

MIDDLEWARE SERVICES FOR INFORMATION
SHARING IN MOBILE AD-HOC NETWORKS
Challenges and Approach

Thomas Plagemann1, Jon Andersson2, Ovidiu Drugan1, Vera Goebel1,
Carsten Griwodz1, Pål Halvorsen1, Ellen Munthe-Kaas1, Matija Puzar1,
Norun Sanderson1, Katrine Stemland Skjelsvik1
1University of Oslo, Department of Informatics, P.O. Box 1080, 0316 Oslo, Norway;
2Thales Communications AS, P.O. Box 6611 Etterstad, 0609 Oslo, Norway

Abstract: Information sharing is a mission critical key element in rescue and emergency
operations. Mobile ad-hoc networks (MANETs) could provide a useful
infrastructure to support information sharing, but appropriate applications are
needed. To facilitate efficient application development for this type of
infrastructure, middleware support is needed. In the Ad-Hoc InfoWare project,
we are currently developing corresponding middleware services. In this paper,
we discuss the application requirements that are imposed onto the middleware
services, and we outline our technical approach to address the corresponding
challenges. The architecture we propose comprises five main building blocks,
namely knowledge management, a local and a distributed event notification
service, resource management, and security and privacy management. We
indicate design alternatives for these building blocks, identify open problems
and relate our approach to the state-of-the-art.

Key words: Middleware services, information sharing, mobile ad-hoc networks,
knowledge management, event notification, resource management, security.

1. INTRODUCTION AND MOTIVATION

Efficient collaboration between rescue personnel from various
organizations is a mission critical key element for a successful operation in
emergency and rescue situations . There are two central preconditions for
efficient collaboration, (1) the incentive to collaborate, which is naturally

2 T. Plagemann, J. Andersson, O. Drugan, V. Goebel, C. Griwodz, P.
Halvorsen, E. Munthe-Kaas, M. Puzar, N. Sanderson, K. S. Skjelsvik

given for rescue personnel, and (2) the ability to efficiently communicate
and share information. Mobile ad-hoc networks (MANETs) could provide
the technical platform for efficient information sharing in such scenarios,
assuming that all rescue personnel is carrying and using mobile computing
devices with wireless network interfaces. Applications are needed to turn a
working infrastructure of a MANET into a useful system, like dispatching of
rescue personnel and equipment, context-aware medical diagnosis and
treatment support, and real-time evidence collection and management.
However, application development for MANETs is not easy. MANETs are
typically highly dynamic networks in terms of available communication
partners, available network resources, connectivity, etc. Furthermore, the
end-user devices are very heterogeneous, ranging from high-end laptops to
low-end PDAs and mobile phones. CPU storage space, bandwidth, and
battery power represent important resources. Finally, many application
scenarios, like coordination of rescue teams, have also quite hard non-
functional requirements, like availability (including reliability, fault
tolerance, and survivability), efficient resource utilization, and security and
privacy. Thus, sufficient quality in information access and sharing in such an
environment is hurdled by quite many obstacles. Obviously, solving these
issues in every new MANET application from scratch is not meaningful.
Instead, a set of middleware services that support the development of
applications for MANETs is needed.

Since the application domain of emergency and rescue scenarios differs
from traditional application of MANETs, we regard it as important to
identify the particular requirements of this applications scenario and their
implications for the design of integrated middleware services. Therefore, we
focus in this discussion paper on the requirements, the resulting challenges,
and a description of our overall approach. In Section 2, we elaborate in more
detail the requirements for middleware services that support information
sharing in MANETS for emergency and rescue applications. Section 3
presents the blueprint of our approach. In Section 4, we conclude and
describe future work.

