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Abstract

There has been an increasing demand for multimedia systems in various areas. An innovative
vision for multimedia systems has paved way for the advent of several interesting and useful
applications, especially in the 3D arena. Such current and new age 3D applications based on
single or multiple camera images can, for example, be seen in the field of vision based inspec-
tion, mixed reality art performance, sports analytics, augmented reality and image metrology.
For high quality performance in these applications, the underlying focus is on the quality of
image based 3D reconstruction.

To achieve high quality performance in image based 3D reconstruction, an accurate camera
calibration is necessary. Camera calibration provides a priori knowledge about the camera’s
intrinsic parameters (such as focal length, principal axes, skewness and lens distortion) and
extrinsic parameters (such as spatial position and orientation). In certain application scenarios,
traditional checkerboard calibration process (requires a checkerboard target) and marker-based
calibration process (requires an identifiable marker) are impossible or inconvenient. In such
cases, 3D systems have to rely on an alternate solution, i.e., Feature Based Calibration (FBC),
where interesting feature points in the camera images are extracted and used for the calibration
process. Therefore, the accuracy of FBC is an important factor defining the quality of single or
multiple camera 3D systems.

Although, the FBC can be integrated in 3D systems, there are several practical issues in-
volved, e.g., (1) misalignment, arrangement and changes in the properties of one or more cam-
eras; (2) misalignment of captured object scene; and (3) noisy feature points extracted from
the images. Therefore, in this thesis, the aim is to explore the challenges in designing FBC to
achieve high accuracy and robustness in 3D systems.

In order to explore the influence of practical issues on FBC, relevant evaluation procedures
that relates to specific application scenarios was setup. Extensive tests were carried out using
both real and virtual datasets and simulations. The effects of camera misalignment, adoption of
FBC, characterization of the state-of-the-art feature extractors and camera pose estimator were
studied for obtaining an accurate and robust 3D reconstruction. The evaluation of results are dis-
cussed by assessing the accuracy and robustness of FBC against practical issues. Consequently,
tolerances for camera misalignment, operational limits of state-of-the-art feature extractors and
an estimation of camera density to capture the scene are presented. Finally, recommendations
are given for researchers and system developers to design better 3D systems considering prac-
tical issues for their applications scenarios.
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Chapter 1

Introduction

The perception of depth is the natural ability for human eyes. As early as in 1838, Charles
Wheatstone first explained the "Physiology of Vision" (Wheatstone, 1838): ... the mind per-
ceives an object of three dimensions by means of the two dissimilar pictures projected by it on
the two retinæ.... Since then, there have been many attempts to imitate such depth perceptive
ability in the digital visual media. Creating depth illusions from photographic images have
been studied since a long time by research communities such as photogrammetry and computer
vision. This has led to interesting applications in various fields.

The 3D multimedia systems have grown big in terms of applicability, deployment and main-
tenance. The quality of such systems are measured by accuracy, resilience and speed efficiency.
Commonly, all these systems capture the scene of interest using one or more cameras from
different viewpoints. Then, the camera feeds from all the cameras, along with other relevant
information (e.g., metadata, calibration information, etc.) is compressed and transmitted. At the
receiving end, the information is decompressed, processed and rendered to a suitable display.
Some of the interesting 3D applications are found in the areas of immersive visual communi-
cation systems, structure from motion systems, visual inspection systems, etc. Each of them
have different requirements for quality of service (QoS), in terms of accuracy, robustness and
execution time.

Immersive systems aim at providing a realistic experience through applications such as free-
viewpoint rendering, telepresence etc. Freeviewpoint rendering (Min, Kim, Yun, and Sohn,
2009; Tanimoto, 2010) enables us to view a 3D scene freely from any viewpoint, by synthe-
sizing new viewpoints from a limited number of views captured by multiple cameras. Telep-
resence enables interactivity between human-human or real-virtual scenes. This includes dis-
tributed orchestra1, cisco telepresence2, immersive virtual-reality environments for entertain-
ment (Muhanna, 2015), system to aid medical surgery (Chen, Xu, Wang, Wang, Wang, Zeng,
Wang, and Egger, 2015), etc. Structure-from-motion systems aim at reconstructing 3D struc-
tures from a large number of images taken by one or more cameras at various viewpoints.
These systems exploit the structural geometric information hidden in multiple images. Inter-
esting examples of building 3D structures from shared photo collection are ’Rome in a day’
(Agarwal, Furukawa, Snavely, Simon, Curless, Seitz, and Szeliski, 2011) and ’Photo Tour’

1Open Orchestra - http://openorchestra.cim.mcgill.ca
2Cisco Telepresence - http://www.cisco.com/c/en/us/solutions/telepresence/

telepresence_video_teleconference.html

1

http://openorchestra.cim.mcgill.ca
http://www.cisco.com/c/en/us/solutions/telepresence/telepresence_video_teleconference.html
http://www.cisco.com/c/en/us/solutions/telepresence/telepresence_video_teleconference.html
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(Goesele, Snavely, Curless, Hoppe, and Seitz, 2007; Snavely, Seitz, and Szeliski, 2006). Visual
inspection systems aim at real 3D measurements using 2D images. Currently, there are several
such systems in the market, which use 3D vision principles to measure the 3D structure, for
example, Scorpion 3D stringer3, industrial vision systems4, etc.

1.1 Application Scenarios
Currently, new-age 3D multimedia systems that utilizes advanced 3D imaging capabilities are
emerging. In this thesis, the focus is on few application scenarios that have variety of applica-
tions, various working distances and differs in the requirement of QoS.

VERDIONE is a research project that aims at creating a platform for mixed reality art perfor-
mances. These performances are highly interactive, where the actors at remote location
are projected on a real stage. Multiple cameras capture the actor in a remote location
and a particular view is rendered in the performance location. One such experiment for
the world opera performance was carried out in Tromsø in 20125. More details about
VERDIONE and its challenges are discussed in section 2.2.1.

BAGADUS is a research project that aims at developing an integrated system for soccer anal-
ysis. In this project, multiple cameras capture the soccer field and creates a panorama
video. The players are tracked, and their analytic information is annotated in the panorama
video. In this way, the manual analysis of the players is replaced by this advanced tech-
nology. A prototype of this system is currently deployed in Alfheim soccer stadium,
Tromsø. More details about BAGADUS and its challenges are discussed in section 2.2.2.

PTMS The PantoInspect Train Monitoring System (PTMS) is a product developed by the com-
pany, ImageHouse - PantoInspect, Denmark. The PTMS inspects, detects and reports
defects occurring on the pantographs of electric trains. These systems are installed on the
bridges or at locations where the PTMS can scan the pantographs. When the train passes
under the PTMS, a camera captures the laser lines projected on the top of the pantographs.
The image is then analyzed for measuring the defects. More details about the PTMS and
its challenges are discussed in section 2.2.3.

POPART is a research project that aims at on-set visualization and post-production of films.
Nowadays, the production of films focus on visual effects by integrating virtual scenes and
real actors. In such productions, the director wishes to see the output right away. POPART
allows the flexibility for the director or any other technician to view the integration of
virtual and real scenes, while the film shoot is in progress. POPART also provides on-set
post-production capabilities, which save a lot of time for filmmakers. More details about
POPART and its challenges are discussed in section 2.2.4.

SEMRECON represents a module of a software product (Spip - Mountains) co-developed by
the companies, Image Metrology, Denmark and Digital Surf, France. This is an image

3Scorpion 3D Stringer - https://scorpion3dstinger.com
4IVS - http://www.industrialvision.co.uk/applications/3d-vision-systems
5World Opera Performance in Tromsø - http://www.geistweidt.com/publications.html

https://scorpion3dstinger.com
http://www.industrialvision.co.uk/applications/3d-vision-systems
http://www.geistweidt.com/publications.html
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based analysis tool for metrology purposes. The SEMRECON aims at reconstructing the
3D surface of a sample using series of images produced by scanning electron microscope.
More details about SEMRECON and its challenges are discussed in section 2.2.5.

In most 3D multimedia applications where 3D reconstruction from 2D images is involved,
one of the important factors that decide the quality of the system is camera calibration, i.e., the
knowledge of the camera geometry and motion (Pedersini, Sarti, and Tubaro, 1998). Camera
geometry is characterized by intrinsic parameters (such as focal length, principle point, pixel
aspect ratio and skewness), and the camera motion is characterized by its extrinsic parameters
(such as spatial position and orientation, also known as camera pose). Estimating both intrin-
sic and extrinsic parameters of one or more cameras is essentially the primary step in the 3D
reconstruction process. Traditionally, a checkerboard pattern of a known measurement is used
mostly for intrinsic camera calibration and sometimes for extrinsic camera calibration. This is
termed as Checkerboard Based Calibration (CBC).

1.2 Practical Challenges
Although the 3D imaging technology has evolved in various application areas, practical chal-
lenges in their deployment and maintenance still exist, especially in new-age advanced 3D
imaging systems.

In large space scenarios, e.g., VERDIONE (section 2.2.1) or BAGADUS (section 2.2.2),
it is impractical to carry out the traditional camera calibration process because an extremely
large checkerboard is required to calibrate the cameras. To obtain proper calibration, images
must capture a large part of the checkerboard pattern in various angles. The cameras in these
scenarios are located at large distances from the center of the space (in this case, a performance
stage or a soccer stadium). Therefore, for calibration, the checkerboard pattern to be placed
in the center of the space needs to be of a considerably large size in order to cover the image
view of the camera. In such spaces, the application such as freeview rendering, greatly depends
on the accurate estimation of camera calibration parameters. In the cases where cameras are
misaligned after calibration, a re-calibration process is required, and this is again a cumber-
some process while a stage performance or a soccer event is taking place. This leads to using
in-accurate camera parameters for freeview rendering and the related application, and conse-
quently, a distorted view is created, which may cause viewing discomfort for the end-users. A
solution to overcome such misalignment problems in image based 3D systems could probably
be to use a structured light based approach. Kinect is a product based on structured light, used
for 3D reconstruction. In outdoor situation such as the BAGADUS scenario, the infrared rays
in the sunlight interferes with structured light and degrades the Kinect system. In indoor situa-
tion, Kinect has an operating range of maximum 10 meters, but the opera stage in VERDIONE
scenario or the soccer stadium in BAGADUS scenario is too big an area for the Kinect system
to handle. In order to cover a larger area, more than one Kinect systems can be used but then
the interference between the structured light will become a challenge.

In medium space scenarios, such as PTMS (section 2.2.3) or POPART (section 2.2.4), tra-
ditional CBC process is possible. However, the challenge here is to handle the camera misalign-
ment. There is a serious effect of camera misalignment in PTMS. The critical damage of carbon
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strips on the pantograph needs to be accurately measured. The camera misalignment caused by
vibrations or wind or physical force during deployment leads to wrong measurements, which
might then fail to detect the critical damage. This compromises safety in railways. There are
several incidents where the electric lines have been damaged due to the failure of identifying
damages on the pantographs and replacing them. In order to avoid such a catastrophe and to
obtain high accuracy measurements with camera misalignment, a re-calibration process is re-
quired. However, it is difficult or inconvenient. After the system is deployed, a checkerboard
cannot be used for calibration, unless the train traffic on the tracks are suspended, causing huge
delays in the public transport system. In POPART, the camera misalignment can have an im-
pact on wrong estimation of position cues to place virtual objects in the scene. The effect of
misaligned virtual objects is not an expected outcome of the movie production. Once a scene
is shot with wrong camera parameters, it is difficult to correct them during post-production. Of
course, the cameras could be re-calibrated, but with a cost of time to re-shoot the scene.

In small space scenario such as in the SEMRECON scenario (section 2.2.5), which recon-
structs a surface from a series of micro/nano-scopic images, a direct way for traditional cali-
bration is not available. Placing a checkerboard is not possible because its not a camera-based
imaging system but rather a electron-based imaging system.

From all scenarios discussed, the main practical problem is either that the traditional CBC
is not possible at all, or if it is possible, then the re-calibration process becomes cumbersome
due to misalignment of cameras and has a cost on safety, usability, reliability and time. In situa-
tions where CBC becomes impractical or inconvenient to use, various types of markers could be
placed in the scene at known positions. The cameras in the scene register these markers’ posi-
tions, and in turn, estimate each camera’s relative position and orientation with respect to other
cameras. This type of calibration is termed as Marker Based Calibration (MBC). Sometimes,
it is not convenient to use markers within the scene, as it might disturb the scene setting, e.g.,
identifiable markers place on a opera stage for VERDIONE scenario, or placing at the target of
microscope for SEMRECON scenario.

In order to overcome these problems, it is required to focus on an alternative way to calibrate
the cameras and that is Feature Based Calibration (FBC). Unlike other techniques, feature based
calibration estimates the camera calibration parameters based on point features extracted in the
images instead of known positions of checkerboard corners (CBC) or any identifiable pattern in
the scene (MBC).

The FBC is a process to estimate the camera parameters based on matches of interesting
points, i.e., feature correspondences in two or more images. The FBC is comprised of the
following steps: Feature Extraction and Pose Estimation. In the feature extraction step, the in-
teresting points from two or more images are detected and matched against each other to obtain
feature correspondences. In the pose estimation step, the feature correspondences are used to
estimate the relative position and orientation of a camera with respect to another. The estimated
camera parameters are used to define the scene geometry, and its accuracy has an effect on 3D
reconstruction. For example, Scale Invariant Feature Transform (SIFT) (Lowe, 2004) is one
of the state-of-the-art feature detectors known for obtaining feature correspondences between
stereo camera pairs. The SIFT detector has been used as a feature extractor in the context of
FBC (Liu, Zhang, Liu, Xia, and Hu, 2009).
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1.3 Goal and Scope
In order to achieve high quality applications in new-age 3D systems and overcome the practical
challenges, highly accurate and robust FBC is required. Hence, the goal of this thesis is to
explore the adoption of FBC in 3D systems and assess the accuracy and robustness against
practical challenges.

In this thesis, the focus is specifically on application scenarios such as mixed reality art
performance (VERDIONE), soccer player tracking (BAGADUS), pantograph train monitoring
system (PTMS), movie production on-set real-time tracking (POPART) and scanning electron
microscopic image reconstruction (SEMRECON). A detailed view of these application scenar-
ios is explained in section 2.2.

Although each of the application scenarios have different use cases, this thesis focuses on the
common underlying concept, i.e., 3D reconstruction. Therefore, the entire thesis refers to a 3D
multimedia system, which is capable of reconstructing 3D data based on single or stereo images.
Typically, such systems comprise both hardware and software units for scene acquisition, image
processing, object reconstruction and 3D display and are referred to as Image Based 3D Systems
(details in section 2.1).

1.4 Problem Statement
In accordance with the goal of the thesis, the accuracy and robustness of FBC on 3D multimedia
systems were evaluated for several variations in scene properties and camera properties. Thus,
the main question worth exploring was:

What are the challenges in designing FBC to achieve high accuracy and ro-
bustness against practical issues in 3D multimedia systems?

As a part of the scientific method, the approach of research is driven by one or more testable
hypothesis. For a research question, a hypothesis is a tentative statement that might include a
possible explanation or prediction of an answer, in the form of relation between the variables
that change in the experiment and observations in the experiment. A null hypothesis6 (H

0

)
represents that a change in the variables has an no effect on the observations of the experiment.

The main question above, was further categorized into the following research scopes: 3D
systems, feature extraction and pose estimation. Within each research scope, relevant questions
were posed and null hypotheses (H

0

) were formulated to help guide the research.

1. 3D multimedia systems:

In 3D systems, the cameras are prone to misalignment due to several factors, i.e., the
system deployment might not be sturdy or the system can be physically disturbed by
human intervention or natural causes (e.g., by wind). Camera misalignment refers to the
change in the rotation and translation of the camera with respect to its axis (single camera

6Null hypotheses can be proven/disproven wrong by an example, which allows us to make general statements,
whereas we are unable to prove the opposite, that certain errors always have negative effects. In fact, we are certain
that the opposite statements cannot be made so broadly.
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system) or another camera (stereo camera system). Due to the camera misalignment,
the 3D system that uses the initially calibrated camera parameters will then yield wrong
results. Hence, the quality of such 3D systems is affected by the camera misalignment.
The significance of the effect of the camera misalignment is determined by an acceptable
reconstruction error in 3D systems, which is entirely specific to the application.

From the complete 3D system point of view, the following questions were posed:

• What is the effect of single/stereo camera misalignment on the quality of 3D system?
It is important to study the effects in order to quantify the relationship between 3D
error and the camera misalignment and thereby find the limits/tolerances of camera
misalignment for an acceptable error for a specific application. This helps in design-
ing better 3D systems that provides a good user experience for 3D reconstruction
application and ensures safety for PTMS application scenario.
Hypothesis I:

H
0

: The 3D reconstruction accuracy has insignificant effect when the cam-
era is misaligned.

• Can FBC ensure a good online re-calibration capability in comparison to CBC, in a
single camera 3D system?
In certain applications, the system deployment is such that the online re-calibration
process becomes impossible with traditional CBC techniques, especially PTMS. In
this case, it becomes important to understand the impact of using FBC on a single
camera system in terms of quality comparable to CBC techniques. This helps in
designing a good quality 3D system that is robust to any physical disturbance that
causes camera misalignment.
Hypothesis II:

H
0

: The accuracy and robustness of 3D reconstruction has an insignificant
effect, when the 3D system replaces CBC by FBC techniques.

2. Feature extraction:

In 3D stereo systems that adopts FBC, the feature extraction is one of the processes that
comprises feature detection, description and matching process between stereo images.
Therefore, the accuracy of feature matching has an effect on the the quality of 3D recon-
struction. This builds up the curiosity to find out what are really the "good" features for
FBC. Hence, characterizing the state-of-the-art feature extractors for changes in camera
properties or scene properties is necessary. The significance of the performance of fea-
ture extractors are determined by an acceptable 3D reconstruction error that is specific to
applications.

With a view to characterize the feature extractors, the following questions were posed:

• How does the quality and robustness of feature extractors vary with intrinsic and
extrinsic camera properties?
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Here, the feature extractors are characterized for changes in camera properties, i.e.,
internal (blur, lens distortion, resolution and noise) and external (camera baseline -
relative camera displacement in stereo systems) camera properties. The change in
both internal and external camera properties has an impact on the quality of feature
correspondence matching in stereo systems for the discussed scenarios. This helps
system builders to make a better choice of feature extractor suitable for their appli-
cations. On the other hand, it is also possible to design the camera density based on
the choice of feature extractor.
Hypothesis III:

H
0

: The performances of the state-of-the-art feature extractors have in-
significant differences to the change in intrinsic and extrinsic camera
parameters.

• How to characterize SIFT features used for FBC in 3D systems, for wide baseline
setup?
SIFT, being a popular feature extractor, has a limitation of rotational invariance
between stereo pairs for upto 30 degrees. However, a wider baseline is suitable for
certain applications, especially in large space scenarios. So, an exploration of SIFT
feature extractor for a wide baseline setup is necessary. This helps in achieving the
same quality with reduced number of cameras and thereby also saves the cost of the
system, in terms of storage, transmission and processing of multiple images.
Hypothesis IV:

H
0

: Accuracy of SIFT features for wide baseline FBC is maintained at
an acceptable level, only up to 30 degrees angular separation between
stereo cameras.

3. Pose estimation:

In stereo systems, the pose estimation determines the camera rotation and translation
relative to another camera. In FBC, the pose estimation quality is affected by the feature
correspondence matching quality. Hence, for a given set of feature correspondences, it
becomes necessary to explore the characteristics of pose estimation based on attributes of
the matched feature points. The attributes of the matched features are noise in the feature
matching and the distribution of matched features in 2D space, which affects the pose
estimation.

The significance of the error in pose estimation is determined by an acceptable 3D recon-
struction error that is specific to the applications.

With this point of view, the following question was posed:

• How does the attributes of the matched feature points, i.e., noise and sparsity in a
2D space, affect the quality and robustness of pose estimation?
This study is relevant to understand the influence of noise on the quality of pose
estimation, which helps in underlining the noise limits of the feature matches for
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good pose estimation. This study also explores if the selection of feature matches
based on their sparsity affects the pose estimation. This helps in better selection of
feature matches for robust 3D systems.
Hypothesis V:

H
0

: The pose estimation accuracy has an insignificant change with the
increase in noise and sparsity of matched feature points.

Table 1.1 provides a summary and an outline of the research questions posed, problem areas
identified and the corresponding hypotheses framed. The research on each of the scopes: 3D
systems, feature extraction and pose estimation are presented as separate chapters in this thesis.

MAIN RESEARCH QUESTION:

What are the challenges in designing FBC to achieve high accuracy and robustness in 3D
systems?

No. Category Resesarch Question Hypothesis

1
3D Sys-
tems

What is the effect of single/stereo
camera misalignment on the quality
of 3D system?

H
0

: The 3D reconstruction accu-
racy has insignificant effect when
the camera is misaligned.

2
3D Sys-
tems

Can FBC ensure a good online re-
calibration capability in compari-
son to CBC in a single camera 3D
system?

H
0

: The accuracy and robustness
of 3D reconstruction has an in-
significant effect, when the 3D sys-
tem replaces CBC by FBC tech-
niques.

3
Feature Ex-
traction

How does the quality and robust-
ness of feature extractors vary with
intrinsic and extrinsic camera prop-
erties?

H
0

: The performances of the state-
of-the-art feature extractors have in-
significant differences to the change
in intrinsic and extrinsic camera pa-
rameters.

4
Feature Ex-
traction

How to characterize SIFT features
used for FBC in 3D systems, for
wide baseline setup?

H
0

: Accuracy of SIFT features for
wide baseline FBC is maintained at
an acceptable level, only upto 30
degrees angular separation between
stereo cameras.

5
Pose Esti-
mation

How does attributes of the matched
feature points, i.e., noise and spar-
sity in 2D space affect the quality
and robustness of pose estimation?

H
0

: The pose estimation accuracy
has an insignificant change with the
increase in noise and sparsity of
matched feature points.

Table 1.1: Outlining research questions and hypotheses that reflects the problem
statement



1.5. Research Methods 9

1.5 Research Methods

A new intellectual framework for the discipline of computing was presented in the final report of
ACM Task Force on the Core of Computer Science (Comer, Gries, Mulder, Tucker, Turner, and
Young, 1989). This report provides a detailed description on how research can be organized
based on three major paradigms: Theory, Abstraction and Design. Each of them has roots
in different areas of science, although all can be applied to computing. It is stated that all
paradigms are so intricately intertwined that it is irrational to say that any one is fundamental in
the discipline.

The three paradigms to computer science are defined as follows:

• The Theory paradigm is rooted in mathematics. First, it specifies the objects of study and
hypothesizes relationships between the objects. Then, the hypothesis is proven logically.

• The Abstraction paradigm is rooted in experimental scientific method. A scientist forms
a hypothesis, constructs a model, makes a prediction before designing an experiment.
Finally, data is collected and analyzed.

• The Design paradigm is rooted in engineering. A scientist states requirements and speci-
fications, followed by design and implementation of the said system. Finally, the system
is tested to see if the stated requirements and specifications were met.

This thesis followed the Abstraction paradigm and was initiated by formulating a research
question, in order to explore and scientifically assess the accuracy and robustness of FBC against
practical challenges in the current and new-age 3D applications. Accordingly, relevant hypothe-
ses was framed in all research scopes, i.e., 3D systems, feature extraction and pose estimation.
To test the hypotheses, relevant experimental evaluations were conducted focusing on real sce-
narios which relates to real systems in use and potential new age application scenarios that is
under research.

A currently deployed system such as PTMS was considered to determine the effects of
camera misalignment and adoption of feature based calibration. The VERDIONE, BAGADUS
and POPART scenarios motivated the characterization of feature extractors and pose estimation
for all practical challenges related to change in the camera’s internal and external properties and
scene properties. The SEMRECON scenario was used for validating the methodology of 3D
reconstruction. Finally, recommendations for operational ranges for feature extraction and pose
estimation were provided, and their practical implications to improve the robustness of image
based 3D systems were discussed.

1.6 Main Contributions

In order to test the stated hypotheses, the practical problems of the application scenarios (men-
tioned in section 1.2) were explored by assessment of accuracy and robustness of FBC through
experiments. Here, "system users" refers to system developers, builders, designers or researchers.

The main contributions of this thesis are as follows:
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1. A statistical tool was developed for single camera 3D systems to determine the mechan-
ical tolerances of the camera rigs that minimize the camera misalignment error in the
PTMS. This helps to improve the robustness to practical error such as camera misalign-
ment.

2. Feature based calibration was adopted in the PTMS by replacing the traditional checker-
board calibration, to improve the flexibility and maintainability of the PTMS without
manual intervention. This also helps to improve robustness to practical error, such as
pantograph misalignment and image analysis error of the PTMS.

3. The adverse effects of camera misalignment in stereo 3D applications were exhibited.
This helps system users to build stable camera rigs to improve the accuracy of the 3D
system by restricted erroneous camera misalignment in application scenarios such as
VERDIONE, BAGADUS and POPART.

4. The state-of-the-art feature extractors (SIFT, SURF and ORB) were characterized and
their operating limits were determined in the presence of image defocus, lens distortion
and sensor noise, at various resolutions in VERDIONE and BAGADUS like application
scenarios. This helps the system users to choose a feature extractor based on the require-
ment for accuracy, execution time and robustness.

5. The state-of-the-art feature extractors (SIFT, SURF, ORB, KAZE, AKAZE, MSER, BRISK,
FAST, STAR, BRIEF, FREAK) were characterized and design considerations were rec-
ommended for using state-of-the-art feature extractors at different camera baselines (an-
gular displacement between the stereo pair) using virtual dataset that mimics POPART,
VERDIONE or BAGADUS like application scenarios. The design considerations were
based on the 3D accuracy, deformation of 3D object and execution time. This helps
system users to choose a feature extractor based on design parameters. This also helps
system users to determine the camera density required to capture the scene.

6. A new algorithm - NewSIFTcalib was proposed, which modified the existing SIFT to
yield better accuracy and computation time, especially in wide baseline camera setups.
This helps to improve the usability and scalability of 3D multiview capture systems. This
also helps to reduce the camera density for capturing the scene and thereby is cost effec-
tive (in terms of storage, transmission and processing of multiple images) for VERDIONE
and BAGADUS like application scenario.

7. The state-of-the-art pose estimation algorithm was characterized and the camera baselines
and feature selection criteria were recommended to minimize noise in the feature corre-
spondences of a stereo pair and thereby maximize the 3D accuracy. The experiments
were carried out using virtual dataset that mimics VERDIONE or POPART application
scenarios. The effect feature selection based on the sparsity of feature correspondences
on the 3D accuracy was validated using SEMRECON scenario. This study helps system
users to make a choice of camera baseline and a subset of feature correspondences and
improve the robustness of pose estimation.
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1.6.1 Publications
Here, is an outline of all the papers and posters published. This thesis is composed of all these
publications rearranged and with the extended work that is yet to be published.

Refereed Proceedings

MMSys 2016 Robustness of 3D Point Positions to Camera Baselines in Markerless AR Sys-
tems. Deepak Dwarakanath, Carsten Griwodz and Pål Halvorsen. In Proceedings of the
7th International Conference on Multimedia Systems (MMSys), 2016 (more details in
chapter 11).

ICVS 2015 Online Re-calibration for Robust 3D Measurement Using Single Camera-PantoInspect
Train Monitoring System. Deepak Dwarakanath, Carsten Griwodz, Pål Halvorsen and Ja-
cob Lildballe. In Proceedings of the International Conference on Computer Vision Sys-
tems (ICVS), 2015 (more details in chapter 10).

SETN 2014 Study the Effects of Camera Misalignment on 3D Measurements for Efficient De-
sign of Vision-Based Inspection Systems. Deepak Dwarakanath, Carsten Griwodz, Pål
Halvorsen and Jacob Lildballe. In Proceedings of the 8th Hellenic Conference on Artifi-
cial Intelligence (SETN), 2014 (more details in chapter 9).

IVCNZ 2012 Evaluating Performance of Feature Extraction Methods for Practical 3D Imag-
ing Systems. Deepak Dwarakanath, Alexander Eichhorn, Pål Halvorsen and Carsten Gri-
wodz. In Proceedings of the 27th International Conference Image and Vision Computing
New Zealand (IVCNZ), 2012 (more details in chapter 8).

DICTAP 2012 Faster and More Accurate Feature-Based Calibration for Widely Spaced Cam-
era Pairs. Deepak Dwarakanath, Alexander Eichhorn, Carsten Griwodz and Pål Halvorsen.
In Proceedings of the Digital Information and Communication Technology and it’s Ap-
plications (DICTAP), 2012 (more details in chapter 7).

Poster Presentations

VERDIKT 2012 Multiple Camera Arrays for Real-time 3D Rendering Systems. Deepak Dwarakanath,
Alexander Eichhorn, Carsten Griwodz and Pål Halvorsen. In VERDIKT 2012, Norwe-
gian Research Council, Oslo, Norway (BEST POSTER AWARD 2012) (more details in
chapter 14).

VERDIKT 2010 3D Multi-view Acquisition and Rendering System. Deepak Dwarakanath,
Alexander Eichhorn, Carsten Griwodz and Pål Halvorsen. In VERDIKT 2010, Norwe-
gian Research Council, Oslo, Norway (BEST POSTER AWARD 2010) (more details in
chapter 13).

VERDIKT 2009 3-D Video Processing for Mixed Reality Art Performances. Deepak Dwarakanath,
Alexander Eichhorn, Carsten Griwodz and Pål Halvorsen. In VERDIKT 2009, Norwe-
gian Research Council, Oslo, Norway (BEST POSTER AWARD 2009). (more details in
chapter 12).
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1.6.2 Software Development
The source code for all the implementation and testing are as follows:

• Libfacs: Library for feature based auto-calibration for multiple camera array systems.
The functionality involves feature detection, feature description, feature matching, intrin-
sic camera calibration, pose estimation and other mathematical utilities.7.

• 3DMars- 3D multiview acquisition and rendering system, includes evaluation test imple-
mentation8.

• Matlab Projects- contains evaluation test implementation9.

All programming implementation was carried out using the following tools:

• C++, Object oriented programming language10.

• MATLAB, Matrix laboratory toolbox11.

• OpenCV, Open source library for computer vision library12.

• OpenFrameworks, Open source C++ toolkit for creative coding13.

• OpenMVG, Open source multiview geometry library14.

• NorthLight, VERDIONE project related multimedia library15.

• OpenGL, Open source graphics library16.

• VLFeat, Open source library for computer vision17.

• Magick++ Image processing library18.

1.7 Limitations
The accuracy and robustness of FBC for 3D reconstruction were tested on real datasets, i.e.,
PTMS and to some extent SEMRECON. However, the experimentation using real datasets was
not achieved for VERDIONE, BAGADUS and POPART scenarios, i.e., instead virtual datasets
were used. It was in a way better to use virtual datasets, because of ground-truth values that was

7Libfacs - https://bitbucket.org/deepakdnath/facs
83DMars - https://bitbucket.org/mpg_code/3dmars
9Matlab Implementation - https://bitbucket.org/mpg_code/matlab-projects

10C++ - http://www.cplusplus.com
11Mathworks - https://www.mathworks.com
12OpenCV - http://opencv.org
13OpenFrameworks - http://openframeworks.cc
14OpenMVG - https://github.com/openMVG
15Verdione - http://verdione.wiki.ifi.uio.no/Main_Page
16openGL - https://www.opengl.org
17VLFeat - http://www.vlfeat.org
18Magick++ - http://www.imagemagick.org/Magick++

https://bitbucket.org/deepakdnath/facs
https://bitbucket.org/mpg_code/3dmars
https://bitbucket.org/mpg_code/matlab-projects
http://www.cplusplus.com
https://www.mathworks.com
http://opencv.org
http://openframeworks.cc
https://github.com/openMVG
http://verdione.wiki.ifi.uio.no/Main_Page
https://www.opengl.org
http://www.vlfeat.org
http://www.imagemagick.org/Magick++


1.8. Thesis Outline 13

useful for testing. The virtual datasets were generated to mimic the application scenarios with
a specific focus on the foreground objects, but for scenarios such as VERDIONE, BAGADUS
and POPART, a scene capture involves background with a large depth of field.

A real dataset with background scene and ground-truth values from large space applications
(VERDIONE and BAGADUS) was not available and although POPART had developed a sys-
tem that considered the background, the current algorithms used for 3D reconstruction were not
capable of handling the large depth reconstruction.

Therefore, the experimentation was limited to virtual datasets that does not consider the
textured background of the scene. This could potentially be the further scope for exploration.

1.8 Thesis Outline
The thesis is outlined chapter-wise as follows:

Chapter 1: Introduces practical challenges in new age 3D applications and discusses the prob-
lem statement and the main contributions of this thesis.

Chapter 2: Discusses preliminary concepts so that it provides sufficient background for further
discussions in the thesis. This includes brief introduction to conceptual and mathematical
understanding of image based 3D systems and application scenarios that motivates this
thesis.

Chapter 3: Describes the camera misalignment effects on single or stereo camera system and
adoption of FBC in the PTMS system.

Chapter 4: Describes the robustness of state-of-the-art feature extractors and explains a pro-
posed feature extractor for wide baselines.

Chapter 5: Explores the robustness of pose estimator against noise, number of features and
selection of features in stereo pair feature matches

Chapter 6: Summarizes and concludes the thesis work and presents new ideas and concepts
for further work.

Chapters 7 - 11: Contain each of the included publications.

Chapters 12 - 14: Contain each of the included posters.

This thesis is organized by topics, but the time of the experiments is not necessarily in the
same order. So, in some cases, new features were learned and included in the later experiments.





Chapter 2

Preliminary Concepts

This chapter is an introduction to the preliminary concepts about image based 3D systems that
provides necessary mathematical and conceptual background to understand the technical as-
pects of this thesis. Image based 3D systems are explained in terms of basic concepts, proce-
dures and operations related to multiview geometry. Next, the system architecture and practical
challenges in the application scenarios, used in this thesis, are explained in detail.

2.1 Image Based 3D Systems

An illustration of a typical image based 3D system as shown in figure 2.1 provides a platform
to discuss the details of this research work. A single or multiple cameras are extensively used
as an integral part of current or new age 3D systems in the field of vision based inspection,
mixed reality art performance, sports analytics, augmented reality and image metrology. All
these systems operate on camera images and focus on rendering 3D data, especially the focus
is on 3D reconstruction in the form surface reconstruction, full volume 3D reconstruction, free
rendering, augmenting virtual objects etc. Hence, they are usually referred as image based 3D
systems.

Figure 2.1: Typical 3D system illustrating two different workflows for 3D applications, using
the knowledge of camera calibration.

15



16 Chapter 2. Preliminary Concepts

Figure 2.2: Pin-hole camera model. Courtesy: Multiview Geometry (Hartley and Zisserman,
2004).

2.1.1 Camera Calibration

Camera Model

One of the most simplest model that one has come across is the pin-hole model for the camera,
which is as shown in the figure 2.2. The camera center with center at C, captures an image of
3D object on the image plane. The line originating from C, which is perpendicular to image
plane is the principal axis. Point p is the principal point, which is the intersection of principal
axis and the image plane. According to the pinhole camera model, the 3D point X in space is
projected on the image at point x, where the line joining point X to the center of projection C

meets the image plane.
In this ideal pinhole camera, the size of an image is related to the real three-dimensional

object by the focal length, which is the distance between C and p. Figure 2.2 shows the focal
length f , the height of an object X in space and the height of the same object x projected on the
image plane. Using similar triangles, the mapping between Euclidean 3D space and Euclidean
2D space is represented as in equation 2.1.

xi = f
Xw

Zw

, yi = f
Yw

Zw

(2.1)

The 3D point is expressed in world coordinates (Xw, Yw, Zw) with origin in space. The same
point can also be expressed in camera coordinates (Xc, Yc, Zc) with origin at the camera center
C. The corresponding image coordinates are expressed in image coordinates (xi, yi) with origin
at top-left corner of the image.

Extrinsic Parameters

The extrinsic parameter constitute rigid geometrical transformation of an object in 3D space.
The mapping between world coordinate and camera coordinate can be represented by a rigid
transformation that involves 3-by-3 rotation (R) and 3-dimension translation (T ) of the coor-
dinate system. If the mapping is represented in homogeneous space (Hartley and Zisserman,
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2004), then the mapping can be expressed as a linear relationship as in equation 2.2. Here,
[R|T ] constitute the camera extrinsic parameters.
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Intrinsic Parameters

The internal camera parameters constitute geometrical relationship between the camera center,
the image plane and physical properties of the pixels on the image sensor .

Focal Length is the distance from the center of the lens to the image plane along the optical
axis. This defines the size of the object project onto the image plane.

Principal Point is intuitively thought to be located at the center of the image. This is rarely
the case in real cameras, since that would require the image sensor to be perfectly po-
sitioned in the manufacturing process of the camera. In addition, it is common to place
the origin of the image coordinate system at the top left corner in image/video processing
systems. Equation 2.1 is rewritten with an offset px and py along the x-axis and the y-axis
respectively, as in equation 2.3

xi = f
Xw

Zw

+ px, yi = f
Yw

Zw

+ py (2.3)

Pixel Aspect Ratio is the ratio of the width and the height of a physical pixel on an image
sensor. Most image sensors have square pixels, although some system use rectangular
pixels. To account for this, the focal length is scaled with the width (sx) and the height
(sy) of the pixel. Equation 2.3 is then rewritten as equation 2.4.

xi = sx.f
Xw

Zw

+ px, yi = sy.f
Yw

Zw

+ py (2.4)

Skewness is similar to pixel aspect ratio which compensates for non-square pixels. The skew-
ness of the pixel width and height is compensated based on the skewness factor (s).

The mapping between camera coordinates to image coordinates involves focal length (f )
and principle point offset (px, py), pixel aspect ratio (↵x,↵y) and skewness (s). From pinhole
equation 2.1, this mapping between the camera coordinates and image coordinates is deduced,
as in equation 2.5. Here, K is the camera intrinsic matrix.
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Calibration

By combining the equations 2.2 and 2.5, the linear relationship between 3D object points and
2D image points can be expressed as in equation 2.6.

2

4
xi

yi

1

3

5 = K[R|T ]

2

6664

Xw

Yw

Zw

1

3

7775
1

Zc

(2.6)

The process of estimating these camera intrinsic and extrinsic parameters is known as Cam-
era Calibration. Typically, the cameras are calibrated using a checkerboard target (Bouguet,
2008; Tsai, 1992; Zhang, 2000). Here, it is assumed that both 3D and 2D coordinates are
known. Hence using a checkerboard is convenient and the corners are considered as 3D refer-
ence points.

Lens Distortion

The use of a lens adds distortions to the image, in particular radial lens distortion and tangential
lens distortions. Complex systems of lenses are sometimes used (in more expensive cameras)
to minimize the distortion, but any real camera system has distortions from the use of lenses.
The lens distortion needs to be compensated as well, for high quality 3D reconstruction.

Figure 2.3: Radial lens distortion. Undistorted image (left), barrel distortion (center), pincush-
ion distortion (right). Courtesy: University of Cologne2.

Radial lens distortion comes from the spherical shape of the lens which causes the light to
bend. The distortions extends outwards from the center of the lens (hence the name radial). In
practice, the lens distortion affects the straight lines in the real world to be mapped as curved

2Courtesy: http://www.uni-koeln.de/~al001/radcor_files/hs100.htm
3Courtesy: http://www.flickr.com/photos/riseriyo/4558440101/

http://www.uni-koeln.de/~al001/radcor_files/hs100.htm
http://www.flickr.com/photos/riseriyo/4558440101/
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Figure 2.4: Tangential lens distortion. Courtesy: Public photo collection3.

lines in the image (see figure 2.3). However, this distortion can be corrected so that the pinhole
camera model still remains valid. The corrected coordinates of each pixel is then given by
equations 2.7 and 2.8 where, xu and yu are the undistorted pixel positions, xd and yd are the
distorted pixel positions in the x and y direction respectively, k

1

and k
2

are the radial distortion
coefficients and r2 is the normalized radial distance from the principal point.

xu = xd(1 + k
1

r2 + k
2

r4) (2.7)

yu = yd(1 + k
1

r2 + k
2

r4) (2.8)

Tangential lens distortion appears when the lens is not parallel to the image sensor (see
figure 2.4). The corrected coordinates for tangential distortion is given by equations 2.9 and
2.10 where, p

1

and p
2

are the tangential distortion coefficients.

xu = xd + 2p
1

yd + p
2

(r2 + 2x2

d) (2.9)

yu = yd + p
1

(r2 + 2y2d) + 2p
2

xu (2.10)

Epipolar Geometry

Epipolar geometry is the geometry between two views, which encapsulates both the intrinsic
and extrinsic parameters of a stereo camera pair. Consider a point P in 3D space projected
through the centers of projection OL and OR onto the image planes at position pL and pR as
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Figure 2.5: Epipolar geometry for stereo camera setup. Courtesy: Wikipedia4

shown in figure 2.5. Various terms defining the epipolar geometry are as follows:

Epipolar plane The plane, which is determined by a three-dimensional point X and the two
camera centers OL and OR.

Epipolar line The line where the epipolar plane intersects the image plane, e.g., the line joining
eL and XL, or eR and XR.

Baseline The line between the camera centers OL and OR.

Epipole The point where the baseline intersects the image plane, eL and eR. This is also the
same as the projection of one camera center onto the other image plane.

Feature correspondences The projection of 3D point X on two cameras with non-coincident
camera centers, i.e., XL and XR.

Given the point XL, the corresponding point XR must lie on the epipolar line, this is known
as the epipolar constraint.

4Courtesy: Wikipedia, Epipolar Geometry - http://en.wikipedia.org/wiki/Epipolar_
geometry.

http://en.wikipedia.org/wiki/Epipolar_geometry
http://en.wikipedia.org/wiki/Epipolar_geometry
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Figure 2.6: Feature point correspondences in stereo images. Courtesy: Multiview Geometry
(Hartley and Zisserman, 2004).

Fundamental Matrix

The epipolar geometry of two views is algebraically represented by the fundamental matrix.
The fundamental matrix maps a point in one image to it epipolar line in another image. This
matrix encapsulates the camera internal parameters and general motion.

Mathematically, the fundamental matrix is represented as a homogeneous 3x3 matrix of
rank 2 with 7 degrees of freedom. Given a set of feature correspondences between two camera
views, i.e. xi and x0

i, the fundamental matrix F satisfies the condition as in equation 2.11.

xiFx0
i = 0, 8i. (2.11)

Every feature correspondence generates a linear equation with unknown entry in F . There-
fore, F can be estimated using known values of feature correspondences. One such method to
compute F is 8-point algorithm (Hartley and Zisserman, 2004), where atleast 8 feature corre-
spondences are used to solve the linear equations based on least squares.

An example of stereo camera system that is dictated by epipolar geometric principles are
as shown in the figure 2.6. Feature points are detected in both image and matched with each
other. Every point in one image corresponds to a point in another image. Using these fea-
ture correspondences, F matrix is estimated. Normally for calibrating a stereo camera without
any calibration target, the feature correspondences are used to estimate the F matrix. Further,
there are different procedures in either calibrated (known camera intrinsic) and uncalibrated
(unknown camera intrinsic) case.

For calibrated case (camera intrinsic K is known), similar to F , an Essential matrix E is es-
timated as E = K 0FK. Form E matrix camera pose, i.e., rotation and translation is estimated.
Once the camera pose is known, for given image feature correspondences, the corresponding
3D points can be obtained using triangulation.

For uncalibrated case (camera intrinsic K is unknown), a rectification homography is esti-
mated using F and epipole points (details explained in (Hartley and Zisserman, 2004)). This
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homography encapsulates the camera parameters and therefore, 3D reconstruction is carried out
based on disparity and depth computation.

2.1.2 3D Reconstruction

A typical Image based 3D system is illustrated as shown in figure 2.1. These systems are
installed with one or more cameras fixed onto a rig or a solid fixture to capture the scene. The
cameras must be hardware synchronized so that they capture the images at the same time. This
is very important for any further processing on these images.

Sparse 3D Workflow

In a single camera system, interesting points that are required to be reconstructed in 3D are
detected and back-projected using the camera calibration parameters to obtain corresponding
3D points in world space.

In stereo or multiple camera setup every stereo pair is used for detecting feature correspon-
dences in stereo pair of images. Each feature corresponding point is back-projected, using their
respective camera calibration parameters (Hartley and Zisserman, 2004)), to obtain 3D sparse
points. This process is called Triangulation. In this case, it is required to know the camera
intrinsic parameters.

Dense 3D Workflow

Based on the feature correspondences, a fundamental matrix (F ) is estimated, which gives a
geometrical relationship between the stereo pair. The F matrix encapsulates the camera intrinsic
matrix.

The images can be transformed onto a common synthetic image plane (i.e., the images are
coplanar), so that the epipolar lines are horizontal and parallel. This transformation is referred
as image rectification. Using F matrix, the images are rectified so that their image centers are
aligned. In rectified images, every point in one image has a corresponding point on a horizontal
line in the other image. This is illustrated in figure 2.7.

Normally the disparity of every pixel is estimated and using the similar triangle concept as
in figure 2.2, depth of that pixel is estimated. Hence, a depth estimation from rectified stereo
images as illustrated in the figure 2.8. For dense 3D reconstruction, it is normally assumed that
the camera intrinsic are unknown.

5Courtesy: Wikipedia, Image Rectification - https://en.wikipedia.org/wiki/Image_
rectification.

6Courtesy: Middlebury Stereo Vision Dataset - http://vision.middlebury.edu/stereo

https://en.wikipedia.org/wiki/Image_rectification
https://en.wikipedia.org/wiki/Image_rectification
http://vision.middlebury.edu/stereo
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Figure 2.7: Illustration of image rectification. Courtesy: Wikipedia5

Figure 2.8: Illustration of depth estimation. Courtesy: Middlebury Stereo Vision Dataset6

2.2 Deeper Look Into Application Scenarios

2.2.1 Virtually Enhanced Real-life synchronizeD Interaction - ON the Edge
(VERDIONE)

The World Opera Consortium7 envisioned the creation of a mixed-reality distributed stage for
opera performances as shown in figure 2.9, where artists - real and virtual (artists who are phys-
ically at remote location) are performing together, immersively on one stage. Artists include
singers, musicians or dancers, who would interact with their peers who are virtually projected
on the stage. Such interactions pose a hard requirement on the quality of service of the system
that projects the virtual video images captured in a remote location. For artists and audience to
have a realistic experience of the whole performance, requirement of high quality video and a
robust 3D video in real-time is necessary.

7The World Opera,
http://www.geistweidt.com/pdf/WorldOperaWhitePaper.pdf
http://www.geistweidt.com/pdf/WorldOperaIntroduction.pdf

http://www.geistweidt.com/pdf/WorldOperaWhitePaper.pdf
http://www.geistweidt.com/pdf/WorldOperaIntroduction.pdf
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Figure 2.9: World opera distributed stage performance. Courtesy: VERDIONE.

(a) Volumetric Capturing (b) Immersive Rendering

Figure 2.10: Illustration of VERDIONE capture and render subsystems. Courtesy: VER-
DIONE.

This idea of distributed stage performances has motivated the beginning of VERDIONE -
Virtually Enhanced Real-life synchronizeD Interaction - ON the Edge project8 to build a plat-
form for such interactions between people around the world and to allow them to feel that they
are co-located. VERDIONE is an image-based system consisting of volumetric capturing and
immersive rendering as depicted in figure 2.10. To accomplish volumetric capturing, a multi-
ple camera setup is necessary to synchronously capture the scene. For immersive environment
volumetric displays are required. However, such a system aims at a high quality, robust 3D
reconstruction and real-time rendering.

