
Multicast Tree Reconfiguration in Distributed
Interactive Applications

Carsten Griwodz1,2, Knut-Helge Vik1, Pål Halvorsen1,2

1IFI, University of Oslo, Norway 2Simula Research Laboratory, Norway
Email: Email: {griff, knuthelv, paalh}@ifi.uio.no

Abstract— Communication in highly interactive distributed
applications, such as massive multiplayer online games, can often
be performed efficiently using multicast, i.e., application level
multicast. However, in applications with a very dynamic group
management, the multicast tree will have frequent changes,and
in applications that have stringent latency requirement, this
operation needs to be fast. Current multicast approaches either
have no notion of reconfiguration, they do not care about tree
reconstruction latency or wrongly assume that this is a fast,
atomic operation. In this paper, we have focused on dynamic
reconfiguration and have tested different ways for a node to join
a tree. Our results show that this is an important issue for the
class of highly interactive distributed applications.

I. I NTRODUCTION

Large improvements in computer technology have enabled
highly interactive distributed applications such as distrib-
uted virtual environments, massive multiplayer online games
(MMOGs) and computer supported cooperative work. These
applications often include several types of media ranging
from text to continuous media and may have very stringent
requirements with respect to the quality of the client data
playout.

In the MiSMoSS project, we aim for better system support
for such applications, i.e., trying to make more efficient use of
the available resources by offering mechanisms like prediction,
area-of-interest (AoI) management, group communication,ag-
gregation, replication, etc. In particular, we look at MMOGs
due to the mix of different media, the stringent latency
requirements, the dynamic client groups and the fact that it
has become a popular, fast growing, multi-million industry
with a very high user mass. Today, MMOGs are increasing
in size and complexity, supporting hundreds or thousands of
concurrent players [1], and they typically include a mixture of
game situations from role-playing games, first person shooter
games and real-time strategy games. Players in the game move
around and interact with other players, seemingly as if they
were located next to each other. Frequently, many players
interact with each other and the same object in the game world,
these are then said to share an AoI or to be within each others
AoI. If the game is large enough, the majority of players will
not share an AoIs.

Today, most MMOGs apply a central server approach for
collecting and processing game events generated by players,
and point-to-point communication for the distribution of game
state updates. They have few, if any, mechanisms to optimize
event distribution. This approach is applicable because games

are designed with extremely low bandwidth for players’ access
networks in mind. Even these thin individual data streams
contribute to game server scalability problems if the number
of players that share an AoI is high, forcing game designers
to prevent game situations that can lead to such clustering.
It would therefore be desirable to distribute the game events
efficiently, such that 1) the perceived game quality is abovea
satisfactory threshold regardless of system capacity and geo-
graphical distance and 2) the available resources are utilized
efficiently. By grouping players according to their AoI, group
communication may be an efficient means to achieve this.
Lacking working network layer multicast in the Internet, we
consider application layer multicast (ALM) and investigate
group communication algorithms appropriate for MMOGs to
enable efficient event distribution.

In this paper, we focus on the cost of multicast tree
reconfiguration. There is a lot of existing work on multicast
group maintenance. Both online (dynamic trees) and offline
(static trees) algorithms exist, but only online algorithms are
applicable, since players’ AoI changes frequently. In fact, AoIs
in a modern game can be entirely player-specific and have an
adaptive size (as opposed to, e.g., room-sized AoIs), which
implies that the membership of a group interacting with a
particular object can be extremely volatile. Current online
mechanisms do not consider tree reconstruction latency or
wrongly assume that this is a fast atomic operation. We have
therefore tested several ways of reconfiguring (joining) a tree
and show that this is an important issue for the class of highly
interactive distributed applications. The approaches tested do
not yet address the problem of non-trivial leave operations
where three or more neighbors are involved. We share this
problem with much of the existing work, and recognize from
the presented results that this is problematic.

II. A PPLICATION LEVEL MULTICAST

An MMOG may have players located all around the world.
Thus, choosing a suitable group communication style is
important, both in terms of improving the service to the
users and optimizing the resource utilization of the system.
Multicast provides efficient means for group communication
where the groups are typically organized in a tree structure.
One implementation of multicast is IP multicast, but it is not
fully deployed in the Internet and lacks features like address
filtering and group membership control. The alternative is
ALM. Approaches add group membership control, and make

it easy to support high level functionalities. Compared to IP
multicast, ALM is necessarily less efficient in terms of latency
but is easier to deploy.

