
QoS-aware Mobile Middleware for Video Streaming

Sten L. Amundsen, Ketil Lund Carsten Griwodz, Pål Halvorsen
Simula Research Laboratory Department of Informatics, University of Oslo

{stena, ketillu}@simula.no {griff, paalh}@ifi.uio.no

Abstract

State-of-the-art middleware and component technolo-

gies lack support for Quality of Service (QoS) management.

Application developers, therefore, integrate QoS mechan-

isms into the application itself. In this paper, we propose

a solution for how a mobile middleware can take on the

responsibility for QoS management. We use a video stream-

ing scenario to identify the QoS mechanisms that the mid-

dleware must manage on behalf of the application, and we

demonstrate the feasibility of our solution within this scen-

ario. The key concept of our work is the service plan that

specify the service and the QoS of components and compos-

itions. Using service plans recursively, we model alternat-

ive application configurations such that a QoS-aware mid-

dleware platform can safely configure and dynamically re-

configure applications, based on user requirements and re-

source availability. In this paper, we show that service plans

enables the separation of application design from QoS man-

agement, in a way that promote reuse of both functional

code and QoS mechanisms.

1 Introduction

Many new applications meet stringent requirements to

be able to provide services that users perceive as good qual-

ity. To meet the increasing performance and scalability re-

quirements, mechanisms that adapt to various workloads

and requirements must be designed. One must also develop

strategies for dynamically combining components into a

high-performance service suitable for the underlying infra-

structure.

Because most existing infrastructures offer no quality

of service (QoS) guarantees, adaptation mechanisms are

needed to maintain QoS. The traditional way of handling

this is to integrate QoS mechanisms with the application lo-

gic, i.e., making the components self-adaptive. This gives

customised QoS management mechanisms for the applica-

tion in question. It also makes the application complex and

hard to manage, and the implementation of QoS mechan-

isms cannot be reused in other applications. Our approach

is to separate the application logic from the domain specific

QoS management, and instead deploy alternative applica-

tion configurations with different QoS characteristics on a

QoS-aware middleware. By combining this with rigorous

service- and QoS-modelling we make it easier to reuse both

application components and QoS mechanisms, and ensure

safe reconfiguration at runtime.

In this article, we employ a scenario to identify the QoS

mechanisms that the middleware must manage on behalf of

the application and the appropriate method for service and

QoS modelling. We choose to combine the streaming ap-

plication domain with the mobile technical domain, since

this gives a scenario where QoS mechanisms and dynamic

reconfiguration are particularly useful.

The article is structured as follows. Section 2 outlines

the scenario, and section 3 describes our proposed solution

for achieving QoS in the scenario. In section 4, we describe

the realization of the middleware and application, includ-

ing service and QoS modelling. Section 5 discusses related

work, and lastly, section 6 gives some conclusions and the

direction for further research.

2 Scenario Description
Recent advances in wireless networking technologies

have enabled the deployment of video streaming applica-

tions in the mobile domain, which raises several new chal-

lenges in order to achieve best possible playback at the ter-

minal. To make these challenges explicit we use a scen-

ario. In this section we present an overview of the scenario,

and for a detailed description, we refer to our technical re-

port [1].

2.1 Video Streaming to Mobile Terminals
Clients access the video server from different terminals

types: home theaters, laptops, and personal digital assist-

ants (PDAs), which are connected to the Internet over the

access networks: fixed local area network (LAN), wireless

LAN (WLAN), and general packet radio service (GPRS)

in GSM (see Figure 1). IP mobility management enables

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

��������

����	
��������

������

����

����

���

���	�����

��	����

Figure 1. System overview
the mobile terminals, PDA and laptop, to roam seamlessly

between the access networks [2]. The main challenge

is to give the users a high-quality playback in different

contexts: home theater-LAN, laptop-LAN, laptop-WLAN,

PDA-WLAN, PDA-GPRS, when network conditions are

changing and users roam between access networks.

