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Abstract

Simulation and emulation are techniques often used in the research com-
munity. They can be used during development, testing and debugging of
a new protocol, to test and look at the characteristics of a protocol already
in use. And to evaluate the overall performance of the network.

Network emulation is used to test real network systems where we
can configure and control the environment. Network emulation lets us
process real network traffic from the emulated network by using traffic
shapers to vary common network parameters in a controlled way. Some
of the network behaviour that we can control this way are delay, loss, jitter
and bandwidth. This helps when we want to test different protocols or
applications under different circumstances.

An emulator can also be hard to configure in the correct manner, and
a faulty configuration can lead to incorrect results. NetEm, a network
emulator included in the Linux kernel doesn’t have a built-in bandwidth
emulator, but relies on other queueing disciplines in the kernel to do
bandwidth limitation. Configuring these together is very hard to get right.
In this thesis we propose a design for a built-in rate emulator extension to
NetEm, which we also implement. This implementation is then tested to
verify the condition of our design.
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Chapter 1

Introduction

1.1 Background

Simulation and emulation are techniques often used in the research com-
munity. They can be used during development, testing and debugging of
a new protocol, to test and look at the characteristics of a protocol already
in use, and evaluate the overall performance of the network.

A network simulator is a program that creates abstractions of reality.
This is used to mimic the operations of a real network, from the physical
link (cables or wifi) between two or more nodes, through layers, all the
way up to an application. This means that everything will be done in
software, and no real network traffic is generated.

Network emulation is used to test real network systems where we
can configure and control the environment. In comparison with network
simulators, where no real network traffic is generated, network emulation
lets us process real network traffic from the emulated network. In network
emulation we use traffic shapers to vary usual network parameters in a
controlled way. Some of the network behaviour that we can control in
this way are delay, loss, jitter and bandwidth. This helps when we want
to test different protocols or applications under different circumstances.
A small drawback with emulation is that we can usually just test end-to-
end behaviour as the emulator acts as the network cloud between the end
nodes.

1.2 Problem Definition

Netem is an emulation tool for linux where we can emulate network traffic
like delay, loss and jitter. It is used in conjunction with traffic control (TC)
that can be used to add bandwidth limitation. When using these together
on the same network interface we have observed experiments that give
strange results. We found the configuration of rate control in conjunction
with NetEm to be the problem, and that the general configuration of two
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queueing disciplines is very hard to get right. We have therefore decided
to focus this thesis on proposing a design and implementing a built-in rate
control extension to NetEm. With a working implementation, we will run
extensive tests to verify our implementation.

1.3 Contributions

There is no doubt that the TC/NetEm combination is very hard to
configure correctly. With NetEm being used heavily in the research
community, this could lead to faulty research. As part of this thesis
we have designed and implemented a built-in rate control extension to
NetEm. This design aims to remove the three problems we have identified
when using TC and NetEm: Configuration of the system is hard, it uses
one queue that must handle both the packets that are delayed as a cause of
rate emulation and the packets delayed because of latency emulation. The
third problem is the fact that the rate controls implemented in the other
queueing disciplines have not been developed for network emulation.
They have all been implemented as parts of a traffic control scenario. We
have tested the implementation and have concluded that it gives good
results. It is easier to configure as it is only one queueing discipline, it
makes use of two queues to split the rate control from the delay emulation,
and the rate control is focused on eliminating bursts higher than the
configured rate.

1.4 Outline

This document is organized as follows. Chapter two is dedicated to
background information that is relevant to this thesis. Some general
information about system evaluation, a deep look at Linux networking
with a focus on traffic control and an explanation of the NetEm and
Dummynet network emulators. In chapter three we first look at the
problem of TC and NetEm before we propose a design of a new version
of NetEm. This chapter also includes the implementation of said design.
In chapter 4 we present the results from testing the new implementation,
and we conclude the thesis in chapter 5.
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Chapter 2

Background

This chapter presents background information necessary to understand
this thesis. It will briefly explain how systems can be evaluated, with a
focus on network emulation. Linux kernel networking will be explained,
followed by an in in-depth view of traffic control, with a heavy focus on
Linux queueing disciplines. In the end the network emulators, NetEm and
Dummynet will be explained.

2.1 System evaluation

As we develop new applications and protocols for the Internet, we need
a reliable and realistic way to analyse and test them with regard to their
impact on the rest of the network and their performance. The techniques
used are usually divided up in three types. Analytical modelling,
simulation and measurements[43]. Analytical techniques are theoretical
and can therefore be used in the early stages of development. Usually a lot
of simplifications and assumptions are needed and the results will often
be varying in comparison to reality. Simulation techniques will make use
of programs that simulate the real world. This will therefore be closer
to reality than analytical evaluation, but it will still not be as accurate as
testing the real system as we have to abstract from the details so that it
will be cost efficient to implement. The last technique, measurement, is
the technique where we investigate the real system. To use this technique
the system must obviously already be implemented, and that means that
it cant be used until we have a working application or protocol.

Theoretical analysis makes it possible to explore a model of a target
network with complete control, which can give a basic understanding of
how a new protocol or application will work. It provides a basis to check
the design, and can help with identifying problems at an early stage. As
a lot of simplifications and assumptions are needed, at least with more
complex systems, we have a huge risk of using a model that is so simple
that the most important behaviours of the real system is gone. The results
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of the theoretical work can then be at worst useless, and that can be
dangerous as it might not be so easy to notice.

Simulation can be used to check new protocols or applications
behaviour and characteristics in varying network conditions, and possible
impacts they can have on the target network. Simulations are done by
implementing a model of the target network in the simulators software,
some models are the same as in the analytical stages, but most are usually
more complex. With the use of more complex models in the simulator, it
will be possible to check if the simplifications done in the analytical step
have invalidated the model. If so, the results of the analysis might not be
correct with the intended model. Simulators is not only a way to check
the validity of an analysis, but can also be used to explore other complex
scenarios that might be impossible to do with theoretical analysis.

While we use analysis and simulation in the earlier stages of devel-
opment, we have to complement the theoretical results with measure-
ments once we have an implementation ready. The measurements can
be gathered by testing the application or protocol in a target network. If
the target network is large, for example the Internet, it will be costly and
difficult to implement a controllable and repeatable environment to do the
testing. One possible solution is to use network emulation, which makes
it possible to use real hosts with real protocols and applications to do the
testing in a controlled environment.

2.2 Linux Networking

To explain the networking part of the Linux kernel, we will go through
a short explanation of the sk_buff data structure. It minimizes copying
overhead as packets flow through the different networking layers as it is
used as a common data structure to manage network data and headers.
Following this, we will explain the packet flow in the Linux kernel through
the transmission and receive paths. To explain the network flow we will
use the 2.6.20 version of the kernel, which is quite old, as this have the best
documentation available that we have found [10]. Some function calls and
names have changed in later versions of the kernel, but the flow remains
the same, so this has no impact for the general understanding needed for
this thesis.

2.2.1 sk_buff

An important part of the Linux kernel when it comes to networking is
the common data structure struct sk_buff [12]. This struct is used in all
network queues and buffers and is large enough to contain all the control
information needed for a packet. Instances of sk_buff is almost exclusively
called referred to as skb. Some of the important fields included in a skb is:
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• next: Pointer to the next sk_buff in a list

• prev: Pointer to the previous sk_buff in a list

• dev: The device the packet arrived on or are leaving by

• sk: The socket the packet is owned by

• transport_header: The transport layer header

• network_header:The network layer header

• mac_header: The link layer header

• data: Pointer to data head

The first two fields in a sk_buff is next and prev. These are sk_buff pointers
and they are used to organize skbs in a doubly linked list. The sk_buff_head
struct is used to represent queues. This struct also contains next and prev
sk_buff pointers, which is used to point to the first and the last sk_buffs
in its queue. This makes it very efficient to add and remove skbs from
a queue and moving them between queues. This single representation
of a packet is also a very efficient way for moving packets between the
different networking parts of the kernel.

2.2.2 Packet flow in Linux

Packets being sent or received have to go through the Linux networking
kernel, and this section will explain packet flows through the networking
kernel through some simplified examples. Packets being sent go through
the transmission path while packets being received will go through the
receive flow. A connection using Transmission Control Protocol (TCP)[30]
over Internet protocol v4 (IPv4)[29] over Ethernet will be used as the
example as this is the most common form of network connections. There
are, of course, many other combinations possible using the different
layer protocols. The kernel makes heavy use of virtual methods through
function pointers as will be seen below. As a result of this there are a huge
amount of possibilities when a packet is flowing through the kernel. To
simplify the example, some function calls and alternative paths, that have
no impact on this thesis, have been removed from this example.

Transmission path

The transmission path will be explained by following the path the data
takes from the application layer all the way down to the link layer where
it will be sent out on the physical layer. An overview of the transmission
path is shown in figure 2.1
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Figure 2.1: Transmission path
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• Layer 5: Session layer (sockets and files)

The application layer have three system calls it can use to send
data over the network: write(), sendto() and sendmsg(). All three
will eventually end up in __sock_sendmsg(). This method will
check permissions with security_sock_sendmsg(), before it forwards
the message to the next layer by calling the socket’s sendmsg virtual
method.

• Layer 4: Transport layer (TCP)

In this example, the socket’s virtual sendmsg method is tcp_-
sendmsg(). For each segment in the message, tcp_sendmsg() will first
find an sk_buff which has space available or allocate a new one. Then
it will copy the data from user space to the sk_buff data space using
skb_add_data(). At this point there is a possibility for segmentation
if the write is too large, or coalescing of individual writes if they
are small enough to fit in one sk_buff. The data that ends up in the
same sk_buff will become a single TCP segment. Still, the segments
might be further fragmented at the network layer. After this the
TCP queue is activated, and for each packet a call will be made to
tcp_transmit_skb(). This method builds the TCP header in the space
left by the allocation of the sk_buff, and clones the skb so it can pass
control to the network layer. The call to the network layer is through
the queue_xmit virtual method of the socket’s address family, which
in this case is AF_INET for IPv4 and its method ip_queue_xmit().

• Layer 3: Network layer (IPv4)

ip_queue_xmit() will do routing if necessary and create the IPv4
header. The routing decision made here will create a destination
object called dst_entry. To perform actual output a call will be made
to the dst_entry’s output virtual method. In this example the sk_buff
will be sent to ip_output() which will do post-routing filtering, in the
case of netfiltering it re-outputs it on a new destination, fragments
the datagram into packets if necessary, and in the end sends it to
the output device. In the case of TCP the fragmentation step should
not be needed as TCP already makes sure that packets are smaller
than the maximum transmission unit (MTU). The output is given
to the link layer with another virtual method call, which is usually
dev_queue_xmit(). It is worth mentioning that nf_hook() will be called
in several places at the network layer. This hook may modify or
discard the datagram to perform network filtering like firewall, nat,
etc.

• Layer 2: Link layer (Ethernet)

At the link layer the kernel’s main function is to schedule packets to
be sent out on the physical layer. Linux uses the queueing discipline
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(qdisc) abstraction to do this. Queueing disciplines are explained in
detail in section 2.3.2. When a packet arrives at the link layer the
dev_queue_xmit() method will put the sk_buff on the device queue
using the qdisc->enqueue virtual method. In this case the default
linux qdisc is used so the method called will be pfifo_fast_enqueue()
Then the device output queue will be called immediately with
qdisc_run(). This method will call qdisc_restart(), which uses the
qdisc->dequeue virtual method to take an skb from the queue to
be sent out on the network. The skb is then sent with dev_hard_-
start_xmit() and removed from the qdisc. If the sending fails, the
skb will be re-queued in the qdisc and netif_schedule() is called to
schedule a retry. This raises a software interrupt that calls net_tx_-
action(), which calls qdisc_run() for all devices with an active queue.
When a packet is to be sent with dev_hard_start_xmit() it will first use
dev_queue_xmit_nit(), which will check if the packet handler has been
registered for the ETH_P_ALL protocol that is used for tcpdump.
Then it will call the device driver’s hard_start_xmit virtual function,
which in turn will generate one or more commands to the network
device to transfer the buffer. After some time it replies that it is done
and will trigger the freeing of the sk_buff.

Receive flow

The receive flow will be explained by following data from when it enters
the link layer all the way up to the session layer where its delivered to the
application layer. An overview of the receive flow is shown in figure 2.2

• Layer 2: Link layer (Ethernet)

The network device will have pre-allocated buffer space for recep-
tion, and the device’s interrupt handler will just call netif_rx_sched-
ule() and return from the interrupt. netif_rx_schedule() will add the
device to softnet_data’s poll_list and raise a software interrupt. The
poll virtual method of the device will then be called by net_rx_ac-
tion() which is run by ksoftirqd in the interrupt. This poll method
will do device specific buffer management and will call netif_re-
ceive_skb() for all sk_buffs waiting to be received by the link layer.
netif_receive_skb() is the method that will deliver the sk_buff the
packet handler where it is supposed to go next. For example, it
could be to the ETH_P_ALL protocol used by tcpdump, to the hand-
lers for ingress queueing, handling for bridging or the packet hand-
ler registered for the network layer protocol specified by the packet.
In this example it will be to the packet handler registered by IPv4.
All packet handlers will be called through the deliver_skb() function,
which in turn calls the virtual method of the desired protocol.
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Figure 2.2: Receive flow
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• Layer 3: Network layer (IPv4)

The packet will now go to IPv4’s packet handler ip_rcv(), which will
parse the header and check for validity. It will find the destination
address by using ip_route_input(), and calling the destination’s input
virtual method. The ip_mr_input() method will be used for multicast
addresses, ip_forward() for packets that have a different destination
for which we have a route and ip_local_deliver() if the destination of
the packet is this machine. This is also the place where datagram
fragments will be collected and reassembled. The packet will be
delivered to the transport layer by calling the protocol handler for
the protocol specified in the datagram through ip_local_deliver().

• Layer 4: Transport layer (TCP)

TCP’s protocol handler when using IPv4 is tcp_v4_rcv(), which
does protocol processing in TCP, like setting up connections, per-
forming flow control, etc. A TCP packet arriving might have an
included acknowledgement of a previously sent packet, so this
might trigger further sending of packets or acknowledgements,
by tcp_data_snd_check() and tcp_ack_snd_check() respectively. For
passing data to an upper layer TCP will use tcp_rcv_established() and
tcp_data_queue(), which maintain the out_of_order_queue of the TCP
connection and the sk_receive_queue and sk_async_wait_queue of
the socket. The data will be added to one of the socket’s queues to
wait for the session layer asking for it. If a process is already waiting
for data, the data will instead be copied to user space immediately
by calling skb_copy_datagram_iovec(). The receive functions will call
the socket’s sk_data_ready virtual method and signal that new data
is available and wake up the waiting process.

• Layer 5: Session layer (sockets and files)

As with sending, the application layer have three system calls it
can use to receive data from the network: read(), recvfrom() and
recvmsg(). All three will eventually end up in __sock_recvmsg().
This method will check permissions with security_sock_recvmsg(),
before it tries to request data from the lower layer using the socket’s
recvmsg virtual method. sock_common_recvmsg() is usually the one,
which in turn calls the socket’s protocol’s virtual recvmsg method.
In TCP this is tcp_recvmsg() which will either copy the data with
skb_copy_datagram_iovec(), or wait for it to arrive with sk_wait_data().
sk_wait_data() is a blocking call that will be woken up by transport
layer processing.
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2.3 Traffic control

On a router, the set of queueing systems and mechanisms for how the
router receives and transmits packets are called traffic control. This
consists of how it accepts packets and at what rate on the input of an
interface and which packets it transmits in what order and at what rate
on the output of an interface. In most cases traffic control is just a simple
scheme consisting of one single queue which dequeues packets as fast as
the underlying device can accept them. This is a simple first-in first-out
(FIFO) queue where the first packet that gets accepted by the queue is also
the first packet that leaves.

