
Improving application layer latency for reliable thin-stream
game traffic

Andreas Petlund1,2, Kristian Evensen1, Pål Halvorsen1,2, Carsten Griwodz1,2

1Simula Research Laboratory, Norway 2IFI, University of Oslo, Norway
{apetlund, kristrev, paalh, griff}@simula.no

ABSTRACT
Awide range of networked games send data with very high interarrival-
time between packets and with small payloads in each packet. We
call these transmission patterns “thin streams”. Reliability, when
needed for game traffic, is usually achieved through TCP or by
using retransmission schemes modelled on TCP. These retransmis-
sion schemes can result in very large delays if the stream is thin [10].
Viewed in the light of the time-dependent nature of game traffic,
large delays can be severely impeding to the game experience. In
order to reduce application-layer latency when packets are lost,
we have implemented modifications to TCP in the Linux kernel.
The changes are only active when thin-stream properties are de-
tected, thus not affecting TCP behaviour when the stream is not
thin. In this paper, we show the latency improvements from these
thin-stream modifications. As a case study, we have used the game
BZFlag to test the mechanisms, and present statistics from these
tests. The experimental results show that our modifications allow
TCP to recover earlier from packet loss. This latency reduction was
then shown to improve the difference between perceived and actual
player positions in the BzFlag game.

1. INTRODUCTION
Reliable transport protocols that are in widespread use today, like
TCP, are primarily designed for connections with high throughput.
The aim is to move lots of data from one place to another as fast
as possible (like HTTP, FTP etc.). However, a wide range of net-
worked applications do not follow this pattern. Important examples
include interactive applications where small amounts of data are
transmitted upon user interaction, e.g., multiplayer online games
and audio conferences. Many such interactive applications use TCP
either per default, or as a fallback if UDP is blocked.

Many of these applications generate what we call “thin streams”. In
this context, a stream is called “thin” if at least one of the following
criteria is fulfilled: a) the packet interarrival time (IAT) is too high
to be able to trigger fast retransmissions, and b) the packet sizes are
usually far below the maximum segment size (MSS). In this case,
lost packets are often recovered through timeout-retransmissions
resulting in severely delayed data delivery [10].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires prior

specific permission from the authors. NetGames’08, Worcester, MA, USA
Copyright 2008 ACM 978-1-60558-132-3-10/21/2008...$5.00

Due to the highly interactive nature of many thin-stream applica-
tions, they depend on timely delivery of data. As an example, on-
line games require latencies in the range of 100 to 1000 ms, depend-
ing on the type of game [7]. In this paper, we discuss thin-stream
properties viewed in the light of game traffic by presenting anal-
ysis of traces from networked computer games. The traces were
analyzed with respect to interarrival time between packets, packet
size and consequently bandwidth requirement. The transmission
characteristics are then discussed with respect to the shortcomings
identified in standard TCP congestion control mechanisms. More-
over, we have implemented a set of modifications to TCP with the
goal of reducing the data delivery latency for thin stream applica-
tions when retransmissions are necessary. We also show how the
reduced position update latencies influence precision when firing
shots in BzFlag (a first person shooter game) and how the proposed
modifications can help increase the probability of correctly observ-
ing the position of an opposing player. In summary, our results
show that the proposed modifications allow TCP to recover from
packet loss more rapidly, which improves the experience of play-
ing the game.

2. THIN-STREAM GAME TRAFFIC
A large selection of networked interactive applications display traf-
fic patterns that we call thin streams. These applications generate
data in such a way that packets are small and/or have high interar-
rival time. A wide range of multi-player networked games produce
traffic that match the thin-stream patterns. Several papers have been
written that analyse networked game traffic patterns and character-
istics (e.g. [5, 4, 6, 7]). With the exception of content-streaming
worlds (like Second Life [13]), most games have as a common fac-
tor that their generated datastreams display thin-stream properties.
In order to understand thin-stream traffic better, we analysed packet
traces from a selection of online games (table 1). The analysis
shows that thin-stream applications may have difficulties providing
proper service when they are sent using established reliable trans-
port protocols (like TCP [10] or SCTP [12]) because normal con-
gestion control and recovery mechanisms are rarely triggered and
the stream does never fill the allowed send window. Below, we
take a closer look at the implications of these traffic patterns for
interactive game traffic.

