
A Machine Learning Approach To
Improve Consistency In

User-Driven Medical Image
Analysis

Edvarda Regine Winlund Eriksen

Thesis submitted for the degree of
Master in Programming and Networks

60 credits

Department of Informatics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2019

A Machine Learning Approach
To Improve Consistency In
User-Driven Medical Image

Analysis

Edvarda Regine Winlund Eriksen

© 2019 Edvarda Regine Winlund Eriksen

A Machine Learning Approach To Improve Consistency In User-Driven
Medical Image Analysis

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Medical imaging is an increasingly important core component of the clin-
ical cardiovascular analysis, supporting and sometimes leading the clinical
decision-making process with respect to a patients diagnosis and follow-
up. In order to diagnose patients with the the help of medical imaging,
trained experts have to analyse and contour the medical images. The ana-
lysis of medical images requires a large degree of agreement across the
world, and standardisation of procedures to interpret the images and the
measures that are obtained from them. This standardisation covers all as-
pects of the clinical workflow, and in recent times, it has been expanded to
include the training of image analysts.

The work we present in this thesis stems out from the need of standardisa-
tion of training image analysts. We will particularly focus on the training
of image analysis using a growingly popular medical imaging technique,
T1 mapping MRI. Its usefulness relies on the ability to detect abnormalities
in the cardiac tissue myocardial structure due to a range of pathologies in a
non invasive and mostly contrast-agent free manner. T1 mapping is not yet
a routinely used clinical imaging modality, but as more evidence of its po-
tential is published, it is foreseen by experts to soon become a fundamental
clinical tool.

We present the work carried out to produce the software Fabulinus. It
supports the training of image analysts through automatically generated
feedback, aimed at maximising the agreement in training of analysts and
fostering repeated verification of such agreement over time. In Fabulinus,
we deploy a deep convolutional neural networks as a core component to
automatically generate an "expert" contour. The generated contour is used
to enable quick and consistent feedback to the trainees using the system.
The work presented has shown strong, promising results in regards to as-
sisting the standardisation of the training process. It is also highly interdis-
ciplinary in its nature and presents methodological and technical novelties
in the software prototype design. It includes features which we believe
have great potential to increase awareness of the importance of image ana-
lysis standardisation. In addition, the training process as a whole can be
improved by a more consistent flow of feedback. Lastly, its strengthening
the increasingly important role machine learning has in the medical field.

i

ii

Acknowledgements

What a long strange trip it has been. First and foremost, I want to thank
my irreplaceable supervisors, Valentina Carapella, Michael Riegler and Pål
Halvorsen. I cannot thank you enough for pushing me to be the best ver-
sion of myself, and for encouraging and enabling me to do such an exciting
project. I wish you all the best in your professional careers, and hope we
get the opportunity to work together again. Also, for any aspiring master
student that might have ended up reading my thesis, I can unequivocally
recommend all of them as supervisors for any thesis. They truly walk the
extra mile for their students.
Additionally, I want to thank my informal supervisor Steven Hicks, a PhD
student at Simula. The work conducted in this thesis would not have been
the same without your patience, hard work and feedback.

Secondly, I want to thank the Corelab at the Oxford Centre for Clinical
Magnetic Resonance Research at the University of Oxford. Thank you so
much for your cooperation, for having trust and confidence in this project,
and for giving me invaluable feedback along the way. Also, I want to thank
you for fulfilling my lifelong dream of being able to work with one of the
greatest academic institutions in the world. I will hold it as a token of pride
for the rest of my days.

Additionally, I want to thank Simula Research Laboratory for letting me
write my thesis as part of your organisation, and for providing such amaz-
ing conditions for the students affiliated with you. At the same token, I
want to thank everyone at Simula who made the entire master project so
much more enjoyable. Thank you Rune, Nicolay, Sharu, Mathias, Asad, TS,
Marius, Pia, Vajira and Debesh, for making the everyday life of the thesis a
joy. Here is to collecting more pant to buy more PS4 games, and to Simulas
Allmektige staying connected in the future.

Not to forget, I want to thank all my (other) friends for keeping me some-
what social and sane during this thesis work. Especially, I want to thank
Duy and Anmer, who always listened patiently, took part in several late
night discussions, and perhaps most importantly, for believing in me when
I could not believe in myself. I firmly believe I would have succumbed to
the pressure without you.

iii

And of course, I want to thank my family for your unconditional love
and support throughout my life. I also want to thank you all, however
especially my Dad, for giving me such a privileged life, and making it pos-
sible for me to pursue higher education. Particularly, I want to thank my
late grandfather, Endre Lund, who passed away during this thesis work.
Your unshakeable positivity and reassurance still lingers in me and keeps
me moving forward, however I wish you could have been here to see how
far it went.

And lastly, just to be safe, I in general want to thank everyone who someway,
somehow pushed me in the direction that got me to this point. As Illidan
Stormrage, one of my favourite video game characters, put it; Now I am
prepared.

iv

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation and Background 3
1.2 Problem Statement . 4
1.3 Scope and Limitations . 5
1.4 Research Method . 5
1.5 Main Contributions . 7
1.6 Thesis Outline . 8

2 Background 11
2.1 Physiology and Anatomy of the Heart 11

2.1.1 Cardiac Anatomy . 11
2.1.2 Cardiac Cycle . 12

2.2 Magnetic Resonance Imaging (MRI) 12
2.2.1 Cardiac Imaging Planes 13

2.3 Clinical Imaging Workflow 15
2.3.1 T1 Mapping . 15
2.3.2 Physics behind MRI and T1 Mapping 16

2.4 Medical Image File Formats 17
2.4.1 General Concepts . 18
2.4.2 Medical Image File Formats: DICOM and Nifti 19

2.5 Segmentation of the Heart . 20
2.5.1 Clinically Relevant Measurements 20
2.5.2 Challenges and Sources of Variability 21

2.6 Software for CMR Image Analysis 22
2.7 Machine Learning . 22

2.7.1 Learning Methods . 23
2.7.2 Artificial Neural Networks (ANN) 23
2.7.3 Deep Learning . 25
2.7.4 How Supervised Neural Networks Learn 25
2.7.5 Convolutional Neural Networks (CNN) 26
2.7.6 Related Work . 27

v

II Method 29

3 Fabulinus: A Web-Based Software for Quality Assessment in the
Image Analysis Workflow 31
3.1 Fabulinus . 31

3.1.1 Planning Phase and Desired User Stories 33
3.1.2 Backend Architecture, Libraries and Tools 35
3.1.3 Implementing REST using Django REST Framework 36
3.1.4 Frontend Architecture, Libraries and Tools 38

3.2 The Trainee Dashboard . 39
3.3 Summary . 41

4 Automatic Generated Feedback Using Convolutional Neural Net-
works 43
4.1 Dataset Details and Preparation 44

4.1.1 Generating A New Folder Structure For The Dataset 44
4.1.2 Handling DICOM and SAV files 46

4.2 Deep Learning Environment Setup 49
4.2.1 Software and Libraries Used 49
4.2.2 Architectures Used for Training and Evaluation . . . 52

4.3 Deciding On Appropriate Cases 55
4.4 Predict Expert Contour From DICOM 55

4.4.1 Preprocessing of the Data 55
4.4.2 First Iteration . 56
4.4.3 Second Iteration . 59

III Experiments 63

5 Deep Learning Model 65
5.1 Training and Evaluation Pipeline 65

5.1.1 Hyperparameters . 66
5.1.2 Model Metrics and Evaluation 67
5.1.3 Metrics . 68
5.1.4 Evaluating and Comparing Models 68

5.2 Experiment 1: Automatic Generation of Contour 69
5.2.1 First Iteration . 70
5.2.2 Second Iteration . 71
5.2.3 Further Experimentation with ResNet50, VGG16,

VGG19, and InceptionResNetV2 72
5.3 Experiment 2: Generate Feedback from Trainee Contour . . 75
5.4 Summary . 77

IV Conclusion and Future Work 79

6 Summary and Conclusion 81
6.1 Future work . 82

6.1.1 Fabulinus . 82

vi

6.1.2 Deep Learning Architecture 83

Bibliography 85

Appendices 95

A Useful Terminology 95

B Code Examples 97
B.1 Debatable DICOM handling 97

C Papers 99
C.1 A Web-Based Software for Training and Quality Assessment

in the Image Analysis Workflow for Cardiac T1 Mapping MRI 99

vii

viii

List of Figures

1.1 Suggested reading order for the chapters in the thesis 8

2.1 The structure of a mammalian heart. [10] 12
2.2 Figure displaying (a) the short-axis view-, (b) the horizontal

long-axis view-, and (c) the vertical long axis view of the heart 13
2.3 Figure showing an example of "cardiovascular magnetic res-

onance (CMR) tissue characterisation in acute myocarditis.
(Left to right) Short-axis slices covering the left ventricle
from base to apex" - see row A and C for Cine and T1 map-
ping respectively. Source: Adapted from [17] 15

2.4 Figure visualising the basics of the physics behind MRI . . . 17
2.5 An example MRI image, displaying how different radii are

measured between endocardium and epicardium in order to
extract WT. Adapted from: Source [24] 21

2.6 A neural network consisting of three layers, with three
inputs, two hidden layers of four neurons each, and one
output layer Adapted from: Source [31] 24

3.1 Diagram giving an overview of the Fabulinus web-application 32
3.2 Initial design made of the software in Adobe XD 35
3.3 Flow Diagram of the Django Server 37
3.4 An example of the Fabulinus trainee dashboard. Note that

here the web-application still had its old, placeholder name
erwa. 40

4.1 The original folder structure of the dataset. 45
4.2 The new folder structure of the dataset, note that here we

have regular .png suffixes . 45
4.3 Figure displaying (a) an example MRI image from the

dataset, as well as (b) the endocardium contour and (c) the
epicardium contour . 47

4.4 A simple example of what a data flow graph used in
TensorFlow could look like 50

4.5 Results from the Deep Learning Power Scores, based on
popularity metrics. Adapted from: [55] 51

4.6 The dataset images before and after rescaling 56

ix

4.7 Figure showing the result of filling the contours in the
preprocessing, where the endocardium is in the top row and
epicardium in the bottom row 60

5.1 Deep Learning Model Pipeline 65
5.2 Example showing the poor contour prediction from the first

deep learning iteration. 70
5.3 Output predictions from our second iteration, showing

examples of a (a) training set prediction and a (b) test set
prediction. Note that these predictions are for two different
MRI DICOM images . 71

5.4 Examples of where the InceptionResNetV2 performed
poorly, first column containing the MRI T1 mapping images,
second column containing the human expert contours, and
third column containing the model predictions 73

5.5 Examples of where the InceptionResNetV2 performed well,
first column containing the MRI T1 mapping images, second
column containing the human expert contours, and third
column containing the model predictions 74

5.6 A diagram showing the entire process for training the trainee
to expert segmentation model. 75

5.7 Figure showing the that predictions that were originally bad
in Figure 5.4, has now improved considerably, where the left
image corresponds to the prediction in the first row, and the
right image corresponds to the prediction in the first column 76

x

List of Tables

2.1 Examples of greyscale and coloured (multichannel) image
shapes . 18

3.1 Table showing initial desired user stories for the software
system . 34

4.1 System specifications for the computer used for the training
of the machine learning models 49

4.2 Information about the different Keras architectures used, in-
cluding size (of the pre-trained model), accuracy, number of
trainable parameters and topological depth of the network.
Adapted from: [56] . 52

4.3 Specifications for the First Machine Learning Model 56
4.4 Data shapes for the first model 57

5.1 General Confusion Matrix for our Model 67
5.2 Model configurations for first iteration 70
5.3 A table showing the evaluation results of the experiments

done to automatically determine the inner and outer left
ventricle. 72

5.4 A table showing the evaluation results of the experiments
done to automatically determine the inner and outer left
ventricle. 76

xi

xii

List of Code Excerpts

1 Proxy configuration from start.js that enabled communica-
tion between the Node and React Server 39

2 Extraction of image from DICOM file 46
3 Condensed code sample of extraction of contours from IDL

files . 47
4 Custom Layers for the Deep Learning Model 58
5 Custom Loss Function Only Used In First Iteration 59
6 Custom Layers for the Deep Learning Model 60
7 Lengthy code extraction of DICOM using matplotlib 98

xiii

xiv

Part I

Introduction

1

Chapter 1

Introduction

1.1 Motivation and Background

The World Health Organisation (WHO) estimated that around 31% of all
global deaths in 2016 were due to cardiovascular diseases (CVDs), naming
it the worlds number one killer [1]. Therefore, it is crucial and urgent to
improve and accelerate all parts of clinical cardiovascular diagnosis, with
the goal of widespread and early diagnosis of cardiovascular abnormalities
across the population. It is also a goal to make all diagnostic methods as
little invasive as possible. Medical imaging has a key role in this frame-
work, because, in order to uncover CVDs, medical practice makes heavy
use of imaging scans to quantify cardiac function through segmentation.

There are many medical imaging modalities, such as magnetic resonance
imaging (MRI), computed tomography (CT), ultrasound (UT) and late gad-
olinium enhancement (LGE). LGE is the current standard for fibrosis detec-
tion, however the diagnosis depends on gadolinium-based contrast which
comes at a risk. This is because patients suffering from CVDs often have
other diseases, such as severe renal dysfunction, that impair other or-
gans. These dysfunctions can lead to potentially lethal adverse reactions
to gadolinium-based contrast agent. [2]

It follows, that (native) T1 mapping in cardiovascular MRI has become a
rapidly emerging modality which is increasingly popular as an alternat-
ive to LGE, due to it being contrast agent-free and considered low-risk.
However, post-processing of T1 mapping images is a complex multi-step
process, affected by a range of sources of variability that directly affect the
outcome of the predicted T1 value. This is because the estimation of T1
values is based on the delineation, or segmentation, of regions of interest
(ROIs), and so far, most segmentations of T1 maps have been manual or
semi-automatic.

There are efforts in the field of deep learning directed towards making the
segmentation step fully automatic for such imaging scans. They aim to de-
velop accurate, automatic segmentation methods, in order to improve con-

3

sistency and reproducibility in medical image analysis. Meanwhile, assess-
ing the accuracy of the automatic segmentation methods already created
can be difficult given the lack of a gold standard or ground truth to how
the segmentation should be done [3], [4]. However, this does not mean
that there is no consensus in the field. There are several guidelines [5] to
ensure as accurate and similar segmentation as possible worldwide. This
consensus is the base of all teaching and clinical practice.

On the contrary, when it comes to the training of medical analysts train-
ees, training is carried out at the level of a single centre or medical unit,
with little agreement across centres. To put it differently, this means that
there is some form of consistency across people undergoing training by the
same expert; meanwhile, there is little agreement on the training process
among experts. Furthermore, the training process can also be a tedious and
repetitive process where the instructor may have to sit with each trainee in-
dividually, repeating steps and correcting errors as they go along. Due to
this, the standardisation and digitisation of the training process becomes
an equally important issue as the automatic segmentation.

1.2 Problem Statement

Only recently, more organised efforts have been made to improve the qual-
ity and standardisation of the training process, and training standardisa-
tion protocols are being discussed and formalised. As part of this process,
the field welcomes new ideas and tools to help build this standard. Finally,
this brings us to the aim of this thesis; we aim to improve consistency and
reproducibility of the training process across medical centres and -units,
and we hope to answer the following research questions by the end of this
thesis:

1. How can we design a tool to support training in T1 mapping analysis
based on a digitised approach?

2. Can Convolutional Neural Networks (CNNs) create automatic feed-
back based on non-expert annotations?

We will explore if a digitised, automatic feedback software can be used
to support the expert in training process, by making a software tool that
can provide the trainees with instant feedback where they can analyse and
interpret the differences between their own and expert contours, as well
as investigating deep learning models as another tool to supply automatic
feedback to trainee segmentations.

To ensure what we make is useful to the field, we have been fortunate to co-
operate with the Oxford Centre for Clinical Magnetic Resonance Research
(OCMR) at the University of Oxford. OCMR is a clinical research unit that
"aims to advance science and clinical medicine through the development,
utilisation and promotion of magnetic resonance imaging (MRI) and spec-
troscopy (MRS) techniques." [6] At OCMR they carry out medical image

4

analysis daily, and they also have a training program for analysing the T1
mapping in cardiac MRIs, which has been growing alongside research car-
ried out in the field. We have been in communication with them throughout
the project, discussing use cases and tasks that needed addressing in their
day to day training of trainees. They have also supplied us with a full data
set to T1 mapping MRI images, that we will use for both the implementa-
tion of the software and the training of the CNN.

1.3 Scope and Limitations

Based on our research questions, the scope of this thesis is to make a pro-
totype of a system that can be used as assistance in the aim of training
a trainee image analyst. Here, it is important to emphasise that web-
based systems are fairly uncommon in the medical field, and it follows that
this system is experimentative. As mentioned in our motivation, we will
mainly carry out research on how a web-based system can be designed in
order to assist the standardisation of the training process. As part of said
system, we will also investigate several pre-trained deep learning models
in order to generate consensus contours based on the trainee contours, in
order to see if this can be useful in the training process. The main use case
we will address is a way for the trainee to get feedback on their progress
throughout the training, by uploading their contours into our system, and
get both visual and numeric feedback.

While we acknowledge that there are many useful file formats to use in
our system that trainees are exposed to throughout their training, however
we have limited it to only using the DICOM image format, as this is the
data we have available. In addition, we will only be investigating deep
convolutional neural networks, even though other models such as recur-
rent neural networks (RNNs) have proven to be successful as discussed in
Section 2.7.6. This is because CNNs are the currently most popular models
applied on image analysis problems.

1.4 Research Method

In 1989, the Association for Computing Machinery (ACM) Task Force on
the Core of Computer Science published a report [7] presenting, amongst
several other things, a new guideline for how to approach the discipline of
computing, a phrase used in the report to embrace all of computer science
and -engineering. Here, they also discuss and disprove the misleading no-
tion that "computer science equals programming [7, p. 11]", making a point
that this notion is not only false but also "limits our ability to speak about
the discipline [of computing] in terms that reveal its full breadth and rich-
ness [7, p. 9]". In contrast, they subsequently present a new and richer
definition, placing computer science at the intersection of applied mathem-
atics, science and engineering, where all the processes are equally import-
ant. In its essence, the definition comes down to the underlying question

5

of "what can be (efficiently) automated? [7, p. 12]"

In an interdisciplinary project like ours it is crucial to correct the mislead
notion and to provide an accurate definition. This is not only because the
misleading notion still lingers today - especially in other fields, but also be-
cause not doing so could impair the value of the research contribution from
the computer science component of this thesis.

For the research carried out in this thesis, we will follow the three ma-
jor paradigms described in the report; (i) theory, (ii) abstraction and (iii)
design [7, pp. 10–11]. While it is important to realise that these paradigms
are very closely connected, in that instances of any of the paradigms can
occur at every stage of the other two (for example theory can be a part of
every stage of both abstraction and design), they are all also distinct based
on their area of competence. These areas are as follows, accompanied by
how our thesis relates to each process:

• Theory: The theory process is the basis of applied mathematics
within computer science, and the process iterates over the four steps
of (i) characterising the objects of a study by defining them, (ii) hy-
pothesising the possible relationships found between the objects into
a theorem, (iii) asserting the correctness of the relationships, and (iv)
interpreting the results, and restarting the process if flaws or incon-
sistencies are found.

For the theoretical part, we applied several different deep learning
methods in order to find possible relationships between the neural
network hyperparameters and the models predicted output. After
each iteration, we assessed how well the hyperparameters performed
and by analysing the correctness of the ouput as compared to the
ground truths.

• Abstraction1: The abstraction process is the basis for the (natural)
sciences within computer science and is grounded in the experi-
mental research method. This process revolves around investigation,
through the four stages of (i) establishing a hypothesis, (ii) creating
a model and predicting it’s outcome based on what is made, (iii) d
esigning and carrying out experiments while collecting data, and (iv)
analysing the collected data.

We followed this paradigm by running several experiments for many
different models, hypothesising whether neural networks can carry
out the goals of our project. We attempted to predict how the dif-
ferent models would do, and were continuously observing how the
different models compared to each other. As a final step we analysed
why the models achieved different levels of success.

1"Modelling" and "experimentation" was discussed in the report [7, p. 10] as possible
substitutes for the name of this paradigm

6

• Design: The design process is the basis of engineering within com-
puter science, and the processes is carried out by (i) stating the re-
quirements for the construction of a system, (ii) stating the specifica-
tions for the construction of a system, (iii) designing and implement-
ing the system in order to solve a problem, and (iv) testing and eval-
uating the system.

This process has been the biggest one in the thesis as all of the theor-
ies have been implemented into both the software- and the machine
learning system, but especially the software. Here, it is worth to men-
tion that step (iii) and (iv) was carried out in a cycle, where we would
continuously test and implement new additions to the system in or-
der to solve problems.

1.5 Main Contributions

As part of this thesis work, we have built the web-application Fabulinus,
which is a tool meant to assist experts in the training process of trainee
image analysts. Our tool can both visually and numerically display dis-
crepancies between the trainees analysis, and the expert analysis. As part
of the work with this web-application, we have also built a parser for MRI
DICOM images and their contours, that translates them from their original
format to a web-usable format, where the contour is displayed ontop of
the DICOM image. In addition, we have developed the functionality of
overlaying contours from two separate analysts on the same DICOM im-
age, in order to visually show the differences in the contours in our web-
application.

To compliment our tool, we have made a deep learning architecture that
aims to translate student contours and their respective DICOM image into
expert annotations, by training the network on already existing expert an-
notations. The trained model derived from this architecture can be used
to provide feedback to new student annotations without needing a lot of
expert annotations to be made. While the trained model presented in this
thesis is not at the stage yet of producing expert segmentations that can be
used in a training setting, the results are very promising.

Finally, to demonstrate the work carried out in this thesis, we submitted a
research paper for publication at the International Conference on Content-
Based Multimedia Indexing (CBMI) 2019, that will take place in Dublin in
September. The date for notification of acceptance regrettably falls after the
deadline of this thesis, however the paper can be found in its entirety in
Appendix C.

7

1.6 Thesis Outline

This thesis is separated into four parts: I Introduction, II Method, III Ex-
periments and IV Conclusion and Future Works. Within these parts there
are 7 chapters, where the first and second chapter cover the introduction
and background knowledge needed to understand the topics of this thesis.
The third and fourth chapter cover the methodology, that is, the different
steps of our work and how we developed the system as we went along.
The fifth chapter covers the experiments carried out during the machine
learning training, and the sixth and seventh chapter cover the conclusion
for our thesis, as well as suggestions for future work.

