
InfiniBand RDMA over PCI
Express Networks

Alve Vreim Elde

Thesis submitted for the degree of
Master in Programming and System Architecture

60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2020

InfiniBand RDMA over PCI
Express Networks

Alve Vreim Elde

© 2020 Alve Vreim Elde

InfiniBand RDMA over PCI Express Networks

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Remote Direct Memory Access (RDMA) is a data transmission technology
featuring high bandwidth, low latency, and low computational overhead.
RDMA can be used to transmit data between applications running on
interconnected computers while bypassing the kernel network stack.
The efficiency of bypassing the kernel makes RDMA ideal for High-
Performance Computing (HPC) and cloud computing. RDMA works by
offloading network transfers in the kernel to network adapters with RDMA
capabilities. These network adapters can read and write virtual memory of
an application with Direct Memory Access (DMA). DMA operations are
executed safely with a virtual-to-physical memory map created through
RDMA semantics. RDMA capable network adapters exist for InfiniBand
and Ethernet network fabrics, and transport agnostic RDMA APIs enable
applications to run on either fabric.

In this thesis, we have developed an RDMA transport named "RDMA
over PCIe (RoPCIe)," intended to be used in computer clusters interconnec-
ted with PCIe Non-Transparent Bridges (NTB). Inspired by RDMA over
Converged Ethernet (RoCE), this transport takes advantage of the estab-
lished RDMA APIs to provide a new mode of transport for existing RDMA
applications. Bringing a technology developed primarily for InfiniBand to
PCIe interconnect, an esoteric transmission technology compared to Infini-
Band, is one of the primary motivations for RoPCIe.

We have implemented the RoPCIe transport for Linux and made it
available to applications through RDMA APIs in both kernel-space and
user-space. The primary component of the RoPCIe implementation is a
virtual RDMA device, registered with the kernel RDMA subsystem by a
virtual device driver. This virtual device acts as an intermediary between
the RDMA API and the NTB device driver, translating RDMA operations
into NTB operations. To add support for RoPCIe transport in user-space,
we have implemented a dynamically linked plugin for a library called
"Libibverbs".

The result of our RoPCIe implementation is a working proof-of-concept
RDMA transport. RoPCIe can run unmodified RDMA applications over
PCIe interconnect and achieves performance comparable to InfiniBand
transport.

i

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem definition . 3
1.3 Limitations . 3
1.4 Main contributions . 4
1.5 Research method . 4
1.6 Outline . 4

2 RDMA 7
2.1 Mechanics . 7

2.1.1 Kernel bypass . 7
2.1.2 Memory pinning . 9
2.1.3 Zero-copy data transfer 10

2.2 Verbs . 10
2.2.1 InfiniBand Architecture Specification 10
2.2.2 Host channel adapter 11
2.2.3 Verbs resources . 13
2.2.4 Communication . 16
2.2.5 Transfer operations . 19

2.3 Kernel RDMA subsystem . 24
2.3.1 IB Core . 25
2.3.2 Kernel modules . 26
2.3.3 Device drivers . 27
2.3.4 RDMA device context 27
2.3.5 IB Uverbs . 29

2.4 User-space RDMA libraries 30
2.4.1 Libibverbs . 30

3 Design 33
3.1 Components . 33

3.1.1 Dolphin software stack 33
3.1.2 RDMA software stack 33

3.2 Complexity . 33
3.3 Requirements . 34
3.4 Scope . 35
3.5 Architecture . 35

3.5.1 Dolphin stack API . 35

iii

3.5.2 GENIF . 36
3.5.3 Verbs provider . 36

4 Implementation 41
4.1 Source code . 41

4.1.1 dis-kverbs . 41
4.1.2 dis-ktest . 42
4.1.3 dis-uverbs . 42
4.1.4 dis-utest . 43

4.2 Virtual verbs device . 43
4.2.1 Kernel device model 43
4.2.2 Dolphin device . 44
4.2.3 Bus module . 44
4.2.4 Device driver module 46
4.2.5 Device module . 46
4.2.6 Register device . 46

4.3 RoPCIe kernel verbs provider 47
4.3.1 Provider super structures 47
4.3.2 Protection domains . 49
4.3.3 Memory regions . 49
4.3.4 Queue pairs . 52
4.3.5 Completion queues . 62
4.3.6 Work consumers . 64
4.3.7 SCI Library interface 70

4.4 RoPCIe user verbs provider 73
4.4.1 Register provider . 75
4.4.2 Verbs operations . 75

5 Evaluation and Discussion 77
5.1 Test environment . 77
5.2 Test tools . 77

5.2.1 dis-xtest . 77
5.2.2 Perftest . 78
5.2.3 FTrace . 78

5.3 Benchmarks . 78
5.3.1 Latency . 78
5.3.2 Throughput . 81

5.4 Overhead . 83
5.4.1 Requester side . 83
5.4.2 Data transmission . 87
5.4.3 Responder side . 88
5.4.4 End to end . 89

6 Conclusion 91
6.1 Summary . 91

6.1.1 Goals . 92
6.2 Main contributions . 92
6.3 Future work . 93

iv

A Accessing the source code 99

B Additional tables 101

v

vi

List of Figures

2.1 The path of a data transfer operation between a host machine
and a remote machine. 8

2.2 Example of relationships between verbs resources after
initialization. 12

2.3 Send/Receive transfer operation. 20
2.4 RDMA Read transfer operation. 22
2.5 RDMA Write transfer operation. 23
2.6 The RDMA component stack in a typical Linux system. . . . 25

4.1 The two verbs providers and two test programs produced
during the implementation of RoPCIe placed in the RDMA
software stack. 42

4.2 Interactions between bus, device driver, and device. 45
4.3 Result of RoPCIe MR registration procedure. 52
4.4 A circular buffer where WQEs are produced by a user and

consumed by a work consumer. 56
4.5 A circular buffer where CQEs are produced by a work

consumer and consumed by a user. 63
4.6 A requester connecting to a SCI message queue created by a

responder. 73
4.7 A requester sending a message to a responder. 74

5.1 Two iterations of the ib_send_lat program measuring
roundtrip latency between a requester and a responder. . . . 79

5.2 Comparison of median one way latency between RoPCIe
with PIO, RoPCIe with DMA, and InfiniBand at different
message sizes. 80

5.3 Six iterations of the ib_send_bw program measuring mes-
sage throughput from a requester to a responder. 81

5.4 Comparison of average throughput between RoPCIe with
PIO, RoPCIe with DMA, and InfiniBand at different message
sizes. 82

5.5 Transport overhead segments. 84
5.6 Transport overhead segments with approximate latency

numbers. 90

vii

viii

List of Tables

3.1 Statistics for RDMA verbs provider drivers in the Linux
kernel source tree (v. 5.5.0). Numbers in the Lines Of Code
(LOC) column are generated by executing $ find | xargs wc
–lines in the driver directory, counting every line in every file
towards the sum. 39

5.1 Test bench hardware configuration. 77
5.2 Test bench software configuration. 77

B.1 RoPCIe DMA latency benchmarks. 101
B.2 RoPCIe PIO latency benchmarks. 102
B.3 InfiniBand latency benchmarks. 103
B.4 RXE latency benchmarks(Realtek L8200A Gigabit Ethernet). 104
B.5 RoPCIe DMA bandwidth benchmarks. 105
B.6 RoPCIe PIO bandwidth benchmarks. 105
B.7 InfiniBand bandwidth benchmarks. 106
B.8 RXE bandwidth benchmarks(Realtek L8200A Gigabit Ether-

net). 107

ix

x

Listings

2.1 Minimal kernel module example. 27
4.1 RoPCIe bus: Matching function. 46
4.2 RoPCIe kernel verbs provider: Verbs provider structure. . . 47
4.3 IB Core: Verbs completion queue base structure. 48
4.4 RoPCIe kernel verbs provider: Completion queue super

structure and conversion function. 49
4.5 RoPCIe kernel verbs provider: MR registration procedure.

Variable declaration and error handling is omitted. 51
4.6 RoPCIe kernel verbs provider: MR deregistration procedure. 52
4.7 RoPCIe kernel verbs provider: QP creation procedure.

Variable declaration and error handling is omitted. 54
4.8 RoPCIe kernel verbs provider: Post work request procedure. 57
4.9 RoPCIe kernel verbs provider: Post one work request

procedure - initialization. 57
4.10 RoPCIe kernel verbs provider:Post one work request proced-

ure - calculate number of pages per segment. 59
4.11 RoPCIe kernel verbs provider: Post one work request

procedure - choose store for page map. 60
4.12 RoPCIe kernel verbs provider: Post one work request

procedure. Variable declaration and error handling has been
omitted . 60

4.13 RoPCIe kernel verbs provider: Work consumer init procedure. 61
4.14 RoPCIe kernel verbs provider: Work consumer exit procedure. 62
4.15 RoPCIe kernel verbs provider: Completion queue creation

procedure. 62
4.16 RoPCIe kernel verbs provider: Poll completion queue pro-

cedure. 64
4.17 RoPCIe kernel verbs provider: Main work consumer

wait/event loop. 67
4.18 RoPCIe kernel verbs provider: Work consumer - consume all

work reqeusts procedure. 68
4.19 RoPCIe kernel verbs provider: Work consumer - consume

one send reqeust procedure. 69
4.20 RoPCIe kernel verbs provider: Work consumer - post work

completion procedure. 70
4.21 RoPCIe kernel verbs provider: Message queue ID calculation. 72
4.22 RoPCIe user verbs provider: Provider structure registration. 75
4.23 RoPCIe user verbs provider: Device match function. 75

xi

5.1 FTrace function graph of a call to dis_post_send() with
message size 2. 85

5.2 FTrace function graph of a call to dis_post_send() with
message size 2097152. 86

5.3 FTrace function graph of the wake up of the work consumer,
and the processing and completion of a work request with
message size 2. 87

5.4 FFTrace function graph of the wake up of the work con-
sumer, and the processing and completion of a work request
with message size 2097152. 87

5.5 FFTrace function graph of the work consumer processing
a receive request with message size 2, and posting a work
completion. 88

5.6 FFTrace function graph of the work consumer processing a
receive request with message size 2097152, and posting a
work completion. 88

xii

Chapter 1

Introduction

1.1 Background

The emergence of technologies like machine learning and cloud computing
has increased the need for high-performance computer intercommunica-
tion. Pooling the resources of multiple computers in a data-center is the
basis of a large number of technologies we rely on today. However, slow
intercommunication can create bottlenecks and overheads that limit over-
all system performance. Low bandwidth intercommunication can lead to
difficulties with scaling interconnected systems, and high latency can res-
ult in ineffective systems that are more expensive and wasteful to operate.
RDMA is an intercommunication technology that can enhance communic-
ation and data transfer between computers, and significantly improve the
efficiency and performance of data-centers.

RDMA enables memory-to-memory data transfer between applications
running on different computers. When RDMA-capable network adapter
cards interconnect two or more computers, applications running on either
computer can request RDMA operations through an RDMA interface.
RDMA operations are then asynchronously performed by processors on
the RDMA network adapter. Data transfer requests bypass the kernel
entirely, eliminating the CPU overhead a data transfer would otherwise
cause. Paired with a high-performance network fabric, RDMA can
move data between nodes with low latency and high throughput. For
suitable tasks, RDMA can bring significant improvements over standard
networking technologies [1].

RDMA is closely associated with a technology called InfiniBand. In
the context of this thesis, RDMA refers to a standard developed by the In-
finiBand Trade Association (IBTA), which is rooted in a previous stand-
ard called Virtual Interface Architecture (VIA). InfiniBand has historic-
ally been the driving force behind the development of RDMA because
nearly all nodes in an InfiniBand network communicate with RDMA se-
mantics. Today, InfiniBand is a name used to describe the entirety of a
high-performance networking ecosystem, with specialized hardware and
software. Despite the two technologies having been developed in conjunc-
tion with each other, and often by the same developers, RDMA has not

1

become locked to InfiniBand. The transport independence of RDMA has
enabled a more recent effort to bring RDMA semantics to other network
fabrics, specifically Ethernet.

Ethernet is a universal standard, with the majority of LANs and Wide
Area Networks (WAN) relying upon it. Several factors have sparked
interest in bringing RDMA to Ethernet, one of which is an increase in the
performance of Ethernet hardware [2]. The current result of these efforts is
three distinct implementations of RDMA over Ethernet; RoCEv1, RoCEv2,
and iWARP. The main difference between them is the layer of the OSI
networking layers in which they operate. RoCEv1 operates at the Data
Link Layer, switching data frames over an Ethernet switch fabric. This
RDMA implementation is limited to a LAN topology, and while this can be
efficient, it can also be too limiting for some applications. RoCEv2 operates
at the Transport Layer, routing packets with UDP/IPv4 or UDP/IPv6. It
expands the range of transport to a WAN while keeping communication
overhead relatively low, due to UDP being unreliable. Similarly to RoCEv2,
iWarp routes packets at the Transport Layer, opting to use TCP/IPv4 or
TCP/IPv6 instead [3]. TCP adds inherent reliability to the transport at the
cost of not-insignificant communication overhead.

There are many applications for RDMA over Ethernet, and one of them
is cloud computing. A cloud is created by interconnecting large numbers
of computers to provide a dynamic and elastic computing resource.
Ethernet is the most commonly used technology for interconnecting the
cloud [4]. One reason for choosing Ethernet over InfiniBand is hardware
cost; Ethernet hardware is usually cheaper than InfiniBand hardware [5].
Another reason for choosing Ethernet for the cloud is that the cloud is
inherently outward-facing. The primary function of a cloud is to elastically
and transparently lend computing power to outside actors. Not only does
the cloud need high-performance internal communication, but it also needs
high-performance external communication. The extroverted nature of the
cloud is a significant driving factor behind the development of RDMA over
Ethernet. RDMA has the possibility of increasing the internal efficiency of
the cloud while providing a faster on-demand service to the user [6].

High-Performance Computing (HPC) is where RDMA has historically
seen the most use with InfiniBand. In the bleeding-edge environment of
HPC, there has always been a demand for high-performance Local Area
Networks (LAN), which is the core offering of InfiniBand. Today Infini-
Band and other RDMA transports provide the interconnection backbone
for some of the most powerful supercomputers in the world [7]. Low
latency is especially important here, as each computer can do a large num-
ber of instructions in the time it takes an electrical signal to travel through a
copper wire, or even light sent through an optical fiber, from one compute
node to another. A low latency interconnection can reduce the amount of
time a compute node spends in an idle state, thus reducing the time it takes
for the system to do complex calculations.

Recent research suggests that RDMA can be used to accelerate deep
learning. Training a Deep Neural Network (DNN) can be very computa-
tionally intensive, where one machine may not be able to train the network

2

in a reasonable time frame. The solution is often to throw more machines at
the problem by distributing the computation over many computers. How-
ever, the computation is not entirely separable into chunks, and frequently
requires a data exchange between the machines before the computation
can continue. Most current distributed deep learning frameworks use Re-
mote Procedure Calls (RPC) to perform this data exchange, but [8] suggests
that an implementation optimized for RDMA can result in "up to 169% im-
provement against an RPC implementation optimized for RDMA, leading
to faster convergence in the training process".

1.2 Problem definition

The goal of RDMA is to facilitate data transfers with high bandwidth,
low latency, and low computational overhead. RDMA over Converged
Ethernet (RoCE) has demonstrated the possibility of implementing RDMA
for other transmission technologies than InfiniBand. This possibility leads
us to investigate PCIe NTBs from Dolphin ICS as a candidate for a new
RDMA transport. The performance characteristics of PCIe NTBs align well
with the RDMA performance goals, and the transmission semantics are
similar. Therefore we want to study the viability of RDMA over a PCIe
NTBs by implementing a new RDMA transport named RDMA over PCIe
(RoPCIe). The four main goals of this thesis are as follows:

• Research how exiting RDMA transports integrate with RDMA infra-
structure in Linux. Create a design for a RoPCIe transport in Linux.

• Implement a proof of concept RoPCIe transport according to design.
RoPCIe should support the minimum viable set of features and be
available to applications in user-space.

• Measure the performance of the RoPCIe transport and evaluate it as
an alternative to other RDMA transports. Compare functional and
non-functional characteristics.

• Verify that existing software can use the RoPCIe transport without
modifications to software or transport.

1.3 Limitations

The focus of this thesis has been to create a functional RDMA transport over
PCIe interconnect, with the ability to send and receive data from user-space
memory between two machines. We have not pursued a comprehensive
implementation of the entire RDMA specification, nor have we targeted
any other platforms than Linux.

The entirety of the RoPCIe transport exists on top of an API to a PCIe
NTB. Integrating the RoPCIe transport with the PCIe NTB device driver is
likely to improve RDMA performance due to API limitations. However,
we consider modifications to the PCIe NTB device driver code out of scope
for this thesis.

3

1.4 Main contributions

In this thesis, we show that proprietary data transmission technology
without support for InfiniBand RDMA can be integrated with existing
RDMA libraries, and used by existing RDMA software.

First, we design and implement a device driver capable of presenting a
virtual RDMA device to the Linux kernel as a physical RDMA endpoint.

Next, we implement the RDMA operations needed to operate an
RDMA transport between the kernel of two machines. The virtual
RDMA device translates these RDMA operations into NTB operations, and
asynchronous kernel workers initiate memory-to-memory data transfers
through the NTB.

Finally, we make the RDMA transport available to applications in user-
space by implementing a dynamically linked plugin for a user-space library
called "Libibverbs". The plugin defers all RDMA operation requests from
user-space to the virtual RDMA device in the kernel.

The result of this implementation is a new RDMA transport available
to existing RDMA applications. We measure the end to end latency of the
transport to be about 3.5 µs, and throughput to be about 82 Gb/sec.

1.5 Research method

While working on this thesis, we have designed and implemented an
RDMA transport named RoPCIe. The RoPCIe transport works and can
be used without modifying existing RDMA software or patching the
underlying kernel. We have evaluated and tested our implementation. This
corresponds to the design paradigm of the ACM classification [9].

Evaluations have been performed on hardware provided by Dolphin
Interconnect Solutions.

1.6 Outline

In chapter 2, we introduce the mechanics, specification, and implementa-
tion of RDMA. We mainly focus on the concepts used in the implementa-
tion of RoPCIe transport, but we also cover some additional concepts that
can be used to develop RoPCIe further.

In chapter 3 we discuss the design process of the RoPCIe transport. We
define the requirements and scope of the transport and detail the different
transport architectures that we considered during the design process.

In chapter 4 we describe the implementation of the RoPCIe transport.
We detail the functionality of the virtual device driver, and how it
integrates a virtual RDMA adapter interface with the kernel. We also
detail the Libibverbs library plugin, and how it cooperates with the virtual
RDMA adapter interface in the kernel.

In chapter 5 we measure the performance of RoPCIe transport and
compare it to InfiniBand transport. We measure the transport latency and
throughput for a variety of message sizes and examine the messages for

4

data integrity. We also do an end to end analysis of the RoPCIe transport,
identifying and measuring sources of overhead.

In chapter 6, we provide a summary of the thesis and a conclusion of
the result.

5

6

Chapter 2

RDMA

2.1 Mechanics

RDMA is a complex data transmission technology comprised of many
interconnected systems. One can set up and use RDMA in several ways
that result in distinctly different data transfer operations, and with different
performance characteristics. Before we discuss the working internals of
RDMA, an overview of the primary working mechanics of RDMA will be
presented.

2.1.1 Kernel bypass

One of the main features of RDMA is kernel bypass on data transfer. An
application operating in either kernel-space or user-space can request an
RDMA operation through an RDMA interface. This interface requests
an RDMA service in the kernel to set up and manage a connection to a
remote computer. The remote computer is similarly configured to accept
RDMA, and the two computers are linked with Host Channel Adapters
(HCA). These HCAs are RDMA-enabled Network Interface Cards (NIC)
mounted in PCI express (PCIe) slots on each machine and can use Direct
Memory Access (DMA) to directly read from and write to each machines
Random Access Memory (RAM). When two machines are linked and have
established a connection, applications on either machine can request an
RDMA operation through the RDMA interface. This request is passed from
the RDMA service directly to the HCA. The HCA will then carry out the
operation, directly accessing the RAM from the PCIe bus, bypassing the
kernel entirely when sending and receiving data, as shown in section 2.1.

Fast path operation

User-space applications can bypass the kernel when requesting some
RDMA operations by using a fast path to the HCA. Typically, this is only
done for latency-sensitive operations, like initiating an RDMA transfer.
Before the fast path can be used for such operations, an application needs
to request the RDMA service in kernel-space to set up communication

7

HCA

RAM

CPU

PCIe bus

HCA

RAM

CPU

PCIe bus

DMA
READ

DMA
WRITE

RDMA
SEND

RDMA
RECEIVE

Host Machine Target Machine

Figure 2.1: The path of a data transfer operation between a host machine
and a remote machine.

with another machine. These requests must take the slow path from user-
space to kernel-space through special files in the file system. After these
requests have been fulfilled, some of the hardware registers of an HCA can
be mapped into memory. Mapping the HCA into memory creates a fast
path between the application in user-space and the HCA. With a fast path
set up, the application can send RDMA transfer operation requests directly
to the HCA, bypassing the kernel and reducing latency and computational
overhead.

Benefits of bypassing the kernel

There are several benefits gained from bypassing the kernel; lower latency,
lower power usage, and lower computational load. These three attributes
are highly attractive in resource-focused environments like data-centers
and high-performance computing environments. The following explains
how RDMA can improve each.

Latency: The number of CPUs in a computer system is generally smaller
than the number of active tasks managed by the computer Operating
System (OS). Linux is a multitasking OS, meaning it will preempt and
switch tasks regularly according to a set of policies. Each task switch will
increase the latency by the time it takes to perform, and can indirectly cause
significant overhead [10]. Kernel bypass mitigates task-switching overhead
by minimizing the number of task switches required. An OS managed task
only needs to write a short RDMA operation request to mapped memory,
and then the task can be freely switched out by the OS. The HCA will read

8

the request from mapped memory, and perform it with an uninterrupted
processor. Task switching overhead is avoided on the remote machine, as
the remote HCA also can read and write directly to pinned memory to
complete the data transfer.

Power consumption: Every CPU has some electrical resistance that
converts power into waste heat. The CPU generates some heat when idle,
and heat generation increases with higher CPU utilization. Heat must
be removed from the CPU by cooling equipment to avoid overheating
it and damaging the internal circuits. Cooling equipment takes space,
maintenance, and additional power to operate. CPU utilization over
time directly affects the power consumption of a computer system, and
indirectly its monetary cost of operation. Electricity is a substantial cost
factor for all data-centres [11].

Kernel bypass can reduce total power consumption in a system by
offloading work to lower-power hardware. A data transfer is generally not
very compute-intensive, so a modern server CPU is overkill for the task.
Smaller passively cooled processors, like the one found on an InfiniBand
HCA, can reduce total power consumption for some system configurations
and workloads. High processor utilization on the HCA over time indicates
a high degree of CPU offload, where the CPU is free to do other more useful
work. Therefore, HCAs can reduce both the power usage and the number
of high power CPUs required in a data-center.

Computational load: As touched upon in the previous paragraph, data
transfer is typically not compute-intensive for a modern CPU, but it takes
CPU time. For some use-cases, like HPC, it is crucial to utilize every
processor as much as possible. Offloading tasks with high CPU time,
but low CPU utilization becomes very important to be able to exploit the
computational power of a system.

2.1.2 Memory pinning

All processes in user-space operate in their own virtual address space,
managed by the underlying operating system kernel. The virtual address
space is segmented into pages of a fixed size, but this segmentation is
transparent to the user. The kernel may swap any page out for another page
for several reasons, by writing the old page to disk and reading a new page
from disk to replace it. Page swapping makes the kernel bypass behavior
of an HCA risky, as the kernel can swap out a page at any time from the
perspective of the HCA. The solution is to "pin" the page and prevent the
kernel from swapping it out.

There are multiple ways to pin memory, some of which do not
guarantee the page stay at the same physical position in memory. The
kernel may still move the page in memory as it sees fit, causing a soft page
fault the next time the page is accessed. The page fault handler in the kernel
quickly resolves a soft page fault without retrieving anything from disk.

9

This method of pinning is good enough for most applications, but not for
RDMA.

We need a stricter form of memory pinning when doing RDMA, as the
page needs to stay at the same physical position in memory. In Linux,
this can be accomplished by a call get_user_pages(), or a variant of this
function. Using this family of functions enables us to lock down pages in
memory for an arbitrary amount of time, and a DMA to this memory will
always find the same data. However, there are some implications of using
this feature, with recent research showing that it can be problematic [12].
The issues with get_user_pages() are out of scope for this thesis.

Pinning memory is necessary for RDMA and has the benefit of
somewhat reducing memory access latency, but there are also some
drawbacks. As stated above, the CPU is free to do other tasks during
RDMA transfers. However, the usefulness of doing so may be limited
by the amount of system memory available after pinning. The available
system memory may also be fragmented by pinned memory regions,
limiting the ability to allocate large blocks of physically contiguous
memory. Fragmentation is usually less of a problem, as most tasks only
require a virtually contiguous memory.

