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Abstract

Internet services like the world-wide web and multime-
dia applications like News- and Video-on-Demand have be-
come very popular over the last years. Due to the large
number of users that retrieve multimedia data with high
data rates concurrently, the data servers represent a severe
bottleneck in this context. Traditional time and resource
consuming operations like memory copy operations limit
the number of streams that can concurrently be transmitted
from the server. To avoid this bottleneck and make mem-
ory and CPU resources available for other tasks, i.e., more
concurrent clients, we have implemented a specialized zero-
copy data path from the storage system through the com-
munication system out to the network. In order to perform
better than existing related approaches, we remove over-
head of memory related operations by statically allocating
the necessary buffers. In this paper, we describe the design,
implementation, and evaluation of the zero-copy data path.
Our results show the potential for substantial performance
improvement when moving data through the communication
system without any copy operations and using statically al-
located buffers.

1 Introduction

There has been a tremendous growth in the use of mul-
timedia Internet services, and in particular, applications
like News-on-Demand and Video-on-Demand have become
very popular. Thus, the number of users, as well as the
amount of data each user downloads from servers on the In-
ternet, is rapidly increasing. Current mid-priced personal
computers are capable of handling the load that such mul-
timedia applications impose on the client system, but in the
Media-on-Demand (MoD) servers, the potentially (very)
high number of concurrent users retrieving data represents
a problem. In MoD servers in general, commodity oper-
ating systems represent the major performance bottleneck,
becauseoperating systems are not getting faster as fast as
hardware[12]. There are two basic orthogonal approaches

for this problem: (1) development of an architecture for a
single server that makes optimal use of a given set of re-
sources, i.e., maximize the number of concurrent clients a
single server can support; and (2) combining servers, e.g.,
in a server farm or cluster, to scale up the number of con-
current users.

In the INSTANCE project, we concentrate on the first ap-
proach of developing a new architecture for single servers.
Our target application domain are MoD applications, and
we want to support multiple concurrent users each retriev-
ing a high data rate multimedia stream. The operating sys-
tem and server architecture must therefore be improved and
optimized. Crucial issues of server design and implemen-
tation include copy operations and multiple copies of the
same data element in main memory [13]. Major bottlenecks
in high throughput systems are therefore theread() and
sendto()system calls (and their equivalents), which copy
data between the kernel memory region and an application
buffer in user space. This is expensive for various reasons
[3]:

• The bandwidth of main memory is limited, and every
copy operation is effected by this.

• A lot of CPU cycles are consumed for every copy op-
eration. Often, the CPU must move the data word-by-
word from the source buffer to the destination. This
means that the CPU will be unavailable during the
copy operation.

• Data copy operations affect the cache. Since the CPU
accesses main memory through the cache, useful infor-
mation resident in the cache before the copy operation
is flushed out and replaced by the data being copied.

To avoid the memory copy bottleneck, several mecha-
nisms have been proposed (for a detailed state-of-the-art
overview, see [13]), using mechanisms like page remapping
and shared memory. In INSTANCE, we aim at a highly spe-
cialized mechanism to move data through the server as fast
as possible and with minimal resource consumption. Most
of the existing mechanisms support all general operating
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system operations. However, in INSTANCE, we can make
some simplifications and optimizations. Our specialized
zero-copy data path can therefore be tuned to optimize per-
formance for the main task in INSTANCE, i.e., transmitting
data from the storage system through the communication
system out to the network. This means that only streaming
mechanisms likesplice()[4], sendfile()[7] andMMBUF [2]
are of interest in our server system. In order to minimize the
kernel operations of such streaming mechanisms, we have
designed and implemented an even more specialized mech-
anism that removes overhead like per-operation allocation
of memory and variables by statically allocating the neces-
sary buffers.

