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Abstract

Training police officers to interview abused children is a challenging and time-
consuming undertaking. Traditionally, a child actor has been hired to help as
the interview object. Due to resource constraints and the time required to teach
the child actor, this is not easily scalable. Unfortunately, interviewing abused
children is a challenging task, as the majority of sexually abused children exhibit
no visible signs of assault [3]. Machine learning enables us to make the essential
training schedule more accessible.

With the advancements in machine learning, we may be able to design
a training regime aided by machine learning that can replace the child
actor with an interactive photo-realistic child avatar capable of meaningful
interaction with the trainees. This thesis focuses on designing a method for
the visualization of the avatar, providing a photo-realistic appearance to the
avatar in which we are cable of controlling the facial movement while also
taking emotion into account, resulting in a real-time re-enactment of a child’s
facial expressions. Our approach is based on a modified method from [35]
for synthesizing the lower facial texture for the avatar and mimicking facial
expression from a source actor to drive the child avatar.
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Chapter 1

Introduction

Recent advancements in computational resources and data gathering have
contributed to the widespread adoption and application of machine learning.
Machine learning is a popular topic, and the popularity does not seem to slow
down. The possibility of using machine learning to solve novel problems is
widely attractive; this thesis will exactly try to accomplish this.

1.1 Motivation

Conducting investigative interviews with child abuse victims is a complicated
and difficult undertaking, as children are generally both victims and primary
witnesses. Often, particularly in cases of suspected domestic violence and
child sexual abuse, the child is the primary source of information regarding
the abusive incidents [6]. The majority of sexually abused children exhibit no
physical indications of abuse [3]. This means that the progress of the police
investigation is contingent upon the child’s account of the incident and the
interviewer’s ability to get the maximum amount of information from the child
in the best possible manner. Given the gravity and complexity of this task,
training the interviewer to conduct an effective interview requires a significant
amount of resources and training opportunities in realistic interview settings,
which are not always available.

Numerous international studies from a variety of countries have shown
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that poor quality investigative interviews are a widespread problem [9] [23],
sometimes resulting in the invalidation of evidence and the dismissal of
cases due to procedural errors. The urgent need for a cost-effective and
comprehensive training program is critical.

A recent study indicates that using gaming and avatars to teach interviewers
for investigative interviews of child abuse victims may be effective, especially
when training is integrated with feedback and provided over a longer time
period [26] [30].

However, no system exists at the moment that enables realistic avatar
interviewees to react audibly to every question posed by the interviewer.
At the moment, interview training requires trained actors, making training
prohibitively costly to offer - training an actor may take up to three months,
and hourly fees are exorbitant [5].

Recent advancements in artificial intelligence allow the building of a
complete interviewer training program incorporating a range of machine
learning techniques. A system powered by artificial intelligence might be
utilized to create a dynamic interactive training program that uses a realistic
avatar to replicate a variety of realistic circumstances with which the conductor
can engage. This system may be composed of several orthogonal components
that are quite often reduced further; this thesis will concentrate on the
generation/synthesizing of photorealistic mouth motion (speech). This task
may be solved using a variety of machine learning techniques, we will attempt
to approach this in the simplest and most straightforward possible manner,
emphasizing achievability rather than performance.

1.2 Problem Statement

The multimodal avatar model proposed in [5] consists of multiple parts that are
orthogonal to each other. In this thesis, we will focus on the system related to
generating the visualization of the avatar. We intend to use an actor to reenact
an avatar; more precisely, we wish to determine whether we can make the visual
avatar’s facial expression follow the actor audio, which leads to our first thesis
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objective;

Objective 1: Research whether we can make the visual avatar’s facial expression follow
the audio by reenacting the expression associated with the source actor’s audio.

The problem of facial reenactment is a well-studied subject in machine learning
and computer vision, which have received increased attention in recent years
as a result of the popularity and development of deep neural networks. Prior
to the advent of deep neural networks, a common technique was to produce
and manipulate the desired face and appearance using a 3D morphable model
(3DMM). Today, a typical technique is to employ a deep neural network
in conjunction with or without a 3DMM. Typically, the 3DMM is used to
parameterize a face’s appearance and shape, which is subsequently used as
a input to a deep neural network, as demonstrated in [33][38][39]. Because
generation of the 3DMM is a time-consuming procedure that requires numerous
face scans in an ideal situation, we will use a pretrained/constructed 3DMM;
this is also true in some cases for deep neural networks. Face creation and
reenactment is a complex task that typically demands a large data set for a
deep neural network to obtain meaningful knowledge. The data set utilized
frequently dictates the model’s performance and is prone to include a bias due
to an imperfect distribution. We will therefore;

Objective 2: Compare the performance of our model on two distinct avatars and
examining the effect of the data set on the models performance.

We intend to compare an adult avatar to a child avatar; it’s natural to suppose
that trained models have a bias toward the mean population, and in this case,
an adult face is more likely to be more accurately represented by the data set
used to train the face models utilized in this thesis. Additionally, restrictions
pertaining to children’s privacy may result in a limited representation of
children in the models used, further resulting to assumably worse performance
for the child avatar. This may be a cause for concern, given that one of the
thesis’s main purpose is to contribute to the development of a child avatar.
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1.3 Scope and limitations

Due to the complexity of complete facial reenactment, we will mainly focus
on reenacting the lower mouth region. This is accomplished using a modified
approach of methods described in the [35]. The paper approaches the task
of visual speech synthesizing in a straightforward and exact manner. The
paper proposes synthesizing the lower mouth region using a weighted median
of similar images; the weighted median maintains temporal coherence while
retaining the image’s sharpness. The paper computes the weighted median
for each pixel coordinate in a stack of n similar images. Due to the high
computational cost of this approach, we propose sampling the pixels and
computing the weighted median on the sampled pixels. By employing a 3DMM
model, we can represent each face in the n stacked images with a 3D mesh and
its associated set of vertex colors. We can then compute the weighted median
for each corresponding vertex color in the n stacked images, which we utilize
to generate the synthesized image.

A questionnaire is used to evaluate the model for two different avatars
compared to one another. The questionnaire is organized using Google forms
and includes questions about the quality of the reenacted avatars; participants
are also asked to share their thoughts on what they thought was good and poor.

1.4 Research methods

Our research method is based on the Association for Computing Machinery
(ACM) method “Computing as a Discipline” [13]. The paper proposes a
framework for the discipline of computing created by a task force assigned by
ACM Education Board, and it describes three paradigms: theory, abstraction,
and design.

Theory: The theory paradigm is related to mathematical coherent and valid
theory. It includes four stages; (i) characterize objects of study (defini-
tion), (ii) hypothesize possible relationships among them (theorem), (iii)
determine whether the relationships are true (proof), and (iv) interpret
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results.

Abstraction: The abstraction paradigm is rooted in the field of the experimental
scientific method and consists of four steps; (i) form a hypothesis, (ii)
construct a model and make a prediction, (iii) design an experiment and
collect data, (iv) and analyze results

Design: The design paradigm is rooted in engineering. The paradigm consists
of four steps; (i) state requirements (ii), state specifications, (iii) design and
implement the system, (iv) test the system.

Our research is mostly based on the design paradigm; we began by creating
a requirement by outlining the objective of our model and what is necessary
for the model to function. Then, we discussed the model specifications such
as preprocessing of the model data, which we followed up with the model’s
design and implementation, as well as final testing.

1.5 Main contribution

The research completed during the thesis can be separated into two major
sections: development and evaluation, which correspond to the problem
statement assigned in section 1.2. Our main contribution is as follows:

Objective 1: Research whether we can make the visual avatar’s facial expression follow
the audio by reenacting the expression associated with the source actor’s audio.

We developed a model capable of reenacting lower facial expressions from
an actor to a target avatar. The model parameterizes the actor’s expression
using a CNN model from [19] and a face detector from [43], which we
then fused with the target avatar’s identity shape to generate a 3D face
mesh using a 3DMM from [29]. Additionally, we customized and applied
the facial texture synthesizer from [35] to render the lower face texture
onto the 3D face, and then blended the rendered lower face onto the target
avatar.
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Objective 2: Comparing the performance of our model on two distinct avatars and
examining the effect of the dataset on the model performance.

We used a questionnaire to assess the model on an adult and child avatar,
and examined why the adult avatar was perceived as more realistic by
the survey participants than the child avatar. We noticed that when the
model actor was more similar to the target avatar, the model performed
better. Additionally, we employed actors that matched the target avatars
to determine whether the sub-methods (the facial feature extractor and
face detector) performed equally well on child and adult actors and found
that it overall performed slightly better in the child avatar case.

When the actor’s face identity is different from the avatar’s, reenacting the child
avatar using the actor’s facial expression becomes noisy, resulting in the audio
not matching the avatar expression. This is because the expression parameter
is specified in relation to the face shape/identity; in order for this to work
correctly, we must account for the identity mismatch. The facial expression
method from [38] can be used to solve this issue, which involves estimating
a transformation matrix such that the expressions can be projected to the same
space, which makes it simpler to find the child expression that fits the actors
audio. Overall this thesis is a small step toward solving the the visual part
of the multimudual model (see, fig 2.1). Although the model’s quality and
performance are insufficient for usage in the final project, the work completed
demonstrates how we may control the avatar’s emotion using a 3DMM.

