
Tiling of Panorama Video for Interactive Virtual
Cameras: Overheads and Potential Bandwidth

Requirement Reduction

Vamsidhar Reddy Gaddam∗§, Hoang Bao Ngo∗, Ragnar Langseth†, Carsten Griwodz∗,
Dag Johansen‡ and Pål Halvorsen∗

∗Simula Research Laboratory & University of Oslo, Norway
†ForzaSys AS, Norway

‡UiT The Arctic University of Norway, Norway
§vamsidhg@ifi.uio.no

Abstract—Delivering high resolution, high bitrate panorama
video to a large number of users introduces huge scaling
challenges. To reduce the resource requirement, researchers have
earlier proposed tiling in order to deliver different qualities in
different spatial parts of the video. In our work, providing an
interactive moving virtual camera to each user, tiling may be used
to reduce the quality depending on the position of the virtual
view. This raises new challenges compared to existing tiling
approaches as the need for high quality tiles dynamically change.
In this paper, we describe a tiling approach of panorama video
for interactive virtual cameras where we provide initial results
showing the introduced overheads and the potential reduction in
bandwidth requirement.

I. INTRODUCTION

High-resolution, wide field-of-view video has lately re-
ceived an increased attention in various scenarios like surveil-
lance, sports and health care. For instance, in sports, many
game analysis systems provide camera arrays where individual
camera images are stitched together to cover the entire field.
From the panorama video, one can further generate virtual
cameras supporting personalized views which are zoomed,
panned and tilted. One example is given in figure 1 where a
virtual camera allows an individual user to interactively control
an own personalized view, i.e., extracting pixels from parts of
the stitched panorama video such that the area extracted is not
a simple crop from the high-resolution panorama.

In this context, we have earlier presented the Bagadus

Fig. 1: The re-projected virtual view. The panorama video
with the marked region of interest is shown together with the
generated virtual camera.

system [1] where we generate panorama videos of a soccer
stadium in real-time from which individual users can be their
own cameraman and interactively control their own virtual
view [2]. Furthermore, in our earlier version [2], the system
streamed the cylindrical panorama video to the remote clients
which extracted a perspective-corrected camera view on the
client side. However, popular soccer games may attract large
numbers of concurrent users, e.g., during the 2014 FIFA World
Cup, their web player had about 24 million unique users [3]. As
the bandwidth requirement for streaming the entire, full-quality
panorama is rather high, we therefore have a large challenge
in providing real-time virtual camera services in such scales.

We are soon demonstrating [4] an early prototype as a
proof-of-concept. In this paper, we have extended this work,
and we analyze the overheads and potentials of such a solution.
In this paper, we present the costs of tiling approaches and the
potential bandwidth savings exploiting multi-quality encoding.
The contributions in this paper are two-fold. Our key novelty
theoretically lies in changing constant rate factor (CRF) instead
of the size of the video tiles in order to change the quality.
To realize this idea practically, we present the architecture of
a real system that can support tiling. Furthermore we evaluate
trade-offs with respect to added overheads, like increased pro-
cessing and storage space, and reduced bandwidth requirement.
Depending on the zoom and panning actions of the user, the
results indicate that there is a large potential for reducing the
transfer cost by trading quality in the areas of the panorama
that are most likely unused.

The rest of this paper is organized as follows: Section II
describes the costs of scaling virtual views to several users. We
briefly present our novelty in contrast to the state-of-the-art in
section III. We then provide a brief description and evaluation
of our system in sections IV and V, respectively. Then, we
conclude our paper and present the prospective direction in
section VI.

II. THE COSTS OF VIRTUAL VIEWS

Our system generates a cylindrical panorama video in real-
time from which individual virtual views can be generated and
interactively controlled with full freedom to pan, tilt and zoom
into the panorama video [2]. When it comes to delivering video



to the client, we have explored two possibilities with respect
to creating virtual views.

Initially, our system transfers the entire panoramic video
and generates the virtual views on the client [2]. This gives
cheap processing requirements on the server-side at the cost
of very high bandwidth requirements on the client-side. In our
example system installed at Alfheim stadium, the average size
of each 1-second segment of the the 4096 × 1680 panorama
video (figure 1) is approximately 1.25 MB1. This means that
the bandwidth requirement for each client becomes about 10
Mbps merely for the transfer of the panorama video, and
in future systems, a much higher resolution panorama may
be desirable to support better digital zoom. Then, after the
panorama is successfully transferred, the client needs to pro-
cess it so that a virtual view can be extracted. Using commodity
graphics hardware, the virtual view can be extracted in real-
time regardless of the size of the view [2]. Thus, the client
devices easily manage the processing load, but the bandwidth
requirement is quite high as mentioned above.