2.1.3 Zero-copy data transfer

The concept of zero-copy data transfer is not exclusive to RDMA, but
RDMA may be the technology that benefits the most from it. A standard
network connection between two applications will copy the data down
through the network stack on the first machine, and up through the
network stack on the second. Copying the data consumes both CPU and
memory resources, and increases latency. Many operating systems have
ways to eliminate the sender-side copy by transmitting data directly from
user-space buffers, but eliminating the receiver-side copy is non-trivial.

RDMA eliminates the receiver-side copy by pinning memory on the
receiver machine, and telling the sender-side where it can write the data.
DMA from the HCA enables zero-copy transfer form user space to user
space on two machines, without the involvement of either kernel. While
this can achieve lower latency and increased throughput, it gives rise to
concerns about memory protection. As there is no government from either
kernel, a malicious or byzantine sender could place data outside the buffer
allocated by the receiver without the proper security measures. Memory
protection is a fundamental security concern in RDMA systems, but it is
not an unsolvable problem. InfiniBand, for example, addresses this with a
key validation system built into silicone and driver code of each HCA.

2.2 Verbs

2.2.1 InfiniBand Architecture Specification

The InfiniBand Architecture Specification Volume 1 [13] published by
InfiniBand Trade Association (IBTA), describes the RDMA technology in

10

detail. The conceptual overview of this document is stated as follows:

The InfiniBand Architecture Specification describes a first order
interconnect technology for interconnecting processor nodes
and I/O nodes to form a system area network. The architecture
is independent of the host operating system (OS) and processor
platform.

The InfiniBand Architecture Specification often referred to as the IBTA
specification, is extensive and detailed. Although it covers some topics that
are currently exclusive to InfiniBand, the majority of its chapters apply to
all RDMA transports, including the RoPCIe transport. The implementation
of RDMA transports do sometimes deviate from the IBTA specification,
but the content of the IBTA specification is typically considered the RDMA
transport standard.

Chapter 11 of the IBTA specification describes several semantic behavi-
ors called verbs. These verbs collectively define the behavior of an RDMA
transport endpoint, which is described in the specification as a Host Chan-
nel Adapter (HCA). The IBTA specification does not define any concrete
Application Programming Interface (API) or specific software constructs.
It only describes behaviors that an HCA must exhibit in order to be com-
pliant with the specification. The term HCA is sometimes used to describe
the role of an InfiniBand adapter specifically, but it is also used as a gen-
eral term to describe any adapter operating an RDMA transport. Going
forward, we use the latter definition unless otherwise stated.

In total, the IBTA specification defines 59 verbs. Of these verbs, 36 are
classified as mandatory, meaning all HCAs should support them in order
to be compliant with the IBTA specification. The set of mandatory verbs is
larger than the minimal set of verbs required for the successful operation
of RDMA between nodes, so an RDMA transport under development can
opt to target a smaller number of verbs for proof of concept. The remaining
verbs are grouped into various features, where an HCA must support all
verbs of a feature in order to claim support for that feature. Most of the
verbs can be mapped one-to-one with functions in Verbs APIs, but not all.

The following describes how verbs can be used to create, manage, and
destroy verbs resources. We do not cover the functionality of all the verbs,
only the core verbs involved in typical usage patterns. Figure 2.2 shows the
relationship between resources created through verbs. The figure includes
the primary verbs resources: HCA contexts, protection domains, queue
pairs, completion queues, and memory regions.

2.2.2 Host channel adapter

Discover HCA

The first step in the process of setting up an RDMA transport is discovering
an HCA and obtaining an identifier from it. This identifier is unique to the
HCA and will later be used to open it. The IBTA specification does not
specify the discovery of an HCA as a verb. Consequently, the completion

11

Queue Pair

RQ

Host Channel Adapter Context

Protection Domain

Completion Queue

SQ

WQE

CQ

Completion Queue

CQECQECQ

Queue Pair

RQ

WQEWQESQ

WQE

Protection Domain

Queue Pair

RQ

WQEWQESQ

WQE

Completion Queue

CQECQ

WQE

Memory
Region

Memory
Region

Queue Pair

RQ

SQ

WQE

Memory
Region

Memory
Region

Memory
Region

Figure 2.2: Example of relationships between verbs resources after
initialization.

of this step is entirely dictated by the user. As long as the identifier is valid,
it can be obtained in any appropriate manner, and the identifier can even be
hard-coded in a program or entered manually by a user. However, users
will typically opt to take advantage of device management facilities in a
verbs API. A user can request a list of HCAs from the verbs API, and the
verbs API will probe each HCA registered with the system, and return a
list of all active HCAs. The user is then able to choose which HCA to open
from the returned list.

Open HCA

When a user has chosen an HCA identifier, the HCA can be opened with
a verb named "Open HCA." This verb is the first verb every RDMA user
is required to call, and a handle to the HCA will be returned to the user
upon successful completion. Opening an HCA will also associate it with
the user, and create a line of communication between the two. The HCA
handle acts as a device context for following verbs operations, where any
new resources created by the user through verbs operations are associated
with the HCA context. Here we can observe the emergence of a context-
based design pattern in the IBTA specification, and by extension, the verbs
API. The device context acts as the top-level context, and scoped parts are
passed as input to the other verbs.

12

Query and modify HCA

After opening an HCA, the handle can be used to retrieve and modify
specific attributes of the device. A verb named "Query HCA" can be used
to obtain a list of all attributes relevant to the HCA. The attribute list
includes attributes such as; the number of physical ports on the HCA,
the Globally Unique IDentifier (GUID) of the HCA, and the number of
protection domains, memory regions, and queue pairs the HCA supports.
Some of the attributes in this list can be changed by the user with a verb
named "Modify HCA." If the user calls this verb to request that one or
more attribute be changed, and the changes requested are to modifiable
attributes, and within modifier limits, the attributes will be changed for
one or more ports on that HCA. This verb can be used to influence the
operating parameters of RDMA transport through individual ports on an
HCA.

2.2.3 Verbs resources

Protection domains

A Protection Domain (PD) is a sub-context of the top-level HCA device
context. It can be allocated with a verb named "Allocate Protection
Domain," which takes an HCA handle as input and returns an allocated
PD as output. The HCA dictates the number of PDs that can be allocated
at any time, and the limit will be checked in the HCA attributes upon
allocation. Once allocated, a PD will be linked to the HCA handle, and can
not be moved to another HCA handle, or unlinked from the HCA without
deallocating it. When a PD is no longer in use, it should be deallocated
with a verb named "Deallocate Protection Domain." Both PD verbs are
mandatory in the IBTA specification and must be supported by every HCA.

The primary purpose of the PD is to provide a separation of resources
associated with an HCA. A PD can keep track of resources like queue
pairs, memory regions, and shared receive queues and impose limits on
the allocation of these resources. The resources linked to a PD cannot be
created without a PD or moved from the PD once created. The PD creates a
guarantee of resource ownership, which is vital for memory protection and
execution safety. A user cannot use RDMA to transmit data without first
creating at least one queue pair, so it follows that at least one PD is required
for RDMA operations.

Memory regions

A Memory Region (MR) is the resource used to pin a range of memory for
RDMA transfers. The most common way for users to register a new MR is
to use a verb named "Register Memory Region." This verb takes an HCA
handle, a PD handle, a virtual address and length, and some access control
modifiers. It returns an MR with a map of pinned memory, starting at the
specified virtual address start and ending at an address given by the sum
of the start address and length.

13

The virtual address map may be used for Direct Memory Access (DMA)
from the HCA, which bypasses the kernel. If an MR was not created, and
the kernel was allowed to swap out any memory pages that intersect with
some of the memory range, DMA from the HCA could result in reading or
writing data from another virtual address space. DMA without a virtual
address map would be unsafe from an information security standpoint,
and would likely result in the application reading garbage data. The system
responsible for memory pinning is the IB Uverbs module discussed in
section 2.3.5.

Another way to register a Memory Region is to use a verb named
"Register Physical Memory Region." The physically addressed MR handle
returned from this verb is interchangeable with a virtually addressed MR
handle to verbs that take an MR as input. However, there are some
differences in how they are created. This verb takes a list of physical buffers
as input in addition to the attributes from the previous verb. The virtual
address of the MR will be associated with the start of the first physical
buffer in the buffer list. All the physical buffers are assumed to be in
reserved physical memory, so IB Uverbs is not needed to pin memory for
these buffers.

Local and remote access keys

Access to an MR is regulated through the use of a local access key (l_key)
and a remote access key (r_key). The two keys act as identifiers for an MR
and are produced as output from the MR registration procedure. An l_key
is always produced and regulates read and write access from local users.
An r_key must be requested explicitly at MR registration, and regulates
read and write access from remote users. The r_key plays an essential role
in RDMA communication, and without it, remote users would be unable
to perform RDMA.

Queue pairs

A Queue Pair (QP) is a pair of Work Queues (WQ) that handle Work Queue
Elements (WQE). A WQE represents a work request and describes a unit of
work to be done by the HCA. Every QP is created as a pair of two separate
WQs, a Send Queue (SQ) and a Receive Queue (RQ). A user can "post"
a WQE to the end of one of these WQs, and the HCA will process the
WQEs added to the WQ in a First In First Out (FIFO) order. No individual
handles for the WQs are exposed to the user, so operations involving either
WQ must be carried out through the QP handle. If a user wants to post a
WQE to the SQ, the QP handle is used as input to a verb named "Post Send
Request," along with the WQE. For posting a WQE to the RQ, a verb named
"Post Receive Request" would be used.

A QP can be created with a verb named "Create Queue Pair," which
requires an HCA handle, a PD handle, as well as a set of attributes as input.
The attributes of the QP can be retrieved at a later time with a verb named
"Query Queue Pair," and a subset of these attributes can be modified with a

14

verb named "Modify Queue Pair." Some attributes can not be modified at a
later time, for example, Completion Queue handles for the SQ and the RQ,
which must be set and valid at QP creation time. It is normal for a user to
create many QPs on one HCA, and the QP verbs mentioned are mandatory
for every HCA to support.

A QP has a state that determines what action can be performed with
it. When a QP is first created, its state is set to RESET. In this state, a QP
cannot be connected to other QPs, and no work requests can be consumed
from either WQ. A QP must be transitioned through a sequence of states in
order to make it fully operational. To transition a QP to the next state, the
user must call a verb named "Modify Queue Pair," and modify a specific set
of attributes. The IBTA specification defines the sets of attributes that are
required, as well as some optional attributes. If the requirements are met,
the QP will transition from one state to the next. A QP can also be returned
to the RESET from any other state.

If a user modifies a QP in the RESET state with the correct attributes,
the QP will transition to the INIT state. A QP in the INIT state can still not
do any useful work, so another transition to the Ready To Receive (RTR)
state is required. Upon successful transition to the RTR state, a QP can
process work requests in the RQ. If a QP is only intended to process receive
requests, a user may choose to stop the state transitioning at RTR. But if a
QP is intended to process any send requests, the user must transition the
QP to the Ready to Send (RTS) state. A QP in the RTS state can process
work requests in both the SQ and the RQ, and from this state it can only be
transitioned back to the RESET state.

Completion Queues

A Completion Queue (CQ) is a single queue that handles Completion
Queue Elements (CQE). A CQE represents a work completion, and is
posted to CQ by the HCA. When an HCA completes a work request from
a WQ, it will post one CQE to the CQ associated with that WQ. The
work request may or may not have been completed successfully, which
is indicated by the CQE. A QPs initial attributes require a CQ handle for
the SQ and the RQ, and these CQ handles do can resolve to different CQs,
or the same CQ. A CQ can be associated with multiple WQs in multiple
QPs across multiple PDs, usually only limited by the number of CQEs the
CQ can hold. The CQ the central resource in RDMA for confirming the
completion of asynchronous work.

A CQ can be created with a verb named "Create Completion Queue."
This verb takes an HCA handle, minimum CQE capacity, and an optional
completion event handler as input. As mentioned previously, the CQ does
not require a PD handle, meaning it can gather work completions across
multiple PDs. Because every QP requires at least one CQ, this verb must
be called at least once before creating a QP and is mandatory for HCAs to
support. Unlike the QP, the CQ is stateless and ready to use immediately
after creation.

A work request usually results in a work completion, but not always.

15

In some cases, a WQE posted to a WQ will not eventually result in a CQE
being posted to the CQ. This behavior can be observed when processing
elements in SQs or RQs, but the two WQ types require a different set of
circumstances in order to omit the work completion. An SQ can omit work
completions if the associated QP is configured for unsignaled completions
and the WQE being processed requests not to generate a completion. If
such a WQE is completed successfully, no CQE will be generated in the CQ
associated with the SQ. Unsignaled completions can not be configured for
WQEs in an RQ, but some modes of RDMA operations behave similarly.
If a QP is configured to process reliable datagrams or is associated with a
Send Receive Queue (SRQ), processing and completing WQEs in the RQ
will not generate CQEs in the associated CQ.

2.2.4 Communication

After the HCA has been opened, and verbs resources have been created
and configured, communication can be established between QPs. Commu-
nication in this context implies a negotiation of data transfer path and para-
meters, but not the RDMA data transfer itself. The transport service type
of each QP determines how communication between QPs is established,
and what information is exchanged. The following describes the process of
configuring a QP for a transport service, establishing communication with
one or more remote QPs, and readying the QPs for RDMA operation.

Transport service types

A transport service type is a term used to classify the behavior of a
transport service used by a QP. The IBTA specification defines six distinct
transport service types, and four of them are covered here; Reliable
Connection (RC), Unreliable Connection (UC), Reliable Datagram (RD),
Unreliable Datagram (UD). The two remaining transport service types,
XRC and Raw Datagram, are considered out of scope for this thesis.

The transport service type of a QP is set by the QP attributes. Each
QP associated with an HCA can be configured differently, and target
different remote QPs. A QP can only target a remote QPs with the same
service type, which means that not all QPs can work together without
reconfiguration. The service type of a QP must specified at creation time,
but it can later be changed by modifying the attributes. Modifying the
service type while there are still uncompleted WQEs in one or both WQs
may cause some WQEs to be completed differently, or not completed at
all. This should in general be avoided. A user that has taken initiative
to request communication between QPs is called a requester, and a user
that has responded to an incoming communication establishment request
is called a responder.

Reliable connected transport service: The RC transport service type
promises to establish a one-to-one connection between a requester and a
responder. It also promises to transport messages between them reliably.

16

The reliability promise guarantees that messages will be retransmitted
until delivered without missing or corrupted data, that all messages are
delivered in the correct order, and that each message is delivered exactly
once. If the link is broken, the transport will attempt to find a new path
to the target and reconnect to resume message transmission. The one-
to-one connection promise restricts the requester and responder to only
communicating with each other for the duration of the connection. Neither
party can establish new connections to other QPs or accept incoming
connection requests. Any WQE posted to an SQ is guaranteed to result
in a message sent to the responder. The reliability promise guarantees that
the message will be delivered (if possible) and processed by the responder.

Unreliable connected transport service: The UC transport service type
promises to establish a one-to-one connection between a requester and a
responder. It also promises to transport messages between them unreliably.
The unreliability promise does not guarantee that messages are delivered,
and lost messages are not retransmitted. Incoming messages are scanned
for corrupt data, and this transport service type will detect packet loss,
packet duplication, and wrong packet order. The connection promise
imposes the same restriction on the requester and responder as in the RC
transport service type. Connections are exclusive and must be explicitly
terminated. Any WQE posted to the SQ is guaranteed to result in a message
sent to the responder. However, the UC transport service type does not
guarantee that the message will be delivered to the responder.

Reliable datagram transport service: The RD transport service type
promises to reliably deliver messages from a requester to any reachable
and receptive responder. The reliability promise in the RD transport
service type makes the same guarantees as the reliability promise in the RC
transport service type does, ensuring all messages are delivered correctly
and intact. The datagram promise allows communication between one
requester and multiple responders, where no connection needs to be
established before messages can be sent between them. A requester can
process single work requests that target multiple responders.

Requesters and responders with the RD transport service type both
require End-To-End Contexts (EEC) to fulfill the reliability promise. An
EEC will act as a middle layer between the RD QP and the HCA and keeps
track of all incoming and outgoing messages from the QP. Only one EEC
is required per HCA because one EEC can keep track of multiple RD QPs
across multiple PDs. To create an EEC, a verb named "Create EE Context" is
used. This verb takes an HCA handle and an RD domain handle as input.
An RD domain is a mechanism used to associate RD QPs with EE Contexts,
and is allocated with a verb named "Allocate Reliable Datagram Domain."
This verb returns an RD domain handle, which can be associated with one
or more QPs by modifying an attribute in the QP attribute list. If a QP is
correctly configured for RD transport, all WQEs posted to that QP will be
handled by the HCA through the EEC, and the EEC will be responsible for

17

reliably performing the work described by each WQE.

Unreliable datagram transport service: The UD transport service type
promises to unreliably deliver messages from a requester to any other
receptive responder that can be reached. The unreliability promise does
not guarantee that messages are delivered, and lost messages are not
retransmitted. Incoming messages are scanned for corrupt data, but this
transport service type will not detect packet loss, packet duplication,
or wrong packet order. The datagram promise allows communication
between one requester and multiple responders, where no connection
needs to be established before messages can be sent between them, and a
requester can process single work requests that target multiple responders.

A UD transport service does not have the same reliability requirements
as an RD transport service and consequently does not need an EEC.
Instead, UD transport is accomplished with the help of Address Handles
(AH). An AH is used to define a local or a global address and can be
referenced by a WQE. It is created with a verb named "Create Address
Handle," and is used by the HCA to resolve a path to the recipient of
a message. A message over UD transport will not be acknowledged
by the recipient, which can make it a non-viable choice of transport
for some systems. However, some benefits can also be gained by
using unreliable transport. UD transport is usually highly scalable, has
excellent performance, and the maximum message size of datagrams is the
Maximum Transmission Unit (MTU) of the fabric. The low computational
overhead makes UD a good option in high-performance computing
environments [14].

Communication manager

The Communication Manager (CM) is an entity defined in chapter 12 of the
IBTA specification. A CM can be used to assist with the establishment and
management of communication between requesters and responders over
RC, UC, and RD transport. UD transport is supported through a separate
system in the CM implementation, called the Service ID Resolution (SIDR)
protocol. The CM establishes communication by special Management
Datagrams (MAD), sent to and from the General Services Interface (GSI)
on each HCA. The GSI is a well-known QP that the HCA can use for an
assortment for tasks. As this QP can become heavily loaded, the CM can
also create new QPs to use for communication with another HCA CM after
initial communication has been established.

The CM is implemented as a separate library complementing the verbs
library. It has a separate API from the main verbs API and internally
makes use of the verbs API to accomplish some of its tasks. Device-
specific functionality can also be provided to the CM, with an interface
similar to the verbs library. While the CM can be useful in managing larger
RDMA systems, it is not mandatory to use. However, communication and
connections can be established without the use of the CM with relative ease.
Therefore, the CM is considered out of scope for this thesis.

18

The SIDR Protocol is a system defined as a part of the CM. It is created to
assist with the establishment and management of communication between
requesters and responders over a UD Transport Service. SIDR is a relatively
small protocol consisting of only two MADs, a request and a reply sent over
the GSI. The details of this protocol are also considered out of scope for this
thesis.

External coordination

The CM can be a useful tool, but it is not required to set up communication
between a requester QP and a responder QP. Any external utilities that
can be used to send information between two machines can be used to
coordinate the RDMA services. Network sockets are often used for this
purpose.

2.2.5 Transfer operations

In a data transfer between two machines, the machine initiating the transfer
is the requester, and the machine accepting the transfer is the responder.
A transfer operation defines the combined behavior of a requester and a
responder in a data transfer. Not all HCAs support all transfer operations
because some transfer operations require the requester and responder to
have a reliable transport service type. There are in total four transfer
operations, but only one is mandatory for every HCA to support. The
following details three of the transfer operations: Send/Receive, RDMA
Read, and RDMA write. The fourth, Atomic Read/Write, is out of scope
for this thesis.

Each transfer operation is a complicated procedure with many sub-
procedures. Some sub-procedures are optional and are mandatory. For
a detailed description of each transfer operation, we refer to the IBTA
specification. The configuration of a QP combined with the configuration
of WQEs posted to it can lead to many different behaviors within the
umbrella of one transfer operations, and this thesis will only cover the most
common configurations. The role of some components, especially the MR,
has been generalized for ease of explanation. A more detailed view of each
component is provided later in the thesis when discussing the details of our
implementation of RoPCIe.

Send/Receive

The Send/Receive transfer operation must be supported over every
transport service type an HCA supports. This transfer operation assumes
communication has previously been established between the requester and
the responder, regardless of the transport service type. Any transport
service type may be used to Send and Receive, but both sides must agree
on which to use. In this operation, both the requester and the responder
are active, and work requests are consumed on both sides. Data can
be gathered from multiple ranges of memory on the requester side, and

19

Completion Queue

CQ

Completion Queue

CQ

DATA

Queue Pair

RQ

WQEWQESQ

RAM

Poll Completion Queue

Post Send Request

Create Send Request

Queue Pair

RQ

SQ

RAM

HCA

WQE

WQE

 Poll Queue Pair

Process Work Request

Post Work Completion
MR

WQE

EMPTY

MR

WQE

WQE

WQE

Poll Completion Queue

Post Recive Request

Create Receive Request

MR

WQE

WQE

Requester Responder

CQE

HCA Post Work Completion

Process Work Request

Poll Queue Pair

CQE

DMA WriteDMA Read

DATA

ACK

MR

WQE

Figure 2.3: Send/Receive transfer operation.

scattered into multiple ranges of memory on the responder side. Figure
2.3 shows an overview of a Send/Receive transfer operation between a
requester and a responder.

Requester: The requester in a Send/Receive transfer operation produces
send requests in the form of WQEs posted to the SQ of a QP. The contents
of a WQE are the following:

• MR: A handle to a local MR registered by the requester. This MR
handle defines one or more ranges of memory to be read by the HCA
and transmitted to the responder.

The requester HCA will process each WQE in the order they were posted.
When a WQE is processed, the memory ranges defined by the WQE will
be read by the HCA with DMA. The memory ranges are combined into
one or more packets, depending on the total amount of data. The UC and
RC transport service types can send 1000 MB of data per packet, while UD
and RD can send the Maximum Transmission Unit (MTU) of the transport
link. When the data is sent, a CQE can be posted to the CQ if the transport
service is unreliable. If the transport service is reliable, the requester HCA
will not post a CQE to the CQ before the responder sends an ACK message
back. The ACK acknowledges reception of data, and that a receive request
was posted in advance to receive the data.

Responder: The responder in a Send/Receive transfer operation pro-
duces receive requests in the form of WQEs posted to the RQ of a QP. The

20

contents of the WQE are the following:

• MR: A handle to a local MR registered by the responder. This MR
handle defines one or more ranges of memory to be written to by the
HCA when data is received from a requester.

The responder HCA will process each WQE in the order they were posted.
When the HCA receives an incoming data transmission, it pulls the next
receive request from the QP, and places the incoming data into one or more
memory ranges defined by the MR in the WQE. If the RQ is empty, the
incoming data packets will be rejected. A CQE will be posted to the CQ if
the transfer is completed successfully. If the QP transport service is reliable,
an ACK message will be returned to the requester.

RDMA Read

The RDMA Read transfer operation is mandatory to support for any HCA
that supports the RC and RD transport service types. RDMA Read can
only be done over reliable transport, which makes it unviable for some
applications. Only the requester is active in this operation, meaning the
kernel at the responder side is completely bypassed. However, some setup
is still required of the responder. The responder must declare memory to
be remotely accessible with an MR before a requester can read it. Data
can be scattered to multiple ranges of memory on the requester side, but
can only be read from one contiguous range of memory on the responder
side. Figure 2.4 shows an overview of an RDMA Read transfer operation
between a requester and a responder.

Requester: The requester in an RDMA Read transfer operation produces
send requests in the form of WQEs posted to the SQ of a QP. The contents
of the WQE are the following:

• MR: A handle to a local MR registered by the requester. This MR
handle defines one or more ranges of memory to be written to by the
HCA when data is received from the responder.

• r_key: A key identifying an MR registered by the responder. This key
was sent from the responder to the requester at some point before the
WQE was created.

• Address: A virtual address specifying the start of the memory buffer
to be read from the responder. This must be a valid address inside
of one of the memory ranges spanned by the MR. It can either be
absolute or zero-based (if supported by the HCA).

• Length: An integer specifying the number of bytes from the address
to be read by the responder and sent back to the requester.

The requester HCA will process each WQE in the order they were posted.
When a WQE is processed, the r_key and address is assembled into a packet

21

Completion Queue

CQ

EMPTY

Queue Pair

RQ

WQEWQESQ

RAM

Poll Completion Queue

Post Send Request

Create Send Request

RAM

HCA

Receive message

Process message

Send data

DATA

WQE

WQE

Requester

HCA
Post Work Completion

Process Work Request

Poll Queue Pair

CQE

DMA ReadDMA Write

Responder

Check
ADDR +
R_Key

DATA

 R_Key
ADDR
LEN

Passive

No Work
Requests
consumed

MR

WQE

ADDR

R_Key

LEN

MR

WQE

ADDR

R_Key

LEN

Figure 2.4: RDMA Read transfer operation.

and sent to the responder. If the r_key and address resolve to a valid range
of memory at the responder side, one or more packets will be sent back by
the responder containing the data at the address. The data will be written
by the responder HCA, to memory previously declared in an MR. Now the
WQE can be considered complete, and a CQE can be posted to the CQ.

