
Latency Reduction by Dynamic Core Selection and Partial
Migration of Game State

Paul B. Beskow, Knut-Helge Vik, Pål Halvorsen, Carsten Griwodz
Simula Research Laboratory, Norway IFI, University of Oslo, Norway

{paulbb, knuthelv, paalh, griff}@ifi.uio.no.no

ABSTRACT
Massively multi-player online games (MMOGs) require low la-
tency while supporting a large number of concurrent players, often
sharing one worldwide instance of the game. As these are conflict-
ing requirements, a common way of distributing load is by divid-
ing the virtual environment into virtual regions. As MMOGs are
world-spanning games, it is plausible to disperse these regions on
geographically distributed servers. As such, we propose the use of
core selection for finding an optimal server for placing a region, and
support for migrating the game state to that server. The first goal re-
lies on a set of servers and measurement of the interacting players
latencies. In locating an optimal server, we anticipate a decrease
in the overall latency for the majority of players. This reduction
occurs by migrating the region to a server closer in proximity to
the majority of players in that virtual region, thereby lowering the
response time of any interaction.

1. INTRODUCTION
“Lagger!” is a likely expression to hear uttered in a real-time in-
teractive online game. This term addresses players with excessive
latency, which in the gaming community is colloquially referred to
as lag. It should be understood that this term holds no positive con-
notation, as a player that has high latency will inadvertently have a
negative effect on the perceived quality of the game play [3, 10].
This occurs, as most online games are based on a client-server
model, where events are collected at the server, and accordingly
distributed to the interacting players. By its nature, if one player’s
connection is comparatively slower, any added delay is not isolated
to the player alone, but will propagate to other interacting parties,
potentially resulting in inconsistencies. While having minor effects
on the outcome of the game, it results in a perceived deterioration to
the quality of interaction [14]. As such, low latency for all players
is a prevalent goal.

As latency is affected by physical distance between the player and
server, reducing the latency to all players is an arduous task. Thus,
providing the required level of interactivity, within the latency re-
quirements of the game (ranging from 100 to 1000 ms [12]), may
demand that the player is in close proximity to the server.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

to republish, to post on servers or to redistribute to lists, requires prior

specific permission from the authors. NetGames’08, Worcester, MA, USA
Copyright 2008 ACM 978-1-60558-132-3-10/21/2008...$5.00

As an example, consider world spanning MMOGs, which are per-
sistent online worlds that allow thousands of players to interact
concurrently in a virtual environment. To support this many con-
currently interacting players, the virtual environment is commonly
split into virtual regions. This makes it possible to distribute the
regions across a number of (possibly geographically distributed)
servers, this as the regions are logically decomposed, i.e., each re-
sponsible for handling some regions and the players interacting in
each region. As the geographical dispersion of players in MMOGs
depends heavily on the time of day [9], it is possible to find play-
ers clustered by their virtual (belonging to the same region) as well
as physical location. Since a player’s proximity to the server im-
pacts the latency, and in turn, since latency is an integral factor for
the playability of an online game, this raises an interesting ques-
tion: How can we optimize the placement of a virtual region and its

interacting players given a set of globally distributed servers?.

In the remainder of this paper, we will describe our use of core se-
lection for finding the most appropriate server (or proxy) for plac-
ing a virtual region, when given a player base and a set of avail-
able servers. Once a server has been selected, we use our migra-
tion functionality to move the active region to its new location. To
maintain an optimized set of references to the migrated game state,
we use a distributed name service. On the background of existing
work in distributed systems, we believe that with the combination
of core selection, a distributed name server and migration we have
a viable solution for creating a globally distributed game, which is
capable of lowering the overall latency of the interacting players.

2. BACKGROUND AND RELATEDWORK

2.1 Game Characteristics
The body of work that analyzes game traffic has grown consider-
ably in the recent past. The main conclusions in our scenario are
that 1) game traffic varies strongly with time and the attractiveness
of the individual game [7, 8], 2) some latency is tolerable [10], as
long as it does not exceed the threshold for playability, i.e., ranging
from 100ms to 1000ms depending on the type of game [12] and 3)
geographical dispersion of players in an online game depends heav-
ily on the time of day [9]. In addition to these works, we have ana-
lyzed packet traces (see [17]) from Funcom’s popular role-playing
MMOG Anarchy Online (AO) [16]. Statistics from the traces re-
veal that there is a potential gain with respect to latency by using
our migration middleware. For example, in one of the game regions
within a timespan of about one hour, we found approximately 175
distinct connections. These are sorted according to their measured
RTT in figure 1. With the knowledge that the servers are located in
the US, the observed minimum latencies in the figures indicate that
there are players concurrently located in the US, Europe and Asia.



