
Implementation of a virtual reality
design review application using

vision-based gesture recognition
technology

A Master’s Thesis

Andreas Oven Aalsaunet

Thesis submitted for the degree of
Master in Programming and Networks

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2017





Implementation of a virtual
reality design review application

using vision-based gesture
recognition technology

A Master’s Thesis

Andreas Oven Aalsaunet



© 2017 Andreas Oven Aalsaunet

Implementation of a virtual reality design review application using
vision-based gesture recognition technology

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/


Abstract

Classification societies date back to the second half of the 18th century,
where marine insurers developed a system for independent technical
assessment of the ships presented to them for insurance cover. Today,
a major part of a classification society’s responsibilities is to review the
designs of enormous maritime vessels. This usually involves working with
big and complex 3D models and 3D tools, but without support to do many
of the tasks required in a design review. As a consequence, the workflow
is often just partially digital, and many important tasks, such as annotating
or commentating on aspects of the models, are done on paper.

DNV GL, the world’s largest maritime classification society, is inter-
ested in digitalizing this process more, and make it more interactive and
efficient by utilizing an application that allows for virtual design review
meetings in the 3D models. In these virtual design review meetings, the
designer and reviewer could remotely interact, survey the model together,
and annotate it instead of model-printouts. As the sense of scale is impor-
tant in a 3D model review, virtual reality technology is deemed promising
as it gives a unique sense of scale and a depth, which is hard to match
by regular 2D screens. DNV GL is also interested in alternate interaction
methods, as mouse and keyboard can have some limitation when working
in 3D environments. Gesture Recognition Technology has been of special
interest as this can potentially offer unique approaches to working with 3D
models.

This thesis implements such a design review application using state-of-
the-art virtual reality- and vision-based gesture recognition technologies,
coupled with the Unity game engine, a popular cross-platform game
development platform and software framework. After discussing these
technologies’ theoretical foundations, the thesis reviews the requirements
and design of the design review application, in addition to documenting
its implementation and evaluating its performance by conducting user
tests. In the implemented design review application the user is able to
navigate 3D models, annotate them and perform various other actions, all
performed by gestures.
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Chapter 1

Introduction

1.1 Background

The field of virtual reality technology has seen an exciting development in
recent years, with the release of the first commercially successful consumer-
oriented virtual reality headsets, such as the Oculus Rift CV1 and HTC
Vive, taking place in 2016. The application areas for these virtual reality
headsets have exceeded the expectations of many, with virtual reality
technology already present in several domains, ranging from engineering
to entertainment (Leadem, 2016). Leadem (2016), among others, reports
numerous domains where virtual reality is successfully used, including
healthcare (e.g in surgery), military, architecture/construction, art, fashion,
entertainment (games, films etc), education, business, telecommunications,
sports and rehabilitation.

With the success of virtual reality technology, and increased attention
towards technologies that complement it, several businesses and institu-
tions are interested in making use of the new possibilities virtual reality
offer (Lubell, 2016). One major business area for virtual reality (besides
entertainment) has been in the architecture, engineering and construction
fields. Iris VR, a New York-based technology company building virtual re-
ality applications, has reported that among their 15 000 customers, 75% are
from these industry segments. One possible reason for the impact virtual
reality has had on these fields is their dependence on big and complex 3D
models.

As virtual reality head mounted devices (HMD) are stereoscopic,
i.e provide separate images for each eye, they are able to deliver a
feeling of depth and scale that is unrivaled by regular two dimensional
displays (Kuchera, 2016). This point was highlighted in an interview of
a senior designer at an architect firm, conducted by Lubell (2016). He
stated that "Practically nobody can understand architectural drawings, and
even 3D visualizations are a stretch for most. But everybody gets VR
instinctively. You can get to the point very quickly. It either sells or kills
the project right away."

Virtual reality applications that allow its users to inspect models in
3D also have many additional possibilities. One such possibility could
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be to annotate (alternatively edit or comment) on the model while being
virtually "inside" it (i.e when using the application and wearing a virtual
reality HMD) and to use the virtual reality application as a design and
collaboration tool to exchange ideas about the model.

DNV GL, the world’s largest maritime classification society, is looking
into exactly this, and view this as a potential big improvement over their
current "paper-based" work flow. More specifically, DNV GL is interested
in a virtual reality application for design reviews, a classification process
where DNV GL employees review clients’ design models and comment
on various aspects of the models that need to be improved to meet the
classification requirements.

This thesis addresses this vision and utilizes several state-of-the-
art frameworks and technologies to design and implement such an
application. This presents several challenges, some of which are mentioned
in the next section and reviewed more throughout the thesis, while
DNV GL, their workflow, visions and motivations is discussed further in
chapter 2.

1.2 The Challenges of Virtual Reality

Despite the early success the field of virtual reality technology has seen,
there are still a lot challenges associated with it. These challenges include
prevention of virtual reality sickness (a kind of induced motion sickness),
strict performance demands on target hardware and having more suitable
input methods when using virtual reality HMDs. Addressing these
challenges, in both design and implementation, is an important step when
building virtual reality software (Dean Beeler and Pedriana, 2016), and
each of these challenges, among others, will be discussed more in the
following chapters.

As virtual reality technology enables users to experience virtual worlds
in a new way, human-computer interaction (HCI) is also a highly relevant
topic. This field has in many ways seen a resurgence as virtual technology
gives new possibilities, but also set new constraints. One of these
constraints is limiting the user’s field of vision exclusively to that projected
by the lenses, which may make interaction with traditional input devices,
such as mouse and keyboard, more challenging. Because of this, alternate
methods of interacting with the computer is a relevant topic. One of
these methods is the use of gestures, which have long been considered an
interaction technique that can potentially deliver more natural, creative and
intuitive methods for interacting with computers (Rautaray and Agrawal,
2015). To enable the use of gestures as a viable input method to a computer,
responsive and reliable gesture recognition techniques are needed.

1.3 Problem Definition

This thesis reviews how the current state-of-the-art virtual reality- and
vision-based gesture recognition technologies can be utilized in a profes-

2



sional capacity, and more specifically, to the design reviews of complex 3D
models. Instead of printing the model to paper, drawing on the paper, scan-
ning it and sending it by email - as isn’t an uncommon workflow today, the
designer and reviewer could have a virtual design review meeting, were
they could meet in the 3D model, interact, survey- and annotate it together.
They could manipulate the model, and change how the annotations appear
in the models. These annotations could be stored in a database - a system
keeping track of their history, information and states - and be accessed from
multiple platforms - like an issue tracker or a digital scrum board. The in-
teraction, surveying, and experience as a whole, could be enhanced by vir-
tual reality technology - giving the unique sense of scale and a depth that
is invaluable for a design - and gesture recognition technology - allowing
the users to work with the 3D model in new and innovative ways.

This is the vision of DNV GL, who regularly conducts such design
reviews. To address this, and evaluate this vision’s feasibility, this thesis
implements such a design review application, and reviews its requirements
and design, documents its implementation details and evaluates its
performance by conducting user test sessions. In the prototype application,
developed as part of this thesis, the user is able to navigate 3D models,
annotate them - by either creating annotation orbs, which are physical
object in the model, or by attaching an annotation directly to an object -
and perform various other actions. This can be done in a conventional
manner, i.e by mouse, keyboard and a display, by only using gestures (hand
movements) and a virtual reality headset, or a combination of the two.

To ensure that the application is developed using state-of-the-art
technology, and that it addresses the challenges such technology presents,
the field of virtual reality is reviewed and discussed. In addition to this, the
gesture recognition field is also reviewed, as this alternate input method
can have the potential to increase the usability of 3D-based applications
- such as the design review application -, especially when coupled with
virtual reality. Several software frameworks and devices that enable this
technology are also discussed in this thesis, as we wanted to quickly
prototype the application using these state-of-the-art tools. We chose to use
readily available virtual reality tools, such as the virtual reality headsets
Oculus Rift CV1 and HTC Vive, coupled with the Leap Motion Controller,
a stereoscopic vision-based gesture recognition device. The software was
developed using the Unity framework - a popular game engine - because
of its capability and as it allowed us to interface with other projects in DNV
GL

1.4 Scope and Limitations

The initial list of application features had to be shortened significantly to
focus more on the most relevant parts for this thesis. As such the design
review application is more a prototype or proof-of-concept than a finished
product. Section 5.1 on page 37 outlines the application features and
explains more of what’s included in the application and what isn’t.
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1.5 Research Methods

The ACM Task Force report Computing As a Discipline, by Denning et al.
(1989), identifies a structure of how research in computing should be
approached. This report defines computer science as an intersection
between several processes, with the primary being applied mathematics,
science and engineering (Denning et al., 1989). These central processes are
basically reflected in the paradigms of theory, abstraction and design.

The first paradigm, theory, is defined by (i) characterizing the objects
of study (definition), (ii) hypothesizing possible relationships among them
(theorem), (iii) determining whether the relationships are true (proof) (iv)
and interpreting the results.

The second paradigm, abstraction, is defined by (i) forming a hypothesis,
(ii) constructing a model and making a prediction, (iii) designing an
experiment and collecting data, and (iv) analysing the results.

The third paradigm, design, is defined by (i) stating requirements, (ii)
stating specifications, (iii) designing and implementing the system and (iv)
test the system.

In this thesis the design paradigm is followed, as the main focus of this
thesis is to design and implementation an application using the technology
of interest, and test it by user evaluations. The initial requirements
are discussed section 2.3 on page 10, before being scoped in section 5.1
on page 37. The specifications and design are discussed in chapter 5
on page 37, while the implementation is reviewed and documented in
chapter 7 on page 59. The testing and evaluation of the system is covered
in chapter 8 on page 97

1.6 Main Contributions

The summarized main contributions of this thesis are:

1. A discussion of classification societies, and more specifically DNV
GL, and how the use of virtual reality and gesture recognition
technology could benefit them in their design review process.

2. A review of the state-of-the-art virtual reality technology, with special
focus on the head-mounted devices Oculus Rift CV1 and HTC Vive,
in addition to its challenges and techniques for addressing this.

3. A survey on what’s known about virtual reality- and simulator
sickness, what their main causes are, and which of these causes are
primarily due to (i) individual differences in susceptibility or (ii) the
application design or performance.

4. A review of the state-of-the-art gesture recognition technology, its
history and what the main techniques are. After a general overview
we will focus more on vision-based gesture recognition technology,
and more specifically stereoscopic vision technology, as it is arguably
the most promising gesture recognition technology.
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5. Design and implementation of a prototype application utilizing vir-
tual reality- and gesture recognition technology to perform the basic
functionality required of a design review application (e.g navigating
and annotating).

6. Evaluating several aspect of the design review implementation
through user testing, a discussions of what design aspects worked
better than other in such an application and how mature the virtual
reality- and gesture recognition technologies are.

7. A conclusion which sums up important finding, formulates new
hypothesis and recommends subject for further study.

1.7 Outline

This thesis is organized as follows: In chapter 2 DNV GL and their
business domains and processes are introduced, together with a general
discussion regarding the role of classification societies. In this chapter
we also define some of the scope for the application, a topic which is
revisited in chapter 5. In chapter 3 we review the history, concepts and
demands of virtual reality, as well as discuss the issue of virtual reality
sickness and other challenges. The implication these challenges have for
the design and implementation stages, which are covered in chapter 5
and chapter 7, are also discussed. Chapter 4 reviews gesture recognition
technology and its exciting possibilities for virtual reality. This chapter
also discusses the different technologies that makes up the field of gesture
recognition technology, and how it functions. In chapter 5 we review
the design of the design review application, its various use cases and
function requirements, how gesture recognition technologies can be used,
and what frameworks and technologies are utilized. Chapter 6 review the
software development libraries, APIs and frameworks which were outlined
in chapter 5 and are utilized in the implementation. Special emphasis is put
on important concepts of the Unity Engine, its programming model and on
the Leap Motion library. In chapter 7 we document how the application
is implemented and expand upon some of the Unity and Leap Motion
concepts that were used. In chapter 8 the user evaluation sessions are
covered, and the responses discussed and analyzed. Chapter 9 concludes
this thesis with a summary and provides some ideas for future topics of
research.
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Chapter 2

Classification Societies in a
Modern World

2.1 The Roles of Classification Societies

A classification society provides classification, statutory services and
assistance to the maritime industry based on its accumulated knowledge of
fields like maritime, engineering, construction and technology (Hormann,
2006). The International Association of Classification Societies (IACS)
defines a classification society as an organization which publishes its own
classification rules and technical requirements in relation to the design,
construction or survey of ships. The organization should have capacity
to apply, maintain and update these rules and requirements with own
resources on a regular basis, and should be impartial, meaning that it
should not be controlled by ship-owners, shipbuilders or be otherwise
commercially engaged in the manufacture, equipping, repair or operation
of ships. In addition, the classification society should verify compliance
with these rules and requirements during construction and periodically
during a classed ship’s service life.

Classification societies date back to the second half of the 18th century,
where marine insurers developed a system for independent technical
assessment of the ships presented to them for insurance cover. These
insurers were based out of Lloyd’s Coffee House, a popular establishment
for sailors, merchants and shipowners, and led to the establishment of
the insurance market Lloyd’s of London, Lloyd’s Register and several
related shipping and insurance businesses (Marcus, 1975). This also led
to a committee being formed in London in 1760 being the first recorded
classification society committee (Hormann, 2006). At this time, various
aspect of a ship, such as its hull and equipment, were assigned "grades"
for their condition, ranging between G, M and B (good, middling or
bad), or simply 1, 2 and 3. As the classification profession evolved,
these different classifications were mostly replaced by a more discrete
classification system, meaning that a ship either meets the relevant class
society’s rules or it does not.

Classification serves as a certification process where the candidate has
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to fulfill a number of requirements in order to "pass" the classification
process. Hormann (2006) describes the objective of ship classification
as verifying "the structural strength and integrity of essential parts of
the ship’s hull and its appendages, and the reliability and function of
the propulsion and steering systems, power generation and those other
features and auxiliary systems which have been built into the ship in order
to maintain essential services on board. Classification Societies aim to
achieve this objective through the development and application of their
own rules and by verifying compliance with international and/or national
statutory regulations on behalf of flag Administrations" This is a thorough
and continuous evaluation process that has several phases (Hormann,
2006). These phases include:

• A technical review of the design plans and related documents for
a new vessel to verify compliance with the applicable rules and
requirements.

• Attendance at the construction site of the vessel by a classification
society surveyor to verify that the vessel is constructed in accordance
with the approved design plans and classification rules.

• Attendance at relevant production facilities that provide key compo-
nents such as the steel, engine, generators and castings to verify that
the components conform to the rules and requirements.

• Attendance at the sea trials and other trials relating to the vessel and
its equipment.

• Upon satisfactory completion of the above, the builder’s/shipowner’s
request for the issuance of a class certificate will be considered by
the relevant classification society and, if deemed satisfactory, the as-
signment of class may be approved and a certificate of classification
issued.

• Once in service, the owner must submit the vessel to a clearly
specified program of periodical surveys, carried out on board the
vessel, to verify that the ship continues to meet the relevant rules and
requirements for its class.

The first phase, i.e the technical review of the design plans, is of special
interest to this thesis as it is one that stands to gain a lot from new ways
of utilizing computer technology. The use of customized high quality
software in this phase can potentially improve the entire work flow and
enable useful features such as keeping a history of decision, changes and
discussions, in addition to organize the information in an intuitive manner.
As we will see in the next sections, this phase already commonly makes use
of high fidelity 3D models, but often in a much more narrow fashion than
what could be possible.
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Figure 2.1: A typical paper based design sketch Marino Consulting (2017)

2.2 DNV GL’s Digital Vision

DNV GL is the result of a merger, taking place in 2013, between two leading
classification societies, Det Norske Veritas (Norwegian) and Germanischer
Lloyd (Germany), and it is the world’s largest classification society with
about 15,000 employees and 350 offices operating in more than 100
countries. DNV GL provides services for more than 13 000 vessels
and mobile offshore units, which represents a global market share of
21% (Jeffery, 2015). It is the world’s largest technical consultancy to onshore
and offshore wind, wave, tidal, and solar industries, as well as the global
oil & gas industry – 65% of the world’s offshore pipelines are designed and
installed to DNV GL technical standards (Paschoa, 2013).

As a classification society, DNV GL operates in all the phases outlined
above and, as mentioned in chapter 1, they are currently investigating the
idea of a virtual reality application for technical design reviews. Currently
their technical design review process can be summarized by the following
steps:

1. The designer sends the 3D model to DNV GL for evaluation.

2. One or several Approval Engineers from DNV GL inspect the model
and notes down (usually on a document) aspects that don’t meet
DNV GL requirements.

3. The designer receives the remarks and has to make the necessary
changes to the model to continue the process towards getting the
classification.

4. The process is repeated until the design is approved.
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This process usually results in a lot of papers being sent back and forth,
and because of a lack of application support the process can, according to
one DNV GL employee, feel very disconnected and "ad hoc".

Although digital 3D models usually are utilized in this phase, the work
flow is reportedly still mostly based on design document and drawings. It
is said that the model is usually just a reference, and is static (i.e receives
no changes) throughout the process. After the model is "completed", and
DNV GL starts its design review process, most comments, annotations
and discussions are handled separate from the model, e.g on paper, while
almost all communication is performed by either emails and phone calls.
This might in part be because of limitations in the existing computer-
aided design (CAD) software solutions, and in part because of companies’
established practices.

DNV GL is thus intrigued by the prospects of digitalizing this process
more, and make it more interactive and efficient by utilizing an application
that allows for virtual design review meetings in the 3D models. In these
virtual design review meetings, the designer and reviewer could interact,
survey the model together, and annotate it instead of model-printouts (on
paper). This should also be possible without loosing the accountability that
comes from today’s paper trail. It is thus not necessarily the 3D models
themselves that need to evolve, but rather the application that interfaces
with them and what functionality they allow for.

As the sense of scale is important in a 3D model review, virtual reality
technology is deemed promising as it gives a unique sense of scale and
a depth, which is hard to match by regular "2D screens". DNV GL is
also interested in alternate interaction methods, as mouse and keyboard
can have some limitation when working in 3D environments (Rautaray
and Agrawal, 2015). Gesture Recognition Technology has been of special
interest as this can potentially offer unique approaches to working with 3D
models.

2.3 Initial Design Ideas

The core functionality of a virtual reality design review application, such
as the one outlined above, should be to navigate the 3D model from a first-
person view and "annotate" it (i.e creating and placing remarks tied to a the
model), primarily by using the advantages of virtual reality and gesture
recognition technology. The users should also be able to create "sessions"
that enable several users to be virtually present in the same instance of
a 3D model (as opposed to different copies of it), and to interact with it
using gestures. During these sessions a user should then be able to create
annotations, which can be interacted with (e.g. edited or deleted) and are
tied to the 3D model and the session.

Actions done during the 3D model session (such as annotating an
object) should continuously be stored in a database or a distributed file
system. If a user wants to re-enter the session at a later time, this database
is read, and the actions done in previous sessions are loaded into the model.
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Figure 2.2: A ship model created using conventional Computer-aided
Design (CAD) software. International Maritime Organization (2017)

By utilizing a database to store annotations in this way, the original model
file (or files) could also remain unchanged throughout sessions, thereby
avoiding conflicting or outdated versions of the model once it is submitted
for a design review. This is opposed to the idea of saving the annotations as
part of the model file(s), thus creating a new "version" of the model for each
"save". The application could treat the storage of annotations as a revision
control/version control system (VCS) would: The model itself could be the
base (like a "first commit") and each time an annotation were added, edited
and remove a "commit"" would happen were the "diff" (i.e the difference
between the previous commit and this commit) would be stored. This
would also allow for an annotation log, similar to a commit log in a VCSs,
where "HEAD" (i.e the latest commit) would be the sum of the first commit
and all following commits. If a session with a previous history were opened
the application could thus load in all annotations by sequentially iterating
through this annotation history (the "annotation commit log") and applying
the diffs.

Another upside with utilizing a database is that it enables exposure
of the actions done in the sessions to other platforms, such as web
applications. This can enable annotation and comments done in a virtual
design review session to become "issues" or "remarks" in more traditional
collaboration tools such as Atlassian’s Jira or Confluence. This might in
its own way be a key approach to designing a virtual reality application
that requires some sort of textual input. As a virtual reality headset might
make it harder to utilize a keyboard, the user will then be able to first create
annotations while using a virtual reality headset, and later input the text for
those annotations through a web application tool. This would also allow

11



Figure 2.3: Annotation and comments created in a virtual design review
session can become "issues" or "tasks" in more conventional web applica-
tion collaboration tools, such as Atlassian’s Jira. Both the web application
and the design review application would be utilizing the same database,
thus making changes performed in one of them also present in the other.
Picture from Atlassian (2017).

the interested parties to access the annotations without necessarily having
to enter the model again.

To approach these design ideas this thesis will first review the fields
of virtual reality technology and gesture recognition technology, before
revisiting the design in light of these reviews. The design is concretized
and scoped in chapter 5 on page 37, where we select the focus and core
functionality and write these as "use cases" (i.e informal, natural language
descriptions of features, commonly used in software projects). Here we
will also go more into the design issues that has to be addressed before the
implementation starts, and review our technology choices.
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Chapter 3

Virtual Reality Technology

This chapter will review what virtual reality is, how it is enabled through
the use of virtual reality headsets and outline how virtual reality images
are generated. After this, we will discuss some of the performance
demands of virtual reality headsets and important considerations when
designing and implementing virtual reality applications. We will also
review the conditions simulator sickness and virtual reality sickness, which
can be consequences of not adhering to the outlined considerations, and
review ways to prevent this. More specifically we will discuss which
factors that can be addressed in a virtual reality application’s design and
implementation phases, and which factors are mostly due to individual
differences and thus more outside the developers control. The lessons
learned in this chapter will help guide the design and implementation
consideration of the virtual reality design review application, which are
discussed in chapter 5 and chapter 7.