2.2 Dynamics and Constraints
In the video streaming scenario, there are several chal-

lenges. One is the traditional streaming requirement, timely

delivery of high data rate streams. Another, more complic-

ated, is the handling of the different combinations of access

networks and terminal types. Assume for example that we

have a video server capable of delivering MPEG-II DVD-

quality movies. In addition to requiring substantial memory

and processing resources, it must be capable of transmitting

streams at a rate of 4-8 Mbit/s on average and a maximum of

11.8 Mbit/s. Such streams might be requested by high-end

systems connected to high bandwidth access networks, but

in case of mobile terminals connected through a wireless

network, neither the network nor the terminals have the re-

quired resources. Thus, trying to send a full quality stream

over a dedicated GPRS link (of maximum 107.2 kbit/s, us-

ing eight 13.4 kbit/s time-slots) to a PDA (e.g., PalmOne

Treo 650) is not feasible.

Each user has their own opinion of what high quality

is, e.g., different values for QoS dimensions like frame

rate, resolution and color depth. Thus, streaming the same

content to users using the same technology may result

in streams with different characteristics and requirements.

Hence, the application must be adapted to the user’s QoS re-

quirements and the capabilities of all the resources along the

data path from server to client. In our scenario, a terminal

connected to a LAN needs a media player to playback the

received video stream, while a mobile user with a PDA con-

nected to a WLAN possibly needs a different codec, as well

as forward error correction (FEC) due to a higher packet

error rate and longer retransmission delay.

To manage QoS in these contexts, an understanding of

the QoS characteristics is needed. The application and re-

source QoS characteristics are therefore analyzed (results

are shown in Figure 2. We adhere to OMG’s UML profile

����������	
���
�	��

�����������	
���

���������������

�������
��������

�����	
������	���������

���
����������

���������������

��� ��!�"������
�����

�����	
������	��������

���������������

	�������#
���$���%��	�����&�

�����	
������	���������������
�

����������	
���
�	��

���������	
���

���������������

��� �������������
�����

�����	
������	���������

���
����������

���������������

��#����
�����
�����

�����	
������	������������
�'()��

���������������

��#����)�����
�����

�����	
������	������������
� �
��

����������	
���
�	��

�
�����

���������������

��
*#+����������

�����	
������	���������

���
�����

���������������

,�

���������

�����	
������	���������

���
����

����������	
���
�	��

����
��

���������������

#	'-������
��������

�����	
������	���������

���
�#��

����������	
���
�	��

��
��
������

���������������

�.���� ���
%�������

�����	
������	���������

���
��#��

����������	
���
�	��

�������

���������������

��
���
�����
�����

�����	
������	������������
��'/��

����������������

/-��������

�����	
������	������������
�#��

���������������

��
0��'��.�������$121��321&�

�����	
������	������������
�#��

���������������

��
0��'4.���� ���
%��$121��321&�

�����	
������	������������
�#��

����������	
���
�	��

������
������
��

���������������

5��������%�������

�����	
������	������������
�����

���������������

�.���� ���
%��$121��321&�

�����	
������	������������
��#��

����������	
���
�	��

��	���

���������������

����6����%����
�����

�����	
������	������������
��6/��

����������	
���
�	��

���

���������������

�����������#�	�
%�$122311&��

��
����������	
������	���������

���
�#��	��
�����

����������	�
���
�������	����	���

������
������
�������	����	���

Figure 2. QoS characteristics

for QoS modeling [3], because i) it is a formal specification

that defines the terms and meta-models we need and ii) this

ensures that our QoS models can be integrated into design

models and existing software development methods.

3 Proposed Solution
We advocate that the middleware should select and com-

bine the most appropriate components for a given context

(e.g, access network technology, execution environment,

and terminal type) and available resource capacity (e.g.,

CPU, storage, and network).

If a terminal stays connected to the same network, the

initial configuration will remain fixed during the whole ses-

sion. However, with mobility follows a much more dynamic

environment, and the middleware must be able to adapt the

application to context changes and resource fluctuations, in

order to maintain the best possible QoS. In general, there

are two adaptation types that must be supported:

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

• changing parameter settings of individual components

• changing the application composition

Each application variant, resulting from performing one of

these types of adaptation, is called an application configur-

ation. We also recognize that some QoS mechanisms are

so tightly coupled with the corresponding functionality that

separating them out would result in a very complex design.

One example of such a mechanism is data traffic control,

which constantly monitors round trip time and packet error

rates, to adjust the transmission rate. Consequently, our ap-

proach to handle the dynamics in the scenario is to let the

middleware control QoS to the extent feasible, and to allow

component self-adaptation where necessary. This requires

that the QoS characteristics is specified for each compon-

ent, which then are used by the middleware to assess the

suitability of each component when assembling a composi-

tion. For self-adapting components, it is important that the

ability to self-adapt is expressed and quantified in the QoS

characteristics.