 0.01

 0.1

 1

 0  20  40  60  80  100  120  140  160  180

R
T

T
 (

s
)

connection RTTs sorted by min RTT

Figure 1: AO: connection RTTs sorted by min RTT

The number of players in different areas of the world also typically
vary according to the time of day, and finding an appropriate loca-
tion for the server might be of vital importance in order to meet the
latency requirements, i.e., as the majority of users are in the second
range in figure 1(20-140), the average latency could be reduced by
moving the game region to a server in Europe.

2.2 Server selection
Game server selection is an important facet for the playability of
a game. This is particularly true for games that are highly sensi-
tive to latency, such as first person shooter (FPS) games. As such,
the player’s selection process is commonly guided by measuring
dimensions that affect playability, such as latency and packet loss.
This sensitivity to latency is commonly alleviated by having a high
distribution, and availability, of servers. To this respect, Chambers
et al [6] have looked at how server selection can be optimized for a
single client, when given a set of available servers. Following this
scenario and figure 2, where the circles denote acceptable bound-
aries for playability, we see that the servers in Chicago and New

York will be weighted equally for Jane, while only New York is
acceptable for Anette. In a further study, Claypool [11] notes that
we regularly find groups of players that wish to play together on
a server, such as friends or clans (organized players). As such, he
has investigated how server selection can be optimized from the
perspective of a group of players. Given this scenario and figure
2, the guided selection process would weight Chicago higher than
New York for George, Jane and Tom, while New York is weighted
the highest for Jane and Anette. A third study, which is related
to these topics, looks at how the search itself can be performed
in an optimal way [1]. The two former papers both have in com-
mon that they consider server selection from the perspective of the
player(s), and additionally assume a certain availability of servers.
As we can see from figure 2, it is common for geographically cou-
pled users to play against each other. For a world spanning game,
however, where all users interact in the same game instance, such
as an MMOG, there is often a limited number of servers to select
from. Thus, the differences in geographical locality become more
apparent. When we consider the time-of-day characteristics of ge-
ographical dispersion, it would be beneficial to examine if these
techniques can be applied by a server, to improve the playability
for a group of players, e.g., the players in the same virtual region.

2.3 Virtual regions
As MMOGs are expected to handle thousands of concurrently in-
teracting players it is common practice to use a static, region based
partitioning scheme. The virtual environment is thus divided into
smaller, more manageable parts, where each virtual region is hosted

Figure 2: Clustering in FPS style games.

on a single server in the cluster. A widely accepted problem with
the static partitioning scheme is that it does not take into account
the dynamic nature of MMOGs. Even if the static partitioning is
based on population density trends, and arranged to accommodate
this, it is still susceptible to imbalances due to unforeseen events.
Thus, a lot of research focuses on how to improve the flexibility
of these partitioning schemes, and consequently, algorithms for ef-
ficiently distributing entities and regions. This research, however,
does not address how the locality of the users, in relation to a server,
will effect latency. For example, Turck et al [13] have investigated
the effects of dividing a game world into dynamic micro-cells. A
study with a similar background is performed by Duong et al [15].
Such micro-cells can be reassigned to servers in a cluster if the
load on the server they are currently residing on becomes too large.
Different load-balancing algorithms were applied, none of which
factored in locality of users, and the number of micro-cells sup-
ported per server was varied. The test was performed on a cen-
tralized cluster. A similar approach is deployed by IBM with the
Matrix [2] middleware. Here, the focus is on the player, where
consistency updates are limited to an area of interest. It is based
on the observation that MMOGs are nearly decomposable systems,
and as such, it is usually sufficient to update players only with those
events that occur within their zone of visibility. Matrix makes use
of region based partitioning as an underlying foundation, but this is
for the purpose of easily distributing the virtual world across mul-
tiple servers. Consistent for all these approaches is that a dynamic
solution outperforms a static one.

