
LEARS: A Lockless, Relaxed-Atomicity State
Model for Parallel Execution of a Game Server

Partition

Kjetil Raaen, Håvard Espeland, Håkon K. Stensland, Andreas Petlund, Pål Halvorsen, Carsten Griwodz

NITH, Norway Simula Research Laboratory, Norway IFI, University of Oslo, Norway

Email: raakje@nith.no, {haavares, haakonks, apetlund, paalh, griff}@ifi.uio.no

Abstract—Supporting thousands of interacting players in a
virtual world poses huge challenges with respect to processing.
Existing work that addresses the challenge utilizes a variety of
spatial partitioning algorithms to distribute the load. If, however,
a large number of players needs to interact tightly across an area
of the game world, spatial partitioning cannot subdivide this
area without incurring massive communication costs, latency or
inconsistency. It is a major challenge of game engines to scale such
areas to the largest number of players possible; in a deviation
from earlier thinking, parallelism on multi-core architectures is
applied to increase scalability. In this paper, we evaluate the
design and implementation of our game server architecture,
called LEARS, which allows for lock-free parallel processing of
a single spatial partition by considering every game cycle an
atomic tick. Our prototype is evaluated using traces from live
game sessions where we measure the server response time for
all objects that need timely updates. We also measure how the
response time for the multi-threaded implementation varies with
the number of threads used. Our results show that the challenge
of scaling up a game-server can be an embarrassingly parallel
problem.

I. INTRODUCTION

Over the last decade, online multi-player gaming has expe-

rienced an amazing growth. Providers of the popular online

games must deliver a reliable service to thousands of concur-

rent players meeting strict processing deadlines in order for

the players to have an acceptable quality of experience (QoE).

One major goal for large game providers is to support as

many concurrent players in a game-world as possible while

preserving the strict latency requirements in order for the

players to have an acceptable quality of experience (QoE).

Load distribution in these systems is typically achieved by

partitioning game-worlds into areas-of-interest to minimize

message passing between players and to allow the game-world

to be divided between servers. Load balancing is usually com-

pletely static, where each area has dedicated hardware. This

approach is, however, limited by the distribution of players

in the game-world, and the problem is that the distribution

of players is heavy-tailed with about 30% of players in 1%

of the game area [5]. To handle the most popular areas of

the game world without reducing the maximum interaction

distance for players, individual spatial partitions can not be

serial. An MMO-server will experience the most CPU load

while the players experience the most “action”. Hence, the

worst case scenario for the server is when a large proportion of

the players gather in a small area for high intensity gameplay.

In such scenarios, the important metric for online multi-

player games is latency. Claypool et. al. [7] classify different

types of games and conclude that for first person shooter (FPS)

and racing games, the threshold for an acceptable latency

is 100ms. For other classes of networked games, like real-

time strategy (RTS) and massively multi-player online games

(MMOGs) players tolerate somewhat higher delays, but there

are still strict latency requirements in order to provide a good

QoE. The accumulated latency of network transmission, server

processing and client processing adds up to the latencies that

the user is experiencing, and reducing any of these latencies

improves the users’ experience.

The traditional design of massively multi-player game

servers rely on sharding for further load distribution when too

many players visit the same place simultaneously. Sharding

involves making a new copy of an area of a game, where

players in different copies are unable to interact. This approach

eliminates most requirements for communication between the

processes running individual shards. An example of such a

design can be found in [6].

The industry is now experimenting with implementations

that allow for a greater level of parallelization. One known ex-

ample is Eve Online [8] where they avoid sharding and allow

all players to potentially interact. Large-scale interactions in

Eve Online are handled through an optimized database. On the

local scale, however, the server is not parallel, and performance

is extremely limited when too many players congregate in

one area. With LEARS, we take this approach even further

and focus on how many players that can be handled in a

single segment of the game world. We present a model that

allows for better resource utilization of multi-processor, game

server systems which should not replace spatial partitioning

techniques for work distribution, but rather complement them

to improve on their limitations. Furthermore, a real prototype

game is used for evaluation where captured traces are used to

generate server load. We compare multi-threaded and single-

threaded implementations in order to measure the overhead of

parallelizing the implementation and showing the experienced

benefits of parallelization. The change in responsiveness of

different implementations with increased load on the server is



studied, and we discuss how generic elements of this game

design impact the performance on our chosen platform of

implementation.

