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Abstract

Climate changes and global warming are actual and widely discussed
themes. The last five years were recognized as the warmest period during
the whole history of observations. Global warming has a significant
influence on the environment: ice melting, sea-level rise, shifting of
climate zones, changes in animal behaviour, etc. It also affects regional
climate and human and leads to heat waves, droughts, natural disasters
and others. Therefore, it is important to understand the reasons for the
changes and possible ways to prevent them.

The Intergovernmental Panel on Climate Change were founded in 1988
to study anthropogenic climate changes and their mitigation strategies.
Furthermore, they have paid special attention to land use as an important
factor of climate system. On the one hand, climate changes strongly
affect natural land cover, and human can mitigate such a changes. On
the other hand, anthropogenic land use and land cover changes, such
as deforestation and urban expansion, have a huge impact on climate.
However, the impact of anthropogenic land cover change remains an
unexplored problem in climate science.

Nowadays, one of the main methods in climate science is simulation
performed by mathematical climate models. These models describe pro-
cesses in climate system with a huge number of mathematical equations.
However, the simulation results are very complex and difficult to inter-
pret. Therefore, it can be complicated to find trends and hidden patterns
linking different processes in climate using the simulation results. Ma-
chine learning is a particularly promising technology and can be an effi-
cient tool to identify patterns in the climate simulation results.

Machine learning is widely adopted in various scientific fields. How-
ever, it has a limited application in climate science at the moment. Indeed,
the standard machine learning techniques often imply an application to
independent and identically distributed data, while climatic data do not
meet these criteria well. Climate process typically occurs locally and af-
fects neighbor points, which manifests itself in data dependency. In addi-
tion, the probability of climate processes on the Earth is unevenly distrib-
uted. Thus, the application of machine learning in climate science requires
adaptation and verification.

One particular challenge is to understand which machine learning
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algorithm performs better on climate data. The goal of this thesis is
to develop a test that allows defining statistically significant difference
in performances on spatially dependent data. We developed the test
which indicated that the random forest algorithm is the most efficient
algorithm applied to spatially dependent data. This is consistent with
other studies which also compared algorithms for climate science using
different evaluation methods.

Finally, we applied the most efficient algorithm, the random forest,
to analyze the impact of land cover changes in Europe on the regional
surface temperature. Our findings are mostly consistent with another
study carried out on the same initial data set. However, we revealed
several new patterns that have not been detected using standard statistical
methods. This fact is of potential interest to researchers and requires
further investigation.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, climate changes and global warming are indisputable
facts [19, 75, 77, 91, 94]. Global surface temperature has been method-
ically collected since 1850. According to these records, the last 30 years
exceed any previous decade in temperature. Furthermore, in some re-
gions, the temperature has been measured over the last 1400 years, and
the period between 1983 and 2012 was the warmest 30-year period during
this time [19, 91, 92, 94].

The pace of global warming is constantly increasing. The global surface
temperature in 2017 was the second highest annual temperature since the
1850s [43]. It was 0.38°–0.48 °C higher than the average temperature in
1981–2010 [43]. In addition, global warming was observed for all seasons
in 2017 [43]. Therefore, 2017 became the warmest non-El Niño year
during the entire historical period when climate data were recorded [43].
The second warmest year for the same period is 2019 [91]. Moreover,
the average temperature over the last 5 years was the highest of all
observations [91].

Climate changes and temperature growth have a huge impact on
natural and anthropogenic systems on all continents and oceans: melting
of snow and ice, sea level rise, decrease in fresh water volume and
quality, changes in precipitation patterns, behavior alterations of marine
organisms and animals, negative effects on agriculture and many other
effects [77]. Moreover, as shown in Figure 1.1, the land surface air
temperature increases twice as quick as the global (ocean and land)
average temperature [94].

Anthropogenic factors, such as CO2 emission, are considered as
the main cause of global warming in the second half of the 20th

century [77]. Land cover (LC) transformation is distinguished among
other anthropogenic factors as a cause that affects all types of climate
changes. For example, it can lead to either an increase or a decrease in
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Figure 1.1: Change in temperature rel. to 1850-1900 (°C). Adopted
from Ref. [94]
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local CO2 emissions into the atmosphere [77]. In this context, LC can be
defined as a layer of soil and biomass that covers land surface and can be
observed in the field and from remote sensors. For example, LC includes
forests, crops, urban area, etc. [115].

The LC type transformation has various reasons. On the one hand, it
can be caused by natural factors like floods, sea level rise or wildfires. On
the other hand, anthropogenic factors, such as deforestation or growth
of areas covered by fields, also have a significant and often dominant
impact on an LC transition. Figure 1.2 presents an assessment of global LC
changes in 2000 [73]. The green area in Figure 1.2 represents wilderness
and non-industrial areas that have not been drastically transformed by
humans. The areas colored by different shades of red represent the land
used by human for hosting infrastructure, producing food, fuel or other
goods. The different intensity of red color indicates the rate of changes
that have taken place in LC [73]. It can be seen that changes affected a
significant part of the Earth’s surface.

LC plays a significant role in energy and water exchange between
atmosphere and the Earth’s surface. The terrestrial areas not only produce
the greenhouse gases (such as CO2), but also absorb them [94]. Therefore,
sustainable land management is an important tool for climate change
mitigation. The Intergovernmental Panel on Climate Change (IPCC) [94]
states in a recent report that the development of appropriate policies
can considerably contribute to the climate change adaptation and affect
the rate of temperature rise. Some of mechanisms that have already
been implemented, confirm the efficiency of this approach [94]. The
good examples of this measures are sustainable food production and
forest management, food waste reduction, avoidance and prevention of
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Figure 1.2: Global LC changes. Adopted from Ref. [73]

deforestation and land degradation. Even more political actions can be
adopted. The IPCC [94] proposes several efficient strategies for climate
change mitigation such as:

1. Sustainable land use management that includes spatial planning,
environmental farm planning, agricultural diversification, manage-
ment of urban expansion. For instance, "green walls" can diminish
the negative effect of sand and dust storms. That would lead to a
better air quality and decrease the soil erosion.

2. Standardization and certification of sustainable productions. That
can, for example, help consumers make a choice of products that
have less impact on the environment.

3. Facilitation of transfer of knowledge and technology and its utiliza-
tion.

4. Investments in the land and ecosystem restoration. The IPCC
expects that return on these investments will be significant, because
it will lead to more efficient production.

Nevertheless, in order to develop efficient policies, it is important
to understand how different changes in LC affect local and global
climate [73]. Researchers pay special attention to the importance of long-
term monitoring of various types of LC transformations and their relation
to climate changes [48, 77, 82, 94]. The IPCC [94] highlighted the lack of
researches regarding the LC conversion and its impact. In our thesis, we
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aim to address this issue and consider machine learning (ML) methods as
an approach to studying the impact of LC changes on climate.

One of the peculiar features of climate science is the accumulation of
enormous amount of data. The estimated size of climate data exceeds
ten petabytes and continues to grow exponentially [33]. Furthermore, the
number of data sources also increases. Initially, information is collected
by thousands of ground-based weather instruments all over the world,
such as weather station, as well as by a large number of satellites
that perform measurements from kilometers above the ground. Then
these data are processed and transformed to the standard formats that
makes gathered data comparable with each other. Some of information
requires aggregation and labeling. For example, LC data can be observed
from satellites and can be represented as the photograph of the surface.
However, it can be hard to perform the analysis by a picture. An even
more complicated task is to compare results of such an analysis from
different studies.

Therefore, the standard number notions of LC types have been defined
by the climate communities, for instance, the IGBP-MODIS classification
system. Despite the standardization of climate information, it still remains
difficult to analyze. One of the reason is the spatio-temporal dependence
of data. The spatial type of dependence means that processes at a
certain location also affect neighbouring locations. Events occurring
in the same period of time can likely determine events in consecutive
time, demonstrating temporal dependence of data. Another reason of
challenges in standardization of climate information is that there are a lot
of processes happening in climate systems. They affect each other, can
have positive or negative feedback loops and depend on a huge number
of variables.

The first attempts to describe climate data sets with mathematical
equations were made at the beginning the of 20th century [74]. However,
the equations were so complicated that numerical predictions of weather
were impossible within a reasonable time until the computer era. The
first computer-assisted weather forecast was based on the simplified
atmospheric governing equations [74]. Later, an increase in computing
power allowed developing mathematical models called climate models
that can identify monthly and seasonal patterns. Thereafter, climate
models became more and more complex and include more processes and
variables.

Nowadays, simulations based on climate models are the largest source
of climate information [33]. They allow researchers to model a climate
response to some specific changes in a climate system. To perform an
experiment, one should run a climate model with different input variables
few times, and then compare the results to understand the impact of these
input parameters. For instance, a climate model can demonstrate what
kind of changes occurs in a climate system if the input data differs only in
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LC. Nevertheless, a result obtained from the climate model can have non-
linear patterns that are difficult to identify, and researchers should pay
special attention to that. For example, Huang et al. [48] used a statistical
method based on a ridge regression to extract from the climate model
simulations the impact of precise LC transformation on temperature and
precipitation. Nowadays, ML is of special interest to researchers as a
powerful tool for such kind of tasks as well as for other problems within
climate science [50].

1.2 Problem Statement

ML is widely used in different scientific fields, while it has a limited
application within climate science [50]. One of the reason is the spatio-
temporal dependence in climate information. For example, LC and
temperature data are distributed in time and space. The similar changes
that have occurred in different places can have diverse consequences. In
addition, some processes and events are characteristic of specific areas.
Whereas many of ML tools imply that observed data are independent
and uniformly distributed. Thus, ML methods require adaptation or
redesign to be applied to climate data. In this thesis, we study the
possibility to adjust ML techniques to distinguish the impact of different
LC transformations on temperature.

The main objective for this thesis is to find an evaluation method that allows
comparing the performance of various ML techniques on the spatially dependent
data. The found evaluation method will help to choose the most suitable
ML algorithm for climate change analysis. Then we use this ML algorithm
to predict the impact of LC changes on temperature changes in Europe.
The following research questions should be raised:

1. How can supervised ML techniques be applied to spatially depended data
with a high variability?

2. Is it possible to develop a model based on an ML approach, which can predict
the impact of LC changes on temperature?

3. How can an ML approach help to understand the effects of LC changes on
surface temperature?

Our work is divided into three stages to address the objectives listed
above. The first stage implies the development of an evaluation method
that allows comparing efficiency of ML approaches on spatially depended
data. Practically, in order to examine the method, we design a synthetic
data set that simulates data with spatial dependence.

The second stage includes verification of our hypothesis that some ML
techniques perform significantly better than others. To do so, we compare
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performance of a few ML algorithms on the real world data with the
evaluation method developed at the first stage of our research.

The third stage is based on the conclusions of the previous steps. An
ML technique with the best performance will be used to make a prediction
regarding an impact of LC changes on surface temperature. This part of
work includes also an interpretation of the ML models because our goal is
to understand the impact of LC change on temperature.

1.3 Limitations

The scope of this thesis is to develop the method for comparing the
performance of different ML algorithms on spatially dependent data. To
achieve this goal, we design a synthetic data set simulating spatially
dependent data. On this data set, we examine the efficiency of the
developed evaluation method with different data splitting strategies. We
limited ourselves to a one dimensional synthetic data set because the data
set of more dimensions would require much more calculation time. We
also decide to limit the data splitting methods to three strategies due to
time-consuming testing procedure and the overall time limitation for this
master project.

The use case is to apply the developed evaluation method to four
ML algorithms (random forest, least absolute shrinkage and selection
operator, multiple linear regression and support vector machine) and find
the one with the best performance for prediction of effect of LC change
on local temperature. We limite ourselves to four ML algorithms, which
are the most promising for our task. The comparison of a large number
of ML algorithms can be a thesis itself, so instead we focuse on how ML
approach can contribute to understanding in climate science.

In this study, we use the same data set as Huang et al. [48] to compare
our findings with statistical methods. The climate model simulations of
the temperature response on LC changes require a lot of computational
power and time. Therefore, we are limited to LC data for the area of
Europe and for two years: 1992 and 2015.

1.4 Main Contributions

This thesis is focused on study of performance of ML techniques as a tool
for better understanding the impact of LC changes on surface temperature.
Throughout this thesis, we have learned that ML can be an efficient
approach in climate science, given the huge amount of data with a high
complexity of climate information. However, standard ML tools should
not be used blindly, but should be adapted to specific properties of used
data.

6



To achieve the goal of this thesis, we have developed a method
that allows evaluating and comparing performances of different ML
approaches on spatially dependent data. This evaluation technique
is focused on the statistical significance of a difference between ML
approaches with low coefficient of determination. This approach provides
a possibility to address the research objectives defined in Section 1.2.

The main contributions of this thesis are the following:

1. We develop three new methods for algorithms assessment based
on 5x2-fold cross-validation paired t test (5x2 CV test) that allows
assessing performance of ML models on spatially dependent data
with high variability. In contrast with other evaluation techniques,
the developed methods provides statistically significant results. We
evaluate the tests performances with respect to type 1 and type 2
errors and found the best one that we use to compare ML algorithms.

2. Using our technique, we compare performances of four ML al-
gorithms: random forest, least absolute shrinkage and selection op-
erator, multiple linear regression and support vector machine. Ran-
dom forest regression possesses the superior performance over the
other methods for prediction on spatially dependent data with high
variability.

3. The random forest algorithm is used to predict the impact of LC
transformation on the regional temperature. We find out that the ML
model based on random forest regression can help to understand the
effects of LC changes on surface temperature.

4. Based on our findings, we have made the predictions on regional
impact of LC changes on surface temperature in Europe. To the best
of our knowledge, some of these impacts have not been published
previously.

1.5 Research method

The research method is a strategy to accomplish the research goal via data
collection and analysis. In this thesis, we act in accordance with the design
paradigm presented by the Association for Computing Machinery in the
work called "Computing as a discipline". [25]. In this article, Comer et
al. proposed a framework for the studies in computing. The framework
consists of three major paradigms: theory, abstraction, and design.

In our research, we explore a possible application of ML techniques
to climate-related tasks. To achieve our goal, we fit our work to the
framework as follows:
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1. Theory implies the study of object definitions and hypothesizes
the relations between them. In this thesis, we study the specific
properties of climate data and requirements for ML algorithms.
We identify the lack of methods for evaluation of ML algorithm
performance on spatially dependent data.

2. Abstraction involves the hypothesis developing, design of experi-
ment, and analysis of experimental results. A huge part of our work
belongs to this paradigm: 1) we design an experiment to test our hy-
pothesis on different data sets, 2) we analyze data gathered from the
experiment, 3) we distinguish an ML algorithm with the best per-
formance on the spatially dependent data.

3. Design, in this context, means the definition of requirements, system
implementation, and testing. In our research, we define the
requirements for the prediction of the impact of LC change on
temperature. We develop ML models to carry out predictions.
Finally, we compare our results with other studies to verify our
findings.

1.6 Outline

The thesis consists of the following chapters:

• Chapter 2 - Background: we introduce background information for
climate science and machine learning. We pay special attention to
the modern methods in climate-related studies as well as to ML
algorithms and their evaluation.

• Chapter 3 - Land Cover Change Data: we describe the features of
the data in climate science with a focus on the data sets used in this
thesis.

• Chapter 4 - Methodology: we present our methodology by describ-
ing the possible ways to adapt the evaluating ML techniques to the
spatially dependent data.

• Chapter 5 - Experiment: we demonstrate the design of the experi-
ment that includes two experiments. Then, we analyze and compare
the results of two experiments. Finally, we discuss how these find-
ings are consistent with other studies.

• Chapter 6 - Predictions: using the results of the experiment we
predict the impact of LC changes on regional temperature. We also
compare these results with other studies on this subject.
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• Chapter 7 - Conclusion: Finally, we provide a summary of our work
and propose the directions for further studies.
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Chapter 2

Background

This chapter contains the background and motivation of our thesis.
In Section 2.1, we introduce the problem of climate change due to
anthropogenic factors. Then we examine a special role of the impact of
LC transitions on climate. In the second section, we give a brief overview
of the main concepts in ML and describe the four algorithms that we use
in this work. Next, we discuss different methods for the evaluation of
algorithm performance. Finally, we exhibit how ML is currently used in
climate science.

2.1 Climate Science

We begin this section with a background for climate science and review
of the recent trends in global climate changes and especially the peculiar
features of climate changes in Europe. Then we explain our choice of
climate changes due to LC changes as a use case. we present the summary
of recent publications on climate changes and their driven factors. Lastly,
we discuss approaches for prediction of climate changes that are widely
used nowadays.

2.1.1 Observed Climate Changes

Climate change has drawn the interest of researchers last hundred
years [94]. The number of articles on atmospheric science per year
has tripled during the period of 1965 – 1995 [38]. The number of
articles per year between 1992 and 2007 has grown even more - by 4.5
times [68]. Moreover, we can expect a substantial increase in climate-
related studies since climate changes are accelerating nowadays. New
data and new sophisticated research methods allows distinguishing more
complex patterns and revealing an impact of different factors on climate.

Starting from the 1980s, every successive decade has been warmer than
any previous decade since 1850 [92]. The latest observations show that
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Figure 2.1: The global annual mean temperature difference from pre-
industrial conditions (1850 – 1900). The different lines in the graph
correspond to several in-situ data sets (HadCRUT, NOAAGlobalTemp and
GISTEMP) and two reanalysis (ERA5 and JRA55). Adopted from Ref. [92]

the period between 2009 and 2018 was the warmest decade through the
whole observation period of the average annual surface temperature [3].
It was warmer by 0.91 – 0.96 °C than the average temperature during
pre-industrial era (1850 – 1900) [3]. Based on the five data sets used
by the World Meteorological Organization (WMO) [91], global mean
temperature in 2019 was by 1.1 °C warmer than the pre-industrial
temperature. 2017 was the warmest year, and 2019 was the second
warmest year during the entire time of observation [91]. Moreover, the
last 5 years (2015 – 2019) are the warmest years on record [91], indicating
an acceleration of pace of global warming. The difference in global annual
mean temperature between pre-industrial and industrial eras is plotted
in Figure 2.1. This information is captured from several in-situ data sets
(HadCRUT, NOAAGlobalTemp and GISTEMP) and two reanalysis (ERA5
and JRA55) [92]. Figure 2.1 also contains the average temperature for the
first 10 months of 2019 [92].