2.1 Game Characteristics
We have analysed game traces for several titles including Anarchy
Online (AO), Age of Conan (AoC) and BzFlag with respect to their
network traffic characteristics. AO and AoC are massively mul-
tiplayer online role-playing games (MMORPGs) whereas BzFlag
belongs to the first person shooter (FPS) genre.

payload size (bytes) packet interarrival time (ms) avg. bandwidth
application prot- percentiles requirement
(platform) ocol average min max average median min max 1% 99% (pps) (bps)

Anarchy Online (Server side dump) TCP 98 8 1333 632 449 7 17032 83 4195 1.582 2168

World of Warcraft (PC) TCP 26 6 1228 314 133 0 14855 0 3785 3.185 2046

Age of Conan (PC) TCP 80 5 1460 86 57 0 1375 24 386 11.628 12375

Counter Strike (PC) UDP 36 25 1342 124 65 0 66354 34 575 8.064 19604

Halo 3 - high intensity (Xbox 360) UDP 247 32 1264 36 33 0 1403 32 182 27.778 60223

Halo 3 - moderate intensity (Xbox 360) UDP 270 32 280 67 66 32 716 64 69 14.925 35888

Tony Hawk’s Project 8 (Xbox 360) UDP 90 32 576 308 163 0 4070 53 2332 3.247 5812

Test Drive Unlimited (Xbox 360) UDP 80 34 104 40 33 0 298 0 158 25.000 22912

BZFlag TCP 30 4 1448 24 0 0 540 0 151 41.667 31370

Skype (2 users, TCP fallback) TCP 236 14 1267 34 40 0 1671 4 80 29.412 69296

Table 1: Examples of thin stream packet statistics based on analysis of packet traces.

In the AO trace, extreme worst-case delays were occasionally ex-
perienced by the players. This was determined to be caused by the
retransmission mechanisms of TCP due to the thin-stream charac-
teristics of the application data [10]. From table 1, we can see that
the AO streams interarrival times are extremely high, with an av-
erage of 632 ms. The payloads of the packets are noticeably small
with an average of 98 bytes. Similarly, the newly released AoC
also displays thin stream characteristics. The average IAT is 86 ms
with an average payload of 80 bytes. The FPS game BzFlag shows
somewhat different characteristics due to more updates being gen-
erated from higher-paced action. Table 1 shows that the interarrival
times between packets are significantly lower than for AO with an
average of 24 ms. The payload sizes, however, are the smallest of
all the analysed applications averaging 30 bytes per packet.

The small packets indicate that only short updates (like position up-
dates and fired shots) are relayed in each packet. They are, however,
required to be transmitted with short intervals in order to make the
game playable. The (relatively) low packet IAT of BzFlag is still
high enough to classify as a thin stream due to the occasional in-
ability to trigger fast retransmissions, i.e., depending on periodic
changes in data patterns and network round trip time (RTT). The
high intensity of FPS games also means that extra delays will more
severely impact the experience of gameplay [7]. Thus, with these
stream characteristics and the strict latency requirements in mind,
supporting thin-stream interactive applications is a hard task. In
the following section, we will therefore discuss the challenges that
arise when using TCP for thin streams.

2.2 TCP Shortcomings
Griwodz et al [10] describe how, for streams of certain characteris-
tics, TCP retransmission schemes result in higher latency when loss
occurs. The reason is that the fast retransmit mechanism in TCP,
which enables retransmission of lost segments before a timeout oc-
curs, depends on feedback from the receiver (ACKs). The mech-
anism requires three duplicate acknowledgements (dupACKs) in
order to initiate a fast retransmission [14, 2]. The reason for wait-
ing until the third indication of loss is to avoid spurious retransmis-
sions when reordering happens on the network. For thin stream sce-
narios, where interarrival times between sent packets are relatively
high, the consequence is that many (or all) retransmissions will be
caused by timeouts. This is because there are seldom enough pack-
ets in flight (packets on the wire) to generate the necessary feedback
to trigger a fast retransmit. In addition, the retransmission timeout
(RTO) is exponentially increased when multiple losses are detected
(exponential backoff), which results in a still larger latency penalty.