Our full model implementation is avaible on Github1.

1.6 Thesis outline

The thesis is organized as follows:

Chapter 2 - Background: This chapter provides a basis context for the thesis.
To begin, we provide a concise overview of the main technologies utilized
in this thesis, including computer vision and machine learning, more

1Gitub: https://github.com/Danielwoldis/masteroppgave
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precisely neural networks. Additionally, we provide a brief overview of
the 3D morphable model used in the thesis, and we highlight the metrics
employed in chapter 4 (result and experiments).

Chapter 3 - Methodology: This chapter discusses the methodology that was
utilized to create the theses. We divide our algorithm into sections and
offer a step-by-step explanation of the process from a source image to the
reenactment of the target avatar using the source expression. We focus
on the face synthesizer method but also provide a good description of the
other methods used.

Chapter 4 - Experiments and Results: This chapter summarizes the results
of the experiments that were conducted. Additionally, we include
a questionnaire comparing the model to two different avatars, an
assessment of the system’s (model) loss and a brief summary of time
measurement, limitations, and finally, a discussion on how to improve
the model further.

Chapter 5 - Summary and Conclusions: Finally, we summarize work done in
this thesis and suggests future work to improve the model.
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Chapter 2

Background

2.1 Introduction

This chapter provides a concise review of the background knowledge necessary
to comprehend the scope of the thesis. We will begin by explaining fundamental
concepts in computer vision; more precisely, we will define what a digital
image is and how processing operations such as convolution can be utilized
to extract useful information from an image. Additionally, we provide a brief
explanation of machine learning and demonstrate how we can process images
using machine learning techniques such as convolutional neural networks.
Additionally, we will discuss additional machine learning techniques such as
principal component analysis (PCA) and how it may be utilized to develop
a linear model for general face representation known as a 3D morphable
model(3DMM). Finally, we will present the metrics used to evaluate our work
throughout the thesis.

2.2 Virtual Avatars for Investigative Interviews with

Children

As stated in section 1.1, recent research indicates that employing an avatar
in interview training may result in improved interview training. The study
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Figure 2.1: Green blocks mark the interactive parts, yellow is text related, blue is
audio, and purple marks the part of the system related to the visualization [5].

employed two distinct computer-based child avatars with defined memories
regarding child sexual abuse. Combining virtual interviews with avatars and
providing regular feedback to participants enhanced interview quality. The
participants employed a greater number of recommended questions and a
lesser number of possibly harmful strategies [25] [30].

However, prior avatars provided only a limited set of predetermined
question sheets the investigator could ask from, which limits the scenarios
the training could cover. The multimodal model suggested in [5] (see fig 2.1)
describes a system fully capable of automating the whole process of an
interactive training regime used to train investigators in conducting interviews
with abused children. Using machine learning approaches, the model provides
the necessary methods for allowing the trainees to freely interview the avatar
as if practicing with a paid actor.

The multimodal model consists of; chatbot, text-to-speech, speech-to-text,
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avatar, image manipulator/generator. The chatbot provides the brain to the
avatar allowing interactive communication between the trainees and the avatar.
The chatbot communicates using text, so the system provides a model for
transforming the chatbot output from text to speech and speech to text for
the trainees response. By including a speech-to-text and text-to-speech model,
the avatar is able to interact with the trainees via audio, making the learning
process more practical and realistic. At last, the system provides a model
for augmenting the avatar’s visual context by giving it a photo-realistic child
appearance, with facial movements based on the chatbot’s responses during
the interview training, while also taking emotion into account, resulting in a
real-time re-enactment of a child’s facial expressions.

We will concentrate on creating a visual context for the avatar in this thesis;
rather than using audio to create facial expressions, we will employ an actor to
transfer the actor’s facial expression to the digital avatar. Thus, rather of using
audio to drive the avatars facial expression, we will use the expressions of an
actor.

2.3 Computer vision

Computer vision is a scientific field that focuses on replicating parts of the
complexity of the human visual system and enabling computers to identify and
process objects in images and videos in the same way that humans do. Due to
recent advancements in artificial intelligence, the field of computer vision has
been able to surpass humans in some tasks related to detection and labeling.

2.3.1 Digital image

A image may be defined as a two-dimensional function f (x, y), where the x
and y are coordinates in the image plane, and the amplitude of f is called
the intensity. A digital image is a finite discrete representation of the two-
dimensional function f , where each location is occupied by a pixel with its
assigned intensity value. Typically, a digital image is represented as a two-
dimensional array formed of the numerical value of f (x, y). Computers uses
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this format to perform computations, enabling the computer to perform a
variety of mathematical operations on the digital image.

The spatial information encapsulated in the array is used in a broad
spectrum of image processing applications. For example, a common approach
in image processing is to use convolution to extract/filter specific characteristics
of a given digital image. Convolution is a mathematical operation on two
functions ( f and g) that produces a third function ( f ∗ g) that expresses how the
shape of one is modified by the other [41]. In image processing, convolution is
performed between the image array and a kernel. The kernel, also referred to as
a filter, is a small matrix whose coefficient determines the nature of the resulting
characteristic image. Convolution in image processing is accomplished by
sliding the kernel across the image, generally starting at the top left corner,
in order to traverse all positions where the kernel completely fits within the
image’s boundaries. Each traverse computes the sum of the element-wise
multiplication and assigns it to a corresponding location on the resulting image,
see fig 2.2.

Figure 2.2: Value of a output pixel (right matrix) given as the sum of elements
wise product of image window(left matrix, matrix inside yellow boundry) and
the kernel(middle matrix).2

2Image taken from: https://dev.to/sandeepbalachandran/machine-learning-convolution-
with-color-images-2p41
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When combined with the suitable kernel, convolution can be used to extract
useful properties of an image, such as the image gradient and feature map,
which can be utilized for face detection and face parameterazation.

2.4 Machine Learning

Machine learning is a branch of artificial intelligence, which leverages statical
modeling and algorithms to solve certain tasks. Machine learning aims
to program computers to use example data of past experience to solve a
given problem [4], which lats the computer solve tasks based on patterns
and inference instead of being explicitly programmed to do so. The fast
improvement of computational power and increasing example data in the last
decades have contributed to the wide adoption of machine learning in various
fields.

Machine learning today is successfully applied to a wide variety of
applications used in everyday life, such as translation, search optimization,
and image classification. Various approaches use past experience to teach
the computer to solve specific tasks. Those approaches are generally divided
into three broad categories; supervised learning, unsupervised learning, and
reinforcement learning.

2.4.1 Supervised Learning

Supervised learning involves using a set of data containing both input and
corresponding labels as our past experience (example data) when learning the
computer to solve certain tasks. The goal is to learn a function that maps the
input data to the corresponding label. Supervised learning is mainly used
in classification and regressions tasks, such as image classification and object
localization.

12



Artificial Neural Network

An artificial neural network (ANN) is a machine learning model designed to
have our brain’s self-learning capabilities by loosely simulating how our brain
works with processing data. The architecture of an ANN is loosely based on
how our brain has billions of cells called neurons, which make up the processing
units of the brain. The neurons are connected by synapses that can transmit a
signal to other neurons when activated. Similarly, as the brain processing unit,
an ANN is made up of numerous nodes (artificial neurons) that are connected
by weights(which simulates the synapses). The nodes are typically aggregated
into layers as in fig 2.3. An ANN consists of an input layer, one or more hidden
layers, and at last an output layer. Each layer consists of one or more nodes,
and the layers are connected by weights, which are the lines connecting the
nodes. The weights are trainable parameters, influencing the magnitude of
signal transference between a node and nodes in the next layer.

Figure 2.3: A feed-forward neural network.3

The architecture in the fig 2.3 is referred to as a feed-forward network
with a fully connected layer, meaning a node is connected to every node in
the next layer. The input is a feed-forward network is fed to the next layer
where the activation is computed by an activation function (2.1). The activation
function decides whether the node should be activated or not by calculating the
weighted sum of the weights and input value. Finally, the last layer’s activation

3Image from: https://www.uio.no/studier/emner/matnat/fys/HON1000/v20/studentblogg/veiledet-
lering.html
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function is chosen according to the task the network is supposed to solve.

a = σ

(
k

∑
k=1

xkwk

)
(2.1)

A SoftMax function (2.2) is the most common activation function used
in the last layer of an ANN for multi-classification tasks, such as image
classification. SoftMax outputs produce a vector that is non-negative and sums
to 1, representing the probability distribution for the classes. For regression
tasks, a linear activation function is used, as the desired output is an unbounded
numerical value.

σ (x)j =
ezj

∑K
k=1 ezk

(2.2)

The output of an ANN is used with its corresponding label to calculate the
loss, which is a numeric value representing the difference between the output
and its corresponding label.

The network learns by using backpropagation. Backpropagation is an
algorithm used to compute the gradients of the loss with respect to the weights.
The gradient describes how much the output of a function changes if the input
changes by a little. As a result of using backpropagation, all network operations
must be differentiable so that the gradient of the loss with respect to each weight
can be computed using the chain rule.

