
Evaluation of a Zero-Copy Protocol Implementation

Karl-André Skevik, Thomas Plagemann, Vera Goebel Pål Halvorsen
Department of Informatics, University of Oslo UniK, University of Oslo

P.O. Box 1080, Blindern, N-0316 OSLO, Norway P.O. Box 70, N-2027 KJELLER, Norway�
karlas, plageman, goebel � @ifi.uio.no paalh@unik.no

Abstract

Internet services like the world-wide web and multime-
dia applications like News- and Video-on-Demand have be-
come very popular over the last years. Since a high and
rapidly increasing number of users retrieve multimedia data
with high data rates, the data servers can represent a severe
bottleneck. Traditional time and resource consuming oper-
ations, like memory copy operations, limit the number of
concurrent streams that can be transmitted from the server,
because of two reasons: (1) memory space is wasted hold-
ing identical data copies in different address spaces; and
(2) a lot of CPU resources are used on copy operations. To
avoid this bottleneck and make memory and CPU resources
available for other tasks, i.e., more concurrent clients, we
have implemented a zero-copy data path through the com-
munication protocols to support high-speed network com-
munication, based on UVM[6]. In this paper, we describe
the implementation and evaluation of the zero-copy proto-
col mechanism, and we show the potential for substantial
performance improvement when moving data through the
communication system without any copy operations.

1. Introduction

There has been a tremendous growth in the use of
multimedia Internet services, and in particular, applica-
tions like News-on-Demand (NoD) and Video-on-Demand
(VoD) have become very popular. Thus, the number of
users, as well as the amount of data each user downloads
from servers on the Internet, is rapidly increasing. Today,
contemporary mid-price personal computers are capable of
handling the load that such multimedia applications im-
pose on the client system, but in Media-on-Demand (MoD)
servers, the potentially (very) high number of concurrent
users retrieving data represent a problem. In MoD servers in
general, commodity operating systems represent the major
performance bottleneck, because operating systems are not

getting faster as fast as hardware [11]. There are two basic
orthogonal approaches for this problem: (1) development
of an architecture for a single server that makes optimal use
of a given set of resources, i.e., maximize the number of
concurrent clients a single server can support; and (2) com-
bination of multiple single servers, e.g., in a server farm or
cluster, to scale up the number of concurrent users.

We have concentrated on the first approach. To support
multiple concurrent users each retrieving a high data rate
multimedia stream, the operating system and server archi-
tecture must be improved and optimized. Crucial issues
include copy operations and multiple copies of the same
data in main memory [12]. A major bottleneck in high
throughput systems is the send() system call (and equiva-
lents) which copies data from the application buffer in user
space to the kernel memory region. This is expensive for
several reasons [6]:

� The bandwidth of the main memory is limited, and ev-
ery copy operation is effected by this.

� A lot of CPU cycles are consumed for every copy op-
eration. Often, the CPU must move the data word-by-
word from the source buffer to the destination, i.e., all
the data flows through the CPU. This means that the
CPU is unavailable during the copy operation.

� Data copy operations affect the cache. Since the CPU
accesses main memory through the cache, useful infor-
mation resident in the cache before the copy operation
is flushed out.

To avoid the memory copy bottleneck several solutions have
been proposed (for a state-of-the-art overview, see [12]),
using mechanisms like programmed I/O, page remapping,
shared memory, etc. For example, Afterburner [7] and
Medusa [3] copy data directly onto the on-board memory,
using programmed I/O with integrated checksum and data
length calculation. Using DMA and a user-level imple-
mentation of the communication software, the application
device channel [8] gives restricted but direct access to an

ATM network adapter; removing the OS kernel from the
critical network send/receive path. Additionally, several
general cross-domain data copy avoidance architectures are
suggested. Already in 1972, Tenex [4] used virtual copy-
ing, i.e., several pointers in virtual memory referring to one
physical page. The V distributed system [5] and the DASH
IPC mechanism [13] use page remapping, and the container
shipping facility [2] uses virtual inter-domain data transfers
where all in-memory copying is removed. Furthermore, fast
buffers (fbufs) [8] is a facility for I/O buffer management
and data transfers across protection domain boundaries, pri-
marily designed for handling network streams using shared
virtual memory, combined with virtual page remapping. In
Trapeze[9], the uiomove() function which copies data to and
from the kernel is modified to perform page remapping. The
Synthesis[10] OS kernel generates code for optimized data-
movement via the CPU registers.

