
Multimodal Emotion Recognition
using facial expression and other

physiological condition

Andreas Mathisen and Edvard Halsteinli Unsvåg

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture
60 credits

Department of Informatics
The Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2022



Abstract
The task of emotion recognition has been attempted solved predominantly
by unimodal approaches, where facial emotion recognition is the most
frequently used modality. However, regardless of good results in facial
emotion recognition, there is still a need for further efforts to improve the
quality of emotion recognition methods. Multimodal emotion recognition
is an emerging field within emotion recognition set to address this
challenging task by combining unimodal approaches, motivated by the
fact that humans detect emotions in a multimodal matter. In the field
of multimodal emotion recognition, several combinations have been
explored; facial expressions and text, facial expressions and speech, and
facial expressions and physiological signals.

In this thesis, we explored the field of multimodal emotion recognition
by investigating the combination of facial expressions and physiological
signals. An overview of different approaches, combinations, and traits
was established through a literature study of related work in the field.
We experienced a lack of usable datasets from the literature study, and
a decision was made to provide true labels to an unlabeled dataset
containing facial expressions and physiological signals. Several machine
learning models, along with a human survey, were used to label the
dataset. Additionally, a preliminary experiment regarding the correlation
between facial expressions and blood volume pulse was conducted using
spatio-temporal networks, serving as a motivation for the subsequent
experiments. Through an experiment trying to classify six basic emotions
plus neutral with a 3D-CNN, it was found that a multimodal model
using facial expressions and physiological signals resulted in a slight
improvement compared to only using facial expressions. These findings
suggest that there is potential for improving an emotion recognition model
by including physiological signals in a multimodal model, but further
research should be conducted to explore how the physiological signals are
most effectively utilized.
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Chapter 1

Introduction

Multimodal Emotion recognition (MER) is defined as the process of
identifying human emotion using several modalities, motivated by the
fact that humans detect emotions in a multimodal matter. Understanding
emotions is an essential part of being human. Along with the growth
in “internet-of-things” (IoT) and wearable technology, we are witnessing
growth in the field of MER, which motivates research in the field on how
advanced technology can assist in solving the task of emotion recognition.
This thesis will focus on how such technology can assist in automatically
detecting emotions by exploring the combination of facial expressions and
physiological signals.

1.1 Background And motivation

The field of emotion recognition has been dominated by unimodal ap-
proaches, meaning approaches that consider one modality. The most pop-
ular unimodal emotion recognition approaches uses facial expressions,
which tries to detect emotion solely based on facial expressions. However,
recent advancements with the combination of several modalities have
shown promising results. MER is defined as the process of identifying hu-
man emotion by using several modalities. The field of MER is motivated
by the fact that humans detect emotions in a multimodal matter by com-
bining the processing of modalities like facial expressions, posture, and
prosody to recognize a person’s emotions; therefore, technology should
do the same. As a result of the growth in "internet-of-things," wearable
technology, and data becoming more available, we are witnessing growth
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in the field of multimodal emotion recognition. This motivates research
in the field on how advanced technology can assist in solving the issue of
emotion recognition and how to use such technology in a natural setting.

There is an increasing amount of research covering the multimodal
approach to emotion recognition using Machine Learning. While most
of the early studies focused on combining facial expressions with speech,
considering this was data easily collected from video, the research field has
expanded beyond this. Over the last few years, other combinations have
been explored using facial expressions, text, speech, and physiological
signals. While methods within these combinations perform relatively
well, the field, in general, is still relatively fresh and in need of
improvements in the quality of emotion recognition. There exists research
that investigates the impact of using facial expressions and physiological
signals, however, little research combines them in a multimodal approach.
This is motivating regarding research of the subject, and the focus of this
thesis will be on predicting emotions based on the combination of facial
expressions and physiological signals. Emotion recognition is of interest
to many actors, and the motivation of this thesis is to motivate the usage
of facial expressions, physiological signals, and, in general, contribute to
the field of study.

1.2 Goals And Research Questions

Goal Investigate the effect of multimodality in emotion recognition with the use
of facial expressions and physiological signals

The goal of this thesis is to investigate how a multimodal approach
can help recognize emotions with the combination of facial expressions
and physiological conditions. A theoretical and practical approach will be
adopted to achieve this goal, with a literature study and experiments. This
objective is divided into the research questions below. In addition, we will
include the objective of creating a labeled multimodal dataset.

Research question 1 What does the literature suggest as promising
approaches to MER using facial expressions and physiological signals?

A review of related work will be conducted to obtain an overview of

2



well-performing approaches within multimodal emotion recognition. The
findings from this review will provide us with an understanding of the
field and will be used in experimenting with the combination of facial
expressions and physiological signals, which is the focus of the second
and third research question.

Objective 1 Provide ground truths to the multimodal dataset provided by
Svoren (2020), using a facial emotion recognition model and human raters.

To achieve our goal of multimodal emotion recognition, a labeled
dataset consisting of both facial expressions and physiological signals was
created. This dataset will serve as a contribution to the dataset of Svoren
(2020), with the inclusion of true labels and preprocessing of the data.

Research question 2 How are physiological signals related to facial
expressions?

To serve as motivation for the inclusion of physiological signals, an
experiment trying to predict Blood Volume Pulse (BVP) values using facial
expressions were conducted.

Research question 3 What are the effects of including physiological signals
in multimodal emotion recognition?

A unimodal facial emotion recognition (FER) model will be implemen-
ted to serve as a baseline for comparison. Then a unimodal physiological
emotion recognition classifier will be implemented and combined with the
facial emotion recognition model. Lastly, a comparison between the usage
of a FER model and a multimodal approach will be conducted.

1.3 Scope And Limitations

Within the area of multimodal emotion recognition, there are many
possibilities to explore. However, due to time limitations, we are forced
to limit the scope of the thesis to only exploring a tiny portion of the
field. Firstly, there are many ways in which we could design our emotion
recognition models to perform multimodal emotion recognition. In this
thesis, we limit ourselves to exploring a single approach for MER, trying
to classify six basic emotions plus neutral. With our approach drawing
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inspiration from the state-of-the-art literature, we perform a promising
exploration of research question 3, exploring the effects of incorporating
physiological signals in multimodal emotion recognition. However, with
countless combinations of the structure of models, datasets to be used,
what emotions to classify, and the number of modalities, several areas is
still yet to be explored.

Secondly, several approaches could have been explored regarding the
labeling of Toadstool. This thesis uses three classification models, two
datasets, and some validation provided by human raters. Moreover,
an improved approach to labeling the Toadstool dataset should be
further explored due to the fact that high-quality true labels are essential
for the performance of an emotion recognition model. As stated,
many possibilities and variations of the process of multimodal emotion
recognition could potentially yield interesting results but will remain
outside the scope of this thesis. Some of these, as well as other potential
ideas for future work, will be discussed in chapter 9.

1.4 Research Methods

In order to answer the research questions and accomplish the research
goal, several methodologies have been used. Firstly, a literature study re-
garding the most promising methods in multimodal emotion recognition
was conducted to answer Research Question 1. Further, to accomplish our
objective of labeling Toadstool, a human survey was conducted to provide
labels and combined with the findings from the literature. Secondly, the
work conducted in this thesis follows an experimental research strategy,
where the value of combining facial expressions with physiological sig-
nals is investigated. The work in the experiments is based on the findings
from the literature review and Objective 1 to provide answers to Research
Questions 2 and 3. The results from the experiment regarding Research
Question 2 were further used to answer Research Question 3. The results
of the final experiments were quantitatively analyzed by evaluating the
impacting factors of combining physiological data with facial expressions
and investigating the distribution of correctly and incorrectly predicted
emotions. As a result of the experimental strategy, a hypothesis regarding
the effects of incorporating physiological signals in multimodal emotion
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recognition will be tested. However, the contributions of this thesis will
extend beyond a proved or disproved hypothesis, providing insight and
data to the field of multimodal emotion recognition. (Holz et al. 2006)

1.5 Main Contributions

The work in this thesis will mainly contribute to a deeper insight into the
field of multimodal emotion recognition that can be used to build upon
for other researchers. Furthermore, with an increased amount of research
in this area, we will hopefully contribute to improving the methods for
recognizing emotions with the use of machine learning. More specifically,
the research conducted in this thesis will contribute with the following:

C1 A literature review on of the field of multimodal emotion recognition

C2 Developing an improved version of Toadstool, with the inclusion of
true labels and easier use of the dataset (Mathisen and Unsvåg 2022b)

C3 A user survey regarding the labelling of emotions, contributing to
understanding the difficulties of emotion recognition

C4 Experiments with facial expressions and physiological signals in
multimodal emotion recognition to investigate the effect of the inclusion
of physiological signals (Mathisen and Unsvåg 2022a)

1.6 Thesis Outline

Chapter 2 introduces the relevant theoretical concepts and methods that
are used in this thesis, or in related work

Chapter 3 provides an overview of the research conducted in the field of
multimodal emotion recognition, as well as methods within facial
emotion, recognition, physiological-based emotion recognition (PER),
and MER.

Chapter 4 presents the datasets used to train and test the implemented
emotion recognition classifiers.
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Chapter 5 presents a preliminary experiment where spatio-temporal
networks are used to predict BVP based on facial expressions.

Chapter 6 presents Toadstool 2.0, a developed dataset serving as a
contribution to Toadstool. The survey regarding human validation will
be presented. Further, synchronization and preprocessing of the data,
different labeling approaches and a discussing regarding the process is
presented.

Chapter 7 includes the experimental setup and describes the architecture
of the classifiers developed and the experiments conducted to measure
the impact of the inclusion of physiological signals.

Chapter 8 addresses the research questions and objective with an
evaluation and discussion of the experimental results

Chapter 9 concludes the thesis by summarizing the research
contributions along with suggestions for potential future work
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Chapter 2

Background Theory

This chapter covers the theory within the fields of Emotions, Machine
Learning, Affective Computing and Multimodal Emotion Recognition
that is relevant for this thesis and for related work on multimodal emotion
recognition. Additionally, metrics and the tools and libraries used in the
thesis are described.

2.1 Theories Of Emotions

Considering that much of the work in this thesis is concerned with
emotion recognition in the context of computing and machine learning,
touching upon the field of emotions seems sensible. Numerous theorists,
philosophers, and computer scientists have tried to answer "what is an
emotion?". However, defining a universal definition of emotion is a
demanding task, and a widely acknowledged definition is still to be
defined. As this thesis focuses on machine learning, defining a definition
of emotion is particularly important, considering the target criteria rely on
the success of detecting a given emotion. This section will review the most
acclaimed takes on emotions, namely that of a discrete categorization of
emotions and composing emotion in continuous dimensions.

2.1.1 Discrete Categories

Discrete emotion theory claims that emotions can be divided into a small
number of core emotions. Further, that these emotions are biologically
determined emotional responses and are the same across all cultures and
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ethnic backgrounds.
Looking back on the theory of emotions, numerous people have

proposed ways of theorizing the subject. Since ancient times, back in
the Roman empire, Marcus Cicero thought of emotions and feelings. The
roman philosopher organized emotions into four basic categories: Fear,
Pain, Lust, and Pleasure (Cicero and Graver (2002)). Further, Darwin
(1872) proposed that emotions have an evolutionary history and are
shared across cultures and treated emotions as separate discrete entities,
such as anger and fear. Paul Ekman (1992), an acknowledged American
psychologist, continued the work of Darwin and argued that emotions are
shared between cultures, thus, able to be universally recognized. Ekman
described emotions as discrete, proposing to categorize six basic emotions:
Happy, Sad, Anger, Fear, Surprise, and Disgust. However, the concept of
basic emotions is controversial within psychology, as is reflected in the
ongoing debate about which emotions should be included. Considering
the theory varies within a broad number, regarding which categories to
include, there is a basis for skepticism (Moerland, Broekens and Jonker
2018).

One category not included in Ekman’s basic emotion is that of neutral.
Although neutral is not categorized as a basic emotion, the neutral
category is rapidly used in emotion recognition. However, the inclusion
of the neutral category comes with a couple of challenges. Firstly, the
difference in people’s "neutral face" may vary, resulting in difficulties with
dividing neutral and other emotions. Secondly, several researchers believe
it is not possible to feel neutral because people are constantly feeling
something, making the category dismissible (Gasper, Spencer and Hu
2019).

In all the theories of emotion previously mentioned, human emotional
experiences are described in words. However, a discrete qualification
of emotion can present difficulties since complex mixed emotions can
be difficult to interpret precisely. Additionally, different individuals and
cultures may describe a similar experience with different words. In order
to overcome these difficulties, many authors have adopted the concept
of continuous multi-dimensional space models, such as the circumplex
model of Russell (1980). In a continuous multi-dimensional space model,
emotions are measured along a defined axis, thus, simplifying the process
of comparison and emotion discrimination (Bota et al. 2019).
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2.1.2 Continuous Categories

Dimensional emotion theory stands in contrast to theories of basic
emotions, which post that a discrete and independent neural system
subserves every emotion. In contrast, dimensional emotion theory
assumes an underlying affective space. Dimensional emotion theory
derives from the belief that mixed emotions can be challenging to put into
categories, following that emotional states should instead be identified
along different dimensions. Proponents of this approach argue that most
categorical theorists present emotions as a structured collection of distinct
entities and thus fail to capture the intuitions concerning the similarities
and differences among emotions.

Some emotions are commonly viewed as opposites, such as joy and
sorrow or fear and anger (Plutchik 1982). Once we consider the similarities
and differences among emotions, more specific questions inevitably
demand our attention. Looking at the mentioned examples of joy vs.
sorrow and fear vs. anger, the latter are not opposite of each other in
the same way. Joy is a pleasant feeling, whereas fear and anger are both
unpleasant. This very opposition in similarity implies that a dimension
can be arranged to make more specific assumptions regarding whether
emotions are similar to each other.

Several dimensional models have been proposed with a varying
number of dimensions. The first dimensional approach dates back to
Wilhelm Wundt, who describes momentary emotions as a single point
in a three-dimensional space (Reisenzein 1992). This ’emotional space’ is
spanned by the axes of pleasure-displeasure, excitement-inhibition, and
tension-relaxation. At the end of the 1970s, Russell (1980) postulated a
two-dimensional model, namely the circumplex model. In this model,
active states are represented as discrete points in a two-dimensional space,
spanned by the axes valence and arousal. Dimensional models have
difficulty separating emotion categories such as anger and disgust, which
is a common critique of the theory.

2.2 Machine Learning

Machine learning (ML) is a field within computer science that enables
systems and programs to learn through experience and data. Machine
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learning is commonly split into three approaches; Supervised learning,
unsupervised learning, and reinforcement learning. In this thesis,
supervised learning will act as the primary approach. Supervised learning
is a type of machine learning where algorithms learn from labeled data to
be further used in predicting new and unseen data. Methods used for
emotion recognition mainly follow the approach of supervised learning.
This section introduces the terminology and concepts of the common
machine learning classifiers used for Emotion recognition, along with
some general terms used in the field.

2.2.1 General ML terms

Epoch

Epoch is a term that indicates a models passage through all the training
data, one time.

Early stopping

Early stopping is a method to allow a model to train long enough to learn,
without overfitting on the training data. When providing early stopping,
the model will stop the training before it has seen all the data, if it has not
improved, in compliance with a performance metric, for a certain amount
of epochs.

2.2.2 Supervised Learning

Supervised learning is the process of training a learning algorithm on data
that has been labeled. In other words, the desired output associated with
each sample in the training data is known. When given a sample, the
algorithm tries to predict the correct output by looking at the training
process. Following this, the learning algorithm adjusts its internal weights
based on how close the prediction was to the desired output. This process
is repeated with each new sample, letting the learning algorithm gradually
improve with each iteration. This iterative optimization algorithm is
commonly referred to as gradient descent. When the algorithm stops
improving (i.e., reaching a local minimum in terms of gradient descent),
the data runs out, or some other specified threshold is reached, the
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training ends. Common types of supervised learning include classification
algorithms, where the output is a discrete category, and regression
algorithms, where the output is a value within a range. Supervised
learning is the most popular approach to emotion recognition.

Ensemble Learning

Ensemble learning is a subfield of supervised learning using multiple
learning algorithms. The intuition behind ensemble learning is that one
may achieve better predictive performance by using multiple learning
algorithms. A common ensemble learning approach is soft voting. Soft
voting collects the sum of the predicted probabilities for all classes,
and further uses it to label according to the class with the largest
sum probability. Figure 2.1 displays an ensemble learning approach,
combining three classifiers.

Figure 2.1: Ensemble Learning combining three classifiers

2.2.3 Support Vector Machines

Support Vector Machines (SVM) are supervised learning models often
used to classify emotions from face images. In the problem of classifying
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emotions from face images, the goal is to find a hyperplane that
differentiates the classes by maximizing the distance to the nearest training
data point of each class. The training data instances are represented as
coordinates in an n-dimensional space, where n equals the number of
features. Hyperplanes are decision boundaries that help classify the data
points, and the dimensions of the hyperplane depend upon the number of
features. With the number of input features being 2, then the hyperplane
is a line. The data points closest to the hyperplane are called support
vectors, and the distance from the support vectors to the hyperplane is
called the margin. Subsequently, the goal of SVM is to find the optimal
hyperplane with the largest margin possible. Figure 2.2 displays plotted
training data that is linearly separable. However, with the assistance of
nonlinear kernel functions, it is possible for input data to be transformed
into a high-dimensional feature space in which the input data become
linearly separable and classifiable. (E. Unsvåg and Gambäck 2018).

Figure 2.2: SVM hyperplane separation (©E. Unsvåg and Gambäck 2018)

2.2.4 Generalization

Generalization in machine learning refers to how well the concepts
learned by a machine learning model applies to a specific example not
seen by the model when it was learning. If a model cannot generalize, the
model is said to have overfitted on the training data. Overfitting occurs
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when a model learns the details in the training data to the extent that it
negatively impacts the learning of new data. Consequently, a model is
learning details in the training data that do not apply to the new data,
harming the ability of the model to generalize. Overfitting, along with
underfitting, is commonly seen as the two most significant causes of poor
performance in machine learning algorithms (Brownlee 2019).

Furthermore, when generalization is the goal, a vast amount of training
data is needed, which is challenging, regarding the increase in training
time and the collection of the data. Followingly, Poyiadzi et al. (2021)
studied the effect of using different age-groups for training FER models
because aging affects facial features such as wrinkles. Their study
showed that with the inclusion of age-groups in training, an increase
in performance when training on unseen age-groups tends to occur.
However, most approaches in emotion recognition focus on training a
generic model to generalize across age, culture, and gender, along with
other categories. Therefore, following the way of most approaches in the
field, this thesis will also use the principle of creating generic models.

2.2.5 Deep Learning

Deep learning is a subfield of machine learning that has seen consider-
able growth in popularity and usefulness in recent years. Due to factors
of variation, a major difficulty in real-world artificial intelligence applic-
ations is to extract high-level abstract features from raw data. A crucial
step is disentangling the factors of variation and discarding the features
we do not care about. Deep learning solves this difficulty in feature learn-
ing by constructing high-level abstract representations from a combination
of simpler representations at different deep layers. Exemplified by its ap-
plication to image processing, where the lower layers may identify simple
representations such as edges. Likewise, higher layers use these simple
representations to identify concepts relevant to humans, such as digits,
letters, or faces. (Goodfellow, Yoshua Bengio and Courville 2016)

Furthermore, Artificial Neural Networks (ANNs) are networks in-
spired by a simplification of the biological brain and are a central concept
in deep learning. Looking at Neural Networks (NN), the first networks
used in the field and the simplest are the feedforward neural networks. We
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will use these networks to explain some fundamental concepts of neural
networks before introducing more advanced networks.