3.1 The Basics of a Virtual Reality System

Virtual reality can be defined as a realistic and immersive simulation of
a three-dimensional 360 degree environment, created using interactive
software and hardware, and experienced or controlled by movement of the
body (Leadem, 2016).

One of the most common ways to experience virtual reality is through
virtual reality headsets, which are stereoscopic head-mounted displays
(HMD) that provide separate images for each eye (Kuchera, 2016). These
head-mounted displays are fastened to the user’s head using straps -
similar to those employed by headlamps - and, once firmly in position,
should cover the user’s entire field of vision. Virtual reality headsets
contain one display per eye, often referred to as a lenses. These are
positioned about 2-3 centimeters from their respective eye and have
their own associated camera in the virtual world, giving each eye its
individual video feed. These cameras are offset by the same length as the
distance between the user’s eyes, which enable depth vision and a true 3-
dimensional experience (Abrash, 2012).

In addition to this, most virtual reality headsets also contain several
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Figure 3.1: The Oculus Rift Development Kit 1, released by Oculus VR in
2012.

head motion tracking sensors that are built into the headset. These detect
any movement, and either moves or rotates the cameras in the virtual
environment in unison with the user’s head movement, thus enabling the
user to turn his or her head to "look around" in the virtual world (Kelly,
2016). This usually includes a gyroscope, which is responsible for
measuring the orientation of the HMD, and sometimes an accelerometer to
measure the proper acceleration of the HMD (Robertson, 2016). In addition,
or instead of this, the first consumer versions of virtual reality headsets
also usually utilize some other sensors or cameras outside the HMD. As an
example the Oculus Rift CV1 utilizes constellation sensors (Feltham, 2015),
which are usually positioned on a table, while the HTC Vive utilizes two
Lighthouse Stations, which use photosensors and structured light lasers to
obtain the user’s position and rotation, and are usually placed in opposite
corners of the room (Buckley, 2015). Several virtual reality headset vendors
also offer controllers that are either included or sold separately. These are
usually wireless and utilize similar sensor technology as the head mounted
devices.

Generating Virtual Reality Images

There are a number of steps a virtual reality system has to perform from the
moment a user performs an action to the moment that action is reflected
visually on the displays. The first step of this is head tracking. The HMD
sensors and the tracking software have to determine the exact position
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Figure 3.2: The HTC Vive and Oculus Rift Hardware. a) The HTC Vive
headset (HMD). b) The HTC Vive Lighthouse Stations. c) The HTC
Vive Controllers. d) The Oculus Rift headset (HMD). e) The Oculus Rift
Constellation Sensors. f) The Oculus Rift Touch Controllers. Picture from
Bye (2016)

and orientation of the HMD in the real world. Next, the application has
to render the scene in stereo, i.e for both the cameras (as mentioned in
section 3.1 on page 13), as it would look from that point of view. As
pixel density usually is low for HMDs with a wide field of view (more
on that later), this step should usually also include anti-aliasing1 to avoid
jagged edges and pixelation, and to ensure "smoother" images. When the
application has rendered the frames/images (one per eye) the frames need
to be transfered to the HMD’s displays by the graphics hardware. This is
usually referred to as a scan-out and involves reading sequentially through
the frame buffer, from top to bottom and moving right to left within each
scan line, and streaming the pixel data for the scene over a link (e.g. a
HDMI or Display Port cabel) to the displays (Abrash, 2012). When the
displays receive the pixel data they have to start emitting photons for each
pixel, and, at some point, they have to stop emitting the photons to prepare
for the next frames to be displayed.

3.2 Virtual Reality Performance Demands

Virtual reality places some strict demands on performance and software
design to avoid discomfort for the user. In many ways this is connected to
how VR, as opposed to non-VR, applications "trick" the user’s brain into

1A software technique for diminishing jaggedness caused by an insufficient resolution
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thinking the virtual experiences are actually real (giving it its "reality feel").
As a consequence of this, the user’s brain tend to perceive VR-applications
differently from non-VR application, e.g by noticing anomalies more. One
example of such an anomaly includes displacements of objects when the
user’s head rotates (i.e the objects are in the wrong position relative to the
user’s head) (Abrash, 2012). Failing to meet the performance demands
outlined below can quickly result in significant discomfort for the user
and give symptoms like headache, nausea or disorientation. Many of
these symptoms are also common in the closely related conditions simulator
sickness and virtual reality sickness, which will be reviewed in section 3.3
on page 20. Before this we will discuss what generally makes virtual
reality applications more demanding in terms of execution, design and
implementation than non-VR applications.

3.2.1 Latency Requirements

Virtual reality headsets have a much stricter requirements for latency, i.e
the time required for an input to have a visible effect, than with use of
regular displays (Lang, 2013). If this demand isn’t met the system might
often feel "sluggish" and the user will usually be more susceptible to virtual
reality sickness. If e.g. too much time elapses between the time the user
starts to turn his or her head, and the time the image is redrawn to account
for the new head orientation, the visual image will feel disjoint for the
user’s action (Abrash, 2012).

The virtual reality system should thus have as low latency as possible.
Abrash (2012), an engineer behind the HTC Vive and currently a Chief
Scientist at Oculus VR, wrote that "when it comes to VR and AR, latency
is fundamental – if you don’t have low enough latency, it’s impossible
to deliver good experiences, by which I mean virtual objects that your
eyes and brain accept as real" According to Abrash (2012) more than 20
milliseconds (ms) of latency is too much to be usable for virtual- and
augmented reality, and a latency of 15 ms should be the absolute maximum.

One important component of latency is the refresh rates of the displays,
i.e how often the display hardware updates its buffers and thus "draws"
a new image on the displays. Both the Oculus Rift CV1 and the HTC
Vive has a refresh rate of 90 Hz (i.e the display updates 90 times per
second) for this reason, as opposed to the 60 Hz which is more common
in commodity displays. In addition to refresh rate, the frame rate, i.e how
often the graphics processing unit (GPU) renders new frames/images, is
also important. To ensure that the displays don’t "redraw" an identical
frame on a buffer update the frame rate should thus ideally be the same
or higher than the refresh rate (e.g 90 frames per second for the Oculus Rift
CV1 or HTC Vive). Frame rate also determines the rendering latency, i.e the
time is takes before an updated image, reflecting the user’s latest actions, is
produced. With 60 frames per second the rendering latency is on average
about 16.7 ms, while at 90 fps it is 11 ms on average, and thus under the
15 ms maximum threshold (not accounting for other phases). Refresh rate
and frame rate are thus highly codependent, where latency is only as low
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as the weaker of the two allow. The target computer should thus have a
CPU and GPU strong enough to meet a frame rate equal or above to the
HMD’s refresh rate.

Asynchronous Reprojection

To reduce the perceived latency, or to compensate for a frame rate that is
too low, several virtual reality HMDs make use of asynchronous reprojection
(equivalent to what Oculus VR refer to as "asynchronous time warp") (S.,
2016). This is a technique in which the virtual reality system generates
intermediate frames in situations where the software (e.g a game) can’t
maintain the required frame rate (which is typically 90 fps with 90 Hz).
In simple terms asynchronous reprojection produces "in-between frames",
which is a manipulated version of an older rendered frame. This is done
by morphing the frame according to the most recent head tracking data
just before the frame is presented on the displays (S., 2016). By doing
this, software that runs at e.g 45 FPS (frames per seconds) natively can
be transformed into 90 FPS by applying asynchronous reprojection to
each rendered frame. Every other frame is thus actually a manipulated
version of the former frame. It should be noted that frames produced
by asynchronous reprojection should only be regarded as "pseudo-frames"
that compensate for lacking system performance in a rather performance-
cost efficient manner, thereby giving lower-end systems (such as Sony’s
Playstation 4) access to VR. Also note that these pseudo-frames, produced
by asynchronous reprojection, are still more susceptible to unfortunate
side effects, such as positional judder, than application rendered frames
(the "real frames"). Positional judder is one of the most obvious visual
artifacts using this approach and can make objects near the user seem
"blurry" or unfocused (see figure 3.2.1 on the next page) (Antonov, 2015).
Asynchronous reprojection should thus only be regarded as a technique to
compensate for a lacking frame rate, as its side effects are still considered
better than the negative effects (such as latency) a low frame rate has for
the virtual reality experience (Dean Beeler and Pedriana, 2016).

3.2.2 Display Resolution and Pixel Density

Virtual reality headsets also have strict demands in respect to display
resolution and quality. As the eyes of the user is closer to the displays than
with a regular monitor, and the displays have to "wrap around" the user’s
whole field of view, flaws and shortcomings in the display technology
become more apparent. One such example is the screen-door effect (SDE)
(see figure 3.4 on page 19), which is when the lines separating the display
pixel or subpixels are visible in the displayed image (Kumparak, 2016).
To illustrate this issue Kumparak (2016) had the following remark about
the Oculus Rift DK1 (released in 2013 with a resolution of 640×800 per
eye): "Its low resolution screen (combined with magnification lenses that
helped wrap the image around your view) made even the most beautifully
rendered 3D environment look dated. It was like you were sitting too close
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Figure 3.3: Positional judder can make objects near the user seem "blurry"
or unfocused. In the image the objects near the user are more blurry than
than those that are farther away. This is because these object "move" more,
relative to the user, from frame to frame as the user’s head moves. Picture
from Antonov (2015)

to an old TV, or staring at the display through a screen door (aptly, this
shortcoming quickly came to be known as “the screen door effect”)". With
the release of commercial and more high-end virtual reality headsets, the
screen-door effect has become less apparent. On the time of writing, two
of the most sold virtual reality headsets, the Oculus Rift CV1 and the HTC
Vive, both have a resolution of 1200 × 1080 per eye (a combined resolution
of 2160 × 1200) with a pixel density of about 2450 ppi (pixel per inch), which
is about ten times denser than the DK1’s 215 ppi. With the improved pixel
density, combined with the use of Fresnel lenses to create optical diffusion
(i.e spreading out light to make it "softer"), the screen-door effect is severely
minimized in the latest high-end virtual reality headsets (Davies, 2016).

Just as having low latency, and thus a high amount of frames rendered
per second, demands much from the computer, so does the high resolution.
As each lens has a resolution similar to a commodity computer display
(1200 x 1080), the application must effectively render twice as many frames
as it would when only using such a display with the same frame- and
refresh rate. With the 90 Hz refresh rate of the Rift and Vive, this effectively
means that 180 frames with a 1200 x 1080 resolution should ideally be
produced per second.

3.2.3 Rendering Techniques

In addition to the considerable hardware demands a virtual reality system
places on a computer, it also impacts how virtual reality applications
should be designed and implemented. This is specially apparent with
rendering techniques, i.e the process of generating images from 2D or 3D
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Figure 3.4: An example of the screen-door effect.

models. As this is a demanding process with high fidelity graphics, as
commonly found in modern computer games and other 3D applications,
the rendering engine often employs several techniques and "tricks" to
enhance it’s performance, or at least make it seem so to the end user.
Several of these optimization techniques’ value can be diminished in a
virtual reality setting, thus not yielding the same performance benefit as
they would when applied to non-VR applications.

Because of the latest virtual reality headset’s high resolution and
wide field of view (usually about 110 degrees), more of the virtual
environment is shown to the user in a frame than is usual in non-
VR applications (Ohannessian, 2015). This greatly affects several culling
techniques2, such as frustum culling3 and occlusion culling4, which are
commonly used 3D rendering techniques for removing objects that don’t
contribute to the final image from the rendering pipeline (Johnson, 2013).
Simply put, the rendering engine tries to only render what’s actually visible
to the user, while other objects are ignored to diminish the workload. As,
on average, more objects are visible to a user wearing a HMD than a user
using a regular display more object have to be rendered, which implies
more work for the rendering engine (Ohannessian, 2015).

Another commonly employed technique in game development is using
flat 2D images for certain parts of the virtual environment instead of 3D
objects (Ohannessian, 2015). Examples of this are e.g. present in game
"Super Mario 64", released for the Nintendo 64 in 1996, and one of the
first commercially successful video games to utilize 3D. In this game one
can often spot objects, such as balls, trees and fences, that tries to appear

2Techniques created to avoid rendered objects that don’t contribute to the final image,
thereby increasing the application performance.

3Frustum culling is concerned with only rendering objects that is within the field of view
(the frustum pyramid) of the user.

4Occlusion culling consists of filtering out the objects that are entirely hidden behind
other opaque objects (Pérez Fernández and Alonso, 2015).
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as 3D objects, but in reality are 2D images that are rotated to always face
the camera. Similar techniques, although usually more subtly applied, are
still commonly used today, but not for virtual reality applications. This is
simply because the "2D deception" becomes much more obvious with the
depth perception the stereo cameras enable (Ohannessian, 2015).

3.3 Virtual Reality- and Simulator Sickness

Virtual reality sickness, also referred to as cybersickness, can occur with
exposure to virtual environment when using virtual reality technology, and
causes symptoms that are similar to those of motion sickness (LaViola,
2000). This condition also has many similarities with simulator sickness,
which typically is experienced by pilots undergoing training in flight
simulators, but as explained by Stanney et al. (1997) these two conditions
are different. Simulator sickness, not using virtual reality, tends to be
characterized by oculomotor disturbances, whereas virtual reality sickness,
using virtual reality, tends to be characterized by disorientation (Stanney
et al., 1997). Symptoms that can occur due to virtual reality sickness include
headache, eye strain, nausea, sweating, disorientation (e.g through Vertigo
5) and temporary loss of muscle coordinates (e.g through Ataxia 6) (LaViola,
2000).

Contrary to motion sickness, where the user visually perceives to be still
while in actual motion, virtual reality sickness often turns this around: The
user visually perceive to be in motion while he or she in reality is stationary.
Virtual reality sickness can thus in many ways be considered as "a reverse
motion sickness". There are several theories on why virtual reality sickness
occurs, with three of the more popular being the sensory conflict theory, the
poison theory and the postural instability theory (LaViola, 2000).

The sensory conflict theory is the oldest and most supported of the
three, and thus the one we will focus on. This theory claims that virtual
reality sickness is caused by the conflict or discrepancies between the
senses that provide information about the body’s orientation, motion and
acceleration. In a virtual reality setting this typically means that the
visual sense perceive the body being in movement, while the vestibular
sense 7 perceive that the body is stationary, thus causing a sensory
conflict (LaViola, 2000).

The susceptibility for virtual reality sickness varies among users. Some
users might experience it shortly after putting on the headset, while others
may never experience it (Stanney et al., 2003). There can be a multitude of
causes for virtual reality sickness, and while some are less under the VR
application designer’s control than others, they should still be understood
by the VR designer (Stanney et al., 2003). To ensure an optimal virtual
reality experience when using the design review application, outlined in
section 2.3 on page 10, the design and implementation should address

5A state where the user’s surroundings appear to swirl dizzily (LaViola, 2000)
6A lack of voluntary muscle coordination
7a sensory system that partially provides the sense of balance and spatial orientation.
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these potential consequences. The following subsections will thus review
what is known about virtual reality sickness and what can be done from
a design and implementation standpoint. The following two subsections
will review factors that contribute to virtual reality sickness, and make a
distinction by what are mostly determined by individual differences and
what is mostly determined by the virtual reality hardware and application
design.

3.3.1 Individual Differences in Susceptibility

Research has identified some individual differences that correlate with the
individual’s susceptibility for experiencing virtual reality sickness. One
observation is that the susceptibility for virtual reality sickness correlates
heavily with motion sickness susceptibility, and factors that influence
motion sickness susceptibility also usually influence virtual reality sickness
susceptibility (Stanney et al., 2003). Below are some theories of the major
contributing factors that are based on individual differences, and which
are difficult to account for during the design of a virtual reality application.
Note that some of these finding were originally for simulator sickness, but
have proven to hold for virtual reality sickness as well.

Age

Research suggest that users between the ages of 2 and 12 are the most
susceptible to virtual reality sickness, with a rapid decrease in susceptibility
until an age of about 21 (Kolasinski, 1995). With regards to older users
(e.g 50 years of age) the research findings seem to differ for virtual reality
sickness and simulator sickness. Brooks et al. (2010) reported that older
participants had a greater likelihood of simulator sickness than younger
participants, while LaViola (2000) writes about how virtual reality sickness
is almost nonexistent in participants of 50 years of age.

Gender

Some research indicate that women are more susceptible to simulator- and
virtual reality sickness than men (Kennedy, 1985). The most common
theories to explain this difference point out the genders’ differences in
hormonal composition, field of view (some research suggests that women
have a wider field of view than men) and differences in depth cue
recognition (Limited, 2012). Women are also most susceptible to virtual
reality sickness during ovulation (Clemes and Howarth, 2005).

Ethnicity

Some ethnicities seem to be more susceptible to virtual reality sickness
than others, suggesting a genetic component. Several studies indicate that
asian people on average tend to be more susceptible to visually-induced
motion sickness than people from other regions. One study reported
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on Chinese people being more susceptible than European-Americans and
African-Americans on measures to motion sickness induced by a circular
vection8 drum9, while another study claims that Tibetans and Northeast
Indians have a greater susceptibility to induced motion sickness than
Caucasians (Barrett, 2004).

Health

Symptoms of virtual reality sickness are more prevalent in people who
are fatigued, sleep deprived, are nauseated or have an upper respiratory
illness, ear trouble or influenza (Kolasinski, 1995).

Postural Stability

Users with a postural instability have been found to be more susceptible
to visually-induced motion sickness, such as virtual reality sickness, and
to experience stronger symptoms of nausea and disorientation (Kolasinski,
1995).

Experience with the Application

More exposure to virtual environments can train the brain to be less sensi-
tive to their effects (Stanney et al., 2003). Users tend to become less likely to
experience virtual reality sickness as they become more familiar with the
virtual reality application. This adaption may occur with only a few sec-
onds of exposure to the application (Kennedy, 1985).

In addition to this, people with a low threshold for detecting flicker
and low mental rotation ability are more susceptible to virtual reality
sickness Kolasinski (1995).

3.3.2 Virtual Reality Hardware and Design Factors

This section identifies some of the most common contributers to virtual
reality sickness, which can be diminished or mitigated completely by either
the virtual reality hardware or the virtual reality application design and
implementation.

Flicker

Flicker is a contributing factor to virtual reality sickness, in addition to also
being distracting for the user and a cause of eye fatigue (LaViola, 2000).
There are two specially interesting observations done about flickering:
First, the degree of perceived flicker is subjective as individuals have
different flicker fusion frequency thresholds, i.e points at which flicker becomes

8Vection is the phenomenon that a stationary user can feel like s/he is moving when a
large part of his or her visual field moves.

9Circular vection drum is a large vertically-oriented rotating drum surrounding the user
to induce vection.
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visually perceivable (Pausch et al., 1992). Second, the likelihood that
flickers are perceived increases as the field of view increases, as the
peripheral visual system is more sensitive to flicker than the fovea vision
system10. This is again an important argument for the importance of a high
enough refresh rate in virtual reality displays (discussed in section 3.2.1 on
page 16).

Acceleration

As mentioned earlier sensory conflict during a virtual reality session might
occur. This is especially noticeable during acceleration that is conveyed
visually, but not to the vestibular organs (inner ear organs that responds
to acceleration). The speed of movement does not seem to contribute to
virtual reality sickness in the same scale as the vestibular organs do not
respond to constant velocity.

Camera Control

Some theories indicate that the ability to anticipate and control the motion
the user experiences plays a significant role in staving off motion- and
virtual reality sickness (Rolnick and Lubow, 1991). Unexpected movement
of the camera should thus be avoided in the virtual reality application.
If the camera control is taken away from the user it is considered good
practice to cue the impending camera movement to help the user to
anticipate and prepare for the visual motion (Lin et al., 2004).

Field of View

The term "field of view" (FOV) can refer both to display FOV and camera
FOV, which are similar, but still distinct concepts that can both have an
effect on the user’s proneness to virtual reality sickness.

Display FOV refers to the area of the visual field subtended by the
display. As motion perception is more sensitive in the periphery view a
wide display FOV can contribute to VR sickness by providing the visual
system with more visual input, i.e more "area" in the periphery, than a
smaller display FOV. This can lead to more sensory conflict as more of
the visual view suggests that the user is moving, while he or she might
in actuality be standing or sitting still. Reducing display FOV can reduce
the changes of VR sickness (Draper et al., 2001), but can also reduce the
level of immersion and awareness, and require the user to turn his or her
head more than with a higher display FOV.

Camera FOV refers the area of the virtual environment that the graphics
engine draws to the display. If the camera FOV is set up wrong,
movement of the user’s head can lead to unnatural movement in the
virtual environment (e.g a 15 degree rotation of the head can lead to a 25
degree rotation of the camera in the virtual environment). In addition to
being highly discomforting, this can lead to a temporary impairment in the

10The sharp vision around the area the user focuses.
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vestibulo-ocular reflex, which is a reflex to stabilize images on the retinas
during head movement (enabling people to e.g read while moving their
heads) (Stanney, 2002).

Latency and Lag

As mentioned earlier in this chapter, latency and lag can have a major
impact on virtual reality sickness and the usability of the virtual reality
application as a whole. Although designers and developers have no control
over many aspects of a system’s performance, it’s important to make
sure the target virtual reality application doesn’t drop frames or lag on a
minimum technical specifications system (Dean Beeler and Pedriana, 2016).
While some dropped frames or occasional jitter can be a minor annoyance
in conventional applications or video games, it can have a much more
discomforting effect on the user of a virtual reality application.

Some research indicates that a fixed, and thus predictable, latency
creates about the same degree of VR sickness whether it’s as short as 48
milliseconds or as long as 300 milliseconds, and that big and predictable
latency or lag are more comfortable for VR users than smaller, but more
unpredictable, latency or lag (Draper et al., 2001).