In many cases, application developers want to reuse ex-

isting code (e.g., video codecs). Hence, existing code is first

wrapped to make it a first-class component, before a QoS

expert analyzes the component and then attaches a service

plan that describes the QoS characteristics of the compon-

ent.

Finally, it is crucial that the video streaming application

is stable, during and after a reconfiguration. To achieve this,

alternative configurations are rigorously modelled, which

ensures that only component compositions and configura-

tion values defined at design time are used. We call this

property safe reconfiguration, and together with platform-

managed adaptation it represents the contributions of our

work.

4 Realization

4.1 QoS-aware Middleware

We have designed and implemented a new component-

based QoS-aware middleware, based on an open, reflective

component architecture, called QuA (Quality of service-

aware component Architecture), with hooks where QoS

management components can be inserted as plug-ins [4, 5],

as shown in Figure 3. To make the middleware executable

on both mobile terminals and large servers, the architecture

has a small core, and everything else is provided as plug-

gable components. The middleware has been implemen-

ted in both Java and Smalltalk, and we have published the

Smalltalk source code together with the platform independ-

ent model (PIM) [6].

QuA makes QoS decisions that take advantage of

runtime information, about context and resources, to select

���������	�

���������	

��

���������	�

��������	
	���

���������	�

�
�����	
	���

���������	�

��	��	��
�	
	���

�������

����

����

�������
�
�

�� ��

�	����� ���������

!���

�

���������
����

!���

���

����

�

�

�

�

�

��

�

�

�

��������
�

���������	�

�
"����	��
�	
	���
�

�

�

�

Figure 3. Middleware overview

the application configuration suitable for the current con-

text and resource availability and that meet the user’s QoS

requirements. Fundamental in this approach is to model

the application as service types and at runtime let the mid-

dleware select among alternative implementations of these

types. The alternative implementations, each with different

QoS characteristics, are provided by application developers

and deployed in a repository, together with associated ser-

vice plans. Service plans play a central role in QuA, and

they serve three purposes: i) provide the link between a ser-

vice type and an implementation of the type; ii) specify ser-

vice composition and parameter configuration of the imple-

mentation; and iii) describe the QoS characteristics of the

implementation.

As shown in Figure 4, the service plan contains eight in-

formation elements: i) dependencies: requirements to the

execution environment, libraries, and static dependencies to

front-end or back-end systems; ii) parameter configuration:

parameters the component composition or component is to

be configured with; iii) composition specification: a graph

specifying the construction of the service, i.e., the compos-

ition of service types and the bindings between them; iv)

role: a role name space and role names for service types and

component types in the composition. The same role name

in two alternative service plans will during reconfiguration

be interpreted as identical services and, hence, not be re-

placed during dynamic reconfiguration; v) offered services:

services/operations that the composition/component offers;

vi) input QoS contract: QoS values along QoS dimensions

that users of this composition/component must adhere to;

vii) QoS model: a model of the QoS characteristics, which

is defined using QoS dimensions independently of the exe-

cution environment. The model specifies the possible range

of QoS values along the QoS dimensions; and viii) QoS

mapping: functions that establish the logical relationships

between QoS characteristics at different levels.

Users specify their QoS requirements in a user QoS spe-

cification using dimensional utility functions, which give

users the means to specify their preferences at a high ab-

straction level. In addition to specify the QoS requirements

along the user QoS dimensions, these functions capture the

user’s trade-off between the dimensions. This enables QuA

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

���������	�

��	�������	�����������

��	��������

��������

���
��	�����

�����		���

��������������

���������
������������

��	�����
�������

����

���

!���

 ���

 ���

 ���

 ���

 ���

���������	

���

����

����

Figure 4. Service plan

to find the resource allocation that both meet the user’s re-

quirements and optimize the resource utilization with re-

spect to the user experience.

When a user request a service, QuA invokes the ser-

vice planner with the user’s service request (i.e., the service

type and QoS specification). The planner asks the broker

to provide plans that implement the requested type, and

the broker searches the repository for relevant plans. The

results are one or more plans being returned to the service

planner, each with different resource requirements and QoS

characteristics. It should be noted that most services are

compositions components, the returned plans normally are

recursive that the service planner combines into complete

service plans. The service planner now uses the utility func-

tion from the user and the QoS mapping functions to assess

the suitability of each complete plan. From the context man-

ager plug-in it receives information about the hardware and

execution environment, while the resource manager plug-

in provides information about availability of the different

resources. Thus, the service planner is able to select the ser-

vice plan that provides best utility for the user in the current

context and resource situation [7].