2.4 Summary
In summary, the work on static and dynamic partitioning consider
server load in a centralized cluster and not latency due to the geo-
graphical location of users, this despite the fact that there is visible
evidence of such a trend. Most of the research tries to optimize
the partitioning of the virtual environment into regions which can
dynamically accommodate hot-spots. Furthermore, with respect to
server selection, previous work look at how to best select the best
game instance, for example, with lowest latency. However, in these
tests, little or no efforts have been made to investigate the effects of
a decentralized distributed system middleware, which would allow
for regions of the game to be migrated based on the physical local-
ity of the users, in addition to their virtual locality. Our analysis
of the game traffic shows that there are players connected from all
around the world (see figure 1), but the amount of players from a
part of the world will depend on the time of day. Thus, as there is
a shift in the location of the majority of players, another approach
to reducing the latency, both due to RTT and loss, is to dynami-
cally find the center of the group of players and migrate the game
objects to a server whose location is closer to the majority of the
users. We can accomplish this through core selection, which helps
us determine which node to migrate the players to.



Figure 3: Latency as physical distance

3. CORE SELECTION
An efficient means to reducing latency can be accomplished by mi-
grating game state to an appropriate server. This appropriate server
may be a server close to the center of a given group of players. As
an example, consider an MMOG with geographically distributed
servers (see figure 3). At any time, a server can be hosting none,
some or all of the virtual regions making up a virtual environment
of a game instance. Given a region, with a number of interacting
players, it is probable that a majority of these players are in reason-
able proximity of each other (as seen from a geographical perspec-
tive at a given time). Furthermore, looking at figure 3, we can see
how a latency requirement can be translated into a measurement of
physical distance. In this example, we have two server nodes, one
located in New York and one in Oslo. In addition, we have three
players that are connected from Mexico City, Seattle and Nuuk. In
case of a 250 ms delay requirement from the server (e.g, accord-
ing to the 500 ms pairwise latency requirement in RTS [10]), the
bordered intersection indicates an optimal area for the server to be
located, and given the set of available servers, the natural choice
would be to select the server in New York as the core server node.

Accordingly, it is desirable to determine if the server currently host-
ing a region is the optimal choice. In this context, optimal will
be determined by the overall latency experienced by the players
currently interacting there. As such, we wish to ascertain whether
there is a server in the system that would be able to provide these
players with better overall performance in terms of network delay.
Looking at figure 3, with server nodes in Oslo and New York, we
can naturally assume that the core selection process would have
selected New York as the optimal location.

To accomplish this, we can use core selection techniques, which
in this scenario requires complete information about the available
server nodes, and players interacting in the region. Based on this in-
formation, the heuristic core selection method will determine which
server provides the optimal placement for that region and its play-
ers.

3.1 Core selection heuristics
The core search is conducted by core selection heuristics that are
devised from a graph theory perspective. Upon core selection, the
core nodes may be used to administrate players that join and leave
groups. Such groups can be defined and updated dynamically in an
MMOG, for example, based on some area-of-interest management
(like existing in the same virtual region). Typically, the core node
of a group is contacted for each membership change, such that it
always has the latest view. When a limited set of nodes handles
the membership management, it simplifies membership updates;
applications with highly dynamic groups, such as MMOGs, require

fast and simple group management.

Core-based protocols work on the assumption that one or more core
nodes are selected as group management and forwarding nodes.
Therefore, the cores need to be selected using some core selection
heuristic. Several core selection heuristics have been proposed, and
a comprehensive study is given by Karaman and Hassanein [18].
An overall goal is to select cores on the basis of certain node prop-
erties, such as, bandwidth and computational power. We wish to
base this decision primarily on latency. The cores that are selected
depend on the group size and location, as well as the capacities in
the available core nodes. In this paper, our focus is on electing a
single core node for each defined group. The core may, for exam-
ple, be a server or a proxy administrated by the game provider.

3.2 Core selection in a proxy architecture
Today’s typical client/server model makes it easy to manage the
global game state, but it has drawbacks. The server is a potential
bottleneck, both in terms of computing and bandwidth capacity,
and the latency heavily depends on the physical distance from each
individual player to the server. In figure 4(a), we illustrate an ex-
ample where a centralized server stores the game state and cannot
take into account the physical location of the players.

Proxy technology is a distributed option. In this model, we have
an infrastructure with a centralized server and a set of distributed
proxy servers, of which some are expected to be physically closer
to the players than a central server. In figure 4(b), the central server
has migrated the game state to a proxy that is closer to the group of
players.