To experimentally analyze the benefits of zero-copy pro-
tocol implementations for gigabit networks, like Gigabit
Ethernet or Gigabit ATM, we have implemented a zero-
copy data path through the communication protocols to sup-
port high-speed communication. It is based on the UVM
virtual memory system [6] which facilitates virtual mem-
ory data movement using new techniques like page loanout,
page transfer, and map entry passing. Our purpose is to de-
termine if UVM is a suitable basis for a data transmission
mechanism in a media server.

This paper focuses on the design, implementation,
and evaluation of our zero-copy mechanism, realized in
OpenBSD. Our performance measurements show the poten-
tial for substantial performance improvement when moving
data through the communication system without any copy
operations.

The rest of this paper is organized as follows: Section 2
describes the implementation. In Section 3, we present the
results from our performance experiments. Finally, we sum-
marize and conclude the paper in Section 4.

2. Design and Implementation in OpenBSD

The primary goal of this work is to determine the impact
that limited memory bandwidth has on network throughput
and the potential for improvement by using a copy elimina-
tion mechanism.

The protocols UDP/IP and TCP/IP are widely imple-
mented and used. UDP is best suited for experiments to
analyze the influence of copy operations to I/O overhead,
because TCP attempts, among many other things, to avoid
overloading the network. UDP merely transmits data re-
ceived from an application onto the network as fast as pos-
sible. This will likely make the OS overhead more visible
with UDP, since TCP performance is also influenced by pro-
tocol parameters, the state of the receiver, and the network

between the endpoints.

2.1. Data movement

The transfer of data between the application and the ker-
nel is normally performed by copying the data. The ma-
jor data processing task involved in UDP processing is the
checksum calculation, which can be performed in hard-
ware with some NICs (Network Interface Cards). Sending
fragmented packets can be done by making a new copy of
each fragment and adding headers to each fragment. These
copy operations can be avoided if the NIC supports scat-
ter/gather DMA, which lets the headers be constructed sep-
arately while the buffer is kept in one piece. This makes the
implementation at the sender side relatively simple, since
application data can in many cases be used without chang-
ing their alignment.

Ensuring that the payload of received packets are aligned
to application buffers without alignment requirements is
more difficult since packets are usually copied from the NIC
before being processed. Demultiplexing packets in the NIC
might be possible with some cards, but is complicated by
fragmentation which can produce situations where the re-
cipient cannot be determined before an entire packet has
been reassembled.

Based on this, we will focus on outgoing UDP traffic in
the measurements, since this will make it easier to see the
impact data copies have on the overhead from the OS. Using
the VM system to move data is also simpler with outgoing
UDP traffic, compared to incoming UDP traffic. Perfor-
mance in other situations than those tested might be lower,
but the measurements should give an indication of what the
upper limit is. Another important reason to focus this work
on the data movement at the sender is that we are interested
in improving the design of MoD servers to support more
concurrent users.

2.2. Platform

Two Intel Pentium II PCs running OpenBSD are used
for testing. OpenBSD/i386 supports both the original Mach
derived VM system found in 4.4BSD, and UVM [6]. UVM
allows the transfer, loan and sharing of VM pages between
one or more applications, and between an application and
the kernel. The VM page size is ������� octets on Intel ma-
chines, with � GB virtual memory addressable through a���

bits address space.
For our experiments we used two 3com 3c985 Gigabit

Ethernet cards based on the Tigon II chip [1]. The Tigon
chip supports both a

���
and �	� bit PCI data path; the max-

imum bus bandwidth is
 ��� MB/s and
� �	� MB/s, respec-

tively. The NIC can be used in both,
���

bit and �	� bit PCI

slots, but the test machines are only equipped with
���

bit
slots.

