
UNIVERSITY OF OSLO

Department of Informatics

Multi-Rate VP8

Video Encoding

Master’s Thesis

Dag Haavi Finstad

Multi-Rate VP8 Video Encoding

Dag Haavi Finstad

ii

Contents

Abstract ix

Acknowledgments xi

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 2

1.3 Main Contributions . 3

1.4 Outline . 3

2 The VP8 Codec 5

2.1 Digital representation of video . 5

2.1.1 Temporal and spatial sampling . 5

2.1.2 Color spaces . 6

2.1.3 VP8 Frames and macroblocks . 7

2.2 VP8 encoding process . 8

iii

iv CONTENTS

2.2.1 Analysis . 9

2.2.2 Encoding . 11

2.2.3 Entropy Coding . 14

2.3 The libvpx Encoder . 14

2.3.1 Profiling analysis . 15

2.4 Summary . 15

3 Design and Implementation of a Multi-rate Encoder 19

3.1 Background . 19

3.2 Multi-rate Encoding . 20

3.3 Implementation details . 22

3.3.1 Adapting libvpx for running multiple instances 22

3.3.2 Reuse of motion prediction computations 23

3.4 Summary . 24

4 Experiments 25

4.1 Test environment . 25

4.1.1 Input test sequences . 25

4.1.2 Test setup . 26

4.1.3 Metrics . 27

4.2 Results . 28

4.2.1 Encoding results . 28

CONTENTS v

4.2.2 Quality assessment . 29

4.2.3 Choosing the prediction bitrate . 34

4.3 Discussion and open issues . 36

5 Conclusion 41

5.1 Summary and contributions . 41

5.2 Further work . 42

5.2.1 Visual quality . 42

5.2.2 Performance . 42

vi CONTENTS

List of Figures

2.1 YUV 4:2:0 chroma subsampling. Taken from Wikipedia’s article on YUV

[1]. 7

2.2 Encoder overview for VP8. Borrowed and modified from [2] 9

2.3 Motion vectors. Inter-coded macroblocks are displayed as green, intra-

coded as purple. The line extending from the center of each green block

corresponds to the motion vector. 10

2.4 Residual (difference between prediction and input picture). Corresponds

to “Dn” in figure 2.2 . 12

2.5 Frame constructed from prediction data before having residual added.

Corresponds to “P” in figure 2.2 . 13

2.6 KCachegrind profiling data . 16

2.7 Excerpt from figure 2.6 . 17

3.1 Basic flow for the ”multi-rate” VP8 encoder 21

4.1 CIF streaming scenario (“foreman”) . 30

4.2 CIF streaming scenario (“akiyo”) . 31

4.3 HD streaming scenario (“pedestrian area”) 32

vii

viii LIST OF FIGURES

4.4 HD streaming scenario (“blue sky”) . 33

4.5 Frame number 100 of the test sequence ”pedestrian area”, displaying the

quality difference for the “worst-case” scenario in figure 4.3b of 1.32 dB

peak signal-to-noise ratio (PSNR) of 1500 kbps 35

4.6 Rate-distortion curve for CIF test sequence ”foreman” with different

prediction bitrate (in kbps) . 37

4.7 Rate-distortion curve for HD test sequence ”pedestrian area” with dif-

ferent prediction bitrate (in kbps) . 38

Abstract

Adaptive HTTP streaming is frequently used for both live and on demand video de-

livery over the Internet. Adaptiveness is often achieved by encoding the video stream

in multiple qualities (and thus bitrates), and then transparently switching between the

qualities according to the bandwidth fluctuations and the amount of resources avail-

able for decoding the video content on the end device. For this kind of video delivery

over the Internet, H.264 is currently the most used codec, but VP8 is an emerging open-

source codec expected to compete with H.264 in the streaming scenario. The challenge

is that, when encoding video for adaptive video streaming, both VP8 and H.264 run

once for each quality layer, i.e., consuming both time and resources, especially impor-

tant in a live video delivery scenario.

In this thesis, we address the resource consumption issues by proposing a method

for reusing redundant steps in a video encoder, emitting multiple outputs with vary-

ing bitrates and qualities. It shares and reuses the computational heavy analysis step,

notably macro-block mode decision, intra prediction and inter prediction between the

instances, and outputs video in several rates. The method has been implemented in the

VP8 reference encoder, and experimental results show that we can encode the different

quality layers at the same rates and qualities compared to the VP8 reference encoder,

while reducing the encoding time significantly.

ix

x ABSTRACT

Acknowledgments

I would like to thank my supervisors Håkon Kvale Stensland and Pål Halvorsen, for

their guidance, valuable feedback and for always being encouraging and positive.

Also a big thanks to all of my friends at the lab, for interesting discussions and laughs,

and a motivating work environment.

Oslo, August 2011

Dag Haavi Finstad

xi

xii ACKNOWLEDGMENTS

Chapter 1

Introduction

1.1 Background

The number of video streaming services, both live and on-demand, is quickly increas-

ing. For example, consider the emergent and rapid deployment of public available

Internet video archives providing a wide range of content like newscasts, movies and

scholarly videos. Furthermore, all major (sports) events like NFL Hockey, NBA basket

ball, NFL football, European soccer leagues, etc. are streamed live with only a few

seconds delay, e.g., bringing the 2010 Winter Olympics [3], 2010 FIFA World Cup [4]

and NFL Super Bowl [4] to millions of concurrent users over the Internet supporting

a wide range of devices ranging from mobile phones to HD displays. The number of

videos streamed from such services is in the order of tens of billions per month [5], and

leading industry movers conjecture that traffic on the mobile-phone networks will also

soon be dominated by video content [6].

The currently de facto video delivery solution in these scenarios is adaptive streaming

over HTTP [3, 4, 7–9]. In these systems, the bitrate (and thus video quality) can be

changed dynamically to match an oscillating bandwidth, giving a large advantage over

non-adaptive systems that are frequently interrupted due to buffer underruns or data

1

2 CHAPTER 1. INTRODUCTION

loss. The video is thus encoded in multiple bitrates matching different devices and

different network conditions.

Today, H.264 is the most frequently used codec. However, an emerging alternative is

the simpler VP8 which is very similar to H.264’s baseline profile and supposed to be

well suited for web-streaming with native support in major browsers, royalty free use

and similar video quality as H.264 [10,11]. For both codecs, the challenge in the multi-

rate scenario is that each version of the video require a separate processing instance of

the encoding software, and especially in the live scenario, where all the rates must be

delivered in real-time. This process is both time and resource consuming.