2. APPLICATION SCENARIO AND APPLICATION
REQUIREMENTS

It is our goal to develop middleware services for information sharing in
emergency and rescue operations. We assume that wireless computing
devices will be used as the basic technical means for information sharing
between rescue personnel, like policemen, firemen, physicians, and

Middleware Services for Information Sharing in MANETs 3

paramedics. The number of devices present at an emergency site is probably
not larger than hundred(s). Including small sensors that are either at the site
or introduced by rescue personnel, the number of devices may eventually
reach up to (ten) thousands, but it will still be considerably smaller than
Internet scale. These devices form MANETs at emergency sites with all their
well known properties, like heterogeneous nodes, unpredictable reachability
of nodes, etc. However, MANETs at emergency sites might not be entirely
infrastructureless, because some devices might serve as gateways to the
Internet. Another important difference to classical application scenarios for
MANETs is the fact that certain preparations for rescue operations can be
done in advance with full access to the Internet. In particular, we distinguish
six phases in such a scenario: A priori, before the accident the different
organizations will exchange information on data format, and make
agreements on working methods. After an accident has happened, the first
step is briefing of the different rescue teams, involving gathering of
information about the disaster, e.g., weather, location, number of people
involved, and facilities in the area. The next phase is the bootstrap of the
network where events such as registration of nodes and electing leaders take
place. During the running of the network different events may happen that
will affect the middleware services: a node may join or leave the network,
the network may be partitioned, and network partitions may be merged
again. At the end of the rescue operation, all services must be terminated.
After the rescue operation it could be useful to analyze resource use, user
movements, how and what type of information is shared to gain knowledge
for future situations.

In the a priori and briefing phases, the devices are connected to a stable
infrastructure. It would be optimal if all relevant information could be
uploaded during these phases on the devices that need it. However, this is
generally impossible, because some information cannot be accessed by all
organizations due to for example privacy concerns or there is just not enough
time in the briefing phase to identify and upload the information. Examples
for this type of information include security codes of doors at an emergency
site, detailed building plans, specification of freight on a vehicle or in a
storage, or medical records of persons that are known to be involved in the
emergency. Furthermore, information generated at the emergency site during
the operation, like sensor readings of room temperatures, information about
how many injured persons have been detected at which location, readings of
health monitors attached to injured persons, or information indicating the
causes of an emergency situation, etc.

The middleware must support sharing of such information during the
running phase. To accommodate the heterogeneity of organizations
involved, it must present the information in a way that all organizations can

4 T. Plagemann, J. Andersson, O. Drugan, V. Goebel, C. Griwodz, P.
Halvorsen, E. Munthe-Kaas, M. Puzar, N. Sanderson, K. S. Skjelsvik

understand. This implies supporting functionality akin to high-level
distributed database system functionality, querying available information
and keeping track of what information is available in the network.
Ontologies are a means of explicating semantic knowledge about the
information. The middleware must account for different domain ontologies
and standards that might be used by the organizations. A major challenge for
knowledge management is to support information sharing across
organizations such that they understand each other’s structure and data
descriptions.

Another set of requirements is concerned with controlled access to shared
information which has to be addressed by security and privacy solutions. For
example, passive bystanders like journalists should not get access to medical
records, and aggressive bystanders like terrorists should not be able to alter
or delete important data which might sabotage the rescue operation.

The likelihood of connection loss implies also that middleware services
based on synchronous communication are not a good choice, because they
are too vulnerable with respect to communication disruptions. The
alternative to synchronous solutions is a distributed event notification system
(DENS). Devices can lose contact to other mobile devices due to network
partitioning or power drain, but groups that are portioned off from other
parts of the MANET should function as good as possible. Therefore,
replication is necessary to achieve the required level of availability. In order
to make replication decisions that increase the availability and result in
efficient resource utilization, it is important to keep track of resources.

Performance and efficient resource utilization are also important, but
there is typically a trade-off between these two requirements and availability.
There is no general solution for this trade-off and its resolution often
depends on the particular application and even the particular emergency
situation. Therefore, it is necessary to allow the application to define policies
on how to handle these tradeoffs. The heterogeneity of hardware requires
also that middleware services are configurable such that small resource-weak
devices run only a few middleware components and devices with sufficient
resources run many (or all) components.

