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ABSTRACT
Energy consumption is an important issue for mobile de-
vices, as the technological development in battery technol-
ogy has not kept pace with the power requirements of mo-
bile hardware. This has led to innovative architectures with
new power-saving capabilities, such as the Tegra K1 System-
on-Chip (SoC). With a quad-core CPU, 192 CUDA cores
and frequency scaling, the challenge in developing software
for this architecture lies in optimising the energy consump-
tion of mobile workloads while meeting performance require-
ments. In this paper, we consider the energy consumption
of continuous multimedia workloads that are performed on
video streams, such as image rotation. We take an empiri-
cal approach to find the most energy-efficient hardware and
software configurations on a set of test videos. We find that
the processor frequency should be minimised such that ap-
plication deadlines are met. Using this heuristic, a reduction
in energy consumption by up to 28% can be achieved com-
pared to the standard Linux frequency scaling algorithms.

General Terms
Experimentation; measurement; performance

Keywords
multimedia workloads; power measurements; mobile SoC

1. INTRODUCTION
Battery capacity is a serious limitation of modern mobile

devices. Despite improvements, the evolution in battery ca-
pacity does not keep up with the increasing power require-
ments of for example processors [6]. This manifests in rapid
battery discharge, bothering the users of these devices [2]
and limiting their usefulness. This has inspired new pro-
cessing architectures, such as NVIDIA’s Tegra K1 SoC [10],
which provides more flexible power management capabili-
ties. For example, the Tegra K1 allows offloading of parallel
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tasks to a CUDA-capable GPU as well as manual control of
Dynamic Voltage and Frequency Scaling (DVFS).

Figure 1: The Jetson-TK1 mobile development board.

Offloading multimedia processing to the GPU has been
shown to yield good improvements in terms of both per-
formance and energy consumption, but the challenge of de-
veloping for the Tegra K1 SoC lies in implementing and
scheduling it in such a way that energy consumption is min-
imized. Multimedia algorithms that have been studied in
the literature include the scale-invariant feature transform
(SIFT) [5, 13] and face recognition [3, 15]. However, these
articles focus on batch processing scenarios: Their goal is to
finish a task quickly using as little energy as possible. Our
work differ in two main aspects:

1. We consider continuous multimedia workloads, where
a user applies a pre-processing filter to a raw, live video
stream. The requirement of such a workload is not to
finish as quickly as possible, but to adhere to cyclic
deadlines, e.g. deliver a processed frame once every
40 ms. Our paper explores software- and hardware-
configurations for a small set of example workloads.
We ask which configurations yield the best energy con-
sumption, and whether a “race to finish” approach is
the best.

2. We investigate more deeply the effects that the Tegra
K1’s power-saving capabilities have on continuous work-
loads, instead of optimising the workload itself. We
focus especially on DVFS. We implement our own,
“userspace-PSAV” DVFS algorithm for both the CPU
and the GPU to study the frequency scaling’s influence
on energy efficiency. We compare out scheduler to the
existing algorithms in the Linux kernel.

We find that by using our userspace-PSAV DVFS algo-
rithm with the best frequency configuration, energy can be



saved in most cases compared to the standard Linux DVFS
algorithms. We find savings of up to 28%, but we find also
one case for a light-load scenario where the Linux DVFS al-
gorithm is 2% better. Although we find that CPU-only exe-
cution is consistently most energy efficient, we suggest that
the gain of GPU offloading depends greatly on the work-
load’s ability to scale with input size on the CPU and GPU
architectures.

2. METHODOLOGY
We conduct an empirical investigation based on the Jetson-

TK1 [9] mobile development platform. The Jetson-TK1 con-
tains the Tegra K1 SoC, along with several other peripherals.
The platform itself does not include a power measurement
sensor. Instead, we have equipped it with a custom I2C sen-
sor (see Section 3.1 for details). The Tegra K1 SoC itself
logs the power measurements. This introduces a small over-
head to the system-under-test, which samples every 3 ms
and logs to RAM. Furthermore, to minimise the overhead of
the Operating System (OS) we have built a minimal Ubuntu
distribution with as few system services as possible.

The tasks we use as workload represent video filtering
operations that are typically done on a live video stream.
Even though part of our examples may be handled more ef-
ficiently by dedicated SoC components, these workloads are
meant to represent the arbitrary filters that we expect to
see in the future. They simulate a scenario where the Tegra
K1 processes arbitrary filters before executing, for example,
hardware compression on a SoC dedicated component. The
scenario is different from batch-processing jobs, because the
task includes idle time and deadlines. A frame must be pro-
cessed before the deadline marked by arrival of the following
frame, but when work on one frame is complete, the Tegra
K1 will idle until this deadline.