This mechanism is designed to ensure that an acceptable send rate
is found, and to prevent a stream from exceeding it’s fair share of
the bandwidth resources. Thin streams, however, do not use their
fair share, most of the time they stay within the worst-case through-
put of 2 packets per RTT. The large IATs make it impossible for the
thin stream to back off when packets are lost multiple times, result-
ing in a situation where the RTO value is very high, without any
actual benefit with regard to resource distribution on the network.
The result for the thin stream is that the retransmission is delayed
by seconds (or even minutes [10]) if segments are lost several times.

Applications that provide no interactive service may do well under
such conditions. Thin-stream applications like games, however, are
often interactive and may severely suffer from the extra delay. We
will now describe our proposed changes to TCP which aims to im-
prove the latency for thin streams when loss occurs.

3. TCP ENHANCEMENTS
The results of our earlier investigations of reliable transport pro-
tocols [10, 12, 8] show that it is important to distinguish between
thick and thin streams with respect to latency. Where high-rate
streams are only concerned with throughput, the perceived quality
of most thin streams depends on timely delivery of data. Working
from the assumption that there is potential for large performance
gains by introducing modifications that tune TCP for thin streams,
we have tested the combination of several such mechanisms on typ-
ical thin-stream applications. In short, if the kernel detects a thin
stream, we trade a small amount of bandwidth for latency reduction
by enabling modifications to TCP. The modifications are designed
in such a way that they are transparent to the receiver (i.e., a server
can run the modified TCP, and unmodified clients may still receive
the benefits). Any client should therefore be able to receive the
stream sent by the modified TCP version, regardless of operating
system and version. The modifications can also be transparent to
the application running on top of TCP (they can be enabled by using
a /proc variable, and will thus be active for all networked applica-
tions). The following modifications have been implemented in the
Linux kernel (v.2.6.23.8):

• Removal of exponential backoff: Since most thin streams
send out packets with a high IAT, more or less all retrans-
missions are caused by timeouts. A timeout retransmission
invokes exponential backoff, which doubles the time to wait
for the next retransmission.

If the number of packets in flight (i.e., unacknowledged pack-

(a) First sent packet.

(b) Second packet: Bundled data.

Figure 1: Method of bundling unacknowledged data.

ets) is less than the number required to trigger a fast retrans-
mission, we remove the exponential factor. If more than four
packets are on the wire, the possibility for triggering a fast re-
transmit increases, and therefore exponential backoff is em-
ployed as usual. Since the streams that gain from this modifi-
cation are very thin, the increase in bandwidth consumption
due to the removal of exponential backoff in these cases is
very small. That is, the stream does still not have to use its
allowed send window.

• Faster Fast Retransmit: Instead of having to wait several
hundred milliseconds for a timeout retransmission and then
suffer from the exponential backoff, it is much more desir-
able to trigger a fast retransmission. This requires the con-
nection to wait for three duplicate acknowledgements (four
acknowledgements of the same packets), which is not ideal
for many thin streams. Due to the high IAT in our scenario,
sending three packets often takes longer than the timeout.

We have therefore reduced the number of required duplicate
acknowledgements to one, provided that the number of pack-
ets in flight is less than four. Otherwise, the chance of receiv-
ing three dupACKs increases, and regular (three dupACKs)
fast retransmit is employed.

• Redundant Data Bundling: As shown in table 1, many
thin-stream applications send small packets. As long as the
combined packet size is less than the MSS, we copy (bundle)
data from unacknowledged packets in the send buffer into
the new packet. As many of the remaining unacknowledged
data segments as possible are bundled with each new packet.
This increases the probability that a lost payload will be de-
livered with the next packet. Figure 1 shows an example of
how a previously transmitted data segment is bundled with
the next packet. Notice how the sequence number stays the
same while the packet length is increased. If packet a) is lost,
the ACK from packet b) will ACK both segments, making a
retransmission unnecessary.

As mentioned, the first two modifications are only applied when
there are less than four packets in flight. Thus, we avoid that streams
already using their fair share of the available resources (in accor-
dance with TCP) consume even more using our proposed mecha-
nisms. Redundant data bundling (RDB) [8], on the other hand, is

limited by the IAT and packet size of the stream. If the packets
are large, which is typical for bulk data transfer, bundles can not be
made, resulting in normal TCP operation.