The predictions from widely-used climate models also forecasts a
further growth of global average temperature for the period of 2071 – 2100
compared to 1971 – 2000 [75]. The expected temperature increase depends
on used scenarios for emissions of greenhouse gases. However, even for
the lowest emission scenario, scientists estimate temperature growth of 0.3
– 1.7 °C [75]. The temperature growth should be even more prominent for
a higher emission scenario. In this case, climate models predict that the
increase in temperature should be between 2.6 °C and 4.8 °C [75].

The European region is especially important area for climate studies
because temperature changes there exceed the global average trends [19].
During the period of 2009 – 2018, the average surface temperature
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in Europe was higher by approximately 1.6 - 1.7 °C than in pre-
industrial period. It is much higher than the global mean temperature
increase. However, changes in Europe are also not uniform. Figure 2.2
demonstrates the changes in annual surface temperature in Europe during
the period of 1960 – 2018. The areas indicated by black lines are
more representative because they contain three or more meteorological
stations. The black dots mark areas with a significant long-term trend
in temperature growth [3]. One can notice that the long-term trend in
temerature growth is observed almost all over the map.

Figure 2.2: Trends in annual temperature across Europe between 1960 and
2018, °C per decade. Adopted from Ref. [3]

The climate warming in Europe has also been predicted by climate
models [52]. Moreover, it is also expected that the average temperature
in Europe will grow faster than global temperature [52]. The temperature
in this region will grow by 2.5 – 5.5 °C in case of the highest emission
scenario for the period of 2071 – 2100 compared to 1971 – 2000 [52].

Given the indisputability of climate changes and the further expected
temperature growth, it is critically important to understand the main
reasons for this process.

2.1.2 Climate Change Drivers

Climate is a complex system and is affected by many interrelated factors.
The first trends in climate changes have been revealed many years
ago [63]. However, at the beginning, researchers have mainly studied
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single time series – changes in global mean temperature over time [63].
The detection and attribution of these changes were main objectives of
research. At that time it was impossible to distinguish anthropogenic
factors from other causes of global warming.

One of the first assumptions on the human-related impact on global
warming was made at the beginning of the 1980s [42, 76]. In the 1990s,
it was shown that the real growth of global mean temperature in 1867
- 1982 was noticeably faster than the expected increase estimated with
fluctuations in global mean temperature [109, 118]. Subsequent studies
have concluded that the observed climate changes are the result of both
natural factors and anthropogenic activities [46, 105, 108].

Until the middle of the 19th century, natural factors had the dominant
impact on global mean surface temperature. Among them, one can
distinguish the following factors:

1. Fluctuations in solar activity [21, 22, 45, 66]. Solar activity varies
from quiet to stormy during the 11-year cycles. Moreover, solar
irradiance can differ from cycle to cycle. The variation in solar
activity was one of the main reasons of climate change during the
pre-industrial era. However, the pace of the current temperature
change cannot be explained only by solar activity. It can be clearly
seen in Figure 2.3 where the red line represents global surface
temperature (in degrees Celsius) and the blue line represents solar
irradiance (in watts per square meter) received from the Sun. To
eliminate the cyclic variability, thicker lines show average data for
11-year cycles [87].

2. Volcanism and related aerosols [20, 29, 66]. Volcanic eruptions
lead to emission of a tremendous amount of ash and gases into
the atmosphere. If eruptions are intense enough and eruption
products reach the stratosphere, it can result in significant climatic
cooling. Volcano-related cooling can possess a positive feedback
loop with further cooling [20]. The volcanic activity was one of the
main reason for a significant cold interval known as the Little Ice
Age [21]. However, dissipation of eruption products usually lasts
only 2 years [21]. Therefore, volcanism has a low impact on the latest
climate changes and global warming.

3. The natural greenhouse effect and water vapour [57, 66, 114].
Greenhouse gases, such as H2O, CO2, CH4, are characterized by
high transparency in the visible range but by high absorption in
the middle and far infrared ranges of electromagnetic radiation
spectrum. The presence of such gases in the atmosphere captures
the heat coming from the Sun and leads to the greenhouse effect and
the Earth’s surface warming [75]. Most greenhouse gases have both
anthropogenic and natural origins. Among the natural greenhouse
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Figure 2.3: Global surface temperature and the Sun’s energy. Adopted
from Ref. [87]

gases, water vapour has the dominant contribution (about 60 %)
to the greenhouse effect on the Earth [57]. The intensity of water
vapour depends on temperature that complicates its consideration
in climate models [78].

The IPCC analysed a significant number of climate-related studies and
estimated the different contributions to the recent climate change [19]. The
IPCC concluded that the rise in global mean surface temperature is mainly
driven by human activity [19]. Changes in global surface temperature
caused by anthropogenic and natural drivers are presented in Figure 2.4.

Various human activities cause climate changes. Human-caused
emission of greenhouse gases is the most critical anthropogenic factor in
temperature trends in 1951 – 2010 [19]. The growth of greenhouse gases
concentration in the atmosphere is mainly caused by industrial production
and landscape change. It is shown in Figure 2.5 that land use activities
have the second largest contribution to global anthropogenic greenhouse
gas emissions and have already reached 25%.

In addition to the greenhouse emissions, land surface changes also
facilitate other chemical and physical processes that affect climate [94].
For example, each land cover has its own surface reflectivity called
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Figure 2.4: Changes in global surface temperature caused by anthropo-
genic and natural drivers. Adopted from Ref. [59]

albedo [36]. On average, historical anthropogenic LC changes lead to a
growth of global land surface albedo. LC with a higher albedo reflects
more radiation and absorbs a smaller part of it. This leads to cooling [94].
LC transition can also affect the wind patterns because of natural obstacles
created by some vegetation, for example, by trees. Deforestation also has
impact on a cloud formation through the change in emission of different
chemical compounds [116]. In the next section, the overall impact of LC
transformation on temperature is considered in detail.

2.1.3 Impact of Land Cover Changes on Temperature

Until recently, the main measures for global warming mitigation have
been focused on reduction of the fossil fuel combustion. However, the
role of land use is starting to attract the scientific attention. For example,
the most recent IPCC report [94] was entitled "The Climate Change and
Land" which highlights the influence of land use on climate. Nowadays,
around 70% of global land surface without ice is used by humankind
for farming, urbanization expansion, energy production, etc. [94] The
proportion of land used continues to increase following the growth of
the Earth’s population. It has been revealed that changes in land use can
lead to local warming or cooling effect. Moreover, LC transformation can
have an impact on temperature in regions located hundreds of kilometers
away [94]. However, there is a two-sided process: changes in land use
affect climate, but climate changes also have an impact on LC. In addition
to that, some changes of LC are driven not only by anthropogenic but
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Figure 2.5: Contribution from different economic sectors to emission of
anthropogenic greenhouse gases. Adopted from Ref. [19]

also natural factors. As mentioned in the recent IPCC report, very few
studies examine the effect of historical LC changes on seasonal climate on
a regional scale [94].

In the latest report, IPCC distinguished four main trends in LC
changes [94]. First of all, an increase of a cropland area by 15% since
middle of the 20th century. Cropland expansion is mainly associated with
the decrease of forests and leads to a significant global deforestation. Since
the 1960s, forest area has reduced by 5% and continues to decline. For the
same period, urban and built-up areas were doubled.

There are many ways to study the impact of LC transformations on
temperature. Some works on LC changes and their impact on climate
are based on directly observed data [23, 55], while others use mainly
simulations and climate models [15, 35, 37]. In general, scientists agree
that the climate system is very complex and depends on many factors.
The impact of LC change can vary on global and regional scale. Moreover,
the same transformations can lead to different consequences depending on
the region where it happened. However, a few main trends in temperature
change due to LC transitions can be recognized:

1. Deforestation and afforestation have different impacts on temperat-
ure depending on latitude [16, 70, 71, 97, 100, 106]. In low-latitude
regions, deforestation contributes to the regional warming [16, 70,
71, 97, 100, 106]. There is no consensus regarding the impact on the
mean temperature in temperate mid-latitude regions [94]. Some au-
thors observed a low warming effect [16, 70, 71, 97, 100, 106], while
others did not find any changes or even decrease in temperature [8,
26, 94]. At high-latitude, the effect of deforestation also depends on
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longitude but mainly leads to local cooling [8, 16, 70, 71, 97, 100, 106].
Afforestation has an opposite effect on temperature trends [16, 71, 97,
100].

2. Urbanization is considered by many authors as a contributor to
the regional and global warming [17, 48, 94, 95]. The temperature
in cities and the surrounding areas grows by 0.19°C – 2.60°C
per year [94]. The increase in annual mean temperature due to
urbanization is shown in Figure 2.6 for different urban areas. Some
authors also observed the cooling effect of urbanization in a warm
dry climate [112].

Figure 2.6: Changes in annual mean surface temperature due to urban-
ization. Size and color intensity of the circles correspond to a degree of
temperature change. Adopted from Ref. [94]

3. Abandonment of agricultural land is a huge trend typical for the
European LC transformation [4, 48, 61, 67]. Recently, Huang et al.
demonstrated that the decline in cropland in the Central Europe
contributes to the regional cooling [48], while a similar LC change
in the Eastern Europe leads to a temperature growth [48].

4. Land greening in boreal regions was firstly identified by Myneni
et al. [85] in 1997 and then has attracted significant scientific
interest [32, 40, 56, 94]. Shrubs and trees expansion contribute to
an increase in above-ground biomass and land greening that can be
observed from space [96]. Researchers mostly agree with the strong
correlation between shrubbing and regional warming [13, 19, 62, 83,
84]. However, some studies consider this correlation as a result of
a feedback loop [31, 83, 84]: an increase in temperature facilitates a
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growth of shrub species, and then shrubbing leads to a reduction of
surface albedo that contribute to warming. The studies that consider
only the impact of LC transition to shrubs show that an increase of
shrublands in the Arctic enhances warming [11, 13, 62].

Obviously, different LC changes have a unique effect on climate [30].
Most publications are focused on some individual LC changes, for
example, deforestation [37, 64] or urbanization effects [54, 117]. However,
this question is rarely studied in a broad perspective, taking into account
all types of LC transitions [48].

Very recently, Huang et al. have published a study in Nature
Communication [48] on the regional impact of cumulative LC changes on
climate. The key point of this study is the analysis that takes into account
all types of LC simultaneously and only then distinguishes the individual
impact of different LC changes [48]. The LC transformations are spatially
dependent, so that LC changes in one location can affect neighbouring
areas. Therefore, it is worth simulating a climate response to complex
LC transformations. To distinguish an individual effect of different LC
changes, Huang et al. in Ref. [48] developed a new statistical method
based on a ridge regression. Their promising approach was based on
prediction of the impact of complex LC changes and then on identifying
patterns for individual LC changes. In the this thesis, we use the same
data sets as Huang et al., but we also use ML to distinguish an individual
effect of different LC changes.

2.1.4 Climate Models

The study of the impact of LC changes on climate can be divided into
two main steps. The first step is gathering and classification of data on
LC change. The second step is to study the dependence and interrelation
between LC changes and climate changes.

There are plenty of different climate change hypotheses proposed
by scientists. However, it is challenging to unambiguously verify
them since it is impossible to perform a controllable experiment on the
whole planet and then to observe the results. Nevertheless, the huge
number of empirical observations gathered by researchers can help in our
understanding of the climate system. These data can be used for testing
and verifying the climate change hypothesis [63]. Nowadays, researchers
often use climate models to perform a simulation instead of experiment.
In this thesis, we consider only numerical climate models that simulate
the interaction between essential drivers of climate with the quantitative
methods.

Modern climate science is mainly based on numerical weather predic-
tion. In 1901, Cleveland was the first scientist who assumed that processes
in the atmosphere are determined by thermodynamic and hydrodynamic
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Figure 2.7: Evolution of complexity of climate models. Adopted from
Ref. [86]

principles [1]. In 1956, the first climate model describing monthly and
seasonal patterns in the troposphere was developed by Phillips and Nor-
man [98]. The work mentioned above [1, 98] laid the foundation for sub-
sequent more complex climate models. Their development was stimu-
lated by a tremendous growth in a computation power, which allowed
including much more parameters in the system and considering new pro-
cesses. Figure 2.7 illustrates the development of climate model over time
and shows the processes, which can be taken into account during simula-
tion.

Nowadays, the study of climate with mathematical models is one of
the main methods for climate research. The global climate models are
intended to simulate the global climate of the entire planet. In simulation,
the atmosphere is divided into three-dimensional grid (latitude, longitude
and altitude). Mathematical equations describe the fluxes of mass and
energy between the cells of this grid [41] and simulate processes listed
in Figure 2.7 within the cells. The global climate model is schematically
represented in Figure 2.8. The latitude-longitude resolution for different
global climate models is typically between 25 km and 250 km [58].
However, Klaver et al. recently demonstrated that a 200-km grid is the
most effective resolution in terms of veracity of results of global climate
models [58].
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Figure 2.8: Schematic representation of Global Climate Model [88]

The regional climate models function quite similar to the global climate
models but are limited by a region of interest [41]. They provide more
detailed information on the region scale compared to the global models,
and their horizontal resolution is typically between 10 and 50 km [41].

A higher complexity of the climate models and a high number of
variables allows performing more reliable and realistic simulations. On
the other hand, it also makes the climate models less interpretable and also
accumulates errors from different processes simulated in a system [63].
Therefore, it is necessary to carefully analyze the results of the climate
model simulations to find dependencies and interrelations in these data.
In this thesis, we use the climate model simulations performed by Huang
et al. [48] to study the impact of LC changes on temperature. Huang
et al. efficiently used an approach based on a ridge regression, and
this allows us to presume that other regression approaches can also be
successfully applied to this task [48]. Therefore, in this thesis, we use the
ML regression algorithm to study the impact of different LC changes on

20



surface temperature. In the next section, we introduce the application of
ML for the climate change prediction.

2.2 Machine Learning

In this chapter, we present the background and motivation for using ML as
a tool for climate change prediction. First of all, we give a brief overview
of the major concepts in ML. Then different ML models are discussed. We
also introduce how ML models can be evaluated and compared with each
other. At the end of this chapter, we show various fields in climate science
where ML has already been actively applied.

2.2.1 Machine Learning Algorithms

ML is a branch of AI that uses statistical learning methods to develop the
ability of algorithms to "learn" from data without prior assumptions or
only with few of them [80]. Probably one of the most known definition of
"learning" in context of AI was made by Mitchell [79]:

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with
experience E.

The main goal of ML is to develop a model based on the given input
that will provide a required output. Models can differ from each other
depending on a chosen ML algorithm and input data. Some of them can be
easily interpreted, while others will work as a "black box". That means that
we know only the input and output, but nothing about internal mechanics
of a model. Nevertheless, all models should provide correct output for
given data, but the accuracy of results should be evaluated [80].

Generally, ML can be applied to various types of tasks, and their
input/output data are also quite different from each other. In the next
sections, we describe the main properties and requirements of these
approaches.

Main concepts in machine learning

First of all, we are going define the main notions related to ML and
used in this thesis. One of the main elements of ML are observed data,
which usually consist of pairs of independent variables X (also called input
variables) and dependent variables Y (also called output variables). The
observed data can be divided in two groups - labeled and unlabeled
data. The unlabeled data consist of a raw information without explanation,
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gathered from the world. For instance, it can be photographs, video and
audio records. The labeled data consist of a set of the unlabeled data with
explanation, description or assigned meaningful class. An example of
the labeled data is a photograph coupled with information about what
is shown on it.

Let us illustrate the above definitions for our case of using the impact of
LC transitions on surface temperature. Our observed data are temperature
and proportion of LC in a certain cell on the grid (LC data). These data are
labeled because we associate LC data with the temperature in a certain cell.
Due to the problem statement, LC datum is the independent (or input)
variable and temperature is the dependent (or output) variable. However,
it can be reversed for some specific tasks, for instance, if we would like to
study how temperature affects changes in LC.

Initially, we assume that there is a relation between X and Y, and it
can be described by an unknown function usually called a target function
f : X → Y. The goal of the ML method is to find a mathematical function
(also called a model) g : X → Y that approximates f . This can be done
using an ML algorithm that we define as a combination of techniques and
operations taken with aim to produce the g model [80]. In this thesis,
we determine training as a process when an algorithm develops a model
based on the observed data. In our use case, we consider the real process
of the LC change influence on temperature as the target function f . The
goal of this thesis is to develop the g ML model that will approximate the
real process of the LC change influence on temperature. In our case, the
training is a process where the chosen ML algorithm develops the g ML
model based on the observed LC data and temperature.

Another significant definition in ML is a performance of an ML model.
In this thesis, we define it as a numeric representation of how good the
g ML model approximates the target function f ; and model evaluation
is a technique for calculation of model performance. Model assessment
is a process of comparing the performances of two or more models and
searching for a model with the best performance. In our example of
the influence of LC change on temperature, we can use Mean squared
error (MSE) as a model performance, and the model evaluation process is
the calculation of MSE. The model assessment can involve a comparison
of two MSEs for g1, g2 models that are developed by two different ML
algorithms. The model with the lowest MSE is characterized by the best
performance. A schematic view of these relations between the described
ML concepts is presented in Figure 2.9.

Machine learning paradigms

There are three main learning paradigms in ML: supervised learning,
unsupervised learning and reinforcement learning.

The supervised learning paradigm implies a mathematical model devel-
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Figure 2.9: Schematic representation of relations between the ML concepts.

Target function
f: X   Y

Observed data
(x1,y1), … , (xN, yN)

Independent
X

Dependent
Y

Algorithm 1 Algorithm 2

Training Training

Model
g1: X   Y

Model
g2: X   Y

Performance of model
MSE(g1)

Performance of model
MSE(g2)

Model evaluation Model evaluation

Model assessment

The best model
gbest

23



opment based on the labeled data that include both input and pre-defined
output. The data used for the model development are included as com-
pounds of training data set that consists of an input vector X and an out-
put vector Y. During learning, the model receives X as the input and
provides some output vector Y′, which is then compared with the given
Y. If Y′ 6= Y, then the model will adjust its parameters to get better per-
formance. This procedure is repeated until the model no longer improves
predictions or until it is limited by the number of possible iterations. A
model can be considered as optimal one if it provides the correct output for
an input that was not included in the training data set [80].

The supervised learning paradigm includes two large groups of
algorithms: classification and regression algorithms. The goal of the first
group is to categorize the input data into a limited and predefined number
of classes. For example, the classification algorithm can be used to
define whether a person has a decease or not, and another example is
an e-mail spam detection. On the contrary, the regression algorithms
have numerical output values that can be within a predefined range.
These algorithms are used to calculate the output vector Y based on the
information from the input vector X. The well-known examples of the
regression algorithms are goods and stock price forecasts.