Our results indicate that it is possible to design an “em-

barrassingly parallel” game server. We also observe that the

implementation is able to handle a quadratic increase of in-

server communication when many players interact in a game-

world hotspot.

The rest of the paper is organized as follows: In section II,

we describe the basic idea of LEARS, before we present the

design and implementation of the prototype in section III. We

evaluate our prototype in section IV and discuss our idea in

section V. In section VI, we put our idea in the context of

other existing work. Finally, we summarize and conclude the

paper in section VII and give directions for further work in

section VIII.

II. LEARS: THE BASIC IDEA

Traditionally, game servers have been implemented much

like game clients. They are based around a main loop, which

updates every active element in the game. These elements

include for example player characters, non-player characters

and projectiles. The simulated world has a list of all the

active elements in the game and typically calls an “update”

method on each element. The simulated time is kept constant

throughout each iteration of the loop, so that all elements get

updates at the same points in simulated time. This point in time

is referred to as a tick. Using this method, the active element

performs all its actions for the tick. Since only one element

updates at a time, all actions can be performed directly. The

character reads input from the network, performs updates on

itself according to the input, and updates other elements with

the results of its actions.

LEARS is a game server model with support for lockless,

relaxed-atomicity state-parallel execution. The main concept

is to split the game server executable into lightweight threads

at the finest possible granularity. Each update of every player

character, AI opponent and projectile runs as an independent

work unit.

White et al. [15] describe a model they call a state-effect

pattern. Based on the observation that changes in a large,

actor-based simulation are happening simultaneously, they

separate read and write operations. Read operations work on a

consistent previous state, and all write operations are batched

and executed to produce the state for the next tick. This means

that the ordering of events scheduled to execute at a tick

does not need to be considered or enforced. For the design

in this paper, we additionally remove the requirement for

batching of write operations, allowing these to happen anytime

during the tick. The rationale for this relaxation is found

in the way traditional game servers work. In the traditional

single-threaded main-loop approach, every update is allowed

to change any part of the simulation state at any time. In such

a scenario the state at a given time is a combination of values

from two different points in time, current and previous, exactly

the same situation that occurs in the design presented here.
The second relaxation relates to the atomicity of game state

updates. The fine granularity creates a need for significant

communication between threads to avoid problematic lock

contentions. Systems where elements can only update their

own state and read any state without locking [1] do obviously

not work in all cases. However, game servers are not accurate

simulators, and again, depending on the game design, some

(internal) errors are acceptable without violating game state

consistency. Consider the following example: Character A

moves while character B attacks. If only the X coordinate

of character A is updated at the point in time when the attack

is executed, the attack sees character A at a position with the

new X coordinate and the old Y coordinate. This position is

within the accuracy of the simulation which in any case is no

better than the distance an object can move within one tick.

On the other hand, for actions where a margin of error is not

acceptable, transactions can be used keeping the object’s state

internally consistent. However, locking the state is expensive.

Fortunately, most common game actions do not require trans-

actions, an observation that we take advantage of in LEARS.

These two relaxations allow actions to be performed on

game objects in any order without global locking. It can be

implemented using message passing between threads and re-

tains consistency for most game actions. This includes actions

such as moving, shooting, spells and so forth. Consider player

A shooting at player B: A subtracts her ammunition state,

and send bullets in B’s general direction by spawning bullet

objects. The bullet objects runs as independent work units, and

if one of them hits player B, it sends a message to player B.

When reading this message, player B subtracts his health and

sends a message to player A if it reaches zero. Player A then

updates her statistics when she receives player B’s message.

This series of events can be time critical at certain points. The

most important point is where the decision is made if the bullet

hits player B. If player B is moving, the order of updates can

be critical in deciding if the bullet hits or misses. In the case

where the bullet moves first, the player does not get a chance

to move out of the way. This inconsistency is however not

a product of the LEARS approach. Game servers in general

insert active items into their loops in an arbitrary fashion, and

there is no rule to state which order is “correct”.

The end result of our proposed design philosophy is that

there is no synchronization in the server under normal run-

ning conditions. Since there are cases where transactions are

required, they can be implemented outside the LEARS event

handler running as transactions requiring locking. In the rest of

the paper, we consider a practical implementation of LEARS,

and evaluate its performance and scalability.