Feedforward networks are directed networks, meaning the informa-
tion provided to the network only moves in one direction, forward. Sub-
sequently, feedforward networks do not contain any cycles. The most ba-
sic network is a single-layer perceptron that can learn linear functions,
consisting of an input layer and an output layer. Further, we have a mul-
tilayer perceptron (MLP) containing at least one hidden layer, and com-
pared to a single layer perceptron, an MLP can learn linear and nonlinear
functions. Figure 2.3 displays a simple multilayer perceptron with one
hidden layer and two output classes. The neurons are the basic units of
a neural network, which receive input and compute an output. When
the NN is provided with inputs, the output is defined by an activation
function, being a function that can introduce non-linearity to the output.
Further, the way MLPs learn is through the backpropagation step. The
backpropagation algorithm adjusts the weights iteratively in the network
until the output is “correct” to one’s satisfaction. Further, a loss function
measures the output with the predicted output, and the error is “propag-
ated” back to the previous layer, where the weights are adjusted according
to the error. The goal is to minimize the outcome of the loss function. To
achieve this, the gradient descent algorithm is used. Gradient descent is
an optimization algorithm that iteratively moves towards finding a local
minimum of a function. (E. Unsvåg and Gambäck 2018).

2.2.6 Convolutional Neural Networks

Convolutional neural networks (CNN) are feedforward networks that
have proven groundbreaking results in machine learning problems over
the last decade, especially the applications that deal with image data. The
reason for this is that CNNs are designed to work with grid-structured
inputs, that have strong spatial dependencies in the local regions of the
grid. Local dependencies have a high resemblance to an image, where
adjacent pixels often have similar color values. When we say that CNNs
are designed to work with grid-structured inputs, this is thanks to the
architecture of the CNN, which generally consists of a convolutional layer,
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Figure 2.3: Feedforward Neural Network Architecture

a pooling layer, and a fully connected layer. The following sub-subsections
will explain the most important aspects of a CNN.

Convolutional Layers

The convolutional layer determines the output of neurons that are
connected to local regions of the input through the calculation of the scalar
product between their weights and the region connected to the input
volume (O’Shea and Nash 2015). The kernel creates these local regions,
which slide across the image and divide it into smaller parts. By doing
so, neurons in the layer are only connected to one part of the image,
in contrast to regular neural networks where all neurons in a layer are
connected to all neurons in the next layer. Applying this method reduces
the complexity of the computations and ensures that spatial dependencies
in local regions of the image are kept. The calculation of the scalar product
between the weights and the region-specific input from the image creates a
feature map or activation map. This feature map represents the "relevant"
features extracted from the image, or in terms of a activation map, which
parts of the image are activated.
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Pooling Layers

The pooling layer will further downscale the image, similar to the
convolutional layer applying a kernel that slides across the feature maps
and performs max-pooling or average-pooling on the values. The max-
pooling operation will reduce a window equal to the size of the kernel in
the feature map to the highest value in that window. Average-pooling will
similarly take the average value of the window as a representation of that
window. By doing so, the dimensionality is reduced, but the higher-level
features are kept. Pooling can be compared to lowering the resolution of
an image, where the details of the image are lost, but one can still tell what
the image consists of.

Fully Connected Layers

The fully connected layer will act just like in regular neural networks and
attempt to produce class scores from the activation’s in previous layers,
which again are used for the classification of the original image (O’Shea
and Nash 2015).

Dropout Layer

Dropout is a regularization method that helps with the problem of
overfitting. Hinton et al. (2012) proposed dropout layers as an approach,
where it was used on each of the fully connected layers before output.
Using it on the fully connected layers, not the convolutional layers, has
become the most used configuration. The method consists of “dropping”
several outputs, often meaning setting the value to zero with a certain
probability. The dropout layer will make the training process noisier and
force outputs to take less or more responsibility for the inputs, with a
certain probability.

Batch Normalization

Batch normalization is a method used in ANNs to make the network
faster and more stable. The method provides normalization of the input
to the layers, helping to standardize the inputs to each layer. Batch
normalization stabilizes the learning process and reduces the number of
training epochs required.
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Rectified Linear Activation Function

Rectified linear activation function, commonly known as ReLu, is a linear
function that will output the input directly if it is positive; otherwise, it will
output zero. ReLu can remove un-activated units (units with zero output)
in a randomly initialized network. ReLu is one of the most popular
activation functions for deep neural networks.

2.2.7 3-Dimensional Convolutional Neural Networks

3-Dimensional Convolutional Neural Networks are a variation of CNNs
that have proven successful in facial emotion recognition in videos. When
a 2D-CNN is applied to a video sequence, it looks at each image one at
a time, and the output is a 2D tensor. However, when a 3D convolution
is applied to a video sequence, the output is a 3D tensor, with the third
dimension being time. Therefore, a 3D-CNN has the ability to preserve
the temporal aspect of a video sequence. Haddad, Lézoray and Hamel
(2020) explains how in video contexts, facial expressions do not manifest
themselves instantly, but instead, they build up gradually across time until
they reach their peak. Following this, they believe a static approach is
uninterpretable, considering the result in the predictions can vary across
the frames. A 3D-CNN solves this issue by analyzing and predicting an
emotion based on all the frames in a sequence.

2.2.8 Recurrent Neural Networks

As CNNs are neural networks built for data with spatial dependencies,
Recurrent neural networks (RNNs) are built for data with temporal
dependencies such as sequences of text, speech, and images (video). The
RNN does this by inputting data from earlier time steps into the current
time step, i.e., in a computer vision problem of classifying events in a
video, and the RNN would not treat every frame in the video individually
but rather look at the current frame in context with the values generated
from previous frames. This results in a better representation of how the
video evolves over time. In the context of a facial emotion recognition
problem which has been discussed earlier, Kahou et al. (2015) introduce
in their paper "Recurrent Neural Networks for Emotion Recognition in
Video" an interesting approach; CNN-RNN architecture. The approach
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contains two steps; (1) an CNN is trained to classify static images
containing emotions. (2) train an RNN on the higher layer representation
of the CNN inferred from individual frames to predict a single emotion
for the entire video. This approach gives us a spatio-temporal evolution of
the facial emotions, that is, emotions are learned and detected both in the
form of static images (spatial dependent data) and over time in the video
(temporal dependent data), giving a more complete picture.

2.2.9 Long Short-Term Memory Neural Networks

Long Short-Term Memory (LSTM) networks are particular types of RNNs
that can address the shortcomings of regular RNNs. In the study of Y.
Bengio, Simard and Frasconi (1994), they showed how regular RNNs,
using gradient descent, performed poorly for tasks involving long-term
dependencies. Further, the LSTM architecture, introduced by Hochreiter
and Schmidhuber (1997), was explicitly designed to overcome this. LSTM
networks consist of three cells; a forget gate, an input gate, and an output
gate. The gates has the ability to remove or add information to the memory
cell state and store temporal information. The forget gate controls which
information to forget or store from the timestep, for later use. Further, the
input gate protects the memory state from being disturbed by irrelevant
information, and the output gate avoids storing irrelevant information
in the memory state. LSTM networks have shown great success in
solving tasks where the goal is to capture either long-term or temporal
dependencies. A figure of a CNN-LSTM architecture is presented in 5.1
(E. Unsvåg and Gambäck 2018).

2.3 Affective Computing

During social interaction, humans employ rich emotional communica-
tion channels by modulating their speech utterances, facial expressions,
or body gestures. Humans also rely on emotional cues to resolve the se-
mantics of received messages. Interestingly, humans also communicate
emotional information when interacting with machines. However, ma-
chines have conventionally been utterly oblivious to emotional informa-
tion from humans. This reality is changing with the advent of affective
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computing (Al Osman and Falk (2017)). Computers are beginning to ac-
quire the ability to express and recognize affect and may soon be given the
ability to "have emotions" (Picard 1995). Picard calls affective computing
"computing that relates to, arises from, or influences emotions ." In other
words, the goal of affective computing is to recognize, interpret and pro-
cess human experiences and emotions.

Detecting or recognizing emotional information usually begins with
passive sensors that can capture a person’s physical state or behavior. For
instance, a microphone may capture speech and tone of voice, and a video
camera might capture facial expressions, body posture, and gestures. This
section introduces the most common concepts of affective computing.

2.3.1 Affect vs Emotion

Before we proceed, a clarification of a potential source of confusion is
needed. The terms affect and emotion can have different meanings in
various fields. For instance, according to Shouse (2005), emotion refers to
the display of a feeling, whether it is genuine or feigned. However, affect
is a "non-conscious experience of intensity." Some psychologists evaluate
affect as the experience of emotion. In this thesis, we consider the terms
emotion and affect to be synonymous since a sizable amount of work in
affective computing use them interchangeably (Bota et al. 2019).

2.3.2 The Circumplex Model Of Emotion

The circumplex model of emotion is a model that distributes emotions
in a two-dimensional circular space, containing arousal and valence
dimensions, developed by Russell (1980). Russel’s valence-arousal
model aims to quantify emotions, with arousal and valence forming the
horizontal and vertical axes, respectively. Valence refers to the positive
and negative span of emotion, whereas arousal refers to the intensity of
emotion. Figure 2.4 shows Russels two-dimensional model.
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Figure 2.4: The circumplex model of emotion

2.3.3 Emotion Elicitation

Emotion elicitation is the process of triggering emotions to obtain ground
truths. One of the biggest challenges when trying to achieve emotion
recognition is obtaining ground truth data. How the emotions of the
subjects are provoked (elicit) plays a role in the spectrum you will get the
emotions and the intensity of each emotion. Due to the high subjectivity
and variability in emotion elicitation, it is essential to use a set of pre-
validated emotional stimuli to ensure the expression of a wide spectrum,
with high intensity. If one does not manage to collect data from the entire
spectrum, one faces the risk of classifying a lot of extreme points occurs.

Commonly used methods to elicit emotions are music videos, films,
pictures, sound, and virtual reality (VR). Subsequently, the question of
"what method to use" rises. The use of images as elicitation material
presents the advantages of being user-friendly, low cost, easy and fast
to execute in a laboratory. However, images might not be enough to
evoke impactful, strong-lasting emotions, or enough to be consciously
perceived by the user and physiologically observable. On the other hand,
although simple and low cost, music or music videos might be constrained
to the evocation of a limited range of positive-negative emotions, highly
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correlated with the subjects’ music taste and the memories it invokes.
Thus, films or short-duration audiovisual video clips are the most applied
methodology in emotion recognition and have shown to be the most
reliable material for emotion elicitation. In this thesis, playing a video
game is used as the elicitation method. A method rarely used in the field.

2.4 Facial Emotion Recognition

This chapter will briefly introduce some of the methods and concepts
within facial emotion recognition. Firstly a brief overview of the field in
general will be presented. Then common approaches to preprocessing and
commonly used features for facial emotion recognition will be presented.

2.4.1 Facial Emotion Recognition

Facial emotion recognition is the process of detecting human emotions
from facial expressions. Facial emotions are essential factors in human
communication that help us understand the intentions of others. In gen-
eral, people infer other people’s emotional states, such as joy, sadness, and
anger, commonly using facial expressions. Over the past decades, facial
emotion recognition has been gaining increased attention and has estab-
lished itself as one of the most active fields within affective computing.
However, accurate and robust FER by computer models remains challen-
ging due to the heterogeneity of human faces and variations in images,
such as different facial poses and lighting. Among the techniques used
for FER, deep learning models, especially Convolutional Neural Networks
(CNNs), have shown great potential. With respect to the theories of emo-
tions commonly used in computer science, facial emotion recognition aims
to map a facial emotion to a category or dimension.

While images have been the most common data source in FER, the
use of video is starting to receive more attention. With the emergence of
deep learning techniques, predicting dynamic facial emotion expressions
has become more interesting. Several deep learning techniques can be
considered for sequential data, with the most prominent ones being RNN
and LSTM. The work of J. Li, X. Li and D. He (2019) combined a classic 2D
CNN with LSTM to cope with the temporal aspect of emotion recognition
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in videos. In the mentioned approach, the CNN extracts the features
over individual frames and passes them to an LSTM, which encodes
the temporal dynamics. Lastly, few works have been led on the use of
3D-CNN; however, CNN’s 3D kernels may have a superior ability to
extract spatio-temporal features within video frames (Haddad, Lézoray
and Hamel (2020)).

2.4.2 Preprocessing

Preprocessing is a fundamental step of image processing in emotion
recognition. Before extracting features, preprocessing techniques are
needed to extract significant features from the images. Ninu Sreedharan
(2018) described that preprocessing can improve the image features in
order to control the noise and redundant information for adapting the
feature extraction step. When it comes to facial images, the images
of a face change with variations, such as facial expression, pose, and
illumination conditions. For a machine to understand and make sense of
such facial images, the preprocessing step becomes essential. A common
preprocessing pipeline often consists of the steps of face detection,
resizing, data augmentation, and normalization. Face detection refers to
detecting a face in an image to remove irrelevant features from the image.
Resizing is the process of changing the size of an image in order for it to fit
the desired input shape. In data augmentation, slightly modified copies
of the image are added to diminish the effect of overfitting. Examples
of common data augmentation techniques include flipping, rotation, and
zooming. Normalization is a preprocessing method used to reduce
variations of the face images, like illumination, to achieve an improved
face image. A common normalization approach is grayscaling, converting
the image from a three-channel (Red, green and blue) image into a single
channel image, providing a more general range of pixel values. Lastly,
both resizing and grayscaling contributes to more efficient training of
machine learning models.

2.4.3 Features for Facial Emotion Recognition

Feature extraction is the next step after preprocessing in the process
of FER. In image processing, feature extraction is a significant stage,
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whereas it extracts implicit data from graphical data that further can be
used as input to a classification model. Following, when the amount
of training data is large enough, the difference in performance between
models decreases. The main goal is to extract only the most important
and descriptive pieces of information. The features chosen to employ
in the methods will followingly become the distinguishing impact on
performance. This section describes common types of features used
in FER, based on a state-of-the-art review of existing research on facial
emotion recognition (Canal et al. (2022)).

Histogram of Oriented Gradients

Histogram of Oriented Gradients is a feature descriptor for the purpose
of object detection, and is mainly utilized for face and image detection.
Simply putting it, the histogram of oriented gradients calculates the
gradient in each pixel. And when there is a sharp change in intensity in
the image, the magnitude of the gradient increases.

Local Binary Pattern

Local Binary Pattern is a simple and efficient texture operator which labels
the pixels of an image by making comparisons between each cell’s pixels
and their eight neighbors to build a binary number. One of the most
important properties of LBP, and a major reason why it is being used,
is its robustness to monotonic grayscale changes caused by, for example,
illumination.

CNNs

Despite the success of traditional ways of extracting features, recent de-
velopment in convolutional neural networks has demonstrated signific-
ant success in automatically learning features. CNN has yielded impress-
ive performance with its ability to extract undefined features from the
training database, compared to traditional approaches where features are
defined by hand. When using a CNN, it extracts shift-invariant local fea-
tures from input images based on the concept of the local receptive field,
shared weight, and spatial subsampling (Cheng et al. 2019).
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Scale-invariant feature transform

Scale-invariant feature transform (SIFT) is an algorithm used to detect,
describe and match local features in an image. SIFT provides less accurate
results compared to CNN’s, however they require fewer data to generalize
with high accuracy. Along with the fact that SIFT requires a small
amount of data, the algorithm is invariant to image scale and rotation and
performs well with changes in illumination.

Facial Action Coding System

Facial Action Coding System (FACS) is a coding system created by P.
Ekman and Friesen (1978), measuring the contraction and relaxation of
facial muscles with degrees of intensity and deconstructing it into action
units (AU). For instance, a chin raise is categorized as AU17, and a jaw
drop is AU26. Further, AU’s is combined to decide on the given emotion.
Table 2.1 and 2.2 present the different AUs, as well as how it is used to
provide emotion labels. In general, regarding the use of FACS, when
trying to conduct FER using FACS, one needs to use a specific dataset
with facial images cataloged by FACS experts. Resulting in the feature
extraction process being provided by humans.

AU Name AU Name
1 Inner Brow Raiser 13 Cheek Puller

12 Lip Corner Puller 20 Lip Stretcher
17 Chin Raiser 21 Neck Tightener
26 Jaw Drop 28 Lip Suck

Table 2.1: Example of 8 Action Units

Emotion Action Units
Happy 6 + 12

Sad 1 + 4 + 15
Surprise 1 + 2 + 26

Fear 1 + 2 + 4 + 5+ 7 +20 + 26
Anger 4 + 5 + 7 + 23

Disgust 9 + 15 + 17

Table 2.2: Example of coding for the basic emotions
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2.5 Physiological Emotion Recognition

In this chapter, we will introduce some of the methods and concepts
within physiological emotion recognition and the physiological modalities
we will use in this thesis.

2.5.1 Physiological Conditions

Physiological conditions are the condition or state of the body or bodily
functions. Physiological signals can be used for affect recognition by
detecting biological patterns that are reflective of emotional expressions.
These signals are collected through sensors affixed to the subject’s
body. Many physiological signals could be considered regarding affect
detection, and some will be investigated in this thesis.

2.5.2 Motivation

Emotions are reflected in our words, voice, body language, facial
expressions, acoustic characteristics, and physiological signals. Even in
a negative emotional state, a person may be able to force a smile. For
that reason, facial expressions can be an unreliable source of emotion
in some cases. While other factors can be faked, it is tough to control
the physiological conditions of our bodies. Hence, focusing on emotion
recognition using physiological signals controlled by the nervous system
seems promising.

Common physiological signals such as electroencephalography (EEG),
heart rate variance (HRV), electrodermal activity (EDA), respiration (RSP),
and skin temperature (SKT) can be used for recognizing emotions.
Nowadays, IoT technology makes physiological data more available along
with activity data. In order to track their health, such as heart rate, blood
pressure, the number of calories burned, and evaluate their movements,
people are interested in buying items that are generally connected to their
phones. Moreover, the spike in IoT motivates the use of physiological
signals, considering such data is easily accessed.

25



2.5.3 Preprocessing

Preprocessing is an essential step of physiological emotion recognition
(PER). In the task of physiological emotion recognition, it is necessary
to eliminate the noise effects at an early stage of emotion recognition by
preprocessing, due to the complex and subjective nature of raw physiolo-
gical signals and the sensitivity to noises from crosstalk, measuring in-
struments, electromagnetic interferences, and movement artifacts (Shu et
al. 2018). The most common preprocessing technique is filtering. Filtering
is the act of cutting out noise from specific frequencies in the physiological
signal. In chapter 3.3.1, state of the art within preprocessing of physiolo-
gical signals will be presented.

2.5.4 Modalities For Physiological Emotion Recognition

This subsection describes a few common modalities used for physiological
emotion recognition, along with common features extracted from those
modalities.

Blood Volume Pulse

Blood volume pulse (BVP) is a measurement of heart rate based on the
volume of blood that passes through the tissues in a localized area with
each heartbeat. Commonly BVP is measured where a pulse can be easily
accessed, such as on a finger or the wrist. The BVP sensor transmits
infrared light through the tissue, and the absorption of light is measured
by the blood flowing through the vessels. Every time the heart beats, the
sensor detects a peak in this absorption, which is shown as the systolic
point in Figure 2.5. The interval between the diastolic peaks defines the
heart rate, shown as IBI (interbeat interval). The amplitude of the signal,
i.e., the difference between the diastolic peak and the systolic peak, defines
the subject’s vasoconstriction. In other words, the diameter of the blood
vessels.

The autonomic nervous system (ANS) regulates bodily functions such
as heart rate, body temperature, sweating, blood pressure, digestion,
and functions without any conscious voluntary control (McCorry 2007).
Following, the sympathetic nervous system (SNS), a substructure of the
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ANS, is responsible for the body’s involuntary reaction to dangerous
or stressful events. When such events occur, the SNS makes sure a
flood of hormones is released to raise the alertness of the body, resulting
in increased heart rate and extra blood to the muscles. Conclusively,
the autonomic nervous system is responsible for dilating or contracting
the blood vessel’s diameter. Hence, changes in BVP amplitude reflect
instantaneous sympathetic activation. For example, vasocontraction is
usually decreased when a person relaxes, which is reflected by increased
blood flow volume, consequently affecting the BVP amplitude. When
anxious or fearful, the opposite is verified. For BVP to be helpful
in emotion recognition, we need to extract some features to use in a
model. Commonly used features to extract from BVP are mean and Std.
Deviation.