To meet the challenge of the world opera consortium, VERDIONE addresses problems in
transmitting information from remote places to a virtual stage in terms of audio/visual acquisi-

8VERDIONE, Technology For Mixed Reality Stages, http://verdione.wiki.ifi.uio.no/Main_
Page. Sponsored by Norwegian Research Council (Project No. 187828.)

http://verdione.wiki.ifi.uio.no/Main_Page
http://verdione.wiki.ifi.uio.no/Main_Page
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Figure 2.11: Multiple camera acquisition subsystem for VERDIONE.

tion and rendering. As envisioned multiple camera acquisition setup using depth based approach
is as illustrated in figure 2.11. The disparity map and the video streams are sent to the network
and on the receiving end, the information is used to depth image based rendering process.

Challenges

The image-based systems working in a larger volume, like an opera stage, is a challenge that
has never been dealt before. Systems capturing the scene by markerless-based approach, is yet
another challenge under the opera scenario. 3D reconstruction aims at photorealistic rendering
at high resolution, but rendering images for both artists on the stage and the audience who are
at different distances from the display is still a challenge.

Let us consider every aspect of this system and the challenges lying around them for the
application of mixed reality art performances.

1. Camera Density
In a multiple camera system, the first question that arises is how many cameras are re-
quired to efficiently obtain 3D data of the scene? The answer is based on empirical
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observations, which depends on the object of interest, dimension of the 3D space and
placement of cameras.

2. Camera placement
Depending on the objects or the scene that are required to be captured and displayed
remotely, the cameras need to be optimally placed around the stage during performance.
Optimal placement depends on the approach used for 3D reconstruction; this is because
the approach used for 3D reconstruction poses certain constraints on scene geometry of
the images captured from multiple cameras. In the stereo algorithm based reconstruction
requires that point correspondences should exist within 2 or 3 images, which in turn
constraints that 2 or 3 cameras must look at the same object such that sufficient point
correspondences are obtained.

3. Camera Array
In a homogeneous camera array, all cameras have the same focal lengths. However, there
exists variation in image resolution as the object distance varies proportionally. In such
cases, it is worthwhile to measure and study the lower limits of the resolution for a better
reconstruction. Also, a heterogeneous camera array, where the focal lengths of certain
cameras in the array are different from each other, is also interesting to study.

4. Camera Calibration
Obtaining 3D space metrics and camera characteristics is related to the camera calibra-
tion problem in computer vision. This is the first and foremost step, and the purpose is to
obtain the intrinsic parameters of the camera such as focal length, radial distortion, etc.,
and extrinsic parameters such as rotation and translation orientation of the cameras in 3D
space. Such geometrical calibration of cameras is required for accurate 3D reconstruc-
tion. The challenge here is to obtain an accurate calibration of cameras, in turn to obtain
an efficient reconstruction of 3D data. The process of calibrating the cameras plays an
important role: by using of 3D objects to calibrate or by adopting feature based calibra-
tion approach, where calibration method must be able to collect information directly from
the scene. Photometric calibration is necessary to yield more realistic appearance of the
object or region of interest. Color checkerboards are sometimes used for this purpose.
The challenge is to accurately color calibrate the cameras for uniform color composition
while rendering at different viewpoints.

5. Feature Extraction For images from two or more cameras, feature correspondences are
required for feature based calibration and sparse depth map. For good quality camera
calibration high quality feature correspondences are required. So the challenge is to find
a robust feature extractor that provides high quality correspondence.

6. Synchronization
The camera system must be synchronized so that multiple cameras capturing the same
scene should do so, at the same instant of time. This must be done in order to compute
the calibration parameters with high accuracy; otherwise determination of point corre-
spondence during the calibration process will be hampered. In terms of reconstruction,
there would exist inconsistencies due to unsynchronized data.
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7. Depth estimation problem
One of the main challenges in this section is to obtain accurate depth-maps of multiple
images. Depth estimations in a multiview system depends on two things (a) matching
problem - determining the point correspondences in the images and (b) disparity - distance
between the matching points. Variations in depth estimation result in structural artifacts
in the borders of the reconstructed image, which are sensitive to human eyes. Hence, the
accuracy in depth estimation determines the robustness of the reconstruction algorithm
for rendering.

8. 3D Representation for Transmission
Several multiview algorithms use one or many of the following representations: meshes,
polygons, images+depth maps, point clouds, level sets or voxels. Choice of representation
depends upon the underlying rendering scheme. A new representation intended to yield
an efficient coding scheme is also interesting to explore.

9. 3D Reconstruction and Rendering
Image based rendering methods often suffer from holes in the warped images due to
difference in re-sampling and occlusions. The main challenge for reconstruction and
rendering schemes is high quality view synthesis in terms of speed, robustness against
artifacts and resolution.

Virtual viewpoint images for view-dependent and view-independent (free viewpoint) ren-
dering use techniques like interpolation, warping and re-sampling, and render the images
of the closest captured camera. Each of these techniques will in turn account for the
quality of the view synthesis. Hence, an appropriate technique adoption is a challenge.

10. Physical dimension of the stages
A stage dimension occupies a large volume of 3D space. It seems that no system has been
developed to work with this huge volume as an application of multiview capture systems.
Hence, certain challenges exist in terms of resolution and robustness of feature extraction,
pose estimation and rendering quality images.

11. End to End delay
For VERDIONE, this is one of the most important design parameters for real-time perfor-
mances. End-to-end delay can be roughly estimated as the time expired from the image
acquisition stage to the image displayed on the remote screen. This is a summation of
delays contributed by several steps: capturing, processing, distribution, transmission and
rendering.

12. Backdrop
If the backdrop were of a contrast color (unnatural background for opera performances
like a blue or green screen), it would be easier to obtain a bounding box around the scene
object, by using background subtraction techniques. It is necessary to consider other
parameters like the uniformity of luminance on the backdrop and its shading variation.
If the scene has similar appearance of the backdrop then the task is more challenging.
One of the ways of dealing with this problem could be to have prior knowledge about the
scene backdrop.
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13. Illumination and Shadow
The illumination on the stage would affect the appearance of the scene object, which
needs to be detected and tracked. Also a shadow on the foreground or the background
affects the system performance. It seems that ambient light would be a solution, but
it is difficult to achieve ambient light. Hence, studying the effects of lighting becomes
necessary to find an optimal solution .

14. Parallax and occlusion effects
It is important to study the effects of motion parallax on depth perception, reconstruction
errors and other factors that the parallax depends on. Occlusion problem is not simple to
solve in stereo algorithms, and hence, it is worth investigating.

2.2.2 An Integrated System for Soccer Analysis (BAGADUS)

Figure 2.12: Overall BAGADUS architecture. Courtesy: BAGADUS.

Sports analysis, especially in soccer has been very important in order to keep up the com-
petitiveness in the game. The manual analysis that are carried out by coaches or other analysts
consume a lot of time. Today’s technology provides a solution to conduct such sports analysis
in real-time. BAGADUS9 (Halvorsen, Sægrov, Mortensen, Kristensen, Eichhorn, Stenhaug,
Dahl, Stensland, Gaddam, Griwodz, and Johansen, 2013) is a project that aims to fully inte-
grate existing systems and enable real-time presentation of sport events. This system is built in
cooperation with the Tromsø IL soccer club and the ZXY sport tracking company for soccer
analysis. A brief overview of the architecture and interaction of the different components is
given in figure 2.12.

9BAGADUS - http://site.uit.no/iad/sports/bagadus

http://site.uit.no/iad/sports/bagadus
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The BAGADUS system is divided into three different subsystems, which are integrated in
the soccer analysis application. The subsystems are, Video, Tracking and Analytics.

In video subsystem, multiple small shutter and synchronized cameras capture high resolution
video of the soccer field. This subsystem is also responsible for playback of the videos in two
different modes. The first allows the viewer to watch separate camera feeds and the second
mode plays a panorama video stitched from multiple camera feeds.

The tracking subsystem, identifies and tracks players through the camera arrays. BAGADUS
uses a sensor based solution to get the positions of the players and tracks the players in single
camera view or stitched view.

The analytics subsystem equips the members of the team with a tablet or even a mobile
phone, where they can register predefined events quickly with the press of a button or provide
textual annotations. In BAGADUS, the registered events are stored in an analytics database,
and can later be extracted automatically and shown along with a video of the event.

BAGADUS focuses mainly on combination and integration of components enabling auto-
matic presentation of video events based on the sensor and analytics data that are synchronized
with the video system. Thus BAGADUS will, for example, be able to automatically present a
video clip of all the situations where a given player runs faster than 10 meters per second or
when all the defenders were located in the opponent’s 18-yard box (penalty box). Furthermore,
BAGADUS system can follow single players and groups of players in the video, and retrieve and
playout the events annotated by expert users. Thus, where people earlier used a huge amount of
time for analyzing the game manually, BAGADUS provides an integrated system whereby the
required operations and the synchronization with video is automatically managed.

Figure 2.13: Camera setup in Alfheim soccer stadium. Courtesy: BAGADUS.

To record high resolution video of the entire soccer field, a camera array consisting of 4
Basler industry cameras with a 1/3-inch image sensor supporting 30 fps and a resolution of
1280x960 is used (see figure 2.13). The cameras are synchronized by an external trigger signal
in order to enable a video stitching process that produces a panorama video picture. For a
minimal installation, the cameras are mounted close to the middle line under the roof covering
the spectator area, i.e., approximately 10 meters from the side line and 10 meters above the
ground. With a 3.5 mm wide-angle lens, each camera covers a field-of-view of about 68 degrees,
i.e., all four cover the full field with sufficient overlap to identify common features necessary
for camera calibration and stitching.
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The pipeline of creating a panorama video involves image capture, remove barrel lens dis-
tortion and stitching. Four cameras are installed to view the entire soccer field with certain
overlapping regions. Cameras are calibrated offline and their calibration parameters are used
for removal of lens distortion. Stitching is desired to have a complete view of the soccer field.
Using the overlapping regions of the camera views, a homography between the images are com-
puted. Feature correspondence between two images are detected in the overlapping areas and
then used to estimate the homography transform based on multiview geometric principles. Fi-
nally, the images are warped based on the homographies obtained, and thus stitched image is
obtained.

Challenges

Some of the main challenges pertaining to image acquisition are as follows:

1. Feature extraction
It is very likely to have bad weather conditions, i.e., snow, fog and rain. Such situations
make it very difficult to obtain a decent image for feature extraction that is required for
homography estimation. Moreover feature correspondences obtained on the grass field
are not very reliable.

2. Lens distortion
Barrel distortion errors are minimized using the camera calibration parameters. However,
it is hard to achieve a perfect calibration. This makes finding the homography between
planes difficult and error-prone, and thereby affects the stitching quality.

3. Latency
The execution time for the whole process of video subsystem from capture to storing
the stitched images can be challenging. Most time is spent on stitching process. If the
annotations of players information needs to be shown while the game is on, then a real-
time processing is a critical aspect of quality of service.

4. Parallax
The problem of parallax has been identified in this project. In certain areas of the field,
parallax have been found to be more prominent. This problem is worth investigating.

5. Camera Intrinsic
It has been a problem to maintain the same exposure in all the images, which causes an
uncomfortable viewing experience when images are stitched.

6. Camera placement
The camera placement is such that the center of projection is not well aligned. Due to
this parallax effects have been observed. Therefore new camera arrangement needs to
be found, which minimizes the parallax effects while obtaining the sufficient view of the
soccer field. Based on the arrangement in Alfheim stadium, overlap seems to be very less
with a large angular separation.
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2.2.3 PantoInspect Train Monitoring System (PTMS)

PantoInspect Train Monitoring System (PTMS)10 is a fault inspection system, which inspects
pantographs and ensures automatic quality control of the entire network of pantographs, while
the train is in motion. This system, which has been installed in Banedanmark (Denmark),
Sydney Trains (Australia), Transnet (South Africa) and Austrian Federal Railways(Austria), is
currently in operation.

Figure 2.14: PTMS: inspects defects on the pantographs mounted on electric trains. Courtesy:
PantoInspect A/S.

PTMS is normally installed, as shown in figure 2.14, over railway tracks to inspect trains
running with electric locomotives that are equipped with pantographs. Pantographs are me-
chanical components placed on one or more wagons of the train, which can be raised in height
so that they touch the contact wire for electricity. PTMS measures the dimensions of the de-
fects in their pantograph’s carbon strips, detects misalignment in the pantograph’s position and
estimates the train speed.

Pantographs have one or more carbon strips that are actually in contact with the wire. Over
time, due to constant contact, the carbon strips may wear out. This can eventually result in tear
down of contact wires, if necessary action is not taken to replace the pantographs in time. The
uplift force of the pantograph controls the pressure applied by the pantograph on the contact
wires. The variation in uplift force can also be the reason for tear down of the contact wires.
While the train is in motion, the pantographs may move sidewards based on the speed of the
train and the pressure on the contact wire, eventually tearing them down.

Thus, there are several factors resulting in the contact wire tear down, which leads to a
serious consequence. These factors are related to various defects occurring on the carbon strip.
There can be several types of defects, which are (1) thickness of carbon wear, (2) vertical carbon
cracks, (3) carbon edge chips, (4) missing carbon and (5) abnormal carbon wear, and can be
seen in figure 2.15.

10Pantoinspect A/S - http://www.pantoinspect.com

http://www.pantoinspect.com
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Figure 2.15: PTMS defects illustrated and shown on a pantograph. Courtesy: PantoInspect A/S.

The PTMS is a complex system involving several hardware and software units. It also
interfaces to the real-time train monitoring system for receiving notifications about the trains
and transmit the defect inspection report. Soon after the system detects and analyzes the defect
to a be critical one, it alarms the authorities for taking necessary action. A snapshot of the user
interface of PTMS is shown in figure 2.16.

The working principle of PTMS can be classified into the following stages: data acquisition,
profile image analysis, offline calibration and defect measurement.

Data Acquisition

The PTMS is mounted right above the train tracks, usually on bridges or other fixtures as shown
in figure 2.14. The PantoInspect system receives a notification when the train is approaching
and prepares itself. When the train passes right below the system, the range finders (depicted as
red lasers in figure 2.14) detect the pantograph’s carbon strip, when it is right below the system.
At this instance, three line lasers are projected onto the carbon strips (depicted as green line
in the figure 2.14), and the camera located about 2 - 3 meters away from from the pantograph
captures the near infrared image of the laser, termed as the profile image, which can be seen in
figure 2.17(a).

Profile Image Analysis

The profile image is pre-processed by noise reduction and image enhancement techniques to
obtain a good image of laser lines for further analysis. When defects are present, the line
deforms instead of remaining a straight line in the image. In this way, the laser line defines the
geometry of the defect, which helps to precisely measure the defect in physical units. Figure
2.17(b) also shows how a carbon missing defect is identified as the deformed laser lines obtained
by processing the profile image.
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Figure 2.16: User Interface of PTMS inspection system. Courtesy: PantoInspect A/S.

Once the defect is identified from the profile image, intricate profile matching techniques
are used on all three laser lines to obtain the actual geometry of the defect. Figure 2.17(c) also
shows how the laser line geometry is detected for the defect in the profile image. In the figure,
the ’System’ indicates the width measurement of the defect estimated by the system through
image analysis and ’Caliper’ indicates the actual measurement of the width measured using an
industrial caliper for obtaining ground-truth measurements.

Camera Calibration:

Camera calibration is an important step in obtaining such 3D measurements from 2D image
points. For PTMS, this is carried out in the factory before deploying the system, using Bouguet’s
method (Bouguet, 2008). A number of checkerboard images are used to estimate the intrinsic
parameter K of the camera that constitutes focal length and principle axes of the camera. Next,
a single image of the checkerboard that is placed exactly on the laser plane, is used to esti-
mate the extrinsic parameter of the camera - position T and orientation R, with respect to the
checkerboard coordinates. For more mathematical details about camera calibration, please refer
section 2.1.1.

Defect measurement

At this stage, the PTMS has acquired 2D image points that define the defect. The next step
is to estimate the corresponding 3D points, and thereby, estimate the defect measurements in
real world metrics. This is carried out with the help of camera calibration that is carried out
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(a) Profile image captured.

(b) Laser line image.

(c) Defect detection in a laser line image.

Figure 2.17: Pantograph image analysis. Courtesy: PantoInspect A/S.

offline as described above. It is considered that the 3D defect points lie on an imaginary laser,
and therefore, estimating 3D points is merely a ray-plane intersection (Hartley and Zisserman,
2004), where the ray is drawn from the camera center through 2D points.

This is how the PTMS captures laser profile images, analyzes them, measures the dimension
of the defects and notifies the user, if the measurement is above certain threshold values.

Challenges

Some of the main challenges that the PTMS faces are as follows:

1. Camera misalignment
The camera used in the PTMS is fixed at its position and orientation during the offline
calibration process that takes place in the factory before deployment of the system. The
camera position is not allowed to change after the calibration process to acquire accurate
3D measurements. Before deployment the camera might be misaligned due to transporta-
tion. After deployment, the camera might be misaligned due to manual intervention or
natural causes (e.g., wind). This misalignment causes inaccuracy in the 3D measure-
ments.
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2. Pantograph misalignment
Due to the tension between the pantograph carbon strip and the contact wires, and the
speed of the train, the pantograph can disorient itself from its original position. This leads
to misalignment of laser lines projected on the carbon strip, giving raise to partial capture
of defect which results in inaccurate measurement of the defects. Even if a good image of
the laser lines is obtained, due to the pantograph misalignment, the calibration parameters
will no longer be valid because the camera was calibrated based on an imaginary plane
that lies on the pantograph. This again results in inaccuracy of the system.

3. Noisy Profile Image
The camera used in the PantoInspect system captures infrared images of the laser lines.
When PTMS is installed in sunlit areas such as in South Africa, Australia etc., then the
infrared component in the sun rays interfere with the laser lines and a noisy image is
captured by the cameras. Another source of noisy images is overexposure of the infrared
images, which makes it difficult to detect any features in the images. So, the noisy image
is a challenge to extract the line features for further analysis and measurement of defects.

2.2.4 Previz for On-set Production - Adaptive Real-time Tracking
(POPART)

In modern film production, animated effects are used extensively. The EU-project POPART11

- Previz for On-set Production - Adaptive Real-time Tracking aimed at developing product
where it is possible to preview digital effects on set, and POPART further aims to heighten the
efficiency of post-production work considerably. POPART contributes to film making from the
planning stage to filming with actors on set, where the final composition of mixed reality scenes
can be reviewed during and right after the shoot. POPART provides an adaptive and integrated
solution to conduct live on-set production in order to assess the quality of filming and greatly
help the post-production process.

The POPART system is illustrated in figure 2.18, which comprises 4 steps:

• Shooting Preparation

• Filming with real-time on-set visualisation

• Deferred on-set post-production

• Post-production

During the shooting preparation step, a series of high-resolution images are captured from
distinct viewpoints. These images are sent on-the-fly to a computer that incrementally computes
the 3D points cloud and the camera poses. At the end of preparation, a final 3D reconstruction
is generated by simultaneously taking into account all collected images, which ensures a greater
accuracy and quality. Such global reconstruction of point cloud of the set with camera poses is
shown in figure 2.19. Using POPART’s photo-modeling application, the matte-painter creates
the 3D model of the set based upon the 3D points cloud. The input snapshots are projected to
create the textures. Eventually, a 3D visual database is created during the 3D reconstruction.

11EU POPART Project - http://www.popartproject.eu

http://www.popartproject.eu
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Figure 2.18: POPART System. Courtesy: EU POPART Project.

Figure 2.19: The 3D Point cloud of the real filming set. Courtesy: EU POPART Project.
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During the filming stage, a multiple camera system is setup. POPART rig is equipped with
additional cameras rigidly fixed to the main action camera. Before starting to film, the multiple
camera system is calibrated using the 3D visual database. During filming, the camera tracker
estimates the pose of the multiple camera system relying on the 3D visual database. With all
this information, the main camera feed is seamlessly integrated into the digital world. The final
composited image including color-keying adjustment, color matching and grading are streamed
for real-time on-set visualization of the mixed scene.

It is also possible to provide a "on-set post-production" with deferred processing that yields
higher-quality results somewhat slower than the real-time visualization provided in the previous
step. In this step a high quality 3D rendering with effects can be previewed.

All the raw data collected during the shooting preparation and the on-set visualization are a
precious source of information, i.e., 3D database, camera tracking, 3D rendering and composit-
ing. All this can be exploited in the post-production step. In this way, POPART framework will
be fully compatible with the traditional VFX software for high-end post-production.

Challenges

1. 3D Visual Database
An accurate and robust 3D reconstruction is the primary focus to achieve high quality 3D
point cloud of the real set. Obtaining such high accuracy and robustness is absolutely
necessary, because it is used for a continuous camera pose estimation during the shooting
stage. The challenge here is to incorporate all factors (i.e. change in scene and camera
properties) that affect the accuracy in the whole pipeline of 3D reconstruction.

2. Feature Extraction
Feature extraction is the fist step in analysis of images for either matching the main cam-
era feed to the images in the database or for estimating camera pose. The detection of
features becomes extremely challenging due to poor informative images or dynamic and
cluttered scenes: typical cases include shooting in poorly textured environments (like uni-
fied green backgrounds), natural factors like smoke, mist etc. and dynamic scenes where
motion blur occurs.

3. Low Latency
For real-time live preview, every frame must be blended well into digital 3D world. This
requires an accurate camera tracking with low latency. Therefore, a real-time camera
tracking based on search in visual database is a challenge.

4. Deferred Preview Processing Time
On-set pre-production which includes 3D rendering and high quality compositing with
extra effects, i.e., motion blur, defocus, noise processing are currently too computer in-
tensive. So challenges here are to obtain a small delay in the intermediate step to provide
an on-set pre-production capability.
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2.2.5 Scanning Electron Microscopes Reconstruction (SEMRECON)
The Scanning Electron Microscopes (SEM) are instruments that produce images of a sample
by focusing beams of electrons. Today, softwares are available such as SPIP12 and Mountains13

to analyze SEM images for image enhancement or to characterize the surface of the sample by
reconstructing 3D surfaces and estimating their roughness.

Figure 2.20: The 3D reconstruction and surface analysis - waviness and roughness surfaces and
ISO 25178 height parameters. Courtesy: MountainsMap SEM

An example of SEM image analysis is as shown in the figure 2.20. Here, the aim is to
analyze the surface texture, and therefore, 3D reconstruction of the SEM image is necessary.
After the surface is reconstructed, roughness measurements based on ISO 2517814 is carried out
for industrial purposes.

Challenges

Roughness measurement has been very important using SEM images. However, the new trend
is to measure roughness for complex structures, especially on the sides of the structure, which is
impossible to see in a single image. Therefore, the sample is rotating on a turntable and several

12SPIP - http://www.imagemet.com/
13MountainsMap SEM - http://www.digitalsurf.com/en/mntsem.html
14ISO 25178 - Surface texture: https://en.wikipedia.org/wiki/ISO_25178

http://www.imagemet.com/
http://www.digitalsurf.com/en/mntsem.html
https://en.wikipedia.org/wiki/ISO_25178
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images are produced using SEM instruments. The aim here is to reconstruct a full 3D structure
of the sample based on multiple SEM images and analyze the surface. The challenge here is to
model the SEM as a camera and use multiview geometric principles to achieve high quality 3D
reconstruction and carry out advanced roughness analysis on SEM samples.

2.3 Conclusions for Preliminary Concepts
In this chapter, important concepts and terminologies of image based 3D multimedia systems
were briefly described. New age application scenarios that this thesis focuses on, were also
explained. The challenges faced by the application scenarios were outlined, and some of them
were used as a motivation for the research question.

In all above scenarios, the common aspect is that the 3D reconstruction requires the knowl-
edge of camera calibration parameters. The inconvenience to use the calibration target in the
above scenarios poses one of the main challenges to the camera calibration process and thereby
3D reconstruction. Therefore, the next chapter goes deeply into the exploration of camera cali-
bration in 3D multimedia system, especially using distinctive features in the images and without
the use of any type of calibration target.





Chapter 3

Feature Based Calibration (FBC)

A brief overview of image based 3D multimedia system was outlined in the previous chapter.
The estimation and application of camera calibration in 3D systems was also described for
both single and stereo camera. Such calibration process can be carried out using traditional
Checkerboard Based Calibration (CBC) (Bouguet, 2008; Tsai, 1992; Zhang, 2000) or Marker
Based Calibration (MBC) (Kurillo, Li, and Bajcsy, 2008). There are also solutions existing for
calibrating distributed cameras capturing the scene (Kassebaum, Bulusu, and Peng, 2010). As
an alternate solution, in this chapter, Feature Based Calibration (FBC) is discussed.

In application scenarios such as VERDIONE (section 2.2.1) or BAGADUS (section 2.2.2),
carrying out CBC is almost impossible, as a really big checkerboard is required to be placed in
the center of a stadium or soccer field to calibrate the cameras installed at a large distance. Al-
ternatively, MBC techniques might be inconvenient in terms of capturing undesirable markers
in the scene. In the PTMS scenario (section 2.2.3), placing a checkerboard on the rail tracks is
very inconvenient and is at the cost of interrupting the railway traffic. Hence, the 3D applica-
tions must rely on FBC. In this chapter, adopting FBC in 3D systems and studying the effects
of camera misalignment of both single and stereo 3D systems are discussed in detail.

In 3D systems with either single or stereo cameras, a major practical problem is camera
misalignment, i.e., change in position or orientation of the camera fixed to the rig. Before
installation of the system, the camera misalignment might be caused due to transportation or
deployment errors and after installation, any manual intervention or natural causes (e.g., wind)
might be the reason for camera misalignment. When cameras are misaligned, the quality of
reconstruction and hence the quality of 3D systems is hampered. Quantifying the quality of
3D systems depends on the acceptable reconstruction error which in-turn depends solely on
what the application demands. To study such effects of camera misalignment in more detail,
a relevant research question was put forth, and correspondingly, Hypothesis I was stated as in
section 1.4.

When camera misalignment occurs during the operation of PTMS and the performance
degrades, only a recalibration process can be the solution to maintain the quality of 3D sys-
tems without shutting down the system for servicing. But in most cases, the recalibration pro-
cess based on traditional methods is practically impossible to achieve, i.e., by trying to hold a
checkerboard on the rail site, and hence, adoption of FBC is necessary. To study the implication
of using FBC instead of CBC and comparatively analyze the quality of 3D systems, Hypothesis
II was stated in section 1.4.

41
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In this chapter, the aim is to test Hypothesis I and Hypothesis II. In order to test these
hypotheses, the effects of camera misalignment and adopted FBC in 3D multimedia systems
were studied. In order to investigate the performance degradation of 3D systems due to camera
misalignment, the effects of camera misalignment on both single and stereo camera systems
were studied.

3.1 Misalignment in Single Camera System

3D vision systems using single camera technology finds its applications in various industries.
In games and entertainment industries, popular products like Kinect use a single camera to cap-
ture a projected structured pattern on the object and thereby estimate the depth information.
Depth estimation from structured light has been studied quite extensively (Rocchini, Cignoni,
Montani, Pingi, and Scopigno, 2001; Turk, Kim, Yi, and Park, 2005). In robotics, companies
like ABB Robotics1 and DTI2 adhere to single camera technology solution by using a camera
attached to the robotic arm to assist picking and sorting objects in industries. Nowadays, one
of the most popular industries where 3D vision systems are used is automation and inspection.
Single cameras have been installed to inspect the potatoes, eggs, chicken etc for grading pur-
poses by companies like IHFood3, QTechnology4 and Newtec5. Similarly automatic inspection
systems are used to inspect various types of faults or defects for sorting and quality assurance
in food industry (Brosnan and Sun, 2004; G and S, 2010), inspection of cracks in roads (Cord
and Chambon, 2012), crack detection of mechanical units in manufacturing industries (Mar,
Fookes, and Yarlagadda, 2009; Zhao and Li, 2005) and so on. Vision based inspection systems
are increasingly growing with the advance in computer vision techniques and algorithms.

The quality of vision based inspection systems, where 3D reconstruction is involved, is
strongly dependent on the quality of camera calibration. Usually camera calibration process is
carried out offline and the corresponding calibration parameters are used to recover 3D measure-
ments from single 2D image. The use of calibration in 3D recovery can be seen in many appli-
cations (Araki, Sato, Konishi, and Ishigaki, 2009; Heimonen, Hannuksela, Heikkila, Leinonen,
and Manninen, 2001; Le Flohic, Parpoil, Bouissou, Poncelet, and Leclerc, 2014).

One such interesting application that uses single camera vision system, i.e., PantoInspect
Train monitoring System (PTMS), is considered for studying the effects of camera misalign-
ment in a single camera system. The PTMS is chosen because it is a very good example, where
a catastrophic consequence might occur due to error in the 3D system in real scenario. As ex-
plained in section 2.2.3, PTMS detects and measures defects in pantographs in real-time and
alarms the train monitoring system for further action. Small magnitude of error in defect detec-
tion might cause false alarms, for example, one which wrongly inspects a wornout pantograph.
This can indicate a wrong signal to the train authorities that the replacement of pantograph is
not required. This in fact, compromises railway safety. The camera unit of the PTMS is respon-

1ABB - Leading supplier of Robot software, equipment and a complete application solution - http://new.
abb.com/products/robotics

2Danish Technological Institute - http://www.dti.dk
3IHFood A/S - Vision technology for inspection, grading and sorting - http://www.ihfood.dk
4Q Technology A/S - All-in-one camera with vision system - http://www.qtec.com
5NEWTEC - weighing, packing, sorting machinery - http://www.newtec.com

http://new.abb.com/products/robotics
http://new.abb.com/products/robotics
http://www.dti.dk
http://www.ihfood.dk
http://www.qtec.com
http://www.newtec.com
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sible to acquire image data of the cracks. This unit is prone to movement during transportation,
deployment, due to wind or manual intervention during servicing. Due to this misalignment,
quality of defect detection and measurement is prone to errors.

The effects on digital imaging systems from electronic, mechanical and optical influences
have been analyzed analytically and discussed (Godding, 2000). However, the study motivates
the need for system calibration as a result of the errors occurred due to the external influences.
This paper explains more about the need and methodology of camera calibration. In (Hayman
and Murray, 2003), effects on estimation of focus is measured due to translation misalignment
of self calibrating camera. In another article (Hijazi, Friedl, and Kähler, 2011), the effect of non
perpendicularity of camera’s optical axis with object plane, on mechanical strain was studied.
Here, the misalignment was represented only as camera tilt and shift, i.e., camera orientation
and translation in one direction.

The study in this section of the thesis extends the camera orientation and translation in all
three directions, which is important to address for image-based 3D measurement applications.
Moreover, in this case, the calibration parameters are assumed to be highly accurate and that
they stay the same even after the camera is misaligned. Hence, 3D measurements estimated
using original calibration parameters results in errors. This might seem obvious that the quality
of 3D measurement is affected by camera misalignment, but interesting part of this study is to
explore more in the aspect of how significant are the effects of camera misalignment on single
camera system and how to use the knowledge to improve the system design.

3.1.1 Evaluation
In our paper titled "Study the Effects of Camera Misalignment on 3D measurements for Efficient
Design of Vision-based Inspection Systems" [details in chapter 9], a statistical tool in the form
of a methodology was proposed. This involved the following:

• Studying the significance of the effects of 3D measurement errors due to camera mis-
alignment.

• Modeling the error data using regression models.

• Deducing expressions to determine tolerances of camera misalignment for an acceptable
inaccuracy of the system.

As the PTMS application motivated this study, the accuracy of 3D measurements of the
PTMS was observed in order to evaluate the effects of camera misalignment. Although the
PTMS detects and measures various types of defects as seen in figure 2.15, the common at-
tributes in these measurements were width and depth of the defects. Therefore, in the rest of the
evaluation, width and depth were considered the measurements obtained from the PTMS.

The PTMS inspection scenario is illustrated in figure 3.1. The 3D points (Xw, Yw, Zw)
representing the defects on pantographs lies at the intersection of the pantograph surface and an
imaginary laser plane. These 3D points are projected on an image by the camera as 2D points
(p, q). The world coordinate and camera coordinate system are also illustrated in the figure.
The mapping between 2D-3D points, as in equation 3.1, is represented by a planar homography
transformation, because 3D points lie on a plane, and therefore, their ’z’ component is zero.
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Figure 3.1: PTMS inspection scenario: world coordinates (Xw, Yw, Zw) and camera coordinates
(Xc, Yc, Zc).

Such planar homography is given by equation 3.2, where K, R and T are the camera intrinsic,
rotation and translation matrices, respectively.
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In this study, the simulation of PTMS was carried out under the conditions of camera mis-

alignment, in terms of camera orientation (rx, ry, rz) and translation (tx, ty, tz) in all three di-
rections. Figure 3.2 shows the simulation procedure used for evaluating the effects of camera
misalignment.

The simulation database was generated based on modeling a pantograph with carbon strips
of length 1.2 meters in length and about 30-50 mm in width and 30 mm in thickness. Five
various defects (as illustrated in figure 2.15) were considered to be randomly present on a pan-
tograph when the train passes under the PTMS. Each defect represents errors measured in terms
of width (max. 50mm) and depth (max. 30mm). Assuming 200 such train passages under the
PTMS, 1000 measurements in the database were obtained for testing, which were considered
as known 3D measurements or points representing width and depth of defects (W known and
Dknown). Then, with the help of known K, R, T values, known 2D points on the image were
determined.
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Figure 3.2: Simulation procedure.

The camera misalignment was emulated in terms of orientations (ranging between -40 to
+40 degrees) and position shifts (ranging between -100 to +100 millimeter). As a result of
emulation, misaligned 2D points representing noisy defect points were obtained. As explained
in the working principle of the PTMS in section 2.2.3, the 3D measurements (W est and Dest)
were estimated based on back-projection of 2D misaligned points from the image plane onto
the laser plane using the known planar homography (Hartley and Zisserman, 2004), which
was initially estimated by offline calibration process. Here, the camera intrinsic and extrinsic
properties were assumed to be known. This means that the cameras are calibrated offline using
Matlab tool (Bouguet, 2008).

In this way, the mean squared error was computed as in equations 3.3 and 3.4, which rep-
resents the accuracy of PTMS system when camera was misaligned by a specific degree of
orientation or position shift in a specific direction.

Errorwidth = ||W known � W est||
2

(3.3)

Errordepth = ||Dknown � Dest||
2

(3.4)

By observing the Errorwidth and Errordepth for various camera misalignment, the effects
of camera misalignment were studied. Further, the error was fed into a regression process. Con-
sidering each camera misalignment component as a variable and estimated error as a response,
the error was modeled using appropriate regression models. When the error data was modeled,
the parameters of that model was further utilized to predict tolerances of misalignment that the
camera unit can withstand without affecting the system accuracy upto the acceptable levels.



46 Chapter 3. Feature Based Calibration (FBC)

−100 −80 −60 −40 −20 0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Camera position mis−alignment (in mm)

Er
ro

r i
n 

wi
dt

h 
m

ea
su

re
m

en
t (

in
 m

m
)

 

 

x axis

y axis

z axis

(a) ErrorWidth Vs tx, ty , tz

−40 −30 −20 −10 0 10 20 30 40
0

2

4

6

8

10

12

Camera orientaton mis−alignment (in degrees)

Er
ro

r i
n 

wi
dt

h 
m

ea
su

re
m

en
t (

in
 m

m
)

 

 

x axis

y axis

z axis

(b) ErrorWidth Vs rx, ry , rz

Figure 3.3: Variation of error in 3D width measurements of the defects, due to changes in
camera position and orientation about its camera center.

3.1.2 Error Analysis

The result of error variation due to the camera misalignment in three directions can be seen in
figures 3.3 and 3.4. Here, the error was measured in millimeters, camera orientation (rx, ry, rz)
in degrees and camera position (tx, ty, tz) in millimeters. Please refer to figure 3.1, for insight
into camera coordinate system for the direction of camera’s rotation and translation. Looking
at figures 3.3 and 3.4, it is obvious that the camera misalignment has an effect on the system’s
accuracy. Another work (Dosovitskiy, Springenberg, Riedmiller, and Brox, 2014), also showed
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Figure 3.4: Variation of error in 3D depth measurements of the defects, due to changes in
camera position and orientation about its camera center.

similar results of the effect of camera rotation.
The effect of camera translation was not very significant. The accuracy of the system was

least affected by the translation in ’x’ direction (tx). Camera translation ty and tz did not affect
the accuracy to a large extent but acquired an error of less than 1mm. This is the case for both
width error in figure 3.3(a) and depth error in figure 3.4(a), however, the depth error was less
affected by camera translation than the width error.

The effect of camera rotation was more interesting and significant, because of the cam-
era arrangement, i.e., non-perpendicularity to the object plane. In figures 3.3(b) and 3.4(b), a
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Figure 3.5: Projective geometric effects of camera tilt angle in PTMS.

symmetrical variation in both width and depth error due to camera rotations ry and rz, and an
unsymmetrical variation due to camera rotation rx were observed.

Camera pan (rotation ry) affected the width error more than the depth error. As the camera
rotates around the y axis, the horizontal x component of the 2D defect points is displaced more
than the vertical y component. Since the width is a function of the x component, the width
error is greater than the depth error. Exactly the opposite was observed when the camera roll
(rotation rz) affected the depth error more than width error. This is because, when the camera
rotates around z axis, the y component of the 2D defect points are displaced more and depth is
a function of the y component. Even few degrees of rotation resulted in a significant change in
the error of more than 1mm.

However, special cases are the errors due to camera rotation rx. The camera tilt (rotation rx)
seemed to be very critical and affected the accuracy of the system more than any other camera
motions. This is due to the non-perpendicularity and the camera placement at an angle with
respect to the laser plane, which results in an unsymmetrical variation of both depth and width
errors. Moreover, it was also observed that the error increases more rapidly when the camera
tilts upwards than when the camera tilts downwards. This behavior can be explained using
projective geometric properties.

Consider the illustration in figure 3.5, where the camera is placed at the same position and
orientation as in PTMS. Let us consider that the camera captures the image of the defect point
that lies on the laser plane. By ray-to-plane intersection the 3D defect point is estimated to be at
the location Q. Now, when the camera is tilted upwards with (rotation rx(u)), the defect point
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is seen slightly lowered in the image and its corresponding 3D estimated point is at N and the
deviation of the reconstructed defect point is represented as Dn. Similarly, when the camera is
tilted downwards (rotation rx(d)), the estimated defect point is at P and the deviation is Dp. It
is important to note that for the same angle of rotation (rx), the deviation in the reconstructed
defect point is different due to the alignment of the camera with respect to the laser plane,
i.e., Dp < Dn. If the camera is further tilted, i.e., as the angle of rotation increases, the rate
of increase in Dn is higher than the rate of increase in Dp. This is the reason why in figures
3.3(b) and 3.4(b), the errors rapidly increase (corresponding to Dn) with camera rotation �rx

compared to the camera rotation +rx.

3.1.3 Error Modeling

After visually inspecting the effects of camera misalignment on the width and depth error, a
linear model was used to fit the error data variation due to camera translation, and a curvilinear
model was used to fit the error data variation due to camera rotation.

The linear and curvilinear models for translation and rotation, respectively, are mathemati-
cally shown in equations 3.5 and 3.6.

error = p0 + p1 ⇤ (component) (3.5)

error = p0 + p1 ⇤ (component) + p2 ⇤ (component)2 (3.6)

where, p0, p1, p2 are the model parameters and component represents the misalignment
component, e.g., camera rotation around x axis, in positive direction r+x . The line/curve fitting
was carried out separately for all camera misalignment components, i.e., camera rotations (r+x ,
r�x , r+y , r�y , r+z , r�z ) and camera translations (t+x , t�x , t+y , t�y , t+z , t�z ), where ” + ” and ” � ”

represents the direction of camera rotation and translation.

The model fitting of width error with camera translations and rotations are as shown in
figures 3.6 and 3.8 respectively. Model fitting for depth error are shown in figures 3.7 and 3.9
respectively. The figures also show the residual plot in which one can see how good was the
data fit. In figures 3.8(a) and 3.9(a), there are fewer error points compared to the other error
data. This is because after ⇡25 degrees of camera tilt upwards, the error is so high that they are
treated as outliers in the statistical sense.

The resulting model parameters for both width and depth error over all camera misalignment
components were computed and are shown in tables 3.1 and 3.2. Here, p0, p1, p2 are the model
parameters and the model fitting quality is represented by the Root Mean Squared Error (RMSE)
values. The RMSE values for all the data are less than unity and that signifies a good model fit
(estimation of model parameters) with a confidence level of 95%.

The model parameters were further used as a predictor as mentioned in (Jain, 1991), after
which the camera misalignment could be computed for a given error value. This was used to
determine the tolerances of camera misalignment for an acceptable error in the system.
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Figure 3.6: Linear model fitting and residual plots for variation of width error with camera
translations.
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Figure 3.7: Linear model fitting and residual plots for variation of depth error with camera
translations.
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Figure 3.8: Curvilinear model fitting and residual plots for variation of width error with camera
rotations.
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Figure 3.9: Curvilinear model fitting and residual plots for variation of depth error with camera
rotations.
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Data Linear
f(x),x p

0

p
1

RMSE
width, t�x 5.13e-07 -7.14e-06 6.36e-06
width, t+x -1.73e-07 7.15e-06 5.47e-06
width, t�y 2.22e-03 -7.13e-03 6.47e-03
width, t+y -1.28e-03 7.43e-03 6.41e-03
width, t�z -4.04e-03 -8.93e-03 7.34e-03
width, t+z 3.84e-03 8.37e-03 7.20e-03
depth, t�x 5.09e-07 -4.23e-03 4.33e-06
depth, t+x -6.48e-08 4.26e-06 3.51e-06
depth, t�y 1.54e-03 -4.23e-03 4.11e-03
depth, t+y -2.7e-03 4.47e-03 4.118e-03
depth, t�z -2.45e-03 -5.30e-03 5.62e-03
depth, t+z 1.77e-03 5.01e-03 3.83e-03

Table 3.1: Model parameters estimated for translation

3.1.4 Discussions

It became clear that there is an effect of camera misalignment on the accuracy of PTMS. How-
ever, the effect of whether the camera misalignment is significant or not, depends on the appli-
cation, i.e., the PTMS. Before deploying the PTMS, the system was calibrated using the Matlab
toolbox (Bouguet, 2008) and tested for accuracy in the factory to obtain acceptance for de-
ployment. This factory acceptance test adheres to customer requirements. And BaneDanmark
(Danish Railway Network) has specified the requirement for an acceptable width or depth error
upto a maximum of 1mm. So, for the PTMS, 1mm is the critical error beyond which the system
fails to adhere the accuracy specified and is not reliable for the inspection of defects on the
pantographs.

So, considering the critical error of 1mm, the effect of camera misalignment was very sig-
nificant especially in terms of rotation but was not very significant in terms of translations
misalignment for the PTMS. The PTMS system showed high sensitivity in accuracy for camera
tilt compared to any other camera motion.

Additionally, an acceptable error of 0.5mm was considered and the predictor in equations
3.5 and 3.6 was used to determine the tolerances of camera misalignment in terms of rotation
and translations in all three directions. These computed tolerances are given in table 3.3. These
tolerances defined the maximum misalignment the camera can have without compromising the
accuracy and reliability of the PTMS system. Tolerances defined in the table are related to
camera misalignment only in one dimension. The tolerances over a combination of the camera
misalignment in all three dimensions can be easily estimated using the proposed simulation
procedure (shown in figure 3.2), where emulation of camera misalignment takes place over
three dimensions. However, for practical purposes, tolerances over one dimension is more
useful for testing the sturdiness of the systems (e.g. camera rigs) in those specific dimensions.

The significance of the effect and tolerances of camera misalignment, both were dependent
on the PTMS system. Although this result is not universal, the methodology used (explained
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Data Polynomial
f(x),x p

0

p
1

p
2

RMSE
width, r�x 0.386 -0.235 0.029 0.394
width, r+x -0.212 0.356 -0.005 0.142
width, r�y 0.688 0.095 0.011 0.468
width, r+y 0.974 -0.177 0.020 0.563
width, r�z 0.085 -0.072 0.003 0.102
width, r+z 0.127 0.065 0.001 0.076
depth, r�x 0.926 -0.014 0.064 0.912
depth, r+x 0.426 0.370 -0.005 0.141
depth, r�y 0.158 0.005 0.002 0.096
depth, r+y 0.140 -0.001 0.004 0.106
depth, r�z -0.032 -0.319 -0.002 0.150
depth, r+z -0.099 0.338 -0.002 0.130

Table 3.2: Model parameters estimated for rotations

Tolerances X axis (deg/mm) Y axis (deg/mm) Z axis (deg/mm)
Rotation (width) -0.46 to 0.82 -2.96 to 4.27 -4.73 to 5.12
Rotation (depth) -0.11 to 0.19 -12.57 to 9.21 -1.68 to 1.79

Translation (width) -6.97e04 to 6.98e04 -69.83 to 67.42 -56.41 to 59.20
Translation (depth) -11.82e05 to 11.75e04 -117.93 to 112.35 -94.67 to 99.44

Table 3.3: Tolerances for camera misalignment, given the system inaccuracy limit as 0.5mm.

in section 3.1.1) is universal, which is independent of any single camera 3D inspection system.
The methodology can be repeated for any single camera 3D measurement system to obtain
the tolerances of the camera misalignment given a known 3D reference, its corresponding 2D
points. Thus, obtained tolerance values help in a better mechanical design of the camera fixtures
and rigs to minimize defect measurement errors caused by camera misalignment.

All the above tests and discussions regarding the significance and tolerances of effect of
camera misalignment, are evident enough to reject a part of Null Hypothesis I (stated in section
1.4). From this, it can be concluded that the 3D reconstruction accuracy significantly decreases
when the camera is misaligned in a single camera system, where the significance is determined
by the application scenario.

3.2 Adoption of Feature Based Calibration
The concept of camera misalignment and its effects on single camera system, i.e., the PTMS
was discussed in section 3.1. In the PTMS, the camera is prone to misalignment during trans-
portation and after deployment due to natural causes (e.g., wind) or manual intervention that can
occur during servicing. Consequently, this has an effect on the accuracy of the 3D reconstructed
data in PTMS. However, pantograph misalignment can also adversely affect the accuracy of the
system. The pantographs are allowed to move upwards and downwards to have sufficient up-
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thrust to the contact wires in the operation of PTMS. This is termed as Uplift. The motion
and speed of the train in combination with the uplift of the pantographs, causes pantograph
misalignment from its original position (prominently in the vertically direction) and orienta-
tions (roll, pitch and yaw directions). In such cases of camera and/or pantograph misalignment,
the original camera calibration data is not useful anymore and therefore leads to inaccurate 3D
measurements. The solution to obtain a robust system is only through re-calibrating the camera,
i.e., to re-estimate the position and orientation of camera with respect to pantograph and use the
new calibration parameters to recover 3D measurements.

In the PTMS, the camera is calibrated offline using traditional checkerboard calibration
(CBC) technique (Bouguet, 2008). The same calibration technique cannot be used for online
re-calibration process because, it is impractical to hold a checkerboard at the position of the
pantograph on top of the rails, when the PTMS is deployed and operational. Moreover, un-
mounting the PTMS for offline calibration will require manual intervention and this leads to a
large maintenance and service time. This surely affects the train network infrastructure.

In geographical areas where sunlight is quite prominent, the PTMS operation is affected
invariably. Sunlight contains infrared rays, and hence, masks the laser lines, when the camera
captures the infrared images. Therefore, the images captured by the camera can be very noisy.
Rain or dirt on the camera box, will not affect the quality of image, because the cameras capture
infrared image of the laser lines, which does not capture raindrops or dirt that are seen in the
normal cameras. Flash under or over exposure is also a cause for noisy images similar to that of
sunlight. Poorly visible or occluded profile image or laser misalignment can cause noise in the
profile image that makes it difficult for the PTMS to analyze the images for profile detection.
Motion blur can also be caused due to vibration in the mount. This could indeed mis-detect
laser line positions and thereby deteriorate the quality of operation of the PTMS.

In this case, a robust PTMS is required to maintain the quality of the 3D measurements in
spite of camera/pantograph misalignment or noisy images, and save servicing and maintenance
costs at the same time. Therefore a feature based calibration (FBC) process is proposed for the
PTMS in order to overcome the inaccuracies in the system and save practical costs. For the
PTMS, the FBC refers to the estimation of camera pose with respect to the pantograph by using
interesting points detected in 2D image and their corresponding known 3D points.