In the unsupervised learning paradigm, there are no training data, and
the input data are unlabeled and unclassified. The main goal of this type
of method is to determine a structure of the input data set and reveal
the similarities in data [80]. Cluster analysis is a typical example of the
unsupervised learning algorithm. The goal of cluster analysis is to group
elements from the input data that have similar attributes. For instance, it
can be used to distribute customers into some groups depending on their
behavior.

In the reinforcement learning paradigm, a computer program performs
actions to interact with a certain environment and collects observations
and a reward. The aim is to execute actions that maximize cumulative
reward [80]. The ML algorithm should explore which action will lead to
the maximum reward. The reinforcement learning methods are separated
from the previously mentioned paradigms. On the one hand, this is
not the supervised learning since it does not use the labeled data and
the training data set directly. It learns from the environment response
to the performed action. Moreover, the environmental response can be
non-deterministic. On the other hand, this cannot be defined as the
unsupervised learning because a target reward is known. The ML model
learning actions for a player in Atari games is a good example of the
reinforcement learning application. The ML algorithm tries to simulate
gamer behaviour and perform different actions to maximize reward. The
environment is the Atari game that reacts on the actions performed by the
ML algorithm. The reward is the number of points that the ML algorithm
receives in the game.
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Actually, all the paradigms mentioned above can be applied to climate
change predictions. However, it is important to select an approach that
is appropriate to a given research objective. In this thesis, we study the
LC transition influence on climate, especially on surface temperature. The
peculiar properties of the given data are discussed in Section 3. Looking
ahead, these data are labeled and numeric. Based on the descriptions of
the different ML paradigms and their particular properties given in this
chapter, we chose supervised learning approach, namely, the regression
algorithms as the main methods used in this thesis. However, this
group includes many various algorithms, and each of them possesses
some specific advantages and disadvantages. According to the "No free
lunch" theorem, no algorithm can be considered as optimal for all types of
supervised learning problems [119]. Therefore, we give an introduction to
the main types of the regression algorithms in the next section.

Regression algorithms in supervised learning

Initially, a training data set τ is given for regression problems in
the supervised learning algorithms. It contains N pairs of the input
(independent) variables xt and the output (dependent) variables dt, where
t is the number of pairs for the training set:

τ = {xt, dt}N
t=1 (2.1)

It is assumed that the output variables dt depend on the input variables
xt and some unknown variables zt. This dependence can be formally
represented as a result of unknown function f (·):

dt = f (xt, zt) (2.2)

The main goal of the algorithm is to make a model g(·) with a parameter
θ that matched the observed input xt to the output yt:

yt = g(xt|θ) (2.3)

The learning process is a search for the parameter θ of the model g(·) that
minimizes a deviation of the predicted yt from the pre-defined output dt

from the training set τ. This deviation is described by the loss function
L(·) [5]:

arg min
θ

∑
t

L(dt, yt) = arg min
θ

∑
t

L(dt, g(xt|θ)) (2.4)

For the regression problem the loss function L(·) is often the mean squared
error [5].

Many different algorithms can be used for solving the regression
problems. In this thesis, we focus on four main types of algorithms:

• Multiple linear regression
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• Least absolute shrinkage and selection operator (LASSO)

• Support vector regression machine

• Random forest regression

Multiple linear regression

Linear regression is the first algorithm for solving regression problems
that have been deeply studied and widely adapted for various applica-
tions [101]. The linear regression model implies that relations between the
input and the output variables E(Y|X) are linear or that the linear relation
is an acceptable approximation and can be described as follows [44]:

Y = f (X) + ε, (2.5)

where ε is the additive error term that cannot be directly observed in
data. This is often a Gaussian random variable with an expectation of
distribution equal to zero and a standard deviation σ: ε ∼ N(0, σ2). If we
define the input variables xt as the p-dimensional vector X, then the linear
regression model is defined as follows:

X = (X1, X2, . . . , Xp), p ∈ Z, p > 0 (2.6)

f (X) = β0 +
p

∑
j=1

Xjβ j (2.7)

where β0, . . . , βp are the unknown coefficients or parameters that should
be estimated from the training data set. If p > 1, then the linear model
is called the Multiple linear regression (MLR) model [44]. One of the
most popular methods of fitting a model is minimizing the least squares
criterion. Let us assume that we have N training pairs of (Xi, yi), where
i = 1, . . . , N and Xi is the p-dimensional vector. We can describe the
model parameters as a vector B = (β0, . . . , βp). We also define ŷi =

β0 + ∑
p
j=1 xijβ j as the ith prediction of Y from the model f (·) based on the

ith value of X. Then the aim is to choose B that minimizes residual sum of
squares (RSS) [44]:

RSS =
N

∑
i=1

ε2
i =

N

∑
i=1

(yi − ŷi)
2 =

N

∑
i=1

(yi − f (Xi))
2 (2.8)

=
N

∑
i=1

(yi − (β0 +
p

∑
j=1

xijβ j))
2 (2.9)

MLR requires special data for the input variables and the training data
set. The essential properties required for MLR are the following:
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1. As previously mentioned, this approach assumes linear relations the
input and the output variables.

2. The training data sets should contain independent observations
because a correlation between the input variables will lead to
overfitting. In this thesis, we define overfitting as a learning error
that occurs when a model learns patterns and noise in the training
data so detailed that it has negative impact on a model performance
on new data.

3. The input variables are precisely defined and do not imply any errors
in their values.

4. As assumed in MLR, the variance of the errors εi from Equation 2.5
is constant throughout observations and is not correlated.

Despite the wide applications of MLR, there are some issues related to it.
One of the issues that researchers faced is that classic MLR approach works
non-efficient in situations when two or more independent variables in a
multiple regression model are linearly related (see the second requirement
above). This property of data is called multicollinearity. This is a quite
common issue in real world tasks. An example of correlated input
variables can be a person’s height and weigh. To solve this problem, the
LASSO method was developed.

Least absolute shrinkage and selection operator

Least absolute shrinkage and selection operator (LASSO) is another type
of the regression models, which aims to exclude some of the input
variables and hence prevent the overfitting and minimize prediction error.
This is done using L1 regularization technique that sets some constraints
on a model, reducing weight coefficients to zero for less important
variables [44]. If a few independent variables are highly correlated, then
only one of them is taken into account in the LASSO method, while others
will be taken with zero coefficients. The L1 regularisation also helps in
feature selection and makes model interpretation easier [44].

The model for LASSO is similar to that for MLR. However, the aim is
to choose B coefficients that minimize the expression [44]:

N

∑
i=1

(yi − (β0 +
p

∑
j=1

xijβ j))
2 + λ

p

∑
j=1
|β j| = RSS + λ

p

∑
j=1
|β j|, (2.10)

where λ is the regularization parameter that is defined separately and
adjust the level of constraints, and λ ∑

p
j=1 |β j| is the regularization term.
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Support vector regression

Support vector regression (SVR) is another example of the supervised
learning algorithm for regression tasks. In contrast to MLR, which aims
minimizing training errors, SVR is geared to keep an error within a
predefined threshold. The main idea is to define the loss function that
ignores errors that are less than ε. Therefore, the ML algorithm learns
only from a subset of the training data set [9]. In case of a linear target
function f (X), the algorithm aim is to select B coefficients in such a way
as to minimize theexpression:

N

∑
i=1

V(yi − f (Xi)) +
λ

2
‖B‖2, (2.11)

where λ is the tuning parameter and λ ≥ 0, V(·) is the ε-intensive loss
given by:

V(r) =

{
0, if |r| < ε

|r| − ε, otherwise
(2.12)

In case of non-linear f (X), SVR uses mathematical functions called
a kernel. Generally, the kernel functions convert the given data to the
desirable format. In case of SVR, the kernel expands the dimensions of the
input variables. For example, let us consider only two-dimensional input
variables X1 and X2. However, an expression including X1 and X2, for

instance,
X1

X2
can be more valuable for some predictions. Then the kernels

expand the input variables to three-dimensional space containing X1, X2

and
X1

X2
. Due to the new variables, we can "include" all the non-linearity

into hm(X) functions. Then we can finally define approximation of non-
linear regression function f (X) as a linear set of basis functions {hm(X)},
where m = 1, 2, . . . , M:

f (X) =
M

∑
m=1

βmhm(X) + β0 (2.13)

The aim is to choose the coefficients B = (β0, . . . , βm) that minimize
the expression given by:

N

∑
i=1

V(yi − f (Xi)) +
λ

2 ∑ β2
m (2.14)

where V(r) is some general measure of error [53].
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Random forest regression

Random forest (RF) regression is another example of the supervised
learning model. In compare with MLR, RF models are more efficient in
capture of non-linearity in data but are harder to interpret.

RF algorithms are based on the decision tree learning approach. In
general, a decision tree algorithm produces a model, which finds the output
values based on a sequential set of rules applied to the input values.
Figure 2.10 shows an example of a decision tree that is applied to the input
variables (x1, x2, x3) and predicts a value for the dependent variable y.
Rules are shown in the root node and the internal node. Terminal node
shows the predicted values for the output variable y, which corresponds
to the input variables matching rules in the previous nodes. If a rule splits
data into only two nodes, then a decision tree is called a binary decision tree.
During training, the decision tree learns the rules and their order.

Figure 2.10: An example of a decision tree for regression.
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The main problem of the decision tree algorithm is a high probability of
overfitting [44]. To overcome this issue, RF implies the creation of a bunch
of binary decision trees during training and output the mean prediction of
different trees. Another important peculiar property of the RF algorithm is
randomness. On the one hand, it randomly divides the training data into
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subsets in such a way that each data set corresponds to a certain decision
tree. On the other hand, there are also random subsets of input variables
used in building of different trees.

The method of model construction for the RF algorithm is quite
different from the previously described algorithms [44]. Therefore, we
use an algorithm description to provide a proper description of the RF
algorithm. Let us assume B as a tuning parameter that represents the
number of decision trees in the RF model. Then we can describe model
as follows:

1. For b = 1 to B:

(a) Choose a randomly sampled subset S from the training data set.

(b) Create a decision tree Tb based on the subset S with a minimum
node size nmin. To build a tree, the following operations should
be done for each terminal node until nmin is reached:

i. Choose randomly m variables from the p-dimensional
input vector.

ii. Choose the best variable from m variables for splitting. To
do so, all of m variables should be iteratively chosen as the
splitting point, and the loss function should be calculated
for each of them. The variable with the lowest value of the
loss function will be chosen. For example, it can be defined
using RSS:

N

∑
i=1

(yi − ŷi)
2 (2.15)

where yi is the actual value and ŷi is the prediction from the
model.

iii. Create 2 new daughter nodes.

2. Output the model that will consist of B trees Tb:

f (x) =
1
B

B

∑
b=1

Tb(x) (2.16)

2.2.2 Model Evaluation

There is no ML method that can be considered as the optimal approach
for all kinds of supervised learning problems [119]. Therefore, it is
important to find out the way to evaluate different models and compare
their performance.

A determination the best performing model for a given task is an
important part of the model development and is usually called as a model
evaluation. The main goal is to assess the model performance on future
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data, i.e. on data out of the given data set. In this section, we introduce
two frequently used metrics for measuring the model performance: mean
squared error and Coefficient of determination (also known as R2 score).
In addition, we also present one of the highly used validation techniques
- Cross-validation (CV).

One of the simplest way to evaluate an algorithm performance is to
test the model on data out of its training set. In this case, the algorithm
considers this data as "unknown". We can pick these data from the initially
given observation. Hence we divide the initial observation data set into
2 subsets: "training data set" and "test data set". The first of them uses
for a model learning while the second is for evaluation of the model
performance. This approach with the one split of data is called "hold-out"
or "validation".

Mean squared error

Mean squared error (MSE) is one of the most popular metric for evaluation
of regression models. These metrics show how well the evaluated model
fits to the real data through a difference between the predicted and
observed values:

MSE =
1
N

N

∑
i=1

(yi − f (xi))
2, (2.17)

where N is the number of pairs (xi, yi) in the test data set, f (xi) is the
prediction given by f (·) model for the ith input variables, and yi is the
observed value. A lower value for MSE indicates a better accuracy of the
estimated model [44].

Root mean squared error (RMSE) is a metric similar to MSE, but in
contrast to MSE, RMSE allows providing errors with the same units as the
original output. RMSE is just a square root of MSE and is given by:

RMSE =
√

MSE =

√√√√ 1
N

N

∑
i=1

(yi − f (xi))2 (2.18)

Coefficient of determination

Coefficient of determination also called as R2 (R-squared), shows how well
a model explains the observed data through a finding the percentage of the
dependent variables that are explained by the model. R2 can be described
as follows:

R2 =
Variance explained by the model

Total variance
, (2.19)
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where "Total variance" means the variation in the observed data. R2 can
be formulated mathematically as:

R2 = 1− ∑N
i=1(yi − f (xi))

2

∑N
i=1(yi − y)2

, (2.20)

where y is the mean value of the observed data.
Usually, a higher value of R2 corresponds to a case when a model

replicates observations better. Hence if R2 = 0, the evaluated model
predicts worse or similarly as a model that for any input variables predicts
the mean value of the output variables in the training data set: f (xi) = y.
However, the use of R2 alone is not enough to evaluate the model, and
even models with lower R2 can make meaningful predictions in some
cases [81].

For example, R2 is typically low in behavioral studies because the
models implemented there often use only some of the input variables to
predict an output. Falk and Miller stated that the models with R2 ≥ 0.1
can be considered as acceptable [34]. Cohen [18] distinguished R2 ≤ 0.12
as a low value, R2 between 0.13 and 0.25 as a medium value, and R2 ≥ 0.25
as a high. Thus, we can conclude that even a comparison of models with a
relatively low R2 may be reasonable. Therefore, it is important to use these
metrics together with others, for instance, with MSE.

The metrics discussed above do not estimate models unambiguously
because different ways of splitting the observed data into the training and
test data sets can greatly affect estimations. One of the most common
technique to solve this issue is CV.

Cross-validation

CV is a framework for evaluating how a model generalizes to the inde-
pendent data out of its training data set. This technique is especially often
used to assess the accuracy of models aimed to perform some predictions.
CV implies that the test and training data sets are independent, and the
data are identically distributed. Variables are independent and identically
distributed (i.i.d.) if all variables are independent from each other and pos-
sess the same probability distribution. CV is often considered as an effi-
cient tool in evaluation of regression models [6].

The main idea of CV is to form subsets from the given data and then
iteratively use one of them at a time as the test set and the others as the
training set. For each iteration, evaluation metrics are estimated. At the
end, a combined value of iteration metrics, for example, the average value,
is calculated.

There are a few different ways to apply CV. We introduce one of the
most popular technique, namely, K-fold CV. The main idea of K-fold CV is
as follows:

32



1. Split the given data to K subsets of data also called folds

2. For i = 1 to K:

(a) Choose ith fold as the test data set

(b) Use the remaining K− 1 folds for model training

(c) Evaluate the model with a metric using ith fold as the test data
set

3. Calculate the mean value for the metric based on all found K values.

CV is not only useful for a more generalized model evaluation. This
method can help to recognize overfitting problems that can occur when
data are simply divided for once to the training and test data sets. In
addition, this technique allows using data more efficiently, which means
that even the small data sets may be enough for proper machine learning.
K-fold CV can also help to evaluate the uniformity of the data distribution.
This can be done through the analysis of validation metrics for different
folds. If some folds perform significantly better or worse than others, this
may indicate the non-uniformity of the distributed data. We introduce the
peculiar properties of climate data in the Section 3 where we also shed
light on the CV application in climate science.

2.2.3 Hypothesis Testing

As discussed in the previous section, the evaluation methods such as CV
can estimate algorithms performances. However, it can be complicated
to verify whether a difference in the performances of algorithms is
statistically significant. The significance in this context means that the
difference happened not by chance and we perform a hypothesis testing
to achieve this goal. A null hypothesis (H0) takes place when there is
no difference in performance of two ML algorithms, while an alternative
hypothesis (H1) arises when two algorithms significantly differ from each
other in performance. In other words, for H1, two regression models
learned on the same randomly chosen training data set should have
different error rate on the same randomly chosen test data.

An important part of the hypothesis testing is the concept of statistical
errors: type I error and type II error. A type I error appears when true H0
is rejected during testing. In our case, it means that the test indicates that
one algorithm performs significantly better than the other, but in fact both
algorithms have the same performance. The type II error implies that false
H0 is accepted. In our context, this means that the test evaluates that the
two algorithms perform equally, while in fact one of them is significantly
better than the other. The relation between the type I and type II errors is
shown in Table 2.1.
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H0 is True H1 is True
Accept H0 Right decision Wrong decision - Type II Error
Reject H0 Wrong decision - Type I Error Right decision

Table 2.1: Type I and type II errors.

The type I error is associated with a confidence and significance levels.
The significance level (SL) shows the probability (in percent) that the test
result is the type I error. The confidence level (CL) is defined as CL =
(100%− SL) and represents the probability (in percent) that the test result
will be correct. The type II error is associated with a power of a test that
is equal to (1 − type II error rate) . Power of a test is a probability of
rejecting H0 when it is in fact wrong. The first possible way to reduce
the type II error rate is to extend training data set. The second method
is to increase the significance level that, however, leads to a rise of type
I error rate. In thesis, we have the training data limited by the given
initial data set (see Section 3) and prefer to have an acceptable low type I
error rate, because our goal is to find the statistically significant difference
between the algorithms. Thus, we mainly pay attention to the techniques
for minimizing the type I error rate.

5x2-Fold Cross-Validation Paired t Test

Statistical testing of difference between ML methods in a CV method is
not straight forward. The reason is that data are reused for each fold
introducing complex dependencies that disagrees with the assumptions of
traditional statistical t tests. The paired t test is a special t test performed on
the dependent samples. In our case, it means that two different algorithms
will be trained on the same training subset of the observed data and then
tested on the test data subset, different from the training one. To reject or
accept H0, the paired t test calculates t-statistics, and then it is compared
with a known critical value for certain distributions and a certain confident
level given in Ref. [47]. The t-statistics for two algorithms is a ratio of
the mean difference in performance to the variance of this difference. To
compare the performance of two algorithms on spatially dependent data,
we use a validation method the 5x2 CV test presented in Ref. [28]. This test
is specifically developed for comparison of ML algorithms. In addition, it
is one of the most powerful tests with an acceptable Type I error rate [28].