Figure 2.5: Blood volume pulse (© E4 data - BVP expected signal n.d.)

Electroencephalogram

Electroencephalography (EEG) is a technology used to measure brain
activity. Brain behavior is a sophisticated concept that changes from one
person to another and from one emotion to another. Moreover, extracting
features from an arbitrarily chosen portion of the EEG signal has found
itself important for emotion detection. For instance, identifying epochs
where the excitation is at a maximum during the emotion. In multimodal
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emotion recognition, EEG has shown great success. However, due to the
demanding task of collecting EEG signals, EEG as an emotion recognition
approach is not a sustainable method. In a recent study by Y. Tan et
al. (2021), differential entropy (DA) and power spectral density (PSD)
were used as features in a classification model. DA is a measurement of
information and represents the amount of information present in the data,
while PSD describes the measurement of the signal’s power.

Electrodermal Activity

Electrodermal activity (EDA, sometimes known as galvanic skin response)
refers to the variation of the skin’s electrical conductance in response to
sweat secretion. The collection of EDA data is done by applying a low,
undetectable, and constant voltage to the skin to measure how the skin
conductance varies.

There are two main components to the overall complex, called EDA.
The first component is the general tonic-level EDA, which relates to the
signal’s slower developing components and characteristics. This slower
developing component is often referred to as Skin Conductance Level
(SCL) and is thought to reflect the general changes in autonomic arousal.
On the other hand, Skin Conductance Response (SCR) comes from the
phasic component of the EDA signal. It reflects the faster changing
characteristics resulting from sympathetic neuronal activity. (Braithwaite
et al. 2013)

In a recent study by Gupta et al. (2022), EDA was used as a modality
in an emotion recognition model. Some of the features included were the
number of peaks per second, Mean, and Std. Deviation.

2.6 Multimodal Emotion Recognition

Multimodality refers to creating meaning using multiple sources to
represent the information. Followingly, multimodal emotion recognition
is that of trying to recognize an individual’s emotional state using multiple
features/representations. This chapter will briefly introduce some of
the methods and concepts within multimodal emotion recognition and
common features, before a further walkthrough of the field is displayed
in Chapter 3.
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2.6.1 Motivation

At present, the research on emotion recognition is mainly concentrated on
unimodal emotion recognition such as text, speech, and facial expressions.
Although unimodal emotion recognition has made many breakthrough
achievements, they have also exposed some problems over time. For
example, it cannot fully describe a particular emotion of the user at
the moment, and using multiple modal features to describe a particular
emotion together will be more comprehensive and detailed (W. Wei et al.
2019) (Zhang et al. 2020).

Many factors render multimodal affect recognition approaches appeal-
ing. Firstly, humans appear in a multimodal context when performing
emotion recognition in real life. The voice, body, and face are all perceived
as a whole by humans. When trying to learn a computer to reproduce
elements of human emotional intelligence, it seems fitting to learn them to
utilize the same approach. Secondly, the combination of multiple-affective
signals provides a more rich data collection. Combining more than one
modality to infer emotion will beneficially complement each other and
help alleviate the effect of uncertainty in the raw signals. Lastly, with a
more rich data collection, one may experience greater flexibility to clas-
sify emotions even when one or more source signals are lacking. In other
words, when a particular modality contains less emotional information,
the rest of the modality information can provide a supplement for the emo-
tion classification task (Mou, Gunes and Patras 2019) (Zhao et al. 2019).

2.6.2 Multimodal Fusion Techniques

In approaches of multimodal emotion recognition, information extracted
from each modality must be reconciled to obtain a single-effect classifica-
tion result. This is known as multimodal fusion. The literature emphas-
izes two types of fusion techniques regarding multimodal fusion; fusion-
level fusion and decision-level fusion. In the following subsection, we will
present the general principles of the two approaches to multimodal fusion
and describe their key ideas.
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Feature-Level Fusion

Feature-level fusion (early fusion) is a fusion technique that concatenates
the features from different modalities to obtain a joint representation
before running it through a model. The goal of feature-level fusion is
to find the best possible way to concatenate features that can increase
emotion recognition performance. Fusion at the feature level using a
simple concatenation of the modalities has been successfully used in
several applications, with the main advantage being that correlation
between modalities is easier utilized. However, because features obtained
from different modalities can have different formats, synchronization of
the features can be difficult and computationally expensive. Hence, the
advantages of combining modalities at the feature level may be limited in
some cases (Xie, Sidulova and C. H. Park 2021) (Wu, Lin and W.-L. Wei
2014). Figure 2.6 shows two inputs being concatenated in Feature-Level
Fusion, before being handled by a single classifier.

Figure 2.6: Feature-Level Fusion

Decision-Level Fusion

Decision-level fusion (late fusion) is a fusion technique that employs
and trains separate classifiers for each modality to combine the outputs
from each classifier thereafter. The goal of decision-level fusion is to
obtain a final prediction based on two unimodal classifiers, with the main
advantage being that decisions have the same format and, hence, can
be more easily fused. Following this, the synchronization issues met at
early fusion are avoided. Furthermore, using decision-level fusion allows
for the application of optimal classifiers suited for each modality, thus
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providing more flexibility in the classification-step (C. Tan et al. 2020).
Figure 2.7 shows two unimodal classifiers utilizing decision level fusion.

Figure 2.7: Decision-Level Fusion

2.6.3 Mutlimodal Combinations

At present, several combinations have been researched in the field of
multimodal emotion recognition. Firstly, a common combination is
combining facial expressions with audio signals, with the accessible data
collection through video being a main factor for its popularity. Secondly,
the combination of facial expressions and textual features has been
explored in the field. A motivation for using this combination is increased
textual usage, such as chatting. Lastly, we have that of combining facial
expressions with physiological signals. Both EEG and EDA have been
combined with facial expressions to achieve good results. In chapter 3,
state of the art within these combinations will be discussed.

2.7 Evaluation Metrics

This section presents metrics that are often used to evaluate the quality
of classification models. These measures use the values of false posit-
ives, false negatives, true positives, true negatives, and true positives.
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False positives (fp) denote the number of incorrectly classified positive
instances, while false negatives (fn) denote incorrectly classified negative
instances. True positives (tp) denote the number of correctly classified pos-
itive instances, while true negatives (tn) denote the number of correctly
classified negative instances.

2.7.1 Accuracy

Accuracy is the proportion of the total number of predictions that were
correct. Intuitively, accuracy measures the ability of the classifier to
classify correctly across all classes and is useful when all classes are of
equal importance. The formula for accuracy is given as:

Accuracy =
tp + tn

tp + tn + f p + f n
(2.1)

2.7.2 Precision

Precision is the fraction of positive samples that has been classified
correctly among all samples predicted as positive. Intuitively, precision
measures the ability the classifier has to correctly label samples. The
formula for precision is given as:

Precision =
tp

tp + f p
(2.2)

2.7.3 Recall

Recall is the fraction of positive samples that has been correctly classified
among all relevant samples. Intuitively, recall measures the ability the
classifier has to find all the relevant samples. The formula for recall is
given as:

Recall =
tp

tp + f n
(2.3)
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2.7.4 F1-score

The F1-score combines the values of precision and recall , to further take a
harmonic mean between the two. The formula for F1-score is given as:

The F1-score combines the precision and recall of a classifier into a
single metric by taking their harmonic mean

F1score =
2 · precision · recall
precision + recall

(2.4)

2.7.5 Matthews Correlation Coefficient

Matthews Correlation Coefficient (MCC) (Reinke et al. 2021) is a statistical
rate in the range -1 to 1, which produces a high score only if the prediction
obtained good results in all of the four confusion matrix categories
(tp,fn,tn,fp), proportionally both to the size of positive elements and the
size of negative elements in the dataset (Chicco and Jurman (2020)). The
performance metric was originally made for binary classification, but the
metric has been extended to the multi-class case with some changes to the
equation. The equation in the binary classification case is illustrated in 2.5.

MCC =
TP × TN − FP × FN√

(TP + FN)(TP + FP)(TN + FN)(TN + FP)
(2.5)

In the multi-class case, the MCC can be defined in terms of a confusion
matrix C for K classes.

MCC =
c × s − ∑K

k pk × tk√
(s2 − ∑K

k p2
k)(s

2 − ∑K
k t2

k)
(2.6)

To simplify the equation, the intermediate variables are described as:

• c = ∑K
k Ckk the total number of elements correctly predicted

• s = ∑K
i ∑K

j Cij the total number of elements

• pk = ∑K
i Cki the number of times that class k was predicted
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• tk = ∑K
i Cik the number of times that class k truly occurred

The equation for the multi-class case is created by Chicco and Jurman
(2020).

2.8 Performance Metrics

Performance metrics (also called error measures) are types of metrics
that measure the error of a forecasting model. In machine learning,
performance metrics are used to compare the predictions of a model with
the actual data from a test data set (Botchkarev 2019).

2.8.1 Mean Absolute Error

Mean Absolute Error (MAE) is a model evaluation metric used with
regression models. With respect to a test set, the mean absolute error of
a model is the mean of the absolute values of the individual prediction
errors over all instances in the test set. The difference between the true
value and the predicted value is the prediction error for a given instance
(Sammut and Webb 2010). The formula for MAE is given as:

MAE =
∑n

i=1abs (yi − λ(xi))

n
(2.7)

yi is the target value for an instance xi, λ(xi) is the predicted target
value for the instance xi , and n is the number of test instances.

2.8.2 Root Mean Squared Error

Root Mean Squared Error (RMSE) is the square root of the average of
squared prediction errors. The effect of each prediciton error on RMSE
is proportional to the size of the squared error. This means that larger
errors have a disproportionately large effect on RMSE, which makes RMSE
sensitive to outliers (Hyndman and Koehler 2006). The formula for RMSE
is given as:

RMSE =

√
∑n

i=1 (λ(xi)− yi)
2

n
(2.8)
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yi is the target value for an instance xi, λ(xi) is the predicted target
value for the instance xi , and n is the number of test instances.

2.9 Tools

This section provides a description of the tools and libraries that were used
in this thesis.

2.9.1 Pytorch

Pytorch is an open-source machine learning framework based on the
Torch library used for applications such as computer vision and natural
language processing (Paszke et al. 2019).

2.9.2 Scikit-learn

Scikit-learn is an open-source machine learning library used for efficient
precictive data analysis. Scikit-learn is a Python module and is built on
top of SciPy. Pedregosa et al. (2011).

2.9.3 Google Forms

Google forms is a tool that lets you easlily create forms for information
gathering. Google Forms is developed by Google and supports the
inclusion of video in the form, which is the main reason why it was chosen
for this thesis. A clear display of statistical features from the answears is
also provided by Google.

2.9.4 DeepFace

Deepface is a lightweight face recognition librabry for Python, and has
become one of the most popular ones. It includes state of the art
models within the field of FER, and handles all procedures for FER in
the background. Additionally, the library is open-source, with great
documentation, making it easy to access and utilize. (Serengil and Ozpinar
2020)
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Chapter 3

Related Work

This chapter first presents a review of the existing research in the field
of multimodal emotion recognition, as well as the challenges faced in
the field. Then, due to the fact that multimodal emotion recognition is
a combination of two unimodal approaches, we will first present the state-
of-the-art approaches within FER and PER. Next, the chapter presents
the state-of-the-art approaches within the field of multimodal emotion
recognition, with the main focus being the use of FER and PER.

3.1 Studies On Mutlimodal Emotion Recogni-

tion

Understanding emotions is an essential part of being human. Along with
the growth in “internet-of-things” and wearable technology, perhaps this
is why we have witnessed remarkable growth in affective science. While
the amount of research increases, the field still faces several challenges,
both in the actual task of detecting (labeling and eliciting) emotion and
the research field in general. Al Osman and Falk (2017) have summarized
the following challenges for the task of multimodal emotion recognition.

Firstly, one of the challenges in developing multimodal affect-
recognition methods is the need to collect multisensory data from a large
number of subjects. Also, it is difficult to compare the obtained results
with other studies, given that the experimental setup varies. We divide the
databases into three types: posed, induced, and natural-emotional data-
bases. For the posed databases, the subjects are asked to act out a specific
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emotion while the results are captured. For the induced databases, the
subjects are exposed to stimuli (e.g., watching a video) in a controlled set-
ting. For the natural databases, the subjects are exposed to real-life stim-
uli such as interaction with humans or machines. Regarding the differ-
ent types of emotion elicitation approaches, comparing results is a chal-
lenge. Similarly, it is well established that context affects how humans ex-
press emotions (Hess, Banse and Kappas 1995) (Izard 1994). Therefore, the
problem of gathering a “ground-truth” arises, as conflicting cases between
single modalities may appear. For instance, a user may consciously or un-
consciously conceal his/her real emotions through external channels of
expression but still reveal them through internal channels of expression,
due to the context the person appears in.

Secondly, multimodal affect-recognition methods necessitate the fu-
sion of the modal features extracted from the raw signals, and there is still
uncertainty about which fusion technique is the top performer (Lingen-
felser, Wagner and Andre 2011). However, decision-level fusion is seem-
ingly the most popular choice. Lastly, it is still unclear what type and
number of modalities are needed to achieve the highest level of accuracy.
These topics will be further discussed throughout the thesis.

As the amount of work on multimodal emotion recognition increases,
some studies aim to create overviews of existing work within the field
of study. One of the latest overviews created is the publication of
Abdullah et al. (2021), serving as a review of the recent advancements
in emotion research using multimodal signals, with feature extraction
and classification methodologies using deep learning. In addition,
the publication of Seng and Ang (2019) contributes to the research of
using multiple modalities in emotion recognition, looking at challenges
regarding fusion and classification techniques. They also provide further
insight to that of a unimodal vs. a multimodal approach.

There are also several challenges concerning the actual research field.
The lack of a benchmark dataset makes it difficult to compare studies
and methods, along with the problem of comparing unimodal and
multimodal approaches. Admittedly, one may compare unimodality with
multimodality within the same dataset. However, comparing accuracy
between different datasets is a challenging task since there is no common
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understanding of the task or terms within the field. Although there is a
common and overall goal of detecting emotion, there are variations in how
this goal is approached and the subtasks studied. For instance, whether to
classify emotions in continuous dimensional or with the use of discrete
categories. Additionally, the number of emotional categories to classify
and the size of the datasets widely varies, making the comparison hard.
The following sections will introduce the state-of-the-art within FER and
PER.

3.2 Methods In Facial Emotion Recognition

This section describes methods within preprocessing, feature extraction
and classification methods in facial emotion recognition.

3.2.1 Preprocessing Using Facial Emotion Recognition

The primary purpose of facial image preprocessing is to improve the qual-
ity of images and enhance the images’ features for further preprocessing.
Regarding face detection, several algorithms have been used with good
performance. In the paper Yang et al. (2018), Haar Cascades method is
used to detect whether the image contains a face or not, and Kalsum et al.
(2018) used the Viola-Jones algorithm to detect the facial part of the image.
Following this, Rahmad et al. (2020) performed a comparison between the
combination of Haar Cascade and Viola-Jones algorithm (V-J) and another
detection algorithm, the Histogram of Oriented Gradients (HOG). The pa-
per showed that HOG is slightly more accurate than V-J for face detection,
mainly regarding images including multiple faces. Figure 3.1 shows face
detection of an image from the Toadstool dataset using Haar Cascades.
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Figure 3.1: Face detection using Haar-Cascades

Khaireddin and Chen 2021 used cropping and data augmentation to
achieve state-of-the-art results on the FER13 dataset. In their approach,
data augmentation was provided to account for variability in the facial
expressions in the dataset. The augmentation included rescaling, shifting,
rotating, and cropping, with each of the techniques, applied randomly
with a probability of 50 percent. Further, Raghavan and Ahmadi
(2021) expressed the challenge facial recognition faces due to illumination
conditions. Stating that if the lighting conditions present in the gallery
image are different from the probe image, then the face recognition
process may ultimately fail. Finally, an experiment on the extended Yale
B database (Georghiades, Belhumeur and Kriegman 2001) showed an
improvement in face recognition by enhancing the intensity in the regions
being inadequately illuminated and decreasing the intensity in the densely
illuminated regions while retaining the intensity in the fairly illuminated
portions.

3.2.2 Feature Extraction Using Facial Emotion Recognition

After the image has been preprocessed, features that will provide
information and reflect its class are extracted. The features must also be
represented suitably before being fed into a machine learning classifier.
In section 2.4.3 we described the different types of features, with CNNs
being one of the most popular approaches. However, comparing the
feature extraction performance between different CNNs is a difficult task,
considering the feature extraction is done automatically as a result of the
CNN layers.
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Regarding classical approaches, in other words approaches not in-
cluded in the field of deep learning, support vector machines are the most
applied classical approach to classifying emotions from facial expressions.
With respect to the state-of-the-art review performed by Canal et al. (2022),
features such as Local binary pattern, histogram of oriented gradients and
Scale-invariant feature transform has proved to perform well.

3.2.3 Classification In Facial Emotion Recognition

Supervised machine learning classifiers have been the most frequently
used approach for the task of multimodal emotion recognition. As
mentioned in Chapter 2, there has been a recent growth in the use of deep
learning methods for machine learning tasks. This is also the case for facial
emotion recognition. Convolution neural networks (CNN), as presented
in chapter 2, are one of the most common methods used in facial emotion
recognition and one of the best-performing methods.

As mentioned in the subsection 3.2.1, Khaireddin and Chen 2021
achieved state-of-the-art accuracy on the FER2013 dataset when adopting
a VGGNet architecture (Simonyan and Zisserman 2014). Their variant of
VGGNet consists of four convolutional stages and three fully connected
layers. Each of the convolutional stages contains two convolutional
blocks and a max-pooling layer. The convolution block consists of a
convolutional layer, a ReLU activation, and a batch normalization layer.
Batch normalization is used to speed up the learning process, reduce the
internal covariance shift, and prevent gradient vanishing or explosion. A
ReLU activation follows the first two fully connected layers. The third
fully connected layer is for classification. They achieved an accuracy of
73.28 percent, classifying seven emotions on the FER dataset.

Khattak et al. (2022), tried to address the problem of poor layer
selection in CNNs, resulting in performance degradation. They proposed
a CNN, which is designed for image classification purposes. Furthermore,
different convolutional layers and a varied set of parameters are used for
efficient classification. Their result shows that their model outperformed
the state-of-the-art CNNs on the CK+ dataset when recognizing seven
emotions. They achieved an accuracy of 95.65 percent. However, only
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a subset of the dataset images was used, which may have increased the
accuracy.

3.3 Methods In Physiological Emotion Recogni-

tion

This section describes methods within preprocessing, feature extraction
and classification methods in physiological emotion recognition.

3.3.1 Preprocessing Using Physiological Signals

In the task of physiological emotion recognition, it is necessary to
eliminate the noise effects at an early stage of emotion recognition
by preprocessing, due to the complex and subjective nature of raw
physiological signals. Selvaraj et al. (2013) used electrocardiogram (ECG)
as a modality in a physiological model of emotion. In their approach,
a Butterworth low pass filter with a cut-off frequency of 40 Hz was
applied to increase the signal quality. An analysis of the effect of such
preprocessing was not investigated in the paper. However, ECG signals
often contain noise, and a filter is commonly regarded as an acknowledged
method.

EEG and BVP signals are typically contaminated by physiological arti-
facts caused by electrode movement, eye movement or muscle activities,
and heartbeat. Nakisa et al. (2018) used a sixth-order (band-pass) Butter-
worth filter in order to remove artifacts while keeping EEG signals within
desired frequency bands. The Butterworth filter will obtain signals in the
range 4-64Hz, excluding noise such as non-physiological artifacts that may
appear above the 50Hz range. Subsequently, a 3Hz low pass-Butterworth
filter was applied to remove noise from the BVP signal. An analysis of the
use of different preprocessing was not conducted in the study.

