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Abstract

Despite achieving state-of-the-art performance in lab-conditions, deep
learning-based systems often exhibit significant performance degradation
when deployed in practical settings. This is referred to as generalization
failure. Why and how this occurs has only recently started to be understood,
and there has consequently been limited research towards developing
generalizable methods for deep learning.

This thesis attempts to address generalization failure in the domain of
medical image segmentation, in particular on the polyp segmentation task.
Recent analyses of generalizability is discussed, which is then used to
inform the development of a number of novel methods. This includes
a simple dual-decoder architecture, an augmentation strategy which
incorporates a generative polyp inpainter, a training method referred to
as Consistency Training, and finally, several ensemble models for which the
constituent predictors are trained using Consistency Training.

These methods are then evaluated through multiple quantitative studies.
As the extent to which methods used as baselines in this thesis affect gen-
eralization is not particularly well understood, this thesis also contributes a
quantitative analysis of the the impact of the choice of model architecture,
data augmentation, and ensemble-models on generalization.

The results show that Consistency Training facilitates increased generaliz-
ation over data augmentation. The use of the inpainter as a component
of data augmentation, however, limits the possible improvements com-
pared to regular augmentation. Ensembles improve generalization, albeit
to a somewhat lesser extent than the aforementioned methods. Finally, the
choice of model architecture, including the use of a secondary decoder, is
shown to have negligible effects on generalization. These results were all
explored with respect to theory presented in other literature.

These findings are then analyzed and used to inform a number of
hypotheses which are suggested as points of further study. Several
improvements to the proposed methods were also suggested, in particular
with regards to Consistency Training, which shows significant promise
towards further mitigating generalization failure.
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Chapter 1

Introduction

The last decade or so has seen a veritable revolution in Artificial Intel-
ligence (AI). This has been spearheaded principally by advancements in
Deep Learning, the remarkable performance of which has rendered more
conventional approaches practically obsolete[91]. Recent work has, how-
ever, highlighted that models trained using deep learning, i.e., Deep Neural
Networks (DNNs), are highly prone to exhibiting significant reductions in
performance when deployed in practical settings despite readily exhibit-
ing high performance when evaluated on previously unseen subsets of the
training data [20, 29, 37, 42]. This is referred to as generalization failure.

This type of behaviour is especially prevalent in the domain of medical
imaging. Though medical imaging in recent years has proven to be
one of the most promising applications of deep learning, having the
capacity to significantly improve both the accuracy and efficiency of the
detection, diagnosis, and treatment of a wide variety of diseases [84],
recent research has shown that these types of systems are particularly
susceptible to generalization failure. Whereas other domains often have
access to exceedingly large datasets, medical datasets are typically fairly
small both due to privacy concerns and the high costs associated with
annotation. Moreover, even when large datasets are available, they are
unlikely to fully encapsulate the nature of whatever relationships they are
intended to represent due to the inherent variability present in medical
domains. There are often high degrees of variability within the same class
of pathology, which in addition to multitudes of confounding variables,
such as differences in clinical routines, demographics, imaging equipment,
and so on typically result in DNNs exhibiting high degrees of sensitivity
to even minor changes in the nature of the input data. Finally, since
medical datasets are typically collected from a single hospital, from a
limited demographic, and with a limited selection of equipment, sampling
bias is practically unavoidable [52, 58]. In addition to the fact that this
reduces the overall clinical utility of the system, it may also induce certain
societal consequences if deployed [69].
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This all exacerbates the already difficult task of making deep learning
systems sufficiently generalizable for practical use. Indeed, even DNNs
trained on enormous non-medical datasets exhibit high degrees of sens-
itivity to distributional shifts, for example due to changes in texture [28],
additive noise [42], and minor image corruptions [37]. Even perturbations
imperceptible to the human eye in the form of adversarial attacks can break
even the most sophisticated deep learning systems [13].

Thus, ensuring that the performance of deep-learning-based systems is
generalizable and sufficiently robust is a matter of particular importance
in medical domains. Whereas more general deep learning pipelines can
sometimes avoid generalization failure by virtue of the sheer volume of
training data available, the constraints imposed by the medical domain
necessitate more carefully designed pipelines, with a particular focus on
ensuring maximal generalizability.

Conventional implementations of deep-learning systems tend to neglect
this fact, with high performance on unseen subsets of the training dataset
typically being considered a sufficient indicator of generalization. This is
highly misleading as to the actual performance of the given model should it
be deployed in a setting where the nature of the data may differ, even if the
differences between the two domains are slight or even unremarkable to a
human observer. Such data is often referred to as being Out of Distribution
(OOD). There has been limited research addressing the development of
methods that facilitate generalization to such data, in large part because
the mechanisms behind generalization failure are currently only in the
beginning stages of being understood to an actionable degree.

The EndoCV2021 competition [3] was organized in order to motivate such
research in the context of detection- and segmentation of colorectal polyps.
This body of work and the advancements it brought, along with the mul-
titude of different datasets available in this domain, means that polyp seg-
mentation constitutes a compelling candidate for a case-study towards un-
derstanding generalization failure and developing generalizable methods.
The polyp segmentation task will as a consequence serve as the primary
context of the work presented in thesis.

1.1 Case study: Colon Polyp Segmentation

Colorectal cancer is one of the leading causes of cancer related deaths, caus-
ing approximately 900 000 deaths worldwide per year [24]. Early detec-
tion and subsequent resection of polyps, a precursor to colorectal cancer,
is therefore of significant importance towards reducing the incidence- and
mortality-rates thereof. Polyps are, however, easily missed during colono-
scopies due to the significant variability in their shapes and sizes, as well
as the high degree of visual similarity to surrounding tissue [38, 74].
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Automatic segmentation of polyps via deep learning has as a consequence
been identified as a promising candidate for reducing polyp miss-rates by
serving as an auxiliary detection method during screening. There has been
a wealth of work dedicated to developing such systems [2, 3, 39, 89], with
some studies reporting that AI-assisted detection may increase detection
rates by 10% in clinical deployment [9].

As mentioned, however, these sorts of systems have also been shown to
be highly prone to generalization failure [1, 20, 29]. To address this, the
EndoCV2021 competition [3] was organized with the primary goal of de-
veloping generalizable deep learning systems for polyp-segmentation and
-detection. The submissions were evaluated on several unseen datasets
consisting of endoscopic images collected from a separate center than the
provided training datasets as well as images collected using a differing
endoscopic lighting system. Though several teams made good progress
towards increasing generalizability, the organizers’ review of the submis-
sions [1] highlighted that every submitted model nevertheless exhibited
significant performance reductions on the aforementioned unseen datasets.

Furthermore, there has at the time of writing this thesis been limited re-
search dedicated to developing an understanding of the relative impact
of the many design elements present in most deep learning pipelines on
generalization. Indeed, most analyses performed today, therein those
performed in the EndoCV2021 review[1], do not explicitly control poten-
tially highly affecting variables - such as the choice of data augmentation
strategies - when comparing methods, instead only considering the per-
formance of the final system. As a consequence, there is a somewhat lim-
ited understanding of the relative impacts of the many methods and tech-
niques believed to improve generalization.

1.2 Research Objectives

This thesis aims to build upon and synthesize the findings reported in
EndoCV2021 and other recent works on generalizability. The overall goal
of is as such to explore methods of increasing the generalizability of deep-
learning-based polyp-segmentation systems. This goal can be decoupled
into the following pair of research objectives:

1. To leverage recent advances in the understanding of generaliza-
tion failure to inform the development of novel methods of in-
creasing the generalization of deep learning systems for polyp-
segmentation. By synthesizing the often fragmented analyses of gen-
eralization failure presented in the literature, one can develop a more
holistic understanding of why these failures occur and the mechan-
isms behind them. This facilitates the development of more targeted
methods towards increasing generalizability.

3



2. To synthesize recent work on generalizability and determine
concretely the degree to which conventional and well-established
methods affect generalization. Deep Learning systems are highly
complex, with several moving parts and complicated dynamics.
Analyzing the impact of the constituent components thereof on
generalization is therefore warranted. In particular, this thesis
compares the impact of the following variables: the choice of
model architecture, the use of data augmentation, and the use of
ensembles, as these methods can broadly be considered the most
common subjects of research on generalizable methods. Among the
eight submissions to the segmentation portion of EndoCV2021, for
instance, three primarily made use of ensembles [41, 57, 88], two
developed novel model-architectures [27, 36], and one developed an
augmentation strategy [30].

1.3 Main Contributions and Key Findings

Objective 1 was achieved through the development of the following novel
methods:

• A framework for analyzing generalizability based on reframing it as
the model’s ability to output predictions that are consistent across
distributional shifts.

• A metric and loss function intended to quantify this notion of con-
sistency in the context of segmentation, referred to as Segmentation
Inconsistency Score (SIS) and Segmentation Inconsistency Loss (SIL)
respectively.

• A custom augmentation strategy intended to induce the aforemen-
tioned distributional shifts in a controlled manner, leveraging both
conventional augmentations and a Generative Adversarial Network
(GAN) which generates synthetic polyps in a given image.

• A training paradigm which makes use of the aforementioned
framework, loss function and augmentation strategy, referred to as
Consistency Training. In contrast to many competing methods, this
does not require multiple datasets, and is for practical purposes a
more generalizable alternative to data augmentation. This method
was also the basis for a research paper submitted to NeurIPS 2022,
which can be found in Appendix D.

• Several ensembles consisting of models trained according to the
aforementioned training paradigm.

• A simple dual-decoder model, wherein one decoder performs image
reconstruction and the other segmentation. This is intended to
facilitate the learning of more generalizable features.
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These methods were then evaluated through four separate experiments. To
fully understand the relative impacts of these methods, several baselines
were also implemented, varying the model architecture, augmentation
strategy, and the use of ensembles. These baselines were then compared
both to the novel methods as presented above, and to one another in order
to ascertain the individual impacts, hence achieving Objective 2.

The results from these experiments were then analyzed with respect to
theoretical frameworks presented in Chapter 2. The findings from these
analyses then informed a number of hypotheses which were suggested as
points of further study. The most notable findings can be summarized as
follows:

• Consistency training greatly increased generalizability, outperform-
ing every other tested method. Several possible improvements to
Consistency Training were also presented, along with ideas for more
advanced training methods that make use of the Consistency frame-
work.

• Data augmentation also increased generalizability, albeit by a some-
what smaller margin than Consistency Training. When the augment-
ation strategy incorporated a generative inpainter, the gains were
marginally less substantial. It was argued that the extent to which
the use of data augmentation affects generalization raises questions
as to the veracity of comparative studies that do not account for the
use of disparate augmentation strategies, therein EndoCV2021.

• Ensemble models improve generalization by a minor amount when
compared to the mean performance of the models that make them
up. Similar improvements could be observed regardless of the
training procedure and model architecture used, suggesting perhaps
unsurprisingly that the generalizability of ensembles is primarily
determined by the generalizability of the constituent models. It
was also shown that the gains from ensembles is correlated with
the variability in performance between the constituent models. A
diversity-based training method for ensemble models was suggested
to investigate this further.

• The model architectures tested in this thesis all exhibited fairly com-
parable degrees of generalizability. The introduced dual-decoder
model did not contribute to increased generalization. After analyzing
this result, it was theorized that segmentation encoders learn task-
invariant features and thus can be interpreted as primarily perform-
ing image compression. Further experiments were suggested to in-
vestigate this.

Though this work by no means solves the problem of generalization failure,
the aforementioned contributions constitute a significant step in the right
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direction. For one, the results and analyses performed in this thesis provide
a holistic perspective of the impact of the tested baseline methods on
generalization. Secondly, the novel methods presented were shown to have
significant potential for continued research towards further understanding
generalization failure and increasing generalizability. Consistency Training
in particular was proven to be a highly promising concept, with plenty of
room for further development.

1.4 Research Methods

The research methods used in this thesis were principally of an exploratory
and quantitative nature [56]. The methods were analyzed quantitatively,
and the relative performance of each method determined to statistical
significance. The analysis of the findings from these comparisons and
the resulting theories explaining them with respect to the theory was
exploratory, as was the development process for the novel methods.

This approach was chosen due to the inherently dualistic nature of the
thesis as per the research objectives; a quantitative approach permits stat-
istically significant comparisons between methods, whereas an exploratory
approach affords flexibility with regards to the development of the meth-
ods as well as permitting sufficient analysis of the quantitative findings
with respect to the established theoretical frameworks.

1.5 Organization of the Thesis

The thesis will be organized as follows:

• Chapter 2 will cover all relevant background knowledge. This
includes a brief introduction to polyps and their role in colorectal
cancer, deep learning, and segmentation, as well as an overview and
synthesis of related works on generalization failure and generalizable
methods for deep learning. Ethical considerations pertaining to
generalizability will also be discussed.

• Chapter 3 will cover the novel methods that constitute the contribu-
tions as outlined above, their basis with respect to the theory presen-
ted in Chapter 2, as well as details surrounding their implementation
where applicable.

• Chapter 4 will describe the experimental setup, as well as present
the experiments and the results thereof. These results will also be
explored the context of the theory established in Chapter 2.
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• Chapter 5 will discuss these findings, their impacts and their
limitations.

• Finally, Chapter 6 summarizes the work done in this thesis along with
presenting directions for further research.
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Chapter 2

Background

Polyps are small growths found in and around the inner lining of the large
intestine. These polyps, also referred to as adenomas, can in time develop
into cancerous tumors, or carcinomas, in a process known as the adenoma-
carcinoma sequence [61]. Though the majority of polyps do not undergo
this process, identifying polyps nonetheless constitutes an important step
towards preventing colorectal cancer. Indeed, resection of these polyps has
been shown to reduce the incidence of colorectal cancer by a significant
margin [95].

Though colorectal cancer remains as one of the leading causes of cancer-
related death worldwide [24], mortality rates have in recent years declined
in large part to the increased use of screening colonoscopy and subsequent
preemptive treatment [47]. Polyps are by nature somewhat difficult to
detect, however, and are routinely missed by clinicians, with miss rates
reportedly ranging upwards of 27% for diminutive (<2.5mm) polyps [38,
74]. Reducing this miss rate has the potential to further reduce the
incidence of colorectal cancer. As a result, there has been a significant
body of work dedicated to developing systems and techniques to aid in
more accurate screening. Certain image-processing techniques, namely
I-SCAN, have for instance been shown to reduce miss-rates by up to
50% [14]. Similarly, the use of narrow-band imaging, wherein light
of specific wavelengths specifically designed to highlight the textural
differences between the polyps and the surrounding tissue, have been
shown to reduce miss rates by 26% [15].

These systems do, however, require specialized equipment, training and
expertise to effectively employ. Thus, automatic polyp detection using
DNNs, and in particular Convolutional Neural Networks (CNNs), has also
been identified as a possible ancilliary screening method. This requires
minimal training time on the part of the clinician, no additional equipment,
and has been shown to increase detection rates by 10% when deployed in
a clinical setting [9].
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Figure 2.1: Example of a colorectal polyp from the Kvasir-SEG [49] dataset.
The polyp is outlined in green.

This has spurred on a large body of research dedicated to improving
the performance and expanding the capabilities of deep-learning based
systems for polyp detection and segmentation. Several challenges have
also been held, namely the Endotect Challenge [39], EndoCV2020 [2] and
EndoCV2021 [3].

There are, however, still several hurdles to overcome. Recent research
has shown that even state of the art deep-learning pipelines are prone
to generalization failure when deployed in practical settings, particularly
when exposed to distributional shifts such as changes in demographics,
imaging equipment, noise, and more, despite exhibiting high performance
on hold-out sets [10, 20, 29, 99]. This was further highlighted in the
EndoCV2021 challenge, wherein submissions were evaluated on OOD
datasets collected from different centers or imaging methods than the
training data. Though several teams made good progress towards
increasing generalizability, the organizers’ review of the submissions [1]
highlighted that every submitted model nevertheless exhibited significant
performance reductions on the provided OOD datasets, demonstrating the
difficulty involved in developing generalizable models.

Understanding how and why such generalization failure occurs and devel-
oping methods to counteract it is a subject of ongoing study. This chapter
will summarize and synthesize recent findings in the field. It will first
cover the necessary understanding of deep learning and segmentation, be-
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fore moving on to a survey of instances of generalization failure both in
systems dedicated to polyp-segmentation and other applications of deep
learning. These failures will then be analyzed through the lens of gener-
alizability theory, starting from the theoretical fundamentals underpinning
deep learning - namely Empirical Risk Minimization (ERM) - and incorpor-
ating recent analyses in the literature pertaining to generalizability failure
and its origins. Finally, recent work on generalizable methods will be sum-
marized, and analyzed with respect to the aforementioned theory.

2.1 Deep Learning

The past decade or so has seen considerable advancements in Deep
Learning. This has facilitated significant performance improvements for
a variety of different tasks and domains, including computer vision [91],
finance [43], natural language processing and machine translation [70],
content recommendation engines [22], robot-control [72], and games like
Chess and Go [87].

To fully explain how and why Deep Learning performs so well - and why
it sometimes does not - this section will cover the basics of Deep Learning
and the Deep Learning Pipeline. It will also detail the problem of semantic
segmentation in the context of polyps, and finally describe how a Deep
Learning Pipeline can be adapted to try to solve this problem.

2.1.1 The Deep Learning Pipeline

Deep Learning is a supervised machine learning method, wherein a
Deep Neural Network (DNN) - typically consisting of millions and even
hundreds of billions of parameters - learns to identify patterns conducive
to approximating the mapping between pairs of inputs and labels given by
a dataset [32]. Conceptually, one can consider DNNs as general-purpose
correlation machines; i.e. they accept some paired input-output data, learn
correlations between the inputs and outputs and then predict according
to these correlations at inference-time. Similar to how one can establish
linear relationships via linear regression on a set of (linearly) related
variables, DNNs are capable of establishing non-linear relationships via
Deep Learning on arbitrarily related sets of paired input-output data.
The inputs can for instance be images and the outputs categories (also
referred to as classes), bounding boxes, or -as in the case of segmentation -
image regions, or the inputs could be sentences in English and the outputs
sentences in French. So long as the data can be encoded into a vector-space,
deep learning can typically be applied.

This is achieved through a process known as training, the objective of
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which is to adjust the parameters of the DNN such that the model exhibits
maximal performance. Training a DNN is not straight-forward; each
parameter corresponds to a dimension in the search space, and searching
through millions upon millions or more dimensions in order to find a
sufficiently performant parameter configuration is a challenging problem.
Deep Learning systems nevertheless achieve this through a process known
as gradient descent [77]. Fundamentally, this involves minimizing some
quantity inversely proportional to whatever performance metric one seeks
to maximize. This quantity is referred to as the loss, and the function
that generates it a loss function. Minimizing the loss is achieved by
differentiating the loss function with respect to the model’s parameters
and adjusting them in the direction of the gradient. There are a number
of complicating factors involved in this process, which through nearly
a decade of research have been addressed using a number of different
techniques culminating in what will be referred to as the deep learning
pipeline. The constituent components thereof, as well as further technical
details as to how DNNs are trained, will be further described in the
following paragraphs, and are illustrated in Figure 2.2.

Label

Model

Optimizer

Scheduler

Dataset

Dataloader

Parameter 
Update

Input

Loss

Function

Output

Figure 2.2: A Conventional Deep Learning pipeline.

2.1.2 Architectures and Models

The DNN, typically referred to simply as the model, can be considered
the central component of the deep learning pipeline. There are several
types of DNNs, including Recurrent Neural Networks (RNNs) [64],
Transformers [90], Multi-Layer Perceptrons (MLPs) [63], and CNNs [4].
Common to all of the aforementioned types is that they consist of multiple
instances of similar functional blocks, often called layers, which are
connected to one another. A MLP consists of layers of perceptrons, a
RNN primarily consists of stacked recurrent units, a transformer primarily
consists of multiple scaled dot-product attention blocks, and a CNN
consists primarily of convolutional layers. In computer vision tasks, therein

12



polyp-segmentation, primarily CNNs are used, though other architectural
components can and often are used in conjunction therewith [91].

Convolutional layers are, as their name suggests, based on the convolution
operator. Convolution lends itself well to image-related tasks, as it
exhibits translational invariance, and is endowed with the ability to
consider context by virtue of the fact that convolutions operate with sliding
windows. This is illustrated Figure 2.3.
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Figure 2.3: Example of Convolution

How large of a context that a given network (or layer) considers for a given
pixel is referred to as its receptive field. By stacking convolutional layers,
one can multiplicatively increase the receptive field of the network. This,
in conjunction with injecting non-linearities through so-called activation
functions between each convolutional layer, allows CNNs to learn both
highly non-linear and highly context-dependent relationships from the
data.

Optimally, each layer in fully trained network will encode increasingly
complex representations of the data. This set of representations is called
the latent space of the network. The properties that the representations
encode are referred to as the model’s learned features. In theory, the deeper
the network, the larger the latent space, and therefore the more complex
features can be encoded. This enables deep convolutional networks to
significantly outperform computer vision systems developed using more
conventional approaches, such as the usage of feature engineering methods
in conjunction with Random Forests, Support Vector Machines or other
simpler classifiers. Instead of having to manually engineer features for a
given task, CNNs simply learn to generate optimal features automatically.

2.1.3 Training and Gradient Descent

In order for a model to do anything useful, it first has to learn the
relationship between the inputs and the labels in the dataset it is given. This
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is referred to as training the model. Conventional Deep Learning pipelines
achieve this through an algorithm known as Empirical Risk Minimization
(ERM) by gradient descent. The details behind this process and more
precise formulations will be covered in later sections and be related to
generalization, but for now a high-level view is sufficient.

Gradient descent is an optimization procedure whereby one seeks to
minimize a loss-function L(·, ·), a differentiable distance function which
quantifies how wrong the model is when compared to label data. This
is achieved as follows: first some number of input-label pairs xi, yi are
selected from the dataset, via a dataloader. The dataloader determines
how the inputs will be processed - i.e if they require scaling, shuffling,
or augmentation - as well as the number of samples that the remaining
pipeline will incorporate into gradient calculations - referred to as the batch
size. The inputs are then passed through the model, often denoted simply
as f (·), generating outputs f (xi) = ŷi. Afterwards, the loss is computed by
comparing the output and labels according to the loss function evaluated at
the current outputs L(y, ŷ). This is then differentiated with respect to each
of the model’s parameters W in a process known as back-propagation. This
yields a series of vectors for each set of the weights, which correspond to
the direction in the parameter space that would result in the most increase
to the loss function. This is called the gradient, and is denoted as ∇WL(·).
Equivalently, the negative gradient corresponds to the direction which
would result in the biggest reduction of the loss function.