III. DESIGN AND IMPLEMENTATION

In our experimental prototype implementation of the

LEARS concept, the parallel approach is realized using thread

pools and blocking queues.



Position

Update
Cone

Attack

Projectile

Attack

Character

Update

Execute 

Workload

Network

Worker

Network

Selector

Thread Pool

Dispatch

C
P

U
 1

Figure 1. Design of the Game Server

A. Thread pool

Creation and deletion of threads incur large overheads, and

context switching is an expensive operation. These overheads

constrain how a system can be designed, i.e., threads should

be kept as long as possible, and the number of threads should

not grow unbounded. We use a thread pool pattern to work

around these constraints, and a thread pool executor (the

Java ThreadPoolExecutor class) to maintain the pool of

threads and a queue of tasks. When a thread is available, the

executor picks a task from the queue and executes it. The

thread pool system itself is not preemptive, so the thread runs

each task until it is done. This means that in contrast to normal

threading, each task should be as small as possible, i.e., larger

units of work should be split up into several sub-tasks.

The thread pool is a good way to balance the number of

threads when the work is split into extremely small units.

When an active element is created in the virtual world, it is

scheduled for execution by the thread pool executor, and the

active element updates its state exactly as in the single threaded

case. Furthermore, our thread pool supports the concept of

delayed execution. This means that tasks can be put into the

work queue for execution at a time specified in the future.

When the task is finished for one time slot, it can reschedule

itself for the next slot, delayed by a specified time. This allows

active elements to have any lifetime from one-shot executions

to the duration of the program. It also allows different elements

to be updated at different rates depending on the requirements

of the game developer.

All work is executed by the same thread pool, including the

slower I/O operations. This is a consistent and clear approach,

but it does mean that game updates could be stuck waiting for

I/O if there are not enough threads available.

B. Blocking queues

The thread pool executor used as described above does not

constrain which tasks are executed in parallel. All systems

elements must therefore allow any of the other elements to

execute concurrently.

To enable a fast communication between threads with shared

memory (and caches), we use blocking queues, using the Java

BlockingQueue class, which implements queues that are

synchronized separately at each end. This means that elements

can be removed from and added to the queue simultaneously,

and since each of these operations are extremely fast, the prob-

ability of blocking is low. In the scenario analysed here, all

active elements can potentially communicate with all others.

Thus, these queues allow information to be passed between

active objects. Each active object that can be influenced by

others has a blocking queue of messages. During its update,

it reads and processes the pending messages from its queue.

Messages are processed in the order they were put in the

queue. Other active elements put messages in the queue to

be processed when they need to change the state of other

elements in the game.

Messages in the queues can only contain relative informa-

tion, and not absolute values. This restriction ensures that the
change is always based on updated data. For example, if a

projectile needs to tell a player character that it took damage,

it should only inform the player character about the amount

of damage, not the new health total. Since all changes are put

in the queue, and the entire queue is processed by the same

work unit, all updates are based on up-to-date data.

C. Our implementation

To demonstrate LEARS, we have implemented a prototype

game containing all the basic elements of a full MMOG with

the exception of persistent state. The basic architecture of the

game server is described in figure 1. The thread pool size

can be configured, and will execute the different workloads

on the CPU cores. The workloads include processing of

network messages, moving computer controlled elements (in

this prototype only projectiles) checking for collisions and hits

and sending outgoing network messages.

Persistent state do introduce some complications, but as

database transactions are often not time critical and can usually

be scheduled outside peak load situations, we leave this to

future work.

In the game, each player controls a small circle ("the

character") with an indicator for which direction they are

heading (see figure 2). The characters are moved around by

pressing keyboard buttons. They also have two types of attack,

i.e., one projectile and one instant area of effect attack. Both

attacks are aimed straight ahead. If an attack hits another

player character, the attacker gets a positive point, and the

character that was hit gets a negative point. The game provides

examples of all the elements of the design described above:

• The player character is a long lifetime active object.

It processes messages from clients, updates states and

potentially produces other active objects (attacks). In



Figure 2. Screen shot of a game with six players.

addition to position, which all objects have, the player

also has information about how many times it has been

hit and how many times it has hit others. The player

character also has a message queue to receive messages

from other active objects. At the end of its update, it

enqueues itself for the next update unless the client it

represents has disconnected.

