
Collecting activity data using
the Open mHealth platform
An exploratory study on integrating objective data with
sport monitoring systems

Daniel Gynnild-Johnsen , Lars-Erik Holte
Master’s Thesis Spring 2017

Collecting activity data using the Open
mHealth platform

Daniel Gynnild-Johnsen Lars-Erik Holte

May 2, 2017

Abstract

Football players works together as a unit to perform on an elite competi-
tive level, and the most minor abnormalities can determine the outcome of
a match. Success can often be the result of healthy, uninjured and rejuve-
nated players working together as a collective. Even though it is impossible
to control all outcomes and scenarios, the risk of failure might be mini-
mized by monitoring players closely on an individual level. If we monitor
players over a longer period of time we might discover patterns or abnor-
malities in their training. This information can be used to avoid multiple
scenarios related to fatigue, injuries and overtraining.

In this thesis we present a proof of concept for expanding an existing self-
reporting monitoring system called pmSys, and look at how football teams
and players can utilize modern technology like phones and wearable de-
vices to capture objective data. This system will collect and store the data,
which can be processed into useful visualised feedback, and help a team
to evaluate their players. This way the coaches can make mitigating mea-
sures to improve certain aspect that might be lacking on a player or team
level. By eliminating the use of pen and paper, pmSys introduces a simpler
way of reporting the players’ health status. By expanding the system with
objective data, the team performance can effortlessly be evaluated and ad-
justments made if needed. Compared to the subjective data, which are a
player’s assessment of themselves and their health, objective data is not as
simple to tamper with and rarely lies, and can more accurately determine
a player’s performance state. We believe this monitoring system can help
giving a team the advantage to succeed.

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem definition . 2
1.3 Limitations . 2
1.4 Research methods . 3
1.5 Main contributions . 3
1.6 Outline . 4

2 Related Work 6
2.1 GPS . 6
2.2 Wearables . 7

2.2.1 Accelerometer . 8
2.2.2 Gyroscope . 8
2.2.3 Altimeter . 8

2.3 Mobile health . 8
2.4 Ohmage . 9
2.5 Open mHealth . 10
2.6 Docker . 11

2.6.1 Composing a docker container 12
2.7 MongoDB . 13
2.8 OAuth 2 . 14
2.9 Third-party data sources . 16
2.10 Athlete Monitoring . 18
2.11 Summary . 19

3 Shimmer 20
3.1 Shimmer components . 20

3.1.1 Shims . 21
3.1.2 Resource server . 21
3.1.3 Console . 21

3.2 Schema . 23
3.2.1 Design principles . 24

3.3 Grant Type: Authorization Code 26
3.4 Installation . 28
3.5 GPS in Shimmer . 28
3.6 Summary . 30

iv

4 Runkeeper and Health Graph 32
4.1 Runkeeper . 32

4.1.1 Runkeeper application 32
4.1.2 Wearable hardware . 33
4.1.3 GPS accuracy . 33

4.2 Health Graph . 34
4.2.1 API . 34
4.2.2 Health Graph console 35
4.2.3 Limitations . 36

4.3 Summary . 36

5 PmSys 38
5.1 Current pmSys . 38

5.1.1 PmSys Mobile Application 38
5.1.2 PmSys-trainer . 39

5.2 PmSys with objective data . 40
5.2.1 Motivation . 40
5.2.2 Injecting shimmer into the backend 40

5.3 Summary . 41

6 Testing 42
6.1 Using Shimmer . 42
6.2 Using bash script . 43
6.3 Summary . 44

7 Proof of concept 46
7.1 System requirements . 46

7.1.1 Functional requirements 46
7.1.2 User stories . 47
7.1.3 Non-functional requirements 47

7.2 Working with Shimmer . 49
7.2.1 GPS schema . 49
7.2.2 GPS data point mapper 52

7.3 Connect pmSys user to Runkeeper 53
7.4 Fetch data from Runkeeper 58

7.4.1 Scheduling requests 64
7.5 Database storage . 66

7.5.1 Replication . 66
7.5.2 Concurrency in MongoDB 68
7.5.3 Big data . 71
7.5.4 Database optimization 74

7.6 Summary . 75

8 Conclusion 77
8.1 Summary . 77
8.2 Main Contributions . 77
8.3 Future work . 78

8.3.1 PmSys frontend . 79

v

8.3.2 PmSys backend . 79
8.3.3 Aggregation of data 81

Appendix A Accessing the source code 85

vi

List of Figures

2.1 Wearable forecast . 7
2.2 Ohmage system architecture 9
2.3 Open mHealth architecture 11
2.4 Difference between Docker and VM 12
2.5 MongoDB data collection . 14
2.6 JSON team sample . 14
2.7 OAuth 2.0 Protocol flow . 15
2.8 Worldwide smartphone OS market share 18

3.1 Shim workflow architecture 20
3.2 Adding client id and secret in the console 22
3.3 List of added APIs in the console 23
3.4 JSON schema sample . 26
3.5 OAuth access token example 27
3.6 Grant type: Authorization code flow 28
3.7 JSON raw data . 29
3.8 JSON shimmed data . 30

4.1 Actions during activity recording 33
4.2 JSON team sample . 35
4.3 Open Health developer console 36

5.1 RPE scale . 38
5.2 PmSys-app flow . 39
5.3 PmSys backend . 39
5.4 Isolated pmSys backend with shimmer 41

7.1 Calories burned sample data 50
7.2 Shimmed GPS data from Runkeeper 52
7.3 Application registration in Runkeeper 54
7.4 Logical model of the authorization table 54
7.5 Service data collection . 55
7.6 Service authorization data collection 55
7.7 Sequence diagram: Connect to Runkeeper 56
7.8 Connect mockup . 57
7.9 Logical model of the activity table 58
7.10 Activity data collection . 59
7.11 Sequence diagram: Fetch daily data 64
7.12 Modified JSON response . 67

viii

7.13 Database deadlock . 69
7.14 Concurrency flowchart . 70
7.15 Horizontal database sharding 71
7.16 Big data . 72
7.17 Distributed database . 73

ix

List of Tables

2.1 Currently supported shims and requestable measures 16
2.2 Supported APIs and requirements 17

3.1 Examples of Unified Code for Units of Measure 25

6.1 Shimmer non-detailed test results 43
6.2 Shimmer detailed test results 43
6.3 Bash script non-detailed test results 44
6.4 Bash script detailed test results 44

7.1 User stories . 47
7.2 Crontab entry parameters . 65
7.3 Crontab keywords . 66

x

Acknowledgements

We would like to thank Pål Halvorsen for your great help, and keeping the
motivation up. You have provided us with great insights, ideas and much
constructive feedback throughout our thesis. Your help has truly been an
invaluable resource and encouragement for us.

Furthermore we would thank Håvard Johansen for your technical knowl-
edge regarding PmSys and the underlying structure. Your technical courses
and information has contributed much to our understanding of how the
system as a whole correlates. And we would like to thank you both for let-
ting us contribute to this project.

I, Daniel Gynnild-Johnsen, would like to thank Lars-Erik Holte for his com-
mitment and contribution to this thesis. You have helped to keep my moti-
vation up, and been a great support when brainstorming theory and strate-
gic choices for the direction of our collaboration.

And I, Lars-Erik Holte, want to thank my fellow author Daniel Gynnild-
Johnsen for a rewarding collaboration. I must express my profound grati-
tude for his commitment and being the best sparring partner one could ask
for.

Oslo, May 2nd 2017

Daniel Gynnild-Johnsen, Lars-Erik Holte

xii

Chapter 1

Introduction

1.1 Background

Football is a team sport with many individuals. A general senior squad con-
sists of between 20-30 players. This makes it close to impossible for a coach-
ing team to closely observe and supervise each and every player through-
out an entire training session. A football match includes a total number of
22 players, with some players operating in the same general area. This cre-
ates the possibility of one player working harder than the other. Football
has been criticised the past few years for not being a top-class sport with
top athletes. A cross country skiing athlete, Finn Hågen Krogh, went as far
as saying that with a couple of years of hard work, he could easily play
in the norwegian top division, Eliteserien (formerly known as Tippeligaen)
[1].

The Player Monitoring System(pmSys) is a tool used by several teams in
Eliteserien, the Danish superliga and the norwegian national teams to mon-
itor the players well-being and work load, as well as reporting injuries.
The data collected by pmSys is based on subjective data collected through
questionnaires made in collaboration with a Norwegian School of Sports
Science (NiH) PhD study [2]. The players fills out these questionnaires us-
ing a mobile application, making the data subjective and the process semi-
manual. Prior to pmSys, and still the reality for many football teams, the
players had to go through a tedious and time consuming process of fill-
ing out forms using pen and paper. PmSys introduced a digitized version
of this daily routine, making it easier for the players to report, and the staff
to analyze and aggregate on this subjective data to create improved reports.

The general idea is to be able to maximize the workload without it lead-
ing to injuries and overtraining. With knowledge of the players general
well-being after a training session, the staff can make decisions and appro-
priate adjustments based on the data collected. How much work a player
has put in during a training session is individual and will vary, and by im-
plementing a way to collect objective data of a player’s workload during
each training, the staff will get a bigger picture of each individual player’s

1

fitness and fatigue, and the team as a unit. It will create the possibilities of
analyzing how far and where a player has run during training, acceleration,
deceleration and other useful information.

1.2 Problem definition

When pmSys was created, the system introduced a digitized solution for
capturing football players perception towards their physical well-being,
work load and injury status. In this thesis we will look to further improve
pmSys, with focus on how to integrate objective activity data from third-party

providers, hardware and physical activity tracking wearables. The main goal is
to supplement pmSys with human readable data, which will give the staff
a more detailed view and deeper understanding of a player’s general fit-
ness and potential changes in fitness over time. This will culminate in the
staff being able to adjust their training regime based on the squads general
fitness, and make specific changes in training on an individual level. Fur-
thermore, we investigate the most efficient ways of gathering, storing and
processing this data, to maintain and enhance the application’s usability.

This new functionality should influence the current use of the pmSys as
little as possible, making the transition require minimal effort from the end
users. The data collecting process will require the players to utilize track-
ing hardware and wearables, which will ultimately provide valuable in-
dividual data from training sessions. The introduced functionality should
also shield the system administrators from performing unnecessary assign-
ments as much as possible.

1.3 Limitations

This thesis is a research based on an existing system with a relatively large
number of users. To supplement this system with extended functional-
ity, we had to take the current system architecture, flowchart and com-
ponents into consideration. During this thesis we have gathered data and
researched third-party APIs, and we discovered that they all had their lim-
itations and restrictions.

Our collaborator in pmSys is located in Tromsø, which lead to fewer phys-
ical meetings and more frequent mail correspondence. This has not made
the research process problematic, but might indirectly slowed down the
actual developing progress.

2

1.4 Research methods

The research conducted in this thesis can be divided into these following
phases:

• Theoretical study of Open mHealth and their Shimmer application

• Theoretical study of pmSys’ components and infrastructure

• Analysis of the APIs supported by Shimmer

• Development of the Shimmer expansion with Open mHealth schema
and shims

• Performance analysis of Shimmer compared to other alternatives

• Development of a proof of concept implementing Shimmer in pmSys

To be able to gain an understanding of the topics introduced in this thesis, a
theoretical study and secondary research of relevant material was needed.
The majority of the information was gathered from technical specifications
and documentation from resources online produced by the developers of
the different systems. In addition to this, knowledge about security prin-
ciples and mechanisms, as well as different database technologies was ob-
tained from textbooks and other learning resources.

The analysis conducted on the supported APIs consisted of reading and un-
derstanding the documentation and technical specifications from the data
providers. This analysis was crucial to be able to identify which APIs were
relevant with regards to fulfilling the requirements. It is worth mentioning
that since the start of this thesis, Shimmer has worked on implementing
support for additional APIs, with four integrations in the pipeline.

The developing phase of expanding the Shimmer application was con-
ducted with a Scrum software development methodology. The sprints were
rather short, with a manageable sprint backlog. To be able to measure the
Shimmer application’s performance, we decided to alternative solutions,
which produce the same results as Shimmer. The different solutions were
tested in different environments to discover potential deviations.

In the final phase of the thesis, after expanding Shimmer enough to serve its
purpose, we went on to producing a proof of concept. The development of
this proof of concept went through several iterations, and the concept was
improved and changed when new, seemingly superior, possibilities were
discovered during the process.

1.5 Main contributions

In this thesis our main contribution is preparatory work through devel-
oping a proof of concept. We argue how supplementing objective data to

3

pmSys through Shimmer, an application made by Open mHealth, can con-
tribute to capture valuable and constructive data for assessing with pre-
cision a person’s physical health status. By utilizing data fetched though
third-party providers, one can draw conclusions and predict future out-
comes from exercise, and even adapt an exercise regime to match the cur-
rent potential a person has. This data is returned to users through the
Health Graph API, and through the API the ability for creating collections
of detailed data and make a comparison to other user’s is presented. The
thesis also cover some approaches to how combinations of the API and
some logic can store data and be used in context to be presented to the end
user.

The second contribution is to give an overview of how the different sys-
tems, which constructs the whole architecture, can be fully utilized for op-
timal performance and availability. We will describe all the different com-
ponents, and how they can work together to create an environment where
objective data from third-party providers can be fetched, processed and
stored to complement the existing captured data set. We will present how
Shimmer can be used to normalize the data and give it the same contextual
meaning in the same format.

Our third contribution is providing test results for solutions which can
be used to supply pmSys with the relevant objective user data. This is for
outlining the pros and cons with totally different solutions that ultimately
achieves the same, and provides the same end results. This includes speed
and complexity of implementation.

1.6 Outline

Chapter 2 presents the most important related work and research on topics
that helped us gain an understanding of pmSys, and has had an impact on
further development of this thesis as a whole.

We then analyse and evaluate the main components of Shimmer and how
they work together, and how we can utilize the application and its features
in chapter 3. We also look at how OMH is using Shimmer to convey their
purpose regarding shared common data formats.

Chapter 4 covers the chosen data provider Runkeeper, how the application
works and how wearable technology can be used together with Runkeeper
to capture objective data points. We also look at and exemplify the usage
of its Health Graph API. The limitations concerning the system and API is
also discussed here.

In chapter 5 we introduce the different parts of the current pmSys, the
mobile application, the trainer web portal and the backend infrastructure.
Here we also discuss how the objective data can help improve the system,

4

and how it will affect the infrastructure.

Then, in chapter 6 we introduce the testing that has been done with re-
gards to the fetching of data from Runkeeper, comparing Shimmer to a
provisional solution, looking at different possibilities of gathering the data
and measure the performance of the two.

Based upon the former chapters, chapter 7 presents the proof of concept
and ties it up to our problem definition, on how the implementation of ob-
jective GPS data in pmSys can be solved.

Lastly, in chapter 8 we conclude this thesis by giving a summary of our
discoveries, presenting the limitations of our research and giving recom-
mendations for further work and research.

5

Chapter 2

Related Work

This chapter will present related works concerning Ohmage and its
architecture and components, the concepts of eHealth and mHealth,
the Open mHealth organization’s purpose and how restructuring and
normalizing medical data can help increase its usefulness. We will also
look at the global positioning system (GPS), discuss the relevant third-party
APIs for gathering GPS data, and other useful technologies related to this
research thesis.

2.1 GPS

The global positioning system (GPS) is a navigation system based on satel-
lite. The satellites were originally put into orbit for military purposes. Yet
today anyone can use this system 24 hours a day, anywhere in the world in
any weather conditions. In short, the user has a GPS receiver which mea-
sures the distance to each satellite by the duration it takes before getting a
signal from the satellites, and can then compute your coordinates [3].

