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Abstract

Colorectal cancer in the form of polyps is life-threatening and early detection is central
to a person’s survival rate. Colonoscopy is a common method carried out by medical
professionals to detect these polyps in the lower gastrointestinal (GI)-tract, however,
only relying on humans is unfavorable as humans make mistakes and typically have
a miss rate between 14% to 30% when it comes to detecting polyps. Supplementary
tools such as computer aided diagnosis (CAD) systems are therefore investigated to
aid medical professionals. CAD systems have been shown to be capable of increasing
detection efficiency, and accuracy, and aiding in the early detection of colorectal cancer.
The absence of labeled data, however, is frequently a problem when developing CAD
systems.

Machine learning (ML) models, which are at the heart of CAD systems, require a large
quantity of data to be trained effectively. However, legal limitations and the high cost of
conducting exams make it difficult to obtain medical data. Currently, annotating data
also requires a highly qualified medical expert, which complicates matters. The issue
of having few positive cases (polyp is present) in the medical field is being addressed
through ongoing research into the generation of synthetic medical data.

This thesis explores the use of generative diffusion models to generate synthetic polyp
images to address this sparse domain. Generated polyps from the diffusion models
are presented to domain experts to assess their realism as a qualitative measure. We
subsequently propose the RePolyp framework to generate synthetic polyps that can be
used for segmentation tasks to increase dataset size.

In the end, we demonstrate that generative models namely diffusion models can increase
segmentation models’ performance. The segmentation models trained with synthetic
polyps were significantly improved for one out of three datasets and inconclusive for the
two others as they are non-significant improvements.
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Chapter 1

Introduction

1.1 Motivation

Colorectal cancer is the second leading cause of cancer-related deaths for both men and
women in the world with more than 935,000 deaths and 1.9 million new colorectal cancer
(including anus) cases estimated to occur in 2020 [1], corresponding to about one in ten
cancer cases (10.0 %) and deaths (9.4 %). Data shows that the risk of colon cancer
is increasing with age with the majority of colorectal cancers occurring in people older
than 50 [2]. Colorectal cancer is however highly treatable when diagnosed at a localized
stage [3] with a 5-year relative survival rate of 90%. About 37% of patients are diagnosed
at this early stage [4].

For colorectal cancer, colonoscopy is considered the gold standard as colonoscopies
give a detailed look at the rectum and the entire large intestine. A colonoscopy is a small
flexible tube with a camera attached to the end that is inserted through the rectum. The
camera will then give a doctor who specializes in the digestive system a continuous video
feed to look for abnormalities in the colon. Polyps in the colon are abnormalities that
can be of varying sizes with either precancerous or cancerous polyps. If a polyp is
detected during a colonoscopy it is usually removed if possible. Polyps removed during
a colonoscopy are then examined by a pathologist to determine if the polyp contains
cancerous or precancerous cells. Polyp detection during colonoscopies is prone to human
error with miss rates between 14% to 30% [5].

Computer aided diagnosis (CAD) systems are used for diagnostic aid to provide
doctors with better medical decision-making [6]. Machine learning (ML) models do
however usually need a lot of data to be generalizable. Datasets in the medical domain
are often small and far between. This thesis will try to address this issue by generating
synthetic data to solve the lack of data that ML solutions require inspired by frameworks
such as DeepSynthBody [7].

1



Chapter 1. Introduction

1.2 Problem Statement

Based on the motivation in the previous section, our goal is to improve performance
in the medical domain where data is sparse. Section 1.1 points out how a significant
portion of polyps are missed during colonoscopy due to human error. CAD systems are
therefore introduced which are tools that use machine learning in efforts to reduce polyp
miss rates. However, CAD systems need large amounts and quality data to be robust
and reliable. Therefore, we want to generate synthetic polyps to artificially increase the
amount of data available and images to look realistic.

The research question we are aiming to answer with this thesis is as follows:

Can synthetic polyp images look realistic and be used to improve the
performance of segmentation models?

The research question can be broken down into two parts, one concerning
improvement for systems that use synthetic images and the other the realism of generated
images when interpreted by humans. To answer the research question we divide our
efforts and experiments into three objectives. The overall ultimate goal is to improve
generated synthetic polyp images’ realism and quality. We, therefore, assess quality and
realism with quantitative assessments involving objective metrics. In addition, is domain
experts asked to give subjective feedback on the generated polyp realism as a qualitative
assessment.

• Objective 1 Generate synthetic images from the GI-tract by training diffusion
models on the data collected in the thesis. The generated samples should ideally be
of the same quality and diversity as the data they were trained on. The generative
models should be able to generate a complete image or use inpainting.

• Objective 2 The second objective is training segmentation models either on real
data or a mix of real and synthetic data. Investigation of the performance of
segmentation models when trained on real or mixed data.

• Objective 3 The third objective presents generated images to domain experts to
assess realism. The results are a qualitative assessment that will give an indication
of whether or not the synthetic images are indistinguishable from real images.

1.3 Scope and Limitations

Diffusion models are up-and-coming generative models that have gained huge attention in
the last few years. They are however slow when it comes to sampling speed compared to
their competing architecture such as GANs and variational autoencoders (VAEs). This
is rooted in the trilemma problem in generative models. Due to the time consumption of
diffusion models when it comes to sampling speed were also the amount of configuration
limited. Ideally, should k-fold Cross-Validation have been used, but was not performed

2



1.4. Ethical Considerations

due to time limitations. In the last months have also diffusion models have been seen
suggest to also leak more training data than their counterparts. This issue is monitored
and talked about further in Section 3.8.

As a case study for our specified research problem and as a representative area of
application for the techniques we develop, we will use the medical situation of locating
and detecting polyps (Objective 2). Despite the fact that our thesis is restricted to one
particular medical case, we admit that the techniques examined throughout this thesis
will typically be useful for a number of disciplines where machine learning can be used.

The data we train on is either from HyperKvasir or Kvasir-SEG for polyps with
segmentation masks. Both of these datasets are collected by Simula and may have
some biases. The amount of polyp samples in Kvasir-SEG is also limited which in turn
reduces the generalizability of our generative models. To evaluate the performance of
adding synthetic data to the segmentation models are subsequently only Kvasir-SEG,
CVC-ClinicDB, and ETIS-LaribDB were used for validation.

Due to both hardware and the complexity of the models trained is image sizes
restricted to size 128 × 128. On the hardware side, Random-access memory (RAM) and
memory are the main limitations restricting us from directly generating larger images.
However, we can train secondary models that can increase image size known as super-
resolution, a common practice for diffusion models.

1.4 Ethical Considerations

The use of ML in the medical field presents numerous ethical considerations, including
issues related but not limited to privacy, bias, and accountability. When it comes
to using generative models, a number of ethical considerations must be taken into
account. One key concern is the potential for these models to be used in a malicious
manner, particularly within a clinical context. For instance, synthetic data generated by
diffusion models could be passed off as real data, which would be deeply problematic [8].
Furthermore, as synthetic data is not covered by common data protection rules, it may
be used to spread information outside the confines of an organization. This can cause
problems with anonymity at the personal level and possibly make it possible for general
trends to be abused. In order to unfairly determine insurance premiums, for instance,
false data may be utilized [9].

The ability to properly judge the quality of synthetic data is another ethical concern.
Even though there are metrics in place to assess the realism of synthetic data, are
presently no quantitative metrics for comparing the anonymity and realism of synthetic
data to actual data. Synthetic data must be distinct enough to prevent original data
points from being recognized while still being realistic enough to be used in place of
actual data to lower the risk of information leakage.
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1.5 Research Methods

This thesis applied the Association for Computing Machinery’s (ACM) “Computing as
a Discipline” [10] methodology which presents computing in three main categories.

1.5.1 Theory

The theory is rooted within mathematical science and describes a theoretically coherent
development of a theory. They are described as four steps, (I) characterize objects
of study (definition), (II) hypothesize possible relations among them (theorem), (III)
determine whether the relationships are true (proof), and (IV) Interpret results.

This thesis goes through the elementary theory behind machine learning, more
specifically deep learning and generative models. We identify problems such as
generalizability and synthetic data quality.

1.5.2 Abstraction

The abstraction of this thesis is rooted in an experimental scientific method and relates
to the development and investigation of the hypothesis. The four stages of investigation
are as follows: (I) form a hypothesis, (II) construct a model and make a prediction, (III)
design an experiment and collect data, (IV) analyze results.

The experiments conducted during this thesis fall under this category. We looked
into the causes of these results based on the outcomes of our tests. We then came up
with a theory as to why it behaved in this way and modified subsequent experiments in
light of this theory. The validity of our hypothesis was then tested by running models
that had been modified in accordance with it, and the results either supported or refuted
our initial notion.

1.5.3 Design

The design part is rooted in engineering and relates to the construction of a system
to solve a given problem. It is described as four steps and is as follows: (I) state
requirements, (II) state specifications, (III) design and implement the system, (IV) test
the system.

By using the generative models and framework for generating synthetic images, our
work complies with the steps of this category. The generated images were then utilized
as a component of this thesis to conduct tests that demonstrated the value of the system
being able to create synthetic images.
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1.6 Main Contributions

The goal of this thesis is to address the problems presented in Section 1.2. We list
the three primary contributions that this work made in order to accomplish each goal.
In addition to the work presented in this thesis is a paper "RePolyp: A Framework
for Generating Realistic Colon Polyps with Corresponding Segmentation Masks using
Diffusion Models" shown in Appendix A accepted to CBMS 2023 conference. The paper
compares the training of the polyp segmentation model (U-Net) with only real data
versus a mix of real and synthetic. The results are validated on three different polyp
datasets with two of the validation dataset having a different origin than the training
data. The code is available in provided Github repository 1 with some documentation.

Objective 1

Generate synthetic images from the GI-tract by training diffusion models on the data
collected in the thesis. The generated samples should ideally be of the same quality and
diversity as the data they were trained on. The generative models should be able to
generate a complete image or use inpainting.

This objective covers the training of the diffusion models and their generated samples.
The generated synthetic samples are evaluated based on a quantitative metric. The
models’ polyp feature knowledge is also shown through interpolation. This will be the
main contribution of this thesis in hopes of increasing data available in sparse data
domains such as the medical sector.

Objective 2

The second objective is training segmentation models either on real data or a mix of
real and synthetic data. Investigation of the performance of segmentation models when
trained on real or mixed data.

This objective answers half of the summarized question in the problem statement
on whether or not synthetic data can improve segmentation models. The synthetically
generated samples with segmentation masks are used in combination with real data to
train segmentation models based on the U-Net architecture. We compared U-Net models
only trained on real data and U-Net models trained on a mix of real and fake data and
observed an increase with adding synthetic data.

Objective 3

The third objective presents generated images to domain experts to assess realism.
The results are a qualitative assessment that will give an indication of whether or not
the synthetic data is indistinguishable from the real.

The third objective uses polyp images without segmentation masks that are evaluated
by domain experts. The domain experts are presented with real polyp images and
synthetic polyp images. This objective addresses the issues of the realism of generated

1https://github.com/alexakp/Master-Thesis
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samples.

1.7 Thesis Outline

The thesis is organized into five chapters. The first two chapters are introductory giving
the reader the necessary knowledge and history of what our work relates to. Chapters
three and four explain the ideas used and the work done in this thesis. The fifth chapter
concludes the thesis. The structure of all chapters except Chapter 1 is presented below
as follows:

Chapter 2 - Background

The background chapter introduces the necessary information for image generation
in the medical domain. The background is essentially split into two parts, the medical
background and the technical background with details pertaining to machine learning.
The medical background begins by introducing the GI-tract. We then dive deeper within
the GI-tract learning of how it is composed, its function, and common diseases we can
find. We then take a quick look at two common ways of medically examining the GI-
tract and how technology can be used to aid professionals in the medical field. We then
introduce the machine learning background which is used as a foundation for the work in
this thesis. We then take a look at the history of neural networks and how they are built
up going from MLP to convolutional neural network (CNN). We then elaborate further
explaining terms like deep learning, regularization, and finally generative models. The
background should give a good understanding of both GANs and diffusion models as
they are vital to understanding the work of this thesis.

Chapter 3 - Methodology

The methodology chapter introduces possible approaches to generating synthetic
images in the medical domain with inpainting. Models used either for image generation
or segmentation are also explained with their relevant metrics to evaluate performance.
The datasets used in this thesis are also presented and discussed here.

Chapter 4 - Polyp Generation

The Polyp Generation chapter presents all results from pre-training and fine-tuning
of diffusion models. In addition, is interpolation in latent space shown between two
source images. Both quantitative and qualitative data are presented. The results are
made up of generative models trained on five different types of data.

Chapter 5 - Polyp Segmentation with Synthetic Data

The Polyp Segmentation with Synthetic Data chapter presents the use of synthetic
images to train segmentation models. It compares segmentation models only trained
on real data versus models trained on a mix of real and synthetic data. The results
are made up of images from the previous chapter that are inpainted. A total of three
inpainting models are presented and six U-Net models are used for the segmentation of
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polyps.

Chapter 6 - Conclusion and Future Work

The final chapter summarizes the work done and contributions in this thesis. Lastly,
is future work presented that introduces possible areas to be researched.
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Chapter 2

Background

This chapter presents the technical background needed to understand how deep learning
(DL) techniques are applied to medical data. The medical background gives a key
understanding of the GI-tract, particularly polyps. The three main categories within
ML are then introduced and then gradually work our way to more advanced topics and
models such as neural networks in detail. Furthermore, we take a thorough look at CNNs
and state-of-the-art generative models in computer vision and look at some drawbacks
of these advanced models.

2.1 Medical Background

This section will start by discussing the importance of the GI system in the human body.
Studying the various GI-tract disorders is the focus of our effort for this thesis. Next
are some landmarks and findings presented that can be found in the GI system. They
are used to pinpoint specific findings and that can also be used to identify a number
of disorders. Furthermore, is two common GI screening techniques currently employed
to find these disorders presented. We will also discuss how medical data is essential for
CAD systems that can be used to improve patient health.

2.1.1 The Gastrointestinal Tract

The gastrointestinal (GI)-tract, also called the digestive tract or alimentary canal, is the
pathway of the digestive system from the mouth to the anus. The GI is divided into two
main parts, the upper GI-tract, and the lower GI-tract. The upper GI-tract consists of
the mouth, pharynx, esophagus, stomach, and duodenum. While the lower GI consists
of most of the small intestine and all of the large intestine. The upper and lower GI-
tract can be seen in Figure 2.1. The GI-tract is an essential part of the human body
that plays a crucial role in the digestion and absorption of nutrients. The GI-tract is
also susceptible to a variety of medical conditions, such as polyps, ulcers, inflammatory
bowel disease, and cancer. We will take a closer look at some of what we can find in the
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GI-tract in the following sections.

Figure 2.1: Illustration of the GI-tract [11].© (2023) Terese Winslow LLC, U.S. Govt. has certain
rights.

2.1.1.1 Pathological Findings

Infections, inflammatory illnesses, autoimmune disorders, genetic abnormalities, and
tumors are just a few of the factors that can lead to pathological symptoms in the GI-
tract. However, abnormalities can appear in any area of the GI-tract, from the mouth
to the anus. The colon is the most prevalent site for GI pathology. Medical or surgical
intervention, continuous monitoring, and surveillance for the emergence of complications
or cancer are just a few of the substantial consequences that pathological findings in
the GI-tract might have for patient management. Gastroenterologists, pathologists,
surgeons, radiologists, and other medical specialists must all work together to effectively
manage GI pathology.

2.1.1.1.1 Polyps

Polyps are an abnormal outgrowth of tissue that can be found in several locations in
the GI-tract, but most commonly in the colon region. Polyps can grow into two different
shapes sessile or pedunculated polyps [12]. Sessile polyps are harder to detect during
screening as they lie flat against the surface of the colon’s lining. Polyps that are not easy
to remove and polyps, in general, are often elevated before removal [13]. Pedunculated
polyps hang from a stalk attached to the colon wall. We further divide polyps into
neoplastic and non-neoplastic. Neoplastic polyps cover adenomatous polyps and serrated
polyps with adenomatous polyps being the most common type of polyps. Non-neoplastic
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polyps cover inflammatory polyps, hyperplastic polyps, and hamartomatous polyps
where all of which have a low chance of becoming cancerous. Besides the type of polyps
are also sizes important. Around 1% of polyps less than 1 cm in diameter are cancerous,
10% of polyps between 1-2 cm in size, and 50% of polyps larger than 2 cm [14]. An
example of a polyp can be seen in Figure 2.2.

Figure 2.2: Example of a polyp in the lower GI-tract from Kvasir-SEG [15].

2.1.1.1.2 Ulcerative Colitis

Chronic inflammatory bowel illness called ulcerative colitis primarily affects the colon
and the rectum. Exmaple of Ulcerative Colitis is shown in Figure 2.3.

Figure 2.3: Example of ulcerative colitis in the GI-tract with grading 3 from HyperKvasir [16].
HyperKvasir grades ulcerative colitis from 0 to 3, with 3 being the most severe.

Inflammation, ulceration, and bleeding in the colon and rectum are the defining
characteristics of ulcerative colitis in the GI-tract. The inner lining of the colon and
rectum may look bloated, inflamed, and frail during an endoscopy, and it may also
appear red or pink because of increased blood flow to the area. It is possible to
have sores or ulcers that are open and bleed or create mucus. The colon and rectum
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are frequently continuously affected by inflammation and ulcerations in a diffuse and
continuous manner. Depending on the severity of the condition and the particular
patient, the level of inflammation and ulceration may vary. In moderate cases, the rectum
or a small piece of the colon may only experience inflammation and ulceration, whereas
in severe cases, the entire colon may be affected. In some instances, the inflammation
may impact deeper tissue layers in addition to the colon’s lining, which can result in
consequences like strictures or perforations.

2.1.1.2 Anatomical Landmarks

We can better comprehend the organization and operation of this complicated system by
using Anatomical Landmarks in the GI-tract as essential reference points. The GI-tract
contains several significant anatomical landmarks, including the esophagus, stomach,
small intestine, large intestine, rectum, and anus. These landmarks are crucial for waste
removal as well as for the digestion and absorption of meals. They are essential for
the body’s immunological defense since the GI-tract has a large quantity of lymphatic
tissue. The diagnosis and treatment of certain GI illnesses, including inflammatory bowel
disease, infections, and malignancies, depend on having a thorough understanding of the
anatomy and function of these landmarks.