Svoren (2020) transformed an original BVP signal into a sample set of
associated amplitudes that could be used for training our CNN models.
As the range of values varied widely from person to person, the range
of the signal was normalized into a range between -1 and 1. Further, he
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used the find peaks method from the ScyPy library (Virtanen et al. 2020)
to locate the peaks.

3.3.2 Feature Extraction Using Physiological Signals

As in facial emotion recognition, selecting optimal features is a crucial
part of the learning process when using physiological signals to achieve
a fair and extensive analysis of the problem. Popular features for
various physiological signals include frequencies, amplitudes, maxima,
and minima (Egger, Ley and Hanke 2019).

Gupta et al. (2022), used all thirty-eight physiological signals present
in the K-emotion dataset. For feature extraction, they used an open-source
library called PyTeap (M. and Villaro-Dixon 2017), which is a python
implementation of "Toolbox for emotion analysis using physiological
signals", and extracted all possible features of the signals present. For
example, from BVP, features such as heart rate variability, interbeat
interval, and mean were extracted. Further, EDA features such as
“number of peaks per second”, mean, and the average amplitude of peaks
were extracted. Finally, each feature was further divided into smaller
windows to adequately capture signal information.

Feature selection is the problem of choosing the most valuable features
that best represent the underlying problem. Shukla et al. (2019) conducted
a feature selection analysis of EDA features using the AMIGOS dataset
(Miranda-Correa et al. 2017). A systematic comparison of 621 features
was performed using three feature selection methods (Joint Mutual
Information, Conditional Mutual Information Maximization, Double
Input Symmetrical Relevance). Their research showed that a high
number of features, approximately 95, are required to obtain optimal
accuracy. Conclusively, regarding the significance of specific features, the
study showed that statistical features related to MFCC (Mel-frequency
cepstrum) outperformed all other features.

3.3.3 Classification Using Physiological Signals

In the field of PER, many different classification methods have been
suggested by previous studies. As mentioned in Chapter 2, there has
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been a recent growth in the use of deep learning methods for machine
learning tasks. This is also the case for the specific task of PER. In the
work of Salari, Ansarian and Atrianfar (2018), EEG, BVP and EDA were
used to detect emotions. Several physiological statistical features were
extracted and sent to a CNN, where it achieved an accuracy of 85.83% and
75.42% for valence and arousal, respectively. Surpassing those achieved in
other papers using common traditional classifiers like SVM, on the DEAP
dataset (Koelstra et al. 2011).

A comparative study performed by Gupta et al. (2022) tested and
compared the performance of four traditional machine learning models,
namely Gaussian Naive Bayes, KNN, DT, and SVM, along with one deep
learning model. The classifiers were tested on five different annotation
methods on the K-Emocon dataset (C. Y. Park et al. 2020). From the study,
it was observed that the deep learning model achieved the best accuracy
in all cases except 1, where an SVM beat it by 0.08%. The best accuracy
achieved for valence and arousal were 91.12% and 62.19%, respectively.
The SVM was the second-best performer in the other four cases.

3.4 State-Of-The-Art In Multimodal Emotion

Recognition Using Facial Expressions and

Physiological Signals

This section describes state-of-the-art within multimodal emotion recogni-
tion using facial emotion recognition and physiological signals. First, the
issues concerning datasets will be presented, along with the most com-
monly used datasets for the task. Then different modality combinations
for MER will be presented.

3.4.1 Datasets

The lack of a benchmark dataset for multimodal emotion recognition
is an issue, as it becomes difficult to compare models and results
based on different data and annotations. Furthermore, considering the
challenge mentioned earlier of picking modalities, the datasets created
for multimodal emotion recognition have different characteristics based
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on the task, particularly regarding modalities and the emotions that are
possible to predict, which can be both discrete and categorical. In addition,
creating datasets for multimodal emotion recognition is time-consuming,
as it requires more work compared to the collection of a single modality.
Further, several datasets have not been made publicly available. This may
be due to privacy issues or simply people not wanting to give datasets
out for free. Subsequently, the growth in innovation within multimodal
emotion recognition is faced with a problem. However, despite challenges,
there has been an increase in datasets created. Table 3.6, displayed at the
end of this chapter, provides an overview of the most common datasets
used in multimodal emotion recognition.

3.4.2 Modality Combination With Facial Expressions

In this subsection, we will include, to our best knowledge, the best
performing modality combinations of facial expressions with another
modality.

Facial Expressions And Text

The emotions that prompt individuals to create text with certain words
at particular times are what text-based emotion recognition is concerned
about. To a certain degree, humans have the ability to understand
emotions from text, leading to motivation for computers to do the same.
However, without contextual information, the inclusion of sarcasm, and
the relationship between the reader and the author, textual interpretation
is a complex task for humans and computers.

In a paper from 2020, Lee, Kim and Cheong (2020) investigated the
possibility of combining facial emotion recognition with text. The research
goal was to classify characters’ facial images in a Korean TV series into
seven emotions: Angry, Disgust, Fear, Happy, Neutral, Sad, and Surprise.
A multimodal deep learning model was implemented using a facial image
and text describing the situation as input values. The experiment showed
an increase in F1-score when using text descriptions of the characters and
facial expressions, compared to a unimodal approach of facial expressions.
A summary of the paper is presented in table 3.1.
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Facial Expressions And Speech

When people engage in spontaneous conversation exchanges, their speech
may reveal their emotional state and personality traits, in addition to
the meaning of the words and their conveyance. Schuller and Batliner
(2013) has provided an overview of computational paralinguistics, with
paralinguistics being the characteristics of the voice that is being used to
transmit emotions, addressing the primary techniques for recognition of
emotion in human speech.

Luna-Jiménez et al. (2022) investigated the possibility of combining
facial expressions with speech. An LSTM was used for FER, using FACS
features, achieving an accuracy of 62.13%. Further, a XLSR-Wav2Vec2.0
(Conneau et al. 2020) was used for speech emotion recognition (SER),
achieving an accuracy of 81.82%. However, by combining these two
modalities with a decision level fusion strategy, they achieve 86.70%
accuracy on the RAVDESS dataset, when classifying eight emotions.
Results demonstrated that these modalities carried relevant information
to detect users’ emotional state and their combination allowed them to
improve both their final system performance. A summary of the paper is
given in table 3.2.

Modalities Dataset Feature-Extraction Classification Fusion Classes Performance

Facial expressions,
text Built own dataset Not reported CNN Decision-Level Basic Emotions Increased F1-score

for 5 of 7 emotions

Table 3.1: Overview of Lee et al (2020)

Modalities Dataset Feature-Extraction Classification Fusion Classes Accuracy

Facial expressions,
speech RAVDESS FER: FACS FER: CNN

SER: xlsr-Wav2Vec2.0 Decision-Level Eight emotions
FER: 62.13%
SER: 81.82%
MER: 86.70%

Table 3.2: Overview of Luna-Jiménez et al (2021)

3.4.3 Modality Combinations With Physiological Signals

In this section, we will include the best performing modality combinations
of physiological conditions with another modality.
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Facial Expressions And EEG

Y. Tan et al. (2021) published a paper where a multimodal emotion
recognition method was proposed to establish an HRI (human-robot
interaction) system with a low sense of disharmony. They performed a
multimodal experiment using facial expressions and EEG. The EEG data
were collected in a lab environment using an electrode cap, and the facial
expressions were collected using a camera, with video being the elicitation
tool. The data would further be self-labeled by the subjects and sent
through separate classifiers for facial and EEG, trained on FER13 and Seed-
IV, respectively.

The facial expressions and EEG results were then combined using the
Monte Carlo method for the multimodal experiment. The model classified
four emotions with an accuracy of 83.33%, being an improvement
compared to both unimodal approaches. A summary of the paper is
presented in table 3.3.

Facial Expressions with EDA, Heart Rate and Respiration

Zhong et al. (2017) combined facial expressions with several physiological
signals in an attempt to increase the recognition rate of emotion compared
to that of a unimodal approach solely using facial expressions. In the
paper, they used facial expressions, EDA, heart rate, and respiration
data from the multimodal MAHNOB-HCI database (Lichtenauer and
Soleymani 2011). For facial expressions, AFFDEX (Bishay et al. 2022), a
facial expression analysis toolkit, was used to extract facial features. From
the physiological signals, a total of 130 features were extracted. These
include time, minima, maxima, frequency, statistical and spectral features,
which were further fused with the facial expressions using late fusion.
A simple concatenation between the vectors was applied regarding the
late fusion technique. The results showed an increase in recognition of
both valence and arousal compared to a unimodal approach using facial
expressions. A summary of the paper is given in table 3.4.
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Combining Physiological Signals

Gupta et al. (2022) researched the possibility of combining physiological
signals to recognize emotions. Their research evaluates physiological
signals for emotion classification using K-Emocon, which is one of the
most recently published datasets in the field of physiological signals.
Compared to previous published multimodal datasets using specially
selected pictures and videos, K-Emocon proposed a more reliable method
of eliciting emotion. Moreover, the participant’s emotion is recorded
during a debate about Yemeni refugees in a social setting. This paper used
all the physiological signals present in the K-Emocon dataset. Regarding
the model’s performance (Neural network), it achieved the best accuracy
for valence at 91.12%, and the best accuracy for arousal was 62.19%.
Summary numbers about the paper are found in table 3.5, and more
information about K-Emocon is found in table 3.6.

Modalities Dataset Feature-Extraction Classification Fusion Classes Accuracy

Facial Expression,
EEG

FER13 and
Seed-IV

FER: CNN
EEG: DE features

FER: CNN
EEG: SVM Decision-Level Neutral, Sad

Fear, Happy

FER: 69.48%
EEG: 79.25%
MER: 83.33%

Table 3.3: Overview of Ying Tan et al (2021)

Modalities Dataset Feature-Extraction Classification Fusion Classes Accuracy

Facial Expression,
EDA, HR

and Respiration
MAHNOB-HCI FER: TIPF

PER: TIPF
FER: SVM
PER: SVM Decision-Level Valance,

Arousal

FER:
Valence: 67.3%
Arousal: 69.0%

MER:
Valence: 69.0%
Arousal: 71.9%

Table 3.4: Overview of Zhong et al (2017)

Modalities Dataset Feature-Extraction Classification Fusion Classes Accuracy

Physiological Signals K-Emoticon PyTeap Library Neural Network Decision-Level Valence,
Arousal

Valence: 91.12%
Arousal: 62.19%

Table 3.5: Overview of Priyansh et al (2021)
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Name Type Elicitation Labelling Classes Source

FER13 Unimodal,
Facial Expression

Posed and
unposed images

from Google

Self-assessed,
raters Basic Emotions FER13 (2013)

DEAP

Multimodal,
Facial Expressions,

EEG,
photoplethysmography,

Skin Temperature

Music Video Self-assessed Valcene, Arousal Koelstra et al. 2011

IEMOCAP
Multimodal,

Facial Expressions,
Speech

Posed Self-assessed Basic Emotions Busso et al. 2008

CK+ Unimodal,
Facial Expressions Posed FACS Basic Emotions Lucey et al. (2010)

RAVDESS
Multimodal,

Facial Expressions,
Speech

Posed Raters Happy, Sad,
Angry, Fearful Livingstone and Russo 2018

K-emoCon
Multimodal,

Facial Expressions,
Physiological Signals

Debates on
social injustice

Self, Partner
and external

Dimensional and
categorical C. Y. Park et al. 2020

MELD
Multimodal

Facial Expressions,
speech, text

Dataset extracted
from dialogues

in the
Tv-show Friends

Raters Basic Emotions Poria et al. 2018

MAHNOB-HCI

Multimodal
Facial Expressions,

EDA, HR
Respiration

Video clips Self-assessed Valence, Arousal Lichtenauer and Soleymani 2011

Table 3.6: Overview of the most used datasets in MER
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Chapter 4

Data

Machine learning methods learn from data. While the representation and
amount of data needed depend on the complexity of the problem to be
solved, it is beneficial that the data is somewhat representative of the
related real-world problem. Creating labeled datasets can be a tedious and
demanding task. Therefore, the datasets used in this thesis will be already
existing datasets. However, we will provide labeling of one dataset with
the use of machine learning models. The data from the datasets are
used to train and evaluate the classification models for emotion detection,
described in chapter 7. Section 4.1 presents the datasets used and their
distribution of labeled instances, as well as how the data was collected
and labeled. Then, section 4.2 will discuss why these particular dataset
were used, as well as why other datasets were discarded.

4.1 Datasets

Several datasets were used to investigate emotion recognition for in-
creased insight and to allow comparisons of the findings. However, the
datasets are different in terms of annotations, elicitation, labeling, and the
emotions that are being classified. This will be described in the following
subsections.

4.1.1 Toadstool (2020)

The most significant dataset for this thesis was provided by Svoren (2020)
and has been made publicly available by Simula. Toadstool (Svoren
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(2020)) includes both physiological signals and a video of 10 participants.
In the process of collecting the data, the participants were placed in a quiet
room, only assisted by Svoren, and were told to play a video game for
thirty-five minutes. To capture physiological signals from the participants,
sensors of E4 Empatica Wristbands were used. This device uses four
different sensors to collect various information from the user:

1. A photoplethysmography sensor, measuring blood volume in an
area tissue. Further used to calculate BVP.

2. An EDA sensor, measuring the electrical conductivity of the skin.

3. A 3-axis accelerometer, measuring movement and activity.

4. An optical thermometer that measures temperatures.

The video captured the participant’s face, posture, and movement as
they played, using a python script utilizing a webcam placed on the
screen. The video was captured at 30 frames per second. Further, the
BVP signal has a sampling rate of 64Hz, the EDA signals has a sampling
rate of 4hz, the Accelerometer signal has a sampling rate of 32Hz, and the
HR signal has a sampling rate of 1Hz. Table 4.1 shows the data included
in the Toadstool dataset.

Label Video-samples (30 frames) BVP Signals (64hz) EDA Signals (4hz) Accelerometer (32hz) HR (1hz)

Total Measurements 63 000 frames 134 400 signals 8400 signals 67 200 signals 2100 signals

Table 4.1: Overview of data in Toadstool (2020)

4.1.2 CK+

One of the datasets used in this thesis to train a FER model was The
Extended Cohn-Kanade (CK+) dataset, provided by Lucey et al. (2010),
where access to the dataset had to be granted. The dataset contains 593
video sequences with facial behavior of 123 different subjects, ranging
from 18 to 50 years of age, with various genders and background. For the
593 posed sequences, full FACS coding of peak frames is provided. The
FACS coding was further used to validate the posed labels, where only
327 met the criteria for one of seven discrete emotions. Table 4.2 shows the
distribution of the annotated sequences in CK+.
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Emotion Amount

Angry 45
Contempt 18

Disgust 59
Fear 25

Happy 69
Sadness 28
Surprise 83

Total 327

Table 4.2: Overview of the original dataset by Patric Lucey et al (2010)

To satisfy our needs, some modifications to the dataset were needed.
The developer of the dataset did not include neutral sequences in the
dataset. Analyzing the sequences in CK+, all sequences start with a
neutral face and gradually evolve into a given emotion. Therefore, we
manually provided 52 neutral sequences by extracting the neutral part
of sequences from CK+. Additionally, we also had to modify CK+ to be
able to use it in a 2D-CNN. In other words, modify the data to include
single labeled frames instead of labeled sequences. Accordingly, with
the sequences ranging from neutral to peak, the last two frames of each
sequence were extracted. In addition, the emotion of "contempt" was
removed due to its low amount samples. The distribution of the modified
CK+ data with sequences is displayed in table 4.3 and table 4.4 shows the
modified version of the CK+ dataset with single frames.

Emotion Amount

Angry 45
Disgust 59

Fear 25
Happy 69
Sadness 28
Surprise 83
Neutral 52

Total 361

Table 4.3: Overview of the modified CK+ (2010) with sequences
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Emotion Amount

Angry 90
Disgust 118

Fear 50
Happy 138
Sadness 56
Surprise 166
Neutral 104

Total 722

Table 4.4: Overview of the modified CK+ (2010) with single frames

4.1.3 FER 13

Another dataset used for FER was the FER13 dataset, provided by FER13
(2013). FER13 was used through the DeepFace library (Serengil and
Ozpinar 2020), as some of the models included in the library are trained on
FER13. The dataset consists of 28,000 labeled images in the training set and
3,500 labeled images in the test set. The dataset was created using images
from Google search, searching for images of faces that match the basic
emotions plus neutral. Along with synonyms for these emotions. These
images were further processed with face detection to obtain images only
consisting of a face. Lastly, human labelers were used to reject incorrectly
labeled images, correct the face detection’s cropping if necessary, and
filter out some duplicate images. Images approved by the human labelers
would then be resized to 48x48 pixels and converted to grayscale.

Each image in FER13 is labeled with one of the six basic emotions plus
neutral. The distribution of labels is provided in table 4.5

Emotion Training set Test set

Angry 3995 958
Disgust 436 111

Fear 4097 1024
Happy 7215 1774

Sad 4830 1247
Surprise 3171 831
Neutral 4965 1233

Total 28,000 3,500

Table 4.5: Overview of the FER13 dataset
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The FER13 dataset is relatively evenly distributed regarding the labels,
except for the emotions of happy and disgust. The happy category is
provided with almost double the amount of samples compared to the
other categories. In contrast, the disgust category contains around a tenth
of the average amount of samples for an emotion.

4.2 Discussion

With respect to the goal of the thesis, namely, investigating the effect
of combining facial expressions with physiological signals, we needed
a multimodal dataset that included the necessary data. From our
literature study, we experienced that two datasets, DEAP (Koelstra et al.
2011) and MAHNOB-HCI (Lichtenauer and Soleymani 2011), included
both facial expressions and physiological signals. The MAHNOB-HCI
dataset already had some work done regarding the combination of facial
expressions and physiological signals, as seen in section 3.4.3. Therefore,
we wanted to pursue the DEAP dataset, as it was seemingly less explored
in the field of MER, with our desired combination of data. However, as
mentioned in 3.4.1, getting access to datasets can be difficult. This was
also the case in our approach of obtaining the DEAP dataset (Koelstra et
al. 2011), resulting in us not managing to get in contact with the providers
of the dataset. Still, in the search for a multimodal dataset, we ended up
using a dataset called Toadstool (Svoren (2020)).

As presented in section 4.1.1, Toadstool included both facial expres-
sions and physiological signals. As well as including our desired data,
Toadstool seemed appealing due to its natural collection of data. Where
DEAP and MAHNOB-HCI was collected with each participant being
suited with an EEG helmet, in a seemingly strict environment as displayed
in figure 4.1, the data in Toadstool was collected in a more relaxed and
natural environment, with an armband being the only instrument the par-
ticipant had to worry about. This way of collecting data can stimulate
more natural and realistic emotions. Additionally, in the context of util-
izing emotion recognition as a service in practice, utilizing an armband is
a more realistic scenario than using an EEG helmet. Figure 4.1 shows the
environment of DEAP and MAHNOB-HCI, while figure 4.2 displays the
Toadstool environment.
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Figure 4.1: Environment of MAHNOB-HCI and DEAP

Figure 4.2: Environment of Toadstool

However, the Toadstool dataset did not contain any emotion labels.
Therefore, an update of the Toadstool dataset, containing a mapping of
the data and labeling, had to be done. The process of labeling Toadstool is
described in detail in chapter 6.
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Chapter 5

Investigating the correlation
between Facial Expressions and
Blood Volume Pulse

5.1 Work Of Svoren (2020)

Investigating the correlation between facial expressions and physiological
signals can reveal a crucial connection for further work into multimodal
emotion recognition using facial expressions and physiological signals.
In a preliminary experiment, Svoren (2020) investigated this correlation
where a deep convolutional neural network(CNN) was trained to predict
BVP amplitude values using a combination of frames of facial expressions
from a video and corresponding frames from a video game session. The
experiment assumed that by creating an ML model that could predict
BVP amplitudes with a low error, one would show that the model
confirmed a correlation between the physiological state of the subject and
the combination of the facial expression and video game frame.