3. BUILDING BLOCKS

We address these challenges and requirements in the Ad-Hoc InfoWare
project by developing a set of configurable middleware components for
MANETs that provide their services to applications and to other middleware
components. Figure 1 illustrates our architecture, comprising five major

Middleware Services for Information Sharing in MANETs 5

components and some sub-components: knowledge management to handle
ontologies, metadata management, integration of metadata and information
from different sources; two components for event notification, distributed
event notification to decouple subscribers from publishers through mediating
nodes and watchdogs to notify about local events, resource management to
keep track of neighboring nodes and their resources to provide information
for replication decisions, and security and privacy management based on a
priori gathered certificates, key management for signing and encrypting of
messages, and access control.

Watch-
dogs

Watchdog
Manager

Watchdog
Execution
Environ-

ment

Distributed Event
Notification Service

Delivery

State
Mgnt.

Availability & Scaling

Storage
Mgnt.

Security and Privacy Management
Authentication

Resource Manager

Access Control Key Mgnt. Encryption

Knowledge
Manager

Ontology & Metadata
Framework

Data Dictionary Mgnt.
LDD GDDD

Query Management

Profile & Context Mgnt.

XML Parser

Repli-
cation

Manager

Proposal

Unit

Resource
Monitor

 Adjacency
Monitor

Local
Monitor

Resource
Availability

Figure 1. Main middleware components

3.1 Knowledge Manager

The purpose of this component is to manage knowledge sharing and
integration in the network, by providing services which allow relating the
metadata descriptions of the information items to a semantic context
(through ontologies), and thus adding a layer of knowledge to the
information shared in the MANET. One of the main tasks for the knowledge
manager (KM) is to provide a framework for storage and management of
metadata and ontologies for applications and middleware components.
Additionally, it should manage storage of metadata, both content
descriptions and schema/structure, and enable querying and retrieval of rele-
vant information items and resources in the current network. It should also
keep track of the availability of these. Another main task is to support the
understanding of metadata from the participating domains to create a

6 T. Plagemann, J. Andersson, O. Drugan, V. Goebel, C. Griwodz, P.
Halvorsen, E. Munthe-Kaas, M. Puzar, N. Sanderson, K. S. Skjelsvik

common pool of knowledge for the particular rescue operation. This will
include some kind of mapping, merging, or integration of the knowledge
each organization chooses to share. Therefore, the KM will offer the
following high-level services: data dictionary services, metadata and
ontology framework services, profile and context services, and query
services. In addition, it will provide an XML parser.

Global distributed data dictionaries (GDDD) will be used to provide a
global view of what information is available in the network, and local data
dictionaries (LDD) to view metadata of local information objects that can be
shared with other nodes. Creating a GDDD simply by keeping copies of the
content of the LDDs is not feasible for several reasons, among which are
scarce resources, availability, and lack of a semantic context. A possible
solution towards alleviating some of these problems is to create a GDDD by
linking the content of the LDDs to a semantic context, which can be
traversed and queried, like a semantic net (or web). A GDDD may request
other nodes in its network range for relevant LDD content and subscribe to
changes on this metadata by using the event notification service. The
GDDDs also keep track of the availability of the items described in the
LDD. This can be done in a pro-active (eager) or re-active (lazy) fashion,
possibly depending on the current configuration.

