
Minimizing Protocol Processing in Multimedia Servers
– Implementation and Evaluation of Network Level Framing –
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Abstract
Data servers for multimedia applications like News-on-

Demand represent a severe bottleneck, because a potentially
very high number of users concurrently retrieve data with
high data rates. In the Intermediate Storage Node Con-
cept (INSTANCE) project, we develop a new architecture
for Media-on-Demand servers that maximizes the number
of concurrent clients a single server can support. Tradi-
tional bottlenecks, like copy operations, multiple copies of
the same data element in main memory, and checksum calcu-
lation in communication protocols are avoided by applying
three orthogonal techniques: network level framing (NLF),
zero-copy-one-copy memory architecture, and integrated er-
ror management. In this paper, we describe how to minimize
the transport level protocol processing using NLF. In partic-
ular, we look at how NLF is implemented, and we present
performance measurements indicating a large performance
gain. The protocol execution is minimized to about 450 cy-
cles per packet regardless of packet size, i.e., a reduction of
about 87 % compared to 1 KB packets and more using larger
packets. Consequently, the total server-side processing over-
head is decreased by at least 50 %.

1 Introduction

In the last decade, there has been large growth in in-
terest in the Internet and the World Wide Web (WWW).
The number of users is rapidly increasing, and the same
trend will probably continue in the future. At the same
time, the availability of high performance personal com-
puters and high-speed network services has increased the
use of distributed multimedia applications like News-on-
Demand (NoD), Video-on-Demand (VoD), internet protocol
(IP) telephony, video conferencing, distributed games, digi-
tal libraries, and asynchronous interactive distance education.
These kinds of applications have become very popular and
will be an important part of the future, network-connected
information society.

However, despite the rapid advances in hardware tech-
nology, operating systems and software in general are not
improving at the same speed [16]. Due to this speed mis-
match, traditional operating systems provide inadequate sup-
port for large scale MoD server applications. Providing ser-
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vices like playback of video and audio to a potentially large
number of concurrent users for a rapidly growing class of
I/O-intensive applications requires careful management of
system resources. One of the main problems is transferring
data from disk to network through the server’s I/O data path,
i.e., from disk to the buffer cache in the file system, from
the buffer cache to the server application memory area, from
the application to the communication system memory where
network packets are generated, and from the communication
system to the network card. In this data path, there are several
factors that strongly limit the overall system throughput, e.g.,
disk I/O, bus speed, memory bandwidth, and network capac-
ity. Each subsystem uses its own buffering mechanism, and
applications often manage their own private I/O buffers. This
leads to repeated cross domain transfers, which are expensive
and cause high central processing unit (CPU) overhead. Fur-
thermore, multiple buffering wastes physical memory, i.e.,
the amount of available memory is decreased, reducing the
memory hit rate and increasing the number of disk accesses.

In the Intermediate Storage Node Concept (INSTANCE)
project [18], we concentrate on developing a new architec-
ture for single servers that makes optimal use of a given set
of resources, i.e., maximize the number of concurrent clients
a single server can support. Thus, the task of reading data
from disk and transmitting it through the network to remote
clients with minimal overhead is our challenge and aim. To
avoid possible bottlenecks, the key idea of INSTANCE is to
improve the server performance by combining three orthog-
onal techniques in a new architecture [10]:

• A zero-copy-one-copy memory architecture removing
all physical memory copy operations and sharing one
single data element between all concurrent clients.

• An integrated error management scheme combining er-
ror management in both storage and communication
system removing costly forward error correcting encod-
ing operations.

• A network level framing (NLF) mechanism reducing
communication protocol processing overhead.

This paper focuses on the implementation and evaluation
of the NLF concept, which enables us to reduce the server
workload by reducing the number of operations performed
by the communication system at transmission time. The ba-
sic design is presented in [9], and in this paper, we provide
implementation details and performance results.
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Figure 1. Traditional server storage versus NLF.

The rest of this paper is organized as follows: In Section
2, we describe the realization of the NLF mechanism, and
Section 3 evaluates the mechanism with respect of perfor-
mance. In Section 4, some related work is presented, and we
summarize and conclude the paper in Section 5.

2 Network Level Framing

Each time a client retrieves data from a server, the data is
processed through the communication system protocols exe-
cuting the same operations on the same data element several
times, i.e., once for each client. Measurements described in
[25] show that the sender latency is dominated by the trans-
port level checksum operation, i.e., most of the time is con-
sumed when reformatting data into network packets and cal-
culating the checksum. This operation is repeated for each
client and is wasteful, because an identical sequence of pack-
ets might be created each time – differing only in the desti-
nation IP address and port number fields. A logical approach
to reduce this overhead is to create this sequence of packets
once, store it on disk or in memory, and later transmit the
prebuilt packets saving a lot of processor resources.