4. TEST RESULTS
The TCPmodifications are most effective for interactive thin-stream
applications like online games. To evaluate the effect of the mecha-
nisms, we wanted to benchmark the position updates in a real game
environment. BzFlag is an open source, FPS game where play-
ers challenge each other using tanks on a virtual battleground. As
shown in table 1, it generates thin streams with an average packet
IAT of 24 ms and an average payload size of 30 bytes. Thus, it is
a game well suited to demonstrate the benefits of our thin stream
modifications to TCP.

To collect the data needed to generate the results presented in this
paper, we constructed a network consisting of five machines. Three
acted as clients running computer controlled opponents (bots), one
ran the server application, while the fifth machine acted as a net-
work emulator between the server and the clients. We needed to
impose loss and delay on the link between the server and the clients
so that we could evaluate the effects of the modifications. After per-
forming several measurements from different Norwegian ISP’s to
machines in the US and various European countries, we chose an
average loss rate of 2 % and a round trip time (RTT) of 130 ms,
as representative emulated network values. The three clients ran
26 bots alltogether, which represent a typical high-paced BzFlag-
multiplayer scenario. To get a sufficiently large number of sam-
ples, we ran six, one hour long, tests (three with the modifications
enabled and three without).

We will first present the results from analysing the dumps of the
network traffic, then show how the modifications affected the dif-
ference between observed and actual positions in the game.

4.1 Transport layer latency
From the packet traces, we measured how much later than the one-
way delay (OWD) each data segment arrived at the receiver. Fig-
ure 2 shows cumulative density functions (CDFs) of the data de-
livery latency. We have analysed dumps from tests performed both
with and without the thin-stream modifications.

The transport layer latency is shown in figure 2(a). Both connec-
tions received 98 % of the data at minimum time (meaning the only
delay experienced was the OWD). This reflects the loss rate of 2 %.
When the connection experiences loss, however, the modified sys-
tem recovers the data significantly faster than the unmodified TCP.

4.2 Application layer latency
TCP’s in-order requirement states that received data segments must
be stored in a buffer until a complete range of data is received
before the data is delivered to the application. This means that
successfully delivered packets still have to wait for any lost seg-
ments to be retransmitted and received before the application can
use them. Figure 2(b) shows the application layer latency which
takes the in-order requirement into account.

We can see that much smaller latencies were experienced when the
modifications were enabled. Close to 99% of the data was available
to the application at the best possible latency, compared to only
85 % when using ordinary TCP (a large increase, since only 2 %
of the packets are delayed at the transport level). Unmodified TCP

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200

C
D

F
 (

b
y
te

s
)

Latency above minimum observed value (ms)

CDF: BZflag - transport layer - 2% loss, 130ms RTT

TCP with modifications
Regular TCP

(a) Transport layer latency.

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 200 400 600 800 1000 1200

C
D

F
 (

b
y
te

s
)

Latency above minimum observed value (ms)

CDF: BZflag - Application layer - 2% loss, 130ms RTT

TCP with modifications
Regular TCP

(b) Application layer latency.

Figure 2: CDFs of BzFlag latency.

is not able to deliver 99 % in less than 261 ms. It is also worth
mentioning that the modifications in this case make sure that the
differences between application layer delivery time and transport
layer delivery time are minimal.

4.3 Impact of latency on perceived player po-

sitions
The reduced application layer latency also affected the user expe-
rience. Therefore, to see how the latency influenced the perceived
player positions, we collected the actual and perceived position of
the other players each time a chosen tank (reference tank) fired a
shot. We then calculated the difference (angle) between the two po-
sitions as viewed from the reference tank. Figure 3 shows how the
two vectors representing perceived and actual position was found.
The angle v was then calculated using the law of cosines. Position
A represents the reference tank, B represents the perceived position
of an opponent at the time of the shot, while B’ represents the ac-
tual position of the opponent. Figure 5 shows that the angle of
difference between perceived and actual position is smaller when
the modifications were applied for a large majority of the measure-
ments. On average, the angle between the perceived and actual
position was reduced by 0.7 degrees when the modifications were

Figure 3: Difference angle calculation.