A few simple tests with this equipment showed that
the maximum throughput we could reach is significantly
lower than the theoretical maximum speed for Gigabit Eth-
ernet. We measured the TCP throughput with netperf, a
network performance tool, and found it to be

� ����� � � Mbit/s
with a buffer size of ������� octets. The UDP throughput
is

� �
 Mbit/s for the same buffer size with UDP check-
sums enabled. This is greater than the maximum value for

 ��� Mbit/s Ethernet, but clearly below the maximum for
Gigabit Ethernet. It is intuitively clear that the performance
of the Intel Pentium II PC is not sufficient to fully utilize the
available bandwidth of Gigabit Ethernet. It is important to
note that this is for the purposes of this study an advantage.
Improvements in the protocol implementation that result in
reduced data movement and CPU usage should produce a
higher throughput and be easy to measure.

2.3. UDP send data path

Sending data on a socket with the send() system call
results in the sendit() function being called in the kernel.
This function checks the arguments and then calls sosend().
The sosend() function performs additional error checking,
mainly to ensure that there is room for the data. If the
call is non-blocking, as much data as possible is sent. The
protocol dependent handling function is then called. For
UDP/IP, this is udp usrreq, which calls the output func-
tion udp output(). The UDP checksum is calculated before
ip output() is called. The IP processing function finds the
outgoing interface, calculates the IP header checksum, and
calls the interface output routine.

2.4. UVM loan related modifications

The page loanout mechanism in UVM allows a loan
of one or more VM pages between different parts of the
OS. The loaned pages are marked COW (Copy On Write).
UVM can be used to loan a page belonging to an applica-
tion to the kernel. This can be used to make the contents of
a buffer, which is about to be transmitted over the network,
available to the kernel without making a copy of the data.
The pages that contain the buffer can then be accessed by
the networking subsystem directly.

The UVM loan mechanism is supposed to be controlled
by applications through a system call [6], but this inter-
face appears to be unavailable in the public implementa-
tion. Therefore, we have modified the kernel to use the loan
mechanism without intervention from the application. The
decision whether the loan should be performed or a data
copy is used, is determined in our implementation by the
two following factors:

� Alignment. The buffer must be aligned to a page
boundary.

� Range. The buffer must be continuous; i.e., not com-
posed of multiple buffers at different locations. This is
a limitation to simplify the modified code.

In case the loan mechanism is used, the first operation is
to perform a loan from the VM map of the application. The
next steps are to establish a new mapping in the mbuf kernel
memory submap and to insert a mapping to the loaned page.
Finally, an mbuf is updated with an external reference to the
data in the loaned page.

We keep the page in the cluster area to allow the usage
of the cluster reference count mechanism in the kernel. The
mapping is removed and the loan terminated when the ker-
nel is finished with the page. Furthermore, we keep a sepa-
rate array that has a reference to each page. The entries are
needed to properly terminate the loan when the packet has
been transmitted.

The sysctl() interface is used to activate the loan mecha-
nism and keep track of the number of data transmit requests
where the loan mechanism is used.

3. Measurements

In this section, we describe the tests we performed to
measure the throughput of the different data movement
mechanisms and the results of these tests. The communica-
tion endpoints in the tests are identical PCs with

��� � MHz
Intel Pentium II chips and ��� MB memory.

3.1. Measurement tools

Collecting data from the kernel requires an interface for
applications to retrieve the data. We have modified the ker-
nel to allow a software probe to register information about
the memory management operations. This is done by using
a function which stores a timestamp, a location value, and a
third value which can be used for additional information as
needed. The code in the probe is kept as simple as possible
to avoid influencing the results too much.

To fill the capacity of a Gigabit Ethernet with UDP traf-
fic, it is required to send
����
	���
�� ��� � ��� �
�� ��� � bits per
second, or
 � ��� �
������ ��� octets per second. The maximum
size of a UDP packet including headers is � ���	� � octets, but
the standard MTU of an Ethernet is
 � ��� octets. This means
that

� �	��� � packets of
 � ��� octets must be sent each second
to fully utilize the network. A time value which is updated
at twice that rate, i.e., every

� � � ����� , would be needed to
register the maximum time between two successive pack-
ets. When taking into consideration that packet sizes might
be smaller than
 � ��� octets, it is desirable to have a certain

margin for error. Since it is also useful to measure events
shorter than the entire maximum time available for sending
a packet, the probe should be able to make measurements
with at least microsecond accuracy.