The gradient is, however, only a direction, and does not on its own hold any
information regarding by how much the weights should be updated, only
the direction in the search space that the update should be sampled from.
The magnitude of the update vector is instead decided by two components
in the pipeline: the optimizer and the scheduler. The optimizer dynamically
determines the magnitude of the weight update - i.e by how much the
gradient is scaled - for instance by considering running averages of recent
histories of gradient magnitudes [54]. This magnitude is then scaled once
more according to a learning-rate η. The scheduler, in turn, modulates
this learning rate according to some predetermined function. This is then
repeated for all the data in a dataset.

Iterating over the dataset once is not typically sufficient to arrive at a
parameter configuration with desirable performance, however. As a result,
this process is typically repeated a set number of times, often referred to as
the number of epochs.

There are some caveats to this, in particular regarding the generalizability
of the resulting model. In particular, each component of the pipeline
can be implemented with some form of regularization, which in simple
terms serves to affect the training procedure such that local minima are
avoided by injecting noise. Regularization can take many forms, and
can be implemented in of practically any component of the pipeline:
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The dataloader can perform data augmentation, the loss function may
incorporate regularizing terms such as L2 penalties [19], the model may
incorporate dropout connections [40] or batch normalization[46], the
optimizer may have weight decay terms [55], and so on. These factors and
their effect on training will be discussed further in Section 2.4.

2.2 Segmentation

Segmentation is the task of determining the region(s) in image-space that
correspond to some relevant classification target. For polyp-segmentation,
for instance, this involves marking whatever pixels correspond to polyps.
An example is shown in Figure 2.4.

Figure 2.4: Polyp Segmentation Examples, taken from Kvasir-SEG[49]

There are two types of segmentation: semantic segmentation and instance
segmentation [66]. In instance segmentation, every instance of the objects
require their own segmentation mask and label. In semantic segmentation,
only the class of the relevant objects are considered, and multiple instances
are considered in unison. I.e, if the task is to segment people in a crowd,
instance segmentation will attempt to generate multiple masks, one for
each individual, whereas a semantic segmentation model would simply
generate a single mask for the crowd in its entirety. Though they are
similar, these tasks require somewhat different pipelines. Since there
is less of a need to distinguish between polyps than simply detecting
the presence thereof, polyp segmentation pipelines are typically oriented
around semantic segmentation.

This section will cover the specifics required to design a deep learning
pipeline for semantic segmentation, including how the models are de-
signed and the loss functions that are typically used.
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2.2.1 Semantic Segmentation Models

Deep Learning models for semantic segmentation take an image as input,
and outputs a set of segmentation masks consisting of probability value(s)
that each pixel belongs to the given class(es). There are a wealth of models
that have been developed for this purpose, spanning over a wide range
of different architectural frameworks, building blocks and processing
methods [59, 66]. Though the details regarding how each and every one of
these models work is beyond the scope of this thesis, most of these models
share certain architectural traits that warrant explanation.

In particular, most segmentation models consider the scene at multiple
scales. This is illustrated in Figure 2.5. In encoder-decoder models, for
instance, the image is first processed by the encoder, which consists of
layers that successively downsample the image through pooling, strided
convolutions, or other mechanisms. This yields a highly compressed latent
representation of the scene, which (ideally) should contain all the necessary
information in the image that is conducive to segmenting the relevant
object(s). The decoder then takes this latent representation, and through
layers such as deconvolutions, atrous convolutions, pure upsampling, or
similar methods generate some number of segmentation masks, one for
each class. In the case of polyp segmentation, this would simply be one
image, consisting of probabilities that each pixel belongs to the polyp class.
If the probability is low, it is likely that the pixel is not a part of a polyp,
whereas if the probability is high, it is likely that the pixel is a part of a
polyp.

Unets [76] take this encoder-decoder architecture a step further, by
concatenating the representations at corresponding depths in the encoder
and decoder.
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Figure 2.5: Examples of segmentation architectures.
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Feature Pyramid Networks (FPNs) work in a similar fashion, but instead
consider the input images at multiple scales concurrently, which are then
merged at the end of the network such that all scales are considered
holistically.

2.2.2 Metrics

Segmentation pipelines are typically evaluated by considering the the
Dice Coefficient, defined in Equation (2.2), or equivalently Intersection
over Union (IoU), defined in Equation (2.1), between the labels and
segmentation output, often along with the precision and recall [66].

Accuracy is on its own not very informative, since high accuracies can be
achieved simply by predicting all negative if the relevant objects occupy a
small portion of the image.

IoU(y, ŷ) = ∑{y = 1} ∩ {ŷ = 1}
∑{y = 1} ∪ {ŷ = 1} (2.1)

Dice(y, ŷ) =
2 ∑{y = 1} ∩ {ŷ = 1}

∑{y = 1}+ ∑{ŷ = 1}} (2.2)

Both the Dice cofficient and the IoU, which sometimes also is referred to
as the Jaccard index, can to some extent be interpreted as the accuracy
of the segmentation but considered only from the perspective of the
regions defined by the respective segmentations, and has the advantage
of facilitating easier comparison of models compared to accuracy, which
as mentioned tends to be skewed towards high values due to the large
proportion of negative pixels in any given image.

Precison and recall, defined in Equation (2.3) and Equation (2.4), respect-
ively, describe the purity and the completeness of the positive predic-
tions. In a polyp-segmentation setting, precision describes the proportion
of pixels in a segmented region that do, in fact, constitute a polyp, and
recall in effect corresponds to the detection rate on a per-pixel basis.

Precison =
TP

TP + FP
(2.3)

Recall =
TP

TP + FN
(2.4)

2.2.3 Losses

Though there are a number of different loss functions that can be used [59,
65], it is sufficient to consider the four general types they can be categorized
as:
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• Distributional losses, such as cross-entropy loss. These loss functions
quantify statistical properties of the label-output pairs, for instance
by calculating their cross-entropy.

• Region-based losses, such as Dice-loss and Jaccard-loss, which
instead consider the regions defined by the segmentation labels and
outputs. These are, in effect, non-thresholded and thus differentiable
versions of the Dice coefficient and IoU.

• Boundary-based losses, such as boundary-loss and HD loss, which
consider the boundaries of the segmentation regions.

• Hybrid losses which combine the aforementioned concepts, such as
DiceCE, which as its name suggests combines Dice loss and cross-
entropy loss.

Asides from the use of these loss functions, model architectures, and
evaluation metrics, training is otherwise fairly conventional for a deep
learning pipeline. The dataloader provides an image to the model, for
which the gradient is computed by descending the gradients of the loss
function, with the parameters being adjusted according to the update rule
defined by this gradient, the scheduler and the optimizer.

2.3 Generalization Failure in the Wild

Recent analyses have showed that DNNs fail to maintain sufficient
performance in deployment, even if they exhibit exceptional performance
on previously unseen subsets of the training data (holdout sets) [3, 20, 29].
This phenomenon, which has been proven to be commonplace in many
applications of deep learning, is known as generalization failure. This section
will cover some examples of generalization failure across different domains
in order to demonstrate the pervasiveness of the problem.

2.3.1 Generalization Failure in Medical Imaging

As mentioned in Chapter 1, medical deep learning pipelines are particu-
larly prone to generalization failure due to limited dataset sizes and the
sheer difficulty of the tasks involved.

For example, a deep-learning based classifier which successfully detected
pneumonia in X-ray scans across a number of hospitals with striking
accuracy was determined to be basing its predictions not on any lesions
or otherwise pathologically relevant features in the images, but rather
on a hospital-specific metal token that could be found in every image,
which it used in conjunction with learning the pneumonia prevalence rate
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of for the respective hospitals to make predictions. As a result, when
deployed on data from hospitals that it had not seen during training,
the system failed to generalize [99]. In another study, it was shown that
a classifier intended to detect diabetic retinopathy exhibited signiicant
performance drops when the model was tested on images taken with
a different type of camera [20]. The same study also showed that the
performance of a model trained to identify skin-conditions was highly
dependent on the skin tone of the subject. Finally, a model trained to
detect and diagnose melanomas was shown to in large part be basing its
predictions on whether it could detect any pre-surgical markings in the
vicinity of the lesion as opposed to actually learning anything about what
the melanomas themselves [96]. As these kinds of markings naturally
are highly correlated with melanomas, the model simply learned this
as a shortcut. Models trained for Polyp-segmentation and detection are
also subject to generalization failure, as evidenced by EndoCV2021 [1,
3]. Even the best-performing models exhibited considerable performance
degradation when evaluated on unseen datasets, collected from separate
centers or with differing lighting modalities.

2.3.2 Generalization Failure in General

Though generalization failure is perhaps best represented in medical
domains, the phenomenon is pervasive in practically every application of
deep learning, albeit to varying degrees. It has for instance been shown
that CNNs trained on ImageNet, one of the largest and most diverse
datasets in the domain of computer vision, are heavily biased towards
textural features, and consequently fail when the texture of the input is
modified, despite the shape and structure of the relevant object remaining
recognizable [28]. Though this result is based on evaluation on synthetic
data, it highlights a key property of deep learning pipelines: namely that
they do not necessarily learn features that are causal - in other words, that
they are intrinsic to the relevant object - inasmuch as they learn features that
are highly correlated with it - in other words, features that are associated
with the object but are not intrinsic to it. Though the texture of cat fur
for instance is highly correlated with the "cat" class, it is not the fur that
makes the cat. In Figure 2.6, for instance, it is clear that image (c) should
be classified as a cat more than an elephant. Granted, this example is as
mentioned synthetic, but a similar situation could arise if the classifier for
instance was tested on a black-and-white image of a hairless cat.

This behaviour of considering correlations over causation can also be found
in state-of-the-art image captioning systems, for instance Microsoft Azure’s
computer vision API and NeuralTalk2 [83], wherein the model seemingly
hallucinates that it sees sheep when evaluated on images of grassy pastures
or hills. This is shown in Figure 2.7. Once again, it is of course natural to
expect that sheep can be found in these contexts, but it is not these contexts
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Figure 2.6: Classifiers trained on ImageNet are biased towards textural
features. Adapted from [28] under Creative Commons 4.0.

that define what it means to be a sheep. Grassy pastures and sheep are
not causally related, only correlated, but deep learning pipelines lack the
nuance required to understand this fact.

Figure 2.7: Deep captioning models hallucinate sheep (and other animals)
when presented with contexts highly correlated with sheep. Adapted
from [83]

Another characteristic of deep learning that supports this argument is
the effectiveness of adversarial attacks [44], which specifically target
weaknesses in the representations used by a given DNN through any
number of means in an attempt to induce high rates of incorrect, yet highly
confident predictions. Gradient-based adversarial attacks, for instance, use
the gradients of the model to break even the most sophisticated and well-

20

https://github.com/rgeirhos/texture-vs-shape/blob/master/DATASET_LICENSE


trained pipelines merely by adding some carefully crafted, yet visually
imperceptible noise to the inputs [13]. Even without access to the gradients,
there exists a multitude of so-called black-box attacks that only use output
samples to generate similarly effective attacks [45]. Finally, it has been
shown that adding minor visual distractions to objects, for example adding
bits of tape or graffiti to stop signs, dramatically increases misclassification
rates [26].

2.4 Generalizability Theory

Exactly why and how DNNs seem to so persistently fail to generalize is
a topic of ongoing research. The available literature is fairly fragmented,
often making use of differing and sometimes conflicting terminology.
Moreover, the literature suggests that generalization failure is a highly
multifaceted problem, with many potentially affective variables. This
section will summarize the analyses performed throughout the literature,
and attempt to distill them in a manner more conducive to the development
of generalizable methods. The section will start by discussing the
theoretical basis for why one might expect DNNs to generalize, discuss the
key characteristics of generalization failure, and finally discuss why and
how these characteristics arise according to analyses in the literature.

2.4.1 Generalization through Empirical Risk Minimization

Deep learning would not be as ubiquitous as it is if there was not
some semblance of an expectation that their striking performance could
generalize to outside the idealized settings typically involved in research.
The theoretical basis that informs this belief in (most) modern deep
learning pipelines is the idea of so-called Empirical Risk Minimization
(ERM). Thus, to fully understand why generalization failure occurs, it is
beneficial to analyze ERM from first principles:

At the most fundamental level, the goal of machine learning is to learn a
mapping between two spaces of objects X and Y. This mapping, namely
the function f : X → Y, maps some input object x ∈ X, an image for
example, to a corresponding and application-relevant output object y ∈ Y,
for instance a segmentation mask or class-wise probabilities. It is worth
noting, however, that f is not as much a function in the mathematical
sense as much as it is an abstraction of the relationship that the deep
learning system is intended to capture. f cannot as a consequence typically
be modelled explicitly. Instead, machine learning systems aim to find
a sufficient approximation of this mapping by leveraging a training set
{xi, yi}0...n. This is referred to as supervised learning, and the resulting
approximation found using the training set is denoted by h : X → Ŷ, and
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typically referred to as the hypothesis.

To find such an approximation, it is assumed that there exists a joint
probability distribution over X and Y, namely P(x, y), and that the training
data {xi, yi}0...n is drawn from this probability distribution such that the
resulting sample distribution Independent and Identically Distributed
(IID) to P(x, y). This is referred to as the IID assumption. By modelling
the mapping as a joint probability distribution, one can model uncertainty
in the predictions by expressing the output as a conditional probability,
P(y|x). In conjunction with a loss-function L(h(x), y) which measures the
discrepancy between the hypothesis and the ground truth, this allows us
to quantify the expected performance of a given hypothesis:

R(h) = E[L(h(x), y)] =
∫

L(h(x), y)dP(x, y) (2.5)

Using this framework, one can then find an IID-optimal hypothesis, often
called a predictor, by finding the predictor h∗ among a fixed class of
functions (defined by network architecture)H that minimizes risk:

h∗ = arg min
h∈H

R(h) (2.6)

Since P(x, y) is not known, however, one cannot compute R(h) explicitly.
Instead, the expected risk has to be estimated empirically, i.e by finding
the arithmetic average of the risk associated with each prediction by the
hypothesis over the training set:

Remp(h) =
1
n

n

∑
i=1

L(h(xi), yi) (2.7)

This risk can in turn be minimized with respect to the hypothesis class. This
is called empirical risk minimization (ERM):

ĥ = arg min
h∈H

Remp(h) (2.8)

To reiterate, the central idea with this approach to machine learning is
that the training data can be considered a finite IID sampling of the
underlying distribution. As such, by the central limit theorem, the
hold-out performance of the computed hypothesis will approach IID-
optimal performance given a sufficient amount of training data and some
sufficiently capable training procedure. This should in theory allow deep
learning systems to be able to generalize, since the empirical risk in theory
can approximate the true risk arbitrarily well given sufficient training data.

As described in Section 2.3, ERM nonetheless readily fails to generate
generalizable predictors with respect to out-of-distribution data. There are
multiple dimensions to this phenomenon, as there are several means by
which a model can fail to generalize. To better understand these failure
modes, it helps to state the assumptions that are made in the formulation
of ERM, namely that:
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1. f exists inH

2. The optimal predictor can be found solely through minimizing (The
IID assumption) Remp(h)

3. {xi, yi} is an IID sampling of P(x, y)

4. ĥ∗ is unique inH

As the following sections will show, violations of any one of these
assumptions can and typically will result in generalization failure.

2.4.2 Realizability and Underfitting

Violations of assumption 1 corresponds to a well known and fairly well
understood form of generalization failure, namely underfitting. One can
however argue that underfitting can be all but discounted as plausible
explanation for the pervasiveness of generalization failure observed in
modern deep learning pipelines. Underfitting occurs when the model
simply lacks the complexity required to encapsulate the patterns necessary
to form generalizable interpretations of the data. To give a simple example
- consider the problem of trying to fit a linear model to a dataset wherein
the variables are related by a quadratic function, e.g y = x2 as shown
in Figure 2.8. No amount of optimization of the parameters in the linear
model can ever result in a sufficient description of the underlying data and
the function the constituent variables are related by.

This, however, does not necessarily mean that an underfitted model cannot
perform well; the data shown in Figure 2.8 function is after all locally linear,
and if it is only evaluated on a limited region, a linear model may perform
sufficiently. One can as such argue that DNNs in turn may be underfitting,
and that generalization failure analogously corresponds to evaluating on
data outside of this locally linear region. This, however, is unlikely to be
the case, as evidenced by recent results in the study of model complexity.

Modern DNNs, as it turns out, have practically infinite effective capacity -
i.e., they can model more or less arbitrarily complex data. It can for instance
be shown that even a 2-layer feedforward neural network is capable of
fitting noise to random labels with 100% accuracy [100] so long as it is
sufficiently wide. Consequently, it is fairly reasonable to expect that the
hypothesis space of the highly complex models used today contains a
generalizable predictor and thus that assumption 1 holds. In the literature,
this is often referred to as the realizability assumption [82].
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Figure 2.8: Example of a linear model underfitting polynomial data. The
residuals are in this case minimized, but the model is nevertheless only
correct near two datapoints.

2.4.3 Overfitting, Inductive biases and training

The high effective capacity of DNNs does, however, result in a number of
side-effects that actually hamper generalization. Though this capacity does
suggest that most learning problems are realizable, the problem of finding
a generalizable predictor from the hypothesis space is nevertheless not at
all trivial. ERM presupposes assumption 2 - i.e that there exists some way
to precisely find the risk-minimizing predictor ĥ = arg minh∈H Remp(h),
and as such that there is some ideal optimization procedure that can be
leveraged to this end. This, of course, is not the case. Instead, a search of
the hypothesis-space is performed using gradient-descent. On its own, this
search is not necessarily guaranteed - or for that matter even likely - to find
an IID-optimal predictor. This is due to the inherent nature of the search
space - DNNs have parameter counts numbering in the millions or more,
and try to determine optimal parameter configurations from comparatively
miniscule datasets.

Without certain precautions, this may result in the pipeline returning
predictors that in effect simply memorize the training data, without
learning anything useful about the domain itself. This is referred to as
overfitting [32].
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Memorizing all the training data is, however, risk-minimizing. To il-
lustrate, consider a predictor which simply memorizes the segmentation
masks for the polyps in a given dataset, and simply returns the correspond-
ing mask when given an image it has trained on, and returns a zero-mask
otherwise. This, as explained earlier in this section, is entirely within the
capabilities of DNNs due to their high effective capacity. When evaluating
this predictor on the dataset upon which it was trained, the empirical risk
will be zero since it will correctly return the right segmentation for a given
image despite not having learned anything useful about polyps whatso-
ever, or for that matter anything useful about images.

Thus, certain constraints have to be imposed on the search space to avoid
overfitting. These constraints have to be defined a-priori, and are often
referred to as the inductive biases of the pipeline.

This is often achieved through the use of regularization techniques. Dro-
pout [40], for instance, biases the model towards learning representations
that distribute well across the network and can work independently of one
another. Weight decay [55] biases the model toward low-magnitude para-
meters, and thus in theory simpler representations. Data augmentation bi-
ases the model towards learning features that hold across augmentations,
and so on.

Besides regularization, certain inductive biases can also be imposed
through modifying the training routines themselves, by for instance
through pretraining [25] - i.e first training the model on more general or
otherwise related data, contrastive representation learning [60] - i.e. learning
to represent similar samples coherently in an unsupervised manner - or
multi-task learning [78, 89] - i.e. learning representative features through
multiple tasks.

Determining the effectiveness of these techniques and tuning the hyper-
parameters that inevitably arise also requires a specific evaluation pro-
cedure. To this end, most deep learning pipelines leverage hold-out sets,
wherein the data is partitioned into three folds - the training set, used to
compute gradients and train the model, the validation set, used to tune
hyperparameters, and a test-set, used to evaluate the performance of the
model [32]. More sophisticated methods, such as cross-validation, are also
often used. Note that evaluation on test-sets only determines the general-
ization to data that is IID to the training set, also typically referred to as
In-Distribution (InD) data.

Fundamentally, each of these techniques increase generalization by limit-
ing the search space, in effect redefining H. The more inductive biases are
imposed onto the model, the smallerH in effect will be.

Modern deep learning pipelines regularly employ several of these tech-
niques, often in conjunction with one another, and consequently easily
avoid overfitting and achieve good results on the test-set. This only guar-
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Figure 2.9: Good performance on unseen InD test sets do not guarantee
generalization, as it only requires learning InD-biased features. OOD-
suitable performance requires that the model learns causally related and
thus generalizable features. Adapted from [29]

antees InD generalization, however, and thus these models still readily fail
to generalize to OOD data. This is illustrated in Figure 2.9 That is not to
say that regularization and other ways of imposing inductive biases on the
model does not aid in generalization, only that overfitting does not explain
the pervasiveness of generalization failure that can be seen today.

2.4.4 Structural Misalignment and Dataset Bias

Recent research attributes generalization failure to structural misalignment
between the features that predictors learn through ERM and the causal
structure which they ideally should encode [5, 29, 44, 81]. Generally,
this misalignment occurs as a result of the predictor learning spurious or
otherwise causally unrepresentative features that nonetheless perform well
within the training distribution. This if of course made evident as soon as
the predictor is exposed to any form of distributional shift, at which point it
will fail to generalize. These distributional shifts can range in magnitude,
from changes in imaging modalities [1, 20], common corruptions such as
noise or blurs [37], or spatial transforms [23], to practically imperceptible
perturbations, typically exemplified by adversarial attacks [13]. ERM does
not and cannot guarantee invariance to distributional shifts, as it assumes
that the training data is IID to P(x, y). This is not, however, necessarily as
much of a flaw with ERM inasmuch as it is a flaw in the reasoning behind
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our expectations.