Responder: The responder application in an RDMA Read transfer oper-
ation remains passive during the operation, but the responder HCA does
not. When a packet containing an r_key, address, and length is received
from the requester, the HCA will look up the corresponding MR and check
the virtual address. The message is valid if the r_key resolves to an active
MR, the virtual address resolved to valid pinned memory within that MR,
and the length does not surpass the boundaries of the MR. If the message is
valid, the HCA can read the requested memory with DMA and start trans-
mitting it back to the requester. When the data transmission is complete,
no WQEs on the responder side have been consumed from any QP, and no
CQEs have been posted to any CQ. If the message from the requester is not
valid, it will be discarded.

22

Completion Queue

CQ

DATA

Queue Pair

RQ

WQEWQESQ

RAM

Poll Completion Queue

Post Send Request

Create Send Request

RAM

HCA

Receive message

Process message

Send confirmation

EMPTY

WQE

WQE

Requester

HCA Post Work Completion

Process Work Request

Poll Queue Pair

CQE

DMA WriteDMA Read

Responder

Check
ADDR +
R_Key

DATA
ADDR
R_Key

ACK

Passive

No Work
Requests
consumed

MR

WQE

ADDR

R_Key

LEN

MR

WQE

ADDR

R_Key

LEN

Figure 2.5: RDMA Write transfer operation.

RDMA Write

The RDMA Read transfer operation is mandatory to support over every
transport service type an HCA supports. This transfer operation is similar
to RDMA Read in that only the requester is active, and the responder kernel
is completely bypassed. It is also similar in that data can be gathered from
multiple ranges of memory on the requester side, and must be written
to one contiguous range of memory on the responder side. Memory
to be written to by the requester must previously have been defined as
accessible by the responder. Figure 2.5 shows an overview of an RDMA
Write Operation between a requester and a responder.

Requester: The requester in an RDMA Write transfer operation produces
send requests in the form of WQEs posted to the SQ of a QP. The contents
of the WQE are the following:

• MR: A handle to a local MR registered by the requester. This MR
handle defines one or more ranges of memory to be read by the HCA
and transmitted to the responder.

• r_key: A key identifying an MR registered by the responder. This key
was sent from the responder to the requester at some point before the
WQE was created.

23

• Address: A virtual address specifying the the start of the memory
buffer to be written to at the responder side. This must be a valid
address inside of one of the memory ranges spanned by the MR. It
can be either absolute or zero-based (if supported by the HCA).

• Length: An integer specifying the number of bytes to write to the
address at the responder.

The requester HCA will process each WQE in the order they were posted.
When a WQE is processed, one or more packets are created, containing
an r_key, an address, a length, and data. If an unreliable transport
transmits the data, the operation is considered complete when all packets
are transmitted. If the data is transmitted over a reliable transport, the
requester HCA will not post a CQE to the CQ until the responder sends an
ACK message back. The ACK acknowledges that the message was valid
and that all data was received correctly.

Responder: The responder application in an RDMA Write transfer
operation remains passive during the operation, but the responder HCA
does not. When a transmission is received from the requester, the HCA will
look up the MR corresponding to the r_key and check the virtual address.
The message is valid if the r_key resolves to an active MR, the virtual
address resolved to valid pinned memory within that MR, and the length
does not surpass the boundaries of the MR. If the message is valid, the
HCA can write the incoming data to the memory range with DMA. When
data is written to memory, no WQEs on the responder side are consumed
from any QP, and no CQEs are posted to any CQ. If the transport service is
reliable, the responder will send an ACK message back to the requester.

2.3 Kernel RDMA subsystem

RDMA is implemented as a native part of the Linux kernel. The majority of
RDMA related resources have been gathered into what is usually referred
to as the RDMA subsystem. This subsystem has been a part of the Linux
kernel since kernel version 2.6.11 [15], and its source code is located at
linux/drivers/infiniband in the kernel source tree. It is among the most
frequently patched subsystems in the Linux kernel and contains about 400
000 lines of code [16]. The subsystem has been divided into four categories:
The core RDMA implementation, RDMA device drivers, software RDMA
implementations, and implementations of other protocols on top of RDMA.
Figure 2.6 shows the entire RDMA software stack, with the relevant
contents of the RDMA subsystem in the kernel.

In this thesis, we are using version 5.5.8 of the Linux kernel [17]. At
the time of writing, this is a very recent version of the kernel. We believe
that using an up-to-date version of the kernel is likely to provide more
valuable research than using an older and more stable version of the
kernel. Research should, in our opinion, be at the forefront of technology,
and not be outdated at the time of publishing. That being said, there is

24

IB Uverbs

Libibverbs

IB Core

User-space

Kernel-space

RDMA Device Driver

RDMA Device HW

Hardware

User-Space Applications

Vendor User
Driver

Vendor Kernel Driver

Kernel-Space Applications

Fast Path

Character Node

Figure 2.6: The RDMA component stack in a typical Linux system.

also a strong argument for using a version of the kernel that has Long
Term Support (LTS). We recognize that using an LTS kernel would make
probably makes for a better business case, and could benefit systems that
are in deployment now. Using an LTS kernel would also have made parts
of the RoPCIe implementation easier, as we ran into issues with software
not yet supporting newer kernels.

2.3.1 IB Core

The core implementation of RDMA in the RDMA subsystem is located in a
kernel module named IB Core. This kernel module provides the majority
of RDMA logic, and is completely device agnostic. The naming of IB
Core can can lead to confusion about what role it plays in the RDMA
subsystem. IB is an acronym for InfiniBand, but IB Core is not exclusive
to InfiniBand. Due to the history of RDMA in the Linux kernel, a lot of
systems and functions in IB Core have names related to InfiniBand, or
use other nomenclature from the IBTA specification. Some may assume
that InfiniBand, RoCE, and iWARP are entirely separately implemented
and more or less incompatible with each other, but the three actually
share a good deal of code. The three transports can be surmised as
follows: InfiniBand is RDMA over InfiniBand transport, RoCE is RDMA
over Converged Ethernet, and iWARP is RDMA over TCP/IP. Each of the
three share the same core RDMA implementation in IB Core.

25

The facilities in IB Core are made available to kernel-space applications
through a collection of header files. These header files are located at
Linux/include/rdma/ in the kernel source tree, and define the majority of
functions and data structures needed by kernel-space applications to do
RDMA. One of the header files named ib_verbs.h acts as the IB Core main
API. Any kernel-space application can include this header to get access to
IB Core and use it to do RDMA over any RDMA adapter connected to the
system.

Applications do not need to deal with device-specific implementations
of RDMA functionality, because IB Core is implemented with another
interface towards devices. IB Core has to run RDMA over a variety of
transports, and each transport is run by a growing variety of devices like
InfiniBand HCAs and RDMA-NICs. The code for running each device can
not be tightly coupled with IB Core, as it would result in a massive growth
in code and complexity. This issue is dealt with by using device drivers,
which separate device-specific code from core code. Before exploring
how the RDMA adapter drivers interface with IB Core, another kernel
mechanism should first be explained; kernel modules.

2.3.2 Kernel modules

The entire RDMA subsystem is implemented as a collection of kernel
modules. A kernel module is a compiled object file that can be loaded into
a running kernel, extending its functionality. The dynamic nature of kernel
modules makes developing software to run in kernel-space much more
straightforward, as the code can be loaded and unloaded at will. It also
helps keep the core kernel codebase from growing exponentially, and the
number of bugs with it. Kernel modules can be developed in-tree or out-of-
tree. In-tree kernel modules, like the ones in the RDMA subsystem, are part
of the Linux codebase and reside somewhere in the kernels directory tree
structure. These kernel modules are built at the same time as the kernel and
loaded when needed. Out-of-tree kernel modules are developed outside
the Linux codebase and built against a running kernel.

All kernel modules written for Linux are built, loaded, and unloaded
with the kmod build system [18]. When a kernel module is built, the
compiled code is output in a kernel object file(with the filename extension
".ko"). The kmod build system provides two programs for loading kernel
modules: insmod and modprobe. These programs can be used by either
the kernel or a user. Modprobe is based on insmod and is more powerful
because it can resolve dependencies between kernel modules, and load
multiple kernel modules in order of dependency. When a kernel module
has served its purpose, the module can be unloaded by the programs
rmmod or modprobe with the -r option. This will remove the functionality
of the module from the kernel.

An example of a minimal kernel module can be seen in listing 2.1. The
program includes the linux/module.h header, which is a part of the official
Linux-header package. This header supplies two macros, module_init
and module_exit, used to mark an init and an exit function for kmod.

26

Immediately after the kernel module is built and loaded into the kernel,
the init function is called, and the kernel module must set itself up for
operation. The load procedure usually includes registering itself with any
kernel systems that desire to use its functionality. After the init function
completes successfully, the functionality of the module is available to other
systems in the kernel. The exit function will be called right before the
kernel module is unloaded from the kernel. Here, the kernel module must
perform clean-up and free any memory that has been allocated to it.
#include <linux/module.h>

static int __init init_func(void)
{

return 0;
}

static void __exit exit_func(void)
{
}

module_init(init_func);
module_exit(exit_func);

Listing 2.1: Minimal kernel module example.

2.3.3 Device drivers

The kernel module mechanism proves its usefulness with device drivers.
The nature of a device is that it may be inserted into and removed from
the system at runtime, which fits the kernel module mechanism well. A
device driver is a kernel module that, when loaded, enables the kernel
to operate a specific device or a family of similar devices. [19] Taking
the RDMA subsystem as an example, although each device provides
similar outward functionality, the internal implementations are very
different. These devices are created by different companies, maintained
by different developers, and operate different RDMA transports. Some
drivers are self-contained, and others rely on secondary drivers and
other resources in the kernel. The RDMA device drivers are located at
linux/drivers/infiniband/hw/ in the Linux kernel source tree.

2.3.4 RDMA device context

IB core uses an RDMA device context data structure to represent an RDMA
device in RDMA operations. The responsibility of creating and initializing
the device context lies with the RDMA device driver. The context is usually
created when a device is probed with the device driver, but each RDMA
device driver has a different and often complex probe procedure. There are
many different approaches to writing a device driver, and this variety can
be observed among the RDMA device drivers in the RDMA subsystem.
While some RDMA device drivers register a new device context with
IB Core when the device is probed, others set up infrastructure (often

27

device files) to register a new device context when an event is triggered.
However, the device context initialization and registration procedure must
be executed at some point, and how the context is set up determines how
IB Core will handle the device.

An RDMA device driver must have the same device context definition
as IB Core. If the two parties had different definitions, bugs would occur
when data structures are passed from one party to the other. It could lead to
inconsistent evaluations of data structure members, writing garbage values
to valid memory, or reading to memory out of bounds. This problem is
solved by IB Core defining all its shared data structures in header files
located at linux/include/rdma/ in the kernel source tree. These headers
are used in both the IB Core and the device drivers, providing a consistent
definition of all shared data structures.

The device context is implemented as one of these shared definition
data structures. It has the type struct ib_device and is defined in the
ib_verbs.h header. As the device driver is the "owner" of the device
context data structure, it is responsible for both allocating and deallocating
it. Memory for the device context can be dynamically allocated with
the _ib_alloc_device function in IB Core, but this function is typically
not used directly. Instead, device drivers use a macro wrapper function
ib_alloc_device in the ib_verbs.h header. The macro wrapper function can
allocate memory to any data structure with a member of type ib_device.
Device drivers use this to implement a device-specific parent device
context, extending the base device context with device-specific fields. In
summary, ib_alloc_device allocates memory for a parent device context
data structure, of which ib_device is a member.

The ib_device context is not ready for registration with IB Core right
after its allocation. The device context would not be accepted in its
current state, as IB Core requires RDMA devices to support a minimum
set of operations. To communicate which operations the device supports,
the ib_device data structure has a member of type struct ib_device_ops.
This data structure is defined in the same header as struct ib_device
and defines function pointers for all possible RDMA operations. IB Core
expects the device driver to set function pointers to each of the RDMA
operations the device supports. A helper function in IB Core named
ib_set_device_ops can simplify this step. The device driver can supply
the helper function with the device context and a static data structure
of type struct ib_device_ops where any supported device operations are
set, and the helper function will set all the operations in the main device
context. This data structure is how RDMA device drivers communicate
what operations the device supports.

Now the ib_device context is technically ready to be registered with IB
Core. The RDMA device drivers will typically configure a good deal more
parameters in the device context, but the formal steps to register the device
context are complete. The function ib_register_device will take the device
context and a name for the device as input, and register it with IB Core.
Assuming nothing fails in the registration procedure, the device driver has
now registered a device with IB Core. From this point on, the device should

28

be ready to perform its supported RDMA operations.

2.3.5 IB Uverbs

So far, we have discussed a scenario where an RDMA device is being
accessed through the IB Core API, which is only available to programs
running in kernel-space. Some programs in the kernel do use this API, but
the majority of software that uses RDMA exists in user-space. To make
user-space RDMA possible, IB Core utilizes a kernel module named IB
Uverbs. This module is a character device driver, which means that it
manages character device nodes in the file system to communicate between
user-space and kernel space.

There are two types of drivers who enable access to hardware devices
through special device files; block device drivers and character device
drivers. The two types are similar, and both are used as mechanisms to pass
information between a kernel module and a user-space application. They
differ in how they read and write to the special device files, usually called
device nodes. We only encounter character device drivers in the RDMA
subsystem, so block device drivers will not be explored in more detail. The
following will explain how the IB Uverbs acts as a character device driver.

At module initialization time, IB Uverbs creates a character device
node. This node exists as a special file in the file system and can read
and written by any user in kernel or user space with the right permissions.
The character device node can be used as a bidirectional communication
channel where data is written and read as a character stream. The uaccess
API in Linux aids character device drivers by providing functionality for
reading and writing to the character device node. To make sense of the
data passing through the character device node, the character device driver
employs an Application Binary Interface (ABI).

Application Binary Interfaces

An ABI can provide interface definitions on a binary level. When IB
Uverbs receives a character stream through a character device node, it will
use the ABI to interpret the data as commands. The ABI defines byte-
aligned data structures to remove any ambiguity about the expected input
format. ABIs can be very useful when applications are compiled at different
points in time, and on different machines. Some systems may cause the
compiler to pad the data structures in different ways, leading to a mismatch
between the two sides of an interface. ABIs are also tools used to maintain
compatibility between programs and systems as they change and evolve.

ABIs are not needed by the RDMA device drivers when they interface
with IB Core, as they are all compiled with the same ib_verbs.h header
for the same kernel. When multiple programs are compiled with one
header file, they share the same definitions of functions and data structures.
But user-space applications cannot be compiled with ib_verbs.h, which is
why ABIs are used. User-space RDMA applications are compiled with
a different header file, but the header file has the same definitions of

29

functions and data structures. Each device driver also provides its own
device-specific ABI, where the same custom data structures can be defined
for both kernel-space and user-space.

2.4 User-space RDMA libraries

Several libraries providing RDMA services in user-space have been
gathered into a single open-source repository named rdma-core. This
repository acts as the user-space counterpart to the RDMA subsystem in
the kernel, and most of the libraries in rdma-core rely on systems in IB Core.
The rdma-core repository includes an automated build system that can
compile all the libraries into one package. This system makes the process of
downloading the code, modifying it, and building it relatively easy. All the
code is open-source, and there are no additional binaries required, making
it possible to audit the code and modify any part of it. A pre-built package
is also available through the RPM package manager on most major Linux-
distributions. When the rdma-core package is installed on a system, RDMA
is provided to user-space applications by a library called Libibverbs. The
API is available by including infiniband/verbs.h. In this thesis, we are
using version 27.0 of RDMA-core.

2.4.1 Libibverbs

A library called Libibverbs has become an integral part of user-space
RDMA and now serves as the main user-space RDMA API. It was first
developed by Roland Dreier as a stand-alone library and has later been
integrated with rdma-core, where continued work on the library is being
done. Libibverbs mirrors IB Core in many design aspects while being
substantially smaller than its kernel counterpart. This is because Libibverbs
relies on IB Core for the actual RDMA implementation, and cannot function
by itself. The library is often used directly by applications but is also part
of various software stacks implementing other protocols on top of RDMA.
The popularity of this library, combined with the fact that it shares a device-
agnostic design with IB Core, effectively makes Libibverbs an abstraction
layer between user-space applications and the RDMA transport. If an
RDMA transport integrates with Libibverbs, it can automatically be used
by many existing applications and protocol stacks.

Device-specific functionality can be added to Libibverbs by HCA user-
space drivers in much the same way as device-specific functionality is
added to IB Core by HCA kernel-space device drivers. An HCA user-space
driver for Libibverbs is usually called a "user verbs provider," as it does not
directly drive the HCA. The user verbs provider can choose to be statically
or dynamically linked with Libibverbs, but dynamic linking is strongly
recommended. At linking time, the user verbs provider is registered with
Libibverbs, providing several device-specific function handles for verbs
operations. The user verbs provider will be processed by Libibverbs and
matched with a device driver in the kernel, which we will call the "kernel

30

verbs provider." Like IB Core, Libibverbs does not require a user-space
provider to support all verbs operations. The kernel space provider can
choose what verbs operations can be supported in user-space, and there is
a minimum set of functions required for RDMA to function in user-space.
Most major vendors of RDMA-devices maintain a user verbs provider for
Libibverbs to make their device available to user-space.

Libibverbs communicates with the RDMA subsystem in the kernel
through character nodes managed by IB Uverbs, as described in section
2.3.5. This communication channel is made available to the user verbs
provider with a simple kernel command/response API. For each user
verbs provider function, there is a Libibverbs kernel command that can be
used to reach the corresponding kernel verbs provider function, through
a character device node. A provider ABI can be used to ensure that
any provider custom data structures have the same definition in kernel-
space and user-space. A user verbs provider can use a kernel command
for every verbs operation, deferring all complex logic to the kernel verbs
provider. The downside to this approach is that communication through a
character device node is relatively slow, which is far from ideal in latency-
sensitive verbs operations like "post send." The latency is why the kernel
command/response path is usually referred to as the "slow path."

There is an alternative "fast path" communication channel used by
many user verbs providers to perform latency-sensitive verbs operations.
By using the mmap() function to memory map resources like WQs and
CQs, user verbs providers can read from and write to memory shared with
the HCA. This fast path bypasses the kernel entirely for HCAs that can
read from and write to the memory mapped resources with DMA. Most
verbs operations will still use the slow path, but for the minority of verbs
operations that are latency-sensitive, the fast path can be used.

31

32

Chapter 3

Design

3.1 Components

The design of RoPCIe can be split into two components; the integration
towards the Dolphin Software stack and the integration towards the RDMA
software stack.

3.1.1 Dolphin software stack

We use the term "Dolphin software stack" to describe a collection of
software layers provided to us by Dolphin ICS. This software stack contains
everything needed to program and operate Dolphin PCIe interconnect
cards, including APIs, middleware, and drivers. It can be obtained through
the Dolphin eXpressWare software package and, once installed, spans user-
space and kernel-space. We use the same Dolphin software stack that
Dolphin provides to its customers.

3.1.2 RDMA software stack

We use the term "RDMA software stack" to describe a collection of software
layers provided to us by the rdma-core software package and the Linux
kernel. This software stack contains everything needed to program and
operate an RDMA transport, including APIs, middleware, and drivers. It
can be obtained by installing rdma-core on a Linux based operating system
and, once installed, spans user-space and kernel-space.

3.2 Complexity

The first step we took in the design process of the RoPCIe transport was
to identify each separate system that was going to be a part of the final
software stack. We evaluated how complex each system was, as well as
how critical each system was to create a minimum viable RDMA transport.
The task of creating the RoPCIe transport was broken down into a set of
sub-tasks. Each sub-task was then assigned a complexity and criticality.

33

More complex sub-tasks would require more development time, and thus
needed to be prioritized by the product of its complexity and criticality.

We evaluated the RDMA software stack to be the largest source of
complexity for the implementation of the RoPCIe transport. Writing an
RDMA application using a "front end" Verbs API is a non-trivial, but well-
documented endeavor. There are multiple open-source examples of such
applications, and the verbs interface is thoroughly defined in the IBTA
Specification [13]. On the other hand, writing a verbs provider for the
"back end" of the RDMA software stack is not well defined or documented.
Most information on the provider interface exists as sparse comments in
the source code and patch notes in email chains. Additionally, the RDMA
stack spans both user space and kernel space with a separate verbs provider
interface at each level. The size of the RDMA stack has led to most
development time being allocated to interfacing with it.

The Dolphin stack is also a source of complexity and is similar to the
RDMA stack in that it spans both user-space and kernel-space. However,
our usage of the two stacks differ. While the RoPCIe transport must
interface with the "back end" of the RDMA stack, we can use the "front
end" of the Dolphin stack. This results in much of the complexity being
abstracted away by the Dolphin stack APIs and decreasing the total
complexity added by the Dolphin stack. Using the front end of the Dolphin
stack has led to less development time being allocated to interfacing with
the Dolphin software stack.

3.3 Requirements

During the design of RoPCIe, we set some design requirements that should
be fulfilled by the implementation. These requirements have guided the
development of RoPCIe and influenced most decisions made regarding
scope and architecture. The requirements are broad and few in numbers,
due to the complexity of the software stacks obfuscating the path to a
correct solution. Making the requirements too restrictive could impede the
progress of the implementation, and even result in a failure to achieve a
minimum viable RoPCIe transport implementation. However, making the
requirements too lenient could lead to an incorrect implementation of little
practical value.

The main design requirement is adopted from the verbs-based RDMA
design philosophy: An application in user-space or kernel-space should be
able to perform RDMA through the standard verbs interface without any
knowledge of the transport carrying out data transmission. An application
using RoPCIe through a verbs interface should not be aware of the Dolphin
stack and experience the same transport behavior as an InfiniBand, RoCE,
or iWARP transport would exhibit. Our justification for this requirement
is as follows: If an application is required to know about the Dolphin stack
in order to perform RDMA over PCIe, it is better off directly using one of
the native Dolphin interfaces. Transport-abstraction for high-performance
intercommunication is an essential feature of RDMA, and a transport that

34

must break the abstraction in order to function will not be a lot more useful
than bypassing the RDMA stack entirely.

The secondary design requirement is related to the performance of
the RoPCIe transport. RDMA is designed for low latency and high
throughput, and the transport is essential to achieving this performance.
The design of RoPCIe should not significantly sacrifice performance,
because inefficiencies in the implementation would quickly limit the
applications of this transport service. Making an effort to design and
implement the transport to be fast and resource-efficient is a good use of
development time, even if a slower and more inefficient implementation
would be faster to develop. However, spending significant amounts of
time on smaller optimizations not fundamental to the architecture is not
a good use of time, and we consider this a subject for future work.

The tertiary design requirement is related to kernel bypass on data
transfer. As section 2.1.1 elaborates on, bypassing the kernel is essential
to lowering latency, power consumption, and computational load. RoPCIe
must be implemented in a way that exhibits the same behavior, using the
DMA engine on the RDMA interface adapter to transfer data with as little
kernel interaction as possible. This requirement is highly dependent on
the transport endpoint hardware and associated firmware and hardware
drivers. We have to work within the constraints of the hardware and
should attempt to use it to its fullest potential.

3.4 Scope

The scope of this design is mainly focused on a robust architecture for the
RoPCIe transport, and implementing a functional prototype. The intention
is not to create a direct competitor to InfiniBand, RoCE, or iWARP, but to
explore an alternative transport for a PCIe fabric. The scope is limited
to functionality facilitating the Send/Receive transfer operation through
a verbs interface. The design should allow for expansion to RDMA Read,
RDMA Write, and Atomic transfer operations, but the implementations of
these are out of scope for this thesis. Finally, the scope also encompasses
testing facilities for the transport, and additional miscellaneous tools
required to develop, test, and maintain the transport as an open-source
project.

3.5 Architecture

3.5.1 Dolphin stack API

The architecture of the first design component, the integration towards
the Dolphin software stack, was continually evolved to fit the integration
towards the RDMA software stack. We set the limitation of writing all code
outside the Dolphin Stack, but the Dolphin stack has several APIs. The
following explains which APIS we considered for the RoPCIe transport.

35

SISCI

The SISCI Library provides a relatively extensive user-space API. The SISCI
API gives the programmer control over setting up and performing data
transfers with Dolphin hardware. While a low level of API abstraction can
be beneficial to achieve excellent performance for a wide range of use-cases,
it also introduces a fair amount of code and complexity. For this reason, and
because we end up not implementing the verbs provider in user-space, we
did not choose to use the SISCI API for the RoPCIe transport.

3.5.2 GENIF

The GENIF Library is very similar to the SISCI Library, but the GENIF API
exists in kernel-space. When we decided to implement the RoPCIe trans-
port in kernel-space, this was the library we first considered. However,
we got a strong recommendation from Dolphin for using another library
instead; the SCI Library.

SCI Library

The SCI Library provides a simple API in both user-space and kernel-
space. It revolves around message queues and abstracts away most of the
communication setup and management. The low complexity of this API
was an attractive feature, and the message queues looked like a good fit for
implementing RDMA semantics. This is the reason why we chose the SCI
API.