Below we present Figure 1.1 displaying a road map of the suggested read-
ing order. All chapters at the same level can be read in an arbitrary order,
meanwhile as the reader proceeds downwards in the map, all chapters ad-
jacent or above should be read in order to fully comprehend the material.
The figure is followed by a short summary of each chapter.

Figure 1.1: Suggested reading order for the chapters in the thesis

8

Chapter 2: Background In this chapter we go over all the topics needed
as background knowledge for this thesis in greater detail, both with respect
to the medical side and the technical side. This includes the medical
background of cardiac anatomy, the image analysis pipeline and the key
modalities used to carry out image analysis. In addition, we explain
what machine learning, neural networks, and deep learning is, in addition
to several key concepts required to understand how machine learning
algorithms learn.

Chapter 3: Software Name Here, we present our web application,
describing the process of how we ended up at the software. Then, we
cover the technical aspects, including the libraries, frameworks and tools
used to make the software. Finally, we present the system, accompanied
with screenshots, and proposed usecases where the system could produce
value.

Chapter 4: Automatic Generated Feedback Using CNN We cover the
methodology used for the neural network. We introduce the dataset used
in training, the deep learning environment we set up all our experiments
in, as well as the decisions made along the way for choice of deep learning
models, alterations to hyperparameters and activation features and a brief
teaser for the results we had.

Chapter 5: Deep Learning Model Here, we sequentially go through each
experiment carried out during the machine learning. First, we give a brief
description of the metrics and evaluation methods that are used for our
results. Moreover, we discuss why the different metrics and evaluation
methods were chosen. Finally, we present the configuration for each
trained model, as well was the results both with respects to metrics, and
where applicable also visually.

Chapter 6: Summary and Conclusion We answer the research questions
and conclude the work carried out in this thesis. We draw comparisons to
similar systems, and summarise.

Section 6.1: Future Work Finally, we offer suggestions as to how the
work carried out in this thesis can be continued in the future. We both
point towards factors in the existing system that can be improved, and new
functionality and approaches that we believe will be useful.

9

10

Chapter 2

Background

This chapter will cover the background knowledge needed for the reader.
As this is an interdisciplinary project, the knowledge needed includes the
fundamental understanding of cardiac anatomy, segmentation of different
anatomical features in a magnetic resonance image (MRI), machine learn-
ing algorithms and how they are applied.

There will be an assumption that the reader has a basic understanding of
both computer science and calculus, in adherence to the requirements for
applying to a master degree at the Department of Informatics at the Uni-
versity of Oslo.

2.1 Physiology and Anatomy of the Heart

2.1.1 Cardiac Anatomy

Humans have a four-chambered heart, consisting of the (upper) left and
right atrium, and the (lower) left and right ventricle. It is common for
observers to refer to these chambers by their abbreviations; LA, RA, LV,
and RV, respectively. The atria are the chambers of the heart that receive
the blood from the veins carrying blood into the heart, and then pump
the blood into the ventricles; the two large chambers of the heart that
pumps blood into the arteries, that consequently carry blood away from
the heart.[8], [9]

The heart wall surrounds the chambers and consists of three layers: epi-
cardium, myocardium, and endocardium. The epicardium is the out-most
layer of the heart that protects the heart and lubricates it, to prevent fric-
tion between the heart and the surrounding organs. Below is the thickest,
muscular layer of the heart wall: the myocardium, that contains the car-
diac muscle tissue. Myocardium, being the muscular layer, functions as
the pump that pumps blood out to the arteries. Thus, it also makes up for
the majority of the mass of the heart wall and is also the thickest of the
three layers. Lastly, the endocardium is a thin layer between the myocar-

11

Figure 2.1: The structure of a mammalian heart. [10]

dium and the inside of the chamber, which prevents blood from sticking to
the heart wall and potentially forming blood clots. [9]

2.1.2 Cardiac Cycle

During a heartbeat, the heart and its chambers move between two states
- systole and diastole. Systole means that the heart is contracting to push
blood out of the chambers, and on the contrary, diastole is when the cardiac
muscles relax to allow the chambers to fill with blood. More formally this
is called the cardiac cycle. At the end of each state, we get the end systole
(ES) and end diastole (ED).

As the names suggest, end systole is when the chamber space is fully
contracted and contains the least amount of blood, and end diastole is
when the chamber space is fully dilated and contains the most amount of
blood. It is important to mention that the atrium and the ventricles altern-
ate between systole and diastole, that is, when the atrium is entering end
systole, the ventricles are entering end diastole.

While the RV supplies the lungs with blood, the LV supplies the rest of
the body, so the LV is what cardiologists focus on for the quantification of
the cardiac function during the cardiac cycle. Thus we will only be talking
about LV from here. To be able to quantify the cardiac function based on LV,
one needs to derive segmentations from medical images, generated by dif-
ferent medical imaging techniques, such as Magnetic Resonance Imaging
(MRI).

2.2 Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is an imaging modality, that is, a med-
ical imaging technique. MRI uses strong magnetic fields, radio waves, and
a computer to generate detailed black and white images of virtually any
internal body structure [11], [12]. As MRI imaging only exposes the patient

12

to radiation in the radio frequency range1, which does not damage tissue
[11], it follows that it is considered less harmful to the patient than other
imaging modalities.

Other significant benefits of an MRI scan is its ability to examine the cardiac
morphology, function, perfusion, and viability in a single imaging session,
as well as its ability to extract three-dimensional reconstructions of anatom-
ical shapes of clinical measures. These benefits have led to MRI becoming
an essential reference examination [13], [14], and with this in mind, we will
focus on cardiac MRI examinations in this thesis.

MRI scans can be acquired using different sequences, in which the resulting
images will have different information content, using modalities such as
cine-MRI, late gadolinium enhancement (LGE) and T1 mapping. In partic-
ular, for the aim of this project, we employ data T1 mapping MRI. T1 map-
ping MRI is acquired at a single time in the cardiac cycle, usually either end
diastole or end systole, and it captures the cardiac tissue structure health.
It is, as a result, helpful to identify local or diffuse disruption of cardiac
tissue, for example, abnormal growth of connective tissue in the myocar-
dium, such as fibrosis or tissue scars, or the presence of inflammation. We
will discuss this modality in closer detail in Section 2.3.1.

2.2.1 Cardiac Imaging Planes

The three standard imaging planes for cardiac MRI include the short axis
view, the horizontal long axis view (also known as the four-chamber view)
and the vertical long axis view (also known as the two-chamber view).
These views or planes are arranged based on a line spanning from the car-
diac apex, at the very bottom of the heart, to the centre of the mitral valve,
the valve between LA and LV. This line is also known as the true long axis
of the heart. [15] The short axis view, shown in Figure 2.2a is the plane most

(a) (b) (c)

Figure 2.2: Figure displaying (a) the short-axis view-, (b) the horizontal long-axis view-,
and (c) the vertical long axis view of the heart

1Radio frequency is the frequency used for phone communication and broadcasting, for
example, and thus we are exposed to it daily.

13

commonly used to assess cardiac function [13], and extends perpendicular
to the true long axis, about midway into LV. Evidently, from their chamber
names, the horizontal long axis view, shown in Figure 2.2b shows a slice of
all four chambers of the heart (LA, RA, LV, RV), and is perpendicular to the
short axis again. Meanwhile, the vertical long axis, shown in Figure 2.2c,
goes through the heart from top to bottom, first showing LA and RA, the
showing LV and RV, and is the vertical plane positioned orthogonally on
the short axis plane. [15]

In the short axis view, a stack of images is acquired moving through the
heart, while in the long axis a single, stationary slice is followed through
time. These stacks provide MRI with its 3D nature. However, it is import-
ant to realise that MRI is not truly 3D; observers typically construct the 3D
effect in a later step of the software pipeline.

14

2.3 Clinical Imaging Workflow

When carrying out a medical examination depending on clinical images,
all facilities follow a clinical imaging workflow. While these workflows
can vary, the general concept is that a patient is typically scanned for
a prolonged amount of time, according to different scanning protocols.
Although the reader does not need to understand these scanning protocols
as part of this thesis, there is good literature going through examples of
scanning protcols. [16] These protocols depend on the type of pathology
that the patient is being imaged for, however, even the simplest scanning
protocol will have a range of imaging planes (both in short axis and
long axis), and make use of different types of imaging modalities, for
example cine-MRI and T1 mapping. As adapted from Ferreira et al. [17],
a good visualisation of different imaging modalities taken for a single
patient during one imaging session can be seen in Figure 2.3. While the

Figure 2.3: Figure showing an example of "cardiovascular magnetic resonance (CMR)
tissue characterisation in acute myocarditis. (Left to right) Short-axis slices covering the
left ventricle from base to apex" - see row A and C for Cine and T1 mapping respectively.
Source: Adapted from [17]

different imaging modalities have different benefits when assessing the
cardiac function, we will only focus on T1 mapping from here on in this
thesis, as this is the data we have available.

2.3.1 T1 Mapping

In this section we will cover what T1 mapping is, and why it is used in clin-
ical imaging. First, we will introduce an elementary explanation of what
T1 mapping is as well as why we look at it. Then, we will briefly cover
the base line of the physics behind the T1 mapping. However, it is import-
ant to realise that T1 mapping is a very technical and complex modality. A

15

complete understanding of T1 mapping, let alone the physics behind it, far
exceeds both the needed understanding for the reader and the scope of this
thesis. The focus should be to grasp why we look at the T1 value.

The T1 value, or T1 relaxation time, is in its essence, is a way to quantify
the proton density and freedom of motion in tissue, as the T1 value will
vary over different types of tissue. The values intensity are then mapped
across each pixel in an MRI image, a step referred to as T1 weighting. [18] To
illustrate, take the example of row C in Figure 2.3. Here, the different col-
ours depict different types of tissue, meaning that (a) red is blood (b) green
is muscle tissue and (c) blue is fat. Observe how the bright green muscle
tissue of the green circle, being the heart wall, starts to disperse on the right
side of the circle as the slices go from left to right. This is a classic example
of damaged or scarred tissue, as healthy tissue would remain bright green
in the entire circle throughout.

Following this, T1 mapping can make it easier to detect pathologies based
on tissue, and is especially an important measurement to successfully
identify, for example, edema or inflammation in the heart, where there is an
excess of water content, cardiac scar tissue, as scar tissue is typically denser
than healthy tissue ot mycardial infarction.

2.3.2 Physics behind MRI and T1 Mapping

This section aims to cover the fundamental understanding of the physics
behind MRI and T1 mapping. As a disclaimer, this level of comprehension
is not needed for most readers.

MRI relies on the physical phenomenon of nuclear magnetic resonance,
that is, the characteristic of some atoms to align with the direction of an
applied external magnetic field. This is due to the fact that these atoms
nuclei have a non-zero magnetic moment, that they have the property of
spin. When an external magnetic field B0 is applied, some atoms will align
parallel to it, while other will have an antiparallel orientation, as shown in
the Figure 2.4. Typically, the group of parallel spins is larger than the anti-
parallel one, producing a net magnetisation M in the material.

When an electromagnetic pulse (that is a short time signal) is applied
to such system, it causes all the nuclei spins to change at once their pos-
ition becoming misaligned with respect to the external magnetic field by
a certain angle, which varies with the strength and duration of the pulse
applied. Upon termination of the pulse, the spins will slowly recover their
(parallel or antiparallel) position by emitting energy. The magnetic reson-
ance (MR) signal is produced by the small difference in energy between
parallel and antiparallel spin groups as they return to their original state.
Over time the MR signal decays due to the release of energy and the loss
of coherent orientation among the spins, a phenomenon called relaxation
[19]. Under the same magnetic field and pulse conditions, different biolo-

16

Figure 2.4: Figure visualising the basics of the physics behind MRI

gical tissues will show different relaxation times, a property that depends
on the tissue structure and water content.

There are many techniques that exploit the magnetic resonance properties
of atoms. In the particular case of MRI, the atom of interest is hydrogen,
which is present in abundance in biological tissue water content, and as
part of other constitutive chemical compounds. The temporal and spatial
information about the different relaxation times of the hydrogen atoms con-
tained in different forms in a tissue sample is hence transformed into an 2D
image.

Upon relaxation the net magnetization vector M slowly returns to align
with the external magnetic field B0. The vector M is typically decomposed
in its longitudinal and transverse components, Mz and Mxy, respectively.
Mz, the component of M along the direction of the external field, is the
longitudinal component, and T1 is a measure of relaxation time along this
direction. The relaxation time in the transverse orientation is measured in-
stead by means of T2. Magnetic Resonance Imaging can exploit either T1
or T2 to produce 2D images. Their information content is different so is
their purpose in terms of differentiation of tissues types. In the following
section we focus on imaging of T1 relaxation times.

2.4 Medical Image File Formats

In order to store and process an MRI, there are some different standardised
imaging file formats that can be used, that bring different benefits and
drawbacks. In this section we will cover the general concepts that are
shared by all imaging formats, then we will present some of the image file
formats that are typically used in the medical field and how they relate to
each other, and finally we will go into detail on the Digital Imaging and
Communications in Medicine (DICOM) [20] standard, which is the image
format used in this thesis.

17

2.4.1 General Concepts

Recall from earlier in this chapter, that for an MRI as it also is for any
medical image modality, the aim is to reconstruct and represent virtually
any internal body structure or anatomic function. The image that is
produced is a result of the procedure that maps numerical values to
positions in space, and also sometimes time, into an array of pixels or
voxels, the term used for graphical units in the three-dimensional space
created by magnetisation transfer (MT) or computed tomography (CT). A
point often overlooked by those who are not in the medical field is that the
numerical values stored per pixel, are not necessarily values in the normal
colour range as we often expect based on normal JPG/JPEG/PNG images,
but rather these values greatly depend on the imaging modality and the
acquisition protocol being used when taking the image, as well as how the
image is reconstructed after the fact and lastly, the post-processing at the
end of the pipeline. [21] The concept of the numerical values store in an
image are called the pixel depth and the photometric interpretation.

Pixel Depth is the number of bits used to store the information in a pixel,
or in the case of images the number of bits used for a given colour in a pixel,
for example, a greyscale image with a pixel depth of 8-bit, would store the
grey values as numbers ranging from 0 to 256, whereas a greyscale image
with a pixel depth of 12-bit would store the grey values as numbers ranging
from 0 to 4095. Thus, this concept declares that the more information, or
the amount of tint and detail, we want to store in an image per pixel, the
more computer storage we will need for it.

Photometric Interpretation is the deciding concept of how the pixel data
should be displayed in regards to whether it is a monochrome or colour
image. In this concept we talk about the number of channels needed to dis-
play greyscale or colour images, in that greyscale images does not need a
third channel for colour values, see Table 2.1. As a result, greyscale images
has a smaller pixel depth and requires less storage space.

Image Type Coordinates Example
2D grayscale (width, height) (64, 64)
2D multichannel (width, height, colour_channel) (64, 64, 3)

Table 2.1: Examples of greyscale and coloured (multichannel) image shapes

When talking about photometric interpretation, we also want to introduce
the term pseudo-colour, a variant of false colour. A pseudo-coloured image is
an image where the colours does not represent the true colours that an eye
or a camera can see, but rather the intensity or degree of features that can-
not normally be seen. A common example of a pseudo-coloured image is
thermal imaging, where the colour intensity conveys the temperature dif-
ferences of the image. In order to make pseudo-coloured images, you use
the ascribed look up table (such as a colour palette) or function assigned to

18

the greyscale image, that decides how to map the intensity of the values in
the greyscale image into colours in the pseudo-colour image.

MRI images are another example of pseudo-coloured images. That is to
say, they are interpreted as greyscale, however they also have a colourmap
that enables the images to be colour-coded based on the T1 value, in such
a way that low values depict fat and turn out blue, medium range values
depict the myocardium and turn out green, and high values depict blood
and turns out red, as displayed in Figure 2.3

Metadata is the final concept we will cover, and is all information that
is stored in describing the file beyond its pixel data. In the case of
medical images, the images have more metadata, such as information
on how the image was taken and the settings for the capturing device,
personal information about the patient such as age, sex and weight, and
specifically for MRI images we typically have parameters concerning the
pulse sequence. [21]

2.4.2 Medical Image File Formats: DICOM and Nifti

What makes medical image file formats different from regular image
formats is that they typically need to store a lot more information, such as
information about the image scan device and pathology, patient informa-
tion and several image slices over space or time. This information is kept in
both the pixel values, and in the meta data of the image (either stored at the
beginning of the file or as a separate meta data file). Generally speaking,
all medical image formats can be separated into two main categories; (a)
the image formats aiming to standardise the way images are generated by
medical modalities, and (b) formats aiming to improve the post processing
analysis. [21] There are a few different formats in each category, whereas
we will look into DICOM, which is in the first category, and Nifti [22] ,
which is in the second.

While NIFTI is considered more agile, and hence perhaps better suited
for experimental applications, DICOM remains the backbone format of
most medical practice. This is because the DICOM format aims to be self-
descriptive, in that all the metadata stored in the header should be sufficient
to gain all knowledge needed for both the image, the imaging modality and
the patient. Although, as a trade-off, the DICOM has also been criticised
for its complexity, with a problematic documentation only being available
in a HTML format, especially by researchers and computer scientists aim-
ing to get a deeper understanding of the standard. [21] Regardless of this,
DICOM remains the preferred medical image format, and it is likely that it
will remain this way for years to come. This is the main factor as to why
we will only use the DICOM image format in our work.

19

2.5 Segmentation of the Heart

The assessment of cardiac function based on MRI or other imaging tech-
niques is primarily based on segmentation (or contouring). Segmentation
is the process of outlining an anatomical feature of interest, on any image
within the whole imaging dataset of a subject, to quantify one or more vari-
ables of interest.

2.5.1 Clinically Relevant Measurements

In particular, in the case of the evaluation of global cardiac function in cine-
MRI scans, the LV provides the most common variables of interest, namely
the mass and volume of the heart during end systole and end diastole, to
calculate the stroke volume (SV) and subsequently the ejection fraction (EF).

SV is a measurement of the total amount of blood pumped by the heart,
in our case with respects to LV, in one contraction. Mathematically this
is calculated by finding the end-systolic volume (ESvol) and end-diastolic
volume (EDvol), volume meaning how much blood the heart contains at ES
and ED, and subtracting ESvol from EDvol [23] as follows:

SV = EDvol − ESvol (2.1)

Which we again use to calculate EF, namely the fraction of blood pumped
out by the ventricle, as follows:

EF =
EDvol − ESvol

EDvol
=

SV
EDvol

(2.2)

These measurements are crucial for assessing the efficiency of the cardiac
function, that again helps to diagnose cardiovascular diseases. Finding
these measurements is mostly done by either manual segmentation by ob-
servers or semi-automatic segmentation done by various software tools.

In T1 mapping MRI, the measurement obtained is the T1 value, a value
we described in closer detail in Section 2.3.1 and Section 2.3.2. For our ap-
proach, we will focus on T1 mapping, as well as the wall thickness (WT),
as this is the data we have available. The WT value is extracted from a seg-
mentation by measuring the average distance between endocardium and
epicardium. Typically, a number of radii are drawn from the centre of the
left ventricular blood pool towards the outside, and the length of each seg-
ment between the two curves is measured and averaged. Image analysts
manually draw four segments at opposite quadrants of the left ventricular
ring, meanwhile algorithms draw many more, in the range of a hundred
approximately. An example of how can be seen in Figure 2.5 While we
did not carry out this step, we were given datafiles containing the needed
values per segmentation.

20

Figure 2.5: An example MRI image, displaying how different radii are measured between
endocardium and epicardium in order to extract WT.
Adapted from: Source [24]

2.5.2 Challenges and Sources of Variability

It is well known that the manual segmentation of cardiac MRI is a tedious
and time-consuming process. While it depends on both experience and
the software tool in use, an observer can require anywhere between ten
minutes up to an hour doing a single segmentation, where the estimated
time per ventricle is roughly twenty minutes [13], [14].

Moreover, the manual segmentation process is prone to many sources of
variability. To illustrate, consider the biological variability across the pop-
ulation; that is, each heart is different in shape and function. The differ-
ences are due to both the natural- and genetic variances, as well as the
variances caused by health and lifestyle. Then, when a single heart is im-
aged through MRI and analysed multiple times by multiple observers, we
get inter- and intraobserver variability [13], [14]. This variability can in-
clude under- and overestimation of the volumetric measurements of the
heart - based of the positioning of the image slices in the cardiac imaging
planes [14], unrealistic performance, and overfitting of the validation of the
segmentation data during post-processing [3], as well as overconfidence in
segmentation where the observer makes the segmentation too detailed.

The overconfidence can, however, also be caused by the level of detail
provided by the segmentation software tool. If the software tool allows
the observer to zoom too far in, and to make too detailed adjustments to
the segmentation, this can almost encourage said overconfidence in seg-
mentation.

Because of these variabilities, there is a lot of research and funding aim-
ing to find and develop accurate, automatic segmentation algorithms and
software tools that can do the segmentation for the observers, for instance
by using machine learning. It is also important to realise that the accuracy
of these automatic segmentations are critical, as any technique with ques-
tionable validity can have fatal consequences at worst.

21

2.6 Software for CMR Image Analysis

There are a multitude of software and annotation software already
available in the field as of today, and while we are strictly not making
an annotation or contouring tool, we want to bring the attention to some
of the leading softwares used to analyse the images from the clinical
workflow. While it is important to mention that one is typically not
interested in commercial tools in research, the majority of medical practice
use commerical tools in their analysis. The following tools are vastly used
in the field and have been good sources of inspiration at an abstract level
for the software developed in the thesis.

cvi42® [25] is one of the biggest Cardiac MRI softwares on the market
and has a wide range of modules to analyse different modalities for
cardiovascular MRI, including analysing the T1-value, the flow of the heart
and so forth. It is also fully integrated with the picture archiving and
communication system (PACS) that allows medical images and reports to
be stored securely online.

QMass [26] is another leading cardiac MRI software, that supports the
analysis of quantification of the cardiac function, anatomy and tissue seg-
mentation, and MR parametric maps such as T1 mapping and T2*, to men-
tion some. It is intended to be used in clinical practice by medical experts.

The main goal of these softwares is to provide an extensive array of func-
tionalities to analyse cine, T1, LGE and so on. While there are free altern-
ative software, such as ImageJ [27], these typically does not come close in
the level of complexity and amount of functionalities. In any case, these
softwares have served as good inspiration for our software, especially with
regards to design ideas. In addition, they aided our understanding of what
functionalities are already available, especially as we originally set out to
make a variant of a segmentation tool. What they all are missing however,
is ways to give instant feedback to trainees with respects to some expert
analysis, which is the ultimate goal of our software.