To illustrate, consider the rather pertinent example of training a model
exclusively on either white-light or narrow-band endoscopy. Assume
that there are two datasets, each containing samples depicting identical
scenes, with the only difference being that dataset A employs white-light
endoscopy, whereas dataset B employs narrow-band endoscopy. Ideally,
a model trained on either dataset should generate predictors that can
generalize to the other, but this is in no way guaranteed. The causal
structure behind the problem - i.e. what exactly makes a polyp a polyp
- is never considered at any point in the training process. Instead, the
models will simply try to leverage any arbitrary predictive pattern that can
be found the training data. The model trained on narrow-band images may
for instance principally consider the textural characteristics of the polyps,
which narrow-band endoscopy enhances. Conversely, the model trained
on white-light images, lacking access to these textural characteristics, may
instead be biased towards more color- or shape-based features. If this
narrow-band-texture-biased model is deployed in white-light endoscopy, it
is not likely to succeed since its principal discriminative features no longer
are particularly useful. Similarly, the color-biased model would likely fail
when deployed in narrowband endoscopy since the colors it once used to
distinguish polyps would no longer predictive.

Figure 2.10: The difference between white-light endoscopy (left) and
narrow-band endoscopy (right) constitutes a distributional shift. Models
trained with ERM on one of these modalities cannot be expected to
generalize to the other.

Though the features each model learns are not particularly representative
of the broader context of what makes a polyp a polyp, they make sense
when considered from the perspective of either of the two modalities.
When considering only narrow-band imaging, it makes some sense to
heavily weigh the texture of the polyps. When considering only white-light
imaging, it makes some sense to heavily weight the shape and color of the
polyps. Though humans are capable of appreciating broader context and
subconsciously know that certain features are ancillary rather than causal
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(and perhaps more importantly: know the strengths and weaknesses of
each modality), DNNs lack the inductive biases needed to take this into
account. Once again, DNNs merely leverage the first and best predictive
patterns found during the training process, and cannot be expected to
optimize for specific invariances on their own, irrespective of how self-
evident these invariances may be for humans. This predilection towards
dataset-specific features is aptly referred to as dataset bias.

2.4.5 Shortcut Learning

In the example introduced in the previous section, it was assumed that
a model trained on datasets consisting of images of a given modality
- e.g narrow-band endoscopy - would learn features that correspond to
causal relationship within that modality. I.e. for narrow-band endoscopy,
polyps are (in part) defined by their specific textural characteristics. Thus,
though this relationship is not dataset-agnostic, it is at causally viable and
would generalize so long as it was deployed exclusively in narrow-band
endoscopy.

As it turns out, however, CNNs are unlikely to learn such causally viable
features in the first place. In other words, the predictors would not
necessarily learn to consider texture in narrow-band images - it could
learn any arbitrary pattern so long as it is predictive. Moreover, if such
interpretable distributional shifts were the principal cause of generalization
failure, generalizability could be practically guaranteed by explicitly
modelling the effects such shifts induce and taking these into account when
training models. In the aforementioned example, one could for instance
train some model to map from one lighting modality to the other. Though
this would imbue the model with an inherent invariance to the choice of
lighting, it is nonetheless not certain that the resulting model would be
perfectly generalizable.

Consequently, though these detectable forms of distributional shifts also
hold some importance when designing generalizable models, a more
pervasive and substantially more significant issue is the fact that many of
the distributional shifts encountered in clinical settings are not necessarily
considered significant or for that matter at all perceptible to a human
observer. A human would for instance not be significantly affected by
slightly noisy, blurry, rotated, or compressed images, nor would they in
all likelihood even notice these perturbations. DNNs, on the other hand,
have been shown to be highly sensitive to these and several other forms of
minor perturbations [37, 42, 85].

Moreover, though a human would likely not pick up on subtle phenotypic
cues that may exist in the colon during endoscopy, whereas a DNN may
leverage some of these cues to inform their decisions, and hence exhibit
varying performance across different demographics.
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It is important to note, however, that despite how these two forms of
distributional shift may at surface level appear as completely separate
classes of problems, they can both be traced to the same root cause -
namely that DNNs do not leverage any form of causal logic to inform their
decisions and, as mentioned previously, simply exploit any sufficiently
predictive pattern they may observe in the data. This is often referred to
as shortcut learning [29] or the Clever Hans effect [51].

Shortcut learning and the resulting brittleness of the features that it
induces has been identified as one of the key phenomena that explain the
effectiveness and pervasiveness of adversarial attacks [44]. Adversarial
attacks simply leverage the high degrees of sensitivity inherent to shortcut
features, and construct perturbations according the direction in the search
space that corresponds to the principal component of this sensitivity [68].
A generalizable predictor should be robust to such minor perturbations,
as the model should not in the first place be learning features that
get perturbed to any significant degree by adding high-frequency, low-
amplitude noise.

2.4.6 Underspecification

Closely related to shortcut learning is underspecification [20]. A machine
learning pipeline can be considered underspecified when it can return any
number of risk-equivalent predictors when evaluated on an InD holdout
set, dependent only on the random variables used within the training
procedure - i.e dropout, seed initialization, and so on. Even with identical
hyperparameters, a given training procedure can return any number of
predictors each having learned different patterns - be it shortcut features
or causal features. One predictor may have learned one shortcut, another
may have learned an entirely different but nonetheless equally predictive
shortcut, and one may have fully learned the actual causal relationships it
is intended to. With ERM, and in particular with InD-oriented evaluation
procedures, these are all erroneously considered equivalent.

This is evidenced by the significant variability in performance that can be
observed when testing several predictors that are identical except for the
choice of random seed on OOD datasets [20]. Typically, this variability is
orders of magnitude larger than the variability the same group of models
exhibit on an InD test set.

2.4.7 A probabilistic perspective of generalization

As established, modern deep learning pipelines are not capable of reliably
returning generalizable predictors. However, they are not necessarily
precluded from it. One can to some extent model this probabilistically by
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considering the distribution of parameters given the training data, p(w|D).
Though it is impossible to know which part of this distribution corresponds
to generalizable predictors, it has been shown that marginalizing over this
distribution increases generalizability [8, 41, 88, 94]. This is referred to as
Bayesian Learning [93].

The details and statistical nuances behind this is somewhat outside of the
scope of this thesis, so for now it is sufficient to simply consider it as a
way to account for some of the variability inherent to the distribution of
predictors that can be generated by a deep learning pipeline.

This view can be more readily understood by taking a probabilistic
perspective of generalization as a whole [94]. Generalizability can be
considered as a two-dimensional quantity, consisting of the support and
inductive biases of a model. The inductive biases are as mentioned the
constraints by which the model learns, which for instance can be induces
through the design of the model-architectures - e.g positional invariance in
CNNs, regularization - e.g. dropout, data augmentation, etc., or specific
training routines - e.g. multitask learning, contrastive representation
learning, and pretraining. The support, on the other hand, describes
the ability of the model to encode certain decision rules. Following the
Bayesian perspective, both the support and inductive biases should be
maximized. Maximal support permits a given model to learn arbitrarily
however complicated decision rules are required for a given task, and a
maximal set of inductive biases reduces the probability of learning decision
rules that, though predictive, are not causally related to the problem.

2.5 Related work on Generalizable Deep Learning

To summarize the preceding sections, generalization failure occurs due
to the weaknesses inherent to ERM. The features that predictors trained
with ERM learn to incorporate are often spurious, and the deep learn-
ing pipeline can return any number of spurious or non-spurious predict-
ors from identical training procedures up to choice of random seeds. The
approaches that have exhibited the highest degrees of success towards in-
creasing generalization as a consequence tend to address these issues in
some way or another. This section will discuss a number of such meth-
ods, including data-augmentation, model-debiasing, alternative learning
paradigms, and ensemble models.

2.5.1 Data-augmentation

One of the most well-studied approaches to increasing generalizability is
the use of data augmentation. Data augmentation is typically implemented
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in deep learning pipelines in order to prevent overfitting, often in conjunc-
tion with other regularization methods. As discussed earlier, overfitting
constitutes generalizability failure in its own right, but augmentation has
also been shown to have positive effects for out-of-distribution generaliz-
ation [31]. It has for instance been shown that carefully designing aug-
mentation procedures increases the generalizability of polyp segmentation
models [30] and prostate segmentation models [80].

Data augmentation can be interpreted as providing a better estimate of the
overall risk R(h). This is because the empirical risk will be best minimized
by leveraging features that are conducive to minimizing risk across both the
augmented data and unaugmented data. Indeed, it has been shown that
using data augmentation has comparable effects to incorporating a second,
OOD dataset as additional training data [31].

The effects of augmentation can be understood from the perspective of
generalization as mentioned in Section 2.4.7. In effect, data augmentation
is simply a method by which additional inductive biases can be imposed.
This increases the likelihood of learning generalizable features. For
instance, by augmenting with random rotations, rotational invariance is
presupposed. By augmenting with color-jitter, invariance to global color-
transforms is presupposed. By employing additive noise, invariance
to additive noise is presupposed, and so on. There has also been a
large body of work dedicated to leveraging recent advances in generative
models such as Generative Adversarial Networks (GANs) and Variational
AutoEncoders (VAEs) to serve as synthetic data augmentation. These
types of approaches have also been shown to increase generalizability, in
particular in medical domains such as CT segmentation [79] and x-ray
based detection of covid-19 [67]. To understand why this is the case, and
as the methods proposed in Chapter 3 leverage a form of GAN, it is worth
explaining how these networks work.

Generative Adversarial Networks

GANs are very simply put a type of deep learning framework intended to
be able to replicate the distribution upon which they are trained. A GAN
trained on images of human faces, for instance, would in theory generate a
practically infinite number of novel, believable human faces [50].

This is achieved through a particular training regiment, wherein two
models - the generator and the discriminator - contest one another in a
zero-sum game. This is shown in Figure 2.11. The generator, as the name
suggests, attempts to fool the discriminator by generating synthetic data
from noise, intended to be indistinguishable from what one might expect
a sample from the training distribution to look like. The discriminator,
on the other hand, tries to classify an incoming image - either from the
dataset or from the generator - as synthetic or genuine. This is achieved by
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Figure 2.11: Diagram showing the regiment for training GANs. The
generator produces a synthetic image with noise as input, which the
discriminator then tries to classify as real or fake along with real examples.

training the generator and discriminator in an interleaved fashion, wherein
the gradient updates for each model are a function of the output of its
adversary. To illustrate, consider a basic GAN pipeline [33]: Let G(·) be
the generator, and D(·) be the discriminator. Let x be a training input
sample, and z be random noise. The generator will then try to minimize
the following quantity, whereas the discriminator will try to maximize it:

LG = log D(x) + log (1− D(G(z)) (2.9)

This way, when the generator is being trained, it learns to generate
outputs that fool the discriminator. This corresponds to the discriminator
outputting a high probability of the image being real, i.e D(G(z)) = 1.
Conversely, when the discriminator is being trained, it learns to generate
outputs that correctly classify the generated samples as fake, i.e D(G(z)) =
0, and the real samples as real, i.e D(x) = 0.

GANs, Generalization and Modelling the Distribution

Ideally, the fully trained generator should be capable of generating the
full space of images defined by the training distribution X simply by
modulating the input vector. And indeed, mathematical analysis shows
that GANs are capable of approximating this distribution arbitrarily close
given infinitely sized datasets, infinite training time and infinite model
support [33].

Whether this is the case in practice is a matter of ongoing research, how-
ever, with mathematical analyses suggesting that sufficient approxima-
tion of the distribution is impossible without the aforementioned assump-
tions [6].

This is evidenced by the pervasiveness of a phenomenon referred to as
mode-collapse, wherein GANs learn to replicate only a limited subset of
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distribution. One can argue that this in effect stems from GANs failing to
generalize [7]. This limits the potential of GANs somewhat; after all, if they
really did model the distribution, one could leverage GANs to generate
practically infinite synthetic datasets and thus train highly generalizable
models.

That is not to say, however, that GANs lack utility as an augmentation
method. As mentioned previously, GAN-based data augmentation tech-
niques have been shown to have the potential to increase the generaliza-
tion of the target models. This is, however, not typically achieved merely
through training on synthetic images, but by training GANs such as Cycl-
eGAN [79] or other distributional models [67] to translate between do-
mains.

Gan-Inpainters

Of particular interest in the context of segmentation is also GAN-
inpainters, which as the name suggests fill in masked regions in an image
with pixels such that the resulting scene is maximally believable [71]. This
is achieved by using a configuration similar to what is shown in Figure 2.11,
but with some modifications:

First, the generator has to train to optimize for two objectives: fooling
the discriminator, and minimizing the pixel-wise distance between the
inpainted regions and the true regions. Second, the discriminator has to
learn to classify pixels as either being inpainted or real. This results in the
following optimization objectives, both of which are minimized:

Lg = λ1BCE(D(x), y = 1) + λ2L1(G(x), x) (2.10)

Ld =
1
2
[BCE(D(G(x), y = 1) + BCE(D(G(x), y = 0))] (2.11)

Where the λ terms correspond to weights, treated as hyperparameters.

As will be explored in Chapter 3, this can be used to augment segmentation
tasks by training the model to inpaint the segmentation target class only,
and thus add additional regions corresponding to the given segmentation
target to an image. In this thesis, this will involve inpainting additional
polyps in a given endoscopic image.

2.5.2 Model Debiasing

Another type of approach involves biasing the pipeline towards learning
more structured and causally viable latent representations - or, equival-
ently, debiasing it from learning spurious correlations [31]. This is also
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somewhat well understood when considered through the lens of regular-
ization: dropout [40] and weight-decay [55] are often employed in order
to reduce overfitting under the assumption that a generalizable predictor
should not base its decisions on only a few of the available weights, and
that separate components in the networks should instead encode inde-
pendent representations of the input. Though there is limited research
on the effects of regularization methods other than data augmentation on
OOD generalization specifically, debiasing through constraining the space
of latent representations that a DNNs can leverage has been shown to
be effective method of increasing generalizability. In the case of polyp-
segmentation it has for instance been shown that adding context-based at-
tention layers to multiple blocks to a network results in a significant in-
crease to OOD performance [53].

Multi-task and multi-stage learning has also been leveraged for the
purpose of model debiasing. By jointly optimizing for multiple tasks/sub-
tasks, the model can be biased towards learning features that describe
the input data well independent of their performance on any one of the
relevant tasks. For polyp-segmentation, for instance, it has been shown
that adding image reconstruction as an auxiliary task in conjunction with
attention-blocks [89] or decoupling the segmentation task into a coarse
segmentation and refinement stage [27] increases generalizability.

More closely supervised methods, wherein certain inductive biases are
introduced to the pipeline in a more explicit manner, have also been
shown to have some promise. One paper for instance reported increased
robustness to image perturbations after adding a custom filter bank
designed to emulate the primary visual cortex of primates to the front of
a CNN [21]. Another paper reported that models trained on Imagenet
exhibited significantly higher robustness when explicitly biased towards
shape-based features [28].

2.5.3 Novel Learning Paradigms

A growing body of work has also investigated the idea of foregoing ERM
altogether, or at least certain elements thereof, in favor of developing
alternative training paradigms.

In so-called Invariant Risk Minimization [5], for instance, the model trains
to ignore spurious correlations by optimizing for predictors that exhibit
stable performance across several datasets.

Model-Based Robust Deep Learning [75] employs a similar idea in
conjunction with distributional modelling. The model is trained such
that it learns invariance to perturbations as applied by a generative
model trained to map inputs continuously between separate domains
in accordance with a nuisance parameter. If this model for instance
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describes the function mapping white-light endoscopy images to narrow-
band endoscopy images, this will then optimize for predictors that leverage
features that generalize to both lighting methods and any combination
thereof.

It should be noted, however, that these methods all necessitate multiple
datasets, and may as such have limited utility in domains where datasets
are scarce.

2.5.4 Bayesian Marginalization and Ensembles

Finally, So-called ensemble networks have demonstrated high degrees
of generalizability for polyp-segmentation, and account for three of the
eight accepted submissions to the segmentation task of EndoCV2021 [41,
57, 88]. An ensemble model is in effect a set of distinct predictors
which generates outputs according the consensus of its constituents. This
requires training multiple models independent of one another, and works
under the assumption that considering multiple representations of the data
concurrently facilitates increased generalization.

It can be shown mathematically that this ensembles an approximation of
Bayesian marginalization [93, 94]. One can consider an ensemble to be a
sampling of the Bayesian posterior - i.e., p(w|D). Consequently, ensemble-
based networks can mitigate underspecification to a certain extent, merely
by representing a higher proportion of the space of possible predictors,
thus increasing generalizability. As each predictor is unlikely to have
learned identical representations, any spurious correlations inferred by one
predictor will not affect the final prediction so long as they have not been
learned by the majority of the predictors in the ensemble.

There is, however, a caveat to this. It may for instance be the case that a
given pipeline returns predictors that have learned one specific shortcut
(or a set of shortcuts) in the majority of runs, in which case no amount
of Bayesian marginalization or use of ensemble models will ever result in
appreciable increases to generalization. This is illustrated in Figure 2.12.
Nevertheless, the literature has demonstrated the generalizability of
ensemble models, though the relative impacts thereof is still to some extent
poorly understood.

2.6 Ethical considerations

Now that generalization failure and the prevalence thereof has been
discussed in quite some detail, as well as the limited success of the
literature with regards to resolving this problem, it is beneficial to pause
to consider the ethical and social consequences inherent to the it.
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Figure 2.12: Bayesian marginalization may not yield generalizable predict-
ors. In the above case, the portion of the distribution that correspond to
non-generalizable features (red) are more likely to be learned than general-
izable features (green). Spurious features will as a consequence constitute
the principal component of the marginalized probability, in turn resulting
in minimal impact on generalization.

The robustness and generalizability of medical systems is of exceptional
importance [11], and the possible negative consequences for incorrectness
or even simply unreliable performance are significant. Over-reliance on
a non-robust deep learning model may for instance result in increased
miss rates in the case of polyp screening, which of course may have
fatal consequences should the polyp turn cancerous. Clinicians may grow
accustomed to a high-performing model and then perhaps more readily fail
to notice should it leave polyps undetected if for instance the distribution
shifts such that this performance is hampered. In this case, the addition
of the deep-learning based screening method would in fact do more harm
than good.

As briefly mentioned in Chapter 1, sampling bias in the datasets upon
which these models are trained may also lead to inequality of treatment,
for instance if certain demographics are not accounted for [69]. Though
this of course can be mitigated to some extent by more careful curation
of datasets, the central problem that results in this disparity is at its core
the fact that the model is learning spurious features. A model intended
to detect melanomas should not, for instance, rely solely on complexion-
dependent characteristics to make predictions. Though curating datasets
with a diverse representation of skin-tones would mitigate this problem
to some extent, it is uncertain, and as the analysis in previous sections
shows unlikely that all potential variability would be accounted for. Thus,
ensuring that a given model learns causally robust and thus generalizable
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features is of particular importance also in this regard.

2.7 Summary

This section has covered the basics of deep learning and segmentation,
discussed a number of documented cases of generalization failure, and
summarized a number of analyses of generalization performed in the
literature.

Generalization failure is prevalent across practically all deep learning
pipelines. The mechanisms behind these failures are only loosely under-
stood, and there has been limited success in the endeavor of develop-
ing generalizable methods to increase the generalizability of deep learn-
ing pipelines. Generalization failure can in broad strokes be attributed to
the inability of empirical risk minimization to consistently learn causal pat-
terns, and that predictors trained with ERM instead favor whatever pat-
terns that can be found in that are sufficiently predictive in a InD context.
Methods that address this in some way - for instance ensembles, data aug-
mentation, etc - consequently tend to increase generalizability.

The relative impact of these methods is, however, poorly understood,
and the literature is to some extent fragmented with regards to the
experimental methodology used when evaluating the generalizability
of models. Moreover, there have been limited efforts made towards
developing novel approaches explicitly aiming to increase generalization
without relying on auxiliary OOD datasets in the training process. Hence,
addressing this issues is the primary focus of this thesis. The next chapter
explores the impact of several novel methods to this end, including the
use of a dual-decoder model for multi-task learning, a novel augmentation
strategy which includes a generative inpainter, a novel training procedure
referred to as Consistency Training, and finally a number of ensemble
models trained using Consistency Training. These will then be compared
to corresponding baselines in Chapter 4, which in turn will be compared
to one another in order to ascertain the relative impacts of model
architectures, data augmentation, and the use of ensemble models on
generalization.
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Chapter 3

Methods

Summarizing the key points made in Chapter 2, current deep learning
pipelines are not equipped with evaluation methods suitable for determ-
ining the degree to which predictors can generalize to OOD data, are prone
to learning spurious features, and are underspecified by the datasets they
are trained on. These factors can be traced back to shortcomings in Em-
pirical Risk Minimization (ERM), the theoretical basis for deep learning.
The literature around developing methods to address these shortcomings
tends to focus on developing more generalizable model architectures [27,
35, 36], data augmentation [30, 34, 79], Bayesian marginalization through
ensembles [41, 57, 88], or developing novel training paradigms to directly
work around the shortcomings of ERM, typically by incorporating multiple
training domains [5, 75].

Restating the research objectives, this thesis aims both to determine the
relative impacts of a number of these methods, which will be considered
further in Chapter 4, and to develop novel methods as informed by the
theory presented in Section 2.4. To this end, this Chapter will introduce the
following methods:

• A modified DeepLabV3+ model with dual decoders, intended to con-
strain the space of latent representations such that underspecification
is mitigated.

• A novel framework for analyzing generalizability based on refram-
ing it as a predictor’s ability to exhibit consistent behaviour with
respect to distributional shifts, as well as a corresponding training
procedure, metric and loss-function. This is in effect an alternative
to data augmentation, and in contrast to competing methods [5, 75]
does not make use of OOD datasets.

• An augmentation strategy informed by this alternative view, includ-
ing both conventional augmentations and a GAN-inpainter.
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• A family of ensemble models consisting of predictors trained accord-
ing to the above methods.

This chapter will detail the development of these methods, including their
basis with respect to the theory as outlined in Section 2.4.

3.1 DD-DeepLabV3+

As described in Chapter 2, generalization failure can in part be attributed
to the fact that most deep learning models are underspecified by the
training data. In other words, the same pipeline can return any number of
risk-equivalent predictors that leverage significantly different features. To
mitigate this, one may debias the pipeline by imposing constraints on the
space of features that a given model can learn, such as through multi-task
learning [89], attention-mechanisms [35, 98] or preprocessing [21].

