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Abstract—Processing data intensive multimedia workloads is
challenging, and scheduling and resource management are vitally
important for the best possible utilization of machine resources.
In earlier work, we have used work-stealing, which is frequently
used today, and proposed improvements. We found already then
that no singular work-stealing variant is ideally suited for all
workloads. Therefore, we investigate in more detail in this paper
how workloads consisting of various multimedia filter sequences
should be scheduled on a variety of modern processor architec-
tures to maximize performance. Our results show that a low-
level scheduler additionally cannot achieve optimal performance
without taking the specific micro-architecture, the placement
of dependent tasks and cache sizes into account. These details
are not generally available for application developers and they
differ between deployments. Our proposal is therefore to use
performance monitoring and dynamic adaption for the cyclic
workloads of our target multimedia scenario, where operations
are repeated cyclically on a stream of data.

I. INTRODUCTION

There is an ever-growing demand for processing resources,
and the trend is to move large parallel and distributed compu-
tations to huge data centers or cloud computing. For example,
Internet users uploaded one hour of video to YouTube every
second in January 2012 [19], an increase of 25% in the last
8 months. Each of these is encoded using several filters that
are arranged as vertices in dependency graphs and where each
filter implements a particular algorithm representing one stage
of a processing pipeline. In our research, we focus on utilizing
available resources in the best possible manner for this kind
of time-dependent cyclic workloads. The kind of workload
is typical for multimedia processing, where large amounts of
data are processed through various filters organized in a data-
intensive processing pipeline (or graph). Such workloads are
supported by for example the OpenCV framework [4].

To process large data sets in general, several frameworks
have emerged that aim at making distributed application
development and processing easier, such as Google’s MapRe-
duce [6], IBM’s System S [11] and Microsoft’s Dryad [13].
However, these frameworks are limited by their design for
batch processing with few dependencies across a large cluster
of machines. We are therefore currently working on a frame-
work aimed for distributed real-time multimedia processing
called P2G [7]. In this work, we have identified several
challenges with respect to low level scheduling. The de facto
standard is a variant of work-stealing scheduling [2], for

which we have earlier proposed modifications [17]. We see
challenges that have not been addressed by this, and in our
work of designing an efficient scheduler, we investigate in this
paper how to structure parallel execution of multimedia filters
to maximize the performance on several modern architectures.

Performance implications for scheduling decisions on var-
ious microarchitectures have been studied for a long time.
Moreover, since the architectures are constantly being revised,
scheduling decisions that were preferred in the past can harm
performance on later generations or competing microarchitec-
tures. We look at implications for four current microarchi-
tectures and how order of execution affects performance. Of
recent work, Kazempour et al. [14] looked at performance
implications for cache affinity on Clowertown generation
processors. It differs from the latest microarchitectures by only
having two layers of cache, where only the 32 KB L1 D-
cache is private to the cores on a chip multiprocessor (CMP).
In their results, affinity had no effect on performance on a
single chip since reloading L1 is cheap. When using multiple
CMPs, on the other hand, they found significant differences
meriting affinity awareness. With the latest generation CMPs
having significantly larger private caches (e.g., 256 KB on
Sandy Bridge, 2 MB on Bulldozer), we can expect different
behavior than on Clowertown. In terms of schedulers that take
advantage of cache affinity, several improvements have been
proposed to the Work Stealing model. Acar et al. [1] have
shown that the randomized stealing of tasks is cache unfriendly
and suggest a model that prefers stealing tasks where the
worker thread has affinity with that task and gains increased
performance.

In this paper, we present how a processing pipeline of real-
world multimedia filters runs on state-of-the-art processors.
That there are large performance differences between differ-
ent architectures is to be expected, but we found so large
differences between modern microarchitectures even within
the same family of computers (x86) making it hard to make
scheduling decisions for efficient execution. For example, our
experiments shows that there are huge gains to be earned
looking into cache usage and task dependencies. There are also
huge differences in the configuration of the processing stages,
e.g., when changing the amount of rotation in an image, giving
completely different resource requirements. Based our these
observations, it is obvious that the low-level scheduling should



not only depend on the processing pipeline with the dependen-
cies between tasks, but also the specific micro-architecture and
the size of the caches. We discuss why scheduling approaches
such as standard work stealing models do not result in an
optimal performance, and we try to give some insights that a
future scheduler should follow.