2.7 Machine Learning

Machine learning (ML) is a subcategory of artificial intelligence (AI) and is
the science of allowing computer systems to learn without being explicitly
programmed [28], [29]. Instead, the computer systems use algorithms that
provide a representation of tasks, as well as methods producing perform-
ance evaluation of the learning, and how to optimise the performance in
the next iteration, allowing the computer system to improve its learning
autonomously over time [28].

In other words, Tom M. Mitchell provides a commonly used and more
formal definition; "A computer program is said to learn from experience E

22

with respect to some class of tasks T and performance measure P, if its per-
formance at tasks in T, as measured by P, improves with experience E."[30,
p. 2]. This definition emphasises the foundation of how computer systems
learn through machine learning, namely that they learn from experience by
repeating a task several times while improving its performance.

2.7.1 Learning Methods

In the field of machine learning, we typically speak about two main prob-
lems or categories, namely supervised- and unsupervised learning. Simply
put, supervised learning is learning with a teacher or reference values,
namely that we provide the algorithm with "correct answers" that it can
improve its accuracy from. These correct answers are more formally called
labelled data. Typical supervised learning applications are image analysis,
where we teach the algorithm to classify what it sees in different images, or
spam-filters in emails.

Evidently, unsupervised learning is the opposite, where the algorithms
learn without any reference values. Thus, as there is no ground truth, there
is no sense of accuracy, as compared to the supervised approach. It follows
that unsupervised learning applications are used in a more speculatively.
Classic examples are recommendation systems, such as Spotify trying to
recommend music to its users based on what they listen to, or search en-
gines such as Google.

While there are several other learning categories, such as reinforcement-
and representation learning, these are often talked about as subcategories
or in comparison to supervised- and unsupervised learning.

2.7.2 Artificial Neural Networks (ANN)

Artificial neural networks (ANN), often also just referred to as neural
networks, are computational machine learning models. The neural part of
the term neural network is because these models are loosely inspired by
neuroscience and the model of a brain. The inspiration stems from our
understanding of how a brain works, and in particular how a brain learns;
namely by example. While it is important to stress that the complexity of
the brain and a biological neuron far exceeds the examples we are about to
give, the essence between the concepts remain relevant. The computational
unit of a brain is called a (biological) neuron. Put simply, each neuron
receives impulses through their dendrites from many other neurons, and
then it produces a new output signal and sends this signal through an axon
to other, different neurons. [31] Similarly, as seen in Figure 2.6, a regular
neural network consists of an input layer, one or more hidden layers, and
finally an output layer. Each layer consists of one or more (artificial) neurons,
also called units or perceptrons. The lines that connect the neurons are
called weights, which are trainable values the represents the magnitude of
how much influence the first neuron has on the next. In addition, you can

23

Figure 2.6: A neural network consisting of three layers, with three inputs, two hidden
layers of four neurons each, and one output layer
Adapted from: Source [31]

have some bias for a node, making it either more less likely to end up as the
predicted output Y.

Y = ∑(weight ∗ input) + bias (2.3)

More specficially, the input layer neurons are the input data of the model,
and typically consist of examples of the data to be trained on, the hidden
layer neurons each have an activation function a and are trainable, so they
also transform the input data based on the weights and bias, and the output
layer neuron is the estimated value from the training, often written ŷ.

ŷ = a[l]k = g

(
n[l−1]

∑
j=i

w[l]
jk a[l−1]

j + b[l]k

)
(2.4)

In Equation 2.4, k is an arbitrary node in layer l, and j is an arbitrary node
in the previous layer, l − 1. Seeing that, each (artificial) neuron in the hid-
den layers of a neural network is playing a role that is similar to that of
its biological counterpart, as each neuron of the layer receives data from
many other neurons and computes its own value that it sends on to the
following layers. With this being said, it is important to realise that we
say loosely inspired because modern neural networks no longer have the
goal of modelling biological neural systems, but rather have diverged to be
more driven by mathematical- and engineering disciplines, to achieve stat-
istical generalisation and good predictions. [32] Besides, artificial neural
neurons typically need need many thousand examples to learn sufficiently,
as opposed to the biological ones.

The network part of the term neural network stems from the fact that neural
networks are often represented as a combination of many functions, typic-
ally in a chain structure. Consider this example taken from Goodfellow et
al. [32, p. 164]:

f (x) = f (3)(f (2)(f (1)(x))). (2.5)

Here, each f is its own function, and the value of n in f (n) decides what
layer each function is, so for instance, f (1) is the first layer of the network.

24

Finally, it is important to emphasise that typical neural networks are much
larger than our given example, typically consisting of several hundreds and
thousands of neurons and layers in one model.

2.7.3 Deep Learning

Deep learning is a specific type of machine learning, and is essentially any
neural network with many hidden layers. The term deep learning originated
from discussing the depth of a neural network by the number of its hid-
den layers. [32] Deep learning was initially motivated by and developed
to tackle some central challenges in AI, such as speech recognition or im-
age analysis, after some of the more traditional machine learning methods
did not succeed in solving these problems. Time would show that deep
learning was infact a significantly superior approach, as in recent year deep
learning methods have significantly improved the state of the art in speech
recognition, image analysis in regards to object detection and many other
domains. [33]

As such, deep learning methods have developed into representation learn-
ing methods, where the network can be fed with raw data and automatic-
ally discover in its own what features and representations are essential for
detection and classification of classes.

2.7.4 How Supervised Neural Networks Learn

Neural networks are often referred to as black boxes, because the internal
process of exactly how the network decides on what features that are most
important in order to decide the predicted output of the model, is both dif-
ficult to understand and interpret. While this is true, we typically speak
of certain methods that a supervised network uses to learn and train; loss
functions and gradicent descent.

As with any type of learning, the neural network needs a way to quantify
how correct its prediction was. In order to do so, it uses the designated
loss function, also known as the error function. This function measures the
error, or the distance between the predicted value and the ground truth
value. It follows, that ideally the error should be as close to 0 as possible, as
that would mean the distance between the prediction and the actual class
is insignificant, if not 0. Thereafter, in order to learn, the network needs a
way to reduce the error.

In order to improve its prediction and reduce the error, the network will
adjust the internal adjustable parameters, for example weight and bias, and
it utilises gradient descent to do so. More specifically, the model computes
a gradient descent vector that indicates how much the error would increase
or decrease for each weight, based on a small adjustment of the weight. [33]
Based on this, the model will adjust its weight in the opposite direction of
the gradient descent. This can be metaphorically described as an elevated,

25

hill-like landscape, where we want to find the fastest way down. Here, for
each step, the negative gradient descent value will always point in the dir-
ection of the steepest descent, bringing us one step closer to the goal value
of 0.

Backpropagation

Another therm that often comes up when training neural networks is back-
propagation. Although it sometimes is misinterpreted as a something used
to train a network, for example "we trained the network with backpropaga-
tion", this is not entirely correct. In its simplest form, backpropagation is
a specific technique used to compute gradients on multilayer networks, so
rather than a function used to compute the loss/error, it is used in unison
with such functions as a way to compute the gradients throughout the net-
work.

In technical terms, what backpropagation does it to start at the predicted
value (the output node), compute the gradient descent for a function on
the weights of a multilayer stack, all the way back to the input data. It
does so by simply applying the chain rule of derivatives. This is beneficial,
because it can compute partial derivatives in linear time, whereas naïve
gradient computations increase exponentianlly as the depth of the network
increases. As pointed out by Lecun, Bengio and Hinton [33], the key insight
is that the computation happens backwards from the gradient with respect
to the output of the model, to the gradient with respect to the input.

2.7.5 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN), also known as ConvNets, are
deep neural networks that are designed to process data in the form of mul-
tiple arrays or matrices, such as images with three colour channels. This is
because of its grid-like topology. As pointed out in Goodfellow et al. [32],
the characteristcs of a CNN is any neural network where, for any layer in
the network, it carries out convolution instead of general matrix multiplic-
ation.

The step of convolution, in its essence, is a special type of linear opera-
tion that combines two functions and produces a third function, that we
typically refer to as a feature filter. In CNNs specifically, the combination is
between the input function and the kernel function. The kernal, also known
as the convolutional filters, is a spatial grid typically equalling the input
size in width and height. As the filter is passed along in the network, the
filters get "slided" across another filter, computing the dot product between
the entire filter and the input at any position. This results in what is usually
referred to as a feature map.

CNNs were not popular or widely used at for a long time following its
discovery, due to the substantial amount of time it took to train them. How-

26

ever, after the remarkable success of ImageNet competition in 2012, follow-
ing the efficient use of GPUs, certain deep learning methods and generation
of more training examples by deforming the input data during training, its
popularity escalated immensely to the point where it became the domin-
ant approach. Since then, CNNs are considered the superior approach to
nearly all recognition and detection tasks, and is the quintessential method
for image analysis [33]. At certain tasks, it can even approach human ac-
curacy.

2.7.6 Related Work

Over the years, multiple approaches for automatically segmention the left
ventricle have been proposed. In 2014, Hu et al. [34] proposed a method
for automatically segmenting the left ventricle using local binary fitting
models and dynamic programming techniques. Overall, their method
shows good results, yet they struggle to segment the overlap between
intensity distributions within the cardiac regions. Abdelfadeel et al. [35]
use maximally stable extremal regions to segment the left ventricle of
cardiac MRI. Their model achieves a DICE metric of 0.88 on the Medical
Image Computing and Computer Assisted Intervention (MICCAI) 2009
challenge database [36]. Similar to our method, Zreik et al. [37] propose
a method based on deep CNN, where they try to segment the left
ventricle in cardiac CT images. Their method uses a combination of three
different CNN, each detecting the presence of the left ventricle in the axial,
coronal, and sagittal independently. Our work, however, differs from
these approaches as we try to measure the quality of a student contour
by generating an expert consensus based on the student contour and MRI
image using a deep CNN.

27

28

Part II

Method

29

Chapter 3

Fabulinus: A Web-Based
Software for Quality
Assessment in the Image
Analysis Workflow

Following our first research question and the motivation of our thesis, with
the goal of making a software tool that can be used to assist experts in the
training of new image analysts, we present the system Fabulinus. With this
application, we attempt to produce ways for trainee image analysts to get
feedback throughout the training, by giving them both visual and numer-
ical feedback automatically.

In this chapter we will cover how the software took shape throughout the
thesis work. We will start by giving a brief introduction to what the soft-
ware is, and its purposes and goals. Then we will cover how we went
through several ideas, use cases and what concerns we should address as
part of this project, touching on the scope challenges and the field of the
unknown. Then we will go through the technical aspects of the system we
made in the following order: Backend architecture, then the custom API
that was made as part of this thesis, then the frontend architecture, and
lastly a summary.

Again, we want to stress that this application is not complete and neither
ready to be put into production. That is, it is still in the prototype stage
where what we will present in the following sections count as a valuable
starting point.

3.1 Fabulinus

Fabulinus, sharing its name with the god of education and children from
Greek mythology, is a client-server web application. As demonstrated in
Figure 3.1, the five main components are the client, the local, frontend

31

server running on Node.js [38], the Django API [39], the backend local
server based on Django [40], and lastly the database. Of which, we will
come back to each in the respective sections.

Figure 3.1: Diagram giving an overview of the Fabulinus web-application

The software was built with the following goals:

Main Problem As many clinical facilities typically only have one expert
teacher to train trainees at a time, the trainees can typically do several
repeats of segmentations before getting the feedback they need from a
teacher. This can lead to patterns and misconceptions being repeated and
internalised in the trainee.

Main Objective With the goal of addressing the Main Problem, we set
out to make an application that could catch the most noticeable mistakes
that the trainees could do, which directly affect the WT and T1 values.
With both visual and numerical feedback from a program to the student,
it would function as a supplement to the teacher more than a replacement.
If the student could both visually and numerically compare their own seg-
mentation to a segmentation done by either an expert or a deep learning
model, chances are the trainee could correct their own faults as they go
along in the training, before getting the proper feedback from the teacher
one-on-one.

In addition to the previous goal, a software tool could also help standardise
the training, by ensuring that the students got the "same" feedback initially,
and albeit it being outside the scope of this thesis, it could even help gather
statistics over time and show general trends in what typically goes wrong
or where there typically is the most discrepancies between trainees and ex-
perts in segmentation. In return, this could help shape the future training
sessions, where the teacher could emphasise the points trainees typically
misunderstand.

In the following sections, we will cover the initial ideas and discussions
that shaped Fabulinus into what it is today. Then, we will briefly cover
the technical aspects of Fabulinus in the order of backend, API modifica-
tions, frontend and then a visual presentation of the software joined with

32

the most central use cases. At last, we will summarise the main take away
from this chapter.

3.1.1 Planning Phase and Desired User Stories

At the very beginning of the thesis work the original idea in the thesis
proposal was to make a Java program, where the trainees could contour
directly into the program and get instant feedback from a machine learn-
ing method as they were contouring. Java was suggested in order to util-
ise add-ons already created in the field. However, after airing the idea to
OCMR, they emphasised that there were already too many segmentation
tools available in the market, so they did not see the value in producing yet
another tool. In addition, after closer discussion, we decided that the com-
plexity of such a program would far exceed the domain knowledge and
time frames of a master thesis.

Another important factor that came up during these debates, was that a
program that needs to be installed on any medical systems, would have to
meet very strict regulations in regards to for example security, robustness,
and reliability. Naturally, in an environment that handles very sensitive,
private data and that needs to be fail-secure, any component that has to be
installed into said system has to go through extensive quality assessment
and security checks to be accepted.

As a result, we started investigating the possibility of making it a web-
based system instead. To clarify, web-based here is not meant to say that it
will be an application built to be hosted online, but rather a local area net-
work (LAN) application that would run through a browser. Given the geo-
graphical proximity of a classroom environment, where the trainees and ex-
perts will mostly be at the same clinic or centre, a LAN application would
be very well suited, without having to pass the extensive installation re-
quirements. It can simply be run at essentially any device that supports
a relatively modern web browser, while the backend can hosted at a local
server, without ever having to interact with the internal systems.

Following this, we wanted to build the web application on technology and
frameworks that are frequently used in modern web development, to en-
sure that if the web application would ever see a production state, it would
be easily maintainable. In addition, we decided to separate the backend
and frontend logic onto two separate servers, so that they could be inter-
changeable with little modification if need be. We will come back to the
technologies chosen in the following respective chapters.

While the technologies was being decided, we also spent a lot of time in
meetings with experts from OCMR to figure out what user stories to ex-
plore first. As the time restriction of a master thesis is a inescapable factor
that needs to be taking into consideration for any master, we wanted to pick
the user stories that would be the most rewarding within our time frame.

33

My supervisor had a meeting with a few experts at OCMR and they came
up with the user stories shown in Table 3.1. They also provided us with

As a Supervisor As a Trainee
- I want to upload one full
training session with all the
contour repeats

- I should not be able to com-
pare my contours or values to
experts unless I have done at
least two repeats.

- Upload or access consensus
contours and T1/WT values
for the same dataset

- I want to overlay experts
contours on my contours,
when possible

- Get report showing basic
statistics of training progress

- I want to keep track of pro-
gress.

- Upload or access the current
status of a team of trainees

- I want to be flagged the
cases where my contours or
my T1/WT values are too far
off the consensus

Table 3.1: Table showing initial desired user stories for the software system

some general comments concerning the requirement to system as a whole
before it could be production ready, in that

• It would be good to have a different set of functionalities available for
the expert and trainee, so user handling was needed

• It is important to avoid bias/cheating for the trainee, so access to the
comparison of results to experts should only be made available after
the trainee has uploaded at least two repeats of the same contours

• Clear definition/distinction of what type of consensus curve (or
data) was available, in that it should be clearly visible what was an
expert consensus (uploaded by a human expert) and the automatic
consensus (that was computed by a CNN)

While all these features were tactful and useful, we decided to focus on
only the trainee initially, as they are the main target of this program. The
first use cases we would address was the overlaying of contours of expert
and trainee, as we believe the visual difference of two graphs are indisput-
able from a learning perspective. We also wanted to implement and show
the numerical difference in the key values WT and T1, as this teaches the
gravity the relative "small" changes on a segmentation can have on the res-
ult of a medical examination.

With this established, we made began making sketches for a visual profile
for the software system in Adobe XD [41], a program enabling people to
make interactive web design without any code. The finalised sketch before
the development started can be seen in Figure 3.2. The design is based on
certain design principles within medical image analysis tools, such as the

34

Figure 3.2: Initial design made of the software in Adobe XD

fact that the background should be a dark colour, the image should be cent-
rally placed in the dashboard, and settings and other information should
either be placed in the navigation header or in side menus. A design prin-
ciple we have decided not to follow is that, in medical programs, menus
and settings are typically displayed as an icon, rather than text. For ex-
ample, instead of having a drop-down menu with the text "Folders", one
would typically have an icon for a folder instead. We chose not to follow
this standard due to the prototypic nature of the software. To summarise,
we made an effort to make Fabulinus resemble a typical segmentation pro-
gram like those discussed in Section 2.6.

3.1.2 Backend Architecture, Libraries and Tools

For the backend architecture, we have built a server using Django [40],
which is a high-level Python web framework. It encourages and aims to
provide a framework that can be used to build web software from scratch
rapidly. While this aim suited our web application well, we also chose
Django because we are dependent on our own Python scripts in order to
process the DICOM files containing MRI images and the IDL files contain-
ing the contours. This is a process we will come back to in Section 4.1. We
considered the microframework Flask as an alternative to Django, but as
Django comes with many out-of-the-box features, such as an administra-
tion dashboard and built-in object relational mapping (ORM) for database
abstraction and modelling. At large, Django is simply more expandable
and has more features than Flask.

Although, one of the major challenges with Django is that while it comes
with a lot of features, it is also fairly difficult to learn at first. You use a
command-line interface (CLI) to set up Django, which in return produces
the folder structure and main files needed to run the Django server. From
this point, only a few lines of code are needed to have a web application

35

running on ones browser, however as a trade off, a lot of stuff is happen-
ing behind the scenes. We were no exception to this, so getting the Django
server to act as we expected it to took a lot of trial and error.

Django is based on the the Model-View-Controller (MVC) design pattern,
however with their own variant. Normally, when we operate with the
MVC design pattern on web applications, the model is typically a represent-
ational class that stores the different fields and functions related to the data,
the view is how the data should be presented in some interface, and lastly
controller is the logic of the design, where all modifications and prepara-
tions of the data is made. Meanwhile, Django operates with models, tem-
plates and views (MTV), so when a Django application refers to a Template,
that translates to a View in MVC, and when it refers to a View, that trans-
lates to the Controller in MVC. While this is confusing at first, the Django
creators argue that the (Django) view should decide which data gets presen-
ted and the business logic, meanwhile the template handles the presenta-
tional logic and decide how the data is presented.

As for the database, we chose to use PostgreSQL [42], which is a powerful,
open-source object-rational database that runs on its own database server.
We chose PostgreSQL because Django and PostgreSQL work seamlessly
together, as well as the fact that PostgreSQL is highly extensible, supports
special filetypes in its database - such as binary fields, multi-dimensional
array fields, file fields and so on, which left us with several different options
when deciding how to store our data in the database, and lastly because of
its proven reliability, security and performance.

3.1.3 Implementing REST using Django REST Framework

Following this, we decided to modify our Django server structure to follow
the Representational State Transfer (REST) architectural style. This was
achieved by using the library and toolkit Django REST Framework [39].
The REST architecture comes with the benefit of enabling the client and
server to be fully separated, because any software built after the REST ar-
chitecture is stateless. That is, the client side does not need to know what
state the server side is in, and vice vera. This means that they can be imple-
mented independently, as long as they know what format to communicate
with.

We communicate with the REST API and the database by sending HTTP re-
quests over the network, where the request contains a HTTP verb (get, post,
put or delete) deciding what operation to carry out, a header containing in-
formation about the request being sent, a path to a resource, and optionally
a body that contains more data. Figure 3.3 gives a general overview of
how the HTTP requests flow through the Django REST API. While we will
cover the client side in greater detail in Section 3.1.4, the client sends a re-
quest through the Node.js server, that redirects it into the Django server,
running at localhost:8000. Here, the request is met by the Web Server

36

Figure 3.3: Flow Diagram of the Django Server

Gateway Interface (WSGI), that parses and routes the HTTP request, based
on the resolved URL from the request. For the URL parsing, we have made
endpoint URLs that support different HTTP verbs for users and analyses,
where analyses means all information regarding the medical image ana-
lysis process.

The most challenging step here was to incorporate the Django MTV struc-
ture with the REST framework serializers, while running our own scripts
in order to extract the data, before producing a useful output. As the busi-
ness logic is obscured between the Django view and the Django framework
itself, it was challenging to find a place where the data modification scripts
felt rightfully placed.

Another challenge that rose from the benefit of having a separable client
and server, was making servers running on two different ports communic-
ate without facing Cross-Origin Resource Sharing (CORS) errors. That is,
there is a security feature incorporated in any server, that if a local request is
made to a local server on a different port, it is blocked for security reasons.
In order to handle this, without simply white listing the entire port, some-
thing that is considered bad practice, we had to make some adjustments to
the client, which will be covered in the following section.

37

3.1.4 Frontend Architecture, Libraries and Tools

We built the frontend of our system using HTML5, the latest release of Hy-
per Text Markup Language which is the quintessential standard for any
web application, Sass, which is a commonly used Cascading Stylesheet
(CSS) framework, and the JavaScript library React [43], which is main-
tained by Facebook. More specifically, we based our software on the tool
Create React App (CRA) [44], which is a tool built by Facebook to quickly
set up a single page application (SPA), with the building scripts out-of-the-
box, as well as a development- and production server. While some argue
that CRA is too bloated and contains too many dependencies for smaller
projects like ours, we decided to use it as it is great for building prototypes.
Besides, as we built the backend following the REST architecture, it is fairly
effortless to replace a CRA-based application with one that is not based on
CRA.

CRA is built using webpack [45] and Babel [46]. To clarify, webpack is
used to statically bundle all the assets, such as images, CSS files, and fonts,
and internally make a dependency graph. Meanwhile, Babel is used to
compile next-generation JavaScript, such as the JavaScript written in React,
into browser-compatible JavaScript. In order to run the frontend code, we
used the development server provided by CRA, that runs on Node.js [38].

It was here, when trying to make the Node.js server and the Django server
communicate, that we first encountered the CORS errors. In order to re-
solve the CORS error without white listing ports, we had to eject CRA in
order to access the configuration files of webpack and the Node server. Put
in simple terms, CRA is a tool that abstracts away all of the dependencies
and configuration files, so that the developer only has to deal with one de-
pendency; the CRA tool itself. In return, the CRA tool maintains all the con-
figurations and dependency updates. Ejecting means that you move away
from the tool, and receive all the dependencies and configuration files for
the web application in a package.json file. However, this also means that
ejecting is a irreversibly action, and from this point the you have to main-
tain dependencies manually. Because of this, it is worth to mention that
ejecting CRA is a highly controversial topic.