Proxy technology allows a trade-off between client/server and peer-
to-peer advantages and disadvantages. Where using a pure peer-
to-peer architecture implies distributing the game state among the
players, using no central server. This makes it very hard to adminis-
trate the game state such that it is consistent, and additionally there
is no working business model for such a scheme.

(a) Centralized architecture (b) Proxy architecture

Figure 4: Architecture

The core selection heuristics presented here search among a prede-
fined set of servers and proxies to find one optimal core, which is
the graph median. The graph median is the node for which the sum
of lengths of shortest paths to all other vertices’s is the smallest.
The heuristics are [18]:



• Topology Center: Find a central entity (server) that is closest
to the topological center of the global graph.

• Group Center: Find a proxy that is closest to the group center
of the group graph.

The topology center heuristic is given as input a set of available
servers that are located around the world. The heuristic searches
for the server for which the sum of latencies of shortest paths to all
players in its member network is the smallest, which is compara-
ble to finding an optimal server for an instance of the game world,
i.e, for all connected players. The group center heuristic similarly
searches among a set of available proxies located around the world.
It is given as input a group of players, and based on this the group
center heuristic selects the core proxy to be the proxy for which
the sum of latencies of shortest paths to all the players in the group
is smallest, i.e, locating an optimal placement for a subset of the
players (interacting in a region of the game instance, for example).
These simple heuristics form powerful techniques in the search for
suitable hosts to migrate game state to.

4. MOVINGWORLDSWITHMIGRATION
The core selection process is responsible for determining whether
the current server hosting a virtual region (based on its player pop-
ulation) is optimal. In the case where it is able to locate a more
appropriate server, the MMOG will move the game state of that
region to its new location. To accommodate this process, we have
developed a middleware that is capable of performing such migra-
tion of game state, which consists of a number of interacting objects
(following the object-oriented paradigm). Before migrating an ob-
ject, we must know that all references to that object will be main-
tained. To accomplish this, we use a name service. This service
is responsible for keeping an up-to-date index for the location of
objects in the distributed system, and redirect method invocations
accordingly. As such, the reduction in latency is accomplished by
decreasing the response time of, for instance, remote method invo-
cations (RMI). This because we move objects closer to the majority
of the players.

4.1 A name service
The name service maintains references to the objects in the dis-
tributed system, this goal can be accomplished in several ways.
Znati and Molka [20] analyzed three approaches to implementing
a name service; in the form of centralized, hybrid and distributed
versions. Prior to contacting the target object itself, the centralized
version contacts a name service, located at a well-known server,
to obtain the objects location in the network. As such, the cen-
tralized naming scheme adds an extra level of indirection to the
name resolution process. The hybrid approach is based on the de-
sign principle of keeping names together with the objects they are
bound to on the local level, but resorts to multicasting when resolv-
ing names at a regional level. The distributed paradigm removes
this level of indirection by placing the name of the object with the
object itself. Once an object resolution has been performed, the
object is accessed directly at the server managing the object. The
results showed that the centralized model could achieve acceptable
performance only as long as the ratio of remote to local requests
was kept reasonable. The performance of the hybrid model highly
depended on the efficiency of the cache design. With all other net-
work conditions set equal they found that, relative to the response
times of the centralized simulation, the response time of the dis-
tributed simulation were smaller. We relate these three models to

MMOGs with geographically distributed servers by coupling them
with the following characteristics:

1. There are thousands of concurrently interacting players.

2. The virtual environment is divided into virtual regions.

3. Players are dispersed physically as well as virtually.

4. The physical player distribution depends on time of day.

5. The servers in the system are geographically distributed.

6. Code is shared so only data is migrated.

7. There occurs frequent object creation and destruction.

8. Efficiency is more important then consistency.

Given these characteristics a distributed name service best suits our
needs, primarily because efficiency is more important then consis-
tency in this scenario. It is more efficient because there is no over-
head in binding an object with the name service, as this occurs
locally. Given that the servers in the system are geographically dis-
tributed this becomes essential. Other advantages are that there is
no single point of failure, which implies that large parts of the ap-
plication can continue running if a server were to fail. Looking up
objects will also be efficient, as we can directly query the node our
name service has registered as the current maintainer. Though it
is worth nothing that this access time will depend on how many
times an object has been migrated (from its point of creation) and
at which point in this chain the invocation is performed. For further
details and a thorough discussion about the implementation of the
name service, references and migration see [4]. In the following
section, we will solidify our understanding of the described mech-
anisms by looking at an example of them in use.