II. DESIGN AND IMPLEMENTATION

Inspired by prevalent execution systems such as StreamIT
[16] and Cilk [3], we look at ways to execute data-intensive
streaming media workloads better and examine how different
processing schemes affect performance. Because we are pro-
cessing continous data streams, we are not able to exploit task
parallelism, e.g., by processing independent frames of a video
in parallel and therefore seek to parallelize within the data
domain. A scenario with embarrassingly parallel workloads,
i.e., where every data element can be processed independently
and without synchronization, is video stream processing. We
believe that processing a continous flow of video frames is
a reasonable example for several embarrassingly parallel data
bound workloads.

Our sequential approach is a straight-forward execution
structure in which a number of filters are processed sequen-
tially in a pipeline, each frame is processed independently by
one or more threads by dividing the frame spatially. In each
pipeline stage, the worker threads are created, started, and
eventually joined when finished. This would be the natural
way of structuring the execution of a multithreaded media
pipeline in a standalone application. Such processing pattern
has natural barriers between each stage of the pipeline. For a
execution system such as Cilk [10], Multicore Haskell [15],
Threading Building Blocks [12] and others that use a work
stealing model [2], the pattern of execution is similar to
the sequential approach, but this depends very much on that
way in which work units are assigned to worker threads,
the workloads that are running simultaneously and scheduling
order. Nevertheless, sequential execution is the baseline of our
evaluation since it processes each filter in the pipeline in a
natural order.

As an alternative execution structure, we propose using
backward dependencies (BD) to execute workloads. This
approach only considers the last stage of the pipeline for a
spatial division among threads and such avoids the barriers
between each pipeline stage. Furthermore, for each pixel in the
output frame, the filter backtracks dependencies and acquires
the necessary pixel(s) from the previous filters. This is done
recursively and does not require intermediate pixels to be
stored to memory. Figure 1 illustrates dependencies between
three frames connected by two filters. The pixels in frame
2 are generated when needed by filter B using filter A. The
BD approach has the advantage of only computing the pixels
that are needed by subsequent filters. The drawback, however,
is that intermediate data must be re-computed if they are
accessed multiple times because intermediate results are not
stored. These re-computations can be mitigated by using the
intermediate frames as buffer caches between filters, although

Figure 1. Backward dependencies (BD) example for two filters processing
two frames in a pipeline. The arrows indicate which pixels are required from
the previous frame to generate the current pixel. Only pixel’s dependencies
per frame are illustrated, other pixels have similar dependencies.

the overhead of managing and checking this buffer cache can
be large, which we see later in the paper.

The different approaches incur varying cache access pat-
terns. Depending on memory access patterns, execution struc-
ture and chosen CPU microarchitecture, we expect the perfor-
mance to change. The sequential approach accesses the buffers
within a filter in sequential order, and the prefetch unit is thus
able to predict the access pattern. A drawback of this approach
is that data moved between filters do not necessarily reside in
the cache of the core using the data last. First, this includes
data whose cache line has been evicted and written back to a
later level cache or memory. This may happen because the data
size processed by a filter is larger than the amount of cache
available, forcing write-back. Other reasons include context
switches and shared caches. Second, output from a previous
filter may not have been generated on the same core as the one
that accesses the data, resulting in accesses to dirty cache lines
on other cores. Given the spatial division of a frame within
a filter, this sounds easy to avoid, but an area of input to a
filter may result in output to a different spatial area, which the
processor’s prefetcher may not be able to predict. Thus, re-
using the same core for the same part of a frame for multiple
filters in a pipeline only increases cache locality for filters
whose source pixels map spatially to the destination pixels.

To increase cache locality between filters, we also evaluate
the BD approach, where data is accessed in the order needed
to satisfy dependencies for the next filter in the pipeline. This
ensures that pixels are accessed in a manner where data in
between filters are likely to reside in the core’s cache. That is
to say, if the access pattern is not random, one can expect BD
execution to always access spatially close memory addresses.