To reduce the large video overheads in multi-rate scenarios, we investigate possibilities

for reusing the output from different steps in the encoding pipeline as the same video

elements are processed multiple times with only slightly different parameters. As a

case study, we have analyzed and experimented with VP8’s processing pipeline and

implemented support for running multiple VP8 encoder instances in parallel. Inspired

by several transcoding approaches trying to reuse motion vectors [12–14], our initial

idea is to allow the encoder to share and reuse the computational heavy intermediate

steps from analysis computations, notably macro-block mode decision, intra prediction

and inter prediction between the instances. Furthermore, the proposed method has

been implemented in the VP8 reference encoder, and we have performed a wide range

of experiments using various rates, resolutions and content types. We show that we can

encode the different videos at the approximately same rates and qualities compared to

the VP8 reference encoder, while reducing the encoding time significantly.

1.2 Problem Statement

Encoding video into multiple bitrates for adaptive streaming over various networks to

different end-devices is a resource expensive task. With the motivation of alleviating

the resource consumption, we wish to investigate the effect of reusing intermediate

computations when running multiple encoding instances in parallel.

1.3. MAIN CONTRIBUTIONS 3

Our work will be based on Google’s VP8 encoder (libvpx). We will identify the most

resource consuming parts of the encoder, and investigate the possibility of reusing

intermediate results from these computations when targeting several bitrates. As a

case study we will implement a multi-rate encoder based on libvpx, and evaluate its

performance.

1.3 Main Contributions

Our main contribution is that we propose a way of reusing decisions from intra and

inter prediction in the video encoder to avoid computational expensive steps that are

redundant when encoding for multiple target bitrates of the same video object.

A proof of concept implementation has been developed, based on the VP8 reference

encoder. Our encoder is capable of encoding videos of different quality layers at the

same rates and approximately same qualities compared to the VP8 reference encoder,

with significantly reduced complexity.

A paper describing the multi-rate encoder and evaluating its performance has been

submitted and is currently pending review for the IEEE International Symposium on

Multimedia (ISM2011) conference.

1.4 Outline

In chapter 2, we provide background on concepts in video coding and describe the

VP8 video format. We also give an overview of the libvpx encoder and describe the

encoding pipeline. Chapter 3 presents the design and implementation considerations.

A description of the experiments performed and an evaluation of the performance of

our implementation is found in chapter 4. Finally, in chapter 5 the work is concluded,

along with a short discussion on further work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

The VP8 Codec

In this chapter, we provide background on basic concepts in video representation and

coding, and give an introduction to the VP8 video codec format.

The VP8 codec [15], developed by On2 Technologies as a successor to VP7, is a modern

codec for storing progressive video. On2 was acquired by Google in 2010, which sub-

sequently released VP8 as a royalty-free alternative to H.264 as part of the open source

webm project. The webm format was later added as a supported format in the upcom-

ing HTML5 standard, and all major browsers have implemented playback support for

the format since webm is expected to be a major streaming format on the web in the

coming years.

2.1 Digital representation of video

2.1.1 Temporal and spatial sampling

Representation of a visual scene digitally involves sampling the visual scene temporally

and spatially. The temporal sampling relates to the sampling of the real scene at a pe-

5

6 CHAPTER 2. THE VP8 CODEC

riodic interval, providing a series of pictures. A higher temporal sampling rate gives

smoother motion, but requires more samples to be stored.

The spatial sampling involves representing each picture as a collection of discrete pixel

values. The pixels are arranged in a grid, each value representing a sample of the

original picture at the corresponding position.

2.1.2 Color spaces

To represent color in a pixel value, at least three numbers are required. The RGB color

model represents each color as a combination of red, green and blue. Any color can be

represented by combining these in variying proportions.

A different way of encoding the RGB signal is the Y’CbCr format, which is a transfor-

mation of the RGB values. In Y’CbCr (also often referred to as YUV), the luminance

is stored as a separate component (Y’), while the chroma is stored as the Cb and Cr

components.

The human visual system is much more sensitive to variations in brightness than

changes in chroma [16]. Storing the luminance as a separate component, allows for

this to be taken advantage of. The bandwidth used for the color components can be

reduced, without loss of perceived quality. This is done by subsampling of the color

components, i.e. the color components are stored at a reduced resolution compared to

the luma component.

VP8 works exclusively with an 8-bit YUV 4:2:0 image format. For YUV 4:2:0, the hori-

zontal and vertical resolution of the U and V components are both half the resolution

of the Y component. Figure 2.1 illustrates 4:2:0 chroma subsampling. Each pixel in the

chroma planes (U and V) corresponds to a 2x2 block of pixels in the luma (Y) plane.

Each of the color components contain a quarter of the number of pixels as the Y plane,

so YUV 4:2:0 requires exactly half the bandwidth compared to RGB or YUV 4:4:4 (no

subsampling).

2.1. DIGITAL REPRESENTATION OF VIDEO 7

Figure 2.1: YUV 4:2:0 chroma subsampling. Taken from Wikipedia’s article on YUV [1].

2.1.3 VP8 Frames and macroblocks

Like most other video codecs, in VP8 each picture is decomposed into smaller square

subblocks of pixels. For the Y component, the picture is decomposed into blocks of

16x16 pixels. This is known as a macroblock. As noted in section 2.1.2, the chroma

components have half the horizontal and vertical resolution of the Y component. A

corresponding chroma macroblock hence has dimensions 8x8 pixels.

A macroblock is further decomposed into 4x4 subblocks. For each macroblock, there

are 16 Y subblocks, 4 U subblocks and 4 V subblocks. Most of the steps in the encoding

process is carried out at the level of macroblocks and subblocks.

In VP8, there are two types of compressed frames. Intraframes are represented without

reference to any prior frames. They can therefore be decoded independently. In VP8,

intraframes are also known as key frames. They can be used as starting points for

playback.

Interframes are represented with references to previously encoded frames. Decoding

an interframe directly depends on the correct decoding of up to three previous frames,

8 CHAPTER 2. THE VP8 CODEC

referred to as

• The last frame. This is the immediately previous frame.

• The altref frame. An alternative reference frame.

• The golden frame.

Every keyframe is automatically both golden and altref, and any interframe may op-

tionally replace them. VP8 does not have bi-directional prediction. There is no concept

of B-frames as in MPEG.

2.2 VP8 encoding process

Video compression is the act of compacting a digital video signal into a smaller number

of bits. This is achieved through removing redundancy in the input video. The idea is

to remove subjective redundancy, i.e. elements of the input video that can be removed

without significantly affecting a viewer’s percepted visual quality of the video.

Primarily, the reduction of redundancy happens in the temporal and spatial domain.

The spatial domain refers to pixel values within the same picture. Reduction of redun-

dancy in the spatial domain takes advantage of similarity between pixels within the

same picture. Compression can be achieved by predicting a pixel from its neighboring

values. This is known as intra prediction.

The temporal domain refers to pixel values between pictures. Reduction of redun-

dancy in the temporal domain can be taken advantage of due to the fact that there is

a high correlation between pixels in successive pictures. The pixels in a region can be

predicted with a reference to an earlier encoded picture, along with an offset that spec-

ifies where in the reference picture the prediction should be copied from. This offset is

known as a motion vector.

