
A simple improvement of the work-stealing scheduling algorithm

Željko Vrba, Pål Halvorsen, Carsten Griwodz

Simula Research Laboratory, Oslo, Norway

Department of Informatics, University of Oslo, Norway

{zvrba,paalh,griff}@ifi.uio.no

Abstract

Work-stealing is the todays algorithm of choice for

dynamic load-balancing of irregular parallel applica-

tions on multiprocessor systems. We have evaluated

the algorithm’s efficiency on a variety of workloads,

including scatter-gather workloads, which occur in

common algorithms such as MapReduce. We have

discovered that work-stealing scheduling suffers seri-

ous scalability problems with fine-grained parallelism

because of contention over run-queues. We therefore

propose a simple modification to the work-stealing al-

gorithm that significantly improves its performance on

scatter-gather workloads, without any negative impact

on other types of workloads.

1. Introduction

There exist many computations that can be rel-

atively easily parallelized, but whose subtasks have

irregular CPU demands, e.g., sorting, rendering or

video-encoding. Such applications can be parallelized

by using frameworks such as Cilk [1] or Threading

Building Blocks [2] (TBB). These frameworks encour-

age application developers to fine-grained parallelism,

i.e., to create many more subtasks than there are

available CPUs. The division of work among subtasks

is often imperfect, and the framework must provide an

efficient run-time that can efficiently map ready tasks

to CPUs, thus dynamically balancing the workload.

One of the simplest, yet best-performing in practice,

dynamic load-balancing algorithms for shared-memory

architectures is work-stealing [3], which is also used

by Cilk and TBB.

In our previous papers [4], [5], we have described

Nornir, a run-time environment for executing Kahn

process networks in which we have implemented the

work-stealing scheduler and a scheduler based on

graph-partitioning [6]. We have found that the work-

stealing scheduler yields superior performance as long

as the ratio of useful work and context-switch overhead

is ≥ 75 [7].

In this paper, we analyze performance of the

work-stealing scheduling algorithm [3] when used for

scheduling scatter-gather workloads, i.e., workloads

that use barriers, such as the frequently-used MapRe-

duce framework. Our evaluations show that contention

over the run-queues can cause severe performance

degradation when subjected to finely-grained scatter-

gather workloads. We therefore propose a simple mod-

ification to the work-stealing algorithm. Our mod-

ification significantly improves the algorithm’s per-

formance on scatter-gather workloads, without any

negative impact on other types of workloads.

2. Work stealing

The work stealing algorithm uses a m:n scheduling

model, where a kernel-level thread is created for each

CPU in the system. Each thread has an own run-queue

holding tasks that are ready for execution. A thread

takes the next task to be executed from the front of the

queue, and the task runs uninterrupted until it blocks.

When a task is about to block, it invokes a user-

mode context-switch routine to switch to the thread’s

scheduling routine which selects the next task to run.

A blocked task can be unblocked only by an another,

already running, task. An unblocked task is placed at

the front of the run-queue belonging to the CPU on

which the unblocking task is running. In other words,

a thread accesses its own run-queue only at the front,

as shown in in figure 1.

When the thread’s own run-queue is empty, the

thread enters a busy-waiting loop in which it chooses a

random thread (“victim”) and tries to steal a task from

the back of its run-queue. The loop can finish in two

ways:

1) The victim’s run-queue is not empty, so the

steal attempt succeeds, and the stolen task is

dispatched.

CPU i CPU j

dispatch

unblock

steal

Figure 1. Queue operations in work stealing. CPU
i accesses its own queue only at the front, while it

steals tasks from other CPUs only from the back.

2) There are no more ready tasks, so the program

is finished, and the thread exits. (Consequently,

all threads will exit.)

If neither is the case, the thread calls the

sched_yield function to yield before starting

the next loop iteration.