4.2 In action
Consider a system consisting of two servers, as seen in figure 3. In
this scenario, it is evening in Europe, and accordingly the majority
of the interacting players are European. As such, all of the virtual
regions are currently being hosted in Oslo. In addition to the Eu-
ropean players, we have a couple of players connected from Nuuk

and Seattle. Looking at figure 5(a), we see that these two players
have been bound to the name service and received an identifier (the
other players are not shown in this example). We can also see that
the Nuuk player references the player in Seattle. Notice that this
reference is not to the player object in local memory, as we might
expect, but to the identifier (created earlier) in the name service.
As the time passes the population on the server shifts from being
predominantly European to American. As such, the core selection
process is performed for each virtual region. For some of the re-
gions, it is found that the server in New York is best fit to serve the
currently connected players. As we can see from figure 5(a), the
region with the players connected from Nuuk and Seattle is marked
for migration. At this point in time, the region these two players
are interacting in is migrated to the server in New York. We will
see how this is accomplished in our middleware, when we follow
the steps outlined in figure 5(a), which denotes the actions before
migration, and figure 5(b), which denotes the actions taken during
and after migration.

The first step (1), consists of serializing the player object. Serial-
ization is the act of creating a binary representation of the object



(a) Before migration. (b) After migration.

Figure 5: Server configuration

that can be transmitted across the network. In this case, the player
object is migrated to our server in New York. The second step (2)
consists of recreating the object at the receiving side, which is also
known as deserialization. Once the object has been recreated, it is
bound with the local name service, which is the third step (3). At
this point in time, the Oslo server knows that the player object is
in New York (it sent it there after all), but will have no way of for-
warding requests, as it will have no way of knowing what object in
New York to forward requests to. This is because the player object
has been given a new identifier in New York, and, in effect, has no
knowledge of its past history from the server in Oslo. This is why
we in the fourth step (4) need to return the identifier assigned to the
player object by the server in New York. After Oslo has updated its
name service by associating the received identifier with the player
object, which happens in step five (5), we can without worry re-
move the object from local memory; as is done in step six (6). The
reason for this is that any invocations made to the player object will
now be intercepted correctly, because the name service in Oslo now
knows the identity of the object in New York.

5. EVALUATION AND DISCUSSION
We implemented our core (proxy) selection heuristics in a simu-
lator that mimics group communication in a game using a prese-
lected central entity to handle the membership management. The
central entity is always selected using the core selection heuristic
topology center. Furthermore, we generated network topologies
with the BRITE Internet topology generator [19], and in our exper-
iments, we used flat, undirected Waxman topologies [?]. From this
network, we created a fully connected undirected mesh, represent-
ing application layer communication that is shortest-path routed.
The network size was 1000 nodes, and all the nodes join and leave
groups throughout the simulation, causing group membership to be
dynamic. Group popularity was distributed according to a Zipf dis-
tribution [5]. The network layout is a square world with sides equal
to 200 ms. In figure 6(a), we can see how one group of players
(highlighted by a dashed border) will be evaluating the (encircled)
proxies, by calculating the average pair-wise latency to each proxy.
In figure 6(b), we see how the core selection process has deter-
mined which proxy has the lowest average pair-wise latency, and
how each player now has connected to that proxy.

Our goal is to illustrate the significance of server location. In ad-
dition, we want to show that having a proxy architecture with a
limited amount of proxies can dramatically reduce the overall la-
tencies. We can express the worst-case pair-wise latency between
clients in a network through the diameter (measured from, e.g, a

(a) Setup (b) Completion

Figure 6: Pass for a group in the core selection process

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  20  40  60  80  100  120  140  160  180

d
ia

m
et

er
 (

se
co

n
d

s)

Number of Nodes

Worst case server location
Proxy architecture (5 proxies)

Proxy architecture (10 proxies)
Proxy architecture (20 proxies)

Best case shortest path group tree
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  20  40  60  80  100  120  140  160  180

d
ia

m
et

er
 (

se
co

n
d

s)

Number of Nodes

Worst case server location
Proxy architecture (5 proxies)

Proxy architecture (10 proxies)
Proxy architecture (20 proxies)

Best case shortest path group tree

Figure 7: Diameter of group trees using a proxy architecture

core node), and it is desirable that the diameter is as low as possi-
ble. Figure 7 shows the diameter of shortest path trees for different
group sizes where servers and proxies are the roots of the trees.
We can see that having a limited amount of proxies placed around
the world can reduce the diameter dramatically. And as expected,
increasing the number of proxies will incrementally decrease the
diameter. The worst-case placement of a server is not an invalid
situation, because if a single server administrates the entire world
the worst-case placement of a server will happen for a large number
of the clients as the day passes.