2.2. VP8 ENCODING PROCESS 9

Figure 2.2: Encoder overview for VP8. Borrowed and modified from [2]

Figure 2.2 provides an overview for the VP8 encoding process. Encoding VP8 entails

doing analysis (motion prediction), transform, quantization, entropy coding and in-

loop filtering. Each of these steps will be described in more detail in the following

sections.

2.2.1 Analysis

The analysis stage refers to mode decision and motion prediction. Each macroblock is

analyzed to find a suitable mode and prediction.

Intra Prediction

In intra prediction the blocks are predicted from blocks within the same frame. In VP8,

there are four macroblock modes for intra prediction.

• DC_PRED Predict using the average of above and left pixels.

10 CHAPTER 2. THE VP8 CODEC

Figure 2.3: Motion vectors. Inter-coded macroblocks are displayed as green, intra-

coded as purple. The line extending from the center of each green block corresponds

to the motion vector.

• V_PRED Vertical prediction. Predict rows using row above.

• H_PRED Horizontal prediction. Predict columns using column to the left.

• TM_PRED TrueMotion prediction. Prediction calculated from left, above and

single top left pixel.

Prediction of 8x8 chroma macroblocks are restricted to these modes.

In addition, for luma macroblocks, there is B_PRED, which specifies that each subblock

has its own prediction. There are ten different prediction modes for the 4x4 subblocks.

Four of them correspond to the above 16x16 modes, and the last six utilize prediction

in a diagonal direction.

2.2. VP8 ENCODING PROCESS 11

Inter Prediction

When encoding an inter frame, all of the above block modes are available, in addition

to the following:

• NEARESTMV

• NEARMV

• ZEROMV

• NEWMV

• SPLITMV

Modes NEARMV and NEARESTMV specify that the motion vector from a neighboring

macroblock is used. ZEROMV specifies a motion vector that is zero, i.e. it references

the exact same block in the reference picture. NEWMV specifies that a new motion

vector should be coded.

SPLITMV specifies that each 4x4 subblock has its own prediction. Possible 4x4 inter

modes are LEFT4x4, ZERO4x4, ABOVE4x4 and NEW4x4. LEFT4x4 and ABOVE4x4

specify that the left and above motion vector is to be used, respectively.

The motion vectors work at the quarter-pixel resolution. The fractional pixel values

that lie “between” actual pixels are synthesised from applying a filter to the surround-

ing pixels.

2.2.2 Encoding

The selected best matching prediction from the analysis step (P) is subtracted from the

input frame (Fn) to produce a residual frame Dn. Each residual macroblock is trans-

formed into the frequency domain and quantized. The purpose of transforming it to

12 CHAPTER 2. THE VP8 CODEC

Figure 2.4: Residual (difference between prediction and input picture). Corresponds

to “Dn” in figure 2.2

the frequency domain is to make the values more suited for entropy coding. The en-

tropy is further reduced with quantization, by discarding high-frequency components.

Both transform and quantization operates on 4x4 subblocks.

Transform

Each block is transformed to the frequency domain using a discrete cosine transform.

The DCT concentrates the most significant coefficients in the top left of the matrix. The

first coefficient is known as the DC coefficient, while the remaining 15 coefficients are

known as AC coefficients.

For most prediction modes, the DC coefficient of each of the 16 Y subblocks is ex-

2.2. VP8 ENCODING PROCESS 13

Figure 2.5: Frame constructed from prediction data before having residual added. Cor-

responds to “P” in figure 2.2

pressed via an additional block, referred to as the Y2 block. The purpose of this is

to further increase entropy in the DCT blocks. The Y2 block is transformed using a

Walsh-Hadamard transform (WHT).

Both the DCT and the WHT in VP8 are defined using exact integer operations, to en-

sure there is no mismatch between encoding and decoding.

Quantization

Quantization is the actual lossy step of the encoding. Quantization discards high-

frequency data from the residuals. This is done by dividing the transformed mac-

roblock by a quantization matrix. The quantization matrix is decided by a quantization

14 CHAPTER 2. THE VP8 CODEC

parameter, which applies to all macroblocks of a frame. The quantization parameter is

chosen by the encoder, and is adjusted to match a desired bitrate and quality.

Frame Reconstruction

To avoid propagating errors introduced by the quantizer (“drift”), an encoder must use

the same decoded reference frames for motion prediction as a decoder uses for motion

compensation. It is therefore necessary for the encoder to reconstruct the encoded

frame after quantization.

The quantized frame is dequantized and inverse transformed (D’n). D’n is added to

the prediction frame (P), forming an unfiltered reconstructed frame u’Fn.

To complete the reconstruction, u’Fn is filtered to smooth out potential blockiness be-

tween edges of macroblocks. This is done not only to improve visual quality, but also

to improve motion prediction.

The filtered reconstructed frame is in the encoder placed in a buffer to be used as a

reference for subsequent frames.

2.2.3 Entropy Coding

Entropy coding is the final stage of the encoding. All of the information from the other

steps are taken in and compressed losslessly to the output file.

2.3 The libvpx Encoder

Libvpx is the official VP8 encoder/decoder reference implementation, which was re-

leased as a part of the WebM project. The VP8 bitstream guide [15] states that the

reference implementation also serves as the official specification of the format. Our

2.4. SUMMARY 15

multi-rate encoder implementation is based on libvpx. This is explored in more detail

in chapter 3.

2.3.1 Profiling analysis

In order to identify the most time consuming operations of the encoder, we have per-

formed runtime profiling using the valgrind tool callgrind [17]. The profiling data has

been visualized as a call graph using the tool KCachegrind [18]. The results of the

profiling are presented in figure 2.6, along with a less detailed zoomed in view in 2.7.

The profiling was run with the same configuration as in our experiments (described in

section 4.1), with the test sequence ”pedestrian area”.

The call graph presented in figures 2.6 and 2.7 displays the number of times each func-

tion is invoked, along with the execution time as a percentage of total execution time.

From the profiling analysis we observe that the analysis step is by far the most time

consuming component. More than 80% of the execution time is spent in

vp8_rd_pick_inter_mode.

vp8_rd_pick_inter_mode is called per macroblock. It iterates through every possible

macroblock mode and picks the best prediction according to its calculated cost. If the

result of this part can be reused for encoding operations for other bitrates, the resource

consumption can be greatly reduced.