An online re-calibration framework (Li and Lu, 2010) aimed at automatic calibration using
SIFT (Scale-Invariant Feature Transform) features cannot be used directly on the PTMS because
the framework was proposed for stereo systems, which focuses on obtaining feature matches
between the image pairs. However, in the PTMS the infrared image contains captured laser
lines and hence SIFT would not be suitable to figure out interesting feature points on the lines.
There exists other FBC solutions (Basso, Levorato, and Menegatti, 2014; Mavrinac, Chen, and
Tepe, 2008), which focus more on stereo vision and hence not adoptable for the PTMS.

For single camera systems, there exists markerless re-calibration schemes which do not
rely on the points (like in checkerboard), but on the structure of the scene (Carr, Sheikh, and
Matthews, 2012) or the structure of objects (Drummond and Cipolla, 1999). A camera laser
online calibration (Levinson and Thrun, 2013) is applied for autonomous robots/vehicles for
augmenting dense color information from the camera image to the sparse depth measurements
obtained by a laser. A feature based single camera vision system (Cesetti, Frontoni, Mancini,
Zingaretti, and Longhi, 2009) was proposed for the safe landing of an unmanned aerial vehicle.
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Most of the above discussed solutions cannot be used for the PTMS, because their methodolo-
gies vary in the way the features are detected for calibration. In PTMS, the target structure is not
complex but a well defined structure, which makes it simpler to model for calibration. However,
the challenge is to detect feature points in the noisy image and calibrate using very few feature
points based on a strategic scheme defined by the frequency of online re-calibration. Thus, ob-
tained calibration must also be resilient to PTMS specific camera or pantograph misalignment.

3.2.1 Proposed Re-calibration Methodology

In our paper titled "Online Re-calibration for Robust 3D measurement using Single Camera -
PantoInspect Train Monitoring System" [details in chapter 10], an integrated solution of fea-
ture based calibration methodology was proposed to increase the usability of the PTMS. This
involved the following:

• Adoption of feature based calibration in the PTMS instead of CBC over various practical
schemes of implementation.

• Evaluation of the performance of four state-of-art pose estimation algorithm using fewer
points.

• Evaluation of FBC in comparison to CBC in terms of performance and robustness against
pixel noise and camera or pantograph misalignment effects.

Figure 3.10: Proposed feature based calibration for the PTMS.

The proposed feature based calibration for the PTMS is shown in figure 3.10. The near
infrared images of the laser lines that define the surface of the carbon strip on the pantograph
was termed as Profile Image. These profile images were used to detect defects and estimate
the 3D measurements of it. The proposed FBC used the same profile image to re-calibrate
the system on-the-fly. Typically, FBC methodology consists of a 2-step process, (a) Feature
extraction and (b) Pose estimation. A number of feature points were extracted from an image
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and were used to estimate the camera pose, i.e., translation and rotation, and subsequently 3D
estimation of the defects.

The proposed FBC method relied on known 3D points and their corresponding 2D point
features extracted in the profile images. The camera is calibrated offline, meaning that the
camera intrinsic parameters (focal point, principle axes) were known prior to FBC operation.

Figure 3.11: Profile image with a representation of camera and world coordinates.

Feature Extraction

In the profile images, the laser lines traverse along the carbon strips of the pantographs. Con-
sider figure 3.11, where a missing carbon defect was captured by the infrared camera. Figure
3.11 also shows the shape of the 3 laser lines that traverse the shape of the pantograph and bends
on both the ends, where carbon strip ends. Each laser line has two end points where the line
bends and totally 6 such points in 3 laser lines represents the most distinctive feature that can
be used for pose estimation. Therefore, these 2D feature points (Ix, Iy), in principle, can be
extracted from the profile image using edge detection and a priori knowledge of the physical
model of the pantograph. However, feature points thus obtained will not be perfectly noiseless.
So, to obtain a noiseless feature point for the sake of evaluation of this study, manually anno-
tated feature points are considered. The world coordinate origin lies on the pantograph as shown
in the figure 3.11. Since each pantograph had standard dimensions, the 3D points corresponding
to the six 2D feature points were known and were expressed in world coordinates.

Pose Estimation

Using both known 3D points in world coordinate system (Wx,Wy,Wz) and 2D feature points in
image coordinate system (Ix, Iy), the camera pose with respect to the world coordinate system
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Figure 3.12: Defect identification and measurement.

was estimated. Since the 3D points are lying on the imaginary plane spanning all points lying on
the pantograph, the relationship between 3D points and the 2D feature points merely becomes
a projective homography mapping, which is represented as a projective matrix. This projective
homography can be further decomposed into the rotation matrix and translation vector that
refers to as the camera pose parameters ([R, T ]).

3D Estimation

The 3D reference points is assumed to lie on a plane. So, conversion from 2D to 3D is merely
a ray-plane intersection. From each of the 2D points (say (p, q)) that defines the defect, their
3D counterparts (say (X, Y, Z)) were estimated as a back-projection of 2D point using the pro-
jective homography (explained in section 2.1.1). Mathematically, the homography relationship
between 2D and 3D points are expressed as in equations 3.1 and 3.2.

Defect Detection

The profile images were analyzed to detect the defects. Whenever the lines in the profile images
are not straight, then that is potentially a defect, e.g., carbon missing defect, as highlighted in
figure 3.11.

Each defect was characterized by width and depth measurements. For each defect, poten-
tially three control points were identified that can be used to calculate width and depth of the
defect. The missing carbon defect detected in 3.11 is processed to identify the control points
M

1

,M
2

,M
3

as shown in figure 3.12. These control points are back-projected to their 3D posi-
tions as cM

1

, cM
2

, cM
3

using equation 3.2.

Width = cM
3

� cM
1

and Depth = AbsMax(H1, H2) (3.7)

where, H1 = cM
1

� cM
2

H2 = cM
3

� cM
2

The width and depth of the defects were computed using equation 3.7.
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Figure 3.13: Evaluation of feature based calibration for PTMS.

3.2.2 Evaluation

The evaluation procedure was carried out to measure the performance traits of the FBC adopted
PTMS in comparison to traditional CBC adopted PTMS. Figure 3.13 depicts the methodology
used for evaluating the FBC adopted PTMS. The live profile images of the PTMS were an-
alyzed to detect the defects. The camera of PTMS was calibrated offline using 20 images of
checkerboard pattern. Live profile images of PTMS was used to calibrate the camera using FBC
with only 6 points to potentially achieve the calibration quality as for CBC. To test the accuracy
of both CBC and FBC, the calibration parameters estimated by both of the techniques were
used in conjunction with back-projection of 2D defects point, to measure the defect dimensions
(width and depth) in real metrics. A reference defect dimensions were measured using industrial
caliper as shown in figure 3.12. The defect measurements obtained from both the techniques,
was compared with the reference measurements to obtain an error metric for the evaluation.

Reference measurements and evaluation tests were carried out on real pantographs (BR and
EG types) of trains in Denmark, BaneDanmark (Rail Net Denmark). Each of the pantographs
had 4 types of defects and 5 profile images from each pantograph comprising of 40 samples were
used for the test. Each of the defects was manually annotated for obtaining a proper reference
dataset. Table 3.4 shows the reference measurements of pantographs used for evaluation tests.

The FBC could possibly be carried out under various operational modes. Every profile
image can be used for FBC, but noisy profile image will worsen the re-calibration quality. Al-
ternatively, FBC can be carried out at regular intervals, however, a stable re-calibration could
be carried out only during servicing or maintenance periods. In this accord, two different oper-
ational schemes that was tested are as follows:
Scheme 1: FBC was carried out on every profile image and the defect is measured on those
images using its respective calibration parameter.
Scheme 2: FBC is carried out on a random profile image and the measurement is carried out on
all the remaining profile images with the same calibration parameters.
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Measurement Pantograph-type
(in millimeters) BR-type EG-type

Defects Width Depth Width Depth
Vertical Crack 2.38 17 5.88 20

Missing Carbon 77.98 17 39.04 20
Edge Crack 24.21 6 21.18 5

Abnormal Wear 19.36 6 14.78 5

Table 3.4: Reference measurements of defects of two pantograph types.

There are several pose estimation algorithms used for single camera system (Bouguet, 2008;
Faugeras, 1993; Hartley and Zisserman, 2004; Lepetit, Moreno-Noguer, and Fua, 2009; Lu,
Hager, and Mjolsness, 2000; Tsai, 1992; Zhang, 2000), which assumes that the camera intrin-
sic and reference 3D point coordinates are known. Out of many, four extensively used single
camera pose algorithms, i.e., FBC-boug, FBC-zhang, FBC-gold and FBC-epnp, were chosen
for evaluating adoption of FBC against CBC for PTMS. A brief description of these algorithms
are shown in table 3.5. All these algorithms operate with n � 4 points.

Algorithm Description
FBC-epfl (Lep-
etit, Moreno-
Noguer, and Fua,
2009)

Unlike other methods, this is a non-iterative approach to
PnP problem. Under PnP problem, 3D points are expressed
in camera coordinate system and then, the Euclidean mo-
tion that aligns both world and camera references is used to
retrieve [R,T ]. This method adopts the idea of expressing
n 3D points as weighted sum of four virtual control points,
which reduces complexity and noise sensitivity.

FBC-boug
(Bouguet, 2008)

This method initially estimates planar homography using
the Quasi-Linear algorithm and recovers [R,T ] parameters,
which are further optimized to minimize re-projection error
through Gradient Descent.

FBC-gold (Hart-
ley and Zisser-
man, 2004)

This method estimates a projective geometric transfor-
mation using Gold Standard algorithm before recovering
[R,T ].

FBC-zhang
(Zhang, 2000)

This method estimates planar homography using the Direct
Linear Transformation followed by a non-linear optimiza-
tion (Levenberg Marquardt) based on Maximum Likelihood
criterion. Then, [R,T ] are recovered using orthogonal en-
forcement.

Table 3.5: Single camera pose estimation algorithms and their description.

There are several challenges that has practical implications on the accuracy of PTMS. Poorly
visible profile image, laser misalignment, flash under/over exposure, motion blur or sunlight
will affect in detection of very few feature points and can introduce noise in the detected feature
point locations. The pantograph can be linearly displaced in the vertical direction (uplift) and



62 Chapter 3. Feature Based Calibration (FBC)

FBC-type Rx (Tilt) Ry (Roll) Rz (Pan)
epfl 7.17 3.50 9.46

boug 9.99 8.21 11.93
gold 11.51 5.96 10.99

zhang 10.86 6.7 11.30

Table 3.6: Absolute angular difference in degrees between CBC and FBC - scheme 1.

can be angular displaced in all three rotations (yaw, pitch and roll angles) during upthrust of
pantograph to the catenary wire and/or the motion of the train.

3.2.3 State-of-the-art FBC algorithms
FBC was carried out using four algorithms, i.e., FBC-boug, FBC-zhang, FBC-gold and FBC-
epnp on the data samples and obtained calibration parameters. The rotational parametric differ-
ence between FBC algorithms and CBC is noted as in table 3.6. This table shows the absolute
angular difference (in degrees) of rotational parameters estimated using FBC (scheme 1) and
CBC. Although the numbers gave an indication that one of the FBC method was better than the
others, it is difficult to conclude without evaluating the accuracy and robustness of algorithms
when adopted in the PTMS.

3.2.4 Accuracy of Measurements
Based on the evaluation procedure described in figure 3.13, the accuracy of width and depth
measurements in millimeters was measured in terms of mean error of the measurements over
the dataset samples and defects for two different operational schemes of PTMS.

The results of width error measurements are as shown in figures 3.14(a) and 3.14(b). The
observations of width error measurements are as follows, however more details are given in the
publication specified in chapter 10:

• For large width defect (missing carbon defect), all FBC types performed equally and
close to CBC.

• For lowest width defect (vertical crack), the width error in FBC-zhang increased drasti-
cally, however other types resulted 2-4 mm of error.

• For edge crack and abnormal wear, FBC-epfl, FBC-boug and FBC-gold introduced only
1-2 mm mean error compared to CBC.

• All FBC types are more sensitive to narrow widths (< 5mm) in scheme 2 than scheme 1.

• Overall, FBC-epfl and FBC-boug were observed to have performed close to CBC, with a
maximum increase in mean error of about 1mm in scheme 1 and 1.5mm in scheme 2.

The results of depth error measurements are as shown in figures 3.14(c) and 3.14(d). The
observations of depth error measurements are as follows, however more details are given in the
publication specified in chapter 10:
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(a) Width error for scheme 1.
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(b) Width error for scheme 2.
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(c) Depth error for scheme 1.
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(d) Depth error for scheme 2.

Figure 3.14: Mean difference of width and depth measurements for two schemes.

• All FBC types except FBC-boug performed very close to CBC with mean errors between
1-3mm in both schemes.

• For edge crack and abnormal wear, FBC types performed with mean error difference of
about 1mm compared to CBC.

• For vertical crack and missing carbon, all FBC types introduced about 2mm error in
scheme 1 and 3mm error in scheme 2.

• Overall, FBC-epfl, FBC-zhang and FBC-gold performed the best compared to CBC, with
a maximum increase in mean error of about 1.5mm for scheme 1 and 3mm for scheme 2.

In both the cases, mean width and depth error for scheme is observe dto be less than scheme
2. However, sometimes it is observed that the width errors in scheme 1 are higher than in
scheme 2, for example, FBC-epfl for abnormal & edge crack and FBC-zhang for vertical crack.
These are due to the randomness in the occurrence of feature detection errors or pantograph
misalignment in the real dataset used for evaluation.
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Figure 3.15: Cumulative density function (CDf) for scheme 1 and 2.

3.2.5 Error Distribution

The width and depth errors were measured, but to consider randomness in the error, the error
distribution was observed using computed Cumulative Density Function (CDF) for all (width
and depth) errors for both scheme 1 and scheme 2. An ideal CDF was used as a baseline to
compare the error distributions of FBC/CBC techniques. Figure 3.15(a) and 3.15(b) show the
tendency of the divergence of FBC/CBC from the ideal baseline case. To quantify the diver-
gence of FBC/CBC techniques from the ideal case, Kullback-Leibler Distance (KLD) (Kullback
and Leibler, 1951) was used. For discrete CDFs P and Q, the Kullback-Leibler divergence of
Q from P is computed as in equation 3.8. The lower value of KLD metric signifies higher
accuracy as a result of small divergence from the ideal.

DKL(P ||Q) =
X

i

P (i)ln
P (i)

Q(i)
(3.8)

The KLD for CBC and all FBC techniques were computed and listed in the table 3.7 for
width, depth and total error for both the schemes. From the table, FBC-boug showed the best
performance for width and FBC-epfl showed the best performance for depth. This confirmed
the observations made in figure 3.14. According to the error distribution analysis, FBC-epfl
performed better than CBC and FBC-boug performed close to FBC-epfl. FBC-zhang and FBC-
gold performed alternatively better than each other in various configurations. Overall by ob-
serving the KLD values for all algorithms in both the schemes, FBC techniques performed with
better accuracy in scheme 1 configuration compared to scheme 2.

3.2.6 Resilience

Here, the robustness of FBC was tested against the perturbations such as feature detection er-
ror (pixel noise) and pantograph misalignment (uplift, yaw angle, roll angle, pitch angle). To
emulate pixel noise, Gaussian noise with variance between +10 and -10 was added to the sig-
nal. Pantograph uplift was emulated by varying the vertical axes of 3D points from -0.5mm to
+0.5mm. All pantograph rotations (yaw angle, roll angle, pitch angle) were ranging between -10
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Measurment Ideal CBC FBC-epfl FBC-boug FBC-zhang FBC-gold
Scheme-1

width 0 1.29 1.39 0.92 1.39 1.20
depth 0 0.51 0.39 0.69 0.52 0.80
total 0 0.24 0.34 0.98 0.80 0.88

Scheme-2
width 0 1.29 1.29 0.80 1.61 1.39
depth 0 0.52 0.92 0.70 1.39 1.12
total 0 0.24 0.88 0.83 1.61 1.16

Table 3.7: Kullback-Leibler Divergence values for total (width + depth) error.
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Figure 3.16: Resilience over pixel noise.

to +10 degrees. For all these perturbations, the FBC was carried out for scheme 1 configuration
and KLD was computed.

Figures 3.16-3.20 shows the results of both width (all subfigures in the first column) and
depth (all subfigures in the second column) measurements measured in KLD metric. This
showed the divergence of each FBC technique and CBC from the baseline error distribution.
The lower value of KLD signified better accuracy of the techniques.

The observations can be summarized as follows, however, more details are given in the
publication specified in chapter 10:

• For pantograph misalignment errors, i.e., uplift (figure 3.17), and rotation errors (figures
3.18-3.20), several FBC types were more robust than CBC. This was because the refer-
ence world axis was fixed in space for CBC and any misalignment in pantograph would
affect the measurement from reference, whereas for FBC the reference axes was located
on the pantograph itself.

• For feature detection errors (figures 3.16), FBC types were obviously more sensitive than
CBC, because FBC relied on noise-free feature points for calibration. However, FBC-
boug (for width) and FBC-epfl (for depth) showed better resilience compared to CBC in
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Figure 3.17: Resilience over pantograph vertical displacement (uplift).
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Figure 3.18: Resilience over pantograph angular displacement (yaw).
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Figure 3.19: Resilience over pantograph angular displacement (roll).
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Figure 3.20: Resilience over pantograph angular displacement (pitch).

handling noisy feature points. This is because the optimization routine of FBC yields bet-
ter results with the localization of world coordinate system on the pantograph. Therefore,
FBC is preferred over CBC when the profile images are noisy, however in this case, de-
tection of six control points for FBC can also be affected, but not to a large extent because
a priori knowledge of the physical model of the pantograph is available.

• In all width errors (figures 3.16(a), 3.17(a), 3.18(a), 3.19(a), 3.20(a)), FBC-boug consis-
tently showed best resilience compared to CBC. FBC-boug uses only 6 points to calibrate
compared to CBC using more than 200 points for bundle optimization.

• In all depth errors (figures 3.16(b), 3.17(b), 3.18(b), 3.19(b), 3.20(b)), especially for ro-
tational perturbations, CBC was very sensitive, where as FBC types, i.e., FBC-zhang and
FBC-epfl showed a flatter response.

3.2.7 Discussions

Four of the popular state-of-art pose estimation algorithms, i.e., FBC-boug, FBC-epfl, FBC-
zhang and FBC-gold, were evaluated in order to show that FBC can replace CBC in 3D systems.
Keeping the PTMS as the main application focus, CBC was replaced with four FBC types in
two configurations (scheme 1 & 2). It was seen that scheme 1, which used every profile image
to carry out FBC and use the calibration parameters to estimate the 3D measurements provided
more accurate results. In scheme 2, after FBC is carried out using an image of laser lines
defining the pantograph, there are high chances that the pantograph is misaligned and the new
profile image is used with outdated FBC parameters for 3D measurements. This problem is
overcome in scheme 1.

Overall, it was found that FBC techniques outperformed CBC technique in both width and
depth measurements in various configuration. It was also found that FBC techniques were more
robust to pixel error or pantograph misalignment. By adopting FBC in the PTMS instead of
CBC, it was evident that FBC technique used only 6 points to carry out calibration; it could
handle noisy feature points; provide higher accuracy and robustness.
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All the above evaluation tests were sufficient to reject the Null Hypothesis II (stated in sec-
tion 1.4). Hence, it can be concluded that online re-calibration for error-sensitive 3D measure-
ment systems (PTMS) is possible using FBC methods that give effectively better performance
and robustness than CBC. This tremendously increases the usability of 3D vision inspections
systems with greater flexibility of using online re-calibration without any manual intervention.

3.3 Misalignment in Stereo Camera System

In the previous section 3.1, the effects of single camera misalignment with application to vision
based inspection systems, i.e., Pantoinspect (details in section 2.2.3) was discussed. The essence
of this study cannot be used directly on other 3D applications scenarios such as VERDIONE
(details 2.2.1), BAGADUS (details 2.2.2), POPART (details 2.2.4), where stereo cameras are
used for image acquisition.

In 3D stereo capture systems, the cameras are susceptible to misalignment especially, due
to manual intervention after deployment. This can happen when the cameras are not stable
and fixed onto the rigs. If the system builders knew, which of the camera motion (represented
by position and orientation in x,y,z, direction) affects the 3D reconstruction quality, then they
can take care either by manufacturing stable rigs or by restricting the camera to move in a
certain direction while using the camera. Hence, studying the misalignment of stereo camera is
important as much as for single camera.

Previously, there were many investigations on the misalignment of stereo camera and how to
correct them (Santoro, AlRegib, and Altunbasak, 2012). The influence of camera misalignment
error on stereoscopic reconstruction was studied (Bolecek and Ricny, 2015), but the evaluation
was limited to accuracy of feature correspondence. Another article (Zhao and Nandhakumar,
1996) evaluated individual spatial misalignment of camera but was limited to only camera ro-
tations. However, in this study the focus was on measuring the performance due to camera
misalignment in 3D space, which is more relevant for 3D applications and all camera mis-
alignment, i.e., spatial, positional and the combinations, in all directions, i.e., both positive and
negative x,y,z axis were considered.

The error for every component (x,y,z directions) of 3D reconstruction was measured. Error
occurring in 3D components can represent deformation of 3D reconstruction. This helps us in
understanding the nature of deformation of 3D reconstruction due to the camera misalignment
and this knowledge helps system designers build stable systems.

3.3.1 Evaluation

The camera misalignment can be either a pure translation, pure rotation or in most practical
cases, a combination of both translation and rotation. This is very important because the prac-
tical reason for misalignment is manual intervention that has no control over the camera mis-
alignment. Camera misalignment has 6 degrees of freedom for both translation and rotation.
The effects of all combinations of the camera misalignment on the 3D reconstruction accuracy
were studied. Also how the effects of camera misalignment influenced the variation of object
size was studied. The evaluation study is illustrated as in figure 3.21, and was simulation based.
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Figure 3.21: Evaluation procedure for stereo camera misalignment.

Figure 3.22: Camera axes and rotations around X-Tilt, Y-Pan, Z-Roll.

Procedure

The second camera on the right is used for emulating camera misalignment in terms of change
in rotation and translation with respect to the left camera. The rotational misalignment are
represented as rx, ry, rz and translation misalignment as tx, ty, tz. Camera axes and rotations
(pan, tilt, roll) are as shown in the figure 3.22. The ground-truth 2D points (xg1, xg2) were
filtered using the misalignment emulator, to obtain the misaligned image coordinates (e1, e2).

The misaligned points were triangulated using the camera projection matrices (P1, P2),
which were computed as in equation 3.9. The camera intrinsic (K) was assumed to be the same
for both the cameras. The left camera center is treated as the reference and hence, the rotation
(R) and translation (T ) relates to right camera.
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P1 = K ⇤ [I, 0], P2 = K ⇤ [R, T ] (3.9)

where,
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3Derror = ||Xg � Xe||2 (3.10)

As a result of triangulation 3D points were estimated. The performance metric used in this
case is the 3D accuracy, which is computed as mean squared difference between the estimated
3D points (Xe) and the ground-truth 3D points (Xg) (equation 3.10). Also x, y, z components
of 3D error were measured, to find out in which direction the deformation of 3D reconstruction
was affected more, comparatively.
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(b) Image view from stereo cameras - left camera facing the cube and right camera is rotated and translated with
horizontal angular displacement of 10 degrees.

Figure 3.23: Object and their projected stereo images.
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Dataset

The focus was on large space scenario such as VERDIONE (details in section 2.2.1). So, the
test database was generated to mimic the VERDIONE stage performance with object in the
scene at a distance of about 2 meters. The object is assumed to be uniformly spaced point
cloud representing the vertices of a volumetric cube (figure 3.23(a)). A stereo camera setup was
assumed to capture the object in the scene, with a focal length of 55mm at full resolution. Two
cameras, without lens distortion, are positioned at an angular deviation of 10�. The perspective
image from two cameras are shown in figure 3.23(b). Hence, ground-truth values for 3D and
2D points were obtained, for known camera calibration parameters, i.e., K-intrinsic matrix,
R-relative rotation and T -relative translation of right camera with respect to the left one.

3.3.2 Pure Translation Misalignment

The results of effects on 3D accuracy for camera misalignment in terms of pure translation (all
combinations of their components) is shown in figure 3.24. The camera translation was varied
from -10mm to 10mm (sign represents the direction). The 3D error was measured in mm as
well.

As the translation misalignment increases, the error is observed to increase linearly. In
figure 3.24(a), 3.24(d), 3.24(f) and 3.24(g), the 3D-Z increased rapidly compared to the other
component, for variation in tx. The 3D - X, 3D-Y components increased upto around 5mm when
the camera was translated to 10mm. On the other hand, in figures 3.24(b), 3.24(c) and 3.24(e),
all 3D error components shown accuracy around 5mm. Therefore, a higher error rate occurred
in 3D-Z component especially, when the camera motion involves translates in X direction. So,
this means that when the right camera in a stereo setup is misaligned on its horizontal axis, the
reconstruction is deformed along the z axis, i.e., towards or away from the camera.

Overall, the 3D error is most sensitive to translation along the horizontal axis that is collinear
to the stereo camera centers.

3.3.3 Pure Rotation Misalignment

The results of effects on 3D accuracy for camera misalignment in terms of pure rotation (all
combinations of their components) is shown in figure 3.25. The camera rotation was varied
from �10� to +10� (sign represents the direction). The 3D error was measured in mm as well.

As the camera is misaligned by either pan, tilt or roll direction, the 3D error increase as a
curvilinear function. However in most cases, 3D-Z component error rate is the highest, and then
is the 3D-Y component that is affected due to camera rotations in all directions. Compared to
camera tilt (figure 3.25(a)), pan (figure 3.25(b)) and roll (figure 3.25(c)), the camera roll type of
misalignment affects the 3D accuracy more.

The camera pan affects the error in an unsymmetrical fashion (figures 3.25(b), 3.25(d),
3.25(d) and 3.25(g)). When the camera is panned in the positive direction, i.e., rotated towards
the left camera (figure 3.22), then triangulation yields 3D points closer to its true position. When
the camera is panned in the negative direction, i.e., rotated away from the left camera, then the
triangulation yields 3D points that are much further away from their true position.
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Figure 3.24: Variation of 3D error versus camera misalignment in terms of pure translations

Overall, 3D accuracy is more sensitive to rotation more than translation misalignment. The
camera roll affects the accuracy the most, and camera pan affects the symmetric error pattern.
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Figure 3.25: Variation of 3D error versus camera misalignment in terms of pure rotations
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Figure 3.26: Variation of Total 3D error versus camera misalignment in terms of translations
and rotations

3.3.4 Combined Misalignment

Combined misalignment refers to the combination of both translations and rotations. The results
of effects on 3D accuracy for complex camera misalignment is shown in figure 3.26. The camera
translation was varied from -10mm to 10mm and the camera rotation was varied from �10� to
+10� (sign represents the direction). The 3D error was measured in mm as well.

The results for a combined effect of camera translation and rotation is as shown in figure
3.26. There is an overall increase in the rate of 3D error with increase in the camera misalign-
ment. This type of combined misalignment is more likely to practical scenario, where manual
intervention has no control over misalignment direction. So, in practical scenarios the effect of
camera misalignment on 3D errors seemed severe. For example, if any application requires an
accuracy of about 5mm in 3D reconstruction, the tolerance of camera rotation and translation
should be less than 1 degree and 1 mm, respectively.

3.3.5 Variable Object Size

Here, the influence of the size of the object on the effect of camera misalignment was studied.
The object sizes were varied between 200 and 1000 vertices of a cube, which is the test data.

The results are shown in figure 3.27, where average 3D error for various object sizes, over
different translations, rotations and combination of rotations & translations are shown in figures
3.27(a), 3.27(b) and 3.27(c), respectively. In every sub figure, a similar pattern for each individ-
ual object sizes shows that the results on translation and rotations were consistent over various
object sizes.

Even though the effect of translation has been the same for all object sizes, the effect of
camera rotation increases with increase in object size. This shows a direct relation between
object size and error. Both increase by the same factor, because both error and object points are
represented in 3D space. This knowledge can be used to balance the error due to misalignment
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Figure 3.27: Variation of Total 3D error averaged over range of misalignment versus object
sizes.
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from camera rotation. If the camera is susceptible to unavoidable misalignment in rotation, then
the camera can be setup to capture the objects in lesser resolution (equivalent to reducing the
object size) and achieve a reduction in 3D reconstruction error.

3.3.6 Discussions

Overall, the experiments were conducted to study the effects of camera misalignment in terms
of translation, rotation and their combination. The following is the summary of the results
obtained:

• 3D error is sensitive to misalignment in terms of translation along the line that is collinear
to the camera centers.

• 3D error is sensitive to camera roll misalignment more than to the tilt or pan.

• In both of the above 3D error measurement, z component which represents the depth
error is more that any other component. This signified a low tolerance to depth related
applications compared to metrology measurement where only x or y component could be
of interest.

This study can be used by the system builders to understand the sensitivity of camera mis-
alignment and build the rigs accordingly, i.e., to restrict camera roll and camera translation along
the line of camera centers. However, the extent to which restriction are held, i.e., tolerance is
determined by application scenario.

The tolerances on each individual aspect of camera misalignment, i.e., translation or rotation
in x,y,z directions can be determined, by modeling the error and using a predictor function,
similar to section 3.1.3. However, to predict the tolerances, an acceptable error that depends on
the application scenario needs to be known. As the evaluation was carried out only on a virtual
simulated dataset, assuming an acceptable error for an application scenario is not fair.

Therefore, the study in this section was limited only to show the effects of camera mis-
alignment on a stereo camera system and leave the significance of the effect to be application
specific. This study can further be used as a methodology to model the error and predict the
tolerances based on the application’s acceptable accuracy.

All the above tests and discussions regarding the significance and tolerances of effect of
camera misalignment are evident enough to reject a part of Null Hypothesis I (stated in section
1.4). From this, it can be concluded that the 3D reconstruction accuracy significantly decreases
when the camera is misaligned in stereo camera setup, where the significance is determined by
the application scenario.

The experiments were carried out on a simulation dataset, which tried to mimic the applica-
tion scenario such as VERDIONE and BAGADUS, in order to obtain ground-truth values for
determining the 3D accuracy. However, the application scenario testing was limited to only a
foreground model object. The situation where the captured scene involves background with a
large depth of field, is more likely to occur in the application scenario such as VERDIONE,
BAGADUS and POPART. Such a situation was not tested in this study.
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3.4 Conclusions for FBC
In this chapter, the research Hypotheses I and II, as stated in section 1.4, were tested. In the
process of testing the research hypotheses, for each of the topics discussed, this chapter stated
the proposed ideas, explained the experiments setup and discussed the results.

Accordingly, the effects of camera misalignment on single camera systems (for the PTMS
scenario) and stereo camera systems (for the VERDIONE, BAGADUS and POPART scenarios)
were discussed, and hence, it was shown that the 3D reconstruction error significantly increases
when the camera is misaligned. Adoption of feature based calibration over traditional checker-
board calibration (for the PTMS scenario) was also discussed, and hence, it was shown that
the accuracy and robustness of 3D reconstruction significantly improves when the 3D system
replaces CBC by FBC techniques.

Overall, in a practical perspective, the contributions from the study in this chapter, is sum-
marized as follows:

1. A statistical tool or methodology that is easily implementable and reproducible was de-
veloped. This tool can be used by any single camera system to determine the mechanical
tolerances of camera rigs to minimize errors caused by camera misalignment. This helps
in deployment of robust 3D systems, especially PTMS.

2. A feature based calibration methodology was adopted for 3D measurements system (PTMS)
by replacing the traditional checkerboard calibration. This provides an extended flexibil-
ity in using the deployed 3D system without manual intervention, when practical prob-
lems occur.

3. It was shown how the 3D system gets affected by stereo camera misalignment. This
helps the system designers to build stable camera rigs to improve the accuracy of the
3D system by restricted erroneous camera misalignment. The evaluation was carried out
using simulation dataset that mimicked VERDIONE or BAGADUS scenarios, however,
application scenario testing was limited.

In this chapter, the robustness of FBC as a complete system was explored. FBC technique
relies on the features extracted from the images. Hence, the quality of FBC and thereby 3D
reconstruction, depends on the quality of feature extraction. Therefore, the exploration of the
robustness of feature extraction is described in the next chapter.





Chapter 4

Feature Extraction

The need for feature based calibration (FBC) and their adoption in 3D system was discussed in
the previous chapter in the context of achieving high quality calibration of cameras in terms of
accuracy and robustness. Although the performance of 3D systems was studied as a complete
system, there are still few important questions to investigate pertaining to the building blocks of
the feature calibration subsystem. As explained in figure 2.1, the main building blocks of FBC
for any 3D system are feature extraction and pose estimation.

Feature extraction, in the context of 3D applications, is the first step in feature based cali-
bration. As explained in section 2.1, in 3D stereo systems the feature extraction process first
detects feature points in both the images and then matches them to obtain feature correspon-
dences in stereo image pair. The unknown 3D points are typically estimated as sparse 3D points
using triangulation process or dense 3D points using rectification followed by depth estimation
process. In all cases of 3D reconstruction, the calibration parameters estimated are an important
factor that determines the accuracy of reconstruction (Pedersini, Sarti, and Tubaro, 1998). Since
the calibration parameters are estimated using the feature correspondences in FBC, the quality
of feature extraction also plays an important role in determining the 3D reconstruction quality.
Therefore, the important question is, what are good features for high quality 3D reconstruction
systems.

For 3D reconstruction application in application scenarios such as VERDIONE (details in
section 2.2.1), BAGADUS (details in section 2.2.2) and POPART (details in section 2.2.4),
multiple stereo pair of cameras were considered to capture the scene. In these scenarios, the
cameras are prone to change in their properties. The internal properties of the camera consti-
tute focal length, resolution, lens distortion, noise etc. The external properties of the camera
refers to relative position and orientation between the neighboring cameras. Any change in
the camera properties, will have repercussions on the accuracy of 3D reconstruction. With all
these perturbations, a good feature extraction that can be used for FBC to achieve high quality
3D reconstruction is not guaranteed. Hence, it is very important to evaluate the robustness of
state-of-the-art feature extractors when used in 3D systems for high quality 3D reconstruction.
Accordingly, Hypothesis III is stated in section 1.4, to investigate the impact of change in both
internal and external camera properties on the quality of feature extractors in stereo systems.

One of the popular point feature extractors today is SIFT - Scale Invariant Feature Trans-
form (Lowe, 2004). SIFT is known for scale and rotational invariance between a stereo pair.
However, it is observed that SIFT has a limitation in terms of maintaining a good accuracy for
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Figure 4.1: Illustraing feature extraction process - detection, description and matching, between
stereo pairs.

an angular separation greater than 30 degrees between the stereo camera pair. For large space
scenarios, a wide baseline camera setup is very suitable in order to use a smaller number of
cameras to cover the large area of the scene, and maintain the same quality of 3D reconstruc-
tion. Therefore, to explore the possibility of using SIFT for wide baseline FBC, Hypothesis IV
is stated in section 1.4.

In this chapter, the aim is to test Hypothesis III and Hypothesis IV. In order to test these
hypotheses, the robustness of several state-of-art feature extractors over variation in camera
intrinsic and camera extrinsic were evaluated. Also, SIFT feature extractor was explored for its
usage in FBC for wide baseline camera setup.

4.1 State-of-the-art Feature Extractors
Feature extractors, in this context, refers to the combination of feature detector and descriptor.
Feature detectors identify the interesting keypoints in an image and feature descriptors tag each
of these points with a unique representation. Point features, obtained by feature extractors are
then matched between the stereo pair. Figure 4.1 shows the point features extracted in a stereo
camera pair, where an outlier is also visible. Normally, the outliers are removed using optimiza-
tion algorithms (e.g., RANSAC (Fischler and Bolles, 1981)) to obtain feature correspondences
between stereo images.

In this chapter, several of the state-of-the-art feature detectors and descriptors were selected
as candidates for the evaluation. The selection was based on their extensive use in different
areas of application. These state-of-the-art feature extractors are briefly explained with their
properties in the table 4.1.
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Feature Properties Detection Description
Extractor
SIFT
(Lowe,
2004)

Scale and rotation
invariant. Robust
to change in illu-
mination, 3D view-
point, noise.

Interesting points are iden-
tified using Difference of
Gaussian (DoG) over sev-
eral linear scales of im-
ages. Then, the location
and scale of key-points are
accurately computed using
neighbor pixels.

The descriptor is repre-
sented by histograms of
image gradients that are
computed at every im-
age point around the key-
points detected.

SURF
(Bay, Ess,
Tuyte-
laars, and
Van Gool,
2008)

Scale and rota-
tion invariant.
Speeded-Up Ro-
bust features
which are dis-
tinctive, robust to
noise, geometric
& photometric
deformations and
specially can be
computed faster.

Using integral images
makes the image convolu-
tion faster. The detector is
based on Hessian matrix-
based approximation of
blob like interesting points
using Gaussian scale
space.

Descriptor is based on
distribution of interesting
points in its neighborhood.
This is similar to SIFT but
instead of using gradients,
distribution of first order
Haar Wavelets responses
is considered.

ORB
(Rublee,
Rabaud,
Kono-
lige, and
Bradski,
2011)

Designed to
perform two mag-
nitude faster than
SIFT.

This is a FAST detector
with addition of an accu-
rate orientation component
using intensity centroid.

Rotation-Aware binary de-
scriptor based on BRIEF
descriptor. This is com-
puted by introducing a
learning method for de-
correlating the BRIEF fea-
tures under rotational in-
variance.

BRISK
(Leuteneg-
ger, Chli,
and Sieg-
wart, 2011)

Adaptive and high
quality feature
detector and de-
scriptor designed
to lower computa-
tional complexity
compared to
SURF.

It is a combination of
FAST detector in scale
space and identifying
key-points by fitting a
quadratic function.

The descriptor is a bit-
string assembly from
intensity comparisons
retrieved by dedicated
sampling of each key-
point neighborhood.
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KAZE (Al-
cantarilla,
Bartoli, and
Davison,
2012)

Scale and rotation
invariant. Attains
high accuracy in
object boundaries
and robust to noise.

Similar to SIFT, except
that the key-points are de-
tected in nonlinear scale
space using Additive Op-
erator Splitting techniques
and variable conductance
diffusion.

This uses a modified
SURF descriptor, which
is SURF descriptor with
an intelligent two-stage
Gaussian weighting
scheme.

AKAZE
(Pablo Al-
cantarilla
and Bartoli,
2013)

Accelerated KAZE
- motivated to
compute faster
with similar scale
& rotational in-
variance and low
storage require-
ment properties.

Instead of using non-linear
scale space as in KAZE,
a numerical scheme called
Fast Explicit Diffusion in a
pyramid framework.

A Modified-Local Differ-
ence Binary descriptor,
which exploits gradient
and intensity information
from nonlinear scale
space.

MSER
(Matas,
Chum,
Urban,
and Pajdla,
2002)

Affine-invariant
feature extractor
suitable for wide
baselines in stereo.
Robust to change
in scale, illumina-
tion, out-of-plane
rotation, occlusion
and viewpoints.

Distinguished regions are
detected and affine invari-
ant procedure is carried
out to estimate the sta-
ble invariant regions, from
which the key-points are
measured.

n/a

STAR
(Agrawal,
Konolige,
and Blas,
2008)

A suite of scale
invariant center-
surround detectors
focused on visual
odometry appli-
cations. Stable
and repeatable in
viewpoint changes.
(CenSurE)

The CenSurE features are
computed at the extrema
over multiple scales using
full image resolution us-
ing center-surround filters.
There is na approximation
to scale space based of
Laplacian of Gaussian.

n/a

FAST
(Rosten
and Drum-
mond,
2006)

High Speed corner
detector exten-
sively used in
machine learning
methods, suit-
able for real-time
applications.

Considers a circle com-
prising of 16 pixels in an
image. Then every pixel
is compared with only 4
neighbors to classify if its
a corner or not.

n/a



4.2. Robustness against Camera Intrinsic 83

BRIEF
(Calonder,
Lepetit,
Strecha,
and Fua,
2010)

A highly discrim-
inative binary
descriptor de-
signed to compute
faster. Invariant
to large in-plane
rotation.

n/a Binary sting descriptor re-
lies on the image patches-
pairwise intensity compar-
isons. A classifier is
trained with image patches
form various viewpoints.

FREAK
(Alahi,
Ortiz,
and Van-
dergheynst,
2012)

Inspired by the
human visual
system - retina,
this descriptor is a
cascade of binary
strings aimed at
faster computation.

n/a Computed by efficiently
comparing image intensi-
ties over a retinal sampling
pattern containing Gaus-
sian kernel information.

Table 4.1: Overview of the state-of-the-art feature extractors.

4.2 Robustness against Camera Intrinsic
The intrinsic and extrinsic camera parameters are vital information for 3D multimedia appli-
cations which rely on data acquired by stereo camera pairs, such as free-view rendering (Min,
Kim, Yun, and Sohn, 2009), motion tracking (Moeslund and Granum, 2001), structure from
motion (Agarwal, Furukawa, Snavely, Simon, Curless, Seitz, and Szeliski, 2011) or 3D scene
reconstruction (Matusik, Buehler, Raskar, Gortler, and McMillan, 2000). In large space sce-
narios such as Mixed reality art performance, e.g., VERDIONE (details in section 2.2.1) or
BAGADUS (details in section 2.2.2), it is very difficult or sometimes impossible to obtain cam-
era calibration parameters using traditional Checkerboard Based Calibration (CBC) techniques
(Bouguet, 2008; Tsai, 1992; Zhang, 2000). Sometimes, it is inconvenient to use markers in the
scene, and hence, Marker Based Calibration (MBC) techniques (Kurillo, Li, and Bajcsy, 2008)
are ruled out. So, such scenarios have to rely on Feature Based Calibration (FBC) techniques
(Li and Lu, 2010; Liu, Zhang, Liu, Xia, and Hu, 2009). In FBC, camera calibration parameters
are estimated using feature correspondences in a stereo/multiple camera images.

In practical 3D imaging systems, image sensors suffer from practical perturbations such as
defocus, image blur, lens distortion, thermal noise, offsets in exposure time and whit balance.
Camera defocus is a known problem which causes blurring of the image. Image blur also
occurs when either the camera or the object moves faster than the camera’s shutter speed. If
the camera is set for high ISO during low light conditions, image noise is inevitable. Thermal
noise might exist in camera sensors which depends on the operating temperature. The use of
variety of lenses introduces lens distortion. Resolution of the captured image or video might be
another variable based on the needs of the application. All these perturbations in the camera
degrades the performance of feature extraction, and thereby, eventually impacts the accuracy
of the geometric 3D reconstruction. The feature extractors such as SIFT (Lowe, 2004), SURF
(Bay, Ess, Tuytelaars, and Van Gool, 2008) and ORB (Rublee, Rabaud, Konolige, and Bradski,
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2011) are widely used for FBC due to their performance traits or ease of availability. However,
the robustness of these feature extractors against the perturbations of internal camera parameters
is still not known to a large extent.

It was shown that the accuracy of the camera calibration is sensitive to the quality of fea-
ture points in terms of data quantity, noise and distortions (Sun and Cooperstock, 2006). This
work focused on evaluating the CBC techniques, especially from Tsai (Tsai, 1992), Hekkilä
(Heikkilä, 2000) and Zhang (Zhang, 2000) using checkerboard corner points. Although it gave
an idea of how the perturbations affect the accuracy, the robustness of feature extractors was
not explored. In another article (Moreels and Perona, 2007), feature extractors were evaluated
over the variation in the viewpoint, light and scale change, but not over the variation of cam-
era intrinsic. SIFT, variants of SIFT, SURF and FAST features were evaluated for change in
scale, illumination and blur (El-gayar, Soliman, and meky, 2013). Here, evaluation is based
on a number of feature matches, which does not give any information about accuracy of 3D
reconstruction whatsoever. Another article (Feng, Feng, Wyatt, and Liu, 2016), shows how re-
duced resolution or frame quality can negatively impact feature detection and tracking, using
SIFT features. Other articles (Şahin IşÄśk and Özkan, 2014; El-Mashad and Shoukry, 2014)
evaluated another set of feature extractors, but use evaluation metric as repeatability, recall or
precision. These metrics are very important and gives insight to accuracy of detection and de-
tection rate of the feature extractor. These metrics do not, however, give an insight into accuracy
of 3D reconstruction, which is interesting for the application scenarios discussed in this thesis.

Therefore, in this study, the feature extractors were evaluated using the epipolar constraint
as defined in the book (Hartley and Zisserman, 2004), which describes the geometrical con-
straint to obtain an accurate 3D point representation of point correspondences in stereo images.
Moreover, the evaluation was carried out to provide practical insights about the robustness of the
feature extractors, especially the prominent ones, i.e., SIFT, SURF and ORB, against variation
in internal camera perturbations (defocus / image blur, lens distortion, thermal noise, resolution
change). This helps in understanding the operating ranges of the feature extractors for various
perturbations.

4.2.1 Evaluation
In our paper titled "Evaluating Performance of Feature Extraction Methods for Practical 3D
Imaging Systems" [details in chapter 8], the behaviors of SIFT, SURF, and ORB were investi-
gated. This involved the following:

• Evaluation of robustness of feature extractors against change in scale (resolution), motion
blur/focus, lens distortion and thermal noise.

• Evaluation on real video dataset, which is degraded by simulating the practical perturba-
tions.

• Performance metrics were accuracy, detectability and computation time which represents
the quality and cost of 3D representation.

• Identification of operating ranges of feature extractors that aids researchers and develop-
ers for design decisions of multiview 3D applications.
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Figure 4.2: Evaluation Pipeline

The evaluation setup as illustrated in figure 4.2, is comprised of test dataset, image degra-
dation module, feature extraction and matching module and finally a performance evaluation
module.

Datasets

The first dataset is comprised of 30 stereo images of an opera performance conducted as an
experimental mixed reality art performance that took place in Tromsø. Here, there were 8
cameras (2 camera arrays, each consisting of 4 cameras of narrow and wide lenses) to capture
the scene. The second dataset comprised of 35 stereo images of a popular breakdance video
sequence of Microsoft (Zitnick, Kang, Uyttendaele, Winder, and Szeliski, 2004).

Image Transformation

To study the performance of the feature extractors under practical scenarios, change of resolu-
tion, defocus, lens distortion and noise were simulated using the mathematical models. Using
the simulated perturbations, the test stereo images from the dataset were transformed.

Image blur is the loss of image sharpness caused due to defocus, shallow depth of field and
motion of the camera or the scene objects and quantization process. In this study, the fo-
cus was on image blur due to defocus only, because this study assumed multiview capture
using only stationary cameras and hence motion blur was of lesser significance. Defo-
cus Ib(u, v) was accomplished by smoothing an image I(u, v) with a linear 2D Gaussian
filter G(u, v), as in equations 4.1 and 4.2. Various defocus levels was controlled by the
variance �b of the Gaussian kernel, which represented blur radius.

Ib(u, v) = I(u, v) ⇤ G(u, v) (4.1)
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Radial lens distortion is an optical aberration caused by spherical surfaces of the camera
lenses. It produces aberrations symmetrically and radially from the image center. Barrel
and pincushion (as explained in section 2.1) are the two types of radial distortions where
the image aberration increases and decreases, as the radial distance from image center in-
creases. Lens distortion was modeled as a 3rd order polynomial, as given by equation 4.3,
where Ru and Rd are undistorted and distorted pixel radius, respectively. The distortion
co-efficient k

1

was changed to obtain various levels of distortion.

Rd =
Ru

1 + k
1

R2

u

(4.3)

Image thermal noise appears as random speckles in an image which is random variation in the
luminosity or color information of the pixels. This is caused by the camera sensor and its
circuitry. Thermal noise was modeled as Gaussian distribution. A noisy image In(u, v)

was obtained by adding Gaussian random noise N(u, v) with zero mean and variance �n

to an image I(u, v), as in equation 4.4. To obtain various noise levels Nl, measured in
decibels, the variance �n was controlled as, �n = 10N

l

/10.