3.5.3 Verbs provider

The architecture of the second design component, the integration towards
the RDMA software stack, went through some significant changes before
the design converged on a solution. The following describes the archi-
tecture of three verbs provider designs we considered, and why we con-
sidered them. We use the term "Dolphin software stack" to describe a col-
lection of software layers provided to us by Dolphin ICS. This software
stack contains everything needed to program and operate Dolphin PCIe
interconnect cards, including APIs, middleware, and drivers. It can be
obtained through the Dolphin eXpressWare software package and, once
installed, spans user-space and kernel-space. We use the same Dolphin
software stack that Dolphin provides to its customers, and make no modi-
fications to any of its software layers.

Libibverbs only provider

The first verbs provider option we considered was a user-space only
Libibverbs provider. This provider would only exist in user-space, with
no kernel component. Where other verbs providers would perform
comparatively little work in the Libibverbs provider, and defer many of the
verb operations to the IB Core provider counterpart, we would be using the

36

Dolphin software stack to operate the transport directly from user-space.
We theorized that we could use the SCI Library to bridge the gap between
user-space and hardware, which would abstract much complexity away
from IB Core in the kernel.

There are several reasons why we investigated this design first. During
our research, we found that the majority of RDMA applications exist in
user-space and use the user-space verbs interface in Libibverbs (section
2.4.1). This design would result in RoPCIe transport not being available to
kernel applications. However, we saw this as an acceptable tradeoff for the
simplicity a user-space only verbs provider would bring. In our experience,
working in user-space offers significantly less resistance than working
in kernel-space, and user-space stuff is, in general, more comfortable to
deal with. Creating a user-space only verbs provider was a compelling
proposition, as it would make most aspects of the implementation simpler
while being usable by the majority of RDMA applications.

Further research of the internal workings of Libibverbs revealed that
a user-space only verbs provider is currently infeasible. Any application
using Libibverbs must perform some initialization by opening a verbs
device through the Libibverbs API to obtain a device context. The user-
space provider does not create a verbs device. It is created by Libibverbs
iterating over device directories at /sys/class/infiniband_verbs in the file
system, reading the contents of the files within to initialize the device.
These device directories are created and initialized by IB Core in the kernel
when a verbs device registers with a verbs device driver. While creating a
valid verbs device directory structure from user-space may be technically
possible, we determined this course of action to be unnecessarily time
consuming and hacky.

Libibverbs/IB Core hybrid provider

When the user-space only verbs provider was shelved, we considered a
hybrid implementation spanning both user-space and kernel-space. This
hybrid provider would register a verbs device driver with IB Core in the
kernel, and when a verbs device was matched with the driver, IB Core
could generate the file system infrastructure required by Libibverbs. It may
then be possible then implement the majority of the verbs in the Libibverbs
provider, with the SCI libraries from the Dolphin stack.

This provider design option was compelling for many of the same
reasons as the user-space only driver. Most of the implementation would
still exist in user-space, and we may gain some performance by letting the
Dolphin stack handle the bridge from user-space to hardware. Having put
a considerable amount of time into researching Libibverbs and its inner
workings, the hybrid provider was considered mainly due to the sunk cost
fallacy, as the smallest alteration to make the original plan feasible.

This hybrid provider design also ended up being shelved, but not
because the implementation looked like it was going to be a giant hack.
We think that the hybrid provider is feasible to implement, but we realized
that it is also unnecessary. When the creation of a device driver to register

37

with IB Core is a requirement, there is not much point in trying to force
the verbs implementation up to user-space. We further reasoned that, at
this point, a potential verbs implementation in kernel-space at would look
very similar to the hybrid provider verbs implementation in user-space.
It is pointless mainly due to the SCI Library working in kernel-space as
well, with most of the same functionality. The tools available in the kernel
to create performant asynchronous work request processing may also be
better, with less overhead. Moving the entire implementation down to
kernel-space just made the most sense, and we would gain compatibility
with kernel applications like NVMEoF in the process.

IB Core and Libibverbs providers

Finally, we settled on a verbs provider design, where we are integrating
with the RDMA stack the "proper" way. This design requires both an
IB Core provider and a Libibverbs provider. However, the Libibverbs
provider can defer most of the work to the IB Core provider through the
internal character node command/response system in IB Uverbs. Because
we are more or less integrating with the RDMA stack in an intended way,
we believed this design would result in the best fundaments for the RoPCIe
transport. Creating a good fundament takes time, but it should make it
easier to expand the transport feature set, ensure excellent performance,
and operate the transport in compliance with the IBTA specification.

IB Core provider: The IB Core provider is by far the most complex of the
two providers. It should be able to operate standalone, meaning it should
be able to provide verbs to kernel applications without the presence of a
Libibverbs provider. It should also operate more or less like any other
IB Core provider within the feature set we choose to support. Stability
is a high priority in the design of this provider because trivial bugs in the
implementation can hang the users’ program indefinitely, or even incite a
kernel panic. While dereferencing a null pointer in user-space will segfault
the program, in kernel-space, it will lead to an undefined state in the kernel
itself. The undefined state can only be fixed by a reboot of the entire system
and may lead to loss of data. For these reasons, we think it is wise to
keep a tight scope and limit the initial feature set supported by the RoPCIe
transport.

When designing the IB Core provider, we looked at existing providers
for guidance. Open-source examples of IB Core providers can be found in
the Linux kernel source tree, implemented as fully-fledged device drivers.
Most of these providers drive the RDMA adapter hardware directly or rely
on a secondary driver in the kernel source tree to drive the hardware. We
did a surface-level analysis of the Lines Of Code (LOC) of each driver, to
get an idea of the size of each driver. The results are presented in table
3.1. We determined that creating a new driver to drive the Dolphin adapter
directly would be firmly out of scope for this thesis. The alternative was to
create a virtual device driver that would act as a bridge between IB Core
and the actual Dolphin NTB device driver.

38

Driver Name HW Vendor Transport LOC
bnxt_re Broadcom RoCE 16 003
cxgb4 Chelsio iWARP 15 628
efa Amazon SRD 5 859
hfi1 Intel Intel OPA 78 907
hns Hisilicon RoCE 24 104
i40iw Intel iWARP 28 896
mlx4 Mellanox InfiniBand 17 235
mlx5 Mellanox InfiniBand 28 826
mtcha Mellanox InfiniBand 15 264
ocrdma Emulex RoCE 11 069
qedr QLogic RoCE 8 527
qib Intel InfiniBand 48 668
usnic Cisco RoCE 5 789
vmw_pvrdma VMware RoCE 6 187
rdmavt - - 9 061
rxe - RoCE 12 941
siw - iWARP 10 648

Table 3.1: Statistics for RDMA verbs provider drivers in the Linux kernel
source tree (v. 5.5.0). Numbers in the Lines Of Code (LOC) column are
generated by executing $ find | xargs wc –lines in the driver directory,
counting every line in every file towards the sum.

Libibverbs provider: The Libibverbs provider is more forgiving than the
IB Core provider because it is not required to operate standalone. Its initial
role is to relay all user commands to the IB Core provider but should be
designed to allow for expansion of responsibility in performance-sensitive
operations. These performance-sensitive operations are typically the verbs
concerned with posting work requests work to work queues and retrieving
work completions from completion queues. The Libibverbs provider
should allow for direct fast path operations through memory mapped data
structures, similar to existing Libibverbs providers that bypass the kernel
entirely in these operations. Fast path operations fall under the category
of optimizations we design for but do not prioritize in implementation.
The primary function of the Libibverbs provider is to expose the IB Core
provider to user-space.

39

40

Chapter 4

Implementation

4.1 Source code

The implementation is comprised of two code repositories, a kernel-
space provider and a user-space provider. There are also two code
repositories with RDMA test programs, one for each provider. While the
test programs are not part of the provider implementations, they can aid
the understanding of how end-user applications can use these providers.
Figure 4.1 places the implementation in each of the four repositories in the
RDMA software stack. The following is a description of the contents of
each of the four repositories.

The term "dis" or "DIS" appears as a prefix to identifiers throughout
the source code of the four code repositories. DIS is an abbreviation of
Dolphin Interconnect Solutions and is meant to distinguish RoPCIe code
from the verbs API. IB Core prefixes most functions and data structures
with "ib," the RDMA Communication Manager uses the prefix "rdma," and
Libibverbs uses the prefix "ibv." We observed all other verbs providers
using this prefix-based identifier naming scheme and decided to adopt it
for our verbs provider code as well.

4.1.1 dis-kverbs

The dis-kverbs repository contains source code for a RoPCIe kernel verbs
provider that registers a virtual RDMA adapter interface with IB core
and operates the RoPCIe transport. It consists of four kernel modules
and a Makefile-based build system to link, build, load, and unload the
kernel modules. The four kernel modules are; the bus module, the device
driver module, the device module, and the SCI Interface module. The
device driver module and the SCI Interface module are located in the same
directory, as they are tightly coupled. When loaded in the correct order,
the four kernel modules produce a valid RoPCIe kernel verbs provider
registered with IB Core. The RoPCIe kernel verbs provider can be used
by kernel-space verbs applications or by user-space verbs applications
through the user-space provider. When the modules are unloaded in
the correct order, the RoPCIe verbs provider will tear down its context,

41

IB Uverbs

Libibverbs

IB Core

User-space

Kernel-space

RDMA Device Driver

Dolphin NTB

Hardware

dis-utest

dis-uverbs

dis-kverbs

dis-ktest

Character Node

SCI Library

Dolphin software

Figure 4.1: The two verbs providers and two test programs produced
during the implementation of RoPCIe placed in the RDMA software stack.

unregister from IB Core, and free any allocated memory.

4.1.2 dis-ktest

The dis-ktest repository contains a test program implemented to test the
RoPCIe kernel verbs provider through the IB Core API. The test can
also be used to test any other kernel verbs provider that supports the
same feature-set. It consists of one kernel module that, when loaded on
two machines linked with RDMA adapters, will exchange requests and
responses between the machines. All messages transmitted between the
two machines will be checked byte for byte, to test whether the transport
is working correctly. The entire RDMA infrastructure is created in one
function, managed by contexts in a header file, and the infrastructure is
torn down before the module is unloaded. The test does not currently do
any external coordination of keys and remote Queue Pair numbers before
creating the infrastructure.

4.1.3 dis-uverbs

The dis-uverbs repository contains a fork of the rdma-core source code
repository, where a RoPCIe user verbs provider has been added to a new
directory at providers/dis. Minor additions have been made to the build
system of rdma-core in order to have rdma-core build the RoPCIe user
verbs provider as a dynamically linked library along with the existing user

42

verbs providers. The RoPCIe user verbs provider currently acts as a user-
space interface to the RoPCIe kernel verbs provider, as discussed in the
design. ’

4.1.4 dis-utest

The dis-utest repository contains a test program implemented to test
the RoPCIe user verbs provider through the Libibverbs API. The test
can also be used to test any other user verbs provider that supports
the same feature-set. It consists of a program that, when executed,
runs a test that is very similar to the test in dis-ktest, with the only
significant difference being that it creates a user-space memory region. In
order to take advantage of the RoPCIe user verbs provider, the program
must use the new rdma-core libraries built by dis-uverbs. This can be
accomplished by adding the libraries built by dis-uverbs to the system
LD_LIBRARY_PATH. When multiple libraries with the same base name
exist in the path, the newest one with the highest version number will be
chosen, even if rdma-core is already installed on the machine. The test does
not currently do any external coordination of keys and remote Queue Pair
numbers before creating the infrastructure.

4.2 Virtual verbs device

4.2.1 Kernel device model

IB Core is designed to accept device drivers as verbs providers. As one
device driver can drive multiple devices simultaneously, each separate
device must be registered with IB Core in order to be used in RDMA
operations. All registered devices are managed separately within IB Core
as unique RDMA transport endpoints with unique sets of capabilities
defined by the respective device drivers. Our provider must follow the
same pattern of registration in order to operate the RoPCIe transport
through IB Core. To accomplish this, we have created a virtual device
driver that can register a virtual RDMA adapter interface with IB Core.

To create a valid virtual device, we need an understanding of the
kernel device model. A data structure of type struct device is the base
representation of any external device in the kernel. While the structure
is ubiquitous, it is not common for device drivers to use it directly. The
base structure is instead encapsulated in a superstructure with additional
fields to map features specific to different the type of device targeted by the
device driver. Looking at the existing IB Core providers, the device drivers
typically represent their devices with device superstructures of types struct
pci_device (for InfiniBand devices) or struct net_device (for RoPCIe and
iWARP devices). Each device superstructure has a suite of functions and
additional data structures to help the kernel manage the device.

The RoPCIe device driver we have implemented is not directly driving
a device, and this is what makes it a virtual device driver. The virtual

43

device driver is acting as an intermediary between IB Core and a top-
level API to the Dolphin NTB device, and the virtual device driver can
drive one or more virtual devices as communication instances towards
the Dolphin API. As such, the RoPCIe virtual device driver does not
have any information about the internal state of the Dolphin NTB device,
or its low-level driver machinery. Using a device superstructure like
struct pci_device and the accompanying functions in the kernel would be
unnecessary, so we have elected to use the struct device for our provider.

The specific reason we need to create a device is that IB Core requires
a valid parent device in order to register as a verbs provider. The formal
requirements for registration with IB Core are explained in detail in section
2.3.4, where the device driver must allocate and initialize a data structure
of struct ib_device. This data structure has a field dev of type struct device,
which in turn needs a reference to a parent structure of the same type. If
the device driver does not set a reference to a valid parent structure, the
registration with IB Core will fail and incite a kernel panic. This step in the
device registration procedure is the reason it is more or less impossible to
register a provider without a device driver to generate a valid parent struct
device.

4.2.2 Dolphin device

Before creating a virtual device driver, we explored retrieving the base
device structure from the Dolphin device driver. The Dolphin software
stack has several layers, and the base device structure exists at the bottom
layer. If we could retrieve this structure, it may be a viable alternative to the
virtual device, and the Dolphin adapter could more directly integrate with
IB Core. In the end, we could not find any reasonable way of extracting the
base device structure from the Dolphin stack without making modifications
to the multiple layers of the driver source code. As no tangible performance
benefit would be gained from doing this modification, we decided to go
with the virtual device option instead.

Exploring the Dolphin driver stack made it clear that the alternative
to providing RoPCIe with a virtual device is to integrate the provider
code into the dolphin driver itself. While modification of the Dolphin
driver stack is out of scope for this thesis, we think this would be a
reasonably accomplishable task in and of itself. Our primary concern is
the relative immaturity of the RoPCIe provider code, which needs more
development and testing before it is ready for a production environment.
If the provider is developed further into a more mature state, we see no
significant obstacles to integrating it with the Dolphin driver stack and
doing away with the virtual device driver entirely.

4.2.3 Bus module

To create a virtual device, we need to load three kernel modules in
sequence, and the first module to be loaded is a bus. In the kernel driver
model, a bus is a top-level device construct used to match devices with

44

driver_register()

dis_dev_drv dis_devdis_bus_type

bus_register()

device_register()

dis_driver_probe()

bus_match()

IB Core

"dis-ropcie"

.init_name

&dis_bus_type

.bus

&dis_bus_dev

.parent

"dis-bus"

.name

bus_match()

.match

"dis-ropcie"

.name

&dis_bus_type

.bus

dis_driver_probe()

.probe

dis_driver_remove()

.remove

ib_register_device()

dis_bus_dev

"dis_bus_device"

.init_name

bus_dev_release

.release

device_register()

dis_dev_release

.release

Kernel

Figure 4.2: Interactions between bus, device driver, and device.

device drivers. When a device is registered with the kernel, it can specify
a bus to register with. The internal kernel machinery will find the bus
and use it to find the correct driver for the device. A bus can have
many registered drivers, so a matching function is used to match driver
and device. This matching function is bus-specific, and it is up to the
programmer of the bus to create a matching function that determines if
a driver is a match for a device. The matching function will be called for
every driver registered with the bus until a match is found, or none of the
drivers match the device.

When creating the bus for our virtual device, we have to initialize
and register two different data structures with the kernel. Figure 4.2
shows an overview of the four main data structures involved in registering
our virtual device, and the most important function calls between the
structures and the kernel. Two of these data structures, dis_bus_type and
dis_bus_device, represent the bus. When then bus module is loaded, the
bus type is first registered with the kernel, and then the bus device is
registered. The bus type contains a matching function and will be used
to pair the RoPCIe virtual device driver with the RoPCIe virtual device.
The bus device is needed to represent the bus as an instanced device in the
kernel device hierarchy and will become the parent of our virtual device.
When the bus module has finished loading, the bus is ready to be used in
the kernel.

The RoPCIe bus matching function is currently straightforward and can
be found in listing 4.1. It merely compares the name of the device with the
name of the driver. If the driver name is a prefix of the device name, the

45

device and driver is considered a match. The bus does not need a more
complex matching function, because no other devices or drivers can use
this bus. We consider the bus to be more or less finished and do not expect
its functionality and responsibility to be expanded in the future.
// Location: dis-kverbs/src/bus/dis_bus.c
static int bus_match(struct device *dev, struct device_driver *drv)
{

return !strncmp(dev_name(dev), drv->name, strlen(drv->name));
}

Listing 4.1: RoPCIe bus: Matching function.

4.2.4 Device driver module

The second module we load into the kernel is the device driver module.
This module contains most of the code necessary to operate the RoPCIe
transport, but its loading is uneventful. As shown in figure 4.2, the
only action performed during the loading of the device driver module
is registration with the bus. The device driver is represented by a data
structure of type struct device_driver, where the field bus is initialized
with a reference to a bus type. The bus type reference is obtained in
the device driver module by forward declaring an external data structure,
which is exported as a symbol by the bus module. At compile time,
the forward declaration will resolve to the structure declared in the bus
module, and when the device driver module is loaded, the bus module has
already initialized the bus type. The device driver can initialize the device
driver structure and register with the kernel, which in turn will find the
bus corresponding to the bus type and add the device driver to that bus.
At this point, the RoPCIe device driver is loaded and will do nothing else
until a device is registered with the device driver.

4.2.5 Device module

The third and last module we load into the kernel is the device module, and
loading it causes a RoPCIe device to be registered with IB Core. As shown
in figure 4.2, the device is initialized with the same name and bus type as
the device driver. A device registration call goes to the kernel, which looks
at the bus type and invokes a device registration with the corresponding
bus. The bus will then match the device with the device driver based on
the device name, and when the match is found, the drivers’ probe function
is called with a reference to the device. This probe functions will accept the
device and register it with IB Core. If the probe function returns success, we
have created a virtual device and registered it as a verbs transport endpoint.

4.2.6 Register device

The entirety of the IB Core device registration happens in the device driver
probe function, and this function is mostly explained in section 2.3.4. The
struct ib_device_ops data structure supplies IB Core with function pointers

46

to verb implementations, and it also includes some additional necessary
information about the driver. A static initialization of this data structure
in the RoPCIe provider is shown in listing 4.2. The driver ID and ABI
version fields are used by Libibverbs to match a user verbs provider with
the kernel space provider and choose the correct ABI. There are also some
INIT_RDMA_OBJ_SIZE macros telling IB Core the size of some provider
custom data structures, which will be explained later.
// Location: dis-kverbs/src/driver/dis_driver.c
static const struct ib_device_ops disdevops = {

.owner = THIS_MODULE,

.driver_id = RDMA_DRIVER_UNKNOWN,

.uverbs_abi_ver = 1,

.alloc_ucontext = dis_alloc_ucontext,

.dealloc_ucontext = dis_dealloc_ucontext,

.alloc_pd = dis_alloc_pd,

.create_cq = dis_create_cq,

.create_qp = dis_create_qp,

.dealloc_pd = dis_dealloc_pd,

.dereg_mr = dis_dereg_mr,

.destroy_cq = dis_destroy_cq,

.destroy_qp = dis_destroy_qp,

.get_dma_mr = dis_get_dma_mr,

.reg_user_mr = dis_reg_user_mr,

.get_port_immutable = dis_get_port_immutable,

.modify_qp = dis_modify_qp,

.poll_cq = dis_poll_cq,

.post_recv = dis_post_recv,

.post_send = dis_post_send,

.query_pkey = dis_query_pkey,

.query_port = dis_query_port,

.query_qp = dis_query_qp,

.req_notify_cq = dis_req_notify_cq,

.query_device = dis_query_device,

.create_srq = dis_create_srq,

.modify_srq = dis_modify_srq,

.query_srq = dis_query_srq,

.post_srq_recv = dis_post_srq_recv,

.destroy_srq = dis_destroy_srq,

INIT_RDMA_OBJ_SIZE(ib_pd, dis_pd, ibpd),
INIT_RDMA_OBJ_SIZE(ib_ah, dis_ah, ibah),
INIT_RDMA_OBJ_SIZE(ib_cq, dis_cq, ibcq),
INIT_RDMA_OBJ_SIZE(ib_srq, dis_srq, ibsrq),
INIT_RDMA_OBJ_SIZE(ib_ucontext, dis_ucontext, ibucontext),

};

Listing 4.2: RoPCIe kernel verbs provider: Verbs provider structure.

4.3 RoPCIe kernel verbs provider

4.3.1 Provider super structures

Verbs resources are modeled as data structures with a shared definition
between IB Core and the providers. An example of this can be found in

47

listing 4.3, which shows the definition of the CQ verbs resource. While this
data structure includes several useful fields, a verbs provider usually wants
to extend the structure with some fields specific to the provider.
// Location: Linux/include/rdma/ib_verbs.h
struct ib_cq {

struct ib_device *device;
struct ib_uobject *uobject;
ib_comp_handler comp_handler;
void (*event_handler)(struct ib_event *, void *);
void *cq_context;
int cqe;
atomic_t usecnt; /* count number of WQs */
enum ib_poll_context poll_ctx;
struct ib_wc *wc;
union {

struct irq_poll iop;
struct work_struct work;

};
struct workqueue_struct *comp_wq;
struct dim *dim;
/*

* Implementation details of the RDMA core, don’t use in drivers:
*/

struct rdma_restrack_entry res;
};

Listing 4.3: IB Core: Verbs completion queue base structure.

Extending the base verbs data structures with additional fields is
natively supported by IB Core, and has become a ubiquitous design pattern
among the existing verbs providers. Memory for base verbs data structures
like ib_cq is directly allocated inside IB Core. For structures like ib_qp,
this memory allocation is left to the verbs provider. In both cases, we
can ensure more memory is allocated immediately after the "end" of the
base verbs structure, and the verbs provider can use the extra memory as
additional fields in a superstructure of the base structure While it is trivial
to extend ib_qp, extending ib_cq requires IB Core to know the size of the
superstructure. We mention this in section 4.2.6, where the provider uses
a macro INIT_RDMA_OBJ_SIZE to inform IB Core of the size of dis_cq,
among other superstructures. The definition of the RoPCIe verbs provider
superstructure dis_cq is shown in listing 4.4.

48

// Location: dis-kverbs/src/driver/dis_verbs.c
struct dis_cq {

struct ib_cq ibcq;
struct circ_buf cqe_circ;
spinlock_t cqe_lock;
u32 cqe_max;

};

...

static inline struct dis_cq *to_dis_cq(struct ib_cq *ibcq)
{

return ibcq ? container_of(ibcq, struct dis_cq, ibcq) : NULL;
}

Listing 4.4: RoPCIe kernel verbs provider: Completion queue super
structure and conversion function.

IB Core will not use the definition of the superstructure, and for
subsequent operations on a verbs construct, the provider will receive a
reference to the base structure. To retrieve the superstructure, the provider
can use a conversion function container_of(). This function can "upgrade"
a base structure reference to a superstructure reference. The RoPCIe
verbs provider defines an inline function for each superstructure to make
upgrading base structure references easier, as shown in listing 4.4. We use
this design pattern throughout the verb functions, and for the CQ example,
we use the extended fields to implement the work completion queue.

4.3.2 Protection domains

The PD implementation in the RoPCIe verbs provider more or less follows
the PD model in the IBTA specification, explained in section 2.2.3. A PD
superstructure dis_pd is allocated by IB Core and passed to the RoPCIe
verbs provider for initialization. The dis_pd superstructure has lists of
references to all QPs and MRs linked to that PD and a count of QPs and
MRs. Currently, this count is incremented when a new QP or MR is created,
and a static limit is defined to comply with the IBTA specification. The
count should be decremented when a QP or MR is destroyed, but this is
not yet implemented.

4.3.3 Memory regions

The MR implementation is one of the more complex elements of any
verbs provider. Due to not mapping HCA registers into memory, the
MR implementation in the RoPCIe verbs provider is a little different.
A high-level description of what the verb "Register Memory Region"
exits in section 2.2.3, but int does not go into the low-level details of
implementing these verbs resources. In addition to being complex, the MR
implementations differ significantly between verbs providers, because each
provider targets different hardware. Herein lies a big difference between
the existing hardware device drivers, and the RoPCIe virtual device driver.
Hardware device drivers have to map the memory region to the hardware

49

device, while the RoPCIe virtual device driver leaves this part to the actual
Dolphin NTB device driver. As a result, we can somewhat simplify the MR
implementation in the RoPCIe verbs provider, and later take advantage of
vectored messages in the Dolphin SCI Library.