III. EXPERIMENTAL SETUP

To evaluate the approaches and find which performs best
in a low-level scheduler, we built an experimental framework
supporting the proposed execution structures and wrote a set
of image processing filters as a case study working on real-
world data. The filters were arranged in different pipelines to
induce behaviour differences that can impact performance.

All experiments measure exclusively computation time, i.e.,
the wall clock time of the parallel execution, excluding I/O
and setup time. We use this instead of CPU time to further
measurements on how good performance is actually possible,
since having used only half of the CPU time available does not
mean that only half of the CPU’s resources are utilized (cache,
memory bandwidth, etc.). Also, by not counting I/O time, we
remove a constant factor present in all execution structures,



Microarchitecture CPU Cores
(SMT)

Private
Cache

Shared
Cache

Nehalem Intel
i5-750

4 64 kB L1
256 kB L2

8 MB L3

Sandy Bridge Intel
i7-2600

4 (8) 64 kB L1,
256 kB L2

8 MB L3

Sandy Bridge-E Intel
i7-3930K

6 (12) 64 kB L1,
256 kB L2

12 MB L3

Bulldozer AMD FX
8192

8 (4x2) 64 kB L11,
2 MB L21

8 MB L3

1 Shared between two modules each having a separate integer unit while
sharing an FPU.

Table I
MICROARCHITECTURES USED IN EXPERIMENTS.

which we think better shows the effect in our experiments.
Each experiment is run 30 times, and the reported computation
time is the average. All filters use 32-bit float computations,
and overhead during execution, such as removing function
calls in the inner-loop and redundant calculations, has been
removed. Our data set for experiments consists of the two
standard video test sequences foreman and tractor [18]. The
former has a 352x288 pixel (CIF, 4:2:0) resolution with 300
frames of YUV data, the latter has 1920x1080 pixels (HD,
4:2:0) with 690 frames of YUV data.

The experiments have been performed on a set of modern

microarchitectures as listed in table I. The CPUs have 4 to
8 cores, and have rather different cache hierarchies: While
the Nehalem has an L3 cache shared by all cores, operates
at a different clock frequency than the cores and is called
the uncore, the Sandy Bridge(-E) has a slice of the L3 cache
assigned to each core and accesses the other parts using a
ring interconnect running at core speed. Our specimen of the
Bulldozer architecture consists of four modules, each of which
containing two cores. On each module, L1 and L2 are shared
between the two cores with separate integer units but a single
shared FPU. We expected that these very different microarchi-
tectures found and used in modern computing would produce
very different program behaviour, and we have investigated
how media workloads should be structured for execution on
each of them to achieve the best performance.

We have developed a set of image processing filters for
evaluating the execution structures. The filters are all data-
intensive, but vary in terms of the number of input pixels
needed to produce a single output pixel. The filters are later
combined in various configurations referred to as pipelines. A
short summary of the filters and their dependencies is given
in table II.

The filters are combined in various configurations into
pipelines (as in figure 1). The tested pipelines are listed in
table III. The pipelines combine the filters in manners that
induce different amounts of work per pixel, as seen in the
table. For some filters, not all intermediate data are used by
later filters and are unnecessary to produce the final output.
The BD approach will not produce these, e.g., a crop filter as
seen in pipeline B will not require earlier filters to produce
unused data. Another aspect that we expect to influence the

Blur convolves the source frame with a Gaussian kernel to remove pixel
noise.
Sobel X and Y are two filters that also convolve the input frame, but
these filters apply the Sobel operator used in edge detection.
Sobel Magnitude calculates the approximate gradient magnitude using
the results from Sobel X and Sobel Y.
Threshold unset every pixel value in a frame below or above a specified
threshold.
Undistort removes barrel distortion in frames captured with wide-angle
lenses. Uses bilinear interpolation to create a smooth end result.
Crop removes 20% of the source frame’s height and width, e.g., a frame
with a 1920x1080 resolution would be reduced to 1536x864.
Rotation rotates the source frame by a specified number of degrees.
Bilinear interpolation is used to interpolate subpixel coordinates.
Discrete discretizes the source frame by reducing the number of color
representations.
Binary creates a binary (two-colored) frame from the source. Every source
pixel that is different from or above zero is set, and every source pixel
that equals zero or less is unset.