Packet-switched networks, like IP networks, groups all data into
packets and are usually shared between many computers. There is
a high probability of many sources sending data at the same time,
and a packet-switched network is therefore designed to route each
packet independently, with the goals to optimize network utilization,
minimize response times and increasing the robustness of the ongoing
communication. A packet-switched network is stateless, as each packet
is treated as an independent transaction that is unrelated to all previous
communication. This statelessness creates the weakness that there is
no differentiation between different flows of traffic. Traffic control
can be used to mitigate this weakness as it can be used to queue
packets differently based on the characteristics of a packet to maximize
the usability of the network connection. Following is a small list of
possibilities that traffic control introduces:

• Prioritizing latency sensitive traffic

• Limiting or reserving bandwidth of a specific user, service or
application

• Dropping a particular type of traffic

Using traffic control can limit the competition for network resources and
lead to a more predictable use of these resources. Bulk download traffic
can be given a good amount of bandwidth while still servicing traffic
with higher priority. For example, if a network has a high download
usage through torrent downloading and a user wants to use some highly
interactive traffic like voice over IP (VoIP), the VoIP experience will
probably be quite bad on an uncontrolled network. Bulk downloading
will quickly fill up the queues in the network and packets will get lost
or delayed. A lost or delayed packet in VoIP means that parts of the
conversation gets lost or delayed. Correctly configured traffic control can
give the VoIP packets priority and leads to a smoother VoIP experience at
very little cost to the bulk download. Below is a list of the important terms
of traffic control:
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• A queue is a finite buffer where it is possible to line up jobs for a
computer or device. In networking, a queue is used to place packets
waiting to be transmitted by a device. A packet entering a queue is
enqueued, while a packet leaving the queue is dequeued. The basic
scenario consist of a FIFO queue, but it can become much more
complex by using other types of queues that can do packet delays,
packet prioritization, or even using sub-queues.

• A flow in computer networking can be defined as a sequence of
packets from a source to a destination. In TCP, a connection with
a source IP and port and a destination IP and port will represent
a flow. Many traffic control mechanisms work on flows, trying to
divide bandwidth equally between competing flows, or prioritizing
an interactive flow over a bulk downloading one.

• Shaping can be used to optimize or guarantee performance over a
network connection. According to Blake, et al. [3]: "Shapers delay
some or all of the packets in a traffic stream in order to bring the stream
into compliance with a traffic profile". This is the basic idea of traffic
shaping; delaying some or all packets to make them conform to a
desired rate. One of the big advantages of shaping bandwidth is
the ability to control latency. If a link becomes heavily saturated the
queues are going to fill up and the latency will rise. By controlling
the quantity of traffic being sent out on the network, it is possible to
hinder this saturation to happen and the latency will stay low. An
implementation with tokens and buckets is much used to achieve
traffic shaping:

– Tokens and buckets are two related concepts when it comes to
traffic shaping. The token bucket algorithm is based on a fixed
capacity bucket where tokens are added at a fixed rate. The
tokens usually represents a single packet or a unit of bytes with
a configured maximum size. When a packet is to be sent the
algorithm checks the bucket to see if there are enough tokens to
send it. If there are the amount of tokens needed for the packet,
for example one if it uses packet based tokens, it can be sent out
and the token/tokens needed are removed from the bucket. If
there is not enough tokens the packet can be treated in different
ways, it might have to wait for tokens to become available, or
it might just be dropped. The depth of the bucket determines
how many tokens can be "saved up" and when the bucket is full
it will not collect any more tokens. These saved up tokens will
be available at once the the packets arriving and will result in
a burst of packets being released to the network based on the
bucket size. A flow can therefore send traffic at an average rate
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up to the rate of which tokens are added to the bucket, and can
have a burstiness as much as the depth of the bucket.

All traffic shapers will have a finite buffer, and must therefore be
able to handle the case of a full buffer. The simple and usual way
of doing this is to just drop all packets that arrive while the buffer
is full. Other more advanced schemes for dropping might be used
such as random early detection (RED), which is explained in section
2.3.3. Or a crude alternative would be to allow traffic that exceeds
the configured rate to pass through unshaped.

• Policing is a technique used to control the rate of traffic that is sent or
received on a network interface. Policers or droppers will measure
and limit traffic in a network. According to Blake, et al. [3]: "Droppers
discard some or all of the packets in a traffic stream in order to bring
the stream into compliance with a traffic profile. This process is know as
"policing" the stream". Traffic gets measured by the policer and it
will take action according to configuration depending on whether
the traffic exceeds the profile or not. Possible actions consist of
discarding the packet immediately, marking it as non-compliant,
reclassifying it or leaving it as it is.

• Scheduling in computer science is a method to give give access to
system resources, in networking this would be to give packet flows
access to the network. The scheduler is concerned with throughput,
latency and fairness. These goals often conflict and the scheduling
algorithm will usually implement a compromise between these,
there exist schedulers of course that has a specific goal, and thus
prioritise some parameters over others. Since a scheduler arranges
and rearranges packets between input and output of a queue, almost
all traffic control mechanisms on a queue can be viewed as a
scheduler.

• Classifying a packet consists of determining which flow a packet
belongs to based on one or more fields in the packet header [16].
A packet classifier consist of a set of rules or policies. Each of
these rules specifies what class a packet may belong to based on
the fields in its header. This will be used to separate the packets
for different treatment as an action will be taken for each class such
as marking the packet, routing decisions or packet scheduling in an
output queue.

• Marking is a mechanism for altering a packet. This could, for
example, be to let the underlying network know that this packet is
to be prioritized for low latency.
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• Dropping is a mechanism for discarding an entire packet, flow or
classification. For example, a packet that wants to enter a queue
that is already full would probably get discarded as there is no more
room to store it. The usual way to drop packets is with a tail drop
scheme. This is the traditional way of dealing with full buffers.
When a packet arrives when there is no more room in the queue
it will just be dropped, resulting in tail drops. Another dropping
scheme is head drop, which works in the same way as tail drop except
the new packet gets accepted after the queue has dropped the first
packet. This means that the oldest packet will be dropped first, which
might be preferable in situations such as in sensor networks where
the newer packets represents more useful information. Also, if the
queueing delay is large, dropping at the head of the line will signal
loss to TCP streams faster than dropping at the end. Resulting in
TCP streams reducing their rate quicker than with tail-dropping.

• Active queue management, or just AQM, is a term used for all
schemes that uses a proactive approach to queue management [4].
This usually consist of dropping or marking packets before buffers
overflow. They typically work by probabilistically dropping or
marking packets with a higher probability the fuller the queue gets,
but there are of course other schemes too. With tail drop queues
there will be no indication to the endpoints that the network is
overflowing before a queue is actually full. AQM will provide
endpoints with an indication that the network is starting to get
congested before it is full. Which can lead to congestion avoidance,
if the transport protocol is using congestion control. This has the
added benefit of shorter queues that will reduce network latency.
A major drawback of AQM is that they are usually very hard to
configure right. The wrong configuration might lead to worse
conditions than just a congested network. An example of an AQM
scheme is RED, explained in section 2.3.3.

While traffic control sounds great, there are some disadvantages. The
first and most important is the complexity of configuring traffic control.
While traffic control used correctly can give a better distribution of
network resources, it could just as easily be used incorrectly and introduce
more contention for the same network resources. This could lead to worse
utilization of the available resources than not using traffic control at all.
Another small disadvantage is the increased computing resources needed
to handle the increased processing of packet routing in a traffic control
scenario.
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2.3.1 Traffic control in Linux

Linux provides the iproute2 collection [9], which includes several tools to
configuring and controlling the TCP/IP networking and traffic control.
It provides several tools, but the most noticeable among them is the ip
and tc tools. The ip tool is used to configure IPv4 and IPv6, and can be
used to do a host of different things including configuration of a network
device and managing the neighbour and routing tables. The tc tool is used
to configure the central elements in Linux traffic control, the queueing
disciplines and filters, which will be explained in detail in the following
sections.

2.3.2 Queueing disciplines in Linux

A queueing discipline (qdisc) can be looked at as a scheduler or an
algorithm that manages the queue of a device [18]. It is important to
understand that queueing is used to determine the way we send data. This
is because with the way networks are designed we have no way to control
what other computers send us. Queueing disciplines govern how packets
are buffered when waiting to be transmitted and can make decisions on
which packets to send based on policy settings.

In Linux a queueing discipline is implemented as a simple object with
two key interfaces. One interface is for queueing packets to be sent
while the other is for releasing packets to the network device. This is
the building block on which all of Linux traffic control is built. The
architecture of queueing disciplines in Linux is shown by figure 2.3. A
queueing discipline exists in the link layer, between the layer 3 protocol
and the network device. There exists a rich set of queueing disciplines
in Linux for doing advanced queueing, prioritization, and rate control.
The queueing discipline attached to a device is called a root qdisc, and all
network devices have exactly one root qdisc.

Queueing disciplines can be split into two groups. Classless queueing
disciplines and classful queueing disciplines. A classful qdisc can contain
multiple classes, all of which are internal to the qdisc, and provides a
handle that can be used to attach filters.

A class is very flexible and can contain ether several children classes or
a single child qdisc. A class can also contain a classful qdisc, which means
that it is possible to create increasingly complex traffic control scenarios. A
leaf class is a class that can have no child classes, and will contain exactly
one qdisc. This will be a qdisc that is responsible for sending data from
the class. When a class is created in Linux it will have a default fifo qdisc
attached to it and is by definition a leaf class. When a child is added, the
qdisc attached is removed, and it is then called an inner class.

A filter can be used to classify packets. It will contain a variable
number of conditions that can be used to match packets to the filter and
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Figure 2.3: Linux queueing discipline

send it to the right qdisc. It is possible to attach filters to classes or to
classful qdiscs. In a hierarchy of classes and qdiscs, the packet will always
be matched first with the filter attached to the root qdisc. It can then be
directed to any subclasses where the packet may be enqueued at a qdisc
or classified again.

A classless qdisc is a qdisc that can have no children of any kind
and it has no configurable internal subdivisions. This means that the
qdisc contains no classes and as there is no reason to classify packets it
will neither contain any filters. A typical example of a qdisc considered
classless is the qdisc used by default under Linux, pfifo_fast. An interesting
detail about the pfifo_fast qdisc is that it has three bands that is used to
prioritize traffic. pfifo_fast and other queuing disciplines will be explained
in the following sections.

Another attribute of a queueing discipline is whether it is Non- or
Work-conserving. A work-conserving queueing discipline will always
deliver a packet if it has one available. This means that it will never delay a
packet if the network device is ready to send one. A non-work-conserving
queueing discipline can hold a packet even if the device asks for one. This
is for example done to limit the bandwidth, the case with TBF, or delay a
packet for emulation, like done in NetEm.
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2.3.3 Classless queueing disciplines

A classless queueing discipline contains no classes and can have no filters
attached. An explanation of the classless pfifo/bfifo, pfifo_fast and RED
queueing disciplines will be given in this section

FIFO and pfifo_fast

The First-In First-Out (FIFO [35]) qdisc is the most basic of all queueing
disciplines and the one used by default inside all new classes. A FIFO
queue will keep a list with all packets. All packets added to the qdisc will
be placed at the tail of the list, while all packets that will be sent from the
qdisc will be taken from the head. This means that, as the name states,
the first packet enqueued in the qdisc is also the first packet that will be
dequeued. It will perform no shaping or rearranging of packets, and it
will transmit the packets as fast as the underlying device can handle. If
the list of packets, also known as the buffer, grows to a configured max
size it will start dropping all packets trying to enqueue until there is room.
There are three FIFO qdisc variants with small differences, pfifo, bfifo and
pfifo_head_drop. The difference between pfifo and bfifo is in how they
handle buffering. The buffer size in pfifo is measured in packets, while
the buffer size in bfifo is in bytes. All packets will therefore be equal from
a pfifo perspective as all packets occupy one slot in the buffer. In bfifo a
nearly full queue might drop a large packet but allow a small one if it fits
in the space left. Pfifo_head_drop is just a pfifo queue where all dropping
happens at the head of the queue.

The pfifo_fast qdisc is the default qdisc of each interface in Linux [39].
This qdisc is based on FIFO, but can offer some prioritization. It has
three internal bands, which are all FIFO queues. Packets arriving at the
qdisc will be enqueued into one of these queues based on their priority.
Packets waiting in band 1 will be sent out before packets in band 2, and
similarly packets in band 2 before packets in band 3. The classifier in
pfifo_fast uses the Type of Service (TOS) bits in the IP header to determine
which queue a packet belongs to based on the default Linux priomap. The
priomap in pfifo_fast is the default Linux priomap and cant be changed.
There are 5 types of traffic defined with the TOS bits: minimize delay,
maximize throughput, maximize reliability, minimize monetary cost and
normal service. There is also the possibility of combining these. This will
be used to prioritize the packets with high priority such as interactive
packets. As these are FIFO queues, all packets within a class will be sent in
the order they arrived. It is worth noting these bands are not real classes
and the FIFO queue can therefore not be changes to any other queueing
scheme. A simple representation of the pfifo_fast qdisc can be seen in
figure 2.4. In this example the assumption is taken that none of the 4
packets arriving are dequeued before they are all inside the qdisc. The
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red packet is the third to arrive, but with its high priority it is place in
class 1 and therefore dequeued before the other three packets that arrived.
The yellow packet, first to arrive, which had the least priority is placed in
class 3 and is dequeued after class 1 and 2 is empty.

Figure 2.4: pfifo_fast has three bands that can be used to prioritize traffic

A possible problem with pfifo_fast is the presence of a large amount of
high priority traffic. The pfifo_fast qdisc will only dequeue packets from a
lower priority band as long as the higher priority bands are empty. A full
high priority band can lead to starvation of the lower bands, in the worst
case it lead to non-interactive low priority flows not getting any traffic
through at all.

RED

Random Early Detection (RED [41]) is a classless qdisc that uses a variable
probability for dropping packets to manage its queue size. It is designed to
be used in a network where a single marked or dropped packet is enough
to help a transport layer protocol notice congestion [8]. The variable
drop probability will result in the queue dropping packets before it is full
and consequently signal a congestion control mechanism that there is an
impending link congestion causing flows to slow down before the queue is
full. This will, of course, not help much if a flow has no congestion control,
but RED can still have some use in the presence of no congestion control.
With a regular tail drop algorithm, a queue will simply be filled until it is
full, and drop all packets that arrive while it has no more space available.
This means tail drop will distribute buffer space unfairly among the flows.
A flow which uses a high amount of bandwidth will have a higher chance
of taking the space that is free in the queue as it has more packets arriving.
In the case of RED, which does its dropping with a probability, this means
that the more a host transmits the larger the chance that one of its packets
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will be dropped. This is also the reason why RED still has some uses even
in networks without congestion control. The goal of RED is to have a
small average queue size, which is good for interactive traffic while not
disturbing congestion controlled traffic with too many sudden drops after
a burst in traffic.