5.1.1 Plan

The deep CNN, which was based on the TensorFlow implementation of
ResNet50 (K. He et al. 2015), was trained on each of the 10 participants
from Toadstool individually. In detail, the model’s input was two
video game frames(the first and last frame of one second) and the facial
expression from the last frame of the second corresponding to the video
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game frames. Since the output of the model and the corresponding
true value was a continuous BVP amplitude measurement between 0
and 1, there was little sense in evaluating performance based on overall
accuracy as the model would most likely never predict the exact values.
More suitable measurements, in this case, was mean average error(MAE)
and root squared mean error(RMSE) because these would give a better
indication of how far away the model predictions were. With a Zero
Rule (ZeroR) classifier as the baseline, the results showed that the baseline
experiment performed overall better than the CNN model, addressing
the task’s difficulty. The ZeroR classifier takes the most frequently
occurring true label from the training dataset and uses that as output when
predicting on the test dataset. The poor results were addressed by Svoren
(2020) and recurrent neural networks (RNN) were suggested as a method
to increase performance. The intuition behind the suggestion is that using
methods such as RNNs would add temporal information to the prediction
of BVP amplitudes. By looking at the evolution of a facial expression over
a given time frame rather than the facial expression in a given instance,
one could get a more complete picture of the state of a subject, which in
turn could improve the prediction of a subject’s physiological state in the
form of BVP.

5.2 Investigating The Use Of Spatio-Temporal

Neural Networks

This chapter aims to present the preliminary experiment built upon the
work of Svoren (2020). The preliminary experiment investigates the
possible effects of using spatio-temporal neural networks in predicting
physiological signal values based on facial expressions. First, section
5.2.1 will present the experiment plan. Next, section 5.2.2 will present
a description of the model architectures used. Lastly, in section 5.2.3,
the performance of the model used will be presented and compared
to a baseline experiment, as well as compared to the results from the
experiment of Svoren (2020).
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5.2.1 Experiment Plan

Our experimental plan will closely follow the plan of Svoren (2020), with
some adjustments in context with the architecture of our models and goals.
Similar to what Svoren (2020) did, and based on the nature of the BVP
signal explained in 2.5.4, we transformed the original 64Hz BVP signal
into a sample set of associated amplitudes. While the input of the CNN
from Svoren (2020) was a combination of two video game frames and
the corresponding frame of facial expression, our spatio-temporal models
were inputted ten facial expression frames extracted from 4 seconds of
video. Since the goal was to predict a single BVP amplitude, the mean
BVP amplitude from each second was again averaged over the 4 seconds,
meaning each datapoint consisted of 10 frames mapped to 1 mean BVP
amplitude. The decision of using 4 second long sequences was a result
of Ekman (2007); an emotion typically lasts between 0.5 and 4 seconds.
The models were trained and tested on the data from each of the 10
participants in the Toadstool dataset separately. The performance of both
models was measured by calculating the MAE and RMSE of the output
and compared to the MAE and RMSE of a ZeroR classifier.

With the suggestion of using RNNs to capture temporal information
from Svoren (2020), our experiment started with implementing a CNN-
LSTM model similar to the model implemented by Kahou et al. (2015)
for emotion recognition in video. As explained in sections 2.2.8 and 2.2.9,
in CNN-LSTM (or CNN-RNNs) approaches, the LSTM takes the features
extracted by a CNN over individual frames as inputs and encodes the
temporal dynamics.

Research has shown that 3D kernels in 3D CNNs can have a superior
ability to extract spatio-temporal features within video frames, as com-
pared to 2D CNNs, even if combined with temporal networks such as
RNNs or LSTMs (Haddad, Lézoray and Hamel (2020)). For this reason,
we decided to create a 3D CNN to make a comparison of the two spatio-
temporal approaches. Our 3D CNN was based on the 3D CNN model
architecture created by Haddad, Lézoray and Hamel (2020) for emotion re-
cognition in video. The model took the same input as the previously used
CNN-LSTM with ten facial expression frames extracted from 4 seconds of
video mapped to the average BVP amplitudes over those 4 seconds.
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5.2.2 Model Architectures

Preprocessing

Before inputting the data into the models, both the video and BVP signal
had to be preprocessed. A detailed description of the preprocessing steps
done on the BVP signals is given in section 7.3.2. How the frames are
extracted from the video is explained at the end of section 6.3.2, and how
these extracted frames were processed is explained in section 7.2.1.

CNN-LSTM

Resnet-18 was used as the CNN part of the model to extract spatial
features from single frames. This model was chosen for its simplicity and
good performance in general computer vision tasks (K. He et al. 2015).
The layers in the model architecture are shown in table 5.1. The first
convolutional layer is followed by a batch normalization layer and a ReLu
activation, while the following convolutional layers are only combined
with a batch normalization layer.

Layer no: Type: Parameters
0 Input input_shape=(1, 112, 112)
1 2D Convolutional kernel=(3,3), filters=64, stride=2, padding=3
2 Max Pooling kernel=(3,3), stride=2
3 [2D Convolutional]x2 kernel=(3,3), filters=64, stride=1
4 [2D Convolutional]x2 kernel=(3,3), filters=128, stride=2
5 [2D Convolutional]x2 kernel=(3,3), filters=256, stride=2
6 [2D Convolutional]x2 kernel=(3,3), filters=512, stride=2
7 AVG Pooling kernel=(4,4)
8 Flatten -
9 Linear input_shape=512, output_shape=300

Table 5.1: The architecture of Resnet-18

The LSTM part of the model consists of a stacked LSTM with 2 LSTM
cells. At each timestep, i.e., at each of the ten frames, the input to the LSTM
layer is the feature vector of length 300 outputted by the CNN.

A stacked LSTM was used because it has been shown to add levels
of abstraction of input observations over time (Pascanu et al. 2013).
Additionally, it gives the possibility to have a dropout layer between
the two LSTM cells, which can prevent overfitting. The output of the
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LSTM layer was then sent into two consecutive linear layers with a ReLu
activation between, where the last linear layer was the final output layer.
Figure 5.1 illustrates how the CNN-LSTM predicts a BVP value based on
10 facial expressions.

Figure 5.1: CNN-LSTM architecture

3D CNN

As 5.2.3 will show, the 3D-CNN was the best performing model architec-
ture and was therefore used further in our thesis. A more detailed archi-
tecture description will therefore be presented in section 7.2.

5.2.3 Results

The experimental plan closely followed the plan of Svoren (2020).
However, our results are not directly comparable to the results of Svoren
(2020) for two reasons. (1) The input of the 2D-CNN used by Svoren (2020)
was a combination of facial expression frames and video game frames,
while our models were only inputted facial expression frames. (2) The 2D-
CNN predicted a single BVP amplitude, which resulted from averaging 64
measurements over 1 second. In our case, the goal was to predict based on
4-second long sequences, which meant that the averaged BVP values over
1 second were again averaged over 4 seconds. That being said, as a Zero
Rule baseline experiment (ZeroR) was done in both contexts, it is highly
relevant to compare the performance of the 2D CNN with its respective
baseline results with the performances of both spatio-temporal networks
with their respective baseline results.
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As seen in table 5.2, the MAE was lower or equal in the 2D-CNN
compared to the ZeroR MAE in only 3 of 10 participants, while the RMSE
of the ZeroR was lower for all participants compared to the RMSE of the
2D-CNN.

As seen in table 5.3, the MAE was lower or equal in the CNN-LSTM
compared to the ZeroR MAE in 8 of 10 participants, while the RMSE of
the CNN-LSTM was lower for all participants compared to the RMSE of
the ZeroR.

As seen in table 5.4 the MAE and RMSE of the 3D-CNN was lower or
equal in all participants compared to the MAE and RMSE of the ZeroR.

CNN ZeroR
ID MAE RMSE MAE RMSE
0 0.076 0.100 0.075 0.099
1 0.104 0.132 0.103 0.131
2 0.071 0.104 0.075 0.100
3 0.050 0.070 0.050 0.070
4 0.078 0.103 0.069 0.094
5 0.091 0.129 0.094 0.121
6 0.091 0.119 0.090 0.116
7 0.110 0.142 0.109 0.139
8 0.061 0.096 0.060 0.090
9 0.126 0.157 0.109 0.134

Table 5.2: Results from predicting BVP amplitudes using CNN Svoren
(2020)

CNN-LSTM ZeroR
ID MAE RMSE MAE RMSE
0 0.022 0.029 0.023 0.033
1 0.049 0.063 0.070 0.087
2 0.070 0.088 0.086 0.113
3 0.032 0.049 0.043 0.065
4 0.067 0.090 0.061 0.095
5 0.080 0.104 0.126 0.162
6 0.060 0.078 0.059 0.078
7 0.082 0.101 0.147 0.177
8 0.065 0.088 0.074 0.108
9 0.098 0.122 0.156 0.194

Table 5.3: Results from predicting BVP amplitudes using CNN-LSTM
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3D CNN ZeroR
ID MAE RMSE MAE RMSE
0 0.022 0.029 0.022 0.032
1 0.050 0.065 0.076 0.097
2 0.068 0.088 0.085 0.112
3 0.031 0.050 0.043 0.065
4 0.059 0.086 0.061 0.095
5 0.081 0.110 0.126 0.162
6 0.059 0.077 0.059 0.078
7 0.077 0.097 0.126 0.153
8 0.063 0.088 0.074 0.108
9 0.099 0.127 0.151 0.186

Table 5.4: Results from predicting BVP amplitudes using 3D CNN

5.3 Discussion

As seen in 5.2.3, the performance of our spatio-temporal networks was
significantly better compared to that of the 2D-CNN used by Svoren
(2020). Despite being two slightly different contexts, we think that the
promising results motivate further investigation and usage of spatio-
temporal networks in the context of multimodal emotion recognition.
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Chapter 6

Toadstool 2.0 (2022)

Subsection 4.1.1 displayed the content of Toadstool, along with its chal-
lenges. In this section we present Toadstool 2.0, a new version of the Toad-
stool dataset, updated to fit our goal of multimodal emotion recognition.
The Toadstool 2.0 dataset includes preprocessed physiological signals that
are synchronized with the video of people playing Super Mario, along
with labeling of the synchronized data points. This chapter will firstly
present a survey regarding human validation of Toadstool 2.0, secondly
section 6.2 will present the process of preprocessing the physiological sig-
nals, and the synchronization of the data. Thirdly, section 6.3 will dis-
play two different approaches to label the dataset, as well as a comparison
between the two approaches and the human validation. Lastly, section 6.4
will present the content of the final multimodal dataset.

6.1 Human Validation Of Toadstool

During social interaction, humans employ rich emotional communication
channels by modulating their speech utterances, facial expressions, or
body gestures. With the underlying assumption that humans are able
to detect these emotional channels, along with the previous research of
Issa, Fatih Demirci and Yazici (2020) providing 67% human accuracy on
the RAVDESS dataset (Livingstone and Russo 2018), a survey of human
accuracy was performed to help validate the labeling of Toadstool. This
section presents the findings from the survey regarding how humans
labeled sequences from the Toadstool dataset. Then, later in the chapter,
we will display how the survey contributed to choosing a classification
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model for labeling Toadstool.

6.1.1 Study Setup

To collect the human validation of the dataset, we asked friends and
family to label 30 video sequences from the dataset using google forms.
Three sequences, all four seconds long, were randomly extracted from
the video of each of the ten participants in the dataset, adding up to
30 sequences. We got 14 people to label the emotion they believed
the participants expressed the strongest for each sequence. Regarding
whether to label using categorical emotions or a dimensional spectrum,
we discovered from our exploration of the fields of FER, PER, and MER
that most datasets varied between using dimensional and categorical
emotions for classification. With both approaches being valid options, six
basic emotions plus neutral were selected due to our previous experience
in using categorical emotions. Additionally, to our best knowledge, there
were no multi-modal datasets with facial expressions and physiological
signals, classified with the six basic emotions plus neutral. Lastly, when
we sent out the survey, we made sure to explain the conditions of the video
sequences. Namely that the videos consisted of people placed in a room
to play Super Mario Bros, with the purpose of collecting facial expressions
and physiological data. Figure 6.1 shows the survey structure; a video
sequence followed by options to choose from the six basic emotions plus
neutral.

6.1.2 Results

While working with Toadstool, we experienced that the majority of the
participants evidently expressed a neutral face. This neutral skewness
is unsurprisingly displayed in the results from the survey on Toadstool,
considering the video sequences were picked randomly. Subsequently, the
neutral category was picked as the strongest emotion in 40.2% (169 out of
420) of the votes, additionally, 60% (18 out of 30) of the sequences were
labelled neutral.
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Figure 6.1: Question from Google Forms

Emotion Amount Mean Probability Accuracy

Anger 2 42.9%
Disgust 2 39.3%

Fear - -
Happy 8 69.65%
Sadness - -
Surprise - -
Neutral 18 60.72%

Total 30 53.14%

Table 6.1: Overall stats from the Google Form
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Figure 6.2: Distribution of human labeling of a sequence

Emotion Per Sequence

The 30 sequences were labeled with a mean amount of 3,8 emotions per
sequence, showing that the task of labeling videos of people may be a
challenging task even for humans. With that said, a person may express
several emotions within a time frame of 4 seconds, leaving the raters
to choose between several emotions. However, such a scenario is what
humans face every day and have to understand. Figure 6.2 presents the
distribution of labeling one of the 30 sequences.

6.1.3 Discussion

This survey was provided to help validate the labeling of the Toadstool
dataset. Section 6.1 explained the process of how the survey was
conducted, as well as its results. However, the survey could have been
performed in a better manner. Therefore, we will close up the section by
shortly discussing possible missteps and improvements in the survey.

Firstly, in our survey, 14 raters provided their answers, and all raters
were aged between 20 and 30. An increased and more diverse group
of participants would produce a better basis for validation. Secondly,
humans tend to remember things that happened last more clearly than
those that came first. This is known as the recency effect and may have
produced some cognitive bias in the decision-making of the raters. For
instance, a rater may label a sequence happy because the last second
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expressed a happy face, even though the person expressed sadness in
the first 3 seconds of the sequence. Thirdly, considering the videos in
Toadstool are relatively neutral heavy, a rater may experience labeling
neutral three times in a row, resulting in a more extensive search for a non-
neutral emotion. Lastly, 3.8 emotions per sequence display the difficulty
in labeling a sequence with a single emotion. A possible solution may be
to label in a valence-arousal spectrum where the raters can better combine
all feelings from the sequence, or let the participants provide self-labels.

6.2 Data preprocessing

To use the physiological data and video provided by Svoren (2020),
we had to preprocess the physiological signals and synchronize them
with the video. When using the timestamps of the video recording
and the sensor recording, we could see that the sensor recording started
before the video recording. In addition, the time difference between
the start of the sensor data and the start of the video varied across
participants. Therefore, to synchronize the video recording with the
sensor recording, we needed to use the time difference to find where the
video started in the sensor recording. This was done by multiplying the
time difference in seconds with the sample rate of the given physiological
signal. After synchronizing, the physiological signals were mapped to
the video depending on the sample rate; 64 BVP measurements, 4 EDA
measurements, 32 Accelerometer measurements, and 1 HR measurement,
to one second of video.

The video was recorded at 30 frames per second, but due to the
computational cost of iterating through all frames, we decided to extract
only the frames planned to train the models. The number of frames to be
extracted was three frames per second. This was based on observations
of similarities in frames from the same second, and we considered three
frames being sufficient to represent the information in one second of
the video. How these extracted frames were further used is described
separately for the two approaches in sections 6.3.1 and 6.3.2.
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6.3 Choosing Labeling Approach

To perform supervised learning, we needed to provide context to the data
in the form of labeling. The labeling of the data is a critical process,
however creating labeled datasets can be a tedious and demanding task.
Furthermore, as seen in 3.6, the majority of the most common datasets
are self-assessed, and only a few are solely labeled by external raters.
Therefore, for us to operate as external raters did not seem very promising.
Along with the fact that it would be quite time-consuming. Additionally,
looking at the human accuracy on Toadstool, the raters labeled the
sequences with a mean of 3.8 emotions per sequence, highlighting the
difficulties of external labeling. Therefore, our approach to labeling the
Toadstool dataset was set to rely on machine learning models. Two models
were tested and compared, and the following section will introduce the
two approaches tested for labeling Toadstool. First, an approach using 2D-
CNNs will be presented, considering its popularity and good performance
on FER. Then, considering the format of Toadstool being video, we will
present an approach using a 3D-CNN.

6.3.1 Labelling with 2D-CNN

Through the literature study, we experienced that several 2D-CNN models
proved to perform well on FER. For that reason, when choosing a
classification model, we decided to label the video using two separate
CNNs trained on different dataset, and move on with the most confident
label. For the first model, we used the Deepface library (Serengil and
Ozpinar 2020). Deepface offers out-of-the-box implementation of state-
of-the-art models, including the pipeline of preprocessing and feature
extraction. A VGGNet architecture (Simonyan and Zisserman 2014)
was selected, due to the fact that it achieved close to state-of-the-
art performance when trained on the FER13 dataset (FER13 (2013)).
Regarding the second model, we decided to train it on CK+, with labeled
single frames, displayed in table 4.4. Looking at the research of Canal
et al. (2022) that compared classical and deep learning approaches on the
CK+ dataset, the result showed that CNN outperformed the best classical
approach, being an SVM. Therefore, the second model used for labeling
Toadstool was also a CNN. ResNet18 was implemented as the 2D-CNN
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due to its simplicity and good performance in other computer vision tasks
(K. He et al. 2015).

From the 3 frames extracted in section 6.2, the first frame was further
chosen to label one second of video. Then, we trained both models on
their mentioned datasets and sent the frames from all 10 participants into
the two models. Table 6.2 displays four random frames and how the
model with the highest accuracy decided the label. Further, the correlating
emotions are displayed in figure 6.3.
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Frame ResNet Emotion ResNet Acc. DeepFace Emotion DeepFace Acc. True Label

284 Neutral 91.27% Angry 32.52 Neutral
218 Happy 99.98% Happy 91.44 Happy
355 Fear 81.43% Surprise 88.32% Surprise
821 Neutral 67.74% Angry 85.78% Angry

Table 6.2: Overview of the labeling of the two models for one participant

(a) Frame 284 labeled Neutral (b) Frame 218 labeled Happy

(c) Frame 355 labeled Surprised (d) Frame 821 labeled Angry

Figure 6.3: Labeled emotions of four random frames

The labeled emotions regarding one participant seemed to show a
significant disagreement between the two models. Looking at all the
participants, we experienced that, on average, the two models had similar
labels on approximately 10% of the frames, with the Deepface (Serengil
and Ozpinar 2020) model most frequently being the best performer,
leading us to question the credibility of the approach.
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6.3.2 Labelling With 3D-CNN

Our second approach to labeling the Toadstool dataset was to use a 3D-
CNN. A 3D-CNN preserves the temporal aspect of a video sequence and
tries to predict an emotion based on the whole sequence. Considering
Toadstool consisted of video sequences, such an approach was appealing.
We decided to follow the architecture and approach of (Haddad, Lézoray
and Hamel (2020)) due to their good performance on the CK+ dataset
that we already had available. Looking at the distribution of labels for
sequences in CK+, seen in table 4.3, the classes of angry, fear, and sadness
contained fewer sequences than average. To overcome the issue of poor
distribution of labels and thus avoid overfitting, data augmentation was
applied to the mentioned classes. Additionally, three additional steps had
to be performed for our model to generalize to the Toadstool dataset. This
sub-sub chapter will present how the 3DCNN labeled Toadstool, while the
complete architecture of the approach will be presented in chapter 7.