Table II
IMAGE PROCESSING FILTERS USED.

Pipeline Filter Seq BD BD-CACHED
A Blur 9.00 162.00 9.03

Sobel X 9.00 9.00 9.00
Sobel Y 9.00 9.00 9.00
Sobel Magnitude 2.00 2.00 2.00
Threshold 1.00 1.00 1.00

B Undistort 4.00 10.24 2.57
Rotate 6◦ 3.78 2.56 2.56
Crop 1.00 1.00 1.00

C Undistort 4.00 8.15 2.04
Rotate 60◦ 2.59 2.04 2.04
Crop 1.00 1.00 1.00

D Discrete 1.00 1.00 1.00
Threshold 1.00 1.00 1.00
Binary 1.00 1.00 1.00

E Threshold 1.00 3.19 0.80
Binary 1.00 3.19 0.80
Rotate 30◦ 3.19 3.19 3.19

F Threshold 1.00 3.19 0.80
Rotate 30◦ 3.19 3.19 3.19
Binary 1.00 1.00 1.00

G Rotate 30◦ 3.19 3.19 3.19
Threshold 1.00 1.00 1.00
Binary 1.00 1.00 1.00

Table III
EVALUATED PIPELINES AND THE AVERAGE NUMBER OF OPERATIONS

PERFORMED PER PIXEL WITH DIFFERENT EXECUTION STRUCTURES.

results is cache prefetching. This means that by having filters
that emit data in a different spatial position relative to its input,
e.g. the rotation filter, we expect the prefetcher to contend
fetching the relevant data.

IV. SCALABILITY

The pipelines are embarrisingly parallel, i.e., no locking
is needed and they should therefore scale linearly with the
number of cores used. For example, using four cores is
expected to yield a 4x execution speedup. The threads created
are handled by the Linux scheduler, which decides which
thread to execute on which CPU (no affinity). Each new thread



created works on its own frame-segment, but the last frame-
segment is always processed by the thread that performs the
I/O operations. In the single-threaded execution, both the I/O
and processing operations are performed in the same thread,
and therefore also on the same CPU core. Using two threads,
we created one additional thread that is assigned the first half
of a frame while the I/O thread processes the last half of
the frame. We do this to minimize fetching source data from
another core’s private cache.

Figure 2 shows the relative speedup for the Nehalem,
Bulldozer, Sandy Bridge and Sandy Bridge-Extreme microar-
chitectures that process pipeline B with the tractor sequence
as input, comparing the sequential (Seq) and BD executions.
Note that the running times of sequential and BD are indi-
vidually normalized to their respective performance on one
core, i.e., a higher value for BD does not necessarily imply
better absolute performance than sequential. Looking at each
architecture individually, we see that there is little difference
in how the two execution methods scale on physical cores,
but comparing architectures, we see that SB (figure 2(b)) is
the only architecture that is able to scale pipeline B perfectly
with the number of physical cores, as one could expect. SB-
E (figure 2(c)) performs a little below perfect linear scaling
achieved by its predecessor for this workload, and we see
slightly better scalability results for BD execution than for
sequential execution. On Nehalem (figure 2(a)), this pipeline
doubles its performance with two threads, but after this, the
increase in speedup per core diminishes. Bulldozer results
(figure 2(d)) are even worse; from one to four threads we gain
a 3x speedup, but there is not much to gain from using five to
eight threads as we only manage to achieve a 4x speedup using
the maximum number of cores. Bulldozer has four modules,
each with two cores, but each module has only one FPU, and
it is likely that this clamps performance to 4x. To summarize,
the scalability results of pipeline B with the tractor sequence
as input scales relatively well on Nehalem, Sandy Bridge and
Sandy Bridge-Extreme using both execution modes. However,
Bulldozer scales poorly as it only manages a 4x speedup using
all of its eight cores.