Coordinates in the coordinate system consists of longitude, latitude and
altitude to calculate a three-dimensional location. Longitude specifies the
the east-west position, latitude represents the north-south position, with
altitude showing the height above sea-level. The longitude and latitude are
essential, and without knowing the altitude we can still calculate a two-
dimensional location of a specific point on the planet. A football pitch is
flat, so the movement we look to capture and analyze is essentially the hor-
izontal movement of the players. Despite of this, the altitude can provide
useful analytical data, due to the different locations and distances between
football stadiums in the world. In Latin America, there are many high al-
titude nations, especially those in the Andes. As an illustration, Estadio
Hernando Siles is a sports stadium in La Paz, Bolivia. It is located in the
Miraflores borough of la Paz, with an altitude of 3 637 meters above sea
level. This makes it one of the professional stadiums in the world with
the highest altitude. The International Federation of Association Football
(FIFA) issued in 2007 an altitude limit, raising the limit from 2 500 me-
ters to a maximum of 3 000 meters. This ban was in 2008 suspended after

6

some controversy. The bolivian national team, having Estadio Hernando
Siles as their home field, is known for their strong performances at home.
They have beat former world champions Brazil and Argentina numerous
of times, and they won the Copa America in 1963 as the host [4]. It is well
documented that at high altitudes, the air pressure lowers and fewer oxy-
gen molecules are present in the air, raising both heart rate and the number
of breaths per minute (respiratory rate) to help pump oxygen through the
body [5]. Raised respiratory rate, low humidity and dry air are all factors
at high altitude that can lead to dehydration. A research article done by
Brosnan et al. in 2000 [6] examined repetitive cycling sprints at an altitude
difference of approximately 1 500 meters, getting results that shows the al-
titude reduces sprint performance by between 5 and 10%, and that shorter
rest amplifies this effect. Football players, playing a very interval oriented
sport, will notice this effect on the body, making the altitude data interest-
ing and important for training purposes.

2.2 Wearables

"In fitness trackers, brands such as Fitbit and Xiaomi are leading the charge.
CCS Insight expects that 53 million fitness trackers will be sold in 2016, with
volumes reaching 165 million in 2020, at a total value of $5 billion." [7]

Figure 2.1: Wearables forecast for unit sales and value 2016-2020. Figure src:
[8]

Wearables are hardware that a person can use for multiple things. In this
context we are reffering to wearables used with the purpose of tracking
spatiotemporal activities. This hardware often comes in the form of a
bracelet or a watch, and quietly monitors different aspect of your health
and motion. These wearables are often packed with different technologies
which differentiate themselves from each other. Some has eliminated the
need for bringing along a smartphone by introducing offline storage, and
is synced automatically when the smartphone is back in range. We will

7

cover the most basic and important technologies which must or should be
included in the wearable for the sake of analysing useful data in pmSys.

2.2.1 Accelerometer

In smart devices an accelerometer is a piece of electromechanical technol-
ogy used so the device can capture data based on orientation and velocity.
Common accelerometers utilize the piezoelectric effect or capacitance sen-
sors to deduce these datas. The piezoelectric effect uses tiny crystals, which
when applied force becomes stressed. This stress releases small amounts
of voltage which the accelerometer interprets and uses to calculate velocity
and orientation. Another way of calculating this data is using capacitance
sensors, which reads changes in capacitance. capacitance is stored voltage,
and the sensors will detect changes in the capacitance when force is applied
and translate it into data. Smart devices commonly has 3-axis accelerome-
ters to be able to detect orientation and velocity on a xyz axis (3D).

2.2.2 Gyroscope

Compared to an accelerometer a gyroscope helps determine orientation
through gravity. A freely rotating disk, commonly called a rotor, is
mounted on a spinning axis to indicate which way is down on a platform to
determine gravitational pull. Unlike the accelerometer, the gyroscope can
detect changes in orientation on all axises without being applied any force
to.

2.2.3 Altimeter

An altimeter is technology devised to detect altitude. The detecting is
usually performed through reading changes in atmospheric pressure. It can
often be more accurate than GPS to detect altitude as the GPS signal can
become unavailable in obscure places. Take into consideration the sports
stadium in La Paz mentioned in the GPS chapter 2.1, we could measure
performance at high and low altitude with data provided by an altimeter.

2.3 Mobile health

eHealth is a term referring to health care using electronic processing and
communication. Mobile health (mHealth) is one of the components of
eHealth. The Global Observatory for eHealth has defined mHealth as pub-
lic medical healthcare supported by mobile phones and other wireless de-
vices. The idea of mHealth is to utilize the core utilities and complex func-
tionality of these devices like 3G and 4G, Bluetooth and GPS among others
[9].

Furthermore, mHealth makes it possible to share and receive health data
at any moment in real-time, despite geographical distances. This will make
it possible to discover and treat illnesses in a shorter timespan, which is

8

beneficial.

The mHealth concept has a challenge with regards to the amount of closed
applications in separate silos with its own separate data format and man-
agement and analysis tools. These types of systems are known as stovepipe
systems (see figure 2.3). This type of architecture lacks coordination and
planning across different systems, prohibiting the mHealth concept of real-
izing its full potential and value.

2.4 Ohmage

Ohmage is an open end-to-end participatory sensing (PS) platform. PS is
a way of approaching distributed data collection and analysis that takes
advantage of smartphones. The Ohmage platform is used for gathering
data in two separate ways. Either through self-reporting mobile apps by
letting participants answer surveys and gathering the survey responses,
or by using passive data collection apps and letting the application collect
continuous data streams automatically (see figure 2.2).

Figure 2.2: Ohmage system architecture[10]

There are four components which together creates the construct that is
Ohmage[10]:

Ohmage backend

The first, and most central component, is the Ohmage backend. This
component is a datastore that provides a unified interface for data access.
It handles functions related to secure communication, authentication and
data storage among others. This handling is done through an extensive set
of backward compatible Ohmage web APIs.

9

Mobile data collection apps

The second main component is the data collection component. This is
divided into two groups; self-reporting applications and passive data
collection applications. All of the applications are used on the participants’
mobile devices to collect data. Today’s pmSys collects data through a self-
reporting application.

Web-based data management and administration

The third is the web-based management and administration tool for the
collected data. This web frontend is the main management portal for
projects (surveys), data and users. It can be used to monitor incoming data,
create or edit projects as well as managing access restrictions.

Web-Based data visualization and analysis

The final component is the web-based data analysis and visualization tool
for reading, visualizing and analyzing the captured data. The whole point
of this system is to make sense of the captured data and visualize the results
and make it actionable to the end user. This component provides different
visualization tools which dynamically retrieves the data from the Ohmage
backend.

Ohmage is a product of many participatory sensing systems combined to-
gether to form a generic platform with the possibility of customization to
fit different scenarios and purposes. It lets you create surveys and ques-
tionnaires which participants can answer on their devices, with or without
internet connection. In addition to collecting data through mobile appli-
cations, Ohmage provides a web application for administrating the data
collected. In the web interface, the data can be visualized and analyzed at
any given time with different tools that Ohmage provides. Ohmage also
lets you easily export the data to use other analytical tools [11]. The plat-
form provides unified data access across the applications built upon the
Ohmage backend, with the pmSys-app and Shimmer being two examples
of such applications.

2.5 Open mHealth

The open mHealth (OMH) organization, founded in 2011, describes itself
as "a nonprofit start-up breaking down the barriers to integration and
bringing clinical meaning to digital health data."[12] OMH works with
clinical experts and system developers with the purpose of making digital
health related data as useful and actionable as possible, and has built
an open source system called ohmage-omh. This system is based on the
Ohmage platform (see section 2.4), and is intended for rapid health data
gathering through mobile applications. The platform also includes a data
storage unit (DSU) which securely stores the gathered health data from

10

the users. The system is designed to be able to collect health data from
separate data sources, and the whole idea behind the OMH initiative
is to standardize these data sets to shared data standards. Every device
manufacturer or system has its own idiosyncratic way of structuring data
in its own silo, and may provide widely different presentation of the exact
same data. Shimmer is an application developed by OMH, and is meant
to serve as an application that gathers and normalizes data from different
sources. By normalizing the data sets to a shared standard, the data sets
will provide the same context and can be shared across other systems more
easily.

Figure 2.3: mHealth stovepipe architecture (left) and open mHealth’s open
architecture (right) [13].

OMH has created a set of standardized frameworks with optimized data
schemas for clinical usage. OMH is building a global community of
developers, health IT staff and researchers. This community is together
building and maintaining an open framework for digital health data usage
available to all.

2.6 Docker

Docker is a software container platform, which allows applications to be
deployed inside software containers. Docker packages an application and

11

all of its dependencies to avoid problems with compatibility and making
it more portable. Everything required to run a software is packaged into
isolated images. Packaging an application this way will guarantee that
the software always will run as expected regardless of the environment
to which it is deployed as long as the configuration is correct. A software
developer can create a portable application which can be run anywhere
the Docker Engine has been installed. This saves a lot of work both for the
developers and system administrators as it no longer becomes necessary
to support different platforms and operating systems. Amazon, Google
and Microsoft all added support for Docker to their platforms, and are
continuously contributing to the project.

Figure 2.4: Illustration of the difference between the Docker and VM
(virtual machine) environments. VMs run their own guest operating
systems, whereas the Docker environment runs on the same operating
system as its host allowing it to share a lot of the host operating system
resources.

Shimmer(see chapter 3) can be deployed using the Docker platform, and
consists of MongoDB, nginx and OpenJDK base images. You will need
Docker and some components found in the Docker Toolbox[14], like docker
compose and docker machine. You also need to have a running Docker
machine, either locally or in cloud platforms like Amazon Web Services,
Microsoft Azure or Digital Ocean.

2.6.1 Composing a docker container

Docker compose is a tool for packaging your own application into either
a single container or multi-structured containers. To create a container,
a docker-compose.yml file must be defined. From this file, installation
and run features can be specified to combine everything that a user
would need to use your application. This eliminates the need to manually

12

download required software from multiple third-parties, and ensures that
the installation process is completed without causing problems for the
users. Compose also functions as an excellent tool for staging new releases
for software so it can be tested in a clean and isolated environment to
discover possible bugs and limitations. The following example illustrates
how a basic definition of a web app with a MongoDB dependency will use
the docker-compose.yml file to download it and resolve the dependency:

version: ’1’
services:

web:
build: ./dir
ports:

- "5000:5000"
volumes:

- .:/code
links:

- mongo:mongo
mongo:

image: mongo

2.7 MongoDB

"MongoDB is an open-source document database that provides high per-
formance, high availability, and automatic scaling."[15] MongoDB is a
NoSQL database variant. NoSQL’s traits are partition tolerance, speed and
availability at the cost of consistency. NoSQL rather operates under the idea
of "eventual consistency", where data is eventually propagated to all nodes
which expect the incoming change. NoSQL dates back to the 1960’s, but
haven’t seen much use before companies like Facebook, Google and Ama-
zon started storing massive amounts of data. These bulks of continuous
input did not match the availability and characteristic of a tabular database
which has complex logic constraints, but rather the simplicity of easy stor-
age and retrieval of data without immediate logical constructs.

Entities in MongoDB is stored in documents, and consists of keys and cor-
responding values much like JSON data structure which is represented in
figure 2.6. The document which represent an entity holds a single record
per document, so for each create operation a new document is created.
These documents are then mapped into a collections, which holds all the
documents representing the same entities. An entity in the database world
is any object that we wish to model, concrete or abstract. These entities are
often recognizable concepts such as a person, an item or an activity. These
entities are usually referencing each other through shared identifiers based
on keys. Identifiers can consist of one or many keys with the sole purpose

13

of making the entities unique.

Figure 2.5: A car entity and multiple entities in a collection with different
values but same keys. Figure inspiraiton: [16]

MongoDB also offers an option to make embedded data, storing related
data in arrays that would normally be referenced using identifiers in a
single document. The values corresponding to the keys are called BSON,
which are a binary serialization format used for create, read, update, and
delete operations(CRUD). MongoDB is highly adaptable as BSON supports
many native programming languages, and exceeds at receiving JSON data
as a direct input, skipping much of the process of heavy data manipulation
as it is the natural data for MongoDB. The new objective data which
pmSys will be receiving is pure JSON, and given that pmSys already has
a MongoDB storage, all that is needed for the data is a new collection or
database without immediate concern of the relations.

{
name: {first: "Tom", last: "Tomson"},
birth: new Date(’May 17 1989’),
employed: "True"

}

Figure 2.6: An example of a document with multiple data types for a person
entity.

2.8 OAuth 2

The shims support authentication both through OAuth1.0 or 2.0 to
authenticate the application and its users, since the third-party APIs
use different authentication mechanisms. "The OAuth 2.0 authorization

14

framework enables a third-party application to obtain limited access
to an HTTP service."[17] OAuth 2 provides the authorization flow,
in our case, for a third-party application and delegates access tokens
that the application can fetch and store data for user accounts. The
framework consists of four primary roles: resource owner, resource server,
authorization server and client.

Resource owner (User)

This is the owner of data/resources that third-party applications would
like to access. The owner is the cog in the framework which must grant
access, and choose the scope of access for applications, in general this is
read-and/or-write access.

Resource and authorization server (API)

The API accomplishes both resource and authorization roles. A developer
can access resources through use of API calls as long as the application
has been validated by an API using OAuth2. The validation is achieved
through verification of the user, and granting access tokens to the
application.

Client (Application)

The application which tries to access the resources must be validated both
by the resource and the user to be able to use the API.

Figure 2.7: General OAuth 2.0 protocol flow interaction. Figure inspiration
src: [18]

15

The protocol flow explained in figure 2.7 is a general flow, so the actual
flow in Shimmer will differ slightly based upon what authorization grant
type is needed.

2.9 Third-party data sources

When starting the research on integrating pmSys with OMH’s shims, it was
important to cover what third party sources already had a collection of
shims implemented in the API. Then the focus could be directed to those
who could offer the correct data and features that was needed by pmSys.
Already integrated in Shimmer was Fitbit, Google Fit, iHealth, Jawbone,
Misfit, Runkeeper and Withings [19], with a fixed set of supported
endpoints, and every APIs with their own limitations.

Shim Measures

Fitbit Activity, Step_count, Body_weight, Body_mass_index,
Sleep_duration

Google Fit Activity, Body_height, Body_weight, Heart_rate,
Step_count, Calories_burned

Jawbone Activity, Body_weight, Body_mass_index, Step_count,
Sleep_duration, Heart_rate

Misfit Activity, Step_count, Sleep_duration

Runkeeper Activity, Calories_burned

Withings Blood_pressure, Body_height, Body_weight, Heart_rate,
Step_count, Calories_burned, Sleep_duration

iHealth Activity, Blood_glucose, Blood_pressure, Body_weight,
Body_mass_index, Heart_rate, Step_count, Sleep_duration

Table 2.1: Currently supported shims and requestable measures

The table 2.1 shows the data provider API library provided by Shimmer. It
shows the shims/providers, as well as the measures that Shimmer makes
available.

16

API

Requirement
GPS data Android iOS Wearables

Fitbit [20] X X X X
Google Fit [21] X X X X
iHealth [22] X X X X
Jawbone [23] X X X X
Misfit [24] X X X X
Runkeeper [25] X X X X
Withings [26] X X X X

Table 2.2: List of APIs supported in Shimmer.

In table 2.2, the Shimmer supported APIs are compared up against the re-
quirements they needed to fulfill to be integrated in pmSys. The require-
ment to the GPS data is that the API needs to provide a continuous stream
of geo locations during a workout. A few of the APIs provide recorded lo-
cations, but only the location of when the workout is ended and logged,
which is insufficient.

The only third-party capable of logging sufficient GPS data on a cross plat-
form basis, and has an API supporting extraction of that data is Runkeeper
(see section 4). Finding an API that has cross platform support is important
to cover all of pmSys’ users. The PmSys application is directed at Android
and iOS users, as these smartphone operation systems together, per third
quarter 2016 cover above 99% of the market share worldwide (see figure
2.8).

17

Figure 2.8: A chart of the smartphone OS market share wordwide. In the
third quarter of 2016 Android and iOS together stood for 99,3% of the
market share [27].

Runkeeper, which is an application with support for both Android and iOS
smartphones, can be paired with smartwatches for both operating systems.
While it’s possible to fetch activities through the shim framework and
Runkeeper API, it does not directly give details of an activity, but rather
a list of all activities, meaning the shim framework must be expanded.