In(u, v) = I(u, v) +N(u, v) (4.4)

Scale/Resolution is characterized as image size in pixels. The choice of setting the resolution
depends on the application needs. However, evaluating feature extractors for various
resolutions would help to make the right choice. All images in the dataset were of HD
resolution. These images were re-scaled into three categories H-high (1280x960), M-
medium (640x480) and L-low (320x240) resolutions for the evaluation.

Feature Extraction and Matching

This module detects interesting features in the stereo images, computes descriptors for them
and then matches the descriptors to obtain feature correspondences between the stereo pair
of images. At the time of this experiment, prominent extractors such as SIFT, SURF and
ORB detectors-cum-descriptors were considered. For matching features, brute-force method
was used. The working principle of each of the feature extractors are briefly described in ta-
ble 4.1. Feature correspondences were extracted on both, the original image dataset and the
pre-transformed (through simulated perturbations) dataset for comparing the performance. An
example of feature extraction in stereo images for various datasets are shown in figure 4.3.

Performance Measure

The performance of feature extractors are measured using the following metrics:

Accuracy was measured in terms of Epipolar Error, which is based on epipolar geometry of
stereo images. Researchers (Faugeras, 1993; Hartley and Zisserman, 2004; Ma, Soatto,
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(a) Opera dataset - Wide lens with SIFT detected points

(b) Microsoft dataset with ORB detected points

(c) Opera dataset - Narrow lens with SURF detected points

Figure 4.3: Stereo images from various datasets low resolution 320x240.
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Figure 4.4: Illustration of epipolar geometry. Courtesy Multiview Geometry (Hartley and Zis-
serman, 2004)

Kosecka, and Sastry, 2003) have shown that in 3D imaging systems, the geometrical
relationship between the point correspondences between stereo images is important and
is characterized by a mapping matrix called Fundamental Matrix (F ). More details on
the properties and computation of fundamental matrix are found in section 2.1.1.

The epipolar geometry is illustrated in figure 4.4. Ideally, for every point in one of the
stereo images (say x̂), a corresponding point on the other stereo image (x̂0) should lie
on a line, called epipolar line (l0), which was computed using the matrix F (Hartley and
Zisserman, 2004). To obtain a reference baseline measurement, F matrix was estimated
using the original stereo images without any added perturbations.

Feature extractors operated on the perturbed image dataset and the resulting feature cor-
respondences (x and x0) lied outside the line and thus produced a deviance (d0). Such a
deviance averaged over all feature points was termed as Epipolar Error (Ep), which is
expressed as the squared Sampson error.

Sampson error is the first-order approximation to the geometric error (Hartley and Zis-
serman, 2004). The Ep between feature correspondences (x, x0) in a stereo pair is com-
puted as in equation 4.5, where F is the fundamental matrix computed using Np feature
correspondences. This aided in measuring the accuracy of feature extractors, in pixels.
Typically, the sub-pixel errors, i.e., Ep < 1 pixel, is considered an acceptable value for
good performance in most of the relevant applications.

Ep =

N
pX

i=1

x0
iFxi

(Fxi)2
1

+ (Fxi)2
2

+ (F Tx0i)2
1

+ (F Tx0i)2
2

(4.5)

Detectability measures the ability to obtain sufficient feature point correspondences in stereo
images required to estimate a sufficiently good quality estimation of fundamental ma-
trix (atleast 7 feature corresponding points for 7-point algorithm (Hartley and Zisserman,
2004)). Therefore, the percentage of trials resulting in at least 7 feature correspondences
over all tested dataset represented the detectability of a feature extractor. This measure is
similar to the repeatability measure of the feature detectors.

Computation time measures the computational speed of the feature extractors. It is computed
as the total time required for detection, description and matching of features.
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Figure 4.5: Accuracy Vs Computational time. The post-fixes refers to the size of the images:
L-low resolution (320x240), M- medium resolution (640x480), H- high resolution (1280x960)

4.2.2 Accuracy Vs Speed

Ideally, any 3D system would require high accuracy and high speed computation. Accordingly,
experiments to measure accuracy of the feature extractors at different resolutions and their com-
putational speeds were conducted. Figure 4.5 shows the results of the test (note the execution
time is plotted in logarithmic scale). Overall, ORB was computationally efficient compared to
SIFT and SURF at all resolutions. A relative difference in execution time between SIFT and
SURF was significant; SURF reduced the computational cost by 48% at all resolutions.

For individual feature extractors, accuracy increased with the increase in resolution. Com-
paratively, SIFT, SURF and ORB resulted in acceptable (sub-pixel) accuracy, except for SURF-
L and ORB-L. This shows that SIFT is more robust to change in scale. At lower resolutions,
very few features are detected, and even if there is a substantial number of features, they are
erroneous due to pixel resolution.

It is shown how the perturbations (blur, distortion and noise) affect the performance at spe-
cific resolutions and eventually leads to identification of operational limits of feature extractors
under various conditions modeled by simulated parameters. For every perturbation, Epipolar
Error and Detectability was computed at low, medium and high resolutions.
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4.2.3 Image Blur
Feature extraction was evaluated on blur levels ranging from 1.5 - 6.0. These values are the vari-
ances of the Gaussian filter used for blurring the images. An example of feature extraction on
blurry images for level 5.0 is as shown in the figure 4.6. The performance of feature extractors
for blurred images is shown in figure 4.7.

SIFT outperformed over all resolutions. SIFT seems to be more robust to blur levels proba-
bly because of its way of finding key-points, which uses scale space representation with various
blur levels. At lower resolutions, blur-ness has a greater effect and hence SIFT showed an ac-
ceptable accuracy up to blur level 4.5 (figure 4.7(c)). SURF performed marginally at acceptable
accuracy (Ep <= 1, figure 4.7(c)) up to blur level 4.5, at low resolutions, for the same rea-
sons mentioned for SIFT. However, the difference in accuracy between SURF and SIFT is due
to the nature of descriptor construction. SURF integrates the gradient information and loses
distinctiveness when blur-ness increases, while SIFT uses individual gradient to create the de-
scriptor and sustains the performance to a larger extent of blur. ORB performed to an acceptable
accuracy at medium and high resolutions (figures 4.7(b) and 4.7(a)) up to blur level 3.5.

The detectability measure (figure 4.7(d)) for both SIFT and SURF reduced drastically with
increase in blur level at low resolution, which makes them unsuitable to use when low resolution
images are blurred, especially at levels > 4.5. ORB performed the least in terms of detectability.
After level 4 of blur, ORB features were not found at all (see also figure 4.6(c)). The use of
huge box filters in ORB to obtain descriptors seems to limit its performance on blurry images.
Additional blur worsens the efficiency of the descriptor. Hence, ORB failed at low resolutions.

4.2.4 Lens Distortion
Feature extraction was evaluated on barrel and pincushion distortion levels from 10% to 50%.
An example of feature extraction on barrel distorted image level 40%, is shown in the figure
4.8. Performance of feature extractors for lens distorted images is shown in figure 4.9.

All the feature extractors performed well and similar at high and medium resolution. At
low resolutions SIFT outperformed SURF, which in turn outperformed ORB; however, all of
them exhibited a constant detectability. Overall, the performance of SIFT, SURF and ORB at
high and medium resolutions seems to be unaffected by lens distortion. It should be noted that
this result was for a homogeneous stereo pair where the distortions are assumed to be of same
degree in both the cameras.

4.2.5 Sensor Noise
Feature extraction was evaluated on noisy images, where noise level ranged from 5dB - 50dB.
An example of feature extraction on noisy images for level 15dB is as shown in the figure 4.10.
The performance of feature extractors for noisy images is shown in figure 4.11.

SIFT outperformed SURF and ORB, at all resolutions and exhibited resilience to thermal
noise, but became sensitive to noise at around 15dB for low resolution images. This effect can
also be seen in figure 4.10(a). SURF and ORB showed resilience to noise up to 20dB and 15dB,
respectively, at both high and medium resolutions. Importantly, a high and constant detectability
rate (figure 4.11(d)) was observed for SURF and ORB, suggesting that the performance of
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(a) SIFT on blurred images

(b) SURF on blurred images

(c) ORB on blurred images

Figure 4.6: Feature extraction on blurred (radius level 5) stereo images from Tromsø dataset
with wide lens of L-low resolution 320x240.
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(a) Blur at High Resolution
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(b) Blur at Medium Resolution
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(c) Blur at Low Resolution
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Figure 4.7: Performance of feature extractors for simulation of blur levels over various resolu-
tions
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(a) SIFT on distorted images

(b) SURF on distorted images

(c) ORB on distorted images

Figure 4.8: Feature extraction on barrel distortion (level 40%) stereo images from Microsoft
dataset of L-low resolution 320x240.
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(a) Distortion at High Resolution
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(b) Distortion at Medium Resolution
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(c) Distortion at Low Resolution
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Figure 4.9: Performance of feature extractors for simulation of distortion levels over various
resolutions
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(a) SIFT on noisy images

(b) SURF on noisy images

(c) ORB on noisy images

Figure 4.10: Feature extraction on noisy (15dB) stereo images from Tromsø dataset with narrow
lens and L-low resolution 320x240.
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(a) Noise at High Resolution
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(b) Noise at Medium Resolution
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(c) Noise at Low Resolution
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Figure 4.11: Performance of feature extractors for simulation of noise levels over various reso-
lutions
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SURF and ORB are not affected by noise, but the accuracy is too low (Ep > 10 pixels). This
behavior was because of wrong detection of features in noisy images. Hence, under noisy
conditions, above 15dB none of the feature extractors perform within the acceptable accuracy.

4.2.6 Discussions
The effects of blur, distortion and noise on SIFT, SURF and ORB feature extractors were inves-
tigated and the variation of accuracy, detectability and computational time was noted. From all
these, the observations were as follows:

At resolutions > 320x240:

• SIFT and SURF were the best choices. However, choosing SURF would save execution
time of 48%, on an average, with a cost of around 0.10 pixels in accuracy.

At resolution 640x480:

• For blurry images, SIFT is the best choice. However, using SURF would save 48%, on
an average with a cost of 0.22 pixels in accuracy.

• For lens distorted images, SIFT, SURF and ORB all are good choices. By using ORB, the
execution time reduces by 98.12% and 95.27% with a cost of 0.69 pixels and 0.33 pixels
in accuracy compared to SIFT and SURF, respectively.

• For noisy images, SIFT and SURF are good choices. SURF saves 32% time with a cost
of 0.67 pixels in accuracy.

Unlike other feature evaluations, the Epipolar Error was used to measure the accuracy of the
feature correspondences between the stereo pair. The Epipolar Error represents the geometrical
error, which is close to evaluating the 3D reconstruction compared to other metric, such as re-
projection error. Therefore, Epipolar Error was used to aid the selection of feature extractors
for FBC and other 3D applications. A choice of feature extractor can be made considering the
above conclusions on robustness and the resolution requirements.

All the above evaluation tests are sufficient to reject part of Null Hypothesis III (as stated
in section 1.4), and hence, it can be concluded that the performance of state-of-the-art fea-
ture extractors have significant differences to the change in internal parameters represented by
scale, defocus, lens distortion and noise. The state-of-the-art feature extractors, especially SIFT,
SURF and ORB were evaluated in terms of accuracy and computational time. This study has
identified the operational limits of the feature extractors that aids researchers and developers of
multiview applications.

4.3 Robustness against Camera Extrinsic
In the previous section, the effects of changes in camera internal parameters on the accuracy
of feature extractors were discussed. In this chapter, the effects of changes in camera external
properties such as relative rotation and translation of one camera with respect to another in a
stereo camera setup is discussed.
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In several multimedia 3D applications such as head mount virtual reality systems (Ribo,
Pinz, and Fuhrmann, 2001; Yuan, 2006), augmented reality (AR) mobile applications (Bres and
Tellez, 2009; Fragoso, Gauglitz, Zamora, Kleban, and Turk, 2011; Ventura and Höllerer, 2012),
interactive augmented reality systems (Lima, Simões, Figueiredo, and Kelner, 2010; Suenaga,
Tran, Liao, Masamune, Dohi, Hoshi, and Takato, 2015), free-viewpoint rendering (Min, Kim,
Yun, and Sohn, 2009), etc, two or more cameras are used to perform tasks such as augmenting
3D models in video sequences, depth estimation, virtual view synthesis, etc. The underlying
principle of such multiple camera systems is the estimation of camera pose, i.e., relative camera
position and orientation with respect to other cameras. In AR applications, high quality relates
to an accurate augmentation of virtual objects in the real scene. For this, it is required to know
the accurate position of the observer. This is regarded as solving image-based location problem
by an accurate camera pose (relative position and orientation).

Let us consider one such AR application scenario in movie production - POPART (more
details in section 2.2.4), which aims at providing an augmented preview of the scene shot during
the movie production. In this setup, a primary camera shoots the movie and two auxiliary stereo
pair estimates the camera pose with respect to the scene, so that virtual objects can be placed
in the scene accurately for the preview. In this case, the accuracy of placing the virtual objects
is highly dependent on the accuracy of the camera pose estimation, i.e., the camera extrinsic
calibration. These calibration pose parameters are used to integrate the animated 3D models
into the view of real-life actors on the set. This helps the directors or cinematographers to
preview the augmented scene and analysis way ahead of the post production time.

The camera extrinsic calibration or pose estimation is carried out based on the detection
of sparse feature correspondence that are extracted in the scene using the two auxiliary stereo
camera pair located as described in the POPART setup. This process refers to feature based
calibration (FBC).

The accuracy of FBC can be measured in 3D space using the metric Normalized Correlation
Coefficients (⌘) as stated in the equation 4.6. ⌘ provides a similarity measure of estimated 3D
points (Xe) with the ground-truth 3D points (Xg), which is represented as a normalized accuracy
value [0-low and 1-high].

⌘† =

P
(X†

e � mean(X†
e)) ⇤ (X†

g � mean(X†
g))qP

(X†
e � mean(X†

e))2 ⇤
P

(X†
g � mean(X†

g))2
(4.6)

⌘ =
X

†=x,y,z

⌘†

3

where † represents 3D axes components x, y and z.
One important factor that decides the accuracy of the FBC and thereby the system itself, is

the change in camera baseline (the angular displacement between the two camera positions). In
multiple camera systems, the following statements are commonly accepted:

• A high number of matched feature points in a stereo pair results in a better camera pose
estimation.

• Minimizing 2D pixel error calculated between matched pairs results in higher accuracy
of 3D estimation, based on epipolar geometry (Hartley and Zisserman, 2004).
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The first point holds good for iteration-based estimation algorithms (e.g., RANSAC (Fis-
chler and Bolles, 1981)). The second point, however, is not always true. This is illustrated in
figure 4.12, which represents a scatter plot of 3D accuracy (measured in Normalized Correlation
Co-efficient as in equation 4.6) versus 2D pixel error (measured in Sampson error as in equa-
tion 4.5) and number of matched feature points extracted from images of stereo pair at various
baselines (relative displacement between the stereo cameras). In figure 4.12, the colors repre-
sent different camera baselines and there exists many data points of each color that represent
various feature extractors. Figure 4.12(a) showed that low pixel error does not guarantee high
3D accuracy and, similarly, figure 4.12(b) showed that high 3D accuracy is not always obtained
by a larger number of feature matches. Therefore, it becomes very important to explore one
of the important factors determining the accuracy of FBC, i.e., change in the camera baseline,
which breaks the common assumptions made above.

The combination of detectors & descriptors (Agrawal, Konolige, and Blas, 2008; Alahi, Or-
tiz, and Vandergheynst, 2012; Alcantarilla, Bartoli, and Davison, 2012; Bay, Ess, Tuytelaars,
and Van Gool, 2008; Calonder, Lepetit, Strecha, and Fua, 2010; Leutenegger, Chli, and Sieg-
wart, 2011; Lowe, 2004; Matas, Chum, Urban, and Pajdla, 2002; Pablo Alcantarilla and Bartoli,
2013; Rosten and Drummond, 2006; Rublee, Rabaud, Konolige, and Bradski, 2011) are used
for FBC or camera pose estimation today. Each of these feature extractors has its own behav-
ioral traits. Some of them claim invariance to change in camera baseline, but the extent of their
tolerance is uncertain.

Previously, the evaluation of most of the state-of-the-art feature extractors, i.e., detectors
or descriptors, have used various evaluation criteria. The feature detector KAZE (Alcantar-
illa, Bartoli, and Davison, 2012), feature descriptors FREAK (Alahi, Ortiz, and Vandergheynst,
2012) and BRIEF (Calonder, Lepetit, Strecha, and Fua, 2010) evaluated themselves with other
known feature detectors using recall and precision metrics, which relates to a total number of
correct feature matches found. Along with recall and precision, BRISK (Leutenegger, Chli, and
Siegwart, 2011), STAR (Agrawal, Konolige, and Blas, 2008), FAST (Rosten and Drummond,
2006) and AKAZE (Pablo Alcantarilla and Bartoli, 2013), evaluated themselves in comparison
to others, using the metric called repeatability, which measures the extent of overlap between the
detected regions in an image pair. In both SIFT (Lowe, 2004) and SURF (Bay, Ess, Tuytelaars,
and Van Gool, 2008), the evaluation was carried out on various viewpoints, but not in compar-
ison with other features. However, the performance criteria was still repeatability. Sometimes,
the distance between the descriptors was considered to be an evaluation metric, as in ORB
(Rublee, Rabaud, Konolige, and Bradski, 2011). In all the above cases, the evaluation criteria
focused only on the correctness of the feature matches and this may not be enough to eval-
uate the feature extractors for accuracy in 3D applications and robustness to camera baseline
changes.

Point feature matching algorithms for stereo were evaluated (Juhász, Tanács, and Kato,
2013), but only for a particular baseline based on the re-projection error metric. In this study,
a range of baselines were evaluated and their effects were studied. Interest point detectors
and descriptors were evaluated for tracking applications (Gauglitz, Höllerer, and Turk, 2011),
where detectors were tested on various conditions such as scale, rotation, baseline, light, etc.,
using repeatability metric. Further, feature detectors were compared based on tracking success
rate, which was computed based on the re-projection error. However, KAZE, AKAZE, BRISK,
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Figure 4.12: Scatterplots of matched feature points and 2D pixel error with 3D accuracy.

BRIEF and FREAK were not included in their study. Moreover, instead of measuring the re-
projection error in 2D, the accuracy was measured in 3D space directly, relying on a dataset
consisting of known 3D models. Intuitively, 3D space metrics seems more suitable for AR
related applications.

SIFT feature extractor was evaluated (Michael Ying Yang, 2011) for viewpoint invariance,
by comparing the descriptor properties over various baselines. Their evaluation basically out-
lined the quality of obtaining correct matches, but that does not guarantee high 3D accuracy.
Feature tracking for pose estimation in underwater environment was evaluated (Shkurti, Rek-
leitis, and Dudek, 2011). However, their evaluation was limited to very few feature detectors
and descriptors with a very specific testing condition. Feature extractors for 3D object recog-
nition applications over various viewpoints and lighting conditions was evaluated (Moreels and
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Perona, 2007), but with a limited number of candidates for evaluation.
Therefore, in this study, a wide range of feature extractor combinations were evaluated with

a brute-force matcher to determine their robustness to change in the camera baseline. This
study is meant to provide system builders with a better understanding of the operational limits
of the state-of-the-art feature detectors and descriptors for various baselines. It helps system
builders to make better choices while designing 3D multimedia applications using multiple
camera systems. Besides the choice of algorithm, the study is also helpful in estimating the
number and position of cameras that are required for reconstructing rigid structures in a well-
known space, with a desired accuracy.

4.3.1 Evaluation
A virtual dataset was used for evaluation. So, complete control was obtained on the dataset.
From the virtual dataset, known camera calibration parameters were extracted, which mapped
ground-truth 2D and 3D points. First, these values were tested on the evaluation pipeline, before
conducting the experiments. Later, these ground-truth values were used for computation or as a
reference for comparing the experimental values.

In our paper titled "Robustness of 3D Positions to Camera Baselines in Markerless Aug-
mented Reality (AR) Systems" [details in chapter 11], state-of-the-art feature extractors were
characterized for its robustness against the camera baseline changes. This study involved the
following:

• Evaluation of many state-of-the-art feature extractors over change in camera baseline.

• Evaluation based on complete test pipeline, i.e., feature based calibration and 3D recon-
struction from stereo images.

• Design recommendations given the accuracy, execution time and reliability factor for each
feature extractor combination.

• Performance metric used was Normalized Correlation Co-efficient (⌘), based on ground-
truth data obtained from virtual dataset.

The evaluation setup is depicted as in figure 4.13. Every stereo pair from the dataset was
used to extract feature correspondences between the stereo pairs, followed by camera pose esti-
mation. The estimated and ground-truth camera poses were used for triangulating the ground-
truth 2D test data points. The resulting 3D points from both estimated and ground-truth camera
poses were compared to obtain the error in the system.

Dataset Generation

Ground-truth data was generated based on the assumed camera arrangement as in figure 4.14.
The camera was assumed to be placed on a circular configuration and the displacement between
the stereo camera centers was considered the camera baseline. The circular configuration was
chosen because it nullifies the scaling factor of the object or the object distance from the camera
and hence the focus lies on the baseline variation. Based on this configuration, stereo images of
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Figure 4.13: Experimental setup.

3D models were captures at various baselines from a distance of about 300 model units. Cap-
tured 3D models are as shown in figure 4.15 (obtained from CG Trader1), with stereo camera of
known camera calibration parameters. The camera intrinsic parameters [K] comprises camera’s
focal lengths (fx,fy) and principal axes (px,py). The camera extrinsic parameters represents rel-
ative rotation and translation of stereo pair ([Rg,Tg]).

K =

2

4
fx 0 px

0 fy py

0 0 1

3

5 , Rg3X3 =

2

4
rx1 ry1 rz1

rx2 ry2 rz2

rx1 ry3 rz3

3
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2

4
tx
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tz

3

5

Four points that represents an origin and three unit vectors in three orthonormal directions
was considered as the ground-truth 3D points [Xg]. These 3D points are sufficient to represent a
model measured in world coordinate system, with a geometric center of the model as the origin.
This was well suited ground-truth data, which when compared with estimated 3D data, resulted
in changes in both position and rotation of the model in 3D space. By projecting the ground-
truth 3D points onto the image plane using calibration parameters, ground-truth 2D points [x1

g

and x2

g] were generated.

With cameras of similar focal length of 520 pixels, principal axes of 300 and image res-
olution of 600x600 with 24 bit depth, about 450 stereo pairs were generated with the camera
baseline variation from 1 to 50 degrees with a step of 1 degree angular displacement.

1http://www.cgtrader.com

http://www.cgtrader.com
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Figure 4.14: Cameras arranged in a circular configuration around the 3D model.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4.15: The 3D models used for the experiment. From each model, 50 stereo image pairs
are generated, corresponding to various baselines. Courtesy: CG Trader.
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Feature Extraction

Feature extractors obtained by combining the detectors SIFT, SURF, BRISK, KAZE, AKAZE,
ORB, MSER, STAR and FAST, with their own descriptors, and in combination with BRIEF,
FREAK and other descriptors (All detectors and descriptors are briefly explained in section
4.1) were tested. In total, 26 feature extractor combinations were evaluated. To compute feature
correspondences in a stereo pair, a brute-force matcher on the descriptors was applied combined
with Random Sample Consensus (RANSAC) (Fischler and Bolles, 1981) for removal of out-
liers. Each feature extractor was applied to every camera pair configuration to extract feature
correspondences [x1

e, x2

e] between the stereo images.

Pose Recovery

Pose recovery estimates the pose (camera position and orientation [Re,Te]) of the right camera
with respect to the left camera in a stereo pair. The Essential matrix (E) was estimated using
feature correspondences [x1

e, x2

e] and camera intrinsic matrix [K] based on 5-Point algorithm
(Nistér, 2004). The essential matrix is a specialized case of fundamental matrix expressed in
normalized image coordinates that describes the relation between the stereo pair in terms of
epipolar constraint [x2

e
TEssx

1

e = 0] (Hartley and Zisserman, 2004).

3D Accuracy Computation

Instead of measuring re-projection error (project the estimated 3D point on to the image plane
and compare with the known ground-truth 2D values), accuracy computation in 3D space was
considered to be more relevant for the application scenario being evaluated.

The feature correspondences [x1

e, x2

e] are used to estimate camera pose [Re,Te]. It is unfair
to use the same correspondences as test data, which might imply a bias test. Therefore a new
test data, which is the ground-truth 2D datapoints [x1

g, x2

g] was used.
The 3D point estimation was carried out by triangulating (Hartley and Zisserman, 2004).

Now, by triangulating the 2D test points with known camera pose [Rg,Tg], ground-truth 3D
point [Xg] were obtained and by triangulating the test points with estimated camera pose
[Re,Te], 3D points [Xe] were estimated. Then the accuracy in 3D space was measured us-
ing the metric Normalized Correlation Coefficients (⌘) (equation 4.6) as a normalized accuracy
value [0-low and 1-high].

Testing Schemes

The evaluation tests were carried out based on the following pointers:

1. 450 stereo pairs * 26 feature extractor combinations, i.e., 11700 datasets were tested.

2. The virtual dataset comprised of a single 3D model with empty background, which is
similar to a movie shot with blue screen as background. This can also be related to a
textured background scene, where the test models of the dataset represent the scene at a
specific depth.
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Figure 4.16: The 2D error (Squared Sampson) based on epipolar constraint over varied baselines

3. ’Camera Baseline’ referred to the angular displacement of stereo pair of cameras placed
on a circular configuration.

4. Ground-truth 2D features was used in the pipeline and considered it as an ’IDEAL’ feature
extractor, which is a noiseless feature correspondence. This was as good as a blackbox
testing of the pipeline itself.

5. The estimation error was expressed as averaged error over every 5 degrees of the camera
baseline. This was to gain better readability as the variability within the 5 degrees is hard
to present visually.

6. The performance of all feature extractors were evaluated at all stages of the complete
pipeline described in figure 4.13, i.e., 2D pixel error, camera pose error, penalty/reliability
and 3D estimation error.

For all the results, the X-axis represented the baseline expressed between 1-50 degrees.
Along the Y-axis, the error was averaged over every 5 degrees, to increase readability.

4.3.2 2D Pixel Error
The 2D pixel error was expressed as EpipolarError (Ep) (Hartley and Zisserman, 2004) and
was computed as in equation 4.5. This metric determines how close every point feature in one
image is to its corresponding epipolar line in the other image of the stereo pair. For an ideal
match, Ep = 0.

The Ep measured for 2D stereo pairs, varying in baseline is shown in figure 4.16. This error
was computed for all meaningful combinations of feature extractors (described in the table 4.1).



106 Chapter 4. Feature Extraction

The pixel error stayed fairly low (although fluctuating) over all camera baselines. This means
that the features on one image were very close to the epipolar line in the other image. The
epipolar constraint was maintained here, however, this did not guarantee a consistent accuracy
of 3D estimation for all camera baselines as seen in figure 4.12(a). This is more evident in the
results of camera pose error.

4.3.3 Camera Pose Error
Next, the estimated camera pose was compared with known camera extrinsic obtained from the
dataset. The deviations of the estimated camera rotation and translation parameters from the
ground-truth value were summed up over all three axes. The results are as shown in the figures
4.17 and 4.18. In these figures, ’Own’ descriptors refer to the feature detectors that have their
own descriptors, e.g., SIFT, SURF, etc.

Each figure is categorized into sub-figures based on the descriptors used. It is evident that
pose errors do not follow the same pattern as in figure 4.16, which signifies that the variation
in camera baseline has an effect on the camera pose estimation. As the baseline of the stereo
camera increased, the pose estimation error increased (figures 4.17(a), 4.17(b), 4.18(a) and
4.18(b)) or stayed high throughout (figures 4.17(c) and 4.18(c)). This behavior is due to the
following reasons:

1. When wrong feature matches between the stereo pairs exists, the estimation of fundamen-
tal matrix becomes incorrect. This is quite obvious.

2. When correct feature matches between the stereo pairs exists, and if the feature matches
are confined to a small area, i.e., a set of 2D match points corresponds to only a part of
the 3D model, then the estimation of fundamental matrix becomes incorrect as there is
not enough information about rotation or translation covering the whole 3d model.

In both of the above cases, an incorrect fundamental matrix and thereby an incorrect esti-
mation of essential matrix resulted in an incorrect pose estimation. The 2D pixel error seemed
like a biased measure because the same number of feature points were used for both to estimate
fundamental matrix and to compute pixel error based on the fundamental matrix. Due to this
nature, although incorrect fundamental matrix was used, the 2D pixel error still stayed low over
all baselines (figure 4.16), as an effect of using RANSAC.

4.3.4 Penality
In the process of estimating the camera pose, three types of invalidity can occur.

• Type 1 - when camera rotational error in either of the three directions is more than 90�,
then the camera seems to be rotated more than expected, in a true situation.

• Type 2 - if any of the translation error is more than unity, then it means that the right
camera is estimated to be on the left side.

• Type 3 - though not directly related to pose estimation, this error occurs when the feature
extraction gives zero matches. This error also relates to non-estimation of fundamental
matrix due to very few matches.



4.3. Robustness against Camera Extrinsic 107

Baseline (angular separation in degrees)
0 5 10 15 20 25 30 35 40 45 50

Ro
ta

tio
n 

er
ro

r (
de

gr
ee

s)

0

20

40

60

80

100

120

140

160

180

200
Pose - Rotation estimation versus baseline

IDEAL
SIFT
SURF
BRISK
ORB
KAZE
AKAZE
MSER-SURF
STAR-SURF

(a) Own Descriptors

Baseline (angular separation in degrees)
0 5 10 15 20 25 30 35 40 45 50

Ro
ta

tio
n 

er
ro

r (
de

gr
ee

s)

0

20

40

60

80

100

120

140

160

180

200
Pose - Rotation estimation versus baseline

IDEAL
MSER-BRIEF
STAR-BRIEF
FAST-BRIEF

(b) Brief Descriptor

Baseline (angular separation in degrees)
0 5 10 15 20 25 30 35 40 45 50

Ro
ta

tio
n 

er
ro

r (
de

gr
ee

s)

0

20

40

60

80

100

120

140

160

180

200
Pose - Rotation estimation versus baseline

IDEAL
MSER-FREAK
STAR-FREAK
FAST-FREAK

(c) Freak Descriptor

Figure 4.17: Rotation error of stereo camera over varied camera baselines.
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Figure 4.18: Translation error of stereo camera over varied camera baselines.
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Figure 4.19: Penalty values for all feature extractors.

In the above cases, the camera pose estimation is deemed invalid. This situation can occur,
when the number of feature correspondences in a stereo pair are zero or very few or wrong to
a large extent. In these cases, the feature extractor was penalized, whenever any of the above
types of invalidity occurs. Therefore, every feature extractor combination gets a penalty score
for the invalidity.

Figure 4.19 shows the penalty score of each of the feature extractors. The penalty scores
are used to measure the feature extractor’s reliability that is used as a factor to recommend a
good feature extractor (explained in section 4.3.7). The penalty score is expressed as probability
of success over 450 trials (450 stereo test data images). For example, a penalty score of 200
means that out of 450 stereo test images, the feature extractor failed to provide valid data in 200
images.

Mostly, the FREAK descriptor showed the highest penalty score, which means that the
FREAK descriptors yielded wrong feature correspondence and camera pose estimation, and
that affected the 3D point estimation.

As can be seen in figure 4.19, the IDEAL feature extractor has a penalty of about 4 at
very low baselines. This means pose estimation algorithm is sensitive at low baselines. This
sensitivity has no effect directly on the comparative study on feature extractors, as penalty score
samples are considered invalid.
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Figure 4.20: Mean 3D estimation error, categorized based on feature descriptors over varied
camera baselines
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Figure 4.21: Standard deviation of 3D estimation over varied baselines.

4.3.5 3D Estimation Error

Using the feature correspondences and the recovered camera pose, the corresponding 3D points
were estimated and compared to their ground-truth values. The resulting samples were filtered
based on the penalty score. Only the samples that were not penalized were considered valid
and used for further evaluation. The 3D accuracy expressed as ⌘ (equation 4.6) was measured
against varied baselines and the results are shown in figures 4.20, 4.21, 4.22 and 4.23. Results in
figures 4.20(a), 4.20(b) and 4.20(c) are categorized based on the descriptors used, such as OWN
(means SIFT descriptor for SIFT detector and so on), BRIEF and FREAK. Known detectors
such as SIFT, SURF, BRISK, ORB, KAZE and AKAZE were not only evaluated on their own
descriptor but also with BRIEF and FREAK descriptors (figures 4.22 and 4.23). Accuracy is
indicated as a mean value of ⌘ over every 5 degrees to increase the readability of the result,
because the variability of ⌘ (as shown in figure 4.21) is hard to present visually.

The ⌘ value decreased over increase in camera baseline. 3D estimation was carried out using
triangulation, which is conceptually a back-projection of rays originating from feature points in
the image. Back-projection takes place with the help of intrinsic & extrinsic camera parameters.
Since the intrinsic camera matrix was constant throughout the experiment, the camera extrinsic
or camera pose was the variability that has an effect on the variability of 3D accuracy. This
showed that the increase in camera pose error reduces the accuracy. This effect was evident by
comparing figures 4.20 with 4.17 and 4.18. From this comparison, it is clear that low camera
pose error yields high 3D accuracy. This is why markerless pose estimation becomes important
in 3D applications.

4.3.6 Comparative Performance

It is shown how the 2D pixel error cannot be used for evaluating feature extractors as it is a
biased measure. It is also shown how the camera pose estimation was erroneous, which was due
to the the feature correspondence error. The penalized feature extractors and invalid datasets
were ignored in the calculation of the 3D accuracy.

Overall, some of the feature extractors outperformed others and some of the descriptors
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Figure 4.22: Mean 3D estimation error, categorized based on feature detectors (SIFT, SURF
and BRISK) over varied camera baselines
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Figure 4.23: Mean 3D estimation error, categorized based on feature detectors (ORB, KAZE,
AKAZE) over varied camera baselines
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showed better performance when combined with certain detectors, over others. The important
aspect to notice here is that each feature extractor performed relatively better in certain baseline
ranges. For ease of explanation, the behavioral pattern of extractors over a certain range of
baselines, i.e., (< 5�), (5� � 30�) and (> 30�) are analyzed. From the evaluation of the state-
of-the-art feature extractors, the results were summarized based on the accuracy as follows (for
more details please refer the publication in chapter 11):

• For baselines (< 5�):
SIFT, KAZE and AKAZE were good performers (figure 4.20(a)). However, rotation-
translation ambiguity existed during camera pose estimation. As explained before the
sensitivity of pose estimation algorithm plays a role here. This behavior can also be seen
in figure 4.19, where IDEAL penalty score was not zero. So, for other feature extractors
the penalty and thus the pose error magnifies. Even a small deviation in the accuracy of
feature correspondences yields a large pose estimation error (figures 4.17 and 4.18) and
thereby triangulation errors.

• For baselines (5� � 30�):
SIFT, SURF and KAZE with their own descriptors (figure 4.20(a)); BRIEF descriptor
with all detectors except MSER, STAR and FAST (figures 4.22 and 4.23); FREAK de-
scriptor with SURF, BRISK, ORB and KAZE were good performers (figures 4.22(b),
4.22(c), 4.23(a) and 4.23(b)).

• For baselines (> 30�):
SIFT and KAZE performed better than others (figure 4.20(a)). However, SURF detector
with both SURF and FREAK descriptors (figure 4.20(b)); BRIEF descriptor with BRISK,
KAZE and AKAZE (figures 4.22(c), 4.23(b) and 4.23(c)) were the next candidates.

• It was claimed (Alcantarilla, Bartoli, and Davison, 2012) that KAZE performed as good
as SIFT. But this holds good only upto a baseline of about 30�.

• ORB claimed to be an alternative to SURF (Rublee, Rabaud, Konolige, and Bradski,
2011), but it was observed that, after a baseline of about 25�, ORB did not perform better
than SURF. This is probably because the modified BRIEF descriptor used in ORB is not
as efficient as the SURF descriptor, which is based on Haar wavelets, in terms of rotational
invariance for higher baselines.

• The MSER and STAR detectors have been evaluated using SURF descriptor in their orig-
inal works (Matas, Chum, Urban, and Pajdla, 2002) and (Agrawal, Konolige, and Blas,
2008), respectively. Therefore, it was intended to use these combinations as well. It was
observed that the SURF descriptor was better off with its own detector rather than MSER
or STAR.

• In case of BRISK and ORB, as shown in figures 4.22(c) and 4.23(a), both the BRIEF and
the FREAK descriptors performed better than their own descriptor upto ⇡ 35�. So, the
BRIEF descriptor was more robust to baseline changes than the modified BRIEF (used in
ORB) and the BRISK descriptor.
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• Although AKAZE (Pablo Alcantarilla and Bartoli, 2013) showed a better performance
over other detectors, it performed as good as KAZE upto ⇡ 20� baseline and then, the
performance dropped down severely. Pose estimation error showed the same trend (fig-
ures 4.17(a) and 4.18(a)). However, AKAZE saves the computation time.

• SIFT and AKAZE, using the BRIEF descriptor (figures 4.22(a) and 4.23(c), respectively),
maintained their accuracy similar to that of using their own descriptors, upto ⇡ 35� base-
line. Moreover, BRIEF descriptor is advantageous in terms of computation time.

4.3.7 Discussions
Although ⌘ gives a relative performance measure of feature extractors, it is difficult to use this
information directly for practical applications. For making a sensible choice of feature ex-
tractors for a specific 3D application, feature extractors need an absolute measure that gives a
sense of quality of service (QoS). The QoS depends on the type of application and its require-
ments. Therefore the evaluation of features was extended based on QoS. QoS was represented
by Mean Squared Error (MSE) of reconstructed 3D point positions and orientations, reliability
and computation time of the feature extractors. As explained earlier, the penalties correspond
to the success rate of the feature extractor over several samples on all baseline ranges. There-
fore, the penalties are used to represent the "Reliability" of the feature extractor, which shows
the probability of success over 450 samples. The ground-truth test data is represented as three
unit vectors originating from the geometric center of the model. The positional and rotational
changes in the 3D reconstructed points are computed as the deviations from the ground-truth
3D points. This gives an idea of how the reconstructed 3D structure would be transformed in
3D space, due to the errors in feature based calibration, i.e., camera pose estimation.

The table 4.2 provides an overview of statistics of MSE of 3D points. As the results for
very low baseline (5�) was sensitive to noise, baseline ranges 5�-50� was considered. These
ranges were further divided into three categories of baseline ranges - Small (5�-20�), Medium
(20�-35�) and Large (35�-50�), which represents around 30% of scene coverage area, so that
it can be analyzed with higher baseline resolution. The MSE is expressed in the 3D model
units (mu) for positional deviation (Pd) and in degrees (deg) for rotational deviation (Rd). The
table also specifies the computation time (T ) required by the feature extractors (FEs), which is
useful for real-time applications. The reliability parameter (Re) in the table 4.2 becomes very
important along with accuracy and computation time, in making a choice of feature extractor.

Baseline (5� � 20�) (20� � 35�) (35� � 50�)
FEs Rd Pd Rd Pd Rd Pd T Re

[deg] [mu] [deg] [mu] [deg] [mu] [sec] [%]
mean(deviance) mean(deviance) mean(deviance)

IDEAL 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00 99.11
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SIFT 13.09
(7.17)

8.23
(1.96)

2.14
(1.06)

2.83
(2.64)

2.64
(0.56)

4.22
(1.11)

17.34 80.22

SURF 15.58
(5.94)

12.04
(2.26)

5.59
(0.64)

6.27
(0.30)

3.63
(0.89)

5.33
(0.80)

5.47 79.56

BRISK 20.21
(8.94)

25.31
(13.48)

6.43
(2.41)

18.73
(13.03)

3.82
(0.52)

88.69
(141.00)

1.75 67.56

ORB 21.04
(9.31)

9.41
(0.47)

8.29
(1.54)

33.30
(41.34)

3.93
(0.05)

9.22
(6.91)

0.85 61.11

KAZE 12.12
(3.84)

7.76
(2.23)

4.78
(1.25)

6.34
(1.64)

2.92
(0.26)

7.27
(2.13)

27.67 83.56

AKAZE 11.68
(2.76)

6.91
(3.97)

7.51
(0.74)

12.36
(5.03)

4.61
(1.22)

14.48
(13.06)

4.96 78.00

MSER-SURF 19.95
(11.36)

261.94
(422.71)

8.12
(1.33)

20.55
(10.17)

5.10
(0.19)

16.09
(12.27)

7.55 59.78

STAR-SURF 29.67
(12.08)

53.51
(47.55)

11.34
(3.75)

16.08
(7.11)

7.08
(0.98)

22.15
(8.20)

0.75 45.33

MSER-BRIEF 24.01
(4.87)

44.64
(45.12)

7.03
(1.17)

7.86
(3.64)

6.25
(1.77)

8.88
(5.47)

2.50 54.22

STAR-BRIEF 21.30
(11.42)

154.87
(254.05)

6.52
(0.22)

7.58
(1.61)

4.99
(0.89)

6.18
(3.66)

0.65 66.67

FAST-BRIEF 18.00
(9.78)

24.70
(9.83)

7.37
(1.36)

8.65
(2.04)

5.12
(1.48)

9.53
(4.65)

4.73 73.78

SIFT-BRIEF 14.00
(2.80)

33.85
(27.00)

4.98
(1.65)

7.82
(7.56)

4.81
(0.49)

7.68
(0.54)

7.75 74.44

SURF-BRIEF 18.70
(7.20)

16.40
(3.54)

8.93
(1.07)

270.54
(446.17)

5.63
(1.25)

11.04
(3.82)

3.22 72.44

BRISK-
BRIEF

20.10
(8.38)

21.75
(17.02)

6.46
(1.57)

22.14
(25.46)

4.91
(1.00)

49.14
(46.38)

3.76 72.44

ORB-BRIEF 15.70
(10.42)

4.79
(1.70)

4.84
(0.42)

7.61
(4.39)

4.41
(0.46)

59.16
(80.32)

0.80 71.11
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KAZE-BRIEF 13.63
(7.43)

38.77
(47.78)

4.33
(0.43)

4.64
(0.34)

4.18
(0.96)

16.78
(10.96)

21.12 77.78

AKAZE-
BRIEF

12.86
(6.91)

10.07
(6.27)

5.37
(2.04)

16.56
(10.51)

4.45
(0.20)

8.52
(1.14)

4.48 81.11

MSER-
FREAK

61.67
(4.78)

60.57
(48.24)

15.67
(9.97)

2.77
(2.04)

8.72
(3.38)

11.38
(18.21)

7.29 6.00

STAR-
FREAK

52.15
(29.05)

9.95
(6.09)

15.82
(6.92)

1.49
(0.29)

4.43
(0.00)

0.74
(0.11)

1.13 7.11

FAST-FREAK 52.70
(21.19)

8.42
(9.06)

9.50
(3.29)

23.62
(39.51)

6.38
(3.73)

11.14
(17.77)

6.09 0.00

SIFT-FREAK 51.65
(11.97)

5.74
(5.23)

22.41
(14.61)

30.14
(50.25)

10.78
(0.00)

3.78
(0.00)

9.29 5.11

SURF-
FREAK

20.10
(8.38)

21.75
(17.02)

6.46
(1.57)

22.14
(25.46)

4.91
(1.00)

49.14
(46.38)

3.23 72.44

BRISK-
FREAK

15.70
(10.42)

4.79
(1.70)

4.84
(0.42)

7.61
(4.39)

4.41
(0.46)

59.16
(80.32)

1.21 71.11

ORB-FREAK 13.63
(7.43)

38.77
(47.78)

4.33
(0.43)

4.64
(0.34)

4.18
(0.96)

16.78
(10.96)

21.10 77.78

KAZE-
FREAK

12.86
(6.91)

10.07
(6.27)

5.37
(2.04)

16.56
(10.51)

4.45
(0.20)

8.52
(1.14)

7.88 81.11

AKAZE-
FREAK

53.24
(25.05)

28.34
(37.48)

14.56
(8.09)

4.46
(5.23)

6.85
(0.15)

5.16
(5.38)

9.13 9.33

Table 4.2: Quality - accuracy, reliability and execution time of 24 feature ex-
tractors, which provides practical recommendation for 3D applications(section
4.3.7). Here "Rotation" is the mean 3D rotational change (expressed in degrees)
and "Position" is the mean 3D positional shift (expressed in model units) of all the
estimation 3D unit vectors that represent a model in 3D space.

Practical Recommendations

The result shown in table 4.2 is useful for any 3D application, which uses markerless cam-
era pose estimation, i.e., FBC. Some applications demand real-time performance. The camera
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placements vary from small to large baseline range. The table 4.2 can be used as a recommen-
dation for practical 3D applications, where one can either choose feature extractors or estimate
the camera density around the object of interest, based on the desired QoS.

Scenario I An application scenario using Small baseline range for which a feature extractor
is required to be chosen: From the table, both KAZE and AKAZE have good accuracy
in terms of 3D position and rotation, but one may choose AKAZE if the application
demands fast computation time. However, this choice is at the cost of reliability, because
KAZE seems to be more reliable than AKAZE. On the other hand, AKAZE+BRIEF
offers accuracy similar to KAZE and is equally reliable, and also much faster than KAZE.
So, in this case, the application could choose AKAZE+BRIEF.

Scenario II Another application, where number of cameras around an object needs to be de-
termined using KAZE (assuming KAZE is chosen for its high reliability): Here, KAZE
offers the best positional accuracy at Medium baseline range. If a baseline of about 30�

is considered, then number of cameras required to capture an object in 360�, is about 12.
On the other hand, if one can compromise on the positional accuracy slightly, at the same
time gain higher rotational accuracy, one would choose to operate with KAZE at Large
baseline range. In this case, for a baseline of about 45�, one could capture the same ob-
ject with only 8 cameras, which is more effective for applications, in terms of calibration,
storage and transmission tasks.

Hence, the study of feature extractors and their evaluation based on various baselines for
3D error in terms of position and orientation will very helpful for such applications. Exper-
iments were carried out on a virtual dataset that mimicked the application scenarios such as
VERDIONE and BAGADUS, in order to obtain ground-truth values for determining the 3D
accuracy. However, the application scenario testing was limited to only a foreground model ob-
ject. The situation where the captured scene involves background with a large depth of field, is
more likely to occur in the application scenario such as VERDIONE, BAGADUS and POPART.
Such a situation was not tested in this study.

The recommendations for feature extractors were based on the object distance of about 300
model units from the camera. Clearly if the object is farther away from the camera, every pixel
covers more area in 3D space. Consequently, feature detection errors or pose estimation errors
increase and thereby leads to less accurate 3D reconstruction. In such cases a re-calibration
process with more number of features covering the entire image might be necessary.

All the above evaluation tests are evident enough to reject a part of the Null Hypothesis III
(stated in section 1.4), and hence, it can be concluded that the performance of state-of-the-art
feature extractors have significant differences for the change in camera extrinsic parameters
represented as camera baseline. Several state-of-the-art feature extractors were evaluated and
the performance was measured in terms of 3D accuracy (normalized correlation coefficient and
mean squared error), computational time and reliability. This study provides a recommendation
for 3D application designer that will enable them to:

1. Select the feature extractor based on an acceptable accuracy or an acceptable execution
time, with a cost of reliability.

2. Decide the camera density required to capture an object of interest, for a desired QoS.
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4.4 FBC using SIFT for Wide Baseline

In the previous section, the quality of feature extractors for a variation in camera baseline was
explored. In this section, the focus is specifically on using SIFT feature extractor for feature
based calibration in the application scenarios such as VERDIONE (detail sin section 2.2.1) and
BAGADUS (details in section 2.2.2).