The RED algorithm uses the average queue size to calculate the
dropping probability. This average is compared to two configurable
parameters: the minimum and the maximum threshold. While the average
queue size is less than mimimum, RED will enqueue all packets arriving.
As soon as the average size exceeds minimum it will start dropping
packets. The probability of doing this will rise linearly up to a configured
maximum probability. It will reach the maximum probability when the
average queue size equals the maximum threshold. As the maximum
probability is not normally set to 100%, there is a possibility of the queue
size growing to a larger size than the maximum threshold. In this case
there is also a hard limit on the queue size that if reached will make the
RED queue behave like a tail drop as there is no more buffer space to store
packets.

RED also has the possibility of marking packets instead of just
dropping them outright. In Linux marking can be achieved by configuring
RED with Explicit Congestion Notification (ECN [31]). ECN will allow
RED to set a mark in the IP header of the packet notifying the receiver of
the packet to signal the impending congestion in the network. The receiver
of the packet with the ECN mark will send the congestion indicator back
to the sender which will then reduce its transmission rate to avoid full
congestion in the network. Both sender and receiver must agree to use
ECN or the marking will have no effect, so RED will drop, instead of mark,
all packets from non-ECN flows.

2.3.4 Classful queueing disciplines

A classful queueing discipline can have filters and can contain subclasses.
This makes classful queueing disciplines very useful to treat traffic in
different ways, giving one type of traffic priority over another. The root
of an interface will have one root qdisc. The default pfifo_fast qdisc might
be swapped out for a classful one, for example HTB. To this there might be
attached more qdiscs and so forth. This can result in a class based set-up,
e.g. the one shown in figure 2.5.

An important thing to know is that the surrounding networking
system only knows about the root qdisc, which is where all the queuing
and dequeuing calls are made. In addition, only a leaf qdisc can hold
queue packets. This means that a packet being enqueued into a system
with multiple qdiscs will "flow" towards the leaf qdiscs, while packets
being dequeued will "flow" back up towards the root. In the example
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Figure 2.5: Class example

mentioned above packets can only be stored in 1:10, 1:3, 4:2 and 4:3, as
these are the leaf classes. When the system wants to enqueue a packet it
must start at the root. As this is not a leaf qdisc it will try to enqueue the
packet in one of its child qdiscs. If this is not a leaf qdisc either it will again
ask its children and so forth, until the packet gets enqueued in a leaf class.
When the system wants to dequeue a packet it will also start at the root
qdisc. Since this qdisc can store no packets it will ask one of its children.
If this qdisc has no packets, it must ask its children. When a qdisc has a
packet that can be dequeued it will be returned through the qdiscs back to
the root, which will return it to the networking stack.

As examples of classful queueing disciplines, the PRIO, TBF and HTB
qdiscs will be explained.

PRIO

The priority qdisc (PRIO [40]) is a simple classful queueing discipline that
can have a configurable number of classes with different priority. It will
perform no shaping and only divide traffic based on its configuration. By
default PRIO will have 3 bands, each containing a FIFO qdisc, and behave
much like pfifo_fast. Packets are prioritized according to the TOS bits and
the default priomap, and sent to the corresponding class. These classes are
dequeued in a descending order of priority. What makes PRIO different
from pfifo_fast is its configuration possibilities. The pfifo_fast qdisc can
only divide traffic into its bands by the TOS field in the packet header,
whereas PRIO has three different ways to do the same. The first possibility
is the same as in pfifo_fast, dividing traffic based on the TOS field and a
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configurable priomap. The second is the possibility that a process with
high enough privileges can encode the destination class in userspace. The
final way it can divide traffic is possible by PRIO being a classful qdisc. A
filter can be attached to provide classification as explained in section 2.3.5.

As PRIO behaves much like pfifo_fast in that it dequeues from the
higher priority bands before the lower, the same problem of starvation
persists here. But in PRIO there is a way to minimize or even remove this
problem. As each band is a class, it is possible to swap out a FIFO queue
with some other queueing discipline. This makes it possible to change
the default FIFO qdisc for a qdisc which can do rate limitation. A rate
limitation qdisc on the higher priority bands can make sure that the higher
priority traffic does not starve all other flows.

In PRIO there is also the possibility at creation time to configure the
amount of bands available to further fine-tune the prioritization of traffic
flows. It is worth noting that the priomap must be configured if more
than three bands are to be used. This is because the default priomap only
divides traffic into three bands.

TBF

Token Bucket Filter (TBF [42]) is a classful queueing discipline which uses
the token bucket algorithm to shape traffic. When a TBF qdisc is applied
to an interface its bucket is full with tokens, this is the maximum of traffic
that can be sent out on the network in one burst. This bucket is constantly
filled with tokens at a specific rate until the bucket is full. All packets
enqueued at a TBF qdisc needs a token to be dequeued and when it is, the
token used will be deleted from the bucket. Figure 2.6 illustrates the two
flows used in this algorithm: the token flow and the data flow. These two
flows gives us three possible scenarios that can happen in a TBF queue.
The first scenario is when the data that arrives in the TBF qdisc is at a rate
that is less than the rate at which tokens arrive. This will mean that the
data will not use all the tokens created and the bucket will begin to fill up
until the bucket is full. These tokens can then be used to send data out
faster than the configured rate and will lead to short bursts of data. The
second scenario is when data arrives in the TBF qdisc at the same rate as
tokens. In this case all packets will be sent out with no delay. The third
scenario comes into effect when the packets arrives in TBF at a rate that is
greater than the token creation rate. The bucket will run out of tokens fast
and data will start filling up the queue. When the queue is full all other
arriving packets will be dropped. In the TBF implementation in Linux
tokens do not represent packets, instead tokens correspond to bytes. This
means that packets will need several tokens in order to be dequeued.

TBF is, as mentioned, a classful qdisc, and when a TBF qdisc is created,
a class with a basic bfifo queue is attached. This queue is used as the data
queue and can be changed to any of the other qdiscs available. TBF has
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Figure 2.6: TBF has one queue and a bucket for tokens
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many possibilities for fine tuned configuration which will be explained
below:

• limit: This parameter will limit the maximum amount of bytes that
can wait in the bfifo queue for tokens to become available. It is
mutually exclusive with the latency parameter.

• latency: The latency parameter can be used to specify the maximum
amount of time a packet can remain in the queue waiting for a token.
It will calculate the queue size based on the size of the bucket, the
rate at which tokens is spawned and can also take into account the
peakrate.

• burst: Also called buffer or maxburst. This will set the size of the
bucket in bytes. This equals to the maximum amount of bytes that
can be dequeued instantly. A larger rate will need a larger buffer to
reach the desired rate.

• mpu: This is the minimum token usage in bytes a packet can use.
Even a zero-sized packet uses some bandwidth. For ethernet the
minimum size of a packet is 64 bytes. The mpu parameter can be
used to represent this.

• rate: The rate parameter is used to set the desired rate. This will
determine how fast tokens are generated.

• peakrate: By default, if there are tokens available when a burst of
traffic arrives at the qdisc it can be sent out immediately in a burst
that might exceed the wanted rate by a large amount, especially if the
bucket is large. The peakrate parameter is used to limit how fast a
bucket can be emptied and even prevent bursting over the desired
rate entirely. This will create a second bucket with a size of one
packet, which will mean that there can be no burst higher than the
peakrate.

• mtu: This parameter can be used together with peakrate to set the
size of the peakrate bucket in bytes. This can be used if peakrate is
needed, but it is still acceptable to have some burst.

HTB

Hierarchical Token Bucket (HTB [36]) is a classful queueing discipline that
can be used to shape traffic using the token bucket algorithm [25]. It has
the possibility to do prioritization, guarantee minimum rates, and even
reallocate excess bandwidth using a complex borrowing algorithm. HTB
is used to control the outgoing bandwidth on one physical link to simulate
several slower links and sending different traffic on the different simulated
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links. To manage this HTB uses classes and filters. HTB’s borrowing
algorithm combined with an arbitrary amount of classes and filters can
be used to control traffic with a very fine-grained precision. The fact
that child classes can borrow tokens from parent classes makes it possible
to use unused bandwidth from other child classes. This way all child
classes can get its minimum guaranteed bandwidth without affecting
other classes, but still use more bandwidth if some of the other classes
are not using theirs. This makes HTB extremely versatile in dividing
bandwidth between flows with a guaranteed minimum and still keep a
high link utilization.

An arbitrary amount of classes may exist in HTB, with all of these
classes containing a default pfifo qdisc. Figure 2.7 shows an example of a
class hierarchy that can be used with HTB. There are two types of classes,
inner nodes and leaf nodes. All classes that do not contain a child is a leaf
node, while all other classes are inner nodes. Only a leaf node can hold a
packet queue. When a packet is enqueued in HTB it will start at the root

Figure 2.7: HTB hierarchy

node. At each node HTB will check all filters attached to see where it is
supposed to redirect the packet. If it is redirected to a leaf class, it will be
enqueued to the attached qdisc. If it is redirected to another class, then the
filters attached to this class is checked to find out where it is supposed to
go next. For example, when a packet is enqueued in the example given in
figure 2.7, the filters attached to the root qdisc is examined. Then it is sent
to class A and since this is an inner class, A’s attached filters will now be
checked. It is sent to D where it is enqueued at the attached default pfifo
qdisc as this is a leaf node.

The borrowing algorithm is a core part of HTB and what makes link
sharing and reallocation of bandwidth possible. Each class will have an
assured rate (AR) and a ceil rate (CR). The assured rate is the guaranteed
minimum rate a class will have available at all times and the ceil rate is the
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absolute maximum a class can use. The actual rate a class uses is given by
R. While a leaf class has an R less than AR it will dequeue packets as long
as there are available tokens. If it exceeds AR it will try to borrow tokens
from its parent class as long as it does not reach CR. As long as a child class
has an R greater than or equal to CR it will not be able to dequeue any
packets. While an inner class has an R less than AR it will lend token to its
children. When it reaches AR it will try to borrow tokens from its parent,
that it can lend to its children, as long as it does not reach CR. If an inner
class reaches CR it will neither lend nor borrow tokens until its R is less
than CR. Shaping is only done in the leaf classes, therefore the sum of the
assured rates of the children of a particular class should not exceed the ceil
rate of their parent class. To get the best utilization of resources the sum
of children rates should match the parent assured rate, this will allow the
parent to distribute the ceil rate bandwidth between the children classes.
Distribution of leftover bandwidth is done in a round-robin fashion. All
classes must be given a priority and the class with the highest priority will
get available bandwidth first.

Based on the borrowing algorithm all classes will at any given time
have one of three modes that is computed from R, AR and CR. The
possible modes are red, yellow and green and corresponds to what a class
can do. Red means a class cant send as it is over its assigned ceil rate.
Yellow means a class can borrow, it is over its assured rate but has not yet
reached its ceil, and green means the class can send as it is still under its
assured rate.

Figure 2.8: Without traffic

Figure 2.8 shows a simple HTB set-up with no traffic. A root node
named A, an inner node named B and three leaf nodes named C, D and E.
Class A has an assured rate equal to its ceil rate of 10Mbps. As this is the
root node this will be the maximum rate for the entire configuration. Class
A has two child classes, both of which has a ceil rate of 10Mbps. B has an
assured rate of 6Mbps, while C has 4Mbps. D and E both have a ceil equal
to their parent’s ceil of 10Mbps, and an assured rate of 2Mbps and 4Mbps
respectively. This set-up makes it possible for B and C to borrow from A,
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and B to lend bandwidth to D and E.

Figure 2.9: C and E are over their rate, B is over its ceil

A possible example state of HTB with traffic flowing through is shown
in figure 2.9. B is over its ceil, which means that it can neither lend tokens
to its children or borrow tokens from its parent. C is over its rate, but can
still try to borrow tokens from A. E is also over its rate so it has to borrow
tokens from its parent, but since B is over its ceil it cannot get any and have
to wait for tokens to become available. Therefore it is only possible for C
and D to dequeue packets in this scenario.

2.3.5 Packet classification with filters

A classful queueing discipline will often consist of several classes arranged
in a treelike structure. If a packet arrives at a class with subclasses, it will
need to be classified to find out which class it should go to. Two of the
main ways of doing packet classification in Linux is with iptables [26] or
with filters configured in tc. When a packet arrives at a class that needs to
do classification all filters attached to it will be checked to decide where the
packet should go. The filters will be checked at each class until it reaches
a leaf class and is enqueued. Consider figure 2.5, an example tree of a
classful queueing scheme. When a packet enters the qdisc it will always
check filters at the root first. From there the packet might be sent to class
1:4. Here the filters attached to this class must be checked and it might be
sent to class 4:. Based on its filters it might end up in 4:2 where it will be
enqueued. Filtering may never flow upwards, so if a packet reaches level
2 in the tree it may never go back up to level 1 or 0. It is possible however
to have filters that direct packets past levels. For example, a filter attached
to the root might send a specified type of traffic directly to class 4:2.

The tc tool provides several different filters of which the most used are
explained below:

• fw: This type of filter can be used together with classification by
the iptables tool. Instead of iptables doing classification it can be
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configure to mark packets. This filter will do classification based on
these marks.

• u32: The u32 filter type is used to match on any part of the
packet. For example, u32 can be used to match source or destination
addresses or ports. It can be used to match the protocol used, or the
TOS field in an IP packet. As any part of the packet can be matched
there is a possibility for really complex matching schemes.

• route: Another filter type is the route classifier filters. This filter
can classify based on defined flows as defined in the routing table.
This gives the possibility of classifying traffic based where it is from,
where it is going to or which interface the traffic arrived on.

2.3.6 Ingress qdisc

In linux, queueing disciplines are attached to a network interface and
everything that is queued to the interface is queued to the qdisc first.
Consequently all the qdiscs that has been explained so far in this chapter
is for outbound traffic, also called egress qdiscs. There is a possibility to
attach a special qdisc to interface for ingress traffic aptly named the ingress
qdisc [37]. There is very little that can be done with the ingress qdisc. It
contains no queue or classes and only serve as a point to attach filters. This
makes it possible to police incoming traffic, before the traffic even enters
the network layer, as tc filters contain a full token bucket implementation.
No delay can be introduced here as there is no packet queue and packets
will either be dropped or passed on. There are workarounds for using
egress qdiscs on ingress traffic such as the Linux Intermediate Queueing
Device (IMQ [23]), but that is beyond the scope of this thesis.

2.4 NetEm

NetEm is a network emulator included in the Linux kernel presented in
[17]. It focuses on providing emulation functionality that can be used to
test protocols and applications. It gives the user a possibility to emulate
such things as packet loss, duplication, reordering and packet corruption.
NetEm can also be used to introduce packet delay and add random jitter.

NetEm has seen some changes throughout the years it has been
available. It started out as a classful qdisc, before the classful functionality
was removed in 2008 because of problems with the dequeue/requeue
interface. This removal was reverted in 2011, after the qdisc API was
reworked, to bring back the possibility to change the inner queue used
by NetEm. It also had no built in rate control, which meant it had to rely
on other qdiscs for this. In late 2011 a built in rate control was added to
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NetEm, but it had some problems with delay calculation that made it not
usable. A fix for this was introduced in early 2013, and it is now working
properly.

2.4.1 Design

The NetEm emulator has in two parts. The first part is a small kernel
module which consists of a queueing discipline and has been integrated
as a part of the Linux kernel since version 2.6.8. The second is a command
line utility to configure it called tc. Tc, described in 2.3.1, is a traffic control
tool which is a part of the iproute2 [9] package, and contains the command
line utility to configure the queueing discipline.