The critical value for the t-statistics has already been calculated and
published [47]. However, it is necessary to know the distributions and
the confident level to find out the critical t-statistics, and we use 95%
of the confident level in the present work. Dietterich [28] claimed that
the t-statistics calculated for the 5x2 CV test and denoted as t have a t-
distribution with five degrees of freedom. Therefore, to reject the null
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hypothesis, the t-statistics t for the 5x2 CV test should be higher than 2.571
in accordance to the t-distribution table [47].

To perform the 5x2 CV test, the following operations should be done:

1. Define two algorithms as A and B

2. For i = 1 to 5

(a) Initially observed data should be randomly divided into two
subsets S1 and S2 of the same size.

(b) Both learning algorithm A and B should be trained on S1 and
then tested on S2. Thus, there are two RMSE estimations: p(1)A

and p(1)B

(c) Then both learning algorithms A and B should be trained on S2
and then tested on S1. So, there are two more RMSE estimations:
p(2)A and p(2)B

(d) Next, one calculate differences between the RMSE estimations
of both algorithms A and B for an ith iteration:

p(1)i = p(1)A − p(1)B and p(2)i = p(2)A − p(2)B (2.21)

(e) Using these differences, one calculate the variance si for an ith

replication as:

s2
i = (p(1)i − p)2 + (p(2)i − p)2 where p = (p(1)i + p(2)i )/2 (2.22)

3. The statistics t is calculated for algorithms A and B as:

t =
p(1)1√

1
5 ∑5

i=1 s2
i

(2.23)

4. Finally, one verify that the |t| value is below the given confidence
level (|t| ≤ 2.571), then one accept H0 as a correct hypothesis.
Otherwise, H0 is incorrect and H1 is correct.

We believe that the 5x2 CV test is a proper framework for the data
testing with high variability. However, this method has a few limitations.
First of all, CV approaches are based on the assumption that the observed
data is i.i.d., which often is not the case and for example not for the
spatio-temporal dependent LC and temperature data considered in this
thesis. Another limitation is that the 5x2 CV test can fail if the error rates
measured in the various 2-fold CV vary greatly [28]. In the chapter 4, we
discuss the possible strategies to adapt the 5x2 CV test framework to the
spatio-temporal dependent data.
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2.2.4 Machine Learning in Climate Science

Nowadays, ML has applications in many different scientific fields.
Climate scientists also pay their attention to the artificial intelligence
(AI) and ML as useful tools in climate analysis. Nevertheless, ML and
AI are not yet often applied in this field [50]. Traditionally, physical
modelling based on theory-driven approach has been the main technique
in climate science. On the contrary, ML approach has a data-driven nature
and hence can be considered as method opposite to physical modelling.
Previously, computer architecture and poor performance in data-intensive
tasks limited an application of ML. However, this is not an issue because
of the constant growth in computational power so physical modelling and
ML are mostly considered as two scientific approaches complementary to
each other [102].

Studies in climate science can be characterized by the following
peculiar properties:

1. Data intensity. Climate science has collected an enormous amount
of data over a long period of time. Often, the climate change
tasks take into consideration hundreds of years of observations of
temperature, air humidity, precipitation, LC change etc. More than
ten petabyte of climate data have already been collected and are
available for analysis. In addition to that, more than 400 terabytes
of new data are gathered by sensors every year [2].

2. Interdependence complexity. Climate is a system that is determined
by many interconnected processes. The main issue is that not all
the processes can be described in detail, many climate processes
are interconnected, forming a positive feedback loop. Therefore, it
happens that modern climate models are so complicated that it is
very difficult to explain their results theoretically.

3. Non-linear behaviour. Some processes in climate system cannot
be described as linear functions of variables. The revealing of non-
linear processes is a difficult task.

All the properties mentioned above characterize climate science as a
field, which is suitable for studying with the ML tools. In general, we can
define ML as a part of AI that allows computers to learn dependencies and
relations between different parameters from given data. However, ML can
be applied to different types of tasks. In a recent article, Huntingford et al.
distinguished three main types of problems that can be solved with ML
and AI [50]:

1. Dimension reduction in equations used in climate models can be
done with ML. This can help to identify the main interactions and
dominant impacts.
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2. Consideration factors that should have an impact on climate but do
not yet have mathematical representations. Sometimes researchers
may simply assume that specific events or parameters affect climate
system. However, it can be difficult to formulate them in mathemat-
ical form describing events properly. ML is able to solve this issue.

3. Identification of unknown factors, hidden patterns and dependen-
cies within the known dimensions. This task is especially actual be-
cause ML can reveal much more complex patterns than a human can
observe in data sets [102]. In particular, this task is actual for detec-
tion of patterns for the tipping points - the part of a system where
small changes in some parameters significantly affect the behaviour
of entire system. LC transformations is one of the tipping points for
climate system [65]. In our thesis, we try to apply ML to solve such
a problem.

The amount of climate data available for analysis has grown drastically
during last few decades. However, predictive ability did not grow
proportionally to the amount of data. In this case, ML seems be a
powerful tool for improving predictions [102]. Therefore, recent works
are often focused on an application of ML and AI for different subjects in
climate science. For instance, in the Earth system modeling, Rodriguez-
Galiano et al. use ML to perform an LC classification of data observed
from satellites [104]. ML is also used for detection of past and future
consequences of climate changes. For example, Wu et al. applied
recently ML for studying the estimated impact of climate changes on forest
aboveground biomass [120]. Liu et al. used ML for detection of extreme
events based on patterns extracted from labeled historical data [72].

Probably one of the most power ML application in climate science is
studying teleconnections, which are defined as hidden connections between
components of climate models. That is challenging to extract them
with standard approaches because of multidimensional nature of climate
models. Here, ML can help in improving fundamental understanding in
cases when output of climate models is difficult or impossible to interpret
with classical approaches [102]. Boers et al. applied ML to find out the
global patterns of extreme events such as extreme-rainfall [10]. Another
example of this use if ML is the work by Yang et al. where they used
ML to study dependencies between surface temperature and the Pacific
Decadal Oscillation [121].

Despite the fact that scientists pay more and more attention to ML and
AI as the tools for detection of teleconnections, there is a lack of studies
dedicated to the impact of LC changes on climate change [94]. Climate
models are very complicated, and it can be difficult to make dimension
reductions to identify, for example, the impact of such a specific factor as
LC changes on another parameter like temperature [50]. We believe that
ML can be an efficient way for this kind of tasks. However, there are plenty
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of different AI and ML methods and algorithms that can solve the same
problem. Some methods may be ineffective in tasks depended on spatial
or temporal data. It is often required to adjust the standard ML tool to
climate analysis [102]. Therefore, it is critically important to choose an
appropriate solution that would perform most efficiently.

2.3 Summary

In summary, the LC change and its impact on climate is an important
research task in the frame of climate science. There is a huge amount
of climate data available on global and regional scale, and a climate
model can simulate the effects of LC changes on temperature. However,
the results of climate model simulations are often so complicated that it
becomes difficult for human-experts to reveal patterns there. Nowadays,
there is a lack of studies that considered this issue in a broad sense, i.e. the
cumulative impact of all LC on climate. Thus, it is worth exploring and
approving new methods and techniques to this research task.

The ML techniques seem like an appropriate tool for the climate change
studies because they help to find out the hidden patterns in complex data.
It is important to emphasize that most of the standard ML techniques
require i.i.d. data. Supervised ML performs most effectively if the models
are trained on large data-sets, which should consist of labeled data. In
turn, regression algorithms require numeric data. In the next chapter, we
consider the peculiar properties of climate data and discuss how climate
data are consistent with these requirements.
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Chapter 3

Climate Data

In this chapter, we introduce the major properties of the LC data and the
climate model simulations that are used in our experiment.

Climate science has a lot of different data sources and produces dozen
of petabytes of data. Moreover, the amount of data grows exponentially
and is expected to exceed hundreds of petabytes already at 2030 [93].
However, not only the amount and complexity of the available data are
the challenges for a researcher.

One of the biggest issues related to the climate data is spatio-temporal
dependencies in these data. This property is simply described by the first
law of geography [111]:

Everything is related to everything else, but near things are
more related than distant things.

Spatio-temporal dependencies imply auto-correlation and cross-
correlation within the input variables. However, not only variables de-
pend on the surrounding area and time points, but also patterns and phe-
nomena evolve over space and time. Moreover, some events happen only
in a specific region and/or time period, while the standard methods of the
supervised ML require i.i.d. input variables. Hence this property of data
limits the possibilities of blind application of the standard ML methods to
research tasks in the field of climate science [33].

Another peculiar property of climate data is high variability and
uncertainty. First of all, variability is an integral part of climate, because of
natural fluctuations. Secondly, the huge number of sensors and weather
stations located in different places have different measurement errors that
make a contribution to the data uncertainty. In addition, simulations made
by climate models are the dominant source of climate data nowadays.
However, climate models also introduce some additional uncertainties
due to errors in the model simulation results [33]. The variability and
uncertainty of climate data limit the possible ways to use the standard ML
techniques. In addition, this complicates the comparison of the different
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ML techniques, since the evaluation metrics highly depend on how the
data is split into the test and training data sets.

3.1 Land Cover Data

The LC data is collected by various observation systems. However, the
available LC data sets from different systems are often incompatible and
have limited observation periods. To solve this issue, the European Space
Agency (ESA) has produced the detailed global LC maps for the period
from 1992 to 2015 as a part of the Climate Change Initiative (CCI) [99].
These maps have a spatial resolution of 300 m and contain 37 LC classes
from the United Nations LC Classification System (UNLCCS) [27].

The results of our work should be comparable with the results obtained
by other scientists. Huang et al. [48] transformed 37 UNLCCS LC classes to
the more commonly used IPCC LC classes - the IGBP-MODIS classification
system, which used in this thesis. The IGBP-MODIS system consists of 21
categories that are described in Table 3.1.

Land Cover Category, L-parameter Land Use Description
1 Evergreen Needleleaf Forest
2 Evergreen Broadleaf Forest
3 Deciduous Needleleaf Forest
4 Deciduous Broadleaf Forest
5 Mixed Forest
6 Closed Shrublands
7 Open Shrublands
8 Woody Savannas
9 Savannas

10 Grassland
11 Permanent Wetland
12 Cropland
13 Urban and Built-Up
14 Cropland/Natural Vegetation Mosaic
15 Snow and Ice
16 Barren or Sparsely Vegetated
17 Water
18 Wooden Tundra
19 Mixed Tundra
20 Barren Tundra
21 Lake

Table 3.1: IGBP-MODIS classification system

40



These LC data were used to perform the simulations on a regional
climate model. Due to limitations related to computational time required
for simulations, only the LC data for 1992 and 2015 years were considered
in this thesis.

Figure 3.1: Cordex-EU resolution in compares with Global climate model
grid resolution. Adopted from Ref. [39]

In compare with the global climate model, regional climate models
have more detailed grid resolutions. The grid resolutions of the global
climate models are about 150 km, while the grid resolutions for regional
climate models are presented in 2 dimensions: about 50 km and about 11
km. The comparison of the different resolutions is shown in Figure 3.1.
The highest resolution for the chosen regional climate model is horizontal
resolution of 0.11° [48]. Therefore, the LC maps from ESA were aggregated
to this scale. As a result, the data appear as a grid with a resolution of
about 12 km and with a few types of LC in one grid cell. There are a
few approaches to present the LC information in the grid. The three main
strategies are the dominant LC strategy, rearrangement of patches, and the
mosaic approach [82]. The schematic representations of these approaches
are shown in Figure 3.2.

The main basic approach is the strategy of dominant LC where it is
assumed that the whole cell is completely filled with the LC type, which is
dominant in this cell. Hence each cell is described by only one parameter
L ∈ {1, 2, 3, .., 21} from Table 3.1.

The patch rearrangement strategy provides more information on LC in
each cell because it records a percentage of each LC type in the cell. Thus,
this type of data is stored as 21-dimension vector with components ai
representing a percentage of the area occupied by LC with number i from
Table 3.1:
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Figure 3.2: Schematic view of different strategies for treating LC informa-
tion

ai ∈ {a1, a2, a3, .., a21}, 0 ≤ ai ≤ 1 and
21

∑
i=1

ai = 1 (3.1)

The data, which are stored with the patch rearrangement strategy
can be transformed to the dominant LC type of data by choosing the L-
parameter with the highest percentage, simplifying the data complexity.

The mosaic approach is the most detailed strategy when each cell is
split into sub-grids with the LC data resolution. Thus, we know not
only a percentage of each LC in the cell but also its location. The data
can be represented as a matrix with information about the location and
the LC type Li,j ∈ {1, 2, 3, .., 21}, where i, j are the numbers of rows and
columns in matrix. The data presented with the mosaic approach can be
transformed into both previous types of data storage reducing the data
complexity.

The data used in this thesis store the LC information using the patch
rearrangement strategy. Therefore, we have detailed information about
the proportion of the different LC types in each cell.

In this thesis, we limit ourselves to studying the climate of Europe and
cover approximately the region from about 22°W to 45°E longitude and
from 27°N to 72°N latitude [60].

Surely, in the period from 1992 to 2015, some categories of LC
underwent more substantial changes than others. The maps in Figure 3.4
(as well as in Appendix A) demonstrate the grade of LC changes for the
most prominent LC changes within Europe such as the expansion of urban
and built-up cover and changes in evergreen needleleaf forest. Different
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Figure 3.3: The Cordex-EU analysis domain [39]

colors represent the proportion of a certain LC in each cell on the grid.

3.2 Artificial Temperature Data

We used data sets including atmospheric and surface variables from
regional climate simulations of the Weather Research and Forecasting
(WRF), model version 3.9.1. The WRF model made a simulations based
on the input data that include the LC data for 1992 and 2015 and the
settings of the international Coordinated Regional Climate Downscaling
Experiment (CORDEX) initiative (EURO-CORDEX) [48]. The result of the
WRF model simulations is the temperature in degrees Celsius for each day
in the period between 1992-01-01 and 1992-12-31 and for each day in the
period between 2015-01-01 and 2015-12-31.

This artificial temperature is a result of two runs of the regional climate
model simulation: one is with the input data of LC in 1992 and the other
is with the input data of LC in 2015. These results of simulation of the
regional climate model illustrate the case of how the temperature would
change if only LC changes. Therefore, the absolute artificial temperature
differs from the actual temperature observations for 1992 and 2015. The
temperature is modeled daily for each cell during the given years. This
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Figure 3.4: (a) Urban and Built-Up LC in 1992 (left) and 2015 (right), (b)
Evergreen Needleleaf Forest LC in 1992 (left) and 2015 (right). White
circles point at the regions with the biggest changes in LC.

(a)

(b)

allows finding the average temperature for time periods, for example,
years or seasons. We can also calculate the temperature changes by simple
counting the difference between the average artificial temperature in 2015
and 1992. The variation in average temperature per season for each cell is
shown in Figure 3.5. The seasons are divided as follows: winter includes
December, January, February (DJF), spring includes March, April, May
(MAM), summer includes June, July, August (JJA) and autumn includes
September, October, November (SON).
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Figure 3.5: Changes of average temperature in °C by season: (a) winter,
(b) spring, (c) summer, (d) autumn

3.3 Summary

A huge amount of structured and labeled LC data can be considered
as prerequisites for using the supervised ML methods. However, most
of the standard ML techniques assume that the observed data are i.i.d.,
while spatio-temporal dependence is an essential property of climate data.
Therefore, the standard ML techniques cannot be directly applied to this
type of tasks. In addition to that, the high variability in climate data
complicates a comparison of performance for different ML methods.

Despite the challenges mentioned above, we believe that standard ML
methods can be adjusted and applied to the data with spatio-temporal
dependencies. In Section 1.2, we stated that our goal is to understand
how supervised learning can be applied to tasks in climate science.
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Therefore, in the next chapter, we strive to develop a framework that
allows evaluating predictive validity and performance of the ML models
on the spatio-temporal dependent data with high variability.

46



Chapter 4

Methodology

In Section 1.2, we defined three major objectives of our work. The first
goal is to study how ML can be applied to the climate-related tasks which
are typically presented by spatially dependent data with high variability.
The second one is to verify whether it is possible to develop a reliable ML
model that efficiently predicts the impact of LC changes on temperature.
In this chapter, we are going to address these objectives.

Firstly, we start with the development of an evaluation method to
compare the performance of ML algorithms on the spatially dependent
data. The theoretical analysis of the possible ways to approach this
problem will be considered in Section 4.1. Next, we will define
requirements for ML models for the prediction of the impact of LC change
on the temperature in Section 4.2.

4.1 Assessment of Algorithm Performances on
Spatially Dependent Data

As discussed in Chapter 2, ML regression algorithms is a promising
tool to study the impact of LC changes on temperature, and the CV
framework can be used for the evaluation of these algorithms. However,
we should verify the applicability of these tools to spatially dependent
data. Therefore, we carry out an experiment on a synthetic data set that
simulates spatially dependent data. In this section, we describe how the
experiment was designed.

The CV framework is often used for evaluation of a model performance
on the new data (see also CV in Section 2.2.2). However, this framework
is formulated for independent and uniformly distributed data, while our
LC and temperature data do not fit these requirements, being spatially
dependent and non-uniformly distributed. Therefore, standard CV
framework with random data partitioning can provide different results
depending on how the initial data set is split into the test and training
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data sets. This can lead to the wrong results in model comparison. To
overcome this issue, we study the statistical significance of the difference
in performance between two ML algorithms. In this section, we introduce
the main notions of the statistical significance testing and its application
to ML.

4.1.1 Spatial Cross-Validation

We use spatial CV as a reference method because it is an easy and
extensively used technique. Spatial CV is based on the standard approach
discussed in Section 2.2.2. First, we divide the data into K different folds
and then reject one fold and train a model on the remaining (K− 1) folds.
The main difference is that the initial data set should not be split randomly,
but into K spatial sectors as presented in Figure 4.1.

This technique was described by Roberts et al. [103] as a way to
reduce spatially dependence and avoid too optimistic assessment, which
is typical for the standard CV. As mentioned in Section 2.2.2, the CV
framework on the data that are not i.i.d. can show high dispersion in error
estimation. Therefore, we can expect that the accuracy of predictions is
non-uniformly distributed within the research area. However, we believe
that this can still be helpful for comparing different models because
we average K-folds evaluation metrics over the whole map, reducing
dispersion.

In Section 5, we assess two algorithms A and B with the spatial CV
using the evaluation metrics R2 and RMSE. We consider that the two
algorithms have the equal performance if the average R2 and the average
RMSE are equal.