Several types of camera arrays are in practical use and development today (Wilburn, Joshi,
Vaish, Levoy, and Horowitz, 2004; Zhang and Chen, 2004). The camera arrays differ in cam-
era density and physical space it covers. While some image processing techniques such as
light-field processing, stereoscopic and multiview video, require relatively dense camera place-
ment, other image processing applications such as free-viewpoint rendering (Min, Kim, Yun,
and Sohn, 2009), visual hull reconstruction (Matusik, Buehler, Raskar, Gortler, and McMillan,
2000) and tracking or geometrical scene reconstruction can deal with relatively sparse camera
placements. In large space application scenarios such as VERDIONE or BAGADUS, it is nec-
essary to distribute cameras around a large space to capture the entire volume of the scene from
an optimal number of viewpoints. If camera array is placed at wide baselines (angular displace-
ment between camera centers of the stereo camera pair), then less density of cameras will be
required to capture the large space, which is absolutely suitable for cost effectiveness.

It is known that an important necessity for such applications is camera calibration. However
traditional calibration techniques (Bouguet, 2008; Tsai, 1992; Zhang, 2000) cannot be used, be-
cause it is sometimes impossible to place a big sized checkerboard in the stadium (BAGADUS
scenario) or the stage (VERDIONE scenario). Using markers for marker based calibration
(Kurillo, Li, and Bajcsy, 2008) causes inconvenience and disturbs the scene setting. Therefore,
feature based calibration (FBC) can replace the traditional checkerboard calibration in such
scenarios. Again, FBC is the most important aspect defining the quality of 3D reconstruction.

SIFT has been a a very popular feature extractor which is known for scale and rotational
invariance. However, according to the SIFT users, when the stereo cameras had a camera base-
line more than 30�, the accuracy of calibration system on the whole degraded. The repeatability
of SIFT detection started reducing after view angle of around 30� (Lowe, 2004). A similar
trend was seen in the results of the previous section in figure 4.20(a). Hence, it was important
to explore if the accuracy of SIFT based FBC can be maintained at an acceptable level when
the camera view point is more than 30 degrees, with a motivation to decrease the number of
cameras to capture the large space.

SIFT based FBC was proposed (Li and Lu, 2010; Liu, Zhang, Liu, Xia, and Hu, 2009; Yun
and Park, 2006) as an improvement over the traditional CBC that uses a calibration target. Using
SIFT, these systems automatically match the features between camera images, which are then
used to perform the calibration. However, the 30� view-angle limitation on performance of SIFT
still persisted, where feature matching performance degraded with an increase in viewing angle
between two perspectives. Moreover, with a growing baseline, less similarities exist between
images and consequently, fewer SIFT features were matched. The accuracy differences might
not only manifest due to less overlap areas or an increased number of occlusions, it could also
result in more false positive SIFT matches.

In earlier works (Li and Lu, 2010; Liu, Zhang, Liu, Xia, and Hu, 2009; Yun and Park, 2006),
all the point correspondences obtained by SIFT feature matching have been used for calibration.
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This is redundant and prone to noise due to mismatches of SIFT features. Eliminating such
wrong matches was studied (Jiayuan, Yigang, and Yun, 2010), using a error canceling algorithm
based on RANSAC (Random Sample Consensus - a widely used algorithm for outlier removal)
(Fischler and Bolles, 1981). Alternatively, a simpler method based on the geometry of lines
joining the matched points was proposed. The proposed outlier removal process executes faster
than and performs as good as the RANSAC (Fischler and Bolles, 1981), in the test scenario.

Therefore, in this exploration, an investigation was carried out to find out how to minimize
the false positive feature matches of SIFT and arrive at an optimal way of feature match selection
for FBC. Consequently, a new algorithm was proposed.

4.4.1 Proposed Algorithm
In our paper titled "Faster and More Accurate Feature-Based Calibration for Widely Spaced
Camera Pairs" [details in chapter 7], the operation of state-of-the-art SIFT was extended and
proposed a new extrinsic SIFT feature based calibration method called newSIFTcalib.

The highlights of the proposed algorithm are as follows:

• The newSIFTcalib algorithm is a SIFT based FBC algorithm proposed for a camera
pair with an arbitrary baseline that works without a calibration target. Here, some of the
limitations of current SIFT-based methods were addressed.

• Specifically, the novelty of the method lies in,

– a new technique for the detection and removal of wrong SIFT matches.

– a method for selecting a small subset of all detected SIFT features.

• The newSIFTcalib particularly compensates for increased viewing angles or large base-
lines, making SIFT-based calibration usable for camera arrays with large baselines.

This work involved following:

• Proposal for a new algorithm based on original SIFT features extractor to maintain the
quality of SIFT-based FBC for wide baseline setup.

• Evaluation of multiview real video dataset in comparison to other related algorithms.

• Performance metrics for both accuracy and execution time.

• Theoretical and practical operational limits of the algorithm, computed for allowable
baseline and an acceptable accuracy.

The proposed FBC system is illustrated in figure 4.24, where a number of stereo camera
pairs capture a scene of interest. For every 2D stereo images, SIFT feature points were detected
in stereo images and matched them using brute-force method. The feature matches were used
to estimate camera pose, with known camera intrinsic. The intrinsic camera parameters are
assumed to be known or have been determined in a prior offline calibration step.

As a pre-processing step, outliers (false positives in the matching process) are detected and
removed. Only a subset of stable points (referred as FeatureV ector in rest of the section),
which are less prone to noise, were used for camera pose estimation. The cameras are assumed
to be pre-calibrated for camera intrinsic.
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Figure 4.24: System overview.
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Figure 4.25: Process of outlier detection: outliers (solid), inliers (dotted)

Proposed Outlier Detection and Removal

The angular deviation of the lines connecting corresponding points in the camera pair was
computed. The detection of the outliers were based on the statistics of the angular deviation.
Consider two images from stereo cameras placed horizontally apart from each other. Lines are
drawn from every feature point in image 1 to their respective correspondences in image 2, as in
figure 4.25.

The mean (µx
✓ ) and standard deviation (�x

✓ ) of the angle between all lines and the X-axis
was computed. Then, the outlier detector compared the angle between each line and the x-axis
to µx

✓ and �x
✓ . A line lij (and thereby the point correspondence) is identified as an outlier if the

angle ✓x
l differs by more than �x

✓ , as in equation (4.7). The same is possible to be carried out
based on the statistics of angle between all lines and the Y axis. So in this way, it is made sure
that this algorithm can be used on images taken from both horizontally and vertically aligned
cameras. In general, this algorithm can be used on any stereo pair based on the statistics (mean
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and standard deviation) computed for the angular displacement of lines joining the matched
feature points with respect to X and Y axes.

outlier =

(
lij if |✓x/y

l | > µx/y
✓ + �x/y

✓

0 if |✓x/y
l | < µx/y

✓ + �x/y
✓

(4.7)

FeatureVector - size and selection

The feature points detected by SIFT are normally assigned a scale which can be interpreted as
a representation of the stability of the feature detection. This property was exploited and the
inlier point correspondences was sorted out and defined as FeatureV ector, a vector consisting
of point correspondences. The size of the vector was determined empirically.

Next, from the pool of inlier point correspondences, five candidates of subsets from highest
order of stability were chosen. Every candidate vector was used to estimate the camera pose.
With this information, estimated 3D points were re-projected onto the 2D image and compared
with the candidate vectors. This measure is re-projection error. Out of these five candidates, the
best subset was chosen as the FeatureV ector based on the least re-projection error.

Camera Pose Estimation

The FeatureV ector of point correspondences is used to estimate the essential matrix E. At
the time of this experiment, normalized 8-point algorithm (Hartley, 1997) was considered to
estimate the fundamental matrix and thereby estimate essential matrix using camera intrinsic
matrix. In a stereo camera setup, if the world coordinates are considered to be at the center of the
reference camera, the rotation matrix of reference camera is an identity matrix and translation
is a zero matrix. Relative rotation R and translation t of the second camera of the camera pair
represents the camera pose, and are related to essential matrix as E = [t]XR, where [t]X is a
skew-symmetric matrix as in equation 4.8,

[t]X =

2

4
0 tx �tz

�tx 0 ty
tz �ty 0

3

5 (4.8)

The Essential matrix can be decomposed using Singular Value Decomposition (SVD) as in
(Hartley, 1992), which is detailed as follows:

Let K
1

and K
2

be the intrinsic parameters of the camera pair respectively. Upon SVD of E,
the equation 4.9 is obtained:

E = USV T (4.9)

where U and V are unitary matrices and S is a rectangular diagonal matrix. Accordingly, R has
two solutions Ra, Rb, and t has two solution ta, tb, which are given by equation 4.10.

Ra = UWV T , Rb = UW TV T , ta = +u3, tb = �u3, (4.10)
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where u3 is the 3rd column of matrix U and W is as follows:

W =

2

4
0 �1 0

1 0 0

0 0 1

3

5

This gives a choice of four solutions to obtain the camera pose. A projection matrix of the
reference camera is given as P

1

= K
1

[I|0]. If P
2

= K
2

[R|t] is the projection matrix of the
camera, then solution is one of the following:

P
2

= K
2

[Ra|ta] , K
2

[Ra|tb] , K
2

[Rb|ta] , K
2

[Rb|tb]

The above four solutions have a geometrical meaning and one of the solution is always
meaningful. For every possible solution of P

2

, 3D points corresponding to the intersection of
back-projected ray from 2D point correspondences are estimated through triangulation. Using
cheirality constraint (Hartley and Zisserman, 2004), the 3D points obtained are checked for
positive sign of depth and hence the solution for camera pose is determined.

4.4.2 Evaluation
A widely used multi-view dataset from Microsoft (Zitnick, Kang, Uyttendaele, Winder, and
Szeliski, 2004) was used for evaluating the proposed algorithm with others. The dataset was
captured by a setup as illustrated in the figure 4.26. All 8 cameras (separated by ⇡ 0.3 meters
distance) captured an event (taken place at ⇡ 4.6 meters) with a resolution of 1024x728, and
rate of 15fps. The calibration parameters for these cameras were computed using traditional ap-
proach (checkerboard). These known calibration parameters were used for comparing estimated
calibration parameters estimated using newSIFTcalib algorithm. Based on the object distance
and camera separation, the angular difference between consecutive cameras in the Microsoft
dataset is about 3.82�. Since there are 8 cameras, total angular difference between first and the
last cameras is about 26.74�. So, this baseline range is very similar to the angular difference of
the stereo cameras in VERDIONE or BAGADUS scenarios, although the object distances are
different. Hence Microsoft data can be considered for those scenarios.

The following are the performance metrics used to evaluate the algorithms.

• Epipolar Error (Ep): This is computed as in equation 4.5.

• Re-projection Error (Rp): Given the point correspondences {x
1

, x
2

} and the estimates for
projection matrices P1, P2 for two cameras respectively, if the estimated 3D points are
re-projected onto the 2D image plane - referred to as new point correspondences {ex

1

, ex
2

}
(ex

1

= P1X̂ , ex
2

= P2X̂) then, Rp averaged over N test samples, can be computed as,

Rp =
1

N

NX

i=1

[d(x0
1i, ex0

1i) + d(x0
2i, ex0

2i)] (4.11)

d(x0, ex0) = ||(x0 � ex0)||
2

(4.12)
3Microsoft dataset (Zitnick, Kang, Uyttendaele, Winder, and Szeliski, 2004).
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Figure 4.26: Illustration of setup used by Microsoft to produce the multiview dataset. Courtesy:
Microsoft3.

4.4.3 Performance of Proposed Algorithm
Firstly, the proposed outlier removal process was tested for its performance. The performance in
this case was measured using Epipolar constraint. Secondly, the proposed algorithm was tested
as a whole, which involves the FeatureV ector selection. The known and estimated camera
pose error was computed and the execution time of the algorithm was measured in comparison
to the other algorithms.

Testing the accuracy of outlier removal: The following algorithms were compared to
evaluate the proposed outlier removal (solid lines in figure 4.25 are the outliers). Epipolar
Error (as in equation 4.5) was computed for following methods:

• 8-pt algorithm without outlier detection.

• 8-pt algorithm with RANSAC.

• 8-pt algorithm with the proposed outlier removal.

The test results in figure 4.27 showed the RANSAC method performed better than 8-point
algorithm without outlier removal, as expected. It is very evident that the proposed outlier
removal performed as good as RANSAC, and the computation time was drastically reduced
because RANSAC requires a large number of points for estimation. The minimum number of
points in the FeatureVector required for the good performance of outlier removal was deduced.
As shown in the figure 4.27, the proposed outlier removal performed similar to the popular
RANSAC method at a minimum of 25 feature points. Therefore, the size of the FeatureVector
was chosen to be 25 points. However, the proposed outlier detector performance was tested
only with relative rotation around vertical axis.
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Figure 4.27: Epipolar error (Ep) computed for three different methods

Testing the accuracy of the proposed algorithm: The performance of the proposed algo-
rithm was compared with other existing ones. The test candidates / algorithms were:

• The Checkerboard algorithm represents calibration using corners detected on the checker-
board.

• The FullSift_RANSAC algorithm represents calibration based on SIFT, using all the fea-
ture points detected and outliers removed by RANSAC.

• The FullSift algorithm represents calibration based on SIFT, using all the feature points
detected and outliers removed by the proposed method.

• The newSIFTcalib / Proposed algorithm - represents the proposed algorithm for calibra-
tion based on SIFT, using the proposed outlier removal method and selection of stable
subset (FeatureVector) of feature points.

The same dataset of images was used to test all algorithms for fair comparison. To evaluate
the accuracy of calibration, Re-projection Error (Rp) was considered the performance met-
ric. The calibration parameters for the Checkerboard algorithm were given by the dataset.
Re-projection error was thus computed using the known calibration parameters. For the other
algorithms, the camera parameters were estimated and then used them for computing the re-
projection error. Usually, in 3D vision applications, subpixel accuracy is considered good qual-
ity, and therefore, Rp  1 was chosen as an acceptable re-projection error.

The test results are as shown in figure 4.28 for Rp against various baseline distances (in
meters) between neighboring cameras. Here, the baseline of maximum 2.1 meters is recorded,
and this limit is as per the dataset availability. The summary of the results are as follows:

1. FullSift_RANSAC and FullSift performed very similarly. This verifies, as in the previ-
ous test, that the proposed outlier removal algorithm used in FullSift was as good as the
RANSAC method for outlier removal while being faster.

2. At small baselines (⇡ 0 - 1.2 meters), the newSIFTcalib algorithm performed as good as
other algorithms in the test, with minimal but acceptable error level of Rp  1.
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Figure 4.28: Re-projection error (Rp) computed for different algorithms

3. At large baselines (⇡ 1.2 - 2.1 meters), the newSIFTcalib outperformed all other algo-
rithms. The performance of the other algorithms degraded because of the noise prone
feature points, which was introduced due to large view-angles and baselines. On the
other hand, the newSIFTcalib algorithm uses the FeatureVector, which are more stable
and less prone to noise. The newSIFTcalib algorithm performs with high consistency at
sub-pixel level and is robust to noise.

4. The error in Checkerboard algorithm is observed to increase rapidly as the baseline in-
creases. This is because 2D SIFT feature points that were used for testing corresponds to
non planar 3D points distributed in the scene, but this algorithm is optimized for checker-
board corner points lying on a plane. So, as the baseline increases, the effect of poorly
estimated camera pose increases to produce an increase in the reprojection error.

Testing the camera pose estimation of proposed algorithm: The estimated camera pose
parameters were compared in terms of rotation angles (✓,�, ) in 3-dimension, in comparison
to the given rotation angles between cameras. Table 4.3 shows the parameters known (Checker-
board) and parameters estimated (newSIFTcalib) for different baseline distances are very close
to each other. This signifies that a good camera pose estimation was achieved, which is very
important for 3D applications.

Testing the execution time of the proposed algorithm: The execution time was evaluated.
The camera pose estimation using different algorithms for cameras separated by 1.2 meters was
executed and the elapsed time was measured in seconds. The performance of the newSIFTcalib
was reasonably measured relative to other algorithms. Figure 4.29 shows that the newSIFTcalib
algorithm achieved 58.82% and 74.07% decrease in the execution time compared to the FullSift
and the FullSift_RANSAC. One important thing to note is, at camera baseline of about 1.2 me-
ters, the quality of newSIFTcalib was comparable to other algorithms (as in figure 4.28), while
the execution time of newSIFTcalib drastically reduced.
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Camera pair Rotation
Baseline ✓ �  

0.3 (known) 3.1624 -3.1100 -3.1353
0.3 (estimate) 3.1253 -3.0839 -3.1362
1.2 (known) 3.1547 -3.1015 -3.1271

1.2 (estimate) 3.1278 -2.8736 -3.1355

Table 4.3: Comparing known and estimated camera rotational parameters.
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Figure 4.29: Execution time of various algorithms relative to FullSIFT � RANSAC.

Moreover, the execution time of SIFT should also be considered. The SIFT was executed
using hardware-accelerated devices like graphics processing units (GPUs), and found that the
feature detection and matching of two images takes about 700 milliseconds. The major con-
tribution to the execution time for the proposed algorithm is from the SIFT feature detection
and matching compared to the camera pose estimation process. In this sense, one could achieve
closer to real-time performances, along with time-optimized SIFT implementation.

4.4.4 Discussions

It is known that for SIFT users, feature detection on images from cameras, whose view-angle
differences are more than 30�, introduced matching errors and thereby degraded the accuracy
of calibration system on the whole.

This condition was used, ✓  30� as a constraint to develop a relationship between ob-
ject distance (D) and distance between the cameras i.e., the baseline (B), based on which the
performance of the algorithms evaluated and their operational limits were estimated.
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Theoretical Limit

Consider figure 4.30, where D represents the object distance from the camera, B and ✓ rep-
resents the baseline distance and view angle between neighboring cameras, respectively. The
triangle equations ✓ can be expressed as:

Figure 4.30: Deduction of relationship between object distance (D) and the baseline distance
between the cameras (B).

✓ = 2 ⇤ sin�1(
B

2D
) (4.13)

Using the condition, ✓  30�, the following was obtained:

2sin�1(
B

2D
)  30� ) B

2D
 sin(15�) ) B  0.52D (4.14)

The relation B  0.52D is the theoretically defined limit for the baseline using the con-
straint ✓  30�. In the test dataset, the object distance, D = 4.6meters(15feet), and therefore,
the theoretically set limit for baseline, deduced by equation 4.14 would then be and maximum
of 2.4 meters.

Next, the practical limit for the algorithms was checked on the given dataset.

Practical Limit

From results as shown in figure 4.28, the existing algorithms performed with an acceptable
error (Rp  1) only up to a baseline separation of 1 meter. Although the theoretical limit for
the baseline is up to 2.4 meters, the existing algorithms practically performed well only up to 1
meter. Hence, one could say that the existing algorithms are well suited for smaller baselines.

On the other hand, the newSIFTcalib algorithm extends the practical limit for the baseline up
to 2.1 meters and is well suited for large baselines. The dataset used in the experiments contain
stereo images separated by a maximum distance of 2.1 meters. Due to this limitation, the
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newSIFTcalib algorithm was not tested for wider baselines, however, it might fail to maintain
an acceptable performance, i.e., Rp < 1. This is merely due to the limitations posed by the
SIFT feature detection for variance in view angle.

However, it is evident that the newSIFTcalib algorithm pushes the practical limit of the
existing algorithms and reaches very close to the theoretical limit. Overall, the accuracy of the
newSIFTcalib algorithm has been consistent at sub-pixel level over multiple baselines, while
outperforming the existing algorithms, especially at large baselines. The execution time of the
newSIFTcalib algorithm has shown a drastic reduction in comparison to other stated algorithms.

The above test results have provided sufficient evidence to reject Null Hypothesis IV (as
stated in section 1.4). Hence, it can be definitely concluded that SIFT based FBC with few
modifications like in the newSIFTcalib, can achieve better accuracy and faster execution time
comparatively, at wide baselines of upto around 2 meters. This enhances the usability and
scalability of multiview capture system especially in large volume spaces.

4.5 Conclusions for Feature Extraction
In this chapter, research Hypotheses III and IV, as stated in section 1.4, were tested. In the
process of testing the research hypotheses, for each of the topics discussed, this chapter stated
the proposed ideas, explained the experiments setup and discussed the results.

Accordingly, the effects of change in the internal (for the VERDIONE and BAGADUS
scenarios) and the external (for the POPART scenario) camera properties on the performance
of state-of-the-art feature extractors were studied and hence, it was shown that the perfor-
mances of the state-of-the-art feature extractors have significant differences to the change in
intrinsic and extrinsic camera parameters. The study of SIFT based FBC (for the VERDIONE
and BAGADUS scenarios) was also extended, especially for wide baseline camera setup and
showed that the accuracy of SIFT features for wide baseline FBC is maintained at an acceptable
level for more than 30 degrees angular separation between stereo cameras.

Overall, in a practical perspective, the contributions from the study in this chapter is sum-
marized as follows:

1. The prominent state-of-the-art feature extractors such as SIFT, SURF and ORB were eval-
uated against practical issues of camera internal properties, i.e., de-focus, lens distortion
and noise. As a consequence, operating ranges of the feature extractors were determined
for a certain perturbations limit. These results can be used by researchers or system de-
velopers for making design decisions for 3D multiple camera systems which are prone
to change in internal camera properties, especially in the context of the VERDIONE and
BAGADUS application scenarios.

2. About 26 combinations of various state-of-the-art feature detectors and descriptors were
evaluated for varying camera baseline. Consequently, a design recommendation was
made to help practical 3D application designers to make a choice of the feature extractor
based on the accuracy, deformation of 3D object, execution time and reliability factor.
The application designers can also use the result in order to determine the camera den-
sity required to capture the scene. The evaluation was carried out using virtual dataset
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that mimicked the VERDIONE, BAGADUS or POPART scenarios, however, application
scenario testing was limited.

3. A new algorithm was proposed, which modified the existing SIFT extractor for FBC
methodology and a much better accuracy and a faster execution time was achieved, es-
pecially in wide baseline camera setups. This naturally increased the usability and scal-
ability of 3D multiview capture systems. Especially for large volume scenarios like the
VERDIONE or BAGADUS, the density of cameras capturing the scene can be reduced
and thereby the solution becomes cost effective.

In this chapter the accuracy of feature extraction was assessed, aiming at exploring their
robustness against practical issues. However, pose estimation is another part of the FBC pipeline
for 3D reconstruction. Therefore, characterization of pose estimation for various attributes of
matched feature correspondences between a stereo pair is described in the next chapter.



Chapter 5

Pose Estimation

It has been explained that the feature based calibration (FBC) process comprises of feature ex-
traction and pose estimation modules (figure 2.1). In the previous chapter, the feature extraction
module and their characterization for various practical issues was discussed. However, the qual-
ity of 3D reconstruction systems not only depends on the feature extraction quality, but also on
the quality of pose estimation. Hence, in this chapter, the influence of accuracy of camera pose
estimation on the performance of 3D systems is explored.

In this chapter, the focus is on characterizing pose estimation part of FBC. The feature
correspondences in a stereo pair are extracted by feature extraction part of FBC, and are used
to estimate the camera extrinsic, i.e., relative camera translation and rotation of one camera
with respect to another in a stereo camera setup. This process of estimating extrinsic camera
parameters is usually termed as ’extrinsic camera calibration’ or ’camera pose estimation’. In
the context of FBC, the pose estimation relies on the feature correspondences between a stereo
pair. Hence, it is very important to understand the sensitivity of the pose estimation module,
in terms of various attributes of the matched feature correspondences. The attributes that were
investigated are noise, number of feature points, sparsity of feature points in 2D space and
feature points from various camera baselines.

In application scenarios such as VERDIONE (details in section 2.2.1), POPART (details in
section 2.2.4) and SEMRECON (details in section 2.2.5), in order to adopt FBC, it is required
to have feature correspondences extracted and matched by state-of-the-art feature extractors
described in section 4.1.

Using state-of-the-art feature extractors, as in the previous chapter, the resulting feature
correspondences was found to be noisy. Noise can be interpreted as follows:

• feature correspondences not adhering to epipolar constraint.

• feature correspondences, when used for camera pose estimation, yield wrong camera
pose.

• feature correspondences when triangulated, yield 3D points which are geometrically dis-
located or deformed.

When such noisy feature correspondences are used for FBC, the noise affects the accuracy
of pose estimation and thereby the 3D reconstruction. It is interesting to explore to what extent
does the noise affects the pose estimation and 3D reconstruction.

131
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When the feature correspondences are available, the question arises as to how many points to
use and if not all, what subset of feature points to use for the pose estimation. In section 4.4, it is
seen that the use of subset of SIFT feature points yielded good results for wide baseline scenario.
This is an indication that pose estimation is sensitive to selection of feature correspondences.
Therefore, it is worth investigating the dependency of sparsity of feature points on the quality of
pose estimation and thereby 3D reconstruction. Here, the sparsity of feature points is explored
and a selection is made based on how sparse are the feature points in 2D space.

In section 4.3, it was shown that the camera baseline influences the accuracy of feature
extraction quality. Hence, it is important to characterize pose estimation algorithm based on the
various camera baselines, as well.

Therefore, to study the influence of attributes of feature point correspondences (i.e., noise,
number, sparsity and baseline) on the pose estimation, the Hypothesis V was stated, as in section
1.4. In this chapter, the aim is to test Hypothesis V and in order to test the hypothesis, the
sensitivity of pose estimation was explored.

5.1 Sensitivity of Pose estimation

Pose estimation algorithms are evaluated by comparing the estimated pose, i.e., camera rotation
and translation, with the reference camera pose (Rodehorst, Heinrichs, and Hellwich, 2008).

Some of the other evaluations considered projecting 3D reference points to 2D image plane
and compare with the reference 2D points. This is a typical measure known as Re-projection
Error. Few evaluations carried out based on re-projection error for camera pose are made in
applications such as visual odometry (Alismail, Browning, and Dias, 2011), augmented reality
(Maidi, Mallem, Benchikh, and Otmane, 2013), etc. Several performance metrics such as ge-
ometric error, re-projection error, algebraic error and Sampson error were used for evaluating
camera pose estimation (Brückner, Bajramovic, and Denzler, 2008) on real dataset. Contrarily,
in this study, the evaluatation was carried out based on the performance metric measured in 3D
space, which is more meaningful for measuring accuracy and deformation of 3D reconstruction.

In another work (Kniaz, 2016), the camera pose was evaluated based on motion trajectory
of a drone. Here, the position of drone in 3D space was tracked based on pose estimation and
motion capture equipment separately and was compared to evaluate the pose estimation. Inter-
estingly, the performance measure in 3D space was appropriate for their application. Similarly,
the performance in 3D space was also evaluated. However, the exploration of pose estimation
was extended, in terms of robustness to various attributes of the feature correspondences.

Some of the evaluations carried out in the past (Brückner, Bajramovic, and Denzler, 2008;
Rodehorst, Heinrichs, and Hellwich, 2008) have evaluated several camera pose estimation and
concluded that 5-Point algorithm (Nistér, 2004) performed the best. In this study, the 5-Point
algorithm was considered for pose estimation and studied its sensitivity to noise, number and
sparsity of feature correspondences obtained by a virtual dataset.

Most of the evaluation on camera pose estimation have considered variation of noise in the
feature correspondences. In this study, the evaluation was extended with respect to change in
camera baseline to investigate if noise and camera baseline together have an influence on the
quality of pose estimation.
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Figure 5.1: The extended 3D performance metric explained.

Most of the study mentioned above, have used real datasets for testing, but a virtual dataset
was used to have a complete control on the experimental conditions by obtaining ground-truth
values to perform the evaluation.

Moreover, other evaluations on the influence of sparsity of feature correspondence on qual-
ity of pose estimation, have been unknown so far.

5.1.1 Performance Metrics

A new performance metric was used, which relates to measuring quality in 3D space, i.e.,
3D positional error, 3D rotational error and 3D deformation, as depicted in figure 5.1. The
explanation of these metrics are as follows:

• 3D position accuracy is measured as mean squared difference between known and esti-
mated 3D point positions.

• 3D orientation accuracy error is measured as mean squared difference between known
and estimated 3D vector angles.

• 3D deformation is measured as a normalized average orthogonality. Orthogonality mea-
sures whether the angular difference between any two vectors of the test data is at right
angle to each other.

Additionally, in comparison to 3D errors, even 2D re-projection error was computed to discuss
about the best performance metric for the 3D reconstruction applications.
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5.1.2 Evaluation
In this study regarding characterization of camera pose estimation, the sensitivity of the pose
estimation algorithm was explored over various attributes of feature correspondences, which
included:

• Studying the influence of noise, number and sparsity of feature point correspondences
obtained by the stereo camera pair, on pose estimation.

• Studying also the influence of variation in camera baseline, in order to investigate whether
the change in camera baseline makes a difference on the behavior of pose estimation.

• Evaluating based on performance metric (section 5.1.1) specifically pertaining to 3D
space.

The evaluation setup is a complete pipeline of 3D reconstruction from 2D image points. The
setup for evaluation is illustrated in figure 5.2.

Figure 5.2: Experimental setup

The dataset was generated using virtual 3D models (figure 4.15) with a circular camera
configuration (figure 4.14). From this dataset, known noise-free 2D points were obtained, which
are considered ground-truth values.

Attribute mixer adds noise or selects a subset of the ground-truth 2D feature correspondence
points. The selection of subset of feature points is either by selection of a specific number of
points randomly or based on sparsity in 2D space. Three distinct camera baselines (angular
separation between stereo) were defined, low (10�), medium (25�) and high (40�).

Based on a perturbed 2D feature correspondence the pose estimation computes relative cam-
era rotation (Re) and translation (Te) between stereo pairs.

The aim is to measure 3D positional accuracy, 3D rotational accuracy and 3D deformation,
hence a relevant test data represented by three unit vectors originating from the same origin was
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Figure 5.3: Mean 3D error for different number of total feature correspondences.

generated. These unit vectors are depicted as solid three lines in figure 5.1. The figure also
shows how to interpret the 3D positional, rotational and deformation errors with respect to a 3D
reconstructed model.

By projecting the test 3D points onto an image, using known camera pose from the virtual
dataset, the test 2D points were also generated. The test 2D points were then triangulated using
estimated camera pose (Re, Te), which resulted in estimated 3D points. The estimated 3D points
were compared with true test 3D points for measuring the 3D error.

Estimated camera pose was directly compared with known camera pose, and their average
difference was measured as performance metrics: Rotation error (expressed in degrees) and
Translation error (expressed upto a scale).

5.1.3 Number of Feature Correspondence

Various number of feature point (10, 50, 75, 100, 500, 1000 points) were chosen for the ex-
periment, to estimate the camera pose. The noise level was kept at zero level to have an ideal
3D reconstruction by triangulating noiseless 2D points. Hence, this part of the study will focus
independently on the effect of number of feature points.

For every set in the dataset, a subset of feature matches were chosen randomly. Each set of
this experiment ran for 30 times to compensate for the randomness.

The results are shown in figures 5.3(a) for 3D position error and 5.3(b) for 3D rotation error
for variation in number of feature points used for pose estimation. Here, the errors are depicted
for three baselines (10�,25�,40�) and the 2D test points are noise-free.

For medium and high baselines (25� and 40� respectively), the change in the number of
feature matches do not significantly affect the accuracy of reconstructed 3D points. In large
space application scenarios, 1 degree rotation error of the reconstructed scene would be hardly
noticeable, however the significance still depends on the application.

At low baseline of 10�, largest error is obtained by using least number of feature points, i.e.,
10 points. Although the pose estimation algorithm can operate with a minimum of 5 points, it
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works better with more feature points due to the use for least squares estimation (details in the
algorithm description (Nistér, 2004)).

It is quite intuitive that higher the number of feature points better will be the pose estima-
tion. However, pose estimation showed better performance at higher baselines. Therefore, pose
estimation algorithm seemed to be less effective or more sensitive to low baseline. This is prob-
ably because at low baseline, there is an ambiguity in the estimation of camera rotation and
translation (Hartley and Zisserman, 2004).

5.1.4 Noise in Feature Correspondence

Now, the noise variation was added to the above experiment in order to study the effects of noise
in the pixel coordinates of feature point correspondence. Noise was assumed to be additive
Gaussian white noise, and was generated using random generator of variances � = 0,2,4,6,8,10.
The experiment was carried out for about 30 times to compensate for randomness.

The results depicting the accuracy of camera pose in presence of noise is shown in figure
5.4. Figures 5.4(a), 5.4(c) and 5.4(e) refers to 3D orientation error and 5.4(b), 5.4(d) and 5.4(f)
refers to 3D position error.

For any given baseline and any given number of feature points used (e.g., medium baseline
and 50 points, in figures 5.4(c) and 5.4(d)), the increase in noise, increased the overall camera
pose error. The translation error increases at a faster rate than the rotation error. This behavior
was only for low and medium baselines, and for high baseline, as in figures 5.4(e) and 5.4(f), the
sensitivity of translation and rotation error remained the same. Therefore, at lower baselines,
pose estimator is more sensitive to noise than at higher baselines, based on the camera pose
error. This is also evident in the results of 3D reconstruction, measured as 3D rotation error &
3D position error as shown in figure 5.5 and orthogonality preservation as shown in figure 5.6.
Both 3D rotation and position error decreased with increase in baseline and the noise sensitivity
decreases with higher baseline.

For any given baseline (e.g., medium baseline in figures 5.4(c) and 5.4(d)), it was observed
that the higher the number of points used, error tends to decrease. So, at low and medium
baselines where the noise sensitivity is high, using more number of points compensates for
maintaining the accuracy of pose estimation.

The results in figures 5.6(a), 5.6(b) and 5.6(c), showed the orthogonality preservation of
angles between the test vectors that represents the deformation of 3D reconstruction quality
(e.g., in figure 5.2). These plots showed orthogonality preserved value (OPV), which ranges
from 0 to 1, where 1 exhibits a perfect 3D reconstruction without deformation. Highly deformed
object has OPV = 0. In the figure 5.6, at high baseline, there are more OPVs at unity or close
to unity compared to medium and low baselines, for any given number of feature points. And,
for a given baseline (e.g., medium baseline as in figure 5.6(b)), OPVs are higher for increase
in the feature points. This shows the same trend as the analysis of 3D position and orientation
error discussed above. OPV represented the deformation of the 3D reconstruction object. This
is comparable to the reliability of system, which is of importance to any application scenario.
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Figure 5.4: Measure of camera rotation and translation error over various noise levels with
different number feature points for 3 different camera baselines.
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Figure 5.5: Measure of 3D rotation accuracy and 3D position accuracy over various noise levels
with different number feature points for 3 different camera baselines.
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(a) Baseline 10� (b) Baseline 25�

(c) Baseline 40�

Figure 5.6: Measure of 3D orthogonality over various noise levels with different number feature
points for 3 different camera baselines.

5.1.5 Sparsity of Feature Correspondence
Sparsity of feature corresponding points between the stereo pair represents the spread of the
matched feature points within each image. The sparsity is expressed as the percentage of area
covered by the feature points within the image. For implementing sparsity, k-Means clustering
methods (OpenCV implementation) was used to gather feature points with a controlled spread
value. Various sparsity values used were 16,20,25,33,50,100 (expressed in percentages). Spar-
sity value of 100 depicts the set of feature points having the maximum spread in the 2D space.

Here, the experiments were conducted to measure 3D error and orthogonality for various
sparsity values. The test combinations for varied noise levels, were as follows:

1. Low baseline - 10� and 75 feature points.

2. Medium baseline - 25� and 75 feature points.

3. Medium baseline - 25� and 500 feature points.
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Figure 5.7: Measure of 3D rotation accuracy and 3D position accuracy over various noise levels
with different sparsity (dispersion of points in 2D space) and various camera baselines.
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(a) Npoints 75, Baseline 10� (b) Npoints 75, Baseline 25�

(c) Npoints 500, Baseline 25�

Figure 5.8: Measure of 3D orthogonality over various noise levels with different sparsity (dis-
persion of points in 2D space) and various camera baselines.

In this way, the effect of sparsity can be analyzed in conjunction with various baselines and
various number of feature points, for all the noise levels at the same time.

The results for using 75 points for baselines 10� are shown in figures 5.7(a), 5.7(b) and
5.8(a), and for baseline 25� are shown in 5.7(c), 5.7(d) and 5.8(b). The results for using 500
points for baselines 25� are shown in figures 5.7(e), 5.7(f) and 5.8(c).

The results of effects of sparsity on the accuracy of 3D reconstruction is as following:

• Overall, the accuracy of pose estimation increases with the increase in the sparsity as
shown in figure 5.7. Also the reliability metric representing the orthogonality preserva-
tion, is higher for higher sparsity level. This is because, a small sparsity level represents
the points confined to a small area in the image. When these feature points were used to
estimate the camera extrinsic, then only a part of the pose is recovered, which is more like
a localized pose. This eventually leads to error in camera pose estimation.
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• At low baseline, pose estimation was noise sensitive. For higher baselines, (e.g., medium
baseline in figures 5.7(c) and 5.7(e)), sparsity does not have a significant effect for small
noise levels, however, when noise level increased, then the sparsity level had greater effect
on the 3D accuracy. Hence, high sparsity points are also noise tolerant.

• In figures 5.7(a) and 5.7(b) in comparison with figures 5.7(c) and 5.7(d) (using same
number of points, i.e., 75 points), it was observed that as the baseline increases, the
accuracy increases in terms of both 3D rotation error and position error, although there
are few outliers in the measurements for translation error.

• Figures 5.7(c) and 5.7(e) show that the results were similar to those seen in figure 5.5,
where the accuracy of 3D error and reliability improved with increase in the number of
feature points.

• The orthogonality measure for various sparsity of feature correspondences are shown in
figure 5.8. The orthogonality preservations are much better as the sparsity increases.

5.1.6 3D Reconstruction Metric Evaluation
This study used the performance metric in 3D space, i.e., 3D position error, while earlier works
have used the re-projection error. With the experiment it is shown how these two might be
related to each other. With 75 feature points, the pose estimation is carried out for all various
baselines and all noise levels. The sparsity is maintained at 100%. The result of pose estimation
is as in figure 5.9.

Comparing the errors in the figures 5.9(a), 5.9(b) and 5.9(c), the 2D error has lesser noise
tolerance compared to 3D error at every baseline. Also the 2D error significantly increases with
the increase of baseline. The 3D points estimated have a good accuracy, but the same points
when re-projected back have very low accuracy. So, it is interesting to know the reason why
there is a huge difference even though the re-projection is the same 3D point projected onto the
2D image.

Here, 3D error refers to only the position of reconstructed 3D points. It might be considered
that the re-projection error seems like a culmination of all 3D metrics, i.e., 3D position error,
3D rotation error and orthogonality deviations. However, in earlier analysis (section 5.1.4), all
3D metrics obtained better values with increase in baseline. So, the significant increase in the
reprojection error is more due to the influence of noise in the 2D points on higher baselines.

So, the re-projection error gives an idea about the inaccuracy, but not the details of the
nature of error. Therefore, the 3D performance error metrics provides much better clarity to the
assess the quality of a 3D reconstruction in terms of positioning, orientation and deformation
compared to the re-projection error.

5.1.7 Discussions
The effects of noise on pose estimation was explored to understand the limitations and toler-
ances of pose estimation when noisy feature correspondences exist, especially when state-of-
the-art feature extractors are used in FBC. From the results obtained, it was observed that for
noisy feature correspondences, the pose estimation method is:
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Figure 5.9: Comparing 2D error and 3D error variation with noise for given N=75 pts and
Sparsity = 100% and three baselines.

• Sensitive to small baselines.

• Sensitive to noise in feature correspondence.

• Using more number of feature corresponding points increases the accuracy with a cost on
execution time.

• Using highly sparse points gives good noise tolerance.

• Under low noise conditions, using high baseline camera setup gives more accurate pose
estimation results. However, for wide baselines, the feature extraction is challenging.

• Under high noise conditions, especially for scenarios such as VERDIONE, where defor-
mation is important, the reprojection error can become important, especially under noisy
conditions.
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In the context of FBC, where state-of-the-art feature extractors are used, noise in the feature
correspondences are inevitable. The system designers can minimize the effect of noise based on
the results of sensitivity of pose estimation algorithm. The operational limitations of pose esti-
mation can be defined through camera baselines, number of points and feature point selection,
for a minimal or an acceptable error. For instance, based on the application requirement in terms
of accuracy and speed, one needs to make a good choice of number of feature correspondences
to be used and the subset to use. In an instance where time is not important, one could ideally
use all the feature points that are highly sparse, while the camera is setup with high baseline of
around 40� apart.

Experiments were carried out on a virtual dataset that mimicked the application scenario
such as VERDIONE, in order to obtain ground-truth values for determining the 3D accuracy.
However, the application scenario testing was limited to only a foreground model object. The
situation where the captured scene involves background with a large depth of field, is more
likely to occur in the application scenario such as VERDIONE and POPART. Such a situation
was not tested in this study.

The performance metrics involved measures of both 3D accuracy and 3D deformation. The
importance of both of these measures depends on the application requirement. For example,
the mixed reality performance scenario such as VERDIONE cares about both: accuracy - for
placing a reconstructed human in the scene, and deformation - to display the reconstruction of
a human subject properly. On the other hand, scenario such as POPART might care only about
the accuracy, where the virtual objects need to be placed.

Validation of Sparsity Effects

The effect of sparsity on the performance of pose estimation was seen. So, the feature selection
based on the sparsity has a great impact on the performance of 3D reconstruction. To vali-
date the results, the Scanning Electron Microscopy (SEM) image reconstruction scenario was
considered.

As explained in section 2.2.5, the 3D reconstruction workflow consisted of feature extrac-
tion, rectification and depth estimation. Here, the feature correspondences were used to estimate
a fundamental matrix and thereafter a rectification homography matrix was computed. The ho-
mography was used to convert each of the stereo pair to rectified images. In the rectified images,
the feature correspondences must lie on a straight line. It is interesting to see how the quality
of rectification is affected by subset of selected features based on sparsity. The actual quality of
depth estimation was ignored at this point, assuming that high quality rectification is important
and necessary for a high quality depth estimation.

The feature selection procedure was implemented based on sparsity in Mountains Software1.
The results are as shown in the figure 5.10. In figure, a stereo pair of SEM images can be seen,
where the camera was tilted to capture two images of a nano-particle. When about 15 feature
correspondences were manually selected with sparsity value ⇡ 10%, a very bad rectification
result was obtained as shown in figure 5.10. When the same 15 feature correspondences were
selected with a larger spread ⇡ 80%, then the rectification result was much better as shown in

1Digital Surf: Mountains - Surface imaging and metrology software.http://www.digitalsurf.com/
en/mntkey.html

http://www.digitalsurf.com/en/mntkey.html
http://www.digitalsurf.com/en/mntkey.html


5.2. Conclusions for Pose Estimation 145

Figure 5.10: SEM reconstruction with Mountains software.

figure 5.10. The dotted line guides you to compare the corresponding points before and after
rectification. This signifies the quality of rectification. Although the result using high sparsity
was better than low sparsity, it is still not perfect. This is due to using very less number of
manually annotated feature matches and the sparsity was not at its maximum. This example
validates the effect of sparsity on the quality of rectification, i.e., as the sparsity of feature
correspondences increase, the quality relating to 3D representation will be higher.

Therefore, the importance of the feature selection based on sparsity of matched feature
points in a stereo pair was understood. This was validated by implementing the feature selection
in the SEMRECON scenario.

In this study, results on the sensitivity of pose estimation for FBC were shown and were
validated using a current 3D application. All the above evaluation tests are evident enough to
reject the Null Hypothesis V (stated in section 1.4), and hence, it can be concluded that the
pose estimation accuracy significantly decreases with the increase in noise and increases with
increase in the sparsity of matched feature points.

5.2 Conclusions for Pose Estimation

In this chapter, the Hypothesis V, as stated in section 1.4, was tested. In the process of testing
the research hypothesis, this chapter stated the proposed ideas, explained the experiments setup
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and discussed the results.
Accordingly the effects of pixel noise, number of feature points, sparsity and camera base-

line on the performance of camera pose estimation (for the VERDIONE, POPART and SEM-
RECON) was studied and it was shown that the accuracy of the pose estimation has significant
changes with the increase in the noise and the sparsity of matched feature points between a
stereo pair.

Overall, in a practical perspective, the contributions from the study in this chapter, is sum-
marized as follows:

• Pose estimation algorithm was evaluated for several attributes of feature correspondences
in stereo image pairs. Based on the sensitivity of pose estimation algorithm, it was in-
vestigated how to maximize the accuracy of pose estimation and provided operational
limitations for given camera baselines, number of points and feature point selection. This
helps in choosing a better set of feature points in a scene and thereby achieve a better
quality 3D reconstruction.

• The performance metrics that measured the 3D deformation was introduced. This metric
is helpful for certain application scenarios (e.g., in the VERDIONE scenario), where de-
formation of 3D reconstruction is more important than the accuracy of 3D reconstruction
(e.g., in the POPART scenario).

• A virtual dataset was generated on which the evaluation was carried out. This dataset
mimicked the VERDIONE or the POPART scenarios, however, application scenario test-
ing was limited.

In this chapter, the robustness of FBC with focus to pose estimation was explored. This com-
pletes the exploration of FBC as a whole system and in terms of its building blocks, i.e., feature
extraction and pose estimation. Therefore, in the next chapter, the conclusions for investigating
robustness of FBC in new-age 3D multimedia systems, are drawn.
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Conclusions

This thesis was motivated with new age application scenarios such as VERDIONE, BAGADUS,
PTMS, POPART and SEMRECON. The FBC was necessary in order to overcome few practical
challenges occurring in these applications. Hence, the main research question was posed as
follows:

What are the challenges in designing FBC to achieve high accuracy and ro-
bustness against practical issues in 3D multimedia systems?

Based on the main research question, the following hypotheses were formulated to conduct
research:

1. H
0

: The 3D reconstruction accuracy has insignificant effect when the camera is mis-
aligned.

2. H
0

: The accuracy and robustness of 3D reconstruction has an insignificant effect, when
the 3D system replaces CBC by FBC techniques.

3. H
0

: The performances of the state-of-the-art feature extractors have insignificant differ-
ences to the change in intrinsic and extrinsic camera parameters.

4. H
0

: Accuracy of SIFT features for wide baseline FBC is maintained at an acceptable
level, only upto 30 degrees angular separation between stereo cameras.

5. H
0

: The pose estimation accuracy has an insignificant change with the increase in noise
and sparsity of matched feature points.

In order to test these hypotheses, relevant experiments were conducted, and the results were
analyzed based on the simulations using real datasets (for the PTMS and SEMRECON scenar-
ios) and virtual datasets (for the VERDIONE, BAGADUS and POPART scenarios).

6.1 Main Contributions

The main contributions of this thesis are as follows:

147
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1. A statistical tool was developed for single camera 3D systems to determine the mechan-
ical tolerances of the camera rigs that minimize the camera misalignment error in the
PTMS. This helps to improve the robustness to practical error such as camera misalign-
ment.

2. Feature based calibration was adopted in the PTMS by replacing the traditional checker-
board calibration, to improve the flexibility and maintainability of the PTMS without
manual intervention. This also helps to improve robustness to practical error, such as
pantograph misalignment and image analysis error of the PTMS.

3. The adverse effects of camera misalignment in stereo 3D applications were exhibited.
This helps system users to build stable camera rigs to improve the accuracy of the 3D
system by restricted erroneous camera misalignment in application scenarios such as
VERDIONE, BAGADUS and POPART.

4. The state-of-the-art feature extractors (SIFT, SURF and ORB) were characterized and
their operating limits were determined in the presence of image defocus, lens distortion
and sensor noise, at various resolutions in VERDIONE and BAGADUS like application
scenarios. This helps the system users to choose a feature extractor based on the require-
ment for accuracy, execution time and robustness.