2.10 Athlete Monitoring

The Athlete Monitoring [28] is a system similar to pmSys. It is an
application that uses the same concept of questionnaires to assess oneself
and create a value on an RPE scale. It also provides much of the objective
data that we would like to implement in pmSys. The functionality that
Athlete Monitoring offers that pmSys currently doesn’t, is objective data
collecting and tracking. It supports collection of data like heart rate and
GPS from multiple different sources by using spreadsheets. Our focus
is implementing GPS data, and by doing some research on the Athlete
Monitoring application we found that GPS data handling is a tedious
process that requires an additional step in the process, by forcing the user
to either insert data points manually in input fields, or format the data to
comma seperated value (CSV) files and then importing them. In result, if
the GPS format is not already in the correct format, manual interaction is
required regardless. We disregarded the use of this system because of the
lack of flexibility and scalability. The system has no solution for integrating
new data that is not already supported in the application. The Athlete
Monitoring system would also imply a brand new stand-alone solution,

18

it cannot be integrated with the pmSys backend.

2.11 Summary

Our goal is to provide a proof of concept for injecting objective data into the
pmSys backend, and for this pen and paper is not an option. By utilizing the
systems and software covered in this chapter, combined with the following
chapters, an automated process with minimal pre manual work can be cre-
ated. One issue that might occur in the future if dealing with continuous
stream of objective data is the transition into big data, which envelops new
incoming data and all the historic data need to create an analysis of the col-
lective objective health data.

When performing a GET request for the data provided by third-party data
providers, there are much of that data which can be considered overhead
regarding pmSys, and can be removed. For that the Ohmage based appli-
cation Shimmer can be used to normalize the data using the common data
schemas provided by OMH.

In the following chapters subjects regarding Shimmer, schemas and shims,
Runkeeper and pmSys will be adressed and described in closer detail, fol-
lowed by a conclusive proof of concept in chapter 7.

19

Chapter 3

Shimmer

In this chapter OMH’s Shimmer application will be presented, and how it
ties gathering, processing and presentation of health data and its usefulness
to developers and end users together. The different components will be
described, and lastly the implementation of the Shimmer framework in
pmSys, and how it can provide objective data will be explained.

3.1 Shimmer components

Shimmer is a free open-source application that simplifies the process of
gathering health data from third-party sources (see section 2.9). In other
words, it is an open-source health data integration tool customizable to fit
the individual product’s needs. It will gather data and convert it into clean
OMH compliant data that other applications can then utilize. The Shimmer
application consists of several components, an individual shim for each of
the already supported APIs along with JSON schemas for the data to be
normalized into, a resource server and a frontend console.

Figure 3.1: Architecture of the shim dataflow deconstructed from the
greater infrastructure of OMH. Figure inspiration src: [29]

20

"Once the common API is implemented by a data provider, the shim for
that provider is no longer used",[30], meaning the shims are a intermediate
solution, rendering the shims void when directly implemented by the data
provider. The shim framework is open source, and as such, all can develop
new functionality for it. This means that the whole architecture can be
placed in a solution, and shims can be added when it’s necessary extract
data not available at the time.

3.1.1 Shims

A shim is a library that communicates with third-party APIs, and in our
case this API is Runkeeper. It handles the whole chain of interaction with
the API from authentication, sending requests and mapping the data into
an OMH compliant data format, and the schemas that describes what the
normalized data should be formated like. Data points are created by the
shim, and these data points are self-contained pieces of data which includes
a header with metadata such as creation date, data source and acquisition
provenance to describe the data and where it comes from. The data points
also contain the actual health data we want to retrieve. The shim also
contains a mapper for each data point being made, access to a storage
point containing credentials and access tokens, and finally a logic controller
controlling the dataflow of authenticating and directing the incoming data
to the correct shim as shown in figure 3.1.

3.1.2 Resource server

The resource server (shim server in figure 3.1) is responsible for handling
the exposion of an API to retrieve data points from. The server also
handles and delegates the API requests to the corresponding shim. As the
number of developed shims added in the resource server increases, it is
also becoming capable of providing additional data points from a growing
number of third-party APIs. In addition to this, the resource server is also in
charge of managing the third-party access tokens of behalf of the shims. The
resource server is designed to be run within an existing infrastructure, and
be accessed by this backend the same way that you’d deploy a database, an
email server and other subsystems.

3.1.3 Console

The Shimmer application’s console is a minimalistic and simplistic web
user interface (UI) made to make the interaction with the resource server
easier for the users. Here the users can change various configurations, add
client id and client secrets (figure 3.2) and trigger the authentication flow
between the application (Shimmer) and the API. The client id and secret
is stored in an underlying MongoDB instance. The console also lets you
request data from the APIs using date pickers and drop down menus.

21

Figure 3.2: Client id and client secret added for the APIs connected with
the available shims. Client secret and id is returned by Health Graph when
registering an application in Runkeeper.

22

Figure 3.3: List of the added APIs in the console. Each API has their own
set of data available to request. For Runkeeper, these data sets are related
to activities and calories burned, including the GPS data set we created for
this research thesis. From here it is possible to request the raw data and the
normalized OMH compliant data.

3.2 Schema

A schema is a specification of structure and format of data, and is
structured as JSON format in OMH’s attempt to unite health data into
a common format. These schemas exist to express, process and gather
health data as a single source of documentation regardless of where
the data comes from. This is a measure to help increasing the usability
and readability for health data, which is complex and in potentially in
massive volumes. The purpose of these common schemas is to break down
information into the smallest possible chunks, allowing data providers to
minimize the amount of overhead, and giving the consumers the possibility
to scrutinize individual pieces of data. The schemas is also a reference point
for developers, enabling bootstrapping of an application quicker and more
trivial. However, when dealing with health data, too much atomicity will

23

remove contextual meaning and important information can get lost.

3.2.1 Design principles

Schemas are designed to consider clinical measures and the gravity of their
distinction in medical use. The schema should be able to measure one or
multiple values where it is applicable and useful, so the aggregation of data
is a simpler process. The schemas aim to offer an ideal format describing
digital health data for clinical and self-care. The design principles are
separated into these six categories [31]:

1. Atomicity

The schemas should present data at a granularity to be most useful, not
restricted to traditional assumptions and standards about clinical care
models. For instance, you don’t need to know the prescribing doctor or
other prescription data of a taken dose. This principle about granularity
has often lead to more atomicity than the electronic health record (EHR)
data standards.

2. Balancing parsimony and complexity

Health data can be highly complex. The schemas must be as comprehensive
as needed for the majority of mHealth use cases, avoiding redundant
complexity where it isn’t appropriate. The schemas follow the closed-world
assumption, implying that what is stated is true and what isn’t stated is
false.

3. Balancing permissiveness and constraints

Schemas that are too constrained and complex to use will not be adopted,
but on the other hand, permissive and easy to use schemas may provide
clinically meaningless data. This principle is to be pragmatic when
balancing permissiveness and constraints. The ideal is to get accurate
measures to the precision needed, and avoid internal consistency and
inconsistency with absolute measures.

4. Designing for data liquidity

The Open mHealth schemas need to preserve the most important clinical
meaning as mHealth data is passed along. The interchange also needs to
preserve the meaning of the data, as provenance is equally important. To
secure correct interpretation of the data, the context of the data points must
be available alongside the actual data; the schema must keep track of the
things done to it from its origin.

24

5. Alignment with clinical data standards

Open mHealth adopted widespread medical ontologies in their schemas,
drawing from standard vocabularies where possible instead of reinventing
sets. For instance, almost all of the units of measure used in the schemas
come from Unified Code for Units of Measure (UCUM) Codes for
Healthcare Units (see table 3.1)[32]. UCUM is a system of codes for
unambiguously representing units of measure to humans and machines.
This leads to developers not having to get into endless different medical
terminology.

Valid UCUM code Description

cm CentiMeter

m Meter

mL MilliLiter

L Liter

s Second

min Minute

Table 3.1: Examples of Unified Code for Units of Measure

6. Modeling of Time

The time perspective is a really important piece of information in medical
data. The Open mHealth schema can represent both points in time and time
intervals.

The balance between complexity and usefulness is important to note, and
that it might be more appropriate to reduce complexity by removing less
useful data, or move it to another schema, this also increases readability.
The context of the original data measured need to be stored in a header
included in the schema. This operational metadata ensures that the data is
preserved when exchanged. All data need to follow the clinical standards,
regarding vocabulary and granularity. Also by the use of enumerates the
schemas has some attributes that only can be set to specific types or values.
And giving all measurements timestamps will give the data more context.

25

{
"activity_name": "walking",
"distance": {

"value": 3.1,
"unit": "mi"

},
"effective_time_frame": {

"time_interval": {
"start_date_time": "2015-02-06T06:25:00Z",
"end_date_time": "2015-02-06T07:25:00Z"

}
},
"kcal_burned": {

"value": 160,
"unit": "kcal"

},
"met_value": 3.5

}

Figure 3.4: JSON schema structure including activity type, distance,
timeframe and calories burned. Figure src: [33]

To be able to add a third-party API and request data from it, you must
first visit the developer segment of the API you wish to add, and register
a client application. In the registration process, you’re able to request
permissions regarding information retrieval, editing and retaining. You
must also specify the name of the application, a short description and
a redirect/callback URL to which the user is sent to after granting your
application access to the data. The information you provide in this process
is forwarded to the end users, and they can manage operational concerns
like authorization and rate limits. Once the registration is completed, you
will be given a set of credentials. These credentials are then used to identify
your application in the API when it’s used, and is entered as shown in
figure 3.2.

3.3 Grant Type: Authorization Code

This is the grant type Health Graph operate with through shimmer, so
an in depth explanation will be given here. "An authorization grant is a
credential representing the resource owner’s authorization (to access its
protected resources) used by the client to obtain an access token."[34] This
is commonly used for server-side applications, as the source code is not
exposed. This is important since the confidentiality of the client secret must
be maintained. The client secret is a token generated when a developer
registers an application.

26

Step 1: Authorization Code

The user receives a link through some form of media, for example email.
The link will look something like this:

https://runkeeper.com/apps/authorize?state=xxx&client_id=
CLIENT_ID&response_type=code&redirect_uri=CALLBACK_URL

The response_type here is the code which specifies that your application
is requesting an authorization code grant. The CLIENT_ID is your applica-
tion id, which is how the API identifies your application. CALLBACK_URL
is where the user is redirected after the code is granted.

Step 2: User authorization

When the user clicks the link given in step 1 and log into the service, they
will be prompted to authorize or deny the application.

Step 3: Authorization code is provided

If the agrees to authorize the application in step 2, the service will redirect
to the specified CALLBACK_URL, with the authorization code.

https://runkeeper.com/apps/authorize

Step 4: Application request access token

Now that your application has all it need for requesting access, a POST
request is done to the API token endpoint. Here the authorization code and
authentication details must be passed.

Step 5: Application receives access token

If the POST request in step 4 validates, the API will respond with an access
tokens and if applicable, optional information, for example a expires_in
value or scope, the level of access the service is asking for.

{
"access_token":"ACCESS_TOKEN",
"token_type":"bearer",
"expires_in":2592000,
"refresh_token":"REFRESH_TOKEN",
"scope":"read"

}

Figure 3.5: OAuth access token response from a service.

27

Now the application is authorized to use the service, limited to it’s scope.
The access token can be used until it expires, or a refresh token is used. A
request using curl to the Runkeepers API will look like this:

curl -i https://api.runkeeper.com/$RESOURCE -H "Accept: */*"
-H "Authorization: Bearer $ACCESSTOKEN"

This will fetch whatever JSON data at that url.

Figure 3.6: Interaction flow for the grant type authorization code. Figure
inspiration src: [18]

3.4 Installation

For the sake of this research, we installed the Shimmer application locally,
built the code natively and ran it in a terminal on an Ubuntu operating
system. This way of running the application and console has a couple of
requirements, you have to install a Java 8 or a higher Java Development Kit
(JDK), Node.js, and have a running MongoDB instance. When run for the
first time the bash build script resolves a few dependencies using npm. It
installs Grunt and Bower and creates a symbolic link (symlink) in the Grunt
output directory from source files in the application. When implementing
and deploying Shimmer in pmSys, you can use Docker 2.6.

3.5 GPS in Shimmer

With OMH’s initiative (See section 2.5) in mind, we wanted to explore
the possibilities of making the data we retrieve structured in a way that
made it easier to manage and process by others. OMH has developed a
lot of schemas for this purpose, including schemas for heart rate, calories

28

burned, physical activity etc. [35]. Figure 3.7 and figure 3.8 show how raw
data from a physical activity is shimmed to the physical activity schema.

{
"size": 1,
"items": [

{
"duration": 8,
"start_time": "Tue, 28 Feb 2017 00:00:00",
"total_calories": 3,
"tracking_mode": "outdoor",
"total_distance": 69.598770321565,
"entry_mode": "API",
"has_path": true,
"source": "Developer’s Console",
"type": "Running",
"uri": "/fitnessActivities/940568831"

}
]

}

Figure 3.7: SON raw data before it is sent through the shim.

29

{
"header": {

"id": "43f467a4-9f38-45c3-b4dc-c7a3601d2f6e",
"creation_date_time": "2017-03-01T14:38:20.576+01:00",
"acquisition_provenance": {

"source_name": "Runkeeper HealthGraph API",
"external_id": "/fitnessActivities/940568831"

},
"schema_id": {

"namespace": "omh",
"name": "physical-activity",
"version": "1.2"

}
},
"body": {

"activity_name": "Running",
"distance": {

"unit": "m",
"value": 69.598770321565

}
}

}

Figure 3.8: JSON data after shimmed to OMH compliant data.

It was not developed any schema or shim for GPS data. This had to be
developed by following the design principles[36] and a template [37]. The
development is addressed i section 7.2.

3.6 Summary

In this chapter we have covered how Shimmer works by presenting its
components and the logical construct. Shimmer is a processing software
created by OMH to create compliant data which can be used in the schemas
defined by OMH. By using Shimmer, the exchange of data between sys-
tems with the same schemas is an easier process as the sender and receiver
has the same data formats. This is basically OMH’s vision for the future of
health data. Shimmer also provide the users with a solid authorization pro-
cess that is the OAuth framework. This is necessary as the data in question
is health data, which is considered sensitive data. By exchanging multiple
"handshakes", and returning unique authentication tokens, the data can be
processed according to API specifications.

By following the design principles covered, new schemas can be created
for data that might not be covered in Shimmer at this time. This makes
the scalability of Shimmer as mediator for data processing a great option

30

for all systems which has health data as input. PmSys has already imple-
mented some of the other systems that OMH has developed, which would
make Shimmer an easier installation as it will be a plug-in to the existing
systems.

31

Chapter 4

Runkeeper and Health Graph

As Runkeeper is the focus regarding implementation with a third-party
providing the new objective data, this chapter will explain a more detailed
overview to what is currently accessible with the endpoints, and what use-
ful data they can provide in the context of pmSys. Runkeepers endpoints is
not directly exposed through their own services, but rather through Health
Graph which is powered by Runkeeper, helping developers creating their
application and visually display in their own formats.

4.1 Runkeeper

Runkeeper is an application for smartphones, which helps you set personal
goals, track workouts and progress, follow a plan and help you stay moti-
vated. The application is also focusing on creating a community, and cur-
rently has more than 50 million users. Using the application, users can con-
nect to their social media like Facebook and follow their friends activities
and progress. Users can also view their friends competition or motivation,
and see how their activities stack up to other users. Runkeeper can also tai-
lor a workout to suit your needs and act as a personal trainer.

As other similar applications, Runkeeper offers a "plus" subscription called
Runkeeper GO. This is a payed subscription which will offer a user new
features otherwise unaccessible. This includes live tracking of your GPS
data for others to view, multiple advanced fitness reports and more.

4.1.1 Runkeeper application

The Runkeeper application is supported both for Android and iOS, and
is geared towards runners, walkers and other spatiotemporal activities.
The app takes advantage of the featured GPS technology within the
smartphone or smartwatch, making route tracking possible. Utilizing
smartwatches for route tracking requires the smartwatch to have its own
built-in GPS (see section 4.1.2). The application also lets you add context
to the workout with custom notes, describing equipment used and what
the weather was like. In the Runkeeper web application, you can view a

32

detailed summary of a workout, including data about pace, distance, time
and the route taken on a detailed map. Runkeeper also provides simple and
effortless uploading to social media if so desired.