To the surrounding system all queueing disciplines work in the same
manner, and are placed in the link layer between the protocol output in the
network layer and the network device, as shown in figure 2.3. NetEm will
have packets enqueued and dequeued in the samme manner as all other
queueing disciplines. Figure 2.1 presented earlier gives a quick overview
of where the system enqueues and dequeues packets from the qdisc.

Emulation by the NetEm qdisc is done at enqueue time. All packets
being enqueued to the qdisc will be subjected to the configuration
parameters, getting their time_to_send calculated and placed in an internal
tfifo (time fifo) queue. This is a modified FIFO queue where all packets
are arranged based on the time_to_send time stamp. In most cases this
means that the packet will be placed atthe end of the queue, but special
cases such as jitter or delay distribution might place packets earlier in the
queue. The time_to_send value of a packet is calculated based on what
type of emulation being done, and once it is placed in the tfifo queue it is
subject to no more emulation.

When a packet is enqueued at a qdisc by the kernel it will also try to
dequeue a packet. As the dequeue part is called by the kernel, NetEm will
check its queue to see if there is a packet to send based on the time set
when it was enqueued. If there is, the packet is dequeued. If there are
packets that cannot be sent yet, then the dequeue function will set a timer
that will fire when packet is ready.

The general tc command to configure netem is given below:

tc qdisc action dev interface root netem options

A NetEm qdisc will be created or changed, according to action, add and
change respectively. The qdisc will have the configuration given by options
on the interface given by interface.

2.4.2 Packet delay

The delay parameters in NetEm are described by an average value (µ),
standard deviation (σ), and correlation (ρ). The average value can be
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specified in milliseconds and will cause NetEm to delay all packets by this
amount of time. An example command that would add 100 milliseconds
static delay to all packets going through the qdisc would be:

tc qdisc add dev eth0 root netem delay 100ms

As real wide area networks do not have a constant delay and will show
variability, it is possible to specify an optional standard deviation in
milliseconds to add a random variation to the constant delay. For example,
if 100 ms is chosen as the average value with a random variation of 20 ms
then NetEm will schedule all packets to have a random delay between 80
ms and 120 ms. This could be achieved by using the following command:

tc qdisc add dev eth0 root netem delay 100ms 20ms

As network delay variation is not purely random, NetEm also allows
for an optional correlation value specified in percent. A 20% correlation
introduced to the last example will make NetEm schedule packets with
a random delay between 80 ms and 120 ms where each random element
depends 20% on the last one. This command adds correlation to the delay

tc qdisc add dev eth0 root netem delay 100ms 20ms 20%

NetEm uses by default a uniform distribution (µ±σ), but it is possible
to specify a non-uniform distribution. This random distribution can be
derived from a table that is generated either from experimental data such
as ping times or from a mathematical model. The command to configure
netem with a normal delay distribution is:

tc qdisc add dev eth0 root netem delay 100ms 20ms \
distribution normal

The iproute2 package includes tools to generate a normal distribution,
Pareto distribution, Pareto normal distribution and a sample based on
experimental data. According to [11], the actual tables (normal, pareto,
paretonormal) are generated as part of the iproute2 package and placed
in the /usr/lib/tc directory. It is also possible with a bit of work to make
new distribution tables based on experimental data to use with NetEm.

2.4.3 Loss, duplication and corruption

Packet loss can be specified in the command line utility as a percentage
of packets to be dropped, in addition an optional correlation value also
specified in percent may be used as can be seen by the commands below:

tc qdisc add dev eth0 root netem loss 0.5%
tc qdisc add dev eth0 root netem loss 0.5% 25%
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NetEm emulates packet loss by randomly dropping the specified percent-
age of packets before they are queued. The correlation value will make
each successive probability depend on the last one, this will make the
random number generator behave less random and can be used to emu-
late bursty packet losses. There exists a problem with loss correlation in
NetEm. This was discussed in the NetEm kernel mailing list, and ex-
plained in [22]. One fix for this, which has been implemented in NetEm
[33], has introduced new correlated loss models that can be used.

Duplication works much like packet loss. It can be specified as
a percentage of packets to duplicate and it can also have an optional
correlation value:

tc qdisc add dev eth0 root netem duplicate 1%
tc qdisc add dev eth0 root netem duplicate 1% 25%

Packet duplication is done in NetEm by randomly cloning a percentage
of packets before they are placed in the internal queue. As with loss,
duplication can have the optional correlation value to make chances of
duplication less random and more lifelike.

Packet corruption works much like duplication and loss:

tc qdisc add dev eth0 root netem corrupt 1%
tc qdisc add dev eth0 root netem corrupt 1% 25%

To create packet corruption NetEm will introduce a single bit error at a
random offset in the packet. This emulates random noise, and can be used
to emulate noisy links, such as wireless links.

2.4.4 Reordering

It is possible to use two different ways to specify reordering with NetEm.
The first is very simple form of reordering while the second is more like
real life. NetEm does its reordering by putting a packet that will be
reordered at the front of its internal queue to be sent immediately. This
can result in the packets being reordered having a shorter delay time than
specified with the delay option.

The simple method of doing reordering can be specified by a gap
parameter which takes a number N. This method works by using a fixed
sequence and will reorder every Nth packet. For example, if 5 is used
as a gap, then every 5th packet will be put at the head of the queue,
while all other packets will be delayed. To create a NetEm qdisc with gap
reordering of every 5th packet and a delay of 20 milliseconds the following
command can be used:

tc qdisc add dev eth0 root netem gap 5 delay 20ms
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The more life like method works a bit like loss and duplication. It
can be specified by a reorder parameter which uses a percentage and
an optional correlation. This method works by reordering a certain
percentage of packets with the optional correlation affecting the next
packet. For example, specifying reordering with 10%, will make NetEm
randomly select 10% of the packets to send immediately while the rest
will be delayed. This example combined with a correlation of 25% and a
delay of 20 milliseconds could be achieved by:

tc qdisc add dev eth0 root netem reorder 10% 25% delay 20ms

Another special case might also cause reordering in NetEm. As the
internal queue in NetEm keeps packets in order by their time to send, it
is possible to have reordering when using random variation on delaying
packets. For example, lets have a delay of 100 ms and a random variation
of 50 ms. The first packet gets a delay of 100 ms with a random variation
of 0 ms, while the second packet gets a delay of 100 ms with a random
variation of -50 ms. Here the first packet will be sent after 100 ms while
the second will be sent after 50 ms, this will make NetEm send the second
packet before the first.

2.4.5 Rate control

For a long time NetEm had no built in rate control. For this it had to
rely on one of the other queueing disciplines that performed bandwidth
management, such as Token Bucket Filter (TBF) and Hierarchical Token
Bucket (HTB). As an example, a setup using TBF could be something like:

tc qdisc add dev eth0 root handle 1:0 tbf rate 1mbit \
burst 1540 limit 1540

tc qdisc add dev eth0 parent 1:1 handle 10: netem delay 100ms

This will create a qdisc system where packets are first queued in the
NetEm queue and subjected to network emulation, before it is passed to
the tbf queue and subjected to rate control from where it is dequeued and
sent out on the interface. TBF has a host of configurable parameters to get
the rate control to behave as needed as explained in section 2.3.4.

A problem with the setup above is the combination of several queueing
disciplines and the way they work together. An intimate knowledge of
how the queuing disciplines work is needed to configure the system in the
correct way. The two resulting queues is one of the troubles of configuring
the system to the wanted specifications. These unneeded configuration
problems are one of the main focuses for this thesis and will be discussed
in section 3.1.

As the rate control implemented in Netem has newly been fixed
(version 3.8 of the Linux Kernel), this is now a real alternative to the
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configuration problems of having multiple queueing disciplines. NetEm
will do rate control by calculating the size of the packet and how much
time it will take to get the packet out onto a link with a set bandwidth.
All other emulation, like delay, will be added to this time and the packet
will be placed in the NetEm internal tfifo queue based on its time_to_send
time stamp. Configuring a system like the one above with a bandwidth of
1mbps and a delay of 100ms would be done as follows:

tc qdisc add dev eth0 root netem rate 1mbit delay 100ms

This approach uses only one queue, the internal NetEm queue, which
means that the configuration problems mentioned above is gone. It does
introduce another small problem though. The combination of rate and
delay in the same queue leads to early orphaning of the skb which breaks
mechanisms that is based on the amount of skb ownership by a network
socket, such as TCP Small Queues. This is one of the issues that is avoided
with the two queue design presented in this thesis.

2.4.6 NetEm limitations

Network emulators not running on dedicated hardware systems, will
naturally have some limitations. As the main focus of this thesis focuses on
the NetEm emulator, an explanation will be given on the main limitations
concerning this emulator.

Random number generator

Emulation can often include a random element, such as introducing
random jitter to a link. NetEm uses a Pseudo-Random Number Generator
(PRNG) to get these random numbers. These numbers are not true
random and the generator used will impact the emulation results. The
choice of which PRNG to use needs to take into account the speed
and quality of the PRNG. There exists cryptographically secure random
number generators in the Linux kernel, such as the get_random_bytes()
function, but these are usually very slow and does not function very well
with emulation that might need a lot of random elements.

Network drivers

Network devices in Linux needs a driver. These are not universal and
might have different implementations. These drivers will have a transmit
ring (a buffer) that can hold references to data that it wants to transmit
through the hardware. The drivers themselves can use these transmit
rings differently, and have to do some kind of flow control with regards
to this buffer. When the system is under high load, the emulator might
release bursts of packets that the driver must be able to handle. Testing
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Timer Res Min Average Max stddev
Ref 0.124 0.209 10.258 0.712

100Hz 11.198 33.280 59.952 8.669
250Hz 6.443 15.899 36.141 4.062

1000Hz 5.074 5.778 16.866 1.053
Hrtimer 2.133 2.216 12.265 0.712

Table 2.1: Timer resolution results

done with NetEm [17] revealed several drivers that could not do flow
control properly. This issue could lead to a full stop in transmitting packets
from the device.

Timers

One of the most important elements when it comes to emulation is the
timer granularity. The more precise a timer is, the more precise the
emulation can be. As Linux is not a real-time system there will be some
constraints when it comes to the timers. For a long time the Linux kernel
was limited by its system time tick. This has usually been set to a rate
between 100Hz and 1000Hz, with the usual values of 100, 250 and 1000.
This system time tick limited the timer the system could use. 100Hz will
interrupt 100 times a second (10ms), and 1000Hz will interrupt 1000 times
a second (1ms). This means that the timer granularity cannot be more
precise than 1ms with the kernel configure to run at 1000Hz. In theory
this leads to NetEm not being able to emulate networks shorter than 1ms.
In practice this might even too short. Using a 100Hz kernel, Jurgelionis,
et al. reached the conclusion in [21] that: "The main result of the study
show that NetEm is able to generate constant delay higher than 50ms".
The possibility for NetEm to only release packets every 10ms would lead
to some packets being sent later than they should be.

Fortunately, this problem has been mitigated with the implementation
of the High Resolution Timers system for the Linux kernel [14]. The high
resolution timer system enables timers to interrupt between system timer
ticks, which leads to a much more precise timer. The granularity possible
with the high resolution system is only limited by the hardware clock used
as source. Table 2.1 shows the results of running ping with 1000 packets
between two hosts. Ref is the actual RTT of the test bed. The last four
rows shows the round-trip time when NetEm is enabled and configured
to have a 2 millisecond RTT. It clearly shows the need for having the High
Resolution Timers system enabled in the kernel when running emulation
experiments. Especially if the delay is low.
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2.5 Dummynet

Dummynet is a network emulator originally developed for FreeBSD in
1997, designed for testing of network protocols [32]. Since then it has
been greatly extended and it can now be used for a variety of applications
[5]. With Dummynet it is possible to control the traffic going through
network interfaces in many different ways. Configuring bandwidth and
queue size limitations, using different queue management and scheduling
policies and applying delay and losses are all available possibilities. This
makes Dummynet an excellent tool for many different purposes, such as
creating a bottleneck link for experimentation or using it as traffic control
to manage a networks resources. Dummynet has been ported to other
operating systems and are now available on, in addition to FreeBSD, Mac
OS X, Linux/Openwrt and Windows.

2.5.1 Design

According to Rizzo [32], dummynet works on the principle that in order
to simulate the presence of a network between two hosts some elements
needs to be inserted in the flow of data. One element is routers with finite
queue size and a queueing policy. Another is that the communication
links needs to have a given bandwidth and delay. In addition to these two
elements it is also important to be able to introduce packet reordering and
losses as networks can have multiple paths and noisy links. Most of this
is enabled in dummynet by the use of objects that is called a pipe. There
are some emulation possibilities that does not exist in Dummynet, such as
duplication and corruption [28].

Like the NetEm emulator the Dummynet system as a whole exists in
two parts. The first part is the engine doing the actual emulation, aptly
named dummynet. The second part is ipfw, which is used as a packet
classifier by the Dummynet system. IPFW is a stateful firewall in FreeBSD
that also provides traffic shaping, packet scheduling and in-kernel NAT
[13]. In the Dummynet system it is both used as a packet classifier and as
the main user interface to configure ipfw and dummynet.

Packets are passed to the classifier from various points in the network
stack as can be seen in figure 2.10. This is usually done while processing a
packet in layer two and/or three, both in the inbound and the outbound
path. After a packet has been through a pipe it is injected back into the
network stack right after the point where it was intercepted in the first
place, unless it is re-injected into the classifier as explained in section 2.5.3.

2.5.2 Pipes - delay and rate control

Pipes are the basic object used in dummynet, it consists of a fixed
size queue and a link with a given bandwidth and propagation delay.
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Figure 2.10: Packet intercepted by ipfw and sent through dummynet pipes

The number of pipes is only limited by the available memory and in
combination with ipfw’s packet classifier, explained in section 2.5.3, it is
possible to create increasingly complex scenarios.

Figure 2.11: A dummynet pipe

Figure 2.11 shows the structure of a pipe in dummynet. The pipe
consists of two queues, rq and pq, used to control the bandwidth and
delay of the emulated link. A packet arriving at a dummynet pipe will
first be queued in the rq queue as long as it is not full. The rq queue size
can be configured and works as a routers finite sized queue. Packets are
inserted into this queue according to a given queueing policy (The default
queue in dummynet is a FIFO queue). Packets in rq are drained at a rate
corresponding to the configured bandwidth B and placed in pq. Packets
will remain in pq for a configured time tD, which serves as the propagation
delay of the emulated link, before they are injected back into the network
stack. The moving of packets from rq to pq and from pq back into the
network stack is achieved by running a periodic task moving packets
conforming to the given configuration. All packets going through the pipe
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will therefore be delayed by a time T defined by:

T = (li + Qrq)/B + tD

Here li represents the length of the packet going through the pipe, Qrq
represents the occupation of the rq queue when the packet is enqueued,
and B and tD represents the bandwidth and delay of the emulated link. As
an example, a 1000 byte packet going through a 1mbps link with a delay
of 50ms when the queue is empty would give us: li = 1000, Qrq = 0, B =
125000 Bps and tD = 0.050s. This would result in a total delay time T of
58ms for a 1000byte packet to go through the pipe.