In the past, zero-copy solutions have been extensively
studied before in various contexts. Our memory usage does
not outperform similar zero-copy data paths, but in addi-
tion to removing copy operations, we do save CPU cycles
compared to other approaches. It is the goal of this work
to illustrate some of the compromises and tradeoffs using
static versus dynamic buffer allocation, and we present in
this paper the design and implementation of our zero-copy
data path. Additionally, we give a short evaluation of the
system and present measurement results. The remainder of
this paper is organized as follows: Section 2 presents our
design. In Section 3, we describe our implementation based
on NetBSD. In Section 4, we present the results from our
performance experiments. We summarize and conclude the
paper in Section 5.

2 Design Considerations

In our scenario, the application process itself in user
space does not need to access the data. We can therefore
make some simplifications and optimizations, because there
are no updates on the data being sent, and data will be sent
periodically consuming in each period a given set of re-
sources.

Furthermore, the introduction of dynamic resource man-
agement is motivated by the need for efficient use of scarce
resources on a machine. The compromise is that dynamic
allocation often results in less predictable performance and
makes it harder to make reservations. In a MoD application
delivering timely data, this is an important issue. We have
chosen to design and implement a static resource allocation
to both enable an efficient reservation scheme and reduce
overall processor cycle requirement per stream. Using a
static buffer also gives a reduction in allocation and deal-
location cost, because it is performed only at the beginning
and end of the life of a stream and not for each packet. Thus,
buffer allocation is done with static buffers pinned in main
memory, i.e., staticmbuf s andbuf s, which are the buffer
structures used by the networking and file subsystems, and
static data buffers.

In summary, the basic idea of our concept is to create
a fast in-kernel data path, i.e., removing the copy opera-
tions between the kernel and the application running in user
space, and to remove as many instructions per read and send
operation as possible. The I/O operations in the storage and
the communication system can use different sizes; allow-
ing them to be optimized separately. This makes supporting
buffer-streams with variable bit rate easier. The storage sys-
tem can be optimized for reading as fast as possible, while
send parameters can be adjusted to achieve constant or vari-
able bit rate. The scheme is based on the assumption of a
memory area shared between the file and networking sys-
tems. It does not preserve copy semantics as opposed to
systems such as Genie [1]. Changes made by the file sys-
tem code to a buffer will be visible to the networking code.

3 Implementation

3.1 Data Path

The basic idea of our in-kernel data path is depicted in
Figure 1, where both file system and communication system
share a memory region for data. The application is removed
from the data path and will not have access to the data. If
this is required, the existing mechanisms in NetBSD should
be used.

Operating System

File System Communication System

Memory

Bus(es)

buf mbufb_data m_data

Disk Driver Network Driver

physical data path

data pointers

Figure 1. Basic idea.

When a user requests data from the disk, the file system
sets theb data pointer in thebuf structure to the shared
memory region. This structure is sent to the disk driver,
and the data is transferred into thebuf.b data memory
area. Furthermore, the communication system also sets the
mdata pointer in thembuf structure to the shared mem-
ory region. When thembuf is transferred to the network
driver, it copies the data from thembuf.m data address
to the transmit queue of the network card. Thus, the phys-
ical data path is reduced to a data transfer from disk to a
shared memory area and a transfer from memory to the net-
work card. This means that we have no physical in-memory
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copy operations, not even between the kernel sub-systems.
The logical data path (or control path), however, goes from
disk to the file system, and from the file system to applica-
tion process. From the application process it continues to
the communication system, and then to the network card.
This is identical to the traditional data path using theread()
andsendto()system calls.

The second idea of our design is to reduce the number
of instructions for eachread andsendoperation. This is
done by statically allocating the shared memory region and
all thebuf andmbuf structures, in an INSTANCE-buffer,
as shown in Figure 2. This means that the time normally
spent on allocating memory and variables is saved in our
system, and the transfer of the data pointer between the file
system and communication system can be done during the
stream set up. All theb data andmdata pointers are set
statically into the memory region. The size of the data re-
gion for eachbuf andmbuf depends on the requested disk
read and network packet size, because eachbuf is used for
one disk request, and eachmbuf is sent as one packet. To
ensure that we do not have any fragmentation in the data
area, which might result in empty packets, each disk re-
quest reads one disk block. To optimize read performance
in an application performing mostly sequential read opera-
tions, we use a file system with a64 KB block size. To save
time for disk requests and to be able to send data while we
also read new data from the disk, we will have several al-
ternating INSTANCE-buffers in one stream. In the current
implementation, we have two buffers alternating between
read and send operations.