As our results show, we are able to find suitable proxies which will
lower the diameter of the distribution tree, when taking into account
the available proxies and the locations of the group of players active
in the give region.

The described middleware has been implemented and tested as a
proof of concept. We tested the middleware by implementing a ba-
sic protocol for group communication, with the intent of imitating
the interaction we would expect to see in a virtual region. Running
two servers, we had several clients connect to one of the active
servers, where they initiated their communication. As the clients
were interacting we migrated the region to the second server, where
the clients were able to continue their interaction unhindered. As
such, the middleware has shown that it is capable of migrating ob-
jects, maintain references to these objects, and reconnect the inter-
acting clients so they can continue their interaction.

To measure overhead, we have timed a remote method invocation

Invocation type # of Invocations Mean

Remote 100,000 2.26541 milliseconds

Normal 100,000 0.10125 microseconds

Table 1: Cost of method invocation.



and compared it to a regular method invocation. We ran the tests
on an Intel Core 2 Duo, using only one core, which was clocked
at 800MHz. The operating system running Linux kernel version
2.6.22-14. During these tests the sender and receiver were both
running on the same machine. The result is summarized in table
1. These tests represent the expected overhead added by the mid-
dleware itself for invoking methods on a migrated object, which
involves name service look up, serialization, deserialization, and
some additional operations. The test methods took void arguments
and returned an int. The overhead of a remote invocation is con-
siderable when compared to a regular invocation, but is negligible
when compared to the overhead added by the network. With re-
spect to the latency gain, this is totally dependent on the core node
which is found. The results of these tests are reported above.

We also need to consider the overhead of migrating a virtual region,
though this will greatly depend on the number of objects being mi-
grated, and the size of the objects in question. Though this can be
accomplished transparently, without the player ever noticing. With
our middleware we migrate data only, as the code is shared. We
give the application developer the possibility of defining what parts
of an object they wish to migrate. The serialization mechanisms
and more are described in further detail in [4].

6. CONCLUSION
It has been shown that there is a strong correlation between latency
and the playability of an online game [12], with the perceived game
play deteriorating considerably as the latency increases. An impor-
tant factor for world spanning games, such as MMOGs, lies in the
diversity of its user base. There will, at any point in time, be a
number of players connected from different physical locations. It
has, however, been shown that distinct groupings will appear, and
change with the time-of-day [9, 17]. There have been made few
efforts into determining how best to support the dynamic player
masses in virtual worlds hosting thousands of concurrently inter-
acting players, when geographically distributed servers are avail-
able.

In this paper, we have presented a viable solution with geograph-
ically distributed servers. We have shown how core selection can
be used to find an optimal node in the system for placing a vir-
tual region, and correspondingly the players interacting in that re-
gion. Once an optimal node has been located we can migrate the
game state to that node, maintaining references to the migrated state
through the use of our distributed name service. By performing this
migration, the overall latency of that region can be lowered, i.e.,
the decrease in average network latency will by far outweigh the
increased overhead of remote method invocations.

Thus far, we have implemented the migration and name service
as a proof-of-concept, and run some basic tests to determine its
usability. Furthermore, we have run simulations on core selection
and determined its applicability in the scenarios we have described.
Now, it remains to integrate this functionality with an application
and run large-scale tests.

7. REFERENCES
[1] ARMITAGE, G. Optimising online fps game server discovery through

clustering servers by origin autonomous system. In Proceedings of

the International Workshop on Network and Operating System

Support for Digital Audio and Video (NOSSDAV) (May 2008).

[2] BALAN, R. K., EBLING, M., CASTRO, P., AND MISRA, A. Matrix:
Adaptive middleware for distributed multiplayer games. In

Middleware (2005), G. Alonso, Ed., vol. 3790 of Lecture Notes in
Computer Science, Springer, pp. 390–400.