Nevertheless, after ejecting and gaining access to the configuration files,
we figured out a way to avoid the CORS error, by adjusting the proxy con-
figuration, that enabled us to redirect the HTTP requests.
While we acknowledge that the following information is on the verge of be-
ing too technical, it was a critical breakthrough in the application work. In
Listing 1, we modified the start.js script, which is the configuration script
that handles the development server. Here, we specify that whenever the
client sends a request to '/api', for example fetch('/api/users'), the
Node server will redirect this request to its target. As shown in line 101 the
target is the url Django is running at, namely http://localhost:8000/.
In addition, we rewrite the path and remove the '/api' part in line 105-

38

99 const proxyConfig = {
100 '/api': {
101 target: 'http://localhost:8000/',
102 changeOrigin: true,
103 xfwd: true,
104 ws: true,
105 pathRewrite: {
106 '^/api': '',
107 },
108 },
109 };

Listing 1: Proxy configuration from start.js that enabled communication between the Node
and React Server

106, so our fetch example would result in a request towards the endpoint
http://localhost:8000/users. This is because from a client perspective,
a fetch that specifies it is going towards the API improves the readability,
however on the API side, setting up URL endpoints where every endpoint
begins with '/api' simply becomes clutter, as we already know we are
dealing with the API.

Put in simpler terms, this means that as far as the client is concerned, it
is only communicating with the Node server. It is the Node server that
handles the redirecting and reception of requests and responses from the
backend.

3.2 The Trainee Dashboard

After making some adjustments to the design presented in Figure 3.2,. Al-
though, we decided to adjust the focus from a full MRI segmentation stack
to a single segmentation. The user is first met with a form where the user
is asked to upload a DICOM file, a SAV file, and an HTM file containing
the key values, that is also a part of the dataset. Once the user submits this
form, after it is processed and stored in the backend, the user interface (UI)
will update and the DICOM image with the contour is displayed, as well
as the key values in the right sidemenu. An example of the dashboard can
be seen in Figure 3.4

While the UI might seem a bit scarce, it is important to stress again that
web-based systems are very rare in this type of clinical practice. There-
fore we had to make a lot of functionality from scratch, and there were
few sources to take inspiration and guidelines from. An example of this
is that we made an MRI DICOM image parser with python scripts in the
backend, that converted the DICOM images and the SAV contours into a
web-friendly format, namely a PNG, where the contour is put over the
DICOM, as shown in Figure 3.4. Additionally, we also extended these

39

Figure 3.4: An example of the Fabulinus trainee dashboard. Note that here the web-
application still had its old, placeholder name erwa.

scripts to support two sets of contours to be overlayed on the same im-
age, in order to compare the trainee contour and the expert contour over
one DICOM. Lastly, we also made scripts to extract the key values from the
HTM files.

Another important aspect we spent a long time discussing and consider-
ing was where in the web-application the waiting time should end up.
Typically, when developing web-applications, everything should ideally
be swift. Users might be more patient to wait for processes such as image
uploads, however anymore than a few seconds would leave most users
frustrated. Yet when dealing with medical image processing, especially
when used in a new environment, the conversion and storage might take
more than a few seconds.

Following this, our initial idea was the cascade the waiting time through-
out the application. For example, when the trainee uploads their analysis,
the backend would only process the uploaded analysis and then respond.
Then, when the trainee would ask to compare their results to the expert, the
backend would only now compute the difference and then produce the out-
put. However, after confiding with the experts at OCMR, we found out that
what they are used to in the programs they use on the regular, is to upload
their data and then wait up to several minutes before they actually could
start working. As they put it, they preferred this approach as they could
grab a coffee in the meantime. As result, despite it being somewhat against
web-application standards, we decided to adjust our approach to our tar-
get user base and carry out all needed computations at the beginning (after
the form submit), at the expense of a slightly longer waiting time. How-

40

ever, as the web-application format of the images, as it stands today, does
not need anywhere near the same amount of data as fully fledged image
analysis tools, the waiting time does not come anywhere close to several
minutes, but perhaps a few seconds longer than normal applications.

3.3 Summary

In this chapter we have presented our software tool, Fabulinus, which aims
to aid the training of new observers. Our software is built on modern
technologies, and aids the training process by allowing trainees to visually
and numerically evaluate their work by comparing against both expert
contours and an automatically generated "expert" consensus using deep
CNN. In addition, we have made several different converters in order
to convert the original medical file formats into web-application friendly
formats. While it is still in the prototype stage, we have already received
positive feedback that this tool could very well one day be used in a true
classroom setting, after the finalising of the development is carried out.

41

42

Chapter 4

Automatic Generated Feedback
Using Convolutional Neural
Networks

In this chapter, we will portray the various steps of how our deep learn-
ing architecture and model unfolded. Here, we explore the supervised
machine learning problem of generating "expert" contours from different
types of raw input data, using deep convolutional neural networks. Our
aim is to provide a different way to assess the segmentation performed by
trainees during training, in order to possibly reduce the volume of human
expert contours needed for evaluation and comparison of analyses.

First, we will describe the dataset we used, and how we prepared it in
order to apply it as raw data input for our deep neural network model.
Then, we present the environment that was used to perform the training of
the model, and the most important libraries and frameworks used during
training. Subsequently, we cover all the pre-trained architectures that was
used, and finally, we cover how the model training was carried out step
by step, including some brief reflections on why the models performed the
way they did.

43

4.1 Dataset Details and Preparation

As part of our collaboration with OCMR Corelab, they provided us with a
dataset they employ for training, that consists of single mid-ventricular 2D
T1 mapping images of the heart for 42 cases. These cases are equally di-
vided between healthy volunteers and patients with a range of cardiovas-
cular pathologies, and the MRI images are stored in the DICOM format.
Additionally, the dataset contains several repetitions of contours from three
expert- and 22 trainee image analysts, that outline the epicardium and en-
docardium of the heart, which are stored in the SAV format. Further details
about the MRI acquisition setting and patient characteristics can be found
in Piechnik et al. [47] The dataset does not have a name and is under a non-
disclosure agreement (NDA), so it is not available to the general public.

The dataset has a complex nested structure, as it was obtained by sampling
a number of pre-clinical and clinical studies at OCMR and structured to be
processed by software tools available at the centre. Therefore, the dataset
had to be transformed into a different folder structure in order to provide
input for our deep learning pipeline, in particular for the deep learning
preprocessing, as covered in the following sections.

4.1.1 Generating A New Folder Structure For The Dataset

The dataset we were provided was created by an in-house software at
OCMR called MyoCardial Regions Of Interest (MC_ROI). MC_ROI was
developed for semi-automatic delineation of regions of interest for T1- and
WT quantification, and image quality assessment, and is specifically de-
signed to facilitate the analysis process of a complete set of patients at
once. It is also routinely employed to carry out the T1 mapping analysis
at OCMR. In addition, MC_ROI is fairly flexible and insensitive to the
folder structure of the dataset, due to a powerful DICOM indexing func-
tionality that automatically enlists all the patients set of scans present in
the folder, and finds the corresponding contour. It achieves that by explor-
ing the metadata in the DICOM. This is how it can cope with any arbitrary
folder tree structure coming from any clinical study. Therefore, there are
not many requirements towards the folder structure, and in this dataset
case it is obscure from both a human-readable perspective and a program-
matical perspective (with regards to path walking, relations between files
and so forth), as well as its not easily applicable to other use cases such as
machine learning. To add some context, in Figure 4.1, the first Data0_Train
folder contains all the DICOM images, and no contours. Then, in the
Observers_just_contours folder, each observer has their own folder with
their initials at the end (anonymised in the figure as Interobserver_XX)
that contains the contours carried out by the observer. Here, the contours
are first separated into folders following the pattern Data0_Train, Data1_,
Data2_ and so on, these folders describing how many repetitions of con-
tours were done for each patient, and then each repetition is separated into
folders following the pattern ACNCA###_VISIT#_1.5T (# being a number de-

44

Figure 4.1: The original folder structure of the dataset.

scribing the patient or what visit it was). Finally, the contours are placed in
a folder structure of DICOM/########/########/ROIinfo/.

Figure 4.2: The new folder structure
of the dataset, note that here we have
regular .png suffixes

Hence, with a folder depth of seven to
reach the DICOM images and ten to
reach the the related SAV files, we de-
cided to make scripts that placed the
files in a more streamlined folder struc-
ture, that simplifies the processing for
the deep learning pipeline. As shown
in Figure 4.2, the new folder structure
puts the DICOM- and contour folders
at the top level, and separates the im-
age analysts and their contours based on
their level of expertise. In addition, as
the original SAV files included both the
endocardium- and the epicardium con-
tour, we separated them into two files
with a trailing endo or epi suffix, in or-
der to be able to analyse them separ-
ately.

45

With the new folder structure, we could then start extracting information
and converting the dataset files into formats that are typically used in ma-
chine learning for image analysis.

4.1.2 Handling DICOM and SAV files

In order to begin visualising the images in the web application, or running
a CNN model on the images, the image and contour information had to
be extracted from the filetypes. As the filetypes are not suitable for image
analysis in machine learning, we had to make specialised scripts to extract
the data from the files. Extracting the DICOM files turned out to be fairly
painless, as the python library pydicom [48] provides excellent modules to
extract the image data. However, the image data extracted results in an
instance of a two-dimensional array, that needs to be displayed. Initially
we used matplotlib to plot the values stored in the DICOM, however
the ensuing step of having to strip away all the axes, labels and so forth
generated by matplotlib to make it a plain image made the modules both
lengthy, slow and difficult to read. The lengthy code in question can be seen
in Appendix Section B.1. Therefore we improved the scripts and extracted
the DICOM files using cv2 instead, as follows:

1 import pydicom
2 import numpy as np
3 import cv2
4

5 def store_dicom_image(input_dicom):
6 # read_file() returns an instance of FileDataset
7 dicom_dataset = pydicom.read_file(input_dicom)
8 # pixel_array is an array of the image
9 dicom = np.array(dicom_dataset.pixel_array, dtype=np.float32)

10 dicom *= (255/np.max(dicom))
11 dicom = np.around(dicom, decimals=5)
12 cv2.imwrite("example_dicom.png", dicom)

Listing 2: Extraction of image from DICOM file

The extra steps in line 10-11 of normalising the values and rounding
them off by decimals are due to the fact that pixel_array does not re-
turn a numpy array of RBG-values, but rather the byte information of the
image. Thus we normalised the values in order to display the image as
values between 0 and 255. Additionally, as we carry out division on the
numpy array in line 10 with rather large numbers, we had to override the
pixel_array dtype in line 9 (as the default is int16).

On the other hand, the SAV files added another level of complexity. First of
all, the SAV files were written in the proprietary programming language In-
teractive Data Language (IDL) [49], which is specifically designed for mak-

46

ing visualisations of numerical data and is currently being maintained by
Harris Geospatial Solutions, Inc. SAV files in general are largely used in
astronomy and physics.

1 import matplotlib.pyplot as plt
2 from scipy import io as sp_io
3

4 def extract_contour(input_sav):
5 # Reads a single IDL file (extension is .sav)
6 idl_dict = sp_io.readsav(input_sav, verbose=True)
7 # Extracts the binary mask from the dictonary
8 bmask = idl_dict.savedroi.MXMASK.squeeze().tolist()
9 # Extracts the different contours from the binary mask

10 # by finding the different colour levels
11 contours_set = plt.contour(bmask)
12

13 # Multiple levels of erosion are stored both for epi and endo
14 # Thus we only take one contour for endo and one for epi in
15 # the middle of the erosion range
16 endocardium_contours = contours_set.allsegs[2][0]
17 epicardium_contours = contours_set.allsegs[5][0]
18

19 return endocardium_contours, epicardium_contours

Listing 3: Condensed code sample of extraction of contours from IDL files

In order to extract the numerical data, we used the the input and output
library of SciPy, scipy.io, to read the IDL file with the module readsav().
This module returns a python dictionary of the data. Thereafter, the conver-
sion steps needed to achieve the format we need to employ deep learning
algorithm turns quite complex.

(a) (b) (c)

Figure 4.3: Figure displaying (a) an example MRI image from the dataset, as well as (b)
the endocardium contour and (c) the epicardium contour

In line 8 in Code Excerpt 3, we extract a binary mask from the saved region

47

of interest dictionary, trailing into the dictionary under savedroi, finding
the binary mask and compressing it to a list. We then use matplotlibs
contour module to find the contours in the binary mask, whereas the
contour returns a QuadContourSet. This is a set containing all the contour.
It also has a parameter called allsegs[], which are all the contours at all
levels. That is, given a contour, it is stored in several variations, where it is
both expanded or eroded by one pixel in order to reduce bias. Therefore,
we pick a single contour that is in the middle of the erosion range, return
these in the module and later store them using cv2

Following this, the dataset was now ready for the "conventional" prepro-
cessing, a process that we will get back to in Section 4.4.1. An example of
the modified data can be seen in Figure 4.3

48

4.2 Deep Learning Environment Setup

Level Category Name Version

Hardware
GPU NVIDIA GTX Titan X N/A
CPU Intel i7 N/A

Memory Corsair 16GB DDR4 N/A

Software

Operating System Ubuntu Bionic Beaver 18.04.2 LTS

Conda VirtualEnv

Anaconda 4.6.8
Python 3.6.8

Tensorflow-GPU 1.12.0
Keras 2.2.4

CUDA 9 9.2
cuDNN 7.2 7.2.1

Table 4.1: System specifications for the computer used for the training of the machine
learning models

In this section we will cover the system environment specifications used
for the deep learning model, both for training and evaluation. First, we
will cover the hardware specifications, then we will present the software
and libraries used in the source code, and finally what deep learning pre-
trained model used to carry out the training. See Table 4.1 for a general
overview. All the training and evaluation of the deep learning model was
carried out on a stationary computer, with the specifications presented in
Table 4.1.

4.2.1 Software and Libraries Used

The deep learning model we made relies heavily on software libraries
and pre-trained models. In this section we will cover the most important
software and libraries that made this model possible, but it is important to
realise that this is not an extensive list.

Anaconda and Conda Virtual Environment

Anaconda [50] is a free and open-source software (FOSS), that distributes
the programming language Python and R, as well as being a infrastructure
for scientific computing and offering a package repository. In this thesis
we have largely used Anaconda for all package management and version
control of these packages. In addition, we have used Anaconda to handle
the virtual Python environment with all the libraries needed to run the
deep learning model, as this is beneficial when handling several libraries
that depend on each other. That is to say, as shown in Table 4.1, all the
libraries that we will shortly introduce, are installed and set up within this
Anaconda virtual environment.

49

TensorFlow

TensorFlow [51] is a open source library and state of the art machine learn-
ing system, that focuses on training of deep neural networks, and is created
and officially being maintained by Google internally, while an implement-
ation of TensorFlow is also available on GitHub as a open-source project.
We decided to use TensorFlow in this thesis for several reasons, that in-
clude (a) it is a machine learning system that is scaleable and maintainable,
as well as flexible in regards to its availability for operating systems such
as Windows, iOS, Linux, and Android. These factors have led it to be (b)
a well suited framework for systems that has the potential to proceed from
research to production, as compared to for example PyTorch and Chainer,
which are machine learning frameworks that are flexible enough for re-
search, but less scaleable for production. Perhaps most important, it is (c)
a widely popular framework that is used by several serious parties such as
Google, OpenAI, NVIDIA, and Intel to mention a few, which also means it
is updated regularly, has a very active community and is used in many ser-
ious research projects. Lastly, (d) it provides powerful functionalities such
as the ability to save and restore models after the training is done, and sup-
ports powerful tools such as TensorBoard, that allows visualisation of the
training during execution.

As for what TensorFlow does, it utilises numerical computation in data
flow graphs, where the definition of the computational operations are
stored in the graph nodes, and the executed numerical values are stored
in the graph edges as n-dimensional tensors (where 0-dimensional tensors
are scalars, 1-dimensional tensors are vectors, 2-dimensional tensors are
matrices, and so on). To put it differently, tensors can be viewed as data
flowing through the graph. A simple using scalar tensors can be seen
in Figure 4.4. While the benefits of using this computational system is

Figure 4.4: A simple example of what a data flow graph used in TensorFlow could look like

not apparent in a elementary example like the one above, TensorFlow’s
strength is that it stores each execution in a session, or in other words every
graph edge value is stored. Imagine a more typical deep learning example,
where the network consists of hundreds of thousands of nodes and edges, if
every single node and edge had to be recalculated for each update or back-
propagation the computational power and time spent would be immense.
And lastly, TensorFlow can facilitate distributed computation, where sev-

50

eral servers, CPUs or GPUs can be orchastrated to compute different parts
of the data flow graph, reducing the work load on one unit.

Keras

Keras [52] is a high-level neural networks API, that is written in Python and
built upon the principles of user friendliness, modularity, and easy extens-
ibility, with a focus on fast prototyping and experimentation. While Keras
can be ran on top of both the Microsoft Computational Network Toolkit
(CNTK) [53] and Theano [54], we will run it ontop of TensorFlow, as this is
the default for Keras and it suits our needs better.

We chose Keras because for its simplicity, and because it provides several
pre-trained architectures, which enables us to quickly set up experiments
and run many iterations. This feature in particular became invaluable dur-
ing our experimentation of different applications of the models on our data-
set, with minimal setup time and configuration. Simultaneously as being
simple, Keras also provides its own API called the Keras backend API. This
API reinforces the Keras principle of being extensible, in that it enables
advanced configurations to be carried out on the pretrained models. For
example, the backend API allows the user to override the modules and op-
erations on the Keras backend, in order to customise the model to their own
needs, and improve accuracy and results.

Here, it is also worth to mention that both TensorFlow and Keras are the
two most popular deep learning frameworks, based on factors such as job
listings, publications, Google search activity, and GitHub activity, as found
in this Medium article written by Jeff Hale in 2018 [55]. The results between
the selected 1 deep learning frameworks can be seen in Figure 4.5.

Figure 4.5: Results from the Deep Learning Power Scores, based on popularity metrics.
Adapted from: [55]

1Any deep learning framework with more than 1% of reported usage on KDNuggets
usage survey

51

4.2.2 Architectures Used for Training and Evaluation

When choosing the different pre-trained architectures from Keras to apply
on our dataset, we decided on architectures that have proven to be very
accurate in image analysis on well known datasets. An overview of the

Model Size Top-1 Acc. Top-5 Acc. Parameters Depth

VGG16 528MB 0.713 0.901 ~138 million 23

VGG19 549MB 0.713 0.900 ~143 million 26

ResNet50 98MB 0.749 0.921 ~28 million -

InceptionResNetV2 215MB 0.803 0.953 ~55 million 572

Table 4.2: Information about the different Keras architectures used, including size (of the
pre-trained model), accuracy, number of trainable parameters and topological depth of the
network.
Adapted from: [56]

architectures we chose can be seen in Table 4.2. Here, Top-1 Accuracy
and Top-5 Accuracy refers to the accuracy achieved when the models
were trained on the ImageNet validation dataset (ILSVRC). [57] That is,
ImageNet is a dataset containing over 14 million images with over 21
thousand categories (when including synsets or subcategories, for example
’high-level’ category being bird and subcategories being swan, eagle, and
so on). To clarify, for every image out of the 14 million available the model
can receive as input data, there are 21 thousand possible output labels.
Out of these 21 thousand labels, Top-1 Accuracy means that the class label
that got predicted as the highest probability for the respective image by
the model, in fact was the ground truth label, and in the same way Top-
5 Accuracy means that the ground truth label was in the top 5 predicted
classes. Coming back to Table 4.2, we see that all the models have an
accuracy of at least 90% for the Top-5 Accuracy. In the following sections,
we will cover each model more in detail.

VGG Architecture

The Visual Geometry Group (VGG) neural network is a network built on
convolutional blocks, introduced in a paper from 2014 by Simonyan and
Zisserman; Very Deep Convolutional Networks for Large Scale Image Recog-
nition. [58] In this paper, they proved that by considerably increasing the
depth of a CNN, the previous state of the art performance in terms of
classification accuracy on the ImageNet dataset could be surpassed. This
achievement led to the neural network placing both first and second in the
ImageNet Challenge for localisation and classification in 2014. [58]

The characteristic of a standard VGG configuration is that it takes 224 x 224
coloured images as input, and is built using five blocks of convolutional
layers, where each convolutional filter is typically very small, the default
being 3 x 3. Following each block, there is a max pooling layer resizing

52

the next block. The depth of network is typically either 16 or 19 hidden
layers, whereas these two configuration depths are typically referred to as
VGG16 and VGG19, respectively. After the fifth convolution block, the net-
work carries out feature extraction by using two fully connected layers of
the size 1 x 4096, and lastly one softmax layer is applied for classification,
that leaves one layer by the size 1 x 1000, where all values are between 0
and 1 and the sum of the values become 1.

ResNet Architecture

The residual neural networks (ResNet) was introduced by a group of re-
searchers at Microsoft in their paper from 2015; Deep Residual Learning
for Image Recognition. [59] Here, they proposed a new solution to one of
the biggest issues of training very deep networks, the vanishing gradients
problem2. Although there were different ways to somewhat address the
problem, such as adding an auxiliary loss [60], these methods did not make
the issue go away entirely.

He et al. solves this issue with ResNet by utilising identity shortcut connec-
tion for residual learning. Shortcut connections essentially skip one or more
layers in the network by performing identity mapping, where each output is
added to the output of the stacked layer, by learning the difference between
the input and the output and adding them together, as shown in Figure X.
In theory, the network ends up not producing a training error that is higher
than its shallower layers.

While similar concepts utilising shortcut connections were already present
in other proposed networks, such as "highway networks" [61], He et al.
showed their approach was superior both due to the fact that ResNet does
not add parameters and as a result requires less computation and storage
power, and also that ResNet demonstrated higher accuracy at depths over
100, as opposed to highway networks. Therefore, after proposing layer
depths with increased accuracy of 50, 101 and 152, ResNet ended up win-
ning the 2015 ILSVRC as well as the Microsoft Common Objects In Context
(COCO) Competition, and secured first place in all of the main tracks (clas-
sificaiton, detection and localisation for ILSVRC, detection and segmenta-
tion in COCO).