In highly interactive distributed applications, especially
MMOGs, each user frequently both sends and receives data
from other users in the same group. In this scenario, we have
three important, but contradictory, challenges:

1) The maximum delay between any pair of nodes must
not exceed a given threshold.

2) The total overall cost of transmitting data in the multicast
tree should be minimized.

3) Multicast tree reconfiguration must be supported online,
and this operation must be fast.

In literature, a lot of different algorithms have been proposed,
but current multicast approaches have insufficient support
for fast reconfiguration which is required in an MMOG
scenario due to for example players joining and leaving a
group (entering another room), links becoming overloaded
(too many players sharing a link), nodes going down (a
player quits), reaching maximum tree node-to-node latency
(increased latency on a link due to congestion), etc. As a first
step towards an appropriate multicast algorithm in the MMOG
scenario, we therefore look at the cost of online multicast tree
reconfiguration. We compare approaches for performing join
operations, and are also evaluating tree cost if no additional
reconfiguration is performed.

III. R ELATED WORK

The construction of low-cost, delay-bounded multicast trees
has been investigated several times before, often as Steiner
tree heuristics. However, to the best of our knowledge, ex-
isting mechanisms do not meet all of the required properties
from section II. Recently, some delay bounded, many-to-many
multicast algorithms are proposed [2], [3], but these (as many
one-to-many approaches) assume scenarios where all group
members start the session at the same time.

Online multicast algorithms support dynamic tree manipu-
lations [4]–[9]. Typical operations include join and leave, and
some allow online rearrangement of the multicast tree. A join
operation is typically performed using the shortest path [10],
[11] or the delay constrained minimum cost path [12]–[14].
This is cheaper than tearing down the tree and re-building it
from scratch, but it will probably give a larger cost increase of
the tree. A remove operation deletes a node from the multicast
tree. A leaf node is trivially removed. Deleting a node with
a degree of 2 results in two subtrees that for example are
connected using the least cost path [15] or least cost delay
bound path [13]. If the node has a larger degree (≥ 3), the
node is often kept in the tree for routing purposes, an approach
that we follow as well. Additionally, to reduce the cost of
the tree, some algorithms allow periodic tree rearrangement.
The cost of the tree may be periodically calculated in the
background, and a complete rearrangement operation may be
triggered based on some threshold value. It has been proposed
to divide the tree into regions where the quality of the region

is associated with the number of changes that have been made
without re-optimizing the region [10], [12].

Existing approaches assume that reconfiguration operations
are atomic, i.e., that new join and remove operations do
not occur before previous rearrangement has been completed.
MMOGs do not allow such assumptions. It is critical that tree
reconfiguration is fast, in particular node join operationsas
new nodes should receive the data on time. It is also vital
that leave operations keep the multicast tree intact for all
remaining nodes. Rearranging the tree while the data is flowing
may cause members to loose data if the operation is not
handled appropriately. Existing interactive applications such
as ACTIVE [16] perform join operations more quickly, but
the performance of the operation has not been given particular
consideration, either.

IV. SIMULATION AND RESULTS

To understand the time that is consumed by different
approaches for quickly joining a multicast group, and the
worst-case delays in the resulting overlay networks, we use
simulation. In our simulation, we distinguish nodes that rep-
resent Internet routers (the backbone network) and nodes that
represent computers participating the distributed game (clients
and servers).

We use the topology generator BRITE [17] to create back-
bone networks as graphs with 1000 nodes. The link delay
between neighboring nodes is uniformly distributed between
2 ms and 50 ms. The servers and clients are placed in the
network by attaching them randomly as leaf nodes to the
backbone network. One to three leaf nodes are connected to
each of the backbone nodes, and one of them is manually
selected as the game server. This is meant to model that the
game is deployed independently from any network provider.
We don’t assume support for multicast either. Since we for
now are only concerned with group maintenance and not data
exchange, we ignore bandwidth in this simulation. To compare
topological effects, we have run all simulations with the back-
bones nodes arranged in both flat and hierarchical topologies.
The hierarchical topologies organize them 10 networks of 100
nodes, respectively.