• The frontal cone attack is a one shot task that finds player

characters in its designated area and sends messages to

those hit so they can update their counters, as well as

back to the attacking player informing about how many

were hit.

• The projectile is a short lifetime object that moves in the

world, checks if it has hit anything and reschedules itself

for another update, unless it has hit something or ran to

the end of its range. The projectile can only hit one target.

To simulate an MMORPG workload that grow linearly

with number of players, especially collision checks with the

ground and other static objects, we have included a synthetic

load which emulates collision detection with a high-resolution

terrain mesh. The synthetic load ensures that the cache is

regularly flushed to enhance the realism of our game server

prototype compared to a large-scale game server.
The game used in these experiments is simple, but it

contains examples of all elements typically available in the

action based parts of a typical MMO-like game.
The system described in this paper is implemented in Java.

This programming language has strong support for multi-

threading and has well-tested implementations of all the re-

quired components. The absolute values resulting from these

experiments depend strongly on the complexity of the game,
as a more complex game would require more processing.

In addition, the absolute values depend on the runtime en-

vironment, especially the server hardware, and the choice of

programming language also influence absolute results from the

experiments. However, the focus of this paper is the relative

results, as we are interested in comparing scalability of the

multi-threaded solution with a single-threaded approach and

whether the multi-threaded implementation can handle the

quadratic increase in traffic as new players join.

IV. EVALUATION

To have a realistic behavior of the game clients, the game

was run with 5 human players playing the game with a game

update frequency of 10 Hz. The network input to the server

from this session was recorded with a timestamp for each

message. The recorded game interactions were then played

back multiple times in parallel to simulate a large number of

clients. To ensure that client performance is not a bottleneck,

the simulated clients were distributed among multiple physical

machines. Furthermore, as an average client generates 2.6 kbps

network traffic, the 1 Gbps local network interface that was

used for the experiments did not limit the performance. The

game server was run on a server machine containing 4 Dual-

Core AMD Opteron 8218 (2600 MHz) with 16 GB RAM.

To ensure comparable numbers, the server was taken down

between each test run.

A. Response latency

The most important performance metric for client-server

games is response latency from the server. From a player

perspective, latency is only visible when it exceeds a certain

threshold. Individual peaks in response time are obvious to

the players, and will have the most impact on the Quality of

Experience, hence we focus on peak values as well as averages

in the evaluation.

The experiments were run with client numbers ranging from

40 to 800 in increments of 40, where the goal is to keep the

latencies close to the 100 ms QoE threshold for FPS games [7].

Figure 3 shows a box-plot of the response time statistics from

these experiments. All experiments used a pool of 48 worker

threads and distributed the network connections across 8 IP

ports.

From these plots, we can see that the single-threaded

implementation is struggling to support 280 players at an

average latency close to 100 ms. The median response time

is 299 ms, and it already has extreme values all the way to

860 ms, exceeding the threshold for a good QoE. The multi-

threaded server, on the other hand, is handling the players

well up to 640 players where we are getting samples above 1

second, and the median is at 149 ms.

These statistics are somewhat influenced by the fact that the

number of samples is proportional to the update frequency.

This means that long update cycles to a certain degree get

artificially lower weight.

Figure 4 shows details of two interesting cases. In figure

4(a), the single-threaded server is missing all its deadlines

with 400 concurrent players, while the multi-threaded version



0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

Number of concurrent clients

D
e

la
y
 p

e
r 

s
c
h

e
d

u
le

d
 r

u
n

 (
m

s
)

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800

(a) Single-threaded server

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

Number of concurrent clients

D
e

la
y
 p

e
r 

s
c
h

e
d

u
le

d
 r

u
n

 (
m

s
)

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600 640 680 720 760 800

(b) Multi-threaded server

Figure 3. Response time for single- and multi-threaded servers (dotted line is the 100 ms threshold).

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Delay for each scheduled run (ms)

C
D

F

Multithreaded

Single threaded

x

x

x

x

x x

x x

x x x

o

o

o

o

o o o

o o

(a) 400 concurrent clients

0 1000 2000 3000 4000 5000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Delay for each scheduled run (ms)

C
D

F

Multithreaded

Single threaded

x

x

x

x

x
x x x

o

o

o

o

o

o

o o

x x

(b) 800 concurrent clients

Figure 4. CDF of response time for single- and multi-threaded servers with 400 and 800 concurrent clients.