2.1.1.2.1 Ileum

The Ileum is the last section in the small intestine to connect to the large intestine
shown in Figure 2.4.

Figure 2.4: Example of the ileum in the lower GI-tract from HyperKvasir [16].

Its primary function is to take in nutrients from food. It has Peyer’s patches,
which are lymphatic tissue, which aids in infection defense. Villi and microvilli, which
resemble little fingers and aid in nutrition absorption, cover the lining of the ileum.
The large intestines’ big ileocecal valve divides the ileum from it and regulates the
passage of food that has been digested. Crohn’s disease, infections, and tumors are
a few conditions that can damage the ileum. Endoscopy and imaging studies may be
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used in the diagnosis. Depending on the exact problem, treatment options could involve
either medicine, surgery, or a combination of the two.

2.1.1.2.2 Cecum

The intersection of the ileum and colon is where the cecum, the first section of the
large intestine, is situated shown in Figure 2.5.

Figure 2.5: Example of the cecum in the lower GI-tract from HyperKvasir [16].

Bacteria in the cecum aid in the breakdown of fiber and complex carbohydrates
that cannot be broken down in the small intestine. The cecum in humans is relatively
tiny and plays a small part in digestion. It is however still prone to numerous illnesses
like inflammation, infections, and tumors. Imaging tests like a CT scan or an MRI
may be used to diagnose cecal disorders, and a biopsy may also be required during an
endoscopic examination to provide a firm diagnosis. Depending on the exact problem
and its severity, treatment options for cecal disorders may include drugs, surgery, or a
combination of the two.

2.1.2 Gastrointestinal Endoscopy

GI endoscopy is a medical procedure where the GI is examined for abnormalities such as
disease, infection, and other conditions. The instrument used for the procedure is called
an endoscope, which is essentially a thin, long flexible tube attached to a small camera at
the end for looking at tissues inside the body. The endoscope is inserted either through
the patient’s mouth (gastroscopy) or anus (colonoscopy). The procedure for gastroscopy
and colonoscopy is illustrated in Figure 2.6.

During the procedure, the endoscope is carefully guided through the GI-tract by a
trained healthcare provider, who can view the images from the camera on a screen in
real-time. The endoscope also allows for the collection of tissue samples or biopsies,
which can then be analyzed in a laboratory for further diagnosis.
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(a) Gastroscopy
(b) Colonoscopy

Figure 2.6: Illustration of endoscopy procedures, either as gastroscopy [17] or colonoscopy [18]
procedures. © (2023) Terese Winslow LLC, U.S. Govt. has certain rights.

Endoscopy is considered a safe and effective procedure that can help diagnose a wide
range of GI conditions, including ulcers, polyps, tumors, and inflammatory bowel disease.
It can also be used to monitor the progress of treatment and assess the effectiveness of
the medication. Despite its many benefits, endoscopy does carry some risks, such as
but not limited to bleeding, infection, and perforation of the GI-tract. It is therefore
important to discuss the procedure beforehand with a healthcare provider to discuss
associated risks.

2.1.3 Computer Aided Diagnosis

Computer aided diagnosis (CAD) is an innovative technology that is transforming the
medical field by making it possible to diagnose different diseases more effectively and
accurately. CAD systems analyze medical images and help healthcare professionals
identify and diagnose various illnesses by using state-of-the-art ML algorithms and
computer vision techniques. By examining mammograms and CT scans, respectively,
CAD has been widely employed in the area of radiology to aid in the detection of early
symptoms of cancer, including breast cancer[19] and lung cancer [20]. Additionally,
CAD systems have been created to assist in the diagnosis of additional conditions like
osteoporosis, Alzheimer’s disease, and cardiovascular disease.

One of the main benefits of CAD is that it can aid medical professionals in providing
quicker and more accurate diagnoses, which can improve patient treatment. This can be
done by automating some diagnostic steps, like image processing and report preparation
can CAD also lessen the burden on medical professionals. It is crucial to remember that
CAD does not replace human skill [6], and healthcare professionals should always rely on
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their clinical judgment when establishing diagnoses and selecting treatments. Overall,
does CAD have the potential to completely change how we identify and treat different
diseases, and its application is anticipated to increase over the next few years as more
sophisticated tools and methods are created.

2.2 Machine Learning

Machine learning (ML) is a sub-field of artificial intelligence (AI) that uses statistical
modeling and algorithms to enable computer systems to "learn" based on patterns and
inference without explicit instructions [21]. ML can be used in many different ways
and for multiple purposes. ML models usually fall into three major groups: supervised
learning, unsupervised learning, and reinforcement learning.

2.2.1 Supervised Learning

Supervised learning is a group of algorithms that learn from labeled data. The training
is carried out through an iterative process by predicting a sample and comparing them
to the ground truth. The model then updates its weights based on how incorrect the
prediction was. This process is repeated until the model either stops improving or when
it reaches a set amount of iterations. Common applications for supervised learning are
image classification, segmentation, speech recognition, and language translation. Some
of the most well-known supervised learning algorithms are Support Vector Machines
(SVMs)[22], MLP, and CNN.

2.2.2 Unsupervised Learning

Unsupervised learning is a group of algorithms that learn from unlabeled data. The goal
is to find some pattern in the provided data and learn a task related to this pattern.
Traditionally, cluster analysis has been the most common within unsupervised learning.
These algorithms analyze the unlabeled data and try to find some common patterns
between the data points and divide similar data into groups that are called clusters.
Unsupervised learning can greatly reduce the amount of time needed to label data, which
is beneficial in fields where we lack experts or labeling is costly. Some of the most well-
known cluster analysis algorithms in unsupervised learning are k-means clustering [23]
and hierarchical clustering.

2.2.3 Reinforcement Learning

Reinforcement learning algorithms use an agent where the goal is to maximize their
reward in a given environment. The agent is either rewarded for reaching a goal
or penalized if it does not. In other words, reinforcement learning is inspired by
behaviorism, where the agent "learns" from the action it takes and given states. Common
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applications for reinforcement learning are robot motion control, swarm intelligence [24],
and playing Atari games [25] and Go [26]. Popular algorithms within reinforcement
learning are State-Action-Reward-State-Action (SARSA) [27], Q-learning [28], and a
Deep Q-Network (DQN) [29].

2.3 Neural Networks

Artificial Neural Networks or Neural networks are computational models inspired by the
biological networks in the human brain. Historically, the development of these networks
has been heavily inspired by biology, but has since diverged and taken more principles
from engineering to achieve better results for solving ML tasks. In this section, we take
a closer look at different types of neural networks, their layout, and how they learn. It
will be especially important to take note of models typically used for image generation
and image classification, which will be our main challenge in this thesis.

2.3.1 The Perceptron

The perceptron is an algorithm for supervised learning of binary classifiers introduced
in 1958 by Frank Rosenblatt [30]. It is a linear classifier that takes a set of elements
and then decides which of our two classes our element belongs to. The single-layer
perceptron is the simplest feedforward neural network that is a linear classifier. The
network does only consist of input and output nodes and does therefore not have hidden
layers. Equation 2.1 shows us the function the perceptron uses to determine which class
our element belongs to.

f(x) =
{

1 if w · x + b > 0,

0 otherwise
(2.1)

The function uses some weights w and input x plus some bias that maps to either 0
or 1. In short, is the perceptron built up of three parts; inputs x, the weights w, and
the unit step activation function, shown in Figure 2.7.

Figure 2.7: Schematic of the original perceptron.
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2.3.2 Multilayer Perceptron

The MLP was first described by McCulloch and Pitts in 1943 [31]. Together they created
a computational model for neural networks based on algorithms called threshold logic.
In contrast to the single-layer perceptron, which can only learn linear classification, the
MLP can learn functions that are also non-linearly separable. The hidden layers in the
MLP allow for non-linear transformations of the input data, enabling the network to
learn more complex decision boundaries. MLPs can therefore handle the XOR problem,
which is not linearly separable. This is possible since the MLP is comprised of at least
three layers, one input layer, one or more hidden layers, and one output layer, shown in
Figure 2.8.

Figure 2.8: Illustration of a MLP network with one input layer, one hidden layer, and one output
layer.

Over the years, various modifications and improvements have been made to the
MLP, including the addition of regularization techniques to prevent overfitting, the
use of different activation functions such as the rectified linear unit (ReLU), and the
introduction of DL architectures such as CNN and recurrent neural networks (RNNs).
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2.3.3 The Life Cycle of a Neural Network

The previous section described the architecture of MLP and how it can learn non-linear
functions. This section on the other hand will focus on how a neural network is trained
and learns through updating weights between layer connections. We will take a closer
look at some activation functions, how loss is calculated, backpropagation, and optimizer
functions.

2.3.3.1 Activation Functions

To learn non-linear solutions is some activation function needed so that our network does
not collapse into a two-layer input-output network. The activation function is applied to
our outputs to determine if they should fire or not. Various activation functions are used
for different networks to solve different problems. We will introduce some of the most
common activation functions and discuss their strength and weaknesses when applied to
a neural network.

The sigmoid function is presented in Equation 2.2. It usually returns a value in the
range of 0 to 1. This property makes it useful for probability problems.

f(x) = 1
1 + e−x

(2.2)

The Rectified Linear Unit(ReLU) is an activation function that is positive with input
larger than zero. The ReLU is shown in Equation 2.3 with values larger than zero is
the same as the input and zero otherwise. A problem with the standard ReLU is that
all negative values become zero and can therefore cause problems when a lot of neurons
only output zero. This effect is called dying ReLU and is something that the Leaky
ReLU tries to mitigate.

f(x) =
{

x if x > 0
0 otherwise

(2.3)

The Leaky Rectified Linear Unit (Leaky ReLU) was introduced in 2013 by Maas,
Hannun, and Ng [32]. The Leaky ReLU is the same as the standard ReLU expects for
values smaller than zero, where it has a small negative slope. To achieve this negative
slope is a small value, traditionally 0.01 multiplied with the input x shown in Equation 2.4
for values smaller than zero. The Leaky ReLU resolves the issue with vanishing gradients
in this way since all negative values map onto some small negative values rather than
zero.

f(x) =
{

x if x > 0
0.01x otherwise

(2.4)
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2.3.3.2 Cross Entropy

Cross entropy is the most common algorithm for calculating loss. We can see our loss
in Equation 2.5 where yi is the true output of class i and ŷi is the predicted output of
class i, summed over all classes N . This means that the loss will always be non-negative
and closer to zero the better the network performs. A loss of zero would thus reflect the
network making a perfect prediction. Cross entropy is frequently used for multi-class
classification.

Loss = −
N∑

i=1
yi · log ŷi (2.5)

2.3.3.3 Optimizers

The goal for the optimizer is to minimize the loss in the network, this is accomplished
through tuning our weights in the network. The algorithm used to update the network
is called backpropagation which calculates the gradient of each node in the network and
then uses the chain rule to update the weights. This is performed with a forward and
backward pass, with the optimizer looking at the predicted output compared to the
ground truth. Several optimizers can be used to train a neural network, and we will
briefly introduce one of them in the next section.

One of the most used optimizers is stochastic gradient descent (SGD) [33]. The
algorithm replaces the actual gradient with an estimation of the gradient for the entire
dataset. By doing this, SGD can run iteration faster in high-dimensional optimization
in exchange for a lower convergence rate which can cause us to overshoot the local
minimum. It is however possible to use a technique known as momentum to reduce the
effect of overshooting in SGD. This is accomplished by gradually decreasing the learning
rate of the optimizer as the number of epochs increases. In Equation 2.6 can we see the
formula for SGD.

θ = θ − η · ∇θJ(θ; x(i); y(i)) (2.6)

The AdamW [34] optimizer is a variation of the Adam [35] optimizer, which is a
commonly used SGD optimization algorithm. It was introduced in 2018 by Loshchilov
and Hutter as a modification of the original Adam algorithm to prevent overfitting and
improve generalization performance. The W in AdamW stands for weight decay, which is
a regularization technique used to prevent overfitting by adding a penalty term to the loss
function that discourages large weights. The AdamW optimizer essentially incorporates
weight decay directly into the optimization process, making it more effective than using
weight decay as a separate hyperparameter. It has been shown to outperform other
popular optimizers such as SGD with momentum and Adam on a variety of DL tasks.
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2.3.4 Convolutional Neural Networks

Similar to MLPs is CNNs also feed-forward networks that learn through backpropagation
by updating their weights. MLPs are not particularly good for image classification as
well as fully connected, meaning that our parameters and depth model grow rapidly
when increasing the size of the input. CNN on the other hand, is only connected to
the local region of the input [36]. This makes it so that CNNs can understand spatial
relations between pixels of images and therefore much better suited for complicated
images. Keeping the number of parameters low while being able to express complex
models is the biggest reason for convolutional networks’ success. The two concepts used
to achieve this improvement compared to the traditional network is convolutional and
pooling operations.

2.3.4.1 Convolutional Layers

The convolutional layer is the most vital part of a CNN. It is here that the majority
of computation is performed, requiring input data, a filter, and a feature map. To do
the convolution operations is a filter with kernel size and spatial size used on input to
produce an output. Every filter slides across the input in the forward pass using the dot
product between the weighted filter and input. The result of this convolution operation
is what we refer to as the feature map. An example of this operation is illustrated in
Figure 2.9 with a filter of size of 3 × 3 × 1 slid across a 4 × 4 × 1 input image producing
a 2 × 2 × 1 feature map.

Figure 2.9: Diagram showing an example of convolution operation with input image 4 × 4 × 1
using a kernel of size 3 × 3 × 1 and stride of 1.

Instead of using the dot product, the convolution layer uses the convolution operation.
Thus, the output vector is a result of convolution between the input and a filter kernel
which is then passed to an activation function. The total output of the convolutional
layer can thus be interpreted as a 3D tensor giving us all feature maps. A slice of this
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3D tensor is then a 2D tensor which is a single feature map.

2.3.4.2 Pooling Layers

Pooling layers also called downsampling are commonly found in CNNs. Its purpose is
to reduce the spatial size of the data given, in doing so is the number of parameters
and computations needed by the network reduced. Typically, the purpose is to either
reduce processing or memory costs. The two most common types of pooling are max
and average pooling. Max pooling is shown in Figure 2.10 and average pooling is shown
in Figure 2.11.
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Figure 2.10: Max pooling performed on a 4 × 4 matrix with stride and pool size of 2.
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Figure 2.11: Average pooling performed on a 4 × 4 matrix with stride and pool size of 2.

Pooling works similarly to the convolution operation with a sliding window over the
represented data. The parameters used for pooling are generally a filter size of 2 and a
stride of 2. There are no weights tied to the pooling layer and the layer thus only routes
gradients back without changing them during backpropagation.

2.3.4.3 U-Net — Network Architecture

U-Net is a CNN that was developed for biomedical image segmentation. It was developed
at the University of Freiburg and its paper was published in 2015 [37]. The U-Net
architecture originally stems from a fully convolutional network. The U-Net architecture
consists of two parts a downsampling part and an upsampling part which results in u-
shaped architecture illustrated in Figure 2.12.

The first part of the U-Net architecture is the downsampling also known as the
contracting path similar to an encoder. This part takes in an input image and transforms
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Figure 2.12: Original U-Net architecture published in 2015 [37]. Today are typically modified
versions of this architecture used.

it into high-level features in the feature space. The exact location of the segmented
objects learned in this part is not known, and this is where the upsampling part gives
the spatial details needed.

The second part is the upsampling also known as the expansive path similar to a
decoder. The upsampling part takes in the result of the downsampling part and fills in
where the features are situated in finer detail with the help of skip connections. Skip
connections for U-Net are illustrated in Figure 2.12 as grey arrows. Skip connections in
an encoder-decoded architecture such as U-Net can recover fine-grained details in the
prediction.

Even though the initial paper that introduced the U-Net architecture was to solve
the task of biological image segmentation it is currently used for other tasks with several
variations of the original architecture. The downsampling part of the network utilizes
convolution and max pooling. The upsampling part consists of transposed convolution
also known as upsampling, convolution, and skip connections from the downsampling
part. The input from a skip connection corresponds to the output from the corresponding
downsampling layer. Skip connections are concatenated with the output from the
transposed convolution.
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2.3.5 Deep Learning

Deep learning (DL) is a sub-field within ML that mainly uses neural network
architectures. DL uses the term "deep" meaning it is comprised of three or more
layers. In earlier sections, has MLPs and CNNs were introduced, which use three or
more layers and are therefore DL algorithms. DL is not only restricted to supervised
learning but can also be used for unsupervised learning and reinforcement learning.
DL has achieved significant success in fields like computer vision and natural language
processing, but challenges still exist such as the requirement for large amounts of labeled
data and specialized hardware. Recent research focuses on developing more efficient
algorithms. Despite DL limitations has it transformed the field of ML and AI with
potential applications continuing to grow. Ongoing research and development in DL will
likely lead to even more breakthroughs in the years to come.

2.3.6 Regularization

Regularization is a technique [38] used in ML to prevent overfitting and improve the
generalization of models. Overfitting occurs when a model fits too closely to the
training data while simultaneously performing poorly on new unseen data. The goal
of regularization is to encourage the network to learn a simpler, more general solution
to the problem rather than memorizing the training data. The penalty term applied by
regularization adds a cost to the model for having high-magnitude coefficients or weights,
which are associated with more complex models. By adding this penalty, regularization
helps to prevent overfitting and improves the generalization ability of the model.

There are many different types of regularization techniques, including L1
regularization and L2 regularization. The selection of which regularization technique
to use will depend on the specifics of the problem and the model being trained.
Regularization is a crucial technique that is often used in conjunction such as, such
as data augmentation and dropout, and more to improve the generalization ability of
models.