The Jetson-TK1 has a high, assumably constant power
usage which stems from external peripherals, such as USB
controllers and the cooling fan. According to NVIDA, this
power usage is constant around 2 W [8]. In our power mea-
surements, the exact number is impossible to verify due to
the physical layout of the board. We therefore subtract the
2 W idle consumption from each measurement. In addition,
each of our test has been run for the same duration. Under
the assumption that the external peripherals’ power usage is
constant, the contribution to the total energy consumption
from these components should always be the same in each
run.

3. SYSTEM SETUP
Our system setup is comprised of a Jetson-TK1 mobile

development kit [9] equipped with a Tegra K1 mobile pro-
cessor [11] (see Figure 1). In this section, we give a summary
of the details of our setup.

3.1 Power Measurement
The Jetson-TK1 is not pre-equipped with any power mea-

surement sensor, but it does provide many GPIO intercon-
nects for devices such as cameras and battery monitor units.
Consequently, we equipped the board with an INA219 power
sensor [14]. The sensor can provide measurements at a rate
of 4000 samples per second over the Tegra K1’s I2C bus,
using a kernel driver we have developed for this purpose.

Figure 2: INA219 configuration.

Figure 3: Video stream rotation.

The INA219 is a power rail monitor that works by mea-
suring the voltage drop across a sense resistor. This is the
conventional way to measure power [16, 17, 4]. The power
measurement circuit used in our setup is shown in Figure 2
and works as follows. The INA219 is continuously measuring
the voltage drop URsense over the power rail sense resistor,
Rsense. The rail’s current draw Irail can be calculated by
Ohm’s law:

Irail =
URsense

Rsense
(1)

The rail’s power consumption Prail can be calculated as:

Prail = UrailIrail (2)

In Equation 2, Urail is the rail voltage which is also con-
tinuously measured by the INA219.

3.2 Continuous Workload
Our workload represents continuous video processing op-

erations that are performed on raw video streams. The tests
have deadlines and are continuous in the sense that the re-
peat the same task on subsequent video frames. Deadlines
are imposed by the framework, e.g. to achieve a framerate
of 25 fps, a frame must be processed within 40 ms of its ar-
rival. We have implemented image rotation, motion vector
search and compression as multimedia workloads. To test
the effect of GPU offloading, we provide three different ex-
ecution configurations. In this section, we will explain the
tests and how they are run in more detail.

3.2.1 Image Rotation
In the image rotation tests, each frame of a video stream is

being rotated by a different (continuously increasing) angle θ
(see Figure 3). The algorithm treats the frame as a cartesian
coordinate space centered in the middle of the frame. The
reference pixel positions (u, v) are calculated by multiplying



Figure 4: An illusatration of the operation of the diamond
search algorithm.

each original pixel coordinate (x, y) by the rotation matrix
as follows:

[
u
v

]
=

[
cos− θ −sin− θ
sin− θ cos− θ

] [
x
y

]
(3)

Subsequently, each reference pixel at position (u, v) is put
at its corresponding frame location (x, y.

3.2.2 Motion Vector Search
In the second test, we apply Motion Vector Search (MVS)

on the raw video stream. MVS is a common technique in
video encoding to reduce the amount of information that
has to be stored with each frame. In our case, it works by
dividing each frame into a set of macroblocks of 8x8 pixels,
and then attempting to estimate each block’s displacement
(the vector) relative to the previous frame.

We have implemented the Diamond Search (DS) algo-
rithm [18]. DS estimates the displacement of each mac-
roblock by computing the Sum of Absolute Difference (SAD)
of the current macroblock and the eight surrounding mac-
roblocks in the previous frame (as shown in Figure 4). At
every step, as long as the macroblock with the lowest SAD
is not in the center of the “search window”, the window will
be re-centered at the macroblock with the lowest SAD. Af-
ter three iterations, the pattern changes to a smaller dia-
mond with only four surrounding macroblocks, where the
one block with the lowest SAD is estimated to be correct.

3.2.3 Compression
The third and final test is MJPEG video compression. In

this test, the video is compressed by removing high-frequency
components from each frame. The image compression algo-
rithm transforms each macroblock of 8x8 pixels into the fre-
quency domain using the discrete cosine transform (DCT):

Mu,v = α(u)α(v)

7∑
x=0

7∑
y=0

mx,ycos[
π

8
(x+

1

2
)u]cos[

π

8
(y+

1

2
)v]

(4)
In Equation 4, u, v ∈ [0, 7] are the DCT output coor-

dinates, Mu,v are the frequency components, mx,y are the
original pixel values in the macroblock, and α(w) is a nor-
malising function. After the DCT transformation, the high-
frequency components are scaled down by quantisation:

Bx,y =
Mx,y

Qx,y
(5)

where Bx,y is the remaining image information after quan-
tisation, and Qx,y is the quantisation matrix, which is con-
stant for each channel.