2
0
0

4
0
0

6
0
0

8
0
0

C
P

U
 l
o
a
d
 (

%
)

0 50 100 150 200 250

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Seconds since start of test

R
e
s
p
o
n
s
e
 t
im

e
 (

s
)

Figure 5. CPU load and response time for 620 concurrent clients on the
multi-threaded server.

is processing almost everything on time. At 800 players

(figure 4(b)), the outliers are going much further for both cases.

Here, even the multi-threaded implementation is struggling to

keep up, though it is still handling the load significantly better

than the single-threaded version, which is generally completely

unplayable.

B. Resource consumption

We have investigated the resource consumption when play-

ers connect to the multhreaded server as shown in figure 5. We

present the results for 620 players, as this is the highest number

of simultaneous players that server handles before significant

degradation in performance, as shown in figure 3(b). The mean

response time is 133 ms, above the ideal delay of 100 ms.

Still, the server is able to keep the update rate smooth, without

significant spikes. The CPU utilization grows while the clients

are logging on, then stabilizes at an almost full CPU utilization

for the rest of the run. The two spikes in response time happen

while new players log in to the server at a very fast rate (30
clients pr. second). Receiving a new player requires a lock in



0 50 100 150 200 250

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

Number of threads in threadpool

D
e
la

y
 p

e
r 

s
c
h
e
d
u
le

d
 r

u
n
 (

m
s
)

Figure 6. Response time for 700 concurrent clients on using varying number
of threads. Shaded area from 5 to 95 percentiles.

the server, hence this operation is, to a certain degree, serial.

C. Effects of thread-pool size

To investigate the effects of the number of threads in the

threadpool, we performed an experiment where we kept the

number of clients constant while varying the number of threads

in the pool. 700 clients were chosen, as this number slightly

overloads the server. The number of threads in the pool was

increased in increments of 2 from 2 to 256. In figure 6,

we see clearly that the system utilizes more than 4 cores

efficiently, as the 4 thread version shows significantly higher

response times. At one thread per core or more, the numbers

are relatively stable, with a tendency towards more consistent

low response times with more available threads, to about 40

threads. This could mean that threads are occasionally waiting

for I/O operations. Since thread pools are not pre-emptive,

such situations would lead to one core going idle if there are

no other available threads. Too many threads, on the other

hand, could lead to excessive context switch overhead. The

results show that the average is slowly increasing after about

50 threads, though the 95-percentile is still decreasing with

increased number of threads, up to about 100. From then on

the best case is worsening again most likely due to context

switching overhead.

A game developer needs to consider this trade-off when

tuning the parameters for a specific game.

V. DISCUSSION

Most approaches to multi-threaded game server implemen-

tations in the literature (e.g., [1]) use some form of spatial

partitioning to lock parts of the game world while allowing

separate parts to run in parallel. Spatial partitioning is also

used in other situations to limit workload. The number of play-

ers that game designers can allow in one area in a game server

is limited by the worst-case scenario. The worst case scenario

for a spatially partitioned game world is when everybody move

to the same point, where the spatial partitioning still ends up
with everybody in the same partition regardless of granularity.

This paper investigates an orthogonal and complementary

approach which tries to increase the maximum number of users

in the worst case scenario where all players can see each other

at all times. Thus, spatial partitioning could be added to further

scale the game server.

Experiments using multiple instances of a single-threaded

server are not performed, as having clients distribueted acrosss

multiple servers would mean partitioning the clients in areas

where they can not interact, making numbers from such a

scenario incomparable to the multithreaded solutions.

The LEARS approach does have limitations and is for ex-

ample not suitable if the outcome of a message put restrictions

on an object’s state. This is mainly a game design issue, but

situations such as trades can be accommodated by doing full

transactions. The following example where two players trade

illustrates the problem: Player A sends a message to player B

where he proposes to buy her sword for X units. After this

is sent, player C steals player A’s money, and player A is

unable to pay player B should the request go through. This is

only a problem for trades within a single game tick where the

result of a message to another object puts a constraint on the

original sender, and can be solved by means such as putting

the money in escrow until the trade has been resolved, or by

doing a transaction outside of LEARS (such as in a database).

Moreover, the design also adds some overhead in that the code

is somewhat more complex, i.e., all communication between

elements in the system needs to go through message queues.