2.3.6.1 Dropout

Dropout was first introduced in 2014 by Srivastava et al. [39] to prevent overfitting in
neural networks. The main idea behind dropout is to ensure that no single neuron has too
much influence over a model’s prediction. Dropout works by randomly cutting a certain
amount of connections in a layer during training. The number of cut of connections can
vary, but at the time of writing are dropout usually in the interval of 10% to 50% as
values higher than that can result in a significant reduction in model performance. An
example of dropout in a single hidden layer is illustrated in Figure 2.13.

Using dropout makes the network so that it cannot just rely on a few weights during
training, as there is a possibility that the connection from the weight will be cut off. This
simplicity makes the network’s strong weights more evenly distributed and therefore more
robust.

23



Chapter 2. Background

Figure 2.13: Example of how a network with dropout p = 0.4 can look like. Dropped neurons
from the top to bottom are neurons 2 and 5 in the hidden layer.

2.3.6.2 Data Augmentation

Data augmentation is a commonly used regularization technique used to reduce
overfitting and thus improve the generalization of a model. Data augmentation
artificially increases the size of the training dataset and exposes the model to different
variations of the same data. In data augmentation, existing data is transformed by
applying various operations, such as but not limited to rotation, flipping, cropping,
scaling, and adding noise. These operations simulate different perspectives and variations
of the same data, making the model more robust to different types of input. By training
on a larger and more diverse dataset is the model less likely to memorize the training
data and instead learns to recognize the underlying patterns and features of the data.

Data augmentation is especially useful in computer vision and image classification
tasks [40], where it can be applied to images to increase the size of the training dataset.
However, it can also be applied to other types of data, such as text and audio, by
applying operations that simulate variations in the data.

While data augmentation can be an effective regularization technique it is important
to choose appropriate augmentations that are representative of the data and the given
problem. Furthermore, data augmentation should not be used instead of obtaining
additional labeled data or using alternative regularization methods. Instead, it is often
used in combination with other regularization techniques to achieve optimal performance.
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2.4 Generative Models

Generative models fall under the unsupervised learning category. Generative models
have gained a lot of popularity over the last years, especially GANs and Generative
Pre-trained Transformer (GPT). Common for these models is that they learn the
true data distribution of the training data in order to generate new data with a
similar distribution which is categorized as synthetic data. The models must also
have a stochastic element to make individual samples differ from each other, generative
models are therefore probabilistic rather than deterministic. Common applications for
generative models include text-to-image translation, music generation, video generation,
and image generation. Image generation has been especially used to generate human
faces, also known as deepfakes.

2.4.1 Autoencoders

Autoencoders were first introduced in the 1980s by Hinton et al. [41]. An autoencoder is
an unsupervised artificial neural network that learns to recreate data as close as possible
to the original input. The architecture of the vanilla autoencoder is comprised of three
main parts: An encoder network, a bottleneck, and a decoder network. The encoder
network reduces our input dimensions and compresses our data into latent space. The
bottleneck contains the compressed representation of the input data with the lowest
possible dimensions. The decoder network reconstructs the data from the latent space
to be as close as possible to the original data, the whole process can be seen in Figure 2.14.

Figure 2.14: Basic structure of autoencoder with its three main parts; The encoder, latent space,
and decoder.

Traditionally, autoencoders have been used for learning important features and
dimensionality reduction. Types of autoencoders are vast and have recently become
more used for learning generative models. In the next section, variational autoencoders
are described, which is a popular type of autoencoder used for generating new data.

2.4.2 Variational Autoencoders

The VAE was introduced in 2013 by Kingma and Welling’s publication “Auto-Encoding
Variational Bayes” [42]. The variational autoencoder differs in the fact that it maps
the input to a multivariate Gaussian distribution in the latent space and not a single
point. The input is encoded into a multivariate normal distribution with mean value
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µ and the variance σ2 into the latent space. A point is then sampled from the
distribution as a representation in latent space, which is then decoded to reconstruct
the input. Variational autoencoder uses a statistical approach to approximate complex
distributions. The encoder outputs a latent representation of parameters in the latent
space for every input. The network then forces the latent distribution to be normally
distributed. A common issue with a variational autoencoder is that it often produces
blurry images due to its normal distribution assumption.

2.4.3 Generative Adversarial Networks

The basic GAN was introduced in 2014 by Ian Goodfellow et al. [43]. It contains
two Deep Neural Networks (DNNs), one called the generator G and the second called
discriminator D, where they compete in a zero-sum game, where one agent’s gain is
another agent’s loss. GANs can learn to generate realistic images for a given training
set of images if it manages to deduce a distribution from the training set.

The generator’s main job is to generate synthetic data. This is achieved by taking a
random noise vector as input, which can be sampled from statistical distributions, most
commonly a Gaussian distribution. The discriminator’s task is to distinguish between
generated data and real data. This is brought about in hopes of generating data that is
realistic enough to be labeled as real data by the discriminator. The basic architecture
of the model can be seen in Figure 2.15. Ideally, the network should generate data that
"fools" the discriminator about half of the time or when the generator and discriminator
stop improving.

Figure 2.15: General structure of a basic GAN where z denotes a random latent input.

The two networks are trained simultaneously by learning each other’s mistakes in
hopes of generating realistic data. The generator will only be able to generate realistic
images from the data distribution given by the training data.
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2.4.4 Diffusion models

Diffusion models also known as diffusion probabilistic models are models that fall
under the class latent variable models. Diffusion models were introduced in 2015 with
motivation from non-equilibrium thermodynamics [44]. Diffusion models learn the latent
structure of a dataset by modeling the way in which data is diffused through the latent
space.

Diffusion models can be applied in a variety of tasks such as image denoising,
inpainting, super-resolution, and image generation. Diffusion models consist of two
processes the forward process which gradually adds Gaussian noise to the image, and
the backward process which gradually removes Gaussian noise. These two processes are
illustrated in Figure 2.16.

Figure 2.16: Forward and backward process of diffusion models, with t=200 and T=1000.

2.4.4.1 Denoising Diffusion Probabilistic Models

DDPM is a class of latent variable models inspired by considerations from non-
equilibrium thermodynamics. DDPM have achieved high-quality image generation
without adversarial training, by simulating a Markov chain for many steps to produce a
sample. This makes DDPM slow for image generation, the regular amount of timesteps
is 1000 (T=1000) as utilized in the original DDPM [45].

The reverse process pθ(x0:T ) is defined as a Markov chain with learned Gaussian
transitions starting at p(xT ) = N (xT ; 0, I), the process is further explained in
equation 2.7.

pθ(x0:T ) := p(xT )
T∏

t=1
pθ(xt−1|xt),

pθ(xt−1|xt) := N (xt−1; µθ(xt, t), Σθ(xt, t))
(2.7)

The forward process or the diffusion process, on the other hand, approximates
posterior q(x1:T |x0) to a fixed Markov chain that gradually adds Gaussian noise to
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the data with a variance scheduler β1, . . . , βT until data is nearly an isotropic Gaussian
distribution, this process is further described in equation 2.8.

q(x1:T |x0) :=
T∏

t=1
q(xt|xt−1),

q(xt|xt−1) := N (xt;
√

1 − βtxt−1, βtI)
(2.8)

Both the training and sampling processes are described in Table 2.1 as pseudo-
code. The key takeaway is that we either add Gaussian noise during training or remove
Gaussian noise during sampling.

Algorithm 1 Training Algorithm 2 Sampling

1: repeat 1: xT ∼ N (0, I)
2: x0 ∼ q(x0) 2: for t = T, . . . , 1 do
3: t ∼ Uniform({1, . . . , T }) 3: z ∼ N (0, I) if t >1, else z = 0
4: ϵ ∼ N (0, I) 4: xt−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt, t)

)
+ σtz

5: Take gradient descent step on 5: end for
∇θ||ϵ − ϵθ(

√
ᾱtx0 +

√
1 − ᾱtϵ, t)||2

6: until converged 6: return x0

Table 2.1: Pseudo code for the training and sampling procedure for DDPMs from the original
paper [45].

2.4.4.2 Denoising Diffusion Implicit Models

To accelerate sampling for diffusion models was Denoising Diffusion Implicit Models
(DDIM) [46] introduced, as a more efficient class of iterative implicit probabilistic models
with the same training procedure as DDPM. This is achieved through generalizing
DDPM via a class of non-Markovian diffusion processes. These non-Markovian processes
can correspond to generative processes that are deterministic. Sampling speeds for
DDIM are anywhere from 10x to 50x faster than DDPM in terms of wall-clock time,
the increase in sampling speed is brought forth by trading off computation for sample
quality.

2.4.5 Trilemma

The trade-off between three important generating model sample quality, sample variety,
and computing efficiency is known as the generative trilemma. The trilemma is a
fundamental problem faced by all generative models, including GANs, VAEs, and
Diffusion Models.

GANs as introduced in Section 2.4.3 are a class of generative models that learn to
generate synthetic data by training two neural networks against each other. While GANs
can produce high-quality samples with sharp details, they can suffer from mode collapse,
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where the generator learns to produce only a limited set of samples without exploring
the full space of possible samples. This can result in poor sample diversity.

VAEs as introduced in Section 2.4.2 on the other hand, learn to model the underlying
distribution of the data and generate samples by sampling from this distribution. VAEs
tend to produce more diverse samples than GANs, but they can suffer from blurry
samples and limited sample quality due to the inherent trade-off between sample diversity
and sample quality.

Diffusion models as introduced in Section 2.4.4 use a reverse diffusion process to
generate high-quality samples and have been shown to produce the highest-quality
samples among the three types of models. However, diffusion models are computationally
expensive and require a large number of iterations to generate each sample, making them
less efficient than GANs and VAEs.

Therefore, the generative trilemma involves a trade-off between sample quality,
sample diversity, and computational efficiency, and each type of generative model has
its strengths and weaknesses in addressing this trilemma. It ultimately depends on the
specific application and the desired outcome which model is the most suitable for the
task at hand. The trilemma is shown in Figure 2.17 with the trade-offs for the different
generative models.

Figure 2.17: Generative models trilemma.

2.5 Summary

This chapter presented ML methods, such as DL neural networks and generative models,
that are revolutionizing medical image analysis. These methods have made it possible
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to develop cutting-edge approaches to medical image analysis, such as CAD systems
that can assist clinicians in disease diagnosis, by automatically finding and measuring
abnormalities in medical images. It is important that ML models are generalizable and
may therefore need regularization to perform well on unseen data. We have talked
about the importance of the GI-tract for food digestion and absorption. The esophagus,
stomach, small intestine, and large intestine are only a few of the organs and tissues
that make up the GI-tract. The GI-tract can be impacted by a number of illnesses,
including colorectal cancer, irritable bowel syndrome, and inflammatory bowel disease.
Endoscopy is a frequent medical technique used to identify and treat conditions of the
GI-tract. A little, flexible tube with a camera on the end is put into the patient’s
digestive tract during an endoscopy. Doctors can see anomalies like polyps, ulcers, and
tumors while viewing real-time images of the GI system and can even collect tissue
samples for additional examination. Early detection of these anomalies is crucial for an
effective treatment that can save lives.

For a variety of applications, including image synthesis has ML gained popularity.
GAN and diffusion models are two of the many ML models that are used for image
synthesis that has drawn a lot of interest.GANs consists of two networks a discriminator
network used to examine created images and a generator network that learns to produce
synthetic images. On the other hand, diffusion models employ a Markov Chain Monte
Carlo strategy to iteratively improve an initial image into a final generated image. There
are benefits and drawbacks to both GANs and diffusion models. While GANs are known
for producing realistic and aesthetically pleasing images can they be difficult to train
and are prone to mode collapse, which happens when the generator only outputs a small
number of options while disregarding the larger field of possibilities. While diffusion
models on the other hand can be computationally expensive to train and need a lot
of memory to retain the intermediate noise samples during training, they are typically
more stable and do not experience mode collapse. Both GANs and diffusion models are
effective tools for creating images despite these drawbacks, and continuing research tries
to address these issues and enhance their effectiveness.
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Methodology

The previous chapter introduced abnormalities in the GI-tract and how CAD systems
can help professionals to detect these abnormalities. However, for CAD systems to
be effective, a large amount of data is required. This chapter focuses on how we can
generate polyp images to increase polyp samples that can be used for CAD systems.
Four datasets are introduced, three being polyp datasets and one unlabeled dataset. We
present two approaches to generate polyp images, one without segmentation masks and
one with segmentation masks. Both approaches rely on the same underlying generative
models. Lastly, we present how we train polyp segmentation models using real data or
a mix of synthetic and real data.

3.1 System Specifications

The models trained in this thesis have been programmed in Python 1 and implemented
using PyTorch [47], which is an open-source DL framework widely utilized in research.
PyTorch was for instance used for rescaling images to size 128×128 and center-cropping
before training. During training, PyTorch was used for giving images a fifty-fifty chance
of flipping horizontally as well as being used to implement all models. To monitor
training progression was WandB 2 utilized. This package makes it possible for us to
track how long our models have trained and their losses in real time. OpenCV 3 is an
open source computer vision and machine learning software library and it uses in our
thesis is talked about in the next chapter in regards to image correlation. The system
specifications used in the experiments can be seen in Table 3.1. The main limitation of
our experiment is the hardware pertained to RAM. In all experiments was only a single
GPU used at a time.

1https://www.python.org/downloads/release/python-385/
2https://docs.wandb.ai/quickstart
3https://opencv.org/
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Hardware
CPU Intel Xeon Platinum 8168 @ 2.70GHz
GPU Nvidea V100 Tensor Core
RAM 32 GB
Software
Python 3.8.5
Pytorch 1.12.1
OpenCV 4.6.0
WandB 0.13.4

Table 3.1: System specification for both hardware and software. For more in-depth software
dependencies visit the Github repository.

3.2 Data Material

In this thesis have we used 4 datasets, HyperKvasir [16], Kvasir-SEG [15], CVC-
ClinicDB [48], and ETIS-Larib Polyp DB [49]. An overview of the datasets used can be
seen in Table 3.2.

Dataset Focus Resolution # Images
HyperKvasir [16] Multiple Variable 111 079
Kvasir-SEG [15] Polyps Variable 1 000
CVC-ClinicDB [48] Polyps 388 × 288 612
ETIS-Larib Polyp DB [49] Polyps 1255 × 966 196

Table 3.2: Overview of GI datasets used for training and validation.

The Kvasir datasets have mainly been used for training and some validation, and
the CVC-ClinicDB and ETIS-LaribDB datasets have only been used for validation. The
HyperKvasir dataset was chosen as the main dataset as it has a vast and diverse amount
of data and is therefore preferred for training. All collected datasets are only to be
used for research and educational purposes under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

3.2.1 HyperKvasir

The HyperKvasir [16] dataset is the largest open-source dataset from the GI-tract. The
dataset can be split into four main parts; Labeled images, unlabeled images, segmented
images, and annotated videos. The labeled part is comprised of 10,662 labeled images
with 23 different classes. The unlabeled part is comprised of 99,417 unlabeled images.
Lastly, there are also 373 videos containing different findings and landmarks, which
correspond to 11.62 hours of videos and 1,059,519 video frames.
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3.2.2 Kvasir-SEG

The Kvasir-SEG [15] dataset contains 1000 polyp images, their corresponding pixel-
wise segmented ground truth, and a bounding box for the corresponding images stored
in a JSON file. The resolution of the images in Kvasir-SEG varies from 332x487 to
1920x1072 pixels. The dataset was collected using endoscopic equipment and verified by
experienced gastroenterologists from Vestre Viken Health Trust (VV) in Norway based
on the original Kvasir dataset [50]. The VV is compromised of 4 hospitals and provides
health care to 470 000 residents in 26 municipalities.

3.2.3 CVC-ClinicDB

CVC-ClinicDB [48] is a public dataset of frames taken from colonoscopy videos. Many
examples of polyps can be seen in these frames. Each polyp frame has also been labeled
with a corresponding ground truth. The ground truth is a mask that corresponds to the
area in the image where a polyp is present. The 612 colonoscopy frames that make
up the CVC-ClinicDB dataset were recorded with high-definition endoscopes. The
frames, which include hyperplastic, adenomatous, and serrated polyps, were taken at
the Hospital Clínic de Barcelona and other partnering hospitals.

3.2.4 ETIS-Larib Polyp DB

The ETIS-Larib Polyp DB [49] is a publicly accessible collection of colon polyps that have
been segmented with the goal of creating and testing CAD systems for polyp detection.
16 colonoscopy videos make up the ETIS-Larib Polyp DB, from which 196 pictures
of polyps were taken. The images are in JPEG format, and an XML file including
annotations of the polyps written by knowledgeable gastroenterologists is included with
each image.

3.2.5 Discussion of the Different Datasets

The CVC-ClinicDB dataset, for instance, includes endoscopic images of polyp tumors
that were gleaned from colonoscopy videos. Similarly to this, the ETIS-LaribDB dataset
includes retinal images derived from retinal video sequences. In both instances, the
images from the same sequences are highly related to one another in terms of visual
appearance, imaging process, and outside elements like lighting and camera position.
Kvasir-SEG, on the other hand, is much more diverse when it comes to types of polyps
and is therefore used for training. Examples of images and their segmentation masks
can be found in Figure 3.1.

Kvasir-SEG has some biases even though it was chosen for training. It was shown to
have some closely related polyps as shown in Figure 3.2 which can cause biases.

It is also worth mentioning that many images in Kvasir-SEG have artifacts, like
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Kvasir-SEG CVC-ClinicDB ETIS-Larib
Polyp DB

Original GT Original GT Original GT

Figure 3.1: Examples of original images with their GT - Ground Truth for polyps from the
Kvasir-SEG [15], CVC-ClinicDB [48], and ETIS-Larib Polyp DB [49] datasets.

Figure 3.2: Two different images from Kvasir-SEG [15], where the right image can be seen as an
augmented version of the left image. It appears that multiple parts of the image are cropped.
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green boxes in the lower left corner or overlayed text, which are addressed in [51] by
preprocessing the images using GANs. While using closely related images from video
sequences can help with some medical image analysis tasks, such as object tracking,
can it also pose some difficulties for others, such as image segmentation or classification
tasks. The key issue is the risk of overfitting to unique properties of individual images
within the sequence which might reduce a model’s generalizability to other data.

