, and we discussed how
one can benchmark databases. Finally we presented some relevant work done
in the field previously.
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Chapter 3

Experiment Design

In this chapter we will present our benchmarking system. We will describe
the overall system structure, then give a short introduction to each of
our database systems. Further, we will describe how our system sets up
the databases, then give an overview of the data we will be using for
our benchmarks. Finally, we will describe the queries that make up our
benchmark and what it will measure.

3.1 The Benchmarking System
To easily benchmark the di�erent schemas and databases, we have designed
a modular system where new databases and schemas can easily be added
[21].

The system consists of three main parts: The databases, the schemas and
their populating scripts, and the profiling scripts that run the benchmarks
themselves.

3.2 The Database Systems
For these experiments, we have chosen PostgreSQL as our relational database
system and Neo4j as our graph database system. This section gives a brief
introduction to the two databases.

3.2.1 PostgreSQL
PostgreSQL [22] is a relational database, initially developed at the University
of California, Berkeley, and was first released in 1996 [23]. Today, it is one
of the most popular choices among open source relational databases [14].
It is written in C, uses SQL as its query language, and has a modern query
planner that uses dynamic programming and a number of heuristics to decide
on an e�cient execution plan [24].
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Figure 3.1: Overview of our benchmarking system.

As a relational database, it represents its data as rows in tables. The
tables are stored in “heap files”, and each heap file consists of several sub-
units which are called “pages”. The pages have a fixed size of 8KB, and
are the smallest units that the database reads and writes. It is these pages
that contain the rows. A page, if we disregard its header, has the rows’
data—which are called tuples—at the end, and the indices and o�sets of the
tuples at the beginning, the two growing towards each other. The tuples may
be shu�ed around when data is deleted and added, but the pointers at the
beginning of the page stays in the same place. These files have a maximum
size of 1GB, meaning that the table will be split between files if it gets larger
than that including its metadata.

This structure means that variable length fields has little impact on
performance, as long as the fields are not too long. It does not matter too
much how the rows themselves are aligned, since the database only reads and
writes 8KB pages. However, rows have a maximum size of 2KB, so should a
row be bigger than that, there will be some di�erences. First, the database
will try to compress the fields of the row. If the row is still too big, it will use
a system called The Oversized-Attribute Storage Technique (TOAST) which
o�oads the largest fields to a separate TOAST table until the row is below
the 2KB limit [25].
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3.2.2 Neo4j
Neo4j [26] is a native graph database developed by Neo Technology, now
Neo4j Inc., and first released in 2007. It represents data as nodes and
relationships, which can both have properties.

It is written in Java, and has its own query language: Cypher. It stores its
data mainly in a number of intertwined linked lists. Each node or relationship
has a pointer to the first of its properties, with the rest stored as a linked list
extending from the first. Each node also has a pointer to its first relationship,
with the rest stored as a doubly linked list extending from the first.

Each relationship is a part in two doubly linked lists, one for the start
node’s relationships, and one for the end node’s. Additionally it has pointers
to its start and end node [27][28].

3.3 Setting up the Databases
As the Opta data is delivered to us as XML files, some parsing is needed
to be able to populate our databases. Since we want to be able to compare
multiple schemas in each of the database systems, we will also need a way of
keeping these schemas separate.

This section will describe how our system achieves this for each of our
database systems.

3.3.1 PostgreSQL
To interact with PostgreSQL from our parsing scripts, we use the psycopg2
package [29], which allows us to easily execute SQL commands through a
Python method call. To execute queries, we use the default psql shell.

We start by creating the tables, keeping the di�erent schemas separate
using PostgreSQL’s “schemas” feature. This means we can keep di�erent
schemas in the same database, allowing us to access them all from a single
connection, which is convenient when we want to compare di�erent schemas.

For parsing the XML, we use the xml.etree module from Python’s
standard library. This allows us to easily iterate over the elements in each
XML file. Initial experiments with executing an SQL INSERT statement for
each element parsed, proved to be prohibitively slow for our 16 million row
data set. Therefore, we use PostgreSQL’s COPY FROM bulk load feature, which
is able to load entire tables from CSV files in a single go.

From the XML files, we therefore generate temporary CSV files adhering
to the format specified by PostgreSQL’s documentation [30]. The CSV files
are generated with the csv module from Python’s standard library.

Since our workload is an o�ine analytical one, and we will only have a
single connection to the database, we can safely increase the work memory
available to each query from the default 8 MB to a more generous 1024 MB,
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which should ensure that most sorting operations can be executed without
writing to disk.

3.3.2 Neo4j

Neo4j doesn’t have a “schemas” feature like PostgreSQL, which means we
have to create di�erent databases for each of our schemas. This means
changing from one schema to another isn’t as simple either. In fact, we have
to edit the main Neo4j configuration file and restart the database server.

We automated this through our database populating scripts, which other
than this follows much of the same approach as for PostgreSQL. The XML is
parsed with Python’s xml.etree module. For interfacing with Neo4j, as with
PostgreSQL, initial experiments using the “py2neo” package to insert each
XML element separately as we parsed the XML files proved prohibitively
slow, as each insertion would be done over HTTP. Therefore, we use a
feature equivalent to PostgreSQL’s COPY FROM, namely the neo4j-import
tool, which also bulk loads from CSV files.

For executing queries from our benchmarking scripts, we use the
cypher-shell [31].

3.4 The Benchmarking Data

Opta’s data sets are rich, and includes information about not only every event
in a match through the F24 feed, but also, through the F40 and F9 feeds,
every team transfer, players on loan to other clubs, information about team
sta� and match o�cials, and about the teams’ stadia, etc. While the breadth
of the information from the F40 and F9 feeds open for a wealth of interesting
queries, the small size of this data means it is not immediately interesting for
performance benchmarking. Therefore we will limit our schemas to events,
qualifiers, players, matches, teams, squads, seasons and competitions.

3.5 Queries

To benchmark the di�erent approaches, we will construct a collection of
queries with di�erent levels of complexity. The first level should aggregate
simple events of a single or few event types. The second level considers
compound events, or situations, of constant length, like an event of type a

followed by a successful event of type b. The third and last level should query
for situations made up of an unbounded number of events.
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Figure 3.2: The Benchmark Data Structure

3.5.1 Level 1: Top 10 long ball passers in Norwegian
Tippeligaen 2016

For out first-level query, we want to create a top 10 list of the players with the
most completed long passes in Norwegian Tippeligaen 2016. This is a simple
matter of finding all pass events that have a qualifier with a qualifier_id
of 1, indicating a long pass, then averaging the boolean outcome attribute of
the events for each player. The pass events are identified by a the attribute
type_id having a value of 1.

To make the results more interesting, we exclude players that have fewer
than 100 attempts at long passes.

3.5.2 Level 2: Corners cleared by defender heading
For the second-level query, we want to benchmark the databases ability to
identify fixed-length compound queries. One such situation is where a corner
is cleared by a defender heading, and that is what we will identify in this
query.

This means that we want to identify a specific sequence of events: a
sequence containing a taken corner followed by a successful, headed clearance
by a player on the defending team.

Such a situation must begin with a pass event (type_id = 1) with an
associated “Corner Taken” qualifier (qualifier_id = 6). It must also end
with a “Clearance” event (type_id = 12) with an appropriate “Body Part:
Head” qualifier (qualifier_id = 15).

Between the “Corner Taken” and “Clearance” events, there may also be
some other events, which we will limit to the possibility of two “Aerial Duel”

19



events (type_id = 44); one for each player involved.
While we want to test the identification of these situations, we will only

actually return the number of them from our queries. This makes it easier
to check that the result is correct, and that the queries are not limited by
having to visualize large amounts of data. However, we will take care in
constructing our queries in such a way as to only require minor edits to
extract the underlying events for each situation counted.

3.5.3 Level 3: Counter-Attacks
For this last level, we chose to expand on the previous level where we wanted
to identify compound situations of a fixed number of events, and now make
our goal to identify compound situations of an unknown number of events,
namely counter-attacks.

A counter-attack is not as easily defined as the header-cleared corner
situation of the previous section, but there are a couple of ground rules we
can use:

• It has to start with a change of possession.

• The following o�ense should have a fast pace.

Our event data makes it easy to detect the first one, as each event has
a team_id attribute. The second one can be approximated by using the x

and y pitch coordinate attributes together with the match clock, which is
found in the min and sec attributes of each event. By calculating the pitch
distance between the dispossession event and the counter-attack-ending event
and dividing it by the time between the events, we get an approximation of
the attacking velocity.

The counter-attack-ending event, however, is not as easily defined. The
counter-attack ends if the defending team takes possession of the ball, e.g.
through an interception, a tackle, a block, or a keeper save; if the attacking
team scores; if the referee awards the defending team a free-kick; if the ball
goes out for a goal kick or if the defending team somehow regains balance
and the attacking pace is reduced.

Since we have no information about the location of the defending players,
we can’t say anything about the defense’s balance. It is, however, likely that
the attacking pace will be slowed down if the defense regains balance, so
by introducing a lower bound on the pace, we should exclude most of these
situations. We choose our lower bound as 6% of the field per second, and
define the pace as the percentage of the field traveled towards the goal line
divided by the di�erence in time. 6% should correspond to about 6m/s,
which should be a good enough approximation to the running speed of an
athlete.

Most of the other counter-attacking events implies either a change of
possession or a significant slowdown of the attack. The former is easily tested
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in the same way as the beginning of the counter-attack, while the latter is
taken care of by our lower bound on pace.

Finally, we want to exclude situations that are so short that it would
not count as an attack at all, meaning situations where a team may
take possession and move quickly forward a short distance before being
dispossessed again. We achieve this by introducing a lower bound on distance
traveled towards the goal line, which we set to 20% of the pitch length.
Towards the same goal, and also to avoid division by zero, we also exclude
situation shorter than 3 seconds in time.

This is still only a rough approximation to finding counter-attacks, but
includes the most computationally demanding parts, which is that the
number of events is unbounded.

In this query, like the previous, and for the same reasons, we will only
output the total count from the query, but will also here take care to write
the queries in such a way as to be able to extract the underlying events for
each situation with only minor edits to the query.

3.6 Measurements
Databases are often the bottlenecks of applications, so many database
systems include means to benchmark and analyze queries [32][33]. Both
schema and query construction can have considerable impact on application
performance. However, when comparing di�erent database systems, these
tools cannot be trusted to provide comparable measurements, so we will
have to use an external tool for measuring.

For our experiments the operating system will be Linux, which provides
a profiler tool called “perf”[34], which we will describe below.

3.6.1 Linux’ perf_events

The perf_events subsystem is a part of the Linux kernel that counts
di�erent kinds of “events”. It uses special purpose CPU registers to count
hardware events, like CPU cycles and branch mispredictions, but can also
count software events like system calls and page misses. Compared to user
space profilers, the perf_events subsystem introduces little overhead, and
it allows us to count events that are otherwise not available.

The user space tool for interacting with perf_events is called perf.
More specifically, a program may be profiled by running perf stat
<program_name>, upon which perf will fork o� the program and start
measuring it as a new process.

perf stat also has an option for attaching to an already running process,
which is necessary for our use case. Most database systems use a client-server
model, and so when we pass a query to the database shell, it is not the same
process that executes the query.
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We can get around this by using the -p option, which allows us to specify
the process ID of an already running process that we want to attach to, in
our case the database server. It also allows us to use the client process as a
timer, stopping the measurements when the client process exits.

3.6.2 Metrics
Our first and foremost goal is to be able to execute complex queries in as
little time as possible. We are interested in simulating an analyst workload,
where the database has a single user, so we will not measure large amounts
of concurrent queries.

We will measure the number of instructions executed, the number of
cycles elapsed, and the “task clock”, which is a measure of the total time the
measured task, in our case the query, has spent on the CPU. Additionally, to
be able to better understand the reasons behind the measured performance,
we will measure page faults, number of branches and branch misses, context
switches, CPU migrations, cache references and misses, memory loads and
memory stores. All of these events are measured through the perf stat
Linux command.

perf will monitor any number of events that we want, but it is limited
by the number of counting registers are available in the CPU. Therefore,
perf uses event multiplexing [35]. It divides the register time between all
the hardware events we want to measure, and then scales the numbers to
provide an estimate. It also lists how big a part of the register time each
event got, and we will report this as well.