Since all the resources are statically allocated, we must
take special care when using these buffers in the kernel sub-
systems. For example, when a packet is sent, the disk driver
callsmfreem() , which frees the transmittedmbuf struc-
ture and inserts it into the pool of freembuf s. To avoid
mixing our buffers with the buffers exclusively managed by
the sub-systems, we use special flags in thebuf andmbuf
structures and check for these flags in the traditional kernel
functions.

3.2 Application Programming Interface (API)

The zero-copy data path is available to user processes
through a new stream API:

instancealloc(): This system call opens the requested file,
opens a connected socket, and allocates all neces-
sary variables, structures, and data areas. If the re-
quested memory resources cannot be allocated during
the opening of the stream, the request is aborted as
there are no available resources. Otherwise, all data
pointers in thebuf andmbuf structures are set to the
shared data area, i.e., eachbuf.b data pointer is in-
creased with64 KB, and eachmbuf.m data pointer

data
area

mbuf
structures

INSTANCE

header
buffer

buf
structures

first_mbuf
first_buf
data

Figure 2. Illustration of an INSTANCE-buffer.

is increased with the size of the MTU1 (subtracted the
size of the packet headers). This means that the buffer
structures for file system I/O are set to read one disk
block (64 KB which is the maximum read size), and
the buffer structures for communication system I/O is
optimized to the maximum packet size in the underly-
ing network, i.e., the amount of data in each packet is
pre-fabricated and the packet size is optimized for per-
formance where no IP fragmentation appears. Thus, in
addition to allocating the necessary kernel resources,
this system call performs operations equivalent to call-
ing theopen(), socket(), andconnect()system calls.

instancefree(): To close the stream and free all the used
stream resources, this system call replaces the tradi-
tionalclose()call.

instanceread(): To read data from the disk into the alter-
nating stream buffers, this stream version of theread()
system call retrieves data from the disk. First, all
empty buffers are filled. In later operations, the whole
buffer is filled in the first read operation to the selected
buffer regardless of the requested read size. Thus, we
use read-ahead prefetching of data by sending all the

1We have used the NIC MTU to at least avoid fragmentation on the first
link, but one can send an “MTU request” to get the maximum path MTU
to avoid any fragmentation.
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buf structures to the disk driver which may then op-
timize the read requests, e.g., reduce seek time on the
disk. The read offset in the buffer is set to the requested
size, but the file offset in the process’file structure
is set according to the number of bytes read. Consec-
utive read requests just check if the requested data is
present in the buffer, i.e., the requested read offset ver-
sus the offset in thefile structure. If the requested
data is not present in the current buffer, the alternation
mechanism is used, and the other buffer is used.

instancesend(): This system call sends data from a se-
lected buffer to the communication system and corre-
sponds to a stream version of thesend()system call.
Unlike instanceread(), which always reads data to the
whole buffer,instancesend()sends the amount of data
requested by the user, i.e., as the packet size is prefab-
ricated, the amount of data to send is rounded up to the
nearest MTU size. Thesend offsetin the buffer is set
according to the amount of data sent.

The throughput that a single stream can achieve on a un-
loaded system, may be limited by a strict waiting for all
packets to be sent on the network. This means that before
we can read new data into a buffer, all the data must be sent
so that we do not overwrite packets waiting to be copied
to the network card transmit ring. This is because we allo-
cate all the resources for a stream statically and reuse the
allocated set of resources for each operation. As opposed
to the traditional system calls, which return after inserting
the packet into the queue in the driver, we therefore may
experience a delay waiting for the packets to be sent. We
will however save the time to allocate memory and vari-
ables used for each call, and reduce the number of executed
instructions.