1. Following the approach of Haddad, Lézoray and Hamel (2020) we
extracted ten frames from each emotion sequence. However, some
emotion sequences from CK+ contained less than ten frames. To
overcome this issue, in the approach of Haddad, they added the last
frame of the sequence x times until the sequence reached ten frames.
However, we experienced that this approach led to a significant
number of miss classified neutral labels in our case. When exploring
the issue, we discovered that the neutral emotion sequences from
CK+ were the most frequent emotion sequence to be missing frames.
This resulted in a model learning that static facial expressions at
the end of a sequence, should be labeled neutral. Exemplified by
a seemingly happy sequence, being labeled neutral due to several
similar frames at the end of the sequence. To overcome this issue
and make the missing frames less static, we took the last portion of
the sequence, corresponding to the number of missing frames, and
duplicated them. The approach of Hadadd is displayed in figure 6.4,
and our approach to the handling of missing frames is displayed in
figure 6.5.
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Figure 6.4: Hadadd’s approach to handling missing frames from CK+

Figure 6.5: Our approach to handling missing frames from CK+

2. In labeling the toadstool dataset, we experienced that the trained 3D-
CNN model often was skewed towards one or two labels, resulting
in a labeled dataset overrepresented by a few sets of labels. In
analyzing a subset of labels and the corresponding facial expression
frames, we saw that many sequences were labeled differently
compared to the survey answers collected in 6.1, as well as our
own judgment on the given sequence. When investigating the issue,
we saw that the classification varied considerably depending on
the point in the training the state of the model was saved. In our
approach, we took the best-performing model, i.e., saving the model
state at the epoch with the highest validation accuracy. This meant
that despite having a model state which performed well on the CK+
dataset, when we subsequently transferred the model to the context
of Toadstool, the classification would be based on a single set of
weights which could be skewed toward a few sets of classes. This
was due to the nature of model optimization through Stochastic
Gradient Descent (SGD). In SGD, the model will update its weights
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based on a given learning rate until the model converges to an
optimum. One solution to this problem is using Stochastic Weight
Averaging (Izmailov et al. 2018), where the idea is to save the model
state at several points in the optimization, which in our case was the
three epochs with the highest validation accuracy in training. The
average of the weights from the three best epochs was then used as
the model state, which resulted in a more generalized model that
was less prone to classifying only a few sets of the classes.

3. Research generally shows that facial expression models are con-
strained by poor preprocessing steps of facial images. This is be-
cause data can vary significantly in chromaticity, image size, face
positioning, photography method, lighting, and differences in phys-
ical appearance between subjects. These variances in data can occur
between samples from the same dataset and, maybe more signific-
antly, between samples across datasets. Normalizing values is often
applied to combat differences regarding pixel values across samples,
using approximate values for standard deviation and mean of the
pixel values of all samples in the dataset. However, as our problem
is concerned with normalization across datasets, a normalization of
pixel values in the images of CK+ and Toadstool would not work,
as the values for standard deviation and mean in pixel values differ
between CK+ and Toadstool. To bridge the gap between the domain
of CK+ and the domain of Toadstool and, in turn, improve gener-
alization across datasets, we applied an image processing technique
called Histogram Matching on the images from Toadstool. After the
"standard" preprocessing steps; face detection, grayscaling, and res-
izing, the differences between the images of CK+ and Toadstool were
minor; see images 6.6a and 6.6b. Still, these slight differences resul-
ted in substantial differences when classifying, and for that reason,
further image processing was needed. The two main differences
between the datasets were image contrast levels and image quality.
As image quality results from the equipment used in collecting the
images, there is little one can do about that. Contrast levels in the im-
ages from Toadstool can, on the other hand, be manipulated to match
better the contrast levels of the images from CK+ with the mentioned
processing technique of histogram matching. Images are character-
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ized by a particular pixel intensity distribution, i.e., the intensity his-
togram. Histogram matching manipulates the intensity histogram
of an input image to resemble the distribution of the reference image
(Gonzalez and Woods 2018). This is illustrated in 6.6c where histo-
gram matching has been applied on image 6.6b using image 6.6a as
reference.

(a) CK+ reference image
(©Jeffrey Cohn)

(b) Toadstool image be-
fore histogram matching

(c) Toadstool image after
histogram matching

Figure 6.6: Histogram matching

Our model achieved an accuracy of 95.56% on CK+, and was further
used to label 4-second long video-sequences for each participant, as a
result of Ekman (2007). In section 6.2 we explained that 3 frames were
saved for each second. This meant that 4-second sequences consisted of
12 frames in total. As our model input shape was 10 frames we chose
to extract two frames from the first two seconds, and three frames from
the last two seconds, where the two frames were the first and last frames
in each second, respectively. Lastly, the sequences were extracted using a
sliding window approach to ensure we captured as much data as possible.
Exemplified by; after extracting a sequence from the first four seconds, the
start of the next sequence to be extracted is set to start one second later than
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the previous. Table 6.3 displays the first four sequences labeled by the 3D-
CNN and how the sequences are extracted with one second overlap, while
figure 6.7 displays an example of a sequence with ten frames.

Sequences Time Interval Label Accuracy

1505 1505-1509 Fear 86.89%
1506 1506-1510 Fear 62.42
1507 1507-1511 Neutral 56.52%
1508 1508-1512 Happy 97.24%

Table 6.3: Overview of the first four sequences labeled by the 3D-CNN
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(a) 1st Frame - 1st Second (b) 2nd Frame - 1st Second

(c) 1st Frame - 2nd Second (d) 2nd Frame - 2nd
Second

(e) 1st Frame - 3rd Second (f) 2nd Frame - 3rd Second (g) 3rd Frame - 3rd Second

(h) 1st Frame - 4th Second (i) 2nd Frame - 4th Second (j) 3rd Frame - 4th Second

Figure 6.7: Display of frames from sequence 1508, labeled happy
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6.3.3 Choosing Final Labeling Method

After the two models had produced labels for the Toadstool dataset, we
used the answers from the human raters to validate the models, deciding
which model to use for labeling Toadstool. However, as mentioned, the
human validation of Toadstool had shown a distinctive disagreement
in labeling, with 3.8 emotions per sequence. Consequently, only the
sequences labeled with an accuracy of 50% or more by the raters were
used to validate the models, resulting in 23 out of the 30 sequences.
Additionally, all sequences labeled neutral by the raters, being 13, were
taken out of consideration. The motivation behind this decision was that
the video in Toadstool was relatively neutral heavy, meaning the most
common expression of the participants was neutral, and we did not want
to move on with an approach mainly due to its capability of labeling
neutral emotions. Conclusively we ended up with ten labeled sequences
from the human validation that we used to compare the two approaches
with.

When comparing the two approaches, firstly, the 2D-CNN had to
combine its labels to represent a sequence, considering the 3D-CNN
and human validation is performed on sequences. To achieve this
we combined the labels from 4 frames, adding up to 4 seconds, and
labeled it according to the most common label. With each approach
representing the same sequences, we could compare their labels, and
decide on which approach to use for labeling Toadstool. The comparison
revealed a distinctive difference between the human validation and the
two classification approaches. Looking at the ten sequences, the 3D-CNN
had similar labels on two sequences, whereas the 2D-CNN did not have
a single similar label with the human validation. Figure 6.4 shows the
comparison of the labels between the 2D-CNN, 3D-CNN, and the human
raters, for the ten sequences.

Consequently, both the approaches underachieved based on our
expectations. However, with the 3D-CNN relating slightly better to
the human validation and the significant relation between physiological
signals and 3D-CNNs conducted in an earlier chapter, we ended up
labeling the dataset using the 3D-CNN.
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Sequence 2D-CNN 3D-CNN Human Validation

2 Neutral Surprised Happy
7 Neutral Disgust Happy
9 Neutral Disgust Sad

16 Fear Fear Happy
18 Neutral Anger Anger
19 Fear Neutral Happy
21 Disgust Surprise Happy
27 Fear Happy Disgust
28 Sad Happy Happy
29 Anger Neutral Happy

Table 6.4: Comparison between 2D-CNN, 3D-CNN and Human validation

6.4 Toadstool 2.0

After preprocessing, synchronizing and labeling, the result was a usable
multimodal dataset. This section will first present the final content of the
labeled dataset.

6.4.1 Content

The final content of Toadstool 2.0 consists of 2097 sequences of 4 seconds,
for each of the 10 participants. For each sequence, an emotion label
corresponds to 12 frames extracted from video and the 4 physiological
signals. Table 6.5 presents 5 examples of the content for one sequence, for
one participant, in the Toadstool 2.0 dataset. Further Table 6.6 presents an
overview of the Toadstool 2.0 dataset.

Sequence Frames BVP EDA Accelerometer HR Label

1 12 64hz * 4 4hz * 4 32hz * 4 1 * 4 Neutral
2 12 64hz * 4 4hz * 4 32hz * 4 1 * 4 Fear
3 12 64hz * 4 4hz * 4 32hz * 4 1 * 4 Neutral
4 12 64hz * 4 4hz * 4 32hz * 4 1 * 4 Happy
5 12 64hz * 4 4hz * 4 32hz * 4 1 * 4 Anger

Table 6.5: Data for sequences for one participant
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Participant Sequences Disgust Fear Happy Surprised Sad Anger Neutral
0 2097 101 74 131 4 0 27 1760

1 2097 1190 0 97 0 0 196 614
2 2097 0 122 537 9 42 8 1379
3 2097 0 4 17 1 201 72 1802
4 2097 98 61 248 124 69 32 1465
5 2097 123 35 698 328 80 255 578
6 2097 310 799 315 9 22 41 601
7 2097 232 0 9 100 167 690 899
8 2097 0 1065 6 0 262 0 764
9 2097 66 13 105 129 161 722 901
Total 20970 2120 2173 2163 704 1004 2043 10763
Percent - 10% 10% 10% 4% 5% 10% 51%

Table 6.6: Overview of the Toadstool 2.0 dataset

6.4.2 Discussion

Toadstool 2.0 was made as a contribution to the Toadstool dataset
provided by Svoren (2020). The main contribution of Toadstool 2.0
is its addition of emotion labels, along with synchronizing the video
and the physiological signals. This chapter explained the process of
making the dataset, along with how it may contribute to the field of
multimodal emotion recognition, however the dataset still has potential
for improvement.

The labeling of the dataset ended up being handled by a 3D-CNN
model, after comparing the model with a 2D-CNN, and validation with
the human labeling. However, regardless of the 3D-CNN being the top
performer, we believe the labeling process has potential for improvement.
Firstly, only two out of ten labels correlating between the 3D-CNN
and the human labels, where some of the different labels were close to
unanimously chosen by the raters. Secondly, regarding the sequences
chosen for the human validation, looking at the label of the sequence
appearing a second later than the ones randomly picked, the correlation
between the 3D-CNN and human validation was higher. Accordingly, a
change in sequence length may be promising. Lastly, the 3D-CNN was
trained on the CK+ dataset consisting of 327 posed sequences, where
each sequence contains images from a neutral frame (first frame) to peak
expression (last frame). However, emotions do not always start as neutral
expressions, leading to difficulties classifying a sequence consisting of a
single emotion throughout.
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By not reducing the sample rate of the physiological signals into one
value, we allow for more freedom with the use of the raw signals, whether
the user wants to extract the max value, the mean value or other features.
Further, with respect to the BVP value, one may explore other peak
detection algorithms.

The video from Toadstool was recorded while the participants were
playing a video game, however limited research has been done regarding
the use of video games as an emotion elicitation method. Looking at the
distribution of emotion labels in Toadstool 2.0, the neutral category was
significantly large, making us question the emotion elicitation method.

Kessous, Castellano and Caridakis (2009) investigated the imbalance
of data in the SAL database (McKeown et al. 2012), and further described
two challenges with imbalanced data; the first being that training data
with an imbalanced distribution often causes learning algorithms to have
poor performance on the minority class, and the second being that the
imbalance in the validation/test distribution can affect the performance
dramatically. Further, how the emotions of the subjects are provoked
(elicit), plays a role in the spectrum you will get the emotions, as well
as the intensity of each emotion.

In the work of Pallavicini et al. (2018), they investigated the effective-
ness of using virtual reality (VR) survival horror games for emotion elicit-
ation. Results showed that players showed an increased perceived sense
of anxiety and happiness when playing a VR video-game, compared to
a traditional gaming console. Employing a VR approach for emotion eli-
citation would be an interesting option to a traditional gaming console.
Conclusively, the dataset may have benefited from a method provoking
more intense emotions. However, the skewness of facial expression data
relates well with the nature of how expressions in the real world appear,
making it a relevant problem to face.
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Chapter 7

Experiments And Results

This chapter presents the experiments conducted for the purpose of
investigating the possible effects the inclusion of physiological signals has
on the performance of multimodal emotion recognition classification. The
first section describes the experiment plan. The second and third section
presents the architecture of the unimodal classifiers implemented to
perform multimodal emotion recognition. The fourth section will present
the architecture of the multimodal classifier. Lastly, the performance of
the classifiers trained on four different participants from the Toadstool 2.0
dataset is presented.

7.1 Experiment Plan

An experiment is designed to prove or disprove a hypothesis. The
experiment in this thesis hypothesized that the inclusion of physiological
signals will impact the performance of a multimodal emotion recognition
classifier. As mentioned in section 2.6, you need to apply a fusion
technique in order to combine several modalities. As we experienced
from the literature study, decision-level fusion proved to be the most
used technique. Therefore, the first part of the experiments involved
implementing two unimodal emotion recognition models, a FER classifier
and a PER classifier. The two models will also serve as a basis for
comparing the multimodal classification. All three classifiers were trained
and tested on four participants from the Toadstool 2.0. The choice of not
using the remaining six participants was due to their poor distributions
of labels. That being said, the data of the four participants was not
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perfectly distributed either. Therefore, a choice of picking a maximum of
45 random labels for each emotion was taken to minimize the differences
between the classes while obtaining a sufficient amount of data. While
table 6.6 displays the labels for each participant, table 7.1 displays the final
distribution used for training the classifiers.

Further, the data for each participant was split into a training and
test set. The reason behind splitting the data into separate training and
test sets was to ensure that the model’s performance was evaluated on
unseen data. Additionally, 3-fold cross-validation was performed for each
participant. Figure 7.1 illustrates one out of three iterations, where the
data for participant 4 is divided into two training-folds and one test-fold.
In the two following iterations, fold one and two will be used as the test-
fold, respectively. Lastly, the models ran for 200 epochs for each iteration
with an early stopping of 20, saving the epoch with the best accuracy.
Conclusively, the accuracy of three epochs was saved for each model and
used to take the mean between them.

Lastly, while chapter 6 introduced the 3D-CNN classifier used for FER,
this section will fully describe the architecture of our 3D-CNN. The second
part of the experiments concerned creating a multimodal model using late
fusion to combine the two unimodal models. The multimodal model was
also trained and tested on the four participants and later compared to the
performance of the FER and PER models.

Figure 7.1: Splitting of training set and test set
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Participant Sequences Disgust Fear Happy Surprised Sad Anger Neutral
4 302 45 45 45 45 45 32 45

5 305 45 35 45 45 45 45 45
6 247 45 45 45 9 22 41 45
9 283 45 13 45 45 45 45 45

Table 7.1: Overview of the Toadstool 2.0 dataset

7.2 FER Model Architecture

In order to measure the effects physiological signals have on emotion
recognition, we first had to implement a facial emotion recognition
classifier. This section describes the architecture of the FER model,
that is, preprocessing techniques, feature extraction methods, and the
classification model. The architecture is implemented in compliance
with the implementation of Haddad, Lézoray and Hamel (2020). Figure
7.2 illustrates the general concepts of the architecture, from the video
sequences to the results from the classification.

Figure 7.2: FER architecture
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7.2.1 Preprocessing

Image processing is an important step in facial emotion recognition and
should be performed with care to avoid losing any important features.
Fortunately, as experienced throughout this thesis, there exists a common
understanding of successful steps within the field of preprocessing.
However, datasets are dissimilar to each other and require individual
approaches. The PyTorch library (Paszke et al. 2019), described in section
2.9, as well as OpenCV (Bradski 2000), was used for preprocessing of the
data. The preprocessing pipeline consisted of the following steps:

1. Face detection - As discussed in subsection 3.2.1, the different face
detection approaches all perform quite well. Therefore, with the
main difference being face detection with multiple faces, and our
images consisting of a single face, the Haar Cascade was preferred
due to its easy implementation with the use of OpenCV (Bradski
2000).

2. Resizing - All images in the dataset were resized to 112x112 pixels
to create an equal input size.

3. Grayscaling - All images were transformed to grayscale.

4. Normalization - Using the Normalize method from PyTorch each
value in an image is subtracted by the channel mean and divided by
the channel standard deviation.

7.2.2 Feature Extraction and Classification Model

A 3D-CNN was chosen for classification for several reasons. Firstly, as
discussed in previous chapters, a 3D-CNN preserves the temporal aspect
of a video sequence. Therefore, with Toadstool 2.0 consisting of sequences,
using a 3D-CNN seemed promising. Secondly, looking at the experiment
conducted in 5, the 3D-CNN proved to correlate with BVP values to a
higher degree compared to a 2D-CNN. Consequently, considering our
goal was not to implement a top-performing classifier but to investigate
the effect of including physiological signals in a multimodal emotion
recognition model, and we already had implemented a 3D-CNN proving
close to state-of-the-art performance, no other classifications models were
tested.
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The classification was a multi-class classification task, where the
model attempted to classify a sequence of images in the classes of
the six basic emotions plus neutral. Feature extraction is performed
automatically in a 3D-CNN, however a regularization of the feature
extraction part of the network with batch normalization was applied
due to its success in reducing internal covariate shift. Selecting the best
structure and parameters of a classification model can significantly affect
the performance of the model. We follow the approach of Haddad,
Lézoray and Hamel (2020), where they end up with well-performing
parameters through a thorough exploration of how to optimize the
structure and parameters of the network to obtain better performances.

As mentioned, when implementing the 3D-CNN, we followed the
specifications laid out in the paper of Haddad, Lézoray and Hamel (2020)
as much as reasonably possible. For that reason, the input to the model is
a single sequence consisting of 10 frames. The architecture of the 3D-CNN
model can be seen in table 7.2.

84



Layer no: Type: Parameters
0 Input input_shape=(10, 1, 112, 112)
1 3D Convolutional kernel=(3,3,3), filters=64, padding=(1,1,1)
2 AVG Pooling kernel=(1, 2, 2), stride=(1, 2, 2)
3 3D Convolutional kernel=(3,3,3), filters=128, padding=(1,1,1)
4 AVG Pooling kernel=(2, 2, 2), stride=(2, 2, 2)
5 3D Convolutional kernel=(3,3,3), filters=256, padding=(1,1,1)
6 3D Convolutional kernel=(3,3,3), filters=256, padding=(1,1,1)
7 AVG Pooling kernel=(2, 2, 2), stride=(2, 2, 2)
8 3D Convolutional kernel=(3,3,3), filters=512, padding=(1,1,1)
9 3D Convolutional kernel=(3,3,3), filters=512, padding=(1,1,1)

10 AVG Pooling kernel=(2, 2, 2), stride=(2, 2, 2)
11 3D Convolutional kernel=(3,3,3), filters=512, padding=(1,1,1)
12 3D Convolutional kernel=(3,3,3), filters=512, padding=(1,1,1)
13 AVG Pooling kernel=(1, 2, 2), stride=(2, 2, 2), padding=(0,1,1)
14 Flatten -
15 Linear input_shape=(8192), output_shape=(4096)
16 Dropout Probability=0.2511
17 Linear input_shape=(4096), output_shape=(2048)
18 Dropout Probability=0.2511
19 Linear input_shape=(2048), output_shape=(7)

Table 7.2: The architecture of the 3D-CNN

All convolutional layers have a kernel of size (3, 3, 3), and a padding
of (1, 1, 1). All the convolutional layers uses the ReLu, and batch
normalization, while the last two linear layers only uses ReLu. The output
of the last layer is the number of classes.