The network weights are updated by using an optimizer. An optimizer is an
algorithm used to determine the optimal way to update the weights. A simple
approach is gradient descent (GD) [31]. GD uses the computed gradient and
the learning rate to determent a step size and direction toward the minima.

Convolutional Neural Network

Convolution neural network (CNN) is a modern neural network architecture
popularized in 2012 by winning the ImageNet [12] competition by improving
upon the previous images classification error from 26% to 15% of the ImageNet
data set. CNN solved a lot of the issues associated with feed-forward
neural networks. CNN showed significant improvements in preserving spatial
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features and generalizing. In a feed-forward neural network, the input data
passed into the neural network had to be transformed into a one-dimensional
vector to fit into the network, resulting in critical spatial relationships in multi-
dimension data diminishing. Take a 256X256x3 shaped image as an example;
when transformed into a 1d vector would result in a vector containing 196
608 elements. Given that every node in the current layer is connected to
every node in the next layer, the amount of parameters would quickly become
computationally unmanageable.

CNN introduces an excellent solution to those issues and is today incor-
porated in a wide variety of state-of-the-art neural network models. Unlike
feed-forward neural network, an CNN takes in a multidimensional vector in
the form of an image as an input, which allows for encoding specific properties
into the architecture. As in a feed-forward network, CNN consists of an input
layer, a hidden layer, and an output layer but is arranged differently, see fig 2.4.
Unlike feed-forward neural networks, which only consists of fully connected
layers, CNN usually incorporate two new types of layers to the model archi-
tecture, resulting in an architecture consisting of convolutional layers, pooling
layers, and a fully connected layer.

Figure 2.4: A CNN arranges its neurons in three dimensions (width, height,
depth), as visualized in one of the layers. Every layer of a CNN transforms
the 3D input volume to a 3D output volume of neuron activations. In this
example, the red input layer holds the image, so its width and height would
be the dimensions of the image, and the depth would be 3 (Red, Green, Blue
channels)[1].

As the name suggests, a convolutional layer uses convolution in place of
general matrix multiplication. As described in section 2.3.1, a filter W (kernel)
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is slid across the height and width of the layer computing the dot product
between the filter and the layer at every position, see fig 2.2. In this case,
the filter is learnable and extends through the hole dept of the source layer.
The convolution between the filter and convolutional layer is followed by an
activation function resulting in a 2d activation map that will be the input
on the next layer. The main goal of the convolution operation is to extract
good features from the input image. Convolutional neural networks usually
have several convolutional layers. Conventionally, the first convolutional layer
takes on the task of identifying and retaining low-level information such as
edges, color, corners, etc. With the addition of new convolutional layers, the
architecture shifts in response to learning high-level characteristics, giving us a
network, which exhibits a complete understanding of the image.

The big selling point of the convolution layers is the spare interaction
between the layers; the output from the layer is only connected by a few
neighboring activations from the previous layer, which are referred to as the
receptive field. The receptive field is defined as the region in the input that a
particular output node is affected by. This ability reduces the parameter size
significantly, allowing the network to generalize much better. The neighboring
manner of the connection also improves learning the characteristic of the input
image. The neighboring pixels are usually more correlated; therefore, each
activation in the output layer represents a small area which encourages the
network to learn more spatial features.

Pooling layers lower the size of the incoming input(activation from previous
layers) to reduce the computational workload. The usual size is 2x2, which
will reduce four activation inputs into one output. By applying spatial pooling,
the network will still retain important spatial features. Some common types
of spatial pooling are max-pooling, average-pooling, and sum-pooling. As the
max-pooling suggests, max-pooling reduced a 2x2 activation area by retaining
the highest value see fig 2.5. In contrast, average pooling reduces by taking the
average, and sum-pooling does by reduction by summing.

The fully connected layer is usually the last layer in a CNN, which operates
as a classifier mapping the extracted features from the previous layer into a
class or a class distribution. The network learns the same way as feed-forward
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Figure 2.5: Max pooling preformed on the matrix to the left, the matrix is
subdivided using a 2x2 filter and stride 2 and the max value is selected at each
subsection. Stride is the number of pixels by which the window moves after
each operation.

network, by backpropagating the loss and updating the filter parameter
(weights).

2.4.2 Unsupervised learning

Unsupervised learning enables us to work with a data set without requiring
associated labels, which is time costly or hard to collect in a various situations.
Unlike supervised learning, Unsupervised learning involves using a data set
without corresponding labels. Unsupervised learning is traditionally used to
find or leverage the underlying patterns in the input data, such as in Generative
adversarial network [18] and Principal Component Analysis [24].

Principal Component Analysis (PCA) is a dimensionality-reduction method
that is often used to reduce the dimensionality of large data sets by transforming
a large set of variables into a smaller one that still contains most of the
information in the large set.
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PCA is defined as an orthogonal linear transformation that transforms the
data to a new coordinate system such that the greatest variance by some scalar
projection of the data comes to lie on the first coordinate (called the first
principal component), the second greatest variance on the second coordinate,
and so on.

2.4.3 3D Morphable Face Models

3D morphable model can be thought of as a 3D extension of morphing;
morphing is a special effect used in film and animation that seamlessly
transforms one image or shape into another. Thus, the term 3D morphable hints
to the capability of seamlessly transitioning from one 3D shape to another.

A 3D Morphable Face Model (3DMM) [15] is a generative model for
determining the shape and appearance of a face based on two fundamental
concepts: To begin, all faces are in dense point-to-point correspondence, see
fig 2.6, which is established during training, where a large number of faces are
registered and further prepossessed such that each entry point in the data vector
containing the dense face points corresponds to the same point on the other
faces.

Figure 2.6: Each point Each entry in the data vectors correspond to the same
point on the faces. In this example the first entry corresponds to the tip of the
nose [29]

Second, the collected faces are used in a statistical model such that a new
face can be generated through some form of linear combination between the
collected faces. This is possible due to the point correspondences between the
collected faces.
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Nota bene, the 3DMM also includes an appearance (texture) model, but this
thesis will focus on the shape model.

Basel face model

The Basel face model [29] (BFM) is a 3DMM based on PCA and trained on a
training set with large variety of shapes. The BFM training data set comprises
face scans of 100 female and 100 male subjects with age and weight distributed
over large rang, see fig 2.7. Each subject was 3D scanned three times with a
neutral expression, and the scan with the most natural look was added to the
training set.

Figure 2.7: The BFM was trained on 200 individuals (100f/ 100m). Age (avg 25y)
and weight (avg 66kg) are distributed over a large range, but peak at students
age[29].

The shape of the collected faces are represented by the 3m dimensional vector

S = (x1, y2, z3, ..., xm, ym, zm) (2.3)

where m is the number of vertices. The vertices are used as the corners in
triangles which are grouped to create a mesh. The generated face meshes share
a common triangulation such that the triangles connections only need to be
generated once.

The BFM model generates a new novel face by a linear combination of
the average face and the product of the d most dominant eigenvector of the
covariance matrix computed over the shape difference Si − Si and a low-
dimensional identity parameter; note that the d most dominant eigenvectors of
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the covariance matrix are the principal components from PCA. Using the PCA,
the training data is fit to the model given as

S(α) = Sid + Eidα (2.4)

where Sid is the computed mean shape over the training set, Eid is the principal
components, and α is the low-dimensional identity parameter.

The BFM model can be extended to include a model for expression using
a training set from FaceWarehouse [8]. The FaceWarehouse data set consists
of face scans of different faces where each face is scanned in 20 different
expressions, including one in a neutral state. Then a new data set is composed
by the offset between expressive scans and neutral scans: ∆Si,e = Si,e − Si,0

where i yields the number of different people scanned while e yields the number
of different expressions scanned, and e=0 is neutral face scan. Using the PCA,
the new model can be expressed as

S(β) = Sexp + Eexpβ (2.5)

Combining 2.4 and 2.5, a new model can be used to generate a new face with
identity shape and expression variations, the combined model is given as

S(α, β) = S + Eidα + Eexpβ (2.6)

where S = Sid + Sexp.

2.5 Metrics

In this section we describe the metrics used to evaluate our final model in this
thesis. We evaluate the models’ ability to synthesize photo realistic avatars
with its given input expression using two perceptual similarity metrics. We
provide a metric for estimating inaccuracy for use in the parameterization of the
input portrait using pre-trained models. Additionally, we provide two metrics
introduced in [11] for evaluating the models ability to preserve temporal quality.

20



2.5.1 L2 distance

The L2 distance [27] (often referred to as Euclidean distance) is the shortest
distance between two points in a euclidean space. It is a widely used metric
for determining the similarity of two data points and is utilized in various
domains, including mathematics, physics, and machine learning. L2 distance is
calculated from the Cartesian coordinates of the points using the Pythagorean
theorem and is given as

L2(p, q) =
√
(p1 − q1)

2 + (p2 − q2)
2 + · · ·+ (pi − qi)

2 + · · ·+ (pn − qn)
2

(2.7)
for the two point p and q, where n is the number of dimensions [37].