3.3 Approaches

This section presents three approaches to generating polyp images. The approaches
depend on different data and applications with their set of advantages and limitations.
The most appropriate approach depends on the specific application and available
resources at hand. By presenting these different approaches, readers will gain a better
understanding of the complexity of generating synthetic data and the range of possible
solutions.

3.3.1 Polyp Generation

The approach can be explained in the following steps:

1. Diffusion model trained on a large number of unlabeled images. The training is
performed so that the diffusion model has a general idea of what the GI-tract looks
like. This results in a pre-trained model that can generate images similar to those
found in the GI-tract. The pre-trained model weights are saved to be tuned in the
next step.

2. Diffusion model from the previous step loaded. It is then fine-tuned on polyp
images. The model will now produce polyp images.

Application that the generated polyps can be used in is classification tasks, for
example, classifying whether an image is from the polyp class or clean colon class.

3.3.2 Polyp Generation for Segmentation

The approach can be explained in the following steps:

1. Use generated masks using a FastGAN-based [52] model. This model is trained on
a large number of masked images, resulting in our first pre-trained model. Masking
an image is a process of only revealing parts of an image. The pre-trained models’
weights are saved to be tuned in the next step. Unlabeled images from HyperKvasir,
masks generated by the FastGAN, and corresponding masked unlabeled images can
be seen in Figure 3.3.
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(a) Complete image (b) Mask (c) Masked image

Figure 3.3: Column (a) shows original images in unlabeled part of HyperKvasir, (b) masks
generated with a FastGAN, and (c) masked image achieved by comparing (a) and (b).

36



3.4. The Art of Inpainting

2. The diffusion model trained in the previous step on real cropped-out polyps. The
cropped-out polyps are obtained by removing everything in the images except the
ground truth region. This is our fine-tuning toward generating realistic cropped-
out polyps.

3. New diffusion model trained on a large number of images. The training is
performed so that the diffusion model has a general idea of what the GI-tract
looks like. This results in a pre-trained model that can generate images similar to
those you can find in the GI-tract. The pre-trained model weights are saved to be
tuned in the next step. Same procedure as step 1 in 3.3.1.

4. Diffusion model from the previous step loaded. It is then fine-tuned on clean colon
images. The model can now produce colon images that do not contain polyps. The
fine-tuned model weights are saved to be used in the next step. Same procedure
as step 2 in 3.3.1, but tuned to generate a clean colon and not polyps.

5. In our final step, do first create a corresponding segmentation mask for our polyps
from step 2 by thresholding. We then use our ground truth and corresponding
segmentation mask with our diffusion model from step 4. This is performed to
generate clean probabilistic background created for our cropped-out polyps while
simultaneously having the polyp images segmentation mask.

Application that the generated polyps can be used in segmentation and
classification tasks, for example, to artificially increase dataset size and diversity when
training a segmentation model to improve performance.

3.4 The Art of Inpainting

Image inpainting is a method for restoring missing or damaged portions of an image.
Inpainting algorithms based on DL have proven the ability to produce realistic and
visually attractive images. Ensuring that the resulting images are aesthetically and
conceptually cohesive is one of the primary issues in image inpainting. This calls for
the method to remain consistent with the underlying structure and content of the image
in addition to filling in missing pixels with colors and textures that fit the surrounding
regions.

The handling of various sorts of missing information brought on by occlusions or data
loss presents another challenge in picture inpainting. A variety of inpainting methods
that combine various forms of information, such as context information from nearby
pixels, semantic information from object recognition, and texture information from image
synthesis, have been offered as solutions to this problem.

3.5 Diffusion Based Frameworks

In this section, we present models that train or depend on pre-trained diffusion models.
Diffusion models can achieve better sample quality and diversity than GANs, and we
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try to look at some specific implementations of how they can achieve this. In addition,
we perform an investigation of how pre-trained DDPMs can be used for inpainting
objectives. To inpaint is a model that has a good understanding of what to inpaint
in specific domains needed. We, therefore, look at a way to adjust our DDPMs to
understand new more specific data.

3.5.1 Guided Diffusion

The guided-diffusion codebase is based on improved diffusion4 with some modifications
and the same authors. The corresponding article for the guided-diffusion codebase is
named "Diffusion Models Beat GANs on Image Synthesis" [53]. The presented diffusion
models achieved image sample quality superior to that of state-of-the-art generative
models at the time. Several diffusion models were trained and evaluated on datasets
such as ImageNet [54] and 3 classes on the LSUN dataset [55] with classes: bedroom,
horse, and cat. Guided diffusion supports both training unconditional and conditional
diffusion models and has many different pre-trained models available.

The use of a multi-scale method for image generation is a significant architectural
improvement in guided diffusion. Starting with a low-resolution image and gradually
adding information at higher resolutions, the model creates images at various scales.
With this method, the model is able to capture an image’s overall structure as well as
its minute details, producing synthesized images of superior quality. The introduction
of a conditioning mechanism, which enables the model to produce images that adhere
to specific restrictions, is another architectural advancement. The diffusion process is
guided by the conditioning mechanism to produce images that adhere to the stated
restrictions. The conditioning mechanism can take many different forms, such as a
textual description or a set of input vectors. This approach is useful when creating
images with certain characteristics, such as a particular design or color scheme.

Lastly, are also a number of additional architectural advancements, such as the
use of skip connections to enhance information flow through the model and the use
of normalization techniques to enhance the stability and convergence of the training
process implemented. The visualization of a conditional diffusion model can be seen in
Figure 3.4.

3.5.2 RePaint

RePaint is an inference scheme [57] introduced by et al. Lugmayr in 2022 for free-
form inpainting tasks. RePaint relies on pre-trained unconditional DDPM for inpainting
generation. By conditioning information in the known parts of the image and filling
masked regions with probabilistic pixels, RePaint alters reverse diffusion to generate
missing regions. The RePaint procedure can be observed in Figure 3.5.

The scheme does not modify the trained DDPM meaning inpainting will be of high
quality and diverse. RePaint introduces a resampling procedure to avoid semantically

4https://github.com/openai/improved-diffusion
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Figure 3.4: The architecture of a latent diffusion model that supports conditional generation [56].

Figure 3.5: Illustration of the process in RePaint [57].
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incorrect inpainting by harmonizing the inpainting. It also uses a jump length that
seems to decrease blurriness when inpainting. The best-achieved results presented in
RePaint are with T = 250 timesteps, r = 10 resampling steps, and j = 10 jump lengths.
RePaint outperformed state-of-the-art Autoregressive, and GAN approaches on five out
of six mask distributions with the sixth being inconclusive. Figure 3.6 shows examples
of inpainting using different input images using RePaint.

Figure 3.6: The process is conditioned on the masked input seen in input images. Diffusion
showed for 0 timesteps 60% of all timesteps and 75% timesteps. 5 possible samples are generated
as the process is stochastic [57].

Every reverse diffusion step, as introduced in the Background Section is
fundamentally stochastic since it includes new noise from a Gaussian Distribution. The
model is also allowed to paint anything that semantically corresponds with the inpainted
region because it does not directly guide the inpainted area with any loss. In particular,
illustrates images in row 3 in Figure 3.6 the diversity and flexibility of RePaint.

3.5.3 Transfer Learning Models

Transfer learning is a machine learning technique that involves taking a pre-trained
model and adapting it to a new task or dataset. The pre-trained model has already
learned to recognize relevant features in a large dataset and can be used as a starting
point for training a new model on a smaller dataset with similar features. Transfer
learning has become increasingly popular in DL due to the availability of large, pre-
trained models. These models have been trained on large datasets such as ImageNet
and can be used as feature extractors to identify relevant patterns in new datasets.

Diffusion models can also benefit from transfer learning. Transfer learning in diffusion
models is applying a previously learned diffusion model to a new dataset or task. The
pre-trained diffusion model may be used as a feature extractor, where the higher layers
are changed with new layers that have been trained on the new dataset while the bottom
layers of the model are frozen. The pre-trained model can with that take advantage of the
learned feature representations to find relevant patterns in the new dataset and provide
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high-quality samples. However, we do not freeze bottom layers in our experiments but
rather fine-tune all layers as DDPMs uses U-Net which has been shown to perform better
when fine-tuning all layers [58] rather than freezing lower layers.

3.6 Regularizing Diffusion Models

To prevent overfitting in our diffusion models is regularization introduced. In general,
is regularization not something that needs much attention in diffusion models. However
we use very little data sometimes in this thesis and regularization of diffusion models
is, therefore, something that needs to be used to combat overfitting. Regularization
techniques used are but not limited to dropout [59], AdamW optimizer [60], and
horizontally flipping images [61].

Dropout is as mentioned in Section 2.3.6.1 a common regulation technique that has
the chance to turn off a certain amount of neurons. This helps to spread out strong
weights more evenly. Training our DDPMs is dropout amounts of 0, 0.1, or 0.3 used
corresponding to a probability 0%, 10 %, or 30 % respectively.

To train the diffusion models is the AdamW optimizer utilized. As was previously
indicated in Section 2.3.3.3, AdamW directly introduces weight decay during the
optimization process. The weight decay is the part that can be seen as regularization.
It is therefore preferred our both Adam and SGD with momentum optimizers.

To artificially increase the dataset size are images horizontally flipped, and the chance
for an image to be flipped during training is 50%. Flipping images horizontally is a very
common regularization technique, but may introduce some problems when it comes to
generative models as will be displayed in the next Chapter.

3.7 Metrics

In this section, metrics for accurately evaluating the quality of generated images and
segmentation models presented. The metric used for evaluating generated images
measures the distance between real and fake data distribution. Metrics for measuring
segmentation models use predicted masks versus ground truth. All metrics used are
quantifiable and should give an indication of how well our models perform for our tasks.

3.7.1 Fréchet Inception Distance - FID

The FID was introduced in 2017 by Heusel et al. [62]. FID is a metric used to assess the
quality of images in generative models such as GANs. It is commonly seen as an extension
of inception score (IS) [63], which only evaluates the distribution of generated images,
whereas FID compares the distribution of generated images with the distribution of a
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set of real images. This feature space is typically derived from a DNN that has already
been trained, such as the Inception-v3 model.

The mean and covariance of the network’s activation on a collection of real images and
a set of artificially generated images are first computed to get the FID score. The mean
and covariance are then used to compute the distance between the two distributions. A
lower FID score means that the generated images are of greater quality and are more
closely distributed to the real images. To visualize how distortion affects the FID is an
example given in Figure 3.7. From this example can we see that swirled images affect
the FID the least and salt and pepper the most. The augmented images and how they
affect the FID give us an indication of the limitations of the FID score.

Figure 3.7: Example of how increased distortion correlates with FID score, example taken
from [62]. Upper left Gaussian noise, upper right Gaussian blur, lower left swirled images,
lower right salt and pepper

3.7.2 Intersection over Union - IoU

The IoU measures the overlap between two sets of pixels or bounding boxes and is
commonly used to evaluate the accuracy of object detection or segmentation models.
The area of overlap between two sets is divided by the area of their union to determine
the IoU score shown in Equation 3.1. An IoU score of high means good accuracy,
whereas a score of low means inaccuracy. IoU values range from 0 to 1, where a value of
0 indicates no overlap between the two sets, and a value of 1 indicates a perfect overlap.
The IoU score can often be thought of as the following: IoU < 0.4 poor, IoU > 0.7
good, and IoU > 0.95 excellent 5. In many computer vision applications, such as object

5https://hasty.ai/docs/mp-wiki/metrics/iou-intersection-over-union
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detection, picture segmentation, and scene comprehension, is a widely used metric.

IoU = TP

TP + FP + FN
(3.1)

We evaluated both the IoU and mIoU, which are two distinct metrics for computing
intersection over union, in our experiments. Before calculating the IoU score, the mIoU
involves averaging the intersection and union values throughout the whole dataset. In
contrast, the IoU determines the intersection and union values for every image separately
before averaging them.

3.7.3 Dice Similarity Coefficient - DSC

The DSC is a commonly used metric for evaluating the performance of image
segmentation models. The DSC scales from 0 to 1, with 1 denoting complete overlap and
0 denoting no overlap, and it assesses the overlap between the anticipated segmentation
and the ground truth segmentation shown in Equation 3.2. When there is an imbalance
between the amount of foreground and background pixels, which occurs frequently in
medical image segmentation, the DSC is especially helpful for evaluating models. The
DSC is usually combined with other measures in real-world applications. The DSC
is regarded as a standard metric for assessing segmentation models since it has found
broad applicability in many fields, such as computer vision, remote sensing, and medical
imaging.

DSC = 2 · TP

2 · TP + FP + FN
(3.2)

3.7.4 Precision

Precision is a metric used to evaluate the performance of classification models, including
image segmentation models. It is defined as the ratio of the true positive (TP)
predictions to the total number of positive predictions shown in Equation 3.3. In image
segmentation, precision measures how accurate the model is in identifying pixels or
regions that belong to the object of interest. A higher precision indicates that the model
is better at correctly identifying object pixels and minimizing false positives.

Precision = TP

TP + FP
(3.3)

3.7.5 Recall

Recall is another metric used to evaluate the performance of classification and
segmentation models. It is defined as the ratio of the true positive predictions to the total
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number of actual positive cases shown in Equation 3.4. In image segmentation, recall
measures how well the model is able to identify all the pixels or regions that belong to
the object of interest, including those that may have been missed or incorrectly classified
as background. A higher recall indicates that the model is better at identifying all object
pixels and minimizing false negatives.

Recall = TP

TP + FN
(3.4)

3.8 Monitoring Diffusion Data Leakage

Image diffusion models are great at generating high-quality synthetic images. However,
they are prone to memorization of training data as shown in "Extracting Training
Data from Diffusion Models" [64]. In short, the paper highlights that high-performance
diffusion models are double as likely to leak data from the training data compared to
GANs. This can be a great problem if the data we are training on are subject to privacy
concerns. It is also worth noting that leakage increases when FID score decreases in the
paper.

To monitor data leakage are generated images compared to training data using the
L2 distance as they do in [64]. The formula for the L2 distance between two points can
be seen in Equation 3.5. In addition to comparing generated RGB images using the L2
distance, we also turn generated images into grayscale images for comparison against
training images. This monitoring can be time-consuming, for example, if we have 1000
synthetic images and 800 training images is a total of 1000 × 800 × 2 = 1, 600, 000
comparison if we both do RGB and grayscale. Data leakages are however something
that should be addressed as it gives an understanding of the generalization capabilities
of the generative models.

d(p, q) =

√√√√ n∑
i=1

(pi − qi)2 (3.5)

3.9 Segmentation with U-Net

In its most basic form, segmentation divides an image’s pixels into two distinct subgroups
or classes, usually foreground, and background. A common preprocessing step for many
computer vision tasks, like object detection and tracking, is this binary segmentation.

To separate pixels into three or more meaningful segments, however, is frequently
necessary and calls for advanced segmentation algorithms. For instance, segmentation
is used in medical imaging to recognize and isolate particular tissues or organs in an
image, such as the heart, liver, and kidneys. Similarly to this, segmentation is used in
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autonomous driving to recognize and monitor various items on the road, including cars,
pedestrians, and traffic signs.

Image segmentation can be done in a variety of ways, from conventional methods
based on low-level picture attributes like color, texture, and borders to more
contemporary DL-based methods that automatically learn high-level features from the
data. On several benchmark datasets, DL-based segmentation techniques in particular
have displayed outstanding performance, especially on large-scale and complex images.

In our experiment is segmentation used to classify pixels as either polyp or
background/"clean". We make the distinction between a polyp image where polyps
are presented in the polyp and a cropped-out polyp where the actual polyp region is.
Therefore is the cropped-out polyp region of key interest when segmenting.

Evaluating the generated synthetic polyp images with segmentation masks uses both
the FID and train U-Net with either only real images or a mix of real and synthetic
images. The segmentation experiment is tested on three different datasets, thus we
train a total of six U-Net models. The U-Net in this thesis used ResNet-18 [65] as an
encoder with a total of 14, 328, 209 parameters [66]. In Figure 3.8 can we see how U-Net
segments a polyp image the downsampling used in the Figure is VGG-16 [67] instead of
ResNet-18.

Figure 3.8: Polyp segmentation using the encoder-decoder U-Net architecture with VGG-16 as a
pre-trained encoder [68].

The training of the segmentation models used the Adam optimizer. Hyperparameters
used during training of the U-Net segmentation models can be seen in Table 3.3. Since
our segmentation model only solves binary segmentation is also the sigmoid activation
function used in the last layer.

3.10 Summary

In this chapter is two approaches to generating polyp images presented. The approaches
rely on pre-training on large amounts of unlabeled data and then fine-tuning. We
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Parameter Value
Batch size 4
Epochs 20
Optimizer Adam
Learning rate 0.0001

Table 3.3: Hyperparameters and optimizer used for training U-Net segmentation model.

presented the four datasets we will use throughout the thesis where mainly two datasets
are used for training and two for validation. Since the thesis revolves around diffusion
models are state-of-the-art papers presented. It is explained how the different papers
achieve these results from a configuration of models viewpoint. Lastly, is the metric to
evaluate the quality of generated images FID presented. The chapter further explains
regularization and how we use it in diffusion models, with the main regularization
approach being dropout. Other metrics are also introduced to evaluate the effect of
segmentation models which will be talked about more in the next chapter. By the end
of this chapter, readers will have a solid understanding of the various techniques and
metrics used for generating polyp images.
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Polyp Generation

The previous chapter introduced methods used in this and the next chapter. This chapter
focuses on simple ways to generate synthetic images using DDPM. Every checkpoint in
this chapter generated 1000 samples that took 1 hour and 42 minutes on average. This
means that if we have 10 checkpoints the total time spent generating samples is a total
of 17 hours. Images in this chapter are all randomly selected to give an indication of
generated image quality by being transparent and avoiding "cherry picking". Generated
datasets with total iterations, trained for, checkpoints, and noise scheduler is shown in
Table 4.1.

Dataset Name Iterations Checkpoints Noise scheduler
I - Unlabeled data 500K 50K [Linear, Cosine]
II - Masked unlabeled data 500K 50K Linear
III - Polyp images [20K, 40K] 2K Cosine
IV - Cropped Polyp images 30K 2K Cosine
V - Clean images 20K 2K Linear

Table 4.1: Overview of generated datasets with total training iterations, model checkpoints, and
noise scheduler used.