Focus Distance

Although not directly related to virtual reality sickness, it is still important
to avoid discomfort and fatigue for the user by placing content he or she
will be focusing on for extended amounts of time in an optimal range. As
an example Oculus VR recommends such content to be placed a distance
in the range of 0.75 to 3.5 Unity units/meters away from the camera
(Dean Beeler and Pedriana, 2016).

3.4 Summary and Design Considerations

Throughout this chapter we have reviewed various aspects related to
virtual reality, its performance demands and some potential contributers
to virtual reality sickness. For the design- and implementation phase of
our design review application, there are some aspect to be more concerned
with than others. As will be discussed in chapter 5, 6 and 7, some of
these potential issues, like incorrect field of view settings, are usually taken
care of by the virtual reality headset’s runtime environment, libraries or by
other frameworks, and thus usually work correctly "out of the box". Other
potential issues - like latency, lag and flicker - are usually avoided simply by
utilizing sufficiently powerful hardware, with perhaps the HMD, CPU and
GPU being the most important. An exception from this is with extremely
performance demanding applications, in which case software optimization
should be considered. Of topics that can be addressed at design- and
implementation time acceleration, camera control and focus distance are
included.
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As the initial design ideas of the design review application revolves
around the user virtually moving around a 3D model, while in actuality
being stationary at his or her desk, some degree of sensory conflict is
inevitable. There are however measures we can take to lessen the impact
of such a sensation and combat virtual reality sickness. With regard
to acceleration we can ensure that the acceleration always feels gradual
instead of going from 0 m/s (meter per second) to e.g. 20 m/s in just a
couple of frames (of which there should be about 90 per second). This
gradual and slower increase in speed should not trigger the vestibular
organs to the same extent as higher acceleration. As gestures are more
continuous in nature than buttons, which usually are discrete (either a
button is pressed or not), they might be a natural fit for such a gradual
acceleration. If acceleration is still too much of an issue, one can also
limit the user’s peripheral vision and field of view by "framing" the
frames and thus not have any movement appearing in the user’s outer
peripheral vision (see section 3.3.2 on page 23 for a quick discussion of this
phenomenon). For the user this might seem like looking like unmagnified
binoculars with the edges of his or her peripheral vision being obscured.

To combat virtual reality sickness we can also ensure that the user
always has direct control of the camera. This is perhaps easier to ensure
in our application, were there are few reasons to take the camera control
away from the user, compared to e.g a game (which usually are much
more event-driven). It does however become relevant and non-intuitive
in certain scenarios. One such scenario, which is discussed in chapter 5
and 7, is the annotation form, which is an input schema the user can fill in
when editing an annotation.

In a non-VR application this could typically be handled by showing
the form as an overlay, temporary covering the model, while disabling any
camera movement as long as the form was open. Although this might also
seem like an intuitive thing to do in a virtual reality application, it does take
camera control away from the user, which - as described in section 3.3.2 on
page 23 - should be avoided. Because of this, the user should still be able to
control the camera while the annotation form is open by, and thus be able
to "look away" from the form.

There is also another consideration to take with regards to the
annotation form, which is the focus distance (covered in section 3.3.2 on the
preceding page). Should the annotation form be an overlay (i.e be drawn
directly on the screen space), as would be intuitive in a non-VR application,
it would be too low a focus distance. This would be analogous to holding a
sheet of paper directly in front of the user eyes and asking them to read it.
The annotation form should thus be at a comfortable focus distance from
the user, i.e 0.75 to 3.5 Unity units/meters away from the camera, and thus
present in the world space instead of screen space, which is reviewed more
in section 7.5 on page 75.

There are thus several potential issues to be mindful of when develop-
ing a virtual reality application. Just as this chapter has covered the land-
scape of virtual reality, the next chapter will cover the landscape of gesture
recognition technology, a technology which can extend the possibilities of
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virtual reality and our virtual reality design review application.
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Chapter 4

Gesture Recognition
Technology

This chapter will review what gesture recognition is, what technology
enables it, and how it can potentially give new possibilities when working
with three-dimensional environments, like our design review application
will enable. Furthermore, using gesture recognition technology with
virtual reality is of special interest as virtual reality in many ways change
several human-computer interaction patterns. This chapter will also
compare several competing technologies that enable gesture recognition,
and use this comparison as a foundation for the design and implementation
of the design review application.

4.1 Gestures

According to Hogan and Stubbs (2003), non-verbal communication makes
up about two-thirds of all communication between humans, with gestures
being one of the most common categories of non-verbal communication,
often conveying the most specific linguistic content. A gesture can be
defined as a physical movement of the hands, arms, face and body with the
intent to convey information or meaning (Mitra and Acharya, 2007), and
can often be classified into several categories. Even though a gesture can
involve several parts of the body, hand gestures are of special interest to this
thesis, as they are often the most used in non-verbal communication and
the most convenient to utilize in our design review application. Because of
this, the term "gestures" are often used synonymously with "hand gestures"
for the remainder of this chapter.

Gestures as an interaction and communication method not only
between humans, but also between human and computer, can be an
interesting topic. This is perhaps especially the case when it comes to
virtual reality as it sets some constraints with regard to more conventional
interaction methods, like using a mouse and keyboard. Rautaray and
Agrawal (2015) also point out that there are situations in which these
devices are impractical for human-computer interaction (HCI), and that
this is particularly the case for interaction with 3D objects. As mentioned
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Figure 4.1: The vision-based hand gesture categories (Kaaniche, 2009).

earlier, gestures can be divides into several categories, with two of the
primary ones being static gestures and dynamic gestures.

Static gestures can in simple terms be defined as gestures without any
movement. The hand and its fingers and joints simply maintain a certain
position or orientation and it is recognized as a gesture. One example
of this gesture category is the "V sign" (or the "peace sign"), where the
index and middle fingers are raised and parted while the other fingers are
clenched.

Dynamic gestures, on the other hand, are gestures that involve or
require movement for the gesture to have semantic meaning. One example
of this might be to wave goodbye to someone or to twist a straight
hand back and forth to indicate uncertainty. One can classify dynamic
gestures into several subclasses (See figure 4.1), such as conscious gestures,
which are done intentionally for communication purposes, or unconscious
gestures, which are carried out unconsciously.

What gesture types are being used has implication for the gesture
recognition methods as well, as dynamic gestures have a temporal aspect
that static gestures don’t (Rautaray and Agrawal, 2015). This means that
when recognizing dynamic gestures one must handle the time aspect of the
gesture (i.e from the gesture starts to the gesture ends), and thus keep track
of the frame-to-frame transitions of the hand. This is the reason Hidden
Markov Models (HMMs) are commonly used for dynamic recognition
algorithms, as they specifically are designed to handle state transitions.
Static gestures recognition schemes don’t need this complexity as whether
or not a gesture is performed can be determined from individual frames.
Thus a more general classifier or template-based algorithm can be applied
for a static gesture recognition system (Rautaray and Agrawal, 2015).

4.2 Gesture Recognition Devices

To be able to apply the various hand gesture recognition algorithms one
must first be able to monitor the user’s hands through some sort of
hardware. There are several categories of these recognition systems, which
usually have roots in sensor technology, image processing and computer

28



Figure 4.2: The Z Glove, developed by Zimmerman in 1982. Picture from
Premaratne (2014)

vision (Vafadar and Behrad, 2014).
The first attempts at a commercial hand gesture recognition system

were typically glove-based control interfaces, often called data gloves, and
were gloves with sensors attached to it (see figure 4.2). As the image
processing and computer vision technology wasn’t mature yet, these
contact-based devices remained the primary gesture recognition technology
until the image processing-reliant vision-based devices began to see some
success in the 2000s (Premaratne, 2014). Another factor that made data
gloves ideal was a very limited requirement for processing power, as any
pre-processing were rarely done, and thus the systems could run optimally
on the commodity 1980s and 1990s computers (Premaratne, 2014).

Today, both contact-based and vision-based devices are utilized for
gesture recognition purposes. The following subsections will the discuss
the main properties of the two and review their differences.

4.2.1 Contact-based Devices

Contact-based devices are usually wearable objects, such as gloves or
armbands, which register the user’s kinetic movement through sensors. A
variety of sensor technologies have been applied to capture the physical
data of a users hand (such as finger bending and hand orientation
and position). Traditionally a combination of inertial navigation systems1

1A navigation tool, often used on ships and aircrafts, that calculates position, orientation
and velocity.
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Figure 4.3: The Myo armband is a contact-based gesture recognition device
worn on the forearm. Picture from Silver (2015).

and flex sensors2 have been utilized in contact-based gesture recognition
devices (Sturman and Zeltzer, 1994). Inertial navigation systems contain
motion and rotation sensors, such as accelerometers and gyroscopes, and
is used to monitor the hand position and orientation by calculating the
position, orientation and velocity (in terms of direction and speed) via
dead reckoning, and thus without the need for external references (Berg
et al., 1970). Flex sensors are often positioned at important finger joints
to determine the amount the finger is bent by.

There are also other types of sensors being used in various contact-
based products. One example of this is the Myo armband by Thalmic Labs
(see figure 4.3), which - in addition to containing gyroscopes, accelerom-
eters and magnetometers - also utilizes a set of electromyographic (EMG)
3 sensors that sense electrical activity in the forearm muscles (Silver, 2015)
By monitoring this electrical activity, i.e the electric potential of the muscles,
the Myo armband can thus determine the state of each muscle (e.g whether
it is contracted or not).

4.2.2 Vision-based Devices

Vision-based devices usually make use of either depth-aware cameras or
stereo cameras to approximate a contour/silhouette or 3D representation
of what is output by the cameras. A vision-based hand gesture recognition
system thus takes "pictures"4 of the user’s hands, and often applies
various image processing techniques (e.g image normalization) before
using a computer vision algorithm to detect if any known gesture is being
performed. Today, there are three primary vision-based technologies:
Stereoscopic vision, structured light and time of flight (Ko and Agarwal, 2012)

2A "bend sensor" that measure the amount of deflection.
3Electromyography (EMG) is an electrodiagnostic medicine technique for evaluating

and recording the electrical activity produced by skeletal muscles (Kamen, 2004)
4Usually about 60 images/frames per second
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Figure 4.4: Comparison of Vision-based sensor technologies (Ko and
Agarwal, 2012).

(see figure 4.4 for a comparison). These technologies all use different
techniques to construct 3D representations of the captured 2D images,
as the depth information is crucial in a vision-based gesture recognition
system (Ko and Agarwal, 2012).

Stereoscopic vision is arguably the most common of these vision-based
methods and is a method that in many ways seems inspired by how
the human body processes depth information. This technique uses two
cameras - often referred to as a stereo camera - to obtain a left and right
image (just as human eyes), which are sent to the tracking software. After
such a stereo image (see figure 4.5 on the next page) is captured the left-
and right part are compared in software and a disparity image that relates
the displacement of objects in the images is created. This disparity image
can in many ways be regarded as a sum of the offsets between the left and
right images, due to their cameras’ different point of views of the tracked
object.

Structured light achieves a 3D representation of the tracked object in
a different manner. This technique instead gains its depth information by
projecting a pattern of structured light, such as a grid or horizontal bars
(somewhat similar a barcode reader), and look at the way this pattern
deforms when hitting a surface (Ko and Agarwal, 2012). By looking at
how the pattern behaves, e.g that it curves around something, the system
can thus conclude that e.g. an object is present on the surface or what
shape it has (see figure 4.6 on the following page for an example of this).
A structured light system thus only need one camera, as opposed to the
stereoscopic vision method.

Time of Flight is a technique that acquires depth information by
measuring distances to the captured object by illumination, and can thus
be considered a LIDAR system5. The system transmits light pulses from

5Light Detection And Ranging: The technique of emitting light to a surface and measure
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Figure 4.5: Stereo image captured by a stereoscopic vision device. These
images are compared by looking at differences (offsets) in the object’s
position and create a disparity image which is used to obtain depth
information. Picture from Colgan (2016)

Figure 4.6: Vision-based gesture recognition can be achieved by a struc-
tured light approach. With structured light the depth information is ob-
tained by projecting a pattern of structured light, and look at the way this
pattern deforms when hitting a surface (such as the doll’s face in the pic-
ture). Picture from Ramamoorthi (2007)

an emitter and a receiver determines the distance to different points of the
measured object by calculating the travel time of the light pulse from the
emitter to the object and back to the receiver in a pixel format.

As mention previously, these techniques require more processing
than those of contact-based devices, but usually allows its users to use
the system without using any form of gloves or armbands (Rautaray
and Agrawal, 2015). Even though vision-based gesture recognition
technologies are more complex, computationally demanding, and prone to
errors in the form of inaccurate readings, they still have some important
advantages over contact-based devices, as will be covered in the next
section.

the time it takes to return to its source.
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4.2.3 Technology Comparison

Both contact-based and vision-based technologies have their respective
advantages and disadvantages (see Rautaray and Agrawal (2015) for a
more thorough discussion of these). As contact-based devices avoid
several of the challenges of vision-based devices, such as illumination and
occlusion, they generally have a higher accuracy of recognition. In addition
to this, and as explained earlier, contact-based devices usually also rely less
on processing resources as the sensor data can be applied more directly
than the frames captured by a vision-based system. Contact-based systems
are also known to give more tactile feedback6 than vision-based systems.

Vision-based devices, on the other hand, are seen as more user friendly,
as they usually don’t require the user to wear anything, and can thus also be
used more easily in combination with other input methods (such as mouse
and keyboard). This is perhaps especially relevant when it comes to using
gesture recognition technology in sterile environments (such as in surgery),
as no contact with the device is required.

The main disadvantage of contact-based devices is the potential
health hazards, which may be caused by some of its components (Mau-
reen Schultz, 2003). Research has suggested that mechanical sensor materi-
als may raise symptoms of allergy and magnetic component may raise the
risk of cancer (Nishikawa et al., 2003). Even though vision-based devices
have the initial challenge of complex configuration and implementations,
they are still considered more user friendly and hence more suited for us-
age in long run. Because of these reasons the design review application
should thus ideally utilize a vision-based gesture recognition technology.

Of the three vision-based technologies outlined above, stereoscopic
vision is arguably the most promising one (Ko and Agarwal, 2012). One
of the reasons for this is that devices utilizing this technology have proved
more reliable in variable light conditions than their counterparts, as both
structured light- and time of flight technologies rely heavily on light to
obtain depth information, while stereoscopic vision does so by looking
at image offsets. Stereoscopic vision devices also usually have a better
range, i.e they can capture objects farther away from the cameras, and
a lower material cost (they are cheaper, which also makes them more
attractive for the consumer market) (Ko and Agarwal, 2012). Because of
this the stereoscopic vision technology is deemed the most appropriate
vision-based technology to use with the design review application. In the
next sections we will review central concepts when utilizing a vision-based
gesture recognition system.

4.3 The Gesture Recognition Pipeline

A gesture recognition system can in many ways be regarded as a
pipeline with three fundamental phases: Detection, tracking and recogni-
tion (Rautaray and Agrawal, 2015).

6A (simulated) sense of touch to indicate that the user e.g has pushed a button
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4.3.1 Detection

The first step in a typical gesture recognition system is to detect the
relevant parts of the captured image and segment them from the rest. This
segmentation is crucial because it isolates the relevant parts of the image
from the background to ensure that only the relevant part is processed by
the subsequent tracking and recognition stages (Cote et al., 2006). A gesture
recognition system will typically be interested in hand gestures, head-
and arm movements and body poses, and thus only these factors should
be observed by the system. A gesture recognition system interested in
detecting e.g. hand gestures should thus only consider hands as a relevant
segment, and thus only observe these.

Many different detection methods have been proposed by research,
each using different visual features to detect relevant segments. Example
of such visual features include skin color, shape, motion and anatomical
models of the hands (Cote et al., 2006).

Color Detection

Color detection is a method of detecting the relevant segment (e.g. hands)
by its color. When employing this method one important decision is
what color space to use, though color spaces efficiently separating the
chromaticity from the luminance components of color are typically the
preferred ones. These are favored as they have some degree of robustness
to illumination variability, which is a weakness of this detection method. In
addition to this skin color detection also have performance problems when
the background contains objects that have a color distribution similar to
human skin, although this can be combated by background subtraction, and
with variability in human skin tones (Rautaray and Agrawal, 2015).

Shape Detection

Shape detection is a method of detecting the relevant segment by its shape,
and usually tries to extract the contours of objects to judge whether those
objects are relevant or not. An advantage with this method over color
detection is that it’s not directly dependent on skin color or illumination,
although these are still a factor (Rautaray and Agrawal, 2015). However, a
major disadvantage with this methods relates to occlusion and viewpoint
problems, which might cause a hand to not be recognized as one because of
the camera angle and/or the hands orientation and configuration. One way
to prevent this might be to use several cameras with different viewpoints.
Shadows can also cause a problem as shadows of a hand often will be
detected as hands themselves. Because of these disadvantages it is more
common to use this method in combination with other ones rather than on
its own.
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Figure 4.7: A typical gesture recognition pipeline (Pisharady and Saerbeck,
2015)

Motion Detection

Motion detection is a method of detecting the relevant segment though
motion, and assumes that all moving object are relevant. When used as a
gesture recognition scheme it requires a very controlled setup as it assumes
that the only motion in the image is caused by hand movement. This
method is also more commonly used in combination with other methods.

4.3.2 Tracking

The second step in a gesture recognition system is to track the movements
of the relevant segments of the frames, e.g. the hands. Tracking can be
described as the frame-to-frame correspondence of the segmented hand
regions and aims to understand the observed hand movements. This is
often a difficult task as hands can move very fast and their appearance can
change vastly within a few frames, especially when light conditions are a
big factor (Wang and Li, 2010). One additional note is that if the detection
method used is fast enough to operate at image acquisition frame rate, it
can also be used for tracking (Rautaray and Agrawal, 2015).

4.3.3 Recognition

The last step of a gesture recognition system is to detect when a gesture
occurs. This often implies checking against a predefined set of gestures,
each entailing a specific action. To detect static gestures (i.e postures
involving no movement) a general classifier or template-matcher can
be used, but with dynamic gestures (which involves movement) other
methods, which keep the temporal aspect, such as a Hidden Markov Model
(HMM), are often required (Benton, 1995). The recognition technology
often makes uses of several methods from the field of machine learning,
including supervised, unsupervised and reinforced learning.

When a gesture recognition system detects a relevant segment, it is
thus tracked and represented in some way in the system. For hand
gesture representations, which is the most relevant for this thesis, there
are two major categories of hand gesture representations: 3D model-based
methods and appearance-based methods (Rautaray and Agrawal, 2015).
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Figure 4.8: Vision-based hand gesture representations (Bourke et al., 2007)

4.4 Summary and Design Considerations

With regard to the topics discussed in this chapter, the design review
application will primarily be aimed toward usage with vision-based
gesture recognition systems, in favor of contact-based system, as they
are deemed more user friendly and doesn’t have the same health risks
associated with them. There are three primary vision-based technologies
in use today: Stereoscopic vision, structured light and time of flight,
where stereoscopic vision is viewed as the most promising one by research
(e.g. by Ko and Agarwal (2012)). This is primary because it is deemed more
robust to variable light conditions, has a better range and a lower material
cost. These factors also make stereoscopic vision devices more ideal for
usage in regular office spaces than its competing technologies, which is
relevant in terms of the design review application.

In the next chapter the design of the design review application will be
reviewed, where one such stereoscopic vision device - The Leap Motion
Controller - is identified as the target gesture recognition system. The
Leap Motion Controller, which will be reviewed further in depth in
chapter 6, has a convenient and high level API, which takes care of a lot
of the challenges associated with detection, tracking and recognition (as
discussed in section 4.3 on page 33). This also makes it an ideal candidate
for usage in software project as one can interface with at a higher level
and use several of its abstractions, such as its detectors (also reviewed in
chapter 6), to rapidly prototype gesture recognizing applications.
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Chapter 5

Application Design

This chapter will review the design of the design review application,
with special emphasis on three subjects: The functional requirements, the
gesture scheme and the technology choices. The functional requirements
of the application will be laid out through several use cases. These describe
the different functionality by statements on the form "the user should be
able too.." (e.g. move or place an annotation). The gesture scheme is
discussed next, and is a definition of the different gestures a user can
perform, how they are performed and what action they should result
in. Lastly, this chapter will cover the different technology choices, more
specifically: What software framework to use, what virtual reality HMDs
to target and what gesture recognition system to utilize.

In section 2.3 on page 10 the fundamental design ideas for the virtual
reality design review application was discussed. To ensure that such an
application could change the work flow of DNV GL’s design reviews, mul-
tiple design aspects should be met and a satisfactory infrastructure would
need to be set up. As this thesis’ scope is limited to virtual reality and
gesture recognition technology’s role in such an application, several of the
components necessary for a satisfactory product will not be implemented
to focus more one these aspects. The resulting implementation, which this
design chapter outlines, will thus be more a prototype or proof-of-concept
of how virtual reality and gesture recognition technology can be used to
interact and work with 3D models.

5.1 The Application’s Functionality

This section gives an overview of the application functionality, which
will be implemented in this thesis. Initially the design also contained
specification for a launcher program - a program that orchestrated sessions
and provided the boot arguments to the graphical inspector, i.e the design
review program itself. In this launcher program a user would be able
to either host a design review session by selecting one or multiple 3D
models(s) and invite other users, or join a session by either accepting an
invite or browse through available sessions. Because of time concerns,
and to give more time to prioritize the more thesis-relevant use cases, this
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functionality was cut and the application instead boots up with tanker
model, briefly mentioned in the previous chapter.

Once the user is loaded into this model, he or she should be able to do
the following:

Choose between Virtual Reality Mode and Desktop Mode. Virtual
reality mode is meant to be used with a virtual reality headset and sets
up the correct settings (e.g the field of view). Desktop mode is meant to be
used without a virtual reality headset and instead used a regular display.
This mode sets up the best setting for regular display usage, and if a virtual
reality headset is attached the input from it will be ignored (to e.g. avoid its
orientation affecting the camera in the application).