An alternative approach is to generate the virtual views on
the server and only stream the generated video to the client,
i.e., as a traditional streaming case. Thus, in this approach, the
re-projection is performed on the server side. This approach
requires nothing more than a browser that is capable to
play a video on the client device, i.e., it severely reduces
the computational load and the bandwidth requirements on
the clients. However, the processing cost on the server-side
becomes huge as additional encoding must be performed per
stream, and it quickly becomes a large bottleneck. We have
made a few experiments using the second generation hardware
from Nvidia. Our experiments show that the GeForce GTX 750
Ti GPU can encode 16 full HD video streams at 30 frames per
seconds [5]. We also found that this was the limiting factor in
the number of unique views we could create in real-time. This
implies that if we want to provide a service to say 100,000
concurrent users, we would require a cluster totaling to about
6,250 GPU devices. Such an initial installation costs, at the
time of writing, about 937,500 USD merely for the GPUs.

Owing to the challenges mentioned above, no straightfor-
ward solution is going to work well for scaling our system
to large numbers of concurrent users. However, the HTTP
streaming solutions have proved to scale well from a sending-
side point of view using for example CDNs. We have therefore
adopted this approach, i.e., using a client side generated virtual
view where the panorama is tiled to save bandwidths in areas
not used for the virtual view extraction.

III. RELATED WORK

Based on the decision in the previous section, to generate
virtual views on the client side, the challenge is to reduce the
cost of streaming a complete panorama video to each user.
In this respect, researchers in the multimedia community have
for some time analyzed region-of-interest streaming solutions.
For example, tiling is discussed in [6], [7], [8], [9], [10].
Furthermore, [11], [12], [13], [14], [15] extensively address
the problem of automatically generating personalized content,
and [16] discusses plain cropping.

1This size depends on the lighting and weather conditions.

The works related to tiling can be broadly classified into
two scenarios, the server side generation [6], [8], [9], [10]
and the client side generation [17], [7]. The former emphasize
on reducing the through-put on the server side because their
processing happens on server and the video is merely trans-
ferred to the client for display. The latter works with a client
which decodes and assembles tiles. However, the idea in both
the scenarios is to downsample the panorama into multiple
lower resolutions and transfer only the additional info when
it is required. This approach has traditionally been used to
reduce the number of samples in a signal. We exploit the fact
that the panoramic camera systems in scenarios like sports
and surveillance are most likely to be static. In the case of a
static scene with some local movement in small regions H.264
CRF provides a more efficient compression than downscaling
the video. Figure 2 demonstrates2 the key difference from the
existing work in tiling and the strength in our assumption. By
using tiles encoded using different CRF, we can allow for better
quality yet compressing to the same extent as the downsampled
version.

(a) CRF varied - 158 kbps (b) Down scaled - 157 kbps

Fig. 2: Two output frames are presented to show the key
difference between our method and other common approaches.
The loss in sharpness due to down-scaling can be observed.

Similar to many other approaches, our solution is based
on dividing the panorama into tiles as shown in figure 3, each
encoded as an adaptive HTTP stream using for example HLS.
A client retrieves segments in high quality for segments being
used for the virtual camera, and the rest of the tiles are retrieved
in lower quality depending on the strategy used. In contrast
to, for example, [18], [9] retrieving only tiles in the region of
interest, we need to retrieve all tiles since the virtual camera
moves and at least low quality data needs to be available if
the user zooms out or moves quickly.