7.3 PER Model Architecture

After implementing a FER model, a PER model had to be implemented in
order to perform multimodal emotion recognition. This section describes
the architecture of the PER model with preprocessing, feature extraction,
and classification. Figure 7.3 illustrates the general components of the
architecture, from physiological signals in the dataset to the predictions
of the classifier. As seen in the figure, a total of 4 physiological signals
will be used and combined in order to perform PER. This section will
describe each of the architectural components in turn, from preprocessing
to classification.
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Figure 7.3: PER architecture

7.3.1 Preprocessing

Physiological emotion recognition is a challenging task due to raw
physiological signals’ complex and subjective nature. In addition to the
sensitivity physiological signals have to noise, the data from Toadstool
also had to be synchronized with each other to make the data able to
combine.

7.3.2 Feature Extraction And Synchronization

The PER model is in itself a multimodal model where each of the four
physiological signals acts as its own modality combined through feature
level fusion. Because of this, feature extraction and synchronization of the
signals were needed before concatenating them into a single input.

The sample rate of BVP was chosen as the standard, resulting in the
values for EDA, Accelerometer, and Heart Rate being transformed to 64hz.
Using the physiological signal with the highest sampling rate prevents
loss of information when downsampling signals. As the sequences
were 4 seconds long, the final feature vectors had a length of 256 after
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concatenating the features from each second. Each of the final features was
normalized between 0 and 1. This subsection will present the individual
feature extraction and synchronization of the physiological signals

BVP

Specific preprocessing steps were necessary before the BVP data from
Toadstool could suit our purpose. As explained in subchapter 2.5.4, we
are interested in the amplitude of the BVP signal. Therefore we needed
to transform the original BVP signal into a sample set of associated
amplitudes. To do this, we applied the approach provided by Svoren
(2020). Firstly, a normalization of the signal was performed. As the
range of values varies from person to person, the range of the signals
was normalized into values between -1 and 1. Secondly, all negative
values were replaced with 0, estimating the vasoconstriction to contain
only positive values. Thirdly, we found the systolic peaks for each 40hz
using a method find peaks from the ScyPy library. The distance was set at
40hz because the signal has minor peaks that appear between heartbeats,
which are mostly not indicative of the actual vasoconstriction. Lastly, the
peak value found for each 40hz distance was set as the current value for
all amplitudes appearing in that distance. Conclusively, each 64hz sample
ends up consisting of the peak values found. Figure 7.4 shows the stages of
the transformation of the BVP signal. In addition to the BVP amplitudes,
the mean and max values were extracted from the BVP amplitudes feature,
resulting in 3 features for the BVP signal.
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Figure 7.4: The stages of transforming the BVP signal (©Svoren (2020)

EDA

As mentioned in section 2.5.4, EDA is divided into two components, the
Tonic component and the Phasic component. As our goal was to learn
features related to instantaneous emotional responses, we used the phasic
component of the EDA signal because it relates better to the emotional
state of a subject in a given instance. The phasic component was collected
using the biosignal processing package Neurokit2 (Makowski et al. 2021).
Neurokit2 offers a method that extracts Skin Conductance Response (SCR)
amplitudes from a raw EDA signal. Figure 7.5 shows how the Skin
Conductance Level slowly builds up over time in the tonic component,
while the phasic component shows the more immediate SCR amplitudes.
The extraction of the SCR amplitudes did not change the dimension of
the signal, meaning that the feature vector had to be "stretched" to match
the length of 256. This was done by duplicating each value 16 times, as the
original sample rate of the EDA signal was 4Hz. The mean and max values
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of the SCR amplitudes were extracted as additional features, resulting in 3
features for the EDA signal.

Lastly, with respect to the research of Shukla et al. (2019), seen in
section 3.3.2, we tried extracting the MFCC feature. However, due to the
low sample rate of the EDA-signal, compared to the signal used by Shukla,
it was not possible to extract a sufficient amount of data to make the MFCC
feature usable.

Figure 7.5: Phasic and Tonic component of EDA signal in Toadstool 2.0

Accelerometer

The accelerometer sensor output is three vectors (~ax, ~ay, ~az) representing
the position of the sensor in three-dimensional space. Drawing inspiration
from Olsen and Torresen 2016, we decided to look at total movement
as a feature, rather than looking at movement along specific axes.
Therefore, we transformed the three vectors into one vector describing
total movement at the time i, where i=0 is the first sensor recording.

ai =
√

a2
x,i + a2

y,i + a2
z,i (7.1)
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The sample rate of the raw accelerometer signal was 32Hz, and the
transformation into a single vector did not change the length. Therefore,
the values were duplicated one time each to match the length of the other
signals. Similar to the feature extraction in BVP and EDA, the mean
and max values were added as features, resulting in 3 features for the
accelerometer signal.

Heart Rate

The sample rate of the heart rate was 1Hz, meaning each value was
duplicated 64 times. No further feature extraction or processing was
performed besides normalization due to the low sample rate.

7.3.3 Classification Model

Two models were tested and compared to decide on the classification
model to use in the multimodal model. As we experienced from the
literature study, there has been a recent growth in the use of deep learning
methods in PER. However, more classical approaches like SVM have also
proven to achieve good results trying to classify physiological signals
(Gupta et al. (2022)) (Ayata, Yaslan and Kamasak (2020)). As a result of
no clear state-of-the-art approach, we compared the performance of a 1D-
CNN and an SVM model and moved on with the best performer. This will
be presented in sub-section 7.3.4

Similar to the task of FER in section 7.2, the task of classifying with
PER was also a multi-class classification task, where the two models
attempted to classify physiological signals in classes of six basic emotions
plus neutral. The dataset was initially split into training data and test data,
similar to figure 7.1 for each model. When implementing the 1D-CNN and
SVM, we followed the specifications laid out by Santamaria-Granados et
al. (2019) and Pedregosa et al. (2011), respectively. The input to the models
was four physiological signals: BVP, EDA, Accelerometer, and HR, with
a total of 10 feature vectors with length 256 for the 1D-CNN. While the
SVM was inputted a total of 7 features with length 4. Table 7.3 illustrates
the architecture of the 1D-CNN, whereas the SVM is presented solely with
text.
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1D-CNN

Regarding the input to the 1D-CNN, it used one channel for each feature,
adding up to ten channels. All convolutional layers have a kernel of
size 3. Further, a stride of 1 was used for all convolutional layers, and
a stride of 2 was used for all the pooling layers. ReLu was used in the
first convolutional layer, however, batch normalization was performed in
each convolutional layer. Further, two linear layers are used, with ReLu
and dropout. Lastly, the output of the last layer is the number of classes
performed by a linear layer.

Layer no: Type: Parameters
0 Input input_shape=(10, 256)
1 1D Convolutional kernel=3, filters=64, stride=1
2 Max Pooling kernel=3, stride=2
3 1D Convolutional kernel=3, filters=128, stride=1
4 Max Pooling kernel=3, stride=2
5 1D Convolutional kernel=3, filters=256, stride=1
6 Max Pooling kernel=3, stride=2
7 Adaptive Avg Pooling output_shape=1
8 Flatten -
9 Linear input_shape=256, output_shape=64

10 Dropout Probability=0.25
11 Linear input_shape=64, output_shape=7

Table 7.3: The architecture of the 1D-CNN

SVM

The SVM model was implemented with the use of the Scikit-learn library
(Pedregosa et al. (2011)). The model input was downsampled to the
mean and max from each second of each physiological signal (besides
HR) measurement. Compared to the input shape of the 1D-CNN which
was (10, 256), the input of the SVM was (7, 4) which again was flattened
to a single feature vector of length 28. The reduction of dimensionality
was done as we observed poor results when using the original input on
the SVM, indicating that the SVM may not be able to extract relevant
information from such high dimensional features. The SVM used a non-
linear kernel function, namely an RBF kernel, as the classification was not
a linear classification problem due to the high dimensionality of the input.
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7.3.4 Choosing classifier

Two models were tested for PER, a 1D-CNN and an SVM. When deciding
on which model to use in the MER model, we compared the performance
of both classifiers. Both models were trained and tested using BVP, EDA,
HR, and Accelerometer. Table 7.4 presents the accuracy of the two models.

Participant 1D-CNN SVM
4 0.407% 0.400%
5 0.357% 0.358%
6 0.353% 0.298%
9 0.367% 0.352%

Table 7.4: Comparison of 1D-CNN and SVM

The comparison of the two classifiers showed that the 1D-CNN
performed better on 3 out of the 4 participants. Therefore, we decided
to move on with the 1D-CNN to perform multimodal emotion recognition
in combination with the 3D-CNN.

7.4 MER Model Architecture

After the two unimodal classifiers had been implemented, we could
combine them to perform multimodal emotion recognition. This section
will describe the architecture of the MER model, with the fusion of the two
unimodal classifiers. Figure 7.6 illustrates the general components of the
architecture, with the combination of the two models.
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Figure 7.6: MER architecture

7.4.1 Fusion technique

As previously stated, a decision-level fusion technique was applied in our
MER model. As the name suggests, the goal of decision-level fusion is
to combine the decisions taken by different classifiers to achieve better
performance than the individual decisions of the classifiers. The 3D-CNN
and the 1D-CNN were the classifiers combined in our approach. Soft
fusion, a decision-level fusion method, was used to combine the classifiers.
Soft fusion allows one to decide the weight each classifier should have in
the final classification. This weight is further multiplied by the softmax of
the output for each sequence. The combination of the two modalities is
shown in the following equation:

Labelmatrix = W f er · So f tmax(O f er) + Wper · So f tmax(Oper) (7.2)

where O f er and Oper is the output from a sequence for the FER model
and PER model, respectively. Further W f er, the weight for FER, was set
to 0.7, and Wper, the weight for PER, was set to 0.3. Following this, the
FER model was set to have a greater impact on the classification. This was
simply a result of intuitive trial and error, with several combinations of
weights.
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7.5 Results

All three classification models were trained and tested on four participants
from the Toadstool 2.0 dataset. The tables in this section present the
performance of the classifiers in terms of accuracy, precision, recall, F1-
score and MCC. The section first presents the results from the classification
of the FER model, secondly, the results from the classification of the PER
model, then the results from the MER model will be presented. Lastly, a
comparison of the classifiers will be presented.

The average score of precision, recall, F1-score, and MCC will be
displayed for each model, along with accuracy. Additionally, the F1-score
for each emotion will be presented for each classifier. The decision to
investigate F1-score is based on the fact that precision measures the extent
of error caused by false positives. In contrast, recall measures the extent
of error caused by false negatives, and in our case, these measures are
equally undesirable. Therefore, using F1-score seemed promising, being
a harmonic mean of precision and recall. On top of that, observing the
distribution of classes in Toadstool 2.0, the dataset appeared to include
some class imbalance. When a dataset is unbalanced, i.e. the number
of samples in one class is significantly larger than in another class, the
accuracy reliability decreases because it would provide an over-optimistic
estimation of the classifier’s ability to predict the majority class. MCC
would produce a high score only if the model obtained good results for
all seven emotions (Reinke et al. 2021), acting as a positive addition to the
measure of accuracy and F1-score. The MCC score ranges from -1 to 1,
where 1 is a complete agreement between labels and prediction, -1 is a
complete disagreement, and a score of 0 would indicate that the model is
producing random predictions.

7.5.1 FER Classifier

The first part of the experiment consisted of implementing a 3D-CNN to
recognize emotion from image sequences. This section will present the
results from training and testing the 3D-CNN on the Toadstool 2.0 dataset.

For the FER classifier, participant 4 achieved the best accuracy with
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86.4%. Participant 4 also achieved the best F1-score, with 85.8%. This is
probably due to participant 4 having the best distribution of emotions.
The class that achieved the highest F1-score was the happy class in
participant 4, with 98.7%. The MCC-score correlated with the accuracy
for all participants.

Participant Precision Recall F1-score MCC Accuracy
4 86.4% 85.9% 85.8% 0.84 86.4%
5 82.8% 82.3% 81.4% 0.79 82.2%
6 57.0% 61.8% 58.0% 0.68 73.0%
9 74.1% 77.0% 75.0% 0.82 85.5%

Table 7.5: Results of the 3D-CNN on Toadstool 2.0

Participant Anger Disgust Fear Happy Sad Surprised Neutral
4 83.7% 93.1% 88.4% 98.7% 83.2% 86.3% 67.2%
5 92.2% 81.7% 67.2% 97.6% 80.8% 86.5% 63.5%
6 79.7% 68.9% 82.6% 85.5% 22.2% 0.0% 66.9%
9 91.4% 89.8% 0.0% 87.9% 85.4% 83.9% 86.5%

Table 7.6: Results of F1-score for FER

7.5.2 PER Classifier

The second part of the experiment consisted of implementing a 1D-CNN
to recognize emotion from physiological signals. This section will present
the results from training and testing the 1D-CNN on the Toadstool 2.0
dataset.

For the PER classifier, participant 4 achieved the best accuracy with
40.0%. Looking at the F1-score for PER, we identified that each participant
had at least one class below 10.0%. This is most likely due to a lack of
training data for certain classes. The class that achieved the highest F1-
score was the happy class in participant 4, with 54.5%. The MCC-score
correlated with the accuracy for all participants.
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Participant Precision Recall F1-score MCC Accuracy
4 36.0% 41.6% 36.4% 0.30 40.0%
5 34.1% 34.3% 30.1% 0.24 34.7%
6 26.3% 27.4% 22.5% 0.19 32.9%
9 28.2% 30.9% 27.9% 0.21 33.9%

Table 7.7: Results of the 1D-CNN on Toadstool 2.0

Participant Anger Disgust Fear Happy Sad Surprised Neutral
4 54.3% 6.6% 48.6% 54.5% 38.8% 19.8% 31.8%
5 51.3% 26.4% 10.0% 39.7% 19.8% 21.9% 41.5%
6 17.6% 41.1% 42.2% 37.3% 0.0% 0.0% 19.2%
9 18.8% 21.4% 0.0% 46.6% 36.8% 40.0% 31.8%

Table 7.8: Results of F1-score for PER

7.5.3 MER Classifier

The last part of the experiment consisted of implementing a multimodal
emotion recognition model by fusing the two classifiers. This section will
present the results from training and testing on the Toadstool 2.0 dataset.

For the MER classifier, participant 4 achieved the best accuracy with
87.0%. In addition, participant 4 achieved the best F1-score, with 86.4%.
The class that achieved the highest F1-score was the happy class in
participant 4, with 98.7%. The MCC-score correlated with the accuracy
for all participants. Conclusively, 4 out of 4 participants achieved better
accuracy on the MER model. This will be further investigated in the
following subsection.

Participant Precision Recall F1-score MCC Accuracy
4 88.2% 86.6% 86.4% 0.85 87.0%
5 83.1% 82.5% 81.7% 0.79 82.6%
6 58.8% 61.9% 59.0% 0.68 73.4%
9 74.2% 77.3% 75.3% 0.83 85.8%

Table 7.9: Results of the MER classifier on Toadstool 2.0
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Participant Anger Disgust Fear Happy Sad Surprised Neutral
4 88.8% 96.2% 93.2% 98.7% 82.5% 80.1% 64.9%
5 92.2% 79.9% 68.0% 97.6% 83.4% 87.3% 63.9%
6 81.4% 73.3% 78.4% 89.0% 22.2% 0.0% 68.7%
9 93.9% 91.0% 0.0% 88.4% 83.2% 84.0% 85.8%

Table 7.10: Results of F1-score for MER

7.5.4 Comparing the classifiers

After looking at the results of each of the classifiers, to investigate the effect
the PER model had on the MER model, a comparison between the FER
model and the MER model was performed. This subsection will compare
the accuracy of the classifiers and the F1-score for the different classes for
each participant.

Participant 4

When training and testing on participant 4, the FER classifier achieved an
accuracy of 86.4%. Further, the MER classifier achieved an accuracy of
87.0%, resulting in an increase of 0.6%. When comparing the F1-score of
the two classifiers, anger, disgust, fear, got an improved F1-score in the
MER classifier. Happy got a similar F1-score between the two models,
while the F1-score of sad, surprised, and neutral decreased. The most
improved class was anger, with an increase of 5.1%. The PER classifier
performed best on participant 4, with an accuracy of 39.0%

Participant 5

When training and testing on participant 5, the FER classifier achieved
an accuracy of 82.2%. Further, the MER classifier achieved an accuracy
of 82.6%, resulting in an increase of 0.4%. Additionally, when comparing
the F1-score of the two classifiers, fear, sad, surprised and neutral got an
improved F1-score in the MER classifier. Anger and happy got a similar
F1-score, while the F1-score of disgust decreased. The most improved
class was sad with an increase of 2.6%.
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Participant 6

When training and testing on participant 5, the FER classifier achieved
an accuracy of 73.0%. Further, the MER classifier achieved an accuracy
of 73.4%, resulting in an increase of 0.4%. When comparing the F1-score
of the two classifiers, anger, disgust, happy and neutral got an improved
F1-score in the MER classifier. Surprised and sad got a similar F1-score
between the two models, while fear decreased. The most improved class
was disgust with an increase of 4.4%.

Participant 9

When training and testing on participant 5, the FER classifier achieved
an accuracy of 85.5%. Further, the MER classifier achieved an accuracy
of 85.8%, resulting in an increase of 0.3%. Additionally, when comparing
the F1-score of the two classifiers, anger, disgust, happy and surprised got
an improved F1-score in the MER classifier, with anger being the most
improved, with an increase of 2.5%. The F1-score of fear was similar
between the two models, while the F1-score of sad and neutral decreased.
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Chapter 8

Evaluation And Discussion

8.1 Evaluation

This section provides an evaluation of the experimental results. This
section will cover the different aspects of the experiments, from labeling
Toadstool to the results of the classifiers.

8.1.1 Labeling Toadstool

Several datasets have been used throughout this thesis. This subsection
will contain an evaluation of the mentioned datasets.

CK+ and FER13

CK+ and FER13 were used to train two separate FER classifiers to help
with the process of labeling sequences from Toadstool. Both CK+ and
FER13 are well-acknowledged datasets commonly used in the field. While
both datasets are used for the task of FER and annotated similarly with
the basic emotions, they have a significant difference in the amount of
training data, with FER13 being the largest dataset. This is probably
why the Deepface model achieved the highest accuracy for most frames
in Toadstool. Additionally, when comparing the models trained on
CK+ and FER13 tested on Toadstool, approximately 10% of the labels
correlated. This significant difference may be a result of FER13 being
collected from google images, thus including a variety of images, while
CK+ is a dataset collected with posed emotion-sequences. This shows that
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although datasets are annotated similarly, the actual features learned from
the dataset can vary significantly.

Toadstool 2.0

Toadstool 2.0 contains data from 10 participants, but only 4 participants
were considered in our experiment due to poor distribution of classes
among the other 6. The amount and type of data are essential for machine
learning models and will heavily impact a model’s performance. In
Toadstool 2.0, the data size for each participant is identical, however, the
distribution of labels varies. Accordingly, the main difference between
the participants is the distribution of labels, which is probably the main
impact of the different results from the classifiers.

The labels in Toadstool 2.0 result from the best performer between two
2D-CNNs compared to a 3D-CNN, where the 3D-CNN ended up being the
model to label the data, as it related slightly better to the human validation.
The results from training and testing a FER model on the four best
distributed participants in Toadstool 2.0 were quite good. With an average
accuracy of 81.7% on the test set, a FER model is indeed able to learn
and label a significant amount of the distinctive classes from Toadstool
2.0. Subsequently, our approach to labeling Toadstool proved to provide
decent true labels. However, although a model can distinguish between
the classes in Toadstool 2.0, it does not prove the labels are correct. For
instance, some of the labels that were unanimously picked by the humans,
the 3D-CNN labeled differently. Therefore, with the human survey
ultimately being the deciding factor in labeling Toadstool, the credibility
of the approach is questionable. Furthermore, the labels from the two 2D-
CNNs, as well as the labels from the best performing 2D-CNN and 3D-
CNN showed a significant disagreement in labels. Conclusively, further
investigation of labeling Toadstool is necessary and will be discussed in
section 9.2.

8.1.2 Classification Results

Regarding the classification models, only one solution to FER and MER
was implemented, while a comparison between two PER models was
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performed. The final solutions were based on findings and experience
from related work and project convenience.