Look around. When looking around the camera should rotate to the
desired direction, but the virtual representation of the user should still keep
its orientation. This means that the forward direction - the direction the
user’s body is facing - is the same direction regardless of where the user is
looking. Looking around should only be achievable when using a virtual
reality headset and having the application in Virtual Reality Mode - as
this functionality arguably doesn’t have the same applicability in desktop
mode. If the user is wearing a virtual reality headset, s/he might look
around by turning his or her head, so that the VR headset itself also changes
orientation.

Rotate (i.e change orientation). When rotating the whole user should
rotate in the desired direction (e.g. The forward-direction changes after
a rotation and is where the user is facing after the rotation). Rotation
should allow pitching and yawing (i.e rotation along the Y and Z axis) -
the equivalent of looking up and down and from left to right -, but not
rolling (rotation along the X axis) - the equivalent of doing a "barrel roll"
in a jet plane. This is because it might cause the user discomfort, specially
when using a virtual reality headset, as it is a (arguably) more unnatural
movement than the former, and has (presumably) little to no practical
implications. Rotation should be possible either by using a gesture or by
moving the mouse.

Move (i.e change position). The user should be able to move freely along
the X, Y and Z axis, and thus be able to move left, right, up, down,
forward and backward. This movement should happen without regard
for any external forces, such as gravity or collision. The user should
be able to move by using the keyboard or by using gestures. On the
keyboard six different keys should be used (forward, backwards, left,
right, up and down), while the same should be accomplished by either
three distinct gestures (forward/backward, left/right, up/down) or one
combined gesture (forward/backwards/left/right/up/down).
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Figure 5.1: The six degrees of movement in a three-dimensional space. A
rigid body in this space can change position along the X axis (left/right),
Y axis (up/down)and Z axis (forward/backward), or change rotation/ori-
entation along the X axis (rolling), Y axis (pitching) and Z axis (yawing).
Picture from Horia Ionescu (2010)

Annotate a point (i.e create a point annotation). The user should be able
to create an annotation - a unit of information related to an aspect of the
3D model - and attach it to a surface in the 3D model. These annotations
can visually be represented as a sphere or orb in the model (to make it
uniformly visible from all angles). This should be accomplished by either
clicking the mouse or using a gesture.

Annotate an object (i.e create an object annotation). The user should
also be able to annotate a whole object in the 3D model, as opposed to
only annotating a point (as in the previous use case). When an object,
such as a wall, pipe or gear, is annotated in this fashion it should be
highlighted or marked by a color in some distinct manner. Even though
a point annotation - as described in the previous use case - creates an new
object in the model (i.e a 3D representation of the annotation), an object
annotation (as described here) only colors or highlights the object being
annotated. This should be accomplished by either clicking the mouse or
using a gesture.

Edit an annotation. The user should be able edit an annotation, either a
point or an object annotation, by clicking on the annotation. This should
bring up a form, which should at least offer the following functionality:

• Textual input through a text box.
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• A submit-button to save the current annotation state and close the
annotation form.

• A cancel-button to close the annotation form without saving any
changes.

• A delete-button to delete the annotation, i.e removing the annotation
sphere or highlighting and all its associated information.

• Choosing between several annotation categories, labels or states by
clicking on one of several associated buttons. These should function
as radio-buttons, i.e when one is selected the others are always
deselected. These categories could refer to the progress status of the
task the annotation represents, e.g. "unresolved", "work in progress"
and "approved", or they could represent the nature of the annotation
itself, e.g. "information", "warning" and "error".

• A virtual keyboard that can be used instead of the physical keyboard
to input text. This is primarily included so the user can input text
using gesture recognition technology.

Access a menu. The user should be able to access a menu that offers
different options related to the usage of the application. The menu should
allow the the user to:

• Go back to the origin position, e.g move and rotate to the same
position and orientation as when the application was started.

• Choose whether the annotation spheres should be globally visible
(e.g. visible through walls), only visible with line-of-sight or invisible.
The first of these options is there to ensure that the user easily can
see every annotation, regardless of where the user is in the model,
while the other options are there for preference. The default should
be global visibility.

• Toggle between (i.e turn off or turn on) gesture recognition based on
whether it’s already turn on or off. This is to enable the user to use
his or her hands without it having effect on the application.

• Toggle between having X, Y, and Z axis movement as three sepa-
rate gestures (forward/backward, left/right, up/down) or one (for-
ward/backwards/left/right/up/down).

5.2 The Gestures

As mention in the use cases for the application, all of the application’s
functionality should be accessible by using gestures. The user should thus
be able to do every task only by using gestures (except looking around,
which can only be done by rotating the HMD). To support this a gesture
scheme of seven (or eight depending on perspective) individual gestures
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were created. The gestures can all be considered static gestures, meaning
that they don’t require movement for the gesture to be detected, except
for the movement required to form the gesture. Even though the gestures
can be considered static in this aspect, the user is still often required
to move his or her hand while holding the gesture to get the desired
effect. The application should also give visual feedback when a gesture
is recognized. This could be by altering the hand model in some way
(e.g color it differently by switching materials) or by having some user
interface showing it.

The gestures are individually described below on a functional level
and will be covered in more technical detail during the our review of
the implementation in chapter 7. Both the left- and right hand should be
able to execute all these gestures independently, so scenarios where both
hands do the same gestures, or different gestures, should work. The only
exception from this is the menu gesture, where one hand is assigned to
be "the menu hand" (the left hand by default) and one is assigned to be
"the selector hand" (right by default). The gestures are designed to be as
distinguishable from each other as possible to decrease the possibility of
one gesture being mistaken for another by the gesture recognition system.
The gestures should also be distinguishable from different angles, and thus
support different camera positions (assuming a vision-based system).

5.2.1 The Pinch Gesture

The pinch gesture will enable the user to rotate - and thus change
orientation- by the Y and Z axis, as specified in "rotate-use case". The
pinch gesture is accomplished by squeezing the tip of the thumb and index
fingers together while, preferably, keeping the rest of the fingers erect and
the palm facing somewhere between the table top and the displays (see 5.2
on the next page for an illustration). Once this gesture is done by the
user, the system should indicate that the gesture was recognized as a pinch
gesture. Once the system has recognized the pinch gesture it should store
the x, y and z coordinates - the position where the gesture was first detected
- as an origin point and start rotating the camera with the offset value of
this origin point. This means that when the user perform a pinch gesture
without moving the hand, the pinch gesture should be detected and be
"active", but the camera should not be moved. If the user then moves his
or her hand to the right, while still keeping the pinch gesture, the camera
should start rotating to the right also. If the user moves his or her hand
further to the right the camera should start rotate at a faster rate than
previously. The primary idea behind this origin-offset scheme, which also
are used in other gestures, is to prevent user fatigue by allowing the user
to execute the gesture in the position that feels most comfortable, as long
as this position is captured by the vision-based gesture recognition system.
In addition this scheme also prevents the user from having to move his or
her hands as much as some other schemes would (e.g. dragging motions).
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Figure 5.2: The pinch gesture (left) is used to rotate the camera along the y-
and z-axis. The palm-down gesture (right) is used to move the user up and
down along the y-axis.

5.2.2 The Palm-down Gesture

The palm-down gesture, alternatively called the Y-gesture, fulfills the up-
and-down functionality specified in the move use case, and enables the
user to move along the y-axis, relative to its orientation. The palm-down
gesture is accomplished simply by having all fingers extended, with all
of them pointing in the direction of the display with the palm facing
downwards towards the table top (see 5.2 for an illustration). This gesture,
along with the rest of the movement gestures (i.e the two following), uses
the same origin-offset scheme as the pinch gesture, but the offset is in this
gesture only measured on the y-axis, so moving the hand to the right, as
mention in the pinch gesture section, will cause no movement when the
palm-down gesture is the active gesture. Instead the user can move his
or her hands up and down on the y-axis, so the distance to the table top
increases or decreases.

5.2.3 The Palm-side Gesture

The palm-side gesture, alternatively called the X-gesture, fulfills the left-
and-right functionality specified in the move use case, and enables the
user to move along the x-axis, relative to its orientation. The palm-side
gesture is accomplished simply by having all fingers extended, with all of
them pointing in the direction of the display with the palm perpendicular
(i.e at a 90° or 270° angle) to the table top (see 5.3 on the next page for an
illustration). As one of the movement gesture, this gesture also uses the
origin-offset scheme, but only with the x-axis monitored.

5.2.4 The Fist Gesture

The fist gesture, alternatively called the Z-gesture, fulfills the forward-and-
backwards functionality specified in the move use case, and enables the
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Figure 5.3: The palm-side gesture (left) is used to move the user left and
right along the x-axis. The fist gesture (right) is used to move the user
forward and backward along the z-axis.

user to move along the z-axis, relative to its orientation. The fist gesture is
accomplished by forming a fist (i.e with no fingers extended) and is used
by extending and retracting the fist.

5.2.5 The Combined-movement Gesture

The combined-movement gesture, alternatively called the XYZ-gesture, is
a special gesture that’s only enabled if the "use combined gesture" option
is selected in the menu. When this option is enabled the other movement
gestures, i.e the palm-down-, the palm-side- and the fist gesture, should
be disabled and instead replaced by a combined version. When this is the
case, the "use combined gesture" option should be replace by a "distinguish
movement gestures" option in the menu, which disabled this combined
gesture and re-enabled the default movement gestures.

The combined movement gesture should be performed in the same
manner as the palm-down gesture, described in section 5.2.2, and can
thus be considered an overload1. However, instead of now only being
responsible for navigation along the y-axis, i.e up and down, this same
gesture is now responsible for movement along the x-, y- and z-axis,
so all hand movement (along all axes) is monitored and reflected as
movement when the combined gesture is active. The idea behind reusing
a gesture is because it limits the number of unique gestures needed, and
thus diminishes the possibility of two gestures being so similar that the
gesture recognition system often confuses them. The palm-down gesture is
selected because is arguably is one of the more ergonomic and comfortable

1A concept where the same identifier (a gesture in this case) can perform different actions
based on a current state or context (i.e whether the combined gesture scheme is active or
not.)
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Figure 5.4: The single-point gesture (left) is used to create or edit a point
annotation. The double-point gesture (right) is used to create or edit an
object annotation.

gestures to perform. Also note that when the palm-down gesture is used in
combined-gesture mode the origin-offset scheme is still used, but now all
the three dimensions are monitored.

5.2.6 The Single-point Gesture

The single-point gesture is used to annotate a point or edit a point
annotation, and is used by having the index finger extended and "pointing"
at the display while the rest of the fingers are non-extended (the thumb can
be either extended or not extended). When the user does the single-point
gesture, a raycast (a kind of invisible beam) should be fired from the user
towards where the user is facing. The player should thus be able to aim,
e.g. by utilizing a crosshair in the middle of the players screen, by looking
at a spot and use the single-point gesture to fire off the raycast. At the point
the raycast collides with a part of the model a point annotation should be
created. If the user use the single-point gesture again, while still aiming at
the same spot (where an annotation now should be present), the annotation
form should open up to allow the user to input annotation information.

5.2.7 The Double-point Gesture

The double-point gesture is used to annotate an object by highlighting it, or
to edit a object annotation. The double-point gesture is invoked by pointing
the index- and middle finger at the screen with a slight angle between
them, while the rest of the fingers are non-extended (the thumb can be
either extended or not extended). Apart from this the double-point gesture
function very similar to the point gesture, with some few exception. Object
annotations are edited by using the double-point gesture at them again, as
opposed to using the single-point gesture, which created a point annotation
on the annotated and highlighted object.
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5.2.8 The Menu Gesture

The menu gesture gives the user access to a menu especially design to use
with gestures. The menu is invoked by extending all fingers on "the menu
hand" (the left hand by default) and turn it so the palm faces the user. When
this gesture is recognized by the system a menu should appear in the shape
of a fan with its root in the palm of the user. The user can then use the index
finger on the other hand, "the selector hand" (right hand by default), and
click on one of the buttons by holder the tip of the index finger within the
range of the button (i.e close enough to the button in terms of x-, y- and
z coordinates). If the tip of the index finger is close enough to the button,
the button will start to "fill up", indicating that it is in the process of being
pressed. Once the button is "filled up" the selection is registered and the
action the button represents is carried out. Not that this mechanism is in
place to prevent miss-clicks from the user.

5.3 Technology Choices

There are several technology choices to make with regards to the imple-
mentation of the design review application. These choices include pro-
gramming framework or platform, what language to use, and what brand
of gesture recognition technology and virtual reality technology to use. Its
also important to make sure that these choices are as compatible with each
other as possible.

5.3.1 Software Framework

Selecting a suitable software framework can save a lot of time during
implementation, and simplify a lot of the implementation details. If
the framework is popular, several other relevant frameworks, SDKs and
libraries might also have integration or explicit support for it, meaning
one can be fairly confident that the two are compatible and working well
together. As the design review application will primarily be dealing with
rendering, calculations and manipulation of 3D objects, using a game
engine - which is specifically tailored for handling these topics - is an
interesting option. A game engine is a software framework, usually
designed for development of video games. The core functionality of a game
engine typically includes a rendering engine, a physics engine (at least
providing collision detection), sound, scripting, animation, networking,
streaming, memory management, and threading (Gregory, 2014). As game
engines are created to enable development of complex 3D environments
and contain many of the facilities necessary for the application use cases
outlined above, they provide a good foundation for the implementation.
Even though several game developers develops their own proprietary
game engines, which are kept strictly private to the company, there are
several commercially available ones as well. The biggest of these today
is arguably the Unity and the Unreal engines, both with broad support
from a number of third party vendors. This is a great benefit for the
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Figure 5.5: The oil tanker model provided by DNV GL. This was used as a
default model in the design review application.

implementation phase as support for our choice of virtual reality and
gesture recognition technology "straight out of the box" will ease the
development process.

Of these two popular game engines the Unity engine was selected as
the software platform. This was both a request from DNV GL, as they have
experience with it from other projects, and also enabled the reuse of an
asset bundle - containing a tanker model (see figure 5.5) - from one of their
other projects. The Unity engine and its central concepts will be discussed
in chapter 6 on page 49.

5.3.2 Virtual Reality Device

The virtual reality design review application should be targeted toward
usage with modern head-mounted VR devices. As DNV GL possesses a
HTC Vive, and this HMD will be used in test sessions with potential end-
users after implementation, the application should work optimally with
it. However, as this device is only available at their facilities, and not
during development, support should also be added for Oculus Rift DK22

as it is available via Simula Research Laboratory. As these two HMDs
have separate SDKs and runtime environment, support for them have to
be added individually. Luckily, Unity 5 supports both HMDs natively (i.e
"out-of-the-box") by enabling the project specific setting "Virtual Reality
Supported", so adding the basic VR functionality - such as camera rotation
on head turn - is trivial. Implementing support for both these virtual reality
headsets also enable a comparison of their performance in the application,
to, at least, indicate whether one HMD perform better than the other.

2The Development Kit 2, a predecessor or DK1, releases in 2014
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5.3.3 Gesture Recognition Device

When deciding on what vision-based gesture recognition system to utilize
the Leap Motion Controller, from the company Leap Motion Inc., was
chosen. The primary reasons behind this choice were as follows:

• It is a vision-based gesture recognition device that focuses only on
hand gestures, and should thus offer better hand-tracking capabilities
than devices that focus on the whole body (such as Microsoft’s
Kinect (Zhang, 2012)).

• It has been relatively well received by several evaluations and has
been reported to have a higher accuracy than similar systems in the
same price range (see evaluations by Weichert et al. (2013) and Guna
et al. (2014)).

• It utilizes stereoscopic vision, which - as discussed in section 4.2.3 on
page 33 - is arguably the most promising vision-based technology.

• It is both relatively small (the size of a matchbox) and cheap (about
70 euro at the time of writing), which makes it optimal for usage in
regular work spaces.

• It has a well-documented API3, which supports multiple program-
ming languages. This API is reviewed in chapter 6.

The Leap Motion controller also have software components tailored for
use with the Unity Engine, which also made it a convenient choice. These
components ensure that the usage of the Leap Motion Controller in the
design review application is conducted after Leap Motion’s best practices.

5.4 Summary and Final Thoughts

With these software frameworks we get several pre-made software compo-
nents, which enables us to focus more on the application specifics during
the implementation phase. The high fidelity tanker model, provided by
DNV GL, gives us a default model we can prototype all functionality on,
before generalizing the application to accept other models as well. This
generalization should be done before the application is used in any pro-
fessional capacity, but it is outside the scope of this thesis. In addition to
the model, the SDK and runtime libraries of the virtual reality vendors can
be added to the project, and (presumably) work without any custom code.
The design review application should enable the user to easy switching be-
tween these two virtual reality headsets and a desktop mode, for use with-
out a virtual reality headset. The Leap Motion Controller SDK and runtime
library (called Orion) also provides some standard assets we can use in
the implementation. The most useful of these assets include hand models,

3Application Programming Interface: A defined set of high-level functions or abstrac-
tions other software can utilize.
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API-scripts (to retrieve information from the device) and detectors, which
is used to recognize gestures. These Leap Motion components are covered
more thoroughly in chapter 6.

Before the implementation is described and documented in chapter 7,
we will do a technical review in chapter 6. The technical review will
expand upon the framework and devices choices we did in section 5.3,
and introduce some of their core concepts. This should again lay the
ground work for understanding the implementation, which is documented
in chapter 7.
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Chapter 6

Technical Review

This chapter will give a brief introduction to central concepts of the soft-
ware frameworks outlined in the previous design chapter. The sections
covering the Unity game engine and the Leap Motion Controller are both
based on their documentation pages, found at https://docs.unity3d.com
and https://developer.leapmotion.com. Note that although these intro-
ductions are brief, more detailed information is mentioned as necessary
in the implementation chapter.

6.1 Unity - The Cross-platform Game Engine

Unity (formerly Unity3D) is a cross-platform game engine developed by
Unity Technologies, and is a popular engine both in a personal- and
enterprise settings. Unity Personal is a free version for individuals
and enterprises making less than 100 000$ a year off content created in
Unity, and is the edition used in for the implementation phase. Unity
Personal is full-featured and comes with all the necessary subsystems
typically required in a game engine, like rendering, physics and scripting.
Unity makes use of either C# or UnityScript (a dialect of JavaScript) as
scripting language, where the former is the preferred by the community
and exclusively used in the implementation. As its primary software
framework Unity used Mono, an open source development platform based
on the .NET framework. The main different between the .NET framework
and the Mono framework is that mono aims to be platform independent,
whereas .NET is Windows only. The major components of the Mono
framework is a C# compiler, a runtime environment, the .NET class library
and a Mono class library.

In Unity, all script which will be using the framework must be derived
from the base class MonoBehavior. This class contains a lot of key functions
in the Unity framework, such as Start() and Update(). The following
sections will cover some important concepts in Unity.
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6.1.1 Scene

In Unity, a scene is a self-contained 3D space that hosts all objects that
logically belongs together in that space, and can thus be regarded as a top
level container of objects. Every Unity project need at least one scene as
objects have to be members of at least one scene. In a game a scene could
typically represent a level (or "a map"), and the game could thus consist of
multiple levels that were loaded or unloaded when transitioning from one
level to another. In the design review application there is currently only
one scene, which is on the tanker model.

6.1.2 GameObjects

A GameObject is perhaps the most important concept in the Unity editor
and is essentially a generic container. Everything in the scene is, or belongs
to, a GameObject. What defines a GameObject’s function or purpose is its
components, which essentially are properties of the GameObject. In Unity
there are a multitude of built-in components to cover the most common
scenarios. Examples of this include different camera components, light
components, meshes, colliders, rigid bodies and a lot more. One of the
most important components is arguably the Transform component, which
is a mandatory component (i.e every GameObject has one) and defines a
GameObject’s position, rotation and scale in the scene. Scripts, i.e custom
code in C# or UnityScipt, are also commonly used as components of
GameObjects.

A GameObject can be assigned a Tag, which serves as a useful
GameObject category. This can be especially useful in a script logic setting
when one want to make a conditional or branching decision at runtime
based on the involved object(s). One such common circumstance is when
a collision between two objects occur and one wants to find out what kind
of objects were involved (e.g. maybe a Player GameObject collides with a
Coin GameObject, which is to be collected when this occurs).

6.1.3 Prefabs

In Unity a prefab is a type of GameObject template or blueprint, and is
useful when one wants to reuse a GameObject multiple times (e.g. have
multiple copies present in the scene). Just as a class can instantiate objects,
multiple objects can be instantiated from one prefab. Any edits made to a
prefab asset are thus immediately reflected in all instances produced from
it, but any edits or overrides to the instances will be treated individually.

6.1.4 MonoBehavior

Once a script is used as a component of a GameObject in Unity, it should
inherit from the MonoBehavior base class, which contains a lot of key
functions in the Unity framework. Several of these functions are called by
Unity’s messaging system in set intervals, e.g. on every rendered frame, so
when a script inherits from MonoBehavior and overrides such a function
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Figure 6.1: The Leap Motion Controller is a vision-based gesture recogni-
tion devices that can be placed on a table top to observe the users hands.

the overridden function will instead be called on these set intervals. The
two most used of these functions are probably Start() and Update().
Start() is only called once by Unity and is called on the first frame the
GameObject the script is attached to is active. As such it can often serve as
a setup function or constructor that can initialize or retrieve relevant data.
Update() is a function that is called on every rendered frame, of which
there are typically at least 30 a second. In the design review application it is
perhaps the most used MonoBehavior function, as it is a convenient place
to place conditional checks (such as whether a certain gesture is active or
not).

In addition to these two key functions the MonoBehavior class also
contains a lot of event-based function, typically named on the format
"On<Action>" (e.g OnEnable(), OnDestroy() and OnTriggerEnter()).
These are also useful and used several places in the design review
application.