Inception

Inception is a convolutional network, presented by Szegedy et al. in
their paper Going Deeper with Convolutions [60], in order to reduce the
computational power needed for training of deep networks. Put simply,
the straightforward way of increasing the performance and accuracy of a
deep network is to increase its size (or depth). However, increasing the size

2Recall how this occurs when a backpropagated gradient, over the depth of the layers,
gets repeatedly multiplied to the point where it turns infinitely small, and the network
learning rate either stagnates or even starts dropping

53

is also prone to introducing one or both of the following drawbacks; (a)
making a network deeper also increases the number of parameters, that as
a result increases the storage needed and the chance of overfitting, and (b)
by increasing the size, one also computational power needed. As resources
will always be finite, in order to address these two issues, Inception was
made.

54

4.3 Deciding On Appropriate Cases

When we first considered appropriate cases where machine learning can
be applied, the first one that arose was a system that is meant to provide
feedback to the trainee observers by generating an expert contour out of
the original trainee’s contour. To generate this feedback a convolutional
neural network was going to be used. The idea was a network that consists
of an input layer which gets an image as input. The image consists of four
channels; the red, green, and blue colour channels plus the trainee observer
contour in the fourth channel. We discussed using a hidden layer architec-
ture that is designed like AlexNet [62] with the modification of supporting
the 4-channel images. Then, the output layer is designed as a per-pixel
classification layer, that is each pixel is a binary class leading to a number
of pixels times classification problem. Each pixel is compared with the ex-
pert contour for error calculation. The advantage of using pixel-wise clas-
sification is that each pixel can be seen as a training example and therefore
the training is more efficient with the smaller amount of images in the data
set. It is important to point out that the hyperparameters, meaning the para-
meters that configure the machine learning model before the training starts
that are deciding for how the model will behave and how successful it will
be, can be adjusted.

However, we wondered if the system could learn to make the expert con-
tours without being provided with a reference contour in the input data.
Provided that this was possible, it would eliminate the need of providing a
contour in the input data, as well as potentially making the system more ro-
bust to different cases. With this in mind, we decided to go for this system
instead. We also adjusted the approach and architectures used, something
we will cover in the next section.

4.4 Predict Expert Contour From DICOM

In this section we will first describe the preprocessing that was carried out
on the data, then present the machine learning model we came up with,
what other models were considered along the way, as well as the itera-
tions we went through and briefly touch upon the results that drove the
methodology forwards. For a more detailed walkthrough of results and a
discussion of them, please refer to Part III Experiments, and its chapters.

4.4.1 Preprocessing of the Data

As covered in Section 4.1.2, we converted the DICOM and SAV files to
plain images in the PNG format. In doing so, we discovered that the image
resolution of the DICOM images ranged from 384 x 232 pixels to 384 x 344
pixels, with a lot of small increments along the y-axis along the way. In

55

order to carry out the machine learning, the images had to be rescaled into
smaller, quadratic shapes. We decided on 224x224 in order to save as much
image detail as possible, without making the input data too large.

Figure 4.6: The dataset images before and after rescaling

4.4.2 First Iteration

Pre-trained Model VGG16
Loss Function Mean Square Error (mse)

Metrics Mean Absolute Error (mae)
Optimizer Nadam
Batch Size 2

Epochs 50

Table 4.3: Specifications for the First Machine Learning Model

During the first iteration our main goal was to see if the model
could learn something valuable from our data set and approach. As
briefly touched upon earlier in Section 4.3, we decided to approach this
as a multiclass classification problem, where we would carry out per-pixel
classification. That is, for each pixel in the MRI image, the deep learning
model attempts to predict whether the pixel is a contour pixel or not,
something we will come back to in greater detail the preceeding sections.

Preprocessing

Per-pixel classification is done by turning pixels that were in a contour on
(by changing their value to 1), and pixels that were not in the contour off
(by changing their value to 0), where 0 and 1 will be the two classes. In

56

other words, for each expert contour, we changed all values greater than 0
(0 meaning the colour black), into 1 as part of the preprocessing. In order
to seamlessly compare pixel values, we also had to implement another pre-
processing step, by turning the test data (the expert contours) into vectors.
This is done by taking each pixel row of the contour image, and concaten-
ating them after each other turning, in our case, a 224 x 224 image into a 1
x 50176 vector.

As for creating the training data- and test data matrices, we had several
repeats of contours per MRI image. In order to give the model as much
training data as possible, we decided to train on both endocardium and
epicardium in the same model. Following this, we had in total 948 expert
contours, including all repetitions of both endocardium and epicardium
per expert per image. In contrast, we only had 843 MRI images, so to handle
this we generated a input training set where we repeated the MRI image for
each contour, so that the indices would line up, as shown here:

X_DATA Y_DATA
index 0 [MRI_XX,] [XX_EXP_CONTOUR_1,]
index 1 [MRI_XX,] [XX_EXP_CONTOUR_2,]
index 2 [MRI_XY,] [XY_EXP_CONTOUR_2,]
...

In X_DATA, we repeat MRI_XX for every contour that is done on MRI_XX. And
this continues for every MRI image and contour. As for the separation of
training and test data, we decided to split it roughly 80% to 20% - which
leaves us with training and test data shapes as follows:

X_train (758, 224, 224, 3)
X_test (190, 224, 224, 3)
Y_train (758, 50176)
Y_test (190, 50176)

Table 4.4: Data shapes for the first model

Training Configuration

Initially we tried the VGG16 and ResNet50 pretrained models from Keras.
We used mean absolute error as the loss function, as well as Nadam for
optimisation. For the first attempt we ran it with a batch size of 2, due to
the substantial size of training parameters, and let the model train for about
50 epochs. We also shuffled the data in order to reduce bias, as the images
were added to the training- and test data sets chronologically.

Custom Layers

For our model we also made two custom layers, to address our way of
carrying out classification. As shown in the code excerpt in Listing 4,

342 multiplied by two due to repetitions in the DICOMs

57

we made one layer for normalisation, and one layer for rounding. The
__init__(), build() and compute_output_shape() are standard for a
custom Keras layer, which is briefly covered in its own chapter in the Keras
documentation [63], however the call() module is where the specialised
logic we created lies. In short, we carry out the same steps on the output

1 from keras.layers import Layer
2 import keras.backend as K
3

4 class Normalize(Layer):
5 def __init__(self, **kwargs):
6 super(Normalize, self).__init__(**kwargs)
7

8 def build(self, input_shape):
9 super(Normalize, self).build(input_shape)

10

11 def call(self, x):
12 return x / K.max(x)
13

14 def compute_output_shape(self, input_shape):
15 return input_shape
16

17 class Round(Layer):
18 def __init__(self, **kwargs):
19 super(Round, self).__init__(**kwargs)
20

21 def build(self, input_shape):
22 super(Round, self).build(input_shape)
23

24 def call(self, x):
25 return K.abs(K.round(x))
26

27 def compute_output_shape(self, input_shape):
28 return input_shape

Listing 4: Custom Layers for the Deep Learning Model

data of the deep learning model as we did when preparing the DICOM
images, something we covered in Section 4.1.2. That is, we use the Keras
backend API modules K.max(x) and K.round(x), where K is the Keras
backend, to element-wise normalise all the values so all the values are
between 0 and 1, and the we round them off to the closest integer, where
the rounding mode used is "half to even".

What We Learned

The very first iteration we did was with ResNet50, MSE loss function
and MAE metrics. We let it train for 50 epochs, and the network quickly

58

worked its way to a MAE value of 0.0046 - a result that in itself looked
promising. However, after the model was done training and we visualised
the predictions done by the model, the result was discouraging; the model
had only turned on one pixel, something we will show and discuss in Part
III Experiments. To make matters worse, the pixel that was turned on was
not inside the perimeter of the contour or region of interest.
To rule out the possibility that ResNet provided too many trainable
parameters, we ran the same experiment with the VGG16 pretrained
model, which has less layers and less trainable parameters, instead,
keeping all other hyperparameters the same. Unfortunately, the result was
no different. In a final attempt to make this approach work, we generated
our own loss function that would punish the network much harder for
guessing a contour pixel where there is not one, as follows in Listing 5.
Essentially, the idea was that the network would get a much smaller

1 def custom_loss(y_true, y_pred):
2 return K.abs(y_true - (y_pred * 100))

Listing 5: Custom Loss Function Only Used In First Iteration

loss if it guessed correctly. Nonetheless, after training this model with
otherwise the same hyperparameters the result was even worse, where
the model did not turn on a single pixel. Now, questioning whether our
approach was even plausible, we decided to reevaluate the earlier steps
and consider where the main issues of our method was. A more in-
depth discussion regarding what potentially went wrong can be found
in Section 5.4, but in short we concluded that the essence of the problem
was that segmentations were hollow circles, and that the local minima
where the model was turning all pixels off resulted in an acceptable loss
value, whereas finding the segmentation would take a lot of time and
computations. So, for our second approach we decided to update the input
data into filled segmentations.

4.4.3 Second Iteration

Having learned from the first iteration that our initial idea did not work, the
main component we wanted to alter was the testing data. As mentioned
in the previous section, we came up with the idea of modifying the
segmentations to be filled circles rather than hollow ones, so that the
model could have more leeway. In order to that we had to update the
preprocessing step.

Preprocessing

We decided to approach the problem of filling the segmentations by finding
the edges of the segmentation and making all values in between a colour
rather than black. To achieve this we made the script, where the essence
is showed in Listing 6. In brief, for each row we verify that is has a max

59

27 # ... Loading the contour
28 contour = np.load(contour_path)
29 img = np.reshape(contour, (224, 224))
30 img[img == 1] = 255
31 for row in img:
32 if np.max(row) > 0:
33 max_value_indices = np.where(row==255)
34 if len(max_value_indices[0]) == 1: pass
35 else:
36 start_i = np.min(max_value_indices[0])
37 end_i = np.max(max_value_indices[0])
38 col[start_i:end_i] = [255 for max_val in row[start_i:end_i]]
39 # Storing the contour ...

Listing 6: Custom Layers for the Deep Learning Model

value greater than 0 (to skip rows that are all black). Then, we use the
np.where() module to extract all indices in the row that has a value of 255.
Lastly, we slice the row between the first and the last index index with
a value of 255, and make all values in between 255. After this, we store
the images in the same folder structure as the one described in Section 4.1,
whereas the corresponding contour image change can be seen in Figure 4.7
Here it is worth to mention that we later in the thesis work found out

Figure 4.7: Figure showing the result of filling the contours in the preprocessing, where
the endocardium is in the top row and epicardium in the bottom row

matplotlib.contour() has an equivalent called matplotlib.contourf()
that produces filled contours, however this was discovered after several
iterations were run. While we did not evaluate the difference, if any, this is
probably the superior approach to filling the contours.

60

Changes to Training Configuration and Custom Layers

While we made minimal changes to the model, as we wanted to verify that
the input data was the problem, we let the model run for 500 epochs in
order to reduce the chances of the model getting stuck in a local minima. In
addition, we ended up not using the Round custom layer that we described
in the section above.

What We Learned

After the training was done the MAE was already looking a lot more
promising. After visualising the predicted results after the fact, we were
pleasantly surprised to see that the results were a lot better. Again, for more
in-depth discussion and result evaluation, please refer to Section 5.4. That
being said, as briefly mentioned in the first iteration chapter, we trained
on both the endocardium and epicardium segmentations at the same time.
As a result, we were presumably confusing the model as epicardium is
always larger than endocardium by quite a substantial bit. This seemed
to be causing the predicted contours to have blurry edges. Therefore, we
wanted to run a few more experiments, separating the epicardium and
endocardium segmentations into two data sets and running experiments
on both in order to improve the edge accuracy, and accuracy overall. We
also wanted to test other popular CNN architectures, such as rerunning the
ResNet and trying the Inception architecture, to investigate the differences
the architectures would produce. We will come back to how this went in
Part III Experiments.

61

62

Part III

Experiments

63

Chapter 5

Deep Learning Model

In Part II, chapter 1 we covered the architectures and process of how
these experiments took place, going over the decisions made and how the
process developed throughout the thesis work. In this chapter, we will go
into the more technical details covering the metrics and hyperparameters
chosen for the models, and introduce the evaluation models used to
evaluate the output of our model. We will present each experiment with all
their configurations. Then, we will discuss the results and discuss possible
improvements where applicable.

5.1 Training and Evaluation Pipeline

Figure 5.1: Deep Learning Model Pipeline

As a short summary, Figure 5.1 shows the overview of the four phases
we go through for every experiment. First, we preprocess the images by
rescaling them, and convert the contours into numpy arrays of 1 x 50176
with pixel values that are either on (1) for contour pixels, or off (0). Then
we let the model train, and after the model is done, we postprocess the
output by loading the predictions and turning them back into images.
Finally, we pass them through several evaluation models to determine how
successful and accurate the training was. In the following subsections we
will give some more detail to the configurations, hyperparameters, metrics

65

and evaluation methods that was used, then in the following section we
will present the experiments.

5.1.1 Hyperparameters

Recall how in any machine learning model we separate between paramet-
ers and hyperparameters, where hyperparameters are the metrics that con-
figure the machine learning model before the training starts, and are de-
ciding for how the model will behave and how successful it will be. The
three most common hyperparameters that typically appear in any neural
network are the following:

• Batch size refers to the number of training examples to pass through
the network and back again, per iteration.

• Number of iterations is the number of passes, where each pass
includes the batch size of input data.

• Epoch is the term for passing all the training examples through
the neural network once; that is, one time forwards and one time
backwards.

For example, if you have 100 images and use a batch size of 20, the
network will only train on and forward/backward pass 20 images at a
time. Additionally, you will have five iterations, before you reach one epoch
where all the images have been passed through network and back again
once. Subsequently, if we wanted to run five epochs, we would then end
up with 25 iterations in total. Typically, the batch size will be smaller than
the number of images, as passing all the input images at once requires a
lot of memory and can at occasion slow down the training. Although, the
smaller the batch size is, the more it will affect the accuracy of the gradient
of the network. What we typically see as the batch size gets smaller, is that
it can cause the training accuracy to fluctuate a a lot, as compared to having
a batch size equal to the number of inputs.

Mean Squared Error (MSE) is a loss function we used in our model. The
loss function can be defined as follows:

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (5.1)

As we see in equation 5.1, what the MSE loss function does is that for
each i in n predictions, we subtract the predicted output value Ŷi, from
the observed ground truth value Yi, which gives us the error for that
prediction. Then, we square this error, and sum all of these values over all
the predictions, and lastly we find the mean value by dividing the summed
squares errors by the total number of predictions n.

66

Mean Absolute Error (MAE) The Mean Absolute Error is another loss
function used, which is noticeably similar to the Mean Squared Error, as
can be seen in 5.2. The main difference is that rather than squaring the
absolute error (∆Y) = Yi − Ŷi, we take the absolute value instead.

1
n

n

∑
i=1
|Yi − Ŷi| (5.2)

As a result, MAE is more delicate and more robust towards outliers, while
MSE will penalise larger deviations harder. Therefore, MSE is generally
more used where larger deviations are more critical, and it also converges
faster.

Nesterov Momentum Adam (Nadam) Additionally, we used the optim-
iser Nesterov Momentum Adam (Nadam) [64], [65], which is a variant of
Adam [66], [67]. Nadam is an adaptive learning rate optimiser, that utilises
a smarter form of momentum. That is, for regular momentum, a prob-
lem that was discovered and addressed in a paper from 1983 by Yurii Nes-
terov [68] was that the momentum would in certain cases build up speed
to the point where it went straight past a local minima. As a result, the
Nesterov Momentum implemented a smarter approach where the network
first takes a big step based on the previous momentum, then calculates the
gradient and if necessary makes corrections, before it updates the paramet-
ers.

5.1.2 Model Metrics and Evaluation

In order to evaluate our model and its output, we have used an array of
state of the art evaluation methods for semantic segmentation methods,
that is, segmentations where one predicts the class of each pixel in an im-
age. We chose to use several different methods in order to get a broader
picture of how our model was doing, and to give an increased value of our
results.

For any classification problem where there are two or more classes, the
combination of predictions and actual, ground truth values can be assigned
into one of four categories; true positive (TP), true negative (TN), false pos-
itive (FP), and false negative (FN). That is in our case, as shown in Table 5.1,

Actual Contour Pixel Actual Non-Contour Pixel
Pred. Contour Pixel True Positive (TP) False Positive (FP)
Pred. Non-Contour Pixel False Negative (FN) True Negative (TN)

Table 5.1: General Confusion Matrix for our Model

for any pixel, one of the four outcomes can happen; the neural network
classifies the pixel as (a) a pixel inside the contour, and it in fact is a contour
pixel, resulting in a TP, (b) a pixel inside the contour perimeter, however it
is not, resulting in a FP, (c) a pixel that is not within the contour perimeter,

67

however it actually is, resulting in a FN, and lastly (d) a pixel that is not
inside a contour, and it is not, resulting in a TN. These four categories are
the basis for all the metrics used for evaluation.

5.1.3 Metrics

The metrics of a neural network are used to make quantifiable measure-
ments of the performance of the network. These metrics are then often
used as part of evaluation methods. We have chosen to look at the follow-
ing metrics when assessing our model:

Accuracy (ACC) is simply the percentage of correct guesses (TP and TN)
that the model predicted. While this is a typical metric that is used for most
models, it is often deemed too generic in order to give accurate feedback as
to how well the model is doing. The way we calculate the accuracy can be
seen in equation 5.3.

ACC =
TP + TN

TP + TN + FP + FN
(5.3)

Precision (PREC) is a metric quantifying the percentage of the predicted
classes that are relevant.

PREC =
TP

TP + FP
(5.4)

Recall (REC) also known as sensitivity, is closely related to the precision.
On its own it is the percentage of correctly predicted relevant results.

REC =
TP

TP + FN
(5.5)

5.1.4 Evaluating and Comparing Models

When evaluating our model, we mainly used two different methods that
is frequently applied to semantic segmentation problems; Intersection over
Union (IoU) and Dice. That being said, due to the visual nature of our
contour classification problem, we often employed a more informal first
step. That is, in most cases our first evaluation step was to load the trained
model and show the predicted output for a few, randomly selected inputs.
Here, we simply observed the output of these examples from the model as
an image, in order to give a rough evaluation of whether the model was
producing something useful. A practical example of this can be seen in
Section 5.2.1. If the model passed this step, we then applied IoU and Dice,
that we will now describe.

68

Intersection over Union (IoU)

The Intersection over Union (IoU) metric, also known as the Jaccard
index, is a metric that quantifies how much overlap there is between the
ground truth and the prediction of a segmentation. The Jaccard index was
introduced in a paper by Paul Jaccard in 1901 [69], and has since become a
frequently used quantification metric in semantic segmentation.

IoU =
target ∩ prediction
target ∪ prediction

=
TP

(TP + FP + FN)
(5.6)

As we see in 5.6, it is calculated by taking the TP values of the prediction,
that is the pixel values shared by the prediction and the ground truth,
and then dividing it by all the pixels present in both the prediction and
the ground truth, in other words the union. This calculation, essentially,
finds the percentage of overlapping pixels between the prediction and the
ground truth. In order to assess an entire model, you calculate the IoU
value for each class, and then average over all classes to obtain one mean
IoU score.

Dice

The Dice score, also known as the Sørensen-Dice coefficient, was intro-
duced and developed by Thorvald Sørensen and Lee Raymond Dice, in
two independent papers published in 1945 and 1948, respectively. [70], [71]

Dice =
2× TP

(TP + FP) + (TP + FN)
(5.7)

While the explanation of this metric is not as straightforward as with IoU,
they can be expressed as variants of each other using common algebraic
methods, as follows:

IoU =
Dice

2− Dice
(5.8)

Dice =
2× IoU
1 + IoU

(5.9)

As a result, they are closely related and largely measure the same aspects,
however IoU is always larger than Dice except from at the extrema [72],
and Dice does not satisfy the triangle inequality, meanwhile IoU does.
Therefore Dice is considered a semimetric, rather then a full metric. [73] All
in all, the complexity of these metrics is a study of their own, however they
are both frequently used as metrics for semantic segmentation problems.

5.2 Experiment 1: Automatic Generation of Contour

In Part II Method, Section 1.4, we covered the steps of how we arrived at the
different results in the different experiment iterations, and in the previous
sections of this chapter we covered the metrics and methods we used to
evaluate the experiments. Now, we will present each experiment with

69

their respective, deep learning configurations, and then we will display
and discuss the results and discuss them in order. For a recap of the
environment of the training, please refer to Section 1.2 in Part II.

5.2.1 First Iteration

As reported in the methodology chapter, our initial iteration was a ran
through both the VGG16 pretrained model and the ResNet50 model,
with both endocardium- and epicardium expert contours as input to the
network.

Hyperparameter Configuration
Pretrained Architecture VGG16, ResNet50
Train/Test Ratio 80%/20%
Batch Size 2
Epochs 100
Optimiser Nadam
Loss Function MAE
Metrics ACC, MAE

Table 5.2: Model configurations for first iteration

Results and Discussion

After we had finished letting the model train for 100 epochs, we loaded
the predicted output of the model, converted the output array back into
an image and was met with the result of the predicted output, shown in
Figure 5.2. Despite being difficult to see, there is one pixel activated in the
far right of the image, a little under halfway up. We tried making changes
to the most central hyperparameters and the loss function, however despite
our best efforts to improve this, the result did not improve. In fact, on the
contrary, as at times we would get completely black images as predicted
output.

Figure 5.2: Example showing the poor contour prediction from the first deep learning
iteration.

Given our results, we quickly deemed our first approach as non-viable.
Our best theory as to why it failed, is because the network quickly
realised that it could turn all pixels off and still have a considerably good

70

accuracy and error, due to the uneven balance of black pixels compared
to white pixels. Thereafter, it would presumably take extreme amounts
of computations and time in order to find each pixel in the ground truth
hollow circle. At this point, chances are that the vanishing gradient
problem would start to occur, in that the gradients would shrink to values
where they essentially had no impact anymore. Regardless, we did not
dwell on this for long, and rather moved on to the approach we believe
would fix our issue, that is, filling the contours.

5.2.2 Second Iteration

In our second iteration, we kept most of the hyperparameters and metrics
the same, in order to investigate whether the actual issue in fact was the
input data, and not some other factor. For the sake of being more confident
that the network would have enough time to compute the errors, we did
increase the number of epochs to 500. After running the full training
session, we again loaded the prediction and found the results shown in
Figure 5.3

(a) (b)

Figure 5.3: Output predictions from our second iteration, showing examples of a (a)
training set prediction and a (b) test set prediction. Note that these predictions are for
two different MRI DICOM images

The results had evidently increased drastically. Despite the rough edges
that would have be to addressed in post-processing, these results showed
that our approach was viable after all. Even so, the rough edges were
presumably due to the fact that we were training on both epicardium
and endocardium at the same time. In different terms, it is likely that
the model got confused, and ended up trying to compromise somewhere
between the two, and thus the rough edges appeared. It follows that our
next attempt to improve our accuracy was to separate endocardium and
epicardium. Therefore, our next idea was to separate the endocardium-
and epicardium segmentations into two separate datasets, and run them
on different models to see how well the different models would perform.