Figure 4.1: Data splitting into 64 spatial sectors. The figure "Variable 1"
shows a split of the input variables, while "Variable 2" demonstrates a
split of the output variables within the same grid. The "Unique" figure
represents a split of the data into unique 64-folds. Adopted from Ref. [103].
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4.1.2 5x2 CV Test for Spatially Dependent Data

In Section 5.3.1, we will describe how the temporal dependence was
reduced through the temperature averaging over a year or a season.
However, the data used in this thesis are characterized by a significant
spatial dependence. Therefore, the reliability of the 5x2 CV test results
should be verified because this method originally implies only i.i.d. data..
To address this issue, we suggest three possible ways to split the initially
observed data to the test and training data sets and, hence, to increase the
reliability of the 5x2 CV test assessments. We perform an experiment that
allows choosing the best strategy for the data splitting.

Bahn and McGill [7] evaluated four different approaches, shown in
Figure 4.2, for dividing of spatially dependent data:

1. "no splitting" when the same data set is used for both testing and
training;

2. "random split" of the data points into two groups;

3. "strips" divide in 4 quarters along 3 longitudinal lines where 2 parts
are used in test and 2 others - in training;

4. "halves" partition along the longitudinal line.

The first two splitting strategies are straightforward and easy to un-
derstand. The motivation for considering "strips" and "halves" strategies
is that they introduce more independence in data because there are fewer
neighboring data points. However, these strategies can reduce the power
of the test.

Bahn and McGill [7] found out that the last partition, the splitting
into halves, has the lowest error rate in compare with the other partition
strategies. The explanation is that this splitting type has the lowest
dependence between the data points. Indeed, the neighboring points are
spatially dependent, and the smaller the number of the neighboring points
in two sets is, the less the spatial dependence is. Based on this idea, we
suggest three methods for data dividing in our study.

1. The first and most obvious way to split up the data into the test and
training sets is to randomly select the data points. This strategy is
used in the original 5x2 CV test on the i.i.d. data. This approach,
however, leads to an underestimation of the predictive error, for
example, RMSE, if it is applied to the spatially dependent data [7].
Nevertheless, our main goal is to assess a performance of different
algorithms but not to evaluate them numerically. Thus, we can
assume that errors are equally underestimated for all algorithms,
enabling the possible comparison with random data splitting.
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Figure 4.2: Data splitting approaches. The circles indicate the data points
used for training and the triangles are used for testing.

2. The second possible approach is dividing the data points into sectors
similar to the "halves" strategy described by Bahn and McGill [7].
The main difference is that the 5x2 CV test implies that the data set
should be differently divided five times. To obtain half of the data
set, we randomly choose a sector containing a half of all data points
(see Figure 4.3 (left)). The rest of the data set contains two "stripes"
which we then combine with another half of the data set.

3. The third approach is a development of the previous method and is
illustrated in Figure 4.3 (right). It implies excluding a part of the data
points between the sectors to further reduce the spatial dependence
between the test and training data sets. With this splitting strategy
we aim to be in agreement with the assumptions of i.i.d. data in the
original 5x2 CV test.

Later, in Section 5, we describe an experiment that we perform to
evaluate which of the discussed splitting methods is the most suitable to
use in the 5x2 CV test technique on the spatially dependent data.
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Figure 4.3: Sector splitting approaches. The circles and triangles indicate
the data points used for the training and testing data sets, respectively.
The rhombuses are excluded from the data sets.

1st Sector 2nd Sector2nd Sector2nd Sector 2nd Sector 1st Sector

4.2 Climate Pattern Detection

One of the goals of this thesis is to identify how LC transformation affects
surface temperature. The observed LC data used in our work represent the
ratio between different LC types within one cell. To understand climate
patterns better, we make a prediction only for extreme cases when cells
initially covered by only one LC type were completely converted into
another LC type. There are 21 types of LC, and hence the total number
of possible extreme cases is 420. However, an inherent property of ML
algorithms is that they can only effectively recognize the patterns that
were probed during training. Said in another way, predictions should be
limited to the training domain. We however consider extreme cases in
order to identify the impact of a particular change, i.e. when a cell initially
has only one LC type, which is then completely replaced by another. But
in real-world data, extreme LC transformations rarely happen. Let us call
these partial LC changes as non-extreme ones. Then, in predicting the
effect of LC on temperature, we use in further ML only those extreme LC
changes that are often found in training data even in a non-extreme form.

In our study, we use the data sets from Ref. [48] published in Nature
Communication. In this article Huang et al. also considered the impact of
only extreme LC changes. This makes us believe that such an approach is
reliable from both methodological and climate perspectives. In addition to
that, the consideration of only extreme LC changes allows us to compare
our results with the findings by Huang et al. [48].
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We split the whole area into three sub-areas: Northern Europe, Central
Europe and Southern Europe. For each of this region we develop the
separate ML model and make a prediction for the most frequent LC
transformations. This allows us to focus on the regional effects. The ML
algorithm for this task will be chosen on the basis of the results of the
experiment for searching the algorithm that has the best performance on
the spatially dependent data.

It is not enough to simply receive the model output and then
make a conclusion based on it because model prediction contains some
uncertainties. Thus, we should calculate a prediction interval for each
model output. The prediction interval is a range of values, which includes
all future observations with a pre-defined probability.

Figure 4.4: Schematic explanation of the prediction interval. Adopted
from Ref. [107]

A schematic explanation of the prediction interval is shown in
Figure 4.4. The upper and lower prediction limits can be found with the
following formula:

ŷ± cσ, (4.1)

where ŷ is the model output for the given input, c is the factor depending
on the size of the prediction interval, and σ is the estimated standard
deviation. In our case, we use c = 1.96 that corresponds to a 95%
prediction interval [51]. We also use σ = RMSE as the estimated standard
deviation (see Equation 2.2.2 for RMSE). Since we cannot directly calculate
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RMSE for the model output because we have nothing to compare it with,
we calculate RMSE by splitting the initial data set in proportion 90% for
training and 10% for testing. This approach is equivalent to the traditional
error estimation in statistical regression analysis. Therefore, it allows us to
directly compare our findings with the results obtained with the statistical
method in Ref. [48] .

4.3 Summary

In Chapter 4, we considered the theoretical approach to the application of
the standard ML techniques to the prediction of impact of LC changes
on regional temperature. The two main aspects of this problem were
examined.

The first aspect was shown in Section 4.1. We focused on the method
to compare the performance of ML algorithms on spatially dependent
data. The issue is that tools for standard hypothesis testing imply i.i.d data
and this requirement is not fulfilled in our data sets. Therefore, the main
goal was to adopt the 5x2 CV test to provide reliable results on spatial
dependent and uneven distribution of data. To reach our objective, we
developed three possible strategies for data splitting: random, sector, and
sector with buffer. In the Chapter 5, we will evaluate the performance of
the described data splitting strategies. In Section 4.1, we also described
a reference method for model evaluation - spatial CV. The comparison of
the results of the 5x2 CV test and reference method will be presented in
Chapter 5.

The second aspect is a theoretical foundation for climate pattern
identification which was discussed in Section 4.2. We considered the
methodology for the prediction of the impact of LC transformation on
temperature. In our study, we strive to obtain experimental results
comparable to Huang et al. [48], since the data sets are the same in both
studies. Therefore, we decided to consider only the extreme cases of
LC changes. The results of our predictions will be demonstrated in the
Chapter 6.
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Chapter 5

Experiment

In Chapter 4, we introduced our new methodology, namely, the methods
for performance assessment of algorithms on the spatial data and discuss
preliminary data processing. In this chapter, we present the detailed
description of our experiment and review the results. Afterwards, we
suggest the best CV framework for our task and the best ML approach
to the spatially dependent data. Finally, we discuss the consistency of our
findings with other studies.

5.1 Experiment Design

The main goal of experiment is to find the best method to assess
algorithms. In this thesis, we compare four regression algorithms
described in Section 2.2: MLR, SVM, LASSO and RF.

The design of our experiment involves the implementation of two
separated experiments: the one the synthetic data and the other on the
climate data. The results of the first experiment are used as a basis for the
second one. The experiment can be shortly described as follows:

1. The first experiment will be presented in Section 5.2 and will test
different splitting strategies the synthetic data sets. This allows us
to verify the reliability of the evaluation methods. Firstly, we will
introduce the structure of the synthetic data set. Secondly, we will
describe the design of the experiment. And finally, we will show the
results. Based on our findings we will define the best data splitting
strategy for the 5x2 CV test.

2. The second experiment will be presented in Section 5.3. There, we
will compare the performances of the four ML algorithms (MLR,
SVM, LASSO, and RF) with the 5x2 CV test on the real-world
spatially dependent data. We will also estimate the performance of
the four ML algorithms with the spatial CV method, which is used
as a reference evaluation technique. At the end of this Chapter, we
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compare the spatial CV evaluation of the four ML algorithms with
the results of the 5x2 CV test.

5.2 Experiment 1 on the Synthetic Data

5.2.1 Experiment Design

The experiment 1 implies the calculation of the probability of detection
the difference in algorithms performance for the 5x2 CV test, depending
on data splitting strategies. In case of equally performing algorithms,
the probability of detection the difference in algorithms performance
corresponds to the type I error rate. We divide this experiment 1 to three
stages:

1. Step 1 is to develop a synthetic data set that simulates the spatially
dependent data. This allows us verify an efficiency of the 5x2 CV
test for such kind of data. The data set is split according to one of the
data splitting strategy: random, sector or sector with buffer (see also
Section 4.1).

2. Step 2 is to design a couple of ML algorithms that should perform
equally on the synthetic data set. This allows us to verify the type
1 error rate when the null hypothesis is true. A similar approach
for determination of type 1 error rate was described and applied in
Ref. [28]. We will develop several couples of ML algorithms with
pre-defined performance differences. Thus, we will find out the
probability of detection the difference in algorithms performance for
a range of performance ratios.

3. Step 3 is to estimate the probability of detection the difference
in algorithms performance with the 5x2 CV test for the three
data splitting strategies (random, sector or sector with buffer) and
different performance ratios of the ML algorithm designed at Step 2.

Synthetic Data Sets

At Step 1, we design the synthetic data set Tall = (X, Y) that simulates
the spatially dependant data. To add spatial dependence in these data, we
define the input variables X as a one-dimensional array that is build on
randomly generated data Z. Let us define the size of the one-dimensional
array X as 1× n, where n = 450. The array consists of the p-dimensional
vectors with p = 21 that includes information about changes in different
LC types from Table 3.1. The degree of dependence in the data is
determined by the parameter h equal to 20. We also generate output
variables Y, which are a linear function of the input variables and spatially
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dependent noise data. Eventually, the synthetic data can be described by
the following rules:

1. Let us generate a matrix Z of (n + h)× p size, where all elements are
random and have the same normal distribution zi,j ∼ N (0, σz) for
i = 1, . . . , (n + h) and j = 1, . . . , p. Thus, the elements in Z are i.i.d.
The matrix Z will be an origin of the spatially dependent input data.

2. The matrix X with the input variables and a size of n× p = 450× 21
is constructed from the matrix Z, as presented in Equation 5.1. In
Figure 5.1, one can see the spatial dependence between x1,1 and x2,1,
which have h− 1 common summands.

xi,j =
i+h

∑
k=i

zk,j (5.1)

Figure 5.1: Relation between Z and X matrices.

3. Let us generate a vector δ of (n+ h) size, where elements are random,
and each δi is normally distributed as δi ∼ N (0, σε), where i =
1, . . . , (n + h). This will be an origin of the spatially dependent noise
in the output variables.

4. The noise vector ε = (ε1, ε2, . . . , εn) of n size is based on the vector δ,
as shown in Equation 5.2, and its components are spatial dependent:

εi =
i+h

∑
k=i

δk (5.2)

5. We define the output variables Y = (y1, . . . , yn) of n = 450 size
as a linear function of the input variables X and noise vector ε, as
determined in Equation 5.3:

yi = β0 + β1xi,1 + . . . + βpxi,p + εi, (5.3)

where β0, . . . , βp are some coefficients.
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The final synthetic data set Tall consists of the spatially dependent
input variables X and output variables Y that are linear functions of
X. Then we divide the synthetic Tall = (X, Y) into two sub-sets of the
equal size: Ttrain = (Xtrain, Ytrain) and Ttest = (Xtest, Ytest) using the three
splitting approaches described in Section 4.

Verification of 5x2 CV Test for Spatially Dependent Data

At Step 2, we develop two ML algorithms M1 and M2 with equal
performances, which are evaluated by RMSE. Let us define a ratio between
the averaged RMSE for models based on M1 and M2 as a performance ratio
Rper f = RMSEM1

RMSEM2
of the ML algorithms. For example, if the performance

ratio Rper f = 0.5, then the performance of M1 is twice better than that
of M2. M1 and M2 perform approximately equal if Rper f = 1, when we
train and test both M1 and M2 enough times on the randomly generated
synthetic data sets. In this thesis, we state that approximately equal means
that Rper f = 1.00 ± 0.001. Let us denote K as the number of data sets
on which we should run M1 and M2 to find the correct average RMSE.
Empirically, we found that K = 1000 is the optimal number with respect
to a balance between accuracy and computational time. The design of
the synthetic data implies the linear dependence between the input and
output variables. Thus, we can assume that MLR and LASSO should have
a proper performance on such a data set. However, their performances are
not exactly the same. Let us assume that models based on M1 have lower
average RMSE and hence higher performance than M2 models. To make
them equal, we decrease the efficiency of M1 models adding a constant
c to the predicted output values and, therefore, increasing the average
RMSE for M1. Ref. [48] denoted a model with reduced performance as
a "damaged" model. We denote a model that is produced by M1 algorithm
with the synthetic data set as f (·). Then, the "damaged" model f̂ (·) can be
define as follows:

f̂ (X) = f (X) + c = β0 +
p

∑
j=1

Xjβ j + c (5.4)

To reach the desirable performance ratio Rper f = P, we perform the
following operations:

1. Firstly, c is zeroed: c = 0

2. For i = 1 to K:

(a) Generate a synthetic data set Ti
all

(b) Divide Ti
all into Ti

train and Ti
test of the equal size in according to

the splitting strategies.
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(c) Train M2 on Ti
train. Test the model on Ti

test and calculate RMSEi
2

using the standard Equation 2.2.2

(d) Train M1 on Ti
train and find out the model f (·). Then form

the "damaged" model f̂ (·) according to Equation 5.4. Test
the "damaged" model on Ti

test and calculate RMSEi
1 using the

following equation:

RMSE =

√√√√ 1
N

N

∑
j=1

(yj − f̂ (xj))2 =

√√√√ 1
N

N

∑
j=1

(yj − ( f (xj) + c))2

(5.5)
where c is the coefficient decreasing the performance of M1

3. Calculate the performance ratio Rper f as

Rper f =
∑K

i=1 RMSEi
1

∑K
i=1 RMSEi

2
(5.6)

4. If Rper f 6= P± 0.001, then choose another value for c and go to (2).
Depending on whether Rper f > P or Rper f < P, the c value should be
gradually increased or decreased by a small value starting from 1. If
Rper f = P± 0.001, then M1 and M2 algorithms have the performance
ratio P, and we achieve our goal.

So, finally, we have the two algorithms M1 and M2 with the perform-
ance ratio equal to Rper f = P.

The last Step 3 is to estimate the probability of detection the difference
in algorithms performance on the data splitting strategy chosen at Step
1 and the performance ratio Rper f chosen at Step 2. Let us denote the
probability of detection the difference in algorithms performance as α.
Then we can calculate α as the ratio between the number of tests, where the
difference in algorithm performances is detected, and the total number of
performed tests M. Empirically, we found that M = 100000 is the optimal
number with respect to the balance between accuracy and computational
time. To do so, we perform following operations:

1. For i = 1 to M:

(a) Generate new synthetic data set where the input data set is the
array of 1× 450 in size, where each element of the array is a 21-
dimensional vector, and the output data set is the vector of 450
in size.

(b) Perform the 5x2 CV test on the given data set and for a model
based on M1 algorithm and and the "damaged" model based on
M2 algorithm.
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(c) Conclude whether the models are recognized as equal by the
5x2 CV test.

2. Calculate the probability of detection the difference in algorithms
performance α.

When we get the results of the experiment, we can evaluate whether
any of the splitting data methods can provide the acceptable probability of
detection the difference in algorithms performance for different perform-
ance ratios. In this thesis, we consider nine performance ratios from 1 to
0.2, where Rper f = 1 for the algorithms with the equal performance and
Rper f = 0.2 for a situation when one algorithm performs five times better
than another. The splitting strategy can be considered acceptable if two
conditions are fulfilled:

1. For the algorithms with the equal performance, the probability of
detection the difference in algorithms performance is α ≤ 0.05

2. For the algorithms with different performance, α should be as high
as possible and above 0.05.

5.2.2 Experiment Results: The best data splitting strategy
for 5x2 CV test

In this section, we calculate the probability of detection the difference
in algorithms performance. Let us remind that the type I error rate is
the probability of detection the difference in algorithms performance for
algorithms with the equal performance. For the algorithms with diverse
performance, the probability of detection the difference in algorithms
performance shows whether the 5x2 CV test reveals their different
performance. The probabilities of of detection the difference in algorithms
performanc are calculated for different splitting strategies: random
splitting, sector- and sector-splitting with buffer, which were described
in Section 4. The experiment is performed on the synthetic data sets
that simulate the spatially dependent data. The results are presented in
Table 5.1 and Figure 5.2.

Figure 5.2 illustrates the dependence of the probability of detection
the difference in algorithms performance on the performance ratio for
different splitting strategies. The line α = 0.05 demonstrates the maximum
acceptable type I error rate for algorithms with the equal performance.
This means that the performance of both algorithms is considered equal if
a bar is under this line.