6.2 The Leap Motion Controller

The Leap Motion Controller, created by Leap Motion Inc, is a vision-based
gesture recognition system, first released in 2013 with several new versions
released in the following years. As mention in section 5.3.3 on page 47
the Leap Motion Controller is an attractive choice because of it accessibility
and affordability and was thus selected as the gesture recognition system
of choice for the design review application. This chapter is based on the
Leap Motion Controller documentation (see Colgan (2016)) for the Orion
software (i.e version 3.2 of the Leap motion software), and aims to highlight
the important conceptual foundation for using the Leap Motion Controller
in this thesis’ design review application.
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Figure 6.2: Visualization of a Leap Motion Controller, with Infrared
Imaging (left) and a Schematic View (right) (Weichert et al., 2013).

6.3 Physical properties

The Leap Motion Controller (see fig. 6.1 on the preceding page and 6.2)
contains two stereoscopic cameras, with a field of view of about 150
degrees, in addition to three infrared LEDs. These lights periodically
emit infrared light pulses at a wavelength of 850 nanometers, thus outside
the visible light spectrum, which light up about the area in front of the
controller. During these pulses grayscale stereo images are also captured,
with an effective range from approximately 25 to 600 millimeters above
the device. After this the images are sent to the tracking software, where
the images are analyzed to construct 3D representations of the captured
2D images (by comparing offsets), and compensate for static background
objects and ambient environmental lighting. The data derived from the
pictures are also combined with an internal model of the human hand to
help cope with challenging tracking conditions.

6.4 The Leap API

The controller itself can be accessed and programmed through high level
Application Programming Interfaces (APIs), with support for a variety of
programming languages, including C++, C#, Objective-C, Java, JavaScript
and Python. Although the API is programmed almost exclusively in
C, access through a variety of other languages is achieved by virtue of
various "wrapper libraries", which exposes and translates functions from
their respective languages into the corresponding C function. In addition
to this, the Leap Motion SDK also features integration with commercial
game engines such as Unity and the Unreal Engine. This section will cover
important concepts in the Leap API, which are thoroughly used in the
thesis implementation.

6.4.1 Integration with the Unity editor

To use Leap Motion in a Unity project one can simply import the Leap
Motion Core Asset Package, which includes the necessary scripts and
components to utilize Leap Motion in the project. In addition to this
Leap Motion also offers different modules, which contain several useful
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assets. Several of the assets provided by Leap Motion can often be
included directly in the scene, such as LeapHandController from the
core module and the hand model prefabs from the hands module. The
LeapHandController is arguably the most important prefab in the Leap
Motion Asset Packages and is responsible for representing the Leap
Motion device in the scene, which is important with regard to where
the hand models, when active, are positioned relative to the camera.
LeapHandController is also important as it has the LeapServiceProvider
script, which contain several key function, as a component.

The hand model prefabs are also useful assets, as - when used correctly-
they can be present in the scene and mimic what the user’s hands are doing.
This helps the user get visual feedback on what the controller is capturing
and should also make it easier for the user to hold his or her hands in an
optimal position for the Leap Motion Controller to capture.

6.4.2 The Hand Abstractions

The Hand class represents a physical hand detected by the Leap Motion
Controller, and is perhaps one of the most central abstractions in the Leap
Motion API. A Hand object provides access to lists of its pointables as
well as attributes describing the hand position, orientation, and movement.
Each hand-object also have object-representations for its fingers, palm
etc, each with its own data. One common way to access the hands are
through the frame object, which is an object-oriented representation of the
last captured frame of the device. Each of these frame objects contain a list
called hands, which contains a hand-object per detected and tracked hand
in that frame. These hand objects have their own instance variables, which
provide useful information about the properties of the hand (e.g its position
and velocity relative to the Leap Motion Controller). Some examples of
what variables the hand objects contain can be seen in table 6.4.2 on the
following page

Figure 7.9.2 on page 89 shows an example derived from the Move-
mentController.cs class in the design review implementation. This example
highlights how hand objects can be acquired from the frame object, how we
can e.g. make sure its a left-hand before proceeding, and how we can cal-
culate a new position based on the hand position offset from the gesture
origin. Note that this code is incomplete and only meant as a somewhat
compact example.

6.4.3 The Coordinate System

The Leap Motion API enables acquisition of the recognized object’s
position through Cartesian and spherical coordinate systems, which are
used to describe positions in the controller’s sensory space. The hand
positions above the Leap Motion device are given as three dimensional
vectors on the form {x, y, z}, with origin being in the center of the Leap
Motion surface (see 6.3 on page 56). Positional information, like the
position of a hand, or the position of the tip of a finger, can be access in
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Variable
name

Description

isRight, isLeft Whether the hand is a left or a right hand.
palmPosition The center of the palm measured in millimeters

from the Leap Motion origin.
palmVelocity The speed and movement direction of the palm

in millimeters per second.
palmNormal A vector perpendicular to the plane formed

by the palm of the hand. The vector points
downward out of the palm.

direction A vector pointing from the center of the palm
toward the fingers.

grabStrength Describe the posture of the hand.
pinchStrength Describe the posture of the hand.
motionFactors Provide relative scale, rotation, and translation

factors for movement between two frames.

Table 6.1: Some of the instance variables of the Leap API Hand class.

various ways. One way is to access the hands through the Frame-object,
and then find the relevant hand, palm, finger or finger-joint.

The Leap Motion API uses a right-handed coordinate convention,
meaning that when the user is positioned in front of the Leap Motion
Controller the x-axis grows more positive towards the right, the y-axis
grows more positive upwards and the z-axis grows more positive towards
the user (see 6.3 on page 56). As some frameworks, like the Unity engine,
use a left-handed convention for their coordinate system, i.e that the z-
axis grows more positive away from the user instead of towards, the Leap
Motion API also does an appropriate convention to adhere to its software
environment. The Leap Motion API also adhere to differences in units,
as e.g Unity uses a default unit of meters, while the Leap Motion uses
millimeters as default.

6.4.4 The Detection Utilities

To provide a common and high level interface to recognize gestures the
Leap Motion API offers several detection utilities called detectors. Detectors
are scripts in the core asset package that serve as basic building blocks
for hand action detections, and can e.g. detect whether a certain finger is
extended or not or which way the palm is facing. New detectors can also
be created by extending the Detector base class and implement logic that
calls Active() when the detector turns on - i.e when a certain condition
is met (e.g a gesture is performed) - and Deactivate() when it turns off
(i.e when the condition is no longer met).

Several of these detector can be chained together using a Logic Gate
to create more complex expressions. The DetectorLogicGate is itself
a detector that logically combines two or more other detectors, using
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//Update() runs every frame (typically between 30 - 120 times per second)

void Update()

{

Frame frame = LeapBehavior.getLastFrame();

iBox = frame.InteractionBox; //Used for normalization

for (int i = 0; i < frame.Hands.Count; i++)

{

Hand hand = frame.Hands[i];

if (hand.IsLeft && leftHand.getGestureType() != HandState.NONE)

{

//Measure hand position from palm position

Vector leapPoint = hand.StabilizedPalmPosition;

//Converting from right hand to left hand coordinate convention

leapPoint.z *= -1.0f;

//Normalizing the point

Vector normPoint = iBox.NormalizePoint(leapPoint, false);

if (gestureHand.getGestureType() == HandState.PALM_DOWN)

{

//PALM_DOWN is the gesture to navigate up and down the y-axis

//The y-axis hand offset from origin:

float y_offset = normPoint.y -

gestureHand.GetGestureOriginPosition().y;

//Calculate new player model position

transform.position += transform.up * speed * y_offset *

Time.deltaTime;

}

}

}

}

Table 6.2: Accessing the Leap Motion Frame objects
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Figure 6.3: The Leap Motion Coordinate System has its origin between the
two cameras.

operations like AND, OR, NAND (not AND) and NOR (not OR), to
determine its own state. If one thus were to make a thumb’s up-gesture,
one could use a logic gate with an AND-configuration together with a
detector for detecting whether or not the thumb is extended and a detector
for determining whether or not the thump if facing upward.

The detectors also have some public variables that can be adjusted
to find the optimal "gesture sensitivity". These include Period, which
determines how often the detector checks the hand state, HandModel, which
refers to which hand model is being observed by the detector and several
on-or-off values, which sets the thresholds for when the detector should be
active (i.e the detector recognizes the property it’s looking for) or off. These
on and off values can especially be the subject of repeated adjustment, as
it is deemed crucial to find a good compromise between the two values
(more on this in the implementation chapter). The detectors also has some
public functions, with two of the most important ones being OnActivate()

and OnDeactivate(). OnActivate() is called by its detector when the
detector turns on (activates), while OnDeactivate() is called when it turns
off (deactivates).

This outlines the primary means of creating gestures and connecting
them to actions using the Leap Motion API. One can create gesture
expressions, like the thumb’s up-gesture described above, using a Logic
Gate with AND. This Logic Gate will only be active (on), while all of the
detectors it references ("is hooked up to") are active, so in our example only
when the thumb is extended AND facing upwards. By then assigning a
custom created function, e.g. a function called "Accept", to the Logic Gate’s
OnActive-function we ensure that this function is called only when the
thumb’s up-gesture is done correctly.
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6.5 Summary

In this chapter we have reviewed some basic concepts in Unity and in the
Leap Motion API, both of which are relevant to understanding the next
chapter. As will be apparent in the next chapter, these concepts had a big
impact on how the design review application was implemented, as they are
utilized in several key components of the application. The implementation
chapter will also expand upon the concepts reviewed here, and - when
relevant - introduce new ones.
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Chapter 7

Implementation of the
Application

7.1 The architecture

This chapter will document the implementation of the design review
application, which was conducted according to the design - discussed in
chapter 5 - and utilizes many of the components reviewed in the technical
review (chapter 6). The application is envisioned to be used by DNV
GL Approval Engineers (discussed in chapter 2), which are responsible
for reviewing design proposals in the form of complex 3D models and
communicate their finding - whether it be general information or reporting
errors - to the designer. The designer then have to fix any shortcomings
reported by the Approval Engineer before again submitting his or her 3D
model for approval. With the design review application, the Approval
Engineer and designer could achieve this, and more, directly in the
application. In this thesis implementation annotations can be stored in the
model, edited, deleted and their appearance can be manipulated. The user
is also able to navigate the 3D model using only gesture, only keyboard
and mouse, or a combination of the two.

The design review application is designed to primarily be used at a
regular workspace, containing a computer and - optionally - a Leap Motion
and a virtual reality headset. The user should thus be able to use the
application without any virtual reality or gesture recognition peripherals,
only with one of them (i.e a VR HMD or a Leap Motion Controller) or
with both of them. When using the application the user will thus always
have keyboard and mouse available as an input method, and can thus use
these in combination with the Leap Motion Controller. If the application is
started with a virtual reality HMD connected the application will also be
displayed both on the HMD’s lenses and on the desktop display, although
certain settings - such as the field of view - is affected by the presence or
absence of a VR HMD.

This chapter will primarily document how the implementation is
organized as a Unity project, what the major components are, and how
it performs its most important functions (such as recognizing gestures and
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Figure 7.1: The Unity project hierarchy of the Design Review Application
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creating annotations). When the implementation was completed, and thus
had fulfilled the functional demands from the design, the application was
tested and evaluated by DNV GL employees to gain feedback for continued
development. This evaluation, and the participants responses are covered
in chapter 8.

7.2 The Project Organization

The Unity project has four top-level game objects: EventSystem, TankModel,
GestureMenu and MasterController.

The EventSystem game object is responsible for processing and han-
dling events and input actions in the scene. In this implementation a stan-
dard unity event system is used (generated when creating a new project),
with some modifications done for virtual reality. Most of these modification
are accomplished by the attached OVRInputModule script, which is a script
inspired by a similar one in an Oculus VR sample project. Apart from this
no other changes was done to EventSystem as it worked optimally "right
out of the box".

The TankModel game object contains several child objects that together
make up the oiltank-model, which this application is based on. Originally
the design included the functionality to load different models into the
application and starts sessions, but this fell out of scope to both prioritize
the gesture recognition and virtual reality aspects, and because of a low
availability of similar models. The tanker model has not received any
changes during implementation and has been used as it was supplied.

The GestureMenu and MasterController together contain most of the
key components of the application and will, with their relevant child
objects, be the main focus for the rest of this chapter. GestureMenu

represents the gesture menu, which by default is available by directing
the left hand palm in the direction of the camera. The MasterController

game object represents the player model - i.e the user’s virtual presence in
the model - and has many important game objects as children, in addition
to holding many key scripts. The MasterController’s transform, with its
position, rotation and scale, represents the user’s position and orientation,
and every child object of MasterController will have a position, rotation
and scale that is relative to its own. This ensures that e.g. the camera and
hand models will always "follow" the user. Several of the important game
objects that are covered in later sections are children of the master controller
for this reason. First, however, we will cover the important components of
MasterController. Note that several times during this documentation we
will discuss "the cameras" - in plural - as the implementation always utilizes
two or more cameras simultaneously, even through they appear as one to
the user. This will be expanded upon in section 7.4 on page 74.
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Figure 7.2: The MasterController components seen in the Unity Inspector
view. 62



7.3 The Master Controller Components

The master controller represents a collection of controllers, which all have
the role of handling input from the user and translate it into the correct
action. These controllers typically interact with the GestureHand class to
check if a certain hand state-criterion is met, utilize its utility functions and
check for changes every frame. The GestureHand will be covered more in
depth in section 7.7 on page 78, but can in short be described as a class
which is instantiated once per hand and keeps track of what potential
gestures the hands are performing, the origin coordinates for the potential
gestures and other useful hand-specific information.

Another important aspect of the controllers, with AnnotationForm-

Controller as an exception, is how they all utilizes the Update() function,
which is called in a set order by the Unity runtime environment on
every rendered frame. During the update call these controllers check for
conditions relevant for their purposes (such as a specific gesture being
executed), and invoke the relevant function(s) if this is the case. The
following four sections will cover the controllers that the master controller
contains.

7.3.1 The Rotation Controller

The RotationController is a script component of the MasterController

and its primary function is to handle user input related to rotation.
RotationController contains a number of instance variables, which will
be described below. Some of these variables have a public access modifier,
as this allows their values to be seen and edited from the Unity Inspector
view (see figure 7.2 on the facing page for an example). Variables that does
not have this requirement, and which should not be accessed from other
parts of the application, are given a private access modifier.

public GestureHand leftHand, rightHand stores the GestureHand in-
stances that represents the left and right hand.

public float sensitivity is a float-point multiplier that determines
the sensitivity of the rotational actions. All statements that rotates the
cameras are multiplied by this variable’s value, which by default is 100.0.

public float clampAngle is an absolute value in degrees for the maxi-
mum rotation allowed along in y-axis. Its default is 90.0 (degrees), meaning
that the user can rotate from looking straight ahead (0.0 degrees on the y-
axis) to straight up (90.0 degrees on the y-axis) and straight down (-90.0
degrees on the y-axis). Note that this rotational limitation along the y-axis
is in place to prevent the user from rotating the cameras (and the enire
MasterController) "upside-down".
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private float rotX, rotY are intermediate floatpoint values that store
the rotation of the MasterController (and thus the cameras) and are
used to calculate the new rotation quaternion1 that is applied to the
MasterController’s transform every frame. Note that RotationController
only allows rotation along the x-axis (left-and-right) and y-axis (up-and-
down), and not along the z-axis (a "barrel roll" rotation).

private InteractionBox iBox is a variable that holds a reference to the
latest InteractionBox object, which is updated on every Leap Motion-
frame by retrieving it from the Leap Motion Frame object (see table 7.9.2
on page 89 for an example). The InteractionBox class is a Leap Motion
abstraction for the area (i.e the "box") above/in front of the Leap Motion
device that is interactable (i.e where the device can detect and track the
hands), and is used for normalizing purposes.

During its update function RotationController both checks for mouse
movements and whether the pinch gesture is performed by either hand.
Mouse movements are retrieved by calling the Unity function Input.-

GetAxis(string axisName) once per axis (i.e twice to get the x- and y axis).
The return value of this function is in the range -1 and 1 for each axis,
which signifies in what direction the mouse is moving and at what speed.
If Input.GetAxis("Mouse X") e.g. returns "-0.01" the mouse is moving very
slowly to the left, while "1.0" would mean that is moves as fast as possible
to the right. If calling GetAxis with the x-axis and the y-axis both yield 0,
then the mouse is not moving and no rotation is performed.

Before applying the captured mouse movements to the rotation it
is multiplied by the sensitivity variable outlined above, and by Time.-

deltaTime. Time.deltaTime is another function in the Unity framework
and returns the time in seconds it took to complete the last frame.
By applying this to the equation we make the calculation frame rate
independent and essentially expresses that we want to rotate X amount
per second, instead of X amount per frame.

The pinch gesture, which is used for rotation, is captured in a similar
fashion. The update function checks for the pinch state, and if its detected
it tracks the hand position within the interaction box (i.e the area above/in
front of the Leap Motion device). Just as the variables mouseX and mouseY

is captured in table 7.3.1 on the facing page the variables handX and
handY are captured, but somewhat differently. These two variables are
calculated by obtaining the hand’s palm position within the interaction
box and subtracting the origin point, i.e the point were the current pinch
gesture started (see table 7.3.1 on page 66). After this is done they are, like
with the mouse movement, multiplied by the sensitivity variable and
Time.deltaTime.

1A number system that extends the complex numbers. Commonly used in calculations
involving three-dimensional rotations (Kunze and Schaeben, 2004).
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public float sensitivity = 100.0f;

private float rotX, rotY = 0.0f;

void Update() { // Update is called every frame

trackMouse();

[...]

// Create new rotation quaternion and replace the rotation of the

// MasterController's transform.

Quaternion localRotation = Quaternion.Euler(rotX, rotY, 0.0f);

transform.rotation = localRotation;

}

private void trackMouse() {

float mouseX = Input.GetAxis("Mouse X"); // Get x-axis mouse movement

float mouseY = -Input.GetAxis("Mouse Y");// Get y-axis mouse movement

// Transform mouse movements to rotations

rotY += mouseX * sensitivity * Time.deltaTime;

rotX += mouseY * sensitivity * Time.deltaTime;

}

Table 7.1: How mouse movement is captured and transformed to rotations.

7.3.2 The Movement Controller

The MovementController is another script component of the MasterController,
and relates to the movement of the user. This controller has many similar-
ities with the RotationController, covered in the previous section, as it
has very similar code for hand detection in the update method. If one of
the hands have a different state than NONE2, the TrackHandMovement func-
tion (see table 7.3.2 on page 67) is called. In this function the hand position
is obtained and a number of conditions are checked for:

1. Is the combined gesture scheme used AND is the palm-down gesture
active?

2. Is the combined gesture scheme NOT used AND is the palm-down
gesture active?

3. Is the combined gesture scheme NOT used AND is the palm-side
gesture active?

4. Is the combined gesture scheme NOT used AND is the fist gesture
active?

If any of these criteria are met the appropriate action is taken. For the
last criterion this would mean going forward by X, where X is positive
or negative float point number and the result of Cx − C0, where Cx is
the coordinates of the current hand position and C0 is the coordinates
of the origin hand position (i.e the position the current gesture was first

2One of several hand states defined by the GestureHand class, which is reviewed in
section 7.7 on page 78
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public GestureHand leftHand, righthand;

public float sensitivity = 100.0f;

private float rotX, rotY = 0.0f;

void Update() {

trackMouse();

bool leftPinch = false, rightPinch = false;

if (leftHand.getGestureType() == GestureHand.HandState.PINCH)

leftPinch = true;

if (rightHand.getGestureType() == GestureHand.HandState.PINCH)

rightPinch = true;

if (leftPinch || rightPinch) {

Frame frame = LeapBehavior.getLastFrame();

iBox = frame.InteractionBox;

for (int i = 0; i < frame.Hands.Count; i++) {

Hand hand = frame.Hands[i];

if (hand.IsLeft && leftPinch)

TrackPinch(hand, leftHand.GetGestureOriginPosition());

if (!hand.IsLeft && rightPinch)

TrackPinch(hand, rightHand.GetGestureOriginPosition());

}

}

// Create new rotation quaternion and replace the rotation of the

// MasterController's transform.

Quaternion localRotation = Quaternion.Euler(rotX, rotY, 0.0f);

transform.rotation = localRotation;

}

private void TrackPinch(Hand hand, Leap.Vector originCoordinates)

{

// Get position, convert from right to left hand coordinates, normalize

Leap.Vector leapPoint = hand.StabilizedPalmPosition * -1.0f;

Leap.Vector normalizedPoint = iBox.NormalizePoint(leapPoint, false);

float handX = normalizedPoint.x - originCoordinates.x; // Find x-offset

float handY = normalizedPoint.y - originCoordinates.y; // Find y-offset

// Transform hand movement to rotation

rotX += -handY * sensitivity * Time.deltaTime;

rotY += handX * sensitivity * Time.deltaTime;

}

Table 7.2: How the pinch gesture is captured and transformed to rotations.
Note that the implementation code looks somewhat different (e.g. Some
shorter variable names in this table.)
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private void TrackHandMovement(Hand hand, GestureHand gestureHand)

{

// Get position, convert from right to left hand coordinates, normalize

Leap.Vector leapPoint = hand.StabilizedPalmPosition * -1.0f;

Leap.Vector normalizedPoint = iBox.NormalizePoint(leapPoint, false);

// True if movement along the x-, y- and z-axis are handle by one

gesture instead of three, false otherwise.

if (gestureHand.getCombineGestures())

{

if (gestureHand.getGestureType() == HandState.PALM_DOWN)

{

transform.position += transform.up * speed * (normalizedPoint.y

- gestureHand.GetGestureOriginPosition().y) * Time.deltaTime;

transform.position += transform.right * speed *

(normalizedPoint.x -

gestureHand.GetGestureOriginPosition().x) * Time.deltaTime;

transform.position += transform.forward * speed *

(normalizedPoint.z -

gestureHand.GetGestureOriginPosition().z) * Time.deltaTime;

}

}

else if (gestureHand.getGestureType() == HandState.PALM_DOWN)

transform.position += transform.up * speed * (normalizedPoint.y -

gestureHand.GetGestureOriginPosition().y) * Time.deltaTime;

else if (gestureHand.getGestureType() == HandState.PALM_SIDE)

transform.position += transform.right * speed * (normalizedPoint.x -

gestureHand.GetGestureOriginPosition().x) * Time.deltaTime;

else if (gestureHand.getGestureType() == HandState.FIST)

transform.position += transform.forward * speed * (normalizedPoint.z

- gestureHand.GetGestureOriginPosition().z) * Time.deltaTime;

}

Table 7.3: How movement gestures are detected and handling in
MovementController

registered). This calculation is done other places as well and is often
referred to at a origin-offset scheme. Also note that although only one of these
cases can trigger for each hand, the user can perform different gestures
simultaneously using both hands, and thus potentially meet more of these
criteria at the same time.