It is possible to configure and dynamically reconfigure pipes easily
with one-line commands using ipfw. All pipes must be given a unique
numeric identifier when created. Configuring the pipe in the example
above with a queue size of 50 packets would be done with:

ipfw pipe 2 config bw 1Mbit/s delay 50ms queue 50

2.5.3 Packet classification

Dummynet needs a way to pass traffic from the network stack into the
pipes to make use of them. This is handled by the packet classifier in ipfw.
This classifier uses a set of numbered rules to match packets and decide
where they should be passed to, the set of rules is called the ruleset. The
overall structure of the command to insert a new rule to the ruleset is:

ipfw add rule-number action options

When a packet is passed to the classifier it will be evaluated against the
rules in the ruleset in rule-number order until a match is found. This means
that it will match packets against the lowest numbered rule before moving
on to a higher numbered one, i.e. number 10 before number 20. All rules
contain zero or more options that are used to match the packet. This can
be a huge variation of criteria, ranging from such things as matching the
address of a packet to matching against what interface the packet arrived
on. If all the options of a rule matches the packet in question, it will be
handled according to the action specified in the rule. Actions can be a
variety of things, such as dropping the packet or passing it to a pipe. An
example set-up with a combination of a pipe and a rule would be:

ipfw pipe 2 config bw 1Mbit/s delay 50ms queue 50
ipfw add 10 pipe 2 in proto tcp dst-ip 192.168.1.10

All packets sent to the classifier will be matched against this one rule. The
options part of the rule is in proto tcp dst-ip 192.168.1.10 while the action
part is pipe 2. This rule has three options that all must match for the rule
to take effect: in matches all inbound packets, proto tcp matches all packets
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using the tcp protocol and dst-ip 192.168.1.10 matches all packets that has a
destination ip 192.168.1.10. Combined with the action means that this rule
will send all incoming tcp packets going to 192.168.1.10 to pipe 2 where
the packets will be subjected to a bandwidth limitation of 1mbps and a
delay of 50ms before they are re-injected back into the network stack.

Packets not matching any rule in the ruleset will be placed back in the
network stack as if they had not been intercepted at all. There is, of course,
a possibility of creating rules that matches all packets, which can be used
to handle all packets not matching any other rule.

Dummynet also supports the possibility of re-injecting packets back
into the classifier when they are done in one pipe. This makes it possible
to create increasingly complex topologies by simply looping the packets
through a number of different pipes. Packets arriving in the classifier this
way are subjected to the regular matching against rules and subsequent
actions, such as putting the packet into another pipe.

2.5.4 Jitter and Reordering

In a real wide area network there is a high chance that there are multiple
paths between two hosts. This can lead to variation in delays (jitter) and
packet reordering. Jitter and reordering are linked in the way that jitter
can often lead to reordering and vice versa. Think of a packet traversing
a network with multiple paths between two hosts. The paths will most
likely not be the same length, meaning that packets will use different time
from one end to the other depending on which path they take. With the
way a network routes packets there is a possibility that packets in the
same stream will take different paths, for example, if one of the paths
become highly congested. Packets from the same stream using different
amounts of time will lead to both jitter and reordering. There is, of
course, a possibility to have one without the other, such as a connection
suddenly slowing down because of congestion when there are no other
paths available before picking back up.

There is dedicated code to emulate these functions within NetEm,
but just like with duplication and corruption, this is not the case with
Dummynet [28]. However, while Dummynet does directly support
emulation of jitter and reordering with dedicated code, there are different
ways to achieve this. One option is to dynamically change the dummynet
pipes as has been done by Armitage et al. [1]. By randomly varying
the delay of the pipes traffic were flowing through at regular intervals
they were able to achieve jitter. Some care must be taken with how
the pipes are reconfigured as they experienced some troubles: "Simply
fluctuating the dummynet pipe according to a uniform random distribution can
create unexpectedly non-uniform distributions of actual latency through your
bridge. Another option to emulate packet reordering and jitter is to use the
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packet classifier, with an option to match packets with a given probability
to randomly direct packets into different pipes.

As an example of achieving reordering and jitter consider the following
rules:

ipfw add 100 prob 0.33 pipe 1 src-port 9001
ipfw add 200 prob 0.5 pipe 2 src-port 9001
ipfw add 300 pipe 3 src-port 9001

This set of rules will send all packets with a source port of 9001 to pipes 1,
2 or 3. the first rule will be checked before the second and so forth. Packets
arriving with a source port of 9001 will have a one third chance of being
sent to pipe 1 through rule 100. What must be kept in mind is that the the
later rules will be checked after the first so rule 200 with the one in two
chance of sending the packets to pipe 2 is of the remaining two thirds after
the first rules has been checked. This means that the second rule also gives
a one in three chance. The last rule, number 300, matches all packets with
source port 9001 and will send all packets that is not matched with rule
100 and 200 to pipe 3. Combining this probabilistic match with several
different pipes makes it possible to emulate reordering and jitter.

Yet another way of achieving reordering and/or jitter is possible by
using the method of re-injecting packets that leaves a pipe back into
the packet classifier. By sending some of the emerging packets through
another pipe a measure of reordering will be achieved.

2.5.5 Packet loss

Loss of packets in a network usually happens because of overflow in
the queues or some sort of queue management system (for example RED
described in section 2.3.3). These types of packet loss cannot be specified
in Dummynet, but they can easily be achieved by sending enough traffic
through the emulator for this to happen naturally. A high amount of traffic
means that the queues will fill up and losses will start to occur because of
queue overflow. Queue management policies that cause loss even before
the queue is full also exist in dummynet and will be explained in the next
section.

Other possible causes for packet loss exist, such as radio link noise and
interference. These can be emulated by the option to match packets with
a given probability. The deny action of the packet classifier will drop all
packets matching the criteria of the rule created. This will cause uniform
random loss patterns in the emulated link. An example rule to add a 10%
chance of dropping all tcp packets would be:

ipfw add 400 prob 0.1 deny proto tcp
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2.5.6 Queue management and packet scheduling

The default queue in Dummynet is a simple FIFO queue with configurable
size in number of packets or in bytes, but Dummynet also support the RED
(Random early Detection) queue management algorithm and its gentle
variant GRED. All of these are configurable to get the wanted behaviour
from the queue.

In addition to changing the queue management algorithm there is
also a possibility of doing packet scheduling with Dummynet. This is
supported by creating a basic object called a queue. This queue object is
used to create physical queues to store packets from different flows that
can be used by the scheduling algorithm. To create a queue object to be
used with packet scheduling the following command must be used:

ipfw queue N config sched X weight Y mask ...

This command creates a "queue" and also links it with the scheduler
to queue is to be attached to, it also configures weight, or priority,
for the scheduling algorithm. The optional mask parameter is used
to group packets into different flows. The FIFO, WF2Q+1, DRR2 and
QFQ3 scheduling algorithms are all supported by dummynet [5]. There
also exists a simple API that enables easy creation of new schedulers if
something else is needed. Figure 2.12 gives a graphical representation of
the Dummynet system when configured with a queue, a scheduler and a
pipe.

Figure 2.12: Dummynet system with a queue, a scheduler and a pipe

Configuring a system such as the one given in figure 2.12, where a
regular FIFO queue is used together with QFQ scheduler and a pipe with
2mbps bandwidth could be done with the following commands:

1WF2Q+: this is a scheduling algorithm where each flow is associated with a weight
that specifies what share a flow will have of the capacity of an output link. WF2Q+
schedules packets based on the weight and a virtual time function [2]

2Deficit round robin: a scheduling algorithm that that uses a modified weighted round
robin approach. This algorithm serves all non-empty queues in a round robin fashion
where each queue can dequeue a number of bytes up to a given Quantum. The remaining
amount of bytes will be saved in a variable called DeficitCounter that can be used in
addition to the Quantum in the next round of dequeuing [34]

3Quick Fair Queueing: is a very fast variant of WF2Q+ [6]
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ipfw pipe 2 config bw 2Mbit/s
ipfw sched 2 config type qfq
ipfw queue 20 config weight 10 sched 2
ipfw add 100 queue 20 out proto tcp

The first command creates the pipe, the second creates the scheduler and
connects it with the pipe. The third command creates the queue and
connects it with the scheduler. The last command tells the classifier to
send all outgoing tcp packets through the system we just created.
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Chapter 3

Design and Implementation

This chapter will first present the challenge of using TC and NetEm. This
will be followed by a design proposal for our version of NetEm with a
built-in rate control. Next we will give a thorough explanation about the
implementation of the proposed design. At the end we will go through
the resulting packet flow through the different NetEm versions.

When work on this thesis started the rate extension added to later
versions of NetEm did not work, our work is therefore heavily based on
the NetEm version included in Linux kernel 3.2. We will call this NetEm
version NetEm v3.2, or simply v3.2. In Linux kernel 3.8 the rate control
extension was working, hereafter referred to as NetEm v3.8 or v3.8. We
will therefore give a short explanation of this version so we can compare
our implementation to an alternate way of implementing rate control in
NetEM.

3.1 The TC/NetEm challenge

NetEm, as described in section 2.4, is developed to provide the possibility
to emulate the properties of wide area networks, and has been a part
of the Linux kernel since version 2.6.8. By providing these emulation
capabilities it is possible to use NetEm to do research on networks, and
test new protocols and applications in an artificially created environment
that tries to match some real world network that is not easily tested in a
repeatable and controlled way. Doing these kinds of experiments usually
also needs some way to control the available bandwidth in the network,
which is not something that was available in NetEm. A combination of
two queueing disciplines can be used to achieve both network emulation
(by using NetEM) and bandwidth management (by using some sort of
rate limiting queueing discipline such as TBF), and is infact what resulted
in this thesis.
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3.1.1 Configuration

Some easy experiments sending traffic between two hosts, using a router
to emulate a link with low bandwidth added by TBF and additional delay
added by NetEm, revealed some wierd results when the bottleneck was
congested. The general observation showed much higher delays than
those added by NetEM. After digging through the Linux networking code,
and the code of the queueing disciplines, the culprit was found to be the
default queue size of NetEm. While in hindsight this was kind of obvious
(the possibility of sending roughly 83 full packets per second on a 1mbit/s
link, and the queue size of 1000 packets, will result in delays over 10
seconds when the bottleneck gets congested), it was not before a thorough
understanding of the queueing disciplines and the underlying network
code that the answer became glaringly obvious. While the issue in this
experiment was kind of trivial, it still revealed a greater problem: using
two queueing disciplines in conjunction to achieve network emulation
makes for tricky configuration, and a high level of knowledge about the
queueing disciplines and the surrounding network code is needed to make
the system conform to the users expectations.

When configuring a system with two qdiscs, one must be the root qdisc
while the other is a leaf qdisc. An overview of such a system can be found
in figure 3.1. Consider the example where Qdisc 1 is the root qdisc and
Qdisc 2 is the leaf qdisc. As explained in section 2.3.1, when queueing
a packet into such a system it will always try to enqueue the packet at
the root qdisc and likewise dequeue from the root qdisc. In this case the
system will try to enqueue the packet at Qdisc 1. As long as the qdisc rules
allow it to enqueue the packet it will try to insert it into its queue, which is
now Qdisc 2. Qdisc 2 will then, if its rules permit, insert it into its queue.
When dequeuing the same will happen all over again. The system will try
to dequeue from Qdisc 1. If permitted by its rules it will try to dequeue
a packet from Qdisc 2, which again will only release a packet if its rules
permit.

Consider the following commands that create a root TBF qdisc where
the default queue is changed to a NetEm qdisc used in the experiment
mentioned above:

tc qdisc add dev eth0 root handle 1:0 tbf rate 1mbit \
burst 1540 limit 15400

tc qdisc add dev eth0 parent 1:1 handle 10: netem delay 100ms

The first line creates the root TBF qdisc. It is configured to have a rate of
1mbps, the limit which is the queue size is 15400 bytes, meaning that we
have space for at least 10 full packets. The burst is set to 1540 bytes which
means we can never have more tokens available than enough to instantly
send one full packet. In itself this is an okay set-up, and might be exactly
what is needed. A maximum rate of 1mbps and a queue with enough
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Figure 3.1: Overview of a system with two qdiscs

space for 10 full packets. The second line adds a NetEm qdisc to this
system. It will simply delay all packets with 100 milliseconds. Again this
seems okay. We should now have a system with a maximum rate of 1mbps
a 10 packet sized queue and the additional delay of 100ms. This is not the
case however. As can be seen from figure 3.1, packets are only queued in
the leaf qdisc. As the NetEm qdisc is the leaf qdisc it will replace the queue
of TBF. The limit placed on the TBF queue are no longer in effect as NetEm
has its own queue which defaults to 1000 packets. So the system now
consists of a maximum rate of 1mbps, a delay of all packets by 100ms and
a queue size of 1000 packets. Congestion in this system will quickly lead
to delays of over 10 seconds. From this simple example we can see that it
is highly important to know what queues will be used to store packets and
consequently how to configure the qdiscs. Using two queueing disciplines
to configure one queue is also something that unnecessarily complicates
the configuration process. Even if the two qdiscs are configured correctly
the emulated system might not display the behaviour of a real system,
which will be explained below. A system which enables the configuration
of NetEm with rate control in only one qdisc seems like a great option to
mitigate some of these configuration complexities and problems.

3.1.2 One queue mash-up

Network traffic travelling from one host to another through a network will
first be subjected to the bandwidth of the link, before being affected by the
transit delay. Consider a normal system with two machines placed quite
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far apart. The direct link between them is 1mbps and has a one way delay
of 100 milliseconds. When sending packets from one host to the other, the
packets would first have to be sent out on the link. This is what, in an
emulated system, would equal the rate control. When the packet is on the
link it would take it 100ms to reach the other host, this is the transit delay
where the packet is actually on the physical link. Once a packet leaves
the sender, it will use 100ms to reach the receiver. This is time where the
packet is not really buffered anywhere. The queue in this system would
therefore not have to take into account the packets that are really out on
the link travelling to its neighbour.

To emulate the same system, using two machines with a link of 1gbps
and a delay of 0.1ms, we would first have to use some form of rate control
to not send traffic at a speed higher than 1mbps, and we would have to
hold all packets for 100ms to insure the correct delay. With the TC/NetEm
system we only have one queue. This queue must therefore be able to both
act as a real queue that holds packets ready to be sent out on the network,
and hold the packets for the specified delay.

In a real network there are many type of queues, and their management
schemes (such as FIFO or RED), which can have an impact on the traffic
flow. What they all have in common is that they only work on buffered
packets, not packets that are out on the physical link. In a system emulated
with TC/NetEm, all packets must be stored in only one queue. This leads
to the fact that the queue must not only handle the packets buffered for
release to the network, but also the packets that in a real system actually
are out on the physical link. As the packets being in transit should
not actually be in the queue this presents possible behaviour differences
between the real and the emulated system. Configuring the emulated
system to behave like a real system is hard, if not impossible and some
of the considerations that must be taken into account are explained below:

• Queue management: In a real system, queue management will only
work on packets that are buffered in a queue to be sent out on the
network. The packets being in transit, are actually on the physical
link, and should not have an impact on the queue. In TC/NetEm, as
all packets are in the same queue, this is not the case

• Dropping: Packet dropping in a real wired network are usually as
a result of overflow in the queues, queue management systems (for
example RED), or problems with the routing. To get the most lifelike
behaviour this is something that should be handled by sending
enough traffic to make overflow happen, or by using actual queue
management on the emulated queues in the system. The emulation
provided by NetEm should be therefore be used to emulate other
causes for drops. This could be things such as radio link noise and
interference. This leads to the fact that packets already being on the
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physical link, the ones being delayed in the emulated system, should
not have an impact on the packets that are waiting in the queue.