5. The state-of-the-art feature extractors (SIFT, SURF, ORB, KAZE, AKAZE, MSER, BRISK,
FAST, STAR, BRIEF, FREAK) were characterized and design considerations were rec-
ommended for using state-of-the-art feature extractors at different camera baselines (an-
gular displacement between the stereo pair) using virtual dataset that mimics POPART,
VERDIONE or BAGADUS like application scenarios. The design considerations were
based on the 3D accuracy, deformation of 3D object and execution time. This helps
system users to choose a feature extractor based on design parameters. This also helps
system users to determine the camera density required to capture the scene.

6. A new algorithm - NewSIFTcalib was proposed, which modified the existing SIFT to
yield better accuracy and computation time, especially in wide baseline camera setups.
This helps to improve the usability and scalability of 3D multiview capture systems. This
also helps to reduce the camera density for capturing the scene and thereby is cost effec-
tive (in terms of storage, transmission and processing of multiple images) for VERDIONE
and BAGADUS like application scenario.

7. The state-of-the-art pose estimation algorithm was characterized and the camera baselines
and feature selection criteria were recommended to minimize noise in the feature corre-
spondences of a stereo pair and thereby maximize the 3D accuracy. The experiments
were carried out using virtual dataset that mimics VERDIONE or POPART application
scenarios. The effect feature selection based on the sparsity of feature correspondences
on the 3D accuracy was validated using SEMRECON scenario. This study helps system
users to make a choice of camera baseline and a subset of feature correspondences and
improve the robustness of pose estimation.
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6.2 Practical Implications
Based on the contributions, one could have the following implications on practical aspects.

• The 3D system builders will be able to obtain exact tolerances of both single/stereo cam-
era movement for high accuracy 3D reconstruction. This way, it is possible to man-
ufacture more stable camera rigs that restrict the camera for specific movements, i.e.,
restricting the change in camera translation or rotation.

• PTMS can now obtain hassle-free, accurate and robust 3D measurements. Even if there
are any misalignment causing inaccuracy in the system, automatic re-calibration is possi-
ble without manual intervention.

• Researchers and system designers can now make a choice of feature extractor for a selec-
tion of quality metrics for 3D reconstruction. These quality metrics can be categorized
into 3D accuracy, 3D deformation and execution time. 3D accuracy represents precise
3D reconstruction on a metric scale. 3D deformation represents robust 3D reconstruc-
tion that matches the real object with similarity criteria. Execution time represents the
real-time-ness of the feature extractors.

• A modified SIFT based algorithm can give the same or better performance compared to
SIFT feature extractor at wide baselines of upto 2 meters.

• Researchers and system designer can now use various strategies to handle noisy data
in order to efficiently estimate the camera pose, and eventually obtain high quality 3D
reconstruction.

6.3 Practical Insight
Most of the evaluations and practical recommendations made are based on various camera base-
lines. As an overall insight of this thesis, the performances of feature extractors and pose esti-
mation were examined for various camera baselines.

Feature extractors are found to perform very well at low baselines and worsens at higher
baselines. On the other hand, pose estimation performs very well at high baseline and worsens
at low baselines. Therefore, for an efficient implementation of FBC and thereby 3D reconstruc-
tion, one should consider to design FBC with a balanced selection of baseline.

For large spaces, cost effective solution would be to use less number of cameras, i.e., cam-
eras setup at high baselines. Here, pose estimation works fine, but more focus is required to
improve the robustness of feature extractors for higher baselines.

For small spaces, the cameras are at small baselines. Here, the feature extractors are ac-
curate, but pose estimation is too sensitive. So, the robust pose estimation at low baselines is
necessary.

Accordingly, it is recommended to avoid very low or very high camera baselines to achieve
an optimal result based on the requirements of the application. However, there is room for
improving the accuracy of the feature extraction at high baselines and the accuracy of pose
estimation at low baselines.
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6.4 Future work
In order to move towards having good solution for 3D reconstruction at extreme baselines,
one has to work on improving the accuracy of feature extraction at high baselines, and the
accuracy of pose estimation at low baselines. This would extend the operation range of the
feature extractors and pose estimation.

A virtual dataset was good enough for evaluations, as they provided ground-truth values
for performance measurement. However, considering to create the background of the scene or
objects that have a higher depth of field, in the virtual dataset helps test more realistic situations.
Such virtual datasets mimic 3D multiview applications in an extensive way. This does not
guarantee that good reconstruction is obtained based on the current algorithms, because, for very
high depths, the camera baseline becomes very small, and the reconstruction can give unstable
results. However, it is worth exploring the limits in obtaining a accurate 3D reconstruction.

For outdoor scenes, sunlight plays an important role for accurate 3D reconstruction, simi-
lar to artificial light in an indoor scene. Sunlight can cause instability in the feature detection
process because, a high illumination results in low contrast images. Indoors, there are artifi-
cial lights that vary in illumination, and the feature extractors are very sensitive to change in
illuminations. Therefore, it would be worthwhile to study the effects of illumination on feature
extraction between two stereo images.

Until now, cameras were assumed to be homogeneous, i.e., all cameras have same focal
length throughout this thesis. In some situations, heterogeneous cameras might be needed, and
hence, exploring 3D reconstruction when two stereo cameras differ in their camera intrinsic
values would be really interesting.

It was also assumed that the intrinsic camera calibration parameter was known. But, in
cases like the SEMRECON scenario, the microscope is modeled as pin hole camera, and the
3D reconstruction takes place as an uncalibrated case. This might compromise the accuracy of
the 3D reconstruction. If FBC is extended to determine intrinsic parameters, then the accuracy
of the 3D reconstruction in cases of unknown focal length becomes possible.

In all the studies, the cameras are assumed to be fixed. In case of moving cameras, espe-
cially in movie sets, FBC might have constraints on real-time-ness. It would be worthwhile
to investigate the limitations of the speed of feature extractors by using hardware-accelerated
devices like graphics processing units (GPUs).
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Abstract: The increasing demand for live multimedia systems in gaming, art and entertain-
ment industries, has resulted in the development of multiview capturing systems that use
camera arrays. We investigate sparse (widely spaced) camera arrays to capture scenes of
large volume space. A vital aspect of such systems is camera calibration, which provides
an understanding of the scene geometry used for 3D reconstruction.

Traditional algorithms make use of a calibration object or identifiable markers placed in
the scene, but this is impractical and inconvenient for large spaces. Hence, we take the
approach of features-based calibration. Existing schemes based on SIFT (Scale Invariant
Feature Transform), exhibit lower accuracy than marker-based schemes due to false posi-
tives in feature matching, variations in baseline (spatial displacement between the camera
pair) and changes in viewing angle.

Therefore, we propose a new method of SIFT feature based calibration, which adopts a
new technique for the detection and removal of wrong SIFT matches and the selection
of an optimal subset of matches. Experimental tests show that our proposed algorithm
achieves higher accuracy and faster execution for larger baselines of up to ⇡ 2 meters,
for an object distance of ⇡4.6 meters, and thereby enhances the usability and scalability
of multi-camera capturing systems for large spaces.
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I. INTRODUCTION

Growing computing performance and the massive paral-
lelization in multi-core processors and specialized graphics
hardware have made it possible to process complex computer
graphics and computer vision algorithms in real-time. At
the same time, camera sensors are becoming cheaper and
improve in performance. As a consequence, new kinds of
live multimedia systems based on stereoscopic and multi-
view video become increasingly attractive for gaming, art
and entertainment productions.

Several types of camera arrays are in practical use and
development today [1], [2]. They differ in camera density
and physical extent. While some image processing tech-
niques such as light-field processing, stereoscopic and multi-
view video require relatively dense camera placement, other
image processing applications such as free-viewpoint render-
ing,visual hull reconstruction, tracking or geometrical scene
reconstruction can deal with relatively sparse placement.

Common to all types of camera arrays is the need for
geometric calibration, that is, the identification of intrinsic

camera parameters (focal length, principal point and lens
distortions) and extrinsic parameters (the geometrical dis-
placement of cameras against each other). Many techniques
for the calibration of low-cost camera sensors exist in the
computer vision literature, with the most popular ones being
methods that use a planar checkerboard pattern [3], [4] or
identifiable markers [5]. The calibration accuracy that these
methods achieve is sufficient for 3D image processing algo-
rithms, but in many cases, it is inconvenient or impossible
to place a measurement target like a checkerboard pattern
of sufficient size in front of the cameras.

Calibration based on image feature detection, for example
using SIFT [6] (Scale Invariant Feature Transform), has
been proposed [7], [8], [9] as an improvement over the
traditional, often manual, methods that need a calibration
target. Using SIFT, these systems automatically match the
features between camera images, which are then used to
perform the calibration. However, a particular limitation of
SIFT is the decreased feature matching performance with
an increase in viewing angle between two perspectives.
With a growing baseline, the direct distance between any
two cameras in an array, less similarities exist between
images and consequently, fewer SIFT features are matched.
However, the difference may not only manifest in lower
overlap or an increased number of occlusions. It may also
result in more false positive SIFT matches.

In this work, we extend the prior state-of-art and propose
an extrinsic calibration method called newSIFTcalib, for
pairs of cameras with an arbitrary baseline that works with-
out a calibration target. Our newSIFTcalib is also based on
image features obtained using SIFT, but we address some of
the limitations of current SIFT-based methods. Specifically,
the novelty of the method lies in (a) a new technique for
the detection and removal of wrong SIFT matches and (b)
a method for selecting a small subset of all detected SIFT
features. Our newSIFTcalib particularly compensates for
increased viewing angles and large baselines, making SIFT-
based calibration usable for camera arrays with large base-
lines. While the calibration accuracy using SIFT features
depends on different factors such as camera baseline and
rotation, image resolution, motion blur and external lighting,
we focus on the effects of camera baselines and assume
that other factors remain constant. We assume further that
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(a) Mixed Reality Art Performance Stage (b) Soccer stadium

Figure 1. Large volume application examples

intrinsic camera parameters are already known or have been
determined in a prior calibration step. Based on experimental
results, we show that our new method newSIFTcalib can
achieve higher calibration accuracy than traditional methods,
works with larger baselines than existing calibration schemes
and requires less execution time.

In the remainder of the article, we first introduce some
example application scenarios where camera baselines are
typically large. Section III presents some representative
related work. Our new feature-based calibration system is
introduced in section IV. Experimental setup and results
are described in section V before we conclude the paper
in section VI.

II. APPLICATIONS WITH LARGE CAPTURING VOLUMES

In several application scenarios, it is necessary to dis-
tribute cameras at wide baselines around a large space
to capture the entire volume from an optimal number of
viewpoints. Examples for such scenarios are:

Mixed Reality On-Stage Performances As in figure 1(a),
a camera array is typically placed around the stage. On a
remote stage the captured performers are embedded as free-
viewpoint video to correct for perspective differences and
achieve an aesthetically appealing result.

Sports Events in large arenas such as soccer or baseball
games are captured from a large number of perspectives
from around the stadium (see figure 1(b)). The video feeds
obtained from multiple cameras can be used in various ways
such as for silhouette extraction, video mosaicing, motion
tracking of players, content analysis.

High accuracy in camera calibration is a prerequisite for
high-quality processing of images from cameras at various
angles. Accuracy at wide baselines and long shots that are
typical in the huge volumes of arenas becomes even more
important.

III. RELATED WORK

Previously, similar work on calibration has been carried
out using SIFT by, for example, Yun et al. [7], Li et al. [8]
and Liu et al. [9]. However, in such algorithms, all the point

correspondences obtained by SIFT feature matching have
been used for calibration. This is redundant and prone to
noise due to mismatches of SIFT features. Eliminating such
wrong matches has been studied by Jiayuan et al. [10], using
a error canceling algorithm based on RANSAC (Random
Sample Consensus - a widely used algorithm for outlier
removal). Alternatively, we use a simpler method based on
the geometry of lines joining the matched points. Our outlier
removal process is faster than and performs as good as
RANSAC in our test scenario.

IV. SYSTEM DESCRIPTION

The system overview is illustrated in figure 2, where a
number of stereo camera pairs capture a scene of interest.
For every 2D stereo images, we use Vedaldi’s library [11]
to detect SIFT feature points in stereo images and match
them. As a preprocessing step, outliers (false positives in
the matching process) are detected and removed. Only a
subset of stable points (referred as FeatureV ector in rest
of the paper), less prone to noise, are used for calibration.
We assume the cameras are pre-calibrated for intrinsics.
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Figure 2. System Overview

A. Outlier detection
This filtering step is based on the angular deviation of

the lines connecting corresponding points from, the mean
direction of all the lines that connect pairs of corresponding
points in two images. Consider two images from stereo
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cameras placed horizontally apart from each other. Lines are
drawn from every feature point in image 1 to their respective
correspondences in image 2, as in figure 4.

We compute the mean (µx
� ) and standard deviation (�x

� )
of the angle between all lines and the x-axis. Now the
outlier detector compares the angle between each line and
the x-axis to µx

� and �x
� . A line lij (and thereby the point

correspondence) is identified as an outlier if the angle �x
l

differs by more than �x
� , as in equation (1). The same is done

for the Y-axis. In this way, we make sure that this algorithm
can be used on images taken from both horizontally and
vertically aligned cameras.

outlier =

(
lij if |�x/y

l | > µ
x/y
� + �

x/y
�

0 if |�x/y
l | < µ

x/y
� + �

x/y
�

(1)

B. FeatureVector - size and selection
The feature points detected by SIFT are assigned a scale

which can be interpreted as a representation of the stability
of the feature detection. We exploit this property and sort the
inlier point correspondences and define a FeatureV ector,
a vector consisting of point correspondences used for esti-
mating camera pose. Tests in section V-B1 show that the
dimension of FeatureV ector is chosen to be 25, which is
the minimum number of feature points required to achieve
a quality similar to the RANSAC algorithm. Next, from
the pool of inlier point correspondences, five candidates
of subsets from highest order of stability are chosen. Out
of these five candidates, the best subset is chosen as the
FeatureV ector, based on least re-projection error, com-
puted for the estimated camera pose.

C. Camera Pose Estimation
The FeatureV ector of point correspondences is used

to estimate the essential matrix E using normalized 8-
point algorithm [12]. Ina stereo camera setup, if the world
coordinates are considered to be at the center of the reference
camera, the rotation matrix of reference camera is an identity
matrix and translation is a zero matrix. Relative rotation
R and translation t of the second camera of the camera
pair represents the camera pose, and are related to essential
matrix as E = [t]XR, where [t]X is a skew-symmetric
matrix,

[t]X =

2

4
0 tx �tz

�tx 0 ty
tz �ty 0

3

5

The Essential matrix can be decomposed using SVD
(Singular Value Decomposition) as in [13], which is detailed
as follows:

Let K1 and K2 be the intrinsics of the camera pair
respectively. Upon SVD of E, we obtain:

E = USV T (2)

where U and V are unitary matrices and S is a rectangular
diagonal matrix. Accordingly, R has two solutions Ra, Rb,
and t has two solution ta, tb, which are given by

Ra = UWV T , Rb = UWT V T , ta = +u3, tb = �u3, (3)

where u3 is the 3rd column of matrix U and W is as follows:

W =

2

4
0 �1 0
1 0 0
0 0 1

3

5

This gives a choice of four solutions to obtain the camera
pose. A projection matrix of the reference camera is given
as P1 = K1[I|0]. If P2 = K2[R|t] is the projection matrix
of the camera, then solution is one of the following:

P2 = K2[Ra|ta] , K2[Ra|tb] , K2[Rb|ta] , K2[Rb|tb]

The above four solutions have a geometrical meaning and
one of the solution is always meaningful. For every possible
solution of P2, 3D points corresponding to the intersection of
back projected ray from 2D point correspondences are esti-
mated through triangulation. Using cheirality constraint [14],
the 3D points obtained are checked for positive sign of depth
and hence the solution for camera pose is determined.

V. EXPERIMENTATION

A. Dataset
We used widely accepted multi view image dataset by

Microsoft Research Laboratory [15] to test our algorithm
against others. The dataset was produced using a setup as
illustrated in figure 3. All 8 cameras (separated by ⇡ 0.3
meters distance) captured an event (taken place at ⇡ 4.6
meters) with a resolution of 1024x728, and rate of 15fps.
The calibration parameters for these cameras were computed
using traditional approach (checkerboard). These known
calibration parameters are used for comparing parameters
estimated using other algorithm.

Figure 3. Illustration of setup used by Microsoft [15] to produce the
multi-view dataset

165



B. Test results
First, we conducted an experiment to evaluate the perfor-

mance of the outlier removal module, and then to evaluate
our newSIFTcalib algorithm, which comprises of two main
techniques - outlier removal and FeatureVector selection.

1) Testing the outlier removal performance: To evaluate
the performance of outlier removal, we use a first order
approximation to geometric error, referred as EpipolarErr
in this paper, as stated in [14] and computed as in equation 4,
where F is the fundamental matrix: F = K�T

2 EK�1
1 .

Ep =
NX

i=1

(
x0iFxi

(Fxi)21 + (Fxi)22 + (FT x0i)21 + (FT x0i)22
) (4)

After outlier (solid lines in figure 4) removal, Epipolar
Err is computed for following methods (a) 8-pt algorithm
without outlier detection (b) 8-pt algorithm with RANSAC
(c) 8-pt algorithm with our proposed outlier removal.

OUTLIERS
INLIERS

Figure 4. Process of outlier detection: outliers (solid), inliers (dotted)

The test results in fig 5 shows the RANSAC method
performs better than 8-point algorithm without outlier re-
moval, as expected. It is very evident that our proposed
outlier removal performs as good as RANSAC, and the
computation time is drastically reduced because RANSAC
requires a large number of points for estimation. From the
figure, we can deduce minimum number of points in the
FeatureVector required for the good performance of outlier
removal. Therefore we choose the size of the FeatureVector
to be 25 points, where our outlier detection performs as
good as RANSAC, while reducing the computation time.
However, our outlier detector performance is tested only
with relative rotation around vertical axis.

2) Testing the proposed algorithm: The performance of
our proposed algorithm is compared with other existing
ones. The algorithms under study are:

• Checkerboard algorithm represents calibration using
corners detected on the checkerboard.

• FullSift RANSAC algorithm represents calibration
based on SIFT, using all the feature points detected
and outliers removed by RANSAC.

• FullSift algorithm represents calibration based on SIFT,
using all the feature points detected and outliers re-
moved by our proposed method.
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• newSIFTcalib / Proposed algorithm - represents our
algorithm for calibration based on SIFT, using our
proposed outlier removal method and selection of stable
subset (FeatureVector) of feature points.
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To evaluate the accuracy of calibration, we choose Re-
projection Error (Rp), measured in pixels, that computes the
offset between the estimated image-points using calibration
parameters, with that of the measured image-points. Usually,
in 3D vision applications, Rp  1 is chosen as an acceptable
re-projection error.

Given the point correspondences {x1, x2} and the es-
timates for projection matrices P1, P2 for two cameras
respectively, if we re-project estimated 3D points onto the
2D image plane - referred to as new point correspondences
{ex1, ex2} (ex1 = P1X̂ , ex2 = P2X̂) then, re-projection error
averaged over N test samples, can be computed as,

Rp =
1

N

NX

i=1

[d(x�
1i, ex�

1i) + d(x�
2i, ex�

2i)] (5)

d(x�, ex�) = ||(x� � ex�)||2 (6)

The test result, as shown in figure 6, plots Rp against
various baseline distances (in meters) between neighboring
cameras. FullSift RANSAC and FullSift perform very simi-
larly. This verifies, as in our previous test, that our outlier
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removal algorithm used in FullSift is as good as RANSAC
method for outlier removal while being faster.

At small baselines (⇡ 0 - 1.2 meters), the newSIFTcalib
algorithm performs as good as other algorithms under test,
with minimal but acceptable error level of Rp  1.

At large baselines (⇡ 1.2 - 2.1 meters), our newSIFTcalib
outperforms FullSift, FullSift RANSAC and Checkerboard
methods. The performance of the other algorithms degrade
because of the noise prone feature points, introduced due
to large view-angles and baselines. On the other hand, our
newSIFTcalib algorithm uses the FeatureVector, which are
more stable and less prone to noise. The newSIFTcalib
algorithm performs with high consistency at sub-pixel level
and is robust to noise.

Alternatively, we compare the estimated camera pose pa-
rameters in terms of rotation angles (�,�,�) in 3-dimension,
in comparison to the given rotation angles between cameras.
Table below shows the parameters known (Checkerboard)
and parameters estimated (newSIFTcalib) for different base-
line distances. We can see that the estimated parameters are
very close to the given values.

Camera pair Rotation
Baseline ✓ � �

0.3 (known) 3.1624 -3.1100 -3.1353
0.3 (estimate) 3.1253 -3.0839 -3.1362
1.2 (known) 3.1547 -3.1015 -3.1271

1.2 (estimate) 3.1278 -2.8736 -3.1355

Now, we evaluate the execution time. The camera pose
estimation using different algorithms for cameras separated
by 1.2 meters is executed and the elapsed time is measured
in seconds. The performance of our newSIFTcalib can be
reasonably measured relative to other algorithms. Figure 7
shows that our newSIFTcalib algorithm achieves 58.82%
and 74.07% of percentage decrease in the execution time
compared to the FullSift and the FullSift RANSAC. One
important thing to note is, at 1.2 meters baseline distance, the
quality of newSIFTcalib is comparable to other algorithms
(as in figure 6), while the execution time of newSIFTcalib
has drastically reduced.
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Figure 7. Execution time of various algorithms

Overall, the accuracy of our newSIFTcalib algorithm has
been consistent at sub-pixel level over multiple baselines,
while outperforming the existing algorithms, especially at
large baselines. The execution time of our newSIFTcalib
algorithm has shown a drastic reduction in comparison to
other stated algorithms.

C. Operational limits

As a rule of thumb, known to SIFT users, feature detection
for cameras, whose view-angle differences are more than
30�, introduces matching errors and thereby degrades the
accuracy of calibration system on the whole.

which we can evaluate the performance of the algorithms
under study on the operational limits.

Figure 8. Deduction of relationship between object distance (D) and the
baseline distance between the cameras (B)

1) Theoretical limit: Consider figure 8, where D repre-
sents the object distance from the camera, B and � represents
the baseline distance and view angle between neighboring
cameras. Using triangle equations � can be expressed as:

� = 2 ⇤ sin�1(
B

2D
) (7)

Using the condition, �  30�, we have

2sin�1(
B

2D
)  30� ) B

2D
 sin(15�) ) B  0.52D

The relation B  0.52D is the theoretically defined limit
for the baseline using the constraint �  30�. In our dataset,
the object distance is given as 4.6 meters (15 feet), and
therefore the theoretically set limit for baseline would then
be ⇡2.4 meters. Let us now check the practical limit for the
algorithms on the given dataset.

2) Practical limit: From results as in figure 6, the existing
algorithms perform with an acceptable error (Rp  1) only
up to a baseline separation of ⇡1 meter. Although the
theoretical limit for the baseline is up to 2.4 meters, the
existing algorithms practically perform well only up to ⇡1
meter. Hence we can say that the existing algorithms are
well suited for small baselines.

On the other hand, our newSIFTcalib algorithm extends
the practical limit for the baseline up to 2.1 meters and is
well suited for large baselines. The dataset used contains
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stereo images separated by a maximum distance of 2.1
meters. Due to this limitation, our newSIFTcalib algorithm
was not tested for wider baselines, however, it might fail
to maintain an acceptable performance. This is merely due
to the limitations posed by the SIFT feature detection for
variance in view angle.

However, it is evident that our newSIFTcalib algorithm
pushes the practical limit of the existing algorithms and
reaches very close to the theoretical limit.

VI. CONCLUSION

In this paper, we proposed an algorithm for feature based
calibration of camera pairs with application to large volume
spaces such as mixed reality performances and soccer event
scenarios. Our algorithm uses novel techniques for outlier
removal and selection of a lower dimension feature vector
consisting of stable, low noise features.

Several tests have shown that our feature based calibration
algorithm performs with high consistency and accuracy even
at large baselines, compared to existing algorithms. This is
definitely an improvement because cameras can be widely
spaced, without compromising on the calibration accuracy.
Such calibration scheme can be extended to multi camera
setup easily.

The execution time of our algorithm was reduced dras-
tically and hence, can be adopted in realtime applications
such as gaming, mixed / augmented reality, networked
performances and is very useful for structure-from-motion
applications.

Overall, our proposed algorithm has shown better perfor-
mance, which makes it suitable for wide baselines of up to
⇡ 2 meters, and thereby enhances the usability and scala-
bility for multi-view capturing system in large spaces. This
contribution is the first step in reaching higher accuracies in
image-based rendering, especially for large volume spaces.

In our future work, we would like to work with an
extensive dataset that will help us study the effects on image
resolution, object distance and size, and lighting conditions
on the accuracy of feature based calibration. Moreover, it
is interesting and important to understand how the accuracy
of calibration affects the quality of 3D representation, and
thereby, image based rendering schemes.
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Abstract: Smart cameras are extensively used for multi-view capture and 3D rendering ap-
plications. To achieve high quality, such applications are required to estimate accurate
position and orientation of the cameras (called as camera calibration-pose estimation).
Traditional techniques that use checkerboard or special markers, are impractical in larger
spaces. Hence, feature-based calibration (auto-calibration), is necessary. Such calibration
methods are carried out based on features extracted and matched between stereo pairs or
multiple cameras.

Well known feature extraction methods such as SIFT (Scale Invariant Feature Transform),
SURF (Speeded-Up Robust Features) and ORB (Oriented FAST and Rotated BRIEF)
have been used for auto-calibration. The accuracy of auto-calibration is sensitive to the
accuracy of features extracted and matched between a stereo pair or multiple cameras. In
practical imaging systems, we encounter several issues such as blur, lens distortion and
thermal noise that affect the accuracy of feature detectors.

In our study, we investigate the behaviour of SIFT, SURF and ORB through simulations
of practical issues and evaluate their performance targeting 3D reconstruction (based on
epipolar geometry of a stereo pair). Our experiments are carried out on two real-world
stereo image datasets of various resolutions. Our experimental results show significant
performance differences between feature extractors’ performance in terms of accuracy,
execution time and robustness to blur, lens distortion and thermal noise of various levels.
Eventually, our study identifies suitable operating ranges that helps other researchers and
developers of practical imaging solutions.
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ABSTRACT
Smart cameras are extensively used for multi-view capture
and 3D rendering applications. To achieve high quality,
such applications are required to estimate accurate posi-
tion and orientation of the cameras (called as camera cal-
ibration-pose estimation). Traditional techniques that use
checkerboard or special markers, are impractical in larger
spaces. Hence, feature-based calibration (auto-calibration),
is necessary. Such calibration methods are carried out based
on features extracted and matched between stereo pairs or
multiple cameras.

Well known feature extraction methods such as SIFT (Scale
Invariant Feature Transform), SURF (Speeded-Up Robust
Features) and ORB (Oriented FAST and Rotated BRIEF)
have been used for auto-calibration. The accuracy of auto-
calibration is sensitive to the accuracy of features extracted
and matched between a stereo pair or multiple cameras. In
practical imaging systems, we encounter several issues such
as blur, lens distortion and thermal noise that a↵ect the ac-
curacy of feature detectors.

In our study, we investigate the behaviour of SIFT, SURF
and ORB through simulations of practical issues and eval-
uate their performance targeting 3D reconstruction (based
on epipolar geometry of a stereo pair). Our experiments are
carried out on two real-world stereo image datasets of var-
ious resolutions. Our experimental results show significant
performance di↵erences between feature extractors’ perfor-
mance in terms of accuracy, execution time and robustness
to blur, lens distortion and thermal noise of various levels.
Eventually, our study identifies suitable operating ranges
that helps other researchers and developers of practical imag-
ing solutions.

Categories and Subject Descriptors
I.4 [Image Processing and Computer Vision]: Digiti-
zation and Image Capture-Camera calibration, Imaging ge-
ometry; I.4 [Image Processing and Computer Vision]:
Segmentation-Edge and feature detection
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Keywords
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1. INTRODUCTION
Multi-view vision applications such as free-view rendering

[3], motion tracking [11], structure from motion [16], and
3D scene reconstruction [10] require precise geometrical in-
formation about location and pose of each camera. Tra-
ditionally, camera calibration techniques use checkerboards
[19, 18] or special markers [5] to find point correspondences
between images. While such methods achieve su�cient ac-
curacy they are often inconvenient and limited in practice.
In some cases, it is impossible to place a measurement tar-
get like a checkerboard pattern of su�cient size in a scene.
Automatically finding corresponding points based on image
features alone is thus a desired goal.

To avoid dedicated calibration patterns and special mark-
ers in a scene, several auto-calibration methods have been
proposed [6] [7]. They rely on matching automatically de-
tected feature points between images from di↵erent camera
perspectives to estimate geometrical calibration parameters.
Feature extractors like SIFT (Scale Invariant Feature Trans-
form) [8], SURF (Speeded-Up Robust Features) [1] and ORB
(Oriented FAST and Rotated BRIEF) [15] are widely used
due to their easy availability, good detection and match-
ing performance, and a relatively small computational cost.
However, little is known about their spatial accuracy and ro-
bustness to real-world distortion although these issues play
a major role for precise reconstruction and scene geometry.

Sun et al. [17] have shown that the accuracy of calibration
is sensitive to the quality of corresponding features. At least
7 matching points are required for an accurate estimation
of calibration parameters [4] and more points will usually
improve the performance.

Most feature extraction algorithms are optimized for im-
age recognition tasks and search scenarios instead of geome-
try calibration. Hence, typical performance metrics such as
repeatability, precision and recall or number of matches only
consider the performance of matching [12], rather than the
performance in terms of 3D geometry reconstruction.

Moreover, the quality of images obtained from real-world
imaging sensors su↵ers from practical issues such as defocus
and motion blur, di↵erent lens distortions, thermal noise,
o↵sets in exposure time and white balance. Such pertur-
bations may degrade the performance of feature extraction
and matching up to a point where geometry reconstruction
accuracy becomes unacceptable.
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Our study provides practical insights about the robustness
of existing feature extractors obtained in real-world exper-
iments and simulations. We seek to understand the typi-
cal operation ranges of three prominent feature extraction
methods; SIFT, SURF and ORB. We particularly investi-
gate how di↵erent image distortions can impact the preci-
sion of camera pose estimation when relying on detected
and matched feature points. We evaluate 3D calibration
performance based on extracted image features under dif-
ferent levels of quality degradation. We use two real-world
video data sets with a medium depth range, both captured
in-doors from multiple camera perspectives. We simulate
image quality degradation by introducing several levels of
gaussian blur, geometrical lens distortion and sensor noise.
To measure the geometrical accuracy of feature-based cali-
bration, we use a performance metric derived from the epipo-
lar constraint [4] which defines a precise geometrical relation
between a stereo pair of images. Together with an analysis
of computational costs we identify suitable operation ranges
to aid researchers and developers of multi-view applications.

In our experiments, we find substantial di↵erences in ro-
bustness and execution time between SIFT, SURF and ORB.
SIFT and SURF are more robust, than ORB, to defocus,
lens distortion and thermal noise. Although SURF performs
similar to SIFT in terms of accuracy, SURF reduces the
computational cost drastically, by almost half. Compara-
tively, ORB is the most computationally e�cient extractor
at higher resolutions and is robust to lens distortion, but
accuracy is inadequate for defocused and noisy images.

2. FEATURE EXTRACTORS
In this section, we briefly explain the principle of operation

of SIFT, SURF and ORB feature extractors.
SIFT detects key points in an image that are highly dis-

tinct, scale and rotation invariant, and fairly invariant to
illumination. SIFT is computed as follows. First, the inter-
esting points are searched over scale-space representation of
a image, and a di↵erence of the Gaussian function is used to
identify the interesting points, which are invariant to scale
and orientation. The interesting points are subjected to a
3D quadratic function to determine their location and scale.
Every key-point is assigned one or more orientations depend-
ing on the direction of local gradients of the image around
this key-point and a highly distinct 128-bit descriptor is com-
puted.

SURF uses novel schemes for detection and description,
which mainly focuses on reducing computational time. Inte-
gral images are computed and interesting points are obtained
based on the Hessian matrix approximation. Using scale-
space representation, interesting points are searched over
several scales and levels. Localization: carried out using
interpolation of space. This is important because number of
interesting points in di↵erent layers of scales are large. The
descriptor is built using the distribution of intensity con-
tent within the interesting points. SURF uses distribution
of first order Haar wavelet responses in, both the x and y
directions. An additional step of indexing is based on the
sign of the Laplacian to increase robustness and matching
speed.

ORB modifies the FAST [14] detector to detect key points
by adding a fast and accurate orientation component, and
uses the rotated BRIEF [2] descriptor. Corner detection us-
ing FAST is carried out and that results in N points that

are sorted based on the Harris measure. A pyramid of the
image is constructed, and key points are detected on every
level of the pyramid. Detected corner intensity is assumed
to have an o↵set from its center. This o↵set representa-
tion, as a vector, is used to compute orientation. Images
are smoothened with the 31 x 31 pixel patch. Orientation of
each pixel patch is then used to steer the BRIEF descriptor
to obtain rotational invariance.

3. EVALUATION OVERVIEW
3.1 Simulation parameters

All imaging systems encounter practical issues such as de-
focus, radial lens distortion and thermal noise. Image blur
is the loss of image sharpness caused due to defocus, shallow
depth of field and motion of the camera or the scene objects
and quantization process. In our study, we focus on image
blur due to defocus only, because we consider multi view cap-
ture using only stationary cameras and hence motion blur
is of lesser significance. Radial lens distortion is an optical
aberration caused by spherical lens surfaces of the cameras,
which produces aberrations symmetrically and radially from
the image center. Barrel and pincushion are the types of ra-
dial distortions where the image aberration increases and de-
creases respectively as the radial distance from image center
increases. Image thermal noise appears as random speckles
in an image which is random variation in the luminosity or
color information of the pixels caused by the camera sensor
and its circuitry. To study the performance of the feature ex-
tractors under such practical scenarios, we simulate defocus,
lens distortion and noise using the mathematical models.

Defocus I
b

(u, v) is accomplished by smoothing an image
I(u, v) with a linear 2D Gaussian filter G(u, v), as in equa-
tion 1. Various defocus levels can be controlled by the vari-
ance �

b

of the Gaussian kernel, which represents blur radius.

I
b

(u, v) = I(u, v) ⇤ G(u, v) (1)

G(u, v) =
1

2⇡�2
b

e
�u2+v2

2�2
b (2)

Lens distortion can be modeled as a 3rd order polyno-
mial, as given by equation 3, where R

u

and R
d

is undis-
torted and distorted pixel radius, respectively. The distor-
tion co-e�cient k1 can be varied to obtain various levels of
distortion.

R
u

= R
d

+ k1R
3
d

(3)

Thermal noise is modeled as Gaussian distribution. A
noisy image I

n

(u, v) is obtained by adding Gaussian random
noise N(u, v) with zero mean and variance �

n

to an image
I(u, v), as in equation 4. To obtain various noise levels N

l

,
measured in decibels, the variance �

n

is controlled as, �
n

=
10Nl/10.

I
n

(u, v) = I(u, v) + N(u, v) (4)

3.2 Performance measure
The performance of feature extractors are measured in

terms of accuracy, detectability and execution time.
Accuracy of feature extraction in stereo images is mea-

sured by deviations of measured positions of matched fea-
ture points from their ideal positions. To explain this in
detail, we bring in the concept of epipolar geometry. Re-
searchers [4] [9] [13] have shown that in 3D imaging systems,
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Figure 1: Illustration of Epipolar Geometry. Cour-
tesy R. I. Hartley [4]

the geometrical relationship between the point correspon-
dences between stereo images is important and is character-
ized by a mapping matrix called Fundamental Matrix (F ).

The epipolar geometry is illustrated in figure 1. Ideally,
for every point in one of the stereo images (say x̂), a cor-
responding point on the other stereo image (x̂0) should lie
on a line, called epipolar line (l0), which is computed using
the matrix (F ). In practice, feature extractors estimate the
corresponding point (x0), which can lie outside the line and
thus producing an error (d0). Such an error averaged over
all N

p

feature points will be referred as Epipolar Error (E
p

),
and can be computed as in equation 5. Thus, the Epipolar
Error aids in measuring the accuracy of feature extractors,
in pixels. The sub-pixel errors, that is Ep < 1 pixel, is an ac-
ceptable value for good performance in most of the relevant
applications.

E
p

=

NpX

i=1

x0
i

Fx
i

(Fx
i

)21 + (Fx
i

)22 + (F T x0
i

)21 + (F T x0
i

)22
(5)

Detectability measures the ability to obtain su�cient fea-
ture point correspondences in stereo images. A good esti-
mation of Fundamental Matrix requires at least 7 feature
corresponding points in stereo images [4]. Therefore, the
percentage of trials resulting in at least 7 feature correspon-
dences represents the detectability of a feature extractor.

Execution time measures the computational speed of the
feature extractors. It is computed as time spent on the
extraction step (detecting interesting points in two images
and building descriptors for them) and the matching step
(performing feature matching to obtain feature correspon-
dences).

3.3 Simulation Setup
Our experimental setup, as illustrated in figure 2, com-

prises a database of the test stereo images, an image degrada-
tion module and a feature extraction and matching module.
During our evaluation, stereo images are retrieved from the
database, and the image degradation module pre-transforms
the stereo images to simulate defocus, lens distortion and
sensor noise, with various levels using a tuner. Then, the fea-
ture detector-descriptor-matcher operates over all stereo im-
ages that are pre-transformed. The resulting feature matches
on degraded images are used to evaluate the performance of
the feature extractor based on the fundamental matrix esti-
mated for the stereo images before degradation.

In our experiments, we have used 30 stereo images from
the dataset of an opera performance, captured using 8 cam-
eras (2 camera arrays, each consisting of 4 cameras of narrow
and wide angle lens respectively). A second dataset used for
evaluation contains 35 images, from the popular breakdance

Database
Transform
Opearator

Imgset 
1

Imgset 
2

Tuner

Feature 
Extraction 
& Matching

Performance 
Evaluation

Estimate Reference 
Fundamental Matrix

Figure 2: Evaluation Pipeline

video sequence from Microsoft [20]. The stereo images from
both datasets were of HD resolution (1280x768). All these
stereo images were scaled to high resolution (1280x960), medium
resolution (640x480) and low resolution (160x120) images to
study the behavior of feature extractors across various res-
olutions in conjunction to image degradation. Image degra-
dation was carried out at di↵erent levels on every test stereo
pair (equally on both images of a stereo pair). Blur radius
levels ranged from values 1.5-6.0. Barrel distortion and pin-
cushion distortion were varied as -50% to -10% and +10%
to +50% respectively. Thermal noise levels were 5 - 50dB.
Then, feature extraction and matching using SIFT, SURF
and ORB methods are performed and the performance is
evaluated. An example of feature extraction in stereo im-
ages for various datasets and the image degradation using
simulation parameters are shown in figure 3.

4. EVALUATION RESULTS
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Figure 4: Accuracy Vs Computational time. L-
low (160x120) resolution, M- medium resolution
(640x480), H- high resolution (1280x960)

First, we ran the tests to measure accuracy and execution
time of various feature extractors to comparatively analyze
the performance of feature extractors at various image reso-
lutions. Figure 4 shows the results of the test (note that the
execution time is plotted in logarithmic scale). Obviously, a
tradeo↵ exists in choosing feature extractors between achiev-
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(a) Opera dataset - Wide lens with SIFT
points

(b) Microsoft dataset with ORB points (c) Opera dataset - Narrow lens with
SURF points

(d) SIFT matching on blurred images (e) ORB matching on distorted images (f) SURF matching on noisy images

Figure 3: Stereo images from various datasets of resolution 320x240

ing higher accuracy and higher speed. Overall, ORB is com-
putationally e�cient compared to SIFT and SURF at all
resolutions. A relative di↵erence in execution time between
SIFT and SURF is significant; SURF reduces the compu-
tational cost by 48% at all resolutions. SIFT, SURF and
ORB results in acceptable (sub-pixel) accuracies, except for
SURF-L and ORB-L. This shows that SIFT is more robust
to change in scale.

Next, we conducted experiment to discuss how the defo-
cus/image blur, lens distortion and thermal noise a↵ects the
performance of feature extractors, and the results are shown
in figure 5.

4.1 Effects of blur variation
Figures 5(a), 5(b) and 5(c) show that SIFT outperforms in

terms of accuracy at all resolutions. SIFT seems to be robust
to blur levels probably because of its own way of finding key
points, which uses scale space representation with various
blur levels. SIFT operations on blurry images are equivalent
to having more levels of blurs in every octave of the scale
space, for an un-blurry image. Obviously, at lower resolu-
tions blur-ness has a greater e↵ect and hence SIFT shows an
acceptable accuracy up to blur level 4.5, as in figure 5(c).

SURF performs marginally at acceptable accuracy (E
p

<=
1, figure 5(c)) up to blur level 4.5, at low resolutions, for the
same reasons mentioned for SIFT. However, the di↵erence in
accuracies between SURF and SIFT is due to the descriptor
construction. SURF integrates the gradient information and
loses distinctiveness when blur increases, while SIFT uses in-
dividual gradient to create the descriptor and sustains the
performance to a larger extent of blur, compared to SURF.

The detectability measure (figure 5(d)) for both SIFT and
SURF reduced drastically with increase in blur level at low
resolution, which makes them unsuitable to use when low
resolution images are blurred, especially at levels > 4.5.

Although, ORB performs good only at medium and high
resolution (figures 5(b) and 5(a)) up to blur level 3.5, the

detectability of ORB decreases rapidly with increase in blur
level. The use of huge box filters in ORB to obtain descrip-
tors seems to limit performance on blurry images. Addi-
tional blur worsens the e�ciency of the descriptor. Hence
ORB fails at low resolutions.

4.2 Effects of distortion variation
The e↵ects on performance of the feature extractors due

to di↵erent levels of barrel and pincushion distortion can be
seen in figures 5(e), 5(f), 5(g) and 5(h). All the feature ex-
tractors perform well and similar at high and medium resolu-
tion. A at low resolutions, SIFT outperforms SURF, which
in turn outperforms ORB; however, all of them exhibit an
acceptable accuracy and a constant detectabitlity. Over-
all performance of SIFT, SURF and ORB at all resolution
andseems to be una↵ected by lens distortion. It should be
noted that this result is for a homogenous stereo pair where
the distortions are assumed to be of same degree in both the
cameras.

4.3 Effects of noise variation
The measurements for this experiment peaked at around

10 pixels, hence the results are shown in log scale for y axis
in figures 5(i), 5(j) and 5(k). Here, we show that SIFT out-
performs SURF and ORB, at all resolutions and exhibited
resilience to thermal noise, but becomes sensitive to noise
at around 15dB for low resolution images. SURF and ORB
showed resilience to noise up to 20dB and 15dB, respectively,
at both high and medium resolutions. Importantly, we ob-
serve high and constant detectability rate (figure 5(l)) for
SURF and ORB, suggesting that the performance of SURF
and ORB are not a↵ected by noise, but the accuracy is too
low (E

p

> 10 pixels). This behavior is because SURF and
ORB detect more features which are not supposed to be,
in noisy images. Hence under noisy conditions, above 15dB
none of the feature extractors perform within the acceptable
accuracy.
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5. CONCLUSION
In this paper, we evaluated the popular and widely used

feature extractors SIFT, SURF and ORB. The experiments
were conducted over di↵erent datasets at various resolu-
tions to test the resiliency of the feature extractors to de-
focus/blur, lens distortion and thermal noise. From the re-
sults, we can conclude that:

• At resolutions > 320x240, SIFT and SURF are the best
choices. However, choosing SURF would save execu-
tion time of 48%, on an average, with a cost of around
0.10 pixels in accuracy. A choice of feature extrac-
tor should be made considering the below conclusions,
which are based on the resolution 320x240.

• For blurry images, SIFT is the best choice. However,
using SURF would save 48%, on an average with a cost
of 0.22 pixels in accuracy.

• For lens distorted images, SIFT, SURF and ORB all
are good choices. By using ORB, the execution time
reduces by 98.12% and 95.27% with a cost of 0.69 pix-
els and 0.33 pixels in accuracy compared to SIFT and
SURF, respectively.

• For noisy images, SIFT and SURF are good choice and
using SURF saves 32% time with a cost of 0.67 pixels
in accuracy.

Unlike other feature evaluations, we have used the Epipo-
lar Error to measure the accuracy of the feature correspon-
dence, which aids to selection of feature extractors for feature
based calibration and other 3D applications.
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(b) Blur at Medium Resolution
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(c) Blur at Low Resolution
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(d) Detectability for blurred images

−50 −40 −30 −20 −10 10 20 30 40 50
0

0.5

1

1.5

2

2.5

barrel←→pincushion

Ep
ipo

lar
 e

rro
r (

pix
els

)

Distortion in %

 

 

SIFT
SURF
ORB

(e) Distortion at High Resolution
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(f) Distortion at Medium Resolution
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(g) Distortion at Low Resolution
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(h) Detectability for Distorted images
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(i) Noise at High Resolution
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(j) Noise at Medium Resolution
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(k) Noise at Low Resolution
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Figure 5: Performance of feature extractors for simulation of blur, distortion and noise levels over various
resolutions
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Chapter 9

Paper III: Study the Effects of Camera
Misalignment on 3D Measurements for
Efficient Design of Vision-Based
Inspection Systems

Title: Study the Effects of Camera Misalignment on 3D Measurements for Efficient Design of
Vision-Based Inspection Systems.

Authors: Deepak Dwarakanath, Carsten Griwodz, Pål Halvorsen and Jacob Lildballe.

Published & Presented: In 8th Hellenic Conference on Artificial Intelligence (SETN), 2014.

Abstract: Vision based inspection systems for 3D measurements using single camera, are ex-
tensively used in several industries, today. Due to transportation and/or servicing of these
systems, the camera in this system is prone to mis-alignment from its original position.
In such situations, although a high quality calibration exists, the accuracy of 3D mea-
surement is affected. In this paper, we propose a statistical tool or methodology which
involves. a) Studying the significance of the effects of 3d measurements errors due to
camera mis-alignment. b) Modelling the error data using regression models. c) Deducing
expressions to determine tolerances of camera mis-alignment for an acceptable inaccu-
racy of the system. This tool can be used by any 3D measuring system using single cam-
era. Resulting tolerances can be directly used for mechanical design of camera placement
in the vision based inspection systems.

Errata 1: In table 2 of this paper, the row values with headings width, r�x and depth, r�x had
been interchanged. This is corrected in the thesis, in table 3.2.

Errata 2: In equation 1 of this paper, scaling factor 1

Z
c

is missing. This is corrected in the
thesis, in equation 3.1.
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Abstract. Vision based inspection systems for 3D measurements us-
ing single camera, are extensively used in several industries, today. Due
to transportation and/or servicing of these systems, the camera in this
system is prone to mis-alignment from its original position. In such sit-
uations, although a high quality calibration exists, the accuracy of 3D
measurement is a↵ected. In this paper, we propose a statistical tool or
methodology which involves. a) Studying the significance of the e↵ects of
3d measurements errors due to camera mis-alignment. b) Modelling the
error data using regression models. c) Deducing expressions to determine
tolerances of camera mis-alignment for an acceptable inaccuracy of the
system. This tool can be used by any 3D measuring system using single
camera. Resulting tolerances can be directly used for mechanical design
of camera placement in the vision based inspection systems.

Keywords: Camera calibration, Vision based inspection systems, Cam-
era mis-alignment and Regression models.

1 Introduction

With the advent of automation in all types of industries, manual intervention in
the operations of machines is minimized. Nowadays, automatic inspection sys-
tems are used to inspect various types of faults or defects in several application
areas such as sorting and quality improvements in food industry [11], [10], inspec-
tion of cracks in roads [4], crack detection of mechanical units in manufacturing
industries [8], [9] and so on. Vision based inspection systems are increasingly
growing with the advance in computer vision techniques and algorithms.
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2 Study the E↵ects of Camera Mis-alignment on 3D Measurements

Typically, vision based inspection systems that inspect objects of interest and
estimate measurements, are required to know a priori information about the in-
trinsic (focal length, principal axes) and the extrinsic (position and orientation)
parameters of the camera without any freedom of scale. These parameters are
obtained by a camera calibration process [3],[5]. Usually, calibration is carried
out o✏ine, i.e., before the system is deployed and thereafter the calibrated pa-
rameters are used to recover 3D measurements from the 2D image of the camera
[12], [13] [14]. The quality of the camera calibration is an important factor that
determines the accuracy of the inspection system.