We will execute each query 5 times, then report the mean values and
their relative standard deviation.

3.7 Test Environment
The benchmarks were run under 64-bit Debian Linux buster/sid, on a 2
core, 4 thread Intel(R) Core(TM) i7-6500U CPU running at 2.50GHz. The
machine was equipped with 16GB RAM, and the data was stored on an SSD.

We are using PostgreSQL version 10beta2 compiled with GCC 6.4.0, and
Neo4j version 3.3.0-aplha04 running on OpenJDK 1.8.0.141.

To measure, we are using perf version 4.11.11 on Linux 4.11.0-2-amd64.

3.8 Summary
In this chapter, we have seen the structure of our benchmarking system. We
have studied the di�erent database systems we will use, and we have seen
the data we will benchmark them on and how we will structure it. We have
specified the queries we will use for our benchmark, and we have described the
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system we will use for measuring it. Finally, we have listed the specifications
of the system our benchmark will be run on.
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Chapter 4

Relational Approach

In this chapter, we will describe the design and execution of two relational
approaches to storing and querying our data. We will expand on the
general data structure design from the previous chapter, and describe two
PostgreSQL-specific schemas for representing our data. Further, we will
design queries for each of our three levels described in section 3.5, then
analyze and compare the results from each of the two schemas.

4.1 Schema Design
To construct schemas for our relational approach, we will start from Florescu
and Kossmann’s binary inline approach which we outlined in section 2.4.1.
But since we know beforehand which elements will be leafs, and we know
the type of every attribute, we can make our tables even more compact than
they outlined.

4.1.1 The Base Schema
Expanding on the inline binary approach from section 2.4.1, we construct this
schema by creating a table for each type of XML element with appropriate
references between them. That is, an events table, a qualifiers table, a
players table, and so on, with foreign keys set up so we can query relations.

The resulting Events and Qualifiers tables can be seen in listing 4.1, and
the remaining tables are listed in appendix B.1.

4.1.2 Using the JSONB column type
By far, the largest tables of the base schema will be the events and qualifiers
tables, and it is important to notice that the qualifiers table will never be used
on its own—it has to be joined with the events table to provide meaningful
information. But joining large tables is computationally expensive.

There are hundreds of di�erent qualifier types, but each event will only
have something in the area of 5 to 10 of them. The qualifiers are essentially
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Listing 4.1: The F24 tables for the base schema.
1 CREATE TABLE events (
2 id INTEGER PRIMARY KEY ,
3 match_id INTEGER REFERENCES matches (id),
4 team_id INTEGER REFERENCES teams(id),
5 player_id INTEGER REFERENCES players (id),
6 event_id INTEGER ,
7 type_id INTEGER ,
8 period_id INTEGER ,
9 min INTEGER ,

10 sec INTEGER ,
11 outcome BOOLEAN ,
12 keypass BOOLEAN ,
13 assist BOOLEAN ,
14 x FLOAT ,
15 y FLOAT ,
16 timestamp TIMESTAMP ,
17 last_modified TIMESTAMP ,
18 version BIGINT
19 );
20

21 CREATE TABLE qualifiers (
22 id SERIAL PRIMARY KEY ,
23 event_id INTEGER REFERENCES events (id),
24 qualifier_id INTEGER ,
25 value TEXT
26 );
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Listing 4.2: The single F24 event table for the JSONB schema.
1 CREATE TABLE events (
2 id INTEGER PRIMARY KEY ,
3 match_id INTEGER REFERENCES matches (id),
4 team_id INTEGER REFERENCES teams(id),
5 player_id INTEGER REFERENCES players (id),
6 qualifiers JSONB ,
7 event_id INTEGER ,
8 type_id INTEGER ,
9 period_id INTEGER ,

10 min INTEGER ,
11 sec INTEGER ,
12 outcome BOOLEAN ,
13 keypass BOOLEAN ,
14 assist BOOLEAN ,
15 x FLOAT ,
16 y FLOAT ,
17 timestamp TIMESTAMP ,
18 last_modified TIMESTAMP ,
19 version BIGINT
20 );

a sparse set of attributes on the events, but finding them will nevertheless
mean joining two large tables.

We can look back to Florescu and Kossmann again, and see that the
edge approach is a di�erent take on this problem. This structure would
be equivalent to the result of a full outer left join between the Events and
the Qualifiers. This would, as they note, create large amounts of duplicate
information. We would have several rows for each event, only di�ering by
the qualifier_id and value columns from the Qualifiers table, and their
conclusion showed that it was not very e�cient.

From this situation, it would be tempting to aggregate the two columns
from the Qualifiers table into an array of key-value pairs. This leads us to
our second schema.

PostgreSQL o�ers a few types that allow storing unstructured data in
table columns, and among them is JSONB. JSONB stores data as a binary
representation of a JSON object, providing a dictionary-like structure.1 This
means we can replace the entire qualifiers table with a new JSONB column
in the events table, then use the qualifier_id as key, and the qualifier’s
optional value attribute as the value. This seems a middle way between the
base model and the edge approach, and as we can see in table 4.1 it saves us
about 50 percent in table sizes.

1
While this looks and acts like a hash map, it is actually not. The keys are stored in a

sorted array [36] and queried with binary search [37].
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Table 4.1: Table sizes for di�erent the base and JSONB schemas, including
indexes.

Table
Schema Base JSONB

Events 365 MB 529 MB
Qualifiers 728 MB 0
Total 1093 MB 529 MB

4.2 Optimization

4.2.1 Indexing
Indexes are integral to database performance, as it allows us to avoid
complete table scans for filtering the indexed tabled on the indexed columns.
For our base schema, the largest table by far is the Qualifiers table, and we
know that it will always be filtered or sorted by the event_id for joining
with the Events table. Therefore we create an index on the Events table over
the event_id column.

In both the base and the JSONB schemas, the Events table will be queried
extensively. It is the biggest table by two orders of magnitude in the JSONB
schema, and the second biggest after the Qualifiers table in the base schema.
We will most often be filtering the events table by its type_id column, and
therefore we create an index on that in both of our schemas. In addition,
we expect that match_id and player_id are columns that will be used to
filter and order the Events table a lot, so those indexes are also created. The
complete set of indexes can be seen in listing 4.3.

All of the other tables are very small compared to the Events and
Qualifiers tables, so we wont be considering any indexes on those.

Listing 4.3: Adding indexes to our PostgreSQL database
1 CREATE INDEX ON qualifiers ( event_id );
2 CREATE INDEX ON events ( type_id );
3 CREATE INDEX ON events ( match_id );
4 CREATE INDEX ON events ( player_id );

4.3 Implementation of Queries in Post-
greSQL

In this section we will describe the reasoning behind the design of our
PostgreSQL queries. For each level we will list the resulting queries for both
the Base schema and the JSONB schema, except for the last level where the
queries are the same.
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Listing 4.4: PostgreSQL query for finding top 10 long ball passers in
Norwegian Tippeligaen for the 2016 season

1 SELECT
2 name ,
3 avg( outcome :: int) AS rate ,
4 count (*) AS total
5 FROM events
6 JOIN qualifiers ON events .id = qualifiers . event_id
7 JOIN players ON player_id = players .id
8 JOIN matches ON match_id = matches .id
9 AND competition_id = 90

10 AND season_id = 2016
11 WHERE type_id = 1 AND qualifier_id = 1
12 GROUP BY player_id , name
13 HAVING count( outcome ) > 100
14 ORDER BY rate DESC
15 NULLS LAST
16 LIMIT 10;

4.3.1 Level 1
The Base Schema

This query is pretty straight-forward, but does require a few JOINs, as can
be seen in listing 4.4.

We join the events table to the qualifiers table on event_id, to
players on player_id to get the players’ names, and to matches on
match_id, season_id and competition_id to limit our events to only
Norwegian Tippeligaen 2016. Then we filter the results by type_id and
qualifier_id, group them by player_id, filter the groups to only leave
those with more than 100 successes, then we aggregate the groups with
average over the outcome column to create the rate which we order the
results by, limiting to the top 10.

The JSONB Schema

The JSONB query for this level only di�ers in that we have removed the
join to the qualifiers table, and instead of filtering on the qualifier_id
column, we use the JSONB “contains” operator “?” to check for the proper
qualifier ID in the JSONB column.

4.3.2 Level 2
In this query, we want to find situations where a corner is cleared by a
defender heading, as we described in section 3.5.2.

We initially explored using a window function to implement this query,
which would allow us to look at the current row and the following three rows
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Listing 4.5: PostgreSQL query for finding top 10 long ball passers in
Norwegian Tippeligaen for the 2016 season, using the JSONB schema

1 SELECT
2 name ,
3 avg( outcome :: int) AS rate ,
4 count (*) AS total
5 FROM events
6 JOIN players ON player_id = players .id
7 JOIN matches ON match_id = matches .id
8 AND competition_id = 90
9 AND season_id = 2016

10 WHERE type_id = 1 AND qualifiers ? ’1’
11 GROUP BY player_id , name
12 HAVING count( outcome ) > 100
13 ORDER BY rate DESC
14 NULLS LAST
15 LIMIT 10;

to see if it matched the pattern we were looking for. However, we found this
approach to be cumbersome and ine�cient compared to the approach using
recursive common table expressions.

Common table expressions (CTE) are a way to construct temporary,
named results, and are used through the WITH construct. They are useful
to avoid recomputation of a subquery.

The Base Schema

We start our query with a CTE in which we first annotate each event row with
the ID of its preceding row, then left join the result with the Qualifiers table
filtered by the relevant qualifier_ids, which are 6 for signifying that a pass
event is a corner and 15 for signifying that a clearance event was executed
with the head. This operation only makes sense because we know that no
event will have both of these qualifiers, as that would indicate taking a corner
kick with the head. We filter the result by type_id and qualifier_id, such
that the only events remaining are corner kicks, aerial duels and headed
clearances.

Next, on line 12 in listing 4.6, we define another CTE. This CTE is
recursive: It filters the previous CTE, pertinent_events, to only include
the headed clearances. Then, it proceeds to UNION itself with the result of
JOINing itself with the pertinent_events table such that it e�ectively walks
from each clearance event, backwards in time adding new aerial duel or corner
events until the set no longer changes. At that point we have gathered all
the events of every one of the situations we are looking for, and finally we
can simply count the number of corner events in our set to see how many of
these situations there are.
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Listing 4.6: PostgreSQL query for counting corners cleared by heading
1 WITH RECURSIVE pertinent_events AS (
2 SELECT id , type_id , prev_id
3 FROM ( SELECT *, lag(id) OVER () AS prev_id
4 FROM events ) e
5 LEFT JOIN (
6 SELECT event_id , qualifier_id FROM qualifiers
7 WHERE qualifier_id IN (6, 15)
8 ) q ON q. event_id = e.id
9 WHERE type_id = 44

10 OR ( type_id = 1 AND qualifier_id = 6)
11 OR ( type_id = 12 AND qualifier_id = 15 AND outcome )
12 ), cleared_corners AS (
13 SELECT * FROM pertinent_events
14 WHERE type_id = 12
15 UNION
16 SELECT e.* FROM cleared_corners c,
17 ( SELECT * FROM pertinent_events
18 WHERE type_id IN (1, 44)) e
19 WHERE e.id = c. prev_id
20 )
21 SELECT count (*)
22 FROM cleared_corners
23 WHERE type_id = 1;

The JSONB Schema

The JSONB variant of this query, is very similar to the Base variant. The
only di�erence is that we can skip joining the Qualifiers table, and that the
checks on qualifier_id in the WHERE clause of the first CTE are replaced by
key-existence checks on our JSONB column. The resulting query is shown
in listing 4.7.

4.3.3 Level 3
In the third level query, we want to identify and count the counter-attacks
in our data, as we explained in section 3.5.3.

Since the number of events involved is unbounded, our initial idea of using
window functions from the previous query would not work here, because
PostgreSQL’s window functions can only have a fixed size. The recursive
CTE approach, however, will work in this case too.