• Reordering: With NetEm, reordering can happen in two ways. It
has a configuration option that will either reorder every Nth packet,
or it can reorder based on a probability. This reordering is done
by placing the packet at the front of the queue. Since the delayed
packets are in the same queue, this will cause the packet to arrive
much earlier than it should. The other way to have reordering with
NetEm is to specify a jitter value along with the delay. Because
NetEm employs a tfifo queue, all packets will be sorted by the time
to send, and NetEm will therefore reorder packets when the delay
value has a high amount of jitter. This reordering does not work
however if another qdisc is used as the leaf qdisc. NetEm’s own tfifo
queue sorts packets based on their timestamp. When another qdisc
is used as a queue, the timestamp will not be taken into account.
In the case of TBF, all packets will be placed in order. This leads to
packets further back in the queue having a lower time to send, but
as it dequeues from the head of the queue they must wait for their
turn. With a network where there is only one path from sender to
receiver this might be wanted behaviour, but it still illustrates the
need to have a high knowledge about how the qdiscs interact.

The test set-up in figure 3.2 uses two computers. One to send packets
and one to receive them. TC/NetEm is used on the sender machine to
emulate a slow link between these two hosts. When a program wants to
send a packets it will do so through a socket. The networking stack tracks
how much data is waiting to be transmitted through any given socket
no matter if it is queued in the network device, in a queueing discipline
or in the netfilter code. This means that all packets being sent through
a socket will have that socket as its owner. The amount of memory in
use by a socket is kept in the socket’s sk_wmem_alloc variable. There are
mechanisms in the Linux kernel that rely on this sk_wmem_alloc value,
such as TCP small queue [24]. It will limit the amount of data that can be
queued by any TCP socket. As packets being delayed by NetEm should
not actually be counted as queued, as in a real system they would actually
be out on the link. To be able to keep the packets in its queue, but not
charge the sockets buffer, NetEm will call skb_orphan(). This function is
used to remove a skb from its owner by calling the owners destructor
function. The skb will still exist but it will be removed from its owner,
meaning that it will not use ut space in the sockets send buffer. Usually
this orphaning is done once the packet is transmitted by the network
device. This means that it should happen after the rate limiting, but before
the link transit delay. With one queue this is not possible as both rate
limitation and delay is being done at the same time.
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Figure 3.2: Two machine test bed

A system that avoids this problem is illustrated in figure 3.3. Here
a machine is configured as a router that will just route packets between
machine 1 and machine 3. Packets being routed will not be owned by any
socket and therefore not use any socket buffer space. With NetEm being
timer based, it works best if it can send packets as close to their time_-
to_send as possible, it can be concluded that this set-up will be a better
system to do research and testing with. If only to minimize the possibilities
of interference from other tasks being run on the computer. While
the problem of orphaning is removed by having a dedicated emulation
machine it still do not stop it from being used on the same machine
creating the traffic, so the problem should still be fixed.

Figure 3.3: Three machine test bed

3.1.3 Traffic control is not network emulation

Another point to be taken into account when using TC is that it was not
developed to be a network emulation tool. It was, as it name states,
developed as a tool to do traffic control in the Linux Kernel. The traffic
control system focuses on providing control over network services to
provide some form of quality of service. This is important since the
competition for network resources are usually very high. TC is used
together with a number of different queueing disciplines to achieve this,
and it provides a wealth of different options and configurations. NetEm
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was developed as an enhancement to the traffic control features in Linux
to provide network emulation for testing protocols and doing research.
Despite its configuration problems documented above, it can work well in
controlled situations as shown in [17, 28, 21].

A problem with NetEm though, is that it did not originally provide
bandwidth emulation. To have rate control in an emulation set-up, an
additional queueing discipline had to be used. The queueing disciplines
that provide rate control are all built with the idea of restricting bandwidth
based on the idea of traffic control. Take TBF as an example. It was
originally developed to provide quality of service in a network, and uses
a complex token bucket algorithm. It can at times allow for bursts of
packets to go through at a higher rate according to the idea that there is
no need to delay packets if the line is idle. This is, of course, not ideal in
an emulation scenario. As emulation is used to mimic physical properties,
the rate set in the emulator is supposed to imitate a physical link. This
link will have a maximum rate that there is no physical possibility to
exceed. This is something that can be mitigated by configuring TBF
with its peakrate parameter. This is however something that adds more
unneeded complexity to the configuration. In addition, the idea behind a
token bucket implementation is that tokens fill up the bucket if there are
no packets transmitted. This means that a packet arriving in a TBF queue
when it has been idle for a time can be transmitted instantly. This is not
something that should be possible in a real life scenario.

While the system proposed at the end of section 3.1.1 has been made
available through the rate extension added to NetEm in the 3.3 version of
the Linux Net-Next kernel, it is still using only one queue and is subjected
to the problems described in the previous section. It does remove the
problems described in this section, but it still paves the way for the design
proposed in this thesis.

3.2 Design

In this section we will first present some design goals before we give a
detailed description of our proposed design for a rate control extension to
NetEm which we have named Double-queue NetEm.

3.2.1 Design goals

From the last section we can se that there are some problems when it comes
to TC/NetEm. Configuring two queueing disciplines to work together is
really complex and hard to do right. The rate extension added in version
3.3, and fixed in version 3.8 of the linux kernel, removes this problem
as only one queueing discipline is needed to do network emulation. It
still has the troubles linked with only having one queue doing all the
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emulation. This is the basis for the two design goals below, which focuses
on the creation of a built-in rate control to remove the use of multiple
qdiscs:

• Simple configuration: To reduce the configuration complexity we
want to have all emulation functionality in one queueing discipline.

• Two queues: With two queues we have the possibility to split rate
control and delay emulation. This will mitigate the problems derived
from the one-queue solution of NetEm 3.8.

3.2.2 Double-queue NetEm design

The design goals listed above lead to the design that will be explained
in detail here, named Double-queue NetEm. It is a rework/extension
to NetEm v3.2 which, which was explained in section 2.4. The actual
implementation of the emulation features of NetEm v3.2 have been left
mostly as is and will not be explained here.

The general idea behind the design is to provide the possibility to
emulate channel bandwidth in NetEm without increasing its configuration
complexity and at the same time remove the problems caused by doing all
this with only one "physical" packet queue. This is done by splitting the
queue used by NetEm into two queues, the rate queue and the delay queue.
Inspiration for this design has been taken from Dummynet, described in
section 2.5, which uses two queues and a periodic task that moves packet
from one queue to the other.

When a packet is queued in NetEm it will first be placed in the rate
queue. This will be done by calculating the time needed for a packet to be
sent out on a physical link based on the packet’s size and the configured
bandwidth. When the packet has conformed to the bandwidth emulation
it will be moved to the delay queue. Moving the packets from the rate
queue to the delay queue will be handled by a timer function. A packet
inserted into the delay queue will have to wait the calculated amount of
time caused by the rest of the emulation features, before it will be released
back to the network. An overview of the design can be seen in figure 3.4.
The different parts of the system will be explained below:

• Rate queue: The basic function of the rate queue is to hold the
packets until their time_to_send time has been reached. After this
time the packet will be moved to the delay queue. This rate queue is
designed to work like a the tfifo queue found in NetEm v3.2 and is
bounded, which will force packets that arrive after the queue is full
to be dropped.

• Packet enqueue: A queueing discipline provides an enqueue
function. In this version of NetEm the main task of this function is to
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Figure 3.4: Double-queue NetEm design

place packets into the rate queue. It will calculate how much time a
packet must wait based on the configured bandwidth and will then
place it at the tail of the rate queue. The enqueue function must also
check to see if the packet mover is running, if not it must start it.

• Packet mover: As the enqueue function of the queueing discipline
will enqueue packets in the rate queue, and the dequeue function
will remove packets from the delay queue, there must be a way to
move packets from one queue to the other. This is done through a
timer function, which will run only as long as there are packets in the
rate queue. This function will move packets from the rate queue as
long as their time to send is lower than the current time. When there
are no more packets to move at current time it will do one of two
things. If there are no more packets in the queue it will just stop, but
if there are more packets to be moved at a later time it will reschedule
itself to run again at the time to move the next packet.

• Delay queue: The basic function of the delay queue is quite similar
to the rate queue. It must hold all packets until the time of their
time_to_send value has been reached. A dequeue call to this queueing
discipline will try to dequeue packets from this queue. This queue
also works as the tfifo queue of NetEm v3.2, but it is unbounded. As
it is unbounded, the delay queue can, in theory, grow to an infinite
size. The amount of data that can be out on a physical link at any
one time is, of course, based on the link’s length and the channel
bandwidth. As the delay queue is used as a representation of the
connection between two hosts in a network, it should only be able
to hold this amount of packets. As the amount of data in the delay
queue will be bounded by the fact that the packet mover will only
move as many packets as allowed by the configured bandwidth at
any one time, in combination with the fact that packets are dequeued
by the network stack once they have waited the emulated delay time.
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• Delay queue enqueue: The delay queue is used to stage the packets
before they are released back into the network stack. When the
packet mover moves a packet from the rate queue it must enqueue
the packet in the delay queue. Until now the only thing that has
been emulated is bandwidth. The rest of the emulation is done here.
The packet mover will call a function that calculates the configured
emulation resulting in a new time to send value, the time that a packet
can be released to the network. With this new value the packet will
be enqueued in the tfifo delay queue in a time ordered fashion. It is
worth noting that the time_to_send variable of a packet is changed
when the packet is moved from the rate queue to the delay queue.
There is no need to keep the old value once the packet has been
moved.

• Packet dequeue: When the network stack wants to dequeue a
packet from the queueing discipline it will call the qdisc’s dequeue
function. Double-queue NetEm dequeues packets much in the same
way as NetEm v3.2 except as follows. When the network stack has
dequeued a packet it will try to dequeue another one as long as the
queue is not empty or the qdisc returns a NULL with the dequeue
attempt. This means that a non-work-conserving qdisc (such as
NetEm), which returns NULL when it wants to hold a packet longer,
must restart the dequeue scheme at some time or there might be
packets in the queue that will not be dequeued. If NetEm v3.2 can’t
send a packet, because it’s configuration says the packet must wait
longer, it will return NULL. This stops the dequeue process. NetEm
v3.2 must therefore restart the process by using a qdisc watchdog
timer, which it starts at the time to send value of the first packet in its
queue. This version of NetEm will have two queues. This means that
the dequeue function will have to additionally check the rate queue
if the delay queue is empty.

3.2.3 Design discussion

There are a few points to be made from this design. The double queue
approach might seem like a nightmare to configure, but this is not the case.
In fact, it makes for an easier configuration. When configuring NetEm
v3.2 with TBF we have to configure two qdisc, and know how they work
together. When configuring v3.8 we have to take into account the queue
length needed for both rate control and delay emulation. In Double-queue
NetEm there is only one qdisc to configure, in addition when considering
queue length there is no longer any need to think about other packets than
the ones that are being rate controlled. We think this makes a compelling
argument for our design.

In the two-queue design of Dummynet, the packet moving is handled
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by a periodic function that just moves a variable amount of packets each
time it is run, usually once every timer tick. This periodic moving of
packets means that the overhead used to move packets stays the same.
In Double-queue NetEm we have suggested a packet_mover function that
calls itself with the time_to_send of the next packet to be moved. So each
time the timer is triggered there might be only one packet moved. With
the high granularity of the high resolution timers in the Linux kernel,
this might potentially lead to an extreme amount of timer interrupts. A
timer interrupt is not free, a certain overhead will be needed every time an
interrupt happens, so this might pose a problem at higher packet rates.

Another point to think about is the separation of rate emulation
and delay emulation. If modularized there is possibilities for easy
implementation of changing the rate control method or introducing other
delay, dropping or reordering schemes. One possibility would be a pattern
matching dropping scheme.

3.3 Implementation

Much of the Double-queue NetEm version is based on NetEm v3.2. We
will therefore first give an explanation of v3.2’s implementation, before
describing the changes made to implement our design. We have also used
the packet length to tick time calculation of NetEm v3.8, so we will have a
quick look at this version.

3.3.1 NetEm v3.2 implementation

A queueing discipline in Linux contains two main interfaces, one for
queueing packets and one for releasing packets. In NetEm this is netem_-
enqueue() and netem_dequeue() respectively. There are also other interfaces
which the system can use to interact with a queueing discipline, such
as interfaces to create the qdisc (netem_init()), change its configuration
(netem_change()) and so forth, but they are not important to understand
how the qdisc works. The following describes how NetEm’s features are
implemented:

• Configuration: When created, all queueing disciplines will have a
Qdisc struct created. This is where all the general information about
a qdisc is stored, such as a pointer to the dequeue and enqueue
functions, a pointer to the head of this qdisc’s packet queue and other
things that all qdiscs have in common. In addition, all queueing
disciplines have their own private configurations. NetEm’s private
configuration and all its internal variables are stored in a struct
named netem_sched_data. It contains a pointer back to the Qdisc
struct, a qdisc_watchdog timer that can be used to restart the
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dequeuing of packets and configuration variables such as latency
and jitter.

• Enqueue: The process of queueing a packet into the NetEm qdisc
is done through the netem_enqueue() function. When a packet is to
be enqueued, NetEm will calculate a time_to_send value based on
its emulation configuration. This time_to_send variable contains the
time after which the packet can be released back into the network
stack. If the packet has not been dropped it will be placed in the
queue waiting to be released.

• Default queue: NetEm v3.2 actually contains the implementation of
a basic queueing discipline called tfifo. This is a queueing discipline
used exclusively by NetEm as its default queue. It is implemented
as a FIFO queue with a modified enqueue function (tfifo_enqueue()).
This function will take a packet and place it in the queue based on
its timestamp. First it will check the timestamp of the packet at the
tail of the queue as this is the most likely option. If this timestamp is
lower if will use the following

skb_queue_reverse_walk(list, skb) {
const struct netem_skb_cb *cb = netem_skb_cb(skb);
if (tnext >= cb->time_to_send)

break;
}

This will find the place in queue where the packet should go, and
results in a queue where packets are sorted from the lowest to the
highest timestamp.

• Loss and Duplication: NetEm will first check for duplication with a
call to get_crandom() which is a correlated random number generator.
If there is to be duplication it will just increase a counter. To duplicate
a packet, the skb needs to be cloned. As NetEm also have to check for
drops there is no sense to duplicate a packet just to drop the original.
So after duplication has been checked NetEm will see if there is to
be a drop. This is done with a call to loss_event(). This will check
to see if the packet is to be dropped by using the correlated random
number generator or one of the implemented loss models. Loss will
just free the skb and return while a duplication will lead to a cloned
skb queued at the root qdisc. The packet must be enqueued at the
root qdisc as the queuer only expects one packet to be enqueued.

• Corruption: Corruption is also check for with a call to the correlated
random number generator. Corruption of a packet is achieved by:
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skb->data[net_random() % skb_headlen(skb)] ^= \
1<<(net_random() % 8);

which will just randomly introduce a bit error in the payload.

• Variable delay: To calculate the variable delay NetEm uses a call to
the tabledist() function. This function will return a delay value based
on the configuration. On one hand it could just return the constant
delay specified, but in a complex scenario it could return a pseudo-
randomly distributed value based on the constant delay and jitter
configured. It uses a table lookup to approximate the configured
distribution. The random elements in this function will use a
uniformly-distributed pseudo-random source. The value returned
from this function will just be added to the current time and stored
in the skb’s time_to_send variable.