Looking at scalability when testing pipeline B with the
foreman sequence, the results become far more interesting as
seen in figure 3. None of the four microarchitectures are able to
achieve perfect scalability, and standing out is the Bulldozer
plot in figure 3(d), where we see very little or no speedup
at all using more threads. In fact, the performance worsens
going from one to two threads. We look more closely into
the behaviour of Bulldozer in section VII. Furthermore, we
can see that the BD mode scales better than sequential for the
other architectures. From one to two threads, we get close to
twice the performance, but with more threads, the difference
between sequential and BD increases.

To explain why pipeline B scales so much worse with
foreman as input than tractor, one must take the differences
into account. The foreman sequence’s resolution is 352x288
(YUV, 4:2:0), which leads to frame sizes of 594 kB stored
as floats. A large chunk of this can fit in private cache on

the Intel architectures, and a full frame on Bulldozer. A frame
in the tractor sequence has a resolution of 1920x1080 which
requires almost 12 MB of data, exceeding even L3 size. In
all pipeline stages except the last, data produced in one stage
are referenced in the next, and if the source data does not
reside in a core’s cache, it leads to high inter-core traffic.
Segmenting the frames per thread, as done when executing
the pipelines in parallel, reduces the segments’ sizes enough
to fit into each core’s private cache for the foreman frames, but
not the larger tractor frames. Not being able to keep a large
part of the frame in a core’s private cache require continuous
fetching from shared cache and/or memory. Although this
takes time, it is the normal mode of operation. When an large
part of a frame such as foreman fits in private cache after I/O,
other cores that shall process this will have to either directly
access the other core’s private cache or request eviction to
last-level cache on the other core, both resulting in high inter-
core traffic. We were unable to find detailed information on
this behaviour for the microarchitectures, but we can observe
that scalability of this behaviour is much worse than that of
the HD frame experiment. Moreover, since the BD mode only
create one set of worker threads which are used throghout the
lifetime of that pipeline cycle, and it does its computations
in a recursive manner, the input data is likely to reside in the
core’s private cache. Also, since the BD mode does not require
storing intermediate results and as such does not pollute the
caches, we can see it scales a better than sequential for the
foreman tests.

With respect to the other pipelines (table III), we observed
similar scalability across all architectures for both execution
modes and and inputs as seen in figure 2 and 3. In summary,
we have shown that the BD mode provides slightly better scal-
ing than sequential execution for our data-intensive pipelines
on all architectures when the working unit to be processed
(in this case a segment of a video frame) is small enough
to a large extent reside in a core’s private cache. Although
scalability is beneficial, in the next section, we will look at
the performance relative to sequential execution and see how
BD and sequential perform against each other.

V. PERFORMANCE

Our experiments have shown that achieving linear scaling
on our data-bound filters is not trivial, and we have seen that
it is especially hard for smaller units of work that mostly
fit into a core’s private cache and needs to be accessed on
multiple cores. In addition, there are large microarchitectual
differences visible. In this section, we look at the various
pipelines as defined in section III to see how the sequential
execution structure compares to backward dependency on
various microarchitectures.

To compare sequential and BD execution, we have plot-
ted computation time for pipeline A to G relative to their
individual single-threaded sequential execution time using
the foreman test sequence in figure 5. The plot shows that
sequential execution provides best performance in most cases,
but with some notable exceptions. The BD execution structure
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Figure 2. Individually normalized scalability of pipeline B running the tractor test sequence. Number of physical cores in parenthesis.

1 2 3 4

Threads

0

1

2

3

4

5

6

7

S
p
e
e
d
u
p

Seq BD

(a) Nehalem (4)

1 2 3 4 8

Threads

0

1

2

3

4

5

6

7
S
p
e
e
d
u
p

Seq BD

(b) Sandy Bridge (4)

1 2 3 4 5 6 12

Threads

0

1

2

3

4

5

6

7

S
p
e
e
d
u
p

Seq BD

(c) Sandy Bridge-E (6)

1 2 3 4 5 6 7 8

Threads

0

1

2

3

4

5

6

7

S
p
e
e
d
u
p

Seq BD

(d) Bulldozer (8)

Figure 3. Individually normalized scalability of pipeline B running foreman test sequence. Number of cores in parenthesis.