Our query consists of three main parts:

• First, we annotate each event row with the id and team_id of its
successor;

• then, we use a recursive CTE to “walk” from each possession-switch to
the next while adding the first event’s id as an attack_id column to
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Listing 4.7: PostgreSQL query for counting corners cleared by heading, using
the JSONB schema

1 WITH RECURSIVE pertinent_events AS (
2 SELECT id , type_id , prev_id
3 FROM ( SELECT *, lag(id) OVER () AS prev_id
4 FROM events ) e
5 WHERE type_id = 44
6 OR ( type_id = 1 AND qualifiers ? ’6’)
7 OR ( type_id = 12 AND qualifiers ? ’15’ AND outcome )
8 ), cleared_corners AS (
9 SELECT * FROM pertinent_events

10 WHERE type_id = 12
11 UNION
12 SELECT e.* FROM cleared_corners c,
13 ( SELECT * FROM pertinent_events
14 WHERE type_id IN (1, 44)) e
15 WHERE e.id = c. prev_id
16 )
17 SELECT count (*)
18 FROM cleared_corners
19 WHERE type_id = 1;

all rows to be able to group events by event chains of possession;

• and finally, we join the annotated events to our recursive possessions
CTE while filtering based on the pace, distance and time criteria
outlined in section 3.5.3.

For the first part of our query, we initially used a CTE to avoid re-
computing the subquery all of the three times it is referenced. However,
through PostgreSQL’s EXPLAIN tool which shows the query plan, we saw
that the planner chose to do a “merge join” in all three instances. Since
a merge join requires the tables to be ordered by the joining column, and
because PostgreSQL does not optimize across CTE borders [38], this entailed
three full sorts of the entire events table. Therefore, we dropped the CTE,
and used three identical subqueries instead. This led the planner to choose
a “hash join” instead, which does not need sorting. To avoid cluttering the
query by repeating the subquery, we used psql’s \gset feature, which works
as a text-substituting macro.

Since we don’t use the qualifiers at all in this query, the queries for the
base and JSONB schemas are identical.

4.4 Results
In this section we will analyze and compare the results of benchmarking
the queries from the previous section. The queries are run through our
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Listing 4.8: PostgreSQL query for counting counter-attacks
1 SELECT $$( SELECT id , team_id , min , sec , x,
2 lead( team_id ) OVER () AS next_team ,
3 lead(id) OVER () AS next_id
4 FROM events )$$ events_1 \gset
5 WITH RECURSIVE possessions AS (
6 SELECT id attack_id , *
7 FROM : events_1 e
8 WHERE team_id != next_team
9 UNION

10 SELECT p.attack_id , e.*
11 FROM : events_1 e, possessions p
12 WHERE e.id = p. next_id
13 AND (e. team_id = p. team_id OR p.id = p. attack_id )
14 )
15 SELECT count( DISTINCT p. attack_id )
16 FROM events e, possessions p
17 WHERE e.id = p. attack_id
18 AND (p.sec - e.sec + (p.min - e.min)*60 >= 3
19 AND p.x - (100 -e.x) > 20
20 AND (p.x - (100 -e.x)) /
21 (p.sec - e.sec + (p.min - e.min)*60) > 6);

benchmarking system, outlined in section 3.1, and we use PostgreSQL’s query
plan analyzer EXPLAIN [32] and its ANALYZE profiling parameter to analyze
the query execution. It is worth noting that when split times are presented,
they are from EXPLAIN ANALYZE, and might not add up to the time measured
by perf through our benchmarking system.

4.4.1 Level 1
The Base Schema

From table 4.2, we see that the query is measured to execute in 1,430 ± 4 ms
of CPU time, which is aggregated across all cores used. Dividing by the
“CPUs utilized” value of 2.908, we get that the actual elapsed wall time is
492 ± 1 ms.

Using PostgreSQL’s EXPLAIN ANALYZE, we see that the execution plan
has some interesting features. The query spends just over 99% of its time
joining the four tables, most of which is from filtering the events table by
type_id and joining it with the qualifiers table. It does a sequential
scan on the events table filtering it from 1.8 million rows down to 1 million
rows in about 100 ms. Then, it joins it with the matches table to filter by
competition_id and season_id, which returns about 200,000 rows in about
50 ms. These 200,000 rows are then joined with the qualifiers table using
a “nested loop join”, which means that it does 200,000 index scans on the
qualifiers table, and it does it in around 350 ms. This takes a long time
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because it also filters on the qualifier_id. It returns around 46,000 rows
which are joined with the players table to annotate the rows with player
names before the rows are sorted with Quicksort to prepare them for being
grouped by player_id and name. After the grouping, there are about 1000
rows left, and all that is left is to filter them by number of successes and sort
them by their average.

Using the complexities we described in section 2.3.3 and the number of
rows passed to each query plan component relative to the number of rows in
the events table, we can estimate that the query should have a complexity of
0.15E log(E) + 1.65E, where E is the size of the events table, normalized to
1 for our current table size. This assumes that all other tables have constant
ratios of size to the events table.

The JSONB Schema

From table 4.3, we see that the JSONB variant is measured to execute in
689 ± 0.7 ms of CPU time, which is aggregated across all cores used. Dividing
by the “CPUs utilized” value of 2.838, we get that the actual elapsed wall
time is 243 ± 0.2 ms.

This variant also starts by filtering the events table, but it filters both
by type_id and by checking if the qualifiers JSONB column contains the
proper key. This takes us from 1.8 million to 182,000 rows in around 190 ms.
The rows are then joined with the matches and players tables in around 40
ms, before passing the same resulting 46,000 rows as last time to Quicksort.
The players table is joined with a nested loop join.

For comparison, we can calculate an estimate of this query’s complexity
using the same base as for the last one, and will then get a complexity of
0.06E log(E) + 0.35E.

Summary

Both queries have a nested loop join with one side indexed which takes
them to O(Nlog(N)), but joining with the big qualifiers table moves the
constant factors much in favor of the JSONB schema. It executes in under
half the time for our data. The complexity of our queries are very similar,
and in fact the limit of the ratio between the two estimated complexities is
2.5, indicating that the relative di�erence will stay about the same for any
size of data set.
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Table 4.2: Query 1 benchmark results after 5 runs for the base schema.
Metric Mean Count RSD Measured Note
cycles 3,797,879,935 0.11% 24.97% 2.656 GHz
instructions 5,224,539,005 0.57% 31.76% 1.38 insn per cycle
task-clock 1,430 0.26% 100.00% 2.908 CPUs utilized
context-switches 77 29.29% 100.00% 0.054 K/sec
cpu-migrations 21 2.61% 100.00% 0.015 K/sec
branches 1,056,526,679 0.66% 32.44% 738.863 M/sec
branch-misses 6,500,381 0.51% 33.11% 0.62% of all branches
minor-faults 28,970 0.20% 100.00% 0.020 M/sec
major-faults 0 0.00% 100.00% 0.000 K/sec
page-faults 28,970 0.20% 100.00% 0.020 M/sec
cache-misses 39,177,553 0.82% 33.71% 41.165% of all cache refs
bus-cycles 33,854,299 0.17% 33.91% 23.675 M/sec
mem-loads 133 5.97% 26.87% 0.093 K/sec
mem-stores 881,304,573 0.78% 26.37% 616.325 M/sec
cache-references 95,171,672 0.86% 25.67% 66.557 M/sec
dTLB-load-misses 1,955,976 0.86% 24.82%
iTLB-load-misses 47,626 2.40% 24.12%
LLC-load-misses 4,914,193 0.88% 24.63% 38.97% of all LL-cache hits
L1-dcache-loads 1,527,320,025 1.35% 24.20% 1068.104 M/sec
L1-dcache-load-misses 71,002,920 0.69% 24.54% 4.65% of all L1-dcache hits
LLC-loads 12,609,523 0.81% 24.72% 8.818 M/sec
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Table 4.3: Query 1 benchmark results after 5 runs for the JSONB schema.
Metric Mean Count RSD Measured Note
cycles 1,708,073,577 0.10% 23.81% 2.480 GHz
instructions 2,624,675,534 0.73% 31.17% 1.54 insn per cycle
task-clock 689 0.10% 100.00% 2.838 CPUs utilized
context-switches 51 13.15% 100.00% 0.074 K/sec
cpu-migrations 12 10.17% 100.00% 0.018 K/sec
branches 546,872,727 0.24% 32.76% 794.081 M/sec
branch-misses 2,699,244 0.25% 34.22% 0.49% of all branches
minor-faults 23,828 0.18% 100.00% 0.035 M/sec
major-faults 0 0.00% 100.00% 0.000 K/sec
page-faults 23,828 0.18% 100.00% 0.035 M/sec
cache-misses 12,520,688 0.33% 35.65% 40.436% of all cache refs
bus-cycles 15,665,312 0.13% 36.68% 22.747 M/sec
mem-loads 88 6.62% 28.93% 0.127 K/sec
mem-stores 453,853,074 0.27% 28.59% 659.013 M/sec
cache-references 30,964,087 1.07% 28.23% 44.961 M/sec
dTLB-load-misses 269,395 0.54% 27.77%
iTLB-load-misses 19,550 8.94% 26.44%
LLC-load-misses 783,933 2.12% 23.07% 33.00% of all LL-cache hits
L1-dcache-loads 744,466,416 0.60% 23.01% 1080.995 M/sec
L1-dcache-load-misses 23,855,588 0.51% 21.54% 3.20% of all L1-dcache hits
LLC-loads 2,375,645 0.85% 22.35% 3.450 M/sec
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(a) elapsed (b) task-clock (c) cycles

(d) instructions (e) context-switches (f) branches

(g) branch-misses (h) page-faults (i) cache-misses

(j) dTLB-load-misses (k) iTLB-load-misses (l) LLC-load-misses

Figure 4.1: Comparison of mean event counts for Query 1 after 5 runs. The
white bars represent the base schema, while the striped represent the JSONB
schema. The error bars show the standard deviation.
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4.4.2 Level 2

The Base Schema

From table 4.4, we see that the query is measured to execute in 2,253 ± 5 ms
of CPU time, which is aggregated across all cores used. Dividing by the
“CPUs utilized” value of 1.502, we get that the actual elapsed wall time is
1,500 ± 3 ms.

Again using EXPLAIN ANALYZE, we see that the query starts, as we would
expect, with running a window function over the events table to annotate
the rows with the id of the preceding row in about 750 ms. Then, the
type_id and outcome filters are applied, reducing the row count from 1.8
million to 1.1 in about 200 ms. The qualifiers table is scanned and
filtered, in parallel, from the initial 8 million rows down to 14,000 in about
350 ms. The filtered qualifier and event rows are now hash joined while
filtering on the combination of type_ids, qualifier_ids and outcomes,
taking the row count from 1.1 million event rows to 90,000. At this point the
pertinent_events CTE is complete.

The 90,000 rows are then filtered by type_id=12, leaving 22,000 rows af-
ter about 500 ms. These rows are then hash joined to the pertinent_events
table five times in the recursive union in the cleared_corners CTE, expand-
ing the 22,000 rows to 35,000 in about 50 ms. Finally these rows are filtered
by type_id to leave only the corner kicks, which are then counted.

Applying the same types of complexity estimation as we did for level 1,
looking at the types of the query components and their complexity, we find
the complexity to be linear. The recursive CTE could introduce higher order
complexity if the number of joins was unbounded, but since the situation we
are looking at is limited to four events in a row, we avoid that.

The JSONB Schema

From table 4.5, we see that the JSONB variant is measured to execute in
944 ± 5 ms of CPU time, which is aggregated across all cores used. Dividing
by the “CPUs utilized” value of 0.995, we get that the actual elapsed wall
time is 949 ± 5 ms.

The big di�erences in the JSONB schema for this level, as for the previous,
is the missing hash join to the qualifiers table. It starts with the window
function, as before, but instead of the multiple-stage filtering and joining
from the base query, it applies all of the filters in one go—completing the
pertinent_events CTE in 1,100 ms.