2.4 Summary

In this chapter we have introduced concepts in video coding with a description of

the VP8 video format. We have given an overview of the implementation of the libvpx

VP8 encoder, and through runtime profiling, identified macroblock mode decision and

16 CHAPTER 2. THE VP8 CODEC

Figure 2.6: KCachegrind profiling data

2.4. SUMMARY 17

Figure 2.7: Excerpt from figure 2.6

18 CHAPTER 2. THE VP8 CODEC

motion prediction as the most time consuming part of the encoder pipeline. In partic-

ular, it was observed that over 80% of the execution time was spent in the function

vp8_rd_pick_inter_mode, doing motion prediction. In the following chapter, we will

look into the possibilities of reusing computations from motion prediction in a multi-

rate scenario.

Chapter 3

Design and Implementation of a

Multi-rate Encoder

In this chapter, we present the design and implementation considerations for our multi-

rate VP8 encoder. We present an overview of the solution and then go into a more

detailed discussion of its implementation characteristics.

3.1 Background

The idea of running multiple VP8 encoder instances in parallel is inspired by transcod-

ing approaches trying to reuse motion vectors [12–14]. In [12] the authors discuss

transcoding with reuse of motion vectors in the context of spatial downscaling. The

paper investigates the statistical characteristics of the macroblocks associated with the

best matching motion vectors and define a likelihood score, which is used for picking

the motion vectors.

Zhou et al [13] proposes an algorithm for reusing motion vectors in the context of

spatial downscaling. Methods for synthesizing a new motion vector by reuse of the

motion vectors from the higher resolution bitstream are discussed. A method for re-

19

20 CHAPTER 3. DESIGN AND IMPLEMENTATION OF A MULTI-RATE ENCODER

fining the synthesized is also discussed. Senda et al [14] describes a realtime software

transcoder with motion vector reuse. A method for reusing downscaled motion vectors

is discussed, where the authors evaluate scaled motion vectors and their neighbors. A

method for reducing the number of candidate motion vectors is proposed, and the best

one is picked by finding the one with the lowest mean absolute error.

None of these papers reuse motion vectors for use with several encoder instances tar-

geting different bitrates, they instead address the issue of reusing scaled motion vec-

tors. We want to investigate the possibility for reusing data from parts of the encoding

pipeline to be able to output multiple video streams targeting different bitrates.

3.2 Multi-rate Encoding

Our multi-rate encoder is based on the reference VP8 encoder, released as part of the

webm project. Provided in figure 2.7 is a call graph of the VP8 reference encoder. In the

call graph, we can see the flow of the program, how many times a function have been

called, and how large percentage of the execution time is spent in different parts of the

code. The basic flow of the entire encoder is illustrated in the upper part of figure 3.1.

The analysis part consists of macroblock mode decision and intra/inter prediction,

this corresponds to vp8_rd_pick_inter_mode in figure 2.7. The encode part refers

to transform, quantization, dequantization and inverse transform, corresponding to

the functions vp8_encode_inter* and vp8_encode_intra* for the various block

modes chosen. Output involves entropy coding and writing the output bitstream to

file, this part of the encoder is not shown in the call graph. Profiling of the VP8 en-

coding1 process shows that during encoding of the foreman test sequence, over 80 per-

cent of the execution time is spent in the analysis part of the code, i.e., if this part can

be reused for encoding operations for other rates, the resource consumption can be

greatly reduced.

1Earlier analysis of the x264 processing pipeline found similar results [19].

3.2. MULTI-RATE ENCODING 21

Input

1000

setRate

Analysis
Encode

Output

Encode
Output

Encode
Output

Encode
Output

750

setRate

450

setRate

250

setRate

Figure 3.1: Basic flow for the ”multi-rate” VP8 encoder

Our modifications to the VP8 encoder only considers one-pass encoding, which is the

predominant mode used for streaming live video. When starting the encoder, a pre-

diction bitrate is specified which is used as input to the analysis step for finding intra-

and inter-prediction parameters. The encoding instance for the prediction bitrate is

considered the main encoder instance; this is the only encoder instance that will run

the analysis computations. In the profile of the VP8 encoder seen in figure 2.7, this step

is labeled as vp8_rd_pick_inter_mode. After the analysis step is completed, the

main encoder instance provides the prediction data from the prediction bitrate to the

other encoder instances, which will the encode the frame without doing any motion

prediction.

Additionally, as seen in figure 3.1, the encoding instances select different target bi-

trates (giving different quantization parameters). The encoder starts one thread for

each specified bitrate where each of these threads correspond to a separate encoding

instance. The instances have identical encoding parameters such as keyframe interval,

subpixel accuracy, etc., except for the target bitrate provided. Since the bitrate varies,

each instance must maintain its own state and reconstruction buffers. The threads are

synchronized on a frame by frame basis, where the main encoding instance analyses

22 CHAPTER 3. DESIGN AND IMPLEMENTATION OF A MULTI-RATE ENCODER

the frame before the analysis computations are made available to the other threads.

This involves macroblock mode decision, intra- and inter-prediction. The non-main

encoding instances reuse these computations directly without doing the computation-

ally intensive analysis steps. Most notably vp8_rd_pick_inter_mode (figure 2.7) is

only performed by the main encoding instance.

3.3 Implementation details

3.3.1 Adapting libvpx for running multiple instances

The libvpx encoder is not written with the intention of running multiple encoding

instances in parallel. The encoder went through significant changes in order to adapt

it to run instances in parallel.

A new command line option -multi-output-brs was added. This command line

takes a comma-separated list of bitrates as input, and enables multi-instance encoding.

As described above, each instance will have the same initial configuration, except for

the target bitrate. One of the instances will be the designated main instance, which is

the instance that will perform all of the analysis steps, while the others will reuse its

analysis computations.

Upon initialization of the encoder, a thread is created for each of the encoding in-

stances. Instance-specific code in main() was extracted to its own function, for run-

ning in its own thread. Likewise, a struct was created for keeping track of various state

needed for each encoder instance. There were several concerns regarding global state

and race conditions. This was resolved by making variables thread-local and doing

extra copying.

The code in in main() was adapted to have it simply read input frames, to be con-

sumed by the encoder instances.

3.3. IMPLEMENTATION DETAILS 23

For synchronizing the threads, pthread barriers are used. The code is set up so that

computations can be reused as described in pseudo code in listing 3.1.

Listing 3.1: Encoder instance synchronization using barriers

if(thread is main instance) {

perform computation

barrier_wait(b1)

}

else {

barrier_wait(b1)

reuse computation

}

barrier_wait(b2)

Ideally, the solution could instead be implemented so that the main instance is always

kept one frame ahead of the other instances. This way, the other instances could pro-

cess framen−1 concurrently with the main instance processing framen. This would

however require additional complexity with regards to buffering of computation re-

sults and a more sophisticated synchronization scheme. The idea was thus dropped

due to time constraints.

3.3.2 Reuse of motion prediction computations

The call graph in figure 2.7 describes the flow of the encoder when encoding in one-

pass mode. Each frame is passed to encode_frame_to_data_rate(), which se-

lects a quantization parameter based on the bits available for the targeted bitrate. The

rate control scheme for one-pass encoding in libvpx is not overly sophisticated. It

makes an initial guess at a quantization parameter, encodes the frame, and then if it

significantly undershot or overshot the bits available, it simply recodes the frame with

a refined quantizer guess.