does not store and reuse intermediate pixels in any stage of
the pipeline. Thus, when a pixel is accessed multiple times, it
must be regenerated from the source. For example, if a filter
in the last stage of a pipeline needs to generate the values of
a pixel twice, every computation in every stage in the current
pipeline involved in creating this output pixel must be executed
twice. Obviously, this leads to a lot of extra computation as
can be seen from table III, where for instance the source
pixels are accessed 162 times per pixel for the BD approach
in pipeline A, but only 9 times for the sequential approach.
This is reflected in the significantly higher BD computation
time than sequential for pipeline A for all plots in figure 5.

When looking at the other pipelines, we can see some very
significant architectural differences. Once again, Bulldozer
stands out showing that for pipeline D, F, and G, the BD ap-
proach performs considerably better than sequential execution
using all eight cores. Pipeline D and G have no computational
overhead due to BD execution, but it is rather unexpected
for pipeline F, which does require re-computation of many
intermediate source pixels. Still, the scalability achieved on
Bulldozer for the foreman sequence were miniscule, as we
saw in section IV.

The next observation we show in the plots is the per-
formance of pipeline D. This pipeline performs the same
amount of work regardless of execution structure, since every
intermediate pixel is accessed only once. All four architectures
show better performance for the BD approach, both for 1
and all cores. A similar behaviour is to be expected from
pipeline G since it requires the same amount of work for
both modes. This turns out not to be the case; for single-
threaded execution on Nehalem and Bulldozer, pipeline G is
faster using BD. Using all cores, also Sandy Bridge performs
better using the BD approach. Sandy Bridge-E runs somewhat
faster with sequential execution. Even though pipeline G
always produce the same end result, the sequential approach
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Figure 4. Computation time for on Sandy Bridge.

stores the intermediate results from each filter. One possible
explanation for the single-threaded results on Sandy Bridge
and Sandy Bridge-Extreme is that sequential execution has
the most efficient use of CPU cache on these architectures
when a single core has the shared cache to itself.

To find out if the performance gain seen with the BD ap-
proach is caused by better cache usage by keeping intermediate
data in private caches or by the reduction of cache and memory
pollution resulting from not storing intermediate results, we
looked at pipeline D and G using BD while storing intermedi-
ate data. This mimics the sequential approach, although data is
not referenced again later on, resulting in less cache pressure.
Looking at figure 4, which shows pipeline D and G for Sandy
Bridge, we can see that for a single core, the overhead of
writing back intermediate results using BD-STORE results
in worse performance than sequential execution, whereas this
overhead diminishes when the number of threads is increased.
Here, the BD-STORE structure outperforms sequential exe-
cution significantly. Accordingly, we ascribe the performance
gain for the BD approach in this case to better private cache
locality and usage than sequential execution.
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Figure 5. Execution structure performance using the foreman dataset. Running times are relative to each pipeline’s 1-core sequential time. Lower is better.

VI. BACKWARD DEPENDENCY WITH BUFFER CACHE

Having shown that backward dependency execution struc-
ture performs better than sequential execution in some cases,
we look at ways to improve the performance further. The main
drawback of BD execution is, as we saw, that intermediate
pixels must be recomputed when accessed multiple times,
evident by pipeline A results. We have also shown that, when
doing the same amount of work as the sequential approach,
BD can perform better such as with pipeline D and G. In this
section, we experiment with adding a buffer cache that keeps
intermediate data for later reuse to mitigate this issue.

Instead of recursively generating all prior intermediate data
when a pixel is accessed, the system checks a data structure to
see if it has been accessed earlier. To do this without locking,
we set a bit in a bitfield atomically to mark a valid entry in
the buffer cache. It is worth noting that this bitfield consume
a considerably amount cache space by using one bit for every
pixel, e.g. about 37 kB for every stage in a pipeline for the
foreman sequence. Other approaches for this buffer cache are
possible, including a set of ranges and tree structures, but this
is left for further work.