4.1.2 Wearable hardware

It is required for the wearable to have its own built-in GPS to be able
to replace the smartphone’s tracking ability. Such wearables include the
Smart Watch 3[38] and the Moto 360[39]. By implementing this technology
in smart watches, the consumers are able to go jogging, using for example
Runkeeper, without needing to carry a heavy and impractical smartphone.
In general wearables need to be synced with the phone, and the wearable
should automatically synchronize with the Runkeeper application as long
as the device is within bluetooth range of the smartphone. During an
activity recording, the users are able to view stats or to pause or stop the
tracking 4.1. This is a nice feature when dealing with football practice as
the coach(es) might want to interrupt the session to give instructions, or if
the staff only wants to monitor certain parts of the session [40].

Figure 4.1: The user can pause or stop the recording during workout
through a smartwatch, and view available stats [40].

4.1.3 GPS accuracy

Runkeeper has a few different options to optimize the capturing process
as much as possible. Depending on the training environment, these can be
adjusted to get better precision. Opening the Runkeeper application a few
minutes before starting a session to let the wearable calibrate with the satel-
lites and lock a GPS signal is preferable. This way the tracking can begin
instantly when a player enters the pitch. In the Runkeeper app you can
choose between "Device Only" or "High Accuracy" GPS mode.

If the session is planned to be indoors, the best choice is to set it to "High
Accuracy", as this will not only utilize the device’s internal GPS, but also
WiFi/4G and cell signal. Newer phones and smartwatches have compo-
nents with higher performance, and those based on the integrated circuit
SoC (System on Chip) is better designed for this purpose as it reduces the
possibility of component-interference with the GPS [41].

33

4.2 Health Graph

"In words, the Health Graph is: A system of individual health connections
or interrelations - a digital map of your personal health."[42] Health Graph
in its essence is an API providing access to the user data, completed fitness
activities and health data captured by a number of different health tracking
applications, including Runkeeper. Health Graph can provide users with
snapshots of their current physical state, and their progress over time. This
can help gain insight in how behavioral patterns can contribute to changes
in health and lifestyle, this can also include how social interactions influ-
ence these changes. For example, you see your friends signing up for a
10K, and at a later time you do the same. All this data can establish corre-
lations between nutrition, sleep, social motivation and the general activity
frequency or performance, which can be visually displayed to you.

Just as Runkeeper is built upon Health Graph, developers can create their
own applications, and by integrating it with Health Graph they can access
data from the Health Graph supported applications like Runkeeper, With-
ings and Jawbone. The Health Graph API can in this way jumpstart a de-
velopers app, skipping the need to create their own endpoints. Developers
has access to all available endpoints, and they can share their application
through social media, or even incorporate the Runkeeper GO feature and
earn revenue through sales and subscriptions.

4.2.1 API

"The Health Graph API is a portal to the Health Graph’s robust data
set."[42] Health Graph contains a collection of web-based resources, which
can be accessed through use of the API, and are referred to as nodes in
the Health Graph documentation[43]. The API consists of the OAuth2.0
token authentication (see section 2.8) and the collection of endpoints which
contains a user’s data, and his or hers activity sets. When registering an
application with the Health Graph application portal, the application will
be assigned a client id and client secret. The client id and client secret values
must be sent along with grant type, code and redirect uri through a POST
request to the Health Graph token endpoint in the format application/x-
www-form-urlencoded. The response will contain an access token which
will uniquely identify the user with the application. This access token
is contained within the application and will never change unless the
developer disconnects the application. The reason for this is that Health
Graph does not use a refresh token or expire timer when authenticating
users. Example of the response using the GET operations for fetching data
sets:

GET /team HTTP/1.1

Host: api.runkeeper.com

34

Authorization: Bearer xxxxxxxxxxxxxxxx

Accept: application/vnd.com.runkeeper.TeamFeed+json

This will fetch all the friends you have added in Runkeeper in a JSON
structure with the fields:

{
"size": 2,
"items": [

{
"profile":"http://www.runkeeper.com/user/xxxxxxxx",
"name":"Username",
"userID":"xxxxxxxx",
"url":"/team/xxxxxxxx"

}, {
"profile":"http://www.runkeeper.com/user/xxxxxxxx",
"name":"Username",
"userID":"xxxxxxxx",
"url":"/team/xxxxxxxx"

}]
}

Figure 4.2: A JSON response when using the GET method on the TeamFeed
endpoint in Health Graph.

4.2.2 Health Graph console

This is the developer tool for testing all the HTTP methods available: GET,
POST, PUT and DELETE. GET is used to fetch data directly, POST is used
when data is created and stored, PUT is for modifying data, DELETE is
for deleting. For each of these operations is also a HEAD method which
retrieves the header corresponding with the JSON message-body. Through
this console a developer can test the different API responses before creating
any parts of an application. The bearer token is automatically retrieved and
stored in the console, and is ready to use without any configurations.

35

Figure 4.3: The console with inputs for a GET response fetching individual
user information[44].

4.2.3 Limitations

There an abundance of endpoints which can be used to supply an applica-
tion with data that can be stored or fetched directly from Health Graph’s
data storage, and be presented to the end user. But one major limitation,
that directly correlates to our vision to supply pmSys with collections of
data which can be used in comparison to a single or multiple users, is that
there is no endpoint that directly performs a GET request on all detailed
data. This can only be done through supplying an endpoint with a specific
activity id for a user with his corresponding authentication bearer token.
This results is multiple GET request, and slows down the process of re-
trieving the data significantly.

Another limitation, which in theory could have solved the previous men-
tioned, is that there is no support for creating and adding new endpoints.
Instead of just making the endpoints open and usable for third-parties,
Health Graph could have presented their API as open-source, making it
possible for developers to create new functionality.

Lastly the response returned by many endpoints returns much data which
is considered overhead regarding pmSys. This can be a direct link with
increasing the read operation when fetching data. By denormalizing the
database (see section 7.5.4) you can increase the speed of read operations
by putting relevant data in the same entity to reduce complex logics, but
it decreases write, update and delete operations. For pmSys this results in
more processing after getting the data to remove unnecessary values.

4.3 Summary

We put Runkeeper and it’s API created by Health Graph in focus as it is
the only software that supports all our criteria for supplementing pmSys

36

with useful objective data. Runkeeper has a vast amount of users, and there
is no limit to how many users can be a part of data collection using the
API. This makes the perfect environment for scalability and expanding the
user base in pmSys. As mentioned Runkeeper can be used in combination
with many variations of physical activity tracking wearables, which makes
the application great for equipping a minimal amount of hardware on
your person when tracking physical activities. Most important is that the
wearable support GPS to utilize the potential in objective data gathering.
By setting up players with a Runkeeper account, accepting it through
pmSys, and gearing the with hardware, one can with minimal effort
start collection data. It is important to simplify the process so we can
separate the user from underlying technical efforts. We also covered some
of the limitations that presented themselves during our research. If these
limitation are handled on Health Graph’s side of the table, some processes
can be changed and simplified significantly.

37

Chapter 5

PmSys

5.1 Current pmSys

5.1.1 PmSys Mobile Application

PmSys was developed as a tool for collecting, storing, analyzing and
presenting the player’s subjective opinions regarding their training load
and current physical wellness, as well as a way of reporting injuries. Rating
of Perceived Exertion (RPE) is a scale commonly used in both medical
studies and as an intensity description in training sessions [45]. This is an
important scale used in the surveys in pmSys to discover the intensity of a
session. The scale ranges from 0 (rest) to 10 (maximal) as shown in figure
5.1. PmSys is built on the Ohmage Mobile Web Framework which supports
multiple datatypes that the user can send in: number, string, timestamp
and other data tpyes. The data gathered with this scale gives the coaching
team an overview of how a player subjectively perceives the workload of
a given session. The coaching staff can then gather a general consensus of
the intensity, and make appropriate adjustments if required.

Figure 5.1: The RPE scale ranging from 0-10 [46].

Each player must fill out surveys in the pmSys-app after each training
session, answering questions related to their perceived training load and
wellness 5.2. The questionnaires are developed in collaboration with a NiH
PhD study, and is what gives the RPE scale a value for each survey taken
for a player.

38

Figure 5.2: The workflow of which the players go through when reporting
a training session.

5.1.2 PmSys-trainer

PmSys-trainer is a web portal that is used to read and present the data
collected through the mobile application. The key part of the web portal
is to present health data which has value for a trainer, meaning he
can read useful data and adjust training or advice accordingly to make
improvements for a player and for the team. All data, graphs and modules
which is deemed unnecessary is excluded for the sake of keeping the web
portal as simple, fast and easy to use as possible.

Figure 5.3: Representation of the backend structure in pmSys.

39

5.2 PmSys with objective data

5.2.1 Motivation

Accelerometers has been around since the 1950’s, but was not adopted into
physical activity monitoring systems until the 1980’s [47]. Compared to to-
days hardware, which includes accelerometers and gyroscopes, the early
accelerometers that was used to track activities was not very reliable. This
stemmed from low accuracy and calibrations in the data, and a high price
for it’s applications. Today, multiple wearables can be used to gather more
data by the second to assess with precision a player’s actual physical con-
dition. Most of these types of wearable comes with a 3-axis accelerometers
to measure movement in all directions, and some includes a gyroscope to
measure rotation and orientation. The subjective data which pmSys now
gathers is not enough to prove the physical state, injuries or wellness of a
player. The reason is that the subjective data is a personal assessment of
oneself, and given the personal input it is easy to tamper with the data or
lie during a survey.

By supplying the existing pmSys backend with objective data though wear-
able devices and mobile applications the trainer web portal can be extended
to visualize even more useful data sets. The objective data compared to the
subjective data, which are gathered though the surveys mentioned earlier,
has next to no manual interaction, and will generate a continuous stream of
data points based on monitoring a player during training. This data can be
for example GPS coordinates, pulse, heart rate, blood pressure and calories
burned. All these data can be stored in a database and be used in aggre-
gation algorithms or queries to look for patterns during a players training
and create a representation in the trainer web portal. In example, a map
can be created using the longitude and latitude data to see the movement
of players, find bad habits and how the players move and position relevant
to each other. This data can help to an even greater extent to fine tune the
team’s performance.

5.2.2 Injecting shimmer into the backend

Shimmer will mostly be a standalone plug-in to the existing pmSys back-
end, only needing access to the authorization server for storing the new
OAuth tokens supplied by the Health Graph authorization API 5.4. A
POST/GET request will be done to the authorization API, and a GET re-
quest to the data API for fetching a pmSys users activity data.

The pmSys backend is currently structured using docker containers for
isolating the systems running pmSys. Shimmer can be configured to run
in a cloud or a docker container, but for integration purposes the natu-
ral choice would be to put Shimmer with the current backend. By placing
Shimmer in the existing pmSys server it also offers higher capability and
performance then it would by fragmenting it on a cloud based solution.

40

The different Docker containers that makes pmSys is built and run using
Docker compose 2.6.1, this means that Shimmer could be added as a de-
pendency in a docker-compose file making it automatically download and
configured. This makes deployment of pmSys including Shimmer a sim-
ple process for any environment supporting Docker containers. Shimmer
has it’s own deployment procedure configured in a docker-compose.yml
file, which handles the deployment of the three primary components: the
individual shims, a resource server and the frontend console.

Figure 5.4: Representation of the backend structure in pmSys integrated
with shimmer.

5.3 Summary

As pointed out in this chapter, the subjective data coming from users an-
swering questionnaires though surveys is not enough to precisely evaluate
a player’s physical health. The RPE scale can only provide an understand-
ing of a player’s general assessment of themselves, and give a perspective
of how they feel at certain points during a timeframe. The surveys is visu-
alized to trainers and can evaluate their own exercise regime. By supple-
menting the backend with objective we can contribute to a deeper under-
standing of physical performance.

Objective data also contribute to effortlessly provide data that has limitless
uses. By applying aggregation algorithms and logical queries on the ob-
jective data, one can find correlating patterns in time, location, mood and
frequency of exercise that otherwise is to obscure to detect. By comparing
the aggregated objective data provided by wearables and application, and
the subjective data from user input one can eventually create a clear picture
of how it all ties together.

41

Chapter 6

Testing

The solutions tested are one using Shimmer, and one using bash scripts.
Both which has their advantages and disadvantages. The data fetched
from the Health Graph API contains a lot of unnecessary data, which
means fetching it will be a more demanding HTTP request on the system.
And the data must also be processed after the HTTP request has finished.
The solutions for fetching data is using the same data set which contains
500 items. Each item contains 10 keys with corresponding values, which
translates into 5000 lines of JSON data, and even more when working with
the detailed activity data.

Test environment

• Native OS: OS X El Capitan

• Virtual machine: Ubuntu 14.04 LTS

• Average download speed: 80 Mbps

• Java version: 1.8.0_111

• Curl version: 7.35.0

6.1 Using Shimmer

This solution utilizes Shimmer, which is the intermediate data handler used
for health data. This solution is the fastest given that the bearer token, client
id and secret is stored in MongoDB. The table 6.1 shows how much time it
takes to get a connection to the Health Graph API server and then down-
load the content stored there. Time to first byte is a measure for the respon-
siveness of the server, from the HTTP request is sent until receiving the first
byte on the client.

As shown in the table, the bottleneck here is API server response time, and
the actual download is just a fraction of the total download time. The data
being fetched is the undetailed data which does not contain GPS data, but

42

the activity id which can be used for a new GET request on the endpoint
containing the detailed data which includes the data points for GPS.

Description
Time Shortest Highest Average

Time to first byte 332,22 ms 814,72 ms 428,02 ms
Content download 0,28 ms 4,12 ms 1,1 ms
Total download time 332,50 ms 818,84 ms 429,12 ms

Table 6.1: Test results for fetching 500 activity id’s from Health Graph API
using Shimmer.

By shimming the data fetched earlier, the activity id can be extracted
and be supplied to the endpoint returning detailed data containing the
needed GPS data points. This is much larger bulks of data containing much
unnecessary data for the purpose of pmSys, but must still be downloaded
in order to shim it as it is included in the response. The table 6.2 shows
detailed timing for fetching the detailed data.

Description
Time Shortest Highest Average

Time to first byte 3,02 m 4,41 m 3,52 m
Content download 4,4 s 6,2 s 4,9 s
Total download time 3,06 m 4,47 m 3,57 m

Table 6.2: Test results for fetching the detailed raw data of 500 activities
with Shimmer.

6.2 Using bash script

This solution is a bash script which utilizes curl, which is a com-
mand line tool which fetches or sends files using URL syntax. Curl
makes a http GET request against a supplied website, which in this case
is https://api.runkeeper.com/fitnessActivities?pageSize=100000, the API
endpoint for all activities associated with a user, the pageSize parame-
ter is defined as the standard response only will show the 25 items of
the data set. Supplying curl with the correct headers: -H "Accept: appli-
cation/vnd.com.runkeeper.FitnessActivityFeed+json" -H "Authorization:
Bearer $BEARER", where the variable BEARER is the unique bearer token
for a user, will fetch all unsifted data belonging to the user identified with
the bearer token.

The table 6.3 shows the time it takes to do a GET request for all the raw
data, and have it returned by the Health Graph API. The script also extracts
the relevant activity id’s which can be stored and used in the MongoDB in
pmSys. This is the first step to isolating the detailed activity data.

43

Description
Time Shortest Highest Average

Time to first byte 692,52 ms 1455,66 ms 796,98 ms
Content download 33,06 ms 141,05 ms 83,77 ms
Total download time 784,01 ms 1490,65 ms 880,76 ms

Table 6.3: Test results for fetching 500 activity id’s from Health Graph API
using curl.

The activity id’s stored combined with the bearer token will be used
to fetch the detailed activity data, including all GPS data points,
distance, duration, heart rate and more. For each detailed activity
there is 70 keys with values, and with the data set of 500 items,
it calculates to 35.000 lines of JSON data. This GET request is from
https://api.runkeeper.com/fitnessActivities/activity_id, using the same
curl method as explained earlier. The table 6.4 shows the time it takes to
fetch all 35.000 lines og JSON data. The data again includes much over-
head, data unnecessary for pmSys, so for storing purposes much can be
removed.

Description
Time Shortest Highest Average

Time to first byte 4,21 m 4,50 s 4,39 m
Content download 11,3 s 16,1 s 14,1 s
Total download time 4,32 m 5,06 m 4,53 m

Table 6.4: Test results for fetching the detailed raw data of 500 activities
with curl.