2.5.2 Normalized Mean Error

Normalized mean error (NME) is used to asses the quality of the estimator
used for extracting the face features. The NME used in this thesis is a
combination of the mean error described in [17] and the normalization method
used in [7]. Normalization allows for comparing results from different faces on
a standardized scale. NME is given as

NME =
1
N

N

∑
k=1

∥xk − yk∥2
d

(2.8)

where x is the estimated value, y is true value and d is the normalization factor
given by square-root of the ground truth bounding box (the bounding box used
to crop the face to fit the 3DDFA model)

√
wbbox ∗ hbbox.

2.5.3 Learned Perceptual Image Patch Similarity

Learned Perceptual image patch similarity (LPIPS) [42] is used to compare
the similarity between two different images, LPIPS works well on images
that look similar, like the same images but shifted by one pixel or blurred.
LPIPS calculates the similarity by first computing the distance between the
two different activations at each layer caused by running the images through
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a pre-trained CNN and then computing the similarity, based on the difference
in activations. The pre-trained CNN used is a VGG-trained ImageNet
classifier [32] [12], which excels at feature extraction.

2.5.4 Structural Similarity Index Measure

Structural similarity index measure (SSIM) [40] is a method of evaluating
perceptual image quality; many image quality metrics are based on comparing
the values of pixels between a reference and a sample. Unfortunately, this can
frequently be deceptive. For example, the human vision will think of images in
which the reference image has been shifted a small number of pixels to appear
nearly identical to the reference image. However, a method that measures
the difference in the values of each of the corresponding pixels between the
shifted reference and reference images will report a significant difference when
in reality (as envisioned by the human vision) is relatively small. SSIM is based
on simulating human vision, which can extract structural information from a
scene and thus distinguish between the information extracted from a reference
and a sample image.

The SSIM score is often adjusted between 0 and 1, with a value closer to 0
indicating that the reference and sample image are quite dissimilar and a value
closer to 1 indicating that the images are very similar.

2.6 Temporal Optical Flow

Temporal optical Flow (tOF) measures the pixel-wise difference of motions
estimated from sequences. We differentiate the optical flow estimation of the
target and output video to compute the tOF. Optical flow is be defined as the
distribution of apparent velocities of movement of brightness pattern in an
image [21]. The Farneback’s algorithm [16] is used to estimate the optical flow.
The tOF is given as follow

tOF = ||OF(xt−1, xt)− OF(yt−1, yt)||2 (2.9)
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Where xt is target at time t, and yt is output at time t and OF is the optical flow.

2.7 Temporal Learned Perceptual Image Patch Similarity

Temporal learned perceptual image patch similarity (tLP) measures perceptual
changes over time using deep feature map, we compute the tLP by measuring
the difference between perceptual change in target video and output video. The
tLP is given as follow

tLP = ||LPIPS(xt−1, xt)− LPIPS(yt−1, yt)||2 (2.10)

Where xt is target at time t, and yt is output at time t and LPIPS is the LPIPS is
the Learned Perceptual image patch similarity.

2.8 Summary

We utilized this chapter to provide all the background information essential
to grasp the methodology chapter that follows. The required background
knowledge can be divided into three major sections. First, we discussed how
we can use machine learning, more precisely CNN, to extract information from
an image by leveraging prior knowledge from the trained convolutional neural
network, such that the trained weights in the CNN can be used to create an
activation map for the useful feature in the input image, and how those features
can be used in classification or regression tasks.

Second, we described how to apply PCA to generate a linear model for
producing a 3D face composed of vertices and the edges that connect them.
Additionally, we reviewed the 3DMM used in the next chapter and how it
can be parameterized using identity and expression parameters to construct
a 3D face with the desired shape (a combination of identity shape and
expression). Finally, we described some metrics for evaluating various aspects
of an estimator’s performance or comparing different data.

In next chapter will address how we can utilize a CNN to transform
an image portrait into the 3DMM parameters identity and expression, and
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then combine those parameters with another set of identity and expression
parameters to generate a new face. In practice, we combine portraits by
encoding them into a lower-dimensional representation and then decoding
them back into a higher-dimensional representation in the form of a new
portrait.

24



Chapter 3

Methodology

This chapter describes in detail how the facial avatar algorithm is implemented.
The overall method incorporates a 3D morphable model, synthesizers, a
renderer, and a blender to create an end-to-end solution for reenacting a facial
expression from a source avatar to a target avatar, see fig 3.1. The method
is restricted to only reenacting the lower facial expression, maintaining the
original target face pose and identity.

This implementation’s overall purpose is to create an avatar video of a
talking face utilizing features extracted from a source video of a talking face.
The extracted feature from the source video is utilized to build an avatar with
the same facial features as features extracted from the source video, such that
the synthesized avatar has the same facial expression (mainly around the mouth
region) as the face captured in the source video. In addition, the avatar’s face
identity shape and texture will be derived from a target video of a talking face.
Thus, the avatar is essentially a composite of traits derived from the source
frame, target frame, and a collection of frames from the target video, with the
expression belonging to the source frame, the identity shape belonging to the
target frame, and the lower face texture belonging to a collection of frames from
the target video.

The end-to-end algorithm can be subclassed to 4 major methods consisting
of:
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Figure 3.1: Overview of the model form input (source,target) too target output

Feature extraction - Extracts 3DMM parameter from the source frame, which
are used to create mesh of the source face, later reduced to a mesh of the
mouth region.

Facial texture synthesizer - Uses the parameter from the feature extractor to
predict a suitable texture for the meshed face generated in the previous
method.

Renderer - Renders the lower mouth region using the predicted colors and

26



constructed mesh

Blender - Blends the rendered mouth region with the target video

3.1 Feature extractor

The feature extractor used to parameterize the source face is a 3D dense
alignment method from [19] referred to as 3DDFA. 3DDFA is a machine learning
based regression network that achieves state-of-the-art performance at the time
of development. The model uses a lightweight network architecture that allows
the model to run at 50fps on a single-core CPU. The lightweight backbone used
in the model is the a MobileNet [22] architecture, which is based on depth
separable convolution [10] resulting in a CNN model with less computation
and parameters.

The 3DDFA model accepts an image as input and regresses to the 3DMM
parameters needed to reconstruct the 3D face mesh. Prior to the image being
passed through, the face region is cropped using a face detector. The face
detector module utilized is called faceboxes [43], and it is based on a CNN
model and performs well in terms of accuracy and efficiency.

The cropped input image is regressed to the target parameter P which is
given as P = [K, α, β] where K is the camera matrix (shape of 3x4), α is the
identity parameters (shape of 40x1), and β is the expression parameter (β, shape
of 10x1), with 62 dimensions in total. α and β are used with the linear model
eq. (2.6) to project the input 2D face to a dense 3D face in canonical space, and
the camera matrix is then used to match the pose of the projected 3d face with
the 2d input face. Overall the full projection from the 2D face to the 3D face is
given as

S(P) = K

[
S + Eshapeα + Eexpβ

1

]
(3.1)

The projected dense 3D face can easily be projected back to the image space
using orthogonal projection, the projection back from the image plane is given
as

S2d(P) = Pr ∗ S(P) (3.2)
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where Pr is the orthogonal projection matrix

[
1 0 0
0 1 0

]
.

The projected 3D face consists of vertices used to generate the 3D face mesh
using a predefined triangulation. The triangulation is shared between all the
face meshes. Once the 3D face mesh is constructed, the mesh is reduced to only
cover the lower mouth/face region. The region is decided using a handmade
mask made with MS-paint1, the vertices inside the mask and its associated faces
are kept while discarding the remainders.

The 3d Basel mode used for reconstruction does not cover the mouth region
due to ambiguous geometry in that region. Therefore, the empty space inside
the mouth must be filled manually, see fig 3.2. This process will have to be done
in a deterministic fashion to ensure that vertices inside the empty region have
somewhat good correlations between different images. The empty mouth space
is filled accordingly:

1. First, we determine the bound vertices of the empty mouth space, this is
only needed to be done once. Once we have the bound vertices, we can
save the indexes to be later used on new set of vertices.

2. Use the bound vertices to calculate the mean point

3. Draw N evenly spaced points/vertices from all the mouth bound vertices
to the mean point

4. Use Delaunay triangulation2 to generate mesh for the vertices drawn.

1Microsoft paint: https://en.wikipedia.org/wiki/Microsoft_Paint
2Scipy: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.Delaunay.html
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Figure 3.2: Extending the BFM model to fill mouth and cropping to fit lower
face. The red contour in original vertices shows the boundary of the non-
filled mouth area, while the yellow dot in that image shows the midpoint of
the unfilled area.

3.2 Facial texture synthesizer

The facial texture synthesizer is based on leveraging existing images to
synthesize a new image. For this part, the data set consists of a large number
of frames (5000+) of the desired target person. The collected data is from a
monocular sequence video of the target person talking and lightly moving
his/her face; for this example, a video consisting of 8000 frames of Obama
will be used. The video can be found on the following GitHub repository3.
Furthermore, the quality is relatively high (450x450x3,RGB color), with the
face region occupying a relatively large part of the frame and the lighting and
composition staying coherent. The video is upscaled to 512x512 because of the
blending method that will be used further in the process. The upscaled video
goes through a preprocessing, where the 3D face parameters and the vertex
colors are collected, see fig 3.3.