3. Scheduling in Nornir

Nornir [4], [5] is a run-time environment for exe-

cuting Kahn process networks [8] (KPNs). A KPN is

represented by a directed graph where nodes (tasks)

represent computation and arcs (channels) represent

communication between tasks. For practical purposes

(see [4], [5] for details), channels are assigned finite

capacities, and a task blocks when it tries to read a

message from an empty channel, or when it tries to

send a message to a full channel. They may ohterwise

run concurrently, and may be scheduled with any fair

scheduling algorithm. In Nornir, channels are protected

from concurrent accesses with a busy-waiting mutex:

if a task attempts to lock an already locked mutex,

it yields to the scheduler, which can then schedule

another task.

Nornir uses the m:n scheduling algorithm, where

many user-space tasks are mapped to few kernel-level

threads. Nornir spawns as many threads as there are

CPUs in the machine, binds each thread to its own

CPU, and uses the basic idea of the work-stealing al-

gorithm for load-balancing. Scheduling is cooperative,

which means that a task must voluntarily yield or block

before another task can be scheduled on the same CPU.

We have implemented two variants of the work-

stealing algorithm; the difference between them is

placement of a newly unblocked task. The original

algorithm, as described in [3] places the task on the

same CPU as the task that is doing the unblocking. The

modified algorithm places the task on the last CPU that

it was executed on. Both variants operate in the LIFO

manner, i.e., each CPU will execute the most recently

unblocked task. This modification actively distributes

workload among CPUs, instead of making CPUs to

look for more work. Thus, with the original algorithm,

a task may be migrated to another CPU by being stolen

or unblocked, while with our modified algorithm, a

task may only be migrated by being stolen.

In our work-stealing implementation, we have used

mutexes to protect the CPU’s run-queues instead of

the non-blocking queue of Arora et al. [3]. The reason

for this is two-fold: 1) simpler implementation that

does not negatively impact scalability on up to 8 CPUs

(the results of Saha et al. [9] show that even a single,

centralized queue does not limit scalability on up to

8 CPUs), 2) the non-blocking queue presented in [3]

supports concurrent insertions on only one end, so we

could not have used it to implement our modification

to the original algorithm.

4. Evaluation

We have evaluated the original and modified work-

stealing algorithms (further referred to as WS-CUR

and WS-LAST,1 respectively) on the scatter-gather

workload as well as on a number of other work-

loads [5]. Since both algorithm variants give similar

performance results on applications other than scatter-

gather, we present here only the insights gained from

the experiments on the scatter-gather workloads.

Scatter-gather is a synthetic workload that models

real situations, such as communication between stages

of a MapReduce computation. It is implemented as a

KPN running on Nornir, where a single central task

(p0) is communicating with n worker tasks, as shown

in figure 2. p0 executes m rounds of the following

procedure. First, it sends to each worker a single

message representing a workload of w CPU seconds.

Upon receipt of a message, a worker spends w seconds

of CPU time, and then it sends a reply message back

to p0. In the meantime, p0 waits to receive a reply

from all workers, and then begins the next round of

distributing work to workers, thus acting as a barrier.

Workers spend CPU time by executing wT0 itera-

tions of a loop that divides two 64-bit integers. Here,

T0 is the number of loop iterations that uses one second

of CPU time on our benchmark machine. To control

parallelism granularity, the workload per message w is

determined according to the formula w = T/d, where

both T and d (work-division factor) are user-specified

parameters. Thus, the total workload executed by the

workers is W = nmw = nmT/d CPU seconds. A

1. The names are mnemonic: the original (CURRENT) algorithm
unblocks a task to the current CPU of the unblocking task, whereas
the modified algorithm unblocks a task to the LAST CPU it ran on.

p0

w1w2

w3

w4 w5

wn

Figure 2. Scatter-gather topology.

more detailed discussion of this benchmark and the

results presented here can be found in [10].

We have run the benchmarks on an otherwise idle

2.6 GHz AMD Opteron machine with 4 dual-core

CPUs, 64 GB of RAM running Linux kernel 2.6.27.3.

The benchmark program has been compiled as 64-bit

with GCC 4.3.2 and maximum optimizations (-m64

-O3 -march=opteron). Each data point is calcu-

lated from the median2 of 9 consecutive measurements

of the total real (wall-clock) running time. This metric

is most representative because it accurately reflects the

real time needed for task completion, which is what

the end-users are most interested in. Our investigation

is comprised of four different experiments, which we

present individually.