Register memory region

The code for MR registration in the RoPCIe verbs provider is shown
in listing 4.5, and the resulting MR is depicted in figure 4.3. A user
initiates the procedure through the verbs interface, inputting a virtual start
address, the length of memory to register in bytes, and some access control
flags. IB Uverbs eventually call the dis_reg_user_mr function, and the
RoPCIe provider starts by allocating memory for a new MR superstructure.
A function ib_umem _get pins the pages containing the user-specified
address range, and returns a map of the pinned pages as a data structure
of type ib_umem. To ensure easy and fast work request processing, we
create a list of the physical base addresses to each pinned page in the
memory map. We use a list of struct iovec data structures to represent
the pages, mainly because this is the data structure used by the SCI Library
to represent buffers of physical memory. Finally, the MR is initialized and
added to a PD with a new l_key. The procedure ends with the RoPCIe verbs
provider returning an MR handle to IB Uverbs, and it is eventually passed
on to the user.

50

// Location: dis-kverbs/src/driver/dis_verbs.c
...
/* Allocate memory for MR structure */
mr = kzalloc(sizeof(struct dis_mr), GFP_KERNEL);

/* Pin the page(s) containing the user segment */
mr->ibumem = ib_umem_get(udata, start, length, access);

/* Retrieve the number of pages pinned in previous step */
mr->page_count = ib_umem_page_count(mr->ibumem);

/* Allocate memory for a list of physical page addresses */
mr->pages = kzalloc(sizeof(struct iovec) * mr->page_count, GFP_KERNEL);

/* Store the base physical address of each pinned page */
page = mr->pages;
for_each_sg_page (mr->ibumem->sg_head.sgl, &sg, mr->ibumem->nmap, 0) {

page->iov_base = (void*)page_address(sg_page_iter_page(&sg));
page->iov_len = PAGE_SIZE;
page++;

}

/* Store the MR base virtual address, length, and offset */
mr->mr_va = va;
mr->mr_length = length;
mr->mr_va_offset = ib_umem_offset(mr->ibumem);

/* Obtain an l_key and register this MR with PD */
mr->ibmr.lkey = pd->mr_c;
pd->mr_list[pd->mr_c] = mr;
pd->mr_c++;

return &mr->ibmr;
...

Listing 4.5: RoPCIe kernel verbs provider: MR registration procedure.
Variable declaration and error handling is omitted.

Memory region l_key and r_key

The purpose of a memory region l_key and an r_key is explained in section
2.2.3. In the RoPCIe verbs provider, only l_keys are currently implemented,
as an index into the PDs MR reference table. An r_key should also be
implemented and returned when the user requests an MR with one or more
IBV_ACCESS_REMOTE_* flags. The r_key should then be transmitted
upon QP connection establishment and used to verify access rights of
incoming RDMA Read/Write/Atomic requests. Because the RoPCIe
transport currently only supports the Send/Receive transport operation,
for which an r_key is not required, the current MR implementation is
sufficient. For the other transport operations, the r_key is a critical security
measure for preventing a program’s access to physical memory (including
the memory of other programs). It should be noted that it will not prevent
a remote QP brute-forcing r_keys to obtain access to an MR which r_key
has been registered, but not shared with that QP.

51

MR Start

Page 4 Page 5 Page 6 Page 7

Pinned Pinned

Pinned Pinned Pinned

Virtual User Segment Location

Page 0

Pinned

Page 1 Page 2 Page 3

Virtual Memory

User

Segment Page 0 Segment Page 1 Segment Page 2 Segment Page 3

MR Offset MR Length

Memory Region

Pinned Pinned

Physical User Segment Locations

Page n+1 Page n+2 Page n+3 Page n+4 Page n+5Page n Page n+6 Page n+7

Physical Memory

ibv_reg_mr()

Figure 4.3: Result of RoPCIe MR registration procedure.

Deregister memory region

The MR deregistration procedure is straightforward, as shown in listing
4.6. A function ib_umem_release releases all pages pinned by the MR, and
the MR memory is freed. This function is ideally called by the user as soon
as an MR is no longer in use. It should at least be called before the end of
the program. If an MR is not deregistered, the pinned pages will become
unusable for any other process until the machine is rebooted.
// Location: dis-kverbs/src/driver/dis_verbs.c

...
if (!mr->is_dma) {

kfree(mr->pages);
ib_umem_release(mr->ibumem);

}
kfree(mr);
...

Listing 4.6: RoPCIe kernel verbs provider: MR deregistration procedure.

4.3.4 Queue pairs

The QP implementation in RoPCIe behaves as described in section 2.2.3,
from the perspective of the user. Users can post work requests to the SQ or
the RQ, and the work requests will be processed asynchronously. When a
work request is completed, a work completion is posted to a CQ, regardless
of work success or failure. The goal for the RoPCIe QP implementation is

52

to comply with the IBTA specification and therefore behave the way users
expect while being as fast and efficient as possible. There are several boxes
left to tick before the RoPCIe QP implementation is fully compliant with the
IBTA specification. However, this implementation covers the core usage
pattern of posting work requests and receiving work completions.

Behind the scenes, the RoPCIe QP implementation is somewhat unique
compared to the QP implementations in other verbs providers, especially
in the way work requests are consumed asynchronously. Asynchronous
work request processing is not only a nice feature of RDMA but an explicit
requirement. If the work request processing were synchronous to the
user program, verbs operations like "modify queue pair" and "post receive
request" would block the user program until the operation was completed.
Not only would this eliminate many of the significant benefits of RDMA,
but it could deadlock many RDMA applications.

When researching RDMA applications, we found that almost all
applications doing actual RDMA transfers contain at least one "QP
handshake." A QP handshake is an information exchange between two
connected machines where they both post one or more receive requests,
then one or more send requests. This pattern is also present in any
applications using the RDMA Communication Manager for connection
establishment. If the QP implementation were to block on "post receive"
during a QP handshake, meaning the "post receive request" would not
return until the QP receives a transmission that fulfills that receive request,
the two machines would be waiting for each other indefinitely. For this
reason, we had to implement asynchronous work request processing in the
RoPCIe verbs provider.

Create queue pair

The provider procedure for creating a QP is shown in listing 4.7. Like
the MR, QPs are allocated by the provider and registered with a PD. This
function initializes the majority of QP attributes, allocates work request
queues, and initializes SQ and RQ attributes. When a QP is first created,
it exists in the RESET state. The user can post work requests to this QP
after creation, but the work requests can not be consumed before the QP
is transitioned to the appropriate state. If the QP is transitioned correctly
through its states, it will connect to a remote QP and begin to process work
requests as they are posted, starting with any backlog from before the QP
was transitioned. If no errors occur, a handle to the QP is returned to the
user, and QP creation is complete.

53

// Location: dis-kverbs/src/driver/dis_verbs.c
...
/* Allocate memory for QP structure */
qp = kzalloc(sizeof(struct dis_qp), GFP_KERNEL);

/* Set QP attributes */
qp->dev = to_dis_dev(ibpd->device);
qp->sq_sig_type = init_attr->sq_sig_type;
qp->type = init_attr->qp_type;
qp->state = IB_QPS_RESET;
qp->mtu = ib_mtu_enum_to_int(IB_MTU_4096);
qp->l_qpn = pd->qp_c;
qp->event_handler = init_attr->event_handler;

qp->ibqp.pd = ibpd;
qp->ibqp.send_cq = init_attr->send_cq;
qp->ibqp.recv_cq = init_attr->recv_cq;
qp->ibqp.srq = init_attr->srq;
qp->ibqp.qp_type = init_attr->qp_type;
qp->ibqp.qp_num = qp->l_qpn;

/* Set SQ attributes */
qp->sq.ibqp = &qp->ibqp;
qp->sq.cq = to_dis_cq(init_attr->send_cq);
qp->sq.sge_max = init_attr->cap.max_send_sge;
qp->sq.inline_max = init_attr->cap.max_inline_data;
qp->sq.wqe_max = roundup_pow_of_two(init_attr->cap.max_send_wr + 1);
qp->sq.wq_type = DIS_SQ;

/* Allocate memory for SQ */
qp->sq.wqe_circ.buf = kzalloc(sizeof(struct dis_wqe) * qp->sq.wqe_max,

GFP_KERNEL);

/* Set RQ attributes */
qp->rq.ibqp = &qp->ibqp;
qp->rq.cq = to_dis_cq(init_attr->recv_cq);
qp->rq.sge_max = init_attr->cap.max_recv_sge;
qp->rq.inline_max = init_attr->cap.max_inline_data;
qp->rq.wqe_max = roundup_pow_of_two(init_attr->cap.max_recv_wr + 1);
qp->rq.wq_type = DIS_RQ;

/* Allocate memory for RQ */
qp->rq.wqe_circ.buf = kzalloc(sizeof(struct dis_wqe) * qp->rq.wqe_max,

GFP_KERNEL);

/* Register QP with PD */
pd->qp_list[pd->qp_c] = qp;
pd->qp_c++;
return &qp->ibqp;
...

Listing 4.7: RoPCIe kernel verbs provider: QP creation procedure. Variable
declaration and error handling is omitted.

54

Work queues

There are many different implementations of WQs among the existing
verbs providers. Some verbs providers memory map the WQ in user-
space to kernel-space, or even to memory accessible by the HCA. In
the RoPCIe verbs provider, the WQ is implemented as a circular buffer
of work requests. Direct access from user space to the circular buffer
is not yet implemented. However, we think this could be an essential
future optimization, as it could lower the work request processing latency
substantially for small message sizes. Direct access from the HCA would
also be possible if a work consumer was run on the Dolphin hardware
processor, and this is another possible future optimization. Currently, the
work request takes the slow path from user-space through a character node,
which can impact latency negatively.

When implementing the actual WQ that would contain work requests,
we first examined the WQ implementations in existing verbs providers.
Almost all of the implementations were much more complex than what the
RoPCIe verbs provider needed, except the Software iWARP (SIW) verbs
provider. This verbs provider implements a simple circular buffer, which
can offer low latency IPC communication. The buffer can safely be used
by one producer and one consumer at the same time, without employing
mutual exclusion to serialize access to the buffer. Another critical aspect
of the circular buffer is that it can indefinitely occupy the same location in
memory at a fixed size because the buffer automatically reclaims memory
when items in the buffer are consumed. Figure 4.4 illustrates the WQ as
a circular buffer, with a user as a producer, and a work consumer as a
consumer.

Doing some more research on circular buffers, we found documenta-
tion [20] for a Linux header with useful features for implementing circular
buffers in Linux. The documentation outlines a circular buffer implementa-
tion with some substantial performance improvements over the SIW verbs
provider, as well as some additional coverage of edge cases that should
improve reliability. A particular improvement of the Linux circular buffer
implementation is utilizing a power-of-two sized buffer. The following is
explained in the circular buffer documentation:

Calculation of the occupancy or the remaining capacity of
an arbitrarily sized circular buffer would normally be a slow
operation, requiring the use of a modulus (divide) instruction.
However, if the buffer is of a power-of-2 size, then a much
quicker bitwise-AND instruction can be used instead.

The SIW verbs provider implementation does round up the queue size
to a power of two, but for no apparent reason, as they still use the modulus
instruction. To lower the computational overhead, we chose the Linux style
of circular buffers.

55

WQE
WQE

W
QE

WQE

FREE
W

Q
E

W
Q

E

WQE

User

Work
Consumer

FREE
FREEFREE

FREE

FR
EE

FR
EE

FR
EE

FR
EE

Work Queue

Figure 4.4: A circular buffer where WQEs are produced by a user and
consumed by a work consumer.

Post work requests

The code for posting work requests to the SQ and RQ is functionally
identical. However, it is split into separate functions because differing
identifiers made a shared implementation messy and slightly inefficient. It
can be assumed that the term "work request" applies to both send requests
and receive requests in this context. The same applies to the WQs, to which
the work requests are posted. Areas where the implementation concerning
send requests and receive requests differ will be mentioned explicitly.

Post work request list: The RoPCIe verbs provider procedure for posting
work requests is split into two functions. The first function, dis_post_send,
is shown in listing 4.8 and iterates through a list of work requests supplied
by the user. This function calls the second function, dis_qp_post_one_sqe,
for each work request and notifies the work consumer that new work is
available in the WQ. We have chosen to notify the work consumer for each
work request successfully added to the WQ, as opposed to notifying the
work consumer after all work requests have been posted. Notifying the
work consumer immediately should lower latency in scenarios where a
user supplies a large number of work requests in one call, by starting the
work consumer sooner. Posting a work request to the WQ should be orders
of magnitude faster than processing them, so this should not result in the
work consumer being awoken multiple times. Even if the work consumer
was awoken multiple times, it would quickly yield if no new work request
were available.

56

// Location: dis-kverbs/src/driver/dis_verbs.c
...

/* Post all send requests and notify SQ worker thread */
send_wr_iter = send_wr;
while (send_wr_iter) {

ret = dis_qp_post_one_sqe(&qp->sq, send_wr_iter);
dis_qp_notify(&qp->sq);
send_wr_iter = send_wr_iter->next;

}
...

Listing 4.8: RoPCIe kernel verbs provider: Post work request procedure.

Initialize work request: When the second function is called, one work
request is posted to the WQ. This function is complicated, so it will be
separated and explained in parts. The first part, shown in listing 4.9, shows
the initialization procedure of the function. The circular buffer API in Linux
is used to calculate the remaining capacity of the WQ, and the procedure
fails if the WQ is full. Because each WQ only has one producer, there is no
need to reserve a WQE with a mutex.
// Location: dis-kverbs/src/driver/dis_qp.c
...

/* Check that circular buffer is not full */
head = wq->wqe_circ.head;
tail = READ_ONCE(wq->wqe_circ.tail);
if(CIRC_SPACE(head, tail, wq->wqe_max) < 1) {

return -42;
}
wqe = (struct dis_wqe*)&wq->wqe_circ.buf[head * sizeof(struct dis_wqe)];

/* Set WQE attributes */
wqe->opcode = IB_WC_SEND;
wqe->sci_msq = &wq->sci_msq;
wqe->byte_len = 0;
wqe->ibqp = wq->ibqp;
wqe->wr_id = wr->wr_id;
wqe->sci_msg.iovlen = 0;

...

Listing 4.9: RoPCIe kernel verbs provider: Post one work request
procedure - initialization.

Calculate number of pages per segment: A work request can describe
a list of memory segments(named "sge" in the code) to be used in
send/receive operations. Each segment has a virtual start address, a length,
and an l_key to identify which MR has the physical memory mapping
for that segment. Before we can map each segment to physical memory,
we need to calculate the combined amount of pages spanned by all the
segments in this work request. The code for this step is shown in listing
4.10, and will be explained in detail. Calculating the number of pages
before mapping them is necessary because the SCI Library requires a
contiguous list of struct iovec data structures to represent each buffer in

57

a message. This list will be long for large segments, and attempting to
statically allocate a large amount of struct iovec data structures for each
WQE in the WQ, will cause the memory footprint of the WQ to grow
significantly. We have elected to allocate a small amount of struct iovec
data structures statically, and if the amount of pages exceeds this limit, we
instead dynamically allocate memory for the list. When the work request
is completed, the memory allocated for the list is freed.

The number of pages spanned by one segment is calculated and stored
in a helper data structure of type dis_sge_map. First, the virtual start
address of the segment is translated to a "segment base offset", which is
an offset into the segments MR. Recollect that the MR can contain gaps
between the pages it maps, so the segment base offset is not a usable
physical address. Next, we need to calculate how many pages into the MR
the segment base offset places us, which we call the "page base offset." This
offset is easily calculated by dividing the page base offset integer with the
size of a page because integer division in C truncates the result. We then
lower the segment base offset by the number of pages we are "skipping,"
causing the segment base offset to become an offset into the first page
populated by the segment. Finally, we can calculate the number of pages
spanned by this segment. This number is calculated with the same integer
division trick we used before; this time applied to the sum of the segment
base offset and the segment length. We have to add one to the result of
this division, because the result will be truncated to the number of page
boundaries crossed by the segment, but we want to include any partially
filled pages as well.

58

// Location: dis-kverbs/src/driver/dis_verbs.h
struct dis_sge_map {

struct iovec *mr_pages;
u64 base_offset;
u64 page_offset;
u64 page_count;
u64 sge_len;
u8 is_dma;

};

// Location: dis-kverbs/src/driver/dis_qp.c
...

/* Calculate the number of pages spanned by each segment */
for (i = 0; i < min(wr->num_sge, DIS_SGE_PER_WQE); i++) {

ibsge = &wr->sg_list[i];
sge = &sge_map[i];
mr = pd->mr_list[ibsge->lkey];

sge->sge_len = ibsge->length;
sge->base_offset = (ibsge->addr - mr->mr_va) + mr->mr_va_offset;
sge->page_offset = sge->base_offset / PAGE_SIZE;
sge->base_offset -= sge->page_offset * PAGE_SIZE;
sge->page_count =

((u64)(sge->sge_len + sge->base_offset) / PAGE_SIZE) + 1;

sge->mr_pages = mr->pages + sge->page_offset;
wqe->sci_msg.iovlen += sge->page_count;

}
...

Listing 4.10: RoPCIe kernel verbs provider:Post one work request
procedure - calculate number of pages per segment.

Choose store for page map: As described in a previous step, we can use
either statically or dynamically allocated memory for the page map. The
code for choosing a page map store is shown in listing 4.11. Using the
static page map is faster because we avoid one memory allocation, but we
have to set a limit on how many page addresses the static page map can
store. This limit has been set to be the same as the maximum number of
segments supported for a work request. The page count obtained in the
last step is accumulative across all segments, meaning that a work request
with one segment of multiple pages can still use the static map if it is within
limits. If not, the dynamic map will be chosen in this step, and memory will
be allocated for the page map. We cannot use both the static and dynamic
maps because the SCI Library requires the buffer to be contiguous.

59

// Location: dis-kverbs/src/driver/dis_qp.c
...

/* Choose store for the WQE page iovec map */
if(wqe->sci_msg.iovlen <= DIS_SGE_PER_WQE) {

wqe->sci_msg.iov = wqe->page_map_static;
} else {

wqe->page_map_dynamic = kmalloc(sizeof(struct iovec)*wqe->sci_msg.iovlen,
GFP_KERNEL);

wqe->sci_msg.iov = wqe->page_map_dynamic;
}

...

Listing 4.11: RoPCIe kernel verbs provider: Post one work request
procedure - choose store for page map.

Map segments to physical pages: In the final step, we map each segment
to physical pages, and this is shown in listing 4.12. Here we introduce
the term "chunk" to describe the number of bytes a segment occupies in
a specific page. A large segment will usually be mapped with a starting
chunk smaller than the page size, then a series of chunks at page size, then
a final chunk smaller than the page size. All pages occupied by a segment
are guaranteed to be filled, except for the first and the last page. In order to
point to the start of the segment, an offset is applied to the first page. After
the WQE page map store has been filled with all segments in page chunks,
the procedure is finished, and the WQ circular buffer can be advanced. This
concludes the post work request procedure.
// Location: dis-kverbs/src/driver/dis_qp.c
...

/* Map each segment into physical pages from the MR */
sge_page = wqe->sci_msg.iov;
for (i = 0; i < min(wr->num_sge, DIS_SGE_PER_WQE); i++) {

sge = &sge_map[i];
mr_page = sge->mr_pages;

while (sge->sge_len > 0) {
sge_chunk = min(sge->sge_len, PAGE_SIZE - sge->base_offset);
sge_page->iov_base = mr_page->iov_base + sge->base_offset;
sge_page->iov_len = (size_t)sge_chunk;
wqe->byte_len += sge_chunk;
sge->sge_len -= sge_chunk;
sge->base_offset = 0;
sge_page++;
mr_page++;

}
}

/* Advance the head of the circular buffer */
smp_store_release(&wq->wqe_circ.head, (head + 1) & (wq->wqe_max - 1));

...

Listing 4.12: RoPCIe kernel verbs provider: Post one work request
procedure. Variable declaration and error handling has been omitted

60

State transitions

The QP state transitions described in section 2.2.3 are mostly handled by IB
Core, which has a state transition table to ensure all mandatory attributes
are supplied for each transition. After the transition is validated in IB Core,
the dis_modify_qp RoPCIe verbs provider function is called. This function
currently does nothing for the transition to RESET and INIT states. For the
transition to RTR state, the RoPCIe verbs provider starts a work consumer
for the RQ with a function dis_qp_init shown in listing 4.13. This QP
modification is also where the user will provide the destination QP number,
which will be used later to connect to the remote machine. The RoPCIe
verbs provider also starts a work consumer for the SQ during the RTR state
transition, to avoid having a constantly polling message queue in programs
where the responder is only transitioned to the RTR state.
// Location: dis-kverbs/src/driver/dis_qp.c
...

/* Initialize wait queue */
init_waitqueue_head(&wq->wait_queue);
wq->wq_state = DIS_WQ_INITIALIZED;
wq->wq_flag = DIS_WQ_EMPTY;

/* Create work consumer */
wq->thread = kthread_create(dis_wq_thread, (void*)wq, "DIS WQ Thread");
if (!wq->thread) {

wq->wq_state = DIS_WQ_UNINITIALIZED;
return -42;

}

/* Start work consumer */
wake_up_process(wq->thread);

...

Listing 4.13: RoPCIe kernel verbs provider: Work consumer init procedure.

Destroy queue pair

The QP teardown procedure in the RoPCIe verbs provider must stop the
work consumers we started in . As shown in section 4.14, the teardown is
performed by commanding the work consumers to stop. The main thread
will then actively wait for the thread to set its state to DIS_WQ_EXITED.
Waiting for thread exit is necessary because the work consumer accesses
memory in the dis_qp data structure, and will only start its exit procedure
the next time it calls a function kthread_should_stop(). If the QP memory
was freed without waiting for the thread to stop, the thread could be
accessing memory that is no longer valid.

61

// Location: dis-kverbs/src/driver/dis_qp.c
...

/* Command the worker thread to stop and wait for it to exit */
kthread_stop(wq->thread);
wake_up(&wq->wait_queue);
while (wq->wq_state != DIS_WQ_EXITED) {

msleep(1);
}

...

Listing 4.14: RoPCIe kernel verbs provider: Work consumer exit procedure.

4.3.5 Completion queues

The CQ implementation in the RoPCIe verbs provider behaves as described
in section 2.2.3, from the perspective of the user. When work requests are
consumed, a work completion is added to the CQ associated with that
WQ. The performance of the CQ implementation is important because
users may wait for one or more completions before continuing to do work.
Getting the work completions to the user as fast and efficiently as possible
is crucial. Currently, the verb "poll completion queue" is implemented
in the RoPCIe verbs provider as a means for users to retrieve new work
completions.

Create completion queue

The RoPCIe verbs provider procedure for creating a CQ is shown in listing
4.15. First, a spinlock is initialized, which will be used to ensure serialized
access to the CQ between multiple work completion producers(work
consumers). The CQ uses the same circular buffer implementation as
the WQs in the QP, buffering CQEs instead of WQEs. While the WQ
implementation is designed for only one producer and one consumer, the
CQ must be capable of handling multiple producers, as shown in figure
4.5. The work completion capacity is rounded up to a power of two,
and memory is allocated for this buffer capacity. After this operation is
completed successfully, the CQ is ready to be used.
// Location: dis-kverbs/src/driver/dis_verbs.c
...

/* Initialize CQ attributes */
spin_lock_init(&cq->cqe_lock);
cq->cqe_max = roundup_pow_of_two(init_attr->cqe + 1);
ibcq->cqe = cq->cqe_max;

/* Allocate memory for CQE buffer */
cq->cqe_circ.buf = kzalloc(sizeof(struct dis_cqe) * cq->cqe_max,

GFP_KERNEL);
...

Listing 4.15: RoPCIe kernel verbs provider: Completion queue creation
procedure.

62

CQE
CQE

CQE

CQE

LOCK
CQ

E
CQ

E

CQE

Work
Consumer

User

FREE
FREEFREE

FREE

FR
EE

FR
EE

FR
EE

FR
EE

Completion Queue

Work
Consumer

Figure 4.5: A circular buffer where CQEs are produced by a work consumer
and consumed by a user.

Poll work completions

The "poll completion queue " verbs operation is the most commonly used
method for users to retrieve work completions from the CQ. Users must
supply the number of work completions they want to consume from the
CQ, and the function will result in the consumption of zero or more work
completions. It is normal for a CQ not to have enough work completion
in the buffer to satisfy the user, so the user may repeatedly poll the CQ
until some number of work completions have been consumed. The CQ
polling operation should not block until enough work completions have
been produced, and ideally, be as fast as possible. It is normal for users to
poll the CQ many times within a short period.

The RoPCIe verbs provider procedure for polling a CQ is shown in
listing 4.16. Here, CQEs will be consumed from the circular CQ buffer
until the buffer is empty, or the user is satisfied. For each work completion,
attributes are copied over from our custom CQE data structure to a user-
allocated buffer for work completions. We do not use the ib_wc data
structure defined by IB Core because it contains several fields we do not
currently need in the RoPCIe verbs provider. To save memory, we chose
to define a separate structure for the circular CQE buffer. However, using
the ib_wc data structure could be a better overall solution, as the entire
structure could be copied over to the user buffer with a very fast memcpy().
The sanity of this decision depends on how a memcpy compares to the
current field-by-field copying, and how important it is to save memory.