6.3 Summary

Looking at the results in the tables presented in this chapter, Shimmer
clearly offers higher performance for HTTP requests against the Health
Graph API. The reason is as stated earlier that the client id, client secret
and bearer token is more accessible as they are stored in the underlying
data storage in Shimmer. But the downside of Shimmer is that it is a more
tasking process to integrate it as a docker instance together with the other
docker containers existing in the pmSys backend. Shimmer has to exists as
an intermediate layer for processing and storing data from Runkeeper or
other third-parties.

The bash script offer worse performance than Shimmer for processing
HTTP requests, but is an easier installation that does not require a new
docker container, only a plug-in to the existing Ohmage data storage unit
(DSU) in the pmSys backend. A major limitation that applies to both solu-
tions is that there is no endpoint in the existing Health Graph API that re-

44

quests all detailed activities for a user, which includes GPS data points. This
results in one new HTTP request per activity requested, which includes the
authorization process, this is why the request for detailed data is exponen-
tially slower in total, as there is one new "time to first byte" for each detailed
activity fetched.

45

Chapter 7

Proof of concept

In this chapter we present a proof of concept that was developed for this
thesis, and it’s system requirements. It will describe how to implement
objective data with Shimmer, and present the schema and shim developed
for GPS data specifically. In addition, this chapter will address each
step on how to get GPS data from Runkeeper into pmSys, including
sequence diagrams and a visual design mockup to describe the process
and functionality, and a detailed design of the database handling.

7.1 System requirements

This section present the system requirements of the implementation of the
Shimmer plugin in pmSys, and outlines the general requirements consid-
ering an actual implementation of a passive data collection application.

7.1.1 Functional requirements

By expanding pmSys with Shimmer, there are some functional require-
ments that have been outlined. This section presents an overview of the
general functional requirements imposed to the system.

Connect pmSys user and Runkeeper user

By connecting the pmSys users to their corresponding Runkeeper users,
we are able to map the activity data accordingly through data joins of
specific ids. The connection process should be executed by the user through
a simple button press using the pmSys application.

Collect data

The Shimmer application will do a GET request of the GPS data points
from the Runkeeper API (Health Graph). This process will preferably
be an automated process, by doing daily/weekly batch processing. An
alternative solution, or additional feature, could include the fetching
through an on-demand function in the pmSys-trainer web portal.

46

Normalize data

The response from the GET requests will be normalized by Shimmer to fit
the Open mHealth common data schemas. Normalizing the data gathered
from potentially many different sources to a single common format will
enable the processing and aggregation of the data to be executed in the
same manner.

Store data

The data gathered from Runkeeper should be stored in pmSys’ own
database system. This way the system won’t rely on the uptime of
Runkeepers’ servers. Storing the data in a efficient way for aggregation is
also a priority.

7.1.2 User stories

These user stories creates a simplified overview of the functional require-
ments in practice. The user stories are meant to describe the type of users
utilizing the system, functionality the new implementation is offering the
users, and why it is beneficial.

As a I want to so that

Player connect my pmSys user to
Runkeeper

recording sessions are possi-
ble

Player start recording a session my sessions are stored in pm-
Sys

Trainer see my players movement
during training

I can evaluate their training
performance

Trainer view different player stats
from sessions

I can select the starting line
up

Table 7.1: User stories

7.1.3 Non-functional requirements

When expanding pmSys with Shimmer, there are some non-functional
requirements that have been taken into consideration. This section forms
the outline of the main non-functional requirements.

Usability

We want the implementation of Shimmer to be as seamless as possible, with
an intuitive layout and only require simple interactions from the users.
We cannot assume that all the users of the system have the same high

47

technical competence. By maintaining pmSys’ high usability, and avoiding
big changes in the user pattern, it’s more likely that the players will adapt
to and use the added functionality.

Scalability

The backend solution of the expansion must be scalable, as the Shimmer
application supports many different third-party APIs. Different teams may
want to use different wearable technology devices, and the system should
provide this opportunity.

Integrity

To maintain data integrity across the different data storage units is
essential. The system must have the capability to ensure that data is not
modified or deleted without authorization or without pmSys detecting
such transactions. PmSys must protect data integrity by performing data
integrity checks.

Performance

When expanding pmSys, it is important that the impact on the current
system performance is minimal. This is important for the user experience,
and will affect how we design the implementation.

Robustness

Having a robust application and handle errors that arise during runtime
properly, will ensure that fewer crashes happens in the application. It’s
not guaranteed that an application is used as intended every time, and
therefore it is necessary to handle such behavior. Ensuring high robustness
will lead to less inconvenient maintenance and troubleshooting.

Privacy and security

Privacy and security is important in pmSys since the system gathers
personal data about the players’ health. In the gateway of pmSys there
is a mapper which maps the usernames to the internal id’s. The reason
it is constructed this way is to prohibit the opportunity of identifying the
users and tie specific data to an individual. These internal user ids must
be protected and hidden at all costs as requested by the Norwegian Data
Protection Authority (Datatilsynet). The data stored in pmSys cannot be
tied to an individual user, unless you have been granted permission by the
Ministry of Justice and Public Security. Storing the new data sets will have
to follow the same guidelines as the existing data.

48

7.2 Working with Shimmer

Shimmer is a software component that will add a specific feature to the
existing pmSys application, and can be categorized as a plug-in installed
as a Docker instance (see section 2.6). Shimmer will add objective data to
pmSys, and adding the possibility of aggregating this data to create and
generate meaningful data.

The open mHealth (OMH) organization briefly describes their Shimmer
application as “an application that makes it easy to pull health data from
popular third-party APIs like Runkeeper and Fitbit” [48]. Shimmer cur-
rently supports the APIs from Fitbit, Google Fit, Jawbone UP, Misfit, Runk-
eeper, Withings and iHealth. There are four APIs whose supports are in the
works, which are Moves, Strava, FatSecret and Ginsberg. Out of all these
APIs, the data provider most fitting for gathering GPS data from training
sessions is Runkeeper. Runkeeper also supports devices and wearables for
both Android and iOS, which is beneficial (see section 2.9).

Shimmer’s shim for Runkeeper only included data related to calories
burned and physical activity, and trimming this data to their respective
schemas. The Runkeeper shim in Shimmer had to be expanded to be able
to serve its purpose. All the shims and schemas are written in Java, so the
expansion of the Runkeeper shim and the GPS schema were also devel-
oped in Java. Shimmer is a free open-source application, and the newest
version of application can be found in OMH’s repository on GitHub [49].
This repository can be forked and expanded accordingly.

7.2.1 GPS schema

Open mHealth has developed just over 90 common data schemas specify-
ing the format and content of data, based on a set of design principles trying
to balance simplicity and usefulness. This schema library defines meaning-
ful distinctions for the clinical measures. The common data schemas used
in the Runkeeper shim for Runkeeper data are calories burned and physical
activity. To illustrate, the calories burned schema represents a single mea-
sure of the amount of calories burned in kilocalories (kcal) utilizing another
schema, OMH’s Kcal unit value. Sample data is shown in figure 7.1.

49

{
"kcal_burned":
{

"value": 160,
"unit": "kcal"

}
}

Figure 7.1: Sample data of calories burned pulled from Runkeeper, and
shimmed with Shimmer.

Some of the schemas include references to other existing schemas, so that
the values are formatted accordingly. The kcal_burned value in the sam-
ple data in figure 7.1 has been formatted to fit the kcal unit value schema,
which provides the actual value and a description of which unit of mea-
sure being used. The physical activity schema represents a single episode
of physical activity in a similar fashion (see figure 3.4), and is also utilizing
the calories burned schema.

To follow the design principles of the common data schemas, we defined
which data would be fitting to include in a GPS data point in pmSys. The
core elements of a GPS signal is the numeric values of the longitude, lati-
tude and altitude. After researching and discussions, we landed on includ-
ing five types of data:

private String activityName;
private DurationUnitValue duration;
private Double longitude;
private Double latitude;
private LengthUnitValue altitude;

activityName

This value describes the context of the GPS data point using the existing
schema activity name. This is not necessarily a value related to the actual
GPS coordinates, but it gives a contextual understanding of the data.

duration

As described in the design principles 3.2.1, the time perspective is
important in clinical data. The movement frequency of a player often
deplete as time goes by, making this data important in the bigger picture.
This value incorporates another schema, Duration Unit Value, which
decomposes the given value and represents it in seconds, the appropriate
time unit for this purpose. This way, it also follows the principle of
atomicity.

50

longitude and latitude

Longitude and latitude are values related to the coordinate system that
uniquely defines points on the surface of a sphere, in this case earth, and
has no common synonyms in any code set. To avoid redundant complexity,
these values are not made granular.

altitude

We described in 2.1 why altitude is an important piece of data. This also
follows the principle of atomicity, as the value also incorporates another
schema, Length Unit Value, which decomposes this specific value and
represents it in meters, the correct length unit in this context.

51

{
"shim": "runkeeper",
"timeStamp": 1491325415,
"body": [

{
"header": {

"id": "0e6d7831-e862-4481-9a81-5aa455fd2020",
"creation_date_time": "2017-04-04T19:03:35.993+02:00",
"acquisition_provenance": {

"source_name": "Runkeeper HealthGraph API"
},
"schema_id": {

"namespace": "omh",
"name": "gps",
"version": "1.0"

}
},
"body": {

"activity_name": "Running",
"duration": {

"unit": "sec",
"value": 0

},
"longitude": -70.951823,
"latitude": 42.31262,
"altitude": {

"unit": "m",
"value": 8

}
}

}
]

}

Figure 7.2: Sample data of GPS data pulled from Runkeeper, and shimmed
with Shimmer using the designed shim and schema.

7.2.2 GPS data point mapper

The shims in Shimmer has support for gathering different mea-
sures depending on which API it sends requests to (see table 2.1).
These measures are retrieved from the different API endpoints im-
plemented in each shim. The available measures from Runkeeper
was activities and calories burned supplied by the the endpoint
https://api.runkeeper.com/fitnessActivities/. The acceptable media type
for these responses is:

52

application/vnd.com.runkeeper.FitnessActivityFeed+json.

To offer retrieval of activity details, which is the only way of retrieving the
GPS data points, we had do add support for the endpoint:

https://api.runkeeper.com/fitnessActivities/activity_id

in the Runkeeper shim. The media type accepted from the response from
this endpoint is application/vnd.com.runkeeper.FitnessActivity+json. Shim-
mer then maps the defined response values to the keys in the schema to
normalize it:

String activityName = asRequiredString(itemNode, "type");
GPS.Builder builder = new GPS.Builder(activityName);

setEffectiveTimeFrameIfPresent(itemNode, builder);
asOptionalDouble(itemNode, "timestamp")

.ifPresent(durationInSec -> builder.setDuration(new
DurationUnitValue(SECOND, durationInSec)));

asOptionalDouble(itemNode, "longitude")
.ifPresent(longitude -> builder.setLongitude(longitude)

);
asOptionalDouble(itemNode, "latitude")

.ifPresent(latitude -> builder.setLatitude(latitude));
asOptionalDouble(itemNode, "altitude")

.ifPresent(altitudeInM -> builder.setAltitude(new
LengthUnitValue(METER, altitudeInM)));

7.3 Connect pmSys user to Runkeeper

The first step to being able to use Runkeeper in pmSys is to connect
each pmSys user to their corresponding Runkeeper user. The pmSys
application has to be registered in Runkeeper and get an client id and
secret so that the application can be authorized by the Health Graph
API authorization endpoint(4.2). The registration process provides the
possibility of specifying which permission we require (figure 7.3).

53

Figure 7.3: During the registration process we can specify which permis-
sions we need.

Most of pmSys’ data is stored in a MongoDB, and the mapping of the
Runkeeper ids to the correct pmSys ids can be accomplished by making
new tables describing the service and authentication in the MongoDB as
shown in figure 7.4.

Figure 7.4: Logical model showing a possible solution of storing the
connection between a pmSys user and the third-party service used. New
tables are colored blue.

54

[
{

service_id: "507f191e810c19729de860ea",
service_name: "Runkeeper"

}
]

Figure 7.5: Example of a data collection containing a service.

[
{

pmsys_id: "dd6ccd66-25d2-11e7-93ae-92361f002671",
service_id: "507f191e810c19729de860ea"
serviceUser_id: "1234567890",
authToken: "AbCdEf123456ccb00AJ3"

}
]

Figure 7.6: Example of a data collection containing a service_authorization.

These tables are modeled with the thought of pmSys and Shimmer being
able to connect with several third-parties other than Runkeeper in the fu-
ture. The service table has attributes describing the third-party with an id
and the name (Runkeeper, Fitbit etc.). The service_authorization table con-
nects a service and a pmSys user together, with attributes that describes this
connection. The primary key in this table is the pmsys_id and service_id
attributes, as we want to avoid having a user with several connections to
the same service. This table also contains the pmSys user’s external ser-
viceUser_id (Runkeeper id, Fitbit id etc.) and the corresponding bearer to-
ken. The reason for storing the bearer token is so that we are able to make
requests to the Health Graph API on behalf of the users.

The system can store and use the bearer tokens since they never expire,
unless the user manually disconnects the pmSys application via the set-
tings page on the Runkeeper website. Health Graph have also stated that
they intend on keeping it this way. Since this is the case, pmSys can use the
user’s bearer token when supplying the pmSys application client id to ac-
cess and request each of their data. If a request for /user is sent (the initial
entry point for any given user’s account data), the Health Graph API will
respond with the /user resource information corresponding to the speci-
fied bearer token. The value we are interested in is the Runkeeper user id.
The program flow of how to connect Runkeeper and pmSys is described in
the sequence diagram in figure 7.7.

55

Figure 7.7: Sequence diagram describing the flow when a player connects
his pmSys account to his Runkeeper account.

To make the connection process easier for the pmSys users, we wanted the
players to be able to do it themselves. In our mockup, the players can login
to the pmSys mobile app and connect to Runkeeper with their phones as
shown in figure 7.8.

56

Figure 7.8: Possible solution of how the players can connect to Runkeeper
with their phones. A more detailed description is given below.

1. The user must first log in and get authorized in the pmSys mobile
application they use to fill out the questionnaires after training
sessions. If successfully logged in, it is possible to later use the
information about the logged in pmSys user when connecting it to
their Runkeeper user. When logged in, the user is redirected to the
home screen of the application with the list of available surveys.
Below this list is the connect to Runkeeper option that the user has
to press.

2. After clicking the connect button the user is prompted to either create
or log in to their Runkeeper account. (If the Runkeeper app is already
installed on the device and the user is logged in, this step is skipped
due to single sign-on (SSO)).

3. After a successful login to Runkeeper the user gets a warning that an
application (pmSys) wants to access his Runkeeper account. This has
to be allowed to make the connection.

4. After hitting allow, the Health Graph API will redirect the user to
the redirect_uri provided upon the initial application registration,
with a one-time authorization code used to obtain the user’s bearer
token. PmSys will then make a POST request to the token endpoint
of the API, supplying the grant_type, the authorization code received,
client_id, client_secret and redirect_uri. The response of this request
will include the parameter ’access_token’, which is the bearer token

57

string which will be stored in pmSys’ MongoDB and used to make
requests to this user account. A GET request is made to the /user
resource with that bearer token, and we’ll get a response which
includes the Runkeeper user id. A row with this connection is
inserted in the MongoDB, and a the established connection is shown
as "Connected to Runkeeper" in the home screen of the application.

7.4 Fetch data from Runkeeper

Figure 7.9: Logical model showing a possible solution of how to store
the GPS data. The new table is colored blue. It illustrates a one-to-many
relationship, stating that an activity belongs to a singular pmSys user, and
that a pmSys user may have many activities.

58

{
acitivity_id: "940568861",
pmSysId: "dd6ccd66-25d2-11e7-93ae-92361f002671",
notes: "First training in pre-season"
distance: [{

value: "59.60",
unit: "m"

}],
type: "Running",
duration: 8,
path: [{

altitude:[{
value: "7.3",
unit: "m"

}],
latitude: "42.31262",
type: "start",

timestamp: "0",
longitude: "-70.951823"
}, {
altitude:[{

value: "7.3",
unit: "m"

}],
latitude: "42.312302",
type: "end",
timestamp: "8",
longitude: "-70.952552"

}],
equipment: "Running shoes"

}

Figure 7.10: An example of a data collection containing an activity.