• Reordering: NetEm v3.2 has two configurations for reordering, but
both configurations does reordering the same way. By putting a
packet at the front of the queue. The following code is used to check
for reordering:

if (q->gap == 0 || /* not doing reordering */
q->counter < q->gap || /* inside last reordering gap */
q->reorder < get_crandom(&q->reorder_cor))

For the gap configuration, NetEm will just keep a counter so it can
reorder every Nth packet. This will be checked for in the first two
lines. Reordering by probability will just use the correlated random
number generator.

• Dequeue: The process of dequeuing a packet from the NetEm qdisc
is done through the function netem_dequeue(). To dequeue a packet
NetEm will peek at the head of the qdisc used as its queue. This
is done through qdisc_peek(), which is a virtual pointer to the peek
function of NetEm’s internal qdisc (by default this will be qdisc_-
peek_head() used by the tfifo qdisc). Then check the packets time_-
to_send variable against the current time. If time_to_send is less
or equal to current time it can be released. This will be done
by dequeuing the peeked packet and returning it to the caller of
the netem_dequeue() function. If the time_to_send has not yet been
reached NetEm will set up a qdisc watchdog timer that will start the
dequeuing process at the time_to_send of the peeked packet.

qdisc_watchdog_schedule(&q->watchdog, cb->time_to_send);
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• Watchdog timer: The watchdog timer is a part of the networking
subsystem aimed at non-work-conserving queueing disciplines.
When a qdisc cannot dequeue more packets for some reason
(for example holding packets to emulate delay) it must stop the
dequeuing process or it would waste resources trying to dequeue
over and over again. To restart it the qdisc watchdog timers can
be used. This system will restart the dequeuing process in the
networking stack which will eventually lead to a new dequeue call
(netem_dequeue()).

3.3.2 Double-queue NetEm implementation

This section will be used to show the implementation of the changes and
additions done to NetEm v3.2 to implement the Double-queue NetEm
design proposed above. The design featured a packet_mover function
that would be started with a timer, and it would run separately from the
enqueue and dequeue calls, moving packets from the rate queue to the
delay queue. This raises the question about race conditions. The Linux
networking system works in the way with qdiscs that a lock is taken
on the qdisc’s queue when either enqueue or dequeue is called. This
made it hard to feature a locking scheme that would not deadlock when
the packet_mover function is introduced as an independent part of the
system. Different locking schemes where tried with varying success, but
no scheme worked as needed. The main idea about the packet mover
running when packets needed to be transferred was to have the time_to_-
send be as realistic as possible as it was calculated when moving the packet
at the correct time. With problems getting it to work correctly, a redesign
on how the packets were moved from one queue to the other commenced.
In the end we landed on a relatively simple set-up: Whenever NetEm’s
enqueue or dequeue functions is called we will start with a call to the
packet_mover function. The only changes to the function is that it is no
longer a callback function designed to call itself as long as there are packets
in the rate queue. Now it will just move all packets that have an expired
time_to_send value from the rate queue to the delay queue.

There are four main changes/additions to NetEm v3.2 that will be
explored. Most of the netem_enqueue() functionality has been moved to
the delay_queue_enqueue() as all of the old emulation will now be done
when moving the packet from the rate queue to the delay queue. netem_-
enqueue is used to queue packets in the rate queue. A packet_mover() is
used to move packets from the rate queue to the delay queue, and the
netem_dequeue() function works mostly as it did in v3.2, but it has to take
into account the extra queue in the qdisc.

54



netem_enqueue()

The netem_enqueue() is now a steppingstone for the packets on their way
to the rate queue. The first thing this function will do is to call packet_-
mover(). We call this function before queueing a packet to make sure
that there is the correct amount of packets in the rate queue in case of
congestion. To queue a packet in the rate queue, we need to calculate how
long it must wait there based on the size of the packet and the configured
rate. The method to calculate how much time a given packet uses to
be transmitted is the same as the one used in NetEm v3.8, which will
be explained in section 3.3.3. After the packet has the correct time_to_-
send it will be placed in the rate queue. It is important to note that the
surrounding network code expects to find the amount of packets queued
in the queueing discipline by looking at the queue length of its queue. This
version uses two queues, and as the system only checks one it will give the
wrong result. We have fixed this by updating the delay queue length (this
is the one the surrounding system checks) when we enqueue a packet in
the rate queue. When we move packets from the rate queue to the delay
queue we make sure that we do not update the length of the queue again.
We have implemented a dedicated code path in this function that works
when Double-queue NetEm is used with no configured delay, it will just
skip the rate queue and queue the packet directly into the delay queue.

packet_mover()

The packet_mover() function is called from both netem_enqueue() and
netem_dequeue(). It is implemented to move packets from the rate queue
to the delay queue. It uses delay_queue_enqueue() to do this. As we can
see from the code below, it will continue to move packets as long as their
time_to_send as lower than the current time.

while ((skb != NULL) && (netem_skb_cb(skb))->time_to_send <= \
psched_get_time()) {

skb = __skb_dequeue(&q->rate_q);
delay_queue_enqueue(skb, q->this_qdisc);
skb = skb_peek(&q->rate_q);

}

delay_queue_enqueue()

Most of the functionality of netem_enqueue() in NetEm v3.2 is moved to this
function in Dq NetEm. It works mostly in the same way. The exceptions
are that it will not check for any queue size limit, and that it will not update
the queue length stat of the delay queue if rate emulation is used.
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netem_dequeue()

This function is implemented almost as in v3.2. The first difference is that
it will call the packet_mover() function when it starts. The other difference
is when there are noe packets that it can release. When NetEm cannot
release a packet it will reschedule the dequeuing process by setting up a
watchdog timer. If the delay queue is empty it must also check the rate
queue in case there are packets there.

3.3.3 NetEm v3.8 implementation

There is really only one real change from v3.2 to v3.8 of NetEm, some
small changes that have no impact on this thesis will be left out. The code
to NetEm v3.8 can be found at [38]. V3.8 have the added rate extension.
This is mostly implemented by calculating how much time a packet of a
given size needs to propagate out on the physical link. This is mainly done
in the packet_len_2_sched_time() function. This is also the calculation that is
used in Double-queue NetEm.

static psched_time_t packet_len_2_sched_time(unsigned int len,
struct netem_sched_data *q) {

u64 ticks;
len += q->packet_overhead;
ticks = (u64)len * NSEC_PER_SEC;
do_div(ticks, q->rate);
return PSCHED_NS2TICKS(ticks);

}

In addition to this, as NetEm v3.8 uses one queue for both rate control and
delay, it must calculate the time_to_send based on the last packet in the
queue and the delay to be added. This is what was wrong in the versions
with the rate control that did not work correctly.

3.4 Packet flow in NetEm

Here we will describe the flow through the different versions of NetEm.

3.4.1 NetEm v3.2 flow

The flow through the NetEm v3.2 queueing discipline is quite straightfor-
ward and an overview can be found in figure 3.5. As explained in section
2.3.1, a queueing discipline is first involved when the kernel tries to en-
queue a packet in the qdisc through its virtual enqueue method.
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Figure 3.5: NetEm v3.2 qdisc flow
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• Enqueue: In the case of NetEm, netem_enqueue() is called, which
takes one packet and enqueues it into the qdisc. Through calls
to various functions it will first orphan the skb (skb_orphan()),
then do drop and corruption. Drop will just free the skb and
return. Duplication will be achieved by the skb_clone() function to
duplicate the packet and a call to qdisc_enqueue_root() to enqueue the
duplicated packet at the root qdisc. What it does next depends on
reordering. If a packet is to be reordered it will first set its time_-
to_send to current time, then put it at the head of the queue with
__skb_queue_head(). In the case of no reordering, it will calculate
the packet’s time_to_send based on the configured delay, jitter,
correlation and distribution with a call to the tabledist() function. The
packet is then placed in the queue with qdisc_enqueue(), which is a
virtual pointer to the enqueue function of the qdisc used as NetEm’s
queue (by default it will be tfifo_enqueue()).

• Dequeue: When netem_enqueue() returns, the kernel will immedi-
ately call the device output queue through the use of qdisc_run(),
which will in turn call qdisc_restart(). This function will call the
qdisc’s virtual dequeue function to dequeue a packet. In the case
of NetEm this is netem_dequeue(). netem_dequeue() will peek at the
first packet in its queue. If the packet is ready to be sent, its time_-
to_send value is lower than current time, it will be dequeued from
the queue with qdisc_dequeue_peeked() and returned to the caller of
netem_dequeue(). If NetEm cannot release any packets, the peeked
packet has a time_to_send higher than the current time, it has to
reschedule the dequeuing. In this case NetEm will make use of
the qdisc_watchdog system by calling qdisc_watchdog_schedule() with
the time_to_send of the first packet in the queue as a parameter.
qdisc_watchdog_schedule() starts a watchdog timer, which will restart
the dequeuing process at the time of the first packet to be dequeued.
This will eventually lead back to the netem_dequeue() function, and
the packet that could not be sent earlier.

3.4.2 Double-queue NetEm flow

The resulting flow in Double-queue NetEm is a bit more complex than in
NetEm v3.2. An overview can be found in figure 3.6. The functions to
interact with the queueing discipline is still the same, netem_enqueue() to
queue packets, and netem_dequeue() to dequeue them.

• Enqueue: netem_enqueue() is called when the network subsystem
wants to enqueue a packet to the NetEm qdisc. First it will call
packet_mover() to move all packets with an expired time_to_send
from the rate queue to the delay queue. The packet moving flow
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Figure 3.6: Double-queued NetEm flow
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is described below. Next the packet to be enqueued will be added
to the tail of the rate queue with __skb_queue_tail(). The time_to_-
send of the packet will be calculated first, so the queueing discipline
knows when to move the packet from the rate queue to the delay
queue. A dedicated code path exists in this function that will be
used if Double-queue NetEm is configured without rate emulation.
This code path will just queue the packet directly to the delay queue
with a call to the delay_queue_enqueue(). The delay_queue_enqueue()
function works much like the netem_enqueue() of NetEm v3.2. This
means that it will do much of the same calls as explained in the last
section.

• Packet moving: The packet_mover() function will move packets from
the rate queue to the delay queue with delay_queue_enqueue(). This
will continue to move packets as long as there is one in the rate queue
with an expired time_to_send value. After which it will return to the
callee.

• Dequeue: In netem_dequeue() there are also some changes to the
packet flow. First it will call packet_mover() to move all packets with
an expired time_to_send from the rate queue to the delay queue.
This function works as described above. Next it will check the delay
queue for a packet with qdisc_peek_head() and return the packet if it
is ready to be sent. If there is packets in the queue, but the time_-
to_send is not reached yet, it will reschedule the dequeuing at the
time of the first packet with qdisc_watchdog_schedule(). If there are
noe packets in the delay queue it will check the rate queue with
skb_peek(). If there is no packet it just returns as there are noe
more packets in the qdisc, but if there is one it will reschedule the
dequeuing with qdisc_watchdog_schedule().

3.4.3 NetEm v3.8 flow

NetEm v3.8 does not have a very different flow path than v3.2. The only
real difference is the rate calculation that will be added to the time_to_send
of a packet by calling packet_len_2_sched_time().
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Chapter 4

Results

We wanted to see if our implementation works as we envisioned. We have
therefore run several extensive tests and compared it to other versions of
rate emulation. As the design and implementation have been done with
the goal in mind to create a built-in version of rate control we will focus
most of our tests on just that, the rate. In addition we have tested the delay
parts of the emulator to see if the rate emulation addition would break the
old functionality. We expect our implementation to at least mitigate some
of the burstiness that might occur while using TBF to emulate bandwidth.
The splitting of rate and delay emulation should also have an impact on
our results.

4.1 Testbed

All tests in this thesis were conducted using the same testbed (shown in
figure3.3), using three computers. Two of them were identical (Core 2 Duo,
3.0 Ghz, 4 GB memory). One was used as the receiver, while the other
was used as the router. The third computer was almost identical (Core 2
Duo, 2.4 Ghz, 4 GB memory). It was used as the sender. The router did
emulation on the outgoing interfaces to the sender and the receiver. All
network devices was theoretically capable of 1 Gbps. Both the sender and
the receiver used Linux kernel version 3.5.0, while the kernel used by the
router changed between v3.2 and v3.8 depending on the NetEm version
being tested.

4.2 Testing of Double-queue NetEm

The kernels used in the testing was as follows. NetEm v3.2 used the 3.2
kernel, while NetEm v3.8 used the 3.8 kernel. Double-queue NetEm used a
3.8 kernel with our implementation of Double-queue NetEm. The tests the
were run with the interface doing the rate control was done using NetEm
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v3.2 on the 3.2 kernel.

4.2.1 Rate control

The test

To test the rate emulation feature of Double-queue NetEm we have used
UDP with a set of different test scenarios to see how the implementation
works. Each test in the set had a configured bandwidth (between 1.5 Mbps
and 100 Mbps) and a configured delay (between 0 and 50ms). We chose
the test metrics as follows:

• UDP is a transport protocol that will just send data with no
guarantees for delivery, ordering or protection against duplication.
Lost packets will remain lost, as there is no resending of packets. In
a perfect network, where none of these problems is an issue, UDP
will work very well. No reactionary components, such as congestion
avoidance in TCP, means that UDP uses very little overhead. With
this in mind we expected to see very little impact from the protocol
on our results, meaning that we should be able to emulate rates that
are very close to the theoretical maximum.

• The test was done with three different bandwidths. First we
had ADSL Lite which has a speed of 1.5Mbps/0.5Mbps. This
is a common internet access technology recommended by the
International Telecommunication Union (ITU) [19]. Sender to
receiver was configured to 1.5Mbps while receiver to sender was
configured to 0.5Mbps. The configuration of the receiver to sender
emulation was really not necessary for this test, but with the
way our test system is set up we needed to configure both ways.
This does not impact this test, as UDP only sends traffic in one
direction. We also chose to test with bandwidths of 10Mbps/10Mbps
and 100Mbps/100Mbps as common Ethernet technologies provides
network cards with these speeds. With these bandwidths we also
had the ability to configure the device driver to run at these rates to
provide a baseline to check the emulation results against.

• In this test we chose to configure different delays to make sure the
stability of our emulation system does not change with different
amounts of packets staged in the delay line. We used 0ms, 10ms
and 50ms as end-to-end delays for these tests.

• To make sure the queue sizes of the different scenarios doesn’t
impact the results, we chose to set queue sizes based on bandwidth-
delay product (BDP). BDP refers to the product of the data link’s
capacity and either its end-to-end delay or its round trip time (RTT).
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It is calculated with bits per second for the capacity and seconds for
the delay. Our queue sizes were set to BDP calculated with RTT to
make sure the queues were large enough for the emulators to be able
to send at the rate it supposed to emulate.

To generate the UDP traffic we used the program Iperf [27], to send data
from the sender to the receiver. Iperf sends udp data in packets of 1470
bytes, which translates to an ip packet with the size of 1498 bytes when we
include the ip (20 bytes) and udp (8 bytes) headers. In Iperf it is possible
to configure a target bandwidth rate to send packets at. We set this to
about 20% more than the configured test scenario to make sure that we
had enough packets running through the system so that packet creation
would not have an impact on the rates. In addition, this fills up the queues
so we can see that there is no trouble with the queue implementation.

Below is the equation we have used to calculate our queue size Q_s,
using bandwidth in bits per second B and delay in seconds D with regards
to our packet size P in bits. The answer was rounded up to the nearest full
packet:

Qs = (BbpsxDs)/Pb

Using this formula we could see that we needed a queue size of 17 packets
when emulating a link of 10Mbps with an rtt of 20ms.