Figure 4: Hit limit calculation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F
 (

b
y
te

s
)

Deviation (degrees)

BZflag - Deviation between perceived and actual position

TCP with modifications
Regular TCP

Figure 5: CDF of difference

enabled (from 3.5 to 2.7 degrees). The dimensions of the game field
(the virtual battleground) was 200×200 world units (wu, BzFlag’s
internal distance metric). Provided that the player aimed at the cen-
tre of the opponent’s tank (a “perfect shot”) based on the perceived
position, the angle of difference between perceived and actual posi-
tion may be so substantial that a would-be hit actually evaluates as
a miss. Figure 4 shows how we calculate the wu deviation caused
by the deviation angle v. Using the formula x = n × tan v, we
can extrapolate the deviation in wu when the distance n to the tar-
get increases. Here, n is the distance between the player and the
opponent, and x is the deviation from the actual position of the ob-
served tank. In BzFlag, each tank is 2.8 wu wide and 6 wu long.
A “perfect shot” would have a 100 % chance of hitting enemies
when the distance to the target is less than 30 wu using the modi-
fications. Using regular TCP, the distance to guarantee a hit would
have to be reduced to 23 wu. In practise this means that the mod-
ifications increase the chances of hitting your opponent due to a
smaller deviation between perceived and actual position. The 7 wu

improvement is, for reference, equal to the width of 2.5 tanks in
the game, a deviation that is large when trying to hit your target.
We also investigated how the difference in angle affects the chance
of the shot hitting when we varied the distance between the tanks.

 0

 1.4

 2.8

 4.2

 5.6

 7

 8.4

 9.8

 0 50 100 150 200

D
e

v
ia

ti
o

n
 c

a
u

s
e

d
 b

y
 l
a

te
n

c
y
 (

w
u

)

Distance from opponent (wu)

Tank length / 2

Tank width / 2

TCP with modifications
Regular TCP

(a) BzFlag hit limits (world units).

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

C
h

a
n

c
e

 t
o

 h
it
 2

.8
w

u
 w

id
e

 t
a

rg
e

t
w

it
h

 "
p

e
rf

e
c
t

s
h

o
t"

 (
%

)

Distance from opponent (wu)

TCP with modifications
Regular TCP

(b) BzFlag hit limits (percent).

Figure 6: BzFlag hit limits for “perfect shot”.

Figure 6(a) shows how large the radius of the hit box has to be to
guarantee that the “perfect shot” is a hit given a specific distance
to the opponent. The dotted lines at 1.4 wu and 3 wu represents
the tank hit box when seen from the front and from the side. The
graph shows how the effect of the modifications increases with the
distance to the opponents you are trying to hit.

Figure 6(b) shows the chance of hitting your opponent with a “per-
fect shot” at different distances using regular TCP and the modifi-
cations. If you, as an example, fire at an opponent at a distance of
50 wu, there is 12 % greater chance of a hit using the modifications
than without.

5. DISCUSSION
The thin-stream modifications to TCP are based on the concept that
the applications in question never use their fair share of the band-
width. The price paid for the reduced latency is a greater measure
of redundant transmissions. For the exponential backoff- and du-
pACK modifications, this comes in the form of more aggressive
retransmissions. For RDB there is a constant factor of redundancy.
The increase is dependent on the RTT and IAT; Connections expe-
riencing a high RTT and low IAT will have a high level of redun-
dancy. Several packets will be sent between each ACK and thus,
bundles can be made.

However, the increase in bandwidth is still small due to the fact
that the applications only transmit sporadically (or at a steady low
rate), also, currently RDB bundles as much data as possible into
one packet. To reduce the packet size and limit the redundancy,
one could set a limit for the size of bundled packets. This would
help avoid the bundling of too many segments on, for instance, a
high RTT connection. We can also trace a tendency in RDB to send
more packets than a regular TCP connection operating under the
same conditions. The reason for this increased packet rate is that
RDB, unlike plain TCP, does not necessarily slow down when loss
occurs (since the lost data might arrive in the next packet and be ac-
knowledged before a retransmission is triggered), thus not halving
the cwnd.