3Video: https://github.com/YudongGuo/AD-NeRF/tree/master/dataset/vids
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Figure 3.3: The preprocessing method used to collect samples data

For each frame in the target video, the follow preprocessing is done:

1. The face parameters, and lower face vertices are collected using the
methods described in the previews section

2. The collected vertices are projected back to the image plane using the eq.
3.2, and are then used to sample the color at the vertex position in the
image being preprocessed, this will be referred to as the vertex-color.

Once the target video(data set) is preprocessed, the collected data are stored
in an array. The resulting arrays are an [8000,62] (n-frames,P) array storing the
face parameters, an [8000,4] array storing the corresponding bounding box of
the face detected, and at last an [8000,10011,3] (n-frames, vertex-color, channels)
array. Finally, the stored arrays are used to synthesize the desired face.

Given the extracted face parameters from the source frame (input image),
the L2 distance is calculated between the source expression parameter and all
the expression parameters stored in the data set. A fixed number of frames
from the data set that has the smallest L2 distance are selected as the candidate
frames. Once the n best candidate frames are chosen, the associated vertex-
colors are used to compute the weighted median. The weights are chosen
accordingly:

wi = e
−|xi−xs|22

2σ2 (3.3)
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where wi is the weight at ith frame, xi is the expression parameters from stored
data set and xs is the source expression parameter. The σ in the weights
contributes to weight tuning. Small σ results in a peak distribution, indicating a
high contribution from a few frames, resulting in temporal flickering, whereas
large σ results in a smoothed distribution, indicating a blurry result due to the
high contribution from many frames.

The optimal sigma for the given expression parameter can be suboptimal for
another expression parameter depending on the number of good candidates,
i.e., ones with a small L2 distance. σ is selected adaptively, since the optimal σ

is proportional to the number of good candidates. The optimal σ can be selected
by finding σ such that the weight contribution of n candidates is a-fraction of
the weight of all available frames. In other words, the optimal σ can be found
by solving where the sum of n candidate weight is close to equal to the sum of
a-fraction weight of all available frames N in the stored data set, the function to
be solved is given as:

n

∑
i=1

wi(σ) = a
N

∑
i=1

wi(σ) (3.4)

The equation (3.4) is solved using a binary search on σ, where a=0.9.
The weighted median is used to compute the texture using the vertex color

associated with the chosen candidate frames. Using the weighted median
gives the advantage of realistic texture synthesizing while avoiding too much
temporal flickering; this is due to its ability to preserve central tendency while
avoiding too much contribution from outlier frames. The weighted median is
computed by sorting the pixels stored at each vertex according to their weights
and choosing the pixel situated at half of the total weight, see listing 1.
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@numba.njit(parallel=True)
def wm(colrs,weights):

n_frames,n_verts,channels=colrs.shape
out=np.empty((n_verts,channels),dtype=np.float32)
for i in prange(n_verts):

for j in prange(channels):
data=colrs[:,i,j] # get pixels in n_frames at [i,j]
ind_sorted = np.argsort(data) #argsort by pixel value
sorted_data = data[ind_sorted] # sort data using pixel value
sorted_weights = weights[ind_sorted] # sort weights
Sn = np.cumsum(sorted_weights) # cumulative sum

# find value middle point of the cumulative sum
Pn = (Sn-0.5*sorted_weights)/Sn[-1]
I=np.searchsorted(Pn, 0.5) # find index value
# interpolate to find middle value pixel value
out[i,j]=((sorted_data[I]-sorted_data[I-1])/

(Pn[I]-Pn[I-1]))*(0.5-Pn[I-1])+sorted_data[I-1]
return out

Listing 1: Weighted median calculation in python

The target vertices are reconstructed using eq.2.6 where β is the expression
parameter from the source frame, and α is the identity parameter from the
target frame. The reconstructed vertices are then cropped and filled to fit the
lower mouth region, then used to generate the lower face mesh. Finally, the
generated mesh with the calculated vertex colors renders the synthesized lower
face region. Note that this method closely resembles the method used in [35] to
synthesize Obama, but there are two distinct differences:

1. The method in [35] uses the mouth key-point landmarks to select the
candidate frames, while we use the expression parameter.

2. The preprocessed data set consists of frontalized images of the target
person which are used to calculate the weighted median. This is possible
due to that fronalization contributes to the make pixel entries loosely
correspond between the faces. We are using the 3DMM for the purpose
of aligning the pixels entries between the faces.
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3.3 Rendrer

A rasterization algorithm is used to render the synthesized image from the
constructed lower face mesh and its associated vertex colors. Rasterization is
the most common rendering technique used to render images of 3D scenes.
The framework/library used in this project is a lightweight implementation of
rasterization with z-buffering optimization written mainly in c++ and exported
to Python with Cython extension 4. The implementation is fast, and it runs on
a CPU, avoiding further GPU dependence, making it ideal for this situation.

This algorithm can roughly be decomposed into three steps; projecting the
given 3D vertices making up triangles onto the image plane using camera
projection, looping through the output frame detecting whether the pixel lies
within the resulting 2D triangles projected to the image plane, and finally
coloring the visible pixels using the vertex colors to estimate the pixel value
and using z-buffering to check if the pixels is visible.

The 3DDFA model uses an orthogonal projection when reconstructing the
vertices, making the rendering quite simple. Even though orthogonal projection
does not have the perspective preserving perks of perspective projection, it still
provides a good result for the critical region cause of low variation in depth
relative to the rest of the scene.

3.4 Blender

Once the lower face is rendered, the rendered lower face is combined with the
target face to synthesize the new face, which combines the identity from the
target face and the expression from the source face.

The composite is done using the Laplacian pyramid blending method.
Laplacian pyramid blending [36] allows for smooth blending between the
rendered lower face and the target face. Laplacian pyramid blending consists
of three steps; pyramid decomposition, pyramid blending, and pyramid
reconstruction.

4Source: https://github.com/cleardusk/3DDFA_V2/tree/master/Sim3DR
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Figure 3.4: Gaussian pyramid [2]

Given two images (synthesized lower mouth and target frame) and a weight
mask, the images and mask are decomposed into Gaussian pyramids; the
Gaussian pyramids are sequences of images starting from the original and
downscaled using subsampling into half size for each step upward in the
pyramid, see fig 3.4. The downsampling is done by first convolving the image
with a Gaussian filter to avoid antialiasing and then sampling by keeping
every 2nd pixel in the convolved image; this is equivalent to performing 2D
convolution with a Gaussian kernel and stride size of 2.

The Gaussian pyramid is used to display image information at various scales
while retaining the original image information. Gaussian filtering reduces
antialiasing by smoothing the image, therefore reducing the high frequency in
the image generated by rapid changes in pixel values, which are amplified by
subsampling since the subsampling reduces the pixel distance between pixels.

The Gaussian pyramid is used to reconstruct the Laplacian pyramid, see
fig 3.5. Given the Gaussian pyramid G, the Laplacian image at pyramid step
i is constructed by subtracting the rescaled Gaussian image from its previous
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Figure 3.5: Laplacian pyramid [2]

Gaussian image, resulting in the Laplacian image at each step i equaling
Gi − rescaled(Gi+1). The Laplacian pyramid is constructed for the target image
and the rendered image and used to save the approximated high-frequency
information lost during sub-sampling.

Once the Laplacian pyramids are reconstructed, the images at each step of
the pyramids are multiplied by their corresponding gaussian mask and added
together, constructing a pyramid with the composite images at each step. At
last, the pyramid is collapsed by upscaling, starting from the top and adding to
the lower step of the pyramid until the bottom step is reached. The key to the
Laplacian blending approach is that the low-frequency color variations of the
rendered image and target image are smoothly blended, while higher-frequency
textures are blended more rapidly to minimize "ghosting" effects when the two
images are layered, see fig 3.6 for seamless blend using Laplacian Pyramide.
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Figure 3.6: Example of a blend of image A and B, Image A is blended to Image
B using the mask

3.5 Smoothing

In the real world, a natural mouth motion is generally restricted by smooth
gradients, and the motion vector tends to follow a smooth path. Unlike in
real life, the parameterization error in our model affects the mouth movements
of the avatar speaking. The noise/error in the reconstructed vertices causes
the motion of the synthesized mouth to look unnatural, and typically it
tends to make the motion vectors rapidly change direction if the noise of the
reconstruction error is larger than the average mouth displacement (change in
mouth position from frame i to (i + 1)). This will result in the mouth motion
appearing shivering. To combat this effect, we will use a simple gradient
smoothing technique. This is simply implemented by using averaged vertices
over time T; our new vertices are defined as

Vi =
1
T

i+T/2

∑
n=i−T/2

Vn (3.5)

This can also be applied to the vertex colors to smoothen pixel value changes
between frames.