Experiment 1: We have first compared the run-

ning time the scatter/gather benchmark on 8 CPUs

over the running time on 1 CPU. The experiment

was run with n ∈ {50, 250, 500, 750, 1000} work-

ers, and work division varying over the set d ∈
{100, 1000, 10000, 20000, . . . , 10

5}. The number of

rounds m was computed as m = ⌊50d/n⌋ so that

the total amount of work distributed by p0 is held

constant at W = 50 CPU seconds. Figure 3 shows

the relative speedup on 8 CPUs; for clarity, only the

results for n ∈ {50, 250} are presented, but the other

experiments show identical behavior. From the figure,

it is obvious that for d ≥ 10000 the performance of

WS-CUR starts degrading much more rapidly than the

performance of WS-LAST. At d = 10
5, the speedup is

barely greater than 1 under the WS-CUR algorithm, but

it is still above 4 under the WS-LAST algorithm. The

speedup decreases as d increases because the useful

work performed by each worker decreases, which

causes the threads to engage in stealing more often.

This, in turn, causes greater contention over the run-

queues, and prolongs the thread’s waiting time on the

2. We have investigated also correlation with other quantities,
such as rate of steal attempts, that we cannot discuss extensively
for space reasons. Using median allowed us to use the values of
other measured variables as is. Mean value would not correspond
to any particular measurement, and it would be unclear how other
variables could be interpolated. The observed variation in running
times is small, so the difference between using median and mean is
negligible.

Speedup for WS−CUR and WS−LAST

Work division

S
p

e
e

d
u

p

2

3

4

5

6

7

1
0
0

1
0
0
0

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

6
0
0
0
0

7
0
0
0
0

8
0
0
0
0

9
0
0
0
0

1
0
0
0
0
0

of workers

50

250

Algorithm

ws.cur

ws.last

Figure 3. Scatter-gather speedup (8 over 1 CPUs).

run-queue’s mutex. For example, at d = 10000, WS-

CUR performs ∼ 4.2 · 10
5 steal attempts per second,

while WS-LAST performs ∼ 1.1 · 10
5 steal attempts

per second, which is almost four times lesser rate.

We can also see that speedup of the scatter/gather

benchmarks increases with the number of workers,

independently of work division and the work-stealing

variant. The largest increase in speedup is at the

transition from 50 to 250 workers. Since 50 workers

is already a much larger number than the number of

CPUs used in the experiment (8), we have designed

another experiment to find the causes of this behavior.

Experiment 2: In this experiment, we further inves-

tigate the relation between the number of workers and

speedup, which is clearly visible in figure 3. We have

fixed work division to d = 10000, corresponding to

∼ 100µs of work per message, the number of rounds

to m = 12500, and we have varied the number of

workers over the set n ∈ {8, 16, 32, 64, 128, 192, 256}.

We have chosen these numbers based on the results

shown in figure 3: d = 10000 is the critical value

at which speedup starts decreasing rapidly, yet it is

still reasonably high. The number of rounds m was

determined so that the total amount of work performed

by all workers for n = 8 is at least 10 seconds. In

general, the total workload in this benchmark can be

calculated as W = n · 12500 · T/10
4

= 1.25n CPU

seconds, which also sets the lower bound for running

time on 1 CPU. Having more workers or rounds would

lead to unreasonably long running times on 1 CPU be-

cause the number of rounds and work division are held

constant. This is unlike the previous experiment, where

the number of rounds m was adjusted in order to hold

W constant. Consequently, as n (resp. W) increases,

the ratio of useful work to scheduling overheads also

increases.

In figure 4, we can see that speedup increases with

the number of workers n; at n = 256, WS-CUR has

Speedup for WS−CUR and WS−LAST

Number of workers

S
p

e
e

d
u

p

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8

1
6

3
2

6
4

1
2
8

1
9
2

2
5
6

Policy

ws.cur

ws.last

Figure 4. Scatter/gather on 8 CPUs: speedup and
steal rate vs. number of workers.

a speedup of 5.7, and WS-LAST has speedup of 7.6.