The performance ratio Rper f = 1 means that if algorithms perform
equally, then the acceptable type I error rate should be less than 0.05.
One can see from Figure 5.2 that this applies for all considered splitting
strategies. As Rper f decreases, the ML algorithms perform more and more
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Performance ratio Random Sector Sector with buffer
1 0.005 0.0254 0.0236
0.95 0.0629 0.0286 0.0225
0.9 0.3256 0.0403 0.0281
0.85 0.5214 0.0594 0.0384
0.8 0.6790 0.1142 0.0671
0.7 0.8979 0.2046 0.2146
0.6 0.9850 0.2929 0.2661
0.4 0.9999 0.6388 0.5843
0.2 1 0.9805 0.9675

Table 5.1: The probability of detection the difference in algorithms
performance for different data splitting strategies.

differently, and the 5x2 CV test should exhibit a sharp increase in the
probability of detection the difference in algorithms performance. Ideally,
the probability of detection the difference in algorithms performance
should be equal to 1 for the performance ratio Rper f 6= 1. In Table 5.1
and Figure 5.2 we can see that the probability of detection the difference in
algorithms performance grows most prominently for the simplest splitting
strategy - the random data splitting. Indeed, already for Rper f = 0.90, the
random data splitting indicates the difference in performance in 33 % of
cases, while the sector splitting strategies barely detect it in only 3 - 4 % of
cases. Therefore, we can conclude that the random data separation has the
best sensitivity towards the performance difference of algorithms.

For example, the performance ratio of 0.4 means that RMSE for
one algorithm perform in 2.5 times better than another. For this
performance ratio, the sector splitting strategy detects the difference
only in 64 % of cases, while the sector with buffer splitting approach
detects the difference even worse - in 58 % of cases. At the same time,
the random data splitting method possesses a superior effectiveness,
detecting performance difference for 99.99 % of simulations.

5.3 Experiment 2 on the LC Climate Data

5.3.1 Data Pre-processing

The climate data should be adapted for all tested ML algorithms.
Therefore, the goal is to adjust the climate data by transforming it into
a form which is the acceptable input data for ML algorithms. This task
consists of the three main sub-tasks:

1. Define what data we use in ML algorithms.

2. Verify data consistency and remove suspicious data points.
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Figure 5.2: The DDAP probability (probability of detection the difference
in algorithms performance) depending on the performance ratio and
splitting strategy.
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3. Aggregate data for use in ML algorithms.

Initial files containing the LC and temperature data from the regional
climate model were represented in a format called the Network Common
Data Form (NetCDF). This format was developed by NASA for array-
oriented scientific data [113]. We use the same data set that was used in
Ref. [48] by Huang et al. In this thesis, 12 main files from the given data
set were used:

1. Two files with an information on the LC data in 1992 and 2015 years.

The research area (Europe) was divided by a grid with 467 cells in the
south-north direction and 479 cells in the west-east direction, 223 693
cells are in total. There are three dimensions characterizing each data
point: a cell number in the south-north direction, a cell number in the
west-east direction, and time. The time dimension is an information
on a year when LC information was collected. The data set used
in thesis contains LC information for only two dates 1992-01-01 and
2015-01-01 which are the only possible values for a time field. Each
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cell (data point) contains 55 parameters with detailed description
of its properties such as degrees of latitude and longitude, LC
information, soil characteristics and others. In this thesis, we focus
on LC and, therefore, we need only two characteristics. The first one
is a land mask which indicates whether a given point is covered by
land or water. The second is LC category variable that is represented
by a 21-dimensional vector with components from Table 3.1. As
described in Section 3, the 21-dimensional vector shows a proportion
of different LC categories in a certain cell. According to the data
description, we define this vector for an ith cell as

LCi = (lci,1, LCi,2, . . . , LCi,21) ,where 0 ≤ LCij ≤ 1 and
21

∑
j=1

LCi,j = 1 for ∀i

(5.7)

2. Two files with the daily temperature data for the whole 1992 and
2015 years. Eight auxiliary files with the daily temperature data for
four seasons in 1992 and 2015.

The temperature data files contain five parameters. Two of them are
coordinates of cells with the same dimensions as in the LC data files.
The other two characteristics are representations of time dimension
in two different formats. In the annual data files, the size of time
dimension is 365 (both 1992 and 2015 were not leap years). In the
seasonal files, the size of time dimension is between 90 and 92 days,
depending on the number of days within a season. Finally, the last
parameter is the daily temperature in degrees Celsius degrees for
each cell.

To examine the given data quality, we check that all data points
correspond to the definition given above. During testing, we found out
that incorrect LC information is provided for the data points that are
marked as "water" in the land mask. Therefore, we excluded 101 844 data
points marked as "water" from consideration. Thus, the final number of
cells used for ML is 121 849.

In this thesis, we consider changes in LC as the input variables Xi for
regression algorithms and the temperature data as the output variables Yi.
If we define Xi = (xi,1, . . . , xi,21) as the input data corresponding to an ith
cell, then it can be described as follow:

Xi = LC2015
i − LC1992

i , (5.8)

where LC2015
i and LC1992

i are the 21-dimensional vectors describing LC
in 2015 and 1992, respectively (see Equation 5.7). Based on the LC data
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definition we can also state that:

∀i ∈ [1, 121849]
21

∑
j=1

xij = 0 and xij ∈ [−1, 1], (5.9)

where 121 849 is the total number of cells in the LC data file, excluding
"water cells".

The temperature data simulated by the regional model are used as
the output variables in this thesis. Therefore, we consider temperature
only for cells marked as "land" in the land mask. To reduce temporal
dependence [49], we consider only the average temperature for a whole
year or season as dependent variables. Temperature averaging also makes
our results compatible with Ref. [48]. Let us define tyear

i,j as the temperature

in an ith cell on a jth day and simulated for a certain year = 1992 or 2015.
Then we can find the output variable Yi as follow

Yi =
1
P

P

∑
j=1

(t2015
i,j − t1992

i,j ), (5.10)

where P is the number of days in the given period: 365 per year and 90
– 92 per season. We label the output variables as Yyear

i for the average
temperature for the whole year. The output variables for different seasons
are labeled as Ydj f

i for the average temperature in December, January,
February (winter, dj f stands for the first letters in the names of the
months); Ymam

i for the average temperature in March, April, May (spring);
Y jja

i for the average temperature in June, July, August (summer); and Yson
i

for the average temperature in September, October, November (autumn).
In summary, we build five data sets with the input variables X

(LC change) and the output variables Y (temperature) for use in ML
algorithms. These data sets have the same input variables Xi but the
different output variables Yi corresponding to a temperature averaged
over different seasons and a year. All five data sets are used to predict
the impact of LC change on temperature in Section 6.1. However, in
the experiment, we mainly focus on the annual temperature data set
(Xi, Yyear

i ) that is shown in Equation 5.11:

X =

 x1,1 . . . x1,21
. . . . . .

xN,1 . . . xN,21

 , Yyear =

yyear
1
. . .

yyear
N

 , N = 121849 (5.11)

5.3.2 Experiment Design: Algorithm Assessment

Algorithm Assessment with Spatial CV

The experiment 2 contains an assessment of performances of the four
ML algorithms together with the base line algorithm using the spatial
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CV technique described in Section 4.1. The latter is used as a reference
approach for the four ML algorithms. The base line is an algorithm that
predicts the same mean value of the output variables in a training data set
for any input variable. In the base line algorithm, we split the whole map
to non-overlapping sectors and each of them contains an equal number of
cells. We consider three types of splitting on sectors depending on their
size: 25x25, 50x50 and 75x75 cells in each of sectors. This give us an ability
to observe whether the algorithm performance depends on the sector size.
We train the model on all the sectors excluding one, which is later used
as a test data set. This process is repeated for all the sectors containing
cells with land. Then we calculate the mean values of evaluation metrics
for all non-empty sectors. We apply RMSE and R2 to assess algorithms
between each other. We consider that two algorithms perform equally if
the evaluation metrics have the same values on average.

Algorithm Assessment with the 5x2 CV Test

This experiment aims to reveal the superior ML algorithm among MLR,
LASSO, SVR, RF with application to the spatially dependent data. To
achieve this goal, we use the 5x2 CV test and a splitting strategy that is the
most sensitive with respect to the difference in algorithm performance.
The four algorithms MLR, LASSO, SVR, RF together with the base line
are compared in pairs, where the base line is an reference algorithm that
predicts the mean value of the output variables in the training data set
f (xi) = y for any input variables. If the performance of an algorithm is
equal to the base line, then the algorithm considered useless.

To compare two algorithms, we perform the 5x2 CV test on the real-
world LC and annual temperature data to find the t value (see Section 4.1).
If |t| ≤ 2.571, then we accept the null hypothesis and consider that the
two algorithms perform equally. If |t| > 2.571, then we consider that the
two algorithms have a statistically significant difference in performance. A
larger |t| is associated with a larger difference. The positive t value means
that M2 performs better than M1, while the negative one means that M1
performs better than M2.

In addition, we repeat this experiment on five areas: one area that
includes all cells on the grid (the whole map) and four areas corresponding
to the quarters of the map that are shown in Figure 5.3. This is done to
verify that the performance difference between the algorithms is reliable
and independent of the input data.

5.3.3 Experiment Results: Superior ML algorithm

In this section, we present the results of the experiment 2 described above.
First of all, the performances of the four ML algorithms are compared
pairwise with 5x2 CV test and the algorithm with the best performance is
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Figure 5.3: Sectors where the 5x2 CV test was performed

.

1 2

3 4

chosen. Secondly, the estimations of the performance of ML methods are
evaluated with spatial CV. Finally, we compare the results two methods.

Superior ML algorithm with the 5x2 CV test

In Section 5.2, we evaluated different tests based on 5x2 CV test.
According to our estimations, 5x2 CV test with random data splitting has
the type I error rate lowest among considered strategies and possesses a
higher probability of detection the difference in algorithms performanc.
Therefore, in this experiment 2 we used 5x2 CV test with random data
splitting.

The 5x2 CV test is supposed to assess ML algorithms relative to each
other meaning that it cannot provide an absolute value of an algorithm
performance. The 5x2 CV test is useful when the ordinary evaluation
metrics of two algorithms have nearly identical values, and R2 is low (see
Section 2.2). However, if we compare ML algorithms with a reference
the base line, we can obtain an absolute evaluation of an algorithm
performance for further analysis.

We run the experiment on the LC and temperature data, as described
in Section 4, with the calculation of t values for pairs composed of five
algorithms: base line, MLR, LASSO, RF and SVR. The t values are found
for each pair of the algorithms and shown in Table 5.2. If the t value
is positive, then an algorithm in a row has better performance than the

65



corresponding algorithm in a column. For example, the RF algorithm
performs better than LASSO as shown in Table 5.2. The t values are
calculated only for half of the table, because the tables are symmetric with
respect to the diagonals, so t(M1, M2) ≈ −t(M2, M1).

Full area
Base line MLR LASSO RF SVR

Base line X - - - -
MLR 31.732 X - - -
LASSO 0 -37.3217 X - -
RF 39.0171 57.5218 63.3978 X -
SVR 20.4579 -5.4744 17.1094 -52.8771 X

Sector 1
Base line MLR LASSO RF SVR

Base line X - - - -
MLR 18.3349 X - - -
LASSO 1.5811 -17.94631 X - -
RF 35.1290 35.1453 42.8217 X -
SVR 15.8549 -3.0303 8.5086 -18.8624 X

Sector 2
Base line MLR LASSO RF SVR

Base line X - - - -
MLR 14.9467 X - - -
LASSO 0 -12.2621 X - -
RF 47.7939 27.2626 67.8474 X -
SVR 11.9198 -5.0461 10.5529 -17.6782 X

Sector 3
Base line MLR LASSO RF SVR

Base line X - - - -
MLR 10.7008 X - - -
LASSO 0 -9.2485 X - -
RF 27.0683 16.4368 19.1729 X -
SVR 7.2434 -2.8546 4.6422 -16.0634 X

Sector 4
Base line MLR LASSO RF SVR

Base line X - - - -
MLR 11.2362 X - - -
LASSO 0 -12.0941 X - -
RF 32.7102 42.3702 52.0083 X -
SVR 10.219 -5.2496 8.9192 -49.7994 X

Table 5.2: The t value calculated with the 5x2 CV test for pairs of
algorithms.
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Due to the use of the different data sets (the entire map and four
quadrants shown in Figure 5.3), the experiment shows slightly different t
values for the same algorithm pairs in different areas. However, the trends
are identical for all the data sets. We can arrange ML algorithms according
to their performance on the spatially dependent data:

1. LASSO: its performance is as bad as that of base line because the t
values for this pair of algorithms are less than 2.571.

2. SVR: it performs significantly better than base line, but worse than
MLR and RF.

3. MLR: it is the second best ML algorithm

4. RF: it possesses the superior performance on the spatially dependent
data since it has the highest t values according to the 5x2 CV test.

Superior ML algorithm with spatial CV

We use the spatial CV technique described in Section 4 to calculate the
average R2 and RMSE for five algorithms: base line, MLR, LASSO, RF and
SVR, where base line is a reference algorithm. The whole area of the data
points is divided into sectors and the evaluation metrics are calculated.
The experiment is repeated several times for the different sector sizes:
25x25, 50x50 and 75x75 cells in each sector. That allows verifying that the
difference between the algorithm performances is consistent. The results
are presented in Table 5.3 and in Figure 5.4.

Firstly, we measure the coefficient of determination R2, which repres-
ents how properly a model explains the relation between the input and
output data. The coefficient of determination can be between 0 and 1, and
higher values correspond to a better fitting of the model to the data. The
experimental results demonstrate that the average R2 is very low and al-
most equal to zero. This may raise doubts on the fact that ML algorithms
can provide meaningful predictions.

Secondly, we measure RMSE that should be as low as possible for a
model with high performance. We can see that the average RMSE is almost
identical for all algorithms, including base line. This can make it hard to
understand there is significant difference between the ML algorithms. In
general, we can conclude that according to spatial CV, base line, LASSO
and MLR have approximately the same performance, while SVR has
poorer performance than these three. Finally, we can conclude that RF has
noticeably better performance among the considered approaches because
of the lowest RMSE.
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Figure 5.4: Results of spatial CV for five algorithms
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Sector size 75x75
average R2 average RMSE

Base line 0 0.1727
MLR 0.0008 0.1713
LASSO 0 0.1727
RF 0.0001 0.1642
SVR 0.0011 0.1718

Sector size 50x50
average R2 average RMSE

Base line 0 0.1730
MLR 0.0049 0.1726
LASSO 0 0.1729
RF 0.0021 0.1631
SVR 0.0041 0.1745

Sector size 25x25
average R2 average RMSE

Base line 0 0.1638
MLR 0.0036 0.1618
LASSO 0 0.1638
RF 0.0029 0.1511
SVR 0.0017 0.1634

Table 5.3: Evaluation metric calculated with spatial CV for different
algorithms.

Comparison of 5x2 CV test and spatial CV

We compare the results obtained from two assessment methods that we
used for evaluation of the best ML algorithm for the spatially dependent
data. Based on this comparison, we conclude which algorithm should
have a superior performance. Finally, we discuss why this algorithm is
the most suitable for such class of tasks and how it is consistent with other
publications on this subject

Both experiments, the 5x2 CV test and spatial CV assessment, have
some similarities. Both techniques were applied to the same data sets
of the observed LC and temperature. In both cases, five algorithms
(base line, MLR, LASSO, RF, and SVR) were assessed. Both experiments
were repeated several times with different parameters and data sets to
demonstrate that the results were not affected by them.

The main advantage of the 5x2 CV test is that the detected difference in
performances is statistically significant. In addition, the 5x2 CV test aims
to assess a difference in performance between the two algorithms while
the spatial CV evaluates each algorithm separately using metrics. It can
be difficult to interpret the spatial CV results in case of low R2 and low
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variation of RMSE for different algorithms. In addition, the spatial CV
shows the ambiguous results for the same algorithms. For example, the
SVR models have better performance than base line for a sector size 75x75
and 25x25 cells, but worse performance for a sector size of 50x50 cells.

Summarizing, we can conclude that the 5x2 CV test is more efficient
tool to compare the algorithm performances on the spatially dependent
data than the spatial CV. The 5x2 CV test can be used for evaluation
of even low R2 by the assessment with base line. This method also
allows comparing algorithms with similar performance to determine the
difference between them. The 5x2 CV test shows a noticeable dissimilarity
between the performance of most algorithms studied in this thesis. At the
same time, it is difficult to make any conclusion on the difference of the
studied algorithms using the spatial CV. Based on the outcome from both
experiments, we can conclude that RF demonstrates the best performance
over other algorithms.

We assume that RF has better performance, because of its non-linear
nature that probably better describes the dependence between LC changes
and temperature. Another peculiar property of this algorithm is that it
consists of several decision trees and can handle more complex patterns.
For example, in our case, it can be a different temperature response for
the same LC transformation depending on the region where it happens.
This characteristic also facilitates the selection of the most important
independent variables and the ignoring of the irrelevant variables [89].
This can be especially significant in our case because probably not all LC
changes noticeably affect temperature. Breiman [12] stated that RF is quite
resistant to noise that is also critical for our task, because data from the
climate model simulations are noisy.

5.4 Experiment: Discussion

.
The novelty of our work is the development of the method which

allows revealing a statistically significant difference in performances
between ML algorithms on the spatially dependent data. The statistically
significant difference is especially important in our experiment because
our data sets are characterized by high noise. Other works mainly
tend just to compare some specific methods on various data and do
not consider the statistical significance of results. In other studies, it is
common to use the K-fold CV. However, it does not always provide clear
information about algorithm assessment. In this thesis, we demonstrated
that the 5x2 CV test with random data splitting shows reliable results on
the spatially dependent data.

In this section, we would like to discuss the outcome of the 5x2 CV
test method with respect to other works on this subject. Researchers often
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apply the R2 and MSE evaluation metrics and the K-fold CV with random
splitting of the observed spatially dependent data (for example, Ref. [14,
69, 90]). However, this approach may have some limitations on the
spatially dependent data because they are not i.i.d. Therefore, the results
obtained with these approaches can overestimate a model performance
that leads to the erroneous data interpretation, whereas the 5x2 CV test
can be a powerful tool to reveal the performance difference between ML
algorithms.

Several studies were focused on comparison of the performance
of various algorithms with evaluation metrics based on the spatially
dependent data, including the LC data [14, 69, 90]. Olivera et al.
compared the predictive ability of MLR and RF for detection of spatial
patterns of fire occurrence [90]. Olivera et al concluded that RF has
much higher predictive accuracy than MLR and can identify non-linear
trends. Li et al. measured the performance of twenty – three different
ML methods for spatial interpolation of environmental variables such
as mud content [69]. This study convincingly demonstrated using 10-
fold CV that RF and various combinations of RF with other algorithms
outperform other algorithms, including SVR. Li et al. also paid attention to
the ability of the algorithm to reveal non-linear correlations and complex
relations between variables. Chen et al. evaluated with the 5-fold CV the
predictions from sixteen algorithms for the average annual fine particle
and nitrogen dioxide concentrations using the spatial input variables such
as the LC data [14]. In that study, RF was one of the three algorithms that
show the best performance.