Even though we alter the congestion control, preliminary tests indi-
cate that fairness is indeed preserved for the retransmission modifi-
cations. The preliminary results show no indication that the modi-

fications inhibit the competing streams that use unmodified TCP. It
will be more challenging to tell how the streams would perform if a
large number of thin-streams using modified TCP should compete
for the same bottleneck. In the future, we will run more complex
experiments (or simulations) to determine how such a scenario will
affect the balance of fairness. Towards that end, we are currently
working on simulations of larger networks using thin-stream TCP-
modifications.

This paper only discusses changes to TCP. The thin-stream prob-
lems will, however, be relevant to most end-to-end transport pro-
tocols that require reliability. The most used approach (for in-
stance when implementing reliability on top of UDP) has been to
model retransmission mechanisms after TCP. Viewed in the light of
the latency problems of TCP retransmission mechanisms for thin
streams, the proposed changes should be considered also for other
protocols and applications that implement end-to-end reliability.

6. RELATEDWORK
A huge amount of work has been performed in the area of TCP
performance. The vast majority of this work, however, addresses
bulk transfer, whereas time-dependent thin-stream applications are,
to the best of our knowledge, hardly looked at. Nevertheless, we
present here a couple of ideas that are related to our latency reduc-
tion mechanisms.

The “Limited Transmit” Mechanism [1] is a TCP mechanism that
tries to do more efficient recovery when a connection’s congestion
window is small, or when a large number of segments are lost in
a single transmission window. If the receiver’s advertised window
allows the transmission of more segments and the amount of out-
standing data would remain less than or equal to the congestion
window plus two segments, the sender can transmit new data upon
the arrival of the first two duplicate ACKs. This happens without
changing the congestion window.

In an IETF draft1, Allman et al. suggest that measures should be
taken to recover lost segments when there are too few unacknowl-

1IETF Draft draft-allman-tcp-early-rexmt-07: Mark Allman, Kon-
stantin Avrachenkov, Urtzi Ayesta, Josh Blanton, Per Hurtig,
“Early Retransmit for TCP and SCTP”, June 2008, expires Decem-
ber 2008.

edged packets to trigger Fast Retransmit. They propose Early Re-
transmit (ER), which should reduce waiting times for any of four
situations: 1) the congestion window is still initially small, 2) it is
small because of heavy loss, 3) flow control limits the send window
size, 4) or the application has no data to send. The draft proposes
to act as follows whenever the number of outstanding segments is
smaller than 4: if new data is available, it follows Limited Trans-
mit [1], if there is not, it reduces the number of duplicate pack-
ets necessary to trigger fast retransmit to as low as 1 depending
on the number of unacknowledged segments. Our fast retransmit-
triggering mechanism has no stepwise escalation, but is fully ap-
plied when there are few packets in flight. This is because we
can expect the thin stream to keep its properties throughout its life-
time and also because so many thin-stream applications are inter-
active with strict latency requirements. Allman et al. try to prevent
retransmission timeouts by retransmitting more aggressively, thus
keeping the congestion window open. If their limiting conditions
change, they still have higher sending rates available. Our main
goal is to keep the delivery latency low. We have no motivation
to prevent retransmission timeouts in order to keep the congestion
window open and retransmit early to reduce application-layer la-
tencies.

The removal of the exponential back-off can of course result in
spurious retransmissions when the RTT changes. The proposed
method of TCP Santa Cruz [11] uses TCP timestamps and TCP op-
tions to determine the copy of a segment that an acknowledgement
belongs to and can therefore provide a better RTT estimate. Since
the RTT estimate can distinguish multiple packet losses and sud-
den increases in actual RTT, TCP Santa Cruz can avoid exponential
back-off. The ability of Santa Cruz to consider every ACK in RTT
estimation has minor effects in our scenario where few packets are
generated. The ability to discover the copy of a packet that an ACK
refers to would still be desirable but would require receiver-side
changes that we avoid.

For FPS games, a successful approach for reducing latency is to
choose servers that are favourably situated related to your location
[9, 3]. For more massive, world-spanning games like MMORPGs,
however, this may not be an option. Server discovery and selection
approaches is, however, orthogonal to the use of our modifications
and they could successfully be applied in combination.