Our focus for the KM is to facilitate use and sharing of existing domain
ontologies from the participating organizations, and how to make these
ontologies and metadata “understood” by all involved parties, so information
can be shared across domains for the current application scenario. This can
be solved by using an upper ontology to bridge the different domain on-
tologies. Each node has a set of resources, and may offer services to other
nodes. Device profiles may contain this kind of information, as well as
which context (e.g. time, location, and situation) the device currently has.
User profiles may also show which role the user has in the current context,
e.g., in a rescue scenario, we will most likely have team leaders, leader of
communication, transport, rescue site leader and so on. The use of profiles
and context enable personalization of data, support information filtering to
avoid the overflow of irrelevant information, and allow relating information
to a user’s or a node’s context. The KM will support management of profiles
and context, so applications can create and manage profiles and context as
needed. To allow a user or application to actively request data retrieval, the
query manager should support different approaches, like naming of an
information object, e.g., a URL, formulating a query, and filtering and/or
ranking of the retrieved information according to context and profile.

Important related work for the KM includes MoGatu14, Shark15, and
AmbientDB8. MoGatu is a framework for profile driven data management in

Middleware Services for Information Sharing in MANETs 7

a mobile ad-hoc environment using data-based routing, semantic-based data
caching, and replication algorithms. It supports a point-to-point pull model.
Shark is a system for organization, synchronization and exchange of
knowledge among mobile users from one group and from different groups
by the use of knowledge ports declaring topics for knowledge exchange. The
architecture relies on stationary server nodes. AmbientDB adds high-level
data management functionalities to a distributed middleware layer by
providing a global database abstraction over a MANET using Distributed
Hash Tables. Our approach does not support a fully distributed database
across all applications, but we may learn from their way of organizing
metadata.

3.2 Event Notification

The distributed event notification service (DENS) comprises three
delivery components to exchange information on subscriptions and
notifications between the following three pairs of entities: subscriber –
DENS, DENS – DENS, and DENS – publisher. At least one of these
delivery components is needed by any node that wants to use and or provide
DENS related services. The DENS itself consists of three management
components, i.e., state management, storage management, and availability
and scaling management. In order to detect local events, it uses watchdog
(WD) management and WD execution environment with the resource
manager. The subscription model the DENS provides is determined by the
fact that any kind of data that might be stored in data structures in main
memory, a file, or system internal tables could be of interest for subscribers.
Therefore, a publisher cannot decide which information should be published.
Instead, subscribers have to specify in which data they are interested. Thus, a
kind of content-based subscription model is needed. This is realized through
the concept of WDs. A WD is an agent whose task is to monitor within the
node whether the condition that is specified in a subscription is fulfilled. In
this case, it notifies the DENS that the event has occurred. The WD
management allows starting and stopping WDs, and maintains a list of the
WDs that are currently running on the node in the WD execution
environment. All nodes that are willing to serve as publisher in the ad-hoc
network have to implement this component. WDs can be used by the DENS
and any other local process.

The DENS probably runs on mobile devices which might lose contact to
other mobile devices due to network partitioning or might even be switched
off to save power. In case of network partitioning, the DENS design supports
information sharing in the different network partitions, and if arbitrary
devices are switched off, including DENS nodes, it provides services in a

8 T. Plagemann, J. Andersson, O. Drugan, V. Goebel, C. Griwodz, P.
Halvorsen, E. Munthe-Kaas, M. Puzar, N. Sanderson, K. S. Skjelsvik

best-effort manner. DENS nodes have to maintain the state information
about subscriptions, i.e., the list of subscriptions, such that the corresponding
notifications can be sent to the proper subscribers. To obtain highly available
DENS, the state information is replicated among the nodes running DENS.
Network partitioning and network merging can easily lead to an inconsistent
state. Therefore, the DENS is able to handle subscriptions and notifications
with inconsistent state information and it includes maintenance protocols to
obtain again a consistent state after these events. The storage manager stores
information about notifications that could not be delivered. This allows to
implement a delivery semantics that comes as close as possible to at-least-
once.

One important difference between our approach and related work is that
DENS components may be implemented on mobile nodes. STEAM12 is an
event-based middleware service tailored for ad-hoc networks. There is no
intermediate middleware; instead a publisher will send notifications directly
to its subscribers in the proximity. Siena3 and JEDI5 have support for mobile
clients, but the clients, i.e., the publishers and subscribers, have the
responsibility of telling the service that they have moved. Rebeca7 uses
virtual clients and pre-subscriptions to manage mobility and location-
dependent subscriptions that are replicated to the virtual clients.