63

// Location: dis-kverbs/src/driver/dis_verbs.c
...

/* Consume num_wc CQEs from the CQ */
ibwc_iter = ibwc;
for (i = 0; i < num_wc; i++) {

/* Check if circular buffer is empty */
head = smp_load_acquire(&cq->cqe_circ.head);
tail = cq->cqe_circ.tail;
if(CIRC_CNT(head, tail, cq->cqe_max) < 1) {

break;
}
cqe = (struct dis_cqe*)&cq->cqe_circ.buf[tail * sizeof(struct dis_cqe)];

/* Set work completion attributes */
ibwc_iter->wr_id = cqe->wr_id;
ibwc_iter->status = cqe->status;
ibwc_iter->opcode = cqe->opcode;
ibwc_iter->byte_len = cqe->byte_len;
ibwc_iter->qp = cqe->ibqp;

smp_store_release(&cq->cqe_circ.tail, (tail + 1) & (cq->cqe_max - 1));
ibwc_iter++;
wc_count++;

}
...

Listing 4.16: RoPCIe kernel verbs provider: Poll completion queue
procedure.

4.3.6 Work consumers

A work consumer is an active process that consumes work requests from a
WQ, fulfills the work request, produces a work completion. In the existing
hardware verbs providers, this process is run entirely by a processor on the
HCA hardware. In contrast, the existing software verbs providers run this
process entirely on the CPU. The RoPCIe verbs provider share the work
between the CPU and a processor on the dolphin NTB. Sharing this work
makes RoPCIe unique among the verbs providers and places it somewhere
in the middle of a hardware verbs provider and a software verbs provider.
It would be reasonable to say that RoPCIe is closer to a hardware verbs
provider, as the Dolphin hardware does the majority of work.

The first part of the RoPCIe work consumer, which is run by a CPU
on the host machine, has the goal of completing its task as quickly and
efficiently as possible. The task is as follows: Consume a work request
from a WQ, pass this on to the Dolphin NTB, wait for the work request to
be completed, and post a work completion to a CQ. The usage of a CPU
based work consumer may introduce an additional latency overhead to the
work request processing path. Ideally, the work consumer would be run
by the Dolphin device driver to make the RoPCIe a full hardware verbs
provider, but this is out of scope for this thesis.

The second part of the RoPCIe work consumer is run by either the CPU
on the host machine or a processor on the Dolphin NTB. What processor is

64

used depends on whether the messages passed to the Dolphin SCI Library
has been configured to be completed with DMA or Programmed Input-
Output (PIO). These modes are discussed in more detail in section 4.3.7.

Worker implementation

When implementing the work consumer in the RoPCIe verbs provider,
we had to select a worker implementation. The Linux kernel has
multiple different facilities for doing work asynchronously, and it was
not immediately obvious which to use for this task. After some initial
research, we considered using either tasklets, workqueues, kthreads, or
some combination of the three. In the end, we decided to use kthreads
exclusively. We think this is the best worker option for our use case, but
we have not implemented all three options to test which one is better. This
choice may warrant more study, as the worker implementation can have a
significant impact on latency and performance of the transport.

Tasklets

The first worker option we considered was tasklets. Tasklets are the
"smallest" worker option, as they are not threads, but dynamically
registrable software interrupts. A tasklet cannot sleep and is intended to
perform a task quickly and completely. In other words, tasklets are not
meant to stay alive for a long time. While tasklets may not sound like
a viable worker solution for a verbs transport, it is the implementation
used by the RXE software verbs provider to operate Soft-RoCE transport.
However, the Soft-RoCE transport is not implemented with efficiently as a
primary goal, so the fact that RXE is using tasklets did not weigh heavily
in our choice of worker implementation. Also, the RoPCIe transport could
require the worker to be polling for a connection to a remote computer
for a relatively long time, which does not sound like an ideal use case for
tasklets. In the end, we decided against tasklet workers, as we suspected
this implementation could have some hidden complications, especially in
interactions with the Dolphin SCI Library.

Workqueues

The second worker option we considered was based on workqueues. The
kernel has a workqueue API that offers a construct for "posting" work
to a queue, which will eventually be performed by a worker thread
(kthread). At first, it seemed like workqueues solved more than our
work consumer problem, and that workqueues could even replace the SQ
and RQ implementations in the RoPCIe verbs provider. In the current
implementation of RoPCIe, workqueues could probably serve the same
functional purpose as WQs with circular buffers and kthreads. However,
what RoPCIe would gain in simplicity, it would lose in flexibility and
performance. The circular buffer does not only serve as a queue but also
as a buffer of already allocated memory. Workqueues do not offer a buffer

65

of memory for intermediary storage for work requests, which leaves us
with two options. The first option is to allocate memory for each work
request to be posted, but this would be unacceptably slow. The second
option is to implement a circular memory buffer for work requests, but
this somewhat defeats the purpose of the workqueues. We concluded that
workqueues were not well suited for our task, and decided to implement a
work consumer with kthreads.

KThreads

The third and final worker option we considered was kthreads. This option
may require a bit more work than the two other options, but in return,
offers much greater flexibility and control. Implementing a work consumer
with kthreads meant that one WQ could have one dedicated kthread, that
is started at the moment the QP state is transitioned into the RTR state, and
lives until the QP is destroyed. However, with great control comes great
responsibility, and our experience working with kthreads has included
multiple difficult to debug race conditions, infinite loops and kernel panics.
Despite this, we think kthreads was the right approach for the RoPCIe work
consumers.

Wait queues

Having the RoPCIe work consumers poll the WQs actively to see if any
new work requests have been posted would be either wasteful or slow,
depending on the polling frequency. Instead, we wanted to use wait/notify
semantics, to have the kthread in a dormant state when no work is
available, and wake up the thread as fast as possible when new work is
posted. After some research, we decided that wait queues are the best
solution to achieve this goal. Similarly to workqueues, wait queues are
a part of the Linux kernel API. It offers a wait queue construct and many
different functions for waiting for an event on that wait queue.

We use the term "wait type" to describe the semantics of a wait function
in the wait queue API. When a kthread waits on a wait queue, it yields and
is taken out of the scheduling queue. Depending on the wait type, different
events can cause the kthread to be rescheduled. Some wait types will
reschedule the thread on spurious signals or timeouts, and some will only
wake up when directly awoken. We have chosen the "killable" wait type,
which will only reschedule the kthread when the wait queue is directly
woken up, or when the kthread receives a fatal signal. This wait type saves
us from having to handle spurious signals, while still correctly shutting
down in the event of a fatal signal.

The main work consumer loop is shown in listing 4.17, and this is
where the kthread work consumer waits on the wait queue with a function
wait_event_killable. If this function returns anything other than 0, it
means that the kthread received a fatal signal, and should terminate
immediately. The kthread is also awoken if it receives a direct wake-
up, and the condition in the wait event evaluates to true. In the RoPCIe

66

work consumer implementation, the wait queue is awoken directly with a
function wake_up, when a new work request is posted (shown in listing
4.8), and when the QP is destroyed(shown in listing 4.14). If the WQ flag is
set to DIS_WQ_POST, one or more work requests have been posted, and
if the function kthread_should_stop() returns true, the work consumer has
been told to stop.
// Location: dis-kverbs/src/driver/dis_qp.c
...

/* Initialize connection to remote QP */
wq->wq_state = DIS_WQ_RUNNING;
ret = dis_wq_init(wq);

while (!kthread_should_stop()) {
/* Process all new work requests */
wq->wq_flag = DIS_WQ_EMPTY;
ret = dis_wq_consume_all(wq);
if (ret) {

break;
}

/* Wait for new work requests to be posted */
ret = wait_event_killable(wq->wait_queue, wq->wq_flag != DIS_WQ_EMPTY ||

kthread_should_stop());
if (ret) {

break;
}

}

/* Tear down connection to remote QP */
dis_wq_exit(wq);
wq->wq_state = DIS_WQ_EXITED;

...

Listing 4.17: RoPCIe kernel verbs provider: Main work consumer
wait/event loop.

Consume work request

Each time the work consumer is awoken due to a work request being
posted, it will start consuming all work requests in the WQ. This procedure
is shown in listing 4.18, where WQEs are consumed repeatedly from the
circular buffer until it is empty, or the kthread is told to stop. As a general
guideline, a kthread should periodically call the kthread_should_stop()
function to check if it should terminate. If this is not called often, the
kthread could take a long time to exit, which is not good, as it will reduce
the overall responsiveness of the system. After a work request is processed,
a work completion is posted to the CQ associated with the WQ. If the WQ
is empty, the function will return to the main thread loop, and the work
consumer will wait for the next wake up.

67

// Location: dis-kverbs/src/driver/dis_qp.c
...

while (!kthread_should_stop()) {
/* Check if circular buffer is empty */
head = smp_load_acquire(&wq->wqe_circ.head);
tail = wq->wqe_circ.tail;
if(CIRC_CNT(head, tail, wq->wqe_max) < 1) {

return 0;
}
wqe = (struct dis_wqe*)&wq->wqe_circ.buf[tail * sizeof(struct dis_wqe)];

switch (wq->wq_type) {
case DIS_RQ:

wc_status = dis_wq_consume_one_rqe(wqe);
break;

case DIS_SQ:
wc_status = dis_wq_consume_one_sqe(wqe);
break;

default:
return -42;

}

dis_wq_post_cqe(wq, wqe, wc_status);

/* Advance the tail of the circular buffer */
smp_store_release(&wq->wqe_circ.tail, (tail + 1) & (wq->wqe_max - 1));

}
...

Listing 4.18: RoPCIe kernel verbs provider: Work consumer - consume all
work reqeusts procedure.

The procedure for consuming one work request is simple. It will
repeatedly call the appropriate function in the Dolphin SCI Library until
the work has been completed, or the work consumer is told to stop. It
will return a work completion status, which will be included in the work
completion posted to the CQ. The procedure for posting a send request
to the SQ is shown in listing 4.19. This procedure is very similar to the
procedure for posting a receive request to the RQ, with the only significant
difference being that the receive function in the Dolphin SCI Library may
have to be called multiple times in order to receive a large message.
Because of this behavior, we create some additional variables to ensure we
receive the whole message.

68

// Location: dis-kverbs/src/driver/dis_qp.c
...

while (!kthread_should_stop()) {
ret = dis_sci_if_send_v_msg(wqe);
if (!ret) {

return IB_WC_SUCCESS;
}

}
return IB_WC_RESP_TIMEOUT_ERR;

...

Listing 4.19: RoPCIe kernel verbs provider: Work consumer - consume one
send reqeust procedure.

Post work completion

A work completion is posted to a CQ by a work consumer for every work
request consumed. The procedure for posting a CQE to a CQ is shown in
listing 4.21. This procedure is similar to posting a work request to a WQ
because they share a more or less identical circular buffer implementation.
One difference in the work completion procedure is the use of spinlocks
for mutual exclusion. This is necessary because multiple WQs can be
associated with the same CQ, and therefore multiple work consumers
may try to post a work completion to the CQ at the same time. Without
mutual exclusion for serialized access, multiple CQEs may be written to
the same memory location. This would result in corrupted and lost work
completions. We considered implementing a lock for every CQE, which
would allow many work consumers to post to the CQ at the same time.
However, we see this as an edge case that could be optimized if a use case
arises that shows locking on work completion posting to be a bottleneck.

69

// Location: dis-kverbs/src/driver/dis_qp.c
...

spin_lock_irqsave(&cq->cqe_lock, flags);

/* Check that circular buffer is not full */
head = cq->cqe_circ.head;
tail = READ_ONCE(cq->cqe_circ.tail);
if(CIRC_SPACE(head, tail, cq->cqe_max) < 1) {

spin_unlock_irqrestore(&cq->cqe_lock, flags);
return -42;

}
cqe = (struct dis_cqe*)&cq->cqe_circ.buf[head * sizeof(struct dis_cqe)];

cqe->wr_id = wqe->wr_id;
cqe->opcode = wqe->opcode;
cqe->byte_len = wqe->byte_len;
cqe->ibqp = wqe->ibqp;
cqe->status = wq_status;

/* Advance the head of the circular buffer */
smp_store_release(&cq->cqe_circ.head, (head + 1) & (cq->cqe_max - 1));
spin_unlock_irqrestore(&cq->cqe_lock, flags);

...

Listing 4.20: RoPCIe kernel verbs provider: Work consumer - post work
completion procedure.

Combined consecutive pages

We attempted to increase the performance of the RoPCIe transport by
detecting consecutive pages in the MR and combining them into one buffer.
We assumed that a given work request would be mapped to a smaller
amount of longer buffers and that longer buffers would enable the SCI
Library to utilize optimizations like cache lines more effectively.

Having rewritten both the MR and work request implementations to
use combined consecutive pages, we got some unexpected results. The first
thing we noticed was that the pages in the MR were heavily fragmented,
with a few larger chunks of consecutive memory. This issue persisted when
running a test program immediately a reboot of the machine, leading us to
believe that the system boot procedure is causing memory fragmentation.

The second thing we noticed was that the performance of the RoPCIe
transport was significantly reduced. Latency in for both small and large
message sizes was increased, meaning that the overhead scaled with
message size. The reason for this behavior probably lies in the Dolphin
SCI Library implementation, but we have not invested more time in
researching this. We reverted our implementation to use single pages, and
the performance of the RoPCIe was restored.

4.3.7 SCI Library interface

In order to complete work requests, work consumer needs to call functions
in the Dolphin SCI Library API. To do so, we have implemented an SCI

70

Library interface kernel module shortened to the "SCI IF module," separate
from the driver module. The SCI IF module wraps all the functions from
the SCI Library API needed by the work consumer and makes the wrapper
functions available to the work consumer through exported symbols.
While this gives the code structure some separation of function, it also
introduces an extra function call into the call chain of processing a work
request, which can lead to a small amount of overhead. We are willing
to accept this overhead because the kernel module currently relieves a lot
of context management and argument passing. Given more development
time, this module should probably be integrated into the driver code.

A minor reason for creating a separate SCI IF module is the utility
brought by the module init and exit procedures. Before the Dolphin SCI
Library API can be used to create or connect to any message queues, a
function SCILInit() must be called once to initialize the SCI context. The
SCI IF module calls this function when loaded into the kernel, ensuring
the interface is ready to use once the module is loaded. A function
SCILDestroy() must be called to tear down the SCI context, which is done
when the SCI IF module is removed from the kernel. While this would be
possible to do at some point in the driver module, it is much cleaner to do
so in the SCI IF module, and it allows us to remove and reload the driver
module without tearing down the SCI context.

The primary reason for creating a separate SCI IF module is the utility
brought by the module parameters. The SCI IF module can take a series of
arguments, which are used when establishing a message queue connection
with a remote machine. These parameters have been beneficial to the
development and testing of the RoPCIe verbs provider. However, we
recognize that the functionality the module parameters provide should
come from either the driver or the SCI Library. The first two parameters,
"local adapter number" and "remote node ID," are used to determine which
adapter attached to the local machine should target which remote machine.
These two parameters should be replaced by information obtained from
the Dolphin software stack, but this information is not currently available
from the SCI Library. There are other facilities in the Dolphin software
stack that can provide such information. The second two parameters, "is
initiator" and "use local QP number," are used to resolve message queue
IDs. These two parameters should be replaced by information obtained
from QP attributes, and are mainly used for running programs without
external QP coordination.

Message queues

The Dolphin SCI Library is centered around message queues, much in the
same way as RDMA is centered around QPs. An SCI message queue is a
unidirectional channel used for passing messages from a host machine to
a remote machine. From this point on, we will call the host machine the
requester, and the remote machine the responder. We intend to translate
the role of the host and remote machines in this explanation to the role
of the host, and remote machines in send/receive transfer operation. The

71

requester can send messages, and the responder can receive messages. If
the user wants bidirectional communication between two machines, each
machine must serve as both requester and responder. In this case, we need
to establish two message queues, one for the SQ and one for the RQ.

Both machines must actively seek communication to establish a mes-
sage queue between a requester and a responder. Figure 4.6 shows an illus-
tration of the main steps involved in establishing a message queue between
a requester and a responder. The work consumer will create a message
queue if it is associated with an RQ, or connect to a message queue if it
is associated with an SQ. The requester and responder each need to know
the node ID of the other machine, as well as the message queue ID of the
remote message queue. Even though the responder creates the message
queue, it needs to know the ID of the message queue being connected. For
this reason, the RoPCIe verbs provider has to generate message queue IDs
for each message queue and coordinate the message queue IDs between
the two machines before the message queues can be created/connected.

We have decided to generate message queue IDs from local and remote
QP numbers. A local QP number is unique to one QP in a PD, and users
are required to supply a valid remote QP number when transitioning a QP
to the RTS state. The RoPCIe verbs provider will establish two message
queues per QP, so we need to generate two different message queue IDs
from one QP number. We have solved this by doubling the QP number,
which gives us twice the "address space" by incrementing the ID of one
of the message queues. However, we can not always increment the ID of
message queues associated with either SQs or RQs, as SQs need to target
RQs, and RQs need to target SQs. The heterogeneous message queue
connection requires that the two machines can have a heterogenous state.
This is where the "is initiator" module parameter comes into play. Listing
4.21 shows how we create crossed message queue IDs for SQs and RQs
based on whether the argument is true or false.
// Location: dis-kverbs/src/driver/dis_qp.c
...
/* SQ: Double QPN and increment if this node is not the initiator */
l_msq_id = is_initiator ? l_msq_id * 2 : (l_msq_id * 2) + 1;
r_msq_id = is_initiator ? r_msq_id * 2 : (r_msq_id * 2) + 1;
...
/* RQ: Double QPN and increment if this node is the initiator */
l_msq_id = is_initiator ? (l_msq_id * 2) + 1 : l_msq_id * 2;
r_msq_id = is_initiator ? (r_msq_id * 2) + 1 : r_msq_id * 2;
...

Listing 4.21: RoPCIe kernel verbs provider: Message queue ID calculation.

Vectored messages

The Dolphin SCI Library provides multiple different ways of sending
messages. The RoPCIe provider is required to gather data from multiple
buffers on the requester side, and scatter data into multiple buffers on the
responder side, so we have chosen to use vectored messages. As shown

72

Work Consumer

Kernel
space

Hardware

kthread_create()

Kernel verbs provider

dis_sci_if_connect_msq()

SCILConnectMsgQueue()

SCI Library

dis_modify_qp(RTS)

dis_init_qp(sq)

Kernel
space

Hardware

kthread_create()

Kernel verbs provider

dis_sci_if_create_msq()

SCILCreateMsgQueue()

SCI Library

dis_modify_qp(RTR)

dis_init_qp(rq)

Dolphin NTBDolphin NTB

Requester Responder

Work Consumer

Figure 4.6: A requester connecting to a SCI message queue created by a
responder.

in listing 4.8, a work consumer will build an IO Vector from the segments
specified in the work request. This IO Vector will be passed directly to
the Dolphin SCI Library, which will handle the send/receive. Figure 4.7
shows an illustration of the main steps involved in sending a message from
a requester to a responder. Multiple flags can be passed along with the IO
Vector, which can affect performance drastically. The optimal way to send
this data through the message queues is a subject for future optimization.
However, the Dolphin SCI Library API is sparsely documented, so further
work on message sending/receiving should be done in closer collaboration
with Dolphin ICS.

A message can be configured to use either DMA or PIO. The DMA
mode will utilize the processor on the Dolphin NTB to transfer the message
directly from the memory buffers specified in the message. This is similar
to the standard mode of operation in InfiniBand transport and should have
low CPU overhead and high throughput for large messages. The PIO mode
will utilize the CPU on the host machine to power the message transfer,
and DMA from the Dolphin NTB will not be used. This mode is similar to
the inline mode of operation in InfiniBand transport and should have low
latency for small messages.

4.4 RoPCIe user verbs provider

To use the RoPCIe transport from user-space, we have implemented a
user verbs provider for the Libibverbs library, as described in section
2.4.1. Because this library is a part of rdma-core, we have chosen to
integrate the user verbs provider with Libibverbs by using the rdma-core

73

Work Consumer

Kernel
space

Hardware

dis_qp_notify(sq)

Kernel verbs provider

dis_wq_consume_all()

dis_wq_consume_one_sqe()

SCI Library

dis_post_send()

dis_post_one_sqe()

Hardware

Dolphin NTBDolphin NTB

Requester Responder

SCILSendVMsg()

Work Consumer

Kernel
space

dis_qp_notify(rq)

Kernel verbs provider

dis_wq_consume_all()

dis_wq_consume_one_rqe()

SCI Library

dis_post_recv()

dis_post_one_rqe()

Receiver

SCILReceiveVMsg()

Figure 4.7: A requester sending a message to a responder.

build system. Building rdma-core can be done by forking the rdma-core
GitHub repository, installing the required dependencies, and following
the build instructions. When our fork of rdma-core is built, one of the
binaries produced in the build is our version of Libibverbs that can utilize
the RoPCIe kernel-space provider. By exporting this newly built library
to the system library load path, it will be supplied to any application
requesting the Libibverbs library at runtime. If one or more versions of
the Libibverbs library is already installed on a system, the library with the
highest version number will be chosen first, which is most likely our newly
built library. Apart from being able to use any RoPCIe transport devices
to do RDMA, the Libibverbs library we build behaves precisely like the
upstream version.

While the build system in rdma-core is surprisingly fast and easy to deal
with, we wanted to explore building the RoPCIe user-space provider by
itself. The providers in rdma-core are built as shared object files, meaning
that they are dynamically linked to Libibverbs. This linkage entails that
it is technically possible to build a provider by itself, and integrating it
with an already installed version of Libibverbs. We did not succeed in
this endeavor because the development packages for rdma-core that were
available for the version of CentOS we used did not provide most of
the headers needed to compile a user-space provider by itself. After a
failed attempt to manually find and provide all the correct headers, we
determined that this task was a poor use of development time, mainly
because it would not grant RoPCIe any tangible benefits.

74

4.4.1 Register provider

The process of registering a RoPCIe user verbs provider with Libibverbs is
similar but less complicated than registering a RoPCIe kernel space driver
with IB Core. A provider context data structure is dynamically linked to
Libibverbs with a macro PROVIDER_DRIVER, as shown in listing 4.23.
A data structure context of type verbs_device_ops contains information
about the provider, and Libibverbs can get a list of provider supported
verbs operations by calling the alloc_context function pointer.
// Location: dis-uverbs/providers/dis/dis.c
static const struct verbs_device_ops dis_device_ops = {

.name = DIS_ROPCIE_NAME,

.match_min_abi_version = DIS_ABI_VERSION,

.match_max_abi_version = DIS_ABI_VERSION,

.match_device = dis_match_device,

.alloc_device = dis_alloc_device,

.uninit_device = dis_uninit_device,

.alloc_context = dis_alloc_context,
};
PROVIDER_DRIVER(dis, dis_device_ops);

Listing 4.22: RoPCIe user verbs provider: Provider structure registration.

To match the user verbs provider with a kernel verbs provider,
Libibverbs will first look at the match_table in the provider context. The
user verbs provider can place multiple entries in the matching table, and
Libibverbs will pass the matching table to IB Core for hardware device
matching. This way, a user verbs provider can target multiple hardware
devices from the same vendor. The RoPCIe kernel verbs provider differs
in that it is a virtual device, and cannot be matched against this matching
table. Instead, the RoPCIe user verbs provider supplies a simple matching
function. This matching function is shown in listing 4.23, and is very
similar to the bus matching function in listing 4.1.
// Location: dis-uverbs/providers/dis/dis.c
bool dis_match_device(struct verbs_sysfs_dev *sysfs_dev)
{

return !strncmp(sysfs_dev->ibdev_name, DIS_ROPCIE_NAME,
strlen(DIS_ROPCIE_NAME));

}

Listing 4.23: RoPCIe user verbs provider: Device match function.

4.4.2 Verbs operations

Each verbs operation in the RoPCIe user verbs provider currently follows
the same design pattern. Variables are declared, one or more commands are
sent to the kernel verbs provider, and the result is checked and returned.
All the verbs operations currently go through the slow path to the kernel,
and a fast path to the Dolphin NTB is not yet implemented. While fast path
posting of work requests and polling of completion queues would likely
lower latency significantly for small messages, it is out of scope for this
thesis.

75

76

Chapter 5

Evaluation and Discussion

5.1 Test environment

All of our tests were performed on the same two machines, with identical
hardware and software configurations. The configuration of each test
machine is listed in table 5.1. The software installed on each test machine
is listed in table 5.2.

Component Name
CPU AMD Ryzen 7 3700X @ 3600MHz
Motherboard ASUS TUF GAMING X570-PLUS
Integrated NIC Realtek L8200A Gigabit Ethernet
RAM 16 GB @ 2133MHz
PCIe NTB Dolphin PXH830
InfiniBand HCA MT27800 Family ConnectX-5

Table 5.1: Test bench hardware configuration.

Component Version
Linux distribution CentOS 8
Linux kernel 5.5.8
Rdma-core 22.3
Perftest 4.2.2
Trace-cmd 2.7
Dolphin ExpressWare 5.5.8

Table 5.2: Test bench software configuration.