Next, the configuration manager uses the selected com-

plete service plan to instantiate and configure the requested

service. If the service is a composition, the configuration

manager starts with the plans for the atomic services, and

build the composition bottom-up.

Finally, to enable dynamic reconfiguration, sensing

agents and resource monitors are deployed as component

types in the repository. This enables QuA to discover con-

text changes and resource fluctuations, and if necessary to

maintain the QoS-level re-plan the service. Dynamic recon-

figuration, i.e., either by component parameters changes or

application re-composition, is managed by the adaptation

manager (see Sub-section 4.3).

4.2 Application Design

The application must be designed with reconfiguration

in mind, and herein lays the crux of our solution for QoS-

awareness and safe reconfiguration. The design phase has

five steps: i) defining components, ii) specifying compos-

itions, iii) specifying parameter configurations, iv) service

modelling, and v) QoS modelling. Each step is described in

the following paragraphs, starting with existing code from

other streaming applications that are reused and encapsu-

lated in QuA components.

Defining components. For signalling we use an existing

implementation of the real-time streaming protocol (RTSP),

the RSTP client and server code from komssys [8]. En-

coded video is transported over the real-time transport pro-

tocol (RTP) extended with a TCP friendly flow control al-

gorithm [9]. The flow control adjusts the transmission rate

to the network data rate by measuring round trip times and

packet loss. To choose the appropriate video format and

decoder we conducted a series of tests [1], and found that

mencoder to pre-code the video files in MPEG-4 format

and mplayer [10] as sink component were suitable for our

scenario. To protect the video from packet errors we apply

a FEC algorithm, Reed-Solomon erasure correction [11].

Pre-coded videos stored in the secondary storage are ac-

cessed by components executing on the QuA middleware.

This enables us to deploy alternative versions (resolution,

rate and colour) for a movie title and during runtime choose

one video version based on the resulting QoS.

Specifying compositions. From the components, atomic

services are defined, which are combined into three alternat-

ive service compositions, illustrated in Figure 5. Each com-

position has distinct application QoS characteristics and

resource requirements, which corresponds to the resource

QoS characteristics of the context1.

���������	
��

���������

����������

����������

���������

��
����������

������
����

��������

����������	
��

��

�
����

���������	
��

���������

����������

����������

���������

��
����������

������
����

����������	
��

�
����

��

���������	
��

���������

����������

����������

���������

��
����������

������
����

����������	
��

�
����

����

���������	����
���������������������������������

����������� ���

����������� ������������� ����

Figure 5. Component compositions
1For example, the PDA & GPRS context can only sustain the memory

requirements in compositions a) and c) in Figure 5, since pre-fetching is
too memory demanding for a PDA. In the system context PDA & GPRS,
the network data rate varies to such an extent that two alternative configur-
ations are required; one for data rate of 42-56 kbit/s (2.5G), and the other
for 100-384 kbit/s (3G).

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

Specifying parameter configurations. The compon-

ents that implement the atomic services MPEG4Source,

MPEG4Sink and FEC, have alternative parameter config-

urations. The source and sink components are configured

with resolution, colour depth, and frame rate, while the FEC

component is configured with the number of data- and par-

ity packets and the packet size.

Service modelling. Atomic services are grouped into

sub-services that again are grouped to the service offered

to the user. For signalling, there is only one possible com-

position, hence, the sub-service is associated with a fixed

set of atomic services. For streaming and movie, alternative

compositions and parameter configurations are identified.

These alternatives are specified in different service plans,

which are deployed in the QuA repository with an associ-

ation to the service type. Figure 6 illustrates how one of the

alternative service plans, MPEG4Simple, is associated with

service types at the atomic and sub-service levels. Simil-

arly, for the movie, there are alternative implementations of

the sub-service, Movie, and the atomic service, Moviel, as

shown in Figure 7. All sub-service types are then combined

to construct the video streaming application, as illustrated

in Figure 8.