Regarding the FER model, the work of Haddad, Lézoray and Hamel
(2020) played an important role. The preprocessing steps chosen were
regularly used methods in the field, such as gray-scaling, resizing and
normalization. 3D-CNN was chosen as the model due to the experiments
provided in chapter 5 and 6.

When choosing a PER model, we tested and compared an SVM and
a 1D-CNN and moved on with the best performer, being the 1D-CNN
implemented with inspiration from Ayata, Yaslan and Kamasak (2020).
As seen in table 7.4 both the 1D-CNN and SVM got 40% as the highest
accuracy. In most contexts, such performance can be regarded as a low
accuracy score, indicating that predicting seven different emotions based
on four different physiological signals is challenging. The preprocessing
steps consisted of synchronizing the physiological signals to fit each other
and form the signal to contain the essential parts of the data.

The MER model was consequently implemented using the mentioned
FER and PER models. A decision-level method was used due to its
common usage in the field, explored in chapter 3. The accuracy and
general performance increased using a MER model, compared to the
unimodal cases. Additionally, with the intention of investigating the
effects of including physiological signals in MER, the primary focus
of the experiments was not to optimize the classifiers. However,
Haddad, Lézoray and Hamel (2020) had already performed an exploration
regarding finding well-performing parameters for their model, resulting
in us using the same parameters for our model.

Some measures have been taken to avoid model overfitting, such as
3-fold cross-validation, splitting the data into training and test sets, and
providing early stopping in training the models. However, with that
being said, our model may still be prone to overfitting. The results are
also affected by the uneven distribution of labels in the target classes.
This is shown by low F1-scores for surprised in participant 6 and fear
in participant 9, along with a gap of 27.4% between participant 4 and
participant 6 in average F1-score.

Furthermore, the calculation of MCC proved to follow the measure-
ment of accuracy, which, based on the theoretical definition, should only
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happen if the dataset is balanced. This may be because MCC is originally
used in binary classification.

Figure 8.1 shows the confusion matrix for participant 4, classified with
the MER model, which yielded the best classifier performance among the
participants. Further, figure 8.2 shows the confusion matrix for participant
4, classified with the FER model. Firstly, comparing the true labels
between the matrices, six labels were changed between the classifications,
where four labels were changed from false to true, and two labels were
changed from true to false. Conclusively, the MER model managed to
correctly classify two more labels, compared to FER. Anger, disgust, fear
and sadness were changed to be correctly classified in the MER classifier,
and surprise and neutral were changed from correct to miss-classified.
Figure 8.3 shows the confusion matrix for participant 4, classified with
the MER model when increasing the dataset size from max 45 samples to
max 90. The increase in dataset size resulted in a more significant class
imbalance, which again is resembled by the decrease of 16% in accuracy
compared to the original class distribution.

Figure 8.1: Confusion matrix of participant 4 classified with MER
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Figure 8.2: Confusion matrix of participant 4 classified with FER

Figure 8.3: Confusion matrix of participant 4 classified with MER with
increased dataset
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8.2 Discussion

The goal of this thesis was to investigate the effect of multimodality in
emotion recognition with the use of facial expressions and physiological
signals. Three research questions and one objective were formulated to
reach the goal. This will be addressed in this section.

Research Question 1 What does the literature suggest as promising
approaches to MER using facial expressions and physiological signals?

With respect to Research Question 1, existing research on FER, PER,
and MER was investigated. When exploring the field of MER, FER and
PER also had to be investigated individually.

Facial Emotion Recognition

When exploring the field of existing research, the field of FER proved
to be well documented, with several acknowledged datasets and a
common pipeline regarding the model architecture; preprocessing, feature
extraction, and classification. Firstly, different datasets require different
preprocessing. However, the preprocessing step proved to follow a
particular standard pipeline throughout the studies, with face detection,
data augmentation, resizing and normalization. Secondly, regarding
feature-extraction and classification, exploring the field of study showed
a significant usage of deep learning methods, where several of the best
performing models used a variation of a CNN.

Physiological Emotion Recognition

The field of PER was not as explored compared to that of FER. However,
it was undoubtedly explored to the state of having a common pipeline of
action within the field and some commonly used datasets. Nevertheless,
all the common datasets in the field used valence and arousal for
classification. Subsequently, we believe our introduction of a new
dataset with categorical true labels will positively contribute to the field.
Further, similar to FER, a model architecture consisting of preprocessing,
feature extraction, and classification was used in the field of PER.
Firstly, regarding preprocessing, the fact that raw physiological signals
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are complex, eliminating noise at an early stage proved its importance
throughout the field. This was often done with the use of different
types of filters. Secondly, the task of choosing and extracting the most
valuable features is essential in PER. Popular features for physiological
signals include amplitudes, maxima, and minima. Further, some feature
selection analyses have been conducted in the search for the best features,
however this should be further investigated. Additionally, it is unclear
what type and number of modalities to include in a PER model. Lastly,
the classification of PER showed similarities to the field of FER, with CNN
proving to perform well.

Multimodal Emotion Recognition

Our goal was to investigate what the literature suggested as promising
approaches to MER using facial expressions and physiological signals.
Both models of FER and PER appeared commonly in the field and proved
to perform well in combination with other emotion recognition models
such as text and speech, serving as motivation for the use of FER and
PER in an MER model. Moreover, the combination of FER and PER
also showed promising results. Regarding datasets, there exist some
commonly used datasets, however these datasets are collected in a strict
scenario due to extensive measuring tools, seen in figure 4.1. Additionally,
a dataset with our desired data was not easily accessed.

Late fusion proved to be the most common approach in the field. With
the possibility of combining two models, we experienced that the field
of MER offered a substantial amount of variations. Exemplified by; The
architecture of a FER model has several options regarding preprocessing,
feature extraction, and classification, where the classification has a variety
of parameters you can tweak. Additionally, the FER model can be trained
on various datasets, which can be built in different ways regarding what
emotions it includes, how the emotions are elicited, whether the dataset
is self-assessed, labeled with raters, or both. All these options regarding
FER are also the case for PER. Additionally, little research regarding
the comparison of fusion techniques has been conducted and should be
explored further.

Lastly, with the growth in easily wearable and accessible technology,
the field of MER has experienced a more effortless approach in the
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creation of datasets. Without undermining the work of Svoren (2020), who
unquestionably put in a significant amount of effort in the collection of
Toadstool (Svoren et al. 2020), a computer and an E4 Empatica wristband
were all that was needed in order to collect a sufficient amount of data.

Objective Provide ground truths to the multimodal dataset provided by
Svoren (2020), using a facial emotion recognition model and human raters.

Toadstool 2.0 was created for several reasons. Firstly, as discussed in
4.2, we were not able to get access to the DEAP dataset (Koelstra et al.
2011). Furthermore, the IEMOCAP dataset (Busso et al. 2008) had already
been explored to a certain degree. Secondly, the natural collection of
data in Toadstool (Svoren et al. 2020), along with the fact that we could
label Toadstool with basic emotions plus neutral, thereby contributing
to the field with a classification not available to our knowledge, seemed
meaningful and exciting.

The contributions of Toadstool 2.0 are true labels for 4-second long
sequences, with corresponding synchronized physiological data of BVP,
EDA, HR, and Accelerometer. The decision to use 4-second long
sequences was based on Ekman (Ekman (2007)) and his argumentation
regarding how long an emotion lasts. More research should be conducted
to understand which length of sequences is most effective for gathering
the best ground truths. Additionally, all physiological signals collected by
Svoren (2020) were included and synchronized to the video. Keeping the
sample rate of the physiological signals was a purposive choice to allow
for freedom for further use, regarding what features to extract from the
samples.

Lastly, as stated by Svoren (2020), one area that has potential for
improvement is the data collection process. Svoren addresses the fact that
it might have been a good idea to inform the participants to keep as still as
possible, due to the fact that BVP measurements are somewhat sensitive
to distortion from movement. Lastly, the evaluation of the distribution in
participant 4 addressed the imbalance in the data. As experienced through
the literature study, emotion elicitation is vital to acquiring a balanced
dataset. From the distribution of Toadstool 2.0 displayed in table 6.6, the
dataset was labeled as 51% neutral. Along with the decrease in accuracy
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when training on 90 samples compared to 45, investigating other forms of
emotion elicitation for the data collection seems promising.

Research Question 2 How are physiological signals related to facial
expressions?

The reasoning behind the experiment done in chapter 5 was that if
one could create an ML model that could predict BVP values based on
facial expressions with low error, one would show a correlation between
the two. Drawing experience from the preliminary experiment of Svoren
(2020) we saw that the correlation between BVP and facial expressions in
a given instance was small. With this in mind and from exploring emotion
theory, we found it natural to instead look at the potential correlation
over a given time frame, i.e., with spatiotemporal features. The results
of our experiment were promising in the context of comparing it to a
ZeroR classification method, and they served as motivation for further
investigation of the spatiotemporality of emotion.

The experimental results of chapter 5 serve as a partial answer to how
physiological signals are related to facial expressions, as the experiment
only looked at BVP as the physiological signal. One could attempt to
predict additional physiological signals based on facial expressions, such
as EDA, HR, and Accelerometer data. Doing so would give a broader
answer to the question, and it could give more insight regarding; to what
degree different physiological signals correlate with facial expressions.
Additionally, one could attempt several other baseline experiments,
questioning to what degree an improvement from a ZeroR classification
is indicative of a good model.

Research Question 3 What are the effects of including physiological signals
in multimodal emotion recognition?

With respect to Research Question 3, the experimental results indicate
that physiological signals can be used in addition to facial expressions
to slightly increase the predictive power and improve the performance,
compared to only using a FER model. While the FER model performed
relatively well, correctly labeling a significant amount of test data, the
inclusion of physiological signals resulted in a slightly improved model
performance. In our experiment we included all physiological signals

107



available, and extracted common features from each. From the SCR and
BVP amplitudes, we extracted the mean and max features. Further, from
the accelerometer, the mean and max values were extracted from the
total movement vector. Lastly, the normalized HR value was used as a
feature. However, little optimization of the use of these modalities were
explored. For instance, a standard peak algorithm was used to detect
peaks in the BVP values. As addressed by Svoren (2020), this is not ideal
due to the fact that you might miss out on the most informative BVP
amplitude samples. Applying a custom peak detection algorithm should
be investigated further.

For each participant, a maximum of 45 samples were used in each class
to reduce the imbalance between the classes while maintaining a sufficient
amount of training data, in accordance with the amount of data in CK+
(Lucey et al. (2010)). The data was distributed into a training set and
a test set consisting of 66.6% and 33.3%, respectively. Additionally, data
augmentation could have been applied to the classes including less than
45 samples to balance the split of 45 even further. The data split was
a result of the 3-fold cross-validation. However, 4-fold cross-validation,
resulting in a distribution of 75% and 25% for the training set and test set,
respectively, may be promising, as it allows the model to learn more from
the training.

Concerning the MER matrix and table for participant 4, presented in
section 8.1 and subsection 7.5.3, neutral had the most miss classified labels,
along with a significant lower F1-score, compared to the other classes with
maximum amount of training samples (45). With neutral not suffering
from lack of training data, the poor performance for classifying the neutral
class may be due to variations in the neutral faces. Humans may express
their neutral face differently, addressed by the fact that several sequences
in the human survey were labeled with a range of four emotions, where
neutral was one of the four emotions, displayed in figure 6.2. In other
words, dividing neutral from other feelings may be difficult.

When manually investigating the sequences that were changed from
being miss-classified by FER to being classified correctly by MER, it was
impossible to define whether the change was correct. Meaning, that if a
sequence was miss classified as angry by FER and further got correctly
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classified as fear by the MER model, when manually looking at that
sequence, it was impossible to determine whether the change was correct.
From this observation, we drew two key points. Firstly, a key motivation
behind multimodal emotion recognition is that it allows several models to
compliment each other when one lacks information. Which seemingly is
what was experienced with our manual check, with not being able to tell
whether the label was correct from a facial expression. Secondly, we had
to trust our true labels regarding whether the correction was correct or not.
However, an addition of self-labeling in the data collection process would
provide comprehensive information regarding the credibility of the true
labels.

Lastly, in our approach, all physiological modalities available were
used, resulting in a slight accuracy increase. However, the effect of
different modalities is still unclear, along with the number of modalities
to include. In the MER classifier, we experienced sequences being
shifted from correctly labeled to miss-labeled, leading us to believe some
physiological data provide misleading information to the classifier. More
research should be conducted regarding the number of modalities to
include in a PER model. In addition, in compliance with the investigation
of the effect of BVP in chapter 5, a similar investigation should be
conducted regarding the effect of the other modalities.

Ethical considerations

A model is only as good as the data it is trained on. Models in the
field of FER, which we have seen operate as a central part in emotion
recognition, will therefore naturally be biased towards what it has learned.
Simplified by: If every time a person experiences criminal figures, and
the criminal figure displays the same facial expression, the person would
be biased into classifying similar facial expressions as criminal figures
in the future. Like humans using their brains to divide different faces,
facial recognition technologies attach numerical values to the human face
to divide different faces. Subsequently, FER divides humans into sets of
legible signs, which historically has proved to be an injudicious task. In
the light of that, Barocas and Selbst (2016) states that if data miners are
not careful, the process of data extraction can result in disproportionately
adverse outcomes concentrated within historically disadvantaged groups
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in ways that look a lot like discrimination. For commercial emotion
recognition technology to be able to operate without bias, a perfect dataset
is needed. However, even if FER could be equally accurate for all people,
it may still not be used fairly with just. For example, we see disparate
effects when FER is used in policing and judicial systems, operating in a
discrimination manner against people of color. Barocas and Selbst (2016)
argues that these effects often are unconscious, implicit biases and inertia
within society’s institutions rather than intentional choices. However, if
the world is still suffering from unintentional racial bias, a solution to
that may be sensible to target first. Conclusively, a more comprehensive
conversation around the deployment of emotion recognition systems is
vital, given the state of the world being imperfect.
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Chapter 9

Conclusion And Future Work

9.1 Conclusion

Multimodal emotion recognition is a growing field with great potential.
Several studies aim to assist in developing effective tools for MER, and
the research field is growing. However, there are several challenges
linked to the detection of emotion using a multimodal approach, such
as the collection and labeling of accurate ground truths. In addition,
there is a need for further investigation of the inclusion of physiological
signals in MER. The work in this thesis aimed to address this gap by
contributing to the Toadstool dataset and investigating the potential of
including physiological signals to detect six basic emotions plus neutral.

An overview of information potentially applicable to emotion recog-
nition methods was established by reviewing existing literature related to
FER, PER, and MER. Existing literature presents a variety of characteristic
approaches to FER, PER, and MER that can be of importance. Future re-
searchers can use this overview as a starting point for investigating how
MER can be utilized in emotion recognition. This thesis also contributed
to the Toadstool dataset, namely Toadstool 2.0. This dataset aimed to syn-
chronize the video and the physiological data and provide true labels for
each sequence. The work from the objective resulted in a labeled data-
set that offers extensive freedom of use. Creating Toadstool 2.0 shed light
on the difficulties regarding emotion recognition with the disagreements
between human raters in the survey, as well as between the FER models,
illustrating the ambiguity of subtle emotions.
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An investigation of the correlation between facial expressions and BVP
was conducted in a preliminary experiment. A correlation was confirmed
in the context of our experiment, which motivated further investigation of
the combination of physiological signals and facial expressions in emotion
recognition. Additionally, the preliminary experiment introduced the
usage of spatiotemporal networks, which became central in the following
experiments. Based on our literature study and preliminary experiment
findings, we created an MER model to investigate the inclusion of
physiological signals in emotion recognition. The experiments were
conducted by training and testing FER, PER, and MER classification
models on the Toadstool 2.0 dataset, showing the performance of the MER
model and confirming the usage of the Toadstool 2.0 dataset in parallel.

The FER model provided a good foundation for comparison, achieving
high accuracy given a sufficient data. The experimental results showed
that the inclusion of physiological signals in the MER model caused
a slight improvement compared to FER. Of all tested participants,
the participant with the best distribution of true labels achieved the
most significant increase in accuracy, corresponding to the findings in
the literature study and evaluation regarding the importance of good
label distribution. Correspondingly, the participant with the poorest
distribution achieved the lowest accuracy. When investigating the
significance of the PER model, no common pattern regarding what
type of emotion is most prone to the inclusion of PER was discovered.
However, in the cases where the PER model changed a miss-classified
label to correctly classified, the label suggested by PER was often the
top-performing label. Suggesting that the significance of the inclusion of
physiological signals depends on the model’s performance, and that more
research is necessary to improve the PER model. The results from this
thesis combine to suggest a potential for including physiological signals
with facial expressions to improve performance of emotion recognition.
However, more research should be conducted to understand the number
of physiological signals to include, what features to extract from the
signals, and how these features are most effectively utilized.
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9.2 Future Work

The field of emotion recognition is growing, and in recent years, several
studies have focused on recognizing emotions with the use of machine
learning. However, there is still need for more work in the area. Especially
in the field of multimodal emotion recognition, there seems to be a lot
of unexplored territory. This section will present suggestions for how to
further extend the research conducted in this thesis, or improve upon. As
well as other work in the field, independent from this thesis, that the field
of multimodal emotion recognition could benefit from.

Approaches to labeling and collecting Toadstool

In this thesis, we used a 3D-CNN, trained on CK+, to label the video
sequences from Toadstool. However, there are several ways the labeling
could be performed. Considering accurate true labels are a cornerstone
in a well-performing machine learning model, future researchers should
further investigate other variations of labeling Toadstool. Examples
include investigating the sequence length in the model, a shift in the
order of images in the sequences in CK+, other classification models,
and a more extensive survey regarding human validation. Concerning
the data collection of Toadstool, it would also be interesting to perform
the collection again with another form of emotion elicitation because
the dataset is highly neutral skewed. An example would be to try out
other video games. In addition, a process where the participant got the
possibility to label their own sequences would be interesting and perhaps
result in more accurate labels.

Fusion techniques

Due to the simplicity of decision level fusion one could easily test the
effect of other techniques such as product of confidence measures, decision
template fusion, Dempster-Shafer and Bayesian belief integration (Ruta
and Gabrys 2000).

Feature extraction from PER modalities

In the training of the PER model, simple and common features were
chosen from the different modalities. Although the PER model proved
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to slightly increase the performance of the MER model, investigating
the extraction of other types of features may improve the performance.
Moreover, in our approach, all physiological signals were used. Following
this, investigating the optimal number of modalities to include in the
PER model seems promising. Additionally, it is possible to improve the
feature selection and selection of modalities through a more extensive
investigation of the correlation between, for instance, EDA and facial
expressions.

Classification approaches to PER

This thesis put more effort into classifying with FER, compared to PER. For
that reason, further effort should be put into improving the PER model,
to increase the performance of MER. We ended up using a 1D-CNN for
classification after comparing it to a SVM model. However, changes to the
entire pipeline should be explored, from preprocessing to classification.
As mentioned in section 7.3.2, the PER model is in itself a multimodal
model. Looking at other fusion techniques could therefore be interesting.
For example, using decision level fusion, one could train a model for each
physiological signal and combine the classifications. This approach would
remove the need to synchronize the signals prior to classification, which
would preserve the original signal.
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(a) Sequence 1 (b) Sequence 2

(c) Sequence 3 (d) Sequence 4

(e) Sequence 5 (f) Sequence 6
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(g) Sequence 7 (h) Sequence 8

(i) Sequence 9 (j) Sequence 10

(k) Sequence 11 (l) Sequence 13
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(m) Sequence 14 (n) Sequence 15

(o) Sequence 16 (p) Sequence 17

(q) Sequence 18 (r) Sequence 19
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(s) Sequence 20 (t) Sequence 21

(u) Sequence 22 (v) Sequence 23

(w) Sequence 24 (x) Sequence 25
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(y) Sequence 26 (z) Sequence 27

() Sequence 28 () Sequence 29

Figure A.-3: Distribution of sequences from the human validation
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Appendix B

FACS Coding Table

Figure B.1: Table of Full FACS coding (©Jeffrey Cohn)
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