The GPS data set of each activity is not presented in the Health Graph’s
activity feed. To retrieve the path/GPS data from each activity, we have
to crawl the Health Graph JSON REST API. That means we firstly have
to fetch all the id’s of the activities, to eventually be able to access the co-
ordinates data set. A call to Health Graph’s FitnessActivityFeed endpoint
will respond with a JSON list of activities including their uri with the id’s -
which is one of the values we need to retrieve:

Call parameters
URL: /fitnessActivities
Method: GET
Headers:

59

• Host: api.runkeeper.com

• Authorization: Bearer xxxxxxxxxxxxxxxx

• Accept: application/vnd.com.runkeeper.FitnessActivityFeed+json

Success response
The activity list is returned.

HTTP code:
200 OK

Content (application/json):

{
"size": 1,
"items": [

{
"duration": 8,
"start_time": "Tue, 28 Feb 2017 00:00:00",
"total_calories": 3,
"tracking_mode": "outdoor",
"total_distance": 69.598770321565,
"entry_mode": "API",
"has_path": true,
"source": "Developer’s Console",
"type": "Running",
"uri": "/fitnessActivities/940568831"

}
]

}

Error response
The command failed. The reason is provided in the content.

HTTP code:
500 Internal Server Error or
401 Unauthorized (wrong bearer token)

Given a successful response, the content will be a list of items. In the above
example there is one singular activity in the list, with the uri being "/fit-
nessActivities/xxxx". This represents the activity id which we need to use
when making a GET request to retrieve its path (GPS data):

Call parameters
URL: /fitnessActivities/{activity_id}

60

Method: GET
Headers:

• Host: api.runkeeper.com

• Authorization: Bearer xxxxxxxxxxxxxxxx

• Accept: application/vnd.com.runkeeper.FitnessActivity+json

URL parameters:

• activity_id (required): The id of the activity that is being accessed.

Success response
The activity details, including path is returned.

HTTP code:
200 OK

Response body 1/2(application/json):

61

{
"next": "/nextFitnessActivity/xxxx/yyyy",
"notes": "Test2",
"distance": [{

"distance":0,
"timestamp":0

},{
"distance":69.5955835192464,
"timestamp":8

}],
"activity":

"https://runkeeper.com/user/xxxx/activity/yyyy",
"share_map": "Everyone",
"entry_mode": "API",
"source": "Developer’s Console",
"nearest_nutrition":

"/nearestMeasurement/NUTRITION/xxxx/yyyy",
"type": "Running",
"nearest_teammate_sleep": [

"/nearestMeasurement/SLEEP/xxxx/yyyy",
"/nearestMeasurement/SLEEP/xxxx/yyyy",
"/nearestMeasurement/SLEEP/xxxx/yyyy"

],
"userID": 54903982,
"nearest_teammate_background_activities": [

"/nearestMeasurement/BACKGROUND_ACTIVITY/xxxx/yyyy",
"/nearestMeasurement/BACKGROUND_ACTIVITY/xxxx/yyyy",
"/nearestMeasurement/BACKGROUND_ACTIVITY/xxxx/yyyy"

],
"duration": 8,
"climb": 0,
"path": [{

"altitude":8,
"latitude":42.31262,
"type":"start",
"timestamp":0,
"longitude":-70.951823
},{
"altitude":8,
"latitude":42.312302,
"type":"end",
"timestamp":8,
"longitude":-70.952552

}],
"nearest_teammate_nutrition": [

"/nearestMeasurement/NUTRITION/xxxx/yyyy",
"/nearestMeasurement/NUTRITION/xxxx/yyyy",
"/nearestMeasurement/NUTRITION/xxxx/yyyy"

],
62

"nearest_teammate_diabetes": [
"/nearestMeasurement/DIABETES/xxxx/yyyy",
"/nearestMeasurement/DIABETES/xxxx/yyyy",
"/nearestMeasurement/DIABETES/xxxx/yyyy"

],
"total_distance": 69.598770321565,
"share": "Everyone",
"nearest_general_measurement":

"/nearestMeasurement/GENERAL/xxxx/yyyy0",
"nearest_diabetes":

"/nearestMeasurement/DIABETES/xxxx/yyyy",
"nearest_weight":

"/nearestMeasurement/WEIGHT/xxxx/yyyy",
"images": [],
"comments": "/fitnessActivities/xxxx/comments",
"nearest_teammate_weight": [

"/nearestMeasurement/WEIGHT/xxxx/yyyy",
"/nearestMeasurement/WEIGHT/xxxx/yyyy",
"/nearestMeasurement/WEIGHT/xxxx/yyyy"

],
"previous": "/prevFitnessActivity/xxxx/yyyy",
"total_calories": 3,
"nearest_strength_training_activity":

"/nearestStrengthTrainingActivity/xxxxx/yyyy",
"nearest_teammate_strength_training_activities": [

"/nearestStrengthTrainingActivity/xxxx/yyyy",
"/nearestStrengthTrainingActivity/xxxx/yyyy",
"/nearestStrengthTrainingActivity/xxxx/yyyy"

],
"equipment": "None",
"heart_rate": [],
"nearest_sleep":

"/nearestMeasurement/SLEEP/xxxx/yyyy",
"calories": [],
"uri": "/fitnessActivities/xxxx",
"start_time": "Tue, 28 Feb 2017 00:00:00",
"nearest_background_activity":

"/nearestMeasurement/BACKGROUND_ACTIVITY/xxxx/yyyy",
"nearest_teammate_general_measurements": [

"/nearestMeasurement/GENERAL/xxxx/yyyy",
"/nearestMeasurement/GENERAL/xxxx/yyyy",
"/nearestMeasurement/GENERAL/xxxx/yyyy"

],
"tracking_mode": "outdoor",
"is_live": false,
"nearest_teammate_fitness_activities": [

"/nearestFitnessActivity/xxxx/yyyy",
"/nearestFitnessActivity/xxxx/yyyy",
"/nearestFitnessActivity/xxxx/yyyy"

]
}

63

This is the unmodified response provided from the Health Graph API data
endpoint. As one can see there is much data provided which is not relative
for the purpose of pmSys’s health data monitoring system.

Error response
The command failed. The reason is provided in the content.

HTTP code:
404 Not Found or
403 Forbidden (wrong bearer token)

Figure 7.11: A sequence diagram describing the steps and flow of the daily
fetch (at midnight) using cron (see section 7.4.1).

7.4.1 Scheduling requests

When a player fills out a questionnaire after a training session and submits
it, he is also going to push his Runkeeper data to pmSys. Since the player
has to be logged in on the mobile app with his user, the system already
knows his Runkeeper id and the corresponding bearer token, provided that
he has connected his pmSys account to Runkeeper 7.3. The bigger ben-
efits of making the process of gathering data automated are keeping the
database up-to-date and making this part of the system self-sustaining. It
could happen that a player forgets to submit the questionnaire several days
in a row, making the Runkeeper data in pmSys’ database out-of-date. We
want pmSys to gather and store the Runkeeper activities even when the
players haven’t pushed the data through the app. This can be achieved on
the server through a UNIX and Linux utility called Cron [50].

Cron is used to execute selected tasks in the background at specified times

64

and intervals. Cron keeps a file called a crontab, which contains a list of all
commands and scripts to be ran at individual given times. The Cron dae-
mon reads the crontab and its scripts and run-times, and executes them in
the background. A crontab may be specified for each user of the system,
meaning that we can dedicate a crontab solely for the root user with scripts
that has restricted read/write permissions and follows the principle of least
privilege for security purposes. The general form of a crontab entry looks
like this:

* * * * * /bin/execute/this/script.sh

Each asterisk from left to right corresponds to minute, hour, day of the
month, month and day in the week respectively (See table 7.2).

No. * Description Values

1 Minute 0 - 59

2 Hour 0 - 23

3 Day of the month 1 - 31

4 Month 1 - 12

5 Day of the week 0 - 6 (Sunday = 0)

Table 7.2: Crontab entry parameters

In the crontab, asterisk is read as "any". For the example above, the file
script.sh is ran every minute. There are also special strings and keywords,
which defines all five parameters based on the keyword. If you wanted
the script to be ran once a day at midnight to avoid high latency when the
server workload most likely will be low, you could do:

0 0 * * * /bin/execute/this/script.sh

Or the equivalent by using a keyword:

@midnight /bin/execute/this/script.sh

There are several keywords like this in crontab. The table 7.3 shows some
of the different keywords usable in the crontab:

65

Keyword Equivalent Description

@reboot NA Run once at startup

@yearly 0 0 1 1 * Run once a year (1st of January)

@monthly 0 0 1 * * Run once a month (1st of the month)

@weekly 0 0 * * 0 Run once a week (every Sunday)

@daily 0 0 * * * Run once a day (same as @midnight)

@hourly 0 * * * * Run once a hour

Table 7.3: In the crontab you can use keywords to describe all parameters.

7.5 Database storage

The data we want to retrieve is initially only GPS coordinates. This data
comes from and is stored by a third-party, in this case Runkeeper. PmSys
wants to collect this data, and store it in their own database.

7.5.1 Replication

A lot of the new data pmSys want to store in their database will be a repli-
cation of data from Runkeeper modified to comply with the OMH schemas.
We will refer to Runkeeper and pmSys as primary database and destination
database respectively. One of the major challenges with replication of data
occurs when data is changed at the primary database (Runkeeper) and not
in the destination database (pmSys). The system needs a way of detecting
these possible changes.

An event might occur that requires editing of a specific activity in the pri-
mary database. This activity may already have been pushed and stored in
the destination database and made available in the system.

In the Health Graph API it is possible to include query parameters which
describes the last modification timestamp, meaning the last time an activ-
ity has been modified. These query parameters may define a time scope
and takes dates in a YYYY-MM-DD format and, per the HTTP specifica-
tion, must be specified in Greenwich Mean Time (GMT). The request pa-
rameters available are the noEarlierThan, noLaterThan, modifiedNoEar-
lierThan, and modifiedNoLaterThan parameters. For detecting modifica-
tions made to the activities we can utilize one of the last two, or a combina-
tion. A request made with these parameters can look like this:

GET /fitnessActivities?modifiedNoEarlierThan=2017-03-01
&modifiedNoLaterThan=2017-03-03 HTTP/1.1

66

Host: api.runkeeper.com

Authorization: Bearer xxxxxxxxxxxxxxxx

Accept: application/vnd.com.runkeeper.FitnessActivityFeed+json

This request will give a response of the list of activities modified, or created,
within the time scope of 1st - 3rd of March. The response can look like:

{
"size": 2,
"items": [

{
"type": "Running",
"start_time": "Tue, 1 Mar 2017 08:00:00",
"total_distance": 70,
"duration": 10,
"source": "RunKeeper",
"entry_mode": "API",
"has_map": "true",
"uri": "/activities/100"

},
{

"type": "Running",
"start_time": "Thu, 20 Feb 2017 08:00:00",
"total_distance": 70,
"duration": 10,
"source": "RunKeeper",
"entry_mode": "Web",
"has_map": "true",
"uri": "/activities/40"

}
]

}

Figure 7.12: A JSON response when using the modifiedNoEarlierThan and
modifiedNoLaterThan parameters to create a time scope. The response is a
list of all activities modified between the two dates.

The list includes an uri with the id of the activity, which we can use
to update the activity in pmSys. The first item, with activity id 100, is
an example of an activity created within the specified time frame. The
activity with id 40, and the second item in the response list, is an activity
created outside of the scope, which means that this activity has been
modified subsequent to the creation date. In the MongoDB, we can then

67

utilize the update method defined as db.collection.update(query, update,
options)[51], with the optional upsert parameter set to true. When set to
true, this parameter will make sure that a new activity is created if the
activity id in the the query criteria doesn’t match any of the id’s in the
pmSys database.

7.5.2 Concurrency in MongoDB

As explained in the MongoDB chapter 2.7, each record of data is stored in
a single and unique document, but what happens if multiple CRUD opera-
tions are being performed at the same time on a single document or collec-
tion concurrently? There are two primary concurrency control measures,
pessimistic and optimistic, to prevent clients to modify the same record si-
multaneously, these controls are in place to ensure consistency and correct-
ness of data. Pessimistic concurrency control is often utilized in systems
with locks, and is based on the principle that the worst will happen. This
control locks a document immediately when any CRUD operation is done
on it, making it impossible for multiple updates to happen. The lock will
be placed no matter what, even though operations might not conflict at all.

Optimistic concurrency control assumes that conflict are very rare, though
possible. The system looks indications that a record has had multiple
CRUD operations done to it simultaneously, if that is true, one user’s up-
dates are discarded and informed about the issue. When a user or the server
is trying to read or update a document, a version number is attached to it,
when the transaction is committed the system validates the version num-
ber. If the number being returned with the commit is equal to the original
number, the system can write without any issues. If the numbers are un-
equal it means that someone has updated the data during another transac-
tion, the transaction coming in last is then discarded.

Pessimistic and optimistic concurrency control

Pessimistic concurrency control generates overhead for each CRUD oper-
ation done in a database, even when only a single user is trying to access
a document. The system also checks each time if the requested document
is already locked by another client or connection. The traits of pessimistic
locking makes it useful in systems where the chances of updates happen-
ing on the same records is relatively high, and the documents are small with
frequent updates. Optimistic concurrency control is more useful when the
chances of conflict is minor. Generally used when there are many record,
few users and mostly read and create operations. In most scenarios op-
timistic locking offers higher performance than pessimistic, but is more
likely to cause concurrency issues if used in the wrong environment.

68

Figure 7.13: Multiple processes creating a deadlock by requesting and
locking same resources.

When working with objective data coming from wearable devices and
such, a deadlock should rarely happen. The figure 7.13 depicts a basic dead-
lock. Process 1 has locked resource A and is holding it for an update, and at
the same time is requesting resource B for dependent update. But resource
B has already been locked by process 2, which again is requesting a lock
and write operation for resource A. This will create a loop which is called a
deadlock, where no operation will ever finish as they did not know about
other processes holding a resource before starting an operation, and both
operation has to happen concurrently.

The reason is that the data belong to a unique user, which also is the only
one able to update the data. A create or update operation will not create any
concurrency or deadlock issues as the locks are not placed on a collection
of data, but rather one record. And one record has it’s own unique user
identifier, meaning that only a read operation could be happening at the
same time as a update operation. And in MongoDB, only compatible oper-
ations are given access at the same time. When comparing pessimistic and
optimistic concurrency control in regards to implementing objective data
in pmSys, the theory behind optimistic locking matches the characteristic
of the activity database in pmSys making it the more reasonable choice.

69

Figure 7.14: Flowchart representing the flow of a CRUD operation being
performed on a database record, the lock occurs much earlier in the
pessimistic approach.

To enhance concurrency in the database, MongoDB supports sharding.
Sharding is the ability to partition collections over multiple database
instances, allowing mongos processes to perform otherwise conflicting
operations concurrently. Locks are only applied to the shards, not the whole
cluster of shards, making the instances and operations independent to one
another. Applying sharding to a database makes it horizontally scalable
which may also improve the time to crawl the database. The figure 7.17
is a sharded version of a Team collection, making it possible to read and
write in all three collections concurrently without risking any conflict, as
opposed to multiple operations done on the Team table.

70

Figure 7.15: Team collection sharded into the different teams.

WiredTiger storage engine

The WiredTiger storage engine is the default engine shipped with Mon-
goDB 3.0 and up, and is what lies in the bottom of the pmSys MongoDB.
WiredTiger uses optimistic concurrency control on the document-level and
results in clients being able to modify documents in the same collection si-
multaneously. WiredTiger utilizes intent lock only on collection, global and
database level. Intent locks are only acquired when there is an indication
to modify a document, but does not conflict with read operation as it is
compatible with with write operations. As WiredTiger uses MultiVersion
Concurrency Control to create snapshots of the data at the start of a trans-
action to create a consistent view of the data, the intent lock is only acquired
if the document is unmodified by concurrent transactions.