Our probe uses the PCC (Processor Cycle Count) value
which is updated every

� � ����� � . This value is placed into
a preallocated buffer. The retrieval of this value was mea-
sured to take an average of �
 � � , with insignificant vari-
ation. In other words, the time resolution of our measure-
ments is good enough and the probe overhead is not signif-
icant.

This approach is simple, but can only be used when small
amounts of data are stored in the kernel. In order to keep the
amount of data small, we used short measurement cycles.
After each measurement cycle, we extracted the measure-
ment data from the kernel through the sysctl() interface.

3.2. Data movement overhead

In this subsection, we analyze the overhead of moving
data from the application, in user space, to the kernel. The
test application transmits data with the send() system call.
The total time for the system call and the part of that time
spent copying data from the application to the kernel is mea-
sured. It is compared with the results from the same appli-
cation running on a system which uses the UVM page loan
mechanism to make the data available to the kernel.

The total time it takes to transmit a packet (
�������

) is in this
case the sum of the time needed to copy data from the ap-
plication to the kernel (

���
), and the time it takes to perform

the rest of the operations related to the transfer (
�
	

). The
measured values are

���
, which is recorded from inside the

kernel, and
�������

which is measured by the application.
The transfer rate (�) from the application is a function

of the transfer size (�) and the total time as given in (1).

� �������� ��
�����	 (1)

The time it takes to transfer a packet varies with the
packet size. The theoretical maximum transfer rate for a
given
� 	

and � , assuming the data copy can be eliminated
entirely, occurs when ����� ���
��� � ����� , as given in (2).

������� �������!
��� ��
�"���	 ���	 (2)

Figure 1 attempts to show the maximum potential for im-
provements by eliminating copy operations, in relation to
the maximum speed for a Gigabit Ethernet. It is based on
the duration of a given operation on a machine without sig-
nificant load.

The Copy only value in the plot is obtained by assuming
that the total output processing time is equal to the time it
takes to copy the contents of a data buffer of the indicated
size. Based on the Copy only plot, it is evident that for the

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

1 4 16 64 256 1024 4096 16384

T
hr

ou
gh

pu
t (

bp
s)

Data size (octets)

Maximum send speed

Maximum Gigabit Ethernet speed
Total

Copy only
Rmax

Figure 1. Maximum send speed

0

2e+08

4e+08

6e+08

8e+08

1e+09

1.2e+09

1.4e+09

1.6e+09

1 4 16 64 256 1024 4096 16384

T
hr

ou
gh

pu
t (

bp
s)

Data size (octets)

Maximum send speed

Maximum Gigabit Ethernet speed
Copy
Loan

Figure 2. Data copy, page loan comparison

measured overhead from copy operations it is only possible
to achieve the maximum Gigabit Ethernet throughput with
a data size of at least

��� � octets. The highest value is for a
������� octets data size. The overhead from data copies alone
does not appear to prevent communication at gigabit speeds.

The Total and � �#�$� graphs show the potential improve-
ments from a complete elimination of the overhead from
copy operations. It can be seen that data movement is not
the only operation performed during protocol processing,
but eliminating the overhead from the data copy would re-
sult in a substantial performance improvement for larger
data sizes. The overhead from the data copy operation starts
to matter for data sizes above

�
 � octets. The �%�#�$� value
increases steadily as the data size increases.

To achieve a high throughput it is clearly necessary to
use a large data size, but for larger data sizes the overhead
from data copy operations becomes significant.