��������	

�
�
��
�

�������

���������

�������������

�������

�	
���	�

	�	

����

�	
���	�

	�	

�����������

�����������

���������

�

�

�

�

�

�

�

�

��

�	
���	����	 �	
���	����

���������

�������������

�������

�������

�������������

���������

�
�
�

������	��

Figure 6. Sub-service streaming

�����

�
�
���

������

�������

�	
���	�

	�	

����

�	
���	�

	�	

����������

	 	

�

	

	

	

�	
���	����	 �	
���	����

��������

���������

������	��

�
�
��� 	

	

Figure 7. Sub-service movie
QoS modelling. The QoS characteristics at each service

level are modelled: service, sub-service and atomic service,

plus the parameter configurations to the components. To il-

lustrate how the QoS characteristics are identified and spe-

cified, we describe the QoS modelling of the MPEG4Sink

component and the MPEG4Simple implementation of the

�����

����	

���

����	���

���������	������
��������

�����

�	
�

��������

�����

���������	���

����������� ������������

� �

� �

�

�

�

Figure 8. Service and Sub-service level

streaming sub-service. For the complete QoS modelling,

see [1].

The MPEG4Sink component offers one service, the op-

eration forward(). The component is configured to a com-

bination of resolution, frame rate and colour depth that cor-

responds to a version of the movie title, MovieV erlm.

Resolution is the number of pixels on the screen, rate is

the video playback speed in frames per second, and colour

depth is either greyscale or colour. The QoS dimensions

for the offered service, forward(), are identified by study-

ing the relationship between input messages to and output

messages from the component. For the MPEG4Sink com-

ponent, only one QoS dimension is found from the differ-

ence between input and output messages, namely start-up

time. The acceptable range of QoS values is set to [0,

2400] (lowest value gives highest QoS). For video decod-

ing, it is not feasible to define general mapping functions,

due to the discrete cosine transformation and the prediction

frames. Hence, the resource requirements are identified in a

series of tests. Table 1 lists measurements for the decoding

of an episode from the science fiction series “Andromeda”.

The tests were performed on a standard PC with an Intel

Pentium 4 2.4 GHz and Redhat Linux OS version 2.4.21-

20.EL. These values are also used as rough indicators for

other combinations of hardware and OS. CPU requirements

are mean percentage allocation, memory requirements are

peak usage, and network requirements, vbit_rate, specify the

mean throughput at the application level. These measure-

ments are stored in the service plan, in the QoS mapping

information element, together with a mapping function that

relates QoS values to the measured resource requirements.

Start-up time is mapped to the time used to decode video

frames in the byte stream, which depends on the GOP/VOP

pattern and the number of input messages needed before

coding can start. We make a rough approximation, and as-

sume five frames between each I-frame, i.e., five frames are

clocked in before decoding starts. It is also assumed that the

time used for decoding is negligible, i.e., do not consider in-

ternal processing, and instead predict the time needed to fill

up the component with sufficient volume of encoded video.

The resulting QoS mapping function, which refers to

the table with measured resource requirements, is shown

in Equation (1). It uses the QoS mapping function to

RTP_Transport to predict the throughput in the current con-

text. We refer to [1] for a description of this QoS mapping

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

Movie version Resource requirements

Resolution Rate Colour CPU MEM Vbit_rate

(pixels) (fps) (colour/grey) (%) (kB) (kB/s)

1440x1152 25 colour 0,3625 34128 225

720x576 25 colour 0,0375 34128 224

" " grey 0,0307 34128 224

" 15 colour 0,0328 34128 223

" " grey 0,0276 34128 223

" 5 colour 0,0216 34128 113

352x288 25 colour 0,0040 34128 136

176x144 25 colour 0,0003 34128 53

100x100 20 colour 0,0003 34128 25

" 15 " 0,0003 34128 21

" 10 " 0,0002 34128 15

" 5 " 0,0002 34128 9

Table 1. Configurations and resource use

function.

tMPEG4sink_start =
5

Rate

vbit_rate

RRTP _Transport
(ms)

∀CPU ≥ g(resolution, rate, colour), (1)

MEM ≥ f(resolution, rate, colour),

RRTP _Transport ≤ vbit_rate

The MPEG4Sink atomic service is used in the com-

position to the sub-service MPEG4Simple, together with

RTP_Transport and MPEG4Source. The sub-service of-

fers one service, stream() (operation on the MPEG4Source

component). The input-output relationship for this service

gives four QoS dimensions, one of which is start-up time.