These snapshots can also function as checkpoints for the database, and the
checkpoints also ensures that the data is consistent up to the last created
snapshot/checkpoint. If a transaction has gone wrong, creating inconsis-
tent data in a collection of documents, the last valid checkpoint can be
used as a point of recovery. When a checkpoints becomes permanent as
the latest valid point, it is updated in WiredTiger’s own metadata schema,
making it accessible to other transactions and freeing the collections. Cre-
ating checkpoints for your database are all atomic transaction, one of the
ACID transaction properties: Atomicity, Consistency, Isolation, Durability.
Atomic transactions are multiple steps of database operations where either
all occur or nothing, partial checkpoints or data transaction can be more of
a problem in a database than discarding a conflicting transaction.

7.5.3 Big data

The term big data is something that have gotten a lot of attention in the past
years, and can be the chokepoint of many data structures if no anticipated

71

and handled correctly. The age of digitalization has pressed forward
unlimited possibilities for connecting almost everything to the internet. Big
data in general envelops the need for new methods to process and analyze
data sets which are magnitudes larger than the average company database,
and the complexity of the data sets renders normal processing methods
void. For example, Google has developed new types of databases which
can spread and store massive amount of data over thousand of machines
and can process trillions of record in mere seconds [52].

Figure 7.16: Big data envelops all possible data collected included the
aggregated data.

One concern with big data is mechanisms of searching, storing, aggrega-
tion and visualization of data which associate with each other by keys and
values. The data in question for this thesis is objective data, and the input
is not necessary sorted or processed in a way that is beneficial for the sys-
tem, this is why it is imperative to create data models where correlations
between data sets are handled in a constructive manner. For example, the
correlation between multiple activity data sets can provide an indication to
when a player is at peak performance during the day or week. The concept
of collecting data is only relevant if the data can be processed and returned
to the user within a suitable timeframe.

72

One challenge with keeping inside the suitable timeframe is when the old
hardware is not adequate for processing the objective data which has ac-
cumulated into a big data construct. What has taken seconds to process
might take minutes, hours or even days to process if the growing data set
has no scalability or adaptation for new hard- or software. There is existing
tools for processing massive data sets, such as Hadoop [53] and Spark [54],
which also can be run in combination. These tools are software libraries
which are created for the purpose of processing vast data sets across clus-
ters of servers and storage units, and offers scalability for single or mul-
tiple units. These tools draws their capability by utilizing the potential of
sharding 7.17, processing data on each shard which makes up a cluster. One
strategic consideration is whether to put the data on disk, or in-memory.
Data only accessible on disk is much cheaper, but the drawback is the lim-
itation of processing speed. By loading the data in-memory, on the RAM,
the queries that are performed can return data thousand of times faster
compared to data on disk, but is much more costly.

Figure 7.17: Distributed database system with data physically stored across
multiple sites.

Data mining and patterns

The task of processing large data sets is often referred to as data
mining. This entails sorting through the data and identifying patterns and
correlation between data that is too vague to comprehend without the
right tools. Association rules are created by analyzing if-then patterns,

73

and then applying parameters like frequency for number of occurrences,
and confidence for the amount the if-then patterns are accurate. Sequence
parameters is used to predict events which leads to another event, this can
be applied in pmSys to prevent fatigue or overtraining. Data mining can
also be used to determine inaccuracy and errors in the data models or data
input.

7.5.4 Database optimization

In a database that will contain magnitudes of historical data, and has
massive amounts of inputs there are some strategic choices to consider
regarding design and modeling. You have two very important factors
to consider when implementing database structure, normalization and
denormalization. This is a MongoDB aspect.

Normalization

This is the process to efficiently organize your data through primary
and foreign keys which creates correlation between data sets or database
entities. One of the main goals of normalizing data is to keep redundancy
as low as possible, only storing data once in a single or multiple documents.
Another goal is to keep data which make sense in the same document,
in example, weather data has no place in a document depicting a person
entity, but the person’s name does. Keeping these goals in mind can greatly
increase the logic in a database, and decrease the amount of space used
for all documents and collections. These conditions can also improve the
CRUD operations create, update and delete. Normalization is achieved by
following the guidelines of normal forms [55], and is relative to the final
construct of logical complexity needed for the final result.

Denormalization

This is the process of optimizing the last CRUD operation read. By adding
redundant data(replica), and creating views for grouping of data the read
operation can be increased for normalized databases with a complex log-
ical structure. Views are read only groupings, aggregation or joins of data
which otherwise could have slow query performance in a normalized
database. The views has a drawback that all the replicated data stored in-
creases the space absorbed by the database. Denormalization in general
reduce the write, update and delete operation because of potential aggre-
gations which are done on a create or update to create a fields which con-
tains data which are valuable for fast access. Deletes are in similar fashion
slower for the reason that more fields has to be removed.

In NoSQL databases, in particular MongoDB, denormalization is achieved
by embedding documents with data that otherwise could be referenced
with one or multiple keys. One drawback with denormalization is consis-
tency. In a normalized table, data which are referenced would know about

74

a change in data elsewhere. In example, if an author entity is referenced in
a book entity, and the author data changed, the data would still be consis-
tent as the data is joined on query time. If the data author data is embedded
in the same document as the book entity it would be a denormalization of
two documents, but it would cause inconsistency if the original author en-
tity is updated as the embedded data would not change. The consistency
has to be handled in some way, shape ,or form, but the read and update op-
erations required for query could potentially be process heavy and should
be performed during system downtimes, as it will cause reduced response
time for users.

7.6 Summary

The PmSys application is built upon the Ohmage platform (section 2.4).
One of Ohmage’s components is the Mobile data collection apps. This com-
ponent is divided into two groups; self-reporting applications and passive
data collection applications, providing subjective and objective data respec-
tively. The current PmSys uses only an instance of a self-reporting mobile
application (pmSys-app), that provides easy manipulative subjective data.
With the implementation of Shimmer, we introduce an instance of the pas-
sive data collection applications, being able to supplement the subjective
data with objective context or vice versa. The objective data provides inter-
esting and useful data in itself, and combining this with the subjective data
will give a widely detailed picture of the players general fitness, providing
the coaching team more information about the players and their behavior
during training sessions.

The proof of concept is meant as useful preparatory work for future im-
plementation of a passive data collection application in pmSys. We have
tried to cover the implementation in general and as a whole, presenting
the relevant obstacles that might occur, and possible solution to solve these
challenges. The prototype is specifically targeting the implementation with
Runkeeper as the third-party data provider. In spite of this, we have based
our concept on the possibility of using other data providers, having to
tweak as little logic as possible.

We believe that by utilizing processing and aggregation tools, a big data
construct might be preferable to transition into. By distributing the data
across multiple servers, a distributed database, can partly solve problems
that might occur with slow write and update operations for MongoDB doc-
uments. PmSys fulfills multiple of the requirements, as there is already an
underlying structure ready for this regarding the storage units in the pmSys
backend. One important strategic choice when constructing the new logic
for the activity storage unit will be the general complexity and database
optimization 7.5.4. This is in direct correlation with what CRUD opera-
tions are important, if it will be a database which is skewed toward many
write/updates, or if it is important with immediate consistency because of

75

an abundance of read operations.

76

Chapter 8

Conclusion

8.1 Summary

Our problem definition in section 1.2 stated that we wanted to explore
the possibility of introducing objective data to add more meaning to the
subjective data already captured by the self-reporting pmSys-app. We also
wanted to find an efficient way of gathering and storing this data. We have
done so with a concrete example of a data provider in Runkeeper. We were
going to describe how a passive data collection app in the form of Shimmer
could be used to collect the objective data on the behalf of pmSys.

After researching possible data provider with focus on the supported APIs
in Shimmer, we arrived at the conclusion that Runkeeper was the best
provider for illustrating a solution of answering our research question. Us-
ing Runkeeper as the data provider for the purpose of this research thesis
required us to explore their API, Health Graph, and its end points. Shim-
mer was going to be responsible for requesting and handling the responses
on behalf of pmSys due to the desire to contribute to the OMH initiative
(see section 2.5). Therefore, choosing a third-party already supported by
Shimmer made the solution more applicable and required less tweaking of
the current Shimmer application. The more tweaking done to Shimmer, the
less likely it would be to uphold the standards set by OMH.

Researching OMH’s cause and vision provided useful insight and gave us
motivation on contributing as much as we could with regards to our thesis.
This lead to us designing a common data schema for GPS data to be used
by Shimmer to normalize the responses to the given format. We based our
decisions on the principles described by OMH (see section 3.2.1), focusing
on the granularity of the schema, and to not be over-complex when design-
ing it.

8.2 Main Contributions

In this thesis we have shown how Open mHealth’s application, Shimmer,
can be implemented in pmSys to supplement the system with objective

77

data. We have described all the different components, and how they can
work together to create an environment where objective data from third-
party providers can be fetched, processed and stored to complement the
existing captured data set. Our research has led to a solution that we found
most suitable for capturing data and storing it for further use, as well as
making it expandable.

To reach this goal we had to work with Shimmer and expand the appli-
cation to make it able to request from the correct endpoints the correct ob-
jective data that is required to perform a detailed analysis of players from
their spatiotemporal patterns. The main data we wanted to retrieve was
the GPS coordinates to make a detailed map of run patterns, and provide
the opportunity to compare physical perception against actual effort and
discover deviations. Included in Shimmer is also the possibility of getting
measures like calories burned, body weight and heart rate which can be
applied due to the expandability to provide an even more detailed picture
of the players total health status.

The objective data is also normalized to a common data schema for GPS.
This was created from scratch by following strict principles composed by
Open mHealth. The advantage of creating a common format for this data in
pmSys is that if teams want to use other third-party data providers to track
movement in the future, Shimmer can be used to normalize the data and
give it the same contextual meaning in the same format. This also removes
the need of creating other logic for aggregating these data sets in the future.

All this data can be joined through logic and be returned to coaches or
other administrators for a visual representation which is human readable.
This includes numbers, graphs, charts and more. A good example of how
pmSys can be used in a scenario is after a training session with the whole
team. All the players start their application to register the start of an ac-
tivity session. During the session the hardware they use captures all data
that is possible for the third-party provider. At the end of training, all the
players mark the end of the activity session as well. The players then fills
out the self-reporting surveys answering how they feel after the session.
Post-workout, both the subjective and objective data sets are presented on
the pmSys-trainer website. The coaches can then study how the perceived
workload correlates to the actual workload. This can provide useful insight
for trainers, making it possible to detect fatigue and overtraining before a
possible injury occurs.

8.3 Future work

During our research we have covered what is essential to create an
environment that can support the inputs from devices tracking objective
user data. However there are some cases which will be dependent on how
the architecture of a final solution is constructed. In this section we present

78

some ideas and features that can be beneficial in the future.

8.3.1 PmSys frontend

Visualize GPS data

The pmSys frontend has not been the focus of this thesis, but a visual
representation of the data is absolutely necessary for a complete monitoring
solution. At this time pmSys uses the D3.js [56] library to create graphs,
charts and other data representations. This library provides almost all the
necessary figures for objective data, with the exception of maps. For map
support there are libraries like Mapbox [57] or Google Maps [58] that might
be fitting to use.

8.3.2 PmSys backend

Capture data from other third-parties

Capture data from other third-parties that supports Shimmer in work
for the future. This will require different logic around fetching, as the
different third-parties handles authentication differently. The other third-
parties would also have to normalize the incoming data to the common
data schema we’ve created. That way, you can store data from multiple
different inputs and get the same format.

API calls

The API calls does not support clean GET requests for all detailed activity
data sets. Resulting in a more demanding workload for the system. If a GET
request for all detailed data were to be introduced to the API, requesting
process can be simplified.

Implementation of other APIs

Implementation of other APIs like Fitbit, Google Fit, iHealth, Jawbone,
Misfit, and Withings which are supported in Shimmer could provide
variety in the technology used by football team. Different systems might
appeal more to different teams, but given that the data is normalized to the
common data schema, this won’t cause many problems. The support can
be extended to support additional APIs.

Modify stored activities

Modify stored activities in the activity MongoDB could provide useful if
there appears to be some sort of error or accident during activity recording.
This can be handled by players modifying their own data in the Runkeeper
application, given that a crontab job can be run at midnight fetching new
or modified data each day. Nevertheless, it might add useful functionality
to be able to do a PUT request to the right API for a trainer or administrator
to have access and supplementing the data with their own notes.

79

Deleting stored activities

Deleting stored activities in pmSys if there is data not supposed to be
there, i.e a player forgot to stop their monitoring or accidentally started a
recording. This can’t be handled by deleting the activity in the Runkeeper
application, because there is no indication given through a GET request
that something is deleted. By running a crontab job at a fixed time it can
determine if there are activity id’s in the pmSys database which does not
exist in Runkeeper, and act accordingly.

Processing data

Processing data though Shimmer is not currently provided, and therefore
requires another solution. OMH has plans to develop a processing unit in
the future [59], so a potential dedicated processing module can be excluded
from the backend.

A big data solution

A big data solution might be necessary in the future since there might be a
great deal of data produced by a continuous stream of objective data in the
future.

On-demand get requests

On-demand get requests might provide useful functionality. Trainers from
the different teams should be able to login to the pmSys-trainer web portal
and request data from the activities performed by their players on-demand.
This could be solved by a simple button press in the web portal, following
a combination of same logic as the connect function and the cron request.

Logging

Logging of database transactions is an important measure for listing
changes to the database and storing it in a stable storage format. If there
in an inconsistent state detected, the database management system might
want to review the database logs for uncommitted transactions. Then we
might want to perform a rollback to undo the changes made by these
transactions. MongoDB is at this moment a suboptimal choice for a scalable
logging solution. We have not investigated possible solutions regarding the
monitoring and logging of database transactions, and consider this future
relevant work.

Live GPS tracking

In this specific research thesis, we used Runkeeper to illustrate the imple-
mentation of movement data after the activity had finished. Runkeeper also

80

offers a "plus" subscription called Runkeeper GO. If the desire to imple-
ment live tracking of training sessions arise, we recommend investigating
this, including the big data section covered in section 7.5.3.

8.3.3 Aggregation of data

When pmSys has stored all GPS coordinates created during a session,
aggregating the data becomes a possibility and can be used for statistical
analysis. The purpose is to get more information out of the data that
has been collected. For instance, calculating the distance in meters and
kilometers between two GPS location can be done like this in java:

81

//Calculate the distance in meters between two coordinates
private static double distanceInMeters(double lat1, double lon1

, double lat2, double lon2)
{

double longs = lon1 - lon2;
double dist = Math.sin(degToRad(lat1)) * Math.sin(

degToRad(lat2)) + Math.cos(degToRad(lat1)) * Math.cos(
degToRad(lat2)) * Math.cos(degToRad(longs));

dist = Math.acos(dist);
dist = radToDeg(dist);
dist = dist * 60 * 1.1515;
dist = dist * 1609.344;
return (dist);

}

//Calculate the distance in kilometers between two coordinates
private static double distanceInKilometers(double lat1, double

lon1, double lat2, double lon2)
{

double longs = lon1 - lon2;
double dist = Math.sin(degToRad(lat1)) * Math.sin(

degToRad(lat2)) + Math.cos(degToRad(lat1)) * Math.cos(
degToRad(lat2)) * Math.cos(degToRad(longs));

dist = Math.acos(dist);
dist = radToDeg(dist);
dist = dist * 60 * 1.1515;
dist = dist * 1.609344;
return (dist);

}

//Decimal degrees to radians
private static double degToRad(double deg)
{

return (deg * Math.PI / 180.0);
}

//Radians to decimal degrees
private static double radToDeg(double rad)
{

return (rad * 180 / Math.PI);
}

When finished calculating the distance in the preferred unit, it is possible
to calculate several different types of information. Much can be learned
about a player when knowing how much distance he has covered during
a session, but the total distance says nothing about the intensity. With the
GPS data we can now calculate the average speed between the data points,

82

in addition to acceleration and deceleration.

83

Appendix A

Accessing the source code

The source is code divided into shimmer and bash scripts.
Access to the repository is given upon request.

https://github.com/DanielGJohnsen/thesis-source-code

85

Bibliography

[1] TV2. Langrennsekspertens brannfakkel: – det er mange som tror at
norsk fotball er toppidrett, 2013. URL http://www.tv2.no/a/3996469/.