Another difference is that the tiles fetched do not follow a
strict logic apart from being in the neighborhood of the current
tiles. In [10], for instance, all the tiles are being fetched, but
the reduction in quality is reflected by salience. Moreover, the
non-linear nature of a panorama-virtual view transformation
introduces further complexities in the approach. For example,
in figure 4, it can be seen that the collection of required tiles do
not form any simple shape like a rectangle or a square, e.g., as
used in [16]. This poses different challenges than the ones that
are being tackled in for example [7] where the panning and
tilting correspond to strictly navigating the panorama along
the horizontal and vertical directions respectively. Lack of this

2Due to possible poor quality of printers, it is recommended to analyze the
images on screen.



processing	  
machine	  

capture	  	  
machines	  

cameras	  
created	  panorama	  

generated	  1les	  

netwo
rk	  

retrieved	  1les	  
generated	  
	  virtual	  view	  

panorama	  and	  1le	  genera1on	   virtual	  viewer	  

Fig. 3: The generated cylindrical panorama video is tiled and encoded in multiple qualities on the server side. The client side
uses the current position of the virtual camera to retrieve full quality tiles for the virtual view and low quality (red) tiles outside
the field of view of the virtual camera.

adds complexity on the tile retrieval strategy. In addition to tak-
ing into account available network bandwidth and client device
resources (as usually done for one stream), the quality adaption
strategy must also coordinate the tile qualities according to the
dynamic position of the virtual camera.

Cutting Edge 2014 

Bandwidth challenge: tiling approach 

57 kbps 

189 kbps 

684 kbps 

Fig. 4: Dividing the panorama video into 8x8 tiles, and
encoding each tile in different quality

IV. SYSTEM OVERVIEW

Figure 3 shows the high level architecture of our system.
The fundamental requirement for a smooth interactive playout
is that the processing on the server and the client side must be
performed within a strict real-time deadline.

A. Server-side

As one can see in figure 3, the creation of tiles and
encoding them in multiple qualities are done on the server
side. For the encoding, we use libav and x264. The qualities
are determined by modifying the CRF from the highest to the
lowest quality. Unlike constant quantization parameter (CQP),
where it compresses every frame in a video by the same
amount, the compression rate of each frame in CRF is decided
by motion. It takes into account how the human eye perceives
information of still and moving objects. Thus, we get better
quality even with less bitrate in the encoded videos.

B. Client-side

One of the key contributions lie in the system implementa-
tion, where we present a working prototype for a virtual viewer

T1 Tn-1Tn-2Tn-3T4T3T2 Tn

GPU

T1 Tn-1Tn-2Tn-3T4T3T2 Tn

Network

Feedback
Module

virtual
view

Fig. 5: The architecture on the client side to support tiling.
The bottom array of tiles is the one that is being used to
display the current view, the top array contains the tiles that are
being fetched in a quality depending on the current viewing
parameters.

using tiling. Figure 5 shows the architecture of our system. A
tile manager fetches the appropriate quality tile at a position on
the panorama, then it decodes the tile-segment and creates the
corresponding part of the panorama frame. This manager runs
concurrently in multiple threads, because there is no overlap
between tiles. Once an entire panorama frame is decoded, it
is transmitted to the GPU where the virtual view extraction
takes place as mentioned in [2]. The view information is passed
into the Feedback Module where quality selection is performed
based on the currently viewed region on the panorama.

We implemented a simple feedback scenario where the
next tile is fetched in either high or low quality depending
on the current view. A greedy binary scheme where the high
quality (bh) is fetched even if one pixel from the tile is in the
current virtual view and low quality (bl) otherwise. Due to the
pipelined nature of the client and the finite size of each video
segment, there is a latency of one segment size in updating the
tile. However, this can be taken care of by employing some



sort of prediction strategies [17].

V. EVALUATION

For the sake of evaluation, we created several paths in dif-
ferent classes. The paths belong to different classes depending
on their zoom levels. The reason for doing this is to evaluate
the acceptance of different qualities and potential bandwidth at
different zooms. We selected four zoom scenarios and recorded
multiple paths in each of these scenarios mimicking a user
that is trying to follow the game. The scenarios are zoomed-
in (ZI), zoomed-out (ZO), medium-zoomed (ZM) and random
zoom (ZR). The only difference is that in the first three
scenarios the user has limited/no control over the zoom factor,
and in the last scenario the user has full freedom to change
the zoom factor. Apart from the zoom factor, the user is free
to pan and tilt as she/he wishes in all the scenarios. We divide
the panorama into 8 × 8 tiles and each tile is encoded into 5
different qualities ranging from highest to lowest [0 to 4]. We
present results for selecting [bh = 0, bl = 4] and [bh = 2,
bl = 3] in this paper3. An example of the output can be seen
in figure 6. It can be observed that even though some parts
of the panorama have extremely poor quality, the virtual view
does not show the distortion.

Fig. 6: Reconstructed panorama from multi-quality tiles and
the corresponding virtual view. The poor quality in some areas
of panorama does not affect the quality of the virtual view.