3.3 GPU Offloading
To investigate the energy- and performance-impact of GPU

offloading, we provide three different schemes with varying
degrees of GPU offloading. In the first scheme, the GPU is
left idle, and the CPU processes the Y, U and V frames. In
the second scheme, the CPU is left idle, while the GPU pro-
cesses the Y, U and V frame. In the third scheme, the CPU
processes the V frame only, while the GPU processes the Y
and U frame. See the following table for a full overview.

Scheme
Offloading Frequency Settings

CPU GPU CPUmin GPUmin
CPU-ONLY YUV Idle 204000 MHz 72000 MHz

GPU-ONLY Idle YUV 204000 MHz 72000 MHz

HYBRID V YU 1326000 MHz 72000 MHz

3.4 Frequency Scaling Algorithms
DVFS is a method to scale the power, voltage and fre-

quency of processor cores. The relationship is given by the
following formula [1]:

Pcore = αCV 2
coref + IleakVcore (6)

In Equation 6, Pcore is the processor power usage, Vcore

is the core voltage, f is the core frequency, C is the core
switching capacitance, Ileak is the transistor leakage and α
is the core utilisation. The Linux kernel provides several
DVFS algorithms. In this section, we will explain the DVFS
algorithms used throughout the experiments in this paper.

3.4.1 Linux DVFS Governors
The Linux kernel is shipped with five standard CPU DVFS

algorithms, called governors [12]1. The five governors are as
follows:

• Userspace. Frequency can be set manually by userspace
applications.

• Powersave. Frequency is statically scaled to the lowest
possible value.

• Performance. Frequency is statically scaled to the high-
est possible value.

• Ondemand. Adjusts the frequency to the maximum
possible value in response to large increases in work-
load. Lowers the frequency more slowly in response to
workload reduction (see Pallipadi and Satrikovskiy [12]
for details).

• Conservative. Similar to the ondemand-governor, but
reacts slower to changes in current workload.

Of the five governors, the two latter are the most recent
developments meant to be used in mobile, energy-constrained
systems such as laptops.

1For additional background, refer to the Linux kernel docu-
mentation.



Algorithm 1 The userspace frequency scaling algorithm.
It is used to test the impact of different frequency settings
in our experiments.

function process stream(stream, freq, flim ms)
deadline ms = flim ms
while yuv frame = next frame(stream) do
start measure time( )
rawy, rawu, rawv = get raw comp(yuv frame)
set cpu scaling(freq->cpu max)
set gpu scaling(freq->gpu max)
gpu thread = start(gpu scale thread, [rawy, rawu])
cpu thread = start(cpu scale thread, [rawv])
join(gpu thread)
join(cpu thread)
elapsed ms = stop measure time( )
if elapsed ms < deadline ms then

remaining ms = deadline ms - elapsed ms
sleep ms(remaining ms)
deadline ms = flim ms

else
deadline ms -= (elapsed ms - flim ms)

end if
end while

end function
function gpu scale thread(yuv frame[] frames)

process gpu(frames)
set gpu scaling(freq->gpu min)

end function
function cpu scale thread(yuv frame[] frames)

process cpu(frames)
set cpu scaling(freq->cpu min)

end function

The Tegra K1’s GPU is also under DVFS control, but
there is just one governor that can be enabled or disabled
(to allow userspace control). We have been unsuccesful in
finding documentation for the governor itself.

3.4.2 Userspace-PSAV
Our own power saving implementation can be seen in Al-

gorithm 1. This algorithm is used to test the impact of
frequency scaling using the workload described above. The
algorithm takes five main parameters. These are the max-
imum and minimum frequency of the CPU and the GPU,
as well as the per-frame deadline. The algorithm works as
follows:

1. As long as either the CPU or the GPU are busy pro-
cessing, their respective frequency is scaled to max, a
user-specified parameter.

2. When either the CPU or GPU runs out of work, their
respective frequency is lowered to min, a user-specified
parameter.

3. If the processing ends before the frame deadline (e.g.
40 ms for a framerate of 25 FPS) the CPU sleeps for
the remaining time.