3.3 Resource Manager

The Resource Manager (RM) is a distributed service that manages
information about resources, like available physical resources and software
registered as resource, as well as reachability and relative positioning of
nodes. The RM provides services to local applications and middleware
components. The local information is controlled by the RM on the node, and
it communicates with RMs on other nodes to disseminate information about
remote resources as well. This division is necessary because of the unstable
nature of MANETs, and it requires that at least a minimal configuration of
the RM is available on each node. The internal structure of the RM
comprises the three components Resource Monitor (ResMo), Proposal Unit
(ProU) and Replication Manager (RepMng).

ResMo can be accessed by processes on the local node via a synchronous
interface, which is called inspector, and an asynchronous interface called
watcher. Inspectors deliver information in response to a query received by
the RM. Watchers represent a hook for watchdogs on resources. Internally,
ResMo builds on a local monitor, adjacency monitor, and a resource
availability discovery unit. The three elements are concerned with gathering
and maintaining information about local resources, links to direct neighbors

Middleware Services for Information Sharing in MANETs 9

and resources on other nodes, respectively. The first two work only locally
and are therefore mandatory. The information about local resource is
frequently updated. The third element may handle information from many
nodes and is therefore optional. Depending on its use, the information is
updated by notification whenever local resource information has changed or
on demand. The ProU, which is also optional, uses it to access information
about remote nodes. A history of resource information must be provided to
the ProU by the ResMo because it is required for predictions, when other
components or applications inquire about the probability of network
partitioning or information about the presence of certain resources. ProU
uses also information managed by the KM from device profile and user
profile. By using profile information from KM, ProU can define sets of
nodes, referred to as groups, e.g., to limit the search for storage space for
data belonging to a medical team to the teams own nodes. It can also
distinguish among the group members, e.g., a node is used by a team leader
which implies that it has the highest priority for receiving updates. The
optional component RepMng uses the ProUs predictions for data replication
to increase the availability in the network. The RepMng can be used to
replicate, (1) the internal data of the local RM and (2) data for other
processes. An example for the latter could be a user pointing out a large file
and requesting two replicas on nodes that will be in close range in the future
with a very high probability.

Although research in this area has been performed, the existing systems
cannot be used directly in our scenario. For example, Chen et al.4 and Li and
Wang11 propose systems which base their resource management on the
ability to predict a possible partitioning of the network. These systems
assume location services, e.g. GPS, which cannot be assumed in our scenario
(e.g., inside a tunnel) or on all devices. Additionally, not all the nodes are
able to predict a possible partition, nor to take part in the replication. We
intend to integrate and adapt in our research interesting ideas from existing
work, i.e., partitioning prediction based on movement patterns, and data
replication which takes advantage of group partitioning prediction and
replicates accordingly.

3.4 Security Manager

The possible security and privacy attacks can be roughly divided into two
groups, external and internal10. External attacks include jamming, traffic
congestion, incorrect routing messages, repeating messages, eavesdropping,
impersonating, message manipulation, etc. Most of these problems can be
solved relatively easily by means of standard encryption and digital

10 T. Plagemann, J. Andersson, O. Drugan, V. Goebel, C. Griwodz, P.
Halvorsen, E. Munthe-Kaas, M. Puzar, N. Sanderson, K. S. Skjelsvik

signature techniques.∗ Internal attacks coming from nodes that have previ-
ously been authenticated, but later either lost or stolen, are harder to detect
and a much bigger threat.

We have to distinguish authorized nodes, i.e., members of rescue
organizations, from foreign nodes. Although it is not typical for pure ad-hoc
networks, we use predefined information in the a priori phase to achieve that
level of trust. One approach is to use a public key infrastructure (PKI), with
a common certificate authority (CA) at the top, whose signature can then be
verified by everyone.