Another interesting avenue of investigation would be to implement
Early Retransmit and Limited Transmit, and perform tests to deter-
mine how the performance of these mechanisms compares to the
proposed thin-stream mechanisms. It may also be possible to suc-
cessfully merge a subset of known techniques to efficiently handle
many of the known issues that cause latency due to congestion con-
trol and retransmissions for thin streams and special cases of a thick
stream lifetime.

7. CONCLUSION
We have described how applications that generate small packets
with high IAT suffer because of the way in which TCP congestion
control handles retransmissions. We have evaluated a set of pro-
posed mechanisms with respect to delivery latency and evaluated
the effect of the mechanisms when applied to a BzFlag game using
TCP.

The proposed modifications are compliant with TCP standards and
transparent to the both the receiver and the application, which makes
it possible to use the modifications for existing applications without

any changes (as is done in the tests presented).

Analysis of the packet traces from the BzFlag sessions show that
the application layer latency when loss occurs is greatly reduced
when using the proposed mechanisms. Further analysis of in-game
positions reveal that the chance of hitting your opponent is in-
creased as a result of the lowered latency.

8. REFERENCES
[1] ALLMAN, M., BALAKRISHNAN, H., AND FLOYD, S.

Enhancing TCP’s Loss Recovery Using Limited Transmit.
RFC 3042 (Proposed Standard), Jan. 2001.

[2] ALLMAN, M., PAXSON, V., AND STEVENS, W. TCP
Congestion Control . RFC 2581 (Proposed Standard), Apr.
1999. Updated by RFC 3390.

[3] ARMITAGE, G. Optimising online fps game server discovery
through clustering servers by origin autonomous system. In
Proceedings of the International Workshop on Network and

Operating System Support for Digital Audio and Video

(NOSSDAV) (May 2008).

[4] CHAMBERS, C., CHANG FENG, W., SAHU, S., AND SAHA,
D. Measurement-based characterization of a collection of
on-line games. In the Proceedings of the 5th ACM
SIGCOMM Workshop on Internet measurement, Berkeley,

CA, USA (October 2005), 1–14.

[5] CHANG FENG, W., CHANG, F., CHI FENG, W., AND

WALPOLE, J. Provisioning on-line games: a traffic analysis
of a busy Counter-strike server. In the Proceedings of the 2nd
ACM SIGCOMM Workshop on Internet measurement,

Marseille, France (November 2002), 151–156.

[6] CLAYPOOL, M. The effect of latency on user performance in
real-time strategy games. Elsevier Computer Networks 49, 1
(Sept. 2005), 52–70.

[7] CLAYPOOL, M., AND CLAYPOOL, K. Latency and player
actions in online games. Communications of the ACM 49, 11
(Nov. 2005), 40–45.

[8] EVENSEN, K., PETLUND, A., GRIWODZ, C., AND

HALVORSEN, P. Redundant bundling in TCP to reduce
perceived latency for time-dependent thin streams.
Communications Letters, IEEE 12, 4 (April 2008), 324–326.

[9] GARGOLINSKI, S., PIERRE, C. S., AND CLAYPOOL, M.
Game server selection for multiple players. In NetGames

’05: Proceedings of 4th ACM SIGCOMM workshop on

Network and system support for games (New York, NY,
USA, 2005), ACM, pp. 1–6.

[10] GRIWODZ, C., AND HALVORSEN, P. The fun of using TCP
for an MMORPG. In Proceedings of the International
Workshop on Network and Operating System Support for

Digital Audio and Video (NOSSDAV) (May 2006), ACM
Press, pp. 1–7.

[11] PARSA, C., AND GARCIA-LUNA-ACEVES, J. J. Improving
TCP congestion control over internets with heterogeneous
transmission media. In International Conference on Network

Protocols (ICNP) (Nov. 1999), pp. 213–221.

[12] PEDERSEN, J., GRIWODZ, C., AND HALVORSEN, P.
Considerations of SCTP retransmission delays for thin
streams. In Proceedings of the IEEE Conference on Local

Computer Networks (LCN) (Nov. 2006), pp. 1–12.

[13] SECOND LIFE. Second life. http://www.secondlife.com/,
June 2008.

[14] STEVENS, W. TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms. RFC 2001

(Proposed Standard), Jan. 1997. Obsoleted by RFC 2581.