4. If the processing ends after the frame deadline, the
deadline for the next frame is lowered accordingly.

4. EXPERIMENTAL RESULTS
In our experiments, we run the multimedia workloads de-

scribed in Section 3.2. The goal is to reach a target fram-
erate of 25 FPS using as little energy as possible. We first
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Figure 6: Power usage during a single frame encoding in-
terval. The slopes in the three curves corresponds to points
where the CPU is done processing, and goes from 100 to
about 0 % utilisation.

try to find the most energy efficient frequency settings using
the Userspace-PSAV algorithm (see Algorithm 1), and com-
pare with the four standard frequency scaling governors. We
use three different video resolutions under the three execu-
tion configurations CPU-only, GPU-only and hybrid. The
achieved energy consumption in each test represents the av-
erage of ten runs. The results from the frequency scaling
experiments is shown in Figure 5 (see also Table 1). In most
cases, more optimal frequency settings could be achieved us-
ing our Userspace-PSAV algorithm over the standard linux
governors, by an amount up to 28 %.

4.1 Execution Configuration
In most of our tests, the CPU configuration is the best.

The only exception is the rotation tests, where the GPU is
most energy efficient for the highest input resolution. This
is because the CPU and the hybrid configurations doesn’t
reach the 25 FPS requirement, and as such the GPU version
does not receive any competition for this image resolution.
In other words, the GPU version scales better to higher input
sizes. However, the most energy efficient offloading choice
does not depend solely on the workload’s ability to scale,
but also electrical characteristics tied to the target processor
(such as the model constants in Equation 6.

4.2 Frequency Settings
When it comes to the most optimal frequency settings for

the CPU and the GPU, it is clear that the best way to con-
serve power is not a “race-to-finish” strategy. For the CPU,
the most optimal frequency configuration is the minimum
frequency setting that meets the acceptable framerate. In
other words, the sleeping period between each frame should
be minimised. There may be several reasons for this. One is
power regulator loss, which can grow quadratically with the
CPU’s current consumption [7]. Another is excessive system
overhead, where the CPU stays at less than 100% utilisation
in high frequency states. The third is that a doubling in fre-
quency does not necessarily mean a reduction in runtime by
half, which can easily be seen in Figure 6. Here, the reduc-
tions in power usage corresponds to the time where the CPU
is done processing a frame. A doubling in frequency from
1 to 2 GHz yields roughly only a runtime improvement of
around 10 %, but the power usage doubles. The CPU power
usage increases linearly with frequency, but the runtime is
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Benchmark Resolution
Userspace P-SAV Linux Governor

Improvement
Core Max Frequency Energy Governor Core Energy

Rotation
352x288 CPU 312 MHz 9.22 mWh Ondemand CPU 9.02 mWh -2.2 %
640x480 CPU 828 MHz 11.33 mWh Ondemand CPU 12.86 mWh 11.9 %

1920x1080 GPU 468 MHz 26.00 mWh Ondemand GPU 29.16 mWh 10.8%

Compression
352x288 CPU 564 MHz 9.31 mWh Ondemand CPU 12.93 mWh 28.0 %
640x480 CPU 1092 MHz 13.82 mWh Conservative CPU 19.05 mWh 27.4 %

1920x1080 - - - - - - -

MVS
352x288 CPU 1092 MHz 12.49 mWh Ondemand CPU 13.59 mWh 8.1 %
640x480 - - - - -

1920x1080 - - - - -

Table 1: The most energy efficient frequency configurations under the different DVFS algorithms (Userpace P-SAV and
standard Linux governors).

not reduced by a corresponding amount.
The GPU shows a similar trend, but it is not as clear as for

the CPU. The most energy efficient frequency can generally
be found a little higher up the range, instead of the minimum
that meets the FPS requirement. Additionally, once the 25
FPS requirement is met, the energy consumption flattens
out, rather than increasing. We argue that the heuristic
above is still valid for the GPU, but the gain is smaller, and
we have not been able to give any good indication of the
reasons behind this trend.

5. CONCLUSION
In this paper, we have attempted to minimise the energy

consumption of continuous multimedia processing. We have
taken an empirical approach by measuring the total plat-
form power of the Jetson-TK1 development kit while test-
ing the effects of GPU offloading, DVFS algorithms and fre-
quency settings. Our major finding is that “race-to-finish”
approaches, where the CPU is kept at the maximum fre-
quency settings to finish work and sleep as fast as possible,
are inefficient for continuous multimedia workloads. The
standard Linux frequency scaling algorithms can be outper-
formed by up to 28 % by minimising the CPU and GPU
frequency, such that the application deadlines are met.
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