The QoS dimensions are mapped to the service plans that

specify the implementation of the three atomic services, ex-

amplified for start-up time in Equation (2). The QoS model

and QoS mapping functions for the VideoStreamingApp ser-

vice are defined in a similar fashion.

tMPEG4S_start = tMPEG4source_start+ (2)

tRTP _Transport + tMPEG4sink_start(ms)

4.3 Dynamic Reconfiguration
In the previous sub-section, we described how the ap-

plication is designed and deployed as a set of alternative

configurations. After instantiating the application, the in-

formation used during the instantiation process is retained

by QuA (user QoS requirements, complete service plan,

and references to all component instances). This inform-

ation is meta-data, and is used for both types of reconfigur-

ation distinguished in Section 3, in order to achieve an effi-

cient transition between configurations. For changing com-

ponent parameter settings, the composition specification (in

the complete service plan) and references to component in-

stances are used to locate the correct instance to reconfig-

ure. When altering the composition of the application, it is

a goal to minimize the number of modifications that must be

made. For example, when going from a composition with

FEC components to one without (see Figure 5c and 5a), it is

preferable to retain all other components and just add new

bindings in place of the FEC components. The means to

achieve this is through the composition specifications of the

two configurations. Since we require that alternative com-

position specifications belong to the same role name space,

QuA knows which roles, and thereby component instances

and bindings, that can be retained in the new configuration.

Dynamic reconfiguration starts when the adaptation

manager is notified by the context manager or resource

manager about changes that may affect the utility of the

application. The adaptation manager then asks the service

planner to re-evaluate the utility of the running configur-

ation, using the original service request and QoS require-

ments as input. If the result indicates a sufficiently large

drop in utility, the adaptation manager asks the service plan-

ner to re-plan the service. The new plan is forwarded to the

configuration manager, which compares it to the running

configuration, and determines which changes that has to be

made. Through the safe reconfiguration property, we ensure

that the new configuration does not leave the application un-

stable, and where required and possible, state is transferred

from the old to the new application instance. Finally, the

configuration manager makes the necessary changes to the

running application, before the meta-data is updated to re-

flect the new configuration.

5 Related Work

Several research activities have addressed mechanisms

for video streaming to mobile terminals, but for the work

presented in this article only results within the area of dy-

namic streaming applications are relevant. InfoPipes [12]

is one such result, since it employs a dynamic framework

for composing a streaming service that processes the me-

dia stream as it flows through a pipeline of components.

Another is [13], a scaleable and fault tolerant multimedia

distribution system that add, remove, and replace stream

handlers. QuA also chose and reconfigure service compos-

itions, but the decisions are based on QoS information and

not functional properties, taking video streaming one step

further.

With respect to general component architectures, Open-

ORB v2 addresses QoS management by introducing com-

ponent frameworks (CF) as building blocks [14]. Each CF

has a set of policies and rules that provides QoS-support.

The QuA middleware support CFs, but the QoS mech-

anisms are separated from the application and into the

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

middleware. The middleware platforms OpenORB [14],

CARISMA [15], and DynamicTAO [16] employ reflection

for dynamic reconfiguring. In OpenORB, applications can

reconfigure the structure of the CFs, while CARISMA uses

reflection to add or change policies in the QoS-profile as-

sociated with the application. DynamicTAO adds reflection

to CORBA, allowing inspection and reconfiguration of the

ORB. All these systems require application code for QoS

handling. The QuA platform, on the other hand, does not

require any QoS-related application code, since the service

plans capture the QoS-characteristics of the applications.

Schantz et al. [17] describe patterns for reuse of QoS

management mechanisms in the QuO CORBA middleware,

an approach that is extended to the CORBA component

model [18]. Necessary QoS management functionality is

deployed inside the adaptive components, which is funda-

mentally different from QuA, where separation of concerns

is achieved by offering platform-managed QoS to the ap-

plication. Mitchell et al. [19] use a runtime model of com-

ponent resource requirements (CPU) that, similar to the

QuA service plan, is separated from the application logic.

However, in QuA the service plan also encompasses QoS

mapping and hierarchical construction of alternative sub-

services from atomic components.