For performance measurements, we used two machines,
both equipped with an Intel Core i7-4770, 8GB RAM and
SSD harddisk, one as client and the other as server. In general
one can expect a machine of higher capabilities on the server
side and of lower capabilities on the client side.

A. Reduced bandwidth

It can be observed in figure 7 that there is a significant
reduction in bandwidth required to perform the virtual view
operation by using tiling. The reduction in bandwidth is of
course dependent on the number of tiles that are required in
high quality, i.e., the plot shows that most bandwidth is saved

3Videos: http://home.ifi.uio.no/vamsidhg/pv2015/

Fig. 7: The bandwidth during a 30 second virtual-view op-
eration. The zoom-scenarios are zoomed-in (ZI), zoomed-out
(ZO), medium-zoomed (ZM) and random zoom (ZR). 04
implies highest-lowest quality and 23 implies medium-low
quality. As a reference, the plot also includes the results for
the full panorama. The legend is equal for all figures.

when the user is zoomed in compared to the case of zoomed
out. However, it must be noted that it is a simple binary scheme
of selecting high(bh)/low(bl) quality depending only on the
current viewing region. The bandwidth also varies depending
on the values chosen for bh and bl.

B. Increased storage

The idea of delivering tiles at multiple qualities certainly
comes with a cost of storage on server side. However, with the
current costs of storage the increase is not that significant.The
total size of full quality panorama video for 5 minutes is
362.5 MB, and the sum total for the tiles is 983.1 MB (398.2
MB, 281.9 MB, 145.2 MB, 92.0 MB and 58.4 MB for each
individual quality), i.e., tiling gives approximately a 3× storage
requirement storing all the tiles in multiple qualities compared
to the single full quality panorama.

C. Server-side processing

Fig. 8: The time to partition and encode the tiles of the full
panorama into 5 different qualities using multiple threads. The
encoding of a full panorama video in full quality is included
as a reference.



Our tiling component is still a prototype, and we have
only tested a few different approaches on how to encode
tiles efficiently. The first approach was to encode each tile
sequentially, i.e., each tile is encoded into different qualities
completely (figure 4) before we start with the next tile. The
libav tools will optimize the encoding by using several threads
on each tile. Thus, we can use the CPU efficiently. The
second approach is parallelization where we encode several
tiles concurrently.

In figure 8, we can observe a huge difference between
sequential encoding of tiles and encoding a full panorama.
However, it must be noted that the full panorama encoding
happens only for one quality but the other measurements in-
clude the time taken for all 5 qualities. Hence, the comparision
is between encoding 1 video at 4096×1680 to encoding 8×8
tiles, each in 5 different qualities - in total 320 video streams at
512×210 resolution. Even when libav is free to spawn multiple
threads to encode for each tile, we would have to create
several new threads to encode a tile and terminate them before
continuing to the next, thus resulting in a huge overhead. We
have also performed a second test using completely sequential
encoding, i.e., one thread without libav optimization. As can
be seen in figure 8, there is a noticeable difference when using
optimization from libav.

Instead of letting libav spawn threads for every tile, we
created a thread pool of encoding workers and let each thread
in that pool run concurrently on different tiles. we experi-
mented with different number of threads in the thread pool. Our
experimental results (figure 8) display a convex curve between
the 1 thread and 64 threads performance with the 4 threads
as the best case. In our case with a 4-core CPU, this result
is expected since encoding is CPU bound. When using only
1-3 threads, we are not utilizing the 4-core CPU efficiently.
Using more than 4 threads gives a lot of context-switching.
Both scenarios increase the processing time compared to the
4-thread approach.

Obviously, the performance between multiple threads dif-
fers based on the CPU used for encoding. With the hardware
we used for these experiments, we have not succeeded to fulfill
the real-time requirement of encoding the tiles under 1 second.
However the processing requirement has upper bounds and
does not depend on the number of users. Hence, this will not
pose further scaling issues.

D. Client-side processing

As the complexity in figure 5 suggests and figure 9 reflects,
there is a significant overhead in decoding the tiles. The tiling
approach requires the tiles to be decoded across the entire
panorama. This increases complexity of the viewer from the
non-tiling case of decoding 1 video to decoding 64 videos
simultaneously and still keeping the framerate. However the
total resolution of the panorama frame that is being decoded
does not change, it is just divided among 64 parts. We again
used libav to decode the videos in both cases. One serious
limitation of libav is that there is a global context that serializes
several calls to the library at the process level. Another
overhead in the tiling approach comes from the feedback
module. On average, about 15 ms per frame are spent on the
feedback module to decide the upcoming tile qualities.