As testing the relative effectiveness of all of these different approaches
is beyond the scope of this thesis, only a simple dual-decoder model is
introduced, namely DD-DeepLabV3+. As its name suggests, this model is
functionally equivalent to a standard DeepLabV3+ [18], but is endowed
with an additional decoder, which performs image reconstruction. In
theory, this should constrain the model such that it learns features that
are conducive to both segmentation and reconstruction simultaneously.
This constraint should mitigate underspecification and force the model to
learn more generalizable features, as the feature space that is conducive to
both reconstruction and segmentation should be smaller than the feature
space conducive to segmentation only. A diagram of the model is shown
in Figure 3.1.

This model also has the advantage of being easily compared to the
standard DeepLabV3+; the part of the dual-decoder network responsible
for segmentation is after all functionally identical to the single-decoder
network. This facilitates better analysis of the impact of the additional
decoder and its effect on the learned features, as the performance of the
respective models can be compared directly.

3.2 Consistency Training

This section will introduce Consistency Training, illustrated in Figure 3.2,
a training procedure wherein the intent is to optimize for generalizable
features by minimizing the degree to which the model outputs inconsistent
predictions when the input is subjected to a set of transformations. This
is achieved by training with two versions of each batch: one which
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Figure 3.1: Diagram showing the Dual-decoder DeepLabV3+ model. This
model uses a ResNet34 encoder to generate a feature map, which is then
leveraged by two decoders concurrently. One decoder performs polyp
segmentation, and the other performs image reconstruction. Functionally,
the decoders are identical, and differ only in that the segmentation decoder
requires sigmoid activation to map the output logits to a probability map
one channel wide, whereas the reconstruction maps the logits to RGB
values.

is augmented, and one which is not. The given model then performs
inference on these two images, resulting in two segmentation masks. The
difference between these two predictions is then computed, and compared
to the difference (if any) between the augmented and unaugmented
segmentation labels. This is then incorporated as a loss such that the
discrepancy between the expected prediction change and actual prediction
change is minimized.

One can draw parallels between this pipeline and contrastive learning [60],
which also makes use of a similarity metric as computed from separate
outputs of the same model. However, whereas contrastive learning is
primarily used in unsupervised settings, often as pretraining, Consistency
Training is in effect instead a more generalizable alternative to data
augmentation.

The next sections will cover the theoretical basis of this training proced-
ure as well as the implementation of its constituent components, therein a
novel loss function, augmentation strategy, and weighting method for ro-
bust joint optimization of both consistency and segmentation performance.

3.2.1 Consistency as a Surrogate for Generalization

As discussed in Chapter 2, distinguishing between generalizable and
non-generalizable predictors, and in turn optimizing for generalizability
directly, is not feasible when evaluating only in InD-settings. This is
because there is no way of knowing whether the features learned through
ERM are causally related to the problem, or if they are simply predictive
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Figure 3.2: Diagram showing Consistency Training. The CNN is given two
images, where one is simply an augmented version of the other. It then
outputs two segmentations, which in conjunction with the labels for both
images is used to compute SIL. The InD IoU for the given batch is then
calculated and used to weight this term against a segmentation loss, in our
case Jaccard loss.

due to some other correlation that is strong within the bounds of the
training distribution. A generalizable evaluation procedure therefore
requires some way of determining whether the predictor is leveraging non-
causal or causal features.

Determining what features are causally related to the problem is, however,
somewhat of an intractable problem. First and foremost, the patterns
that neural networks learn and the logic that underpin them are often
difficult to identify, and even more difficult to interpret on an intuitive
level. Secondly, assuming there was some way of understanding these
factors perfectly, establishing causality with any certainty necessitates a
higher level of understanding of the problem than is reasonable to expect.

Though establishing what is causal is difficult or even impossible, estab-
lishing what is not causal is not all that complicated. To give a concrete
example, consider the problem of classifying images of cows in grassy pas-
tures and camels in deserts. A deep learning model may just as easily learn
to associate the "cow" class with grass and the "camel" class with deserts
as learning what actually determines the respective animals. Thus, it may
predict that a camel standing in a pasture or a savanna is a cow, or equival-
ently predict that a cow standing in a desert or on a beach is a camel. This
is illustrated in Figure 3.31.

Associating the cow class with grass and the camel class with sand is
obviously non-causal, however, since this pattern would not hold if the
model for instance is asked to detect cows on Mars or camels on the Moon.
To mitigate this, ones first instinct may be to simply collect data of these

1Attributions from top left to bottom right: "Our Camels" by Neil and Kathy Carey,
"Cows" by macieklew, "As vacas ditando o caminho" by ground.zero, and "Searching" by
Fraser Mummery are licensed under CC BY-SA 2.0.
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Figure 3.3: A model trained on cows in pastures and camels in deserts
may learn to associate the cow class with grass and the camel class with
sand, and thus fail to generalize even if performance on an IID test-set is
exceptional.

cows and camels in a wide assortment of differing backgrounds, but such
careful curation of datasets is not typically feasible, and is at any rate not
guaranteed to solve the problem, as another shortcut may easily be found.
In the context of polyp segmentation, is for instance not feasible to collect
a dataset that is fully representative of all the differing demographics,
imaging equipment, endoscopy operator faults, and so on that one may
expect in deployment. There is simply too much variation to be fully
accounted for. Instead, one has to leverage the data that is actually available
and try to squeeze as much utility as possible from it, either by imposing
some number of a-priori inductive biases.

Once again going back to the cows and camels example, one may for
instance generate multiple instances of the same cow but with varied
backgrounds and punish the model for predicting differently depending
on the background. This way, the inductive bias that the predictor should
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be invariant to backgrounds is imposed.

This, of course, applies to more than just modifying backgrounds: the
more of these non-causal changes to the input data are accounted for and
modeled, the more spurious correlations are excluded from the search,
and the more likely the model is to learn the patterns that are actually
causal. These sorts of non-causal changes to the data will from this point
on be referred to as perturbations. These perturbations can take practically
any form, only under the condition that it should not affect the causal
structure of the data. If a model is trained such that invariance to all such
perturbations is achieved, it must necessarily be leveraging causal features
and thus be generalizable. After all, a given set of features can for all intents
and purposes be considered causal when they result in performance that
holds when subjected to any and all arbitrary perturbations.

Thus, though rewarding causal behaviour is intractable, punishing non-
causal behaviour is not. All that is required to do so is to be able to apply
perturbations that highlight the non-causal reasoning the model employs,
quantify the model’s sensitivity to these perturbations, then minimize this
quantity through optimization. The resulting model will then in theory
have learned invariance to whatever causally irrelevant information that
the perturbations define. This property of being invariant to perturbations
will be referred to as the consistency of the model.

This notion of consistency can in effect be considered a surrogate for
generalizability; if a model is consistent to all perturbations, it is invariant
to non-causal patterns, and if it is invariant to all non-causal patterns, it
necessarily employs causal patterns. Optimizing for consistency can as
a result mitigate generalization failure, subject only to the span of the
perturbations and how well inconsistent behaviour can be quantified.

This line of reasoning does presuppose that there is some model that can
output all possible perturbations one might desire the model to be invariant
to. This is of course not the case. As highlighted by the pervasiveness of
adversarial attacks and the relative ineffectiveness of adversarial defenses,
the perturbations that break DNNs are not necessarily intuitive, and are
often difficult to analyze in a manner that is conducive to the task of
engineering invariances. Nevertheless, much stands to be gained if the
model learns to be invariant even to a fairly limited space of perturbations.
Though generalizability is by no means guaranteed in this case, the odds of
learning generalizable features are nevertheless improved simply because
imposing invariance to a set perturbations limits the types of patterns that
a given model can learn. If for instance a white-light endoscopic image is
perturbed such that it mimics a narrow-band image, and the model learns
to be invariant to this perturbation, predictors that leverage white-light
or narrow-band dependent features will no longer be returned from the
training procedure.
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This approach, then, requires two components: a perturbation model
that induces distributional shifts, and a loss function that can describe
inconsistent behaviour subject too these distributional shifts. One can
then in turn optimize for consistency through gradient decent. The
implementation of these two components will be covered in the following
sections.

3.2.2 Implementing a Perturbation Model

So far, it has been assumed that a perturbation model was given before-
hand. This is of course not the case, and any such model needs to be
designed with respect to the domain in question. Rotational invariance
makes sense for endoscopic images, for instance, but not for classification
of hand-written numbers. Thus, in order to engineer such a model, it is first
necessary to establish what invariances are desired for the given task. In
the case of polyp-segmentation, it is clear that it is necessary to account for
variability in for instance lighting, polyp-size, polyp-shape, polyp-location,
camera-quality, color-shifts, blurs, optical distortions, and affine transform-
ations. Thus, a model is required that can (more or less) parameterize this
variability. Broadly speaking, these transformations can be categorized as
follows:

• Pixel-wise variability, which affect only the image, i.e color-shifts,
brightness shifts, contrast-shifts, blurs etc. Practically, this corres-
ponds to changes in lighting conditions, camera motion, dye applic-
ations, etc.

• Geometric variability, which affects both the image and the segment-
ation mask, for instance affine transforms and other spatial distor-
tions. Practically, this corresponds to endoscope orientation, optical
distortion in the camera, zooming, etc.

• Distributional variability, which affects both the image and the seg-
mentation mask depending on a learned model of the distribution.
Practically, this corresponds to the size, shape and location of the
polyps

Pixel-wise variability and geometric variability can be modelled fairly
trivially through the use of the same transformations typically used
in conventional data-augmentation. Distributional variability, however,
is somewhat more difficult, and requires a model that can sufficiently
represent some characteristic of the distribution. This can for instance
be achieved via and cross-dataset style-transfer [75, 79], but this of
course necessitates multiple datasets. Given only one dataset, a different
method must be used. For a classification task, this could for instance be
DeepAugment [34] or a similar technique. DeepAugment, however, cannot
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account for the changes in the segmentation mask that should be induced
by the augmentations it generates. Consequently, some other generative
model wherein the changes in the segmentation mask can be accounted for
is required. To this end, a GAN-inpainter can be used.

GAN-based Polyp Inpainting

As mentioned in Chapter 2, the use of GANs and other distributional
modelling in the context of generalization is typically restricted to image-
to-image translation, and typically involves transforming an image drawn
from one distribution such that it is IID with a second distribution. This,
though interesting and no doubt useful assuming several such datasets are
available, has limited practical use. It is not necessarily always the case
that there exists multiple datasets depicting identical problems, and merely
translating between modalities does not as mentioned in Section 2.4 ensure
generalizability.

A better approach is to try to model the training set distribution directly,
then perturb the data in accordance with this model. For segmentation
problems, this can be achieved through training a model to fill some
predefined region with pixels that correspond to whatever segmentation
target the model is meant to learn, in this case polyps, then perturb a given
sample by for instance increasing the polyps’ size or adding extra polyps.

To this end, a simple GAN-inpainter was trained. The Generator G(·)
and Discriminator D(·) were both implemented with the DeepLabV3+
architecture, and trained using the following loss formulation, where Ld
and Lg corresponds to the discriminator and generator loss respectively,
and x and y corresponds to masked selections of the input image and
output image respectively, where the mask is given by the segmentation
label.

Lg = 0.001BCE(D(x), y = 1) + 0.999L1(G(x), x) (3.1)

Ld =
1
2
[
BCE(D(G(x), y = 1) + BCE(D(G(x), y = 0))

]
(3.2)

In other words, the generator is given an image where the polyp has been
masked out, and then learns to fill in the missing area. The resulting
region that the inpainter fills in is then compared to the region defined
by the polyp as given by the original unmasked image along with the
segmentation mask, and the loss is calculated as above.

The inpainter was trained according to the aforementioned loss function
using the Adam optimizer and a cosine annealing scheduler with warm
restarts. The hyperparameters are shown in Table 3.1

Though the inpainter is trained using masks taken from the segmentation
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Hyperparameter Value

batch_size 8
learning rate 0.0001
epochs 3000
Scheduler T0 100
Scheduler Tmult 2

Table 3.1: Hyperparameters for GAN-inpainter training

labels, inference must be done by generating a random region that is
somewhat polyp-like. This was done by successively and randomly
selecting points within a unit square that are a given minimum distance
apart from every other point. These points were then sorted according to
their order when counting counter-clockwise from the centroid, and splines
generated between between every pair of these sorted points. The region
defined by this contour was then used as the inpainting target. Figure 3.4
shows some examples of inpainted polyps.

Though this implementation is by no means state-of-the-art, it should
nevertheless be sufficient for the purpose of augmentation, considering
the principal differences between generated and real polyp images are
finer textural details and colour balancing, which are affected by the other
augmentations anyway.

Geometric and pixel-wise transformations

The data was augmented using the albumentations [17] library for python,
which defines a large number of transformations for use in deep learning.
To establish which of these augmentations are suitable, one first needs to es-
tablish which invariances the model(s) in question should exhibit. Table 3.2
below provides descriptions of the invariances required in the model, the
albumentation function that corresponds to the required transform, and the
hyperparameters used.

The parameters for the respective functions were selected as follows: one
transformation was considered at a time, then parameter value(s) that kept
the polyp fairly visible but still sufficiently altered were identified. The
augmentations then sample between a range given by this maximum to
determine the severity for each transformation. The probability of each
transformation was set to 1, such that all transformations given in Table 3.2
were always applied, albeit with severity being randomly selected from
between zero and the maximum as previously determined. Thus, though
all the transformations were always applied, some may have limited effect
if the sampled severity was close to zero. Augmentation examples without
the inpainter are shown in Figure 3.5.
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Figure 3.4: Example outputs from GAN-inpainter, given unseen inputs
taken from an unlabeled dataset. Besides certain colour artifacts, few
textural details, and occasional odd lighting, the generated polyps are
moderately convincing.

It should also be noted that this set of augmentations is by no means
complete, both in the sense that it accounts for all variability that one
might expect in practice, and in the sense that a larger number of
augmentations could likely be used. Moreover, the above augmentations
are not necessarily optimal, and the selected parameters are not likely
to result in the best possible generalizability. In an engineering setting,
the choice of augmentations should be tuned and prototyped, but for
the purpose of this thesis the relatively simple augmentation strategy as
outlined above is sufficient.
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Invariance Albumentation Function

Perspective Flip()
RandomRotate90()

Image quality GaussNoise(max=0.01)
ImageCompression(max=100,
min=10)

Camera models OpticalDistortion(distort_limit=10)

Lighting conditions ColorJitter(brightenss=0.2,
hue=0.2, contrast=0.2,
saturation=0.2)

Table 3.2: Overview of albumentation augmentations functions used in this
thesis, with hyperparameters.

Figure 3.5: Sample Augmentations without inpainter.

3.2.3 Quantifying Segmentation Consistency

In Section 3.2.1, consistency was defined as the property of exhibiting in-
variance to perturbations. In the context of segmentation, this corresponds
to the ability of the model to output a corresponding segmentation mask
when the input data is subjected to some perturbation, such as the aug-
mentations defined in Section 3.2.2.

One simple approach to express this numerically would be to count the
number of pixels that do not change in the predicted segmentations when
the input is perturbed, and then normalize this with respect to the total
number of pixels predicted in both the perturbed and unperturbed images.
This, in effect, is equivalent to calculating the IoU across the perturbed
and unperturbed segmentations. However, the ground truth may change
as a result of the perturbation - if the image is rotated, for example, the
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segmentation mask should be rotated accordingly. If an image is globally
distorted in some way, the segmentation should exhibit the corresponding
distortion. This needs to be taken into account. This can be achieved by
discounting the pixels in the predictions that are expected to change from
the overall count. This quantity can be expressed as follows:

Let Y := {y, ŷ := f (x)} be the set consisting of the segmentation labels
(masks) and predictions for the unperturbed samples, where f (·) as before
denotes the model. Let ϵ(·) be some perturbation function. Then, let A :=
{a := ϵ(y), â := f (ϵ(x))} be the set consisting of segmentation predictions
and masks when the input is subjected to a perturbation. Segmentation
consistency can then be quantified as:

C(y, ŷ, a, â) = ∑{y ∩ a ∩ ŷ ∩ â}
∑{y ∪ a ∪ ŷ ∪ â} (3.3)

A visualisation of this metric at work is shown in Figure 3.6.

Using this formulation, higher is of course better. For the purpose of
developing a loss function, however, it is useful to instead quantify
inconsistency. This can be expressed in much the same manner, but using
the symmetric difference operator, i.e A⊖ B = A ∪ B− A ∩ B:

C(y, ŷ, a, â) =
1

∑{y ∪ a ∪ ŷ ∪ â}∑{y⊖ ŷ⊖ a⊖ â} (3.4)

These formulations are, of course, related by:

C(y, ŷ, a, â) = 1− C(y, ŷ, a, â)

This notion of inconsistency then corresponds to counting the number of
pixels that change after the input is subjected to a perturbation - â ⊖ ŷ,
but discounting those we expect to change, a ⊖ y. This is also shown in
Figure 3.6 and Figure 3.7.

It is worth noting that consistency is maximized - and thus inconsistency
minimized - not only if the predictions are both correct and consistent
with one another, but also if the predictions are both incorrect, as long as
whatever change that occurs corresponds to the expected change. This is
illustrated in Figure 3.7.

Moreover, note that this metric does not presuppose what transformation
has occurred. In Figure 3.7, for instance, the change induced by the
perturbation may correspond to simply moving the polyp in the image
(and replacing the empty space with a believable background), or it may
correspond to a rotation by 90 degrees. How this should be analyzed
with respect to consistency is up to interpretation - one can argue that a
rotation should rotate the incorrect predictions as well, or one can argue
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Figure 3.6: Examples of consistency and inconsistency calculation when
subjected to a non-label-altering perturbation, in this case additive noise.
The consistency for this sample (when thresholded) is 0.68 and inconsist-
ency 0.32, meaning that 64% of the pixels constitute consistent predictions
across the two inputs.

that it should only rotate the correct component of the prediction. For
simplicity, Consistency Training is based on the latter interpretation. This
will be discussed in further detail in Section 6.3.1.

3.2.4 Segmentation Inconsistency Loss

Inconsistency as expressed in Equation (3.4) is not differentiable, and thus
it cannot in its current state be used as a part of a loss function. Thus,
a smooth extension of this metric is needed. This can be achieved in
much the same way as how the Jaccard loss can be derived from the
IoU - i.e by using differentiable versions of the set functions. We can
extend the definition of the symmetric difference to Θ(A, B) = A(1 −
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Figure 3.7: Visualization of consistency calculation when subjected to a
label-altering perturbation, where white is a positive prediction. Note that
C is zero regardless of prediction correctness so long as it changes in the
expected manner. Note also that the symmetric difference operators are
associative. Left shows an instance of consistent and partially incorrect
predictions, and right shows an instance of inconsistent and partially
correct predictions.

B) + B(1 − A). This, naturally, is equivalent to the standard symmetric
difference if the values of A and B are binary. Similarly, the union
operator can be extended as

⋃
(A, B) = A + B− AB, and the intersection

operator as
⋂
(A, B) = AB. Like their binary equivalents, these operators

maintain their associative and commutative properties. One can optimize
for consistency by replacing the operators in Equation (3.4) with these
functions, which in turn can be used as a loss function:

LSIL(y, ŷ, a, â) = ∑
Θ(y, ŷ, a, â)⋃
(y, ŷ, a, â)

(3.5)

This loss function will from this point be referred to as the SIL.

3.2.5 Adaptive Loss Weighting

Using SIL as a loss function on its own is not really useful since it only
expresses inconsistency, and is to a large extent agnostic to whatever object
it is trying to segment. To illustrate, consider a model that predicts that
every pixel is positive regardless of the content of the image, and that
the augmentation strategy does not make use of augmentations that affect
the labels. In this case, the consistency term will always be zero. For
example, if the augmentation being performed is simply additive noise,
the inconsistency term is equally well minimized if the model learns to
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predict that every pixel is positive as it would be if the model learned to be
actually be robust to additive noise. Consequently, it has to be combined
with a segmentation loss, for instance Jaccard loss. A simple way to do this
would be to simply add them together and normalize, i.e:

L(Y, A) =
1
2
[
Lseg((y, ŷ) + LSIL(y, ŷ, a, â)

]

Preliminary experiments showed that this, however, exhibited some degree
of instability. The model would readily get stuck in local minima where
its predictions were indeed consistent, but also consistently predicting
artifacts. Examples of this can be found in Appendix C.

To mitigate this, it is possible to employ a weighting strategy. Instead
of simply adding the respective losses together, one may weight the
individual components adaptively according to the InD segmentation
performance, which in this implementation was quantified as the mean
IoU of the batch:

L(y, ŷ, a, â) = (1−mIoUbatch)× Lseg(y, ŷ) + mIoUbatch × LSIL(y, ŷ, a, â)
(3.6)

Using this formulation, the model will start off trying to learn features
that contribute to generally improved segmentation performance, then as
segmentation performance improves start principally focusing on learning
to be consistent and thus generalizable. If the model starts veering into
areas in the loss-landscape that constitute poor segmentation performance,
it will self-correct by weighting the segmentation loss more.

3.2.6 Conventional Data Augmentation and Consistency Train-
ing

At this point, one may easily make the argument that Consistency Training
is merely a somewhat more elaborate form of regular data augmentation.
To some extent, this argument is well-founded; data augmentations are
after all a form of perturbation, and one may argue that ERM is the
mechanism by which consistency across these perturbations is minimized.
There are, however, a number of nuances that separate the two methods,
as will be discussed below.

With conventional data augmentation, one might assume that the model
learns to be invariant to the augmentations as a byproduct of minimizing
the empirical risk. By extension, it is assumed that the model will learn
features that are equally performant across augmentations. After all, the
risk-minimizing configuration is in this case that which exhibits the highest
degree of performance when averaged across both augmented and non-
augmented images.