As with the base variant, there are only linear time components in this
query, and so the only di�erence is in lower constant factors.
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Summary

The relative di�erence in execution time is not as great for this level as it
was for the previous, but it is clear that the JSONB is the more e�cient of
the approaches. The di�erence is smaller because the base schema processed
the qualifiers table in parallel for this query, and we can see the di�erence
in “CPUs utilized” in 4.4. The extra threads are likely also the cause for the
high number of context switches relative to the JSONB schema that we can
see in 4.2(e).
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Table 4.4: Query 2 benchmark results after 5 runs using the base schema.
Metric Mean Count RSD Measured Note
cycles 6,314,381,880 0.21% 24.55% 2.803 GHz
instructions 13,395,105,709 0.59% 30.94% 2.12 insn per cycle
task-clock 2,253 0.23% 100.00% 1.502 CPUs utilized
context-switches 50 16.55% 100.00% 0.022 K/sec
cpu-migrations 20 4.45% 100.00% 0.009 K/sec
branches 2,758,902,405 0.66% 31.13% 1224.811 M/sec
branch-misses 4,852,026 1.05% 31.36% 0.18% of all branches
minor-faults 48,765 0.07% 100.00% 0.022 M/sec
major-faults 0 0.00% 100.00% 0.000 K/sec
page-faults 48,765 0.07% 100.00% 0.022 M/sec
cache-misses 34,625,128 3.27% 32.17% 53.789% of all cache refs
bus-cycles 52,040,787 0.23% 32.85% 23.103 M/sec
mem-loads 0 0.00% 26.04% 0.000 K/sec
mem-stores 2,311,701,643 0.57% 25.84% 1026.277 M/sec
cache-references 64,371,913 1.05% 25.67% 28.578 M/sec
dTLB-load-misses 3,156,378 3.18% 25.48%
iTLB-load-misses 26,550 11.15% 25.32%
LLC-load-misses 4,306,909 2.71% 24.54% 49.07% of all LL-cache hits
L1-dcache-loads 4,439,199,266 1.18% 25.05% 1970.776 M/sec
L1-dcache-load-misses 34,690,280 1.29% 24.95% 0.78% of all L1-dcache hits
LLC-loads 8,777,308 2.64% 24.81% 3.897 M/sec
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Table 4.5: Query 2 benchmark results after 5 runs using the JSONB schema.
Metric Mean Count RSD Measured Note
cycles 2,699,938,316 0.14% 24.28% 2.860 GHz
instructions 6,615,328,081 0.32% 30.69% 2.45 insn per cycle
task-clock 944 0.55% 100.00% 0.995 CPUs utilized
context-switches 16 26.81% 100.00% 0.017 K/sec
cpu-migrations 1 31.62% 100.00% 0.001 K/sec
branches 1,355,126,470 0.31% 31.00% 1435.381 M/sec
branch-misses 2,771,830 0.20% 31.34% 0.20% of all branches
minor-faults 10,955 0.00% 100.00% 0.012 M/sec
major-faults 0 0.00% 100.00% 0.000 K/sec
page-faults 10,955 0.00% 100.00% 0.012 M/sec
cache-misses 11,751,656 2.61% 31.68% 58.049% of all cache refs
bus-cycles 22,596,208 0.57% 31.83% 23.934 M/sec
mem-loads 0 0.00% 25.42% 0.000 K/sec
mem-stores 1,157,677,940 0.27% 25.42% 1226.239 M/sec
cache-references 20,244,315 4.15% 25.42% 21.443 M/sec
dTLB-load-misses 250,742 5.74% 25.40%
iTLB-load-misses 10,660 6.29% 25.31%
LLC-load-misses 2,306,835 2.15% 24.18% 68.34% of all LL-cache hits
L1-dcache-loads 2,194,472,803 0.43% 24.84% 2324.436 M/sec
L1-dcache-load-misses 16,022,848 1.34% 24.55% 0.73% of all L1-dcache hits
LLC-loads 3,375,728 3.36% 24.30% 3.576 M/sec
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(a) elapsed (b) task-clock (c) cycles

(d) instructions (e) context-switches (f) branches

(g) branch-misses (h) page-faults (i) cache-misses

(j) dTLB-load-misses (k) iTLB-load-misses (l) LLC-load-misses

Figure 4.2: Comparison of mean event counts for Query 2 after 5 runs. The
white bars represent the base schema, while the striped represent the JSONB
schema. The error bars show the standard deviation.
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4.4.3 Level 3
The Base Schema

From table 4.6, we see that the query is measured to execute in 7,077 ± 12 ms
of CPU time, which is aggregated across all cores used. Dividing by the
“CPUs utilized” value of 0.999, we get that the actual elapsed wall time is
7,784 ± 13 ms.

PostgreSQL starts the query with running a window function over the
events table to annotate each row with the id and team_id of following row,
taking about 900 ms to do so. The result is then filtered by team_id and
next_team to find all the changes of possession, which reduces the number of
rows from 1.8 million to 680,000 in about 100 ms. These rows are the starting
point for the recursive possessions CTE, and they are now hash joined 63
times with a subquery that runs the same window function over the events
table as was explained above. The whole construction recursive possessions
CTE takes about 5 seconds to complete, ending with 2,5 million rows.

The possessions CTE is then hash joined to the events table, while
filtering on the min, sec and x columns, completing in about 4 seconds. The
resulting rows are then counted to provide the final result.

Regarding complexity, the level 3 query has much of the same
characteristics as the level 2 query, but unlike the corner situation, the
counter-attack is technically unbounded. There is theoretically no limit to
how many consecutive events a team can have, although in practice it is
unusual for a team to keep possession of the ball an entire period, and even
if a team managed to do this, there is a practical upper limit for how many
events the team can manage during 45 minutes.

If we assume that there is no relation between the size of the events table
and the maximum number of consecutive events from the same team, which
we think is reasonable, we can say that the query is linear in the size of the
events table.

The JSONB Schema

The query is identical for the two schemas, but it nonetheless executed
slightly slower in the JSONB schema. From table 4.7, we see that it was
measured to execute in 7,259 ± 6 ms of CPU time, which with the “CPUs
utilized” value of 0.999, gives us the wall time of 7,266 ± 6 ms.

Summary

The schemas had very similar performance, which was expected as the queries
were identical. However, the base schema had a slight edge. The di�erence
is most likely attributable to the fact that the events table has an extra
column, and therefore is bigger, in the JSONB schema. We can see this
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manifested in a higher number of memory store events when comparing tables
4.6 and 4.7.

44



Table 4.6: Query 3 benchmark results after 5 runs using the base schema.
Metric Mean Count RSD Measured Note
cycles 18,753,339,797 0.15% 24.97% 2.650 GHz
instructions 36,639,518,454 0.16% 31.27% 1.95 insn per cycle
task-clock 7,077 0.17% 100.00% 0.999 CPUs utilized
context-switches 89 59.04% 100.00% 0.013 K/sec
cpu-migrations 2 11.11% 100.00% 0.000 K/sec
branches 7,892,510,232 0.21% 31.31% 1115.188 M/sec
branch-misses 16,301,005 1.46% 31.34% 0.21% of all branches
minor-faults 200,998 0.05% 100.00% 0.028 M/sec
major-faults 0 0.00% 100.00% 0.000 K/sec
page-faults 200,998 0.05% 100.00% 0.028 M/sec
cache-misses 200,306,195 1.10% 31.36% 66.703% of all cache refs
bus-cycles 169,428,487 0.17% 31.34% 23.940 M/sec
mem-loads 0 0.00% 25.01% 0.000 K/sec
mem-stores 5,605,380,302 0.19% 25.00% 792.023 M/sec
cache-references 300,296,482 0.82% 24.99% 42.431 M/sec
dTLB-load-misses 15,893,029 0.23% 24.97%
iTLB-load-misses 139,021 21.06% 24.96%
LLC-load-misses 30,633,737 0.79% 24.94% 66.48% of all LL-cache hits
L1-dcache-loads 10,925,477,537 0.12% 24.96% 1543.737 M/sec
L1-dcache-load-misses 223,332,158 0.36% 24.96% 2.04% of all L1-dcache hits
LLC-loads 46,082,865 0.35% 24.95% 6.511 M/sec
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Table 4.7: Query 3 benchmark results after 5 runs using the JSONB schema.
Metric Mean Count RSD Measured Note
cycles 19,261,924,945 0.04% 24.94% 2.654 GHz
instructions 37,252,645,438 0.07% 31.22% 1.93 insn per cycle
task-clock 7,259 0.08% 100.00% 0.999 CPUs utilized
context-switches 161 56.33% 100.00% 0.022 K/sec
cpu-migrations 2 11.11% 100.00% 0.000 K/sec
branches 8,071,694,786 0.08% 31.28% 1111.989 M/sec
branch-misses 18,484,952 1.34% 31.32% 0.23% of all branches
minor-faults 203,688 0.04% 100.00% 0.028 M/sec
major-faults 0 0.00% 100.00% 0.000 K/sec
page-faults 203,688 0.04% 100.00% 0.028 M/sec
cache-misses 212,371,887 0.91% 31.36% 66.948% of all cache refs
bus-cycles 173,752,253 0.08% 31.38% 23.937 M/sec
mem-loads 0 0.00% 25.07% 0.000 K/sec
mem-stores 5,696,586,274 0.12% 25.04% 784.784 M/sec
cache-references 317,218,602 0.33% 25.02% 43.701 M/sec
dTLB-load-misses 16,208,159 0.36% 24.99%
iTLB-load-misses 140,009 14.86% 24.97%
LLC-load-misses 33,758,002 0.51% 24.91% 67.23% of all LL-cache hits
L1-dcache-loads 11,075,792,460 0.08% 24.93% 1525.845 M/sec
L1-dcache-load-misses 261,950,912 0.42% 24.92% 2.37% of all L1-dcache hits
LLC-loads 50,216,091 0.39% 24.92% 6.918 M/sec
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(a) elapsed (b) task-clock (c) cycles

(d) instructions (e) context-switches (f) branches

(g) branch-misses (h) page-faults (i) cache-misses

(j) dTLB-load-misses (k) iTLB-load-misses (l) LLC-load-misses

Figure 4.3: Comparison of mean event counts for Query 3 after 5 runs. The
white bars represent the base schema, while the striped represent the JSONB
schema. The error bars show the standard deviation.
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4.5 Comparison
The JSONB schema is significantly faster than the base schema for the two
first levels, while the base schema takes a slight edge in the third level. The
conclusion we draw from these results, is that the JSONB schema is a good
solution for storing sparse attributes, and that it is the better choice of the
two for almost any workload resembling our benchmarks. We find it hard
to imagine an analyst workload that would never make use of the qualifiers,
and it is only when the qualifiers are not involved that the base schema takes
a slight edge. In fact, a real application of the counter-attacks query should
probably add filters on which events are allowed to start and end a counter-
attack to exclude some edge cases, and that would almost certainly make use
of the qualifiers.

4.6 Summary
In this chapter we have seen the construction and benchmarking of our
relational approaches to storing and querying the Opta data, and we have
proven that PostgreSQL is able to extract higher-level events from the Opta
event data.

We described the design of the base and JSONB PostgreSQL schemas,
then designed queries for the three levels specified in our benchmarking
system design, and finally analyzed and compared the results, marking the
JSONB schema as the most performant of the two.
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Chapter 5

Graph Approach

In this chapter, we will design and and benchmark a graph approach
to storing and querying our data. We will construct a schema to hold
the data, then design and implement queries for each of the three levels
outlined in section 3.5. Finally, we will benchmark the queries through our
benchmarking system, and analyze the results.

5.1 Schema Design
In section 2.4.1 we saw that Florescu and Kossmann used a graph as a
conceptual intermediate stage of mapping XML to a relational database.
They described the graph as having all elements as nodes, each element-sub-
element relationship as an edge, and treating each attribute on an element
as a sub-element.

This is a natural starting point for our graph schema. But, as we saw
in section 3.2.2, Neo4j also allows attributes on the nodes and relationships
themselves. This means we have to find a balance of what should be stored
as attributes, and what should be stored as relationships to other nodes.
The obvious approach, and also what we will do, is to map XML attributes
directly to Neo4j attributes, and only make edges for the element-sub-element
relationships.

This leaves some gaps, however, as many elements have references to other
elements that are not their sub-elements. An example of this is the Event
elements, which have references to both the player involved and the player’s
team in its attributes, in addition to having several Qualifier sub-elements.
These cases are obviously already relationships, and we will create edges for
these as well.

For our data, this means we will have nodes for all events, qualifiers,
players, games, teams and seasons, which are separated by “labels” in Neo4j.
We will then link the events to their qualifiers, players and games, and the
games to their seasons, etc., using edges, which are called relationships in
Neo4j.
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Additionally, one would want to create edges between successive elements
where the order matter, as Neo4j doesn’t have any internal ordering to rely
on, unlike tables in most relational databases. In our case, this means
creating directed edges with a “preceding” label from each event to the
following.