A. Group membership

Group membership in our simulations is not modeled after
the behavior of any actual applications, where nodes are
usually active members of a group for a longer while, and
where they are members of several groups at the same time.
Rather than that, our simulated clients remain members of
a group within the game only for a very short time, and
change to another group afterwards. This time is short with
respect to the maximum end-to-end delay in our topologies,
which is approximately 800 ms, a value that is taken from
real-world MMOG traces. We do this to investigate how well
join algorithms perform when group membership is frequently
outdated.

The central server is not member of any group. It provides
a lookup service that allows clients entering a group to locate

6. CONNECT
(first)

S

nL

4.PING
5.PONG

1.ENTER_
 REQUEST

2.JOIN

3.INVITE

(a) connect first with invitation

6. CONNECT
(best)

S

nL

1.ENTER_
 REQUEST

4.PING
5.PONG

2.JOIN

3.INVITE

(b) connect best with invitation

5.CONNECT
(first)

S

nL

1.ENTER_
 REQUEST

3.PING
4.PONG

(c) connect first without invitation

3.CONNECT
(closet address)

S

nL

1.ENTER_
 REQUEST

(d) connect to closest address

Fig. 1. Protocols variations

group members. Every group has a leader, which is the node
that has the smallest maximum delay to all other group
members. Whenever a group leader determines that one of its
neighbors has a smaller maximum delay, it hands over group
leadership. The new leader informs the central server of the
change.

To investigate the performance of the algorithms both in
equally sized and heavily unequally sized groups, we create
as many empty groups as the simulation has client nodes. To
achieve equal group sizes, we let nodes perform a random
walk between nodes, where those are arranged in a square.
To achieve unequally sized groups, we assign groups Zipf-
distributed popularities.

B. Protocol variations

Figure 1 shows the approaches for joining groups that we
have investigated in this work. The letter S marks the server,
L the group leader, and n the client that tries to newly join
a group. In all cases, a node that joins a group contacts a
server first. However, this membership and leadership inform-
ation will be outdated frequently because average membership
duration is short with respect to the end-to-end delay in the
system.

In the scenarioconnect first with invitation(figure 1(a)),
the server is notifying the group leader of the intention to
join, which will then send on invitation to the new node that
includes the addresses of all group members. The new node
contacts all of those nodes (PING). As soon as it receives an
answer (PONG) from one of the nodes, it connects itself to the
overlay network formed by the group members at that node.
We expect that this approach would create deep graphs with
a high worst-case delay inside groups but fast join operations.

The scenarioconnect best with invitation(figure 1(b)) is
nearly the same, but the joining node waits for answers from
all contacts nodes until it chooses to connect to the node that
has the lowest worst-case latency to other group members. We
expect that this approach would create wide graphs with slow
join operations but a low worst-case delay inside groups.

The scenarioconnect first without invitation(figure 1(c))
resembles the first scenario, but the server is sending group
membership information to the joining node, instead of deleg-
ating that operation to the group leader. While this avoids the
latency that is added by contacting the group leader first, the

group membership information at the server is usually less up-
to-date than the group leaders, which may make it necessary
to retry the join operation more frequently.

The scenarioconnect to closest address(figure 1(d)) is the
simplest one. It is similar to the previous approach, but the
joining node uses the network address to estimate physical
distance, and connects to the node with the most similar one.
We expect very fast join operations but a rather high worst-
case delay inside groups from this approach.

No node in any of these approaches collects enough topolo-
gical information anywhere to be able to compute an optimal
tree for the group. In fact, nodes know only their neighbors
and the worst case delays achieved through these neighbors
- all other information becomes outdated too quickly because
membership duration is frequently shorter than the maximum
delay between pairs of group members.

C. Evaluation

We have compared the four variations of our protocol by
simulation. To evaluate them, we usejoin latencyand thetree
costas performance metrics. Join latency is an issue according
to challenge 3 in section II, i.e., how fast a player can resume
the game-play after the AoI has been changed such that a
group membership change is required. Tree cost addresses
challenge 2, i.e., the total cost in terms of the sum of all edge
delays indicating the overall system performance. The figures
shown here use networks with 1000 nodes. Other network
sizes show the same trends, but more sparsely populated
networks do not show particular changes for the most popular
groups.