The first security barrier encountered by an incoming message is the
authentication barrier, located between the data link (MAC) layer and the
network (IP) layer. This is mostly important for protecting the routing
protocol10, since incorrect routing messages could cause the network to
function improperly, or not to function at all. All the messages coming to a
node should be properly signed using a shared network key. When the first
two nodes start bootstrapping the network, they first authenticate each other
using preinstalled certificates, establish a secure channel, and create the
network key. There is a high probability that several networks with different
network keys will be formed, especially during the bootstrap procedure.
When these networks try to merge, there is obviously a problem of network
key inconsistency. Since there could be simultaneously more than one point
of merging, there should be a non-ambiguous way of deciding which of the
keys is "better". Ideally, the criteria would involve the number of nodes in
each area, selecting the key which would cause a smaller number of nodes
changing it. However, if this information is inconsistent, it could cause a
key-exchange loop and thus introduce more harm than gain. Another,
simpler approach is to choose the key with a lower ID, timestamp, etc. This
avoids key-exchange loops, but a massive re-keying in a bigger area could
be caused by the key coming from a much smaller area. After the nodes
agree on a common key, the node making a change has to distribute the new
key within its network area. This can be done proactively by some means of
flooding, reactively, i.e., on demand, when a node detects traffic signed with
the old key, or using a combination of the two. Solutions for these problems
are currently designed and will soon be simulated and implemented within a
common key-management algorithm. Most of the current key-exchange
solutions are based on Diffie-Hellman key exchange and assume constant
rekeying when nodes join and leave, as well as some kind of hierarchy1, 2, 6.
Due to the high dynamics and probably scarce resources, these approaches

∗ Denial of service attacks on lower layers causing battery drain or network congestion, like

cannot be handled at the middleware layer and as such are out of the scope of this work.

Middleware Services for Information Sharing in MANETs 11

might not be suited for managing the network key. However, they might be
very useful for creation of dynamic groups or teams.

A problem which always emerges when introducing security is user
friendliness. Security should be automated and transparent to users as much
as possible, especially rescue operations, where human lives are involved
and there is no time to think about, i.e., synchronizing network keys. Other
open issues include: data confidentiality, user authentication, encryption and
digital signature algorithms, key-update mechanisms, protection from
repeating messages, mechanisms for access control to information and
resources, and choosing the right key to protect data, protection from lost or
stolen nodes, etc. Revocation of certificates from lost or stolen nodes might
also be a problem due to the high dynamics and lack of infrastructure.
Another approach, if IPv6 is used as the network protocol, could be to
cryptographically bind a node's IP address to its certificate13, which would
prevent nodes from using other nodes' IP addresses and therefore might al-
low an easy and efficient way to perform blacklisting of problematic nodes.

4. CONCLUSION AND FUTURE WORK

By analyzing the current state of research in MANETs and applications
for MANETs, we have identified a strong need for middleware services for
MANETs to facilitate efficient development of applications over MANETs.
Due to space limitations, we could only present a very high-level overview
of our work, in which much effort so far has been spent on the requirements
analysis. This analysis, which includes also studies of today’s approach of
rescue teams to collaborate in operations, resulted in the following insights:
information sharing is a key element for successful collaboration, knowledge
management has to address distribution and different data representation and
models that are probably used, information and resources have to be
protected with security mechanisms. Furthermore, a decentralized solution is
needed that builds on an asynchronous event notification system and uses
sufficient redundancy to reach high availability.