The same issue will also create some runtime overhead, but

our results still demonstrate a significant benefit in terms of

the supported number of clients.

Tasks in a thread pool can not be pre-empted, but the threads

used for execution can. This distinction creates an interesting

look into the performance trade-off of pre-emption. If the

number of threads in the threadpool is equal to the number of

CPU cores, we have a fully cooperative multitasking system.

Increasing the number of threads allow for more pre-emption,

but introduces context-switching overhead.

VI. RELATED WORK

At Netgames 2011 [12], we presented a demo with a

preliminary version of LEARS. Significant research has been

done on how to optimize game server architectures for online

games, both MMOGs and smaller-scale games. In this section,

we summarize some of the most important findings from

related research in this field. For example, "Red Dwarf",

the community-based successor to "Project Darkstar" by Sun

Microsystems [13], is a good example of a parallel approach to

game server design. Here, response time is considered one of

the most important metrics for game server performance, and

suggests a parallel approach for scaling. The described system

uses transactions for all updates to world state, including

player position. This differs from LEARS, which investigates

the case for common actions where atomicity of transactions

is not necessary.



Work has also been done on scaling games by looking at

the optimization as a data management problem. The authors

in [14] have developed a highly expressive scripting language

called SGL that provides game developers a data-driven AI

scheme for non-player characters. By using query processing

and indexing techniques, they can efficiently scale to a large

number of non-player objects in games. This group also

introduces the concept state-effect pattern in [15], which we

extend in this paper. They test this and other parallel concepts

using a simulated actor interaction model, in contrast to this

paper which evaluates a running prototype of a working games

under realistic conditions.

Moreover, Cai et al. [4] present a scalable architecture

for supporting large-scale interactive Internet games. Their

approach divides the game world into multiple partitions and

assigns each partition to a server. The issues with this solution

is that the architecture of the game server is still a limiting

factor in worst case scenarios as only a limited number of

players can interact in the same server partition at a given time.

There have also been proposed several middleware systems

for automatically distributing the game state among several

participants. In [9], the authors present a middleware which

allows game developers to create large, seamless virtual worlds

and to migrate zones between servers. This approach does,

however, not solve the challenge of many players that want

to interact in a popular area. The research presented in [10]

shows that proxy servers are needed to scale the number of

players in the game, while the authors discuss the possibility

of using grids as servers for MMOGs. Beskow et al. [3] have

also been investigating partitioning and migration of game

servers. Their approach uses core selection algorithms to locate

the most optimal server. We have worked on how to reduce

latency by modifying the TCP protocol to better support time-

dependent applications [11]. However, the latency is not only

determined by the network, but also the response time for the

game servers. If the servers have a too large workload, the

latency will suffer.

In [2], the authors are discussing the behavior and per-

formance of multi-player game servers. They find that in

the terms of benchmarking methodology, game servers are

very different from other scientific workloads. Most of the

sequentially implemented game servers can only support a

limited numbers of players, and the bottlenecks in the servers

are both game-related and network-related. The authors in [1]

extend their work and use the computer game Quake to study

the behavior of the game. When running on a server with up

to eight processing cores the game suffers because of lock

synchronization during request processing. High wait times

due to workload imbalances at global synchronization points

are also a challenge.

A large body of research exits on how to partition the

server and scale the number of players by offloading to several

servers. Modern game servers have also been parallelized

to scale with more processors. However, a large amount of

processing time is still wasted on lock synchronization, or the

scaling is limited by partitioning requirements. In our game
server design, we provide a complementary solution and try

to eliminate the global synchronization points and locks, i.e.,

making the game server “embarrassingly parallel” which aims

at increasing the number of concurrent users per machine.

VII. CONCLUSION

In this paper, we have shown that we can improve resource

utilization by distributing load across multiple CPUs in a uni-

fied memory multi-processor system. This distribution is made

possible by relaxing constraints to the ordering and atomicity

of events. The system scales well, even in the case where all

players must be aware of all other players and their actions.

The thread pool system balances load well between the cores,

and its queue-based nature means that no task is starved unless

the entire system lacks resources. Message passing through

the blocking queue allows objects to communicate intensively

without blocking each other. Running our prototype game, we

show that the 8-core server can handle twice as many clients

before the response time becomes unacceptable.