Fig. 9: Time to decode one frame using multiple threads in
tiling case in comparison with the full panorama. The real-
time 30fps deadline is marked as dashed line.

E. Quality

(a) Full Pano. Data: 10425 kbps (b) Full Pano. Data: 10425 kbps

(c) binary - bh = 0 and bl = 4
SSIM: 0.9807 Data: 2912 kbps

(d) binary - bh = 0 and bl = 4
SSIM: 0.9088 Data: 6575 kbps

(e) binary - bh = 2 and bl = 3
SSIM: 0.9574 Data: 2566 kbps

(f) binary - bh = 2 and bl = 3
SSIM: 0.9433 Data: 3154 kbps

Fig. 10: Different qualities of output virtual view.

One basic requirement of tiling should be that quality of
experience should not be altered heavily even with reduction
in bandwidth. However, we do not perform any subjective
studies for this paper. We intend to perform user studies to
evaluate different tiling approaches in the future. Figure 10
presents objective quality results from using two approaches,
[bh = 0, bl = 4] and [bh = 2, bl = 3] for tiling. The
sizes of data downloaded during the operation of 30 seconds
for each approach are also presented in the figure. It can be
seen that the quality is different depending on the zoom factor
and the approach selected. The first column presents a case
where most tiles in the view are from bh quality input and



the second column presents one of the worst case scenarios
where about 30% of the pixels in the view are from bl quality
tiles. The SSIM values from figure 10 suggest that bh requires
to be highest quality when the view is a really zoomed-in
view, but even an average quality bh tile can work for a
zoomed-out view. On the basis of these results we argue that a
more inclusive strategy can be designed to maximize viewing
experience and reduce the required bandwidth. In general, the
choice of CRF variation across the tiles provides superior
image quality at the same bit-rate as can be seen in figure 2.

F. Segment duration

The segment duration plays an important role in deciding
the size of each file and hence the bandwidth. In the current
tiling system, we chose the segment duration to be one second
each, but in the non-tiled version we use 3 second segments.
In general, the segmentation approach implies that each seg-
ment contains at least one I-frame each. Thus, increasing
the segment duration to 3 seconds reduces the size of files
significantly, but the tradeoff is that this increases the overall
quality adaption latency in the system to at least 3 seconds.

VI. CONCLUSIONS

We have presented a system for real-time interactive zoom-
ing and panning of a tiled panorama video enabling every user
to be her or his own cameraman [2]. To reduce the per-user
bandwidth requirement, the idea is that the quality changes in
different parts of the panorama video when moving the virtual
camera, i.e., retrieving good quality for the used tiles and lower
quality in the rest of the video. Furthermore, we have evaluated
the costs of the tiling approach and the potential bandwidth
savings exploiting multi-quality encoding. Depending on the
zoom and panning actions of the user, the results indicate
that there is a large potential for reducing the transfer cost
by trading quality in areas of the panorama not used for the
extraction of the virtual view.

There is still unfinished work as the algorithm deciding
the tile quality is very basic, but we are looking at better
approaches, e.g., having a degrading quality depending on
the view focus and the distance to the view, predicting the
movement of the virtual camera (e.g., following the ball). We
are also investigating approaches to distribute the server-side
processing as it is far from the real-time requirement. However,
we have earlier demonstrated that the GeForce GTX 750 Ti
GPU can encode 16 full HD video streams at 30 frames per
seconds [5], but our tiling system must be ported for new
experiments.

REFERENCES

[1] P. Halvorsen, S. Sægrov, A. Mortensen, D. K. Kristensen, A. Eichhorn,
M. Stenhaug, S. Dahl, H. K. Stensland, V. R. Gaddam, C. Griwodz, and
D. Johansen, “Bagadus: An integrated system for arena sports analytics
– a soccer case study,” in Proc. of ACM MMSys, Mar. 2013, pp. 48–59.