The general trend is that the rate of the increase dimin-

shes with n, and that increasing n further would not

significantly affect speedup. However, the performance

improvement with increasing n is limited, and it did

not meet our expectations. We thus conjecture that the

key factor in determining efficiency of work-stealing

on the scatter-gather workload is CPU time spent on

processing a single message.

Experiment 3: With this experiment, we attempt

to validate the previous conjecture. We have fixed the

number of rounds to m = 12500, varied the number of

workers over the set n ∈ {16, 50, 250} and work per

message over the set w ∈ {25, 50, 100, 200, 400, 800}
microseconds. In terms of the scatter/gather benchmark

description, we have fixed work division to d = 10000

and varied T , which was fixed to 1 in the previous

experiments, over the set T ∈ {0.25, 0.5, 1, 2, 4, 8}.

We have first noticed that the total running time

grows slower than linearly with each doubling of work

per message w until a certain threshold (see figure 5).

The effect is most visible at 16 workers, where we

can observe that for T < 4, doubling its value leads

to an increase on y-axis which is less than 1. Since

the y-axis shows the base-2 logarithm of the running

time, this means that a two-fold increase in w leads to

a less than two-fold increase in the running time. This

is because CPUs start spending more time executing

useful work than spinning in the stealing loop. Under

WS-CUR, the effect is visible for all worker counts,

while under WS-LAST, the effect is less pronounced

at 50 workers and almost non-existent at 250 workers.

In figure 5, we can also see the relation between

speedup and CPU time per message. Both algorithms

exhibit a significant performance improvement as T
increases from 25µs to 100µs, which is correlated

with the drop in steal rate. Performance continues to

increase as w grows toward 800µs per message, but

much more so for the WS-CUR algorithm than for

the WS-LAST algorithm. In other words, WS-LAST

approaches the maximum speedup at lower values of

w which indicates that it is better suited for executing

finely-grained parallel applications.

This experiment thus confirms the conjecture that

the efficiency of work-stealing is dependent on pro-

cessing time per message. However, another anomaly

has appeared: for w = 800µs, the speedup at 50

workers is less than the speedup at 16 and 250 workers.

We investigate this anomaly in the next experiment.

Experiment 4: To investigate how the number of

workers affects speedup, we have fixed work division

to d = 10000, work per message to w = 800µs,

and varied the number of workers from 16 to 48 in

steps of 1. We have investigated only the WS-LAST

(modified) algorithm, since the previous experiments

have shown that WS-LAST and WS-CUR have simi-

lar qualitative performance characteristics, except that

WS-CUR yields lower speedup.

Figure 6 shows the speedup of WS-LAST on 8

CPUs, with the plot exhibiting a distinct sawtooth

shape. The speedup achieves local minimums for

n mod 8 = 1 and local maximums for n mod 8 = 0.

This indicates that the workers are executed in batches.

In each round, ⌊n/8⌋ batches are executed in which

all 8 CPUs are busy executing workers. If n is not

evenly divisible by 8, there will be an overflow batch

in which only n mod 8 CPUs are busy executing work-

ers, while the other CPUs are attempting to steal work

from other CPUs. However, no additional work exists

because the central process (p0) starts a new round

only after all workers have processed their messages

in the current round. The overflow batch, if it occurs,

stalls 8 − n mod 8 CPUs, which decreases the total

speedup in proportion with the number of the stalled

CPUs. Thus, the number of workers in scatter-gather

workloads should be divisible by the number of CPUs.

We can also see from the figure that speedup max-

imums are relatively constant, while speedup mini-

mums increase with n. This is because the fraction

of the total work W performed just by the overflow

batch decreases as n increases, which also decreases

the time that the stalled CPUs spend in waiting. Thus,

the ratio of waiting time and the total running time

decreases, which leads to greater speedup.