71

Method DICE IoU Precision Recall Accuracy

Endocardium (Left Ventricle)

ResNet 50 0.701 0.560 0.606 0.848 0.985
VGG 16 0.676 0.526 0.652 0.550 0.982
VGG 19 0.765 0.638 0.557 0.875 0.985
DenseNet 169 0.698 0.556 0.617 0.817 0.985
InceptionResnetV2 0.702 0.583 0.718 0.900 0.984

Epicardium (Left Ventricle)

ResNet 50 0.808 0.684 0.825 0.799 0.988
VGG 16 0.767 0.637 0.780 0.761 0.985
VGG 19 0.780 0.655 0.759 0.811 0.985
DenseNet 169 0.792 0.666 0.815 0.780 0.987
InceptionResnetV2 0.809 0.686 0.820 0.809 0.988

Table 5.3: A table showing the evaluation results of the experiments done to automatically
determine the inner and outer left ventricle.

5.2.3 Further Experimentation with ResNet50, VGG16, VGG19,
and InceptionResNetV2

After having separated our dataset based on endocardium and epicardium,
we started running experiments on all the models covered in Section 4.2.2.
As presented in Table 5.4, we observe that the all the pre-trained
architectures in our model generally is more accurate when predicting the
outer heart wall (epicardium), than when predicting the inner heart wall
(endocardium). Additionally, that VGG 19 overall performs the best on
the inner heart wall (endocardium), meanwhile InceptionResNetV2 is the
performs the best on epicardium.

Results and Discussion

However, even though the InceptionResNetV2 model was the most suc-
cessful, Figure 5.4 shows that it is by no means perfect yet. While these
predictions were handpicked as some of the worst the model created, these
results would still be unacceptable within any medical practice, be that
training or diagnostic. This is a contributing factor as to why we declare
that the model is a promising start, but still needs to be improved.

Conversely, the model also showed some very accurate predictions. As
shown in Figure 5.5, the predicted and true contour are nearly identical,
which shows that the model is learning something. As for any deep neural
network training, it is severely difficult to say for certain why some images
are harder to classify than others. However, one feature that stands out in

72

Figure 5.4: Examples of where the InceptionResNetV2 performed poorly, first column
containing the MRI T1 mapping images, second column containing the human expert
contours, and third column containing the model predictions

both of these examples, are that when the left- and right ventricle are sur-
rounded by darker tissue, the model has an easier time to classify them,
and vice versa. An obvious reason for this is that it is easier to distinguish
contrasts that are far apart on the monochrome spectrum.

That being said, the majority of the predicted contours land somewhere
inbetween these two extremes, where there are smaller errors that would
have to be improved. Because of this, we consider this approach to be over-
all fairly successful.

73

Figure 5.5: Examples of where the InceptionResNetV2 performed well, first column
containing the MRI T1 mapping images, second column containing the human expert
contours, and third column containing the model predictions

74

5.3 Experiment 2: Generate Feedback from Trainee
Contour

We decided to also explore the supervised learning problem of generating
expert contours from a DICOM image and a trainee contour. The idea was
that based on the trainee contour, the network could train the model to at-
tempt to make an "expert" contour, and then compare it to actual expert
contours during validation. Our proposed network used to generate these
contours is a modified version of the VGG16 [58] model, implemented in
Keras. Also here, we ran the model over the same popular CNN archi-
tectures as in our last supervised learning problem, such as architectures
based on ResNet, Inception, and DenseNet [74].

The preprocessing and configuration of this network is also similar, how-
ever the input the model expects has changed. Instead, what the model
expects as an input is an image consisting of four channels. The first three
channels consists of the R (red), G (green), and B (blue) colour channels
of the extracted DICOM MRI image, like before. However, the fourth
image channel is represented by the trainee contour. Like in our other
model, the input image with all four channels is then resized into the size of
224× 224× 4, before being passed into the model. The model then outputs
a vector with the size of 50176 (224× 224), which represents the "expert"
segmentation. Each value in the vector still represents one pixel of the out-
put segmentation, and each pixel can be either "on" or "off".

For training, we used a variety of different architectures, however this time
we trained it from scratch. We replace the classification block of the ori-
ginal model, with a custom block consisting of one 2D global average layer,
a normalisation layer which squashes the input values between 0 to 1, then
a final fully-connected layer consisting of 50176 nodes (one for each pixel).
The model then is trained using MAE to calculate loss and Nadam [64] to
optimise the weights with a learning rate of 0.004. The output of the net-
work was then compared towards the expert contour from our dataset, in
order to let the network average an "expert" consensus. Additionally, to en-
sure robust results, each experiment was run using 3-fold cross-validation.
A diagram explaining the entire training process can be seen in Figure 5.6.

Figure 5.6: A diagram showing the entire process for training the trainee to expert
segmentation model.

75

Results and Discussion

Method DICE IoU Precision Recall Accuracy

Endocardium (Left Ventricle)

ResNet 50 0.794 0.663 0.680 0.967 0.989
VGG 16 0.737 0.587 0.620 0.922 0.986
VGG 19 0.763 0.623 0.642 0.965 0.987
DenseNet 169 0.786 0.652 0.667 0.975 0.989
InceptionResnetV2 0.789 0.659 0.675 0.969 0.989

Epicardium (Left Ventricle)

ResNet 50 0.888 0.803 0.896 0.888 0.992
VGG 16 0.771 0.629 0.658 0.942 0.988
VGG 19 0.782 0.646 0.664 0.967 0.988
DenseNet 169 0.890 0.666 0.815 0.780 0.987
InceptionResnetV2 0.727 0.586 0.639 0.884 0.984

Table 5.4: A table showing the evaluation results of the experiments done to automatically
determine the inner and outer left ventricle.

While the contours that were good for the previous section did not see any
major improvements following this approach, many of the bad predicted
segmentations now looked a lot better, as shown in Figure 5.7. This is not
too surprising as this new approach includes information taken from the
student contours who although are in training, do have some knowledge
about the segmentation of the left ventricle. Additionally, as we see in

Figure 5.7: Figure showing the that predictions that were originally bad in Figure 5.4, has
now improved considerably, where the left image corresponds to the prediction in the first
row, and the right image corresponds to the prediction in the first column

Table 5.4, the metrics are approximately 0.10 higher on average than in our
other model. Following this, we believe that the model with both a DICOM

76

and a contour as input might be the superior approach, as indicated by the
results presented here. However, a proof of this theory are left to the future
work.

5.4 Summary

In this chapter we have presented the experiments carried out on our
deep convolutional neural network architecture and models. We have
demonstrated that the models are already generating promising results,
and we believe it is a possibility that the model can be applied for automatic
feedback in the training purposes in the future. However, because our
data is limited, and we do not have the resources nor time to carry out a
qualitative study, we are unable to draw any final conclusions on whether
the prior hypothesis is true. Instead, we suggest the following step of these
experiments are to conduct a qualitative study to really make a conclusion
on this for your approach, with the main question; Do the trainees get better
due to the automatic feedback or not?

77

78

Part IV

Conclusion and Future Work

79

Chapter 6

Summary and Conclusion

As discussed, in recent times, the effort to make a more standardised
training process within the medical image analysis field has be steadily
increasing. Following this, the field welcomes ideas and tools to aid
this standardisation. After all, the training of medical analysts can have
critical consequences for clinical cardiovascular diagnosis. In order to aid
this movement, we have investigated both a software system and a deep
learning architecture throughout this thesis, in order to provide tools to
quantify and standardise training, and improve the training process as a
whole. This lead us to the following research questions:

• How can we design a tool to support training in T1 mapping analysis
based on a digitised approach?

• Can CNNs create automatic feedback based on non-expert annota-
tions?

On the quest to answer the research questions, we developed a software
system called Fabulinus. It is a software tool meant to aid trainees in train-
ing of contouring of the endocardium and epicardium of the left ventricle
of the heart, currently focusing only on images from T1 mapping MRI. The
system automatically evaluates the trainees segmentation by comparing
it against both expert contours as well as deep CNN generated "expert"
contours. With the feedback from the deep CNN, it allows the system
to provide immediate feedback on the trainees submitted segmentation,
and has the potential to greatly reduce the need of manually contoured ex-
amples from experts in the future.

More specifically, regarding the first problem statement, thanks to our co-
operation wtih OCMR, we have found several problems that can be sup-
ported by a digitised approach. In particular, we have aimed to offload the
expert teacher by enabling the trainees compare their own analyses before
the one-on-one feedback. Conclusively, we have created a software with
many features that we know are needed in the training process. While
it cannot be used in a training environment yet, we have also received
positive feedback from various experts at OCMR, that the direction that
Fabulinus is headed is very promising. That being said, there still has to be

81

conducted rigorous validation studies, either qualitative and quantitative,
to provide absolute results.

For the second problem statement, our work strongly supports and
strengthens this question as to something that is very much possible. The
CNN automatically generates contours that on occasion are very similar to
the human expert contours. Additionally, our results suggest that our spe-
cliased approach using both trainee contours and the DICOM image as in-
put could be a superior approach to generating "expert" contours for feed-
back, which we consider a strong point of the research conducted in this
thesis. However, in order to be certain, also here validation studies such as
qualitative studies need to be performed, and the models should be applied
on other datasets in order to verify the generalisability of the approach.

6.1 Future work

While the possible directions the work conducted in this thesis could go
are numerous, we have narrowed it down to some main points that we
consider to be most useful for the system at this stage. Although, this is by
no means an extensive list, and as with all research, we encourage anyone
who want to take this idea further to do so, regardless of whether it follows
the following suggestions.

6.1.1 Fabulinus

Through our work with Fabulinus we have already produced a good
foundation. However, in order to quantify if it would be useful, there
should be carried out a comparative study, including experts and train-
ees, in order to explore whether the software actually improves the results
of the training, and if it is useful to the trainees.

We also suggest adding the following functionalities:

Expert Dashboard As briefly discussed in Section 3.1.1, the expert should
have a dashboard with some additional functionalities. These include: an
overview of all uploaded trainee analyses, and access to, and ability to edit
or remove, all available expert segmentations and CNN segmentations.
There should be a clear distinction between what expert segmentations are
from human expert and which are CNN generated. Finally, it would also
be useful to generate a report collecting data from all the available trainee
analyses.

Prevent Operators Bias In order to prevent trainees from simply upload-
ing their first contour into Fabulinus and instantly getting the "correct" res-
ults to base their next repetitions on, a restriction should be implemented
that ensures that the trainee has done at least two repetitions of an MRI
stack before they can compare their results.

82

Explore the Team Approach The future goal of this software should
be to shift the focus from the status quo of training sessions, that are
heavily reliant on one-to-one feedback. Instead, many in the field welcome
a more team-based approach. For example, if the expert and trainees
could cooperate over a system like Fabulinus, through their respective
dashboards, the ability to transfer the focus to a more team-based approach
would begin. Following this, the tool could even be extended to be used
in teams, rather than only in training sessions, where the teams could
use the dashboard collaboratively to compare and assess the differences
in analyses in real time.

6.1.2 Deep Learning Architecture

When it comes to our deep learning architecture and model, the main next
steps are to take our results and see if they can be generalised, especially
with respects to different datasets. More importantly, modifications need
to be made to our architecture in order to improve the quality of the output
contours. In addition, a qualitative study should be carried out in order to
properly determine whether the results are useful.

Qualitative Study As mentioned in Section 5.4, the next step for the deep
learning architecture is to carry out a proper qualitative study. In brief,
we recommend that the study should include both experts and trainees,
where a group of trainees initially do a training session under one expert
supervision, without the deep learning feedback available. Then, the
quality of the training and time should be assessed in cooperation with 2-3
experts that did not take part in the training session. Following this, one
should do an equivalent repetition with the deep learning feedback present
on the same participants, and then assess the quality again and quantify the
differences.

Run the Model on Other Datasets In order to generalise our model, it
should also be run on different datasets, as our dataset is fairly small. For
example, the datasets available in public segmentation competitions could
be applied, such as the one mentioned in Section 2.7.6.

Generate Consensus Within Team Another model that could be useful
to train, is one that takes a number of contours from image analysts and
attempts to make an average between them to generate consensus within a
team. This could potentially expand the number of people the model could
be useful for outside of the training environment.

83

84

Bibliography

[1] W. H. Organization. (2017). Cardiovascular diseases (CVDs), [On-
line]. Available: https ://www.who. int/en/news- room/fact - sheets/
detai%20/cardiovascular-diseases-(cvds) (visited on 30/04/2019).

[2] H. S. Thomsen, P. Marckmann and V. B. Logager, ‘Nephrogenic
systemic fibrosis (NSF): A late adverse reaction to some of the
gadolinium based contrast agents’, Cancer Imaging, vol. 7, no. 1,
p. 130, Sep. 2007. DOI: 10 . 1102 / 1470 - 7330 . 2007 . 0019. [Online].
Available: https://doi.org/10.1102/1470-7330.2007.0019.

[3] V. V. Valindria et al., ‘Reverse Classification Accuracy: Predicting
segmentation performance in the absence of ground truth’, IEEE
Transactions on Medical Imaging, vol. 36, no. 8, pp. 1597–1606, Aug.
2017, ISSN: 1558-254X. DOI: 10 . 1109 /TMI . 2017 . 2665165. [Online].
Available: https ://doi . org/10 .1109/TMI .2017 .2665165 (visited on
01/05/2018).

[4] E. Konukoglu, B. Glocker, D. H. Ye, A. Criminisi and K. M.
Pohl, ‘Discriminative segmentation-based evaluation through shape
dissimilarity’, IEEE Transactions on Medical Imaging, vol. 31, no. 12,
pp. 2278–2289, Dec. 2012, ISSN: 1558-254X. DOI: 10.1109/TMI.2012.
2216281. [Online]. Available: https : / / doi . org / 10 . 1109/TMI . 2012 .
2216281 (visited on 03/05/2018).

[5] D. R. Messroghli et al., ‘Clinical recommendations for cardiovascular
magnetic resonance mapping of T1, T2, T2* and extracellular volume:
A consensus statement by the Society for Cardiovascular Magnetic
Resonance (SCMR) endorsed by the European Association for Cardi-
ovascular Imaging (EACVI)’, Journal of Cardiovascular Magnetic Res-
onance, vol. 19, no. 1, p. 75, Oct. 2017, ISSN: 1532-429X. DOI: 10.1186/
s12968 - 017 - 0389 - 8. [Online]. Available: https ://doi . org/10 .1186/
s12968-017-0389-8 (visited on 24/04/2019).

[6] Radcliffe Department of Medicine. (2019). About OCMR, [Online].
Available: https : / /www . rdm . ox . ac . uk / about / our - clinical - facili%
20ies-and-mrc-units/oxford-centre-for-clinical-magnetic-resonan%20e-
research/about-ocmr (visited on 30/04/2019).

[7] D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner and
P. R. Young, ‘Computing as a discipline’, Communications of the ACM,
vol. 32, no. 1, P. J. Denning, Ed., pp. 9–23, Jan. 1989, ISSN: 0001-0782.

85

https://www.who.int/en/news-room/fact-sheets/detai%20/cardiovascular-diseases-(cvds)
https://www.who.int/en/news-room/fact-sheets/detai%20/cardiovascular-diseases-(cvds)
https://doi.org/10.1102/1470-7330.2007.0019
https://doi.org/10.1102/1470-7330.2007.0019
https://doi.org/10.1109/TMI.2017.2665165
https://doi.org/10.1109/TMI.2017.2665165
https://doi.org/10.1109/TMI.2012.2216281
https://doi.org/10.1109/TMI.2012.2216281
https://doi.org/10.1109/TMI.2012.2216281
https://doi.org/10.1109/TMI.2012.2216281
https://doi.org/10.1186/s12968-017-0389-8
https://doi.org/10.1186/s12968-017-0389-8
https://doi.org/10.1186/s12968-017-0389-8
https://doi.org/10.1186/s12968-017-0389-8
https://www.rdm.ox.ac.uk/about/our-clinical-facili%20ies-and-mrc-units/oxford-centre-for-clinical-magnetic-resonan%20e-research/about-ocmr
https://www.rdm.ox.ac.uk/about/our-clinical-facili%20ies-and-mrc-units/oxford-centre-for-clinical-magnetic-resonan%20e-research/about-ocmr
https://www.rdm.ox.ac.uk/about/our-clinical-facili%20ies-and-mrc-units/oxford-centre-for-clinical-magnetic-resonan%20e-research/about-ocmr

DOI: 10.1145/63238.63239. [Online]. Available: http://doi.acm.org/10.
1145/63238.63239.

[8] The National Heart, Lung, and Blood Institute. (n.d.). How the Heart
Works - Anatomy of the Heart, [Online]. Available: https : / /www .
nhlbi.nih.gov/node/3710 (visited on 27/04/2018).

[9] T. Taylor. (2018). Human Heart – Diagram and Anatomy of the Heart,
Innerbody, [Online]. Available: http ://www. innerbody.com/image/
card01.html (visited on 27/04/2018).

[10] C.-J. Lin, C.-Y. Lin, C.-H. Chen, B. Zhou and C.-P. Chang, ‘Partition-
ing the heart: Mechanisms of cardiac septation and valve develop-
ment’, Development, vol. 139, no. 18, pp. 3277–3299, Aug. 2012, ISSN:
1477-9129. DOI: 10.1242/dev.063495. [Online]. Available: https://doi.
org/10.1242/dev.063495 (visited on 29/05/2018).

[11] A. Berger, ‘Magnetic resonance imaging’, British Medical Journal,
vol. 324, no. 7328, p. 35, Jan. 2002, ISSN: 0959-8138. [Online].
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1121941/
(visited on 29/04/2018).

[12] V. Carapella, ‘Impact of tissue microstructure on a model of cardiac
electromechanics based on MRI data’, PhD thesis, Oxford University,
UK, 2013. [Online]. Available: https : / /ora . ox . ac . uk/objects /uuid :
69d28c8c-832b-4ac4-aa48-3d0613708515 (visited on 23/05/2019).

[13] C. Petitjean and J.-N. Dacher, ‘A review of segmentation methods in
short axis cardiac MR images’, Medical Image Analysis, vol. 15, no. 2,
pp. 169–184, Apr. 2011. DOI: 10.1016/j.media.2010.12.004. [Online].
Available: https://doi.org/10.1016/j.media.2010.12.004 (visited on
01/05/2018).

[14] R. J. v. d. Geest, ‘Automated image analysis techniques for cardiovas-
cular magnetic resonance imaging’, PhD thesis, Leiden University,
NL, 2011. [Online]. Available: https://openaccess.leidenuniv.nl/handle/
1887/16643 (visited on 23/05/2019).

[15] D. T. Ginat, M. W. Fong, D. J. Tuttle, S. K. Hobbs and R. C. Vyas,
‘Cardiac imaging: Part 1, MR pulse sequences, imaging planes, and
basic anatomy’, American Journal of Roentgenology, vol. 197, no. 4,
pp. 808–815, Oct. 2011. DOI: 10.2214/AJR.10.7231. [Online]. Available:
https://doi.org/10.2214/AJR.10.7231 (visited on 10/05/2018).

[16] S. E. Petersen et al., ‘UK Biobank’s cardiovascular magnetic resonance
protocol’, Journal of Cardiovascular Magnetic Resonance, vol. 18, no. 1,
p. 8, Feb. 2016. DOI: 10.1186/s12968-016-0227-4. [Online]. Available:
https://doi.org/10.1186/s12968-016-0227-4 (visited on 01/05/2019).

[17] V. M. Ferreira et al., ‘Native T1-mapping detects the location, extent
and patterns of acute myocarditis without the need for gadolinium
contrast agents’, Journal of Cardiovascular Magnetic Resonance, vol. 16,
no. 1, p. 36, May 2014. DOI: 10 . 1186 / 1532 - 429X - 16 - 36. [Online].
Available: https : / /doi . org /10 . 1186/1532 - 429X - 16 - 36 (visited on
01/05/2019).

86

https://doi.org/10.1145/63238.63239
http://doi.acm.org/10.1145/63238.63239
http://doi.acm.org/10.1145/63238.63239
https://www.nhlbi.nih.gov/node/3710
https://www.nhlbi.nih.gov/node/3710
http://www.innerbody.com/image/card01.html
http://www.innerbody.com/image/card01.html
https://doi.org/10.1242/dev.063495
https://doi.org/10.1242/dev.063495
https://doi.org/10.1242/dev.063495
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1121941/
https://ora.ox.ac.uk/objects/uuid:69d28c8c-832b-4ac4-aa48-3d0613708515
https://ora.ox.ac.uk/objects/uuid:69d28c8c-832b-4ac4-aa48-3d0613708515
https://doi.org/10.1016/j.media.2010.12.004
https://doi.org/10.1016/j.media.2010.12.004
https://openaccess.leidenuniv.nl/handle/1887/16643
https://openaccess.leidenuniv.nl/handle/1887/16643
https://doi.org/10.2214/AJR.10.7231
https://doi.org/10.2214/AJR.10.7231
https://doi.org/10.1186/s12968-016-0227-4
https://doi.org/10.1186/s12968-016-0227-4
https://doi.org/10.1186/1532-429X-16-36
https://doi.org/10.1186/1532-429X-16-36

[18] A. J. Taylor, M. Salerno, R. Dharmakumar and M. Jerosch-Herold,
‘T1 mapping: Basic techniques and clinical applications’, JACC:
Cardiovascular Imaging, vol. 9, no. 1, pp. 67–81, Nov. 2016. DOI: 10 .
1016/j.jcmg.2015.11.005. [Online]. Available: https://doi.org/10.1016/
j.jcmg.2015.11.005 (visited on 02/05/2019).

[19] R. A. Pooley, ‘Fundamental physics of MR imaging’, RadioGraphics,
vol. 25, no. 4, pp. 1087–1099, Jun. 2005. DOI: 10.1148/rg.254055027.
[Online]. Available: https://doi.org/10.1148/rg.254055027 (visited on
02/05/2019).

[20] National Electrical Manufacturers Association. (2019). Digital Ima-
ging and Communications in Medicine (DICOM), [Online]. Avail-
able: https://www.dicomstandard.org/ (visited on 22/04/2019).

[21] M. Larobina and L. Murino, ‘Medical Image File Formats’, Journal
of Digital Imaging, vol. 27, no. 2, pp. 200–206, Apr. 2014, ISSN: 1618-
727X. DOI: 10 .1007/s10278 - 013 - 9657 - 9. [Online]. Available: https :
//doi.org/10.1007/s10278-013-9657-9 (visited on 14/05/2019).