[2] V. R. Gaddam, R. Langseth, S. Ljødal, P. Gurdjos, V. Charvillat,
C. Griwodz, and P. Halvorsen, “Interactive zoom and panning from live
panoramic video,” in Proc. of ACM NOSSDAV, 2014, pp. 19:19–19:24.
[Online]. Available: http://doi.acm.org/10.1145/2578260.2578264

[3] Fédération Internationale de Football Association, “2014 FIFA World
Cup breaks online streaming records,” http://www.fifa.com/aboutfifa/-
organisation/news/newsid=2401405/, last accessed: 2014-12-19.

[4] V. R. Gaddam, R. Langseth, H. K. Stensland, C. Griwodz, D. Johansen,
and P. Halvorsen, “Scaling virtual camera services to a large number
of users[accepted],” in Proc. of ACM MMSys, 2015.

[5] M. A. Wilhelmsen, H. K. Stensland, V. R. Gaddam, P. Halvorsen,
and C. Griwodz, “Performance and Application of the NVIDIA
NVENC H.264 Encoder,” http://on-demand.gputechconf.com/-
gtc/2014/poster/pdf/P4188 real-time panorama video NVENC.pdf,
last accessed: 2014-12-19.

[6] R. Guntur and W. T. Ooi, “On tile assignment for region-of-interest
video streaming in a wireless LAN,” in Proc. of NOSSDAV,
2012, p. 59. [Online]. Available: http://dl.acm.org/citation.cfm?doid=
2229087.2229105

[7] A. Mavlankar and B. Girod, “Video streaming with interactive
pan/tilt/zoom,” in High-Quality Visual Experience, ser. Signals and
Communication Technology, M. Mrak, M. Grgic, and M. Kunt,
Eds., 2010, pp. 431–455. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-12802-8 19

[8] K. Q. M. Ngo, R. Guntur, and W. T. Ooi, “Adaptive encoding
of zoomable video streams based on user access pattern,” in Proc.
of MMSys, 2011, p. 211. [Online]. Available: http://portal.acm.org/
citation.cfm?doid=1943552.1943581

[9] A. Shafiei, Q. M. K. Ngo, R. Guntur, M. K. Saini, C. Pang, and
W. T. Ooi, “Jiku live,” in Proc. of ACM MM, 2012, p. 1265. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2393347.2396434

[10] H. Wang, V.-T. Nguyen, W. T. Ooi, and M. C. Chan, “Mixing
tile resolutions in tiled video: A perceptual quality assessment,”
in Proc. of NOSSDAV, 2013, pp. 25:25–25:30. [Online]. Available:
http://doi.acm.org/10.1145/2578260.2578267

[11] F. Chen and C. De Vleeschouwer, “Personalized production of
basketball videos from multi-sensored data under limited display
resolution,” Comput. Vis. Image Underst., vol. 114, no. 6, pp. 667–680,
Jun. 2010. [Online]. Available: http://dx.doi.org/10.1016/j.cviu.2010.
01.005

[12] N. Babaguchi, Y. Kawai, and T. Kitahashi, “Generation of personalized
abstract of sports video,” in Proc. of ICME, Aug 2001, pp. 619–622.

[13] R. Kaiser, M. Thaler, A. Kriechbaum, H. Fassold, W. Bailer, and
J. Rosner, “Real-time person tracking in high-resolution panoramic
video for automated broadcast production,” in Proc. of CVMP, 2011,
pp. 21–29.

[14] X. Sun, J. Foote, D. Kimber, and B. Manjunath, “Region of interest
extraction and virtual camera control based on panoramic video cap-
turing,” IEEE Transactions on Multimedia, vol. 7, no. 5, pp. 981–990,
2005.

[15] R. Xu, J. Jin, and J. Allen, “Framework for script based virtual directing
and multimedia authoring in live video streaming,” in Proc of MMM,
Jan 2005, pp. 427–432.

[16] R. Heck, M. Wallick, and M. Gleicher, “Virtual videography,”
ACM Transactions on Multimedia Computing, Communications, and
Applications, vol. 3, no. 1, pp. 4–es, Feb. 2007. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1198302.1198306

[17] A. Mavlankar and B. Girod, “Pre-fetching based on video analysis
for interactive region-of-interest streaming of soccer sequences,” in
Proc. of ICIP, Nov. 2009, pp. 3061–3064. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5414201

[18] M. Inoue, H. Kimata, K. Fukazawa, and N. Matsuura, “Interactive
panoramic video streaming system over restricted bandwidth network,”
in Proc. of ACM MM, 2010, p. 1191. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=1873951.1874184