This, however, is not necessarily the case. To illustrate, consider a pipeline
intended to segment melanomas. As mentioned in Section 2.3.1, the
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models in such pipelines are often sensitive to skin-tone. Let us assume
that the dataset consists primarily of patients with light complexions, and
that data augmentation is used in an attempt to combat any bias as a
result of this unbalanced dataset. For simplicity, let us assume that the
only augmentation used is transforming the image with colour-jitter with
probability p = 0.5. In theory, the empirical risk will be best minimized by
learning features that do not consider colour and thus skin-tone at all, and
instead simply learn to consider the shapes and sizes of the melanomas,
the irregularity of which is typically considered a the principal hall-mark
of melanomas.

This is unlikely for two reasons: first, it presupposes that the model
readily learns these generalizable features in favor of the more predictive
but spurious features during gradient decent. Second, it assumes that
learning to perform well is equally easy on both the augmented and
the un-augmented images. If, for instance, the model at an early stage
of training learns to use color features to achieve excellent performance
on the non-augmented images, while exhibiting mediocre or even poor
performance on the augmented data, it is unlikely that the model will
ever exit this extremely broad local minimum in favor of a more shape-
biased and generalizable configuration. Moreover, it may be the case
that shape-based features are more complex to learn, and thus that
the performance on the augmented data is limited to a much lower
upper bound. In this case, the risk will be minimized not by learning
features invariant to the transform, but by learning features that result
in a sufficient equilibrium of performance across the augmented and
unaugmented sets. I.e, it will try to learn predictive but brittle features
as much as possible to maximize performance on unaugmented data, but
under the condition that the performance does not degrade too much on
the augmented data. Consistency Training mitigates this by explicitly
quantifying the inconsistency of the predictor subject to perturbations, and
directly minimizing this quantity. Moreover, due to the weighting method
used, consistency is also prioritized starting fairly early in gradient descent
- as soon as the mean batch IoU exceeds 0.5.

Thus, though the two methods share similar traits, they are distinct. Con-
sistency Training can however be considered an alternative to conventional
data augmentation; in segmentation pipelines wherein data augmentation
is used, one can implement Consistency Training instead without signific-
ant overhead.

3.2.7 Putting it all together

To summarize, Consistency Training is based on the idea that a model ne-
cessarily must have learned generalizable features if it has learned invari-
ance to all possible perturbations. This is achieved using a perturbation
model ϵ(·), and a loss function which quantifies the inconsistency of the
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model when subjected to this perturbation. This loss term then is then in-
corporated into the final loss function along with a task-specific loss, and
weighted according to the model’s performance on this task in order to
maintain sufficient stability during training. The overall algorithm training
process is shown in Algorithm 1:

Algorithm 1 Consistency Training
for epochs do

for (batched) x, y ∈ dataset do
xa, a = ϵ(x, y)
ŷ← f (x)
â← f (xa)

Lsil ← Θ(x̂,â,x,a)⋃
(x̂,â,x,a)

k← IoU(x, y)
L = (1− k)L∫ (x, y) + kLsil
f (·)← weight_update(L)

end for
end for

3.3 Consistency-trained Ensemble Models

As mentioned in Chapter 2, ensemble-based models have demonstrated
high degrees of generalizability [41, 88]. Assembling predictors trained
with Consistency Training into an ensemble is as a result a simple but
effective means by which generalizability can be further increased.

This can be achieved by leveraging multiple identically trained models,
such as the dual-decoder DeepLabV3+ - or indeed any model, as will be
demonstrated in Chapter 4. As with conventional ensemble models, these
predictors can then be used to generate a unique segmentation probability
map for each model. This can then be combined into a heatmap, which in
turn can be used to facilitate prediction through the use of any number of
consensus methods. In this thesis, the consensus method used was a simple
majority-vote, i.e. by thresholding the probability heatmap such that all
pixels with probabilities above 0.5 were considered as positive predictions.
This is illustrated in Figure 3.8.

As mentioned in Chapter 2, ensemble models can be considered a form of
Bayesian marginalization. As a result, the model is less likely to be affected
by underspecification by virtue of the fact that whatever variability in the
space of features that a predictor can learn is to some extent accounted for.
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Figure 3.8: Implementation of Ensembles

3.4 Summary

This chapter has covered the implementation and theoretical basis for the
methods introduced in this thesis. The dual decoder DeepLabV3+ aims
to increase generalization by constraining the models’ latent feature space
through the use of image reconstruction as an auxiliary task. Consistency
Training aims to increase generalization by explicitly optimizing for con-
sistent predictions across perturbed and un-perturbed inputs. These per-
turbations are application-dependent, and are in this thesis implemented as
a carefully designed set of augmentations, consisting of conventional im-
age transformations and a generative inpainting model. Finally, a number
of ensemble models are implemented by combining multiple predictors
trained with Consistency Training.
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Chapter 4

Experiments and Results

This chapter presents the experiments conducted to evaluate the methods
presented in Chapter 3, as well as their set up and the experimental meth-
odology used to this end. The results of each experiment are then presen-
ted and discussed in brief. Section 4.1 will present the experimental setup
used in this thesis, including the choices of metrics, datasets, models, and
statistical tests used throughout the experiments. Baseline generalizability
metrics for each model are then collected in Section 4.2. The impact of data
augmentation on generalization is then tested in Section 4.3, which in turn
is used as a basis for the experiments performed in Section 4.4, wherein the
best augmentation method was selected for use in Consistency Training.
Finally, the impact of ensembles is tested in Section 4.5. All experiments
where conducted using Nvidia Tesla-V100 GPUs on the eX3 computing in-
frastructure offered by Simula Research Laboratory. The experiments were
implemented in Python 3.8 using PyTorch 1.8.0. The source code as well
as all of the raw data is available on the GitHub repository given in Ap-
pendix A.

4.1 Experimental Setup

The experiments conducted in this chapter were partially exploratory and
partially quantitative in nature. The relative impacts of the methods and
baselines on generalization was determined quantitatively where possible
through fitting statistical tests depending on the required null-hypothesis
and nature of the distribution within the respective groups. Where further
analysis was necessary and feasible, these results were then explored in an
attempt to relate them to the theory as presented in Section 2.4.

In addition to determining the impact of the methods as outlined
in Chapter 3, the effects of the methods that constitute the baselines were
also compared to one another. In particular, the effect of the choice of model
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architecture, the use of data augmentation, and the use of ensemble models
was quantified and related to one another.

An alpha-value of 0.01 was used to ascertain statistical significance
throughout this thesis. The p-values for all comparisons performed in this
thesis can be found in Appendix B. The statistical tests used in this thesis
are as follows:

• Two-sided independent-sample t-tests were used to perform compar-
isons between approximately normally distributed groups.

• The Mann-Whitney U-test was used to perform comparisons
between groups that were not normally distributed, for instance
when considering the results across multiple models and/or datasets
simultaneously.

• The Spearman’s rank correlation test was used to identify correla-
tions, and was selected due to the lack of assumptions of linearity.

The following sections will further detail the experimental setup, including
the choices of metrics, datasets, and the choice of models with which the
impact of the presented methods were established.

Datasets

The only way to sufficiently evaluate the generalizability of a given
predictor is to test it directly on OOD data. Though this can to some
extent be achieved by carefully designing stress-tests [20], a more straight-
forward approach is to simply leverage existing OOD datasets. To this end,
a number of polyp-segmentation datasets were selected. The names, sizes,
resolutions and availability of these datasets is shown in Table 4.1. Samples
images and masks from the datasets are shown in in Figure 4.1

Dataset Resolution Size Availability

Kvasir-SEG [49] Variable 1000 Public
Etis-LaribDB [86] 1255x966 196 Public
CVC-ClinicDB [12] 388x288 612 Public
EndoCV2020 [2] Variable 127 By Request

Table 4.1: Dataset Overview

Kvasir-SEG, the segmentation portion of HyperKvasir [16], was selected as
the InD dataset across all experiments due to its size and the diversity of
images. This was then split into a training, validation and test-set, which
remained constant across all experiments. The remaining datasets were
used solely for OOD evaluation.

58



Figure 4.1: Sample images from the datasets.

All images were resized to 512x512 as preprocessing during all training
runs, as some of the models required base-2 dimensionality.

4.1.1 Metrics

This subsection will present the metrics used in order to evaluate the
performance of the predictors presented in this thesis. As the primary
focus is to evaluate generalizability, only two metrics are used, namely the
mIoU sample-mean and the Coefficient of Standard Deviation (C.StD) of
the mIoU.
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Mean Intersection-over-Union

The most natural way to quantify generalizability is to simply evaluate
the predictors on in-distribution and out-of-distribution data and then
consider the differences. There are several performance measures that can
be used to this end in the context of segmentation, the most natural of
which being mIoU or the Dice coefficient, which as discussed in Chapter 2
are equivalent. In this thesis, mIoU was used. To reiterate, IoU is defined as
follows: Let y be the segmentation label, and ŷ = f (x) be the segmentation
prediction given the model f and an input image x. The IoU can then be
expressed as:

IoU(y, ŷ) = ∑{y = ŷ}
∑{y = 1} ∪ {ŷ = 1}}

Taking the average Mean Intersection over Union (mIoU) over the sample
predictors for each dataset should provide an indication of the generaliz-
ability of the given pipeline. Though it is of course impossible to account
for all distributional shifts that may occur in deployment, high degrees of
generalization across multiple datasets should nevertheless translate well
to other datasets.

For simplicity, the predictorwise sample mean of the dataset mean IoU will
simply be referred to as mIoU throughout the remainder of this thesis.

Performance Variability

As discussed in Chapter 2, the prevalence of generalization failure is often
attributed to the notion of underspecification. Underspeficified pipelines
are characterized by the fact that they can return any number of different
predictors, which though all exhibiting more or less identical performance
in InD settings, learn differing and often conflicting features and thus may
differ wildly in OOD settings. To analyze this, the literature tends to
consider the performance variability of a set of multiple identically trained
predictors [20].

One simple approach to quantify this is to take the standard deviation
of the mIoU scores for the given datasets and predictors. This, however,
implicitly rewards predictors that perform poorly. To mitigate this, the
Coefficient of Standard Deviation (C.StD) can instead be used. C.StD is
similar to the standard deviation, but normalized by the mean. This is
shown in Equation (4.1), where n = |{x0, x1, . . . , xn}| is the number of
samples (in this thesis: mIoU for a given predictor), and µ is the sample
mean (in this thesis: the mean of the mean mIoUs across predictor samples)

C.StD =
1

nµ

√
n

∑
i
(µ− xi)2 (4.1)
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Though the mean generalizability gap across these predictors is the
primary indication of generalizability of the pipeline, this variability is also
a salient factor to consider as it serves to quantify the degree to which a
given pipeline is underspecified. The more underspecified a pipeline is,
the higher the variability of the performance and the higher the C.StD of
the mIoUs. For simplicity, this metric will simply be referred to as C.StD in
the remainder of the thesis.

4.1.2 Models

In order to evaluate the impact of the methods presented in Chapter 3
sufficiently, they need to be tested across a range of different models.
This ensures that the effects induced by the methods are not model-
dependent, and in addition provides an opportunity to investigate the
innate ability of specific models to learn generalizable features. To this
end, a number of popular models were selected, intended to serve as a
somewhat representative sample of what may be considered as "typical"
deep learning pipelines. These models include DeepLabV3+ [18], FPN
[62], UNet [76], Tri-Unet [88], and the dual-decoder DeepLabV3+ as
introduced in Chapter 3.

The models were implemented in pytorch using the segmentation-models-
pytorch (SMP) library [97], using the library’s default values. Table 4.2
shows the architecture type and parameter counts of the respective models.
The models were all initialized using SMP’s built-in pretrained weights,

Model Architecture Parameters

UNet [76] Encoder-Decoder 48 872 738
TriUnet [88] Stacked Encoder-Decoder 122 178 709
FPN [62] Pyramidal 47 591 762
DeepLabV3+ [18] Hybrid 22 437 457
DD-DeepLabV3+ Single-encoder Dual-decoder 23 590 756

Table 4.2: Experiment Models

trained on ImageNet. Though foregoing pretraining would perhaps
highlight the respective models’ innate generalization ability to a greater
extent, the use of pretrained weights nonetheless constitutes a more
realistic context, as most computer vision pipelines, especially those of a
medical nature, employ some form of pretraining. As will be discussed
in Chapter 5, evaluating the generalizability of different models without
pretraining may however be an interesting direction of further study.
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4.2 Model Architecture

To establish the effect of model architectures alone, ten predictors were
trained for each model without augmentation and using regular Jaccard
loss, according to the hyperparameters shown in Table 4.3.

Pipeline Configuration

Component Type Hyperparameters

Dataloader - batch_size = 8
train/val/test split =
80/10/10

Optimizer Adam lr = 0.00001

Scheduler Cosine Annealing w/ Warm Restarts T0 = 50
Tmult = 2

Evaluation Loss-based Early Stopping epochs = 300

Table 4.3: Hyperparameters for baselines

The mean mIoUs for each dataset are shown in Table 4.4. Though the
differences between many pairs of models are statistically significant for
several datasets, the magnitude thereof is marginal to the point of being
inconsequential for practical purposes, with the exception of TriUnet which
exhibited considerably worse generalization. All p-values are shown
in Figure B.1.

Model Kvasir-SEG Etis-LaribDB CVC-
ClinicDB

EndoCV2020

DeepLabV3+ 0.819 0.412 0.678 0.604
DD-DeepLabV3+ 0.832 0.406 0.683 0.595
Unet 0.828 0.403 0.679 0.599
TriUnet 0.822 0.305 0.633 0.581
FPN 0.823 0.404 0.678 0.605

.

Table 4.4: mIoU scores for each model across datasets. The best models for
each dataset are highlighted in bold.

Figure 4.2 shows the models’ average change in mIoU across the three OOD
datasets with respect to the mIoU of the InD dataset. All models exhibited
considerable performance degradation, as expected per the discussion in
Section 2.3. Once again, the differences across architectures are fairly
marginal with the exception of the TriUnet.

What differences there are across the models, however, can to some
extent be understood according to the extent to which the models are
underspecified. Figure 4.3 shows the C.StD values for each model and
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Figure 4.2: Change in OOD mIoU as a percentage of the InD mIoU across
models and datasets.

dataset. Evidently, the margins seperating the models in terms of mIoU are
similar to the margins sepearating the models in terms of the C.StD. Indeed,
as is shown in Figure 4.4 there is a strong negative correlation between
the two metrics, suggesting that underspecification plays a considerably
more significant role than the model architectures themselves. I.e., the
more underspecified the model is, the greater the falls in mIoU are on OOD
datasets.

Of particular interest is the relationship between the Unet and the TriUNet,
as well as DeepLabV3+ and DD-DeepLabV3+. The differences between
these two pairs of models will be discussed in further depth below.

4.2.1 Unet vs TriUnet

Consider the differences between the TriUnet and the Unet as shown
in Figure 4.3 and Figure 4.2. As the TriUnet consists of three Unets,
many analyses would assert that the TriUnet should exhibit equivalent
performance or greater, as it affords increased support over the regular
Unet. However, the results instead demonstrate that the TriUnet on
average performs worse than the regular Unet. This is another piece
of evidence that corroborates the notion that underspecification plays a
significant role in generalization failure. The TriUnet is fully capable of
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Figure 4.3: C.StD across baseline models and datasets.

learning the same features as the Unet and thus perform similarly, but this
does not occur due to underspecification. This is also evidenced by the
difference in performance variability between the two models as shown
in Figure 4.3.

4.2.2 DeepLabV3+ vs DD-DeepLabV3+

DeepLabV3+ and DD-DeepLabV3+ both exhibited more or less compar-
able performance when considering their OOD IoUs, as shown in Table 4.4.
The differneces were not found to be statistically significant. There was
however evidently a difference with regards performance variability. As
shown in Figure 4.3, the DD-DeepLabV3+ exhibits higher C.StD scores than
its single-decoder counterpart, contrary to the hypothesis as presented in
Chapter 3.

One possible explanation for these findings is that segmentation encoders
may learn somewhat task-agnostic representations of the data by default,
and thus that the presence of a reconstruction decoder does not meaning-
fully affect the segmentation decoder. Following this line of reasoning, the
additional decoder may simply increase the degree of underspecification
and thus induce performance variability, as it provides additional para-
meters without meaningfully affecting the features that the model learns
during training.

64



CVC-ClinicDB : Rp=-0.83067, p=0.0

%
 C
ha

ng
e 
in
 m

Io
U 
wr

t I
ID EndoCV2020 : Rp=-0.44427, p=0.00138

C.Std mIoU

Etis-LaribDB : Rp=-0.89657, p=0.0

DD-DeepLabV3+
DeepLab

FPN
TriUnet

Unet

Figure 4.4: Scatter-plot showing the relationship between underspecifica-
tion as quantified by C.StD and generalization failure as quantified change
in mIoU as a percentage of the InD mIoU on models trained without data
augmentation.

Though this theory is difficult to verify without analyzing the learned
features directly, it is to some extent supported by the fact that the
reconstruction seems to be equally good in terms of L1-distance across
all four datasets. If the encoder had learned dataset-specific features, this
would not be the case. Histograms showing the distribution of L1-scores
across the four dataset is shown in Figure 4.6, and reconstruction examples
are shown in Figure 4.5.

4.3 Augmentation Strategies

The baseline predictors collected in the previous section were then com-
pared to predictors trained using data augmentation. Two augmentation
strategies were tested: one with conventional augmentations only, while
the other also incorporates the proposed GAN-inpainter, the implement-
ation of which was detailed in Section 3.2.2. The models were trained ac-
cording to the same hyperparameters as in the previous experiment, shown
in Table 4.3. The conventional data augmentation strategy was implemen-
ted using albumentations with the same functions and hyperparameters as
detailed in Table 3.2. The data was then augmented with a probability of
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Figure 4.5: Reconstruction Examples across datasets

0.5, in which case the constituent transformations were applied according
to the ranges defined by the hyperparameters. The results for each config-
uration and across models and datasets are shown in Table 4.5.

Both augmentation strategies exhibit an increase in OOD performance
when compared to the baseline, i.e no augmentation (p<0.01). Averaged
across models, the predictors trained using both conventional augment-
ations and the inpainter perform worse than the predictors trained with
the conventional augmentations only on Etis-LaribDB and CVC-ClinicDB
(p<0.01). There appear to be insignificant differences for the remaining two
datasets. The p-values for each dataset can be found in Table B.2. When
considering each model individually, the differences are statistically insig-
nificant. The p-values for this can be found in Table B.1.

The relative improvements due to the augmentation strategies as a
percentage of the mIoU of the baselines is shown in Figure 4.7.

The difference between the augmentation strategies is best highlighted
by the models’ performance on Etis-LaribDB, the most difficult of the
three OOD datasets, which exhibits increases in mIoU of 7.99% using
the inpainter and conventional augmentation and 14.35% using only
conventional augmentation. The differences are slightly less pronounced
on the CVC-ClinicDB dataset, now with mIoU improvements of 4.55%
AND 6.86& respectively, and negligible on the two remaining datasets.
One possible reason for this is that the inpainter may have learned InD-
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Figure 4.6: Distribution of L1 reconstruction scores across datasets. Though
the distributions vary, there is no clear evidence of generalization failure in
terms of reconstruction.

specific features, and thus increase the models’ bias towards learning
these types of features. One can to a minor extent argue that this
may explain the limited difference between the two aforementioned
augmentation strategies in the InD dataset, i.e KvasirSeg. However, it
does not seem to affect the performance on the EndoCV2020 dataset by
any significant margin either. One possible explanation for this is that
the polyps look similar in both datasets, but verifying this requires further
experimentation.

Regardless, it is clear that synthetic augmentation as implemented in this
thesis does not benefit generalization. To understand why this is the case,
the degree to which the model could identify polyps generated by the
inpainter was investigated. To this end, the inpainter was used to add
synthetic polyps to the unlabeled portion of HyperKvasir [16]. Though
collecting mIoU figures would be uninformative on this dataset, as it also
contains unlabeled images of real polyps, a simple visual inspection of the
predictions as generated by a model trained with inpainter augmentation,
as shown in Figure 4.8, reveals the problem. Evidently, the model fails to
recognize inpainted polyps. One possible reason for this is that the risk may
have been best minimized by ignoring the inpainted polyps altogether,
perhaps because learning features based on the inpainted polyps resulted
in higher loss due to the effects thereof on the actual polyps. The inpainted
polyps may also be more difficult to segment, as they lack textural details
which the model otherwise could leverage, which further complicates
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Figure 4.7: Strip Plot of the ensembles’ improvements in mIoU per dataset
as a percentage of the mIoU of the corresponding model.

matters.

As will be discussed in Chapter 5, however, these results do not however
conclusively prove the inefficacy of InD-trained GANs for augmentation
as a whole, only that it is unlikely that the implementation in this thesis
is particularly useful. The results do, however, demonstrate conclusively
that the use of conventional data augmentation contributes a significant
increase in generalizability.

4.4 Consistency Training

To investigate the impact of Consistency Training, ten predictors were
trained therewith. These predictors were then compared to the predictors
from the previous experiment trained with conventional augmentation, as
Consistency Training in practice is an alternative to data augmentation,
and for completeness also predictors trained with no augmentation. As the
previous experiment established that conventional augmentations are the
most conducive to generalization, it was this strategy that was leveraged
as the perturbation model in Consistency Training as well. The mIoUs for
this experiment are shown in Table 4.5.

The results show that Consistency Training increases generalization con-
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Figure 4.8: Even when trained with inpainting as a part of the augmenta-
tion strategy, models do not recognize synthetic polyps.

siderably, outperforming data augmentation by a statistically significant
margin on all OOD datasets when comparing across all models. This is
shown in Figure 4.9. The p-values can be found in Table B.3.

When analyzing the improvements for the individual models, statistical
significance was achieved for all models except the TriUnet on the Etis-
LaribDB dataset, for the FPN and Unet on the CVC-ClinicDB dataset,
and for the Unet on the EndoCV2020 dataset. The p-values for these
comparisons are found in Table B.4.

As discussed in Section 3.2.6, Consistency Training can be interpreted as
imposing a more credible set of inductive biases by explicitly optimizing
for consistency across augmentations. This is evidenced by considering the
performance variability across the configurations, shown in Figure 4.10,
which shows that predictors trained with Consistency Training exhibit
lower performance variability than conventional data augmentation on
two of the three OOD datasets. As the C.StDs are computed from sample
standard deviations, there is as discussed inherently some measurement
error. It should therefore be noted that the differences between the the
C.StDs values cannot be confirmed to statistical significance due to wide
confidence intervals of the standard deviations as computed at this sample
sizes (N=50) involved in this thesis. This will be discussed further in
Chapter 5.