Although the quality of calibration might be very high, it is di�cult to guar-
antee highly accurate measurements, if the camera is physically mis-aligned from
the position assumed during calibration. However, the transportation or instal-
lation can cause mis-alignment, e.g., due to wrong mounting during installation,
due to ways of handling the system during maintenance or service etc. Conse-
quently, the performance of the inspection system degrades.

A possible correction to this problem would be to re-position the camera,
physically, to its calibrated position or to run the calibration process after de-
ployment. It is very di�cult to physically re-position the camera with high pre-
cision. Alternatively, it might also be di�cult to recalibrate in some situations
based on the location and accessibility of the installed system.

Therefore, it becomes important to understand the e↵ects of the o↵set in
cameras’ position and orientation on inaccuracies. The significance of the inac-
curacies depends on design (acceptable inaccuracy level) and the application of
the system. So, an important question is: what is the maximum tolerable cam-
era mis-alignment for an acceptable inaccuracy of the system? By answering this
question, we will be able to design and operate the system better. When the tol-
erance limits of the camera mis-alignment are known, the mechanical design of
the camera housing and fixtures will need to adhere to these tolerances to main-
tain the inaccuracy below an acceptable level. Also, by using an empirical model,
it is possible to estimate the camera mis-alignment and further re-calibrate the
camera parameters to increase the robustness of the system.

This paper aims to enhance the design and operational aspects of vision-
based inspection systems. The main contribution of this paper is to provide a
simple statistical method or tool which can compute acceptable tolerance values
for positions and orientations in all directions for a given accuracy requirements.
This tool is useful in designing the mechanics and in increasing the robustness of
the vision based inspection system. It is easily implementable and reproducible.
The limitation of this tool is that the measurements are carried out on points
that are assumed to be lying on a plane. However, the tool is easily extendable
to measure 3D points as long as an appropriate calibration process is carried out
based on known 3D points. Related work is described in section 2.

First, we identify a suitable use case for the study of e↵ects of camera mis-
alignment on 3D measurements. One such vision based inspection system that
exhibits a similar purpose and problems mentioned so far, is the PantoInspect
system [2]. This system is explained in detail in section 3. Details of our exper-
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imental design is explained in section 4. The simulation results and the empir-
ically obtained regression model is explained in section 5. Finally the paper is
concluded by summarising the goal and evidence of the paper.

2 Related work

The e↵ects of mis-alignment of stereoscopic cameras are studied in [15], [16],
however, in our case we study the e↵ects due to mis-alignment of single cameras.
[15] focusses on the e↵ects of calibration errors on depth errors, and provides
tolerances on calibration parameters. In [16], camera mis-alignment is estimated
and corrected. In both the papers, the approaches rely strongly on a second
image and errors of the cameras’ orientation with respect to each other. Other
papers only discuss e↵ects of camera mis-alignment on calibration parameters
itself [15], [17] and [18]. In our case, where we use a single camera, we assume that
calibration is of su�ciently high quality, but once calibrated, the e↵ects of camera
mis-alignment due to certain factors requires more attention in practical systems
and hence, we study this in our paper. Our approach leads to an estimation of
tolerances for camera mis-alignment that aims directly at the mechanical design
of single camera vision systems. One major feature of our approach is that it is
not specific to one application, but can be used for any application of this type.

3 The PantoInspect System

PantoInspect is a fault inspection system, which inspects pantographs and mea-
sures the dimensions of the defects in their carbon strips. PantoInspect is in-
stalled, as shown in figure 1, over railway tracks to inspect trains running with
electric locomotives that are equipped with pantographs. Pantographs are me-
chanical components placed on one or more wagons of the train, which can be
raised in height so that they touch the contact wire for electricity. Pantographs
have one or more carbon strips that are actually in contact with the wire. Over
time, due to constant contact of carbon strips with the wire, and probably other
factors, various types of defects (cracks, edge chips etc.) are seen. Such defects
are detected by the PantoInspect system.

3.1 Principle

PantoInspect is mounted right above the train tracks on bridges or other fixtures.
The PantoInspect system receives a notification when the train is approaching
and prepares itself. When the train passes right below the system, three line
lasers are projected onto the carbon strips (depicted as green line in the figure),
and the camera captures the near infrared image of the laser. When defects are
present, the line deforms instead of remaining a straight line in the image. Hence,
the laser line defines the geometry of the defect. The system then analyses the
images, measures the dimension of the defects and notifies the user with alarms
on certain measurement thresholds.
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Fig. 1. PantoInspect system: inspects defects on the pantographs mounted on the
trains.

The system measures various defects in the carbon strip based on the cap-
tured images. These defects are represented in figure 2, which are (1)-thickness

of carbon wear, (2)-vertical carbon cracks, (3)-carbon edge chips, (4)-missing

carbon and (5)-abnormal carbon wear. In general, all these defects are measured
in terms of width and/or depth in real world metrics. Although the PantoInspect
system measures various types of defects in pantographs, the common attribute
in these measurements are width and depth. We therefore consider these at-
tributes as the main 3D measurements in our scope of simulation and study of
the e↵ects of camera mis-alignment, in section 4.

Fig. 2. Di↵erent carbon defects and the laser line deformations.

3.2 Calibration:

The system uses 2D pixel measurements in the image and estimates the real-
world 3D scales. Camera calibration is an important step in obtaining such
3D measurements. For PantoInspect, this is carried out in the factory before
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installing the system, using Bouguet’s method [1]. A number of checkerboard
images are used to estimate the intrinsic parameter K of the camera that con-
stitutes focal length and principle axes of the camera. Next, a single image of the
checkerboard that is placed exactly on the laser plane, is used to estimate the
extrinsic parameter of the camera - position T and orientation R, with respect
to the checkerboard coordinates.

3.3 Homography

In the scenario of PantoInspect system, we consider an imaginary plane passing
vertically through the line laser as in figure 3. Then, the points representing
defects are lying on a laser plane. These 2D points of the defects in the image
are detected, and the conversion from 2D (p,q) to 3D (X,Y,Z) points becomes
merely a ray-plane intersection [6], as shown in equation 1, where 3D and 2D
points are expressed in homogeneous coordinates.

Fig. 3. Inspection scenario: world coordinates (Z=towards camera, Y=horizontal,
X=vertical) and camera coordinates (Z=towards plane, Y=vertical, X=horizontal).
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The K, R and T are obtained from the calibration process. The R matrix
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Equation 2 describes a 2D-2D mapping between points on the image and
points on the laser plane. This mapping is a homography (H). Using the homog-
raphy, points on the plane can be recovered and measured for width and depth
of defects that corresponds to defects detected in 2D pixel points.

4 Study methodology

We have seen how the camera parameters play an important role in estimating
the measurements in PantoInspect. However when the camera is mis-aligned
from its original position, estimated 3D measurements incur inaccuracies in the
performance of the system. To study the e↵ects of camera mis-alignment on 3D
measurements, we carry out a simulation of the PantoInspect image analysis for
3D measurements, under the conditions of camera mis-alignment.

Fig. 4. Simulation procedure.

For repeatability of this simulation in any application involving 3D measure-
ments of points lying on a plane and a single camera, a general procedure is
shown in figure 4, followed by a specific explanation of the procedure for our
case study.

4.1 Error computation

A set of points (Pw) that represents the crack edges on a plane are synthesized
in the world coordinates. Note that the points are on the plane. Hence the Z
axis is 0 for all points. These 3D points are synthesised using a random number
generator. From these points, the width (Wknown) and depth (Dknown) of cracks
are computed and recorded. These known measurements in 3D space are our
baseline and used as a reference to evaluate the accuracy of the inspection.

The projection of the known set of points, Pw are computed based on the
known camera parameters (K, R and T ). These points represent the 2D points
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(Pi) in image coordinates that are detected and further analysed by the Pan-
toInspect system.

Typically, when the camera stays perfectly positioned and oriented, the width
and depth of the cracks are measured with a reasonably good accuracy, due to
high quality camera calibration process. To study the e↵ects of camera mis-
alignment on the accuracy of the measurements, the camera mis-alignment pro-
cess needs to be emulated as if the camera had shifted position or orientation.
Accordingly, points (Pi) are first represented in the camera coordinate system
as Pcam, as depicted in equation 3. Next ,the rotation or translation e↵ects are
introduced, as a result of which the detected points obtain new positions, rep-
resented as Pmisalign

i in the image coordinates. Due to this emulation process
that is based on changed camera orientation (Rcam)and position (Tcam), the
Pmisalign

i is estimated as in equation 4.
During inspection, the PantoInspect system detects measurable points (edges)

of the cracks in the image and back-projects the 2D points into the 3D plane. The
estimation of 3D points (P est

w ) of the crack is based on a pin-hole camera model
and is mathematically shown in equation 5, where homography is a plane-plane
projective transformation [6] as in equation 2.

Pcam = K�1 ⇤ Pi (3)

Pmisalign
i = K ⇤


Rcam Tcam

0T 0

�
Pcam (4)

P est
w = H ⇤ Pmisalign

i (5)

Finally, the width (W est) and depth (Dest) measurements are estimated and
compared with the known values to compute the mean squared error, in equa-
tions 6 and 7. These errors Errorwidth and Errordepth represent the accuracy
of the defect measurements.

Errorwidth = ||W � W est||2 (6)

Errordepth = ||D � Dest||2 (7)

4.2 Prediction model

The simulation produces data pertaining to error in the 3D measurements with
respect to camera mis-alignment in terms of three positional (Tcam = [tx, ty, tz])
and three rotational (Rcam = [rx, ry, rz]) mis-alignments. Considering each of
these camera mis-alignment components as a variable, and the error as the re-
sponse to it, the error can be modelled using appropriate regression models.
Once the data fits to a model, the parameters of that model can be used for
prediction purposes [7].

This is helpful to make predictions of camera mis-alignment based on the er-
ror estimated in the system. Then, given the acceptable accuracy of the system,
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8 Study the E↵ects of Camera Mis-alignment on 3D Measurements

in terms of maximum allowable error in the measurements, one can deduce max-
imum limits or tolerances of camera mis-alignment to maintain an acceptable
inaccuracy.

5 Simulation results

5.1 Priori

The carbon strip on each pantograph measures about 1.2meters in length and
between 30-50mm in width and 30mm in thickness. For simulation purposes, we
assume that there are about five defects per pantograph, and the system inspects
about 200 such pantograph, i.e., 1000 measurements.

The defect width of maximum 50mm and defect depth of maximum 30mm
are assumed to be present across the length of the carbon strip. The camera
used for inspection is calibrated o✏ine, and hence, a priori calibration data is
available for that camera. The K, R and T matrices are as follows:

K =

2

4
4100.8633085 0 947.0315701

0 4104.1593558 554.2504842
0 0 1

3

5

R =

2

4
0.0108693 0.9999407 �0.0006319
0.7647318 �0.0079055 0.6443002
0.6442570 �0.0074863 �0.7647724

3

5

T =
⇥
�540.7246414 �119.4815451 2787.2170789

⇤

5.2 E↵ect of camera mis-alignment

The simulation procedure explained in section 4 is for one camera-plane pair,
where a single camera calibration parameter (K, R, T , as given above) is used to
recover the 3D measurements. We have conducted experiments on 6 such pairs.
We used two di↵erent cameras, and each camera calibration with three planes
corresponding to three line lasers. Results from all the 6 configurations yields
similar patterns and are explained as follows.

For every such configuration, the simulation was carried over a range of cam-
era’s positional mis-alignment between -100mm to +100mm and orientational
mis-alignment between -40 and +40 degrees. For every new position and/or ori-
entation of mis-alignment, the simulation was carried out for 1000 measurements
each.

The results of the simulation as in figure 5 and figure 6, show the variation
in mean squared error of both the width and depth measurements for every
camera mis-aligned position and orientation. This error represents the ability of
the system to measure the inspected data accurately and error is measured in
millimetres.

From figures 5(a) and 6(a), it can be seen that the camera translation tx has
the least e↵ect on the errors compared to translations ty and tz. For insight into
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the camera axes for translation and rotation please refer figure 3. The error for
translations in ty and tz is higher, however, not significantly higher than 1mm,
which might be an acceptable inaccuracy limit for certain applications. These
e↵ects are caused by the camera position mis-alignments, which shifts the back
projected points, defining the width and depth measurements proportionally, so
the relative width and depth measurements remain almost unchanged.
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Fig. 5. Variation of error in 3D measurements (width) of the defects, due to changes
in camera position and orientation about its camera centre.

Interesting e↵ects are seen due to camera rotation, which has slightly di↵erent
e↵ects on width and depth. From figures 5(b) and 6(b), it can be seen that
the camera rotations ry and rz, has noticeable e↵ects on the width and depth
errors. When the camera is rotated around axes y and z, the resulting 2D image
point moves symmetrically within the image. Furthermore, the rate of increase
of width is higher than depth for ry, because when camera is rotated around the
y axis, the horizontal component of the 2D point is changed more than the y
component and width is a function of the x component. Exactly the opposite is
seen when depth increases at higher rate for rz, because depth is a function of
the y component.
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Special cases are the errors due to rx. Remember that the camera is placed in
a position to look down at the laser lines. The rotation around x axis will have a
drastic projective e↵ects in the image plane. The projective properties result in
a non-symmetric variation of the errors around zero. One more thing to notice is
that the error increases very quickly on the negative rx than positive side. This
behaviour can be explained using projective geometric properties. Consider an
image capturing parallel lines and in perspective view, the parallel lines meet at
vanishing (imaginary) point. It is possible to imagine that the width of parallel
lines is shorter when the capturing device tilts downwards. Similarly when our
camera is tilted downwards i.e. rx in the positive (clockwise) direction, the defect
points are moved upwards in the image plane, and the measurement becomes
so small that the error seems to be constant. Contrarily, when the camera is
tilted upwards, the detected points are moved downwards in the image plane,
increasing the measurements and thereby the error.
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Fig. 6. Variation of error in 3D measurements (depth) of the defects, due to changes
in camera position and orientation about its camera centre.

5.3 Regression

By visual inspection of figures 5 and 6, we can say that errors are linearly varying
with camera translations (tx, ty, tz), and non-linear with camera rotations (rx,
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ry, rz). We not only model the data for every rotation and translation but also
their direction (positive(+) and negative(-)). This means we separate out the
error data for variables r+

x , r�
x , r+

y , r�
y , r+

z , r�
z , t+x , t�x , t+y , t�y , t+z and t�z .

We model the emphirical data related to translations as a simple linear re-
gression model and the data related to rotations are modelled as a curvilinear
regression of degree 2. This results in the estimation of model parameters and
gives rise to expressions for prediction.
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Fig. 7. Linear model fit and residual plots for width error data variation with t�
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.

Figure 7 illustrates line fitting of variation in width due to t�z and figure 8
illustrates curve fitting of variation in depth due to r+

y . Similarly all the data are
modelled suitably well and the model parameters are estimated. An exhaustive
list of parameters is shown in the table 1 and table 2.

Now, we have the model fitted to our data with root mean squared error
(RMSE) less than unity values that implies good confidence level for estima-
tion. The estimated model parameters are now used to deduce equations for
prediction. Examples are shown in equations 8 and 9:

width = p0 + p1 ⇤ (t�z ) (8)

depth = p0 + p1 ⇤ (r+
y ) + p2 ⇤ (r+

y )2 + p3 ⇤ (r+
y )3 (9)

5.4 Tolerance

Let us consider, in case of PantoInspect, the acceptable inaccuracy is 0.5mm.
For this acceptable level of inaccuracy we can find the camera mis-alignment
(rotation and position) based on the estimated model parameters. By solving
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the equations defining the model for 0.5mm error, the maximum tolerance for
the camera mis-alignments are estimated and are summarised as in table 3.

6 Conclusion

We identified the PantoInspect system as a suitable use case for measuring in-
spected data in 3D, using a single calibrated camera. To study the e↵ects of
camera mis-alignment on the accuracy of measurements, we emulated the cam-
era mis-alignment in both position and orientation for several values, and ob-
tained the width and depth error data. The resulting data was modelled using
suitable regression models and we deduced expressions for prediction. Using the
model parameters and expressions, we obtained tolerances for given acceptable
inaccuracy limit.

Overall, our paper provided a statistical tool or a study methodology, that
is easily implementable and reproducible. Our approach can be directly used by
single camera vision systems to estimate tolerances of camera mis-alignment for
an acceptable (defined) accuracy.

The knowledge about tolerance is helpful for mechanical design considera-
tions of the camera placement in vision based inspection system, to achieve a
desired level of confidence in the accuracy of the system. However, our approach
assumes that the measurements are carried out on points that lie on a plane.

In the future, we would like to use the same model to estimate camera motion
and further re-calibrate the camera on-the-fly, without the aid of the checker-
board.
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Data Linear
f(x),x p0 p1 RMSE

width, t�
x

5.13e-07 -7.14e-06 6.36e-06
width, t+

x

-1.73e-07 7.15e-06 5.47e-06
width, t�

y

2.22e-03 -7.13e-03 6.47e-03
width, t+

y

-1.28e-03 7.43e-03 6.41e-03
width, t�

z

-4.04e-03 -8.93e-03 7.34e-03
width, t+

z

3.84e-03 8.37e-03 7.20e-03

depth, t�
x

5.09e-07 -4.23e-03 4.33e-06
depth, t+

x

-6.48e-08 4.26e-06 3.51e-06
depth, t�

y

1.54e-03 -4.23e-03 4.11e-03
depth, t+

y

-2.7e-03 4.47e-03 4.118e-03
depth, t�

z

-2.45e-03 -5.30e-03 5.62e-03
depth, t+

z

1.77e-03 5.01e-03 3.83e-03
Table 1. Model parameters estimated for translation
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Data Polynomial
f(x),x p0 p1 p2 RMSE

width, r�
x

0.926 -0.014 0.064 0.912
width, r+

x

-0.212 0.356 -0.005 0.142
width, r�

y

0.688 0.095 0.011 0.468
width, r+

y

0.974 -0.177 0.020 0.563
width, r�

z

0.085 -0.072 0.003 0.102
width, r+

z

0.127 0.065 0.001 0.076

depth, r�
x

0.386 -0.235 0.029 0.394
depth, r+

x

0.426 0.370 -0.005 0.141
depth, r�

y

0.158 0.005 0.002 0.096
depth, r+

y

0.140 -0.001 0.004 0.106
depth, r�

z

-0.032 -0.319 -0.002 0.150
depth, r+

z

-0.099 0.338 -0.002 0.130
Table 2. Model parameters estimated for rotations

Tolerances X axis (deg/mm) Y axis (deg/mm) Z axis (deg/mm)

Rotation (width) -0.46 to 0.82 -2.96 to 4.27 -4.73 to 5.12
Rotation (depth) -0.11 to 0.19 -12.57 to 9.21 -1.68 to 1.79

Translation (width) -6.97e04 to 6.98e04 -69.83 to 67.42 -56.41 to 59.20
Translation (depth) -11.82e05 to 11.75e04 -117.93 to 112.35 -94.67 to 99.44

Table 3. Tolerances for camera mis-alignment, given the system inaccuracy limit as
0.5mm.
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Abstract: Vision-based inspection systems measures defects accurately with the help of a
checkerboard calibration (CBC) method. However, the 3D measurements of such sys-
tems are prone to errors, caused by physical misalignment of the object-of-interest and
noisy image data. The PantoInspect Train Monitoring System (PTMS), is one such sys-
tem that inspects defects on pantographs mounted on top of the electric trains. In PTMS,
the measurement errors can compromise railway safety. Although this problem can be
solved by re-calibrating the cameras, the process involves manual intervention leading to
large servicing times.

Therefore, in this paper, we propose Feature Based Calibration (FBC) in place of CBC,
to cater an obvious need for online re-calibration that enhances the usability of the sys-
tem. FBC involves feature extraction, pose estimation, back-projection of defect points
and estimation of 3D measurements. We explore four state-of-the-art pose estimation
algorithms in FBC using very few feature points.

This paper evaluates and discusses the performance of FBC and its robustness against
practical problems, in comparison to CBC. As a result, we identify the best FBC algorithm
type and operational scheme for PTMS. In conclusion, we show that, by adopting FBC in
PTMS and other related 3D systems, better performance and robustness can be achieved
compared to CBC.
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Abstract. Vision-based inspection systems measures defects accurately
with the help of a checkerboard calibration (CBC) method. However, the
3D measurements of such systems are prone to errors, caused by physical
misalignment of the object-of-interest and noisy image data. The Pan-
toInspect Train Monitoring System (PTMS), is one such system that
inspects defects on pantographs mounted on top of the electric trains. In
PTMS, the measurement errors can compromise railway safety. Although
this problem can be solved by re-calibrating the cameras, the process
involves manual intervention leading to large servicing times.

Therefore, in this paper, we propose Feature Based Calibration (FBC)
in place of CBC, to cater an obvious need for online re-calibration that
enhances the usability of the system. FBC involves feature extraction,
pose estimation, back-projection of defect points and estimation of 3D
measurements. We explore four state-of-the-art pose estimation algo-
rithms in FBC using very few feature points.

This paper evaluates and discusses the performance of FBC and its
robustness against practical problems, in comparison to CBC. As a
result, we identify the best FBC algorithm type and operational scheme
for PTMS. In conclusion, we show that, by adopting FBC in PTMS
and other related 3D systems, better performance and robustness can be
achieved compared to CBC.

1 Introduction

Nowadays, industries make extensive use of 3D measurement systems to cater for
inspection applications. The PantoInspect Train Monitoring System (PTMS) [1]
adopted by Rail Net Denmark, Sydney Trains Australia and others, is a system
that inspects defects occurring on pantographs of electric locomotives (their
root-mounted carbon structures that are in-contact with electric wires). PTMS
makes use of lasers and a camera to measure defects with a priori knowledge of
camera calibration parameters, i.e. camera intrinsic (focal length, principal axes)
and extrinsic (position, orientation). The quality of this calibration governs the
accuracy of its 3D measurements.
c� Springer International Publishing Switzerland 2015
L. Nalpantidis et al. (Eds.): ICVS 2015, LNCS 9163, pp. 498–510, 2015.
DOI: 10.1007/978-3-319-20904-3 45

195



Online Re-calibration for Robust 3D Measurement 499

Fig. 1. PTMS system to inspect defects on the pantographs (Color figure online)

In this application scenario, practically unavoidable situations such as cam-
era/pantograph misalignment (change in position and orientation) can occur.
Camera misalignment is caused by mishandling PTMS during transportation
and servicing. Pantograph misalignment is caused by the movement of train and
thrust of pantograph against the catenary wire. In such cases, the calibration
data is not useful anymore and therefore leads to inaccurate defect measure-
ments. Hence, practical misalignment degrades the performance of PTMS, unless
the camera is re-calibrated. Currently, PTMS adopts traditional checkerboard
calibration (CBC) [8]. The typical placement of PTMS (see Fig. 1) requires that
it is unmounted before CBC, leading to huge maintenance and servicing times.
Therefore, PTMS is in need of an automatic camera calibration process.

In this paper, we explore Feature Based Calibration (FBC) methods [3–6] to
provide an alternative solution for PTMS. Since FBC can be performed without
unmounting, PTMS and other related applications acquire robustness against
camera/pantograph misalignment e↵ects. FBC is a calibration process that con-
sists of feature extraction and 3D-2D pose estimation to measure the defects.

Four state-of-art 3D-2D pose estimation algorithms [7–10] were selected for
FBC. Although these algorithms can work independently on arbitrary points, the
challenges in adopting these algorithms for PMTS are: (a) PMTS yield only few
feature points, and (b) feature points are noisy due to misalignment errors and
motion blur. Thus, evaluation of the algorithms becomes important to under-
stand the practical implications of adopting FBC. We use CBC as the reference
and compare the robustness of FBC-based methods against practical problems.
The evaluation was carried out on a dataset from the PTMS testing facility,
which o↵ered a variety of sample data and noise-free reference measurements.

This paper is organized as follows: Functional overview of PTMS is explained
in Sect. 2. Section 3 outlines the proposed FBC methodology for PTMS. The
evaluation setup and their results are discussed in Sects. 4 and 5, respectively.
In Sect. 6, we conclude the results and identify a suitable FBC algorithm that
performs better than CBC and is more feasible for dynamic environments.
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2 PTMS System

PTMS is a non-tactile fault detection system, which inspects pantographs and
measures the defects in the carbon strips. Pantographs are mechanical structures
with carbon strips, fixed on top of train wagons, which are raised to touch the
overhead contact wire for electricity. In the course of time, due to constant
contact of carbon strips with the wire, various types of defects (vertical crack,
edge chip, abnormal wear and missing carbon) might occur. PTMS is meant to
discover when these defects become severe, while allowing for expected wear.

PTMS is mounted over the train tracks (see Fig. 1). When the train passes
right below the system, range sensors (red lines in Fig. 1) detect the pantograph
and three laser lines are projected onto the carbon strips (green line in Fig. 1).
The camera captures a near infrared image of the laser lines, termed as profile

image. When defects are present, the laser lines are deformed and define the
geometry of the defects. The system then detects the defects, measures their
width & depth and raises an alarm if measurements are above certain thresholds.

3 Proposed Calibration Methodology

We propose a feature based calibration (FBC) as in Fig. 2(a), which involves
a 2-step process consisting of (1) Feature Extraction and (2) Pose Estimation.
This is done by extracting features from the same profile images that are taken
to detect defects. These features allow the estimation of the camera pose, and
subsequent 3D measurements of defects.

Fig. 2. Feature Based Calibration for PantoInspect

3.1 Feature Extraction

PTMS casts 3 parallel laser lines, each yielding 2 distinctive, well-known points
that can be detected in each profile image as shown in Fig. 2(b), for a total
of 6 feature points. Notice that the shape of the line traverses the shape of
the pantograph and bends on both ends, where the carbon strip ends. These 6
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end points are extracted from the profile image using known feature extraction
techniques. These points serve as 2D feature points (Ix,Iy) for calibration. The
corresponding 3D points always lie on an imaginary 3D plane parallel to the
surface of the pantograph.

The 3D reference axis (world coordinate system) is assumed to be on the
pantograph, as shown in Fig. 2(b). Pantographs have standard dimensions of
length, by which real metric measurement of each points in 3D world coordinate
system (Wx, Wy, Wz) can be obtained. Thus, both 2D feature points and 3D
world points are determined and further used for camera pose estimation process.

3.2 Pose Estimation

Camera Pose Estimation refers to estimating rotation (R) and translation (T )
parameters of the camera with respect to the world coordinate system. As the
2D and 3D points lie on a plane, a homography between camera and world
coordinate system can be found. Estimating the projective mapping and thereby
extracting the camera parameters [R,T ] is the goal of camera pose estimation.
The parameter R is an orthonormal 3⇥ 3 matrix representing rotations in x,y,z
axes. T is a 3⇥ 1 matrix representing camera translation along 3 axes.

There are several state-of-art algorithms [7–13] for estimating single camera
pose. Out of those, we select few well-known good performing algorithms named,
FBC-boug [8], FBC-zhang [9], FBC-gold [10] and FBC-epfl [7] as candidates for
calibrating PTMS. All methods can operate with n � 4 point correspondences
and they assume that the intrinsic camera parameters (K) are known.

FBC-boug method initially estimates planar homography using the Quasi-
Linear algorithm and recovers [R,T ] parameters, which are further optimized to
minimise reprojection error through Gradient Descent. FBC-zhang method
estimates planar homography using the Direct Linear Transformation fol-
lowed by a non-linear optimization (Levenberg Marquardt) based on Maximum
Likelihood criterion. Then, [R,T ] are recovered using orthogonal enforcement.
FBC-gold method estimates a projective geometric transformation using Gold
Standard algorithm before recovering [R,T ]. Unlike other methods, FBC-epfl
is non-iterative approach to PnP problem. Under PnP problem, 3D points are
expressed in camera coordinate system and then, the Euclidean motion that
aligns both world and camera references is used to retrieve [R,T ]. This method
adopts the idea of expressing n 3D points as weighted sum of four virtual control
points, which reduces complexity and noise sensitivity.

3.3 3D Estimation

Since the reference 3D points lie on an imaginary plane, the conversion from
2D (p,q) to 3D (X,Y,Z) points becomes merely a ray-plane intersection [10], as
shown in Eq. 1, where the points are expressed in homogeneous coordinates.

198



502 D. Dwarakanath et al.

2

4
p
q
1

3

5 = K[R|T ]

2

664

X
Y
Z
1

3

775 (1)

K, R and T are obtained by the FBC process. The Z-axis of 3D points are
zero for points on a plane. Now, expanding the matrix R and vector T , we have
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3.4 Defect Measurement

Referring to Fig. 3(b), in each of the three lines, three major points (M1, M2,
M3) are determined for measurement purposes. These major points are back-

projected to estimate their 3D coordinates (cM1, cM2, cM3) as in Eq. 2.

Width = cM3 � cM1 and Depth = AbsMax(H1, H2) (3)

where, H1 = cM1 � cM2 H2 = cM3 � cM2

All defects are characterized by a width and depth, which are computed using
Eq. 3. Thus, PTMS can estimate FBC parameters (Sects. 3.1 and 3.3), and use
the parameters to measure the defects (Sects. 3.3 and 3.4).

(a) Experimental Setup. (b) Defect Measurement.

Fig. 3. Evaluation scenario
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4 Evaluation

The evaluation determines the performance traits of PTMS in estimating defect
width and depth measurements by adopting the four proposed FBC methods,
in comparison with the currently used CBC method.

The evaluation methodology is illustrated in Fig. 3(a). CBC is carried out
o✏ine using around 20 images of a checkerboard pattern with the help of the
Matlab Calibration Toolbox [2], whereas FBC is carried out online, with only 6
feature points that are extracted from the profile image.

Every profile image is used for defects detection. Whenever the lines in the
profile image are not straight, there is potentially a defect (Fig. 3(b)). After
defects are identified, their width and depth are measured based on the estimated
calibration parameters of both CBC and FBC. Using reference measurements
(Table 1), the error estimations are computed. These errors were compared to
a ground truth and used for evaluating the performance of PTMS over various
calibration methods.

4.1 Datasets

Defect measurements were carried out on Pantographs (BR and EG types) pro-
vided by BaneDanmark (Rail Net Denmark). The dataset was obtained from
product testing conducted at the PTMS factory. The real width and depth of
each of these defects were measured using a calibrated caliper to acquire the
ground truth (Fig. 3(b) and Table 1). The experiments were conducted on 5 read-
ings of 2 types of pantographs having 4 types of defects on them, for a total of
40 data samples. To avoid noisy features extracted and to focus on correct eval-
uation, every feature point was manually annotated. However, the performance
with noisy data is analysed later in our study.

Table 1. Reference measurements of defects of two pantograph types

Measurement Pantograph-type

(in millimeters) BR-type EG-type

Defects Width Depth Width Depth

Vertical crack 2.38 17 5.88 20

Missing carbon 77.98 17 39.04 20

Edge crack 24.21 6 21.18 5

Abnormal wear 19.36 6 14.78 5

4.2 Operational Schemes

FBC can be carried out on every profile image before conducting the measure-
ment, but one cannot guarantee a noise-free image that is good enough to extract
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features. A noisy profile image will worsen the quality of re-calibration. Alter-
natively, calibration can be carried out only when the accuracy of the system
deteriorates (one way of measuring this is by checking if the measured depth
is larger than the pantograph thickness). Alternatively, calibration can be car-
ried out at regular interval. However, a more stable scenario can be to cali-
brate during servicing and maintenance periods, where full control on measure-
ments is possible. In this paper, we have considered two operational schemes for
evaluation.
Scheme 1 : FBC is carried out on every profile image and the defect is measured
on those images using its respective calibration parameter.
Scheme 2 : FBC is carried out on a random profile image and measurement is
carried out on the rest of all profile images with the same calibration parameters.

4.3 Practical Implications

Feature point mis-detection introduces noise in the feature point locations. These
are caused by poorly visible images, which can be due to laser misalignment, flash
under/over exposure, motion blur or sunlight.

Since the pantographs are the moving elements that are in contact with the
caternary wire, there might be linear and angular displacements of the struc-
ture. Linear displacements can occur due to vertically upward movement, called
Uplift, which is deliberately made to provide more upward thrust to the wire.
And angular displacements occur due to uneven forces being exerted on the pan-
tograph over time, when the wire in contact is o↵-centered. Theses displacements
are called Yaw Angle, Roll Angle, and Pitch Angle, referring to rotation around
3 axes. We have considered these practical implications in our study.

Table 2. Absolute angular di↵erence in degrees between CBC and FBC - scheme1

FBC-type R
x

(Tilt) R
y

(Roll) R
z

(Pan)

epfl 7.17 3.50 9.46

boug 9.99 8.21 11.93

zhang 10.86 6.7 11.30

gold 11.51 5.96 10.99

5 Results and Discussion

The FBC was carried out for 4 candidate methods, namely FBC-epfl, FBC-boug,
FBC-zhang and FBC-gold (explained in Sect. 3.2) and their rotational parame-
ter di↵erence from that of CBC was noted (Table 2). The camera rotational
parameter plays an important role in the accuracy of FBC for measurements in
PTMS. In the first experiment, width and depth error of defects (in millimeters)
were computed for the 4 FBC methods in comparison to CBC, yielding a mean
absolute error over several samples and defects for both schemes.
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5.1 Width Measurement of Defects

Intuitively, the angular deviation (Table 2), in the estimated camera pan and
camera roll parameters contribute to the errors in width measurements. The
Figs. 4(a) and (b) show the result of width measurement for both schemes. For
edge crack and abnormal wear, FBC-epfl, FBC-boug and FBC-gold introduced
only around 1–2 mm mean error compared to CBC. All FBC types performed
with accuracy very close to CBC for missing carbon defect, which had su�ciently
large width reference (see Table 1). On the lower side, the width of vertical crack

is about 2–6 mm and the profile image was captured from 3 m distance. Hence,
profile detection of a narrow width structure introduced noise, which thereby
resulted in width error as seen in the figures. In this case, the accuracy of FBC-
zhang degraded, whereas other FBCs showed mean errors between 2–4 mm in
both schemes. However, scheme 1 is most suitable in this case. It is observed
that all FBC types are more sensitive to narrow widths (<5 mm) in scheme 2

than in scheme 1, because in scheme 2, once FBC is carried out, the pantograph
position can be misaligned, which results in wrong measurements.

Overall, FBC-epfl and FBC-boug performed best for width measurement
compared to CBC, with a maximum increase in the mean error of about 1 mm
for scheme 1 and 1.5 mm for scheme 2.
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(a) Width error for scheme 1.
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(b) Width error for scheme 2.
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(c) Depth error for scheme 1.
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(d) Depth error for scheme 2.

Fig. 4. Mean di↵erence of width and depth measurements for both schemes

5.2 Depth Measurement of Defects

Depth measurement results for both schemes are shown in Figs. 4(c) and (d).
Depth errors were introduced due to deviations, mainly in camera pitch rota-
tional parameter. The figures show that all FBC types except FBC-boug per-
formed very close to the CBC with mean errors between 1–3 mm in both schemes.
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FBC-boug uses the same algorithm for pose estimation as in CBC, but there is
a di↵erence in the feature point locations. The feature points in CBC assume
z axis = 0 (places the checkerboard in XZ plane of world coordinate system)
and both depth & width are determined along the X and Z axes, respectively. In
FBC, feature points lie on the XY plane and depth is measured along the Z axis.
Here, the thinness of the pantograph itself restricts the feature plane for FBC on
which the feature points were detected. Hence, estimation of mean depth error
gave a higher value for FBC-boug. For edge crack and abnormal wear, FBC types
performed with a mean error di↵erence of about 1 mm compared to CBC. For
both vertical crack and missing carbon, FBC introduced mean errors of about
2 mm for scheme 1 and 3 mm for scheme 2. The errors were higher for these two
defects because the long narrow depth in vertical crack was detected with noise
and a large depth in missing carbon is strongly a↵ected even by small deviations
in the camera pitch angle. Table 2 shows the rotational parameter o↵sets that
cause such depth errors. It is observed that scheme 1 is more suitable for depth
measurements in terms of accuracies.

Overall, FBC-epfl, FBC-zhang and FBC-gold performed the best for depth
measurement compared to CBC, with a maximum increase in mean error of
about 1.5 mm for scheme 1 and 3 mm for scheme 2.

5.3 Error Distribution

To accommodate the randomness of the error, we considered to observe and
compare the error distributions. We assumed an ideal error distribution as a
baseline for comparison. Computed Cumulative Density Function (CDF) for all
(width and depth) errors, are shown in Fig. 5, where a tendency of divergence
of FBC/CBC from ideal baseline can be seen. To quantify the measure of diver-
gence, we used Kullback-Leibler distance (KLD) [14]. For discrete PDFs P and
Q, the KL divergence of Q from P is defined as in Eq. 4.
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Fig. 5. Cumulative Density Function for scheme 1 and 2.

DKL(P ||Q) =
X

i

P (i)ln
P (i)

Q(i)
(4)

The KLD values for FBC/CBC methods are given in Table 3. From the table,
it is quite evident that for both scheme 1 and scheme 2, FBC-boug performed the

203



Online Re-calibration for Robust 3D Measurement 507

best reduction of width error, which was summarized in the Sect. 5.1. Similarly,
FBC-epfl showed the best performance for depth and overall error in scheme

1 as summarized in Sect. 5.2. Evidently, FBC-epfl performed better than CBC
for depth measurement. Unlike in mean error estimates for scheme 2 shown in
Fig. 4(d)), FBC-boug showed performance closer to FBC-epfl in terms of error
distribution, as in Fig. 5. FBC-zhang and FBC-gold performed alternatively bet-
ter than each other in various configurations, but still not up to FBC-epfl and
FBC-boug.

Eventually, we see that FBC methods have performed with better accuracy
in scheme 1 configuration than in scheme 2.

Table 3. Kullback-Leibler Divergence values for total (width + depth) error

Measurement Ideal CBC FBC-epfl FBC-boug FBC-zhang FBC-gold

Scheme-1

Width 0 1.29 1.39 0.92 1.39 1.20

Depth 0 0.51 0.39 0.69 0.52 0.80

Total 0 0.24 0.34 0.98 0.80 0.88

Scheme-2

Width 0 1.29 1.29 0.80 1.61 1.39

Depth 0 0.52 0.92 0.70 1.39 1.12

Total 0 0.24 0.88 0.83 1.61 1.16

5.4 Resilience

Next, both the FBC and CBC were evaluated for resilience to practical dis-
turbances, which are feature detection error (pixel noise) and pantograph mis-
alignment (uplift, yaw, roll, pitch), as explained in Sect. 4.3. Variations of these
parameters were emulated within a practical range of values and a new set of
observations and feature points were obtained. Using new sets of data, FBC
was carried out for each perturbation of the parameter and the KLD was com-
puted. Only scheme 1 operation, which had shown better performance so far,
was considered to evaluate resilience of FBC and CBC.

For pixel noise variation, gaussian noise with a variance between 10 and +10
was added to the signal. The uplift was emulated by varying the vertical axes
from �0.5 m to +0.5 m. All rotations (yaw, roll and pitch) were allowed to vary
between �10 and +10 degrees. All subfigures in the first column of Fig. 6 show
resilience of width error estimation to all five practical implications. Similarly,
resilience of depth error is shown in subfigures of the second column.

For pantograph misalignment disturbances, CBC errors are higher than one
or more of the FBC-types. In CBC, the reference world coordinate axis is fixed
in space based on the position of the checkerboard. For FBC, on the other hand,
the reference world axis is located on the pantograph itself. Hence, misalignment
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Fig. 6. Experimenting resilience over physical implications

205



Online Re-calibration for Robust 3D Measurement 509

of the pantograph does not a↵ect the measurements using FBC, and several FBC
methods are more robust to pantograph misalignment than CBC.

For feature detection errors, FBC-types will be obviously more sensitive than
CBC, because FBC relies on noise-free feature points for high quality calibration.
However, FBC-boug and FBC-epfl showed better resilience than CBC in terms of
handling noisy feature points, because their optimization yielded better results
with the localization of world coordinate system on the pantograph.

Width error of FBC-boug consistently showed the best resilience over CBC
and other FBC types. Although FBC-boug is similar to CBC in terms of pose
estimation procedure, FBC-boug used only 6 points compared to CBC, which
used more than 200 points for bundle optimized solution for the pose.

In most of the pantograph rotational disturbances, the depth error for FBC-
types showed a consistently flatter response compared to CBC, which was very
sensitive to rotational disturbances. However, FBC-zhang and FBC-epfl showed
the best resilience.

6 Conclusion

Considering the PantoInspect Train Monitoring System as a usecase, we have
outlined the specific practical problem underlining the usage of vision based
inspection systems. The paper is motivated with the need for online-recalibration
and how CBC fails to fulfill the need.

We proposed FBC methods for PTMS, which uses very few points in an
image. We have evaluated four state-of-art algorithms for camera pose estima-
tion. The results have shown that FBC has outperformed CBC in many cases.
The FBC-epfl and FBC-boug methods have shown best results in terms of accu-
racy and robustness for depth and width error, respectively. Carrying out FBC
on every profile image before analysing the defect (scheme 1), is found to be
more accurate. However, if the image is too noisy to extract features, recent
FBC parameter needs to be re-used. All FBC methods can be executed in real-
time, without relevant penalty to the system speed.

Hence, we conclude that online re-calibration for error-sensitive 3D mea-
surement systems (such as PTMS), is possible using FBC methods that give
e↵ectively a better performance and robustness than CBC. This tremendously
increases the usability of 3D vision inspection systems with greater flexibility of
using online re-calibration without any manual intervention.
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Abstract: In the Augmented Reality (AR) applications, high quality relates to an accurate
augmentation of virtual objects in the real scene. This can be accomplished only if the
position of the observer is accurately known. This boils down to solving image-based lo-
cation problem by an accurate camera pose (relative position and orientation) estimation,
when a stereo or multiple camera setup is used. Consider a relevant application scenario
as in a movie production set, where the director is able to preview a scene as an integrated
view of the real scene augmented with animated 3D models. The main camera shoots the
scene, where as secondary stereo camera pair is used for image registration and localiza-
tion. The director can view the integrated preview from any viewpoint perfectly, as long
as the camera pose estimation is accurate.

Moreover, in the case of a markerless AR system, the challenge for camera pose estima-
tion, is strongly influenced by the precision of detected feature correspondences between
the images. Unfortunately, several of the state-of-art feature extractors (detectors and de-
scriptors) cannot guarantee a consistent accuracy of camera pose estimation, especially
at varied camera baselines (viewpoints). As a consequence, the precise augmentation of
objects, as desired in an AR application, is compromised. Hence, it becomes necessary
to understand the magnitude of this error in relation to the camera baseline depending on
the chosen feature extractors.

We, therefore, assess the quality of the position and the orientation of 3D reconstruction
by evaluating 26 feature extractor combinations over 50 different camera baselines. To
be directly relevant for AR applications, we evaluate by measuring the reconstruction
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error in 3D space, instead of re-projection error in 2D space. After the experiment, we
have found the SIFT and KAZE feature extractors to be highly accurate and more robust
to large camera baselines than others. Importantly, as a result of our study, we provide
a recommendation for system builders to help them make a better choice of the feature
extractor and/or the camera density required for their application.
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ABSTRACT
In the Augmented Reality (AR) applications, high quality
relates to an accurate augmentation of virtual objects in the
real scene. This can be accomplished only if the position of
the observer is accurately known. This boils down to solving
image-based location problem by an accurate camera pose
(relative position and orientation) estimation, when a stereo
or multiple camera setup is used. Consider a relevant appli-
cation scenario as in a movie production set, where the di-
rector is able to preview a scene as an integrated view of the
real scene augmented with animated 3D models. The main
camera shoots the scene, where as secondary stereo camera
pair is used for image registration and localization. The di-
rector can view the integrated preview from any viewpoint
perfectly, as long as the camera pose estimation is accurate.

Moreover, in the case of a markerless AR system, the chal-
lenge for camera pose estimation, is strongly influenced by
the precision of detected feature correspondences between
the images. Unfortunately, several of the state-of-art fea-
ture extractors (detectors and descriptors) cannot guarantee
a consistent accuracy of camera pose estimation, especially
at varied camera baselines (viewpoints). As a consequence,
the precise augmentation of objects, as desired in an AR
application, is compromised. Hence, it becomes necessary
to understand the magnitude of this error in relation to the
camera baseline depending on the chosen feature extractors.

We, therefore, assess the quality of the position and the
orientation of 3D reconstruction by evaluating 26 feature
extractor combinations over 50 di↵erent camera baselines.
To be directly relevant for AR applications, we evaluate by
measuring the reconstruction error in 3D space, instead of
re-projection error in 2D space. After the experiment, we
have found the SIFT and KAZE feature extractors to be
highly accurate and more robust to large camera baselines
than others. Importantly, as a result of our study, we provide
a recommendation for system builders to help them make
a better choice of the feature extractor and/or the camera
density required for their application.
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1. INTRODUCTION
The multimedia industry has paid quite a lot of attention

to 3D imaging as in head mount virtual reality systems [1,
2], augmented reality mobile applications [3, 4, 5], interac-
tive augmented reality systems [6, 7], free-viewpoint render-
ing [8], etc. These applications use two or more cameras to
perform tasks such as augmenting 3D models in video se-
quences, depth estimation, virtual view synthesis, etc. The
underlying principle of such multi-camera systems is the es-
timation of camera pose, i.e., relative camera position and
orientation with respect to other cameras.

A central theme in Augmented Reality (AR) research is
the enhancement of the human senses by changing what hu-
man observers see with their eyes, or annotating it. Of these,
modification is more challenging because accurate knowl-
edge of the images that the observers see is required before
changes can be made. This knowledge may be derived by
augmenting the observers with cameras mounted on their
heads [9], and perhaps reconstructing their entire view. Our
project goal in POPART1, however, is to provide an aug-
mented, accurate preview of a film set. This is meant to
provide an integrated view of real-life actors with prototype
animated 3D models in real-time to director and photog-
rapher, weeks or months before post-production is finished.
This implies that we augment the image that is seen by the
main film camera, and that we have one or two static cam-
eras to estimate the dynamic objects. The static film set
itself is, in our case, reconstructed in advance of the filming.

The accuracy of the camera pose estimation plays an im-
portant role in order to determine the quality of these ap-
plications. Cameras are usually pre-calibrated o✏ine (of-
ten, focal length and principal axis are determined using a
checkerboard - Matlab Toolbox2). When the system is de-
ployed, the camera pose is estimated automatically based
on sparse feature points extracted from the images that are

1http://www.popartproject.eu, EU Horizon2020 project
number 644874
2http://www.vision.caltech.edu/bouguetj/calib doc
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captured by these cameras. This is also known as Feature-
Based Calibration (FBC).

In multi-camera systems, the following statements are com-
monly accepted:

• A high number of matched feature points in a stereo
pair results in a better camera pose estimation.

• Minimizing 2D pixel error calculated between matched
pairs results in higher accuracy of 3D estimation, based
on epipolar geometry [10].

The first point holds good for iteration-based estimation
algorithms (e.g., RANSAC [11]). The second point, how-
ever, is not always true. We illustrate this in figure 1, which
represents a scatter plot of 3D accuracy versus 2D pixel er-
ror and number of matched feature points extracted from
images of stereo pair at various baselines (relative displace-
ment between the stereo cameras). Figure 1(a) illustrates
that low pixel error does not guarantee high 3D accuracy
and, similarly, figure 1(b), that high 3D accuracy is not al-
ways obtained by a larger number of feature matches.
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Figure 1: Scatterplots of matched feature points and
2D pixel error with 3D accuracy.