5.2 Test tools

5.2.1 dis-xtest

To aid in development, and to test the functional aspects of the RoPCIe
transport, we have developed dis-ktest and dis-utest. As described in

77

section 4.1, these two programs exist in kernel-space and user-space
respectively and provide more or less the same test of an RDMA transport.
The test will exchange some predefined amount of data between two
machines, and each side will check the integrity of the received data, byte
for byte. We use this test to investigate the functional correctness of the
RoPCIe transport in user-space and kernel-space, but it does not tell us
anything about the performance of the transport.

5.2.2 Perftest

To do end to end benchmarks of the RoPCIe transport service, we have
chosen a performance testing package called Perftest. This package is
included in the Mellanox Open Fabrics Enterprise Distribution (OFED) and
serves as the official performance testing facility for RDMA transports. It
includes multiple test programs designed to measure either the latency or
the bandwidth of an RDMA transport. Each test program can be configured
to use any valid combination of RDMA transport operations and service
types. The performance tests are built on top of Libibverbs, and can only
test user-space RDMA. Perftest can be installed as an RPM package, or it
can be built from source.

5.2.3 FTrace

To do micro-benchmarks of the RoPCIe transport, we have chosen a tracing
utility called FTrace. This utility is built into the Linux kernel and can
be used to debug and time processes in the kernel. Configured correctly,
this utility can record a function trace with both timestamps and functions
completion times, filtered on functions of our choice. The function trace
recording induces virtually zero overhead, as tracing is built into every
function in the kernel [21]. The overhead was the deciding factor when
choosing among benchmark utilities and methods, as most of the functions
we want to benchmark have completion times in the range of tens of
microseconds to hundreds of nanoseconds.

The FTrace API can be reached through special files in the file system.
While this approach lends itself well to custom scripting, it is also time-
consuming to learn and use. We have instead opted to use a command line
tool called trace-cmd, which acts as a front end to the FTrace file system
API. Trace-cmd can be called with several options to start a recording in
FTrace or print the result of a trace.

5.3 Benchmarks

5.3.1 Latency

We have used Perftest to measure and compare the latency of RoPCIe
transport with PIO data transfer, RoPCIe transport with DMA data transfer,
and InfiniBand transport with InfiniBand data transfer. Perftest measures
latency with the "ping pong" method, where messages of the same size are

78

ibv_post_send()

ibv_post_recv()

ibv_post_recv()

ibv_post_send()

loop

 ibv_poll_cq()

end loop

 loop

 ibv_poll_cq()

 end loop

Ping

Pong ibv_post_recv()

loop

 ibv_poll_cq()

end loop

ibv_post_send()

ibv_post_recv()

loop

 ibv_poll_cq()

end loop

Ping

ibv_post_send()

Pong

ResponderRequerster

R
ou

nd
tr

ip
 la

te
nc

y
R

ou
nd

tr
ip

 la
te

nc
y

Figure 5.1: Two iterations of the ib_send_lat program measuring roundtrip
latency between a requester and a responder.

sent back and forth between two nodes. The roundtrip latency is measured
from the start of the ping message transmission procedure to the end of
the pong message reception procedure. Perftest reports these results as one
way latency by halving the roundtrip time. The main Libibverbs API calls
made during two iterations of the latency test program are shown in figure
5.3. The user can specify the number of iterations, and we have chosen
to use the default of 1000 iterations for our tests, as recommended by the
Perftest documentation. Increasing the number of iterations to 10 000 did
not change the result significantly.

The latency of each transport was measured using the ib_send_lat
program in Perftest with the –all option. This option runs several tests
with increasing message sizes, each test repeating for the defined number
of iterations. The message size starts at 21 bytes, completes a test with
1000 iterations, and repeats with the next power of two until a message
size of 223 is reached. The latency of the transport for each message size is
output to the user as a set of values computed from the halved roundtrip
times collected during the test. The output values include the minimum,
maximum, median, average, 99% percentile, and the 99.9% percentile one-
way latencies, as well as the standard deviation of the set. We follow
the Perftest documentation advice, which recommends using the median
value as the latency of the transport, as it is the most resilient to variations
in roundtrip times. At 1000 iterations, the median value should not be
affected by any large initial values caused by warmup effects. We use the
median value to plot graphs for latency unless otherwise is stated.

Figure 5.2 shows the results of benchmarking each transport, plotted

79

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144
0

10

20

30

40

50

60

70

80

90

RoPCIE PIO

InfiniBand

RoPCIE DMA

Message size (bytes)

L
at

en
cy

 (
u

s)

Figure 5.2: Comparison of median one way latency between RoPCIe with
PIO, RoPCIe with DMA, and InfiniBand at different message sizes.

on a graph. RoPCIe with PIO appears to scale with message size similarly
to InfiniBand while having around double the latency of InfiniBand at any
given message size. RoPCIe with DMA has a higher latency for smaller
messages but also appears to follow the same curve as the two other RDMA
transports. The plot of RoPCIe stops at message size 262144 because the
next message size surpasses some limit inside the Dolphin SCI Library.
For the data points we were able to obtain, the three RDMA transports
show the curve we expected, with a doubling in latency for a doubling in
message size.

InfiniBand

InfiniBand has an inline transfer mode that can use the CPU to transfer
small messages, similar to Dolphin’s implementation of PIO. The results
for InfiniBand in figure 5.2 were obtained with the inline mode threshold
set to 500 bytes, which we expect most InfiniBand networks to do. With
this threshold, InfiniBand was able to achieve a one-way latency of 1 µs for
messages under the threshold. Running a test with the inline threshold
set to 0 bytes, InfiniBand achieved a latency of 1.67 µs for the smallest
messages.

RoPCIe with PIO

RoPCIe with PIO performs the data transfer with the CPU and does not
bypass the kernel at all. This behavior means that the PIO mode will
have significantly higher computational overhead compared to InfiniBand
without inline and RoPCIe with DMA. The PIO mode provides the lowest
latency of the two modes provided by the Dolphin SCI Library, for small

80

loop 6

 ibv_post_recv()

end loop

ResponderRequerster

Message

Message

Message

Message

Message

Message

Throughput

ibv_post_send()

ibv_post_send()

ibv_post_send()

ibv_post_send()

ibv_post_send()

ibv_post_send()

ibv_poll_cq()

ibv_poll_cq()

ibv_poll_cq()

ibv_poll_cq()

ibv_poll_cq()

ibv_poll_cq()

Figure 5.3: Six iterations of the ib_send_bw program measuring message
throughput from a requester to a responder.

messages. In theory, the PIO mode should have higher latency for large
messages than the DMA mode, because the throughput of PIO should be
smaller than DMA.

RoPCIe with DMA

RoPCIe with DMA performs the data transfer with a processor on the
Dolphin NTB, bypassing the kernel. We have learned that the DMA mode
has a constant overhead when "spinning up" its DMA engine before a data
transfer, leading to higher latency than PIO for small messages. For large
messages, the DMA mode should outperform PIO, but we have not been
able to test this due to an unfinished implementation in the Dolphin SCI
Library.

5.3.2 Throughput

We have used Perftest to measure and compare the throughput of RoPCIe
transport with PIO data transfer, RoPCIe transport with DMA data transfer,
and InfiniBand transport with InfiniBand data transfer. Perftest measures
throughput by sending a unidirectional stream of messages from one node
to the other. The throughput is measured at the message receiver side, as
the number of bits received per second over the duration of the message
stream. The main Libibverbs API calls made during six iterations of the
throughput test program are shown in figure 5.3. The user can specify
the number of iterations, and here we have chosen to use 5000 iterations
because this gave us a slightly more stable result.

The throughput of each transport was measured using the ib_send_bw
program in Perftest with the –all option. This option runs several tests
with increasing message sizes, each test repeating for the defined number

81

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

0

20

40

60

80

100

120

RoPCIE PIO

InfiniBand

RoPCIE DMA

Message size (bytes)

B
an

d
w

id
th

 (
G

b
/s

)

Figure 5.4: Comparison of average throughput between RoPCIe with PIO,
RoPCIe with DMA, and InfiniBand at different message sizes.

of iterations. The message size starts at 21 bytes, completes a test with
5000 iterations, and repeats with the next power of two until a message
size of 223 is reached. The throughput of the transport for each message
size is output to the user as a set of values computed from the time it took
to transmit all the messages successfully. The output values include the
throughput average and the message rate.

Figure 5.4 shows the results of benchmarking each transport, plotted on
a graph. InfiniBand appears to plateau at 100 Gb/s for a message size of
4096 and beyond. RoPCIe with PIO experiences a more gradual increase
in throughput and appears to flatten out at 82 Gb/s. RoPCIe with DMA
has a very gradual increase in throughput, and after reaching 35 Gb/s, it
plummets to 23 Gb/s for the last message size. The plummet in throughput
is consistent across multiple tests, as are the results of the other transports.

InfiniBand

The InfiniBand transport was tested with a Maximum Transmission Unit
(MTU) of 4096. Any messages larger than the MTU would be split into
two or more packets. From the bandwidth benchmark, we can see that
InfiniBand reaches its advertised throughput of 100 Gb/s at the 4096 byte
message size, and plateaus at this throughput. Because each subsequent
message size after 4096 is a multiple of 4096, InfiniBand experiences the
best-case scenario where all packets are filled.

RoPCIe with PIO

The RoPCIe with PIO transport has a more gradual curve towards its peak.
The profile of the curve is likely due to PIO not being packet-based, thus
following an S curve. The latency benchmarks for RoPCIe with PIO explain

82

why the curve lags behind InfiniBand, it simply takes more time to transfer
the same number of bytes.

RoPCIe with DMA

The RoPCIe with DMA transport follows approximately the same gradual
curve as RoPCIe with PIO. This curve lags even further behind, again due
to higher latency numbers. The dip at the end of the graph is sudden, and
we have not been able to track down the root cause. We speculate that this
is due to the unfinished implementation of vectored DMA messages in the
Dolphin SCI Library.

5.4 Overhead

The overhead of a task is the cost of performing it. The overhead of an
RDMA transport can be calculated as the combined cost of its transport
characteristics. Transport characteristics include performance, computa-
tion, stability, reliability, security, monetary, and more. Every RDMA trans-
port use case will weigh the cost of each transport characteristic differently,
so it is almost pointless to claim one transports superiority over another.
Instead, we will attempt to measure and analyze specific transport metrics
with relevance to the work presented in this thesis.

In order to identify sources of overhead in the RoPCIe transport, we
divide the transfer operation into transport segments from end to end. The
transport segments are shown in figure 5.5. In this context, we consider
everything after a user has made a call to the Libibverbs API as part of the
transport. We do not consider the overhead incurred by the user program.
The following describes each segment of the RoPCIe transport in detail,
following the path of a message from a requester to a responder.

5.4.1 Requester side

In an RDMA transfer operation, a user that creates a send request and posts
it to a QP is called a requester. A send request posted by a requester is
processed to completion at the requester side of a transfer operation. We
divide the requester side into two transport segments; "user to kernel" and
"sender."

User to kernel segment

The first transport segment at the requester side is called the "user to kernel
segment." This segment starts with a requester in user-space calling the
ibv_post_send() function in the Libibverbs API, and ends when a call is
made to the dis_post_send() function in the RoPCIe kernel verbs provider.
The sole responsibility of the RoPCIe user verbs provider in this segment is
to pass on the work request to Libibverbs command/response machinery.
This work division means that the RDMA stack performs almost all work

83

U
ser to kernel segm

ent

Kernel provider

Requester

Data transmission overhead

Work consumer

SCI Library

IB Uverbs

Kernel provider

Responder

Work consumer

Character node

SCI Library

User provider User provider

Character node

K
ernel polling segm

ent
R

eceiver segm
ent

Sender segm
ent

IB Uverbs

Figure 5.5: Transport overhead segments.

done in this overhead segment, and the overhead of the user verbs provider
is close to zero.

We speculate that the primary overhead of this segment comes from
the choice of path to the kernel by the RoPCIe user verbs provider.
The Libibverbs command/response mechanism uses a character node
managed by the IB Uverbs character driver. This mechanism is known
as the slow path for RDMA transports and contributes a constant increase
to the latency of sending a message. Most other hardware-based RDMA
transports use a fast path that more directly communicates with the RDMA
adapter(section 2.1.1). A fast path was not developed for the RoPCIe
transport because it would require significant additions to the device driver
of the Dolphin NTB, which we consider out of scope for this thesis.

Measuring the overhead of the slow path "post send request" operation
is difficult. Here we attempt to measure the time difference from when
the function ibv_cmd_post_send() is called in the RoPCIe user provider,
to when the function returns. This benchmark includes the time taken to
reach the RoPCie kernel provider from user-space, the time taken by the
kernel provider to complete its function, and the time taken to return to
user-space. We measure this roundtrip time to about 1 µs, which means we
are going to need nanosecond precision to isolate the slow path overhead.
Using a function timespec_get() to get time in nanoseconds, we observe
the average time of 1000 roundtrips to be within a range of 900 to 1400

84

nanoseconds across multiple tests. We exclude any readings above 2000
nanoseconds, which occur at the start due to warmup effects. Then we
use FTrace to measure the time spent in the RoPCIe kernel provider, which
gives us a range of 600 to 800 nanoseconds. Subtracting the time taken
by the kernel provider, we make a conservative estimate of the overhead
incurred by the slow path to be 400 nanoseconds.

The severity of the overhead incurred by using the slow path to the
kernel is dependent on the transport workload. Slow path overhead is
constant in relation to both the message size of the work request and the
number of work requests chained together. For workloads with large
messages or a large number of small messages chained together, the latency
of the slow path will be dwarfed by the latency of transferring all the
messages. However, for workloads where many small messages are sent
one by one, the latency and computational overhead of the slow path can
become significant.

Sender segment

The second transport segment at the requester side is called the "sender
segment." This segment starts with the dis_post_send() function being
called in the RoPCIe kernel provider, and ends with the SCISendVMsg()
function being called in the Dolphin SCI Library by a work consumer
thread. We divide this segment into two: the kernel provider thread, and
the work consumer thread.

Kernel provider: The task of the kernel provider in this segment is
to create a send request, post it to a circular buffer, and wake up the
work consumer. We have measured this task to take between 600 to
800 nanoseconds to complete, and want to break down what causes this
overhead. FTrace can be used to trace one or more functions to trace and
generate a function graph of the traced functions. We have traced the
dis_post_send(), dis_qp_notify(), and dis_qp_post_one_sqe() functions,
and the function graph from one such trace is shown in listing 5.1. The trace
is made during a run of the ib_send_lat program in Perftest with a message
size of 2. The function graph shows the total duration of dis_post_send(),
as well as the duration of the two other functions called from it. From the
results, we can observe that the duration of the dis_qp_notify() function is
about 321 nanoseconds, which means that waking up the work consumer
thread is the largest source of overhead in this operation, at small message
sizes. The second function dis_qp_post_one_sqe() has a comparatively
small duration, at about 110 nanoseconds.
ib_send_lat funcgraph_entry: | dis_post_send() {
ib_send_lat funcgraph_entry: 0.110 us | dis_qp_post_one_sqe();
ib_send_lat funcgraph_entry: 0.321 us | dis_qp_notify();
ib_send_lat funcgraph_exit: 0.682 us | }

Listing 5.1: FTrace function graph of a call to dis_post_send() with message
size 2.

85

To measure how the overhead scales with message size, we ran the
same test with a message size of 2097152. This message size will force
the dis_qp_post_one_sqe() function to allocate memory for the dynamic
page map store, and iterate over a large number of pages in the MR. A
function graph of this trace is shown in listing 5.2. Here we can observe
that the dis_qp_notify() function duration stays more or less constant
with message size, while the dis_qp_post_one_sqe() function duration has
increased tenfold to 1.1 µs. In comparison, at this message size, the total
one-way latency of the RoPCie transport is about 320 µs.
ib_send_lat funcgraph_entry: | dis_post_send() {
ib_send_lat funcgraph_entry: 1.102 us | dis_qp_post_one_sqe();
ib_send_lat funcgraph_entry: 0.370 us | dis_qp_notify();
ib_send_lat funcgraph_exit: 1.784 us | }

Listing 5.2: FTrace function graph of a call to dis_post_send() with message
size 2097152.

From the results of these function traces, we observe that the overhead
incurred in the kernel provider thread has similar characteristics to the
overhead incurred in the user to kernel transport segment. It is apparent
that waking up the work consumer thread is the dominant source of
overhead at smaller message sizes, and that the overhead incurred by the
kernel provider thread increases at a very low rate with message size,
relative to other parts of the transport. Therefore we conclude that the same
workloads will be impacted by this overhead as described in the kernel to
user transport segment.

Work consumer: The task of the work consumer in this segment is
to wake up when new send requests are posted, process the send
requests, post a work completion, and go back to sleep. In other
words, this thread picks up where the kernel provider thread left off.
To measure the wake-up overhead from the kernel provider thread to
the work consumer thread, we can use FTrace timestamps, which have
nanosecond resolution. By creating a new trace and calculating the time
difference between the call to dis_qp_notify(), and time of the first call
to dis_wq_consume_one_sqe(), we can get an estimate of the wake-up
latency overhead. Listings 5.3 and 5.4 show the function graph of the new
trace with message size 2 and 2097152 respectively. Because the timestamp
is long, we only include the difference to the previous timestamp(in the
format of (+nanoseconds)). From these timestamps differences we can
observe that about 750 nanoseconds elapses between dis_qp_notify() and
dis_wq_consume_one_sqe(), and the message size does not significantly
impact this overhead. This result also tells us that there is a lag of about
400 nanoseconds from dis_qp_notify() returns to the thread starts doing
work.

86

ib_send_lat [000] (+4819) funcgraph_entry: 0.331 us | dis_qp_notify();
DIS [011] (+722) funcgraph_entry: | dis_wq_consume_one_sqe() {
DIS [011] (+551) funcgraph_entry: 0.381 us | dis_wq_post_sqe_cqe();
DIS [011] (+200) funcgraph_exit: 0.751 us | }

Listing 5.3: FTrace function graph of the wake up of the work consumer,
and the processing and completion of a work request with message size 2.

ib_send_lat (+424165) funcgraph_entry: 0.391 us | dis_qp_notify();
DIS (+762) funcgraph_entry: | dis_wq_consume_one_sqe() {
DIS (+201929) funcgraph_entry: 0.401 us | dis_wq_post_sqe_cqe();
DIS (+260) funcgraph_exit: ! 202.189 us | }

Listing 5.4: FFTrace function graph of the wake up of the work consumer,
and the processing and completion of a work request with message size
2097152.

The new trace also gives us a measurement of the time elapsed between
the call to the function dis_wq_consume_one_sqe(), and the call to the
function dis_wq_post_sqe_cqe. This measurement gives us the latency
from when the work consumer starts to process a work request, to when
the work consumer starts to post a work completion to the CQ. For the
small message size, the latency is about 550 nanoseconds, and for the large
message size, the latency is about 202 µs. For both message sizes, the
latency measured here is smaller than the end to end latency we measure
with Perftest. The discrepancy is very apparent in the trace of the large
message, where almost 120 µs of the end to end latency is unaccounted for.
Because we now have traced and measured the entire requester side of the
transport, we conclude that the remaining end to end overhead must occur
in the data transmission segment or at the responder side of the transport.

5.4.2 Data transmission

Between the requester side and the responder side, there is a segment
called the "data transmission segment." This segment starts with the
SCISendVMsg() function being called by a work consumer thread at the
requester side and ends with the SCIReceiveVMsg() function returning to
a work consumer thread at the responder side. The responsibility of this
segment is to transmit data from one or more buffers on the requester side
and receive the transmission into one or more buffers on the responder
side.

The RoPCIe kernel provider attempts to configure the SCI Library mes-
sage queues and messages optimally, but the overhead in this transport
segment is ultimately dictated by the Dolphin software stack and accompa-
nying hardware. Because we cannot synchronize the time of the requester
and responder machine to nanosecond precision, the only way of measur-
ing the overhead of this transport segment is to do end to end tests. By
subtracting the requester and responder side overhead from an end to end
test, we can get an estimate of the transport overhead.

Ultimately, the optimization goal of RoPCIe should be to minimize
requester and responder side overhead, while using the data transmission

87

segment as effectively and efficiently as possible.

5.4.3 Responder side

Like the requester side, we divide the responder side into two transport
segments; "receiver" and "kernel polling."

Receiver segment

The first transport segment at the responder side is called the "receiver seg-
ment." This segment starts with the SCIReceiveVMsg() function returning
to a work consumer thread, and ends with the dis_wq_post_rqe_cqe func-
tion being called by the same work consumer thread.

This transport segment starts with the assumption that a work con-
sumer is already awake and processing a receive request. We can make
this assumption because RDMA requires the responder side to post re-
ceive requests before the requester can post send requests. If this assump-
tion is correct, the work consumer will spend some amount of time alive
waiting for a message transfer, which would make the duration of the
dis_wq_consume_one_rqe function longer than that of the message trans-
fer. Listings 5.5 and 5.6 show the function graph of a work consumer pro-
cessing one receive request with message size 2 and 2097152 respectively,
and posting a work completion to a CQ. Both function graphs conform to
our assumption, because the time spent in dis_wq_consume_one_rqe is
about double the end to end latency. A work completion is posted inside
this function, so we have to subtract the time this takes, but the assumption
still holds.
DIS (+90) funcgraph_entry: | dis_wq_consume_one_rqe() {
DIS (+5811) funcgraph_entry: 0.441 us | dis_wq_post_rqe_cqe();
DIS (+251) funcgraph_exit: 6.062 us | }

Listing 5.5: FFTrace function graph of the work consumer processing a
receive request with message size 2, and posting a work completion.

DIS (+170) funcgraph_entry: | dis_wq_consume_one_rqe() {
DIS (+667272) funcgraph_entry: 0.381 us | dis_wq_post_rqe_cqe();
DIS (+230) funcgraph_exit: ! 667.492 us | }

Listing 5.6: FFTrace function graph of the work consumer processing a
receive request with message size 2097152, and posting a work completion.

We can also observe that posting a work completion to a CQ takes
between 200 to 250 nanoseconds. The dis_wq_consume_one_rqe function
has to take a spinlock, and then advance the CQ circular buffer. This
overhead is another part of the total end to end overhead. We expect this
overhead to stay constant in relation to message size, and this is supported
by function graphs in figures 5.5 and 5.6.

88

Kernel polling segment

The second transport segment at the responder side is called the "ker-
nel polling segment." This segment starts with a responder calling the
ibv_poll_cq() function in the Libibverbs API and ends with the same func-
tion returning to the responder.

This transport segment is similar to the "kernel to user" segment. When
a responder polls the CQ, the RoPCIe user provider creates and sends a
command down the slow path to the kernel provider. When the RoPCIe
kernel provider has polled the CQ, the function call chain returns to the
requester. We can also measure the overhead of this segment in the same
way we measured the user to kernel segment. The average time of 1000
calls to ibv_poll_cq() is calculated, only including calls where a work
completion was returned. Running this test multiple times, we get latency
averages in the range of 550 to 650 nanoseconds. We then use FTrace
to measure the duration of the dis_poll_cq function, which comes out
to around 90 nanoseconds. Subtracting the dis_poll_cq duration from
the total poll duration, we again get a slow path latency of about 500
nanoseconds.

We have so far not analyzed the latency of going down the slow
path versus returning up the slow path. Consider a scenario where the
requester goes down the slow path and sends a message to a requester. The
sender returning up the slow path will not affect the end to end latency of
the message transmission. Now consider this message is received at the
responder side, and a work completion is posted to the CQ, the moment
before a responder polls the CQ. The responder can then return up the slow
path with the work completion, and the trip down the slow path at the
responder side will not affect the end to end latency. This is the best-case
scenario, where, in total, one roundtrip of the slow path has been made
between the requester and the responder.

Now we consider the worst-case scenario. A work completion is posted
to the CQ the moment after the responder polls the CQ. The responder now
has to return up the slow path without a work completion. Unsatisfied by
the lack of work completions, the responder starts a new trip down the
slow path, retrieves a work completion, and returns up the slow path. In
the worst-case scenario, in total, two roundtrips of the slow path have been
made between the requester and the responder. We conclude that between
500 and 1000 nanoseconds of the end to end latency of the transport can be
attributed to the traversal of the slow path.

5.4.4 End to end

Figure 5.6 shows an overview of the latency numbers we have calculated
for each RoPCIe transport segment. The numbers are generally conservat-
ive estimates of the largest sources of overhead, and adding the numbers
up for each message size will yield a number slightly below the minimum
end to end latencies we observe. We observe that most overhead incurred
by the RoPCIe user and kernel providers is constant in relation to message

89

Requester

Data transmission overhead

SCI Library

IB Uverbs

Kernel provider

Responder

Work consumer

SCI Library

User provider
K

ernel polling segm
ent

R
eceiver segm

ent

U
ser to kernel segm

ent
Kernel provider

Work consumer

Sender segm
ent

IB Uverbs

Slow path:
~ 500 ns

Slow path:
~ 500 ns

Post SQE:
~ 110 ns (small)
~ 1.1 us (large)

Wake up kthread:
~ 750 ns

Consume SQE:
~ 550 ns (small)
~ 200 us (large)

Post CQE:
~ 400 ns

Poll CQ:
~ 90 ns

Consume RQE:
** estimates **

~ 450 ns (small)
~ 120 us (large)

User provider

 Small message:
 2 bytes

 Large message:
 2097152 bytes

Figure 5.6: Transport overhead segments with approximate latency num-
bers.

size, and the overhead incurred by the Dolphin software and hardware
grows with the message size.