VIII. FUTURE WORK

From the research described in this paper, a series of further

experiments present themselves. The relationship between

linearly scaling load and quadratic load can be tweaked in our

implementation. This could answer questions about which type

of load scale better under multi-threaded implementations.

Ideally, the approach presented here should be implemented

in a full, complete massive multiplayer game. This should

give results that are fully realistic, at least with respect to

this specific game.

Another direction this work could be extended is to go

beyond the single shared memory computer used and distribute

the workload across clusters of computers. This could be

achieved by implementing cross-server communication di-

rectly in the server code, or by using existing technology that

makes cluster behave like shared memory machines.

Furthermore, all experiments described here were run with

an update frequency of 10 Hz. This is good for many types

of games, but different frequencies are relevant for different

games. Investigating the effects of running with a higher or

lower frequency of updates on server performance could yield

interesting results.

If, during the implementation of a complex game, it is

shown that some state changes must be atomic to keep the

game state consistent, the message passing nature of this

implementation means that we can use read-write-locks for

any required blocking. If such cases are found, investigat-

ing how read-write-locking influence performance would be

worthwhile.



REFERENCES

[1] A. Abdelkhalek and A. Bilas. Parallelization and performance of
interactive multiplayer game servers. In Proceedings of the International

Parallel and Distributed Processing Symposium (IPDPS), page 72, april
2004.

[2] A. Abdelkhalek, A. Bilas, and A. Moshovos. Behavior and performance
of interactive multi-player game servers. Cluster Computing, 6:355–366,
October 2003.

[3] P. B. Beskow, G. A. Erikstad, P. Halvorsen, and C. Griwodz. Evaluating
ginnungagap: a middleware for migration of partial game-state utilizing
core-selection for latency reduction. In Proceedings of the 8th Annual

Workshop on Network and Systems Support for Games (NetGames),
pages 10:1–10:6, 2009.

[4] W. Cai, P. Xavier, S. J. Turner, and B.-S. Lee. A scalable architecture
for supporting interactive games on the internet. In Proceedings of the

sixteenth workshop on Parallel and distributed simulation (PADS), pages
60–67, 2002.

[5] K.-T. Chen and C.-L. Lei. Network game design: hints and implications
of player interaction. In Proceedings of the workshop on Network and

system support for games (NetGames), 2006.
[6] H. S. Chu. Building a simple yet powerful mmo game ar-

chitecture. http://www.ibm.com/developerworks/architecture/library/ar-
powerup1/, Sept. 2008.

[7] M. Claypool and K. Claypool. Latency and player actions in online
games. Communications of the ACM, 49(11):40–45, Nov. 2005.

[8] B. Drain. Eve evolved: Eve online’s server model.
http://massively.joystiq.com/2008/09/28/eve-evolved-eve-onlines-
server-model/, Sept. 2008.

[9] F. Glinka, A. Ploß, J. Müller-lden, and S. Gorlatch. Rtf: a real-
time framework for developing scalable multiplayer online games. In
Proceedings of the workshop on Network and system support for games

(NetGames), pages 81–86, 2007.
[10] J. Müller and S. Gorlatch. Enhancing online computer games for grids.

In V. Malyshkin, editor, Parallel Computing Technologies, volume 4671
of Lecture Notes in Computer Science, pages 80–95. Springer Berlin /
Heidelberg, 2007.

[11] A. Petlund. Improving latency for interactive, thin-stream applications

over reliable transport. Phd thesis, Simula Research Laboratory /
University of Oslo, Unipub, Oslo, Norway, 2009.

[12] K. Raaen, H. Espeland, H. K. Stensland, A. Petlund, P. Halvorsen, and
C. Griwodz. A demonstration of a lockless, relaxed atomicity state
parallel game server (LEARS). In Proceedings of the workshop on

Network and system support for games (NetGames), pages 1–3, 2011.
[13] J. Waldo. Scaling in games and virtual worlds. Commun. ACM, 51:38–

44, Aug. 2008.
[14] W. White, A. Demers, C. Koch, J. Gehrke, and R. Rajagopalan.

Scaling games to epic proportions. In Proceedings of the international

conference on Management of data (SIGMOD), pages 31–42, 2007.
[15] W. White, B. Sowell, J. Gehrke, and A. Demers. Declarative processing

for computer games. In Proceedings of the ACM SIGGRAPH symposium

on Video games (Sandbox), pages 23–30, 2008.