The BD-CACHED results for pipelines A to G using four
threads on Sandy Bridge and processing foreman are shown in
figure 6. We can see that the BD-CACHED approach provides
better performance than sequential on pipeline B, D and G, but

only B performs better than BD. Pipeline B has rotation and
crop stages that reduce the amount of intermediate pixels that
must be produced from the early filters compared to sequential
execution (see table III). In comparison, pipeline C has also
a significant reduction of intermediate pixel requirements, but
we do not see a similar reduction in computation time. The
only difference between pipeline B and C is the amount of
rotation, with 6◦ for B and 60◦ for C. The skew from rotation
for the pipelines causes long strides over cache lines when
accessing neighbouring pixels from previous stages, which
can be hard to prefetch efficiently. Also, parts of an image
segment processed on a core may cross boundaries between
segments, such that high inter-core traffic is required with
sequential execution even though the same core processes the
same segment for each stage. This is avoided with BD and BD-
CACHED modes, but we can not predict which mode performs
better in advance.

VII. AFFINITY

In section IV, we saw the diminishing performance when
processing the foreman sequence with two and three threads
on the Bulldozer architecture. When processing our pipelines
in a single thread, we did not create a separate thread for
processing, but processed in the thread that handled the I/O
operations. Further, this lack of scaling was only observed
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Figure 6. Computation time for Backward Dependency with buffer cache
measured relative to single threaded sequential and tested with Sandy Bridge
using 4 threads and foreman as input sequence.

when processing the low-resolution foreman sequence, for a
large part of the frame could fit inside a core’s private L2
cache. To investigate this further, we did an experiment where
we manually specified each thread’s affinity, which implies
that we use separate threads doing I/O and processing, even
in single-threaded execution.

Even though we only noticed the lack of scaling on the
Bulldozer architecture, we tested the impact of affinity on the
Nehalem and Sandy Bridge architectures as well (we omitted
SB-E, which is very similar to Sandy Bridge). In figure 7, we
have plotted the results for sequential processing of pipeline B
while varying the number of threads. On Nehalem and Sandy
Bridge, we tested two different execution modes, one mode
where the processing of a frame was done on the same core
that executed the I/O thread (IOSAME), while the second
mode processed the frame on a different core than the I/O
thread (IODIFF). Since the Bulldozer architecture has CPU
modules, we added an additional mode for this architecture,
in which processing threads were executed on different CPU
modules than the thread handling I/O (MODULEDIFF).

We expected that processing on another core than I/O would
increase the processing time, which was found to be only
partially correct: From figure 7(a) we see that there are not
any significant difference in processing on the same core as
the I/O thread versus a different core on Sandy Bridge. Much
of the same behaviour is seen on Nehalem using one thread,
but when using two threads there is a large penalty of pinning
these to different cores than the one doing I/O operations. In
this case, using two threads and executing them on different
cores than the I/O operations adds so much to the computation
time that it is slower than the single threaded execution.

Looking at the Bulldozer architecture in figure 7(c), using
only one thread we see that there are not any significant
difference in which core or CPU module the processing thread
is placed on. However as with Nehalem, when using two
or more threads the IODIFF and MODULEDIFF execution
modes have a huge negative impact on the performance. Even
more unexpected, IOSAME and IODIFF using three threads
are actually slower than IOSAME using two threads, and the
fastest execution using eight threads completes in 1174 ms
(omitted in plot), not much faster than what we can achieve
with two threads.

In summary, we have seen that thread affinity has an
enormous impact on Nehalem and Bulldozer when a large

part of the data fits into the private cache. This can cause the
two threads to have worse performance than a single thread
when the data reside in another core’s private cache. On Sandy
Bridge, this limitation has been lifted and we do not see any
difference due to affinity. Bulldozer is unable to scale to much
more than two threads when the dataset fits into the private
cache, presumably because the private cache is shared between
two cores and the cost of doing inter-module cache access is
too high.

VIII. DISCUSSION

The long-running data-intensive filters described in this
paper deviate from typical workloads when looking at per-
formance in terms of the relatively little computation required
per unit of data. The filters used are primitive, but we are
able to show large performance impacts by varying the order
of execution and determining which core should do what.
For such simple and embarrassingly parallel workloads, it is
interesting to see the significant differences on how these filters
perform on modern microarchitectures. As a case study, we
chose image processing algorithms, which can intuitively be
connected in pipelines. Real-world examples of such pipelines
can be found in OpenCV [4], node-based software such
as the Nuke [9] compositing tool and various VJ software.
Other signal processing domains such as sound processing are
applicable as well.