We are currently designing five components which provide middleware
services to the application and to each other. Our ongoing work is concerned
with the particular separation of concerns for the various components and
analyzing the tradeoffs in the design alternatives of the components and their
particular protocols, like availability versus resource usage. As a next step,
quantitative evaluations of various design alternatives for the components
will be performed by simulation and emulation.
Acknowledgements: This work has been funded by Norwegian Research
Council in the IKT-2010 Program, Project Nr. 152929/431

12 T. Plagemann, J. Andersson, O. Drugan, V. Goebel, C. Griwodz, P.
Halvorsen, E. Munthe-Kaas, M. Puzar, N. Sanderson, K. S. Skjelsvik

REFERENCES

1. Alves-Foss, J., An Efficient Secure Authenticated Group Key Exchange Algorithm for
Large And Dynamic Groups, Proceedings of the 23rd National Information Systems
Security Conference, pages 254-266, October 2000

2. Bresson, E., Chevassut, O., Pointcheval, D., Provably Authenticated Group Diffie-
Hellman Key Exchange - The Dynamic Case (Extended Abstract), Advances in
Cryptology - Proceedings of AsiaCrypt 2001, pages 290-309. LNCS, Vol. 2248, 2001

3. Caporuscio, M., Inverardi, P., Pelliccione, P., Formal analysis of clients mobility in the
Siena publish/subscribe middleware, Technical report, Department of Computer
Science, University of L’Aquila, October 2002

4. Chen, K., Shah, S.H., Nahrstedt, K., Cross-Layer Design for Data Accessibility in Mobile
Ad hoc Networks, Journal of Wireless Personal Communications, Special Issue on
Multimedia Network Protocols and Enabling Radio Technologies, Kluwer Academic
Publishers, Vol. 21, 2002, pp. 49-75

5. Cugola, G., Di Nitto, T., and Fuggetta, A., The JEDI event-based infrastructure and its
application to the development of the OPSS WFMS, IEEE Transactions on Software
Engineering, 27(9), 2001

6. Di Pietro, R., Mancini, L., Jajodia, S., Efficient and Secure Keys Management for Wireless
Mobile Communications, Proceedings of the second ACM international workshop on
Principles of mobile computing, pages 66-73, ACM Press, 2002

7. Fiege, L., Zeidler, A., Gartner, F.C., Handurukande, S.B., Dealing with Uncertainty in
Mobile Publish/Subscribe Middleware, Proceedings of 1st International Workshop on
Middleware for Pervasive and Ad-hoc Computing, 2003, pp. 60-67

8. Fontijn, W., Boncz, P., AmbientDB: - P2P Data Management Middleware for Ambient
Intelligence, accepted for publication in the PERWARE04 Workshop (co-
located with PERCOM 2004)

9. Huang Y., Garcia-Molina H., Publish/subscribe in a mobile environment, Proceedings of
the 2nd ACM International Workshop on Data Engineering for Wireless and Mobile
Access (mobiDE01), Santa Barbara, CA, May 2001

10. Kärpijoki, V., Security in Ad Hoc Networks, Tik-110.501, Seminar on Network
Security, HUT TML 2000

11. Li, B., Wang. K. H., Nonstop: Continuous multimedia streaming in wireless ad hoc
networks with node mobility, IEEE Journal on Selected Areas in Communications,
December 2003, 21(10), pp. 1627–1641,.

12. Meier, R., Cahill, V., STEAM: Event-Based Middleware for Wireless Ad Hoc Networks,
Proceedings of the International Workshop on Distributed Event-Based Systems
(ICDCS/DEBS’02), 2002, pp. 639-644

13. Montenegro, G., Castelluccia, C., Statistically Unique and Cryptographically Verifiable
(SUCV) Identifiers and Addresses, NDSS'02, February 2002

14. Perich, F., Avancha, S., Chakraborty, D., Joshi, A., Yesha, Y., Profile Driven Data
Management for Pervasive Environments, Proceedings 13th International Conference
on Database and Expert Systems Applications (DEXA 2002), September 2002

15. Schwotzer, T., Geihs, K., Shark - a System for Management, Synchronization and
Exchange of Knowledge in Mobile User Groups, Proceedings 2nd International
Conference on Knowledge Management (I-KNOW '02), Graz, Austria, July 2002, pp.
149-156