[22] R. W. Cox et al. (2007). NIfTI-1 data format documentation, [Online].
Available: https://nifti.nimh.nih.gov/nifti-1/ (visited on 02/05/2019).

[23] R. E. Klabunde. (2015). Regulation of Stroke Volume, [Online].
Available: http://www.cvphysiology.com/Cardiac%20Function/CF002
(visited on 27/04/2018).

[24] L. Agoston-Coldea and S. Lupu, ‘Right chambers quantification in
clinical practice: Echocardiography compared with cardiac magnetic
resonance imaging’, in Hot Topics in Echocardiography, IntechOpen,
2013. DOI: 10.5772/55832. [Online]. Available: https ://doi .org/10.
5772/55832 (visited on 23/05/2019).

[25] Circle Cardiovascular Imaging Inc. (2019). Cardiac MRI and CT
Software, Circle Cardiovascular Imaging Inc., [Online]. Available:
https://www.circlecvi.com/ (visited on 13/04/2019).

[26] Medis Medical Imaging Systems. (2019). QMass: Post-processing
software, [Online]. Available: https://www.medis.nl/products/qmass
(visited on 13/04/2019).

[27] C. T. Rueden et al., ‘ImageJ2: ImageJ for the next generation of
scientific image data’, BMC Bioinformatics, vol. 18, no. 1, p. 529, Nov.
2017. DOI: 10 . 1186/ s12859 - 017 - 1934 - z. [Online]. Available: https :
//doi.org/10.1186/s12859-017-1934-z (visited on 13/04/2019).

[28] D. Fagella. (Feb. 2019). What is Machine Learning? - An In-
formed Definition, TechEmergence, [Online]. Available: https : / /
www . techemergence . com / what - is - machine - learning/ (visited on
22/05/2019).

[29] A. Ng. (n.d.). Machine learning, Stanford University, [Online].
Available: https://www.coursera.org/learn/machine-learning (visited on
27/04/2018).

87

https://doi.org/10.1016/j.jcmg.2015.11.005
https://doi.org/10.1016/j.jcmg.2015.11.005
https://doi.org/10.1016/j.jcmg.2015.11.005
https://doi.org/10.1016/j.jcmg.2015.11.005
https://doi.org/10.1148/rg.254055027
https://doi.org/10.1148/rg.254055027
https://www.dicomstandard.org/
https://doi.org/10.1007/s10278-013-9657-9
https://doi.org/10.1007/s10278-013-9657-9
https://doi.org/10.1007/s10278-013-9657-9
https://nifti.nimh.nih.gov/nifti-1/
http://www.cvphysiology.com/Cardiac%20Function/CF002
https://doi.org/10.5772/55832
https://doi.org/10.5772/55832
https://doi.org/10.5772/55832
https://www.circlecvi.com/
https://www.medis.nl/products/qmass
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1186/s12859-017-1934-z
https://www.techemergence.com/what-is-machine-learning/
https://www.techemergence.com/what-is-machine-learning/
https://www.coursera.org/learn/machine-learning

[30] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, Inc., 1997,
p. 2, ISBN: 0070428077.

[31] A. Karpathy et al. (2019). Neural network architectures in CS231n:
Convolutional neural networks for visual recognition, Standford
University, [Online]. Available: http : / / cs231n . github . io / neural -
networks-1/ (visited on 01/05/2018).

[32] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. MIT Press,
2016. [Online]. Available: http://www.deeplearningbook.org.

[33] Y. LeCun, Y. Bengio and G. Hinton, ‘Deep learning’, nature, vol. 521,
no. 7553, pp. 436–440, May 2015. DOI: 10.1038/nature14539. [Online].
Available: https : / / doi . org / 10 . 1038 / nature14539 (visited on
01/05/2018).

[34] H. Hu et al., ‘Automatic segmentation of the left ventricle in cardiac
MRI using local binary fitting model and dynamic programming
techniques’, PLOS ONE, vol. 9, no. 12, pp. 1–17, Dec. 2014. DOI: 10.
1371/journal.pone.0114760. [Online]. Available: https://doi.org/10.
1371/journal.pone.0114760 (visited on 23/05/2019).

[35] M. A. Abdelfadeel, S. ElShehaby and M. S. Abougabal, ‘Automatic
segmentation of left ventricle in cardiac MRI using maximally stable
extremal regions’, in 2014 Cairo International Biomedical Engineering
Conference (CIBEC), Dec. 2014, pp. 145–148. DOI: 10.1109/CIBEC.2014.
7020940. [Online]. Available: https://doi.org/10.1109/CIBEC.2014.
7020940 (visited on 23/05/2019).

[36] P. Radau, Y. Lu, K. Connelly, G. Paul, A. Dick and G. Wright,
‘Evaluation framework for algorithms segmenting short axis cardiac
MRI’, The MIDAS Journal: Cardiac MR Left Ventricle Segmentation
Challenge, vol. 49, Jul. 2009. [Online]. Available: http : //hdl . handle .
net/10380/3070 (visited on 23/05/2019).

[37] M. Zreik, T. Leiner, B. D. de Vos, R. W. van Hamersvelt, M. A.
Viergever and I. Išgum, ‘Automatic segmentation of the left ventricle
in cardiac ct angiography using convolutional neural networks’, in
2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI),
Apr. 2016, pp. 40–43. DOI: 10 . 1109 / ISBI . 2016 . 7493206. [Online].
Available: https ://doi . org/10 .1109/ ISBI . 2016 .7493206 (visited on
23/05/2019).

[38] Node.js Foundation, Node.js, [Computer Software], 2019. [Online].
Available: https://nodejs.org/en/.

[39] T. Christie and Django REST Framework contributors, Django REST
framework (Version 3.9), [Computer Software], 2019. [Online]. Avail-
able: https://www.django-rest-framework.org/.

[40] Django Software Foundation, Django (Version 1.5), [Computer Soft-
ware], 2013. [Online]. Available: https://djangoproject.com/.

[41] Adobe, Adobe XD (Version 15.0), [Computer Software], 2019. [Online].
Available: https://www.adobe.com/no/products/xd.html.

88

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://www.deeplearningbook.org
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1371/journal.pone.0114760
https://doi.org/10.1371/journal.pone.0114760
https://doi.org/10.1371/journal.pone.0114760
https://doi.org/10.1371/journal.pone.0114760
https://doi.org/10.1109/CIBEC.2014.7020940
https://doi.org/10.1109/CIBEC.2014.7020940
https://doi.org/10.1109/CIBEC.2014.7020940
https://doi.org/10.1109/CIBEC.2014.7020940
http://hdl.handle.net/10380/3070
http://hdl.handle.net/10380/3070
https://doi.org/10.1109/ISBI.2016.7493206
https://doi.org/10.1109/ISBI.2016.7493206
https://nodejs.org/en/
https://www.django-rest-framework.org/
https://djangoproject.com/
https://www.adobe.com/no/products/xd.html

[42] Django Software Foundation, PostgreSQL, [Computer Software],
2019. [Online]. Available: https://www.postgresql.org/.

[43] Facebook, React, [Computer Software], 2019. [Online]. Available:
https://reactjs.org/.

[44] ——, Create React App, [Computer Software], 2019. [Online]. Avail-
able: https://facebook.github.io/create-react-app/.

[45] T. Koppers, S. Larkin, J. Ewald, J. Vepsäläinen, K. Kluskens and
Webpack contributors, webpack, [Computer Software], 2019. [Online].
Available: https://webpack.js.org/.

[46] S. McKenzie and Babel contributors, Babel, [Computer Software],
2019. [Online]. Available: https://babeljs.io/.

[47] S. K. Piechnik et al., ‘Shortened Modified Look-Locker Inversion
recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3
T within a 9 heartbeat breathhold’, Journal of Cardiovascular Magnetic
Resonance, vol. 12, no. 1, p. 69, Nov. 2010, ISSN: 1532-429X. DOI: 10.
1186/1532-429X-12-69. [Online]. Available: https://doi.org/10.1186/
1532-429X-12-69 (visited on 24/04/2019).

[48] D. Mason and pydicom contributors. (2018). pydicom documenta-
tion, [Online]. Available: https://pydicom.github.io/pydicom/stable/
index.html (visited on 16/04/2019).

[49] Harris Geospatial Solutions, Inc. (2018). IDL - Extract Meaningful
Visualizations From Complex Numerical Data, [Online]. Available:
https://www.harrisgeospatial.com/Software-Technology/IDL (visited on
16/04/2019).

[50] Anaconda, Inc, Anaconda Software Distribution, [Computer Software],
2019. [Online]. Available: https : / /www . anaconda . com/ (visited on
19/04/2019).

[51] M. Abadi et al., TensorFlow: Large-scale machine learning on heterogen-
eous distributed systems, Software available from tensorflow.org, 2016.
[Online]. Available: http : / / arxiv . org / abs / 1603 . 04467 (visited on
19/04/2019).

[52] F. Chollet et al., Keras, https://keras.io, 2015.

[53] F. Seide and A. Agarwal, ‘CNTK: Microsoft’s open-source deep-
learning toolkit’, Aug. 2016, pp. 2135–2135. DOI: 10 .1145/2939672 .
2945397. [Online]. Available: http://doi.acm.org/10.1145/2939672.
2945397 (visited on 02/05/2019).

[54] R. Al-Rfou et al., ‘Theano: A Python framework for fast computation
of mathematical expressions’, arXiv e-prints, vol. abs/1605.02688,
May 2016. [Online]. Available: http : / / arxiv . org / abs / 1605 . 02688
(visited on 02/05/2019).

[55] J. Hale. (Sep. 2018). Deep learning framework power scores 2018,
[Online]. Available: https : // towardsdatascience . com/deep - learning -
framework-power-scores-2018-23607ddf297a (visited on 04/05/2019).

89

https://www.postgresql.org/
https://reactjs.org/
https://facebook.github.io/create-react-app/
https://webpack.js.org/
https://babeljs.io/
https://doi.org/10.1186/1532-429X-12-69
https://doi.org/10.1186/1532-429X-12-69
https://doi.org/10.1186/1532-429X-12-69
https://doi.org/10.1186/1532-429X-12-69
https://pydicom.github.io/pydicom/stable/index.html
https://pydicom.github.io/pydicom/stable/index.html
https://www.harrisgeospatial.com/Software-Technology/IDL
https://www.anaconda.com/
http://arxiv.org/abs/1603.04467
https://keras.io
https://doi.org/10.1145/2939672.2945397
https://doi.org/10.1145/2939672.2945397
http://doi.acm.org/10.1145/2939672.2945397
http://doi.acm.org/10.1145/2939672.2945397
http://arxiv.org/abs/1605.02688
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

[56] F. Chollet et al. (2019). Applications, [Online]. Available: https://keras.
io/applications/ (visited on 16/04/2019).

[57] O. Russakovsky et al., ‘ImageNet Large Scale Visual Recognition
Challenge’, International Journal of Computer Vision (IJCV), vol. 115,
no. 3, pp. 211–252, Apr. 2015. DOI: 10 . 1007 / s11263 - 015 - 0816 - y.
[Online]. Available: https : / / doi . org / 10 . 1007 / s11263 - 015 - 0816 - y
(visited on 16/04/2019).

[58] K. Simonyan and A. Zisserman, ‘Very deep convolutional networks
for large-scale image recognition’, arXiv preprint arXiv:1409.1556,
Apr. 2014. [Online]. Available: https : / / arxiv . org / abs / 1409 . 1556
(visited on 08/05/2019).

[59] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image
recognition’, CoRR, vol. abs/1512.03385, 2015. arXiv: 1512 . 03385.
[Online]. Available: http : / / arxiv . org / abs / 1512 . 03385 (visited on
12/05/2019).

[60] C. Szegedy et al., ‘Going deeper with convolutions’, in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2015,
pp. 1–9. [Online]. Available: https : / / www . cv - foundation . org /
openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_
2015_CVPR_paper.html (visited on 12/05/2019).

[61] R. K. Srivastava, K. Greff and J. Schmidhuber, ‘Highway networks’,
CoRR, vol. abs/1505.00387, May 2015. arXiv: 1505 . 00387. [Online].
Available: http://arxiv.org/abs/1505.00387 (visited on 12/05/2019).

[62] A. Krizhevsky, I. Sutskever and G. E. Hinton, ‘ImageNet classifica-
tion with deep convolutional neural networks’, in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou
and K. Q. Weinberger, Eds., Curran Associates, Inc., 2012, pp. 1097–
1105. [Online]. Available: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep- convolutional- neural- networks.pdf (visited on
24/04/2019).

[63] F. Chollet et al. (2015). Writing your own Keras layers, [Online].
Available: https : / / keras . io / layers /writing - your - own - keras - layers/
(visited on 16/04/2019).

[64] T. Dozat, ‘Incorporating Nesterov Momentum into Adam.’, 2016.
[Online]. Available: http://cs229.stanford.edu/proj2015/054_report.
pdf (visited on 13/05/2019).

[65] I. Sutskever, J. Martens, G. Dahl and G. Hinton, ‘On the importance of
initialization and momentum in deep learning’, in International con-
ference on machine learning, 2013, pp. 1139–1147. [Online]. Available:
http://www.cs.toronto.edu/~fritz/absps/momentum.pdf (visited on
13/05/2019).

[66] D. P. Kingma and J. Ba, ‘Adam: A method for stochastic optimiza-
tion’, arXiv preprint arXiv:1412.6980, Dec. 2014. [Online]. Available:
https://arxiv.org/abs/1412.6980v8 (visited on 13/05/2019).

90

https://keras.io/applications/
https://keras.io/applications/
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
http://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1505.00387
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://keras.io/layers/writing-your-own-keras-layers/
http://cs229.stanford.edu/proj2015/054_report.pdf
http://cs229.stanford.edu/proj2015/054_report.pdf
http://www.cs.toronto.edu/~fritz/absps/momentum.pdf
https://arxiv.org/abs/1412.6980v8

[67] S. J. Reddi, S. Kale and S. Kumar, ‘On the convergence of Adam
and beyond’, arXiv preprint arXiv:1904.09237, Apr. 2019. [Online].
Available: https://arxiv.org/abs/1904.09237 (visited on 13/05/2019).

[68] Y. Nesterov, ‘A method of solving a convex programming problem
with convergence rate O(1/k2)’, Soviet Mathematics Doklady, vol. 27,
no. 2, pp. 372–376, 1983.

[69] P. Jaccard, ‘Distribution de la flore alpine dans le bassin des dranses
et dans quelques régions voisines’, Bulletin de la Société vaudoise des
sciences naturelles, vol. 37, pp. 241–272, 1901.

[70] L. R. Dice, ‘Measures of the amount of ecologic association between
species’, Ecology, vol. 26, no. 3, pp. 297–302, Jul. 1945. DOI: 10.2307/
1932409. [Online]. Available: https://doi.org/10.2307/1932409 (visited
on 13/05/2019).

[71] T. Sørensen, ‘A method of establishing groups of equal amplitude
in plant sociology based on similarity of species and its application
to analyses of the vegetation on danish commons’, Biologiske Skrifter,
vol. 5, pp. 1–34, 1948.

[72] A. A. Taha and A. Hanbury, ‘Metrics for evaluating 3D medical
image segmentation: Analysis, selection, and tool’, BMC Medical
Imaging, vol. 15, no. 1, p. 29, Jul. 2015. DOI: s12880 - 015 - 0068 - x.
[Online]. Available: https : / / doi . org / 10 . 1186 / s12880 - 015 - 0068 - x
(visited on 13/05/2019).

[73] E. Gallagher, ‘Compah documentation’, User’s Guide and application
published at: http://www. es. umb. edu/edgwebp. htm, Apr. 1999. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.
1334&rep=rep1&type=pdf (visited on 13/05/2019).

[74] G. Huang, Z. Liu, L. v. d. Maaten and K. Q. Weinberger, ‘Densely
connected convolutional networks’, in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 2261–
2269. DOI: 10.1109/CVPR.2017.243. [Online]. Available: https://doi.
org/10.1109/CVPR.2017.243 (visited on 23/05/2019).

91

https://arxiv.org/abs/1904.09237
https://doi.org/10.2307/1932409
https://doi.org/10.2307/1932409
https://doi.org/10.2307/1932409
https://doi.org/s12880-015-0068-x
https://doi.org/10.1186/s12880-015-0068-x
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.1334&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.9.1334&rep=rep1&type=pdf
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243

92

Appendices

93

Appendix A

Useful Terminology

The terms related to the background material of this project are defined as
they are introduced in the following chapter. I also use the following terms,
but they are not defined in the chapter.

Image Analyst Anyone who carries out cine-MRI scans, analyses the MRI
images and contours them. These include but are not limited to clinicians,
radiographers, image analysts and experts in for example computational
modelling.

Trainee An observer in training.

Corelab A specialised unit within a clinical research team that works
on various aspects of research support, including data analysis, software
testing, training in image analysis, quality assessment of clinical datasets
and ad-hoc software development.

95

96

Appendix B

Code Examples

B.1 Debatable DICOM handling

97

1 import pydicom
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import matplotlib.ticker as ticker
5 from scipy import io as sp_io
6

7 def store_dicom_image(test_dcm, endo, epi):
8 ref_ds = pydicom.read_file(test_dcm)
9 print(ref_ds.pixel_array.shape, ref_ds.pixel_array.dtype)

10 print(endo.shape, endo.dtype)
11 print(epi.shape, epi.dtype)
12

13 reversed_endo = endo[::-1]
14 reversed_epi = epi[::-1]
15

16 fig, ax = plt.subplots()
17 # pixel_array is the image
18 ax.imshow(ref_ds.pixel_array[::-1],
19 cmap='gray')
20 ax.plot(reversed_endo[:, 0], reversed_endo[:,1], 'r')
21 ax.plot(reversed_epi[:, 0], reversed_epi[:,1], 'b')
22 plt.gca().invert_yaxis()
23

24 # plt.show()
25 # All of the below is needed to completely remove whitespace, borders etc.
26 # around the graph when stored as an image
27 plt.gca().set_axis_off()
28 fig.subplots_adjust(top = 1,
29 bottom = 0,
30 right = 1,
31 left = 0,
32 hspace = 0,
33 wspace = 0)
34 plt.margins(0,0)
35 plt.gca().xaxis.set_major_locator(ticker.NullLocator())
36 plt.gca().yaxis.set_major_locator(ticker.NullLocator())
37

38 plt.savefig("modified_img.png",
39 pad_inches=0,
40 bbox_inches='tight'
41)

Listing 7: Lengthy code extraction of DICOM using matplotlib

98

Appendix C

Papers

C.1 A Web-Based Software for Training and Quality
Assessment in the Image Analysis Workflow for
Cardiac T1 Mapping MRI

99

A Web-Based Software for Training and Quality
Assessment in the Image Analysis Workflow for

Cardiac T1 Mapping MRI
Edvarda Eriksen∗†, Steven A. Hicks‡§, Michael A Riegler‡, Pål Halvorsen‡§, and Valentina Carapella¶

∗Simula Research Laboratory, Norway
†University of Oslo, Norway
‡SimulaMet, Norway

§Oslo Metropolitan University, Norway
¶King’s College London, United Kingdom

Contact email: edvarda.eriksen@outlook.com

Abstract—Medical practice makes significant use of imaging
scans such as Ultrasound or Magnetic Resonance Imaging (MRI)
as a diagnostic tool. They are employed in visual inspection
or quantification of medical parameters computed from the
images in post-processing. However, the value of such parameters
depends greatly on user’s variability, device and algorithmic
differences. In this paper we focus on quantifying the variability
due to the human factor, which can be largely addressed by
structured training of the human operator. We focus on a specific
emerging cardiovascular MRI methodology, the T1 mapping, that
has proven useful to identify a range of pathological alterations of
the myocardial tissue structure. Training, especially in emerging
techniques, is typically not standardized, varying dramatically
across medical centres and research teams. Additionally, training
assessment is largely based on qualitative approaches. The aim
of our work is to provide a software tool combining traditional
clinical metrics and convolutional neural networks (CNNs) to
aid the training process by gathering contours from multiple
trainees, quantifying discrepancy from local gold standard or
standardized guidelines, classifying trainees output based on
critical parameters that affect contours variability.

Index Terms—Cardiovascular MRI, T1 mapping MRI, quality
assessment, deep learning, image analysis training, standardisa-
tion.

I. INTRODUCTION

Training medical personnel in data analysis related work is
a very important task. Especially due to the fact that machine
learning is playing an increasing role withing the medical
field [1]. Work related to this task ranges from analyzing
image or senors data using computer aided diagnosis tools
to simple tasks such as image annotation or segmentation
that allows for training of new and better algorithms. Due
to constant lack of experts (doctors) in the medical area, it
is often very hard to get these tasks done [2]. Therefore, an
important milestone is to train new personnel efficiently. Using
automatic methods to support training of medical experts is a
rather neglected field. There does not exist much work on
how machine learning could be used to make the training of
junior doctors more efficient. In this work, we are proposing a
system that is targeting this problem. As a use case, we chose

Fig. 1: Example MRI taken from the Sunnybrook Cardiac Data
(SCD) [3] dataset. Note that the presented image has been
resized for the purpose of this figure.

the very common T1 mapping in cardiac Magnetic Resonance
Imagings (MRIs) which required a large amount of student
training effort.

T1 mapping in cardiac MRIs is a rapidly emerging tech-
nique in the clinical setting to identify microstructural defects
associated with a range of cardiovascular disease [4]. It
achieves this by quantifying the spin-lattice relaxation time
(T1) of protons in the water molecules of the biological tissue.
This is measured by hitting the protons with a radio frequency
signal and seeing how long it takes (in milliseconds) for
the protons to return to their original state during an MRI

procedure. T1 times are determined by the proportion of water
content in tissue, in addition to its compartmentalization, so
that each tissue type (such as blood or fat) show a range of dif-
ferent T1 values. These ranges, however, change drastically at
different magnetic field strengths and may also depend on the
specific MRI sequence used to measure them [5]. T1 mapping
is the process of mapping T1 times to the individual pixels
for a given MRI. These mappings are used to visualize the
MRI image to easily distinguish between the different types
of tissue including blood, fat and muscle. Standardization of
image acquisition, post-processing and interpretation is crucial
to ensure the consistency and reproducibility of any medical
image analysis process, as well as guaranteeing a common
ground for clinical assessment. Clinical use of cardiovascular
T1 mapping is no exception, and a standardization task force
has already provided the initial guidelines [6].