Recoding a frame an arbitrary number of times doesn’t work with the proposed syn-

24 CHAPTER 3. DESIGN AND IMPLEMENTATION OF A MULTI-RATE ENCODER

chronization scheme (barriers). The priority was to get the prototype working, so the

one pass rate control was further simplified. The rate control for the designated main

instance is unchanged, but for the non-main instances the initial guess at quantizer is

always used.

When the main encoding instance is finished encoding its frame and the prediction

computations are ready, the other instance will run, utilizing the computations from

the main instance.

vp8_encode_frame() sets up various data structures and iterates through the rows

of the frame, invoking encode_mb_row() for each macroblock row.

In encode_mb_row(), each macroblock of the row is processed by calling

vp8cx_encode_intra_macro_block() for the main instance, and

vp8cx_encode_intra_macro_block_nonmain() for the other instances. The lat-

ter version of the function will completely skip motion prediction

(vp8_rd_pick_inter_mode), and instead simply copy the contents of the corre-

sponding MODE_INFO and PARTITION_INFO structs from the main encoding instance.

It is worth noting that only the prediction context is copied, i.e. the block mode deci-

sions and motion vector information. Each encoder instance build their own predictors

and calculate their own residuals as per usual to ensure no encoder-decoder mismatch.

3.4 Summary

In this chapter, the design and implementation considerations for our multi-rate en-

coder has been presented. In the following chapter we move on to evalute the perfor-

mance of our solution.

Chapter 4

Experiments

In this chapter we perform experiments on the libvpx encoder with the modifications

described in chapter 3. The purpose of these experiments is to evaluate how our im-

plementation performs, both in terms of CPU time and visual quality of the resulting

video encodes. The experiments are performed using several test sequences, and the

results are compared to a reference version of the libvpx encoder.

4.1 Test environment

4.1.1 Input test sequences

In our testing, we have performed experiments targeting the scenarios of streaming to

mobile devices and streaming to HD devices. The mobile devices scenario is characterised

by low resolution video encoded at lower bitrates, typically suited for streaming to

handheld devices connected through cellular networks. For the HD scenario we have

chosen HD resolution test sequences encoded at higher bitrates. Since we reuse motion

vectors for the encoding, we looked at different videos with different amount and kind

of motion.

25

26 CHAPTER 4. EXPERIMENTS

For the mobile devices scenario, we used the standard test sequences foreman and akiyo

in CIF format (352x288, 29.97 FPS). We have chosen target bitrates of 250, 450, 750 and

1000 kbps for the different quality levels. Akamai [20] recommends that video should

be encoded at 250 kbps for low quality and 450 kbps for high quality. Typical 3G

networks can deliver bandwidths of 384 kbps (UMTS) to 7.2 Mbps (HSDPA).

The foreman test sequence is very high in motion. It is shot with a very unstable hand-

held camera and displays a man talking, with very lively and detailed facial expres-

sions. Towards the end of the sequence, the camera pans to the side, and we are pre-

sented a more static view of a building.

The akiyo sequence shows a TV news presenter sitting in front of a static background.

The camera is in a fixed position, and there is very little movement.

To test the other end of the scale, we have also performed experiments using HD reso-

lution test sequences. The typical target audience for this scenario is home users with

consumer internet connections and HD displays. Typical ADSL lines can deliver from

about 750 kbps to 8 Mbps, and for this scenario we encode the test sequences with

target bit rates of 1500, 2000, 2500 and 3000 kbps.

The chosen HD test sequences are the standard test sequences pedestrian area and blue

sky. Both of these are in 1080p resolution, 25 frames per second. The pedestrian area test

sequence shows a shot of a pedestrian area, with moving objects (people) passing by

close to the camera with a mostly static background. The camera position is fixed. blue

sky is a shot of the top of two trees against a blue sky, with the camera moving. The test

sequence is high in contrast and detail, with small color differences in the background

sky.

4.1.2 Test setup

Our work is based on version v0.9.5-173-geb8b4d9 of the libvpx encoder, and this is

also the version we have used for testing against. Listing 4.1 shows the command line

used for running the reference encoder. The multi-rate encoder used the exact same

4.1. TEST ENVIRONMENT 27

configuration, with the exception of specifying several bitrates at once, using the new

command line option --multi-output-brs.

Listing 4.1: Reference encoder command line

./vpxenc FILE -o output_vp8.webm \

-p 1 -t 4 \

--good --cpu-used=0 --target-bitrate=BR --end-usage=1 \

--fps=FPS -v \

--kf-min-dist=0 --kf-max-dist=500 \

--token-parts=2 --static-thresh=0 \

--min-q=0 --max-q=63

All experiments were performed on a test machine with a 4-core Intel Core i5 750 and

4 GB of memory. The test machine runs Ubuntu Linux, with kernel version 2.6.32-24.

The PSNR values used in the rate-distortion curves are measured by the libvpx en-

coder. The CPU time consumed is measured using time.

4.1.3 Metrics

Visual quality is inherently a subjective matter, and is therefore very difficult to mea-

sure objectively. However, in order to obtain reliable and repeatable results, objective

measures are needed.

For evaluating the performance of the multi-rate encoder, we have plotted average

PSNR vs bitrate, producing a rate-distortion curve.

PSNR is calculated by the libvpx encoder, by application of the following formula

PSNR = 10 · log10

(

MAX2
I

MSE

)

(4.1)

28 CHAPTER 4. EXPERIMENTS

where MSE is the mean squared error between the encoded video and the input source.

This is calculated from the sum of all squared value differences for each color plane Y,

U and V.

Another widely used objective quality metric is structural similarity (SSIM) [21]. SSIM

was designed to be more consistent with actual subjective perception. Calculation of

the SSIM index is based on comparing the structural information in the image, along

with contrast and luminance. This comparison is more in line with the properties and

perceptions of the human visual system [21].

Even though SSIM in the general case is a better metric for quality comparison than

PSNR, there are still cases where PSNR is highly relevant. The validity of PSNR as

an objective video quality metric is investigated in [22]. It is shown that PSNR is a

perfectly good metric for comparing the variation of video quality when comparing a

codec to itself on individual clips.

To expand on this, it is found that that when comparing the quality of some video clip

to the quality of a different video clip, PSNR is not a very reliable metric. Also, it is

not very reliable when comparing the performance of a codec to the performance of

another different codec. In our case, we only compare content encoded with the same

codec, so we trust that PSNR is a valid metric.

For visual inspection, we also include sample pictures from the encoded videos.