90

Chapter 6

Conclusion

6.1 Summary

In this thesis, we have implemented a verbs compliant RDMA transport
over PCIe. By integrating with existing RDMA systems and libraries,
we have enabled RDMA applications in user-space and kernel space to
communicate over PCIe interconnect. The chapters in this thesis outline
the process of creating a new RDMA transport: RoPCIe.

We give a presentation of the RDMA technology in chapter 2. RDMA is
described in the InfiniBand Architecture Specification, as an asynchronous
data transmission technology revolving around a set of semantic behaviors
called verbs. An implementation of RDMA is being developed as a native
subsystem of the Linux kernel. The RDMA subsystem is extensive and
has been designed to accept any device presenting a valid interface as an
RDMA endpoint. While applications in kernel-space can interface with the
RDMA subsystem directly, applications in user-space can reach the RDMA
subsystem through a library called Libibverbs.

The design of RoPCIe is discussed in chapter 3. We present our design
philosophy and outline some requirements for the RoPCIe transport. Two
rejected transport architectures are described, as well as our reasons for
choosing the third and final transport architecture. The chosen transport
architecture emulates existing RDMA transports, with an interface at both
kernel and user level.

A bottom-up description of the implementation of the RoPCIe transport
is given in chapter 4. We start by implementing a bus, a device driver,
and a device as three separate kernel modules. When these three kernel
modules are loaded into the kernel, they create and initialize a virtual
RDMA device for the RoPCIe transport. The RoPCIe virtual RDMA device
mimics the functionality of a physical RDMA adapter inside the kernel
and proceeds to register itself with the RDMA subsystem. We implement
the mandatory verbs for the device, and a kernel worker to provide the
asynchronous work consumption behavior of a physical RDMA adapter.
A fourth kernel module is implemented to serve as a translation layer
between the kernel worker and the API to the PCIe interconnect adapter.
To make the RoPCIe transport available to user-space, we develop a library

91

plugin for Libibverbs.
The implementation of RoPCIe is tested and evaluated in chapter 5.

We benchmark the latency and throughput of the RoPCIe transport and
compare the results to benchmarks of the InfiniBand transport. Then we
do a deeper examination of overhead in the RoPCIe transport, dividing the
transport into sections to isolate the sources of overhead in an end to end
data transfer. The transport is examined under conditions where both small
and large messages are transmitted, and we note the effects of message size
on each source of overhead.

6.1.1 Goals

The first goal we set for the RoPCIe transport was to create a design for its
integration with RDMA infrastructure in Linux. We describe our research
of the RDMA stack in chapter 2, and detail the design process in chapter 3.

The second goal we set for the RoPCIe transport was to implement
it according to design. We describe our implementation of the design in
chapter 4, including both a kernel and a user component.

The third goal we set for the RoPCIe transport was to test it and
measure its performance. We describe our testing procedures in chapter
5. Here, the RoCPIe transport is tested alongside InfiniBand transport, and
the performance of each transport is measured and compared at various
message sizes. We verify that the RoPCIe transport delivers all messages
intact with tests in user-space and kernel-space. Finally, we identify sources
of overhead in the RoPCIe transport.

The fourth goal we set for the RoPCIe transport was to verify that
RDMA software can use it, without modifications to the software or the
transport. We verify that this works in chapter 5 by running programs in
the Perftest package. The Perftest package is installed through the CentOS
RPM package manager, and the RoPCIe transport is not modified to run
Perftest programs.

6.2 Main contributions

In this thesis, we show that proprietary data transmission technology
without support for verbs-based RDMA can be integrated with existing
verbs-based RDMA libraries, and used by existing verbs-based RDMA
software.

First, we design and implement a device driver capable of presenting
a virtual RDMA device to the Linux kernel as a physical RDMA endpoint.
The virtual RDMA device is first created by loading a set of kernel modules
into the kernel, then registered with the RDMA subsystem by the device
driver.

Next, we implement the verbs needed to operate an RDMA transport
between the kernel of two machines. This implementation includes the
verbs needed to create and use verbs resources like protection domains,
memory regions, queue pairs, and completion queues. Asynchronous

92

work consumers translate work requests from the queue pairs to a message
format used by the message queues in the Dolphin SCI Library. When a
work request is fulfilled, the work consumer posts a work completion to
the associated completion queue.

Finally, we make the RDMA transport available to applications in user-
space by implementing a dynamically linked plugin for a user-space library
called Libibverbs. The plugin defers all RDMA operation requests from
user-space to the virtual RDMA device, through a command/response
character node managed by IB Uverbs in the kernel. To enable DMA to
user-space memory buffers, we create a pinned memory map between vir-
tual and physical memory, as a part of the memory region implementation.

6.3 Future work

Several verbs remain to be implemented for the RoPCIe transport to
comply with the InfiniBand Architecture Specification. Implementing
both mandatory and optional verbs would enable the RoPCIe transport to
provide RDMA for a greater number of RDMA applications.

The RoPCIe transport would benefit from being integrated into the
Dolphin device driver. This integration could be a step on the path to
let processors on the physical adapter consume work requests directly,
eliminating the need for kthreads as asynchronous work consumers. In
section 5.4.1, we find that the time used to wake up and schedule a work
consumer kthread is about 750 nanoseconds or 21% of the end to end
latency for small messages.

As we discuss in section 2.1.1, latency, and computational overhead
could also be lowered by implementing a fast path for latency-sensitive
RDMA operations. In section 5.4.1, we find that the slow path introduces
about 500 nanoseconds per side of a transfer. Worst case, the slow path
incurs 1 µs or 28.5% of the end to end latency for small messages.

The Dolphin SCI Library does not yet fully support DMA from multiple
buffers without a copy to an intermediate buffer. Support for proper
DMA should be implemented in the Dolphin SCI Library to achieve kernel
bypass in RoPCIe, or another Dolphin API should be chosen.

The RoPCIe transport should be extended to support the remaining
RDMA transfer operations. With transfer operations like RDMA Read and
RDMA Write, a responder enables direct memory access from a requester.
The implementation of these transfer operations should be made with strict
memory security measures.

93

94

Bibliography

[1] Anuj Kalia, Michael Kaminsky and David G. Andersen. ‘Design
Guidelines for High Performance RDMA Systems’. In: Proceedings
of the 2016 USENIX Conference on Usenix Annual Technical Con-
ference. USENIX ATC ’16. Denver, CO, USA: USENIX Association,
2016, pp. 437–450. ISBN: 9781931971300.

[2] Chuanxiong Guo et al. ‘RDMA over Commodity Ethernet at Scale’.
In: Proceedings of the 2016 ACM SIGCOMM Conference. SIGCOMM
’16. Florianopolis, Brazil: Association for Computing Machinery,
2016, pp. 202–215. ISBN: 9781450341936. DOI: 10 . 1145 / 2934872 .
2934908. URL: https://doi.org/10.1145/2934872.2934908.

[3] Wael Noureddine. ‘NFS over 40Gbps iWARP RDMA’. SDC 2014.
Sept. 2014. URL: https://www.snia.org/educational- library/nfs- over-
40gbps-iwarp-rdma-2014 (visited on 09/05/2020).

[4] Lavanya Ramakrishnan et al. ‘Evaluating Interconnect and Virtual-
ization Performance for High Performance Computing’. In: Proceed-
ings of the Second International Workshop on Performance Model-
ing, Benchmarking and Simulation of High Performance Computing
Systems. PMBS ’11. Seattle, Washington, USA: Association for Com-
puting Machinery, 2011, pp. 1–2. ISBN: 9781450311021. DOI: 10.1145/
2088457.2088459. URL: https://doi.org/10.1145/2088457.2088459.

[5] Vernard Martin. ‘Linux Clusters Institute:Intermediate Network-
ing’. Georgia Institute of Technology. Aug. 2017. URL: http : / /
linuxclustersinstitute . org / workshops / archive / aug2017/ (visited on
09/05/2020).

[6] Jerome Vienne et al. ‘Performance Analysis and Evaluation of
InfiniBand FDR and 40GigE RoCE on HPC and Cloud Computing
Systems’. In: Proceedings of the 2012 IEEE 20th Annual Symposium
on High-Performance Interconnects. HOTI ’12. USA: IEEE Computer
Society, 2012, pp. 48–55. ISBN: 9780769548319. DOI: 10.1109/HOTI.
2012.19. URL: https://doi.org/10.1109/HOTI.2012.19.

[7] ‘China Extends Lead in Number of TOP500 Supercomputers, US
Holds on to Performance Advantage’. In: TOP500 News (Nov. 2019).
URL: https://www.top500.org/news/china-extends-lead-in-number-of-
top500-supercomputers-us-holds-on-to-performance-advantage/ (visited
on 02/05/2019).

95

https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.1145/2934872.2934908
https://www.snia.org/educational-library/nfs-over-40gbps-iwarp-rdma-2014
https://www.snia.org/educational-library/nfs-over-40gbps-iwarp-rdma-2014
https://doi.org/10.1145/2088457.2088459
https://doi.org/10.1145/2088457.2088459
https://doi.org/10.1145/2088457.2088459
http://linuxclustersinstitute.org/workshops/archive/aug2017/
http://linuxclustersinstitute.org/workshops/archive/aug2017/
https://doi.org/10.1109/HOTI.2012.19
https://doi.org/10.1109/HOTI.2012.19
https://doi.org/10.1109/HOTI.2012.19
https://www.top500.org/news/china-extends-lead-in-number-of-top500-supercomputers-us-holds-on-to-performance-advantage/
https://www.top500.org/news/china-extends-lead-in-number-of-top500-supercomputers-us-holds-on-to-performance-advantage/

[8] Jilong Xue et al. ‘Fast Distributed Deep Learning over RDMA’. In:
Proceedings of the Fourteenth EuroSys Conference 2019. EuroSys
’19. Dresden, Germany: Association for Computing Machinery, 2019.
ISBN: 9781450362818. DOI: 10.1145/3302424.3303975. URL: https://doi.
org/10.1145/3302424.3303975.

[9] D. E. Comer et al. ‘Computing as a Discipline’. In: Commun. ACM
32.1 (Jan. 1989), pp. 9–23. ISSN: 0001-0782. DOI: 10.1145/63238.63239.
URL: https://doi.org/10.1145/63238.63239.

[10] Chuanpeng Li, Chen Ding and Kai Shen. ‘Quantifying the Cost of
Context Switch’. In: Proceedings of the 2007 Workshop on Experi-
mental Computer Science. ExpCS ’07. San Diego, California: Asso-
ciation for Computing Machinery, 2007, 2–es. ISBN: 9781595937513.
DOI: 10.1145/1281700.1281702. URL: https://doi.org/10.1145/1281700.
1281702.

[11] Ken Darrow and Bruce Hedman. Oportunities for Combined Heat
and Power in Data Centers. ICF International, Mar. 2009, p. 49. URL:
https ://www.energy.gov/sites/prod/files/2013/11/f4/chp_data_
centers.pdf (visited on 02/05/2019).

[12] Jonathan Corbet. The trouble with get_user_pages(). Apr. 2018. URL:
https://lwn.net/Articles/753027/ (visited on 30/08/2019).

[13] InfiniBand Architecture Specification Volume 1. 1.3. InfiniBand Trade
Association. Mar. 2015. URL: https://cw.infinibandta.org/document/dl/
7859.

[14] Ryan E. Grant et al. ‘Scalable Connectionless RDMA over Unreliable
Datagrams’. In: Parallel Comput. 48.C (Oct. 2015), pp. 15–39. ISSN:
0167-8191. DOI: 10.1016/j.parco.2015.03.009. URL: https://doi.org/10.
1016/j.parco.2015.03.009.

[15] Bob Woodruff et al., eds. Introduction to the InfiniBand Core
Software. Vol. 2. Proceedings of the Linux Symposium. Ottawa,
Canada: Ottawa Linux Symposium, July 2005. URL: https : / /www .
kernel.org/doc/ols/2005/ols2005v2-pages-279-290.pdf.

[16] Jason Gunthorpe. ‘Challenges of the RDMA subsystem’. Linux
Plumbers Conference. July 2019. URL: https://www.linuxplumbersconf.
org/event/4/contributions/364/ (visited on 02/05/2020).

[17] Linux kernel v5.5. URL: https://github.com/torvalds/linux/releases/
tag/v5.5 (visited on 02/05/2020).

[18] Jonathan Corbet and Alessandro Rubini. Linux Device Drivers.
2nd ed. Champaign, Illinois, United States: O’Reilly Media, June
2001. ISBN: 0596000081.

[19] Asim Kadav and Michael M. Swift. ‘Understanding Modern Device
Drivers’. In: SIGARCH Comput. Archit. News 40.1 (Mar. 2012),
pp. 87–98. ISSN: 0163-5964. DOI: 10.1145/2189750.2150987. URL: https:
//doi.org/10.1145/2189750.2150987.

96

https://doi.org/10.1145/3302424.3303975
https://doi.org/10.1145/3302424.3303975
https://doi.org/10.1145/3302424.3303975
https://doi.org/10.1145/63238.63239
https://doi.org/10.1145/63238.63239
https://doi.org/10.1145/1281700.1281702
https://doi.org/10.1145/1281700.1281702
https://doi.org/10.1145/1281700.1281702
https://www.energy.gov/sites/prod/files/2013/11/f4/chp_data_centers.pdf
https://www.energy.gov/sites/prod/files/2013/11/f4/chp_data_centers.pdf
https://lwn.net/Articles/753027/
https://cw.infinibandta.org/document/dl/7859
https://cw.infinibandta.org/document/dl/7859
https://doi.org/10.1016/j.parco.2015.03.009
https://doi.org/10.1016/j.parco.2015.03.009
https://doi.org/10.1016/j.parco.2015.03.009
https://www.kernel.org/doc/ols/2005/ols2005v2-pages-279-290.pdf
https://www.kernel.org/doc/ols/2005/ols2005v2-pages-279-290.pdf
https://www.linuxplumbersconf.org/event/4/contributions/364/
https://www.linuxplumbersconf.org/event/4/contributions/364/
https://github.com/torvalds/linux/releases/tag/v5.5
https://github.com/torvalds/linux/releases/tag/v5.5
https://doi.org/10.1145/2189750.2150987
https://doi.org/10.1145/2189750.2150987
https://doi.org/10.1145/2189750.2150987

[20] David Howells and Paul E. McKenney. Circular Buffers. English.
Version 5.5.8. Linux Kernel Organization. 1 p. URL: https : / /www .
kernel . org / doc / Documentation / circular - buffers . txt (visited on
02/05/2019).

[21] Steven Rostedt. Debugging the kernel using Ftrace - part 1. Dec. 2009.
URL: https://lwn.net/Articles/365835/ (visited on 24/04/2020).

97

https://www.kernel.org/doc/Documentation/circular-buffers.txt
https://www.kernel.org/doc/Documentation/circular-buffers.txt
https://lwn.net/Articles/365835/

98

Appendix A

Accessing the source code

The source code of the RoPCIe kernel verbs provider is available at
https://github.com/AlveElde/dis-kverbs. This repository consists of four
kernel modules and a Makefile-based build system to link, build, load, and
unload the kernel modules. When the modules are built and loaded into
the kernel, RoPCIe functionality will be added to the kernel by a virtual
RDMA device.

The source code of the RoPCIe user verbs provider is available at
https://github.com/AlveElde/dis-uverbs. This repository is a fork of the
official rdma-core repository and can be built with the same procedure as
the upstream repository. When built and exported to the system library
load path, the library enables user-space access to the RoPCIe transport.

The source code of two RDMA test programs in kernel-space and
user-space is available at https://github.com/AlveElde/dis-ktest and
https://github.com/AlveElde/dis-utest. When executed, these two tests
create RDMA resources and perform a simple ping-ping operation.

99

100

Appendix B

Additional tables

Bytes Iterations Median(us) Average(us) Std. dev.(us)
2 1000 9.76 19.43 81.00
4 1000 9.74 18.96 79.90
8 1000 9.73 19.70 82.91
16 1000 9.72 18.97 79.91
32 1000 9.67 18.89 79.55
64 1000 9.70 19.68 82.86
128 1000 9.78 19.01 79.86
256 1000 9.83 19.76 82.99
512 1000 9.93 19.26 80.10
1024 1000 9.57 18.86 79.92
2048 1000 9.95 19.83 83.00
4096 1000 10.07 19.31 80.00
8192 1000 10.88 20.18 80.01
16384 1000 12.52 22.52 83.01
32768 1000 15.52 22.71 63.07
65536 1000 20.71 28.06 57.15
131072 1000 36.25 46.54 82.95
262144 1000 76.40 92.66 140.17

Table B.1: RoPCIe DMA latency benchmarks.

101

Bytes Iterations Median(us) Average(us) Std. dev.(us)
2 1000 3.61 3.50 0.60
4 1000 3.58 3.57 0.50
8 1000 3.30 3.54 0.47
16 1000 3.39 3.63 0.46
32 1000 3.36 3.60 0.46
64 1000 3.61 3.70 0.46
128 1000 3.72 3.85 0.49
256 1000 3.83 3.94 0.52
512 1000 4.06 4.21 0.43
1024 1000 4.62 4.68 0.46
2048 1000 5.61 5.64 0.48
4096 1000 6.94 6.94 0.49
8192 1000 7.35 7.31 0.48
16384 1000 8.03 8.23 0.82
32768 1000 10.18 10.30 0.70
65536 1000 14.83 14.91 0.72
131072 1000 24.36 24.41 0.83
262144 1000 43.99 44.22 1.51
524288 1000 84.47 84.91 2.44
1048576 1000 163.87 164.88 4.88
2097152 1000 319.44 321.39 9.00

Table B.2: RoPCIe PIO latency benchmarks.

102

Bytes Iterations Median(us) Average(us) Std. dev.(us)
2 1000 1.01 1.01 0.03
4 1000 1.02 1.02 0.05
8 1000 1.01 1.01 0.03
16 1000 1.01 1.01 0.03
32 1000 1.01 1.01 0.04
64 1000 1.11 1.11 0.01
128 1000 1.16 1.16 0.03
256 1000 1.79 1.79 0.03
512 1000 1.86 1.86 0.02
1024 1000 1.98 1.98 0.05
2048 1000 2.21 2.21 0.04
4096 1000 2.62 2.62 0.04
8192 1000 3.23 3.20 0.12
16384 1000 4.14 4.20 0.14
32768 1000 6.00 6.07 0.12
65536 1000 8.64 8.68 0.10
131072 1000 13.93 13.96 0.08
262144 1000 24.57 24.60 0.09
524288 1000 45.76 45.78 0.09
1048576 1000 88.27 88.26 0.10
2097152 1000 173.39 173.41 0.08
4194304 1000 342.37 342.38 0.05
8388608 1000 682.93 682.93 0.07

Table B.3: InfiniBand latency benchmarks.

103

Bytes Iterations Median(us) Average(us) Std. dev.(us)
2 1000 18.75 18.95 1.21
4 1000 19.36 19.36 0.34
8 1000 19.33 19.35 0.31
16 1000 19.34 19.38 0.25
32 1000 19.32 149.25 1776.4
64 1000 20.28 184.36 1927.1
128 1000 34.79 628.95 4184.2
256 1000 27.11 27.55 2.07
512 1000 33.61 69.00 790.46
1024 1000 47.28 47.59 1.22
2048 1000 56.67 56.99 0.80
4096 1000 75.10 75.33 0.55
8192 1000 109.67 109.72 0.29
16384 1000 181.77 181.80 0.20
32768 1000 325.96 326.00 0.23
65536 1000 612.91 612.95 0.28
131072 1000 1190.70 1190.72 0.24
262144 1000 2349.32 2349.34 0.22
524288 1000 4650.98 4651.02 0.22
1048576 1000 9261.84 9261.90 0.31
2097152 1000 18489.97 18490.00 0.74
4194304 1000 37013.67 37013.96 1.33
8388608 1000 73874.24 74035.92 172.70

Table B.4: RXE latency benchmarks(Realtek L8200A Gigabit Ethernet).

104

Bytes Iterations Average(us) Message rate
2 5000 0.000961 0.060077
4 5000 0.001912 0.059740
8 5000 0.003831 0.059859
16 5000 0.007596 0.059344
32 5000 0.015495 0.060527
64 5000 0.030791 0.060139
128 5000 0.061451 0.060011
256 5000 0.12 0.059190
512 5000 0.24 0.058112
1024 5000 0.49 0.059411
2048 5000 0.96 0.058680
4096 5000 1.93 0.058960
8192 5000 3.79 0.057896
16384 5000 7.06 0.053868
32768 5000 15.32 0.058432
65536 5000 26.80 0.051118
131072 5000 35.84 0.034177
262144 5000 23.58 0.011243

Table B.5: RoPCIe DMA bandwidth benchmarks.

Bytes Iterations Average(us) Message rate
2 5000 0.023809 1.488064
4 5000 0.047039 1.469982
8 5000 0.013227 0.206667
16 5000 0.026439 0.206557
32 5000 0.052857 0.206471
64 5000 0.11 0.205653
128 5000 1.53 1.493630
256 5000 0.42 0.206914
512 5000 0.84 0.206279
1024 5000 1.69 0.206283
2048 5000 3.36 0.205296
4096 5000 6.68 0.203858
8192 5000 13.38 0.204128
16384 5000 30.05 0.229257
32768 5000 50.11 0.191153
65536 5000 63.96 0.121994
131072 5000 72.84 0.069470
262144 5000 78.23 0.037301
524288 5000 80.96 0.019303
1048576 5000 82.57 0.009843
2097152 5000 81.82 0.004877

Table B.6: RoPCIe PIO bandwidth benchmarks.

105

Bytes Iterations Average(us) Message rate
2 5000 0.053817 3.363541
4 5000 0.11 3.381769
8 5000 0.22 3.381570
16 5000 0.44 3.401193
32 5000 0.87 3.397718
64 5000 1.74 3.394138
128 5000 3.48 3.395526
256 5000 6.88 3.360069
512 5000 13.58 3.314441
1024 5000 26.74 3.264509
2048 5000 52.26 3.189781
4096 5000 100.75 3.074498
8192 5000 99.16 1.513064
16384 5000 99.19 0.756777
32768 5000 99.19 0.378366
65536 5000 99.17 0.189152
131072 5000 99.17 0.094573
262144 5000 99.16 0.047283
524288 5000 99.16 0.023642
1048576 5000 99.16 0.011821
2097152 5000 97.52 0.005812
4194304 5000 99.16 0.002955
8388608 5000 99.16 0.001478

Table B.7: InfiniBand bandwidth benchmarks.

106

Bytes Iterations Average(us) Message rate
2 5000 0.003661 0.228783
4 5000 0.007457 0.233035
8 5000 0.015005 0.234451
16 5000 0.030098 0.235144
32 5000 0.059924 0.234079
64 5000 0.12 0.231927
128 5000 0.23 0.225448
256 5000 0.45 0.219585
512 5000 0.78 0.190164
1024 5000 0.91 0.111027
2048 5000 0.91 0.055505
4096 5000 0.91 0.027745
8192 5000 0.91 0.013872
16384 5000 0.91 0.006929
32768 5000 0.91 0.003467
65536 5000 0.91 0.001733
131072 5000 0.91 0.000866
262144 5000 0.91 0.000433
524288 5000 0.91 0.000217
1048576 5000 0.91 0.000108
2097152 5000 0.91 0.000054
4194304 5000 0.91 0.000027
8388608 5000 0.91 0.000014

Table B.8: RXE bandwidth benchmarks(Realtek L8200A Gigabit Ethernet).

107

	Introduction
	Background
	Problem definition
	Limitations
	Main contributions
	Research method
	Outline

	RDMA
	Mechanics
	Kernel bypass
	Memory pinning
	Zero-copy data transfer

	Verbs
	InfiniBand Architecture Specification
	Host channel adapter
	Verbs resources
	Communication
	Transfer operations

	Kernel RDMA subsystem
	IB Core
	Kernel modules
	Device drivers
	RDMA device context
	IB Uverbs

	User-space RDMA libraries
	Libibverbs

	Design
	Components
	Dolphin software stack
	RDMA software stack

	Complexity
	Requirements
	Scope
	Architecture
	Dolphin stack API
	GENIF
	Verbs provider

	Implementation
	Source code
	dis-kverbs
	dis-ktest
	dis-uverbs
	dis-utest

	Virtual verbs device
	Kernel device model
	Dolphin device
	Bus module
	Device driver module
	Device module
	Register device

	RoPCIe kernel verbs provider
	Provider super structures
	Protection domains
	Memory regions
	Queue pairs
	Completion queues
	Work consumers
	SCI Library interface

	RoPCIe user verbs provider
	Register provider
	Verbs operations

	Evaluation and Discussion
	Test environment
	Test tools
	dis-xtest
	Perftest
	FTrace

	Benchmarks
	Latency
	Throughput

	Overhead
	Requester side
	Data transmission
	Responder side
	End to end

	Conclusion
	Summary
	Goals

	Main contributions
	Future work

	Accessing the source code
	Additional tables