The time that a node stays in a group is only partly relevant
for efficiency of the multicast tree that is created according to
our algorithm. In general, all of our approaches will lead tothe
same multicast tree on all time scales. However, in case of long
end-to-end delays and short membership duration, the contact
information that a joining node must retrieve from a central
entity (S in figure 1) will frequently be outdated. Similarly,
no single node in a multicast tree can safely know all other
group members at a given time. To provoke this situation, we
have chosen 100 ms for our simulation. This is a frequently
used update frequency in central server games, which limits
also the frequency of dynamic AoI changes.

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 0 50 100 150 200 250 300

pe
rc

en
t

group number (by popularity, 300 of 1000 total, every 5th shown)

request, invite, ping, connect first
request, invite, ping, connect best
request, create, ping, connect first

request, create, connect closests ip

(a) Autonomous system

 40

 45

 50

 55

 60

 65

 70

 0 50 100 150 200 250 300

pe
rc

en
t

group number (by popularity, 300 of 1000 total, every 5th shown)

request, invite, ping, connect first
request, invite, ping, connect best
request, create, ping, connect first

request, create, connect closests ip

(b) Flat network

Fig. 2. Percentage of time spent entering a group, average of10 runs

In the figures, we show the results for Zipf-distributed group
popularities: a small X value in the graph represents a large
groups, while a large X value represents a small group. The
graphs in figure 2 show the percentage of the time in a group
that is used performing the steps described in section IV-
B. Figure 3 shows the average cost of the overlay network
connecting all nodes in a group, where the cost is the sum of
all link delays.

1) Join time: As expected, the approach that joins the
node that is closest by its network level address spends the
highest percentage of its time actually in the group, while
the other approaches spend more time performing the steps
of figure 1. Even for the case of groups that are unpopular
and therefore frequently found empty, this is still true. In
general, however, the algorithms perform similarly for those
nodes because nearly all time is consumed in contacting the
central server for the initial reference to the group.

It is more remarkable that the more complex joining ap-
proaches are also nearly as fast as connecting to closest address

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300

su
m

 o
f d

el
ay

s
(m

s)

group number (by popularity, 300 of 1000 groups, every 5th shown)

request, invite, ping, connect first
request, invite, ping, connect best
request, create, ping, connect first

request, create, connect closests ip

(a) Autonomous system

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300

su
m

 o
f d

el
ay

s
(m

s)

group number (by popularity, 300 of 1000 groups, every 5th shown)

request, invite, ping, connect first
request, invite, ping, connect best
request, create, ping, connect first

request, create, connect closests ip

(b) Flat network

Fig. 3. Sum of all edge delays in a group, average of 10 runs

when groups have a large number of members. The reason is
that the joining node is offered many nodes to connect to,
some of which are bound to be close to it. The connect step
itself is therefore fast.

For the groups with a medium number of nodes, on the other
hand, connect first/best with invitation shows large delays. The
problem here is that join operations are likely to trigger a
leader change in the group. Since the central server sends
invitations only to the group leader, these are frequently
refused because the central server’s information is already
outdated. This, in turn, requires that the central server sends
another invitation to the new leader, which is time-consuming.

2) Group cost:Connect best with invitation achieves con-
sistently the cheapest graphs (in terms of the sum of all uni-
directional delays) when all groups have the same popularity.
The created graphs are also cheapest in the Zipf scenario when
groups have medium or low popularity.

However, when the group popularity is high, this is not the
case anymore. The reason for this is that we use the same leave

operation that is described in section III, ie. we do not remove
a leaving node from the multicast tree before the number of
its direct neighbours drop below three. Connect with invitation
leads to wide graphs, while connect without invitation leads to
deep graphs. Wide graphs are bound to have many nodes with
more than three neighbors. Nodes close to the group leader can
therefore rarely leave the tree when they decide to leave the
group, and connections through them contribute to the overall
cost of the tree.

3) Summary: Our results show that the time to join a
multicast group can be significant and the chosen protocol
can have large effects on the total cost. Additionally, notethat
we only have simulated simple protocols looking at join time.
If calculations to check for goals 1 and 2 in section II should
be performed before joining, the join operation will consume
considerably more time. However, the fast join operations lead
to a degradation in tree costs for groups of medium group size.
This implies that our further work on reconfiguration must
support the removal of inner nodes of a tree when they leave
groups.