As MovementController also support keyboard usage some keys are
also tracked, primarily by using the two different unity built-in functions
Input.GetAxis(..) and Input.GetButton(..). The former of these is
used for movement along the x- and z-axis (left/right and forward/back-
ward) and returns a continuous number in the range < −1, 1 >, while
the latter is used for the rest of the actions and returns a discrete number.
Input.GetAxis is used in a similar fashion as mouse movement was cap-
tured, but instead using the arguments "Vertical" for the x-axis and "Hori-
zontal" for the z-axis. The movement calculations are similar to those found
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in TrackHandMovement (see table 7.3.2 on the preceding page), only substi-
tuting or removing the hand position calculations (e.g. normalizedPoint.x
- gestureHand.GetGestureOriginPosition().x).

What key each movement corresponds to is configured in the Unity
Input Manager, which is a build specific configuration that allows the user
to customize the controls at runtime. This also gives an abstraction layer for
the developer, where a virtual input name, e.g. "down", is specified instead of
which physical key that needs to be used (e.g. KeyCode.DownArrow). If the
latter approach is preferred, Unity also offers the function Input.GetKey(-

Keycode). With this function the developer must specify a "physical and
actual" key instead of a virtual one. This means that the code Input.-

GetKey(Keycode.Q) always listen for the Q-button on the keyboard and
never any other. Because of the flexibility the Input Manager offers in
this regard this implementation uses Input.GetAxis(..) and Input.-

GetButton(..), which both support virtual input names, for all keyboard
input.

In the design review application the default keys for actions handled
by the MovementController class are as follows: "Left" or "A" for left (-
horizontal), "right" or "D" for right (+horizontal), "up" or "W" for going
forward (+vertical), "down" or "S" for going backward (-vertical), "Q"
for going up (+altitude), "E" for going down (-altitude), "Left Shift" for
increasing movement speed and "Left Ctrl" for decreasing movement
speed. The movement speed is a multiplier that is applied to every
movement (i.e the ones mention in this section), and it is increased or
decreased in increments of 0.5.

7.3.3 The Raycast Controller

The RaycastController is another script component of the Master-

Controller, and is responsible for detecting certain input from the user,
create raycast-beams and handle when a raycast hits an object. When
activated a raycast beam should be fired from the position of the Master-

Controller and towards where the MasterController is oriented (and
towards were the camera is facing). To enable the user to aim the raycast
properly a crosshair or cursor (depending on the active camera rig3) is
present in the middle of the users field of view, just like in a first-person
shooter game. If a raycast is created and collides with a part of the model
(i.e an object with a collider that is within range), one of the following cases
occur:

1. A point annotation is created at the collision point (where the raycast
hit the object).

2. The object the raycast hit gets an annotation attached to it and have
its material changed to indicate that it is annotated.

3Different camera settings for desktop and VR usage (Oculus Rift and HTC Vive).
Reviewed in section 7.4 on page 74
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3. The annotation form becomes active, enabling the user to edit the
target point annotation.

4. The annotation form because active, enabling the user to edit the
target object annotation.

These scenarios, and which one of them is triggered when, is summa-
rized in the pseudo code in table 1.

if SPG is active OR LMC is active then
objectHit = createRayCastBeam();
if objectHit is a pointAnnotation then

EditTheHitPointAnnotation();
else

CreatePointAnnotation();
end

else if DPG is active OR RMC is active then
objectHit = createRayCastBeam();
if objectHit is a objectAnnotation then

EditTheHitObjectAnnotation();
else if objectWhichWasHit is NOT a pointAnnotation then

CreatePointAnnotation();
else

Go check for other stuff!
end

Algorithm 1: Pseudo code for the raycast scenarios. SPG = singlePoint-
Gesture, DPG = doublePointGesture, LMC = leftMouseClick and RMC =
rightMouseClick

Note that a raycast beam can be created by a single-point gesture or
"Fire1" (a input name in the Input Manager that defaults to the left mouse
button), or by a double-point gesture or "Fire2" (right mouse button by
default). The logic for these to scenarios are handled independently as seen
in the pseudo code in table 1.

The RayCastController contains the following instance variables:

• public float raycastRange - The raycasts maximum range, mean-
ing the user has to be within N distance from an object for the raycast
to hit it. Default is 50.0f.

• public Camera mainCamera - A reference to the main camera of the
active camera rig.

• public GameObject annotationPrefab - A reference to the point an-
notation prefab. This serves as a template for new point annotations.

• public Material markedMaterial - The initial material to use for
marking object annotations.

• public bool uiOpen - This variables tells whether or not the annota-
tion form is open (i.e active and visible to the user).
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• public GestureHand leftHand, rightHand - References to the left
and right hand’s GestureHand instances.

• private int annotationCounter - A count of active point annota-
tion in the scene. This variable is used to assign annotations IDs upon
their creation.

• private bool annotationPlacedDuringGesture - Whether or not a
point annotation or an object annotation was placed during the
current active gestures.

• private AnnotationFormController orchestrator - A reference to
a singleton AnnotationFormController object. This controller is
described more in the next section.

The update function checks for button clicks (Fire1 and Fire2)
and gesture states (SINGLE_POINT and DOUBLE_POINT), each with its own
additional conditions. If a button is clicked the value of uiOpen needs to
be false for a raycast to be fired. This is because we don’t want to fire
a raycast when the user interface (i.e the annotation form) is open (i.e
when uiOpen = true). Gestures work a little differently as the detectors
are disabled when the annotation form is open, and we thus don’t have to
check for the value of uiOpen. Instead, the gestures check whether the value
of annotationPlacedDuringGesture is false before proceeding. This is to
prevent an issue where the user performs a single- or double point gesture
and the annotation is both created and opened for editing instantaniously.
An annotation could be placed by using one of the point-gestures, and on
the next frame, were the same gesture is presumably still present, a new
raycast would have been fired off, htting the annotation placed one frame
ago and opening the annotation form to edit it. As annotationPlaced-

DuringGesture is set to true when an annotation is placed, and the gesture
(detector) becomes inactive, it circumvents this issue.

All the actions mentioned above calls the function CreateRaycast-

Beam(bool isObjectAnnotation), which creates the raycast and applies
the logic outlines by the pseudo code in table 1 on the preceding page.
Fire1 and SINGLE_POINT call this with the argument false and Fire2 and
DOUBLE_POINT call it with true.

The code in table 7.3.3 on page 72 also shows how point- and object
annotations are created in the RaycastController class, while the editing
of these is handled by the AnnotationFormController, which is reviewed
in the next section. In the function CreatePointAnnotation(..) and
CreateObjectAnnotation(..) the game object which was hit, and the
point where the hit occured (i.e where the raycast collided with the object),
is accessable through the RaycastHit object, and creating annotations then
simply becomes a matter of either instantiating a prefab or attaching an
annotation, in addition to "tagging" them as annotation.
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private void CreateRaycastBeam(bool isObjectAnnotation)

{

// Create a vector at the center of our camera's viewport

Vector3 rayOrigin = mainCamera.ViewportToWorldPoint(new Vector3(0.5f,

0.5f, 0.0f));

// RaycastHit stores information about what our raycast has hit

RaycastHit hit;

// Check if our raycast has hit anything

if (Physics.Raycast(rayOrigin, transform.forward, out hit,

raycastRange))

{

string tag = hit.collider.gameObject.tag;

if (tag.Equals("PointAnnotation") || tag.Equals("ObjectAnnotation"))

{

if (tag.Equals("PointAnnotation") && !isObjectAnnotation)

EditAnnotation(hit, isObjectAnnotation);

else if (tag.Equals("ObjectAnnotation") && isObjectAnnotation)

EditAnnotation(hit, isObjectAnnotation);

else if (!isObjectAnnotation)

CreatePointAnnotation(hit);

}

else if (isObjectAnnotation)

CreateObjectAnnotation(hit);

else // Else create a new annotation

CreatePointAnnotation(hit);

annotationPlacedDuringGesture = true;

}

}

Table 7.4: How the CreateRaycastBeam function of the RaycastController
works.
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private void CreatePointAnnotation(RaycastHit hit)

{

//Create an annotation object at hit's coordinates.

GameObject newAnnotation = (GameObject) Instantiate(annotationPrefab,

hit.point, Quaternion.identity);

newAnnotation.tag = "SphereAnnotation";

newAnnotation.name = "SphereAnnotation_" + annotationCounter++;

AnnotationInformation info =

newAnnotation.GetComponent<AnnotationInformation>();

info.initializeMaterials();

info.text = "Please enter your notes";

info.annotationSphere = newAnnotation;

}

private void CreateObjectAnnotation(RaycastHit hit)

{

GameObject targetObject = hit.collider.gameObject;

targetObject.tag = "ObjectAnnotation";

AnnotationInformation info =

targetObject.AddComponent<AnnotationInformation>();

info.initializeMaterials();

info.changeMaterial(markedMaterial);

}

Table 7.5: How the CreatePointAnnotation and CreateObjectAnnotation

functions in the RaycastController works. Note that annotation editing
is handled by the Annotation-Form-Controller, which is reviewed in the
next section.
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7.3.4 The Annotation Form Controller

The AnnotationFormController performs various task when entering or
exiting the annotation form, in addition to hosting many of its button
listeners. The AnnotationFormController contains the following instance
variables:

• public GameObject hoverkey - A reference to the hoverkey (the
virtual keyboard) game object.

• public Camera annotationCamera - A reference to the annotation
camera.

• public GameObject annotationCanvas - A reference to the canvas
the annotation form is drawn on.

• public CanvasCollider annotationCollider - A reference to the
collider-script that is used for the world-space canvas.

• public CrosshairController crosshair - A reference to the crosshair
(or cursor). This is disabled when the annotation form is active.

• public Material[] glowColors - An array for the different annota-
tion priority material. 0 = error, 1 = warning, 2 = info.

• public Material[] nonGlowColors - A similar array, with a non-
glowing variant of the materials in case glow is disabled. Follows
the same order as the previous array.

• private RayCastController raycastHandler - A reference to the
raycast controller singleton which were covered in the previous
section.

• private AnnotationInformation annotationInstance - A refer-
ence to the current annotation being edited.

The annotation form controller functions are invoked by the raycast
controller when the user wishes to edit an annotation. The raycast con-
troller then sequentially calls EnterAnnotationForm(..), AttachAction-
ButtonListeners(..) and AttachPriorityButtonListeners(..) in the
AnnotationFormController class. The EnterAnnotationForm(..) func-
tion does the neccessary setup, while the latter two attach button listen-
ers to the buttons. When the user clicks either the "Submit", "Cancel" or
"Delete" buttons the ExitAnnotationForm(..) function is called, which es-
sentially does the inverse of what EnterAnnotationForm(..) does.

The following setup is done by EnterAnnotationForm(..):

1. Disable the annotation camera. This makes annotation invisible to
the user.

2. Disable colliding object. This disabled (i.e temporary removes) all
objects that would otherwise obstruct the world-space canvas.
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3. Activate the world-space canvas so its visible to the user (the
annotation form is now active).

4. Activate the hoverkey (the virtual keyboard) so its visible to the user.

5. Retrieve the annotation instance that was hit by the raycast beam.

6. Set the uiOpen boolean variable in the raycast controller to true.

7. Lock movement. This will disable the RotationController and
MovementController classes so the user cant move or rotate when
the annotation form is open.

8. Enable the mouse cursor, which is disabled when the annotation form
isnt open. This is to allow the user to use the mouse to click on
buttons.

9. Disable the crosshair so its no longer visible.

10. Disable the detectors for the left and right hand so no gestures are
being recognized while the annotation form is open (using the hand
to click buttons still work though).

11. Input the text that is already stored in the annotation to the annotation
form text field. If the annotation is newly created this text value is
blank.

As previously mentioned ExitAnnotationForm(..) undoes most of
these action when the user exits the annotation form.

7.4 The Camera Rigs

The CameraRigs game object is a direct child of the MasterController

and holds three different game objects, each representing its own camera-
setup: DesktopCameraRig, which is meant to be used without virtual
reality, OculusCameraRig, meant to be used with Oculus Rift HMDs, and
ViveCameraRigs, meant to be used with the HTC Vive. While the desktop
rig uses one main camera, the virtual reality rigs (i.e the Oculus and Vive
rigs) utilizes two main cameras (one per eye). These are slightly offset,
by about the same length as the real-world distance between two eyes,
and rendered separately. The camera rigs all utilize a separate camera for
rendering only annotation objects in the scene, while the main camera(s)
(one for desktop, two for VR), renders the rest. This is done by:

1. Placing the annotation objects in the scene on a different rendering
layer than the rest of the objects (called the annotation-layer).

2. Have the main camera(s) render all layers, except the annotation-
layer.

3. Have the annotation-camera only render objects on the annotation-
layer.
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4. "Combine" the output of the two cameras by drawing the output from
the annotation camera on top of the output from the main camera.
The main camera thus renders first and the annotation camera
second. This is accomplished by giving the main camera depth =

0 and the annotation camera depth = 1 in the Unity Inspector.

By rendering these two categories of layers independently we get some
flexibility and options with regards to how to present the annotations. This
will be discuss more in depth in the 7.10.2 on page 93 section.

For the application to run successfully one of these rigs should be
enabled, while the other two should be disabled. This can be done by
switching between the three rigs in the dropdown-menu named Rig, which
is present on the CameraRigs game object itself and implemented in the
CameraRigSetup script. In addition to ensuring that only the correct rig
is enabled, the CameraRigSetup script also does several other operations.
One of these is ensuring that the field of view is set to 60 degrees if the
desktop rig is selected, as this can wrongfully be set to a HMD’s value if
a HMD is connected to the computer. When a virtual reality rig is used
the field of view is set automatically by the HMD software. Another thing
done by the script is to decide whether a two dimensional crosshair/cursor
should be drawn on the screen space (in case of the desktop rig), or if a three
dimensional crosshair/cursor (i.e the GazePointerRing) should be drawn
in the world space.

7.5 The World Space Canvas

The WorldSpaceCanvas is a canvas object, which in Unity serves as a
container for other user interface elements, such as buttons and input fields,
and is rendered in world space. It is thus diegetic and exists there like other
3D objects.

In applications that don’t utilize virtual reality, canvases and other UI
elements are usually non-diegetic (i.e they don’t exist within the game
world), and in 2D and drawn directly to the screen space (as opposed
to world space) using x- and y-coordinates. With this approach one can
specify e.g. a position by its x- and y-coordinate, where {0, 0} usually
represents the top-left of the display. This changes in virtual reality
applications, as the user’s eyes are unable to focus on the screen space.
An analogy to this would be to ask the user to read a letter while holding
it 2-3 centimeters from their eyes. Because of this, elements appearing on
the screen space is not rendered in Unity while running it with the virtual
reality SDKs.

Another reason why the canvas is rendered in world space, and also
the reason why this is the case in desktop mode, is because of our touch
interaction. To enable the user to click on buttons using his or her hands,
the user interface must also exist in world-space so a collision can occur
between the desired button and the hand models (that mimic the users
hand). WorldSpaceCanvas is thus rendered in the world space, and
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Figure 7.3: An example of world-space (diegetic) user interfaces (Unity,
2016).

is always positioned 0.8 unity meters (i.e the virtual representation of a
meter in unity) in front of the user. The game object is thus always in
the center of the camera, but is only visible and enabled when the user
is editing an annotation. One issue with this approach is "clipping", i.e
that the annotation form visually collides with another object (e.g. the tank
model or an annotation sphere) thus obstructing it from view. To combat
this WorldSpaceCanvas has a box-shaped collider component, which covers
the canvas as well as the area between the canvas and the camera, and a
script called CanvasCollider, which keeps track of objects that’s within
the collider component. When the user wishes to edit an annotation,
and the AnnotationForm and Hoverkey4 becomes active, the objects within
the canvas’ collider is disabled, thus hiding objects that could potentially
obstruct the whole, or parts of, the canvas. The objects are enabled again
once the users is done editing the annotation (i.e when the user clicks
"submit", "cancel" or "delete").

The WorldSpaceCanvas has two child game objects: AnnotationForm

and Hoverkey. AnnotationForm currently only contains a inputfield-object
and a background rectangle, but can in future iteration grow to contain
other user interaction elements. The Hoverkey game object represents the
touch keyboard and is part of the Hover UI Kit, an open source project
by Kinstner (2016). In addition to the keyboard, six other similar buttons
are also present: Submit, Cancel, Delete, Error, Warning and Information
(see 7.5 on the next page).

4The virtual keyboard, created using Hover UI Kit
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Figure 7.4: The WorldSpaceCanvas as seen in the Unity Scene View.

Figure 7.5: The WorldSpaceCanvas as seen in the Unity Game View.
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7.6 The Leap Motion Controller

The LeapMotionController game object contains objects related to the
Leap Motion device and gesture recognition and consist primarily of
the hand models, necessary scrips and detectors. In the game object
HandModels there is one object-representation of the left hand, called
Pepper_LeftHand, and one for the right hand, called Pepper_RightHand.
These objects have their own hand models (as there needs to be different
models for the left and right hand) and their own detector objects (as
a detector can/should only observe one hand). Each "hand" thus have
its own list of detectors called Detectors. These are the definition and
implementation of the gesture scheme that were discussed in 5.2 on
page 40. In addition to detectors, each hand also have its own instance of
the GestureHand class, which is an important component to keep track of
hand states and resources, and it exposes utility function to other classes.

7.7 The Gesture Hand Class

The GestureHand class is assigned as a component to each hand object, and
contain several important variables.

• bool isLeftHand - Keeps track of whether this instance belong to the
left or the right hand.

• GameObject handModel - A reference to the unity game-object that
contains the handModel this gesturehand instance is relevant for.

• Material[] handMaterials - An array of different material for the
hand model. These are swapped between when e.g. a certain gesture
is brecognized and tracked.

• GestureHand otherHand - A reference to the other GestureHand-
instance. For the lefthand GestureHand-instance this variable thus
point to the right hand GestureHand hand-instance.

• GameObject detectors - A reference to the gameobject that hold/is
parent of this hands detectors.

• bool combineGestures - Keeps track of whether the user is using a
combined XYZ axis gesture scheme or if these movement gesture are
kept separate (see 5.2.5 on page 43).

• Vector gestureOriginPosition - Holds the x-, y- and z- coordinates
of the palm when the current gesture was recognized.

• HandState handState - Holds one of several HandState enum val-
ues that represent the hand state. This variable has one of the fol-
lowing enum values: NONE = 0, PINCH = 1, PALM_DOWN = 2,
PALM_SIDE = 3, FIST = 4, SINGLE_POINT = 5, DOUBLE_POINT =
6 or DISABLED = 7 (see 7.7 on the facing page).

78



ID Variable name Implication

0 NONE No gesture is being performed.

1 PINCH User can rotate by the y- and z-axis

2 PALM_DOWN User can move along the y-axis.

3 PALM_SIDE User can move along the x-axis.

4 FIST User can move along the z-axis.

5 SINGLE_POINT User is placing/has placed point-
annotation.

6 DOUBLE_POINT User is placing/has placed object-
annotation.

7 DISABLED The detectors are disabled and no
gesture and hand state can be
achieved before enabling them.

Table 7.6: The GestureHand class’ hand states

The GestureHand class also contains several important functions that
are called when a certain gesture is activated or deactivated. void

ActivateGesture(int gestureCode) is called by a detector when it be-
comes active, i.e when its criteria are met and the gesture it represent is
recognized. It then signals the GestureHand class with its code/signature
so GestureHand knows which detectors called it. If a pinch gesture is de-
tected by the left hand pinch detector the left hand GestureHand class’
ActivateGesture is thus called with the argument "1". From a design
standpoint one should be able to send the Handstate.PINCH enum as a
value, but then this function wouldnt be exposed in the Unity Inspector
interface (which only seem to accept primitive or built-in argument types).

Once this function is called it sets the hand state to the value of
the gestureCode, sets the gesture origin position and switches the hand
materials. Hand material switches is done by assigning the material at
index gestureCode in the handMaterials list to the hand model, so if a
pinch gesture is a performed the hand model is assigned the material at
handMaterials[1]. The HandState enums and the hand material list thus
follow the same sorting order.

The GestureHand class also has the function void DeactivateGesture(),
which is called by a detector when it becomes deactivated. This func-
tion simply resets the hand state by setting it to HandState.NONE (NONE
= 0) and assign the material at handMaterials[(int) HandState.NONE]

(i.e 0) to the handmodel. GestureHand also contains the functions
enableDetectors() and disableDetectors(), which enables or disables
all the detectors that belongs to the same hand as the current GestureHand
instance. These are used in two scenarios: When the user switches between
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Figure 7.6: When gestures are disabled, i.e all the detectors are disabled,
the hand models are transparent

having gestures enabled and disable by using the menu options "Enable
Gestures" and "Disable Gestures" and when an annotation is edited. When
an annotation is edited, and the annotation form is open, gestures that one
can use otherwise (e.g the movement and rotation gestures) are disabled.