A comparison of the estimated throughput achievable
with send(), using either UVM loan or normal data copies

0

5e-05

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

1 4 16 64 256 1024 4096 16384 65536

T
im

e
(s

)

Data size (octets)

Data movement overhead

Copy
Loan

Figure 3. Data copy, page loan overhead

is shown in Figure 2. The page loan mechanism is faster for
data sizes of page size (������� octets) and larger, but copy op-
erations are faster for data sizes below this value. When the
data spans multiple pages there is a substantial difference.

A comparison of the overhead of the loan and copy op-
erations alone is shown in Figure 3. The cost of VM op-
erations increases with the number of pages; the overhead
from page loan is constant up to ������� octets. Size starts
to matter for copy operations at
 � � � octets, and for page
loans at sizes greater than ������� octets. There is clearly a
per-page cost for page loan, but the copy cost is larger. The
overhead from copy operations is larger than the overhead
of the UVM loan mechanism if the data elements are larger
than approximately ������� octets.

3.3. UDP throughput

The section above looked at the overhead from differ-
ent data movement mechanisms. This section describes the
measurement of the maximum achievable throughput dur-
ing sustained data transfers.

Based on the estimates in Figure 2 it should be possible
to saturate the Gigabit Ethernet between the test machines
when the page loan mechanism is used.The measurements
only estimate the maximum limit for transfer speed based
on the overhead from sending a single packet (measured
multiple times). How well these calculations compare to
sustained transfer is examined with netperf. A test run in-
dicates that send errors are frequent. The error count is in-
cluded in the final results in addition to the throughput.

The result from netperf is shown in Figure 4. The per-
formance of UVM loan is better, with an increase of up
to � � � �	��� with a

�
KB data size, but not as good as ex-

pected. Instead of increasing with the data size, the through-
put decreases for data sizes larger than

�
KB. The estimated

maximum throughput and the actual results are shown in

400

500

600

700

800

900

1000

4096 8192 16384 32768

T
hr

ou
gh

pu
t (

M
bp

s)

Data size (octets)

UDP stream throughput

Maximum gigabit speed
Copy
Loan

Figure 4. Sustained UDP throughput compar-
ison

400

500

600

700

800

900

1000

1100

1200

1300

1400

4096 8192 16384 32768

T
hr

ou
gh

pu
t (

M
bp

s)

Data size (octets)

Expected versus actual UDP stream throughput

Maximum gigabit speed
Estimated

Loan

Figure 5. Actual and expected results

0

0.5

1

1.5

2

2.5

4096 8192 16384 32768

E
rr

or
s

pe
r

go
od

 p
ac

ke
t

Data size (octets)

UDP stream error rate

Error rate

Figure 6. UDP send errors

Figure 5. For � KB the measured value is almost as ex-
pected, for

�
KB it is slightly lower, but it falls for values

above this.
This appears to be caused by a large number of transmis-

sion errors, as seen in Figure 6. With a data size of
���

KB
there is a significant amount of errors; more than two per
successfully transmitted packet. This results in lower per-
formance since much time is wasted on packets which are
never successfully transmitted.

The problem turns out to be that the NIC send queue
is frequently full. The driver sets the queue size used to
the maximum, which is

�
 � packets, but during heavy net-
work load it is frequently filled. The use of a large data
size (

���
KB) and a MTU of
 � ��� octets results in a lot of

fragments which quickly fill the output queue.
The machine uses a

���
bit PCI connection to the NIC,

and this might be the bottleneck which reduces the perfor-
mance. We have not been able to verify this yet however.
The netperf test also indicates that the CPU usage is
 ��� �
for both normal copy and UVM loan. A faster CPU might
also help address this problem.

Setting the MTU to ������� octets increases the speed to
� � � Mbit/s and reduces the problem, but does not eliminate
it. The effects of changing the MTU has however not been
properly examined here. A machine with a ��� bit PCI bus
might reduce the problem.

In [6], the measured bandwidth of a null protocol, which
only discards data after moving it to the kernel, reached
nearly

� ��� Mbit/s with UVM loan where it flattened out
with a data size of roughly
 ��� KB. Using a null proto-
col means that the effects of protocol processing and packet
transmission is not experienced. Our results fall after reach-
ing

�
KB instead. The likely reason, as stated above, is that

the bandwidth to the NIC has become the major bottleneck.
The results from the null protocol in [6] are more likely to
represent the maximum achievable and show that the UVM
loan mechanism is an efficient data movement mechanism
for large buffer sizes.