4.5 Ensembles

Finally, the impact of combining multiple predictors into an ensemble
was investigated. Two types of ensembles were investigated: ensembles
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Figure 4.9: Improvements due Consistency Training and Data Augmenta-
tion as a percentage the mIoU without augmentation across datasets

consisting of five instances of a single type of model and ensembles
consisting of all five models. The generalizability of these ensembles were
then compared to one another and with the average performance of their
constituent predictors. Such analysis was performed across all of the the
training-methods tested in Section 4.4, i.e. no augmentation, conventional
data augmentation, and Consistency Training. Finally, the relationship
between the improvement due to ensembles and underspecification was
explored.

To ascertain the generalizability of the ensembles to statistical significance,
ten ensembles of each kind were implemented. For the multi-model
ensembles, each of the ten ensembles was built from unique predictors
trained in Section 4.4. For the single-model ensembles, five predictors were
randomly selected from the ten that were trained in Section 4.4. As will
be further discussed in Chapter 5, these ensembles too should have been
built from unique predictors, however due to limitations with regards to
computational resources this was infeasible.

4.5.1 Improvements over Single Models

First, the generalizability of ensemble models was compared to that of
the single models. As previously noted, this was performed on pairs
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Figure 4.10: Models trained with Consistency Training exhibit lower
predictor-wise performance variability than models trained without aug-
mentation or with regular data augmentation

of ensembles and single models across all the three training methods
compared in Section 4.4. The mIoU-scores for the ensemble models are
shown in Table 4.7. Averaging across models, the ensembles exhibited
increased mean mIoUs on all of the OOD datasets when compared to
the mIoU of the constituent models as shown in Table 4.6 (p<0.01).
See Table B.5 for p-values. This corroborates the findings in other works
that ensembles contribute to increased generalization [41, 88].

4.5.2 Effect of Ensemble Training Methods

The difference in mIoU between the three ensemble training methods
was statistically significant on all datasets (p<0.01), except CVC-ClinicDB,
wherein the difference between the ensembles trained with Consistency
Training and the ensembles trained with conventional data augmentation
had a p-value of 0.012. The p-values can be found in Figure B.2.

The difference between the relative improvements across the three training
methods were statistically insignificant (p>0.01), with the average change
in IoU as a percentage of the mIoU of the constituent models being 2.026%,
3.081% and 2.351% respectively across all datasets for ensembles trained
with no augmentation, conventional augmentation, and Consistency
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Figure 4.11: Boxplot showing the improvement due to ensembles as a
percentage of the mIoU across their constituent models across all three
training methods

Training. This is shown in Figure 4.12. The p-values are shown in
Figure B.3.

To further analyze the impact of ensembles with respect to single models,
one can consider the relative performance improvements between them.
To this end, the performance of the ensembles trained with Consistency
Training was compared to the mean performance of its constituent
predictors across all tested model architectures. The relative improvements
as a percentage of the constituent predictor performance are shown
in Figure 4.11. The results show that ensembles in the majority of runs
increase generalization. However, this is not always the case; perhaps
counter-intuitively, the use of ensembles reduce generalization on some
datasets in certain runs. This occurred on some of the samples on all
ensemble types with the exception of the DeepLabV3+ and multi-model
ensembles. This may happen when there are high degrees of disagreement
among the constituent predictors, in which case there may not be
sufficient consensus to fully segment the polyp. Many implementations of
ensembles, therein the implementation used in this thesis, require at least
a 50% consensus in order for a given pixel to be classified positively, and
thus if this is not achieved, the ensemble may perform worse than any one
of the constituent predictors.

4.5.3 Ensembles and Underspecification

The tendency of ensembles to increase generalization is as mentioned
in Chapter 2 often attributed to the fact that the use of ensembles to some
extent mitigate underspecification. Specifically, they constitute a form of
Bayesian marginalization, and should thus in theory be able to leverage the
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Figure 4.12: Ensemble improvements across training methods and datasets
as a percentage of the mIoU of the corresponding model architecture

variability of its constituent predictors in order to mitigate generalization
failure to a degree. This assumes that predictions with high consensus are
the most generalizable, though as shown in Figure 2.12 this may not be the
case.

To further investigate the veracity of this line of reasoning, one can consider
the relationship between the improvements to generalization due to the
use of ensembles versus the degree to which the pipelines that generate the
constituent predictors are underspecified. This is shown in Figure 4.13. The
results from a spearman-rho test is shown in the figure title.

There appears to be a positive correlation between the two (p<0.01), which
corroborates the aforementioned interpretation. It should be noted that
the C.StD values are computed based on all ten samples, as it is supposed
to represent the degree to which the pipeline itself is underspecified, and
not the variability of the constituent predictors for each ensemble instance.
One can instead consider the variability in performance of the constituent
predictors, which it can be argued is a better representation of the diversity
of features learned by the ensembles. This is shown in Figure 4.14. The
p-values after a Spearman’s ρ test are shown above each subplot.

The C.StD values are in this case based on five predictors - half as many
as in Figure 4.11, thus there may be a larger degree of measurement error
along the x-axis. Nevertheless, there overall still appears to be a generally
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Figure 4.13: Plot showing the relationship between predictor-wise perform-
ance variability and improvements in generalization due ensembles trained
with Consistency Training. The error-bars show the 99% confidence in-
tervals for the improvement. The more under specified the pipeline is as
quantified by performance variability, the greater improvements are made
through the use of ensembles.

positive relationship between the ensemble constituent’s C.StD of mIoU
and the relative improvements in mIoU due to ensembles. When the
ensembles are trained either with or without conventional augmentation,
this relationship is statistically significant for all datasets. When trained
with Consistency Training, it is statistically significant for Etis-LaribDB
and CVC-ClinicDB. The weak correlation in the remaining datasets may be
attributed to the fact that the models generally perform with low degrees
of variability on them, as shown in Figure 4.10. This low variability
suggests that the predictors all return fairly similar segmentations, which
also explains the comparatively low impact of the ensembles on these
datasets.

4.6 Summary

This chapter detailed the experiments performed to evaluate the methods
presented in Chapter 3 along with the effects of model architecture,
augmentation, and ensembles on generalizability. The results can be
summarized as follows:

74



0.02 0.04 0.06

1

2

3

4

5

6

No Augmentation

Rs=0.563, p=0.000000

0.01 0.02 0.03 0.04 0.05

2

4

6

8

Vanilla Augmentation

Rs=0.656, p=0.000000

0.01 0.02 0.03 0.04
1

2

3

4

5

6

7

Consistency Training

Rs=0.470, p=0.000000

0.01 0.02 0.03 0.04 0.05
0

1

2

3

4
Rs=0.386, p=0.000000

0.005 0.010 0.015 0.020 0.025 0.030
1

2

3

4

5

6

Rs=0.460, p=0.000000

0.005 0.010 0.015 0.020 0.025 0.030

1

2

3

4

5

Rs=0.001, p=0.991805

0.05 0.10 0.15
−10

−5

0

5

Rs=0.384, ,=0.000000

0.02 0.04 0.06 0.08 0.10 0.12

−5

0

5

10

15
R.=0.267, ,=0.000033

0.02 0.04 0.06 0.08 0.10

0.0

2.5

5.0

7.5

10.0

12.5

R.=0.253, ,=0.000083

0.005 0.010 0.015

1

2

3

4
R.=0.544, ,=0.000000

0.00250.00500.00750.01000.01250.0150
1.0

1.5

2.0

2.5

3.0

R.=0.174, ,=0.007498

0.002 0.004 0.006 0.008 0.010 0.012
0.0

0.5

1.0

1.5

2.0

2.5

R.=-0.077, p=0.237199

Coefficient of Standard Deviation

%
 In

cr
ea

se
 in

 G
en

er
al
iza

bi
lit
y 
wr

t C
on

st
itu

en
ts
 M
ea

n

CVC-ClinicDB EndoCV2020 Etis-LaribDB Kvasir-SEG

Figure 4.14: Plot showing the correlation between the improvements to
mIoU with respect to the mIoU of the constituent predictors, versus the
variability in the performance of the constituent predictors. The Spearman
Correlation Coefficient and corresponding p-value for each dataset is
shown in the title of each subplot.

• Model architecture had limited bearing on increasing generalization,
except with regards to the degree to which they are underspecified.

• Multitask learning as implemented using the Dual-decoder Dee-
pLabV3+ had negligible impact, which may be attributed to the en-
coder learning dataset-agnostic features.
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• Data augmentation increased generalization considerably, but the
use of the generative inpainter had a negative effect.

• Consistency Training outperformed conventional data augmentation
and increased generalization by statistically significant margins.

• Ensembles models increased generalization. The relationship
between this increase and underspecification was investigated, and
shown to be positively correlated to statistical significance.

These impact and limitations of these findings will be discussed
in Chapter 5, as well as limitations of the experimental methodology.
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Model No Augmenta-
tion

Vanilla Aug-
mentation

Inpainter+Vanilla
Augmentation

Kvasir-SEG

DD-DeepLabV3+ 0.829 0.848 0.844
DeepLabV3+ 0.822 0.850 0.846
FPN 0.822 0.853 0.848
TriUnet 0.817 0.841 0.842
Unet 0.828 0.851 0.846

Etis-LaribDB

DD-DeepLabV3+ 0.408 0.460 0.435
DeepLabV3+ 0.417 0.472 0.451
FPN 0.404 0.440 0.422
TriUnet 0.309 0.410 0.382
Unet 0.403 0.447 0.414

CVC-ClinicDB

DD-DeepLabV3+ 0.681 0.728 0.713
DeepLabV3+ 0.684 0.733 0.718
FPN 0.675 0.715 0.705
TriUnet 0.623 0.684 0.659
Unet 0.679 0.717 0.703

EndoCV2020

DD-DeepLabV3+ 0.596 0.668 0.668
DeepLabV3+ 0.608 0.676 0.670
FPN 0.600 0.662 0.661
TriUnet 0.577 0.667 0.656
Unet 0.598 0.660 0.665

Table 4.5: Mean IoUs across augmentation strategies grouped by model
and dataset. The best augmentation strategy for each dataset and model
are highlighted in bold.
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Model No Augmentation Vanilla Aug-
mentation

Consistency
Training

Kvasir-SEG

DD-DeepLabV3+ 0.829 0.848 0.852
DeepLab 0.822 0.850 0.852
FPN 0.822 0.853 0.852
TriUnet 0.817 0.841 0.845
Unet 0.828 0.851 0.851

Etis-LaribDB

DD-DeepLabV3+ 0.408 0.460 0.482
DeepLab 0.417 0.472 0.505*
FPN 0.404 0.440 0.475*
TriUnet 0.309 0.410 0.434
Unet 0.403 0.447 0.481*

CVC-ClinicDB

DD-DeepLabV3+ 0.681 0.728 0.736
DeepLabV3+ 0.684 0.733 0.740
FPN 0.675 0.715 0.727*
TriUnet 0.623 0.684 0.696
Unet 0.679 0.717 0.730*

EndoCV2020

DD-DeepLabV3+ 0.596 0.668 0.668
DeepLab 0.608 0.676 0.676
FPN 0.600 0.662 0.673
TriUnet 0.577 0.667 0.684
Unet 0.598 0.660 0.676*

Table 4.6: Mean IoUs for training methods, precision truncated to
99% confidence. Consistency Training entries with greater performance
than conventional augmentation by for the given model and dataset
are highlighted in bold. If statistically significant after a two-tailed
independent sample t-test, they are also marked with a "*"
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Ensemble CVC-
ClinicDB

EndoCV
2020

Etis-
LaribDB

Kvasir-Seg

Consistency-Trained

DD-DeepLabV3+ 0.748 0.684 0.492 0.863
DeepLabV3+ 0.751 0.683 0.523 0.859
FPN 0.739 0.685 0.478 0.868
Unet 0.744 0.694 0.494 0.868
TriUnet 0.723 0.715 0.468 0.859
MultiModel 0.747 0.693 0.484 0.867

Conventional Augmentation

DD-DeepLabV3+ 0.746 0.685 0.480 0.861
DeepLab 0.750 0.692 0.492 0.862
FPN 0.732 0.684 0.457 0.869
TriUnet 0.715 0.692 0.440 0.860
Unet 0.735 0.677 0.457 0.867
MultiModel 0.740 0.687 0.462 0.867

No Augmentation

DD-DeepLabV3+ 0.690 0.605 0.419 0.840
DeepLab 0.695 0.611 0.426 0.833
FPN 0.690 0.610 0.416 0.837
TriUnet 0.651 0.588 0.311 0.841
Unet 0.696 0.604 0.409 0.841
MultiModel 0.694 0.612 0.414 0.846

Table 4.7: IoUs across ensemble models, datasets, and training methods.
Best ensembles for each dataset are highlighted in bold.
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Chapter 5

Analysis and Discussion

This chapter will summarize the key findings presented in Chapter 4
and analyze them with respect to the theory as outlined in Chapter 2.
The chapter will be organized according to the experiments performed,
with each section discussing the results, impact, and limitations of the
corresponding experiment. The chapter will start with the results from
the individual experiments, including the impact of model architectures on
generalization as presented in Section 4.2, the impact of augmentation as
presented in Section 4.3, inconsistency Training as presented in Section 4.4,
and finally ensembles as presented in Section 4.5. Afterwards, the
generalizability of the best performing configuration tested in this thesis
will be discussed and considered from a practical perspective.

5.1 Model Architectures and Generalizability

The experiments performed in Section 4.2 show that every model exhibited
comparable levels of generalization failure, with the exception of TriUnet
which seemed to struggle more than any of the other models. On Etis-
LaribDB, which evidently proved to be the most difficult dataset, with
the models on average exhibiting reductions in generalizability of 52.72%,
with the TriUnet ranging upwards of 68.76%. The degree of generalization
failure was slightly less pronounced on the two other datasets, with
CVC-ClinicDB exhibiting average reductions of 18.78% and EndoCV2020
27.70%.

The models exhibited comparable performance in InD settings, spanning
between IoUs of 0.817 and 0.829, which for practical purposes can be
considered negligible.
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5.1.1 Impact

These results highlight that researching the development of more and
more complicated task-agnostic models is a comparatively fruitless affair.
The difference between DeepLabV3+ and Unet - which are separated by
two years of research - are practically inconsequential. Admittedly, the
differences are more pronounced when the models are trained according
to the more sophisticated training regiments used in the remaining
experiments, but it nonetheless does not appear as if it is advancements in
model architectures that is likely to result in increased generalization, but
rather improvements to the pipeline with which they are trained. There
are some limitations to this claim, however, which will be discussed in the
context of limitations to the experimental methodology in Section 5.6.

5.1.2 Limitations

A largely neglected but nevertheless impactful aspect of the deep learning
pipelines studied in this thesis is the use of pretraining. Across all the
experiments performed in this thesis, every predictor was pretrained on
Imagenet, with the pretrained weights being included in the segmentation-
models-pytorch library [97]. Without pretraining, preliminary work
showed that the models selected in this thesis exhibited mIoUs of at best
around 0.6 at best even on IID, with even more significant performance
gaps on OOD data. Non-pretrained networks are for this reason rarely
used. However, this pretraining may play a key role in certain aspects
of the behaviour observed in this thesis. In particular, pretraining may
be the principle contributing factor behind the apparent ineffectiveness
of multitask learning. An Imagenet pretrained encoder would, after all,
perform the best when practically performing image compression.

5.2 Data Augmentation and Generalizability

The experiment in Section 4.3 demonstrated the efficacy of data augment-
ation as a means of increasing generalization, with an mIoU improvement
of 9.00% compared to the pipeline without data augmentation when aver-
aged across models and datasets. This, as mentioned in Section 2.4.7, can
be attributed to the fact that a wider diversity of data limits the space of
viable features that a model can learn.

The inpainter as implemented in this thesis was, however, proven to be
ineffective. The segmentation models appeared to learn to neglect the
synthetic polyps. It was hypothesized that this was due to the polyps
lacking sufficient similarity to real polyps, which only affected the training
procedure such that generalization was harmed.
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5.2.1 Impact

The extent to which augmentation improved generalization in this thesis
was considerable, especially in comparison to some of the other tested
methods. In particular, the effects of model architectures and ensembles
were both comparatively small. The use of ensembles, for instance, the use
of which was the basis of several of the papers submitted to EndoCV2021,
increased generalization by at most 10.36% and on average 2.48%, whereas
the use of data augmentation led to increases of at most 19.57% and on
average 9.00% when compared to no augmentation.

Thus, the margins by which the use of augmentation affects generaliza-
tion are far greater than the margins by which ensembles affect general-
ization. As an ensemble-based model was the winning submission to En-
doCV2021 [88], it may also be the case that it also has a greater impact
than many of the other methods presented in therein affect generalization.
As EndoCV2021 did not account for any differences in the participants
choice of augmentation strategy when comparing submissions, one can
raise questions as to the veracity of its findings. It may, for instance, be
the case that certain submissions exhibited high degrees of generalization
not strictly because of the impact of their proposed methods, but rather due
to their choice of augmentations. This is of course not a certainty, and does
as such warrant further research for instance in the form of a meta-analysis.

In the context of the inpainter, the primary takeaway is that further exper-
imentation is needed. Though the inpainter as implemented in this thesis
harmed generalization, it may be the case that a more sophisticated im-
plementation, perhaps with pre- and post-processing, could still facilitate
increased generalization. Moreover, evaluation of such models needs to be
performed with care, as brief qualitative appraisals of performance may as
evidenced in this thesis be misleading especially when they do not origin-
ate from from a domain expert.

5.2.2 Limitations

Ignoring the inpainter and its flaws as outlined above, only one implement-
ation of data augmentation was used throughout this thesis. The constitu-
ent transformations and the values of the hyperparameters thereof were
also selected with limited prototyping or testing. There may as such be
augmentation configurations that induce significantly increased generaliz-
ation. By the same token, the selection of transformations used in this thesis
may instead have been lucky and thus over-represent the typical contribu-
tion of data augmentation. A robust investigation of data augmentation
and its effects would require a larger range of augmentation strategies. The
results thereof would, however, only be of relevance to the particular task
that is being considered. Polyp segmentation may benefit more from aug-

83



mentation than image-captioning, for instance.

Additionally, the augmentations in this thesis were applied according
to a predetermined probability. A more effective technique may be
to augment every sample, but account for the severity through the
modulation of the hyperparameters of the constituent transformations.
This was not, however, investigated in this thesis, as the probability-
based implementation facilitated more apples-to-apples comparison to
Consistency Training.

5.3 Consistency Training and Generalizability

Consistency training was shown to improve generalizability, outperform-
ing data augmentation by a significant margin on all OOD datasets. This
can be attributed to the additional inductive that are imposed.

5.3.1 Impact

Though Consistency Training did increase generalization by a considerable
amount, the OOD performance is nevertheless insufficient for practical
purposes. The best performance on Etis-LaribDB with Consistency
Training was after all merely 0.504, as shown in Table 4.6. This kind of
performance would be of limited utility in clinical applications.

Consistency Training does, however, constitute a step in the right direction.
In contrast to competing methods such as Model-Based Robust Deep
Learning [75], Invariant Risk Minimization [5], or multi-domain training
[31], Consistency Training only requires a single dataset, and can as a result
be used in practically every segmentation pipeline. The implementation
thereof is also conceptually simple, and can for practical purposes be
considered a more generalizable alternative to data augmentation.

Given further development, Consistency Training may prove a promising
candidate as a means of alleviating generalization failure to practically
viable extents, especially if leveraged in conjunction with other methods.
As established in Chapter 3, the limits are in theory only the efficacy of the
quantification of consistency for a given task and the extent to which the
augmentation strategy can account for any distributional shifts that may
occur. Improvements to either of these aspects are likely to contribute to
considerable gains in generalizability.

Developing perturbation models and consistency metrics may also be
a great opportunity to incorporate expert input. A clinician could for
instance offer insights as to the nature of the perturbations one might
expect in practice and thus assist in the development of the perturbation
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model.

5.3.2 Limitations

During the experiments performed in this thesis, the batch size was set
to eight for all training procedures. As Consistency Training relies on
generating pairs of data from a given batch, one may argue that keeping
the batch size the same may result in a weak comparison. The experiment
should as such ideally be repeated across a number of batch sizes, but this
was infeasible due to constraints with regards to computational resources.

Consistency Training was also throughout the thesis treated as an alternat-
ive to data augmentation. It may, however, be possible to also augment the
incoming batch in the dataloader, and use consistency training as a sup-
plementary method. This way, it will also optimize for consistency across
differently augmented samples.

5.4 Ensembles and Generalizability

The use of ensembles, as shown in Section 4.5, was shown to increase gener-
alization. The improvements were on average comparatively minor, how-
ever increasing generalization by 2.026%, 3.081% and 2.351% respectively
for ensembles trained with no augmentation, conventional augmentation,
and Consistency Training. To reiterate, data augmentation contributed an
average improvement of 9.00% and Consistency Training 11.73% over no
augmentation. The differences in improvements between ensemble train-
ing methods was not however found to be statistically significant.

The findings as presented in Figure 4.13 do to some extent support the hy-
pothesis that this improvement is a consequence of the fact that ensembles
mitigate underspecification, as the greatest gains to generalization were
achieved by models that initially exhibited high degrees of underspecifica-
tion as quantified by the performance variability of the respective pipelines.

5.4.1 Impact

The use of ensembles was in this thesis proven to be a comparatively simple
and reliable way of increasing generalization, albeit by a minor amount.
It should also be noted that ensembles incur higher costs with regards
to training time, time required for inference, and memory requirements.
This needs to be weighed against the benefits, which as discussed are fairly
marginal on average. It may for instance be the case that the computational
resources spent training multiple predictors for use in an ensemble would
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be better spent tuning the augmentation strategy if a OOD dataset is
available. As the results in Section 4.3 show, the choice of augmentation
strategy appears to have a more significant impact on generalization than
the use of ensembles. Thus, the findings in this thesis suggest that testing
N different augmentation strategies may be a better use of resources than
training N identical predictors such that an ensemble can be implemented.
Granted, this is difficult to say with certainty without exploring a larger
diversity of augmentation strategies as discussed in Section 5.2.2.