Odyssey [20] uses fidelity, a data quality measure (video

frame rate, image resolution, and voice quality) to control

what data to retrieve and from where. When a client is ac-

cessing the remote server, Odyssey finds a pre-processed

video file, suitable for downloading over the given connec-

tion, and downloads it. The principle of choosing versions

of the video is also present in our work, but the differ-

ence is that Odyssey is tightly coupled to an open source

OS and the adaptation is limited to content. Barwan [21]

and Prayer [22] insert a proxy server in the data flow that

performs video transcoding and protocol adaptation, which

makes the video servers unaware of the wireless access net-

work. This is a viable approach, though only useful for

streaming.

In addition to dynamic middleware, frameworks are

available for identifying and choosing service compositions

at runtime. For example, SpiderNet [23], designed for over-

lay networks, combines 1) a layered system model that

relates service composition (a graph specified by the user)

and components, 2) a service component model that encap-

sulate both functionality and meta-data, and 3) a probe pro-

tocol that performs admission control and resource alloca-

tion along the route. QuA, designed for QoS-aware mid-

dleware, has a more rigorous way of defining alternative

compositions and meta-data (service plan), which provides

separation of concern and the safe reconfiguration property.

6 Conclusions and Future Work

In this paper, we have demonstrated that it is feasible

to separate domain-specific QoS mechanisms from the ap-

plication logic, even in a highly dynamic environment like

the mobile domain. QuA, with its QoS management plug-

ins, incorporates the QoS mechanisms that are traditionally

entangled with the application logic, and manages QoS at

runtime, on behalf of the application. To provide each user

with best possible perceived video quality, each new in-

stance of the streaming service is composed according to

the preferences of the user, taking current context and avail-

able resources into consideration. QuA uses QoS mapping

functions to translate the QoS dimensions specified in the

user preferences into resource requirements, and select the

application configuration that best meets the user’s require-

ments. The scenario also describes and exemplifies activit-

ies and models that the application developer must take into

consideration at design time, to ensure safe reconfiguration.

Our conclusion from the scenario is that this approach is

both feasible and advantageous.

General results are the principles for service modelling,

QoS modelling, and the recursive service plans. Our service

modelling allows application developers to design applic-

ations with alternative component compositions and para-

meter configurations. Modelling of the QoS characteristics

of the different alternatives captures the QoS expert know-

ledge about the performance of the component, where the

quality of the prediction made by QoS mapping functions is

essential for the middleware to make sound QoS-related de-

cisions. Deployable service plans contain the results from

both service and QoS modelling, and make the logical con-

nection between service types and their alternative imple-

mentations. Together, this ensures that a QoS-aware mid-

dleware, like QuA, can choose the composition and para-

meter configuration suitable for the current context and re-

source availability.

Currently, our research is addressing runtime considera-

tions, with emphasis on extending the QuA implementation

with support for re-planning and dynamic reconfiguration

of parameter configurations and component compositions.

7 Acknowledgements

The QuA base-line is designed and written by Richard

Staehli, who also helped us in understanding the importance

of service plans and modelling of the non-functional char-

acteristics. Thanks also to Prof. Frank Eliassen for mak-

ing the cooperation between Simula and University of Oslo

happen, and providing insightful comments to our work that

substantially improved our solution and this paper.

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

References

[1] S. Amundsen, K. Lund, C. Griwodz, and P. Halvorsen. Scen-

ario Description-Video Streaming in the Mobile Domain.

http://www.simula.no:8888/QuA/2/techVScenA1.pdf, 2005.

[2] Charles Perkins. IP Mobility Support for IPv4. IETF RFC

3344, August 2002.

[3] OMG. UML Profile for Modelling Quality of Service and

Fault Tolerance Characteristics and Mechanisms. OMG Ad-

opted Specification, June 2004.

[4] S. Amundsen A. Solberg, J. Ø. Aagedal, and F. Eliassen. A

Framework for QoS-Aware Service Composition. In Pro-

ceedings of 2nd ACM International Conference on Service

Oriented Computing, 2004.

[5] R. Staehli, F. Eliassen, and S. Amundsen. Designing Ad-

aptive Middleware for Reuse. In Proceeding from 3rd Inter-

national Workshop on Reflective and Adaptive Middleware,

2004.

[6] Simula Research Laboratory. QuA documentation.

http://www.simula.no:8888/QuA/55, 2004.

[7] S. Amundsen, K. Lund, F. Eliassen, and R. Staehli. QuA:

Platform-Managed QoS for Component Architectures. In

Proceedings from Norwegian Informatics Conference (NIK),

pages 55–66, November 2004.