3.6 summary

This chapter describes the many methods used to develop a system for
reenacting the source expression on the target face. Our system is defined
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by four primary methods: a feature extractor, a facial texture synthesizer, a
renderer, and a blender. The feature extractor parameterizes the source and
target face to the 3DMM parameters identity, expression, and pose using three
pre-trained machine learning models. Such that for each source frame, we
synthesize a target facial texture by finding the n closest target expression to the
source expression. The n closest target expression and their associated vertex
colors, which we pre-collect, are used to synthesize the facial texture using a
weighted median to combine the n closest vertex colors using their associated
expression as weights. After computing the texture, the texture is used to render
and blend the texture into the target face, resulting in a target face with the
source expression.
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Chapter 4

Experiments and results

4.1 Subjective comparison of models

In order to test the facial texture synthesizer models, we have performed a
subjective study. We have generated two clips, one for each model, where a
person speaks out the alphabet, and the models generate the visual phase of the
avatar.

4.1.1 Data

The data used consist of 3 monocular video sequences (see fig 4.1) where a
person speaks to the camera recording. Two of the videos (Obama and child)
are used as the target data to generate the avatar, which is being reenacted upon,
while the last video (source) is used as the source video driving the reenactment
of the target avatar. Both the source and child video is self-recorded for this
thesis, while the Obama video is downloaded from Github1. The source video
features my utterances of the alphabet, captured using a web camera. The child
video has a family member reading aloud from a book and was captured with
an iPhone. The Obama video features Obama addressing a political issue; it is
identical to the video used in[20]. More info regarding the data set is given in
the following table 4.1.

1Video: https://github.com/YudongGuo/AD-NeRF/tree/master/dataset/vids
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Data set Gender Age Video quality fps Length(frames)

Source Male 27 Poor 30 500
Obama Male 65 Good 30 8000
Child Male 10 Average 30 9100

Table 4.1: Data set used in testing

Figure 4.1: Data set used in this case study, n=1-500 is used as target background
for Obama and child

Both target videos are subdivided into two sections. The first section consists
of the first 500 frames and serves as the target frame, which is used together
with the synthesized lower face region to composite the final output frame.
Additionally, for the first section, the bounding box, the identity parameter
αtarget and pose are extracted using the 3DDFA model and face detector. The
second section consists of the remaining frames after subtracting the first
section and undergoes the preprocessing method described in 2, which includes
collecting the expression parameters βtarget and vertex colors. For the source
video, the expression parameter βsource is collected using the 3DDFA model. We
also keep the audio from the source video.

The preprecossed data set is used in two similar models with slight
variation. The general model is described accordingly;

1. For each frame in the source video select n (n = 100) best candidates
frames from the target video using βsource and all the βtarget.
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2. Compute the lower facial region texture using the method described in
section 3.2.

3. Reconstruct the target vertices using equation (3.2) with αsource, βtarget and
target pose as input.

4. Crop vertices, then fill the empty mouth region according to section 3.1.

5. Project the reconstructed target vertices to the target image plane using
equation (3.2).

6. Render the lower face using the computed lower facial region texture, the
projected target vertices and its associated triangulation.

7. Blend the target frame and the synthesized lower facial region.

The first method used is equal to the general method, while the second
method implements the smoothing technique described in section 3.5 to the
general method. Both methods incorporate the audio from the source video
into the created snippets.

The test includes 5 participants, where 3 are females, and the rest are males.
The age of participants spans from 20-50, where 2 range from 30-40, other 2
range from 40-50, and the last one range from 20-30.

4.1.2 Questionnaire

The following questionnaire asks participants to rate the generated clips; the
questionnaire is created using Google Forms, and the complete questionnaire
is included in the appendix. The questions that are posed to the participants
can be separated into six groups. The first portion contains questions about the
model’s overall performance, in which participants are asked to rate the model
on a scale of 1-5 (bad, poor, fair, good, exceptional) for Q1 (question number)
and scale of (strongly disagree, disagree, neutral, agree, strongly agree) for Q2
and Q3, see table 4.2.
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Q Question from first portion

Q1 How would you rate the overall video quality?
Q2 The visual appearance of the video is realistic.
Q3 The voice appears convincingly to be coming from the person in the video

Table 4.2: Question set 1

The second portion asks the participants to describe in detail your thought
on the quality of the video, quality of mouth movements, how the original compares
to the generated ones, and your overall feelings about the synthetic avatar. The third
portion asked the participants to compare the model using the child avatar and
the model using the Obama avatar according to some criteria, see table 4.3, in
which the participants are asked to select the best result. The fourth portion
asks the participants to describe Why did you prefer one avatar above the other one?.
The fifty portion asks the participants what would be the most important aspect that
should be improved for this type. And at last, the participants are asked about their
age group and gender.

Q Question from third portion

Q1 I found that the following avatar was more realistic than the other one.

Q2 I found that the following avatar had the more
realistic mouth movement compared to the other .

Q3 Overall I liked the following avatar better compared to the other.

Table 4.3: Question from third portion

4.1.3 Results and Discussions

The participants seemed to prefer Obama avatar over the child avatar, this was
overall due to the child avatar shivering more then the Obama avatar. While
method 2 reduced the quality disparity between the avatars, the Obama avatar
was still significantly more preferred. We will go into greater depth about
the results, beginning with question portions one and two for each avatar and
finishing with a comparison section for question portions tree, four, and five.
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Full answers for question portion one and two is available in the appendix, see
appendix A.1.

Obama avatar: The participants appeared to favor the second method in
general, see table 4.4. The second method was described as causing less
shivering and preserving higher video quality than the first method but having
the disadvantage of the mouth seeming quite closed for extended portions of
the video. Due to the effect of the second method making the mouth appear
more closed, the participants gave method 1 a higher rating on Q3; The voice
appears convincingly to come from the person. The shivering was described as
the main cause of quality loss in the first method, which could describe why
the participants preferred the second method. Overall, the methods trades off
between quality and a higher range of motion in the mouth region.

Question method 1 (mean) method 2 (mean)

Q1 2.4 3
Q2 2.4 2.8
Q3 2.2 2.6

Table 4.4: Answer for questions regarding Obama avatar for table 4.2

Child Avatar: The first method was described to be more jittering than the
second method. Overall, both methods were described to contain too much
shivering, making the video look unrealistic. The child avatar mouth movement
was also described to deviate from the expected mouth moment regarding the
input audio. Overall the participants preferred method 2, where Q1 and Q2
scored higher while Q3 was scored less, see table 4.5.

Question method 1 (mean) method 2 (mean)

Q1 1.6 2.4
Q2 1.8 2.4
Q3 2.2 2

Table 4.5: Answer for questions regarding child avatar for table 4.2
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Comparison of Obama and Child avatar

When comparing the child avatar to the Obama avatar for questions from the
third portion table 4.3, the consensus was that the Obama avatar was preferable,
see table 4.6. The participants agreed more on Q1 regarding realism, while Q2
was more even, but the participants still slightly preferred the Obama avatar.

Child vs Obama Child Obama

Q1 1 4
Q2 2 3
Q3 1 4

Table 4.6: Scores for child vs Obama for questions from table 4.3

The reason for this is primarily due to the Obama avatar’s reduced shivering
around the mouth area. Even though the participants favored the Obama
avatar, they deemed the child avatar’s realism to be comparable to that of
the Obama avatar. The participants also stated the mouth-movement from the
Obama avatar seemed more realistic, the child avatars lip movement was stated
to bear no resemblance to the source mouth movement, see table 4.7.

Preferred Why did you prefer one avatar above the other one? Please
describe.

Obama The realism in the mouth-movement
Obama I feel that the both having the same quality. I do not have that

option above
Obama Easier to see that the child mouth is generated compared to the

Obama
Child It was more realistic
Obama The vibration around the mouth in the Obama video is much

less than the child video. Also, in the child video, the lip
movements bear no resemblance to the desired alphabet. And
only the child’s body movement is normal of because it is taken
from the original video

Table 4.7: Which avatar did the participants prefer and why? Question portion
4.

The majority of participants (3/5) believed that the most important aspect
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that could be improved was the reduction of jittering/shivering around the
mouth area (see table 4.8), which we suspect to be caused mostly by estimation
error in the face detector and feature extractor. We should explore methods for
reducing estimation errors in conjunction with a more sophisticated smoothing
strategy to account for estimation error. Two of the participants suggested
that we expand the model to include the whole face, which could easily be
performed by not cropping the 3D face mesh, but we purposefully limited the
model to the mouth area by cropping the 3D face mesh. This was done in order
to simplify and narrow the thesis’s subject.

What would be the most important aspect that should be improved for this
type of avatars?

I think that the movements of the mouth in both should be a bit more/ a bit
more opening of the mouth while talking (as we see the researcher is)
Rather than focusing on only mouth, if the whole face can be generated with
facial expression, it may help to improve the overall quality
A more visually smooth synthetic mouth. This makes the "fake" aspect of the
video more discoverable compared a detailed mouth movements following the
actual sound
that the movements would be stabilized and the sound is synchronized with
the movement
Reduce extra vibrations and move the lips according to the said sentence, not
be immobile. In more advanced adapt the body, eye and hand movement
according to the speech

Table 4.8: Feed back from the participants regarding improvement

4.2 Quantitative evaluation

Using the feedback from the participant, we establish some questions regarding
the performance difference between the Obama avatar and the Child avatar; is
the performance difference due to the difference in data set quality?