The research questions raised in these studies differ from those
presented in this thesis. Most works also used the K-fold CV with the
random data splitting and the R2 and RMSE evaluation metrics which
evaluation ability does not suit perfectly to the spatially dependent data.
Therefore, we cannot directly compare our results with those in the
discussed publications. We can, however, observe some common trends
between these studies and our own findings. For example, these works
also demonstrated that RF has a performance superior to other techniques
within the application to the spatially dependent data. Thus, RF can
be considered as an efficient technique for the spatially dependent data
analysis.

5.5 Summary

In this Chapter 5 we discussed the design and results of the experiment.
First of all, we considered the overall design and explain the motivation
to carry out two experiments: one on the synthetic data and the other one
on the climate data sets. Secondly, we described the design and results for
each experiment. Finally, we examined how our results are comparable
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with the findings from other studies.
In Section 5.2, we presented the experiment 1 on the synthetic data

sets. We carried out this experiment to find out the type 1 error rate and
the probability of detection the difference in algorithms performance for
the 5x2 CV test. We used synthetic data sets to have a non-limited amount
of data with a similar level of spatial dependency. We also developed two
algorithms with the pre-define performance ratio. Using these algorithms
and synthetic data sets, we run the 5x2 CV test multiple times to find
out the type 1 error rate and the probability of detection the difference
in algorithms performance for three different splitting strategies. The
experiment results allow us to conclude that a random splitting strategy
has superior sensitivity to the probability of detection the difference in
algorithms performance. We also came to the conclusion that the 5x2
CV test with random data splitting is an efficient and reliable tool for the
assessment of the performances of the algorithms.

In Section 5.3, we used our outcome from Experiment 1 to compare
performances of four ML algorithms (MLR, LASSO, RF, SVR) together
with the baseline algorithm on climate data set. The algorithms were
assessed by the 5x2 CV test on the five different sub-set of data to avoid
any impact of data set. In Section 5.3, we also evaluated these algorithms
with spatial CV. We repeated assessments three times with different sector
sizes to verify that results are independent of input parameters. We found
out that some results of the algorithm’s assessment with spatial CV are
ambiguous. However, both 5x2 CV test and spatial CV convincingly show
that RF performs better than the other considered algorithms on our data
set. At the end of this section, we discussed the causes of the superior
RF performance. We assumed that the main reason is that RF has been
developed with the focus to capture non-linearity and to cope with noise
in data.

Finally, in Section 5.4 we discussed how our findings are comparable
with other studies. Generally, many climate science studies agree that the
RF algorithm is a suitable tool for spatially dependent data. However,
many scientific papers consider only specific ML algorithms and their
performance on certain tasks. In contrast, we proposed a method (the
5x2 CV test) that can evaluate the performance of any ML algorithms on
different spatially dependent data.
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Chapter 6

Temperature Changes Due to
Land Cover Changes

In the previous chapter, we developed a method to compare the perform-
ances of the different algorithms on the spatially dependent data and the
random forest method demonstrated the superior prediction ability. Now,
in this chapter, we would like to test this technique on the real-world case
of impact of LC transformations on surface temperature. Firstly, we build
three ML models for the following regions: Northern, Central and South-
ern Europe (Figure 6.1). The prediction results described separately for
each region. Then we build a model for the whole of Europe. The gen-
eral trends for the whole of Europe are described and compared with the
prediction for the three regions. Finally, we discuss the consistency of our
results obtained from ML models with other studies based on statistical
approaches.

6.1 Results

We make predictions of the most common extreme cases of LC transitions
in different regions according to the methodology described in Section 4.
The results are presented in Tables 6.1 – 6.4. The whole area and the three
sub-regions were considered to reveal patterns inherent to each region.
We believe that the similar extreme cases can lead to different results
depending on a certain region. However, we would also like to evaluate
whether this is consistent with the predictions for the whole of Europe.
For each region, we identify the most characteristic LC transformations.
The column "Event Rate" represents how often such LC change happens
within a certain region. The ten most frequent LC transformations were
chosen for Northern and Southern Europe. For Central Europe, we
consider the 13 most frequent LC changes because the total number of
types of LC transformations is higher there. For the whole of Europe, we
considered the 20 most frequent LC changes, but in Table 6.4 we presented
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Figure 6.1: Three regions used to predict the effect of LC changes on
surface temperature: Northern (green), Central (yellow) and Southern
(red) Europe.

only those LC transformations which have the most significant impact on
temperature according to our estimation.

In addition, the prediction interval of temperature change in degrees
Celsius for each season and the whole year was calculated. In this thesis,
we define that the prediction interval demonstrates significant changes
in temperature only if the whole interval is positive or negative. When
the prediction interval is only partially positive and partially negative,
then we assume that it is impossible to predict the temperature trend
unambiguously. The cells with the most significant temperature growth
are marked in red. The dark red corresponds to the temperate growth
when the entire prediction interval is above +0.5 °C. The intense cooling
is marked in blue, and the dark blue color marks the most prominent
temperature drop when the whole prediction interval is below -0.5 °C.

Recall from Section 3.2 that the artificial temperature simulated by the
climate model excludes the factors other than LC transformation. This
allows us to pay attention to temperature trends associated exclusively
with LC changes.
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6.1.1 Impact of Land Cover Changes on Temperature in
Northern Europe

The prediction results presented in Table 6.1 show that all ten of the most
frequent LC changes can lead to a significant increase in temperature
during spring and/or summer. The predictions demonstrate that 9 out
of 10 LC transformations lead to a temperature growth in spring, and
four of them demonstrate increase for more than +0.5 °C. Our results did
not reveal any LC transition which definitely leads to any temperature
decrease in Northern Europe.

In general, LC is most often transformed into open shrublands in
Northern Europe. Indeed, this occurs in 6 out of 10 times of the most
common LC changes. In all cases, this causes a temperature rise in
spring (MAM). Moreover, a prominent temperature growth above +0.5 °C
occurs when LC transforms only into open shrublands. Let us discuss the
temperature patterns associated with LC change in detail.

The transition from barren or sparsely vegetated LC to open shrub-
lands results in the most significant temperature increase in spring
between +1.1 and +2.4 °C. In addition, this LC transformation is respons-
ible for the average annual temperature rise of +0.1 – +0.7 °C.

Every change from forest to other LC types leads to a temperature
growth. For example, a transformation from the different forest types
(evergreen needleleaf, mixed, deciduous broadleaf) to open shrublands
cuases a warming by +0.5 – +1.9 °C in spring. The transition from
evergreen needleleaf forest to permanent wetland results in a temperature
growth in summer by +0.2 – +1.7 °C.

Permanent wetland is the most frequently changed LC type. 75 % of
cases of permanent wetland transformation is the transition to different
kinds of forests (evergreen needleleaf, mixed, deciduous broadleaf). This
leads to increase in temperature in spring by +0.01 – +1.7 °C, while
LC change from permanent wetland to evergreen needleleaf, mixed or
deciduous broadleaf forests in summer increases temperature by +0.1 –
+1.7 °C.

Most of studies consider LC transformations as anti-symmetrical [48].
So, a change from LC #1 to LC #2 should have the opposite effect with
respect to a change from LC #2 to LC #1. Nevertheless, our predictions
detected another relation between LC changes. There are symmetrical
LC transformations through the most frequent LC transition in Northern
Europe: from permanent wetland to evergreen needleleaf forest and from
evergreen needleleaf forest to permanent wetland. Both of these LC
changes contribute to a warming during summer. At first glance, this
looks like a wrong behaviour of the ML model. In this thesis, we mainly
focus on the ML side of this task and do not have a strong background in
climatology. However, we can try to discuss this issue.

If we pay attention to the locations where such changes occured, then
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we can detect some clear patterns. In Figure 6.2, both of these types of LC
changes are marked on the map. The LC transformation from permanent
wetland to evergreen needleleaf forest is colored by green and located
mainly along the coast line. This LC transition probably matches with
the certain biogeographical regions such as Arctic, Atlantic and Alpine,
which are shown in Figure 6.3. In turn, the LC change from evergreen
needleleaf forest to permanent wetland (red color in Figure 6.2) occurs
mainly in the boreal region (Figure 6.3). We assume that this difference
in the biogeographical regions can explain the fact that the opposite LC
changes result in a temperature growth.

Figure 6.2: LC changes in Northern Europe. Green color is the
transformation from permanent wetland to evergreen needleleaf forest.
Red color is the transition from evergreen needleleaf forest to permanent
wetland.

Summarizing, we can conclude that LC changes that most often
occur in Northern Europe can lead to an increase in temperature. We
also detected that anti-symmetric LC transformations can contribute to a
regional warming. This was rarely observed before, but we believe that
it can be explained by the certain biogeographical location of these LC
changes. However, this issue requires a more detailed consideration by
researchers with a strong climate background.
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Figure 6.3: Biogeographical regions in Europe. Adopted from Ref.[24]

6.1.2 Impact of Land Cover Changes on Temperature in
Central Europe

The prediction results for Central Europe are presented in Table 6.2. The
LC transitions in Central Europe occur more often than in Northern
and Southern Europe. In general, despite the frequent LC transition
in this region, the surface temperature is not affected critically. We
can observe a significant temperature change only for 5 out of 13 most
frequent LC transformations. Moreover, there is not any prediction
interval demonstrating an increase or decrease above 0.5 °C. In contrast
with Northern Europe, we did not detect any prominent temperature
change in spring in Central Europe. However, we observe a temperature
growth trend for the whole year in Central Europe more often than in the
north.

All significant changes in temperature are associated with the LC
transition to urban and built-up ares. Mostly it leads to a warming
by +0.03 – +0.9 °C, which is observed through the whole year. The
most frequent LC transformation in Central Europe is the shift from
cropland to urban and built-up LC. For this LC change, we can predict
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the temperature growth during the whole year, in winter and summer.
The LC transformation from barren or sparsely vegetated LC to urban and
built-up area leads to a decrease in autumn temperature by -0.2 – -1.1 °C.

It can also be observed that 8 out of the 13 most frequent LC changes
are related to the substitution of cropland or cropland/natural vegetation
mosaic to other types of LC. However, our findings do not demonstrate its
significant impact on temperature.

Summarizing, we can conclude that the change of LC to urban and
built-up is the most frequent LC transition in Central Europe. Such LC
transformations have a noticeable impact on regional temperature. In
most cases, this leads to a warming, but we also observed that this can
lead to a temperature decrease. One can also notice that, despite numerous
transformations in LC, the impact of LC changes on temperature is mild.
There is no LC transformation which results in critical temperature change
when the prediction interval completely exceeds a variation of 0.5 °C.

6.1.3 Impact of Land Cover Changes on Temperature in
Southern Europe

Table 6.3 shows the prediction results for extreme LC changes in Southern
Europe. We observe prominent temperature changes for 9 out of 10 LC
transformations. In contrast with other regions, LC transitions in Southern
Europe more often lead to a temperature decrease, including a noteworthy
cooling by more than -0.5 °C. Several warming trends, which take place in
summer, were also identified.

Cropland and cropland/natural vegetation mosaic are most frequently
replaced by another LC in Southern Europe. However, it is difficult to
distinguish any temperature pattern associated with these LC changes.
The transition from barren or sparsely vegetated LC to cropland leads
to a temperature decrease for the whole year by -0.1 – -0.6 °C. For
this LC change, we also observe a significant cooling by -0.3 – -1.0 °C
during summer and by -0.1 – -0.6 °C during autumn. The shift from
cropland/natural vegetation mosaic to cropland results in a prominent
cooling by -0.8 – -1.5 °C in summer and by -0.1 – -1.1 °C in spring.
The conversion from cropland/natural vegetation mosaic to evergreen
needleleaf forest contributes to a temperature decline by -0.8 – -1.2 °C
during winter and -0.03 – -1.1 °C during spring. The replacement of
cropland by open shrublands causes a temperature decrease by -0.03 – -
1.1 °C in spring and warming by +0.3 – +1.0 °C during summer.

A temperature growth during summer was detected for several LC
transitions such as: from cropland or cropland/natural vegetation mosaic
to urban and built-up with a temperature rise by +0.5 – +1.2 °C; from
cropland/natural vegetation mosaic or barren/sparsely vegetated LC to
open shrublands with a warming by +0.1 – +1.0 °C.
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Summarizing, we can conclude that the most frequent LC changes
in Southern Europe mainly lead to a cooling. These patterns are in
contrast with typical processes in two other regions. However, some LC
transformations also result in a temperature increase during summer.

6.1.4 Impact of Land Cover Changes on Temperature in the
Whole of Europe

The temperature prediction for extreme LC transitions based on the data
set for the whole of Europe are shown in Table 6.4. We made predictions
for the 20 most frequent LC changes. However, in the table, we present
only the results by which it is possible to unambiguously determine the
temperature trends.

In the Table 6.4, one can notice that most of LC transformations lead to
a local warming. The most general trends are associated with the urban
expansion and the cropland replacement. On the European scale, the
urban expansion results in a temperature increase throughout the year.
One can also observe that the cropland replacement by another LC causes
a temperature increase in summer.

There are also three frequent types of LC transformation that were not
observed for the three regions separately. Two of these LC replacements
are related to deforestation. The transition from deciduous broadleaf
forest to cropland and evergreen needleleaf forest to cropland lead to a
temperature decrease through the whole year with especially significant
cooling by -0.6 – -1.8 °C in summer. In turn, we predict that the LC
change from cropland to mixed forest contributes to a warming during
summer. One more LC change contributing to the regional cooling is the
transformation from barren or sparsely vegetated LC to urban and built-
up areas, which leads to a temperature decrease on -0.02 – -1.2 °C.

Summarizing, we can conclude that the most patterns predicted for
the whole of Europe are also typical for the regions studied separately.
However, some patterns can only be detected on a scale of the whole of
Europe. Mostly, LC changes in Europe lead to a temperature increase.
Nevertheless, we also found three LC transformations that contribute to
the regional cooling.

6.1.5 Comparison of Land Cover and Temperature Changes
in Different Regions

Let us compare the predictions for three separate regions (Northern,
Central and Southern Europe ) to reveal some common trends. The
set of the most frequent LC changes noticeably varies depending on a
region because of the typical LC that is intrinsic to a certain region. Even
for the similar LC transformation we can observe different temperature
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patterns in these three regions. The only frequent LC transition observed
in all regions is the transformation from cropland/natural vegetation
mosaic to open shrubland. For this LC transition, we detected slightly
different patterns in each region: when we consider the whole of Europe
and Southern Europe, we obtain warming during summer; in Northern
Europe – a warming during spring; while in Central Europe there are no
significant temperature changes.

One can observe the different temperature behavior for a shift from de-
ciduous broadleaf forest to open shrublands depending on the considered
region. In Northern Europe, this transition leads to a significant increase
of the average spring temperature by more than +0.5°C, while in Central
Europe no significant changes were detected.

Northern and Southern Europe possess the common LC transition
from barren or sparsely vegetated LC to open shrublands, which leads
to a warming in both regions. However,a temperature growth in the north
is detected not only for spring but also for the whole year, while in the
south we observe a warming exclusively in spring.

Central and Southern Europe have seven similar LC transformations.
However, only one of them has an unambiguous temperature pattern
within the prediction interval in both regions. Hence, we can only
compare the change from cropland to urban and build-up. We can notice
some similarities there. First of all, this LC transformation is the most
frequent in Central Europe and the second most frequent in Southern
Europe. Secondly, we observe that in both regions this LC transition leads
to a temperature increase by +0.04 – +1.3°C during summer.

Let us now turn to the comparison of the prediction for the whole of
Europe with three separated regions. Indeed, we can notice similarities
in temperature patterns, however, some trends slightly differ from each
other. For example, th replacement of barren or sparsely vegetated LC by
urban and built-up LC leads to a cooling in autumn in Central Europe,
while for the whole of Europe we identify a cooling only in summer.
The only transformation from cropland/natural vegetation mosaic to
evergreen needle forest shows a significant difference for the whole of
Europe and Southern Europe. This LC transformation demonstrates
a cooling during winter and spring in the south, but contributes to a
warming in summer on the scale of the whole of Europe.

Summarizing the conclusions through three regions, we can distin-
guish several common trends. First of all, all the LC transitions to open
shrublands in Northern and Southern Europe lead to a temperature in-
crease during spring or summer. Secondly, we can conclude that the most
frequent changes in Southern Europe often lead to a temperature decrease,
while in Northern Europe they contribute to a local warming. However,
we also observe that LC changes have a different impact on temperature
depending on the region. Therefore, it is important to study different areas
separately to obtain a clear understanding of climate patterns.
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6.2 Discussion

One of the questions raised in Section 1.2 is aimed to realize how ML
techniques can improve the understanding of the climate systems. In
this section, we compare our predictions of the impact of LC changes on
the regional temperature with other works on this subject. In the first
subsection, we discuss in general how our findings consistent with various
studies. In the second subsection, we focus exclusively on the comparison
of our findings based on ML with Ref. [48] where the same data set was
used together with statistical analysis.

6.2.1 How Are Our Predictions Consistent With Other
Studies?

The pattern detection with the ML algorithm is a quite new approach for
prediction of the impact of LC changes. Thus, we would like to consider
how our results are consistent with other studies based on statistical
approaches and climate model simulations.

Many studies revealed a strong correlation between temperature
increase and growth in shrub species [13, 19, 62, 83, 84]. Some
of these researchers discussed the positive feedback loop when LC
transitions affect climate, while temperature changes also influence LC
transformation [31, 83, 84]. Firstly, a warming increases a spreading
of shrublands. Then LC transition to shrublands influences the energy
exchange, increasing the absorption of solar radiation. This, in turn,
results in a temperature rise. However, it can be complicated to
distinguish what is the main driver in this feedback loop. In this thesis,
we study only on the impact of LC transformation on temperature growth,
ignoring the effect of a warming on LC. So, we observed that the transition
to open shrublands alone leads to a temperature increase in Northern and
Southern Europe. Thus, one can assume the driving role of LC in the
feedback loop was discussed above.

Some works demonstrate that shrubland increase in Arctic can lead
to an annual temperature increase [11, 13, 62], which is consistent with
our own findings. However, most articles only consider the growth of
shrubs and do not pay attention to the initial cover. Therefore, our
approach can help in understanding how prominent is the effect of LC
transformation to shrubs depending on the initial LC. For instance, the
replacement of barren or sparsely vegetated cover to shrublands causes
a more significant warming than a temperature rise associated with
transition from permanent wetland to open shrublands.