The analysis of ensembles in the context of underspecification performed in
Section 4.5.3 corroborated analyses in the literature. This also suggests that
the possible returns from ensembles are limited however, and dependent
on the landscape of the Bayesian posterior as discussed in Section 2.5.4.

5.4.2 Limitations

As mentioned in Section 4.5, the constituent predictors for each ensemble
were sampled from the ten predictors trained for the purpose of the exper-
iments in Section 4.3 and Section 4.4. As a result, the statistical significance
of the findings are not necessarily robust. Thus, the experiments should
ideally be repeated with an increased sample size, for instance N=50, such
that ten ensembles could be constructed such that each ensemble consists
of an independent set of predictors.

It should also be noted that the experiments in this thesis were performed
only at one ensemble size - i.e, five models. This choice was informed
by the literature, in particular the implementation of DivergentNet [88].
Ensembles may as such have a greater impact than expected, dependent
on the returns from increasing the model counts. Following the Bayesian
perspective as discussed in Section 2.5.4, increasing the model count may
result in a better estimate of the Bayesian posterior, and thus lead to
increased generalization.

The improvements from increasing ensemble size may however be limited.
The performance of ensembles is after all bounded by the performance
of perfect Bayesian marginalization. As shown in Figure 2.12, this will
not necessarily constitute perfect generalization, as the predictions are in
such a system weighted according to the likelihood that the given weight
configuration is returned from the pipeline. Thus, if learning shortcuts
is likely, Bayesian marginalization will primarily be predicting according
to shortcut features. Investigating this may be an interesting direction of
further study.

Finally, the method by which ensembles were implemented in this thesis
- in particular, that the heatmap is thresholded with majority vote - may
under-represent the potential utility of ensembles. By requiring that at least
half of the constituent predictors are in consensus in order to consider a
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given pixel as a positive prediction, some potentially insightful predictions
may be discarded. A better alternative is to consider the heatmap as a
whole, which in any case would be more informative in a clinical setting.
Evaluation of ensemble models should thus ideally take this into account.

5.5 Impact in terms of Practical Utility

Though this thesis presents methods that constitute considerable improve-
ments to generalization, the best performing system - namely the Dee-
pLabV3+ ensemble trained with Consistency Training - would nevertheless
not be particularly useful in practical settings when considered holistically.

This system achieved average mIoUs of 0.751 on CVC-ClinicDB, 0.683 on
EndoCV2020, 0.523 on Etis-LaribDB, and 0.859 on Kvasir-SEG. Though this
constitutes a considerable improvement over both of the "naive" pipelines
- i.e single models trained with and without regular data augmentation
- it is nonetheless not sufficiently generalizable for practical use. Ideally,
there should be negligible differences between all four datasets, and though
there is room for some degree of performance degradation, a system that
exhibits a mean mIoU of 0.523 is not particularly useful and as discussed
in Section 2.6 may actually cause more harm than good.

Thus, in spite of the aforementioned improvements, the pipeline as a
whole is not in purely practical terms much better than any of the naive
pipelines. More work is evidently required to achieve suitable levels of
generalization. Some ideas for directions of further work towards this end
will be discussed in Chapter 6.

5.6 Limitations of the Experimental Methodology

Though the experimental methodology used in this thesis afforded it
a wide scope in addition to providing a suitable platform upon which
generalizable methods could be investigated, it also had certain limitations.
These will be discussed in the following sections.

5.6.1 Metrics selection

[73] As this thesis focused on the differences in performance between OOD
and InD datasets, the only metrics that were considered was the mIoU
and the C.StD of the mIoU. Though mIoU is a very popular metric for
evaluating segmentation pipelines and is easy to interpret, it is not without
its flaws [73]. It is for instance typically biased against small structures, as
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these are affected to a greater degree by errors that in practical terms are
comparatively minor. This can result in misleading mIoUs, in particular
when the distribution of object sizes is wide, as is indeed often is the case
with polyps datasets [1].

Ideally, more metrics should have been considered, for instance precision,
recall, and perhaps even Segmentation Inconsistency Score (SIS), in order
to paint a more complete picture of the performance of the tested methods.

5.6.2 Dataset Selection

This thesis considered three OOD datasets throughout all the experiments.
Though this provides some indication of generalizability, ideally even more
OOD datasets should have been used. For instance, though Etis-LaribDB
was the most difficult of the datasets used in this thesis, the performance
on this dataset does not necessarily reflect the worst-case performance in
a clinical setting. Indeed, the extent to which the a given pipeline fails to
generalize cannot be sufficiently anticipated [48] given current approaches
to deep learning. It may easily be the case that the model performs even
worse under certain clinical conditions. Without a larger sample of OOD
datasets, there is a high degree of uncertainty involved as to the actual
ability of the given systems to generalize. Though the low generalizability
of the systems implemented in this thesis means that this has little practical
bearing, any future research that reports generalizability of practical merit
should concentrate a significant effort on assembling a large collection of
OOD datasets.

Moreover, as briefly mentioned in Section 4.1, the methods presented in
this thesis should ideally have been compared to the works presented in
EndoCV2021 [3]. As the datasets used to evaluate the submissions was not
available at the time of writing this thesis, however, this was not possible.

Synthetic tress-tests may also have been beneficial to implement. These
stress-tests would however have to make use of a disjoint set of transform-
ations than the augmentations used throughout the thesis.

5.6.3 Model Architectures

To validate that the impact of the proposed methods translated across
models, and to determine the impact of model architectures, this thesis
implemented five separate models - i.e DeepLabV3+, DD-DeepLabV3+,
FPN, Unet, and TriUNet.

It can be argued that these models do not capture the diversity of
segmentation models available, however. None of the models leverage any
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form of attention or cascading, for instance, though both of these methods
have been shown to increase generalization [27, 35].

Ideally, more models should have been implemented, including a selection
of the non-ensemble models submitted to EndoCV2021[3] and/or other
polyp-segmentation models[89]. Due to constraints both with regards
to computational resources and implementation time, this was however
infeasible.

5.7 Summary

This section presented an overview and discussion of the results and
findings of each experiment as presented in Chapter 4. The impacts were
discussed for each experiment, along with any identified limitations. The
results were then put in context with the literature and considered in terms
of viability of clinical deployment, before finally discussing limitations to
the experimental methodology used across all experiments, i.e the selection
of metrics, datasets, and models.
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Chapter 6

Conclusion

6.1 Summary

The goal of this work was to develop novel methods of increasing the
generalizability of deep learning models, as well as to survey the relative
impacts of more conventional components of the deep learning pipeline.
This was achieved as follows:

Chapter 2 provided an overview of deep learning, segmentation, and
delved further into why such systems so readily fail to generalize, starting
from first principles and analyzing the shortcomings of ERM. This was
then connected to recent analyses of generalizability failure, including
the notion of underspecification and shortcut learning. Finally, known
methods of increasing generalization as presented in EndoCV2021 and
elsewhere in the literature were then discussed and analyzed with respect
to the established theory.

This was then in turn used to inform the development of the meth-
ods discussed in Chapter 3, including Consistency Training, the gener-
ative inpainter augmentation strategy, DD-DeepLabV3+ and a family of
Consistency-trained ensemble models. Each of these methods were also
discussed with respect to the theory explored in Chapter 2.

Several experiments were then conducted in Chapter 4 in order to ascertain
the impact of the proposed methods: First, baseline generalizability metric
were collected for five separate models. The findings supported the
notion that larger models are more prone to generalizability failure, as
demonstrated by the significant gap between the Unet and the TriUnet.
The use of a secondary decoder in the DD-DeepLabV3+ model was shown
to have negligible impact except for increased performance variability. It
was hypothesized that this is due to the encoder already learning domain-
and dataset-independent features, and thus that the additional parameters
result in increased underspecification.
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In the next experiment, data augmentation was shown to increase general-
izability by a considerable margin. Synthetic augmentation via inpainting
was shown to hamper this improvement when used in conjunction with
regular augmentation.

The impact of Consistency Training was then tested and compared to
conventional data augmentation and no augmentation. The results show
that Consistency Training outperforms regular data augmentation by a
considerable margin on all three OOD datasets when comparing across all
models.

Finally, predictors trained in the previous experiments were then combined
into ensembles and compared to one another. The results demonstrated the
generalizability of ensemble-based methods, and that this can be traced to
ensembles mitigating underspecification.

The results were then discussed in Chapter 5. The possible impacts of the
findings in each experiment were considered, along with the limitations
thereof. The overall practical utility of the best performing pipeline was
then discussed, as well as the limitations of the experimental methodology.

Holistically, the findings in this thesis highlight that generalization remains
a challenging problem, but that the development of generalizable methods
is an endeavor ripe for further exploration. Consistency Training in partic-
ular seems to be a promising candidate for further research towards allevi-
ating generalization failure. Secondly, the experimental methodology used
in this thesis allowed for the identification of a number of variables pre-
viously unaccounted for in comparative research on generalizable meth-
ods, in particular with regards to the relative impacts of model architecture,
augmentation, and ensemble networks. In particular, this thesis found that
data augmentation had a greater impact than ensembles, which in turn had
a greater impact than the choice of model architecture. Though this consti-
tutes a good starting point towards developing a comprehensive under-
standing of impact of the many constituent components of the deep learn-
ing pipeline on generalizability, further foundational work is required, for
instance by addressing some of the limitations as discussed in Chapter 5
or investigating some of the ideas for future work as will be presented in
Section 6.3.

6.2 Contributions

The contributions of this can be summarized according to the research
objectives laid out in Chapter 1:

Objective 1: To leverage recent advances in the understanding of generalization
failure to inform the development of novel methods of increasing the generalization
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of deep learning systems for polyp-segmentation.

This objective was achieved through the introduction of several novel
methods, the most effective of which was shown to be Consistency
Training. By reframing the problem of generalization as consistency across
perturbations, Consistency Training was shown to increase generalizability
by a considerable margin without the need for multiple training domains,
in effect serving as a more generalizable alternative (or supplement) to
data augmentation. This framework, and the potential improvements
that can be made upon it as suggested in Chapter 5, shows good
promise with regards to further increasing generalizability. The ensemble
models consisting of predictors according to Consistency Training was also
shown to increase generalization, outperforming conventionally trained
ensembles. Though the remaining methods - i.e generative inpainting
and DD-DeepLabV3+ - were proven to be ineffective, the analysis thereof
nevertheless motivated a number of directions of further study.

Objective 2: To synthesize recent work on generalizability and determine
concretely the degree to which more conventional and well-established methods
affect generalization.

This objective was achieved by performing a quantitative analysis of the
effect of the choice of model architecture, the use of data augmentation,
and the use of ensembles on generalization. Though most of the findings
corroborated the literature, there were a fair number of surprising results
that warrant further investigation, in particular with regards to the impacts
of the tested methods relative to one another. For one, the effect of mul-
titask learning and generally the the choice of model architecture was in
this thesis shown to be practically negligible. With the exception of Tri-
Unet, every tested model exhibited practically identical performance. The
use of ensemble-based model, though exhibiting statistically significant im-
pact, resulted in somewhat marginal improvements on generalization, es-
pecially in comparison to the use of data augmentation and Consistency
Training. As discussed in Chapter 5, this raises doubts as to the veracity of
findings in other literature, where data augmentation is rarely accounted
for when performing comparisons. Hopefully, the findings in this thesis
demonstrate the need for a more structured approach to the design of ex-
perimental methodologies intended to analyze generalization, wherein the
constituent components of the pipeline are sufficiently well controlled.

6.3 Future work

There are several directions of future research that may provide further
insight into generalizability and generalization failure. This section will
cover a number of these ideas.

93



6.3.1 Improving Consistency Training

As was shown in Chapter 4, Consistency Training is an effective means
of increasing generalization. However, there is still room for further
improvement and exploration. For instance, in this thesis consistency
was expressed merely as the symmetric difference between the expected
change in the output due to augmentation and the actual change due
to augmentation. This, however, as discussed in Chapter 3, is largely
agnostic to the augmentation being performed. However, the nature of
these augmentations should be taken into account. If the image is subjected
to a 90 degree rotation, for instance, the prediction would be considered
perfectly consistent so long as the pixels corresponding to the polyps are
rotated, and the incorrectly classified pixels remain unchanged. However,
if the model instead learns to rotate all of the pixels - even those that are
incorrectly classified - it may learn a more accurate representation of what
constitutes consistent behavior. I.e, instead of expressing inconsistency as:

C̄(y, ŷ, a, â) = ∑{y ∩ a ∩ ŷ ∩ â}
∑{y ∪ a ∪ ŷ ∪ â}

One can adjust the expected change term a ⊕ y to ŷ ⊕ ϵ(ŷ) such that also
incorrect predictions can be considered consistent so long as they change in
accordance to the nature of the perturbation model ϵ(·). The resulting loss
function can then be expressed as:

C̄(ŷ, â) = ∑
Θ(ŷ, â, ŷ, ϵ(ŷ))⋃

(ŷ, â, ϵ(ŷ))

Which is equivalent to:

C̄(ŷ, â) = ∑
Θ(ŷ, â, ϵ(ŷ))⋃
(ŷ, â, ϵ(ŷ))

This also has the advantage of being independent of the labels themselves.
This may alleviate complications that may arise as a consequence of poor
and/or incomplete labeling which would otherwise affect what the models
learn to associate with consistent behaviour.

In addition to improving the way by which consistency is quantified, there
are several unexplored directions through which the training procedure
itself could be further improved. The perturbation model, for instance,
could be modified in any number of ways: one could for instance
adversarially sample difficult augmentations based on the consistency
score, and use these during training. One could also perform an ablation
study to ascertain the impact of the perturbation models’ constituent
augmentation functions on generalization. It may for instance be the case
that some of the augmentations used in the perturbation model used in this
thesis hampered generalizability more than it facilitated it, though without
a complete study this is impossible to say with any certainty.
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One could also experiment with modulating the difficulty of the augment-
ations. In the experiments performed in this thesis, the augmentation dif-
ficulty was kept constant - i.e, the augmentation hyperparameters were
capped to a specific range. However, it may be the case that gradually
increasing the difficulty or modulate it according to some sort of annealing
function could further improve the efficacy of Consistency Training.

Finally, using multiple perturbed images when computing inconsistency
instead of just one may potentially further strengthen the generalizability
of the learned features. In this thesis, the inconsistency term really only
pertains to the inconsistency of the model with respect to the one change
being applied to the perturbed input. It is possible to instead generate
multiple perturbed inputs, each being transformed in a different manner,
and then compute multiple inconsistency terms thereafter. This does
require more memory, however, and may on certain hardware be infeasible
unless the batch sizes are kept small.

6.3.2 Deep Denoising

In Consistency Training, the objective is to optimize for features that
are consistent across perturbations such that the model learns invariance
to distributional shifts that should not affect the causal structure of the
problem. Though this as established increases generalizability, it may also
be possible to use a DNN to simply preprocess the images such that OOD
transformations or artifacts are accounted for. This is achieved elsewhere
in the literature using generative models - for instance a CycleGAN [79],
which maps the input data between domains prior to being given to
the segmentation network. One could implement a similar system using
Consistency Training through the use of a denoising network. The resulting
pipeline is illustrated in Figure 6.1.

There are two main differences between this pipelines and more conven-
tional deep denoising pipelines. First, the segmentation models are trained
using Consistency Training. Second, the denoising network is incorporat-
ing SIL as a component of the loss function. There would in this case be two
separate loss functions, one for each network. In theory, this should result
in the denoiser learning to counteract the characteristics of the perturba-
tions being applied that most negatively affect the consistency and thus the
generalization of the segmentation models. Moreover, even if the denoiser
performs poorly, the segmentation portion should be generalizable due to
Consistency Training, which may even be improved as a result of whatever
transforms the denoising network is performing, as these in effect could be
treated as augmentations.
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Figure 6.1: Consistency Preprocessing Pipeline

6.3.3 Further investigations of Multi-task learning

Chapter 3 introduced the dual-decoder DeepLabV3+, the intent of which
was to increase generalization by constraining the space of latent repres-
entations that the model could leverage through a reconstruction decoder,
thus in theory mitigating underspecification. As the results in Section 4.2.2
showed, however, the effect of this additional encoder was fairly limited
when compared to the regular DeepLabV3+. It was hypothesized that this
may be due to the encoder learning principally dataset-agnostic features
and consequently primarily performing image compression regardless of
what object the model is intended to segment.

This was to some extent corroborated by the analysis performed in Sec-
tion 4.2.2, which showed equivalent image reconstruction performance
across datasets in terms of L1 distance. Further research is however re-
quired, as these findings are only representative of one specific model
trained in a limited number configurations. One possible direction is to im-
plement a wider range of encoder-decoder models trained across multiple
decoder tasks and datasets, and then investigate the latent spaces of the
resulting predictors. If the predictor encoders indeed do encode primarily
dataset-agnostic features independent of the decoder function, one would
expect that one could simply switch encoders between predictors trained
on different datasets, domains and tasks without significant performance
degradation, at least after a few epochs of fine-tuning if for some reason
the encoders have learned functionally different but practically comparable
compression methods.

As discussed in Section 5.1.2, this behaviour might also be attributed
to pretraining. Since the models used throughout this thesis were at
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least partially pretrained on Imagenet, it might simply be the case that
the encoders have learned to perform image compression as a direct
consequence of the fact that this likely is the most conducive configuration
to minimizing risk on the Imagenet dataset. In this case, the encoder may
be in such a wide minimum that actually learning domain-specific features
is unlikely even after training to segment polyps. Thus, testing the impact
of different pretraining methods is also warranted.

Further investigating the impact of multitask learning beyond dual-
decoder models is also warranted. One could for instance investigate
decoupling segmentation into multiple stages, either through refinement
stages or through attempting to learn unique complementary representa-
tions at different parts of the network through placing decoders at different
depths of the network. Investigating the variance of the latent representa-
tion in these models across multiple runs of training and comparing these
to the variance in single-task models may be interesting and further the
understanding of what DNNs actually learn.

6.3.4 Further Investigations on Inpainting and Generative Mod-
elling

The experiments in Section 4.3 showed that the use of an inpainter
as implemented in this thesis harmed generalization when used in
conjunction with conventional augmentations. Two hypotheses for why
this is the case were suggested - either the inpainter simply does not
perform to a sufficient standard conducive for use as augmentation, or the
inpainter learned the distribution to such an extent that it increased the
models’ dataset bias.

To investigate this, it is possible to implement one of the more state-of-the-
art inpainting architectures, for instance an inpainting generative multi-
column network [92]. Additionally, analyzing the generated polyps via
statistical means may also have some merit. The development of distance
metrics to facilitate easier comparison between synthetic images to real
images may for instance be worth looking into, as this might shed some
light on the hypotheses as presented above.

6.3.5 Improving Ensembles through Diversity Search

Though ensembles as implemented in this thesis exhibit somewhat limited
returns, leveraging a diversity of interpretations of the input data may
have considerable merit towards increasing generalization and clinical
utility. As the analysis in Figure 4.13 shows, there appears to be a
positive relationship between generalizability and model-diversity that
warrants further investigation. In particular, it may be the case that
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ensembles consisting of predictors that are trained to explicitly encode
differing features are more conducive to generalization than conventionally
implemented ensembles. By explicitly optimizing for weight diversity, one
might mitigate the tendency of typical ensembles to primarily consider
weight configurations that exhibit higher posterior likelihoods.

This could for instance be achieved by training multiple instances of the
same model concurrently, and incorporating some measure of the diversity
of the learned feature maps across models into the loss function. A
naive approach to this end could be to simply calculate the variance of
each activation across every predictor. This is computationally expensive,
however. A better approach is to select a subset of activations - such
as the encoder outputs - and calculate the standard variance across the
predictors just for this subset. An illustration of such a pipeline is provided
in Figure 6.2.

Figure 6.2: By adding a term corresponding to the mean standard deviation
of weights, the models will learn maximally independent representations,
and hence result in predictors with a larger diversity of learned features.
This may mitigate underspecification to a greater extent, since this search
would be less biased towards regions of the search landscape with high
posterior probability.