5. Discussion

We have evaluated performance of the original (WS-

CUR) and modified (WS-LAST) work-stealing algo-

rithms, with the main goal being to understand the

Work per message (T; 100us)

R
u

n
n

in
g

 t
im

e
 (

lo
g

2
 s

)

1

2

3

4

5

6

7

8

16
0
.2

5
0
.5 1 2 4 8

50

0
.2

5
0
.5 1 2 4 8

250

0
.2

5
0
.5 1 2 4 8

Policy

ws.cur

ws.last

Work per message (T; 100us)

S
p

e
e

d
u

p

2

3

4

5

6

7

16

0
.2

5
0
.5 1 2 4 8

50

0
.2

5
0
.5 1 2 4 8

250

0
.2

5
0
.5 1 2 4 8

Policy

ws.cur

ws.last

Figure 5. Scatter/gather on 8 CPUs with 16 workers: speedup and steal rate vs. work per message.

Speedup for WS−LAST

Number of workers

S
p
e
e
d
u
p

6.0

6.5

7.0

7.5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

Figure 6. Scatter/gather speedup under WS-LAST

on 8 CPUs with 16–48 workers and T = 8

performance of work-stealing under different work-

loads and different parallelism granularities. In this

respect, our evaluation complements the work of Saha

et al. [9]. Even though they emphasize that fine-grained

parallelism is important when there are many CPUs

in the system, they have not attempted to quantify

parallelism granularity. By using a cycle-accurate sim-

ulator, they investigated the scalability of work-stealing

on a CPU having up to 32 cores, where each core

executes 4 hardware threads round-robin. Their main

finding is that contention over run-queues generated

by work-stealing can limit, or even worsen, application

performance as new cores are added, and they suggest

that static load-balancing be used in such cases.

We deem that their results do not give a full picture

about WS performance, because contention depends on

three additional factors, neither of which is discussed

in their paper, and all of which can be used to reduce

contention:

• Decreasing the number of CPUs to match the

average parallelism available in the application.

• Overdecomposing an application, i.e., increasing

the total number of tasks in the system propor-

tionally with the number of CPUs.

• Increasing the amount of work a task performs

before it blocks again.

The average parellelism is a property intrinsic to the

problem at hand and little can be done to change it.

Nevertheless, even if the number of CPUs is less than

or equal than the application’s average parallelism, the

choice of other two factors can significantly influence

the overall performance.

The scatter-gather workload, which we have used to

investigate work-stealing performance, is a common

pattern that uses barrier synchronization and which

occurs in applications such as MapReduce. The per-

formance of this pattern is hard to characterize, and

we had to perform several different experiments to

fully understand it. There is a big qualitative difference

between WS-CUR and WS-LAST on this workload:

as work per message w falls below 1000µs, both al-

gorithms degrade in performance, but WS-CUR much

more so than WS-LAST. As w drops from 1000µs

to 100µs with 50 workers, the speedup drops from

6.9 to 5.3 under WS-CUR, but much less, from 7.1

to 6.8, under WS-LAST. The trend continues: as w
grows further, the speedup under WS-CUR appears

to decay exponentially, but under WS-LAST it drops

only linearly (see figure 3). The same figure shows that

speedup depends on the number of workers n: there is

a significant gain as n increases from 50 to 250, and

somewhat smaller gain as n increases toward 1000 (not

shown in the figure for clarity).

Further experiments have shown that the best

speedup is obtained with relatively large work gran-

ularity (w ≥ 100µs), but in those cases n must be

large or divisible by the number of CPUs N . When n

is small (n < 50), and not divisible by N , the speedup

can be drastically limited, as shown in figure 6. Also,

as figure 5 indicates, WS-LAST reaches the speedup

plateau for smaller w values than WS-CUR, which

indicates that WS-LAST is better-suited to fine-grained

parallelism, at least with scatter/gather workloads.

As expected, we have also observed a consistent

inversely-proportional relationship between speedup

and the steal rate (not shown in the figures due to

the lack of space). On 8 CPUs, a satisfactory speedup

(≥ 7) is obtained as long as all CPUs together perform

fewer than ∼ 10
5 steal attempts per second.

WS-CUR and WS-LAST have otherwise almost the

same performance characteristics for other workloads.