Urbanization and its impact on temperature is another subject which
draws the interest of climate scientists. In general, researchers conclude
that the transition to urban and built-up covers causes a warming [17, 48,
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94, 95]. Indeed, we also observed that most of the LC changes to urban
and built-up covers results in a temperature growth during the whole year
as well as seasonally. However, we identify the cooling effect in Central
Europe during autumn, associated with the transformation from barren
or sparsely vegetated cover to urban and built-up areas. This finding is
not consistent with the results presented by Huang et al. for the same
climate data set [48]. We assume that it can be explained by the different
subsets of data as well as different methodologies. We obtained this result
from the ML model trained on the data set of Central Europe, while
Haung et al. considered changes for the whole area and used a statistical
approach. The effect of cooling due to urbanization is rarely observed
in the climate literature but have already been reported previously. For
example, Trusilova et al. [112] mentioned a reduction in temperature in
cities located in a warm dry climate exactly in Central Europe, which is
similar to our findings.

Deforestation and its contribution to a temperature increase are the
important research subjects that have been explored by many authors [48,
71, 110]. In this thesis, we also observed the similar trend. Most LC
changes associated with deforestation observed in our work lead to a
significant temperature increase. These findings are consistent with the
results of Huang et al., who demonstrated a warming effect of transition
from forest to any LC using the same data set [48].

Afforestation is considered as a possible solution to the problem of the
warming effect of deforestation because of its contribution to cooling [71,
94, 110]. In this thesis, we detected such a trend in Southern Europe where
the shift from corpland/natural vegetation mosaic to evergreen needleleaf
or deciduous broadlef forest results in a significant cooling. However,
in Central Europe, we could not identify a clear pattern in temperature
change associated with afforestation. Moreover, the transition from
permanent wetland to any kind of forest contributes to a warming in
Northern Europe. This is consistent with the results of Li et al. where
a transition of any LC to forest leads to a cooling in tropical regions but to
warming in high latitudes [71].

Summarizing, we can conclude that our predictions of the LC change
impact on temperature are consistent with the main trends described by
the IPCC [19, 94] and other studies. This supports the assumption that
the ML techniques can be a powerful tool in climate science, and it is
possible to develop a model that can make a meaningful prediction. In
addition, our approach allows us to extract more complex patterns and
have more clear understanding of the effect of different LC transitions.
This demonstrates that the ML techniques can help to figure out the effect
of LC changes on surface temperature.

86



6.2.2 How Are Our Predictions Consistent With Huang et
al. [48]?

In our prediction of the LC changes impact on temperature, we use the
same data set as Huang et al. in their article [48]. However, we applied
the Random Forest ML algorithm to distinguish patterns, while Huang
et al. used a statistical method based on ridge regression. Therefore, in
this section, we compare our results with the findings from the mentioned
article.

Figure 6.4: The simulated average annual temperature changes depending
on LC changes between 1992 and 2015 in Sectors A and B in Europe (°C).
Adopted from Ref. [48].

First of all, it is important to mention that Huang et al. consider three
regions within Europe. The two regions are sector A and sector B, shown
in Figure 6.4, while the third region is the whole of Europe. The second
important difference is that Huang et al. excluded all data points without
LC changes from the analysis. To be consistent with this article, we train
new ML models for the same three regions from Figure 6.4 and limit our
train data set to data points with LC changes. We made predictions for

87



the 20 most frequent LC changes in each region. The results are presented
in Tables 6.5 – 6.7, where we included only LC transformations with a
significant impact on temperature. Comparing the results from Table 6.5
with our previous prediction for the whole of Europe, we can conclude
that the trends and patterns are more or less similar.

Our results have a larger prediction interval, and we cannot make
predictions for rare LC transformations. In general, our findings are quite
similar to the results reported by Huang et al., but they are not identical.
Comparing our predictions with the results from Ref. [48] for a data set of
the whole of Europe, we make the following conclusions:

1. In the article [48], the LC change from forest to urban leads to a
warming by +(0.27±0.06) °C. In our predictions, we have a similar
trend, but the slightly different values. Namely, the transition from
deciduous broadleaf forest to urban and built-up areas is associated
with a temperature growth by +(0.38±0.35) °C, while from evergreen
needleleaf forest to urban and built-up areas corresponds to an
increase of +0.41±0.35°C. Thus, these results are consistent with
Ref. [48] within the uncertainty interval.

2. It was also predicted [48] that the transformation from forests to
grassland contributes to a warming by +(0.23 ± 0.06) °C. How-
ever, in our predictions, we could not detect a significant impact of
such LC transition on temperature. Our model provides a value of
−(0.17± 0.35) °C for transformation from evergreen forest to grass-
land and a value of −(0.1 ± 0.35) °C for transition from decidu-
ous forest to grassland. This does not allow us to unambiguously
conclude whether a warming or cooling is associated with this LC
change.

3. Huang et al. stated that the impact of LC transition from forests to
cropland leads to a temperature increase of +(0.15 ± 0.03) °C, but
our results are not consistent with this. We observe a cooling during
the whole year for transformation from evergreen needleleaf forest
to cropland by -(0.67±0.35) °C and from deciduous broadleaf forest
to cropland by -(0.66±0.35)°C.

4. Another statement made in the article is that the urban expansion
always leads to a warming regardless of the initial LC type. Our
estimates are consistent with these findings.

5. LC transformation from wetland to shrubland results in a temperat-
ure increase according to Ref. [48]. We observe the same trend in our
findings using the data set for the whole of Europe.

Let us now consider the results for the sector A and B. The first sector
labelled as A covers Central and Western Europe that are characterized
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by a huge amount of abundant croplands. Comparing our results for the
sector A with Huang et al., we can discuss the following phenomena:

1. Huang et al. paid special attention to an impact of deforestation. The
conversion from evergreen forest to cropland leads to a temperature
increase by +(0.21±0.03) °C. The transition from deciduous forest
to cropland causes a temperature growth of +(0.12±0.03) °C. In
our predictions, we could not detect these particular patterns
in the Sector A because of limited amount of data points with
such LC transitions. However, we observed a similar trend for
deforestation associated with urbanisation. For example, in our
study, the transformation from evergreen needleleaf forest to urban
area contributes to a temperature increase of +(0.44±0.29) °C.

2. Huang et al. revealed that the transitions from cropland to another
LC mostly result in a cooling, and our findings indicate the same
pattern (see Table 6.6).

The sector B is Eastern Europe. In this area, Huang et al. highlighted
two significant trends:

1. Huang et al. found that the conversion from cropland to evergreen or
deciduous forest results in a temperature increase. We also detected
that afforestation leads to a temperature rise. For example, the
conversion from cropland or cropland/natural vegetation mosaic to
mixed forest contributes to the regional warming by +(0.24-1.14) °C
and +(0.1-1.13) °C, respectively.

2. Huang et al. also found out that LC change from evergreen to
cropland leads to a temperature change by -(0.14±0.05)°C, and the
transformation from deciduous forest to cropland results in a cooling
by -(0.10±0.05)°C. We did not find a significant impact of these LC
transformation on temperature exactly in the Sector B. However,
this trend is typical for the whole of Europe where the change
from evergreen needleleaf forest to cropland affects temperature by
-(0.67±0.35) °C, and the transition for deciduous broadleaf forest to
cropland leads to a temperature change by -(0.66±0.35)°C.

The method introduced by Huang et al. postulates anti-symmetry
in the impact of LC transformations. It means that the transformation
from LC #1 to LC #2 should have opposite effect on temperature with
respect to the transition from LC #2 to LC #1. However, as mentioned in
Section 6.1.1, our ML approach does not assume this pre-condition hence
it is more flexible and may reveal some hidden patterns. In the sector
B, we found out that some symmetric LC transitions lead to a similar
impact on temperature. The LC change from both permanent wetland
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to evergreen needleleaf forest and from evergreen needleleaf forest to
permanent wetland causes a warming.

Summarizing, we can conclude that our findings mainly demonstrate
the same trends as in the discussed article [48]. Huang et al. used
the statistical approach based on ridge regression, while we used the
ML method. Nevertheless, in both studies, many similar patterns such
as temperature increase due to urban expansion and regional warming
due to deforestation in Central Europe, were found. In addition, both
works revealed a difference in the impact of LC changes depending on
the regions. The main difference is that the method of Huang et al.
assumes anti-symmetry, while our ML approach does not have such an
assumption. This allows us to observe new patterns that have not been
observed before.

6.3 Summary

In this Chapter 6, we presented and discussed the predictions of the
regional temperature changes in Europe due to LC transformations that
took place between 1992 and 2015. We started from the presentation of
predictions for three regions: Northern, Central, and Southern Europe.
We considered the LC changes that are typical for each region and their
impact on the regional temperature. Then we considered the impact of LC
changes in the whole of Europe. Finally, we examined our findings in the
context of other studies on this subject.

One can notice that each region can be characterized by some specific
LC transformations that are rarely observed in other areas in Europe. For
example, shrublands expansion is often observed in Northern Europe but
rarely happens in other areas. In addition to that, the most typical LC
changes in the region usually lead to similar temperature patterns. For
example, most LC changes in Northern Europe result in a significant
temperature increase, especially, during spring. LC transformations in
Central Europe are also mainly contributing to warming and this trend is
typical for the whole year. In contrast, many changes in Southern Europe
facilitate significant cooling.

In Section 6.2, we compared our results with findings from the other
studies. We demonstrated that our predictions are not contradicting other
studies. Moreover, we also revealed some LC-associated temperature
patterns which were not examined by other studies including Huang et
al. [48]. We paid special attention to this publication because our works
were carried out on the same data sets as Ref. [48]. Moreover, Huang
et al. used a statistical technique to reveal temperature pattern, and this
comparison could verify our ML approach.

Huang et al. divided Europe into three regions differently than we did
in our experiment. To compare our results directly, we developed new
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additional ML models for these three regions. It is interesting to note that
our ML predictions are similar to the "statistical" results by Huang within
the given confidence intervals.

Our ML approach has also exposed some temperature trends which
were not observed in Ref. [48]. For example, according to our prediction
LC transformations from permanent wetland to evergreen needleleaf
forest and from evergreen needleleaf forest to permanent wetland are
symmetric: both LC changes lead to the warming in Northern Europe (see
Section 6.1.1). We assume that this symmetric behavior is associated with
different biogeographical regions within Northern Europe.

Summarizing the discussion for this chapter, we came to the conclusion
that RF can be considered as an efficient technique for the climate-related
tasks. It provides results consistant with other studies, and also add
to the understanding of the regional temperature change due to LC
transformations.
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Chapter 7

Conclusion

7.1 Summary

The last hundred years, climatologists have observed the constant tem-
perature increase. Since 1850, every decade has been characterized by a
higher temperature than every previous one. Global warming leads to the
significant changes in climate system and ecosystem. Nowadays, scient-
ists agree that human-related activities are the main reasons of warming.
Lately, the IPCC has paid special attention to land use as the cause of cli-
mate changes and also suggested the possible ways to mitigate its impact.
The IPCC has also mentioned a lack of articles on the impact of LC trans-
formations on regional climate. However, the study of this impact can be
challenging.

The amount of climate data gathered by sensors and satellites grows
exponentially, but the predictive ability does not increase at the same rate.
One of the dominant reasons is the complexity of climate system and
interconnections between different elements. Climate models describe
processes in climate system with the set of mathematical equations.
They allow performing simulations of climate changes. However, the
simulation results are also very complex, and it can be challenging to
reveal some non-trivial patterns. ML can be a solution to this problem and
used to find out hidden patterns in the simulation results of mathematical
climate models.

In this thesis, we aim to solve the issues described above. In Section 1.2,
we defined three main objectives of our study. Our first goal is to
find out how ML methods can be applied to climate data with spatial
dependency. The second objective is to develop an ML model that can
predict temperature changes due to LC transformations. The last aim is to
use our ML model to improve the understanding of climate processes.

To adapt ML techniques to the spatially dependent climate data, we
should develop an assessment method to figure out an ML algorithm with
the best performance for the certain task. We developed an assessment
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method called the 5x2 CV test for ML algorithms on the spatially
dependent data. We performed an experiment on the synthetic spatially
dependent data to verify that the 5x2 CV test provides reasonable results.
In the experiment, we examined the probability that the 5x2 CV test can
detect a difference in algorithm performances. The experimental results
clearly demonstrated that the 5x2 CV test method can be an efficient tool
to assess ML algorithms. Moreover, ML algorithms can be compared with
the reference ML technique (base line algorithm), therefore, the 5x2 CV
test method can also act as an evaluation method providing the absolute
metric of algorithm performance.

To test the practicability and correctness of our evaluation, we
performed a case study using the RF algorithm with application to the
impact of extreme LC changes on temperature. In general, our predictions
follow the climate patterns revealed by statistical methods on the same
initial data set. However, we were also able to detect several additional
complex trends associated with the impact of LC changes on local surface
temperature in Europe. Summarizing, the 5x2 CV test can be an effective
tool to assess ML algorithms for tasks with spatially dependent data, and
the RF algorithm can be considered as a prominent ML approach for a data
set with spatial dependence.

During the work on this thesis, we have considered different aspects of
climate science and ML. We believe that our findings help to apply ML in
various areas of climate science. To summarize our study, we want to list
major conclusions:

1. In Section 2.1, we showed that global warming is an indisputable fact
and LC transformations can both contribute to temperature increase
or mitigate warming.

2. We described in Section 2.1.4 that climate models provide complex
simulated data that can be analyzed, for example, with ML methods.
In this thesis, we aimed to use ML to study the impact of LC changes
on temperature.

3. ML should not be blindly applied to any type of data because some
kinds of data are not i.i.d. as it was shown in Section 2.2.

4. Our experiment shows that ML algorithms can be adapted to certain
data types, for example, to spatially dependent data.

5. The efficient tool of algorithms’ assessment is required to adapt ML
methods to spatially dependent data. In section 5.2, we proposed
5x2 CV test for this task and verified that it provides reliable results.

6. According to our estimations in Section 5.3, models based on the RF
algorithm possess the superior performance in the prediction of the
temperature changes due to LC transformations.
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7. Using the ML models based on RF algorithm revealed impacts
of LC changes on temperature that are not only consistent with
other studies, but also exhibited previously unobserved temperature
patterns.

8. We performed our experiment on the same data sets as Huang et
al. [48] where the impact of LC changes on temperature was studied
using the statistical method. Our results are consistent with findings
from Ref. [48] as it is discussed in Section 6.2.2.

7.2 Contributions

In Section 1.2, we raised three research questions that we consider in this
thesis. Summarizing our work, we quote our objectives and show how
this study solved the assigned issues.

1. How can supervised ML techniques be applied to spatially depended data
with a high variability?

This question was answered in Section 5.2 where we developed
method 5x2 CV test to assess algorithms’ performances and verified
its reliability on synthetic data sets. We demonstrated that this
method can also evaluate ML techniques on the spatially dependent
data by comparing them with base line. Moreover, matching the
results of 5x2 CV test with the spatial CV, we demonstrated that 5x2
CV test is efficient evaluation tool even when ML model has low R2

scores.

2. Is it possible to develop a model based on an ML approach, which can predict
the impact of LC changes on temperature?

This objective was addressed in Section 5.3 where we used 5x2
CV test to compare four ML algorithms with each other and
with baseline. According to our evaluations, models based on
RF demonstrate superior performance in the prediction of regional
temperature changes due to LC transformations. In Section 6.2,
we demonstrated that the results of the models’ predictions are
consistent with other studies. This supports the efficiency and
expediency of the models based on RF for the studied task.

3. How can an ML approach help to understand the effects of LC changes on
surface temperature?

We answered this question in Section 6 where we displayed the
results of predictions of the impact of LC changes on surface
temperature. We performed an analysis on the same data sets
as Huang et al. in Ref. [48] where the statistical method was
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used. Mostly, our results are similar to the outcome of this
article. However, we also revealed some impacts of LC changes on
temperature that, to our best knowledge, have not been previously
observed by other studies. Probably, such results have been achieved
because of peculiar properties of ML models. For example, they can
distinguish symmetrical patterns.

Concluding, ML techniques can be a useful tool in climate science.
The developed 5x2 CV test can efficiently identify an ML algorithm most
suitable for a certain problem. The major advantage of 5x2 CV test is that
it can be applied to any tasks on spatially dependent data.

7.3 Future Research

Because of time limitations regarding the duration of master project, there
are several directions in which our work can be expanded. In the current
section, we describe some of the main improvements that can be made.

Certainly, a further study should be carried out to consider more
different methods of data splitting for the 5x2 CV test method. Some other
data splitting strategies may provide a superior probability of detection
the difference in algorithms performance on the spatially dependent data.
For example, a synthetic data set can be expanded to the two-dimensional
spatially dependent data, and the splitting strategy can be based on the
random picking of sectors. Going further, one can develop a completely
other assessment method that has no assumption of i.i.d. and designed
specifically for spatio-temporal dependent data.

In addition, various ML techniques and statistical methods can be
compared with the 5x2 CV test to develop new tools for climate science.
This will allow performing enhanced predictions and extracting more
complex patterns. Another possible way to improve predictions is to
compare models with another input variables. For example, in our thesis
we used only the difference in LC as an input variable, but one can use
both the initial and final LC as the input variables. Furthermore, not only
one data point but groups of neighboring data points can be used as the
input variables, which can also have some effect on the predictive validity.

As part of the case study, we considered only the simulation for two
years, 1992 and 2015, while it is possible to run a climate model with
LC data for several years. This is time and power-consuming, but allows
better understanding of the impact of LC transitions on temperature. In
addition, one can study not only the impact on temperature, but also on
other climate characteristics, for example, on precipitations.
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Appendix A

Changes in Land Cover between
1992 and 2015

In Chapter 3, we described LC data where we also showed changes in
urban areas and evergreen needleleaf forests between 1992 and 2015.
In Appendix A, we demonstrate the grade of other LC changes within
Europe. Different colors represent the proportion of a certain LC in each
cell on the grid.

Figure A.1: Deciduous Broadleaf Forest LC in 1992 and 2015
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Figure A.2: Open Shrublands LC in 1992 and 2015

Figure A.3: Grassland LC in 1992 and 2015
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Figure A.4: Permanent WetLC in 1992 and 2015

Figure A.5: Cropland LC in 1992 and 2015
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Figure A.6: Cropland/Natural Vegetation Mosaic LC in 1992 and 2015

Figure A.7: Barren or Sparsely Vegetated LC in 1992 and 2015
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