We can investigate the question using a couple of different methods; firstly,
we can compare the L2 values used when selecting the n best candidate frames.
It is fair to assume that a shorter L2 distance between the source and the
target expression allows the model to select more appropriate candidate frames,
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resulting in a better match between the synthesized mouth region and the
desired mouth region.

Figure 4.2: Average L2-distance between source and N-closet target avatar
expression, lower is better. The lightly colored area indicated the standard
deviation

We can see that the Obama avatar appears to find better candidate frames,
which could account for the difference in performance,see fig 4.2. This could be
related to the source’s facial shape being more similar to the Obama avatar;
the L2 distance between the average αsource and αObama is equal to 2.06x105

(sum pixel distance between vertices), while the L2 distance between αsource

and αchild is equal to 2.87x105. We can further examine if the difference in
quality is attributable to a shape difference between the source and target
avatars by utilizing a source face similar to the target avatar, used for confirming
our question. If the L2 distance between the child avatar and the Obama
avatar is similar when utilizing αsource equal αtarget, we may conclude that the
discrepancy is not attributable to differences in training data.
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Figure 4.3: Average L2-distance between source and N-closet target avatar
expression, where source identity is equal target identity

When using αsource equal αtarget, the L2 distance decreased significantly,
notably for the child avatar, which even outperformed the Obama avatar, see
fig 4.3. This should imply that the child avatar does not have inferior training
data (collected frames used to select n best frames) and that the differences
between the αsource and αtarget have a significant role when it comes to the
quality of the generated avatar. Note that the 3DDFA model and the BFM
model might contribute as well to the quality difference between the Child
avatar and Obama avatar; both models (3DDFA and BFM) seem to have been
trained on a well-distributed data set. However, biases are hard to account for
especially assuming the face shape of a child differs significantly from the mean
population. Recent study’s on commercial and open-source facial recognition
algorithms shows a negative bias for each algorithm on children [34], which
could explain why the Obama avatar performs better.

46



4.2.1 Quantitative evaluation when source avatar is equal

target avatar

We can evaluate the model’s reconstruction ability by using the same video as
both the source and the target so that the input image IS

i equals the target image
IT
i . We will be using the both avatar for this section, where the first 250 frames

are denoted as our source and target video, while the remaining frames are
used to compute the estimated lower facial texture, such the model has no prior
knowledge of True frame. This allows for deriving meaningful reconstruction
error, since we now know the true value, unlike if we had used a source
video different from the target video. Since we have the true value, we can
evaluate the reconstructed images against the original/true image. Note that
this evaluation does not cover the cases where the source and target identities
are different, and does not account for when the rendered lower face shape
does not match the target face, see section 4.3 for information regarding the
mismatch limitation. We will evaluate both the temporal and spatial preforms
individually.

Spatial evaluation:

For the spatial evaluation; we will be using the metrics SSIM and LPIPS for
evaluation the perceptional quality loss and NME for the facial landmark
displacement. We are using FAN [7] for estimating the facial landmarks.
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Figure 4.4: SSIM, LPIPS and NME for both avatars, methods and base loss, for
both for SSIM and LPIPS lower y-value is better while higher is better for NME

The base loss Lbase is defined for when the model knows the true vertex col-
ors, which we use as a reference point, where Lbase estimates the reconstruction
loss caused by the feature extractor, renderer, and blender.

The child avatar does significantly better for the both perceptual losses,
which corresponds with findings in previews section; the L2 distance between
source and n best candidate frames is significantly better for the child avatar.
For NME, the result do not change significantly, see fig 4.4.

Temporal evaluation:

For temporal evaluation; we will be using the metrics tLP and tOF for
evaluating the temporal quality losses.
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Figure 4.5: tLP and tOF for both avatars, methods and base loss, for both metrics
lower y-value is better

We can see a clear improvement from method 1 too method 2 for the
tLP metrics, especially for the child avatar. For both models the child avatar
preforms considerably better, see fig 4.5.

4.2.2 Evaluation of n best candidates

Once the loss Lbase is established, we can compute the vertex-color using n best
candidate frames to estimate the loss caused by the facial texture synthesizer by
simply subtracting the new reconstruction loss Lbase+ f s by the Lbase, resulting in
L f s = Lbase+ f s − Lbase. In addition, by varying n when selecting n best frames,
we can investigate how the number of n candidate frames affects the image’s
quality. We will be using SSIM for this evaluation.
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Figure 4.6: SSIM value for different n best candidate values. Base is when true
vertex-colors are known

The model seems to lose substantial quality when estimating the vertex
color, and the number of n best candidates seems to not amount to a big overall
improvement. The most significant spatial error in the system seems to be
introduced in the facial texture method.

4.3 Limitations

When we blend the rendered lower face with the target face, the rendered face
might not fit. This is due to the difference between the target expression and the
source expression being too large. The lower face vertices are reconstructed by
passing αtarget and βsource as input to eq. (2.6), which reconstructs vertices of the
target identity deformed by the source expression; if this deformation does not
match the true target shape, we get an unnatural blend of the rendered lower
face and target face. For example, suppose the target avatar has his mouth open,
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and we try to retarget the avatar with a closed mouth. In that case, we get a
target avatar with a closed mouth, and an unnaturally extended chin see fig 4.7.
The synthetic lower face will not fit because the chin is extracted/lifted when
the mouth is closed. This may not appear odd in a single image, but it appears
quite unnatural over a sequence where the mouth shape does not change while
the chin fluctuates.

Figure 4.7: The synthesized image is computed using the source image, and the
blend image is a blend of the synthesized and target image. Row 1 is denotes
a bad fit between the synthesized image, while Row 2 to is good fit. The blue
color is the overlapped parts form synthesized and target. Note how Obama’s
chin in blend row 1 look unnaturally long.

4.4 System resources

The experiment is run on a Laptop with; Windoes system, NVIDIA Geforce
GTX 1060 GPU and Intel(R) Core(TM) i7-8750H CPU. The model uses on
average 160ms per frame, further breakdown of run time for each non-
negligible (time wise) method is given in the table below 4.9. The timeit2

module is used to measuring the run time. The timeit module provides a simple

2timeit: https://docs.python.org/3/library/timeit.html
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way to time small bits of Python code. The module automatically determines
the appropriate number runs and returns the average time measured to execute
the selected code.

Method time (ms)

Face detector 34
Feature extractor 20
Weighted median 41

Renderer 25
Blender 30

Table 4.9: Time measurement for non-negligible time consuming methods

Nota bene, the measurement does not account for additional time consumed
by capturing and streaming if applied in real-time. The model could be further
optimized; both the face detector and feature extractor are reported to run
significantly faster in the original papers and implementation; the face detector
is stated to run at 120 fps on a GPU, while the feature extractor runs at 2ms when
using ONXX runtime3. ONXX runtime is a cross-platform, high performance
machine learning inferencing and training accelerator. Even with those further
improvements, the model would still operate at a maximum of 10-11 frames
per second depending on how fast the computer can read a video stream of the
source actor, which would still feel lagging considering that most videos run
at speeds greater than 30 frames per second. If we wish to improve the run
performance further, we would need to upgrade the hardware or reimplement
the blender, renderer, and weighted median method.

4.5 Summary

This section compared the model using two distinct data sets, evaluated it
under both ideal and not ideal conditions (aside from possibly a better data set),
and discussed some of the model’s drawbacks. The model appeared to perform
significantly better when the source person resembled the target person, owing

3https://github.com/microsoft/onnxruntime
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to the model discovering better matches in the collected frames (training set).
The model’s largest source of spatial noise was introduced by the lower facial
texture estimator, as expected, given that the lower facial texture estimator is
the primary component.
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Chapter 5

Summary and Conclusions

The task of facial reenactment is a complex and tedious task, which have been
studied extensively. There are several methods to approach this task, a common
approach used in SOTA models such as [14][39] usually consists of a 3DMM in
conjunction with a deep neural network. More specific a layout of using an deep
neural network such as a CNN to parameterize a 3DMM with target identity
and source expression, then use another deep neural network to synthesize
an texture for the modified 3d face representation and at last blending the
synthesize face into target avatar.

Inspire by this approach and the synthesize Obama paper[35], we attempted
to combine the two in order to accomplish our thesis’s initial objectiv; Using an
actor to reenact the expression form actor to a target avatar. Rather than utilizing
a neural network to synthesize the facial texture, we adapted the weighted
median method described in [35]. [35] took advantage of the weighted median’s
quality-preserving properties to synthesize a photorealistic facial texture by
computing the weighted median of the n most similar images to the target
image. The distance between the source mouth key points and a collection
of the targets mouth key points was used to determine the n most similar
images. Rather than computing a weighted median for each pixel in the
synthesized mouth region, we attempted to sample the pixels by representing
the mouth region as a dense alignment of points with their associated vertex-
colors using a 3DMM. By leveraging the 3DMM, we were able to sample
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in a deterministic manner, guaranteeing that each image in our collection
was represented consistently. Thus, we synthesize our facial texture by first,
computing the weighted median of the vertex-colors in the n most similar
images as defined by the distance between the actor’s and n target person’s
expressions in our collection. And secondly, using the computed vertex colors
and their associated vertices to render the mouth region using rasterization.
The rendered mouth region is the then blended to the target avatar using
Laplacian pyramid blend, resulting in a target avatar with the expression of
the source target. We further try to improve our model by incorporating a
smoothing method to reduce temporal inconsistent introduced caused by our
texture estimation and 3d face parameterization.