Based on the above discussions, we give several guide-

lines for using work-stealing scheduling algorithms:

• WS gives good performance if each task performs

at least 100µs (∼ 100 times larger than transac-

tion cost) of work, independently of communica-

tion patterns between tasks, between it is waken

up and it blocks again.

• Alternatively, the rate of steal attempts, summed

over all CPUs, should be held under 10
5 per

second. This depends on the application’s com-

munication patterns and is hard to control directly;

in some cases even more fine-grained parallelism

can be achieved, down to 10µs of work per

message.

• The speedup of the scatter/gather applications is

heavily influenced by the number of worker tasks.

We thus recommend that the number of workers

be made divisible by the number of CPUs in

cases where they all perform approximately equal

amount of work.

Finally, another contribution of our experiments is

demonstrating that work-stealing can in certain sce-

narios perform worse than theoretical analyses [3]

indicate, even with relatively many workers and coarse-

grained parallelism.

6. Conclusions

In this paper, we have studied performance of

the work-stealing scheduling algorithm [3] on scatter-

gather workloads. These workloads are common, and

we have shown that they are particularly elusive to

efficient scheduling with work-stealing. We have pro-

posed a simple improvement to the work stealing al-

gorithm that can bring significant performance benefits

to scatter-gather workloads, without negative impact on

other classes of workloads. Our improvement actively

distributes the load and significantly reduces reduces

contention over the run-queues. Reducing contention

will be even more important for future applications as

computer systems are equipped with increasingly many

cores.

References

[1] M. Frigo, C. E. Leiserson, and K. H. Randall, “The
implementation of the Cilk-5 multithreaded language,”
in Proceedings of the ACM Conference on Program-
ming Language Design and Implementation, Montreal,
Quebec, Canada, Jun. 1998, pp. 212–223.

[2] Intel Corporation, “Threading building blocks,” http://
www.threadingbuildingblocks.org.

[3] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, “Thread
scheduling for multiprogrammed multiprocessors,” in
Proceedings of ACM symposium on Parallel algorithms
and architectures (SPAA). New York, NY, USA: ACM,
1998, pp. 119–129.

[4] Ž. Vrba, P. Halvorsen, and C. Griwodz, “Evaluating
the run-time performance of kahn process network im-
plementation techniques on shared-memory multipro-
cessors,” Complex, Intelligent and Software Intensive
Systems, International Conference, pp. 639–644, 2009.

[5] Ž. Vrba, P. Halvorsen, C. Griwodz, P. Beskow, and
D. Johansen, “The nornir run-time system for parallel
programs using kahn process networks,” in 6th Interna-
tional Conference on Network and Parallel Computing
(NPC). IEEE Computer Society, October 2009, pp.
1–8.

[6] U. Catalyurek, E. Boman, K. Devine, D. Bozdag,
R. Heaphy, and L. Riesen, “Hypergraph-based dynamic
load balancing for adaptive scientific computations,”
in Proc. of 21st International Parallel and Distributed
Processing Symposium (IPDPS’07). IEEE, 2007,
also available as Sandia National Labs Tech Report
SAND2006-6450C.

[7] Ž. Vrba, H. Espeland, P. Halvorsen, and C. Griwodz,
“Limits of work-stealing scheduling,” in Job Scheduling
Strategies for Parallel Processing (14th International
Workshop, JSSPP 2009). Springer Berlin / Heidelberg,
May 2009, pp. 280–299.

[8] G. Kahn, “The semantics of a simple language for par-
allel programming.” Information Processing, vol. 74,
1974.

[9] B. Saha, A.-R. Adl-Tabatabai, A. Ghuloum, M. Ra-
jagopalan, R. L. Hudson, L. Petersen, V. Menon,
B. Murphy, T. Shpeisman, E. Sprangle, A. Rohillah,
D. Carmean, and J. Fang, “Enabling scalability and per-
formance in a large scale cmp environment,” SIGOPS
Oper. Syst. Rev., vol. 41, no. 3, pp. 73–86, 2007.

[10] Ž. Vrba, “Implementation and performance aspects of
kahn process networks,” Ph.D. dissertation, Faculty of
Mathematics and Natural Sciences, University of Oslo,
2009, no. 903.