4.1 Model setup

In order to train the diffusion models described in Chapter 3 much first hyperparameter
be selected. The optimizer used in all experiments is the AdamW with a learning rate
of 0.0001. The most important hyperparameters at the optimizer used can be found in
Table 4.2.

During training is all images center-cropped and resized to size 128 × 128. The
dropout rate varies as some models test multiple different amounts, but always either
0, 0.1, or 0.3. The noise scheduler is also an important hyperparameter either linear or
cosine.
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Parameter Value
Diffusion steps (T) 1000
Attention resolution 32, 16, 8
Number channels 128
Batch size 32
Dropout Varies
Optimizer AdamW
Learning rate 0.0001

Table 4.2: Hyperparameters and optimizer used for training diffusion model.

4.2 Pre-Training on the GI-tract

The models were trained for 500 000 iterations with a batch size of 32, the total time
elapsed during training is approximately 3 days and 11 hours. The models trained in this
Section use horizontal flipping as a regularization technique. A total of 95 000 images
from HyperKvasir were used for training and 5000 for validation giving a training and
validation split of 95/5. All model weights were saved for every 50 000 iteration and
generated 1000 synthetic images to evaluate FID score.

4.2.1 Complete Images

To generate complete images was two DDPMs trained, one with a linear noise scheduler
and the other with a cosine noise scheduler. The dropout rate was held constant for both
models with a value of 0. The difference between a linear and cosine noise scheduler in
diffusion models is how fast they add/remove noise. The difference between linear and
cosine noise schedulers in latent space can be seen in Figure 4.1.

Figure 4.1: Samples in latent space from linear (top) and cosine (bottom) scheduler with values
t from 0 to T=1000. We can observe that the linear scheduler adds noise much faster than the
cosine scheduler [69].

The resulting FID score can be found in Table 4.3.

Looking at the FID score comparison between linear and cosine can we see that
the linear scheduler seems to achieve better results faster than the cosine. This is the
opposite effect observed in [69] on CIFAR-10 [70] where the cosine scheduler achieved
better results faster. This effect might be caused by the cosine scheduler having less
regularization implying that the unlabeled data in HyperKvasir is less diverse than
CIFAR-10. Both schedulers achieve similar results after 300K iterations based on FID
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FID
Iterations Linear Cosine
50K 74.76 92.77
100K 28.85 34.53
150K 28.04 30.51
200K 27.17 28.05
250K 26.18 27.45
300K 26.81 26.88
350K 26.46 25.99
400K 26.27 25.86
450K 26.17 25.91
500K 25.83 25.66

Table 4.3: Comparison of generated unlabeled images trained on HyperKvasir 128×128 model
with linear and cosine noise scheduler. The best early stopping FID score is highlighted in italic-
bold and the overall best FID score is highlighted in bold.

scores.

In Figure 4.2 can we see a comparison between generated images between the two
different schedulers trained for 500K iterations and unlabeled images from HyperKvasir.

(a) Linear (b) Cosine (c) HyperKvasir

Figure 4.2: Comparison between linear scheduler, cosine scheduler, and images from HyperKvasir
(rescaled and center-cropped).

All images were as previously mentioned randomly selected to give an indication
of generated image quality. The comparison shows that there is no clear distinction
between generated samples using a linear and cosine scheduler. It is hard to deduce
whether or not overfitting has occurred during unlabeled generation. The reason for
that is that we would then need to compare synthetically generated images to images
from the training data. This process is computationally heavy as we train on 95 000
images. Such comparison was not performed on all synthetic unlabeled images but for
a majority and proved no strong signs of overfitting.
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4.2.2 Masked Images

Masked images from the unlabeled dataset were shown in Section 3.3.2. The masks
used were generated by a FastGAN earlier explained to train on unlabeled images that
have shapes similar to that of polyps. The masked images are by nature a more sparse
representation than a complete image as we have fewer non-zero pixel values.

To generate masked images was a model trained using a cosine noise scheduler and
0.1 dropout. The resulting FID score can be seen in Table 4.4. The best-performing
model is trained for 300K iterations and results in a FID score of 18.80 on unlabeled
images in HyperKvasir.

FID
Iterations Cosine with 0.1 dropout
50K 57.74
100K 20.66
150K 19.43
200K 19.29
250K 19.03
300K 18.80
350K 18.88
400K 19.06
450K 18.99
500K 19.14

Table 4.4: FID score for generated masked images on the unlabeled dataset. The best FID score
is highlighted in bold.

Generated masked images from the best model can be seen in Figure 4.3 and should
look similar to masked unlabeled images shown in Figure 3.3.

The generation of masked images appears to be good as we can see parts of green
boxes generated in the bottom left corner of the top middle image. In the bottom left
image can we see text generated on the right-hand side which can be attributed to that
text is usually on the left-hand side of images, but we train using horizontal flipping.
Color seems to be consistent and images look like they can come from the GI-tract
judging by the pixels that are non-zero.

4.3 Fine-Tuning with a Motive

The models were either tuned on polyps from the Kvasir-SEG dataset or "clean" colon
images from the labeled part of HyperKvasir. The models were tuned for between
20K to 40K iterations with a batch size of 32, the total time elapsed during tuning is
approximately between 3 hours and 30 minutes to 7 hours and 13 minutes depending
on the number of iterations. The training and validation split was 80/20 for all tuning
models. Regularization techniques are similar to those used in Section 4.2 which uses
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Figure 4.3: Generated masked images samples from 300K iterations with cosine noise scheduler
and 0.1 dropout model .

horizontal flipping. All model weights were saved for every 2000 iterations and generated
1000 synthetic images to evaluate FID score. "clean" images used in this thesis are
ulcerative colitis, ileum, and cecum. This is important to keep in mind as ulcerative
colitis is classified as a bowel disease as described in 2.1.1.1.2.

4.3.1 Polyp Images

To generate synthetic polyp images was the best-performing pre-trained model (500K
iterations cosine noise) fine-tuned. The images used for fine-tuning are polyp images
from the Kvasir-SEG data, only using the original images and not ground truth. Two
models were fine-tuned with 0 and 0.3 in dropout respectively. The resulting FID score
can be seen in Table 4.5 with the model having 0.3 dropout tuned for 26K iterations
achieving the best result based on FID score.
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FID
Iterations Dropout 0 Dropout 0.3
2K 149.20 150.05
4K 136.79 149.62
6K 127.53 133.73
8K 116.94 110.56
10K 118.25 100.22
12K 118.47 93.53
14K 122.05 91.49
16K 126.69 87.00
18K 129.66 86.10
20K 135.88 84.12
22K 82.90
24K 82.83
26K 80.55
28K 81.72
30K 83.13
32K 84.30
34K 82.81
36K 84.85
38K 86.66
40K 86.04

Table 4.5: FID score for generated images tuned towards polyp generation with different amounts
of dropout. The best FID scores are highlighted in bold.

Comparing the two models are similar effects observed for iterations after the best
FID score. The generated images after the best models would then lack fine features,
such as blood vessels which are essential when it comes to polyps. These overfitting
artifacts are similar to that from [71] which is reflected by increasing FID.

Samples from the best model can be seen in Figure 4.4. From this can we see that
for the most part are highly realistic polyps generated, however sometimes it is unclear
if polyps are generated or not. The generated polyps should therefore be checked by
humans beforehand if they are going to be used further for example training models or
educating medical professionals. For the generation to be considered successful should
the image contain one or more polyps.

The generation of polyps is not always accurate and some errors can occur. This can
be seen in image 2 from the top left where it does not seem that the model has generated
a polyp. Image 3 is also questionable as it looks like an image from the esophagus which
is considered a part of the upper GI-tract while polyps in Kvasir-SEG are from the lower
GI-tract.
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Figure 4.4: Generated polyps image samples from 26K iterations fine-tuned model with 0.3
dropout.
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4.3.2 Cropped-out Polyps

To generate synthetic cropped-out polyp images was the best-performing masked pre-
trained model (300K iterations) fine-tuned. The images used for fine-tuning are cropped-
out polyp images from the Kvasir-SEG dataset. The cropped-out polyps are obtained by
removing everything in the images except the ground truth region and therefore rely on
both original and ground truth images. To generate cropped polyps were three models
trained with different amounts of dropout 0, 0.1, and 0.3. The scores for the models can
be seen in Table 4.6 with the model tuned for 18K iteration achieving the best result.

FID
Iterations Dropout 0 Dropout 0.1 Dropout 0.3
2K 138.24 135.42 135.22
4K 117.14 115.59 115.23
6K 96.78 98.30 95.75
8K 93.10 91.47 82.27
10K 92.72 87.27 77.22
12K 92.70 86.24 74.00
14K 95.91 84.64 71.25
16K 97.95 86.56 71.12
18K 100.66 85.25 69.51
20K 100.35 88.02 72.16
22K 100.77 87.39 71.21
24K 99.75 86.41 73.54
26K 99.63 86.34 72.53
28K 97.21 85.72 72.21
30K 99.24 85.44 71.56

Table 4.6: FID score for generated images tuned towards cropped-out polyp generation with
different amounts of dropout. The best FID scores are highlighted in bold.

Samples from the best model can be seen in Figure 4.5. From this can we see that it
is not clear whether or not the cropped-out polyps are realistic. Some features might not
be present as the generated cropped-out polyps are highly dependent on polyp features
in Kvasir-SEG. The generation of cropped-out polyp images proved to be a challenging
task. The reason for the problem is that cropped-out polyps have even fewer pixels
available to learn from than experiments in previous sections. The data deficiency stems
from that the actual polyps commonly only take up 5-70% in a polyp image.

Simultaneously were other drawbacks detected where the generator did not generate
anything by setting all pixel values to zero corresponding to black pixels. This effect
peaked around 6-8K iteration and can be seen in Figure 4.6 for the three different models.
The reason for this effect is unclear but indicates that the models think it is better to
not generate anything than to try to generate something between unlabeled data and
polyps as it is in a transition between the pre-trained model going to fine-tuned. These
completely empty images are not useful and were therefore discarded for further use.
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Figure 4.5: Generated cropped-out polyps from our best model 18K iterations 0.3 dropout.
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Figure 4.6: Amount of black images created total with 0, 0.1, or 0.3 dropout models based on
iterations tuned. The total number of images generated per iteration for each model is 1000.
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4.3.3 Clean Colon

To generate synthetic "clean" images was the best-performing pre-trained model (500K
iterations cosine noise) fine-tuned.

The images used for fine-tuning are "clean" images from the labeled part of the
HyperKvasir dataset with classes ulcerative colitis, ileum, and cecum. The amount of
ulcerative colitis images in the labeled part in HyperKvasir is 851. The amount of ileum
images in the labeled part in HyperKvasir is 9. The amount of cecum colitis images in the
labeled part in HyperKvasir is 1009. Resulting in a total of 1, 869 "clean" images. The
split used for "clean" images was 80% (1495 images) for training and 20% for validation
(373 images).

Recalling from the Background is ulcerative colitis actually an inflammatory disease
in the bowel region that comes in various degrees. Nevertheless was all degrees of
ulcerative colitis images used as "clean" images as they do not contain any polyps.

Only one model was fine-tuned with 0.3 in dropout on these "clean" images. The
resulting FID score can be seen in Table 4.7 with the model tuned for 20K iterations
achieving the best result based on FID score. It is worth noting that the model could
be trained longer as the FID was still decreasing. The model was however not trained
further as the decrease in FID started to slow down. This effect was followed by a rise
in FID (overfitting effects) in earlier testing. Further training would therefore have a
minimal effect on the FID from our previous experience.

FID
Iterations Dropout 0.3
2K 94.63
4K 86.01
6K 70.90
8K 61.33
10K 56.84
12K 53.37
14K 52.01
16K 52.84
18K 51.88
20K 51.77

Table 4.7: FID score for generated images tuned towards clean generation. The best FID score
is highlighted in bold.

Samples from the best model can be seen in Figure 4.7. From this can we see that
the generated images are highly realistic. The images are able to generate fine features
such as blood veins and different green boxes either in the bottom left or right corner as
we used flipping during training.
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Figure 4.7: Generated clean colon images from our best model 20K iterations 0.3 dropout.

4.4 Image Correlation

The motivation for this section revolves around both privacy risks and generalization.
Medical images can be sensitive private data, therefore, is an understanding of the risks
of generative models needed when training on such data. Similarly is an understanding
of how and why diffusion models memorize training data needed to understand their
generalization capabilities. In particular, if it goes unnoticed, remembering specific
examples can be problematic. We, therefore, show a generated polyp image with its five
closest images from the training dataset.

Evaluating the closeness of images to a source image can use one use a variety
of different metrics. In our experiments, both the L2 distance and correlation
coefficient from OpenCV were used. The L2 distance did not prove to be effective
with our generated samples in detecting similar images. We therefore instead used
the TM_CCOEFF from OpenCV which stands for Template Matching Correlation
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Coefficient. The range of TM_CCOEFF is normalized and ranges from 0 to 1 where 0
is no matching and 1 is a total match. In Figure 4.8 can see the source image which is
a generated polyp image from our best-performing model in Section 4.3.1.

Source Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
0.909 0.883 0.882 0.877 0.876

Figure 4.8: Synthetic generated polyp as the source image. 5 samples from the training dataset
closest related to the source image with their TM_CCOEFF scores.

In addition, 5 images from the training dataset that is closest related to the source
image based on their TM_CCOEFF. The source image was hand-picked as it was more
correlated to images from the training dataset than other generated samples. This was
performed to show how a generated image can look similar to those in the training data.
In our example can we especially find common features between our source image and
sample 1 for example with respect to the color of the GI-tract, text on the left-hand
side, the continuation of the tract in the upper middle part of the image, and the black
boxes in the bottom left corner.

To underline how a memorized image looks like, we generate images using a model
fine-tuned for 50K iterations. In Figure 4.9 can we see how a source image from overfitted
model an overfitted model is almost the same as sample 1. There are some minor
differences between the source image and sample 1, but we can consider that the diffusion
model has memorized sample 1 from the training data.

Source Sample 1 Sample 2 Sample 3 Sample 4 Sample 5
0.991 0.910 0.896 0.888 0.872

Figure 4.9: Synthetic generated polyp from an overfitted model as the source image. 5 samples
from the training dataset closest related to the source image with their TM_CCOEFF scores.

4.5 Interpolation

From earlier sections can we recall how we can either add noise to an image x0, x0 ∼ q(x0)
or denoise it by x̄0 ∼ p(x0|x̄t). We can use this to first add noise to two source (src)
images then interpolate between them and finally denoising the images as presented
in [45]. We do this in intervals of 125 from t = 0 to t = 1000 with t denoting
timesteps/steps. Interpolation in t = 0 is the same as interpolation in the pixel domain.
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We do interpolation using our best polyp DDPM from Section 4.3.1.

Figure 4.10 shows interpolation between two different polyp images. From the
interpolation, we see how an equal combination of the two polyps looks in the λ = 0.5
column. Particularly interpolation between 250 and 750 timesteps shows interesting
results. The polyp in source image 1 can be seen on the right side with heavy red
indicating blood vessels suggesting it might be adenomatous. The continuation of the
tract is also visible in the middle of the image. The polyp in source image 2 is large
being approximately in the middle of the image and being more yellow suggesting it
might be non-adenomatous. Going from source images 1 to 2 an enclosing of the tract,
as well as a reduction in blood vessels. When the interpolated has an equal contribution
(λ = 0.5) from the source images is generally the polyp on the right part of the image.
This might be since source image 1 has the polyp on the right side while source 2 does
not have the polyp in a particular position.

In the interpolation between a polyp image and a clean colon image in Figure 4.11
can we see how the model "sees" a decrease in polyp features. Polyp features are lost
more with higher t and λ > 0.7. Source image 1 has a polyp in the bottom left of the
image with the continuation of the tract being in the middle of the image. It is hard to
determine the key features of the polyp as it seems to be heavily exposed to some light.
Source image 2 shows a clean colon where the continuation of the tract is a little more
to the bottom right. The color of the tract in source image 1 also appears to be more
brown while more pink in source image 2. The interpolation between the two images
uses the model only trained on polyps and therefore favors polyp features. To get a more
balanced feature visualization can one train a model on both polyp and clean images.
The interpolation could then show polyps for λ < 0.5 and clean colon for λ > 0.5 in the
case when λ = 0.5 is possible very subtle polyps assuming that the model is trained on
an equal amount of polyp and clean colon images. The chance of the interpolated image
containing a polyp is however more like the smaller λ is.

Interpolation test features go from finer to coarser with increasing timesteps. Going
from source 1 to source 2 is a gradual change in both the polyp and background. In both
examples can we see that we lose all information from our source images with t = 1000.
On the hand when t = 0 it is interpolation in pixel space and therefore also not relevant
to understand learned features. Additional interpolation is shown in Appendix B.

4.6 Questionnaire

Generated polyps have previously in Section 4.3.1 been evaluated based on their FID
which is a form of quantitative measure. This section will focus on a qualitative approach
to judging the generated polyps. This involved asking domain experts by giving their
subjective feedback on generated images. To be more precise are the domain experts
computer science researchers that focus on using ML in the medical domain. The
questionnaire in its entirety is shown in Appendix C.

The participants were given 10 polyps images where 5 of our real polyp images and
5 fake polyp images. The real polyps are real polyps randomly selected from the Kvasir-
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Src. 1 Rec. λ=0.1 λ=0.2 λ=0.3 λ=0.4 λ=0.5 λ=0.6 λ=0.7 λ=0.8 λ=0.9 Rec Src. 2

1000 steps
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250 steps

125 steps
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Figure 4.10: Interpolation in latent space between two different polyp images.
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Figure 4.11: Interpolation in latent space between a polyp image and a clean colon image.
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SEG dataset. The fake polyps are the synthetic-generated polyps from the best model
in Section 4.3.1. All images both real and fake were randomly selected. The participants
were to fill in a scale from 1-10 on how confident they were that the image is generated,
polyp context, if background appears generated if polyp appears generated, polyp fitting
background, and confidences regarding predicted histology. They were also asked to
specify the kind of polyp the image showed. The only other information given to the
participants was that a student was working on a thesis on synthetic polyp generation.
Table 4.8 shows the results of whether or not the participants thought the image was
generated.