4.2 Results

4.2.1 Encoding results

To evaluate our multi-rate encoder, we have first plotted the total CPU time used when

encoding the foreman sequence in figure 4.1a for the four different output rates. To

see if there is a difference for different chosen prediction bitrates when using the multi-

rate encoder, we have included one test for each prediction bitrate. These results are

4.2. RESULTS 29

compared to the combined CPU time used when encoding the videos for the same

rates using the reference encoder with both a single thread and multiple threads. The

CPU time used in the multi-rate approach is more than 2.5 times faster than encoding

the four sequences using the reference encoder. The multi-rate approach scales further

if the number of encoded streams is increased. In addition, the time spent in kernel

space is far less in the multi-rate approach compared to the reference encoder, and we

believe this is a result of reading the source video from disk only once.

The akiyo results are plotted in figure 4.2a. We observe a performance gain comparable

to that of the foreman sequence.

To see if there are differences between low and high resolution videos, we have also

looked at HD sequences to validate our approach. Figure 4.3a shows the “pedestrian

area” test clip with a prediction bitrate of 2000 kbps. We observe a 2.06 times reduction

in CPU time for the multi-rate encoder as we saw for the foreman sequence.

As noted in 4.1.1, we also looked at the test sequence ”blue sky”, to see how the multi-

rate encoder performs on input which has different amount and kind of motion. The

“blue sky” results are plotted in figure 4.4a with a performance gain of 2.47 times the

performance of the reference encoder. Thus, for all our experiments using different

rates, resolutions and content types, our multi-rate encoder reduce the total resource

consumption.

4.2.2 Quality assessment

Using prediction parameters generated from a different bitrate than the target bitrate

does have implications for the video quality. To investigate the trade off between re-

duced processing time versus degraded video quality, we have plotted a rate-distortion

curve for the foreman sequence with a prediction bitrate of 450 kbps in figure 4.1b. We can

see that reference encoder produces about 1 dB higher PSNR at the same bitrate than

the multi-rate encoder. Depending on the intended usage, the significantly reduced

CPU time might outweigh the small reduction in quality.

30 CHAPTER 4. EXPERIMENTS

M
ul
ti
ra
te
 -
25

0

M
ul
ti
ra
te
 -
45

0

M
ul
ti
ra
te
 -
75

0

M
ul
ti
ra
te
 -
10

00

Re
f.
Se
ria

l

Re
f.
Co

nc
ur
re
nt

0

20

40

60

80

100

120

C
P
U
 t
im

e
 i
n
 S

e
co

n
d
s
(s

)
Kernel

User

(a) CPU time

 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50

 0 100 200 300 400 500 600 700 800 900 1000

P
S

N
R

 (
d

B
)

Resulting bitrate (kbps)

Average rate distortion (foreman)

VP8 reference encoder
VP8 multi rate encoder

(b) Rate-distortion curve

Figure 4.1: CIF streaming scenario (“foreman”)

4.2. RESULTS 31

M

u

l

t

i

r

a

t

e

-

2

5

0

M

u

l

t

i

r

a

t

e

-

4

5

0

M

u

l

t

i

r

a

t

e

-

7

5

0

M

u

l

t

i

r

a

t

e

-

1

0

0

0

R

e

f

.

S

e

r

i

a

l

R

e

f

.

C

o

n

c

u

r

r

e

n

t

0

10

20

30

40

50

60

70

C
P
U

t
i
m

e

i
n

S
e
c
o
n
d
s

(
s
)

Kernel

User

(a) CPU time

 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50

 0 100 200 300 400 500 600 700 800 900 1000

P
S

N
R

 (
d

B
)

Resulting bitrate (kbps)

Average rate distortion (akiyo)

VP8 reference encoder
VP8 multi rate encoder

(b) Rate-distortion curve

Figure 4.2: CIF streaming scenario (“akiyo”)

32 CHAPTER 4. EXPERIMENTS

M
ul
ti
ra
te
 -
15

00

M
ul
ti
ra
te
 -
20

00

M
ul
ti
ra
te
 -
25

00

M
ul
ti
ra
te
 -
30

00

Re
f.
Se
ria

l

Re
f.
Co

nc
ur
re
nt

0

200

400

600

800

1000

C
P
U
 t
im

e
 i
n
 S

e
co

n
d
s
(s

)

Kernel
User

(a) CPU time

 33

 34

 35

 36

 37

 38

 39

 40

 41

 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

P
S

N
R

 (
d

B
)

Resulting bitrate (kbps)

Average rate distortion (pedestrian area)

VP8 reference encoder
VP8 multi rate encoder

(b) Rate-distortion curve

Figure 4.3: HD streaming scenario (“pedestrian area”)

4.2. RESULTS 33

M
ul
ti
ra
te
 -
15

00

M
ul
ti
ra
te
 -
20

00

M
ul
ti
ra
te
 -
25

00

M
ul
ti
ra
te
 -
30

00

Re
f.
Se
ria

l

Re
f.
Co

nc
ur
re
nt

0

200

400

600

800

1000

C
P
U
 t
im
e
 i
n
 S
e
co
n
d
s
(s
)

Kernel

User

(a) CPU time

 33

 34

 35

 36

 37

 38

 39

 40

 41

 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

P
S

N
R

 (
d

B
)

Resulting bitrate (kbps)

Average rate distortion (blue sky)

VP8 reference encoder
VP8 multi rate encoder

(b) Rate-distortion curve

Figure 4.4: HD streaming scenario (“blue sky”)

34 CHAPTER 4. EXPERIMENTS

Similarly, when considering the distortion of the HD sequences, we have plotted rate-

distortion curves in figure 4.3b and 4.4b for pedestrian area and blue sky, respectively.

The reference encoder produces output that has 1.0 to 1.5 dB higher PSNR than the

multi-rate encoder and distortion achieved for the two HD clips are very similar.

As noted in section 4.1.3, the suitability of PSNR for video quality assessment is fre-

quently discussed, and it is often unclear what the difference means in terms of the

logarithmic scale. From the plot in figure 4.3b, we can see that the PSNR of the output

from the reference encoder is up to 1.32 dB better than the multi-rate encoder outputs

for the pedestrian area sequence, in the range of 1500 kbps to 3000 kbps. To see what

this really means, a sample output of the “worst-case” scenario from figure 4.3b can be

seen in figure 4.5. From this output, we can see that there is little visual difference be-

tween the reference encoder output and the multi-rate encoder. We also looked at the

average structural similarity (SSIM) index number for the reference encoder and the

multi-rate encoder. The SSIM numbers are 0.861 and 0.837, respectively, i.e., the differ-

ence is small. Thus, the quality reduction is small (we did not see notable difference

viewing the resulting videos, but it might be different for other types of content).

Signs of discolored artifacts are sometimes observed in the encoded videos. In the

particular picture (figure 4.5b), we observe this effect. Although the quality difference

in terms of detail or structure is not very noticeable, a discoloration can be seen in

the foreground sidewalk. These artifacts are introduced due to errors in the reuse of

prediction data for the U and V color spaces.