7.8 The Detectors

The detectors are represented as game objects and children of the
Detectors game object under each hand game object. Each of these
detector objects have the naming convention <gesture name> + "De-
tector" + <optional specifier> + "_" + <handedness: Left or Right>,
e.g. PinchDetectorStrict_Left and FistDetector_Right. A certain de-
tector of one hand is usual identical to the equivalent detector for the other
hand with a few exception. These differences between hands are usually
minor and will be mentioned when applicable. The detectors used in this
implementation utilizes a combination of several Leap Motion provided
detectors, as these both cover the functional needs and are considered best
practice. The Leap Motion provided detectors can as such be regarded as
"base detectors", while the detectors that represents gestures in this imple-
mentation can be regarded as "composite detectors". To differentiate be-
tween these two categories, the base detectors will be written in italic or
plain text, while the composite detectors and game objects will be written in
monospace. The Leap Motion provided detectors utilized in the implemen-
tation is DetectorLogicGate, PinchDetector, ExtendedFingerDetector, PalmDi-
rectionDetector and FingerDirectionDetector.

The Leap motion base detectors provides some important parameters
that can be set on a per detector instance basis, which often relates to
thresholds values (e.g. on/off values) and discrete values (e.g extended
or not extended). Finding the optimal values for a certain gesture can
often be the subject of a lot of adjustment and tweaking, as vision-based
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gesture recognition technology often or always will be someone unprecice
compared to e.g. mouse and keyboard. The challenge is thus to find values
that give a high amout of true positives (e.g. the user attemps a gesture and
the gesture was recognized) and a low amount of false positives (e.g. the
user did not attempt a gesture and a gesture was recognized). During
the implementation phase these values were adjusted several times in
pursuit of the optimal values, and during the evaluation phase this was
a much discussed topic were users often has their own "gesture sensitivity
preferences" (this will be review in the next chapter).

As was mentioned in the design, giving the user visual feedback when
a gesture is recognized (i.e a detector is active) is probably a good idea. In
this implementation this is performed by changing the material of the hand
models. The materials for each hand is listed in the handMaterials variable
in the GestureHand class, and follows the same order (or indecies) as the
HandState enums specify (see 7.7 on page 79). Changing these materials is
thus easy to do in Unity, but as default the following color-categories are
used:

• Plain gold - Used for gestures that perform rotations (only the pinch
gesture).

• Black - Used for gestures that perform movement. This includes the
Palm-down gesture (either y-axis movement or xyz-axes movement),
Palm-side gesutre (x-axis movement) and the fist gesture (z-axis
movement).

• Glowing teal - Used for gestures that perform annotation interaction,
i.e either places or edits annotations. This includes the single point-
gesture and the double point-gesture.

• White - Used when no gesture is performed (but gestures are still
enabled).

• Transparent - Used when gestures are disabled.

First the gesture implementations will be reviewed.

7.8.1 The PinchDetectorStrict and PinchDetectorSlack

The PinchDetectorStrict and PinchDetectorSlack were originally one
detector called PinchDetector, but was split up to represent two different
options for the user. Both detectors utilize the base PinchDetector script
provided by the Leap Motion detection utilities, while the strict version also
uses the ExtendedFingerDetector. The PinchDetector measures the distance
between the tip of the thumb and index finger, and if these are below a
certain threshold (i.e the activate distance) the detector is active and signals
gestureCode. If the distance grow larger than a set deactivate distance the
detector is deactivated. The activate distance used is 0.03 meter, while the
deactivate distance is 0.06 meter.
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Figure 7.7: When the PinchDetector is active, i.e a pinch gesture is
recognized, the hand is colored in a pale gold color.

One problem with only having distance between the two finger tips
as a criterion for the pinch gesture is that there would sometimes be
false positives (i.e unintentional pinch gestures could occur). This was
especially the case when attemping to perform the fist gesture as the
distance between the tip of the thumb and index finger is relatively small
when the hand is a fist, and the application could thus sometimes perform
a pinch gesture instead of a fist gesture. Because of this the stricter
version PinchDetectorStrict was created. This uses the same criterion
as PinchDetectorSlack, but it also requires that at least two fingers are
extended. This is accompished by using the ExtendedFingerDetector and
DetectorLogicGate. The finger states of the ExtendedFingerDetector for all
individual fingers are set to "either", meaning that, individually, each finger
can be either extended or not extended, but on the "minimum extended"
parameter 2 is set, while "maximum extended" is set to 5, meaning that
anything between two and five fingers can be extended.

7.8.2 The PalmDownDetector

The PalmDownDetector uses a PalmDirection detector and an ExtendedFin-
ger detector, which is AND’ed by a DetectorLogicGate. The PalmDirection-
Detector is configured to become active when the palm is pointing within
30 degrees of 0, -1, 0 (x = 0, y = -1, z = 0) direction, relative to the camera.
The coordinate system used functions just as if the three-dimensional axis
had been drawn on the screen, so e.g. the coordinates 0, 0, 1 would be
directly forward, while 1, 0, 0 would be to the right.

The coordinates used for the PalmDirection Detector thus means
that from the perspective of the camera, the palm should face directly
downwords such that the palms are as parallell to the ground or table
top. The PalmDirectionDetector is also configured with an "On Angel"
of 30 degrees and an "Off Angle" of 50. The detector is thus activated as
long as the palm points within 30 degrees of the desired direction, and is
deactivated if the palm directions surpasses the threshold of 50 degree from
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Figure 7.8: When the PalmDownDetector is active, i.e a palm-down gesture
is recognized, the hand is colored in a black.

Figure 7.9: When the PalmSideDetector is active, i.e a palm-side gesture is
recognized, the hand is colored in a black.

the 0, -1, 0 direction.
The PalmDownDetector also used an ExtendedFingerdetector, as was

covered in the previous section. This one is configured to require that
the index-, middle, ring and pinky finger have to be extended, which the
thumb can be either.

7.8.3 The PalmSideDetector

The PalmSideDetector is quite similar to the PalmDownDetector and uses
the same detectors, but with a different configuration. Although the
settings used for the DetectorLogicGate and the ExtendedFingerDetector
are very similar, the settings for the PalmDirectionDetector differs. Unlike
the PalmDownDetector, where both hands are required to point in the
direction 0, -1, 0 to perform the gesture, the PalmSideDetector makes a
distinction here. This is because requiring the palm direction 1, 0, 0 (right)
is reasonable for the left hand, as it is within its natural range of motion,
but for the right hand this requires the whole arm to twist. The required
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Figure 7.10: When the FistDetector is active, i.e a fist gesture is recognized,
the hand is colored in a black.

Figure 7.11: When the SinglePointDetector is active, i.e a single-point
gesture is recognized, the hand is colored in a glowing teal color.

palm direction for the left hand is thus 1, 0, 0 (right), and -1, 0, 0 (left) for
the right hand, both with an "On Angel" of 30 degrees and an "Off Angle"
of 50.

7.8.4 The FistDetector

The FistDetector is prehaps the simplest of the detectors and only
uses the ExtendedFingerDetector. The ExtendedFingerDetector is simply
configured to require that no finger is extended. As such the minimum-
and maximum amount of fingers extended are both set to 0, and all finger
have their required state set to "Not Extended"

7.8.5 The SinglePointDetector

The SinglePointDetector uses two detectors, ExtendedFingerDetector
and FingerDirectionDetector, bound together with an AND-DetectorLogicGate.
The ExtendedFingerDetector here requires that the index finger is extended
and that the middle-, ring- and pinky fingers are not extended (both thumb
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Figure 7.12: When the DoublePointDetector is active, i.e a double-point
gesture is recognized, the hand is colored in a glowing teal color.

states are accepted). The FingerDirectionDetector is set to be active when
the index finger points within 15 degrees of the direction 0, 0, 1, relative
to the camera. Both the "On Angle" and "Off Angle" settings are set to 15
in this detector, as, unlike the previously mentioned detectors, this one is
not of a "continous nature". Simply put, the previous gestures can last as
long as the gesture is held, and while this is the case the application con-
tinously watches the active hands and responds to hand movements. The
single- and double point detectors are techniqually also continous and can
last as long as the user desires, but as soon as these gestures are activated
their discrete action is performed. After this action has been performed no
other action will be performed by the same and while the same gesture is
kept. In the case of both the single- and double point detectors, an annota-
tion is either placed or edited upon activation. If a user thus with to place
an annotation and immediatly edit it, he or she has to use the approprate
gesture, release the gesture and do the same gesture again.

7.8.6 The DoublePointDetector

The DoublePointDetector is similar to the SinglePointDetector and uses
the same base detectors. The only implementational difference between
this two is that the ExtendedFingerDetector is configured to require that
both the index- and middle finger are extended, while the ring- and pinky
finger are contracted (both thumb states are accepted).

7.9 The Menu

The menu is opened when the palm of the left hand is facing towards the
camera, and can be interacted with using the index finger of the right hand.
Unlike the other gestures-enabled commands the menu is implemented
through the use of the open source project Hover UI Kit, created by
Aesthetic Interactive (Kinstner, 2016). The Hover UI Kit project offer three
different interface modules: Hovercast, Hoverkey and Hoverpanel, where
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Figure 7.13: The menu is opened when the palm of the left hand is facing
towards the camera, and can be interacted with using the index finger of
the right hand.

Hovercast is the one the menu is based on. This means that several of
the menu’s interaction components, such as registering button clicks are
handled by the Hover UI kit package.

The Hover UI kit main game object is present in the GestureMenu

game object, which is a top-level game object in the project hierarchy.
GestureMenu has four child game object: Hovercast, CursorRenderer

(which is disabled by default), MenuHandler and Hoverkit. Hovercast

represent the menu itself and contains the hierarchy of game objects that
represents the menu buttons. CursorRenderer can optionally render a
ring/cursor around the fingers that can be used as cursors. By default
only the index finger of the right hand can be used to select elements in
the menu. MenuHandler contains the scripts ToggleOptions, Bookmarks and
AnnotationVisibility, which are all responsible for handling the different
actions accessable from the menu. Lastly, the Hoverkit game objects
contains some important "management scripts" (e.g. HoverItemsManager
and HoverInteractionSettings) related to the different functionality of
the Hovercast menu and hoverkey keyboard in the annotation form (more
on that later). The Hoverkit game object also contains a Cursor game
object, which contains a hierarchy with representations of the left- and
right hand, and then each hand’s respective finger objects. In this object
hierarchy we can select which fingers that are cursors, which hand that can
"host" or "spawn" the menu etc. As mentioned earlier the default setting is
that the menu only can be created by the left hand palm and only interacted
with using the right hand index finger.

7.9.1 The Menu Objects

The Hovercast game object has four game objects as direct children, which
all represent a visible part of the hovercast menu: OpenItem, TitleItem,
BackItem and Rows.
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Figure 7.14: The main menu object is represented with four sub-objects:
OpenItem (a), TitleItem (b), BackItem (c) and Rows (d).

While the OpenItem, TitleItem and BackItem uses functionality that
is the default in Hover UI Kit, and is readily available in presets, Rows
contains quite a bit of implementation specific objects. The term "row" will
her refer to a set of one or more buttons, which are clickable and visible
at together, in the "row section" of the menu (see 7.14 (d)). The Rows game
object has four direct children: Root, RowA, RowB and RowC. Root is the root
menu row, i.e the row that is visible when the menu is opened, and contains
three buttons, each represented as child game objects of Root: ItemA, ItemB
and ItemC. Each of these buttons leads to their own submenu, i.e their own
row. ItemA represent the "Annotation Visibility" submenu, and brings up
RowA as the "current row" instead of root when clicked. ItemB ("Position
Bookmarks") and ItemC ("Toggle Options") follows the same logic and lead
to RowB and RowC respectively (see 7.9.1 on the next page for the hierarchical
overview. This transition is handled by the HovercastRowSwitchingInfo

component that is attached to each button game object.
RowA, RowB and RowC each contains game objects that represents buttons

in that submenu. In these button game objects HoverItemDataSelector,
HoverItemDataRadio or HoverItemDataCheckbox, for "regular buttons", ra-
dio buttons and checkboxes respectively, are attached as components.
These components are all either directly or indirectly subclasses of
HoverItemDataSelectable, which contains important properties like "La-
bel" (i.e the button text value) and a list of eventhandler. An example of this
is ItemCB in RowC, which has the label "Disable Gestures" and has an entry in
the "OnSelectedEvent" list. This entry is a reference to the GestureOptions
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Root menu

Annotation Visibility (submenu/row)

Always visible (radio button)

Visible with LOS (radio button)

Invisible (radio button)

Use Glow (checkbox)

Back (button)

Position Bookmarks (submenu/row)

Origin (button)

Back (button)

Toggle Options (submenu/row)

Toggle crosshair (button)

Enable gestures/Disable gestures (button)

Combined XYZ gestures/Distinguish XYZ gestures (button)

Back (button)

Table 7.7: The Menu Hierarchy

88



public void alwaysShow()

{

//Include the SphereAnnotation layer to the culling mask and use "Depth

only" as clear flag.

annotationCamera.cullingMask |= 1 <<

LayerMask.NameToLayer("SphereAnnotation");

annotationCamera.clearFlags = CameraClearFlags.Depth;

}

public void showWithLOS()

{

//Include the SphereAnnotation layer to the culling mask and dont clear

anything.

annotationCamera.cullingMask |= 1 <<

LayerMask.NameToLayer("SphereAnnotation");

annotationCamera.clearFlags = CameraClearFlags.Nothing;

}

public void hide()

{

//Only render objects in the first layer (Default layer)

annotationCamera.cullingMask &= ~(1 <<

LayerMask.NameToLayer("SphereAnnotation"));

}

Table 7.8: Annotation visibility manipulation example in C# code. This
code snippets makes use of bit shifts on the annotation camera’s culling
mask and clear-flags properties.

class’ function toggleGestures.

7.9.2 The MenuHandler Scripts

The menu makes use of three scripts to handle all actions: AnnotationVisibility,
Bookmarks and GestureOptions. These are all components of the
MenuHandler game object and serve their seperate submenus (i.e Row A,
B and C) and buttons.

The AnnotationVisibility script’s main purpose is to interact with
the active camera rig’s annotation camera, and manipulate the way the
annotations are presented to the user. This include choosing between three
annotation presentation modes: "Always visible", "Visible with LOS" and
"Invisible", and choosing whether to use a glow effect on annotation or not.
This is done by manipulating the active annotation camera’s culling mask
and clear flags using bit shift:

The functional differences between the annotation presentation mode
with or without glow are covered in 7.10.2 on page 93.

The Bookmarks script’s main purpose is to handle what in the menu is
refered to as "Positional bookmarks". The primary idea behind positional
bookmarks is to allow the user to save specific points of interest in the
model to be able to quickly return there, just like one could bookmark a
web page in a web browser. In the current iteration of the application it isn’t
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possible to create new bookmarks, so the only available one is the "Origin"
bookmark, which is the position and orientation the user has when first
entering the application (useful to reset the position e.g. if the user should
get lost in some way). In the script this functionality is accomplished by
having a linked list of transforms (a unity game object component storing
relevant information) and a referance to the MasterController game
object. The MasterController’s position and rotation in the applications
first rendered frame is stored as the first entry in this list and, should
the user click the appropriate menu button "Origin", in the "Positional
bookmarks" submenu, the function GoToBookmark(int index) should be
called with index = 0 as index argument. The GoToBookmark function then
looks up the transform stored at index i, and if successful sets the position
and orientation coordinates of the MasterController’s transform. The user
will experience this as the camera "teleporting" to the same spot as the
player started on when entering the 3D model.

The GestureOptions script’s main purpose is to handle options related
to gestures, and handles two menu elements from the Toggle Options
submenu: "Enable gestures" / "Disable gestures" (one button with a
context dependent label) and "Combine XYZ gestures" / "Distingush XYZ
gestures" (also context dependent label). This is primarily done by two
of its functions toggleGesturesActive and toggleGestureMode, which
both use the context dependent toggle principle and functions in the
GestureHand class. In the implementation a toggle is simply to swap to
the opposite value of the current, with two possible values available (i.e
toggle + true = false and toggle + false = true).

toggleGesturesActive checks the value of the instance variable
GesturesEnabled and either disables or enables gestures based on what
is variable holds. If GesturesEnabled = true, i.e that gestures are
enabled, the function disables gestures by calling each GestureHand’s
disableDetectors function, swaps hand materials to the "disabled-
material" and swaps the GesturesEnabled variable to its opposite value
(i.e now GesturesEnabled = false). In the opposite case, i.e when the
function is called and the GesturesEnabled variable has the value false,
gestures are enabled by calling each GestureHand’s enableDetectors func-
tion, swapping hand materials to the "none-material" and swapping the
GesturesEnabled variable to its opposite value (i.e now GesturesEnabled

= true).
The toggleGestureMode functions in a very similar manner as

toggleGesturesActive and uses a boolean value present in the GestureHand
instances to toggle between a combined or separate state for movement
gesture (i.e whether to have movement gestures in the x, y and z plans
combined or separate.

7.10 The Annotations

As mentioned in earlier sections, an annotation can either be a point
annotation or an object annotation. A point annotation is an instance of
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public GestureHand[] hands;

private static bool gesturesEnabled;

public void toggleGesturesActive(HoverItemDataSelector selector)

{

if (gesturesEnabled)

{

selector.Label = "Enable Gestures";

foreach (GestureHand hand in hands)

{

hand.disableDetectors();

hand.ToggleHandMaterial(hand.handMaterials[7]);

}

}

else

{

selector.Label = "Disable Gestures";

foreach (GestureHand hand in hands)

{

hand.enableDetectors();

hand.ToggleHandMaterial(hand.handMaterials[0]);

}

}

gesturesEnabled = !gesturesEnabled;

}

Table 7.9: The GestureOptions class can be called to enable or disable all
detectors based on its current state.
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a prefab called SphereAnnotation and is instantiated and added to the
scene at the point where the raycast hits a collider (assuming the range
threshold isn’t surpassed). The SphereAnnotation prefab includes a sphere
mesh, sphere collider, mesh renderer and shader, and effectively looks like
a small shining orb. An object annotation functions a little differently as
no new object is added to the scene to represent the annotation. Instead,
the annotation is attached to the object itself and the object’s material
("color") is changed to show that the object has an annotation attached.
Although these two annotation types differs in this respect they both are
based on the AnnotationInformation class, which is a component in both
the AnnotationSphere prefab and the annotated objects.

In the current implementation AnnotationInformation is a pretty
simplistic and limited class, but can easily be extended to include a lot
of other functionality. Prehaps the most essential class member is the
string variable text, which is simply the string value of the annotation.
This value is read when the annotation form opens (i.e the user starts
editting an annotation) and displayed in the annotation form text box.
If the user exits the annotation form by clicking the submit button the
text value is replaced/updated with what’s currently in the text box.
In addition to this, the AnnotationInformation class also contain a
material-list called annotationMaterials and a material reference called
previousMaterial. annotationMaterials is a list of the available materials
to the annotation and is utilzed to look up which material to use for the
annotation, e.g. when the user changes the annotation’s priority (different
priorities have different colors). previousMaterial holds a reference to the
previous material the annotation had, and is most commonly used in object
annotations to "remember" the original material (since annotating an object
overrides its materials), in cases where the object annotation is deleted.

AnnotationInformation also contains a destroy function, called
Destroy, which is used to delete annotations (i.e removing them from the
scene).

7.10.1 Annotation Categories

As mentioned earlier an annotation can have one of the following labels or
categories: "Information", "Warning" or "Error", selectable in the annotation
form. These categories or labels were created to reflect the nature of an
annotation in a design review settings. The information-category is meant
for general remarks, the warning-category for potential issues and things
that should be improved, and the error-category for design aspects that
needs to be changed for the design to be approved. To make this annotation
distinction clear to the user the annotation’s material ("color") is changed
depending on the category it belongs to. In the implementation the
information-category is the default category, i.e the category an annotation
belongs to upon creation, and has the color teal. The warning-category has
the color yellow and the error-category has the color red (see figure 7.15 on
the next page).
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Figure 7.15: The Annotation Category Colors. a) Is an information-
annotation and is colored in teal. b) Is a warning-annotation and is colored
in yellow. c) Is an error-annotation and is colored in red.

7.10.2 Annotation Visibility Levels

Annotation visibiliy levels can be accessed through the menu, by clicking
the "Annotation Visibility" button in the root menu, and decides how
annotations appear in the virtual world. This includes choosing between
three annotation presentation modes: "Always visible", "Visible with LOS"
and "Invisible", with the "Always visible" setting being used by default.
The user can from this menu also choose whether to use a glow effect on
the annotation or not. As was mentioned in the camera rigs sections (7.4),
this is accomplished by manipulating the annotation camera in the active
rig, and more specifically its culling mask and clear flags. This is done in
the AnnotationVisibility script, which is partly shown in table 7.9.2 on
page 89.

Always Visible

As mentioned in 7.4 on page 74 the main camera’s culling mask includes
(and thus renders) every layer except the annotation layer (actually called
"AnnotationSphere" in implementation), while the annotation camera, only
renders the annotation layer (CullingMask = {SphereAnnotation}). The
output of these two cameras is combined by rendering the main camera
first, and then render the annotation camera and put its results "on top
of" the main camera’s output. To ensure that the annotation camera’s
output doesn’t overwrite the entire output of the main camera, so only the
annotation-cameras output would be shown, we have to use a different
clear flag for the annotation camera than we would in a single-camera
setup.