Experience TP FP FN TN Accuracy Recall Precision
5 3 5 2 0 30% 60% 37.5%
3 1 2 4 3 40% 20% 33.3%

Table 4.8: Results from the questionnaire on whether or not the participants think the image is
real or generated.

Experience describes the years that participants have been in their position. True
positive (TP) corresponds to the correct identification of a real polyp. False positive (FP)
corresponds to a fake polyp identified as a real polyp. False negative (FN) corresponds
to a real polyp identified as a fake polyp. True negative (TN) corresponds to the correct
identification of a fake polyp. Participants giving a value of 5 or less were categorized
as thought to be real and 6 or higher was categorized as fake.

In the questionnaire, it is evident that some of the generated polyps deceived the
participants. However, the subjective assessment of the polyps’ realism can differ greatly
from person to person and the number of participants was low. Given a sufficient
participant pool and the fake polyps being completely indistinguishable from actual
ones, the accuracy should, on average, be around 50%. Our two participants got a
combined average accuracy of 35% and if this trend were to exist with a larger number
of participants could it suggest that synthetic-generated polyps are more general than
real ones. It was mentioned that the images originally were of size 128×128, but enlarged
to 256 × 256. This can have caused some distortion in the images that can have affected
the participants’ judgment of whether or not polyps are real.

4.7 Summary

In this chapter are various types of images generated and quality evaluated based on
FID. The images generated include unlabeled images, polyps images, and clean colon
images. We test DDPMs either using linear or cosine noise scheduler. The difference
between linear and cosine noise schedulers was shown to be insignificant based on the
FID. We also tested the generation of images with various amounts of dropout. It
was shown that models with dropout overall performed better than those without, but
simultaneously needed to be trained for more iterations. Interpolation was performed
between real images to try to visualize features learned when generating polyps images.
We do a test between polyp-to-polyp images and polyp-to-clean images. The polyp-to-
polyp interpolation showed coarse to fine features and highlighted how a combination
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of two polyps might look like. The best synthetic-generated polyps were presented to
domain experts to assess realism. Cropped-out polyps are generated and assessed based
on FID which, combined with clean colon generation, is central for the next chapter.
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Chapter 5

Polyp Segmentation with Synthetic
Data

The previous chapter focused on the generation of synthetic images but did not highlight
what these synthetic images can be used for. This chapter tries to address the practicality
of synthetic polyp images by using them to train a simple segmentation model. To
generate polyps with corresponding segmentation masks was RePolyp introduced.
RePolyp uses synthetic cropped polyps and inpaints a probabilistic background. For this
to work well should both the cropped polyps and the inpainted background look real
while simultaneously being semantically reasonable. The inpainting should not generate
polyps in the background, but only a "clean" colon. RePolyp uses RePaint which makes
use of pre-trained DDPMs. The RePolyp framework is shown in Figure 5.1.

Figure 5.1: Framework to generate polyps with segmentation mask. Step 1 Pre-training on
masked images. Step 2 Fine-tuning on cropped-out polyps. Step 3 Pre-training a second
diffusion model. Step 4 Fine-tuning second model on clean colon. Step 5 Inpainting using
diffusion model 2 and cropped-out images.

To evaluate how well the generated images from RePolyp were a segmentation task
set up in addition to calculating the FID scores. The segmentation task compared two
U-Net models, one trained only on real images and the other on a mix of real and
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synthetic images.

5.1 Results and Evaluation

Images generated from the RePolyp framework are both tested based on their FID
in addition to being used to train a simple U-Net segmentation model. Generated
polyps from the RePolyp framework are inpainted using 3 different DDPMs. Each model
inpaints 1000 with a background for cropped-out polyps from images Section 4.3.2. To
evaluate a U-Net for segmenting polyps was one model trained only on 800 real images
and a second model on 800 real and 800 fake images. The validation for the segmentation
models was performed on three different datasets.

5.1.1 Polyp Generation with Masks

Table 5.1 shows the quality of the polyps produced by RePolyp, and it is easy to see
that choosing a diffusion model with polyp-specific fine-tuning based on the FID score
is appealing. This, however, presents a concern because we cannot guarantee that the
model won’t produce more polyps. The clean background is consequently preferred since
it prevents the occurrence of background polyps and has a FID score that is lower than
the pre-trained model.

Model FID
Pretrained unlabeled 138.38
Fine-tuned clean 128.83
Fine-tuned polyps 93.43

Table 5.1: FID score for the generated polyps from three different models using RePolyp.

The generated images in Figure 5.2 are somewhat realistic, but less so than the ones in
Section 4.3.1. This indicates that there might be a better approach to generating polyps
with masks. The main problem seems to come from sub-optimal generated cropped-out
polyps. The generated background on the other hand seems to be realistic and somewhat
concise with the generated cropped polyps.

The generated polyps often generate green boxes in the left or right corners of the
images. This is caused since clean images use green boxes and polyp images in Kvasir-
SEG mostly use black boxes. This can be changed by adding a post-processing step
by turning green boxes black. It is also worth mentioning that generated cropped-out
polyps can be in areas where our model wants to generate these green boxes. This can
be observed in the second generated image in Figure 5.2 which causes some semantic
inconsistencies. This can be adjusted in post-processing by completing the boxes the
model tries to generate, but we would then similarly need to remove areas where the
box should be in our segmentation masks.
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Figure 5.2: From left to right; Cropped-out generated polyp, Cropped-out polyp with clean
inpainted background, segmentation mask derived from the cropped-polyp. Segmentation models
use images from column two and three.
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5.1.2 Polyp Segmentation

To evaluate the segmentation models were 20% of the Kvasir-SEG dataset used for
validation. In addition, were the ETIS-LaribDB [49] and CVC-ClinicDB [48] datasets
used for cross-dataset validation. A different way to divide the data would be to use
Kvasir-SEG for training, ETIS-LaribDB for validation, and CVC-ClinicDB for testing
resulting in only one model.

In Tables 5.2, 5.3, and 5.4, we observe the differences between our baseline dataset
and our dataset with added synthetic images.

Table 5.2: Validation 200 Kvasir-SEG images

Dataset IoU mIoU DSC Precision Recall
Baseline 0.762 0.732 0.840 0.871 0.821
+800 0.785 0.766 0.857 0.913 0.826
Chg % 3.02% 4.64% 2.02% 4.82% 0.61%

Table 5.3: Validation ETIS Larib Polyp DB

Dataset IoU mIoU DSC Precision Recall
Baseline 0.351 0.470 0.408 0.583 0.709
+800 0.396 0.492 0.451 0.604 0.727
Chg % 12.82% 4.68% 10.54% 3.60% 2.54%

Table 5.4: Validation CVC-ClinicDB

Dataset IoU mIoU DSC Precision Recall
Baseline 0.642 0.628 0.735 0.831 0.720
+800 0.654 0.660 0.738 0.869 0.733
Chg % 1.87% 5.10% 0.41% 4.57% 1.81%

We see different improvements for various metrics and datasets. Good overall metrics
such as the mIoU see an increase in mIoU of 4.64%, 4.68%, and 5.10% on the respective
validation datasets. Simultaneously is an increase in DSC of 2.02%, 10.54%, and 0.41%
observed with adding synthetic data. Precision also increases with adding synthetic
images to our dataset, meaning that the model is more confident in predicting pixels of
polyp pixels. However, precision should be seen together with recall. The effect of our
added data on recall, on the other hand, is negligible overall. The increase in performance
on the validation data is possible due to artificially increasing diversity in the training
data. While adding synthetic data seems to increase generalization capabilities, it can
possibly also increase optimization, but this was not looked into. It is also worth noting
that synthetic data use horizontal flipping as mentioned earlier and may therefore offer
more regularization than the original data.

Figure 5.3 shows the results of two segmentation models on 6 images from Kvasir-
SEG images from the validation dataset.
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Input GT Base Base+800 Base Base+800

Figure 5.3: Visual segmentation performance on Kvasir-SEG images using a U-Net architecture.
Black and white images are segmentation masks, and the last two columns represent heatmaps.
From left to right; Input image, GT - Ground Truth, real images, real images + 800 synthetic
images, real images, real images + 800 synthetic images.

The first 4 images are handpicked to highlight differences and/or hard-to-detect
polyps and the last 2 images are randomly selected. The first image appears to be easy
to segment. In the second and third images, we see that our baseline model classifies
more of the clean as polyps which will result in a lower precision score. The baseline
model seemingly segments based on the texture of polyps, giving a somewhat uniform
value to pixels segmented as polyps. The dataset with added synthetic data, on the
other hand, seems to have a better understanding of polyp edges with darker red pixels
being more frequent near polyp edges and more uniform values for clean parts. The
increase in performance might therefore be because the model with synthetic data has a
better idea of what clean parts of a colon look like. The fourth image is a challenge with
it being very hard to detect the polyp. Both models fall short of detecting the polyp,
but the +800 model classifies fewer pixels as polyps. In both images five and six, we see
that the +800 model outperforms the base model when it comes to segmentation. From
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the heatmaps, it is also easy to see where the model detects strong edges that resemble
polyps.

5.1.3 Statistical Analysis

The improvement shown in the previous section was further investigated by training all
models five times (n = 5). In doing so were also boxplots plotted and p-values computed
which can be seen in Figure 5.4.

IoU mIoU DSC
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Real Mix
0.762
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Real Mix
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Real Mix0.839

0.849

0.859

p = 0.59933 p = 0.56707 p = 0.41420

ETIS

Real Mix
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0.424

Real Mix
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Real Mix
0.407
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0.657

0.667

Real Mix
0.593

0.623

0.653

Real Mix
0.725

0.739

0.753
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p = 0.49163 p = 0.65376 p = 0.44590
Figure 5.4: Boxplots and p-values used for comparing real and mixed data on key metrics IoU,
mIoU, DSC on Kvasir-SEG [15], ETIS-Larib Polyp DB [49], and CVC-ClinicDB [48].

To evaluate if the difference between only training on real data versus a mix of real
and fake was a null hypothesis and alternative hypothesis used seen in Equation 5.1.

H0 : µ1 − µ2 = 0, Ha : µ1 − µ2 ̸= 0; (5.1)
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5.2. Discussion

The significance level we chose in our comparison is α = 0.05. With this significance
level, we can see that we only achieve a significant difference between only training
on real versus mixed when validating on the ETIS-LaribDB dataset with p-values being
p < 0.05. The p-values indicate that the improvements on the other datasets are random
and thereby determine that there is not a significant difference between training on real
or mixed data with validation on the Kvasir-SEG and CVC-ClinicDB dataset. It should
be noted that only having five samples is very low when computing p-values and the
minimal amount for boxplots and we should ideally have at least twenty to thirty samples
to reduce uncertainty.

5.2 Discussion

Generated polyps in this section might be realistic, but still, we think that there is room
for improvement. For example the FID score of generated polyps in Section 4.3.1 lower.
To generate synthetic polyps with segmentation masks and achieve better FID scores,
perhaps there is another method. Diffusion models have not been tested as much as
compared to GANs and therefore might lack necessary frameworks and guides.

The segmentation experiment showed significant improvement on ETIS-LaribDB,
but not on the other datasets. The reason that we might not achieve significant
improvement on the datasets is that we train. It might also be because the ETIS-
LaribDB dataset is the smallest of the three with low baseline scores. It is therefore
more room for improvement from the baseline on ETIS-LaribDB compared to little
room for improvement on the Kvasir-SEG and CVC-ClinicDB datasets.

Overall it is shown that synthetic images can improve segmentation model
performance. Even in the worst cases does it, not appear that adding synthetic images
significantly worsens the segmentation models. This indicates that the information
learned from the generated images might at the very least be the same as real images.

5.3 Summary

In this chapter is the RePolyp framework introduced to generate polyp images with a
segmentation mask. The generated images are used to increase the performance of a U-
Net model, where we test one model only trained on real images and the other on a mix
of real and generated images. The segmentation task is validated 3 times one against
the Kvasir-SEG dataset as well as cross-dataset validation with the ETIS-LaribDB and
CVC-ClinicDB datasets. We see a significant improvement on the ETIS-LaribDB dataset
when training a segmentation model with synthetic polyps.
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Chapter 6

Conclusion and Future Work

6.1 Summary and Contributions

Generative models have recently gained huge traction the recent years not only AI
generated text but also AI generated images. Typically have GANs dominant when
it comes to generative imagery, however in recent years have diffusion models challenged
its dominance. This thesis has explored the use of diffusion models namely DDPM to
generate synthetic polyps to address the data deficiency issue in the medical domain.

Early detection of polyps in the GI-tract is key to lowering the possibility and
probability of developing deadly cancer. Between 14% to 30% polyps are missed during
colonoscopy due to human error. Incorporating systems that use DL has shown to be
great at reducing this miss rate. DL algorithms however require large amounts of data
to be generalizable.

To train our generative models was pre-training on a large number of unlabeled
images in the GI-tract proposed. Models capable of generating polyp images and
clean colon images were then trained using transfer learning by fine-tuning the pre-
trained models. The generalizability of these generative models was addressed by using
regularization most notably dropout.

Generated polyps were presented to experts to asses the realism through a
questionnaire. Furthermore, a novel framework to generate synthetic polyps with
segmentation masks RePolyp was created. Generated polyps in conjunction with real
polyps from this framework were then compared to only real polyps when training a
simple segmentation model. The results from the segmentation showed a significant
improvement for one dataset and inconclusive on two datasets. The two inconclusive
cases see non-significant improvements.

The contributions can be summarized by addressing the objectives described in
Section 1.2.

Objective 1 Generate synthetic images from the GI-tract by training diffusion
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models on the data collected in the thesis. The generated samples should ideally be
of the same quality and diversity as the data they were trained on. The generative
models should be able to generate a complete image or use inpainting.

This objective relates to generating synthetic data. Throughout this thesis have we
trained models able to generate general GI-tract images, polyp images, and clean colon
images. The models were trained with varying amounts of dropout and images were
evaluated based on their FID score. The completely generated images proved to achieve
better results than inpainting.

Objective 2 The second objective is training segmentation models either on real data
or a mix of real and synthetic data. Investigation of the performance of segmentation
models when trained on real or mixed data.

This objective stems from possible usages for synthetic data. The result of this
objective relies on the results of the previous objective. It was shown that adding
synthetic data may improve segmentation models and sometimes even significantly
improve results.

Objective 3 The third objective presents generated images to domain experts to
assess realism. The results are a qualitative assessment that will indicate whether or not
the synthetic images are indistinguishable from real images.

This objective comes from assessing generated polyps based on human perception.
The results show strong signs that generated polyps are indistinguishable from fake ones.
The assessment should however include more participants with a stronger background
in the medical domain such as medical doctors or gastroenterology consultants to say
anything with more certainty.

The research question this thesis tried to address was as we recall the following:

Can synthetic polyp images look realistic and be used to improve the
performance of segmentation models?

There seems to be evidence that synthetically generated polyps are of high realism.
This is based on the qualitative assessment that our participants conducted through
the questionnaire. The results however can be further justified by including more
participants to reduce the uncertainty. The improvement of using synthetic polyps to
train segmentation on the hand is split. The improvement observed in this thesis may
only be comparable to that of introducing common generalization techniques.

6.2 Future Work

Super-resolution imaging Images generated in this thesis are of size 128 × 128.
This is a relatively small resolution this can be solved by training a super-resolution
to upscale 4x for example from 128×128 to 512×512 while still maintaining good image
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quality. It is possible to upscale images even further than this as this might produce very
visible artifacts. We chose not to any super-resolution both because of time limitations
and because super-resolution can hallucinate image features and therefore needs to be
carefully executed when used on medical data.

Conditional diffusion models This thesis has utilized unconditional DDPMs,
however, conditional DDPMs have been shown to be quite effective. To train, a
conditional DDPM are class labels required and you train both a diffusion and classifier.
Conditional DDPM have been shown to generally overfit faster than unconditional and
were therefore not used in this thesis for polyp generation and might be more suited with
larger amounts of label data. We can on the other hand take advantage of the many
different labeled classes and images in HyperKvasir mentioned in Section 3.2.1 to train
a conditional DDPM.

Diffusion GAN When it comes to image generation is usually image quality a
high priority, thus are GANs or diffusion models are preferred. It could be interesting
to do a comparison between the two for image generation in the medical domain.
The comparison could use state-of-the-art pre-trained polyp generation. Moreover,
is combing two architectures and seeing how well they perform as suggested in [72]
which uses a Diffusion-GAN an interesting idea. This architecture addresses the
issue GANs we training stability and proposes to leverage forward diffusion chains to
generate Gaussian-mixture distributed instance noise. The Diffusion-GAN consists of
three main components, the adaptive diffusion process, a diffusion timestep-dependent
discriminator, and a generator. The Diffusion-GAN architectures show promising results
for giving consistent and helpful guidance for the generator.

Removing text from images Section 2.1.1.1.1 shows an example of a polyp from
Kvasir-SEG. From that image can we see that is some text on the left side of the image
that contains some sort of metadata at least date and time. Text on the left side
of images is common in Kvasir-SEG and might therefore need to be addressed. This
metadata might cause leaks when we try to generate synthetic images as models have
"seen" this text. One approach to address this issue is to inpaint regions where the text
is and thereby remove the text information.

Using synthetic data for classification task This thesis used synthetic polyps
images with segmentation masks to improve segmentation models. The images however
were not of the highest realism even though they improved the training of the U-Net
segmentation models. This thesis also generated synthetic polyp images that were of
much higher quality. These images could be used in an attempt to improve a classifier
that determines if an image has a polyp or not (binary classification). The generation of
images can be extended to generate images from the 23 different classes in the labeled
part in HyperKvasir and then use them for classification (multiclass classification).
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Abstract—The field of synthetic medical data has become in-
creasingly important due to the urgent need for large and diverse
datasets in the medical sector. Using diffusion models in data
generation has created more authentic and varied medical data.
In this study, a framework is presented that utilizes diffusion
models trained on openly accessible data to generate realistic-
looking colon polyps, along with their corresponding ground
truth masks. The usefulness of the synthetic polyps is evaluated
by using them to train segmentation models designed to segment
colon polyps in real-world images. The results demonstrate that
the generated synthetic data is highly accurate and suggest that
including synthetic polyps in the training dataset improves the
predictive performance and generalization of the segmentation
models. When the training dataset consists of pre-generated
synthetic data from our model, we achieve a mean intersection
over union (mIoU) improvement of 4.64% on the validation data
and a 4.14% mIoU improvement when testing across different
datasets. These results indicate that generating synthetic medical
data using diffusion models is valuable for addressing the need
for diverse and extensive medical datasets.