Figure 5.1: Excerpt from a match as modeled in Neo4j. Green nodes are
events, red nodes are qualifiers, blue nodes are players, and the pink node is
the game node.

5.2 Optimization

5.2.1 Warm-up

Where PostgreSQL relies heavily on the operating system’s file cache, Neo4j
mainly uses its own cache [39]. This, in combination with the fact that
our benchmarking system restarts the Neo4j server between every query
benchmarked, means that the database has a significant cold start problem.

While this is a real concern, and should be taken into account when
comparing the databases, it is not a real problem for our target workload.
The Opta data analyst will likely only use data sets that fit in memory, so
the warm-up is really only a startup cost of populating the cache.

We will counter the cold start problem with a warm-up before each query
benchmark, where we execute the query to be benchmarked one time without
measuring after restarting the server.
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5.2.2 Indexes
Indexes in Neo4j behaves much as indexes in other databases, in that they
sacrifice disk space for read performance on nodes with a certain label when
queried by one or more specified attributes, in the same way as indexes
on tables and columns work in most relational databases. The indexes are
mainly used in the beginning of queries, to collect the nodes that we will
follow relationships from.

Many of the columns we created indexes over for PostgreSQL in section
4.3 are replaced by relationships in our Neo4j schema. The only remaining
is the index on the events over the type_id attribute. We will create this,
and also add an index on the qualifiers and its qualifier_id attribute:

1 CREATE INDEX ON :Event( type_id );
2 CREATE INDEX ON : Qualifier ( qualifier_id );

5.3 Implementation of Queries in Cypher

5.3.1 The Cypher Query Language
The Cypher Query Language, or just Cypher for short, is a declarative query
language created by Neo Technologies for use in their Neo4j database. Since
2015 it has had an open specification [40]. It now has several implementations
in addition to Neo4j, most of them being external modules to provide graph
querying to existing database projects [41].

The language bears some resemblance to SQL in that it is declarative and
has familiar constructs like ORDER BY, LIMIT and WHERE, but is di�erentiated
by the MATCH clause, which enables matching patterns of nodes and
relationships.

5.3.2 Level 1
For the first level query, we take advantage of Cypher’s graph pattern
matching, and query for every sub-graph starting with a player node
connected to an event node with a type_id of 1, which signifies a pass
event, where that event node is connected to a game node, which further is
connected to a season node with the correct season_id. Since we can only
specify two-dimensional chains, we have to add a second part to our MATCH,
specifying that the event node should be connected to a qualifier node with
a qualifier_id of 1, signifying a “long ball”.

Then we aggregate the average outcome and the event node count for
each of our sub-graphs, filter the results on event count, and finally return
the limited, ordered list.
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Listing 5.1: Neo4j query for finding top 10 long ball passers in Norwegian
Tippeligaen for the 2016 season

1 MATCH (p: Player )
2 -[: WAS_INVOLVED_IN ]-> (e:Event { type_id : 1})
3 -[: HAPPENED_IN ]-> (g:Game)
4 -[: IS_A_GAME_IN ]-> (s: Season { season_id : ’201690 ’}) ,
5 (q: Qualifier { qualifier_id : 1}) -[: IS_PART_OF ]-> (e)
6 WITH p, avg(e. outcome ) AS a, count(e) AS c
7 WHERE c > 100
8 RETURN p.name , a, c
9 ORDER BY a DESC

10 LIMIT 10;

Listing 5.2: Neo4j query for counting corners cleared by heading.
1 MATCH p = (e2:Event { type_id : 12, outcome : 1})
2 <-[: PRECEDED *0..3] - (e1:Event { type_id : 1})
3 WHERE EXISTS ((: Qualifier { qualifier_id : 15})
4 -[: IS_PART_OF ]-> (e2))
5 AND EXISTS (( e1) <-[: IS_PART_OF ]-
6 (: Qualifier { qualifier_id : 6}))
7 AND ( EXISTS (( e1) -[: PRECEDED ]-> (e2))
8 OR NONE (ex IN nodes(p)[1.. -1]
9 WHERE ex. type_id <> 44))

10 RETURN count (*);

5.3.3 Level 2
In the second level query, we start by querying for every sub-graph starting
with an event of type_id 12 with an outcome of 1, which corresponds to a
successful clearance event, and specify that it has to be preceded by an event
node with type_id 1, meaning a pass event, after at most three hops. Then
we add further conditions in the WHERE clause, specifying that the clearance
event node must be connected to a qualifier node with a qualifier_id of 15,
meaning that the clearance must be conducted with the head. We further
specify that the pass event must be connected to a qualifier node with a
qualifier_id of 6, indicating a corner kick, and that the corner event must
either immediately precede the headed clearance event, or that all of the
intermediate event nodes have a type_id of 44, indicating an aerial duel.
Finally, we count the number of matching sub-graphs.

5.3.4 Level 3
For our third level, we start the query with identifying all switches of
possession, querying for all sub-graphs starting with an event node which is
directly connected to another event node with a di�erent team_id attribute.

Then, we query for all sub-graphs starting with one of the ending nodes of
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Listing 5.3: Neo4j query for finding number of counter attacks in the dataset.
1 MATCH (e1:Event) -[: PRECEDED ]-> (e2:Event)
2 WHERE e1. team_id <> e2. team_id
3 WITH e1 , e2
4 MATCH p = (e2:Event) -[: PRECEDED *0..] - > (e3:Event)
5 WHERE (( e3.sec + e3.min *60) - (e1.sec + e1.min *60)) >= 3
6 AND (e3.x - (100 - e1.x)) > 20
7 AND (e3.x - (100 - e1.x)) /
8 (( e3.sec + e3.min *60) - (e1.sec + e1.min *60)) > 6
9 AND NONE (ex IN nodes(p) WHERE ex. team_id = e1. team_id )

10 RETURN count( DISTINCT e1);

our possession switch sub-graphs from before, further connected to what will
be our counter-attack ending node through any number of hops, but filtered
by the pace and distance conditions from the query definition in section 3.5.3,
and ensuring that all of the event nodes in the same sub-graph have the same
team_id.

Finally, we count all the distinct start nodes from our possession switch
sub-graphs to get the number of counter-attacks.

5.4 Results
Neo4j has a PROFILE prefix that can be added to queries for profiling them,
much like PostgreSQL’s EXPLAIN ANALYZE that we used in the previous
chapter. PROFILE, however, does not give quite as detailed output as its
PostgreSQL counterpart—e.g. it does not show any split times or planner
estimates—but it does show the number of “db hits” for each part of the
execution.

5.4.1 Level 1
From table 5.1 we see that the first level query is measured to execute in
1.3 ± 0.2 s of CPU time, aggregated across all cores used. Dividing by the
“CPUs utilized” value of 0.88, we get that the actual elapsed wall time is
1.6 ± 0.2 s.

The PROFILE tool shows us that the query starts with an index scan
on the Qualifier nodes, filtering the 8 million nodes down to 184,000 nodes
using as many “db hits”. Next, it follows the :IS_PART_OF connection from
the Qualifier nodes to find all the associated events, using 368,000 “db hits”
because it must first get the relationship, then get the event node. Then
it filters on the event nodes’ type_id attributes and the qualifier nodes’
qualifier_id attributes, which only reduces the sub-graph count by 1% to
182,000, but uses 366,000 “db hits” to look up the properties on both node
types. Following the :HAPPENED_IN relationship, it adds a game node to each
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sub-graph using “364,000” db hits for looking up relationships and the game
nodes.

It then does a hash join between these sub-graphs and the sub-graphs
with the game nodes that satisfy our league and season criteria, the latter
of which we will not detail the query for because of its insignificant size.
The sub-graph count is now 46,101. Next, it follows the :WAS_INVOLVED_IN
relationship backwards from each event node to add player nodes to each
sub-graph, using 92,000 “db hits”, and then it applies all of the attribute
filters to every sub-graph again, which does not change anything, but still
uses 46,000 “db hits”. Finally, it runs an aggregate over the sub-graphs and
runs some insignificant last steps on the resulting 363 rows to produce the
final list.

Examining the complexity of each step and the number of rows between
each step, we estimate the complexity to

0.375E + 2log(E) ≠ 3.3

which is O(E).
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Table 5.1: Query 1 benchmark results after 5 runs using Neo4j.
Metric Mean Count RSD Measured Note
cycles 3,342,529,229 12.79% 26.28% 2.436 GHz
instructions 5,978,503,761 7.43% 33.95% 1.79 insn per cycle
task-clock 1,372 12.72% 100.00% 0.880 CPUs utilized
context-switches 799 11.01% 100.00% 0.582 K/sec
cpu-migrations 119 6.45% 100.00% 0.087 K/sec
branches 1,008,297,594 9.05% 35.36% 734.890 M/sec
branch-misses 8,770,654 33.26% 36.77% 0.87% of all branches
minor-faults 159 10.86% 100.00% 0.116 K/sec
major-faults 0 0.00% 100.00% 0.000 K/sec
page-faults 159 10.96% 100.00% 0.116 K/sec
cache-misses 43,134,723 6.47% 38.69% 27.392% of all cache refs
bus-cycles 31,637,407 12.55% 37.25% 23.059 M/sec
mem-loads 0 0.00% 27.98% 0.000 K/sec
mem-stores 797,053,407 6.65% 27.42% 580.926 M/sec
cache-references 157,473,914 18.56% 26.37% 114.774 M/sec
dTLB-load-misses 570,927 20.26% 25.96%
iTLB-load-misses 113,714 45.81% 25.35%
LLC-load-misses 1,655,288 9.52% 24.96% 16.93% of all LL-cache hits
L1-dcache-loads 1,646,307,749 10.63% 24.63% 1199.899 M/sec
L1-dcache-load-misses 107,771,767 13.41% 24.11% 6.55% of all L1-dcache hits
LLC-loads 9,775,708 28.88% 24.24% 7.125 M/sec
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5.4.2 Level 2
From table 5.1 we see that the second level query was measured to execute
in 1.4 ± 0.2 s of CPU time, aggregated across all cores used. Dividing by
the “CPUs utilized” value of 0.944, we get that the actual elapsed wall time
is 1.5 ± 0.3 s.

The execution starts with an index scan on the event nodes to find
the clearance events, which returns 52,000 rows. These nodes are then
filtered by their outcome and by connection to a qualifier node with the
right qualifier_id, to leave 22,000 rows. These rows are then made into
sub-graphs with their four preceding event nodes, producing 88,000 rows,
which are then filtered by type_id and connections to qualifier nodes with
the corner kick qualifier_id to produce 3,060 rows which are counted to
produce the final output.

Adding up the complexities while using the row counts as estimates for
the constant factors, gives us a query complexity of around

0.1E + log(E)

which is, as the previous query, also O(E).
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Table 5.2: Query 2 benchmark results after 5 runs using Neo4j.
Metric Mean Count RSD Measured Note
cycles 3,605,076,988 17.21% 26.26% 2.551 GHz
instructions 6,434,104,079 10.28% 33.84% 1.78 insn per cycle
task-clock 1,413 16.80% 100.00% 0.944 CPUs utilized
context-switches 800 12.25% 97.76% 0.566 K/sec
cpu-migrations 137 13.34% 97.76% 0.097 K/sec
branches 1,136,270,385 10.59% 33.54% 803.910 M/sec
branch-misses 10,851,417 29.07% 34.29% 0.96% of all branches
minor-faults 123 17.02% 96.99% 0.087 K/sec
major-faults 0 0.00% 96.99% 0.000 K/sec
page-faults 126 17.40% 96.99% 0.089 K/sec
cache-misses 45,323,775 12.23% 34.98% 26.402% of all cache refs
bus-cycles 34,479,652 15.14% 34.09% 24.394 M/sec
mem-loads 0 0.00% 25.59% 0.000 K/sec
mem-stores 848,104,182 6.63% 26.37% 600.033 M/sec
cache-references 171,665,656 17.46% 25.77% 121.453 M/sec
dTLB-load-misses 543,444 23.92% 24.99%
iTLB-load-misses 163,888 30.62% 25.02%
LLC-load-misses 1,181,148 28.73% 24.55% 10.08% of all LL-cache hits
L1-dcache-loads 1,858,802,808 11.29% 23.95% 1315.101 M/sec
L1-dcache-load-misses 92,067,506 19.65% 24.27% 4.95% of all L1-dcache hits
LLC-loads 11,718,482 32.96% 24.28% 8.291 M/sec

57



5.4.3 Level 3
From table 5.1 we see that the last level query was measured to execute in
40 ± 4.5 s of CPU time, aggregated across all cores used. Dividing by the
“CPUs utilized” value of 1.537, we get that the actual elapsed wall time is
26 ± 3 s.