In this paper, we explore one of the important factors
determining the accuracy of camera pose estimation and
thereby 3D estimation, i.e., change in the camera baseline,
which breaks the common assumptions made above. This
paper also casts light upon the quality of current state-of-
art feature extractors (combination of detectors & descrip-
tors) [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] used for FBC
or camera pose estimation today.

Each of these feature extractors has its own behavioral
traits. Some of them claim invariance to change in cam-
era baseline, but the extent of their tolerance is uncertain.
Therefore, we evaluate various combinations of feature ex-
tractors with a brute-force matcher to determine their ro-

Figure 2: Cameras arranged in a circular configura-
tion around the 3D model.

bustness to change in the camera baseline. Our study is
meant to provide system builders with a better understand-
ing of the operational limits of the state-of-art feature detec-
tors and descriptors. It will help them to make better choices
in designing 3D multimedia applications using multi-camera
systems. Besides choice of algorithm, it may be helpful in
estimating the number and position of cameras that are re-
quired for reconstructing rigid structures in a well-known
space, with a desired accuracy.

We have considered a multi-camera scenario as in figure 2,
where a number of cameras are placed in a circular configu-
ration around and looking at an object of interest, equidis-
tant from the object’s geometric center. We have chosen
this configuration to concentrate on changes in baseline, and
avoid changing either the objects’ size in the frames or the
camera’s focal length between baseline configurations. This
would be unavoidable, if we changed camera baselines along
a line. So, with these configurations, we study the perfor-
mance of feature extractors on stereo pairs. Furthermore,
we have chosen to work on pure virtual scenes, which guar-
antees that we know the exact ground truth of 3D points
position and their corresponding pixel positions, and use it
for the assessment of reconstruction quality. The quality of
AR applications is determined by the observer’s relative po-
sition in 3D space. We, therefore assess the quality in the
reconstructed 3D space, which seems more realistic for our
scenario, than the usual re-projection error in 2D space.

The rest of the paper is organized as follows: section 2
describes other related feature evaluation studies. The eval-
uation system is explained in section 3 and the results are
discussed in detail in section 4, along with the recommen-
dations for designing 3D applications. Finally, we conclude
by stating the usefulness of the evaluation study and outline
the scope for future work, in section 5.

2. RELATED WORK
Previously, we have seen that the evaluation of most of

the state-of-art feature extractors, i.e., detectors or descrip-
tors, use various evaluation criteria. The feature detec-
tor KAZE [16] and feature descriptors FREAK [22] and
BRIEF [21] evaluate themselves with other known feature
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detectors using recall and precision metrics, which relates
to a total number of correct feature matches found. Along
with recall and precision, BRISK [15], STAR [19], FAST [20]
and AKAZE [17], evaluate themselves in comparison to oth-
ers, by the metric repeatability, which measures the extent
of overlap between the detected regions in an image pair.
In both SIFT [12] and SURF [13], the evaluation is carried
out on various viewpoints, but not in comparison to other
features. However, the performance criteria is still repeata-
bility. Sometimes, the distance between the descriptors is
considered to be an evaluation metric, as in ORB [14]. In
all the above cases, the evaluation criteria focuses only on
the correctness of the feature matches and this may not be
enough to evaluate the feature extractors for accuracy in 3D
applications and robustness to camera baseline changes.

Point feature matching algorithms for stereo were evalu-
ated by Juhász et al. [23], but only for a particular baseline
based on the re-projection error metric. In our paper, we
evaluate a range of baselines to study their e↵ects. Inter-
est point detectors and descriptors were evaluated for track-
ing applications by Ste↵en et al. [24], where detectors were
tested on various conditions such as scale, rotation, baseline,
light, etc., using repeatability metric. Further, feature de-
tectors were compared based on tracking success rate, which
was computed based on the re-projection error. However,
KAZE, AKAZE, BRISK, BRIEF and FREAK are not in-
cluded in their study, unlike ours. Moreover, instead of mea-
suring the re-projection error in 2D, we measure the accu-
racy in 3D space directly, relying on a dataset consisting of
known 3D models. We believe that 3D space metrics are
more suitable for AR related applications.

Michael et al. [25] evaluated SIFT feature extractors for
viewpoint invariance, by comparing the descriptor proper-
ties over various baselines. Their evaluation basically out-
lines the quality of obtaining correct matches, but it does
not guarantee high 3D accuracy.

Florian et al. [26] evaluated feature tracking for pose esti-
mation in underwater environment. However, their evalua-
tion is limited to very few feature detectors and descriptors
with a very specific testing condition.

Pierre et al. [27] evaluated feature extractors for 3D object
recognition applications over various viewpoints and light-
ing conditions, but with a limited number of candidates for
evaluation.

Comparatively, in our paper, we evaluate a wide range of
feature extractor combinations, to describe its capability for
3D applications directly, over various camera viewpoints.

3. EVALUATION SYSTEM
Our setup for evaluating feature extractors is depicted in

figure 3. It comprises of the following steps: dataset gen-
eration, feature extraction, pose estimation, 3D estimation
and 3D accuracy computation. The evaluation is carried out
based on the accuracy of the 3D points that are estimated
using the 2D test points, in comparison with the ground
truth derived from the 3D model. Our experiment is imple-
mented in C++ using the OpenCV (Open Source Computer
Vision) library and results are presented using Matlab.

3.1 Dataset Generation
Ground truth data is generated based on the application

scenario illustrated in figure 2. Here, we consider a number
of possible positions where cameras can be placed around the

Figure 3: Experimental setup

3D model. Subsequently, we considered that many stereo
camera pairs to capture images of a 3D model at various
baselines (refers to relative displacement of stereo cameras).
For every subsequent stereo pair, the camera motion is circu-
larly displaced, maintaining equal distance from geometric
center of the 3D object. This configuration is deliberately
chosen so that scaling e↵ects on feature extractors can be
nullified and the focus stays on evaluating only baseline vari-
ation. Using 3D models is an advantage, in terms of having
full control over the dataset being generated. The dataset is
generated using a total of 9 3D models (depicted in figure 4
and obtained from CG Trader3), for baselines varying from
1 to 50 degrees angular displacement. This results in the
necessary ground truth values as follows:

• Totally, 450 stereo pair images with 1 degree resolu-
tion, are generated for 9 models. Images are of resolu-
tion 600x600 with 24 bit depth.

• The ground truth 3D points are generated using four
points, representing an origin and three points of unit
length in three axes direction. These 3D points [X

g

]
are su�cient to represent a model measured in world
co-ordinate system, with the geometric center of the
model as the origin. This type of 3D data is well suited
as ground truth data, which is compared with the esti-
mated 3D data, to compute the changes in the position
and rotation in 3D space.

• The ground truth 2D feature points [x1
g

and x2
g

] in
stereo pairs corresponds to the projection of true 3D
points onto the image plane. This is considered as
the 2D test data, which is used in the experiment to
evaluate the feature extractors.

• The camera intrinsic parameters [K] comprises cam-
era’s focal lengths (f

x

,f
y

) and principal axes (p
x

,p
y

).
All cameras have identical intrinsics in all tests. In
our experiment, the focal length is 520 pixels and the
principal axes are 300 pixels.

K =

2

4
f

x

0 p
x

0 f
y

p
y

0 0 1

3

5

3http://www.cgtrader.com
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Figure 4: 3D models used for the experiment. From each model, 50 stereo image pairs are generated,
corresponding to various baselines.

• The camera extrinsic parameters represents relative
rotation and translation of stereo pair ([R

g

,T
g

]).
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3.2 Feature Extractors
The term feature extractor refers to a combination of

state-of-art detector and descriptor. After feature extrac-
tion, the features are matched and outliers are removed.

We have tested feature extractors by combining the detec-
tors SIFT, SURF, BRISK, KAZE, AKAZE, ORB, MSER,
STAR and FAST, with their own descriptors, and combined
with BRIEF and FREAK descriptors. In total, we evalu-
ated 26 feature extractor combinations. To compute feature
correspondences in a stereo pair, we applied a brute-force
matcher on the descriptors, combined with Random Sam-
ple Consensus (RANSAC) [11] for removal of outliers. Each
feature extractor was applied to every camera pair config-
uration to extract feature correspondences [x1

e

, x2
e

] between
the stereo images. All the state-of-art feature detectors and
descriptors used for the evaluation in this paper are briefly
explained with their properties in table 1.

3.3 Pose Recovery
In our tests, pose recovery estimates the pose (camera po-

sition and orientation) of the right camera with respect to
the left camera in a stereo pair. Feature correspondences
from the feature extractors on every stereo pair are used to
estimate the camera pose [R

e

,T
e

]. Feature correspondences
[x1

e

, x2
e

] are used to estimate the essential matrix [E
ss

] di-
rectly, given the camera instrinsics [K], by applying the 5-
Point algorithm [28]. The essential matrix is a specialized
case of fundamental matrix expressed in normalized image
coordinates that describes the relation between the stereo
pair in terms of epipolar constraint [x2

e

T

E
ss

x1
e

= 0].
Finally, the camera pose is recovered using a single value

decomposition, E
ss

= [T
e

]R
e

, and selection of the optimal
solution using the cheirality constraint [10]. Thereby, the
estimated camera position is always upto scale expressed in
model coordinates.

3.4 3D Estimation and Accuracy Computation
Usually, an estimated 3D point is projected onto a 2D

image and compared with a known value to compute re-
projection error, which represents the accuracy of the es-
timation. Instead of following this approach, we estimate
the error in 3D space that is more comparable to real-time
applications, using Normalized Correlation Coe�cient (⌘).

For feature based calibration, in our tests, the feature

extracted correspondences are consumed in estimating the
camera pose. Using the same feature correspondences to es-
timate the 3D points is not a fair experiment to evaluate
feature extractors for 3D applications.

Therefore, to evaluate feature extractors for feature based
calibration, we compute 3D accuracy as a di↵erence be-
tween the experimental data and the ground truth data.
The ground truth 3D data (X

g

) is obtained as a result of
back projecting their corresponding ground truth 2D test
data (x1

g

, x2
g

), using the ground truth camera pose (R
g

,T
g

).
Similarly, experimental 3D data (X

e

) is estimated from the
same 2D ground truth test data (x1

g

, x2
g

) using the estimated
camera pose (R

e

,T
e

). The back projection of feature corre-
sponding points of two stereo pair is accomplished by trian-
gulation [10]. Here, T

g

& T
e

are expressed upto scale, and
all distances are always expressed in the model coordinates.

Thus, the 3D accuracy can be quantified as ⌘, a measure
over all three axes components between X

e

and X
g

. ⌘ pro-
vides a similarity measure of estimated 3D points with the
ground truth 3D points, which is represented as a normal-
ized accuracy value [0-low and 1-high].

⌘† =

P
(X†

e

� mean(X†
e

)) ⇤ (X†
g

� mean(X†
g

))qP
(X†

e

� mean(X†
e

))2 ⇤
P

(X†
g

� mean(X†
g

))2

⌘ =
X

†=x,y,z

⌘†

3

where † represents 3D axes components x, y and z.

4. RESULTS AND DISCUSSION
The experiment described in section 3 is carried out on

a total of 450(stereo pairs) * 26(feature extractor combina-
tions), i.e., 11700 datasets. Our test results, which are based
on virtual models in an empty scene, can be compared di-
rectly to a film scenario that applies blue screen, i.e. where
the background consists of large, artificial, untextured sur-
faces. In other cases where textured background provides
depth to the scene, our tests are relevant only for objects at
certain depth. Other factors in real scenes, such as blur or
challenging lighting conditions, are considered future work.

In our results, the ”baseline” of the stereo camera pair is
represented in terms of relative angular separation between
the cameras, where both cameras are directly facing the 3D
model and the camera movement with respect to each other
is as in a turn-table configuration.

All combinations of feature extractors are evaluated at
every stage in the pipeline (described in figure 3), i.e., 2D
pixel error, camera pose error and 3D estimation error. As
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Feature Properties Detection Description
Extractor
SIFT [12] Scale and rotation invariant.

Robust to change in illumi-
nation, 3D viewpoint and
noise.

Interesting points are identified us-
ing Di↵erence of Gaussian (DoG)
over several linear scales of images.
Then, the location and scale of key-
points are accurately computed us-
ing neighbor pixels.

The descriptor is represented by
histograms of image gradients that
are computed at every image point
around the keypoints detected.

SURF [12] Scale and rotation invari-
ant. Features are distinc-
tive, robust to noise, geo-
metric and photometric de-
formations. It can be com-
puted quickly.

Using integral images makes the im-
age convolution faster. The de-
tector is based on Hessian-matrix
based approximation of blob-like
interesting points using Gaussian
scale space.

The descriptor is based on distri-
bution of interesting points in its
neighborhood. This is similar to
SIFT but instead of using gradi-
ents, distribution of first order Haar
Wavelets responses are used.

ORB [14] Designed to perform two
magnitudes faster than
SIFT.

This is a FAST detector with addi-
tion of an accurate orientation com-
ponent using intensity centroid.

”Rotation-Aware”binary descriptor
based on the BRIEF descriptor.
Computed by introducing a learn-
ing method for de-correlating the
BRIEF features under rotational
invariance.

BRISK [15] Adaptive feature detector
designed to lower computa-
tional complexity compared
to SURF.

It is a combination of FAST de-
tector in scale space and identifier
of keypoints by fitting a quadratic
function.

The descriptor is a bit-string as-
sembly from intensity comparisons,
retrieved by dedicated sampling of
each keypoint neighborhood.

KAZE [16] Scale and rotation invariant.
Attains high accuracy in ob-
ject boundaries. Robust to
noise.

Similar to SIFT, except that the
keypoints are detected in nonlinear
scale space using ”Additive Opera-
tor Splitting” techniques and vari-
able conductance di↵usion.

Uses a modified SURF descriptor,
which adds a two-stage Gaussian
weighting scheme.

AKAZE [17] Accelerated KAZE - moti-
vated to compute faster with
similar scale and rotational
invariance and lower stor-
age requirement properties,
compared to KAZE.

Instead of using non-linear scale
space as in KAZE, a numerical
scheme called ”Fast Explicit Dif-
fusion” in a pyramid framework is
used.

A ”Modified-Local Di↵erence” bi-
nary descriptor, which exploits gra-
dient and intensity information
from nonlinear scale space.

MSER [18] A�ne-invariant feature ex-
tractor suitable for wide
baselines in stereo. Robust
to change in scale, illumina-
tion, out-of-plane rotation,
occlusion and viewpoints.

Distinguished regions are detected
and a�ne invariant procedure is
carried out to estimate the stable
invariant regions, from which the
keypoints are measured.

n/a

STAR [19] A suite of scale invari-
ant center-surround detec-
tors focused on visual odom-
etry applications. Stable
and repeatable in viewpoint
changes. (CenSurE)

The CenSurE features are com-
puted at the extrema over multiple
scales using full image resolution us-
ing center-surround filters. There
is an approximation to scale space
based on Laplacian of Gaussian.

n/a

FAST [20] High Speed corner detec-
tor extensively used in ma-
chine learning methods and
is suitable for real-time ap-
plications.

Considers a circle comprising of 16
pixels in an image. Then every pixel
is compared with only 4 neighbors
to classify if it is a corner or not.

n/a

BRIEF [21] A highly distinct binary de-
scriptor designed to com-
pute faster. Invariant to
large in-plane rotation.

n/a Binary string descriptor relying
on image patches-pairwise intensity
comparisons. A classifier is trained
with image patches form various
viewpoints.

FREAK [22] Inspired by the human vi-
sual system - retina, this de-
scriptor is a cascade of bi-
nary strings aimed at faster
computation.

n/a Computed by e�ciently comparing
image intensities over a retinal sam-
pling pattern containing Gaussian
kernel information.

Table 1: Brief overview of feature extractors that are used for feature based calibration.
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a reference, 2D ground truth feature correspondences are
passed through the pipeline with known camera parame-
ters and reference plots at every stage are generated. These
are referred to as ”IDEAL” feature extractor combination,
throughout the experiment. In this way, every step in the
pipeline is tested as a black box to operate correctly.

The estimation error is expressed as averaged over every
5 degrees of the camera baseline. The variability of the
error data within every 5 degrees is shown in figure 9. This
variability makes it hard to present the comparison of the
feature extractors visually. Therefore, the mean value was
chosen to gain better readability.

4.1 2D pixel error
The 2D pixel error (P

error

) is expressed as the squared
Sampson error, which is the first-order approximation to the
geometric error [10]. The P

error

between feature points in a
stereo pair is computed as in equation 1, where F is the fun-
damental matrix computed using N feature correspondences
(x, x0). This metric determines how close every point in one
image is to its corresponding epipolar line in the other image
of the stereo pair. For an ideal match, P

error

= 0.

P
error

=

NpX

i=1

(x0
i

Fx
i

)2

(Fx
i

)21 + (Fx
i

)22 + (F T x0
i

)21 + (F T x0
i

)22
(1)
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Figure 5: 2D error (Squared Sampson) based on
epipolar constraint over varied baselines4.

The P
error

measured in 2D for stereo pairs varying in
baseline is shown in figure 5. This error is computed for
all meaningful combinations of feature extractors (described
in the table 1). We can observe that the pixel error stays
fairly low (although fluctuating) over all camera baselines.
However, this does not guarantee a consistent accuracy of
3D estimation for all camera baselines as seen in figure 1(a).
This is evident when we observe the e↵ect of baseline vari-
ation on camera pose and 3D estimation error.

4.2 Camera pose error
Based on the estimated feature correspondences, the cam-

era pose of stereo cameras are estimated. The pose esti-
mated is compared with known camera extrinsics from the
dataset (section 3.1), and thereby, the deviations of the es-
timated camera rotation and translation parameters from
the ground truth value are computed. These deviations are

4The X-axis depicts baseline expressed between 1-50 de-
grees. Along the Y-axis, the error is averaged over every
5 degrees, to increase readability. Details in section 4.

the sum of deviations in all three axes, for both rotation and
translation and are plotted in figures 6 and 7, respectively.
Each figure is categorized into sub-figures based on the de-
scriptors used, i.e., (i) figures 6(a) and 7(a) depict detectors
having their own descriptors (with an exception for MSER
and STAR, which uses SURF descriptor as in their origi-
nal contribution), (ii) figures 6(b) and 7(b) depict detectors
with BRIEF descriptor and (iii) figures 6(c) and 7(c) depict
detectors with FREAK descriptor.

It is noticeable from the figures 6 and 7 that pose errors do
not follow the same pattern as in figure 5. As the baseline
of the stereo camera increases, the pose estimation error
increases (figures 6(a), 6(b), 7(a) and 7(b)) or stays high
throughout (figures 6(c) and 7(c)). This is observed to be
due to the following reasons:

1. When wrong feature matches between the stereo pairs
exist, the estimation of fundamental matrix becomes
incorrect. This is quite obvious.

2. When correct feature matches between the stereo pairs
exists, and if the feature matches are confined to a
small area, i.e., a set of 2D match points corresponds
to only a part of the 3D model, then the estimation
of fundamental matrix becomes incorrect as there is
not enough information about rotation or translation
covering the whole 3d model.

In both of the above cases, an incorrect fundamental ma-
trix and thereby an incorrect estimation of essential matrix
results in an incorrect pose estimation. The 2D pixel error
seems like a biased measure because the same number of
feature points are used to both estimate fundamental ma-
trix and to compute pixel error based on the fundamental
matrix. Due to this nature, although we have an incorrect
fundamental matrix, the 2D pixel error still stays low over
all baselines (figure 5), as an e↵ect of using RANSAC.

4.2.1 Penalty for invalidity
In the process of estimating camera pose, three types of

invalidity can occur.
• Type 1 - when rotation error in either of the three

directions is more than 90o (as in figure 6(c)), then
the camera seems to be rotated more than expected,
in a true situation.

• Type 2 - as in figure 7(c), if any of the translation
error is more than unity, then it means that the right
camera is estimated to be on the left side.

• Type 3 - this is not directly related to pose estimation,
but this error occurs when the feature extraction gives
zero matches. This error also relates to non-estimation
of fundamental matrix due to very few matches.

In the above cases, the camera pose estimation is deemed
invalid. This situation can occur, when the number of fea-
ture correspondences in a stereo pair are zero or very few or
wrong to a large extent. In these cases, we penalize the fea-
ture extractor, whenever any of the above types of invalidity
occurs. Therefore, every feature extractor combination gets
a penalty score for the invalidity.

In our tests, the penalties for every feature combination is
given in figure 11. The maximum penalty score is 450, which
represents samples that constitutes 9 models of 50 baselines
each. It is clearly observable that most of the combinations
with FREAK descriptor have higher penalty score.

The sensitivity of the pose estimation can be observed by
IDEAL features. The pose estimation seems to be sensitive
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Figure 6: Mean estimation error of relative stereo camera rotation over varied camera baselines4.
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Figure 7: Mean estimation error of relative stereo camera position over varied camera baselines4.
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to rotation at low baselines (figure 6(a)). In figure 11, we
see that IDEAL has about 4 penalties, and these are at very
low baseline. This confirms that pose estimation algortihm
has limitation at very low baselines. This sensitivity does
not a↵ect our comparative study on feature extractors as
the penalty scored sample is considered invalid. However,
we will use the penalty score to define the success rate or
reliability of the feature extractor in further sections.

4.3 3D estimation error
Using the feature correspondences and the recovered cam-

era pose, the corresponding 3D points are estimated and are
compared to their ground truth values. The resulting sam-
ples are filtered based on the penalty score (described in

section 4.2.1). Only the samples that are not penalized are
considered valid and are used for further evaluation. The
resulting 3D estimation error is plotted against varied base-
lines as shown in figure 8. In this figure, the 3D accuracy,
expressed as normalized correlation coe�cient (⌘), tends to
reduce as the baseline of the camera increases. The error in
camera pose propagates to 3D accuracy. 3D estimation is
conceptually, the point of intersection of two rays back pro-
jected from a pair of feature matches. The back projection
is carried out using the camera instrinsic and extrinsic (posi-
tion and orientation) parameters. While camera instrinsics
are maintained the same for the stereo pairs, the change in
pose a↵ects the 3D accuracy, i.e., lower the camera pose er-
ror, higher is the 3D accuracy. This is why, markerless pose
estimation becomes important in 3D applications.

Figure 8(a) shows the performance of feature detectors
using their own descriptors (SIFT, SURF, BRISK, ORB,
KAZE, AKAZE). To compare the performance when other
type of descriptors are used, we have evaluated each of these
detectors with BRIEF and FREAK descriptors and the re-
sults are shown in figure 10. We have also evaluated other
detectors such as MSER, STAR and FAST, which do not
have their own descriptors, but using BRIEF and FREAK
descriptors as shown in figures 8(b) and 8(c). In figure 8(a),
we also include MSER and STAR detectors but with SURF
descriptor, because they are evaluated based on SURF de-
scriptor in [18] and [19], respectively. All the above men-
tioned feature extractor combinations are evaluated based
of mean value of ⌘ over every 5 degrees, and there respec-
tive variances are shown in figure 9.
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Figure 8: Mean 3D estimation error (normalized correlation co-e�cient) over varied camera baselines4.
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Figure 9: Standard deviation of 3D estimation over varied baselines4.

The quality of feature extractors a↵ect the 3D accuracy,
but to what extent and how robust are they to large base-
lines, is what needs to be evaluated. Hence, we study the
behavior and limitations of various feature extractors, espe-
cially for varied baselines. We shall now evaluate the perfor-
mance of the feature extractors based on normalized cross
correlation and discuss their application traits in terms of
3D mean squared errors, computation time and reliability.

4.4 Performance evaluation
At a very low baselines (less than ⇡ 5o), the feature ex-

tractors seems to not perform very well. As explained before
the sensitivity of pose estimation algorithm plays a role here.
However, at very small baselines, even a small deviation in
the accuracy of feature correspondences yields a large pose
estimation error and thereby triangulation errors.

From figure 8(a), we can observe that KAZE (detector
with its own descriptor), outperforms all other feature ex-
tractor combinations upto ⇡ 20o. SIFT performs close to
KAZE upto ⇡ 20o, and thereafter outperforms KAZE at
higher baselines. However, KAZE and SIFT both perform
better than other feature extractors. The detectors KAZE
and SIFT di↵er in the scale space representation, while the
descriptor remains the same. As it is claimed in [16], KAZE
performs as good as SIFT. However, it holds good only upto
a limit specified.

The SURF and the ORB perform with almost equal accu-
racy upto ⇡ 20o baseline, and then SURF maintains the ac-

curacy much better than ORB. Correspondingly, figures 6(a)
and 7(a) show how the rotational and translational error of
ORB increases after ⇡ 20o baseline and stays higher than
SURF. This is probably because the modified BRIEF de-
scriptor used in ORB is not as e�cient as SURF descriptor,
which is based on Haar wavelets, in terms of rotational in-
variance for higher baselines. ORB claims to be an alter-
native to SURF in [14], but we see that after the specified
baseline limit, ORB cannot perform better than SURF.

Although AKAZE is shown to have better performance
over other detectors (in [17]), we see that AKAZE performs
as good as KAZE upto ⇡ 20o baseline and then, the per-
formance drops down severely. Pose estimation error shows
the same trend (figures 6(a) and 7(a)). However, by using
AKAZE the computation time reduces comparatively.

The BRISK performs as good as ORB upto ⇡ 20o base-
line, then seems to outperform ORB thereafter. The de-
tectors BRISK and ORB are designed with a motivation to
reduce computation time, but we notice that it is at the cost
of reduction in 3D accuracy.

The MSER and STAR detectors have been evaluated us-
ing SURF descriptor in their original work. Therefore we
intended to use these combinations as well. However, it
seems that SURF descriptor is better o↵ with its own detec-
tor rather than MSER or STAR. From figure 6(a), we can
see that rotational errors are more prominent for MSER and
STAR in combination with SURF descriptor. So, compara-
tively, SURF detector seems better than MSER and STAR.
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Figure 10: Mean 3D estimation error with varied baselines4.

From figures 8(b) and 8(c), we can observe that MSER,
STAR and FAST detectors perform with almost similar ac-
curacy with two individual descriptors, BRIEF and FREAK.
However, BRIEF descriptor seems to be well suited for these
detectors compared to the FREAK descriptor. With BRIEF
descriptor, STAR and FAST seem to perform with a similar
pattern as in SURF atleast upto ⇡ 25o, while BRIEF with
MSER detector seems to match ORB, especially between
⇡ 25o � 40o baselines and thereafter degrades. BRIEF de-
scriptor is claimed to be as good as SURF descriptor in [21]
and a modified BRIEF is used in ORB, and hence the similar
performance pattern. The STAR detector seems to be bet-
ter with BRIEF than SURF descriptor. The MSER detec-
tor with BRIEF and SURF descriptor shows similar perfor-
mance pattern, however, SURF descriptor creation is faster
than BRIEF.

On the other hand, all three detectors with FREAK de-
scriptor in figure 8(c) seems to perform worse compared to
the rest. From these observations, it is hard to generalize
the behavior of BRIEF and FREAK descriptors when it is
combined only with MSER, STAR and FAST detectors. So,
we extended the descriptor evaluation with other detectors
which basically have their own descriptors defined. Conse-
quently, the respective results are shown in figure 10.

Feature extractors, such as SIFT and AKAZE, using the
BRIEF descriptor (figures 10(a) & 10(f), respectively), main-
tain their accuracy similar to that of using their own descrip-
tors, upto ⇡ 35o baseline. Moreover, using BRIEF descrip-
tor is advantageous in terms of computation time.

The accuracy of SURF and KAZE stays almost the same
when used with both BRIEF and FREAK descriptors as
shown in figures 10(b) and 10(e), but again only upto ⇡ 25o

baseline. So the possibility of making a choice of descriptor

is higher for these detectors.
In case of BRISK and ORB, as shown in figures 10(c)

and 10(d), both BRIEF and FREAK descriptors performs
better than their own descriptor upto ⇡ 35o. So, the BRIEF
descriptor seems more robust to baseline changes than the
modified BRIEF (used in ORB) and the BRISK descriptor.

So, the BRIEF descriptor seems to be a good choice in
combination with BRISK, ORB, KAZE and AKAZE detec-
tors for upto ⇡ 35o baseline. And, the FREAK descriptor is
seemingly a good choice for BRISK and ORB for upto ⇡ 35o.
Moreover, FREAK descriptor could be the best choice for
SURF and KAZE detectors, whose performance is compa-
rable to SIFT and KAZE with their own descriptors.

Overall, some of the feature extractors have outperformed
others and some of the descriptors have shown better per-
formance when combined with certain detectors over others.
The important aspect to notice here is that each feature ex-
tractor has performance relatively better in certain baseline
range. From the evaluation of the state-of-art feature ex-
tractors, we can summarize the observed as follows:

• For baselines (<5o):
SIFT , KAZE and AKAZE seem to be good perform-
ers, however rotation-translation ambiguity exists.

• For baselines (5o � 30o):
SIFT , SURF and KAZE with their own descriptors;
BRIEF descriptor with all detectors except MSER,
STAR and FAST ; FREAK descriptor with SURF ,
BRISK, ORB and KAZE are good performers.

• For baselines (>30o):
SIFT and KAZE perform better than others. How-
ever, SURF detector with both SURF and FREAK
descriptors; BRIEF descriptor with BRISK, KAZE
and AKAZE are the next candidates.
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4.5 Design recommendation
Although ⌘ gives a relative performance measure of fea-

ture extractors, it is di�cult to use this information directly
for practical applications. For making a sensible choice of
feature extractors for a specific 3D application, feature ex-
tractors need an absolute measure that gives a sense of qual-
ity of service (QoS). The QoS depends of the type of applica-
tion and its requirements. We therefore provide an extension
to our evaluation of features based on QoS. We represent
QoS in terms Mean Squared Error (MSE) of reconstructed
3D point positions & orientations, and reliability & compu-
tation time of the feature extractors.

The comparative observation of accuracy between feature
evaluation based on ⌘ also holds good in the case of MSEs
in most of the cases. However, one should not expect a
direct relation because ⌘ measures the similarity and MSE
measures euclidean distance between estimated and ground
truth 3D points, at di↵erent baseline ranges.

Our ground truth data is represented as three unit vec-
tors originating from the geometric center of the model. The
positional and rotational changes in the 3D reconstructed
points are computed as the deviations from the ground truth
3D points. This gives an idea of how the reconstructed 3D
structure would be transformed in 3D space, due to the er-
rors in feature based calibration, i.e., camera pose estima-
tion. The reconstructed 3D points are observed to maintain
the orthogonality of the 3D unit vectors randomly over var-
ious models tested under various baselines. This is because
pose estimation algorithm [28] along with singular value de-
composition does not yield perfect solution when singular-
ities are present. However, this limitation of the pose esti-
mator has a potential for further investigation, and is not in
the scope of this paper.

The table 2 provides an overview of statistics of MSE of
3D points, for three categories of baseline ranges - Small (5o-
20o), Medium (20o-35o) and Large (35o-50o). The MSE is
expressed in the 3D model units for positional deviation and
in degrees for rotational deviation. The table also specifies
the computation time required by the feature extractors,
which is relevant information for real-time applications.

As explained in section 4.2.1, we have filtered the invalid
data occurred during pose estimation and noted down the
penalties. These penalties correspond to the success rate
of the feature extractor over several samples on all base-
line ranges. Therefore, we use the penalties to represent the
”Reliability” of the feature extractor, which shows the prob-
ability of success over 450 samples. This parameter is also
reflected in table 2. The comparisons made so far in rela-
tion to ⌘ or MSE is at the cost of reliability of every feature
extractor. Hence, the reliability parameter in the table be-
comes very important apart from accuracy and computation
time, in making a choice of feature extractor.

The result shown in the table is useful for any 3D applica-
tion, which uses markerless camera pose estimation. Some
relevant applications for discussion are the AR applications
such as head mount display systems [1, 2], mobile applica-
tions [3, 4, 5], interactive systems [6, 7] and free view ren-
dering application such as [8]. All these applications rely on
markerless camera pose estimation, where the accuracy of
the camera pose estimated becomes really important. Some
applications demand real-time performance as well. The
camera placements vary from small to large baseline range
in these applications. Hence, our study of feature extractors

and their evaluation based on various baselines for 3D error
in terms of position and orientation is very helpful for such
applications.

Let us consider an application scenario using Small base-
line range and a feature extractor is required to be chosen.
From the table, both KAZE and AKAZE have good ac-
curacy in terms of 3D position and rotation, but one may
choose AKAZE if the application demands fast computa-
tion time. However, this choice is at the cost of reliabil-
ity, because KAZE seems to be more reliable than AKAZE.
On the other hand, AKAZE+BRIEF o↵ers accuracy simi-
lar to KAZE and is equally reliable, moreover, much faster
than KAZE. So, in this case, the application could choose
AKAZE+BRIEF.

Now, let us consider another application, where number
of cameras around an object needs to be determined using
KAZE (assuming KAZE is chosen for its high reliability).
Here, KAZE o↵ers the best positional accuracy at Medium
baseline range. Say, if we consider a baseline of about 30o,
then number of cameras required to capture an object in
360o, is about 12. On the other hand, if one can compromise
on the positional accuracy slightly, at the same time gain
higher rotational accuracy, one would choose to operate with
KAZE at Large baseline range. In this case, for a baseline
of about 45o, one could capture the same object with only
8 cameras, which is more cost e↵ective for applications.

In this way, table 2 can be used as a recommendation
for practical 3D applications, where one can either choose
feature extractors or estimate the camera density around the
object of interest, based on the desired quality of service.

5. CONCLUSION
In this paper, we focused on stereo vision for 3D applica-

tions such as AR and free-view rendering, where the accu-
racy of position and orientation of 3D points play an impor-
tant role. This paper is motivated by claiming that low 2D
pixel error does not guarantee good 3D accuracy, however,
3D accuracy is dependent on the quality of feature based cal-
ibration (FBC). One of the major factors determining the
quality of FBC is the camera baseline.

We designed an experiment to evaluate 26 feature ex-
tractor combination and discussed the comparative study
of feature extractors over 50 camera baselines. We observed
that each of the feature extractors had a certain operating
range for various baseline range. However, the performance
of SIFT and KAZE seemed promising, in terms of accuracy
and robustness to large camera baselines.

Finally, we provided a recommendation for practical 3D
applications, as in table 2, which specifies quality of service
in terms of 3D position & orientation accuracy of recon-
structed 3D points and computation time & reliability of
feature extractors. This information is very useful for the
3D application designers, which will enable them to:

1. Select the feature extractor based on an acceptable
accuracy or an acceptable execution time, with a cost
of reliability.

2. Decide the camera density required to capture an ob-
ject of interest, for a desired quality of service.

We believe that the system built for the movie produc-
tion scenario (POPART), will benefit from our recommen-
dations, by gaining the ability to preview integrated scene
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Feature Baseline(5o � 20o) Baseline(20o � 35o) Baseline(35o � 50o) Relia-
extractors Rotation Position Rotation Position Rotation Position Time -bility

[degrees] [model] [degrees] [model] [degrees] [model]
[sec-
onds]

[per-
cent]

mean(deviance) mean(deviance) mean(deviance)

IDEAL
0.00

(0.00)
0.00

(0.00)
0.00

(0.00)
0.00

(0.00)
0.00

(0.00)
0.00

(0.00)
0.00 99.11

SIFT
13.09
(7.17)

8.23
(1.96)

2.14
(1.06)

2.83
(2.64)

2.64
(0.56)

4.22
(1.11)

17.34 80.22

SURF
15.58
(5.94)

12.04
(2.26)

5.59
(0.64)

6.27
(0.30)

3.63
(0.89)

5.33
(0.80)

5.47 79.56

BRISK
20.21
(8.94)

25.31
(13.48)

6.43
(2.41)

18.73
(13.03)

3.82
(0.52)

88.69
(141.00)

1.75 67.56

ORB
21.04
(9.31)

9.41
(0.47)

8.29
(1.54)

33.30
(41.34)

3.93
(0.05)

9.22
(6.91)

0.85 61.11

KAZE
12.12
(3.84)

7.76
(2.23)

4.78
(1.25)

6.34
(1.64)

2.92
(0.26)

7.27
(2.13)

27.67 83.56

AKAZE
11.68
(2.76)

6.91
(3.97)

7.51
(0.74)

12.36
(5.03)

4.61
(1.22)

14.48
(13.06)

4.96 78.00

MSER-SURF
19.95

(11.36)
261.94

(422.71)
8.12

(1.33)
20.55

(10.17)
5.10

(0.19)
16.09

(12.27)
7.55 59.78

STAR-SURF
29.67

(12.08)
53.51

(47.55)
11.34
(3.75)

16.08
(7.11)

7.08
(0.98)

22.15
(8.20)

0.75 45.33

MSER-BRIEF
24.01
(4.87)

44.64
(45.12)

7.03
(1.17)

7.86
(3.64)

6.25
(1.77)

8.88
(5.47)

2.50 54.22

STAR-BRIEF
21.30

(11.42)
154.87

(254.05)
6.52

(0.22)
7.58

(1.61)
4.99

(0.89)
6.18

(3.66)
0.65 66.67

FAST-BRIEF
18.00
(9.78)

24.70
(9.83)

7.37
(1.36)

8.65
(2.04)

5.12
(1.48)

9.53
(4.65)

4.73 73.78

SIFT-BRIEF
14.00
(2.80)

33.85
(27.00)

4.98
(1.65)

7.82
(7.56)

4.81
(0.49)

7.68
(0.54)

7.75 74.44

SURF-BRIEF
18.70
(7.20)

16.40
(3.54)

8.93
(1.07)

270.54
(446.17)

5.63
(1.25)

11.04
(3.82)

3.22 72.44

BRISK-BRIEF
20.10
(8.38)

21.75
(17.02)

6.46
(1.57)

22.14
(25.46)

4.91
(1.00)

49.14
(46.38)

3.76 72.44

ORB-BRIEF
15.70

(10.42)
4.79

(1.70)
4.84

(0.42)
7.61

(4.39)
4.41

(0.46)
59.16

(80.32)
0.80 71.11

KAZE-BRIEF
13.63
(7.43)

38.77
(47.78)

4.33
(0.43)

4.64
(0.34)

4.18
(0.96)

16.78
(10.96)

21.12 77.78

AKAZE-BRIEF
12.86
(6.91)

10.07
(6.27)

5.37
(2.04)

16.56
(10.51)

4.45
(0.20)

8.52
(1.14)

4.48 81.11

MSER-FREAK
61.67
(4.78)

60.57
(48.24)

15.67
(9.97)

2.77
(2.04)

8.72
(3.38)

11.38
(18.21)

7.29 6.00

STAR-FREAK
52.15

(29.05)
9.95

(6.09)
15.82
(6.92)

1.49
(0.29)

4.43
(0.00)

0.74
(0.11)

1.13 7.11

FAST-FREAK
52.70

(21.19)
8.42

(9.06)
9.50

(3.29)
23.62

(39.51)
6.38

(3.73)
11.14

(17.77)
6.09 0.00

SIFT-FREAK
51.65

(11.97)
5.74

(5.23)
22.41

(14.61)
30.14

(50.25)
10.78
(0.00)

3.78
(0.00)

9.29 5.11

SURF-FREAK
20.10
(8.38)

21.75
(17.02)

6.46
(1.57)

22.14
(25.46)

4.91
(1.00)

49.14
(46.38)

3.23 72.44

BRISK-FREAK
15.70

(10.42)
4.79

(1.70)
4.84

(0.42)
7.61

(4.39)
4.41

(0.46)
59.16

(80.32)
1.21 71.11

ORB-FREAK
13.63
(7.43)

38.77
(47.78)

4.33
(0.43)

4.64
(0.34)

4.18
(0.96)

16.78
(10.96)

21.10 77.78

KAZE-FREAK
12.86
(6.91)

10.07
(6.27)

5.37
(2.04)

16.56
(10.51)

4.45
(0.20)

8.52
(1.14)

7.88 81.11

AKAZE-FREAK
53.24

(25.05)
28.34

(37.48)
14.56
(8.09)

4.46
(5.23)

6.85
(0.15)

5.16
(5.38)

9.13 9.33

Table 2: Practical recommendation for 3D applications. [Here ”Rotation” is the mean 3D rotational change
(expressed in degrees) and ”Position” is the mean 3D positional shift (expressed in model units), of all the
estimation 3D unit vectors that represent a model in 3D space.]
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more accurately in real time or decide better camera posi-
tions, and thereby ease their post-production tasks.

In the future, we would like to continue to explore the
factors a↵ecting the quality of camera pose estimation, es-
pecially the spatial distribution of feature correspondences
in the stereo pair and also, evaluate the feature extractors
for their invariance to illumination changes. It could also be
interesting to study the limitations of the pose estimation
algorithms, in general.
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Chapter 12

Poster I: 3-D Video Processing for Mixed
Reality Art Performances

Title: 3-D Video Processing for Mixed Reality Art Performances.

Authors: Deepak Dwarakanath, Alexander Eichhorn, Carsten Griwodz and Pål Halvorsen.

Presented: In VERDIKT 2009, Norwegian Research Council, Oslo, Norway (BEST POSTER
AWARD 2009).

Demo: A live image of the audience was project onto the poster. Then we tracked the head
movements of the audience using the webcam. Based on the head movement, we modi-
fied the live image using perspective transform to exhibit the effect of looking outside a
window. We used short throw projector to display the image on the poster.
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3-D Video Processing for Mixed Reality  
Art Performances 

Deepak Dwarakanath, Alexander Eichhorn, Carsten Griwodz, Pål Halvorsen 

Research Goal & Challenges 

The research aims at developing a 3D Multiview Acquisition and 
Rendering System (3DMARS) with low latency, high resolution and 
robustness. Accordingly, the objective is to develop algorithms, 
techniques and methods for calibration & depth estimation of multi 
camera system and for 3D reconstruction & rendering free 
viewpoint video for display system. Some of  the  challenges 
identified in this research are large volume of 3D space, 
synchronization of cameras, backdrop estimation, marker-less 
tracking, illumination & shadow effects, parallax and occlusions.  

D 

E 

M 

O 

Motivation 

World Opera envisions a distributed stage performance (Real & 
Virtual artists perform on a single stage). Project ‘Verdione – 
Virtually Enhanced Reallife synchroniseD Interaction On the 
Edge’ is motivated in constructing a suitable platform to provide 
realistic experience with high video quality, in real-time. The 
visual part of this project is designated to the research topic 
‘3D Video Processing for Mixed Reality Art Performances’, 
which focuses on providing real experience of a physical activity 
at remote location. 

[simula  research laboratory] 

Problems & Methodology 

Region of Interest (ROI): very important step in determining good 
features to extract and process. This process also involves  
segmentation, shape estimation and tracking of ROI. 

   
Calibration: accurate geometric camera calibration is necessary 
for efficient reconstruction.  This process determines parameters: 

Intrinsic - focal length (f), distortion (s), principal axes (ox,oy) 

Extrinsic - relative positions (T) and orientations (R)  

Depth estimation: is expected to be accurate in order to obtain 
robustness in the rendering of captured video.  

Disparity between multiple views provide depth estimates 
Variations in depth estimation results in structural artifacts 

   

Rendering: accounts for high quality view synthesis, which involves 
3D reconstruction using shape and depth information 
Free viewpoint rendering via interpolation & warping 
Suitable display is used for rendering video streams. 

Stage 1 Stage 2 

D 

E 

M 

O 

3D Multi-view Acquisition and Rendering 
System (3DMARS) 

3D Model  
Construction 

Video  
Processing 

3D  
Reconstruction 

Rendering free- 
viewpoint 

Transmit 

Real 

Multiview Capture 

Virtual 

Real 
Real 

Display 

Experimentation & Initial results 

Single Camera Calibration with known object: 
 Three views are shown to the camera  
 P (Xw , Yw , Zw) are known 
 Corner detection p (xi, yi) 
 Estimation of M (K, R & T) 

Multi Camera Calibration with unknown object: 
This is the proposed step forward. 

Two cameras look at the same scene 
 Matching correspondences 
 Computation of fundamental matrix 
 Estimation of each camera‘s extrinsic 
 relative to their neighbors 

Extrinsic parameter visualization 

Multi Array Calibration  

Camera model for calibration 
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Chapter 13

Poster II: 3D Multi-view Acquisition and
Rendering System

Title: 3D Multi-view Acquisition and Rendering System.

Authors: Deepak Dwarakanath, Alexander Eichhorn, Carsten Griwodz and Pål Halvorsen.

Presented: In VERDIKT 2010, Norwegian Research Council, Oslo, Norway (BEST POSTER
AWARD 2010).

Demo: Interactive poster. When the user pointed his hand at a certain diagram on the poster,
then the diagram was projected on a display wall. This was achieved using the webcam,
by which, the hand of the user was detected by simple hand detection algorithm. A short
throw projector was used to display the images.
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3D Multi-view Acquisition  
and Rendering System 

Deepak Dwarakanath,  Alexander Eichhorn, Carsten Griwodz, Pål Halvorsen 

Research 
The research aims at developing a 3D Multiview Acquisition 
and Rendering System (3DMARS) and the current challenges 
are: 

System Context 
Low latency, High resolution and Robustness 

Multi-view Acquisition Context 
Accurate calibration, Precise Depth Estimation,  

Large Volume spaces,  Ambient light, Occlusions, Shadows 

Free-view Rendering Context 
Precise 3D reconstruction,   

Seamless multiple viewpoint rendering,  
Low delay interactive cues 

Application 
The research topic is a part of realizing the project 
‘Verdione – Virtually Enhanced Reallife synchroniseD 
Interaction On the Edge’, which provides the technology 
for mixed reality performances. World Opera envisions 
such networked performance in a distributed fashion over 
various physical stages/locations and their interactions. 

Highlights: 
Distributed performance using the existing network 

technology overcomes limitations of physical presence. 
Seamless projection of remote artists on physical 

stages gives a realistic experience. 
Interaction between real and virtual artists on various 

physical spaces creates new dimension of experience.  

Project: Verdione [simula  research laboratory]!

Render Model 
Free-View Rendering:  Virtual viewpoint is obtained using ‘N’ 
views 

Interactivity:   
Perspective correction of the  
virtual (projected) performer  
changes according to motion 
of real performer on the stage. 

Capture Model 
Calibration:  Accurate estimate of camera parameters 
              Single Camera              Stereo 

Depth estimation:  Accurate estimate of 3D from 2D images   
 Stereo Disparity                         Structured Light 
   

Multi Camera 

‘N’ number of cameras stereo 
calibrated to estimate relative 

positions of all cameras!

Camera Projector Pair 

Projector used as inverted 
camera to estimate relative 

positions of projector & camera!

3D Reconstruction  
(implicit geometry) 

known Correspondences of  
‘N’ views – to estimate virtual 

viewpoint 
Example: Interpolation and 

Morphing techniques!

3D Reconstruction  
(explicit geometry) 

known Depth maps of  
‘N’ views – to estimate virtual 

viewpoint 
Example: 3D Warping, Layered 

Depth Images!

Motion Trackers 

Head pose detection 
Face detection 
Eyes tracking 
Gaze tracking!
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Feature - distinguishable keypoints detected in an image 
Descriptor - representation of features detected 
Matching - feature correspondence between two images 
 
 
 
 
 
 
 
 
 

  SIFT – Scale Invariant Feature Transform 
  SURF – Speeded Up Robust Feature 
  MSER – Maximally Stable Extremal Region  

 

Point (image1)                   Line(Image 2) 
Fundamental Matrix  (F) 

mapping!
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Extractors 

3D point - X 

2D point – x1 

2D point – x2 

Rotation (R) 
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Camera Calibration 
Calibration – estimation of Projection matrix P = K[R|T] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fundamental matrix can be decomposed to estimate R & T 
Therefore, 
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Experimentation and Results 
 
 
 
 
 
 
 
 

Transformation 
Feature Based 
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Performance  
Evaluation 
-Accuracy 
-Computation Time 
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Resolution 
Distortion 

Noise 
Blur 

External variation 
Position b/n cameras 
Orientation b/n cameras 
Object Distance and Size 
View angle 

Set of  
stereo images 
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