[2] Haavard Wiig. Research project: Load monitoring in foot-
ball., 2016. URL http://www.nih.no/en/research/projects/all-projects/
load-monitoring-in-football/.

[3] Garmin. About gps, 2017. URL www.garmin.com/aboutGPS/.

[4] The18. The most intimidating soccer stadium in the world, 2016. URL
http://the18.com/news/most-intimidating-soccer-stadium-world.

[5] LIVESTRONG. What effects do high altitude have on
the body, 2011. URL http://www.livestrong.com/article/
455572-what-effects-do-high-altitudes-have-on-the-body/.

[6] Maria J. Brosnan, David T. Martin, Allan G. Hahn, Christopher J.
Gore, and John A. Hawley. Impaired interval exercise responses in
elite female cyclists at moderate simulated altitude. Journal of Applied

Physiology, 89(5):1819–1824, 2000.

[7] CSS insight. Fitness bands and basic smart-
watches fuel sales of wearable devices, 2017.
URL http://www.ccsinsight.com/press/company-news/
2702-fitness-bands-and-basic-smartwatches-fuel-sales-of-wearable-devices.

[8] CSS insight. Wearables momentum continues, 2016.
URL http://www.ccsinsight.com/press/company-news/
2516-wearables-momentum-continues.

[9] World Health Organization (WHO). mhealth - new horizons for
health through mobile technologies, 2011. URL http://www.who.int/
goe/publications/goe_mhealth_web.pdf.

[10] H. Tangmunarunkit, C. K. Hsieh, J. Jenkins, C. Ketcham, J. Selsky,
F. Alquaddoomi, D. George, J. Kang, Z. Khalapyan, B. Longstaff,
S. Nolen, T. Pham, J. Ooms, N. Ramanathan, and D. Estrin. Ohmage:
A general and extensible end-to-end participatory sensing platform.
UCL Computer Science Technical Report, 2014.

[11] Ohmage. Ohmage | open data collection, 2016. URL http://ohmage.
org.

86

http://www.tv2.no/a/3996469/
http://www.nih.no/en/research/projects/all-projects/load-monitoring-in-football/
http://www.nih.no/en/research/projects/all-projects/load-monitoring-in-football/
www.garmin.com/aboutGPS/
http://the18.com/news/most-intimidating-soccer-stadium-world
http://www.livestrong.com/article/455572-what-effects-do-high-altitudes-have-on-the-body/
http://www.livestrong.com/article/455572-what-effects-do-high-altitudes-have-on-the-body/
http://www.ccsinsight.com/press/company-news/2702-fitness-bands-and-basic-smartwatches-fuel-sales-of-wearable-devices
http://www.ccsinsight.com/press/company-news/2702-fitness-bands-and-basic-smartwatches-fuel-sales-of-wearable-devices
http://www.ccsinsight.com/press/company-news/2516-wearables-momentum-continues
http://www.ccsinsight.com/press/company-news/2516-wearables-momentum-continues
http://www.who.int/goe/publications/goe_mhealth_web.pdf
http://www.who.int/goe/publications/goe_mhealth_web.pdf
http://ohmage.org
http://ohmage.org

[12] Open mHealth. About us, 2015. URL http://www.openmhealth.org/
organization/about/.

[13] Deborah Estrin and Ida Sim. Open mhealth architecture: An engine
for health care innovation. Science, 330:759–760, 2010.

[14] Docker. Docker toolbox, 2017. URL https://www.docker.com/products/
docker-toolbox.

[15] MongoDB. Introduction to mongodb, 2017. URL https://docs.
mongodb.com/manual/introduction/.

[16] MongoDB, 2016. URL https://docs.mongodb.com/v3.2/core/
databases-and-collections/.

[17] OAuth. The oauth 2.0 authorization framework, 2012. URL https:
//tools.ietf.org/html/rfc6749.

[18] IETF Tools. The oauth 2.0 authorization framework, 2012. URL
https://tools.ietf.org/html/rfc6749#section-1.3.1.

[19] Open mHealth. Data provider api library, 2015. URL
http://www.openmhealth.org/documentation/#/data-providers/
data-provider-api-library.

[20] Fitbit. Activity & exercise logs, 2017. URL https://dev.fitbit.com/docs/
activity/.

[21] Google Fit. Fitness data types, 2017. URL https://developers.google.
com/fit/rest/v1/data-types.

[22] iHealth. Request for data of activity report, 2017. URL http://sandbox.
ihealthlabs.com/dev_documentation_RequestfordataofActivityReport.
htm.

[23] Jawbone. Workouts, 2017. URL https://jawbone.com/up/developer/
endpoints/workouts.

[24] Misfit. Api references, 2017. URL https://build.misfit.com/docs/
cloudapi/api_references.

[25] Health Graph. Fitness activities, 2017. URL https://runkeeper.com/
developer/healthgraph/fitness-activities.

[26] Withings. Withings api reference, 2017. URL https://oauth.withings.
com/api/doc.

[27] IDC. Smartphone os market share, 2016 q3, 2016. URL http://www.idc.
com/promo/smartphone-market-share/os.

[28] Athlete Monitoring, 2016. URL http://www.athletemonitoring.com/.

[29] Health Graph. Developer’s console, 2017. URL http://www.
openmhealth.org/app/uploads/2015/05/Data-flow-architecture.jpg.

87

http://www.openmhealth.org/organization/about/
http://www.openmhealth.org/organization/about/
https://www.docker.com/products/docker-toolbox
https://www.docker.com/products/docker-toolbox
https://docs.mongodb.com/manual/introduction/
https://docs.mongodb.com/manual/introduction/
https://docs.mongodb.com/v3.2/core/databases-and-collections/
https://docs.mongodb.com/v3.2/core/databases-and-collections/
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749#section-1.3.1
http://www.openmhealth.org/documentation/#/data-providers/data-provider-api-library
http://www.openmhealth.org/documentation/#/data-providers/data-provider-api-library
https://dev.fitbit.com/docs/activity/
https://dev.fitbit.com/docs/activity/
https://developers.google.com/fit/rest/v1/data-types
https://developers.google.com/fit/rest/v1/data-types
http://sandbox.ihealthlabs.com/dev_documentation_RequestfordataofActivityReport.htm
http://sandbox.ihealthlabs.com/dev_documentation_RequestfordataofActivityReport.htm
http://sandbox.ihealthlabs.com/dev_documentation_RequestfordataofActivityReport.htm
https://jawbone.com/up/developer/endpoints/workouts
https://jawbone.com/up/developer/endpoints/workouts
https://build.misfit.com/docs/cloudapi/api_references
https://build.misfit.com/docs/cloudapi/api_references
https://runkeeper.com/developer/healthgraph/fitness-activities
https://runkeeper.com/developer/healthgraph/fitness-activities
https://oauth.withings.com/api/doc
https://oauth.withings.com/api/doc
http://www.idc.com/promo/smartphone-market-share/os
http://www.idc.com/promo/smartphone-market-share/os
http://www.athletemonitoring.com/
http://www.openmhealth.org/app/uploads/2015/05/Data-flow-architecture.jpg
http://www.openmhealth.org/app/uploads/2015/05/Data-flow-architecture.jpg

[30] Open mHealth. About shims, 2015. URL http://www.openmhealth.org/
documentation/#/data-providers/about-shims.

[31] Open mHealth. Schema design principles, 2017. URL
http://www.openmhealth.org/documentation/#/schema-docs/
schema-design-principles.

[32] UCUM. Commonly used ucum codes for healthcare units, 2017. URL
http://download.hl7.de/documents/ucum/ucumdata.html.

[33] Open mHealth. Physical activity, 2017. URL http://www.openmhealth.
org/documentation/#/schema-docs/schema-library/schemas/omh_
physical-activity.

[34] OAuth. The oauth 2.0 authorization framework, 2012. URL https:
//tools.ietf.org/html/rfc6749#section-1.3.

[35] Open mHealth. Schema library, 2017. URL http://www.openmhealth.
org/documentation/#/schema-docs/schema-library.

[36] Open mHealth. Schema design principles, 2017. URL
http://www.openmhealth.org/documentation/#/schema-docs/
schema-design-principles.

[37] Open mHealth. Write your own quantitative measure schema, 2017.
URL http://www.openmhealth.org/documentation/#/schema-docs/
write-a-schema.

[38] Sony mobile. Smartwatch 3 swr50, 2015. URL https://www.sonymobile.
com/global-en/products/smart-products/smartwatch-3-swr50/.

[39] Wearable. Moto 360 sport: Everything you need to know about
the new gps smartwatch, 2015. URL https://www.wareable.com/
android-wear/new-moto-360-sport-2-price-release-date-specs.

[40] Runkeeper. How to use runkeeper with android wear,
2017. URL https://support.runkeeper.com/hc/en-us/articles/
202988016-How-to-use-Runkeeper-with-Android-Wear.

[41] Lifehacker. How accurately do running apps track your
distance, 2015. URL https://www.lifehacker.com.au/2015/10/
how-accurately-do-running-apps-track-your-distance/.

[42] Health Graph. Introducing the healthgraph, 2017. URL https://
runkeeper.com/developer/healthgraph/introducing-the-health-graph.

[43] Health Graph. Overview, 2017. URL https://runkeeper.com/developer/
healthgraph/overview.

[44] Health Graph. Developer’s console, 2017. URL https://runkeeper.com/
developer/healthgraph/console.

88

http://www.openmhealth.org/documentation/#/data-providers/about-shims
http://www.openmhealth.org/documentation/#/data-providers/about-shims
http://www.openmhealth.org/documentation/#/schema-docs/schema-design-principles
http://www.openmhealth.org/documentation/#/schema-docs/schema-design-principles
http://download.hl7.de/documents/ucum/ucumdata.html
http://www.openmhealth.org/documentation/#/schema-docs/schema-library/schemas/omh_physical-activity
http://www.openmhealth.org/documentation/#/schema-docs/schema-library/schemas/omh_physical-activity
http://www.openmhealth.org/documentation/#/schema-docs/schema-library/schemas/omh_physical-activity
https://tools.ietf.org/html/rfc6749#section-1.3
https://tools.ietf.org/html/rfc6749#section-1.3
http://www.openmhealth.org/documentation/#/schema-docs/schema-library
http://www.openmhealth.org/documentation/#/schema-docs/schema-library
http://www.openmhealth.org/documentation/#/schema-docs/schema-design-principles
http://www.openmhealth.org/documentation/#/schema-docs/schema-design-principles
http://www.openmhealth.org/documentation/#/schema-docs/write-a-schema
http://www.openmhealth.org/documentation/#/schema-docs/write-a-schema
https://www.sonymobile.com/global-en/products/smart-products/smartwatch-3-swr50/
https://www.sonymobile.com/global-en/products/smart-products/smartwatch-3-swr50/
https://www.wareable.com/android-wear/new-moto-360-sport-2-price-release-date-specs
https://www.wareable.com/android-wear/new-moto-360-sport-2-price-release-date-specs
https://support.runkeeper.com/hc/en-us/articles/202988016-How-to-use-Runkeeper-with-Android-Wear
https://support.runkeeper.com/hc/en-us/articles/202988016-How-to-use-Runkeeper-with-Android-Wear
https://www.lifehacker.com.au/2015/10/how-accurately-do-running-apps-track-your-distance/
https://www.lifehacker.com.au/2015/10/how-accurately-do-running-apps-track-your-distance/
https://runkeeper.com/developer/healthgraph/introducing-the-health-graph
https://runkeeper.com/developer/healthgraph/introducing-the-health-graph
https://runkeeper.com/developer/healthgraph/overview
https://runkeeper.com/developer/healthgraph/overview
https://runkeeper.com/developer/healthgraph/console
https://runkeeper.com/developer/healthgraph/console

[45] Carl Foster, Jessica A. Florhaug, Jodi Franklin, Lori Gottschall, Lauri A.
Hrovatin, Suzanne Parker, Pamela Doleshal, and Christopher Dodge.
A new approach to monitoring exercise training. Journal of Strength

and Conditioning Research, 15(1):109–115, 2001.

[46] Kim-Edgar Sørensen. Ruoksat. A system for capturing, persisting and

presenting the digital footprint of soccer knowledge and expertise. PhD
thesis, University of Tromsø, 2013. URL http://munin.uit.no/handle/
10037/5434.

[47] Richard P. Troiano, James J. McClain, Robert J. Brychta, and Kong Y.
Chen. Evolution of accelerometer methods for physical activity
research. Br J Sports Med., 48(13):1019–1023, 2014.

[48] Open mHealth. Install shimmer, 2015. URL http://www.openmhealth.
org/documentation/#/data-providers/install-shimmer.

[49] Open mHealth. Shimmer, 2016. URL https://github.com/openmhealth/
shimmer/.

[50] Ubuntu. Cronhowto, 2016. URL https://help.ubuntu.com/community/
CronHowto.

[51] MongoDB. db.collection.update(), 2017. URL https://docs.mongodb.
com/manual/reference/method/db.collection.update/.

[52] Shoshana Zuboff. Big other - surveillance capitalism and the prospects
of an information civilization. Journal of Information Technology, 30(5):
75–86, 2015.

[53] Apache. What is apache hadoop?, 2017. URL http://hadoop.apache.
org/.

[54] Apache. Spark, lightning-fast cluster computing, 2017. URL http:
//spark.apache.org/.

[55] William Kent. A simple guide to five normal forms in relational
database theory. Communications of the ACM, 1982.

[56] D3.js. Data-driven documents, 2017. URL https://d3js.org/.

[57] Mapbox. Mapbox, 2017. URL https://www.mapbox.com/maps/.

[58] Google Maps. Google maps apis, 2017. URL https://developers.google.
com/maps/.

[59] Open mHealth. Start processing data, 2017. URL http://www.
openmhealth.org/documentation/#/process-data/process-overview.

89

http://munin.uit.no/handle/10037/5434
http://munin.uit.no/handle/10037/5434
http://www.openmhealth.org/documentation/#/data-providers/install-shimmer
http://www.openmhealth.org/documentation/#/data-providers/install-shimmer
https://github.com/openmhealth/shimmer/
https://github.com/openmhealth/shimmer/
https://help.ubuntu.com/community/CronHowto
https://help.ubuntu.com/community/CronHowto
https://docs.mongodb.com/manual/reference/method/db.collection.update/
https://docs.mongodb.com/manual/reference/method/db.collection.update/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://spark.apache.org/
http://spark.apache.org/
https://d3js.org/
https://www.mapbox.com/maps/
https://developers.google.com/maps/
https://developers.google.com/maps/
http://www.openmhealth.org/documentation/#/process-data/process-overview
http://www.openmhealth.org/documentation/#/process-data/process-overview

	Introduction
	Background
	Problem definition
	Limitations
	Research methods
	Main contributions
	Outline

	Related Work
	GPS
	Wearables
	Accelerometer
	Gyroscope
	Altimeter

	Mobile health
	Ohmage
	Open mHealth
	Docker
	Composing a docker container

	MongoDB
	OAuth 2
	Third-party data sources
	Athlete Monitoring
	Summary

	Shimmer
	Shimmer components
	Shims
	Resource server
	Console

	Schema
	Design principles

	Grant Type: Authorization Code
	Installation
	GPS in Shimmer
	Summary

	Runkeeper and Health Graph
	Runkeeper
	Runkeeper application
	Wearable hardware
	GPS accuracy

	Health Graph
	API
	Health Graph console
	Limitations

	Summary

	PmSys
	Current pmSys
	PmSys Mobile Application
	PmSys-trainer

	PmSys with objective data
	Motivation
	Injecting shimmer into the backend

	Summary

	Testing
	Using Shimmer
	Using bash script
	Summary

	Proof of concept
	System requirements
	Functional requirements
	User stories
	Non-functional requirements

	Working with Shimmer
	GPS schema
	GPS data point mapper

	Connect pmSys user to Runkeeper
	Fetch data from Runkeeper
	Scheduling requests

	Database storage
	Replication
	Concurrency in MongoDB
	Big data
	Database optimization

	Summary

	Conclusion
	Summary
	Main Contributions
	Future work
	PmSys frontend
	PmSys backend
	Aggregation of data

	Appendix Accessing the source code