The query execution is started with a scan on the event nodes, which
are then expanded to sub-graphs by following their :PRECEDED relationship
to the following event node. These sub-graphs are then filtered by team_id
to produce only sub-graphs which represent possession changes. The sub-
graphs are then actually expanded by following :PRECEDED until the end of
the current period, instead of to the next change of possession, as we would
expect. This grows the number of sub-graphs from 700,000 to 1.8 million, and
these rows are now hash joined to the event nodes again. It seems it must
do this because until now the rows have only contained the relationships.
The hash join leaves the same 1.8 million rows, which are then filtered by
our pace and distance limitations specified in section 3.5.3 to leave only the
rows, or sub-graphs, corresponding to counter-attacks. The rows are then
counted to return the result.

This query, like its relational counterpart, has only linear components if
we assume that the number of events to scan from each possession switch
event is not proportional to the number of event nodes. However, since the
query we constructed was unable to stop at the next possession switch event,
it is only saved by the fact that it stops at the end of the current period.
This gives us a very large constant factor, which is likely what slows this
query down.

Just as we theoretically cant guarantee any upper limit on the number of
events in a row from the same team, we can only be sure that the number of
events from the current to the period end is at least as many, and because
of this the theoretical class of the query is also here O(E2).
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Table 5.3: Query 3 benchmark results after 5 runs using Neo4j.
Metric Mean Count RSD Measured Note
cycles 115,272,000,335 11.57% 25.05% 2.863 GHz
instructions 182,141,250,649 14.64% 31.45% 1.58 insn per cycle
task-clock 40,267 11.28% 100.00% 1.537 CPUs utilized
context-switches 7,183 1.53% 100.00% 0.178 K/sec
cpu-migrations 702 3.86% 100.00% 0.017 K/sec
branches 31,468,157,275 14.34% 31.53% 781.484 M/sec
branch-misses 240,142,664 6.79% 31.68% 0.76% of all branches
minor-faults 1,719 47.91% 100.00% 0.043 K/sec
major-faults 0 0.00% 100.00% 0.000 K/sec
page-faults 1,723 47.84% 100.00% 0.043 K/sec
cache-misses 1,292,630,549 10.54% 31.75% 45.390% of all cache refs
bus-cycles 953,549,563 11.27% 31.71% 23.681 M/sec
mem-loads 0 0.00% 25.30% 0.000 K/sec
mem-stores 22,304,178,177 15.56% 25.24% 553.904 M/sec
cache-references 2,847,837,604 13.34% 25.21% 70.724 M/sec
dTLB-load-misses 51,974,302 4.72% 25.13%
iTLB-load-misses 1,184,105 16.71% 25.05%
LLC-load-misses 59,151,702 8.72% 24.94% 24.32% of all LL-cache hits
L1-dcache-loads 54,563,692,355 12.81% 25.02% 1355.041 M/sec
L1-dcache-load-misses 1,633,553,879 16.53% 25.00% 2.99% of all L1-dcache hits
LLC-loads 243,204,441 11.41% 24.95% 6.040 M/sec
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5.5 Summary
In this chapter we have constructed and benchmarked the graph approach to
storing and querying our data, and we have seen that Neo4j is indeed capable
of extracting higher-level events from the Opta data, although we did not
find it very e�cient at the most complex of our benchmark queries.

We designed a schema for storing the data, and then constructed queries
to extract the data we have specified in the three levels from section 3.5.
Finally, we benchmarked the queries in our benchmarking system, and
analyzed the results.
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Chapter 6

Comparison

In the two previous chapters, we have looked at relational and graph based
approaches to storing and querying our event data. We saw that both
of the approaches made it possible to extract higher-level events from the
Opta data. In this chapter we will compare the benchmark results of the
two approaches to further identify which option gives the most performant
querying.

We will limit the comparison to the most performant schemas from each
approach, which means we will only compare the graph schema to the JSONB
schema of the relational approach.

6.1 Level 1
The storage structures of the two benchmarked databases are markedly
di�erent, as we have seen in sections 3.2.1 and 3.2.2. This, combined with
the di�erent query languages, provide some interesting results.

For the first level, PostgreSQL is clearly the fastest of the two. It executes
in 243 ms, which is less than a fifth of Neo4j’s 1.5 s. Some of this is explained
by PostgreSQL’s parallel execution of parts of the query, and we can indeed
see in figure 6.1(b) that the di�erence in aggregated CPU time is a lot smaller.

Another noteworthy point, is can be noticed in figure 6.1(h). PostgreSQL
has many orders of magnitude more page faults. By examining table 4.3,
however, we see that none of them are “major”. These minor page faults are
caused by PostgreSQL’s reliance on the operating system’s file cache [42], and
a minor page fault will be triggered every time PostgreSQL needs something
from the operating system’s cache.

Even though PostgreSQL is faster, we see that because of PostgreSQL’s
use of a nested loop join, it has a complexity of ONlog(N) in the size of the
events table, while Neo4j is linear. However, it is likely that the PostgreSQL
optimizer would choose a di�erent strategy if for a bigger data set, so it would
be unwise to attribute too much to this fact.
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(a) elapsed (b) task-clock (c) cycles

(d) instructions (e) context-switches (f) branches

(g) branch-misses (h) page-faults (i) cache-misses

(j) dTLB-load-misses (k) iTLB-load-misses (l) LLC-load-misses

Figure 6.1: Comparison of mean event counts for Query 1 after 5 runs.
White is PostgreSQL and striped is Neo4j. The error bars show the standard
deviation.
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6.2 Level 2
At the second level, PostgreSQL is still the fastest of the two, although not
nearly by as much as in the previous query. It executes in 949 ms, which
is just a little over 60% of Neo4j’s 1.5 s. The fact that PostgreSQL doesn’t
make any use of its parallel queries is likely a great contributor to the drop
in the di�erence between the two, although there are some other points of
note.

We see in figure 6.2(d) that PostgreSQL actually executes about the same
number of instructions as Neo4j. It’s hard to tell exactly why this is, but
what is clear is that PostgreSQL manages to execute a lot more instructions
per cycle. Another point of note, is that PostgreSQL has a lot more last level
cache misses, as we see in figure 6.2(i), and that this relation was the other
way around for the previous query.

Unlike the last query, this query is linear for both approaches, with only
the constant factors tilting the results in PostgreSQL’s favor.

6.3 Level 3
Again in the third level, PostgreSQL is the fastest. It finishes the query in
7 seconds, while Neo4j uses 26 seconds, which is over three times as slow.

Neo4j seems to have a problem with imposing filters on nodes that are
along a variable length path. As we noted in section 5.4.3, we were unable
to construct a query that traversed the graph from a possession switch while
actually stopping when it reached a new possession change. This means
that it continues walking until the end of the period, and only filters the
sub-graphs by team_id after they are all constructed.

This leads to heavier memory usage, as we can see when comparing the
22.3 billion memory store events in 5.3 with PostgreSQL’s 5.7 billion in 4.7.
It also means that it has to do a lot more work than necessary to filter the
sub-graphs.

We also note the di�erence in context switches that we see in 6.3(e),
which is also very prominent in the two other queries. This is likely also a
reason for the di�erence in performance, as context switching is an expensive
operation.

Neo4j’s problems with enforcing a node filter while traversing the graph
makes PostgreSQL the clearly best choice for this query.

6.4 Summary
In this chapter, we took the best of our PostgreSQL schemas, and compared
its benchmark results with those of Neo4j.

We found PostgreSQL to be be the more e�cient choice in all three of our
queries, although we admit that the poor Neo4j performance in the last level
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is because we were unable to construct a query that filtered while traversing.
In conclusion, we believe that the Opta event data, and specifically the

operation of finding patterns in the events, may not be a great match for
modelling as a graph.
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(a) elapsed (b) task-clock (c) cycles

(d) instructions (e) context-switches (f) branches

(g) branch-misses (h) page-faults (i) cache-misses

(j) dTLB-load-misses (k) iTLB-load-misses (l) LLC-load-misses

Figure 6.2: Comparison of mean event counts for Query 2 after 5 runs.
White is PostgreSQL and striped is Neo4j. The error bars show the standard
deviation.
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(a) elapsed (b) task-clock (c) cycles

(d) instructions (e) context-switches (f) branches

(g) branch-misses (h) page-faults (i) cache-misses

(j) dTLB-load-misses (k) iTLB-load-misses (l) LLC-load-misses

Figure 6.3: Comparison of mean event counts for Query 3 after 5 runs.
White is PostgreSQL and striped is Neo4j. The error bars show the standard
deviation.
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Chapter 7

Conclusion

7.1 Summary
In this thesis, we have examined options for processing Opta’s football event
data e�ciently, and whether it is possible to extract higher-level semantics
by looking at patterns of simple events.

We first looked at the current state of football analytics, and thoroughly
analyzed the structure of Opta’s XML data. Then we looked at di�erent
types of database systems and their merits and ways of measuring their
performance. Further, we examined some previous work in the field of
mapping XML data to relational databases, and on benchmarking and
comparing databases.

We then designed a benchmark for comparing databases for the specific
use of modelling and analyzing Opta’s event data, and gave an overview
of its structure. We designed three queries of di�erent types: A simple
aggregating query, a query for identifying the compound event of a corner
kick being cleared by a defender heading, and lastly a query for identifying
the unbounded higher-level event of a counter-attack.

Next, we designed two di�erent relational schemas in PostgreSQL, and
one schema in the graph database Neo4j, we constructed queries for our three
levels, and ran our benchmark on the di�erent approaches.

Finally, we analyzed the results of the benchmark, and specifically
compared the best of our relational approach to the graph approach.

7.2 Contributions
Through this thesis, we have answered the questions we posed in our problem
definition. We have established that it is in fact possible to extract higher-
level events from the simpler ones using either of a relational or graph based
approach. Specifically, we have shown that we can identify the two compound
event types “counter-attack” and “corners cleared by defender heading”. We
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have also shown that this is possible to do e�ciently by using a relational
approach and querying with recursive common table expressions.

Further, through evaluating the performance through our benchmark, we
have shown PostgreSQL to be the most performant choice for storing and
querying this type of data. In our first query, we found PostgreSQL to
outperform Neo4j by a factor of 5 in execution time. In the second, Neo4j is
about 60% slower, and in the third it was three times as slow.

7.3 Future Work
We have only benchmarked two databases in this thesis, although there are
many more that might be interesting to benchmark for this type of data.
Specifically, we think that Esper [43], a database built for event series and
pattern matching, could be a good match for the problem of identifying
higher-level events in the data.

Also, SQL:2016 means the SQL standard now includes “row pattern
matching”. This is currently only available in Oracle [44], but will likely
make its way to other databases in the future.

Besides databases with pattern matching abilities, we think it would be
interesting to compare our row based PostgreSQL results with a column
store, possibly the PostgreSQL extension cstore_fdw [45].