V. CONCLUSION

In this paper, we have looked at the importance of reducing
the multicast tree reconfiguration latency in highly interactive
applications. We considered games in particular because there
are example for central server games that benefit from ex-
tremely high group dynamicity, but we expect that an increas-
ing number of distributed applications will require dynamic
group membership. In this paper, we have compared several
approaches for performing join operations, and performed
leave operations only when the number of node neighbours is
or drops below three. However, to give a complete view of this
issue, several more tests must be performed, e.g., comparison
with optimal tree costs, further protocol variations, network
variations and cost factors. Our results indicate that the re-
configuration operation is a potential bottleneck for highly
interactive applications. Our ongoing work includes a further
investigation of online reconfiguration mechanisms (including
group leave operations) in combination with different tree-
algorithms, in particular Steiner tree algorithms, to be able
to find a proper trade-off of the contradicting goals stated in
section II.

REFERENCES

[1] Leo Sang-Min Whang and Jee Yeon Kim. The online game worldas a
product and the behavioral characteristics of online game consumers as
role player. InDIGRA 2005, Vancouver, Canada, June 2005.

[2] Chor Ping Low and Xueyan Song. On finding feasible solutions for the
delay constrained group multicast routing problem.IEEE Transactions
on Computers, 51(5):581–588, 2002.

[3] Hung-Ying Tyan, Jenifer C. Hou, and Bin Wang. Many-to-many
multicast routing with temporal quality of service guarantees. IEEE
Journal of Selected Areas in Communications, 52(6):826–832, 2003.

[4] H. Salama, Y. Viniotis, and D. Reeves. An efficient delay constrained
minimum spanning tree heuristic. InProceedings of the 5th International
Conference on Computer Communications and Networks (ICCCN),
October 1996.

[5] George N. Rouskas and Ilia Baldine. Multicast routing with end-to-end
delay and delay variation constraints.IEEE Journal of Selected Areas
in Communications, 15(3):346–356, 1997.

[6] Xiaohua Jia. A distributed algorithm of delay-bounded multicast
routing for multimedia applications in wide area networks.IEEE/ACM
Transactions on Networking, 6(6):828–837, December 1998.

[7] Girish Kumar, Nishit Narang, and C. P. Ravikumar. Efficient algorithms
for delay-bounded minimum cost path problem in communication net-
works. InProceedings of International Conference on High Performance
Computing, Chennai (Madras), India, December 1998.

[8] Anna Hac and Kelei Zhou. A new heuristic algorithm for finding
minimum-cost multicast trees with bounded path delay.International
Journal of Network Management, 9:265–278, 1999.

[9] Lih-Chyau Wuu, Long Song Lin, and Shing-Chyi Shiao. Constructing
delay-bounded multicast trees in computer networks.Journal of Inform-
ation Science and Enfineering, 17(3):507–524, 2001.

[10] Fred Bauer and Anujan Varma. ARIES: A rearrangeable inexpensive
edge-based on-line Steiner algorithm. InProceedings of the Joint
Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), pages 361–368, San Francisco, CA, USA, 1996.

[11] Ehud Aharoni and Reuven Cohen. Restricted dynamic Steiner trees for
scalable multicast in datagram networks.IEEE/ACM Transactions on
Networking, 6(3):286–297, June 1998.

[12] Sriram Raghavan, G. Manimaran, and C. Siva Ram Murthy. Arearrange-
able algorithm for the construction of delay-constraint dynamic multicast
trees. IEEE/ACM Transactions on Networking, 7(4):514–529, August
1999.

[13] Tawfig Alrabiah and Taieb Znati. Delay-constrained, low-cost mul-
ticast routing in multimedia networks.J. Parallel Distrib. Comput.,
61(9):1307–1336, 2001.

[14] Mehrdad Parsa, Qing Zhu, and J. J. Garcia-Luna-Aceves.An iterative
algorithm for delay-constrained minimum-cost multicasting. IEEE/ACM
Transactions on Networking, 6(4):461–474, 1998.

[15] Bernard M. Waxman. Dynamic Steiner tree problem.SIAM J. Discrete
Math., 4:364–384, 1991.

[16] Leslie S. Liu, Rahul Hampole, Beomjoo Seo, and Roger Zimmermann.
Active: A low latency P2P live streaming architecture. InProceedings
of SPIE/ACM Conference on Multimedia Computing and Networking
(MMCN), San Jose, CA, USA, January 2005.

[17] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers.
BRITE: Universal topology generation from a user’s perspective. Tech-
nical Report BUCS-TR2001-003, Boston University, January2001.