The main camera uses a clear flag called "Solid Color", which effectivly
clears any empty portions of the screen by displaying a certain background
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Figure 7.16: The user can decide three different annotation visibility
settings in the Annotation Visibility Submenu.

color. If there is nothing for the camera to render (i.e no object in front
of the camera on a layer which is included in the camera’s culling mask)
only this background color will be shown. If this clear flag were used on
the annotation camera everything on the frame, except annotation models,
would be this background color. Because of this another clear flag, called
"Depth only", is used on the annotation camera. This clear flag only clears
the depth buffer and not the color buffer as is done in with the "Solid
Color"-flag. It also doesn’t overwrite anything from the frames produced
by other cameras unless it captures an object that is on a layer thats in
the cameras culling mask. This effectivly means that annotations, picked
up by the annotation camera, is effectly drawn over the pixels that were
produced by the main camera, effectivly removing or obstructing the parts
of the model that would otherwise obstruct the annotation from the user.
This makes it so annotation are visible from all angles and distances with
the "Always visible" setting active.

Visible with Line Of Sight

As mentioned earlier the "Always visible" option is the default in the
application. This is meant to make it more easy to keep track of the different
annotations present in the model. This seems like a good option with
relatively few annotation, but can probably be distracting if the number
or concentration of annotations grow beyond a certain size. Because of this
the "Visible with LOS" (Visible with Line of Sight) option was developed
to give the user the option to disable the "annotation are always visible"-
functionality and instead only see annotation if they are directly in the line
of sight.

The "Visible with LOS" option in the menu changes the behavior
outlined in the previous section by some degree. It keeps the same culling
mask configurations as in the "Always visible" setting, but changes the
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Figure 7.17: When selecting the "Always visible" option in the Annotation
Visibility Submenu annotations are not occluded and thus always visible,
even through other objects.

annotation camera’s clear flag to the "Nothing flag". This flag will leave
colors and depth buffer from the previous frame, which is produced by
the main camera, and thus not clear anything. Because the depth buffer
isn’t cleared, as is the case with the "Solid Color" and "Depth Only" flags,
objects rendered by the main camera can now obstruct objects rendered by
the annotation camera, thus giving the "normal" line of sight requirement
for seeing objects.

Invisible

To enable the user to hide annotation all together the "Annotation
Visibility" submenu also offers an invisible-option. This option simply
removed the annotion layer from the annotation camera’s culling mask,
thus leaving the annotation camera to render nothing. The clear flag is kept
in its current state as neither the "Depth only" or "Nothing" flag interferes
with the frames produced from the main camera when nothing is produced
by the annotation camera.
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Figure 7.18: A side-by-side comparison of the annotation visibility levels.
These three pictures are taken with the same camera position and
orientation using different visibility settings. "Always visible" option (left):
Annotations are not occluded and thus always visible, even through other
objects. "Visible with LOS" option (middle): Annotations are only visible
with line of sight. "Invisible" option (right): Annotations are not visible.
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Chapter 8

Evaluation of the
Implementation

To evaluate the application’s ability to meet user requirements three
participants were invited to test the design review application at the DNV
GL headquarters in Høvik, Norway. The participants were brought in
individually and asked to take a seated position at an ordinary work station
(i.e an office space) with a mouse, keyboard and display, in addition to a
Leap Motion Controller - positioned at the desk between the keyboard and
the user - and a HTC Vive HMD. The computer used for the testing had the
following specifications (hardware and software):

• An Intel i7 as processor.

• 8 GB of RAM.

• A Nvidia Geforce GTX 1080 graphics card.

• A Windows 10 64-bit operating system (build 14393).

• Unity 5.5.2

• Leap Motion Control Panel version 3.2.0+45899

• Steam VR runtime (for use with the HTC Vive HMD)

After the participant was seated the test phases were conducted in the
following order (including an estimate of alloted time):

1. 5 minutes of introduction. The users were informed about the
purpose of the application, some of its long term goals and its
limitations.

2. 10 minutes of demonstration. The users were shown each of the
possible actions and the different gestures available to them.

3. 15 minutes of instructions. The users followed a series of instructions
and oral explanations to teach them to use the program.
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Figure 8.1: The user test session setup at DNV GL.
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4. 20 minutes of experimentation. The users were asked to use the
program freely without any instructions.

5. 10 minutes of questions. The users were interviewed with a series of
questions related to the application and their experience using it.

With the exception of the experimentation phase, all the steps above
were conducted without the use of a virtual reality headset. This was done
to more easily explain and show different gestures - which is easier when
not wearing a HMD - and to allow the user to get familiar with the gesture
scheme before using the virtual reality headset (to e.g. reduce the amount
of unintended movements). In the experimentation phase, the participants
were asked to divide their time equally between using the application in
desktop mode - a collection of settings intended for usage with a regular
display - and virtual reality mode - settings intended for usage with a virtual
reality HMD.

8.1 The Instructions

The participants were asked to perform the following tasks:

1. The pinch gesture is performed by pushing the thumb and index
finger together, while keeping the palm directed against the table
surface. Move the hand which holding the pinch gesture to rotate
the camera along the X and Y axis.

2. The Palm-down gesture (alternatively, the Y gesture) is performed
by holding your hand straight with all fingers extended, pointing
towards the screen and the palm facing downward towards the table
surface. Lift and lower your hand to change move the camera along
the Y axis.

3. The Palm-side gesture (alternatively, the X gesture) is performed
by holding your hand straight with all fingers extended, pointing
towards the screen and the palm facing to the side, perpendicular
to the table surface. Move it from side to side to move the camera
along the X axis.

4. The fist gesture (alternatively, the Z gesture) is performed by holding
your hand curled up into a fist with no finger extended, pointing
towards the screen and the palm facing downward towards the table
surface. Move your fist closer or further from the screen to move the
camera along the Z axis.

5. Maneuver from your current position around one of the pipes present
in the 3D model and back to your original position, using one or both
hands.

6. Hold your left hand straight and rotate it so the palm is facing
towards you. A menu shaped like a fan should appear and follow
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the movements of your left hand as long as this gesture is held. Use
the index finger of the right hand to select "Toggle Options" and then
"Combine XYZ Gestures". To select a button hold the tip of the right
index finger close enough (in terms of X, Y and Z axis) to the button
for it to gradually highlight. When "Combine XYZ Gestures" has
been selected the X, Y and Z gestures are combined/replaced by a
combined XYZ gesture, which is performed the same way as the Y
gesture (hand straight and palm down). When now performing and
holding this gesture the user can move along the X, Y, and Z axis in
the virtual space by moving the hand correspondingly in the physical
space.

7. Maneuver as in instruction #5, but this time by using the combined
XYZ gesture. After the user has completed this he might switch
back to the other gesture scheme by bringing up the menu and select
"Toggle Option" and "Distinguish XYZ Gestures", or keep the the
combined XYZ gesture.

8. By utilizing the gestures introduced thus far, move the camera so
the cursor/crosshair in the middle of the screen is positioned over
a nearby object. Perform a pointing gesture by having only the
index finger extended and point at the screen (away from you). If
this is done correctly a blue sphere should occur, which is called an
"Annotation Sphere". This is in short a unit of information related to
the position it is attached to. Create two more Annotation Spheres by
moving the cursor/crosshair over other nearby surfaces and point.

9. Now annotate/mark an entire object or surface by pointing two
fingers ("double pointing") instead of one. These two fingers should
ideally be held in a bit of an angle, like a scissor. When done correctly
the entire surface or object the cursor/crosshair is indicating should
be colored in a similar blue color as the annotation spheres.

10. Now place the cursor/crosshair over an annotation sphere or an
annotated object and either point (if an annotation sphere is selected)
or double point (if an annotated object is selected). When done
correctly a form containing a text field, a virtual keyboard and some
buttons should be displayed.

11. Write "DNV GL" in the text field by utilizing the virtual keyboard.
After this click on one of the colored buttons to set a color on there
annotation (used to indicate a priority), and click submit to save the
changes to the annotation.

12. Open the same annotation again and delete it by pressing the delete
button.
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8.2 The Questions

At the end of the individual test sessions the users were asked the following
questions:

1. Did you prefer to have distinct gestures for movement along the X, Y
or Z axis or did you prefer having it combined in a single gesture?

2. How effective and responsive did you find:

(a) The pinch gesture?

(b) The X gesture?

(c) The Y gesture?

(d) The Z gesture?

(e) The combined gesture?

(f) The point gesture?

(g) The double point gesture?

3. How easy was the menu to use?

4. How difficult or impractical was it to use the annotation form?

5. How difficult was it to place the cursor/crosshair where you wanted
it to be?

6. How was using the application with a virtual reality head mount
different from using it in "desktop mode"? Which one did you prefer?

7. Do or did you feel any symptoms of motion or virtual reality sickness
after using the application in virtual reality mode?

8.3 Responses

On the first question two of the participants responded that they preferred
having distinct gestures for movement along the x-, y- and z-axis, because
it gives more precision and it’s easier to avoid accidental movement, while
the remaining participant preferred the combined gesture scheme as he
found it more intuitive to use. Combined gestures were also favored by
this participant because he felt that it was easier to perform the required
tasks with only one hand, and he could thus switch between using the left
and the right hand to combat fatigue (e.g. like the "gorilla arm syndrome").

When asking the participants about their impressions of the different
gestures the answers were more unanimous in some aspects as all
participants preferred the fist gesture the least and the pinch gesture the
most. As we will see in the next section there might be an inverse
relationship between the two. All the participants also reported that
they didn’t use the palm-down (y-axis movement) and palm-side (x-axis
movement) that much and instead preferred to rotate to the direction
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they wanted to move and use the fist gesture (z-axis movement) to go
there. All the participants also preferred the single-point gesture over the
double-point gesture as the latter often was mistaken for the former. The
participants also found the initial 25 degree on and off angle of the single-
and double point detectors (see section 7.8.5 on page 84) to be to "generous",
resulting in several annotations being placed by mistake. As a result of this
the participants also were allowed to try with a stricter 15 degree on/off-
angle, which all preferred (and thus is the application default).

The participants overall seemed satisfied with the menu, as they felt it
was straight-forward to use. One participant felt that is was a little "too
slow", by which he referred to how the user of the menu is required to hold
a button for about 1-2 second before a click is registered (to avoid accidental
clicks). Another participant also felt that is was too hard to read the menu
text (i.e the labels), as it was to small and pixelated. Both of these issues
can quickly be adjusted in the implementation, by e.g increasing the font
size and applying anti-aliasing to the text, but this was not done during
the testing. With regard to using the annotation form the participants had
similar remarks as to the menu.

When asking the participant about the differences between using the
application with or without a virtual reality HMD, and what they prefer,
they unanimously responded that they preferred to use the application in
virtual reality mode. One of the reasons for this was that it was simply
easier to position the crosshair/cursor at the desired location (i.e to aim)
with the assistance of head movements. Although the participants felt
that aiming with the crosshair/cursor was easiest in VR mode, they still
did not find it troublesome to do so in desktop mode. Another reason the
participants preferred using the application with a VR HMD was because
of the better depth vision they felt it provided. This was, according to
one participant, especially beneficial with regards to using the menu and
annotation form, as it was easier to click the buttons (i.e easier to see the
relation between the hand models and the buttons). The added depth
information was, according to another participant, also especially useful
to understand the model better.

The participants were also asked if they felt any symptoms of motion
or virtual reality sickness after using the application. One participant
responded that he felt a little dizzy after using the application and that it
felt like this was especially caused by unintentional movement (e.g. when
intentionally performing a movement gesture). The other two participants
felt no kind of symptoms or fatigue after using the application.

8.4 Observations

As mentioned in the previous section, the fist gesture was the least
preferred gesture. This appeared to be caused by two primary reasons:
Detector conflict and fatigue. When the participants attempted to do a fist
gesture the gesture recognition system would often mistake it for a pinch
gesture, possibly because the distance between the tip of the thumb and
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index finger is relatively small when forming a fist. As the Leap Motion
base pinch detector only defines a pinch as a small enough thump–tip-to-
index-tip distance, additional detectors was added to the pinch gesture to
avoid this detector conflict. Because of this, there are two composite pinch
detectors per hand in the implementation, one "slack" version only using
the base pinch detector and one "strict" version using a combination of
the base pinch detector and the base finger extended detector. The strict
version requires a pinch gesture to be performed while having at least two
fingers extended at the same time. This made it more distinguishable from
the fist gesture, but also made it a bit harder to use/trigger (i.e more false
negatives).

Another interesting observation is related to virtual reality sickness.
As previously mentioned, one participant felt affected by virtual reality
sickness, while the other two participants felt no sign of it. Even when
engaged in quick, sudden and unintended movement, and when not
being in control of the camera themselves, these two participants remained
unaffected by any virtual reality-, simulator or motion sickness symptoms,
thus indicating a lower susceptibility for virtual reality sickness than the
first participant. Interestingly, these two participants were also younger,
about 30 and 45 years of age, whereas the first participant was about 60
years of age. Although the sample size is too small to draw any form
of conclusion from this it can still be considered interesting observation.
Whether the participant was sitting or standing while wearing the HMD
seemed to have to effect on the proneness to, or effect of, virtual reality
sickness.

During the test session several of the participants also had interesting
suggestions for the application. One participant said he appreciated not
having collision on the MasterController in the application, thus being
able to move through objects, but that he would prefer if the user "bumped
into objects" before going through them. He thus felt that some sort of
collision, while still having the ability to move through objects, would be
helpful when positioning. Another user, upon discussing the fist-pinch
detector conflict, suggested to use a new gesture to rotate the camera.
More specifically, the participant suggested a fist gesture with the thumb
extended to rotate and the regular fist gesture for Z-axis movement (thus
using a gesture scheme without the pinch gesture). These suggestions have
not yet been incorporated into the implementation.

8.5 Summary and Findings

Although the sample size of these test was too small to draw definitive con-
clusions, there were still some interesting observations. These observations
point towards some possible hypothesizes, which could be the subject of
further research.
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Gesture Sensitivity Preferences

Generally it felt like the participants of the test sessions preferred false
negatives over false positives in the gesture recognition system - meaning
they prefer the system to occasionally miss some gestures attempted by
the user, than respond to a perceived gesture which the user did not
actually attempt. To investigate this the users were allowed to try "stricter"
settings during the evaluations, such as a lower detector on- and off angle
and additional requirements for the pinch gesture. All of the participants
responded that they preferred this, and the strict setting is thus the default.

Increased Depth Perception Matters for Gesture Interaction

All three participants responded that they had a much stronger sense of
where the hand models - representing their own virtual hands - were in
relation to objects in the model, while wearing a virtual reality headset.
This was especially the case when interacting with buttons, such as found
in the menu and on the annotation form, as the tip of the finger must be
within a maximum distance on the x-, y- and z-axis in order for the button
to respond. Judging the z-axis distance, i.e the depth, was reported to be
harder when not wearing a virtual reality headset.

Individual Gesture Preferences

There were distinct differences between how the users naturally held their
hands when performing gestures, and also differences in how easy or hard
a particular gesture was to perform for a user. One example of this was
how the palm-down gesture was perceived to be easy to use for some
participants, while other participants often - unconsciously - held their
hand at an angle which resulted in the gesture not being recognized. This
indicates that a gesture recognition application should ideally have some
customizability with regards to the gesture scheme, allowing e.g the user to
adjust which gestures map to which actions and what sensitivity a gesture
should have (e.g. in terms of a maximum allowed on- and off angle).

Users Prefer Natural Movement Patterns

The participants used the fist gesture (the Z gesture) and the pinch gesture
almost exclusively for movement, while the palm-down and palm-side ges-
tures were little used. This might have a connection to how people natu-
rally move, as moving forward, while turning to the desired direction, is
a usual movement pattern, while "strafing", e.g moving directly left and
right, and going vertically up and down, are arguably not.
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Chapter 9

Conclusion

In this chapter, we summarize the work presented in this thesis, as well as
our findings. After this we discuss ideas for future work.

9.1 Summary

In this thesis, we have reviewed how the current state-of-the-art virtual
reality- and vision-based gesture recognition technologies can be utilized
in the design review process of the major international classification society
DNV GL. We did so by first reviewing the roles and responsibilities of
classification societies in general, before discussing DNV GL’s current
workflow in chapter 2. In this chapter we also mentioned some initial
design ideas for how a full-featured design review application might look,
and what functionality it could offer to improve DNV GL’s design review
workflow. This includes conducting virtual design review meetings, were
the designer and reviewer could meet in the 3D model, interact, survey-
and annotate it together. These annotations could be stored in a database
- a system keeping track of their history, information and states - and
be accessed from multiple platforms - like an issue tracker or a digital
scrum board. The interaction, surveying, and experience as a whole, could
be enhanced by virtual reality technology - giving the unique sense of
scale and a depth that is invaluable for a design - and gesture recognition
technology - allowing the users to work with the 3D model in new and
innovative ways.

In chapter 3, we reviewed the basics of virtual reality technology and
the various challenges of developing a virtual reality system. Specifically,
we covered the big performance demands virtual reality places on a
system, as having a low latency is crucial to avoid user discomfort (such
as virtual reality sickness). To achieve a low enough latency it is important
to have both a high enough frame rate - i.e the number of frames rendered
by the system per second - and a high refresh rate - i.e the number of
times the display hardware updates its buffers per second. The latency
does not get better than the weakest of these two allow, so it is important
that both the frame- and refresh rate are high enough. Asynchronous
reprojection is a performance-cheap method to combat a low frame rate by
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inserting "pseudo-frames" in the frame buffer, created by the manipulation
of previously rendered frames. Even though asynchronous reprojection
might give a high perceived frame rate, a high frame rate without the
use of asynchronous reprojection is still recommended. A sufficiently
high display resolution and pixel density are also important factors in the
performance of a virtual reality system. Failing to deliver a high enough
display resolution and pixel density can - among other things - lead to
negative effects such as the screen-door effect, as well as positional judder
and other visual artifacts. Virtual reality also impacts how VR-application
should be design and implemented. Failing to meet these demands can
increase the risk of virtual reality sickness, a condition similar to motion
sickness. There are several factors that impact a virtual reality-user’s
susceptibility for virtual reality sickness, which can be dividing into those
caused by individual differences and those caused by the application or
virtual reality system.

In chapter 4, we reviewed the basics of gesture recognition technology
and discussed the two primary categories of gesture recognition devices:
Vision-based and contact-based. We compared the two and concluded
that the design review application would target a vision-based gesture
recognition system, as these have several important advantages over
contact-based, such as having lower health risk associated with them and a
higher user friendliness. We also discussed the three primary vision-based
technologies - stereoscopic vision, structured light and time of flight - and
concluded that we would target a stereoscopic vision system, as these are
arguably the most promising for use in an office environment. After this
we discussed the three stages of gesture recognition - detection, tracking
and recognition - and several approaches to each of these phases. In the
chapter’s conclusion we conclude to use the Leap Motion Controller as our
gesture recognition system, as it is both a stereoscopic vision system - and
thus also vision-based - and also because it has a well documented high-
level API and an attractive size and price.

In chapter 5, we defined the design of the design review application.
This was in part done by use cases specifying what functionality should
be included, such as be able to move in all three dimensions and be able
to annotate objects, and in part done by defining the gesture scheme. The
gesture scheme described what gestures a user of the application should
be able to perform and how they should be performed. The design also
addressed various technology choices for the application. The Unity game
engine was selected as a software framework as it has good compatibility
with the other technology we are using and because it allowed us to use a
pre-made asset from DNV GL - the tanker model. With regard to virtual
reality HMD we concluded that both Oculus Rift and the HTC Vive should
be supported, as both were available to us during the development.

In chapter 6 we reviewed some of the documentation of Unity and Leap
Motion to discuss their central concepts. Emphasis were put on commonly
used components in Unity, such as GameObjects, and the Leap Motion API.

In chapter 7, we documented our implementation by reviewing several
important game objects and scripts in our Unity project. This was done by
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first reviewing the project organization and explaining the different ideas
behind the top-level objects. After this we reviewed the different controller
- i.e the RotationController, MovementController, RaycastController

and AnnotationFormController - that made up the MasterController,
which essentially is the virtual representation of the user. After this we
discussed the ideas behind the different camera rigs - i.e that the VR-
scenarios and desktop-scenarios (i.e without using any VR HMD) - should
be treated differently. This was followed by a discussion of the World-

SpaceCanvas, the canvas that exists in the 3D space - as opposed to only on
2D screen space - and hosts the annotation form. After this we discussed
the GestureHand class, representing a hand and keeping track of its states,
and the various composite detectors - enabling us to recognize the gestures
the user is performing. We then discussed the menu, created by using the
Hover UI Kit, and how the two types of annotation - i.e point annotations
and object annotations - are implemented.

In chapter 8, we discussed how the application was tested by three
DNV GL employees, what they were asked to to, what questions they were
asked and how they responded. We also made several observations during
these user tests, which lead to some interesting ideas and hypotheses.
One of these observations were how the participants seem to prefer that
the gesture recognition system failed to recognize some attempts at using
a gesture, in exchange for decreasing the number of times the system
perceived a gesture that the participant did not actually attempt. Other
findings include how the user seem to prefer using gesture recognition
with virtual reality - rather than without -, how the relative difficulty of
performing a gesture is subjective and how the participants used some
movement gesture much more often than other movement gestures.

9.2 Future Work

As mentioned in our review of the application evaluation in chapter 8 -
and in the previous section - there were several interesting findings, which
could be explored in future research.

One interesting topic of study could be how a gesture scheme (i.e
the set of possible gestures) should be optimally designed to maximize
its precision and accuracy, thus also maximizing the amount of true
positives and true negatives, while minimizing the amount of false
positives and false negatives. The evaluation chapter briefly mentioned the
gesture sensitivity preferences, as well as differences in individual gesture
preferences, which both would be relevant observations for such a study.

Another important challenge in the field of virtual reality is to uncover
more factors that correlate with susceptibility to virtual reality sickness,
both with regard to individual differences and from an application design
standpoint. As covered in section 3.3 on page 20, several factors are
either hypothesized or proved to correlate with proneness to virtual reality
sickness, but more research would certainly be beneficial, especially when
considering conflicting findings, such as how age - especially when around
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50 years of age - affect the susceptibility to virtual reality sickness.
This is just a few examples of many potential research topics within

virtual reality technology, gesture recognition technology and how these
can be used together.
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