Index Terms—computer-aided diagnosis, deep learning, polyp
generation, machine learning, and segmentation.

I. INTRODUCTION

Colorectal cancer is the second leading cause of cancer-
related deaths for both men and women worldwide, with more
than 935, 000 deaths and 1, 900, 000 new colorectal cancer
(including anus) cases estimated to occur in 2020 [1], which
accounts for about one in ten cancer cases (10.0%) and deaths
(9.4%). Data shows that the risk of colon cancer increases
with age, with most occurring in people older than 50 [2].
However, colorectal cancer is highly treatable when diagnosed
at a localized stage [3], with a 5-year relative survival rate
of 90%. About 36% of patients are diagnosed at this early
stage [4].

For colorectal cancer, colonoscopy is considered the gold
standard as they provide a detailed look at the rectum and
the entire large intestine. A colonoscopy uses a small flexible
tube with a camera attached to the end that is inserted through
the rectum. The camera provides the operating doctor with a
continuous video feed to look for abnormalities in the colon.
Polyps in the colon are abnormalities of varying sizes and can
be precancerous or cancerous. If a polyp is detected during a
colonoscopy, it is usually removed and examined by a pathol-
ogist to determine if it contains cancerous or precancerous

cells. However, polyp detection during colonoscopies is prone
to human error with miss rates between 14% to 30% [5].

In response to the high polyp miss rates, the use of machine
learning (ML)-based methods to assist medical doctors in
detecting these polyps has become a popular area of research.
These systems are commonly referred to as computer aided
diagnosis (CAD) systems and are meant to assist doctors in
making their jobs easier and more efficient. However, the
models these systems are based on usually require a lot of
data to be generalizable [6]. Datasets in the medical domain
are often small or lack the variety (like a lack of true positive
findings) needed to train a model that generalizes well to
unseen data. Therefore, in this paper, we aim to expand the
availability of polyp images by generating fake polyps that can
be used to train ML models or other applications like student
training. The main contributions of this paper are as follows:

1) A framework for generating realistic-looking colon
polyps with associated ground truth masks that can be
used for ML model development and training.

2) Experiments that showcase how the generated data from
our generative model can improve segmentation model
performance and generalizability using a polyp segmen-
tation use case.

The rest of this paper is organized as follows. First, we provide
additional background and details on previous colon polyp
image generation research. Next, we provide a comprehen-
sive description of the framework employed to generate the
synthetic colon polyp images. Following this, we discuss the
experiments conducted for generating the synthetic polyps,
which include details on the datasets used, model implementa-
tion and configuration, and evaluation criteria. We then present
preliminary experiments that use the generated polyps to train
segmentation models designed to segment polyps collected
from real-world colonoscopies. Lastly, we conclude with a
discussion of the results obtained from our experiments and
consider possible directions for future work.

II. BACKGROUND AND RELATED WORK

Synthetic medical data generation has emerged as a crucial
area of research in medical ML. Obtaining medical data can be
expensive and raise privacy concerns, making synthetic data
an attractive solution to increase the amount of data without



Fig. 1: Framework of RePolyp. Step 1 Pre-training on masked data. Step 2 Fine-tuning on cropped-out polyps. Step 3 Pre-
training a second diffusion model. Step 4 Fine-tuning second model on clean colon. Step 5 Inpainting using diffusion model
2 and cropped-out images.

compromising patient privacy. Examples of synthetic data
include generating MRI images for brain image analysis [7]
and ECG signals for detecting heart abnormalities [8], among
others. The use of synthetic data has the potential to accel-
erate medical research and improve the accuracy of medical
algorithms. However, it is essential to ensure that the synthetic
data is realistic and representative of real-world scenarios to
avoid negative impacts on clinical decision-making.

This paper focuses on generating synthetic data for the
gastrointestinal (GI) tract, specifically colon polyps. Automatic
polyp generation is a topic in medical imaging and CAD that
involves the creation of realistic computer-generated polyps
for research and training purposes. Various methods have been
proposed for automatic polyp generation, with most relying on
generative adversarial networks (GANs). For instance, Shin et
al. [7] introduced a conditional GAN-based framework that
generates realistic-looking colon polyps given a background
image and mask. They demonstrated that the generated syn-
thetic polyp images could be used as additional training sam-
ples to enhance the performance of polyp detection models.
In 2022, Fagereng et al. presented PolypConnect [9], which
is a pipeline that inpaints polyps into background images of
clean colon. Their method is based on EdgeConnect [10],
which is a two-stage adversarial model that first produces
lines/edges before completing the image. Similar to Shin et
al., the authors demonstrated that the synthetic polyps were of
adequate quality to be used for training segmentation models
for real-world colonoscopy images.

Our work aims to improve upon previous methods by
using diffusion models for generating synthetic colon polyps.
Diffusion models have demonstrated the ability to produce
high-fidelity images with less noise than traditional GANs.

Additionally, diffusion models are generally more stable than
GANs, which are prone to mode collapse during optimization.
However, the sampling process in diffusion models can be
computationally expensive and slower than GANs. Nonethe-
less, we believe that using diffusion models for generating
synthetic data for colon polyps will improve the quality and
diversity of the generated images, ultimately enhancing the
performance of segmentation models trained on this synthetic
data.

III. POLYP GENERATION FRAMEWORK

This section describes the polyp generation framework,
shown in Figure 1, all the way from initial training to
synthetically generated polyps. The framework uses guided
diffusion models [11], one to generate synthetic cropped-out
polyp images and the other to in-paint the generated partial
images. The framework is based on the RePaint scheme [12].
Repaint is an inference scheme that relies on pre-trained un-
conditional Denoising Diffusion Probabilistic Models (DDPM)
for inpainting generation. We use this scheme to inpaint clean
colon background for synthetic cropped-out polyps. Partial
images can be obtained by multiplying original images with
masks indicated by × in Step 1 and Step 2 in Figure 1.

The polyp generation process can be broken down into five
distinct steps as labeled in Figure 1.

In Step 1, we employ a FastGAN-based [13] model to
generate masks. This model is trained on a substantial number
of masked images, resulting in our first pre-trained model.
Masking an image entails revealing only the white parts of
an image mask in the corresponding original image. The
pre-trained model’s weights are saved for fine-tuning in the
subsequent step.



Step 2 involves using the diffusion model trained in the
previous step on actual cropped-out polyps. The cropped-out
polyps are obtained by eliminating all parts of the images
except for the ground truth region. This step fine-tunes the
model to generate realistic cropped-out polyps.

In Step 3, a new diffusion model is trained on a large dataset
of images, enabling the model to gain a general understanding
of the appearance of the GI tract. This results in a pre-trained
model capable of generating images resembling those found
in the GI tract. The pre-trained model’s weights are saved for
fine-tuning in the following step.

Step 4 loads the diffusion model from the previous step
and fine-tunes it on clean colon images. The model can now
generate colon images without polyps. The fine-tuned model’s
weights are saved for use in the final step.

In Step 5, the final step, we first create a correspond-
ing segmentation mask for our polyps from Step 2 using
thresholding. We then employ our ground truth and the corre-
sponding segmentation mask in conjunction with our diffusion
model from Step 4. This is done using the RePaint inference
scheme [12], which generates a clean probabilistic background
for our cropped-out polyps while simultaneously incorporating
the polyp image’s segmentation mask.

IV. POLYP GENERATION EXPERIMENTS

This section describes all experiments, including details on
the datasets used, implementation of the ML models, frame-
work configuration, and evaluation strategy. Polyp generation
can be achieved through pre-training on unlabeled data and
fine-tuning on images containing polyps. This can be seen
as doing Step 1 and Step 2 in our pipeline without using
segmentation masks. However, this approach will not have
a corresponding segmentation mask for our generated polyp
image, meaning that these synthetic polyp images can only be
used for classification tasks, not segmentation tasks.

A. Datasets

To generate polyps and their corresponding probabilistic
background, the HyperKvasir dataset was used. This dataset
consists of 100, 000 unlabeled images from the GI tract and
1, 000 polyp images, each accompanied by a corresponding
mask, collectively known as Kvasir-SEG. Additionally, 851
images featuring pathological findings (ulcerative colitis) and
1, 018 images showcasing anatomical landmarks (ileum and
cecum) were selected to simulate a clean colon. The unlabeled
data were utilized in both Steps 1 and 3 of our diffusion
models to acquire a comprehensive understanding of the GI
tract. Cropped polyps were employed in Step 2 for model fine-
tuning. The dataset was split between 80% training and 20%
validation for polyp images, 80% training and 20% validation
for clean images, and 95% training and 5% validation for
unlabeled data.

B. Experimental Setup

All model training and data sampling were performed on a
single NVIDIA V100 with 32GB RAM, part of an NVIDIA

TABLE I: FID score for cropped polyps inpainted with differ-
ent backgrounds.

Model FID

Pretrained unlabeled 138.38
Fine-tuned clean 128.83
Fine-tuned polyps 93.43

DGX-2 with 16 V100 GPUs. The models were implemented
using the ML framework PyTorch [14] version 1.12.1 with
CUDA version 11.3.1. The diffusion models were trained
unconditionally, meaning we did not condition on any context
when generating an image; thus, generated images should only
resemble its training data distribution. All models were trained
using the AdamW [15] optimizer, and loss was calculated
using the Lsimple loss function introduced by Ho et al. [16].
The batch size used during training is 32, and the input images
were scaled to a pixels size of 128× 128. The reason for the
small image size is computational efficiency. If images need to
be larger, a super-resolution diffusion model can be trained to
upscale images 4× the original size without losing quality. The
implementation of the experiments is available on GitHub1.

C. Experiments

This section describes the experiments generating synthetic
polyp using the presented RePolyp framework. The Kvasir-
SEG dataset comprises numerous polyp images, each accom-
panied by a corresponding segmentation mask. To capitalize
on the vast amount of data in the unlabeled portion of
HyperKvasir, we preprocess all images in this dataset by
applying masks generated using a GAN model, as detailed
in Step 1 presented in Section IV. This approach enables
our diffusion model to learn the generation of images with
a black background and specific features from the unlabeled
dataset. Fine-tuning is conducted on cropped polyp regions
to develop a DDPM capable of generating synthetic cropped
polyps. We implement various dropout rates, a standard regu-
larization technique in neural networks, to mitigate overfitting
by randomly deactivating a subset of neurons during training.

To create a probabilistic background for the cropped polyps,
diffusion models are trained using different fine-tuning images.
The objective is to ensure that the resulting unconditional
DDPM generates a background distinct from polyp features.
In summary, our method generates a background based on the
cropped polyp, while the approach in [9] generates a polyp
given its background. The differences between these methods
extend beyond inpainting background versus polyp; they also
involve the underlying generative architectures, GANs and
DDPMs. While DDPMs have slower sampling speeds, GANs
struggle with diversity and mode coverage. Both architectures,
however, can produce high-quality samples, as evidenced by
the trilemma in generative models.

1https://www.github.com/simula/repolyp



(a) Generated polyp images from our model and their corresponding
segmentation masks.

(b) Polyp images from Kvasir-SEG and their corresponding segmen-
tation masks.

Fig. 2: Comparison between our generated and Kvasir-SEG polyp images.

D. Results and Discussion

The primary metric used to evaluate the synthetic polyp
images was fréchet inception distance (FID) [17]. FID is
a non-negative score that compares the distribution between
generated images with the distribution of a set of real images.
Generated images that result in FID scores closer to 0 are
considered to be more similar to the real distribution, thereby
better and more realistic. FID has been the de-facto standard
metric for capturing both variety and fidelity in generative
models. Therefore, we use it as our default metric for overall
sample quality assessments while not directly assessing intra-
label diversity.

Considering the FID scores presented in Table I, it might
be tempting to choose a diffusion model fine-tuned on polyps.
However, this would not guarantee that the model would not
inadvertently generate additional polyps. As a result, we opt
for the clean background, ensuring no polyps are generated in
the background and achieving a FID score of 128.83, which
surpasses the performance of the pre-trained model.

V. POYLP SEGMENTATION EXPERIMENTS

This section describes the experiments for validating the
synthetic data by training models using a combination of real
and synthetic images of the human colon.

A. Datasets

Similar to the polyp generation experiments, we use several
open datasets to train the polyp segmentation model, including
Kvasir-SEG [18], ETIS Larib Poylp DB [19], and CVC-
ClinicDB [20]. Kvasir-SEG contains 1, 000 polyp images with
corresponding segmentation masks, where we used 80% of
the dataset for training and 20% for validation. The polyp
images from Kvasir-SEG used in Section IV-B are the same
used in this here with the same training validation split. The
ETIS Larib Polyp DB [19] and CVC-ClinicDB [20] datasets

were also used, containing 196 and 612 images, respectively,
with corresponding ground truth. These datasets were used for
validation across different datasets.

B. Experimental Setup

Similar to the experimental setup used to generate synthetic
polyps described in Section IV-B, we use a similar setup
for the polyp segmentation experiments. Notable differences
include that we use a batch size of 4 during training, a batch
size of 1 during validation, and the Adam [21] optimizer rather
than AdamW. AdamW is a modified version of Adam that
uses weight decay which is another regularization technique.
Hardware and software dependencies remain the same as
described in Section IV-B.

C. Experiments

To train a U-Net-based model [22] for segmenting polyp
images in colonoscopy frames, it is necessary to obtain im-
ages containing polyps and their corresponding ground truth
annotations. We perform three evaluations, each involving
the training of two U-Net models. One model is exclusively
trained on real data, while the other is trained on a combination
of real and synthetic data. Both models are trained for 20
epochs using early stopping and without incorporating any
data augmentation techniques. The metrics employed to assess
segmentation performance include Intersection over Union
(IoU), mean Intersection over Union (mIoU), Dice coefficient
(DSC), precision, and recall.

In the first evaluation, we compare the performance of a
model trained on a dataset of 800 real images to that of a
model trained on a dataset containing the same 800 real images
supplemented with 800 synthetic images. Both models are
validated against a set of 200 real images from Kvasir-SEG.
In the second and third evaluations, we employ the same two



Input GT Base Base+800 Base Base+800

Fig. 3: Visual segmentation performance on Kvasir-SEG images using a U-Net architecture. Black and white images are
segmentation masks, and the last two columns represent heatmaps. From left to right; Input image, GT - Ground Truth, real
images, real images + 800 synthetic images, real images, real images + 800 synthetic images.

datasets used in the first evaluation but test their performance
against the ETIS and CVC datasets, respectively.

D. Results and Discussion
Figure 2 compares six synthetic polyps and their corre-

sponding ground truth images, as well as six images with
ground truth from the Kvasir-SEG dataset. The first column
displays examples of realistically generated synthetic polyps,
while the third column demonstrates poorly generated syn-
thetic polyps. In Tables II, III, and IV, the differences between
the baseline dataset and the dataset augmented with synthetic
images are examined. We observe an improvement in the
mean intersection over union (mIoU) by 4.64%, 4.68%, and
5.10% on the respective validation datasets. Concurrently,
there is an increase in the Dice similarity coefficient (DSC)
by 2.02%, 10.54%, and 0.41%. Precision, which reflects the
model’s confidence in predicting polyp pixels, also increases
by adding synthetic images to the dataset. However, it is
essential to consider precision in conjunction with recall. The
impact of the added synthetic data on recall is minimal. The
improved performance on the validation data can be attributed
to the increased diversity in the training data provided by
the synthetic images. This augmentation appears to enhance

TABLE II: Validation 200 Kvasir-SEG images

Dataset IoU mIoU DSC Precision Recall

Baseline 0.762 0.732 0.840 0.871 0.821
+800 0.785 0.766 0.857 0.913 0.826

Chg % 3.02% 4.64% 2.02% 4.82% 0.61%

TABLE III: Validation ETIS Larib Polyp DB

Dataset IoU mIoU DSC Precision Recall

Baseline 0.351 0.470 0.408 0.583 0.709
+800 0.396 0.492 0.451 0.604 0.727

Chg % 12.82% 4.68% 10.54% 3.60% 2.54%

the model’s generalization capabilities. While adding synthetic
data may also improve optimization, this aspect was not
investigated in this study.

Figure 3 shows the results of two segmentation models on
selected Kvasir-SEG images from the validation dataset. The
first image appears to be easy to segment. In the second and
third images, we see that our baseline model classifies more
of the clean as polyps which will result in a lower precision



TABLE IV: Validation CVC-ClinicDB

Dataset IoU mIoU DSC Precision Recall

Baseline 0.642 0.628 0.735 0.831 0.720
+800 0.654 0.660 0.738 0.869 0.733

Chg % 1.87% 5.10% 0.41% 4.57% 1.81%

score. The baseline model seemingly segments based on the
texture of polyps, giving a somewhat uniform value to pixels
segmented as polyps. The dataset with added synthetic data, on
the other hand, seems to have a better understanding of polyp
edges with darker red pixels being more frequent near polyp
edges and more uniform values for clean parts. The increase
in performance might therefore be because the model with
synthetic data has a better idea of what clean parts of a colon
look like. The last image is a challenge with it being very
hard to detect the polyp. Both models fall short of detecting
the polyp, but the +800 model classifies fewer pixels as polyps.

The generated polyps often generate green boxes in the left
or right corners of the images. This is caused since clean
images use green boxes and polyp images in Kvasir-SEG
mostly use black boxes. This can be changed by adding a
post-processing step of making green boxes black. It is also
worth mentioning that generated polyps can be in areas where
our model wants to generate these green boxes. This can
be observed in our second generated image in Figure 2 that
causes some semantic inconsistencies. This can be adjusted
in post-processing by completing the boxes the model tries to
generate, but we would then similarly need to remove areas
where the box should be in our segmentation masks.