We evaluate our model with and without smoothing on to distinct avatars
using a questionnaire, which assists us in achieving our second objective;
Compare the performance of our model on two distinct avatars and examining the
effect of the dataset on the models performance. We test our model on an adult
avatar and child avatar to examine how our model is affected by the dataset
used for synthesizing the avatar and determine if the used 3DMM and facial
feature extractor performed as well on the child avatar as the adult avatar.
The questionnaire feedback indicated that the adult avatar outperformed the
child avatar significantly. To investigate why this appeared to be the case,
we examined the quality of the n similar images used to synthesize the facial
texture and discovered that our model was impacted by the distribution
difference between source and target expression. When the source face was
more similar to the target face, our model appeared to locate higher-quality n
similar images, we define quality by computing L2 distance between source and
target expression. Additionally, we analyzed the model when the target identity
was equal to the source identity; in this case, the child avatar performed better,
indicating that the model performed equally well on a child avatar as it did on
an adult avatar; the performance difference in the questionnaire was due to the
source identity being more similar to the target avatar identity.
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5.1 Main contribution

The research completed throughout the thesis aims to answer the problem
statement assigned in section 1.2. Our main contribution given those defined
objectives are as follows:

Objective 1: Research whether we can make the visual avatar’s facial expression follow
the audio by reenacting the expression associated with the source actor’s audio.

We developed a model that can reenact lower facial expressions from an
actor to a target avatar. The model followed the actor’s audio to a certain
extent, but the results appeared to be dependent on the difference between
the actor’s and avatar’s expression characteristics, with a big disparity
resulting in a poor reenactment. Taking this into account, we created a
model that synthesizes photo-realistic lower facial texture for the avatar;
the result look good when displayed singly, but was significantly worse
when utilized to generate video sequences.

Objective 2: Comparing the performance of our model on two distinct avatars and
examining the effect of the dataset on the model performance.

We discovered that the adult avatar performs better than the child avatar
using a questionnaire; this could be because the pre-trained models are
more representative of adult faces, implying that the data sets used to
train the feature extractors contain more adult samples. We examined
the model further and determined that the performance difference was
caused by the source actor’s identity being more close to the Obama avatar
identity. When the source identity was identical to the target identity, the
child avatar performed similarly to or better than the Obama avatar.

5.2 Future work

While the model is capable of reenacting expressions from actor to target avatar,
additional work can be done to make the output appear more realistic. To
further develop the model, we would like to address the limitations discussed
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in Section 4.3 and incorporate comments from survey participants, as shown
in tables 4.7 and 4.8. By doing so, we may separate the key areas for
future improvement into two categories: reduced shivering and more realistic
blending.

Reduced shivering: The shivering is cause by multiple parts; noise introduced
when parameterizing the actor and bad quality of n best candidates for
the facial texture synthesizing part. Firstly, we can reduce the noise
introduced when parameterizing the actor by implementing the noise
reduction method described in [28] (section 3.2). This is done by re-
initialize the original bounding box n times by perturbing it by few
pixels length in various directions of the image plane, and then averaging
the resulting sets of parameters, effectively reducing the variance of the
3FFDA result by increasing sample size. Secondly, we can improve the
quality of n best candidates by using the expression transfer method
from [38], which transforms the actor expression to the space of target
expression. By applying this method, we can find better n best candidate
matches because the actor and target distributions are more aligned

More realistic blending: We can address the blending limitations that result
in the target expression not matching the target shape semantically, i.e.,
closed mouth should have lower chin than open mouth. Because our
current blending method doesn’t takes into account the target expression
being correlated with the target face shape, by eroding the chin region in
the target avatar we can use image inpainting to fill the eroded space to
better fit with the new target expression. This is a regularly used strategy
for resolving comparable issues, as demonstrated in [39].
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Appendix A

Google Forms Questionnaire

In this appendix, we present the Google Forms questionnaire used for the
subjective study, and the respective results not displayed in chapter 4.

A.1 Answers

Table A.1: Answers to Obama questions, fig A.1 and A.2
Method 1 Method 2

Q1 Q2 Q3 Q1 Q2 Q3
Good Agree Neutral Good Agree Agree
Poor Disagree Disagree Fair Neutral Disagree
Poor Disagree Disagree Fair Neutral Disagree
Poor Disagree Strongly disagree Poor Disagree Disagree
Poor Disagree Neutral Fair Disagree Neutral
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Table A.2: Answers to child questions, fig A.1 and A.2
Method 1 Method 2

Q1 Q2 Q3 Q1 Q2 Q3
Poor Disagree Neutral Poor Neutral Neutral
Poor Disagree Disagree Poor Disagree Disagree
Bad Strongly Disagree Disagree Fair Disagree Disagree
Poor Disagree Disagree Fair Neutral Disagree
Bad Strongly disagree Disagree Poor Disagree Strongly Disagree

Please watch the video presenting all three methods in parallel plus the
original one and try to describe in detail your thought on quality of the video,
quality of mouth movements, how the original compares to the generated
ones and your overall feelings about the synthetic avatar?(Obama)

I think the overall quality of the video/picture was 4 , but the mouth and
the degree of movement in the eyes are challenging. The mouth in the first
generated one was moving more naturally I think, but not so much in sync
with the researcher. The mouth in the advanced (second) was somehow very
much closed and in the start the whole lower part of the face/mouth and "hake"
moved. I could whish for some more movement while pronouncing the letters
or trying with a sentence? Eye movement was more natural I think according
to the blinking. The movement of the eye (eye gaze?) was somehow missing,
but that might not have much to say as long as the closing/ blinking is natural.
A more visually smooth synthetic mouth. This makes the "fake" aspect of the
video more discoverable compared a detailed mouth movements following the
actual sound
You do see that the mouth is not the original. It is also a bit hard to see if the
generated video actually follows the audio. I think the generated video has
potential, but there is a job do wrt. making it more smooth.
The second method shows better video quality compared to the first one. It
would be nice to test the same sequence with bigger time gap.
Blinking eyes and moving the head look very natural. But the vibration around
the mouth and especially the chin is so weak.

Table A.3: Answer for fig. A.3
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Please watch the video presenting all three methods in parallel plus the
original one and try to describe in detail your thought on quality of the video,
quality of mouth movements, how the original compares to the generated
ones and your overall feelings about the synthetic avatar?(Obama)

I think the lower part of the face - the mouth and chin, destroy how I perceive
this one. Looking at the original, I see that the boy moves his mouth to a
lesser extent but still, more than in the transfer examples. Watching it now,
I didn’t see too much difference between the first and the advanced - got too
occupied looking at the mouth-area I think. The eye-movement I think was
much the same quality as the Obama-one, I just didn’t catch it that well being
distracted by the mouth and chin. Looking at this one, I see that the researcher
actually moves his mouth more when saying the letters than I first thought. My
suggestion then might fall to the ground (sentences..).
Improving mouth movement between pauses can improve the overall quality.
Again, for the generated video, there is easy to see that the mouth is changed
from the original. It is even more visible here than the Obama videos. The
mouth movement itself seems to be better here, but it is more visible that it is
not the original mouth. The generated videos have potentials, but some more
smoothing is needed here too.
Similar to the Obama video - the mouth is sort of shivering which makes the
video look unrealistic. However, in this video the movement of the mouth is
more realistic.
The vibration around the mouth is high, especially in the first video. Also, does
not change his mouth while saying many alphabets in both videos.

Table A.4: Answer for fig. A.6
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A.2 Questions

Questionnaire used to evaluate and compare a child avatar to an adult avatar.
The questionnaire was conducted using Google forms and includes questions
about the quality of the reenacted avatars.
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Figure A.1: Video of reenacted Obama avatar using method 1, and questions
from question portion 1, see table 4.2. User is asked to score the method.
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Figure A.2: Video of reenacted Obama avatar using method 2, and questions
from question portion 1, see table 4.2. User is asked to score the method
regarding given topic.
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Figure A.3: Side by side comparison of method 1 and 2 for Obama avatar, with
the original source actor for reference and a separate video of the original target
video. User is asked to describe thoughts about overall feel and quality of
reenacted avatars

68



Figure A.4: Video of reenacted child avatar using method 1, and questions from
question portion 1, see table 4.2. User is asked to score the method regarding
given topics.
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Figure A.5: Video of reenacted child avatar using method 2, and questions from
question portion 1, see table 4.2. User is asked to score the method regarding
given topics.

70



Figure A.6: Side by side comparison of method 1 and 2 for child avatar, with
the original source actor for reference and a separate video of the original target
video. User is asked to describe thoughts about overall feel and quality of
reenacted avatars.
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Figure A.7: Comparison of child and Obama avatar, user is asked to choose the
preferred avatar for given questions, see table 4.3. User is also encouraged to
give feedback on aspects to improve and state gender and age group
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