[3] BEIGBEDER, T., COUGHLAN, R., LUSHER, C., PLUNKETT, J.,
AGU, E., AND CLAYPOOL, M. The effects of loss and latency on
user performance in unreal tournament 2003. In the Proceedings of

NetGames’04, Portland, Oregon, USA (August 2004), 144–151.

[4] BESKOW, P., HALVORSEN, P., AND GRIWODZ, C. Latency
reduction in massively multi-player online games by partial
migration of game state. Second International Conference on
Internet Technologies and Applications, Wrexham, Wales (September
2007), 153–163.

[5] BROOKES, B. The derivation and application of the Bradford-Zipf
distribution. Journal of Documentation 24, 4 (1968), 247–265.

[6] CHAMBERS, C., CHANG FENG, W., CHI FENG, W., AND SAHA, D.
A geographic redirection service for on-line games. In Proceedings
of the eleventh ACM international conference on Multimedia,

Berkeley, CA, USA (November 2003), 227–230.

[7] CHAMBERS, C., CHANG FENG, W., SAHU, S., AND SAHA, D.
Measurement-based characterization of a collection of on-line
games. In the Proceedings of the 5th ACM SIGCOMM Workshop on

Internet measurement, Berkeley, CA, USA (October 2005), 1–14.

[8] CHANG FENG, W., CHANG, F., CHI FENG, W., AND WALPOLE, J.
Provisioning on-line games: a traffic analysis of a busy
Counter-strike server. In the Proceedings of the 2nd ACM SIGCOMM

Workshop on Internet measurement, Marseille, France (November
2002), 151–156.

[9] CHANG FENG, W., AND CHI FENG, W. On the geographic
distribution of on-line game servers and players. In the Proceedings

of NetGames’03, Redwood City, California, USA (May 2003),
173–179.

[10] CLAYPOOL, M. The effect of latency on user performance in
real-time strategy games. Elsevier Computer Networks 49, 1 (Sept.
2005), 52–70.

[11] CLAYPOOL, M. Network characteristics for server selection in
online games. In Proceedings of the fifteenth Annual Multimedia

Computing and Networking (MMCN’08), San Jose, CA, USA 6818

(January 2008), 681808.

[12] CLAYPOOL, M., AND CLAYPOOL, K. Latency and player actions in
online games. Communications of the ACM 49, 11 (Nov. 2005),
40–45.

[13] DE VLEESCHAUWER, B., VAN DEN BOSSCHE, B., VERDICKT, T.,
DE TURCK, F., DHOEDT, B., AND DEMEESTER, P. Dynamic
microcell assignment for massively multiplayer online gaming. In the
Proceedings of NetGames’ 05, Hawthorne, NY, USA (Oct. 2005),
1–7.

[14] DICK, M., WELLNITZ, O., AND WOLF, L. Analysis of factors
affecting players’ performance and perception in multiplayer games.
In the Proceedings of NetGames’05, Hawthorne, NY, USA (October
2005), 1–7.

[15] DUONG, T., AND ZHOU, S. A dynamic load sharing algorithm for
massively multiplayer online games. In the Proceedings of ICON’03,
Sydney, Australia (October 2003), 131–136.

[16] FUNCOM. Anarchy Online. http://www.anarchy-online.com/, June
(2008).

[17] GRIWODZ, C., AND HALVORSEN, P. The fun of using TCP for an
MMORPG. In Proceedings of the International Workshop on

Network and Operating System Support for Digital Audio and Video

(NOSSDAV) (May 2006), ACM Press, pp. 1–7.

[18] KARAMAN, A., AND HASSANEIN, H. S. Core-selection algorithms
in multicast routing - comparative and complexity analysis.
Computer Communications 29, 8 (2006), 998–1014.

[19] MEDINA, A., LAKHINA, A., MATTA, I., AND BYERS, J. BRITE:
Universal topology generation from a user’s perspective. Tech. Rep.
BUCS-TR-2001-003, Computer Science Department, Boston
University, Apr. 2001.

[20] ZNATI, T. B., AND MOLKA, J. A simulation based analysis of
naming schemes for distributed systems. In Proceedings of the 25th

Annual Simulation Symposium (Los Alamitos, CA, USA, Apr. 1992),
pp. 42–53.