VI. CONCLUSION

This paper presents RePoylp, a novel framework for gen-
erating realistic colon polyps using diffusion models. The
generated polyps are used in combination with real polyps
to improve the training of polyp segmentation models. The
results demonstrate improvements in all metrics on three
distinct validation datasets when adding synthetic polyps to
the training data, with the most improvements seen in mean
intersection over union (mIoU) and precision. However, the
precise reason for these improvements is uncertain, but per-
haps the enhanced generation of clean colon regions compared
to polyps may have contributed to the gains. This hypothesis
is supported by the data imbalance, where clean colon pixels
are much more prevalent than polyp pixels. Nonetheless, the
generated data is still beneficial for training systems for polyp
segmentation. We hope this framework can contribute to more
robust and generalizable models by extending existing datasets
with synthetic data.
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Appendix B. Interpolation
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Figure B.1: Interpolation in latent space between two different polyp images.
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Figure B.2: Interpolation in latent space between two different polyp images.
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21.04.2023, 23:09 Polyps rating questionnaire

https://docs.google.com/forms/d/e/1FAIpQLSchpuhBDQOCkcSNj_k3t_WiKnB9gxLyujcx1RWm_TnQJ7v6qQ/viewform 1/2

Please follow the following guidelines carefully before filling the form:
1. Please spend about 10s to look at an image.
2. Do not zoom images to inspect them. Use the original size of the image as given in the 
form.

Side 1 av 12

Send aldri passord via Google Skjemaer.

Dette skjemaet ble opprettet på Simula. Rapportér uriktig bruk

Polyps rating questionnaire
This study will present you with ten images of different polyps. Some images are real 
polyps, and some are generated (synthetic) polyps. Please look at the image carefully and 
answer some questions! Thanks a lot for your participation!

Logg på Google for å lagre fremdriften din. Finn ut mer

* indikerer at spørsmålet er obligatorisk

What is your job title? *

Svaret ditt

How many years did you work with colonoscopy? *

Svaret ditt

Neste Tøm skjemaet

 Skjemaer



21.04.2023, 23:10 Polyps rating questionnaire

https://docs.google.com/forms/d/e/1FAIpQLSchpuhBDQOCkcSNj_k3t_WiKnB9gxLyujcx1RWm_TnQJ7v6qQ/formResponse 1/3

Image 1

I am completely 
sure it is real

1 2 3 4 5 6 7 8 9 10

I am  completely 
sure it is generated

Not appropriate

1 2 3 4 5 6 7 8 9 10

Very appropriate

Polyps rating questionnaire
Logg på Google for å lagre fremdriften din. Finn ut mer

* indikerer at spørsmålet er obligatorisk

Is this a real or a generated image? *

What type of polyp does the image contain? *

Svaret ditt

Is the size of the polyp appropriate in context to its surroundings? *



21.04.2023, 23:10 Polyps rating questionnaire

https://docs.google.com/forms/d/e/1FAIpQLSchpuhBDQOCkcSNj_k3t_WiKnB9gxLyujcx1RWm_TnQJ7v6qQ/formResponse 2/3

Completely sure 
it is a real 

background

1 2 3 4 5 6 7 8 9 10

Completely sure it is 
a generated 
background

I am sure this is a 
real polyp

1 2 3 4 5 6 7 8 9 10

I am sure the polyp 
is generated

It does not �t

1 2 3 4 5 6 7 8 9 10

It �ts perfectly 

Very low 
con�dence

1 2 3 4 5 6 7 8 9 10

Very high 
con�dence

Side 2 av 12

Send aldri passord via Google Skjemaer.

Dette skjemaet ble opprettet på Simula. Rapportér uriktig bruk

Does the background appear generated? *

Does the polyp appear generated? *

Does the polyp appear fitting into the given background and anatomy? *

How confident are you regarding your predicted histology? *

Tilbake Neste Tøm skjemaet

 Skjemaer



21.04.2023, 23:10 Polyps rating questionnaire

https://docs.google.com/forms/d/e/1FAIpQLSchpuhBDQOCkcSNj_k3t_WiKnB9gxLyujcx1RWm_TnQJ7v6qQ/formResponse 1/3

Image 2

I am completely 
sure it is real

1 2 3 4 5 6 7 8 9 10

I am  completely 
sure it is generated

Not appropriate

1 2 3 4 5 6 7 8 9 10

Very appropriate

Polyps rating questionnaire
Logg på Google for å lagre fremdriften din. Finn ut mer

* indikerer at spørsmålet er obligatorisk

Is this a real or a generated image? *

What type of polyp does the image contain? *

Svaret ditt

Is the size of the polyp appropriate in context to its surroundings? *



21.04.2023, 23:10 Polyps rating questionnaire

https://docs.google.com/forms/d/e/1FAIpQLSchpuhBDQOCkcSNj_k3t_WiKnB9gxLyujcx1RWm_TnQJ7v6qQ/formResponse 2/3

Completely sure 
it is a real 

background

1 2 3 4 5 6 7 8 9 10

Completely sure it is 
a generated 
background

I am sure this is a 
real polyp

1 2 3 4 5 6 7 8 9 10

I am sure the polyp 
is generated

It does not �t

1 2 3 4 5 6 7 8 9 10

It �ts perfectly 

Very low 
con�dence

1 2 3 4 5 6 7 8 9 10

Very high 
con�dence

Side 3 av 12

Send aldri passord via Google Skjemaer.

Dette skjemaet ble opprettet på Simula. Rapportér uriktig bruk

Does the background appear generated? *

Does the polyp appear generated? *

Does the polyp appear fitting into the given background and anatomy? *

How confident are you regarding your predicted histology? *

Tilbake Neste Tøm skjemaet

 Skjemaer



21.04.2023, 23:11 Polyps rating questionnaire

https://docs.google.com/forms/d/e/1FAIpQLSchpuhBDQOCkcSNj_k3t_WiKnB9gxLyujcx1RWm_TnQJ7v6qQ/formResponse 1/3

Image 3

I am completely 
sure it is real

1 2 3 4 5 6 7 8 9 10

I am  completely 
sure it is generated

Not appropriate

1 2 3 4 5 6 7 8 9 10

Very appropriate

Polyps rating questionnaire
Logg på Google for å lagre fremdriften din. Finn ut mer

* indikerer at spørsmålet er obligatorisk

Is this a real or a generated image? *

What type of polyp does the image contain? *

Svaret ditt

Is the size of the polyp appropriate in context to its surroundings? *



21.04.2023, 23:11 Polyps rating questionnaire

https://docs.google.com/forms/d/e/1FAIpQLSchpuhBDQOCkcSNj_k3t_WiKnB9gxLyujcx1RWm_TnQJ7v6qQ/formResponse 2/3

Completely sure 
it is a real 

background

1 2 3 4 5 6 7 8 9 10

Completely sure it is 
a generated 
background

I am sure this is a 
real polyp

1 2 3 4 5 6 7 8 9 10

I am sure the polyp 
is generated

It does not �t

1 2 3 4 5 6 7 8 9 10

It �ts perfectly 

Very low 
con�dence

1 2 3 4 5 6 7 8 9 10

Very high 
con�dence

Side 4 av 12

Send aldri passord via Google Skjemaer.

Dette skjemaet ble opprettet på Simula. Rapportér uriktig bruk

Does the background appear generated? *

Does the polyp appear generated? *

Does the polyp appear fitting into the given background and anatomy? *

How confident are you regarding your predicted histology? *

Tilbake Neste Tøm skjemaet

 Skjemaer



21.04.2023, 23:11 Polyps rating questionnaire

https://docs.google.com/forms/d/e/1FAIpQLSchpuhBDQOCkcSNj_k3t_WiKnB9gxLyujcx1RWm_TnQJ7v6qQ/formResponse 1/3

Image 4

I am completely 
sure it is real

1 2 3 4 5 6 7 8 9 10

I am  completely 
sure it is generated

Not appropriate

1 2 3 4 5 6 7 8 9 10

Very appropriate

Polyps rating questionnaire
Logg på Google for å lagre fremdriften din. Finn ut mer

* indikerer at spørsmålet er obligatorisk

Is this a real or a generated image? *

What type of polyp does the image contain? *

Svaret ditt

Is the size of the polyp appropriate in context to its surroundings? *



21.04.2023, 23:11 Polyps rating questionnaire

https://docs.google.com/forms/d/e/1FAIpQLSchpuhBDQOCkcSNj_k3t_WiKnB9gxLyujcx1RWm_TnQJ7v6qQ/formResponse 2/3

Completely sure 
it is a real 

background

1 2 3 4 5 6 7 8 9 10

Completely sure it is 
a generated 
background

I am sure this is a 
real polyp

1 2 3 4 5 6 7 8 9 10

I am sure the polyp 
is generated

It does not �t

1 2 3 4 5 6 7 8 9 10

It �ts perfectly 

Very low 
con�dence

1 2 3 4 5 6 7 8 9 10

Very high 
con�dence

Side 5 av 12

Send aldri passord via Google Skjemaer.

Dette skjemaet ble opprettet på Simula. Rapportér uriktig bruk

Does the background appear generated? *

Does the polyp appear generated? *

Does the polyp appear fitting into the given background and anatomy? *

How confident are you regarding your predicted histology? *

Tilbake Neste Tøm skjemaet

 Skjemaer



21.04.2023, 23:11 Polyps rating questionnaire

https://docs.google.com/forms/d/e/1FAIpQLSchpuhBDQOCkcSNj_k3t_WiKnB9gxLyujcx1RWm_TnQJ7v6qQ/formResponse 1/3

Image 5

I am completely 
sure it is real

1 2 3 4 5 6 7 8 9 10

I am  completely 
sure it is generated

Not appropriate

1 2 3 4 5 6 7 8 9 10

Very appropriate

Polyps rating questionnaire
Logg på Google for å lagre fremdriften din. Finn ut mer

* indikerer at spørsmålet er obligatorisk

Is this a real or a generated image? *

What type of polyp does the image contain? *

Svaret ditt

Is the size of the polyp appropriate in context to its surroundings? *



21.04.2023, 23:11 Polyps rating questionnaire

https://docs.google.com/forms/d/e/1FAIpQLSchpuhBDQOCkcSNj_k3t_WiKnB9gxLyujcx1RWm_TnQJ7v6qQ/formResponse 2/3

Completely sure 
it is a real 

background

1 2 3 4 5 6 7 8 9 10

Completely sure it is 
a generated 
background

I am sure this is a 
real polyp

1 2 3 4 5 6 7 8 9 10

I am sure the polyp 
is generated

It does not �t

1 2 3 4 5 6 7 8 9 10

It �ts perfectly 

Very low 
con�dence

1 2 3 4 5 6 7 8 9 10

Very high 
con�dence

Side 6 av 12

Send aldri passord via Google Skjemaer.

Dette skjemaet ble opprettet på Simula. Rapportér uriktig bruk

Does the background appear generated? *

Does the polyp appear generated? *

Does the polyp appear fitting into the given background and anatomy? *

How confident are you regarding your predicted histology? *

Tilbake Neste Tøm skjemaet

 Skjemaer
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https://docs.google.com/forms/d/e/1FAIpQLSchpuhBDQOCkcSNj_k3t_WiKnB9gxLyujcx1RWm_TnQJ7v6qQ/formResponse 1/3

Image 6

I am completely 
sure it is real

1 2 3 4 5 6 7 8 9 10

I am  completely 
sure it is generated

Not appropriate

1 2 3 4 5 6 7 8 9 10

Very appropriate

Polyps rating questionnaire
Logg på Google for å lagre fremdriften din. Finn ut mer

* indikerer at spørsmålet er obligatorisk

Is this a real or a generated image? *

What type of polyp does the image contain? *

Svaret ditt

Is the size of the polyp appropriate in context to its surroundings? *
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https://docs.google.com/forms/d/e/1FAIpQLSchpuhBDQOCkcSNj_k3t_WiKnB9gxLyujcx1RWm_TnQJ7v6qQ/formResponse 2/3

Completely sure 
it is a real 

background

1 2 3 4 5 6 7 8 9 10

Completely sure it is 
a generated 
background

I am sure this is a 
real polyp

1 2 3 4 5 6 7 8 9 10

I am sure the polyp 
is generated

It does not �t

1 2 3 4 5 6 7 8 9 10

It �ts perfectly 

Very low 
con�dence

1 2 3 4 5 6 7 8 9 10

Very high 
con�dence

Side 7 av 12

Send aldri passord via Google Skjemaer.

Dette skjemaet ble opprettet på Simula. Rapportér uriktig bruk

Does the background appear generated? *

Does the polyp appear generated? *

Does the polyp appear fitting into the given background and anatomy? *

How confident are you regarding your predicted histology? *

Tilbake Neste Tøm skjemaet

 Skjemaer



21.04.2023, 23:12 Polyps rating questionnaire

https://docs.google.com/forms/d/e/1FAIpQLSchpuhBDQOCkcSNj_k3t_WiKnB9gxLyujcx1RWm_TnQJ7v6qQ/formResponse 1/3

Image 7

I am completely 
sure it is real

1 2 3 4 5 6 7 8 9 10

I am  completely 
sure it is generated

Not appropriate

1 2 3 4 5 6 7 8 9 10

Very appropriate

Polyps rating questionnaire
Logg på Google for å lagre fremdriften din. Finn ut mer

* indikerer at spørsmålet er obligatorisk

Is this a real or a generated image? *

What type of polyp does the image contain? *

Svaret ditt

Is the size of the polyp appropriate in context to its surroundings? *
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Completely sure 
it is a real 

background

1 2 3 4 5 6 7 8 9 10

Completely sure it is 
a generated 
background

I am sure this is a 
real polyp

1 2 3 4 5 6 7 8 9 10

I am sure the polyp 
is generated

It does not �t

1 2 3 4 5 6 7 8 9 10

It �ts perfectly 

Very low 
con�dence

1 2 3 4 5 6 7 8 9 10

Very high 
con�dence

Side 8 av 12

Send aldri passord via Google Skjemaer.

Dette skjemaet ble opprettet på Simula. Rapportér uriktig bruk

Does the background appear generated? *

Does the polyp appear generated? *

Does the polyp appear fitting into the given background and anatomy? *

How confident are you regarding your predicted histology? *
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Image 8

I am completely 
sure it is real

1 2 3 4 5 6 7 8 9 10

I am  completely 
sure it is generated

Not appropriate

1 2 3 4 5 6 7 8 9 10

Very appropriate

Polyps rating questionnaire
Logg på Google for å lagre fremdriften din. Finn ut mer

* indikerer at spørsmålet er obligatorisk

Is this a real or a generated image? *

What type of polyp does the image contain? *

Svaret ditt

Is the size of the polyp appropriate in context to its surroundings? *
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Completely sure 
it is a real 

background

1 2 3 4 5 6 7 8 9 10

Completely sure it is 
a generated 
background

I am sure this is a 
real polyp

1 2 3 4 5 6 7 8 9 10

I am sure the polyp 
is generated

It does not �t

1 2 3 4 5 6 7 8 9 10

It �ts perfectly 

Very less 
con�dence

1 2 3 4 5 6 7 8 9 10

Very high 
con�dence

Side 9 av 12

Send aldri passord via Google Skjemaer.

Dette skjemaet ble opprettet på Simula. Rapportér uriktig bruk

Does the background appear generated? *

Does the polyp appear generated? *

Does the polyp appear fitting into the given background and anatomy? *

How confident are you regarding your predicted histology? *
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Image 9

I am completely 
sure it is real

1 2 3 4 5 6 7 8 9 10

I am  completely 
sure it is generated

Not appropriate

1 2 3 4 5 6 7 8 9 10

Very appropriate

Polyps rating questionnaire
Logg på Google for å lagre fremdriften din. Finn ut mer

* indikerer at spørsmålet er obligatorisk

Is this a real or a generated image? *

What type of polyp does the image contain? *

Svaret ditt

Is the size of the polyp appropriate in context to its surroundings? *
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Completely sure 
it is a real 

background

1 2 3 4 5 6 7 8 9 10

Completely sure it is 
a generated 
background

I am sure this is a 
real polyp

1 2 3 4 5 6 7 8 9 10

I am sure the polyp 
is generated

It does not �t

1 2 3 4 5 6 7 8 9 10

It �ts perfectly 

Very low 
con�dence

1 2 3 4 5 6 7 8 9 10

Very high 
con�dence

Side 10 av 12

Send aldri passord via Google Skjemaer.

Dette skjemaet ble opprettet på Simula. Rapportér uriktig bruk

Does the background appear generated? *

Does the polyp appear generated? *

Does the polyp appear fitting into the given background and anatomy? *

How confident are you regarding your predicted histology? *
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Image 10

I am completely 
sure it is real

1 2 3 4 5 6 7 8 9 10

I am  completely 
sure it is generated

Not appropriate

1 2 3 4 5 6 7 8 9 10

Very appropriate

Polyps rating questionnaire
Logg på Google for å lagre fremdriften din. Finn ut mer

* indikerer at spørsmålet er obligatorisk

Is this a real or a generated image? *

What type of polyp does the image contain? *

Svaret ditt

Is the size of the polyp appropriate in context to its surroundings? *



21.04.2023, 23:13 Polyps rating questionnaire

https://docs.google.com/forms/d/e/1FAIpQLSchpuhBDQOCkcSNj_k3t_WiKnB9gxLyujcx1RWm_TnQJ7v6qQ/formResponse 2/3

Completely sure 
it is a real 

background

1 2 3 4 5 6 7 8 9 10

Completely sure it is 
a generated 
background

I am sure this is a 
real polyp

1 2 3 4 5 6 7 8 9 10

I am sure the polyp 
is generated

It does not �t

1 2 3 4 5 6 7 8 9 10

It �ts perfectly 

Very low 
con�dence

1 2 3 4 5 6 7 8 9 10

Very high 
con�dence

Side 11 av 12

Send aldri passord via Google Skjemaer.

Dette skjemaet ble opprettet på Simula. Rapportér uriktig bruk

Does the background appear generated? *

Does the polyp appear generated? *

Does the polyp appear fitting into the given background and anatomy? *

How confident are you regarding your predicted histology? *
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