This way, the ensemble will consist of predictors that encode a wider
diversity of interpretations of the data than the predictors in conventional
ensembles. This in turn provides a more complete perspective of the many
possible interpretations a given model can learn. If this is proven to be the
case, using the heatmaps from such an ensemble during screening may
also be useful in clinical settings, as the clinician could then take all of
these possible interpretations into account instead of trusting that a single
predictor is encoding the right inductive biases.
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Appendix A

Code Access

All relevant code and data can be found on the GitHub repository:
https://github.com/BirkTorpmannHagen/Master
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Appendix B

p-values
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Figure B.1: Two-sided independent t-test p-values between models for all
datasets
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Model CVC-
ClinicDB

EndoCV2020 Etis-
LaribDB

Kvasir-
SEG

DD-DeepLabV3+ 0.04454 0.95857 0.12809 0.30201
DeepLab 0.0096 0.08898 0.11401 0.31065
FPN 0.13769 0.95284 0.17806 0.16613
TriUnet 0.13412 0.31111 0.19913 0.91489
Unet 0.01069 0.15406 0.02715 0.36489

Table B.1: p-values for each model and dataset between the IoUs of the
given models trained with versus when trained with conventional data
augmentation versus models trained with the inpainter as a component
of the data augmentation strategy

Dataset U-Statistic p-Value

Kvasir-SEG 763.0 0.15972
Etis-LaribDB 545.0 0.00163
EndoCV2020 851.0 0.4169
CVC-ClinicDB 520.0 0.00077

Table B.2: Results from Mann-Whitney U-test for each dataset when
comparing the mIoUs of all models trained with conventional data
augmentation versus models trained with the inpainter as a component
of the data augmentation strategy

Dataset U-Statistic p-Value

Kvasir-SEG 1066.0 0.10293
Etis-LaribDB 624.0 0.00001
CVC-ClinicDB 751.0 0.00029
EndoCV2020 774.0 0.00052

Table B.3: Results from a Mann-Whitney U-test for each dataset when com-
paring the mIoUs across models for Consistency Training vs conventional
data augmentation

Model CVC-
ClinicDB

EndoCV2020 Etis-
LaribDB

Kvasir-
SEG

DD-DeepLabV3+ 0.014 0.985 0.083 0.170
DeepLab 0.029 0.901 0.003 0.444
FPN 0.004 0.038 0.005 0.939
TriUnet 0.211 0.024 0.141 0.330
Unet 0.000 0.001 0.006 0.899

Table B.4: p-values for each model and dataset between the mIoUs of the
given models trained with consistency training versus when trained with
data augmentation
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Training method CVC-
ClinicDB

EndoCV2020Etis-
LaribDB

Kvasir-
SEG

No Augmentation 0.000 0.000 0.006 0.000
Conventional Augmentation 0.000 0.000 0.001 0.000
Consistency Training 0.000 0.000 0.003 0.000

Table B.5: p-values from a Mann-Whitney U-test for each dataset and
training method when comparing the mIoU of ensembles vs. the mIoU
across its constituent models.
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Figure B.2: Results from Mann-Whitney U-test for each dataset when
comparing the mIoUs across models for the three training methods.
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Figure B.3: Results from an independent-sample two-sided t-test when
comparing the relative improvements across across models for the three
training methods.
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Appendix C

Non-weighted Consistency
Training

Figure C.1: When the consistency term is not modulated dynamically,
the model can quickly learn to predict artifacts around the edges of the
image. As polyps can rarely be found in these regions, the consistency term
is minimized by predicting consistently wrong predictions where there
typically are not polyps.
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Abstract

Generalizability is seen as one of the major challenges in deep learning, in particu-
lar in the domain of medical imaging, where a change of hospital or in imaging
routines can lead to a complete failure of a model. To tackle this, we introduce
Consistency Training, a training procedure and alternative to data augmenta-
tion based on maximizing models’ prediction consistency across augmented and
unaugmented data in order to facilitate better out-of-distribution generalization.
To this end, we develop a novel region-based segmentation loss function called
Segmentation Inconsistency Loss (SIL), which considers the differences between
pairs of augmented and unaugmented predictions and labels. We demonstrate
that Consistency Training outperforms conventional data augmentation on several
out-of-distribution datasets on polyp segmentation, a popular medical task.

1 Introduction

The last decade or so has seen a veritable revolution in Artificial Intelligence (AI). This has in
large part been spearheaded by advancements in deep learning, the remarkable performance of
which has rendered more conventional approaches practically obsolete. Recent work has however
highlighted that Deep Neural Networks (DNNs) are highly prone to exhibiting significant reductions
in performance when deployed in practical settings or otherwise Out of Distribution (OOD) data,
in spite of the fact that they readily exhibit high performance when evaluated on previously unseen
subsets of the training data [9, 11, 15, 18]. This is referred to as generalization failure.

Recent analyses attribute generalization failure to a structural misalignment between the features
that a given model learns through Empirical Risk Minimization (ERM) and the causal structure
which it ideally should encode [4, 11, 19, 26]. Generally, this misalignment occurs as a result of the
predictor learning spurious or otherwise causally unrepresentative features that nonetheless perform
well within the training distribution. This is often referred to as shortcut learning [11] or the Clever
Hans effect [21]. This behaviour is of course made evident as soon as the predictor is exposed to
any form of distributional shift which breaks these shortcuts, at which point it will fail to generalize.
These distributional shifts can range in magnitude, from common corruptions such as noise or blurs
[15] or spatial transforms [10], to practically imperceptible perturbations, typically exemplified
by adversarial attacks [6], or as will be shown in this work; simply collecting data from different
centers [29]. ERM does not and cannot guarantee invariance to these sorts of distributional shifts, as
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it assumes that the distribution of the training data is Independent and Identically Distributed (IID) to
the true distribution [13].

Closely related to shortcut learning is underspecification [9]. A machine learning pipeline can be
considered underspecified when it can return any number of risk-equivalent predictors when evaluated
on an IID holdout set, dependent only on the random variables used within the training procedure -
i.e dropout, weight initialization, and so on. Even with identical hyperparameters, a given training
procedure can return any number of predictors, each having learned different patterns within the
dataset. One predictor may have learned one shortcut, another may have learned a different shortcut,
and the next may actually have learned features that correspond to the causal structure it is intended
to learn. With ERM, and in particular with In-Distribution (InD)-oriented evaluation procedures,
these are all erroneously considered equivalent.

EndoCV2021 provided an opportunity to investigate generalization failure and means by which
to counteract them in the context of detection- and segmentation of colorectal polyps via a com-
petition [3]. Though several teams made good progress towards increasing generalizability, the
organizers’ review of the submissions [1] highlighted that every submitted model nevertheless exhib-
ited significant performance reductions on the provided OOD datasets. Moreover, though a multitude
of methods and approaches were tested, many of which did indeed benefit generalizability, few
methods stood out as having the potential for significant further development.

To address these shortcomings, we introduce Consistency Training. We re-frame the problem of
learning generalizable features into a matter of learning to not learn spurious features. This framework
requires a perturbation model, which we in this work implement as simple data augmentation, and
a differentiable quantity that represents the consistency of the predictions across perturbed and
unperturbed inputs images, which we implement as Segmentation Inconsistency Loss (SIL), a Jaccard-
like loss function that quantifies the degree to which the segmentation probability maps exhibit
unwarranted change after the input is perturbed. This loss function is then used in conjunction with a
task-specific loss, in this work Jaccard loss. To increase the stability of the training routine, we also
implement a dynamic weighting procedure for the two constituent components of the overall loss
function. We show that Consistency Training increases generalization by a significant margin on
all tested datasets when compared to conventional data augmentation. This framework is in other
words a more performant alternative to data augmentation. Consistency Training leads to increased
generalization with no additional overhead asides from the added computational cost involved with
computing the auxiliary loss term and the memory required to store augmented and un-augmented
versions of each batch. We summarize our contributions as following:

• We introduce Segmentation Inconsistency Loss (SIL), a novel region-based segmentation
loss function which quantifies the inconsistency between two predicted segmentations when
the inputs are subjected to arbitrary augmentations.

• We propose a robust method of incorporating this loss function without a loss of segmentation
performance through a dynamic weighting method.

• We demonstrate quantitatively that Consistency Training increases generalization when
compared to data augmentation on three OOD datasets.

2 Related Work

Generalization Failure. The development of consistency training was in large part informed
by recent advances in the understanding of generalization failure. D’Amour et al. [9] perform a
thorough analysis of generalization failure through multiple case studies and highlight the role of
underspecification therein. Geirhos et al. [11] explore the idea of shortcut learning in a similar
manner, and highlight the importance of learning causally related features. Schölkopf [26] discusses
the importance of causality in machine learning and how it relates to generalization failure.

Generalizable Training Methods. Increasing generalizability is an open problem, and there exists
a large diversity of different approaches and perspectives on the matter in the literature. Arjovsky
et al. [4] develop a novel training paradigm that makes use of multiple training environments in
order to increase generalization. Robey et al. [23] employ a similar method and develop a model-
based training paradigm which attempts to induce invariance to learned mappings between training
environments. Sandfort et al. [25] also leverage generative networks, but instead simply use generated
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CT-images as data augmentation, which they show improves OOD performance. Gokhale et al. [12]
compare the use of multiple data modification methods on robustness and generalization and find that
data augmentation improves generalizability by a significant margin. Finally, Hendrycks et al. [16]
incorporate a consistency term into their loss function, in particular Jensen-Shannon distance between
output probabilities - in order to facilitate robustness to distributional shifts for the image-classification
task.

Generalizable Polyp Segmentation. In the context of polyp-segmentation, this work was motivated
in large part by the findings in the proceedings of EndoCV2021 [3], which through the evaluation of
submissions on multiple OOD datasets highlighted the significance of generalization failure. The
winning submission to EndoCV2021, submitted by Thambawita et al. [30], leverages an ensemble-
network in order to increase generalizability. Honga et al. [17] also implement an ensemble-based
model, which they show improves generalization. Gu et al. [14] make use of domain composition
and attention in an attempt to generalize to unseen domains.

3 Approach

3.1 Consistency Training Method

This section will introduce Consistency Training, a training procedure wherein the objective is to
optimize for invariance to a set of various image transformations by quantifying the degree to which
the model outputs inconsistent predictions when its input is subjected to some transformations. This
is achieved by giving the model two images: one which is augmented, and one which is not. These
inputs are then passed through the model, resulting in two segmentation masks. The difference
between these two predictions is then computed, and compared to the difference (if any) between the
augmented and unaugmented segmentation labels. This is then incorporated into the loss-function
such that the discrepancy between the expected prediction change and actual prediction change is
minimized. This is illustrated in 1. The next sections will cover the theoretical basis of this training
procedure as well as the implementation of its constituent components.

Figure 1: Diagram showing Consistency Training. The CNN is given two images, where one is
simply an augmented version of the other. It then outputs two segmentations, which in conjunction
with the labels for both images is used to compute SIL. The mIoU is then calculated, and used as
weights for this term and a segmentation loss, in our case Jaccard loss.

3.2 Quantifying Segmentation Consistency

Let Y := {y, ŷ := f(x)} be the set consisting of the segmentation labels (masks) and predictions for
the unperturbed samples, where f(·) as before denotes the segmentation model. Let ϵ(·) be some
perturbation function. Then, let A := {a := ϵ(y), â := f(ϵ(x))} be the set consisting of masks and
segmentation predictions when the input is subjected to a perturbation. Segmentation consistency can
then be quantified as:
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C(y, a, ŷ, â) =
∑{y ∩ a ∩ ŷ ∩ â}∑{y ∪ a ∪ ŷ ∪ â} (1)

Equivalently, inconsistency can be quantified as:

C(y, a, ŷ, â) = 1∑{y ∪ a ∪ ŷ ∪ â}
∑
{y ⊖ ŷ ⊖ a⊖ â} (2)

⊖ here denotes the symmetric difference/disjunctive union. These formulations are, of course, related
by:

C(y, a, ŷ, â) = 1− C(y, a, ŷ, â)

In simple terms, this quantity corresponds to counting the number of pixels that change after the input
is subjected to a perturbation,â⊖ ŷ, but discounting those we expect to change, a⊖ y. This is shown
in Figure 2.

Figure 2: Examples of consistency and inconsistency calculation when the input is subjected to
additive noise. The consistency for this sample is 0.68 and inconsistency 0.32, meaning that 64% of
the pixels constitute consistent predictions across the two inputs.

Inconsistency as expressed in Equation (2) is not differentiable, and thus it cannot in its current state
be used as a part of a loss function. Thus, a smooth extension of this metric is needed which can be
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achieved in much the same way as how the Jaccard loss can be derived from the Jaccard index - i.e
by using differentiable versions of the set functions.

We can extend the definition of the symmetric difference to Θ(A,B) = A(1 − B) + B(1 − A).
This, naturally, is equivalent to the standard symmetric difference if the values of A and B are binary.
Similarly, the union operator can be extended as

⋃
(A,B) = A + B − AB, and the intersection

operator as
⋂
(A,B) = AB. Like its binary equivalents, these operators maintain their associative and

commutative properties. One can optimize for consistency by replacing the operators in Equation (2)
with these functions, which in turn can be used as a loss function:

Lc(y, ŷ, a, â) =
∑ Θ(y, ŷ, a, â)⋃

(y, ŷ, a, â)
(3)

This loss function will from this point be referred to as the SIL.

3.3 Incorporating Consistency into Training

Using SIL as a loss function on its own is not really useful since it only expresses inconsistency,
and is to a large extent agnostic to whatever object it is trying to segment. To illustrate, consider a
model that predicts that every pixel is positive regardless of the content of the image, and that the
augmentation strategy does not make use of augmentations that affect the labels. In this case, the
consistency term will always be zero. For example, if the augmentation being performed is simply
additive noise, the inconsistency term is equally well minimized if the model learns to predict that
every pixel is positive as it would be if the model learned to be robust to additive noise. Consequently,
it has to be combined with a segmentation loss, for instance Jaccard loss. A simple way to do this
would be to simply add them together and normalize, i.e:

L(Y,A) =
1

2

[
Lseg(Y ) + Lc(Y,A)

]

Preliminary experiments showed that this, however, exhibited some degree of instability during
training. The model would readily get stuck in local minima where its predictions were indeed
consistent, but also consistently predicting artifacts. Examples of this can be found in the Appendix.

To mitigate this, it is possible to employ a weighting strategy. Instead of simply adding the respective
losses together, one may weight the individual components adaptively according to the InD segmen-
tation performance, for instance Mean Intersection over Union (mIoU). This way, the model will
learn to predict generally correct segmentations early in the training, then start weighting consistency
and as a result generalization more and more as the model sees improvements to its segmentation
performance:

L = (1− IoU)× Lseg + IoU × Lc (4)

Using this formulation, the model will start off trying to learn features that contribute to generally
improved segmentation performance, then as segmentation performance improves start principally
focusing on learning to be consistent. If the model starts veering into areas in the loss-landscape
that constitute poor segmentation performance, it will self-correct by weighing the segmentation loss
more. In the implementation used in this study, the mIoU weights were calculated on a per-batch
basis such that the model can quickly adapt if either of the respective objectives exhibit a degradation
in performance during training.

4 Experiments and Results

To determine the generalizability of our methods, we trained ten instances each of four separate
models using Consistency Training, as as well as with conventional data augmentation and no
augmentation, which served as baselines. The generalizability of these models was then determined
through computing mIoU on three OOD datasets. The mIoUs across datasets for models trained
with Consistency training was then compared to the mIoUs across datasets of the two baselines to
ascertain the impact of Consistency Training relative to the baselines.
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4.1 Experimental Setup

Models. To evaluate the impact of Consistency Training sufficiently, it was tested across a range
of different models. These models include DeepLabV3+ [8], Feature Pyramid Network (FPN) [22],
UNet [24], and Tri-Unet [30].

The models were implemented in pytorch using the segmentation-models-pytorch library [31], using
the library’s default values. This includes initialization with Imagenet-pretrained weights. Ten
instances of each model were trained across each configuration in order to perform statistical analysis.

Datasets. The best way to evaluate the generalizability of a given predictor is to test it directly
on OOD data. Though this can to some extent be achieved by carefully designing stress-tests [9],
a more straight-forward approach is to simply leverage existing OOD datasets. To this end, a
number of polyp-segmentation datasets were selected. The names, sizes, resolutions and availabilities
of these datasets is shown in Table 1. Sample images and masks from the datasets can be seen
in Figure 3. Kvasir-SEG was selected as the training dataset, and partitioned into a 80/10/10 split as
training/validation/test data.

Table 1: Dataset Overview. The training dataset is marked using "*".

Dataset Resolution Size Availability

Kvasir-SEG* [20] Variable 1000 Public
Etis-LaribDB [28] 1255x966 196 Public
CVC-ClinicDB [5] 388x288 612 Public
EndoCV2020 [2] Variable 127 On Request

Figure 3: Sample images from the datasets.
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Metrics We used two metrics to evaluate generalizability. To evaluate raw performance, we used
mIoU, which is defined as follows:

IoU(y, ŷ) =

∑{y = ŷ}∑{y = 1} ∪ {ŷ = 1}}

Measuring the average mIoU scores across all the aforementioned datasets, naturally, provides an
indication of the generalizability of the given predictor. Though it is of course impossible to account
for all distributional shifts that may occur in deployment, high degrees of generalization across
multiple datasets should nevertheless indicate a sufficient level of generalization.

Implementation details. All experiments where conduced using Nvidia Tesla-V100 GPUs on
the eX3 computing infrastructure offered by Simula Research Laboratory. The experiments were
implemented in Python 3.8 using PyTorch 1.8.0 and segmentation-models-pytorch [31]. The source
code as well as all of the raw data is available at https://github.com/BirkTorpmannHagen/
SegmentationConsistencyTraining.

The augmentation method used both for the baseline and as part of Consistency Training was
implemented using the albumentations library [7], and consisted of the following transformations:
RandomRotate90, GaussNoise, ImageCompression, OpticalDistortion and ColorJitter. For the
regular augmentation baseline, the augmentation probability was set to 0.5, in which case all of the
aforementioned transformations were applied. The hyperparameters used when training the models
are shown in Table 2.

Table 2: Hyperparameters.

Component Type Hyperparameters

Dataloader - batch_size = 8
train/val/test split = 80/10/10

Optimizer Adam lr = 0.00001

Scheduler Cosine Annealing w/ Warm Restarts T0 = 50
Tmult = 2

Evaluation Loss-based Early Stopping epochs = 300

4.2 Out of Distribution Generalization

Table 3 shows the mean mIoUs for models trained with and without data augmentation, and models
trained with Consistency Training. Comparing Consistency Training and conventional data augmen-
tation for each model, statistical significance was achieved for all models except the TriUnet on the
Etis-LaribDB dataset, for the FPN and Unet on the CVC-ClinicDB dataset, and for the Unet on the
EndoCV2020 dataset after an independent-sample t-test. When averaging across models, Consistency
Training improves generalization by a statistically significant margin (p<0.01) on all OOD datasets
over conventional augmentation after a Mann-Whitney U-test. This is shown in Figure 4. This shows
that Consistency Training can be considered a more generalizable alternative to data augmentation.

5 Discussion and Conclusion

In this paper, we introduced Segmentation Consistency Training, a novel training procedure for
segmentation which explicitly optimizes for consistent behaviour when an input subjected to aug-
mentation. We showed that this improves OOD generalization by a statistically significant amount
across several models when compared to conventional data augmentation. Moreover, we show that
Consistency Training mitigates underspecification to a greater extent than data augmentation by
analyzing performance variability.
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Table 3: Mean IoUs for training methods, precision truncated to 99% confidence. Consistency
training entries with greater performance than conventional augmentation are highlighted in bold. If
they are better by a statistically significant margin (p>0.99) after an independent sample two-sided
t-test, they are also marked with a "*".

Model No Augmentation Vanilla Augmentation Consistency Training
Kvasir-SEG (In-Distribution)

DD-DeepLabV3+ 0.829 0.848 0.852
DeepLab 0.822 0.850 0.852
FPN 0.822 0.853 0.852
TriUnet 0.817 0.841 0.845
Unet 0.828 0.851 0.851

Etis-LaribDB (Out of Distribution)
DD-DeepLabV3+ 0.408 0.460 0.482
DeepLab 0.417 0.472 0.505*
FPN 0.404 0.440 0.475*
TriUnet 0.309 0.410 0.434
Unet 0.403 0.447 0.481*

CVC-ClinicDB (Out of Distribution)
DD-DeepLabV3+ 0.681 0.728 0.736
DeepLabV3+ 0.684 0.733 0.740
FPN 0.675 0.715 0.727*
TriUnet 0.623 0.684 0.696
Unet 0.679 0.717 0.730*

EndoCV2020 (Out of Distribution)
DD-DeepLabV3+ 0.596 0.668 0.668
DeepLab 0.608 0.676 0.676
FPN 0.600 0.662 0.673
TriUnet 0.577 0.667 0.684
Unet 0.598 0.660 0.676*

5.1 Limitations

The batch size was kept constant across all experiments performed in this paper. However, as it can
be argued that since Consistency Training implicitly increases the batch size, the experiments should
ideally be repeated across a range of batch sizes.

Moreover, the experiments were only performed with one specific augmentation strategy. As it may
be the case that the differences are less significant given a more highly developed augmentation
strategy, repeating the experiment with a range of different augmentation strategies may be warranted.

As the experiments were only performed on polyp datasets, it can also be argued that it is uncertain
whether Consistency Training has similar impacts on other segmentation tasks.

Finally, a larger number of samples should ideally have been collected across a wider diversity of
model architectures. Increasing the granularity of the findings by other means, for instance by using
a greater number of OOD datasets or designing parameterized stress-tests may also be warranted in
order to develop a more thorough understanding of the impact of our methods.

5.2 Future Work

We plan to investigate a number of potential improvements of this framework. Consistency was for
instance in this paper quantified as the symmetric difference between the expected change in the
output due to augmentation and the actual change due to augmentation. This is largely agnostic
to the augmentation being performed. However, it may be beneficial to take the nature of these
augmentations into account. If the image is subjected to a 90 degree rotation, for instance, the
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Figure 4: Improvements due Consistency Training and Data Augmentation as a percentage the mean
mIoU without augmentation across datasets.

prediction would following the notion of consistency as used in this work be considered perfectly
consistent so long as the pixels corresponding to the polyps are rotated, and the incorrectly classified
pixels remain unchanged. However, if the model instead learns to rotate all of the pixels - even
those that are incorrectly classified - it may learn a more accurate representation of what constitutes
consistent behavior under rotation. I.e, instead of expressing inconsistency as in eq. (3), one can adjust
the expected change term a⊕ y to ŷ ⊕ ϵ(ŷ) such that also incorrect predictions can be considered
consistent so long as they change in accordance to the nature of the perturbation model ϵ(·). The
resulting loss function can then be expressed as:

C̄(ŷ, â) =
∑ Θ(ŷ, â, ŷ, ϵ(ŷ))⋃

(ŷ, â, ϵ(ŷ))

Which is equivalent to:

C̄(ŷ, â) =
∑ Θ(ŷ, â, ϵ(ŷ))⋃

(ŷ, â, ϵ(ŷ))

This also has the advantage of being independent of the labels themselves. This may alleviate
complications that may arise as a consequence of poor and/or incomplete labeling which would
otherwise affect what the models learn to associate with consistent behaviour.

Repeating the experiments in this paper on a multitude of other segmentation tasks, for instance scene
segmentation for autonomous vehicles, is also warranted. Evaluating Consistency Training through
the use of stress-tests, for instance by augmenting datasets with a disjoint set of transformations as
those used for training, may also provide some insights.

Further, one could investigate whether the consistency-training framework also can be implemented
in the context of classification, object detection, or other applications of Deep Learning, and if similar
improvements to generalizability can be shown in other domains.

Finally, one may compare the learned features of models trained with Consistency Training and the
learned features of models trained conventionally. This could for instance be achieved through the
use of Grad-CAM [27] or similar methods, and may be beneficial towards determining whether the
model has learned at least partial invariance to the given augmentations.
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