There is a big difference between batch processing and
processing a stream of data, where in the former we can spread
out independent jobs to a large number of cores, while in the
latter we can only work on a limited set of data at a time. If
we batch-processed the pipelines, we could instantiate multiple
pipelines, each processing frames independently while avoid-
ing the scalability issues that we experienced with foreman.
In a streaming scenario, however, this is not possible.

The results shown in this paper are both unexpected and
confusing. We had not anticipated such huge differences in
how these modern processors perform with our workloads.
With the standard parallel approach for such applications with
either sequential execution of the pipeline or a work stealing
approach, it is apparent that there is much performance to
be gained by optimizing the order of operations for better
cache usage. After all, we observe that the performance of
the execution modes varies a lot with the behavior of a filter,
e.g, amount of rotation applied by a filter. Moreover, it varies
inconsistently with the number of threads, e.g., performance
halved with two threads and sub-optimal processor affinity
compared to a single thread. Thus, scheduling these optimally
based on a-priori knowledge, we conjecture, is next to im-
possible, and profiling and feedback to the scheduler must be
used to find the best configuration.

One option is to use profile-driven optimizations at compile
time [5], where one or more configurations are evaluated and
later used during runtime. This approach does, however, not
work with dynamic content or tasks, i.e., if the parameters such
as the rotation in pipeline B changes, the system must adapt
to a new configuration. Further, the preferred configuration
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Figure 7. Execution times (ms) of pipeline B for the foreman video using different thread affinity strategies (lower is better).

may even change based on interactions between co-scheduled
tasks, e.g., a CPU-bound and memory-bound task may perform
better when co-scheduled than two memory bound tasks [8].

The preferred option then is to have a low-level scheduler
that adapts dynamically to varying tasks, data, architectural
limitations and shared resources. We propose an approach
that uses instrumentation and allows a scheduler to gauge
computation times of specific filters at execution time. Since
the workloads we look at are periodic and long-running, the
low-level scheduler can react to the observations and make
appropriate adjustments, e.g., try different execution modes,
data granularity, affinity and co-running competing workloads.

The prevalent approaches used in execution systems today
are work stealing variants. Here, the system typically use a
heuristics to increase cache locality such as spawning new
tasks in the same queue; or stealing tasks from the back of
another queue instead of the front to reduce cache contention,
assuming tasks that are near in the queue are also near in
terms of data. Although work stealing in its simplicity provides
great flexibility, we have shown in this paper that execution
order has a large performance impact on filter operations. For
workloads that are long-running and periodic in nature, we can
expect that an adaptive low-level scheduler will outperform the
simple heuristics of a work stealing scheduler. An adaptive
work stealing approach is feasible though, where work units
are enqueued to the worker threads based on the preferred exe-
cution mode, data granularity and affinity, while still retaining
the flexibility of the work stealing approach. Such a low-level
scheduler is considered for further work.

IX. CONCLUSION

In this paper, we have looked at run-time considerations for
executing (cyclic) streaming pipelines consisting of a data-
intensive filters for media processing. A number of different
filters and pipelines have been evaluated on a set of modern
microarchitectures, and we have found several unexpected per-
formance implications, within the well-known x86-family of
microprocessors, like increased performance by backtracking
pixel dependencies to increase cache locality for data sets that
can fit in private cache; huge differences in performance when
I/O is performed on one core and accessed on others; and
different execution modes perform better depending on minor
parameter variations in filters (or stages in the processing
pipeline) such as the number of degrees to rotate an image.
The implication of the very different behaviors observed on
the different microarchitectures is a demand for scheduling
that can adapt to varying conditions using instrumentation data
collected at runtime. Our next step is therefore to design such

a low-level scheduler in the context of our P2G processing
framework [7] using our improvements for the work-stealing
approach as a starting point [17].
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