[8] M. Zink, C. Griwodz, and R. Steinmetz. KOM Player -A

Platform for Experimental VoD Research. In Proceedings

of the 6th IEEE Symposium on Computers and Communica-

tions (ISCC’01), July 2001.

[9] M. Zink, C. Griwodz, J. Schmitt, and R. Steinmetz. Scalable

TCP-friendly Video Distribution for Heterogeneous Clients.

In Proceedings of the Multimedia Computing and Network-

ing 2003 (MMCN’03), pages 102–113, January 2003.

[10] The MPlayer project. mplayer. http://mplayerhq.hu, 2005.

[11] P. Halvorsen, T. Plagemann, and V. Gobel. Integrated Error

Management for Media-on-Demand Services. In Proceed-

ings of the 20th Annual Joint Conference of the IEEE Com-

puter and Communications Societies (INFOCOM 2001),

pages 621–630, April 2001.

[12] R. Koster, A.P. Black, J. Huang, J. Walpole, and C. Pu. In-

fopipes for composing distributed information flows. In Pro-

ceedings of the 2001 international workshop on Multimedia

middleware (M3W), pages 44–47, 2001.

[13] F. Kon, R. Campbell, and K. Nahrstedt. Using dynamic con-

figuration to manage a scalable multimedia distribution sys-

tem. 24(1):105–123, January 2001.

[14] G. Coulson, G. Blair, M. Clarke, and N. Parlavanzas. The

design of a configurable and reconfigurable middleware plat-

form. Distributed Computing Journal, 15(2):109–126, 2002.

[15] L. Capra, W. Emmerich, and C. Mascolo. CARISMA:

Context-aware reflective middleware system for mobile ap-

plications. IEEE Transactions on software engineering,

29(10):929–945, 2003.

[16] F. Kon, M. Roman, P. Liu, J. Mao, T. Yamane, L. C. Magal-

haes, and R.H. Campbell. Monitoring, Security, and Dy-

namic Configuration with the dynamicTAO Reflective ORB.

In Proceedings of the IFIP/ACM International Conference

on Distributed Systems Platforms and Open Distributed Pro-

cessing (Middleware’2000), pages 121–143, April 2000.

[17] R. Schantz, J. Loyall, M. Atighetchi, and P. Pal. Packaging

quality of service control behaviors for reuse. In Proceed-

ing of the 5th IEEE International Symposium on Object-

Oriented Real-time distributed Computing, April-May 2002.

[18] P.K. Sharma, J.P. Loyall, G.T. Heineman, R.E. Schantz,

R. Shapiro, and G. Duzan. Component-Based Dynamic QoS

Adaptations in Distributed Real-Time and Embedded Sys-

tems. In International Symposium on Distributed Objects

and Applications (DOA), October 2004.

[19] S. Mitchell, H. Naguib, G. Coulouris, and T. Kindberg. A

QoS Support Framework for Dynamically Reconfigurable

Multimedia Applications. In in L. Kutvonen, H. König and

M. Tienari (eds), Distributed Applications and Interoperable

Systems II, pages 17–30, 1999.

[20] B.D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton,

J. Flinn, and K.R. Walker. Agile Application-Aware Adapt-

ation for Mobility. In Proceedings of the 16th ACM Sym-

posium on Operating System Principles, pages 276–287, Oc-

tober 1997.

[21] E. Brewer, R. Katz, E. Amir, H. Balakrishnan, Y. Chawathe,

A. Fox, S. Gribble, T. Hodes, G. Nguyen, V. Padmanabhan,

M. Stemm, S. Seshan, and T. Henderson. A Network Ar-

chitecture for Heterogeneous Mobile Computing. IEEE Per-

sonal Communications Magazine, 5(5):8–24, October 1998.

[22] V. Bharghavan and V. Gupta. A Framework for Application

Adaptation in Mobile Computing Environments. In Proceed-

ings of the 21st International Computer Software and Applic-

ations Conference (COMPSAC’97), pages 573–579, August

1997.

[23] K. Nahrstedt X. Gu. Distributed Multimedia Service Com-

position with Statistical QoS Assurance. IEEE Transactions

on Multimedia, to be published 2005.

Proceedings of the 2005 31st EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA’05)
0-7695-2431-1/05 $20.00 © 2005 IEEE