68



Appendix A

Feed Examples

Listing A.1: The beginning of an F40 squad feed
1 <SoccerFeed timestamp ="20160531 T123211 +0000" >
2 <SoccerDocument Type =" SQUADS Latest " competition_code ="

EU_CL" competition_id ="5" competition_name =" Champions
League " season_id ="2015" season_name =" Season 2015/2016" >

3 <Team city =" London " country =" England " country_id ="1"
country_iso ="EN" postal_code ="N5 1BU" region_id ="17"
region_name =" Europe " short_club_name =" Arsenal " street
="75 Drayton Park" uID ="t3" web_address =" http :// www.
arsenal .com">

4 <Country >England </ Country >
5 <Founded >1886 </ Founded >
6 <Name >Arsenal </Name >
7 <Player uID =" p48844 ">
8 <Name >David Ospina </Name >
9 <Position >Goalkeeper </ Position >

10 <Stat Type =" first_name ">David </Stat >
11 <Stat Type =" last_name ">Ospina </Stat >
12 <Stat Type =" birth_date " >1988 -08 -31 </ Stat >
13 <Stat Type =" birth_place "> Medell ín</Stat >
14 <Stat Type =" first_nationality ">Colombia </Stat >
15 <Stat Type =" weight ">80</Stat >
16 <Stat Type =" height " >183 </ Stat >
17 <Stat Type =" jersey_num ">13</Stat >
18 <Stat Type =" real_position ">Goalkeeper </Stat >
19 <Stat Type =" real_position_side ">Unknown </Stat >
20 <Stat Type =" join_date " >2014 -07 -28 </ Stat >
21 <Stat Type =" country ">Colombia </Stat >
22 </Player >
23 ...
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Appendix B

Schemas

B.1 PostgreSQL
B.1.1 F9 Tables

Listing B.1: The F9 Tables
1 CREATE TABLE matches (
2 id INTEGER PRIMARY KEY ,
3 competition_id INTEGER REFERENCES

competitions (id),
4 season_id INTEGER REFERENCES

seasons (id),
5 country TEXT ,
6 weather TEXT ,
7 match_type TEXT ,
8 result_type TEXT ,
9 attendance INTEGER ,

10 matchday INTEGER ,
11 winner INTEGER REFERENCES

teams(id),
12 kickoff TIMESTAMP WITH TIME

ZONE ,
13 first_half_extra_start TEXT ,
14 first_half_extra_stop TEXT ,
15 first_half_extra_time INTEGER ,
16 first_half_start TEXT ,
17 first_half_stop TEXT ,
18 first_half_time INTEGER ,
19 match_time INTEGER ,
20 second_half_extra_start TEXT ,
21 second_half_extra_stop TEXT ,
22 second_half_extra_time INTEGER ,
23 second_half_start TEXT ,
24 second_half_stop TEXT ,
25 second_half_time INTEGER
26 );
27

28 CREATE TABLE player_results (
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29 id SERIAL PRIMARY KEY ,
30 player_id INTEGER REFERENCES

players (id),
31 match_id INTEGER REFERENCES

matches (id),
32 team_id INTEGER REFERENCES

teams(id),
33 shirt_number INTEGER ,
34 position TEXT ,
35 sub_position TEXT ,
36 status TEXT ,
37 side TEXT ,
38 score INTEGER ,
39 competition_id INTEGER REFERENCES

competitions (id),
40 season_id INTEGER REFERENCES

seasons (id),
41 country TEXT ,
42 accurate_back_zone_pass INTEGER ,
43 accurate_chipped_pass INTEGER ,
44 accurate_corners_intobox INTEGER ,
45 accurate_cross INTEGER ,
46 accurate_cross_nocorner INTEGER ,
47 accurate_flick_on INTEGER ,
48 accurate_freekick_cross INTEGER ,
49 accurate_fwd_zone_pass INTEGER ,
50 accurate_goal_kicks INTEGER ,
51 accurate_keeper_sweeper INTEGER ,
52 accurate_keeper_throws INTEGER ,
53 accurate_launches INTEGER ,
54 accurate_layoffs INTEGER ,
55 accurate_long_balls INTEGER ,
56 accurate_pass INTEGER ,
57 accurate_pull_back INTEGER ,
58 accurate_through_ball INTEGER ,
59 accurate_throws INTEGER ,
60 aerial_lost INTEGER ,
61 aerial_won INTEGER ,
62 assist_attempt_saved INTEGER ,
63 assist_blocked_shot INTEGER ,
64 assist_free_kick_won INTEGER ,
65 assist_handball_won INTEGER ,
66 assist_own_goal INTEGER ,
67 assist_pass_lost INTEGER ,
68 assist_penalty_won INTEGER ,
69 assist_post INTEGER ,
70 att_assist_openplay INTEGER ,
71 att_assist_setplay INTEGER ,
72 att_bx_centre INTEGER ,
73 att_bx_left INTEGER ,
74 att_bx_right INTEGER ,
75 att_cmiss_high INTEGER ,
76 att_cmiss_high_left INTEGER ,
77 att_cmiss_high_right INTEGER ,
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78 att_cmiss_left INTEGER ,
79 att_cmiss_right INTEGER ,
80 att_fastbreak INTEGER ,
81 att_freekick_goal INTEGER ,
82 att_freekick_miss INTEGER ,
83 att_freekick_post INTEGER ,
84 att_freekick_target INTEGER ,
85 att_freekick_total INTEGER ,
86 att_goal_high_centre INTEGER ,
87 att_goal_high_left INTEGER ,
88 att_goal_high_right INTEGER ,
89 att_goal_low_centre INTEGER ,
90 att_goal_low_left INTEGER ,
91 att_goal_low_right INTEGER ,
92 att_hd_goal INTEGER ,
93 att_hd_miss INTEGER ,
94 att_hd_post INTEGER ,
95 att_hd_target INTEGER ,
96 att_hd_total INTEGER ,
97 att_ibox_blocked INTEGER ,
98 att_ibox_goal INTEGER ,
99 att_ibox_miss INTEGER ,

100 att_ibox_post INTEGER ,
101 att_ibox_target INTEGER ,
102 att_lf_goal INTEGER ,
103 att_lf_target INTEGER ,
104 att_lf_total INTEGER ,
105 att_lg_centre INTEGER ,
106 att_lg_left INTEGER ,
107 att_lg_right INTEGER ,
108 att_miss_high INTEGER ,
109 att_miss_high_left INTEGER ,
110 att_miss_high_right INTEGER ,
111 att_miss_left INTEGER ,
112 att_miss_right INTEGER ,
113 att_obox_blocked INTEGER ,
114 att_obox_goal INTEGER ,
115 att_obox_miss INTEGER ,
116 att_obox_post INTEGER ,
117 att_obox_target INTEGER ,
118 att_obp_goal INTEGER ,
119 att_obx_centre INTEGER ,
120 att_obx_left INTEGER ,
121 att_obx_right INTEGER ,
122 att_obxd_left INTEGER ,
123 att_obxd_right INTEGER ,
124 att_one_on_one INTEGER ,
125 att_openplay INTEGER ,
126 att_pen_goal INTEGER ,
127 att_pen_miss INTEGER ,
128 att_pen_post INTEGER ,
129 att_pen_target INTEGER ,
130 att_post_high INTEGER ,
131 att_post_left INTEGER ,
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132 att_post_right INTEGER ,
133 att_rf_goal INTEGER ,
134 att_rf_target INTEGER ,
135 att_rf_total INTEGER ,
136 att_setpiece INTEGER ,
137 att_sv_high_centre INTEGER ,
138 att_sv_high_left INTEGER ,
139 att_sv_high_right INTEGER ,
140 att_sv_low_centre INTEGER ,
141 att_sv_low_left INTEGER ,
142 att_sv_low_right INTEGER ,
143 attempted_tackle_foul INTEGER ,
144 attempts_conceded_ibox INTEGER ,
145 attempts_conceded_obox INTEGER ,
146 back_pass INTEGER ,
147 backward_pass INTEGER ,
148 ball_recovery INTEGER ,
149 big_chance_created INTEGER ,
150 big_chance_missed INTEGER ,
151 big_chance_scored INTEGER ,
152 blocked_cross INTEGER ,
153 blocked_pass INTEGER ,
154 blocked_scoring_att INTEGER ,
155 challenge_lost INTEGER ,
156 clean_sheet INTEGER ,
157 clearance_off_line INTEGER ,
158 corner_taken INTEGER ,
159 cross_not_claimed INTEGER ,
160 crosses_18yard INTEGER ,
161 crosses_18yardplus INTEGER ,
162 dangerous_play INTEGER ,
163 dispossessed INTEGER ,
164 dive_catch INTEGER ,
165 dive_save INTEGER ,
166 diving_save INTEGER ,
167 duel_lost INTEGER ,
168 duel_won INTEGER ,
169 effective_blocked_cross INTEGER ,
170 effective_clearance INTEGER ,
171 effective_head_clearance INTEGER ,
172 error_lead_to_goal INTEGER ,
173 error_lead_to_shot INTEGER ,
174 final_third_entries INTEGER ,
175 first_half_goals INTEGER ,
176 formation_place INTEGER ,
177 formation_used INTEGER ,
178 foul_throw_in INTEGER ,
179 fouled_final_third INTEGER ,
180 fouls INTEGER ,
181 freekick_cross INTEGER ,
182 fwd_pass INTEGER ,
183 game_started INTEGER ,
184 gk_smother INTEGER ,
185 goal_assist INTEGER ,
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186 goal_assist_deadball INTEGER ,
187 goal_assist_intentional INTEGER ,
188 goal_assist_openplay INTEGER ,
189 goal_assist_setplay INTEGER ,
190 goal_fastbreak INTEGER ,
191 goal_kicks INTEGER ,
192 goals INTEGER ,
193 goals_conceded INTEGER ,
194 goals_conceded_ibox INTEGER ,
195 goals_conceded_obox INTEGER ,
196 goals_openplay INTEGER ,
197 good_high_claim INTEGER ,
198 hand_ball INTEGER ,
199 head_clearance INTEGER ,
200 head_pass INTEGER ,
201 hit_woodwork INTEGER ,
202 interception INTEGER ,
203 interception_won INTEGER ,
204 interceptions_in_box INTEGER ,
205 keeper_pick_up INTEGER ,
206 keeper_throws INTEGER ,
207 last_man_tackle INTEGER ,
208 leftside_pass INTEGER ,
209 long_pass_own_to_opp INTEGER ,
210 long_pass_own_to_opp_success INTEGER ,
211 lost_corners INTEGER ,
212 mins_played INTEGER ,
213 offside_provoked INTEGER ,
214 offtarget_att_assist INTEGER ,
215 ontarget_att_assist INTEGER ,
216 ontarget_scoring_att INTEGER ,
217 open_play_pass INTEGER ,
218 outfielder_block INTEGER ,
219 overrun INTEGER ,
220 own_goals INTEGER ,
221 passes_left INTEGER ,
222 passes_right INTEGER ,
223 pen_area_entries INTEGER ,
224 pen_goals_conceded INTEGER ,
225 penalty_conceded INTEGER ,
226 penalty_faced INTEGER ,
227 penalty_save INTEGER ,
228 penalty_won INTEGER ,
229 poss_lost_all INTEGER ,
230 poss_lost_ctrl INTEGER ,
231 poss_won_att_3rd INTEGER ,
232 poss_won_def_3rd INTEGER ,
233 poss_won_mid_3rd INTEGER ,
234 post_scoring_att INTEGER ,
235 pts_dropped_winning_pos INTEGER ,
236 pts_gained_losing_pos INTEGER ,
237 punches INTEGER ,
238 put_through INTEGER ,
239 red_card INTEGER ,
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240 rightside_pass INTEGER ,
241 saved_ibox INTEGER ,
242 saved_obox INTEGER ,
243 saves INTEGER ,
244 second_goal_assist INTEGER ,
245 second_yellow INTEGER ,
246 shield_ball_oop INTEGER ,
247 shot_fastbreak INTEGER ,
248 shot_off_target INTEGER ,
249 six_second_violation INTEGER ,
250 six_yard_block INTEGER ,
251 stand_catch INTEGER ,
252 stand_save INTEGER ,
253 successful_final_third_passes INTEGER ,
254 successful_open_play_pass INTEGER ,
255 successful_put_through INTEGER ,
256 total_att_assist INTEGER ,
257 total_back_zone_pass INTEGER ,
258 total_chipped_pass INTEGER ,
259 total_clearance INTEGER ,
260 total_contest INTEGER ,
261 total_corners_intobox INTEGER ,
262 total_cross INTEGER ,
263 total_cross_nocorner INTEGER ,
264 total_fastbreak INTEGER ,
265 total_final_third_passes INTEGER ,
266 total_flick_on INTEGER ,
267 total_fwd_zone_pass INTEGER ,
268 total_high_claim INTEGER ,
269 total_keeper_sweeper INTEGER ,
270 total_launches INTEGER ,
271 total_layoffs INTEGER ,
272 total_long_balls INTEGER ,
273 total_offside INTEGER ,
274 total_pass INTEGER ,
275 total_pull_back INTEGER ,
276 total_scoring_att INTEGER ,
277 total_sub_off INTEGER ,
278 total_sub_on INTEGER ,
279 total_tackle INTEGER ,
280 total_through_ball INTEGER ,
281 total_throws INTEGER ,
282 touches INTEGER ,
283 touches_in_opp_box INTEGER ,
284 turnover INTEGER ,
285 unsuccessful_touch INTEGER ,
286 was_fouled INTEGER ,
287 won_contest INTEGER ,
288 won_corners INTEGER ,
289 won_tackle INTEGER ,
290 yellow_card INTEGER
291 );
292