For further visual comparison, we have also made sample videos available at http://

folk.uio.no/daghf/vp8/.

4.2.3 Choosing the prediction bitrate

To evaluate which prediction bitrate gives the minimal distortion of the videos, we have

plotted rate-distortion curves for foreman with various prediction rates in figure 4.6.

We can see that the resulting bitrate is lower for the multi-rate encoder than the refer-

http://folk.uio.no/daghf/vp8/
http://folk.uio.no/daghf/vp8/

4.2. RESULTS 35

(a) Reference encoder

(b) Multi-rate encoder

Figure 4.5: Frame number 100 of the test sequence ”pedestrian area”, displaying the

quality difference for the “worst-case” scenario in figure 4.3b of 1.32 dB PSNR of 1500

kbps

36 CHAPTER 4. EXPERIMENTS

ence encoder, except for when the prediction bitrate exactly matches the target bitrate,

resulting in a small spike in the plot.

The lowest prediction bitrate (250 kbps) incurs the largest distortion difference of 2 dB

for the 1000 kbps resulting bitrate. When using a 450 kbps prediction bitrate, the distor-

tion difference is about 1 dB for bitrates between 250 kbps and 1000 kbps. By further

increasing the prediction bitrate, we see that the distortion difference between the multi-

rate and reference increases to 4 dB for the lowest output 250 kbps. Thus, the smallest

distortion can be observed when using a prediction bitrate close to the average of the

smallest and highest output bitrate, and we get a smaller penalty when the prediction

bitrate is smaller than the output bitrate than vice versa.

Similar results can be observed when evaluating the pedestrian sequence, shown in

figure 4.7. Lower prediction bitrates incur less distortion difference than higher prediction

bitrates compared to the target bitrate. The distortion difference is further reduced by

choosing a bitrate closer to the average of the extremes.

We have shown that choosing the correct prediction bitrate when doing multi-rate en-

coding has a highly significant effect on the quality of the output videos. Although

CPU time was also affected as shown in figure 4.1a, the difference was much less con-

siderable. Because of the distortion, having a too wide range of target bitstreams when

doing multi-rate encoding is discouraged (see for example figure 4.7d), but for qual-

ity ranges typically used in segmented streaming as shown in our test sequences, the

results prove that multi-rate encoding is useful.

4.3 Discussion and open issues

To support a wide range of devices and network conditions, most video service providers

today use an adaptive, multi-rate HTTP streaming solution. In this respect, encoding

the video into multiple qualities is an expensive operation. The idea investigated here

is to reuse the results from the most expensive operations, share and reuse the compu-

4.3. DISCUSSION AND OPEN ISSUES 37

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 0 100 200 300 400 500 600 700 800 900 1000

P
S

N
R

 (
d

B
)

Resulting bitrate (kbps)

Average rate distortion (foreman)

VP8 reference encoder
VP8 multi rate encoder

(a) prediction bitrate: 250

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 0 100 200 300 400 500 600 700 800 900 1000

P
S

N
R

 (
d

B
)

Resulting bitrate (kbps)

Average rate distortion (foreman)

VP8 reference encoder
VP8 multi rate encoder

(b) prediction bitrate: 450

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 0 100 200 300 400 500 600 700 800 900 1000

P
S

N
R

 (
d

B
)

Resulting bitrate (kbps)

Average rate distortion (foreman)

VP8 reference encoder
VP8 multi rate encoder

(c) prediction bitrate: 750

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 0 100 200 300 400 500 600 700 800 900 1000

P
S

N
R

 (
d

B
)

Resulting bitrate (kbps)

Average rate distortion (foreman)

VP8 reference encoder
VP8 multi rate encoder

(d) prediction bitrate: 1000

Figure 4.6: Rate-distortion curve for CIF test sequence ”foreman” with different pre-

diction bitrate (in kbps)

38 CHAPTER 4. EXPERIMENTS

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

P
S

N
R

 (
d
B

)

Resulting bitrate (kbps)

Average rate distortion (pedestrian area)

VP8 reference encoder
VP8 multi rate encoder

(a) prediction bitrate: 1500

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

P
S

N
R

 (
d
B

)

Resulting bitrate (kbps)

Average rate distortion (pedestrian area)

VP8 reference encoder
VP8 multi rate encoder

(b) prediction bitrate: 2000

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

P
S

N
R

 (
d
B

)

Resulting bitrate (kbps)

Average rate distortion (pedestrian area)

VP8 reference encoder
VP8 multi rate encoder

(c) prediction bitrate: 2500

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

P
S

N
R

 (
d
B

)

Resulting bitrate (kbps)

Average rate distortion (pedestrian area)

VP8 reference encoder
VP8 multi rate encoder

(d) prediction bitrate: 3000

Figure 4.7: Rate-distortion curve for HD test sequence ”pedestrian area” with different

prediction bitrate (in kbps)

4.3. DISCUSSION AND OPEN ISSUES 39

tational heavy intermediate steps from analysis computations, in order to reduce the

processing requirement.

To prove the idea, we have implemented a prototype trying to reuse the most expen-

sive operations based on profiling of the encoding pipeline. In particular, our multi-

rate encoder reuses the analysis part consisting of macroblock mode decision and in-

tra/inter prediction. The experimental results indicate that we can encode the different

videos at the same rates with approximately the same qualities compared to the VP8

reference encoder, while reducing the encoding time significantly. However, our pro-

totype is a small proof-of-concept, and there are numerous open issues.

In the prototype, we used VP8 as a case study since it is an emerging open-source

codec. However, VP8 is for example very similar to the baseline profile in H.264, and

in general, most video codecs use similar ideas for compression. Thus, our ideas are

not implementation specific to VP8, but also applicable for other codecs like MPEG-

1/2/4, H.263/4, VC-1/2/../8, Theora, etc., which compress the video data in a similar

way.

One open issue is looking into solutions for improving the quality for the other bi-

trates, aside from correctly choosing the prediction bitrate. By virtue of our method of

reusing analysis computations directly, the quality will suffer when the target bitrate is

not equal to the prediction bitrate. One potential quality improvement could be to do

predictor refinement, inspired by the approach taken in [13]. This would however lead

to increased complexity in the encoder. Section 4.2.3 demonstrates how reuse of the

analysis computations impacts the quality/complexity trade off for encoding the same

input at different rates. It would also be interesting to look at this using a more sys-

tematic approach, and see how it affects specific prediction modes. A limitation with

our multi-rate encoder is that all the bitstreams encoded must use the same number

of reference frames, or in the case of VP8, the same golden frame for the method to be

viable. Another potential for further work is to investigate if there are other parts of

the VP8 encoder where the processing can be fanned out like in the analysis step.