4 Evaluation

Several tests are performed to measure the performance
of our zero-copy data path compared to the use of the tradi-
tional (read()andsendto()) system calls. The measurements
are made on aDell Precision 620, with a1 GHz Intel Pen-
tium III Xeonprocessor and256 MB RAM. The operating
system installed on the machine is NetBSD 1.5U extended
with the INSTANCE zero-copy data path. The file system
is located on a36 GB SCSI disk connected to aUltra 160
SCSI Controller.

In our experiments we transmitted a test file of1 GB
from a ffs partition with a64 KB block size, which is re-
quired for a file system used with our zero-copy data path.

4.1 Transfer Rate

In the first test, we measured the maximum throughput
the system can achieve. Two test programs are used; both
programs read a1 GB file from the disk and transmits it via
UDP, using our zero-copy data path andread()/sendto()re-
spectively. The destination address is on the same host, but
the packets are discarded during input processing. This al-
lows the output performance to be measured without being
overly influenced by input processing of UDP/IP packets,
or overhead from the network interface card. The machine
is fast enough to easily saturate a100 Mbps Ethernet, which
would reduce the usefulness of our measurements2.

However, our results also show that our one-disk stor-
age system is a large bottleneck. Tests with the file sys-
tem benchmarking toolIozone[11] showed that the total
throughput performance of the storage system of about 320
Mbps which is approximately equal to the achieved trans-
fer rate using both the zero-copy and the traditional data
path. Our networking performance, measured with thenet-
perf benchmarking tool [8], show that the these operations
clearly are not the bottleneck. Thus, to improve the sys-
tem I/O performance faster disks are needed3. Integrating
a chain of high-speed disks and repeating these measure-
ments is planned for the near future. Nevertheless, our ex-
periments with a similar (dynamic) zero-copy data path in
[6], show that the removal of copy operations can increase
the throughput significantly, and the number of concurrent
clients are approximately doubled. Thus, if the amount of
memory is not a bottleneck, but CPU cycles spent perform-
ing copy operations and introduced latency are, we might
expect a similar improvement.

4.2 Static Buffer Allocation

To see the time saved by allocating and freeing memory
for data, consider the following example. Each buffer has a
64 KB data area. When transmitting a1 GB video file, the
kernel will perform16 K allocandfreeoperations. Depend-
ing on the memory management mechanism, i.e., whether
we use traditionalmalloc()/free()or a pool mechanism, this
will consume a varying amount of CPU resources. Our per-
formance measurements show that using the NetBSD pool
mechanism, each of theses operations take0.15 µs, and us-
ing malloc()andfree() these operations spend5.80 µs and
6.48 µs of the CPU time, respectively. Furthermore, assum-
ing thebuf andmbuf structures use the pool mechanism
(mbuf management is implemented like this in NetBSD),

2In a real deployment situation one would use a Gbps network, e.g., the
Intel IXP2800 network processor [9] provides 10 Gbps packet forwarding.

3The performance of a chain of high-speed disks or a RAID system
using disks like the Seagate Cheetah X15 [14], each capable of achieving a
minimum data rate of 299 Mbps, can easily deliver the requested data rate.
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we additionally need onebuf structure to read a 64 KB
disk block and twombuf structures for each packet, i.e.,
one for the header and one for the data. If we assume a
1500 B packet size, we need 89 memory elements for sub-
system buffer structures when retrieving a64 KB data area
from disk and sending it to the network. The allocation and
deallocation of the data area takes0.3 µs4 or 12.3 µs de-
pending on the mechanism used per operation, and pool get
and put operations for the storage and networking buffer
structures will additionally consume26.7 µs per operation.
In summary, static allocation will in this example at least
save27 µs per sent 64 KB data element or about 0.44 s to-
tally for the entire file. Additionally, we save the time to set
the data pointers, flags, etc. in thebuf andmbuf structures
(not measured).