Qs = (10000000x0, 02)/11984 ≈ 17

This of course left us with a problem to calculate the queues when there
is no added delay. We say added, as in reality, when we are working with
real systems that have real network links, there will always be some delay
inherently in the network. The rtt of the reference system was shown in
table 2.1. Again to get results based on the rate implementation without
queue interference, we chose to calculate the scenarios with no added
delay as if it had an rtt of 1ms. This left us with the test scenarios shown
in table 4.1. All of these test were run with Double-queue NetEm and with
NetEm v3.2 to compare against. In addition we ran the last 6 scenarios
with setting the mode of the interface to compare against what a device
limited rate would be.

Result

The statistics from the different rate test scenario streams are summarized
in table 4.2. From the table we can see that the rates from NetEm v3.2 and
our Double-queue (Dq) implementation are very close. At higher rates we
can see that there is a bit more throughput with Dq than there is with v3.2.
One possible reason for this might lie with how we have configured TBF
in our experiments. TBF have many possible configurations, but as we do
not want any burst over the targeted bandwidth, we have configured it
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Rate Delay Queue size
(Mbps) (ms) (packets)

1.5/0.5
0 2

10 3
50 13

10/10
0 2

10 17
50 84

100/100
0 17

10 167
50 834

Table 4.1: Rate test scenarios

with a burst size of 1540 bytes. As we are sending only full packets, TBF
should not at any point in time be able to burst more than one packet. With
TBF never being able to send more than one packet it should also even out
the release of packets eliminating much of the inherent burstiness of the
implementation.

At 10Mbps and 100Mbps we have the possibility to compare the results
of the two different rate implementations to the rate given when the
interface is set with the corresponding bandwidth setting. Here we can
see that we consistently get a higher rate with v3.2 and Dq NetEm. The
reason for this has been narrowed down to the calculation of packet sizes.
Our implementation is calculating the time a packet must remain in the
rate queue based on the length of the packet which can be found in the
packet’s sk_buff struct. The len member of this struct keeps the size of the
packet. This does not take into account the headers of the packet. As we
send the headers with the packet across the network, they will of course
also use bandwidth. In our set-up which uses UDP over IPv4 this equals
8 bytes for the UDP header and 20 bytes for the IPv4 header that is not
included in the calculation leading to higher rates than configured. There
exists a patch to a later version of the kernel that aims to correct this. It
uses the pkt_len member of the qdisc_skb_cb struct (a control buffer used
while the packet is inside a qdisc), to store the length of the packet with
the headers included. We have not tested it, but as there is work that aims
to universally fix the problem we have chosen to not correct for packet
headers in our implementation. The last column in the figure contains the
resulting throughput once we have adjusted for the headers. This is done
by reducing every packet with 28 bytes to get the real throughput of the
scenario. All the figures in the results have likewise been adjusted.

Figure 4.1a shows the throughput for the various rate control mechan-
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(a) 1.5Mbps / 10Mbps

(b) 100Mbps

Figure 4.1: Rate emulation with 0ms delay
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(a) 1.5Mbps / 10Mbps (b) 100Mbps

Figure 4.2: Rate emulation with 10ms and 50ms delay

isms for the 1.5Mbps and 10Mbps links with 0 delay configured. We can
see that both v3.2 and Dq NetEm is very close at 1.5Mbps, and they are
also both very similar to the interface at 10Mbps. Figure 4.1b the through-
put at 100Mbps and 0 delay. Here we can see that Dq NetEm is very close
to what the interface gives as rate. This is a very good indication that our
implementation is working as it should. The v3.2 version of NetEm is a
bit lower in this graph. The only reason we can find is the one we dis-
cussed earlier. The configuration of TBF might be the culprit. We could
probably raise the throughput of NetEm v3.2 by allowing some bursts in
TBF. This is however not something we want when running emulation,
so we continued with the same settings. However, this illuminates the
fact that configuring the queueing disciplines together as they are now, is
a hard task. Figures 4.2a and 4.2b shows the same results when we use
end-to-end delays of 10ms and 50ms respectively.

In figure 4.3 we can see a zoomed-in view of the scenario of a 100Mbps
link with the end-to-end delay of 50ms. Here we notice that the v3.2
scenario, which uses the TBF qdisc for rate control, has a much more
bursty behaviour than Dq NetEm. There seems to be some very small
bursts in the stream with Dq Netem, but it is generally much better
behaved than v3.2. We can see that Dq NetEm is very similar to the
interface scenario, both in burstiness and in actual throughput.

The cumulative distribution function (CDF) in figure 4.4 shows the
scenario with 100Mbps rate and 10ms delay. As we can see from the graph,
all of the rate control mechanisms give a rate close to what is configured.
This proved to be the case in all the tested scenarios.

The conclusion is that the Dq implementation proposed in this thesis
performs very well in a rate setting. It reduces the inherent burstiness of
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Figure 4.3: Rate emulation 100Mbps 50ms delay

the TBF rate implementation to make it more emulation friendly. Burst is
as explained earlier not an ideal situation for a rate emulation scenario.
When the correct packet size is computed, it also gives rates very close
to what a real life link at a certain speed would give, as indicated by the
comparison with the interface scenarios.

Double-queue NetEm vs NetEm v3.8

The main focus of our testing was to compare the Dq implementation
against NetEm v3.2. We did decide to do a simple test to compare our
version with NetEm v3.8. This is the version where the built-in rate control
extension was fixed. We ran the test set again with same metrics that was
used on the other versions. In figure 4.5 we can see the result of the test
case with a 100Mbps link and a delay of 50ms. From the figure we can see
that two versions behave almost exactly the same. The amount of burst
and the throughput is almost identical. This is likely caused by the fact that
both versions use the same time dependent approach to rate emulation.
All tests in the set showed the same result.
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Figure 4.4: CDF of rate emulation with 100Mbps 10ms delay

Figure 4.5: Rate emulation 100Mbps 50ms delay
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4.2.2 Latency

The test

Latency is an important part of emulation. To make sure that our addition
of rate emulation to NetEm did not break this functionality we did latency
tests with Dq NetEm comparing it to NetEm v3.2. The two test sets were
both run with the rate emulated to 10Mbps. One test set was done with
the Ping tool provided by the inetutils package [15]. Ping send an ICMP
echo request to the target host, and the target host replies with an ICMP
echo reply. This can be used to measure latency. We configured Ping to
send in total 1000 echo requests with one sent every 10 milliseconds. The
other test set consisted of sending TCP traffic with the Iperf tool. The same
metrics were used for both test sets:

• There is a huge variation in latency. Depending on connection
and how far away a target machine is. This makes it hard to
define some standard latencies to test. We wanted to test with
some latencies that make trouble for real world applications, as
this would be the kinds of delay one would like to emulate when
doing tests. There is research being done on online gaming. The
different kinds of games have different kinds of delay requirements
from the users as shown by Claypool, et. al. in [7]. We chose
to use the player tolerance latency for FPS games presented in the
paper, of 100 milliseconds. Another set of computer applications that
should not exceed a certain amount of latency is Voice over IP (VoIP)
applications. An ITU-T recommendation [20] specifies that latency
in audio conferences must stay below 150-200 ms to achieve user
satisfaction and below 400ms to remain usable. From this we chose
to use 400ms as one of the latencies in our test set. In addition, we
wanted a relatively short delay to make sure our rate control did not
make much difference here. We chose to go with a 20ms RTT.

• We used the same method for calculating queue sizes as in the rate
control tests.

This left us with the test scenarios shown in 4.3, which we ran with both
Ping and Iperf.

Result

The statistics from the different Ping tests are shown in table 4.4. From the
table we can see that the average latency in Double-queue NetEm is very
close to NetEm v3.2 in all the tests. This gives an indication that the latency
emulation is working as intended. In important thing to notice from the
table is that the Dq implementation proposed in this thesis, introduces a
higher overhead to the emulation, in the range of 0.12-0.16 milliseconds.
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Delay Queue size
RTT (ms) (packets)

20 17
100 84
400 334

Table 4.3: Latency test scenarios

Scenario Min Average Max Stddev
Emulated delay Type (ms) (ms) (ms) (ms)

Reference none 0.124 0.209 10.258 0.712

20
v3.2 20.115 20.222 30.246 0.840
Dq 20.267 20.379 30.398 0.899

100
v3.2 100.121 100.236 110.247 0.899
Dq 100.274 100.361 110.391 0.779

400
v3.2 400.131 400.240 410.241 0.953
Dq 400.263 400.356 410.387 0.779

Table 4.4: Ping results

The system with two queues and the moving of packets between them is
the likely culprit as the calculations done within the queueing discipline
has not been changed greatly.

A small problem with the tests can be seen in the Max latency column.
All tests have a max latency of 10 milliseconds more than configured.
With no other traffic than the ICMP packets themselves, this should not
be possible. As we can see from the reference test which we did with no
emulation turned on, the problem is still there. This means that it is not a
problem induced by the emulation. We narrowed the problem down to the
Ping implementation. At random times it seems as if the target machine
of the ping request does not send the reply. It will however send it at the
same time that it replies to the next ping request. As we sent one request
every 10 milliseconds we would get some replies that took that amount of
time extra as it had to wait for the next request. We verified this by sending
requests at a different rate.

Figure 4.6 shows the results from the TCP test with Iperf. Here we
can see the latencies varying with the different RTT scenarios. From the
figure we see a common trend that the Dq NetEm implementation overall
has a higher average latency and a higher maximum latency than the
v3.2 version. This is caused by the fact that Dq NetEm has two queues.
Both scenarios were configured with the same queue lengths. In the v3.2
NetEm scenarios both rate control and delay emulation is done with the
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same queue. This means that packets waiting because of emulated delay
populate the same queue, in other words these packets count as part of
the buffer. In Dq NetEm all the packets that are being held back because
of delay emulation is placed in the delay queue. This means that these
packets do not count towards the queue occupation of the rate queue. The
rate queue can therefore hold more packets. With TCP reacting to packet
loss, we get a slightly different behaviour with Dq NetEm when compared
with v3.2 NetEm.

Figure 4.6: Latency vs. RTT

We conclude that the Dq implementation does not have negative
impacts on the latency emulation capabilities of NetEm. It does introduce
a slight overhead increase, but with the increase being in the range of 0.12-
0.16 milliseconds, this is not that big of a problem. We would argument
that the difference in behaviour when it comes to the TCP latency tests
is a good change. All packets in a TCP stream counts in its packets in
flight mechanism, even those out on the physical medium. With one queue
we drop packets earlier than we should as our queues also include these
packets. This results in earlier drops and a lower packets in flight count
than in a real system using the same queue size. In our double queue
implementation, the queue size will not include the packets that are staged
for delay. This leads to more realistic drops and a higher packets in flight
count, which should lead to more realistic behaviour.
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4.3 Discussion

As the focus of this thesis has been the implementation of a built-in rate
control to NetEm, this is the feature we have extensively tested. We
presented some problems with using two queueing disciplines and the
resulting single queue in section 3.1. In addition we explained a bit about
TC not being developed to be a network emulator. Three main problems
were drawn from this: configuration is really hard to get right, using
one queue to emulate both rate and delay might not be in the users best
interest, and the rate controls based on the token bucket algorithm can
easily provide unwanted bursts.

We have seen through the results of the rate control that the rate
extension works mostly as expected. We can see a throughput that is very
close to what a configured network device gives us. In addition we can
plainly see that it leads to less burst than the same set-up used with TBF
and NetEm v3.2. Unfortunately it does not seem that we have eliminated
burst completely. This might not be possible though, with the inherent
burstiness of the underlying architecture. By this we mean that the system
is not dedicated to only doing emulation, and that it will at times not
manage to run for example the dequeue function at exactly the right time
every time it wants to run. When compared to the NetEm v3.8 version we
found that they behaved very much alike. We contribute this to the fact
that the actual rate emulation is done much in the same way.

Another thing we have seen in the results is the impact of the double-
queue system. In the latency experiment we clearly saw a larger difference
between NetEm v3.2 and Double-queue NetEm than in any other. We
concluded that this was because the packets being held back because of
delay emulation does not count towards the queue occupation in our
proposed system. This should contribute to the emulator producing
more life like results. The same behaviour could probably be reached by
calculating and configuring a larger queue size using NetEm v3.2, but by
doing that we are back to the other problem of configuration troubles.

Moving from the NetEm v3.2 system that have to use two queueing
disciplines that both have to be configured to a system only needing
one configuration relieves a lot of problems. When configuring two
queueing disciplines we need a great deal of knowledge to get a system
that behaves in any way like a real system would. In section 3.1.2
we explained that swapping two queueing disciplines around could
completely change the way the system worked. For example, going from
a TBF root and NetEm leaf to a NetEm root and TBF leaf changes the
reordering mechanisms used in NetEm. This is not something that has
a good documentation anywhere, and entails a very good understanding
of how the system works. This level of knowledge about how exactly the
queueing disciplines work and act when used together is no longer needed
when we only have to deal with one qdisc.
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Chapter 5

Conclusion and future work

In this thesis we have investigated some of the challenges with using TC
and NetEm to do network emulation. This work started out after we
experienced some experiments giving weird and unexpected results. After
some time we discovered that it was simply the configuration that lead
to the strange results. After more time analysing the problem, we found
three main problems. 1) Configuration of the queueing disciplines, 2) The
problem of cooperation between TC and NetEm. And 3) The fact that the
TC system was not developed to be a network emulator.

As a remedy to these problems we proposed a design that would
remove the need to configure two queueing disciplines and at the same
time divide the emulation into two parts that would remove the problems
with doing both rate emulation and delay emulation in the same queue.
This solution should mitigate or remove the problems we had found.

We then implemented this system and tested it. The result from these
tests show us that it is possible to remove or at least mitigate these
problems. One queueing discipline is now doing all the work, which
means there is only one to configure. In addition we have shown that
the results vary from a system using one queue to do both rate and delay
emulation, and our system which uses two separate queues. We have
provided an argument for why we think this is a more life like behaviour.

While we have extensively tested that our implementation works fine
with both rate and delay emulation, we have not, due to time limitation,
tested if the other emulation functions of NetEm works as they should. As
most of the actual emulation code from NetEm v3.2 is still the same, we
expect them to work as they did in that version. To be certain we would
have to do more tests.

We want to conclude that doing work in the Linux kernel is hard.
We started out with very little actual knowledge about the kernel, and
very much time was spent trying to learn all the networking code needed
for this thesis. One real problem is the bad and often very outdated
documentation. Despite this we feel that we have implemented something
that could be a real contribution if it underwent more tests and tweaks.
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5.1 Future work

To submit the code as a patch to the Linux kernel it would have to go
through some more extensive testing. Some tweaks might also have to be
done concerning corner cases, such as using Double-queue NetEm with
rate configured but no delay. There is no reason that the packet should
have to be moved between the queues for no reason.

There are lots of possibilities available with the system now using
two queues. We could change the implementation to a module based
approach, that would enable user to implement their own version of rate
control for special needs. The possibility to change the queue used for
the rate control would also be a nice addition. It would enable the use
of advanced queue schemes, such as RED. However, this would again
raise the complexity of the configuration and one should therefore be very
careful with how to implement it.
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Errata

Known errors in the final print:

• Figure 2.3 page 16: User space box should say "Application" instead
of "Queueing discipline"

• Figure 4.2 page 67: Subcaption a should say "10ms" while b should
say "50ms"
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