40 CHAPTER 4. EXPERIMENTS

Chapter 5

Conclusion

5.1 Summary and contributions

Encoding video into multiple bitrates for adaptive streaming over various networks

to different end-devices is a resource expensive task. We have investigated the effect

of running multiple encoding instances in parallel, where the different instances reuse

intermediate results. This way, several encoding steps are avoided for the subsequent

encoding operations. In particular, we have analyzed and performed experiments with

Google’s VP8 encoder, encoding different types of video to multiple rates for various

scenarios.

Our main contribution is that we propose a way of reusing decisions from intra and

inter prediction in the video encoder to avoid computational expensive steps that are

redundant when encoding for multiple target bitrates of the same video object. The

method can be used in any video codec comprising an analysis and encoding step with

similar structure as H.264 and VP8. Furthermore, The method has been implemented

in the VP8 reference encoder as a case study, and the experimental results show that

the computational demands are significantly reduced at the same rates and approx-

imately the same qualities compared to the VP8 reference implementation, i.e., for a

negligible quality loss in terms of PSNR, the processing costs can be greatly reduced.

41

42 CHAPTER 5. CONCLUSION

However, the quality loss is dependent on the distance from the initial bitrate, i.e., if

the gap between the output bitrates is too large, the quality loss become larger. In such

scenarios, we still need multiple instances of the whole operation.

5.2 Further work

The work described in this thesis is to be considered a proof of concept implementa-

tion, and has potential for improvement. Several open issues have also been addressed

in section 4.3.

5.2.1 Visual quality

One change that could be made to our implementation would be to make sure U and V

channels get a correct prediction. As noted in section 4.2.2, this has a visible impact on

the quality of the resulting encode. We anticipate that doing explicit motion prediction

for U and V channels would not have a significant impact on the total CPU time used.

5.2.2 Performance

• Increase parallelity in the multi-rate encoder. Discussed in section 3.3

• Consider more reuse (yuv420 decoding?)

Bibliography

[1] Wikipedia. Yuv — Wikipedia, the free encyclopedia. http://en.wikipedia.

org/wiki/YUV, 2011. [Online; accessed 22-July-2011].

[2] I.E.G. Richardson. H. 264 and MPEG-4 video compression. Wiley Online Library,

2003.

[3] Alex Zambelli. Smooth streaming technical overview.

http://learn.iis.net/page.aspx/626/smooth-streaming-technical-overview/,

2009.

[4] Move Networks. Internet television: Challenges and opportunities. Technical

report, Move Networks, Inc., November 2008.

[5] Stephanie Lyn Flosi. comScore releases April 2010 U.S. online video rankings.

Press release, comScore, Inc., June 2010.

[6] Cisco Systems, Inc. Visual networking index. http://www.cisco.com/en/US/-

netsol/ns827/networking_solutions_sub_solution.html, May 2010.

[7] Roger Pantos, Jim Batson, David Biderman, Bill May, and Alan Tseng. HTTP live

streaming. http://tools.ietf.org/html/draft-pantos-http-live-streaming-04, 2010.

[8] Adobe. HTTP dynamic streaming on the Adobe Flash plat-

form. http://www.adobe.com/products/httpdynamicstreaming/-

pdfs/httpdynamicstreaming_wp_ue.pdf, 2010.

43

http://en.wikipedia.org/wiki/YUV
http://en.wikipedia.org/wiki/YUV

44 BIBLIOGRAPHY

[9] Thomas Stockhammer. Dynamic adaptive streaming over HTTP - standards and

design principles. In Proc. of ACM MMSys, pages 133–144, 2011.

[10] Patrick Seeling, Frank H. P. Fitzek, Gergö Ertli, Akshay Pulipaka, and Martin

Reisslein. Video network traffic and quality comparison of vp8 and h.264 svc.

In Proc. of MoViD, pages 33–38, 2010.

[11] Jan Ozer. First look: H.264 and vp8 compared, May 2010.

http://www.streamingmedia.com/articles/editorial/featured-articles/first-

look-h.264-and-vp8-compared-67266.aspx.

[12] C.-C.J. Kuo and N. Jayant. An adaptive non-linear motion vector resampling al-

gorithm for down-scaling video transcoding. In Proc. of ICME, pages 229–232, July

2003.

[13] Hong Zhou, Jingli Zhou, and Xiaojian Xia. The motion vector reuse algorithm to

improve dual-stream video encoder. In Proc. of ICSP, pages 2359–2362, October

2008.

[14] Y. Senda and H. Harasaki. A realtime software mpeg transcoder using a novel

motion vector reuse and a simd optimization techniques. In Proc. of ICASSP, pages

2359–2362, March 1999.

[15] James Bankoski, Paul Wilkins, and Yaowu Xu. VP8 data format and decoding

guide. IETF Internet-Draft, March 2011.

[16] C.J.B. Lambrecht. Vision models and applications to image and video processing.

Kluwer Academic Publishers, 2001.

[17] Callgrind. http://valgrind.org/docs/manual/cl-manual.html. [On-

line; accessed 22-July-2011].

[18] Kcachegrind. http://kcachegrind.sourceforge.net/html/Home.html.

[Online; accessed 22-July-2011].

[19] HÃ¥vard Espeland. Investigation of parallel programming on heterogeneous

multiprocessors. Master’s thesis, University of Oslo, Norway, July 2008.

http://valgrind.org/docs/manual/cl-manual.html
http://kcachegrind.sourceforge.net/html/Home.html

BIBLIOGRAPHY 45

[20] Akamai. Akamai HD for iPhone encoding best

practices. http://www.akamai.com/dl/whitepapers/-

Akamai_HDNetwork_Encoding_BP_iPhone_iPad.pdf, 2010.

[21] Z. Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment:

From error visibility to structural similarity. Image Processing, IEEE Transactions

on, 13(4):600–612, 2004.

[22] Q. Huynh-Thu and M. Ghanbari. Scope of validity of PSNR in image/video qual-

ity assessment. Electronics letters, 44(13):800–801, 2008.

	Abstract
	Acknowledgments
	Introduction
	Background
	Problem Statement
	Main Contributions
	Outline

	The VP8 Codec
	Digital representation of video
	Temporal and spatial sampling
	Color spaces
	VP8 Frames and macroblocks

	VP8 encoding process
	Analysis
	Encoding
	Entropy Coding

	The libvpx Encoder
	Profiling analysis

	Summary

	Design and Implementation of a Multi-rate Encoder
	Background
	Multi-rate Encoding
	Implementation details
	Adapting libvpx for running multiple instances
	Reuse of motion prediction computations

	Summary

	Experiments
	Test environment
	Input test sequences
	Test setup
	Metrics

	Results
	Encoding results
	Quality assessment
	Choosing the prediction bitrate

	Discussion and open issues

	Conclusion
	Summary and contributions
	Further work
	Visual quality
	Performance