293 CREATE TABLE team_results (

76



294 id SERIAL PRIMARY KEY ,
295 team_id INTEGER REFERENCES

teams(id),
296 side TEXT ,
297 score INTEGER ,
298 match_id INTEGER REFERENCES

matches (id),
299 competition_id INTEGER REFERENCES

competitions (id),
300 season_id INTEGER REFERENCES

seasons (id),
301 accurate_back_zone_pass INTEGER ,
302 accurate_chipped_pass INTEGER ,
303 accurate_corners_intobox INTEGER ,
304 accurate_cross INTEGER ,
305 accurate_cross_nocorner INTEGER ,
306 accurate_flick_on INTEGER ,
307 accurate_freekick_cross INTEGER ,
308 accurate_fwd_zone_pass INTEGER ,
309 accurate_goal_kicks INTEGER ,
310 accurate_keeper_sweeper INTEGER ,
311 accurate_keeper_throws INTEGER ,
312 accurate_launches INTEGER ,
313 accurate_layoffs INTEGER ,
314 accurate_long_balls INTEGER ,
315 accurate_pass INTEGER ,
316 accurate_pull_back INTEGER ,
317 accurate_through_ball INTEGER ,
318 accurate_throws INTEGER ,
319 aerial_lost INTEGER ,
320 aerial_won INTEGER ,
321 att_assist_openplay INTEGER ,
322 att_assist_setplay INTEGER ,
323 att_bx_centre INTEGER ,
324 att_bx_left INTEGER ,
325 att_bx_right INTEGER ,
326 att_cmiss_high INTEGER ,
327 att_cmiss_high_left INTEGER ,
328 att_cmiss_high_right INTEGER ,
329 att_cmiss_left INTEGER ,
330 att_cmiss_right INTEGER ,
331 att_fastbreak INTEGER ,
332 att_freekick_goal INTEGER ,
333 att_freekick_miss INTEGER ,
334 att_freekick_post INTEGER ,
335 att_freekick_target INTEGER ,
336 att_freekick_total INTEGER ,
337 att_goal_high_centre INTEGER ,
338 att_goal_high_left INTEGER ,
339 att_goal_high_right INTEGER ,
340 att_goal_low_centre INTEGER ,
341 att_goal_low_left INTEGER ,
342 att_goal_low_right INTEGER ,
343 att_hd_goal INTEGER ,
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344 att_hd_miss INTEGER ,
345 att_hd_post INTEGER ,
346 att_hd_target INTEGER ,
347 att_hd_total INTEGER ,
348 att_ibox_blocked INTEGER ,
349 att_ibox_goal INTEGER ,
350 att_ibox_miss INTEGER ,
351 att_ibox_own_goal INTEGER ,
352 att_ibox_post INTEGER ,
353 att_ibox_target INTEGER ,
354 att_lf_goal INTEGER ,
355 att_lf_target INTEGER ,
356 att_lf_total INTEGER ,
357 att_lg_centre INTEGER ,
358 att_lg_left INTEGER ,
359 att_lg_right INTEGER ,
360 att_miss_high INTEGER ,
361 att_miss_high_left INTEGER ,
362 att_miss_high_right INTEGER ,
363 att_miss_left INTEGER ,
364 att_miss_right INTEGER ,
365 att_obox_blocked INTEGER ,
366 att_obox_goal INTEGER ,
367 att_obox_miss INTEGER ,
368 att_obox_own_goal INTEGER ,
369 att_obox_post INTEGER ,
370 att_obox_target INTEGER ,
371 att_obp_goal INTEGER ,
372 att_obx_centre INTEGER ,
373 att_obx_left INTEGER ,
374 att_obx_right INTEGER ,
375 att_obxd_left INTEGER ,
376 att_obxd_right INTEGER ,
377 att_one_on_one INTEGER ,
378 att_openplay INTEGER ,
379 att_pen_goal INTEGER ,
380 att_pen_miss INTEGER ,
381 att_pen_post INTEGER ,
382 att_pen_target INTEGER ,
383 att_post_high INTEGER ,
384 att_post_left INTEGER ,
385 att_post_right INTEGER ,
386 att_rf_goal INTEGER ,
387 att_rf_target INTEGER ,
388 att_rf_total INTEGER ,
389 att_setpiece INTEGER ,
390 att_sv_high_centre INTEGER ,
391 att_sv_high_left INTEGER ,
392 att_sv_high_right INTEGER ,
393 att_sv_low_centre INTEGER ,
394 att_sv_low_left INTEGER ,
395 att_sv_low_right INTEGER ,
396 attempted_tackle_foul INTEGER ,
397 attempts_conceded_ibox INTEGER ,
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398 attempts_conceded_obox INTEGER ,
399 backward_pass INTEGER ,
400 ball_recovery INTEGER ,
401 big_chance_created INTEGER ,
402 big_chance_missed INTEGER ,
403 big_chance_scored INTEGER ,
404 blocked_cross INTEGER ,
405 blocked_pass INTEGER ,
406 blocked_scoring_att INTEGER ,
407 challenge_lost INTEGER ,
408 clearance_off_line INTEGER ,
409 contentious_decision INTEGER ,
410 corner_taken INTEGER ,
411 crosses_18yard INTEGER ,
412 crosses_18yardplus INTEGER ,
413 defender_goals INTEGER ,
414 dispossessed INTEGER ,
415 diving_save INTEGER ,
416 duel_lost INTEGER ,
417 duel_won INTEGER ,
418 effective_blocked_cross INTEGER ,
419 effective_clearance INTEGER ,
420 effective_head_clearance INTEGER ,
421 error_lead_to_goal INTEGER ,
422 error_lead_to_shot INTEGER ,
423 final_third_entries INTEGER ,
424 fk_foul_lost INTEGER ,
425 fk_foul_won INTEGER ,
426 forward_goals INTEGER ,
427 foul_throw_in INTEGER ,
428 fouled_final_third INTEGER ,
429 freekick_cross INTEGER ,
430 fwd_pass INTEGER ,
431 goal_assist INTEGER ,
432 goal_assist_deadball INTEGER ,
433 goal_assist_intentional INTEGER ,
434 goal_assist_openplay INTEGER ,
435 goal_assist_setplay INTEGER ,
436 goal_fastbreak INTEGER ,
437 goal_kicks INTEGER ,
438 goals INTEGER ,
439 goals_conceded INTEGER ,
440 goals_conceded_ibox INTEGER ,
441 goals_conceded_obox INTEGER ,
442 goals_openplay INTEGER ,
443 good_high_claim INTEGER ,
444 hand_ball INTEGER ,
445 head_clearance INTEGER ,
446 hit_woodwork INTEGER ,
447 interception INTEGER ,
448 interception_won INTEGER ,
449 interceptions_in_box INTEGER ,
450 keeper_throws INTEGER ,
451 last_man_tackle INTEGER ,
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452 leftside_pass INTEGER ,
453 long_pass_own_to_opp INTEGER ,
454 long_pass_own_to_opp_success INTEGER ,
455 lost_corners INTEGER ,
456 midfielder_goals INTEGER ,
457 offtarget_att_assist INTEGER ,
458 ontarget_att_assist INTEGER ,
459 ontarget_scoring_att INTEGER ,
460 open_play_pass INTEGER ,
461 outfielder_block INTEGER ,
462 overrun INTEGER ,
463 own_goal_accrued INTEGER ,
464 own_goals INTEGER ,
465 passes_left INTEGER ,
466 passes_right INTEGER ,
467 pen_area_entries INTEGER ,
468 pen_goals_conceded INTEGER ,
469 penalty_conceded INTEGER ,
470 penalty_faced INTEGER ,
471 penalty_save INTEGER ,
472 penalty_won INTEGER ,
473 poss_lost_all INTEGER ,
474 poss_lost_ctrl INTEGER ,
475 poss_won_att_3rd INTEGER ,
476 poss_won_def_3rd INTEGER ,
477 poss_won_mid_3rd INTEGER ,
478 possession_percentage FLOAT ,
479 post_scoring_att INTEGER ,
480 punches INTEGER ,
481 put_through INTEGER ,
482 rightside_pass INTEGER ,
483 saved_ibox INTEGER ,
484 saved_obox INTEGER ,
485 saves INTEGER ,
486 second_yellow INTEGER ,
487 shield_ball_oop INTEGER ,
488 shot_fastbreak INTEGER ,
489 shot_off_target INTEGER ,
490 six_yard_block INTEGER ,
491 subs_made INTEGER ,
492 successful_final_third_passes INTEGER ,
493 successful_open_play_pass INTEGER ,
494 successful_put_through INTEGER ,
495 total_att_assist INTEGER ,
496 total_back_zone_pass INTEGER ,
497 total_chipped_pass INTEGER ,
498 total_clearance INTEGER ,
499 total_contest INTEGER ,
500 total_corners_intobox INTEGER ,
501 total_cross INTEGER ,
502 total_cross_nocorner INTEGER ,
503 total_fastbreak INTEGER ,
504 total_final_third_passes INTEGER ,
505 total_flick_on INTEGER ,
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506 total_fwd_zone_pass INTEGER ,
507 total_high_claim INTEGER ,
508 total_keeper_sweeper INTEGER ,
509 total_launches INTEGER ,
510 total_layoffs INTEGER ,
511 total_long_balls INTEGER ,
512 total_offside INTEGER ,
513 total_pass INTEGER ,
514 total_pull_back INTEGER ,
515 total_red_card INTEGER ,
516 total_scoring_att INTEGER ,
517 total_tackle INTEGER ,
518 total_through_ball INTEGER ,
519 total_throws INTEGER ,
520 total_yel_card INTEGER ,
521 touches INTEGER ,
522 touches_in_opp_box INTEGER ,
523 unsuccessful_touch INTEGER ,
524 won_contest INTEGER ,
525 won_corners INTEGER ,
526 won_tackle INTEGER
527 );

B.1.2 F40 Tables

Listing B.2: The F40 Tables
1 CREATE TABLE teams (
2 id INTEGER PRIMARY KEY ,
3 name TEXT NOT NULL ,
4 short_club_name TEXT ,
5 official_club_name TEXT ,
6 founded INTEGER ,
7 city TEXT ,
8 country TEXT ,
9 region TEXT

10 );
11

12 CREATE TABLE players (
13 id INTEGER PRIMARY KEY ,
14 name TEXT NOT NULL ,
15 first_name TEXT ,
16 middle_name TEXT ,
17 last_name TEXT ,
18 known_name TEXT ,
19 birth_place TEXT ,
20 birth_date DATE ,
21 deceased TEXT ,
22 weight INTEGER ,
23 height INTEGER ,
24 preferred_foot TEXT ,
25 country TEXT ,
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26 first_nationality TEXT
27 );
28

29 CREATE TABLE competitions (
30 id INTEGER PRIMARY KEY ,
31 name TEXT NOT NULL ,
32 symid TEXT ,
33 code TEXT NOT NULL
34 );
35

36 CREATE TABLE seasons (
37 id INTEGER PRIMARY KEY ,
38 name TEXT NOT NULL
39 );
40

41 CREATE TABLE squad_entries (
42 id SERIAL PRIMARY KEY ,
43 player_id INTEGER REFERENCES players (id),
44 team_id INTEGER REFERENCES teams(id),
45 season_id INTEGER REFERENCES seasons (id),
46 competition_id INTEGER REFERENCES competitions (

id),
47 position TEXT ,
48 real_position TEXT ,
49 real_position_side TEXT ,
50 new_team TEXT ,
51 join_date DATE ,
52 leave_date DATE ,
53 jersey_num INTEGER
54 );
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