A T1 mapping of cardiac MRIs is a process which requires
a segmentation of the inner and outer left ventricle of the heart
(Figure 1 shows an example MRI image of the left ventricle).
These segmentations are used to calculate the wall thickness
(WT) and the T1 value, which both set the basis for detecting
a range of abnormalities. Placing these segmentations requires
trained observers who understand how to interpret and analyze
a cardiac MRI. Observers are commonly trained through a
training program consisting of segmentation tasks on an expert
segmented training dataset, which is made up of segmentations
made by a consensus of multiple expert observers. However,
labeled datasets are limited, and evaluating each students
segmentations is time consuming and lack the immediate feed-
back needed for rapid improvement. Therefore, we propose a
system which aids in the training of new observers. For the
system to be truly useful, it needs to incorporate the following
requirements:

1) Produce a standardized report of the training progress
and completion for accreditation for an individual
trainee, or team of trainees.

2) Include a centralized approach to compare the perfor-
mance of a single trainee, as well as a team of students,
against the accepted reference for a training dataset.

3) Automatic generation of average contours either from
expert analysis (typically called the consensus) or the
average of team results.

With these requirements in mind, we present a software
tool which aids the training of new observers by automatically
evaluating their work by comparing against an automatically
generated ”expert” consensus using deep convolutional neural
networks (CNNs).

The novelty of our software is two-fold. First, it focuses on
the evaluation of trainees working on T1 mappings in cardiac
MRIs, not just from an individual point of view, but also
from the viewpoint of multiple operators (who typically work
in a clinical research unit). This combination of individual
and team evaluation stems from the fundamental need for
consistency in the performed analysis, not just with respect
to general guidelines, but also within a clinical unit. Second,

the expert observer segmentations used to evaluate a trainees
(or group) segmentation is automatically generated by a deep
CNN. This CNN is modeled and trained to imitate the knowl-
edge of several expert observers. By using pre-existing training
datasets, we teach the model to estimate an outline of the outer
(epicardium) and inner (endocardium) wall of the myocardium
for a given MRI together with a trainees contour. The here
presented approach allows for instant feedback to the trainees
without having an expert annotating new MRI images since
the CNN can get the expert feedback from the not perfect
student annotation. Furthermore, another advantage is that a
training facility would not have to rely on expert contoured
MRI datasets.

In the process of analyzing T1 mappings in cardiac MRIs,
two measurements are typically recorded; The average my-
ocardial T1 value measured in milliseconds, and the average
myocardial WT measured in pixels or millimetres. The value
of T1 is the most clinically relevant in these types of scans,
whereas WT is mostly employed as a quality assessment
metric, its value being loosely correlated with the average T1.
Regarding the underlying research carried out alongside the
software development, we present a combination of traditional
metrics of evaluation (such as average myocardial T1 and WT)
that are easily understandable to a clinical audience.

The rest of this paper is structured as follows. In Sec-
tion II, we give a brief look at some previous works done
in this field. This section mostly focuses on work done for
the automatic segmentation of the left ventricular myocardial
ring. Section III further details how the developed software
may support the cardiovascular magnetic resonance imaging
(CMR) community as a whole, and the main contributions we
aim to deliver with this research. Section IV gives a description
of our developed software, showing how it may be used for
the training of new observers. Then, in Section V, we look at
the architecture and implementation details of this software,
and discuss in detail how it works. Section VI shows the
experiments performed for the underlying ”expert” observation
CNN model used to evaluated trainee segmentations. Lastly,
Section VII concludes this paper with a summary of our
findings and a brief discussion on future work.

II. RELATED WORKS

Our software aims to aid students in training to become
expert observers of T1 mappings in cardiac MRIs. It does this
by providing immediate feedback on the students performance
and providing a progress report for individual and classes
of students. Image post-processing of T1 mapping in MRIs
requires the delineation of a region of interest (ROI), that is,
placing contours. The most common case is that of the left
ventricular myocardial ring. Depending on the software, con-
tours can be set manually or (semi)-automatically. However,
manual inspection should be carried out to ensure that the
contours do not include regions outside of the myocardium
(such as the outer pericardial fat or inner blood pool). More
thorough quality assessment also labels regions in the my-

Fig. 2: Screenshot of the Trainees Dashboard after the T1 Analysis is uploaded.

ocardium affected by imaging artefacts in order to exclude
them from the analysis.

Over the years, multiple approaches for placing these con-
tours automatically have been proposed. In 2014, Hu et al. [7]
proposed a method for automatically segmenting the left ven-
tricular myocardial using local binary fitting models and dy-
namic programming techniques. Overall, their method shows
good results, yet they struggles to segment the overlap between
intensity distributions within the cardiac regions. Abdelfadeel
et al. [8] use maximally stable extremal regions to segment the
left ventricle of cardiac MRIs. Their achieves a DICE metric of
0.88 on the Medical Image Computing and Computer Assisted
Intervention (MICCAI) 2009 challenge database [3]. Similar
to our method, Zreik et al. [9] propose a method based on deep
CNNs, where they try to segment the left ventricle in cardiac
CT images. Their method uses a combination of three different
CNNs, each detecting the presence of the left ventricle in the
axial, coronal, and sagittal independently. Our work, however,
differs from these approaches as we try to measure the quality
of a student contour by generating an expert consensus based
on the student contour and MRI image using a deep CNN.

III. THE RESEARCH CONTRIBUTION

The development of the software tool started from the
specific requirements gathered from a team of researchers
working in the field. Thus, it is first of all a tool for research
support. In this respect, by allowing a more efficient and
consistent monitoring of quality assessment in cardiac MRI
image analysis, it has a fundamental impact on the quality of
the research produced at that centre. However, this has given
us the opportunity to carry out novel research in the field of
quality assessment using deep learning methods, specifically to
automate the generation of contours based on experts observer
analysis (in other words, generating an expert consensus). This
approach to quality assessment based on the comparison of
contours, rather than point measures such as T1 or WT, has

not yet been fully explored in the CMR community, with some
exceptions [10]. We believe that this aspect of our work will
contribute to a more quantitative, detailed and standardized
approach to quality assessment of image analysis done on T1
mapping in cardiac MRIs.

IV. SYSTEM DESCRIPTION AND USAGE

We have divided the application into two user groups: (a)
experts / supervisors and (b) trainees. The system expects both
users to upload files of the file types Digital Imaging and
Communications in Medicine (DICOM) [11], that contain the
original T1 mapping MRI data, and Interactive Data Language
(IDL) SAV Files [12], that contain the image segmentation,
that is the black and white binary mask representing the ROI
enclosed by the contours (specifically, the image segmenta-
tion). The system is implemented as a web-based application,
comprising of a back-end server and front-end web interface
(which will be further discussed in Section V).

A. The Supervisor System

The supervisor (expert) can upload a pre-generated consen-
sus of experts into the system, which will give the trainees
the ability to compare their own analysis with that of the
gold-standard. In addition, the supervisor can enable an au-
tomatically generated consensus to be an evaluation option
for the trainees. This allows for the use of non-contoured
datasets which increases the overall training material. The
system will also allow supervisors to view the overall progress
of a class of trainees by getting an automatically generated
report about their collective progress. The report is produced
in a PDF format and provides various graphs and summary
metrics about individual trainees and the class as a whole.

B. The Trainee System

As previously stated, the main purpose of this software is to
train observers in contouring the endocardium and epicardium

Fig. 3: A diagram showing how data is transferred across the system, starting with the user and ending with the Django based
server. From the left, we see that a user uploads a segmentation together with the associated training image. This is then passed
through the local Node based proxy server to the centralized Django server. The image together with the contour is stored in
the database and evaluated by the CNN ”expert”. The evaluation is then passed back to the user where he/she is presented
with their performance metrics.

of the left ventricle, and giving immediate feedback by com-
paring against an automatically generated ”expert” consensus
produced by a deep CNN. For an example use case scenario,
we imagine a trainee who has been working on contouring
an MRI as part of their training dataset. The trainee uploads
the T1 mapping of the MRI (or DICOM file) along with their
produced segmentation into the system. The system will then
start extracting key values from the DICOM [11] file, of which
the trainee will be presented with a visual representation of
their work, as well as the T1-value and the WT. Then, to get
an understanding of their progress, the trainee may compare
against the systems generated ”expert” contour consensus by
getting a visual representation of the overlay between the
two contours (trainee produced contour and CNN produced
contour), showcasing the regions of discrepancy between the
two. Furthermore, the user will get some key metrics regarding
how well their contour compares to the one generated by the
system. These evaluation metrics will be used to clearly state
how well the trainees segmentation compares to that of the
consensus.

The trainee can also generate a basic T1 training report to
track progress of their repeated analysis over the same dataset.
This is produced in a PDF format and provides an overview
of the progress with graphs and summary metrics showing the
discrepancies between their analysis and the consensus. This
report may also be used to track the progress of a team of
trainees, showing how a class improves over time.

V. SOFTWARE ARCHITECTURE AND IMPLEMENTATION

Due to the sensitive nature of the data used for train-
ing, as well as the geographical localization of our target
demographic, the system is only meant to be run over a
local area network (LAN). That is, it is not meant to be
available outside the area of deployment. With this in mind,
our web application is managed by two locally run servers.
One is based on Node.js [13] acting as an intermediate proxy

which is responsible for handling the front-end logic, and the
other is based on the python web-framework Django [14]
which interacts with the database and deep learning model.
A screenshot of the web-based graphical user interface (GUI)
is shown in Figure 2, and the overall architecture is shown in
Figure 3.

The web-based client is built using React [15] (a popular
JavaScript library used to build front-end interfaces), which
communicates directly with the Node.js based server. This
server acts as a proxy that redirects all HTTP requests and
responses to the Django server. From here, Django may
retrieve images from the database or evaluate uploaded con-
tours against the contours produced by the CNN model or
expert consensus. Furthermore, the Django-based server is
also responsible for calculating the evaluation metrics used to
assess a trainees performance on contouring the left ventricle.
The underlying CNN is implemented using the deep learning
framework Keras [16] with a TensorFlow [17] back-end. The
CNNs purpose is to automatically infer the endocardium
and epicardium contours based off a given MRI and student
contour.

VI. AUTOMATED FEEDBACK USING CNNS

Part of what makes the system novel is the automatic
generation of an ”expert” contour consensus using deep CNNs.
The purpose of automating this process is to fulfill the need
for quick and consistent feedback to the trainees using the
system, in addition to not needing a fully expert contoured
dataset. This section will cover the various experiments done
in producing this ”expert” observer CNN, and a qualitative
analysis on the models produced contours. But first, we will
give a short description on the dataset used to train our models.

A. Dataset Details and Preprocessing

The dataset consists of 42 fully anonymized single mid-
ventricular short-axis native T1-maps, half of which come

Fig. 4: A diagram showing the entire process for training the ”expert” consensus CNN used to evaluated trainees. Starting
from the left, we see that the input image (comprised of the student contour and MRI) is resized to 224 × 224 × 4 before
being put into the model. Then, the model outputs a vector with size 52, 176, which is then reshaped into the same shape as
the input image.

from healthy volunteers, while the other half from patients
with an acute myocardial injury. Each T1-map comes as a
DICOM file (a standard for medical imaging data). A typical
DICOM file contains a wide variety of different information
ranging from simple meta-data (such as information about the
MRI sequence or details about the patient), to full MRI images.
Because we are only interested in the MRI data, the MRI
images had to be extracted before training the neural network.
This was done using the python library called pydicom [18],
which is a popular library for working with DICOM files.
The extracted images vary in size, ranging from 384× 264 to
384× 344 pixels.

For the ground truth contours, the dataset includes several
contours per DICOM file. Each MRI has been contoured by
several experts to form a consensus between them. Overall,
there are two sets of contours. One for the inner myocardial
wall (endocardium), and one for the outer (epicardium). These
contours come in a special file written in a proprietary pro-
gramming language called IDL. The contents of these files is
coordinates which correspond the the contours of the related
MRI image. For training purposes, we converted these files to
a pixel activated vector which was used as the ground truth
for our CNN experiments.

B. CNN Architecture and Training Configuration

The network used to generate segmentations is a modified
version of the VGG-16 [19] based model implemented in
Keras. To decide on which architecture to use, we experi-
mented with numerous of the Keras-based implementations
of popular CNN architectures (such as, ResNet [20], Incep-
tion [21], DensNet [22]), but we ended up using VGG-16
as it showed the best performance. For input, the model
expects an image consisting of four channels. The first three
channels consists of the R (red), G (green), and B (blue) color
channels of the extracted MRI image (extracted as previously
described). The fourth image channel is represented by the
student contour. The input image is then resized 224×224×4
before being passed into the model, which outputs a vector
with the size 50, 176 (224 × 224) which represents the seg-
mentation of the left ventricular myocardial ring. Each value

(a) CNN system (b) Expert observer

Fig. 5: The segmentation results produced by the system’s
CNN and an expert observer.

in the vector represents one pixel of the output segmentation,
and each pixel can be either ”on” or ”off”, meaning it consists
of 50, 176 binary values being either 1 or 0. To get the final
segmentation, we chop the output vector into 224 pieces and
stack them on top of each other before turning ”on” pixels
white and ”off” pixels black.

For training, we used the Keras based implementation of
VGG-16 and trained it from scratch. We replace the clas-
sification block of the original model with a custom block
consisting of one 2D global average layer, a normalization
layer which squashes the input values between 0 to 1, then
a final fully-connected layer consisting of 50, 176 nodes (one
for each pixel). The model was trained using mean absolute
error (MAE) to calculate loss and Nadam [23] to optimize the
weights with a learning rate of 0.004 which decayed at a rate
of 0.900 for β1 and 0.999 for β2. The ground truth is created
from expert segmentations made by multiple observers. This
includes several expert segmentations for a single MRI image,
which are all used in the training process to let the network
average an ”expert” consensus. To ensure robust results, each
experiment was run using 3-fold cross-validation. A diagram
explaining the entire training process can be seen in Figure 4.

Figure 5 shows some examples segmentations produced by
the underlying CNN model compared to that of the actual

expert produced segmentation. We see that the CNN produced
segmentation is quite similar to that of the expert, but still
requires some improvements before being deployed into a fully
functional system.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a software tool meant to aid
students in training for contouring the inner and outer wall
of the left ventricle of the heart. The system automatically
evaluates the trainees segmentation by comparing it against
an ”expert” consensus generated by a deep CNN. This allows
for immediate feedback on their submitted segmentation and
removes the need for a fully contoured expert dataset. Further-
more, the system presents an overview of the student progress
using a variety of different metrics and graphs. The underlying
CNN used for generating the ”expert” segmentation is based
on a VGG-16 architecture.

For future work, we aim to support more options for gen-
erating an expert consensus, in addition to improving on the
existing method. Furthermore, we intend to get this software
into the hands of real trainees and observers to gain further
feedback and a real-world evaluation of this tool.

REFERENCES

[1] E. J. Topol, “High-performance medicine: the convergence of human
and artificial intelligence,” Nature medicine, vol. 25, no. 1, p. 44, 2019.

[2] M. Riegler, M. Lux, C. Griwodz, C. Spampinato, T. de Lange, S. L.
Eskeland, K. Pogorelov, W. Tavanapong, P. T. Schmidt, C. Gurrin et al.,
“Multimedia and medicine: Teammates for better disease detection and
survival,” in Proceedings of the 24th ACM international conference on
Multimedia. ACM, 2016, pp. 968–977.

[3] P. Radau, Y. Lu, K. Connelly, G. Paul, A. Dick, and G. Wright,
“Evaluation framework for algorithms segmenting short axis cardiac
mri.” 07 2009.

[4] D. R. Messroghli, J. C. Moon, V. M. Ferreira, L. Grosse-Wortmann,
T. He, P. Kellman, J. Mascherbauer, R. Nezafat, M. Salerno, E. B.
Schelbert, A. J. Taylor, R. Thompson, M. Ugander, R. B. van Heeswijk,
and M. G. Friedrich, “Clinical recommendations for cardiovascular
magnetic resonance mapping of t1, t2, t2* and extracellular
volume: A consensus statement by the society for cardiovascular
magnetic resonance (scmr) endorsed by the european association for
cardiovascular imaging (eacvi),” Journal of Cardiovascular Magnetic
Resonance, vol. 19, no. 1, p. 75, Oct 2017. [Online]. Available:
https://doi.org/10.1186/s12968-017-0389-8

[5] S. K. Piechnik, V. M. Ferreira, E. Dall’Armellina, L. E. Cochlin,
A. Greiser, S. Neubauer, and M. D. Robson, “Shortened modified
look-locker inversion recovery (shmolli) for clinical myocardial t1-
mapping at 1.5 and 3 t within a 9 heartbeat breathhold,” Journal of
Cardiovascular Magnetic Resonance, vol. 12, no. 1, p. 69, Nov 2010.
[Online]. Available: https://doi.org/10.1186/1532-429X-12-69

[6] J. C. Moon, D. R. Messroghli, P. Kellman, S. K. Piechnik, M. D.
Robson, M. Ugander, P. D. Gatehouse, A. E. Arai, M. G. Friedrich,
S. Neubauer, J. Schulz-Menger, and E. B. Schelbert, “Myocardial
t1 mapping and extracellular volume quantification: a society for
cardiovascular magnetic resonance (scmr) and cmr working group of
the european society of cardiology consensus statement,” Journal of
Cardiovascular Magnetic Resonance, vol. 15, no. 1, p. 92, Oct 2013.
[Online]. Available: https://doi.org/10.1186/1532-429X-15-92

[7] H. Hu, Z. Gao, L. Liu, H. Liu, J. Gao, S. Xu, W. Li, and L. Huang,
“Automatic segmentation of the left ventricle in cardiac mri using
local binary fitting model and dynamic programming techniques,”
PLOS ONE, vol. 9, no. 12, pp. 1–17, 12 2014. [Online]. Available:
https://doi.org/10.1371/journal.pone.0114760

[8] M. A. Abdelfadeel, S. ElShehaby, and M. S. Abougabal, “Automatic
segmentation of left ventricle in cardiac mri using maximally stable
extremal regions,” in 2014 Cairo International Biomedical Engineering
Conference (CIBEC), Dec 2014, pp. 145–148.

[9] M. Zreik, T. Leiner, B. D. de Vos, R. W. van Hamersvelt, M. A.
Viergever, and I. Igum, “Automatic segmentation of the left ventricle in
cardiac ct angiography using convolutional neural networks,” in 2016
IEEE 13th International Symposium on Biomedical Imaging (ISBI),
April 2016, pp. 40–43.

[10] A. Suinesiaputra, D. A. Bluemke, B. R. Cowan, M. G. Friedrich, C. M.
Kramer, R. Kwong, S. Plein, J. Schulz-Menger, J. J. Westenberg, A. A.
Young, and E. Nagel, “Quantification of lv function and mass by car-
diovascular magnetic resonance: multi-center variability and consensus
contours.” Journal of cardiovascular magnetic resonance, p. 63, 2015.

[11] N. E. M. Association. (2019) Dicom standard. [Online]. Available:
https://www.dicomstandard.org/

[12] H. G. S. Inc. (2019) The save procedure. [Online]. Available:
https://www.harrisgeospatial.com/docs/SAVE.html

[13] N. Foundation. (2019) Node.js. [Online]. Available:
https://nodejs.org/en/

[14] D. S. Foundation. (2019) Django - the web framework for perfectionists
with deadlines. [Online]. Available: https://www.djangoproject.com/

[15] F. Inc. (2019) React - a javascript library for building user interfaces.
[Online]. Available: https://reactjs.org/

[16] F. Chollet et al., “Keras,” https://keras.io, 2015.
[17] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[18] D. Mason, scaramallion, rhaxton, mrbean bremen, J. Suever, V. Sochat,
G. Lemaitre, D. P. Orfanos, A. Panchal, J. Massich, A. Rothberg, K. van
Golen, J. Kerns, T. Robitaille, M. Shun-Shin, moloney, pawelzajdel,
M. Mattes, F. C. Morency, huicpc0207, colonelfazackerley, M. D.
Herrmann, K. S. Hahn, H. Meine, I. de Bruijn, E. Stevens, D. Barreto,
C. Bryant, A. Fedorov, and A. Klimont, “pydicom/pydicom: 1.2.2,”
Jan. 2019. [Online]. Available: https://doi.org/10.5281/zenodo.2541240

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2015.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 770–778.

[21] C. Szegedy, , , P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015, pp. 1–9.

[22] G. Huang, Z. Liu, L. v. d. Maaten, and K. Q. Weinberger, “Densely con-
nected convolutional networks,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017, pp. 2261–2269.

[23] T. Dozat, “Incorporating nesterov momentum into adam,” 2015.

	I Introduction
	Introduction
	Motivation and Background
	Problem Statement
	Scope and Limitations
	Research Method
	Main Contributions
	Thesis Outline

	Background
	Physiology and Anatomy of the Heart
	Cardiac Anatomy
	Cardiac Cycle

	Magnetic Resonance Imaging (MRI)
	Cardiac Imaging Planes

	Clinical Imaging Workflow
	T1 Mapping
	Physics behind MRI and T1 Mapping

	Medical Image File Formats
	General Concepts
	Medical Image File Formats: DICOM and Nifti

	Segmentation of the Heart
	Clinically Relevant Measurements
	Challenges and Sources of Variability

	Software for CMR Image Analysis
	Machine Learning
	Learning Methods
	Artificial Neural Networks (ANN)
	Deep Learning
	How Supervised Neural Networks Learn
	Convolutional Neural Networks (CNN)
	Related Work

	II Method
	Fabulinus: A Web-Based Software for Quality Assessment in the Image Analysis Workflow
	Fabulinus
	Planning Phase and Desired User Stories
	Backend Architecture, Libraries and Tools
	Implementing REST using Django REST Framework
	Frontend Architecture, Libraries and Tools

	The Trainee Dashboard
	Summary

	Automatic Generated Feedback Using Convolutional Neural Networks
	Dataset Details and Preparation
	Generating A New Folder Structure For The Dataset
	Handling DICOM and SAV files

	Deep Learning Environment Setup
	Software and Libraries Used
	Architectures Used for Training and Evaluation

	Deciding On Appropriate Cases
	Predict Expert Contour From DICOM
	Preprocessing of the Data
	First Iteration
	Second Iteration

	III Experiments
	Deep Learning Model
	Training and Evaluation Pipeline
	Hyperparameters
	Model Metrics and Evaluation
	Metrics
	Evaluating and Comparing Models

	Experiment 1: Automatic Generation of Contour
	First Iteration
	Second Iteration
	Further Experimentation with ResNet50, VGG16, VGG19, and InceptionResNetV2

	Experiment 2: Generate Feedback from Trainee Contour
	Summary

	IV Conclusion and Future Work
	Summary and Conclusion
	Future work
	Fabulinus
	Deep Learning Architecture

	Bibliography
	Appendices
	Useful Terminology
	Code Examples
	Debatable DICOM handling

	Papers
	A Web-Based Software for Training and Quality Assessment in the Image Analysis Workflow for Cardiac T1 Mapping MRI