The tradeoff for saving the time for allocating and free-
ing memory is that the read operation must block if all data
from previous operations is not yet transmitted onto the net-
work from a buffer that is reused, e.g., we are transmitting
as fast as possible. This is because unsent data will be over-
written if a new read operation is issued on the same buffer.
However, the achieved data rate per stream (limited by the
storage system - see previous section) is still far above the
requested data rate for video playout, e.g., MPEG-2 DVD
requires in average3.5 Mbps and maximum10.08 Mbps
[10]. Since our mechanism both saves a lot of resources and
still fulfills the throughput requirements of a MoD server,
we consider the benefits to outweigh the drawbacks.

4.3 No Copy Operations

Our zero-copy data path mechanism does not require that
the I/O data is copied between the kernel and the applica-
tion. It is expected that our zero-copy data path will require
fewer system resources because of this. The CPU usage of
the test programs is measured to see if this is correct.

Figure 3 shows the total time spent, i.e., both elapsed
time user and kernel space, making the server transferring
our test file running using thetime program. It shows that
less time is being spent in both kernel and user space for the
application using our zero-copy data path. The difference is
especially large for kernel time with small buffer sizes. The
reason that the overall throughput remains constant is that
other factors such as I/O operations (i.e., disk I/O) domi-
nate. Basically, this experiment shows that our zero-copy
data path uses fewer CPU resources than the traditional ap-
proach.

The final point we wish to examine is the effect of CPU
load. The test programs are used on a system with heavy
load to determine how this influences performance. The

4Note, however, that the pool mechanism does not support pool items
larger than4 KB making this solution useless unless we implement our
own pool.
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main task of the programs used to generate the background
load is to increment a single value, which means that they
do not need frequent access to different locations in main
memory or on the disk. Four such programs run during the
measurements.

Figure 4 shows a comparison of traditional I/O with our
zero-copy data path during high CPU load. Our zero-copy
data path is clearly less influenced by CPU load than the tra-
ditional mechanism, with roughly half the reduction of the
traditional approach, compared to an unloaded system. The
traditional mechanism performs especially poor for smaller
send sizes.
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In summary, our mechanism outperforms the traditional
data path. Other (dynamic) zero-copy streaming mecha-
nisms will probably have a similar overall server through-
put, but our mechanism reduces the required number of
CPU cycles.
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5 Conclusions

In this paper, we have examined our implementation of
a new data movement mechanism. It is designed to make
more efficient use of the resources in a MoD system. It does
this by eliminating the movement of data between the kernel
and application; data is transmitted directly from disk onto
the network. By using static buffers which are allocated
only before the transmission starts, the per-packet cost is
reduced.

The main task of a MoD system is to transmit the con-
tents of a media object onto the network. We have com-
pared our approach with the traditional mechanism using
theread()andsendto()system calls to transmit the data over
UDP, to determine how it performs in terms of resource us-
age and efficiency. We showed that our zero-copy data path
requires fewer CPU resources and performs better when the
system is under a high CPU load. We measured the maxi-
mum achievable throughput, but found no significant differ-
ence. This was due to the limited data rate of the disk in the
test system. The test system only used a single disk, while
a more realistic MoD system would probably store the files
on a RAID system with a higher effective data rate. In con-
clusion, we have achieved the goals of the design, but some
work still remains to be done on testing the system.

There are several issues which need to be examined in
the future. Our zero-copy data path should be tested in an
environment more similar to an actual production system,
and it would also be useful to examine how it performs
in comparison to I/O mechanisms which use similar tech-
niques to reduce resource usage. Furthermore, our static al-
location ofmbuf s allows further improvements in the com-
munication system in case of using header templates, e.g.,
as suggested in [6], where each staticmbuf can contain the
header template removing the block-copy operation of the
template.

Finally, the question whether static or dynamic alloca-
tion of zero-copy buffers is preferable is dependent of the
application scenario and is a trade-off between flexibility
and CPU resources. A static allocation scheme should be
considered if we perform CPU intensive operations in addi-
tion to streaming high-rate data. However, such a scheme
may be inflexible, and in most cases, the performance gain
might be traded for flexibility.
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