The maximum throughput value is reached with a buffer
size of roughly
 ��� KB [6]. Our measurements never
exceed

���
KB due to the maximum UDP packet size of

�	� KB, including headers, and the maximum throughput
value from [6] is never reached.

4. Conclusions and future work

This paper describes several measurements made to ex-
amine the impact of copy overhead on network communica-
tion. A comparison of an application using data copies and
one using the UVM loan mechanism to move data from the
application buffer to the kernel found the latter to provide
significant performance improvements in some cases.

The test system is not able to take full advantage of the
improvements since a MTU of
 � ��� octets results in heavy
fragmentation and a large number of transmission errors as
the NIC send queue is quickly filled.

This does not reduce the potential benefits from using the
UVM loan mechanism, but identifies another possible per-
formance problem which must be taken into consideration
when designing high-speed communication systems.

To benefit from the use of zero-copy movement mech-
anisms such as VM based page movement, it is necessary
to ensure proper buffer alignment in applications. This pa-
per does not focus on these issues, but has shown that the
benefits from achieving this can be significant. For use in a
media server this might not be a problem, since only a small
number of applications might need to be modified.

Some of the results point to the PCI bus as a possible
bottleneck. We plan to test this on a newer PC with a �	� bit
PCI bus.

References

[1] Alteon Networks, Inc., 50 Great Oaks Blvd. San Jose,
CA 95119. Gigabit Ethernet/PCI Network Interface Card:
Host/NIC Software Interface Definition, June 1999. Revi-
sion 12.3.11.

[2] E. Anderson. Container Shipping: A Uniform Interface for
Fast, Efficient, High-Bandwidth I/O. PhD thesis, Computer
Science and Engineering Department, University of Califor-
nia, San Diego, CA, USA, 1995.

[3] D. Banks and M. Prudence. A high-performance network
architecture for a pa-risc workstation. IEEE Journal on Se-
lected Areas in Communication, 11(2):191–202, February
1993.

[4] D. G. Bobrow, J. D. Burchfiel, D. L. Murphy, and R. S.
Tomlinson. TENEX, A paged time-sharing system for the
PDP-10. Communications of the ACM, 15(3):135–143, Mar.
1972.

[5] D. Cheriton. The v distributed system. Communications of
the ACM, 31(3):314–333, March 1988.

[6] C. D. Cranor. M.S. PhD thesis, Sever Institute Technol-
ogy, Department of Computer Science, Saint Louis, Mis-
souri, August 1998.

[7] C. Dalton, G. Watson, D. Banks, C. Calamvokis, A. Ed-
wards, and J. Lumley. Afterburner. IEEE Network, 7(4):36–
43, July 1993.

[8] P. Druschel. Operating system support for high-speed com-
munication: techniques to eliminate processing bottlenecks
in high-speed networking are presented. Communications of
the ACM, 39(9):41–51, Sep 1996.

[9] A. Gallatin, J. Chase, and K. Yocum. Trapeze/IP: TCP/IP at
near-gigabit speeds. In Proceedings of the FREENIX Track
(FREENIX-99), pages 109–120, Berkeley, CA, June 6–11
1999. USENIX Association.

[10] H. Massalin. Synthesis: An Efficient Implementation of Fun-
damental Operating System Services. PhD thesis, Columbia
University, 1992.

[11] J. K. Ousterhout. Why aren’t operating systems getting
faster as fast as hardware? In Summer USENIX ’90, pages
247–256, Anaheim, CA, June 1990.

[12] T. Plagemann, V. Goebel, P. Halvorsen, and O. Anshus. Op-
erating system support for multimedia systems. The Com-
puter Communications Journal, Elsevier, 23(3):267–289,
February 2000.

[13] S.-Y. Tzou and D. P. Anderson. The performance of
message-passing using restricted virtual memory remap-
ping. Software – Practice and Experience, 21(3):251–267,
Mar. 1991.