2.1 Basic Idea

To reduce this unnecessary workload in the communica-
tion system protocols, i.e., performing the same operations
on the same data for each packet transmitted (Figure 1A),
we regard the server as an intermediate node in the network
where only the lower layers of the protocol stack are pro-
cessed (Figure 1B). When new data is sent to the server for
disk storage, only the lowest two protocol layers are exe-
cuted, and the resulting transport protocol packets are stored
on disk. When data is requested by remote clients, the trans-
port level packets are retrieved from disk, the destination port
number and IP address are filled in, and the checksum is
updated (only the new part of the checksum, i.e., over the
new addresses, is calculated). Thus, the end-to-end protocol
which performs the most costly operations in the communi-
cation system, especially the transport level checksum, are
almost completely eliminated.

As shown in Figure 1B, we use the idea of asynchronous
packet forwarding in the intermediate network nodes, and
our multimedia storage server is considered as an interme-

diate storage node where the upper layer packets are stored
on disk. The intention of NLF is to reduce the overhead of
CPU intensive, data touching operations in the communica-
tion protocols like the checksum calculation and thereby in-
crease the system performance. Since ARQ-based schemes
are not suitable for our multicast and real-time environment
[23], we use UDP as the transport level protocol to transmit
data from the server to the clients.

2.2 Implementation

To be able to test and evaluate the NLF mechanism, we
have designed and implemented a prototype of the NLF
mechanism in NetBSD. The prototype is integrated with an
in-kernel zero-copy data path between the storage system and
the communication system [10] which means that no copy
operations is performed in memory. Thus, data is placed di-
rectly in a memory area shared by the buf structures [15]
used by the file system and the mbuf structures [26] used by
the communication system. Since the application does not
touch data, no pointer to the in-kernel data area is provided.

The NLF implementation differs slightly from the basic
idea, because the header of the incoming packet uploading
data on the server will be incorrect, i.e., both due to address
fields and possibly using a reliable protocol like TCP for data
upload to the server [9]. Thus, to be able to prefabricate
UDP packets of correct size and with a correct, partly com-
pleted header, we store outgoing packets processed through
the transport level protocol, i.e., after the UDP packet has
been generated and the checksum has been calculated, but
before handing it over to the IP protocol.

To allow flexibility with respect to packet sizes and proto-
cols, we store the communication system meta-data (packet
headers) in a separate meta-data file. This enables the use
of different protocols and packet sizes without storing the
data several times, i.e., only several meta-data files are neces-
sary to hold the packet size dependent meta-data. Therefore,
when a stream is opened, this meta-data file is retrieved from
disk and stored in memory (if this is a large file, we might
use some kind of sliding-window technique to keep in mem-
ory only the most relevant data). During data transmission,
the correct packet header is retrieved from the meta-data file
according to the offset of the data file and the size of each
packet. The header is put into its own mbuf, and that mbuf’s
next-pointer is set to the mbuf chain containing the data.
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2.2.1 Version 1

To prefabricate the transport level packets, we use a spe-
cial system call where a locally stored file is given to
the packet prebuild routine, which generates the meta-data
(packet headers) and stores them in a separate meta-data file.
Furthermore, the data touching checksum operation is the
main CPU-cycle consumer, so our first version of the NLF
mechanism precalcuates the checksum over the packet pay-
load only (application level data) and stores this on disk,
i.e., the packet header is generated on-the-fly during trans-
mission time. Compared to the traditional checksum proce-
dure in cksum [4] calculating the checksum over all the
fields shown in Figure 2, our new on-line checksum proce-
dure, named in QuickCksum, calculate the checksum over
the 28 B pseudo-header only (white and dark areas in Fig-
ure 2). If we assume packet sizes between 1 KB to 8 KB,
in QuickCksum is executed over 1.91 % (1 KB packets),
0.97 % (2 KB packets), 0.49 % (4 KB packets), and 0.24 % (8
KB packets) of UDP data. The time spent on checksum op-
erations should therefore be reduced to nearly the same per-
centage (we must add some time for initializing the check-
sum function, etc., so the measured values will be slightly
higher).

This design simplifies the prefabrication function and re-
duces the storage requirement of the meta-data file by 80 %
compared to storing the whole packet header, but it is at the
cost of calculating the checksum over the packet header at
transmission time. Nevertheless, the performed prefabrica-
tion should still be sufficient to prove the advantages of the
NLF concept.

2.2.2 Version 2

In the first version of the NLF mechanism, the packet header
generation is the most time consuming operation in our mod-
ified UDP protocol. Thus, by either including the packet
header in the NLF implementation (as in the basic design) or
additionally using the idea of pregenerating header templates
on connection setup [5, 21], the overhead of filling in header
fields and calculating the header checksum can be reduced.
From the generation of packet headers for a particular net-
work connection, one can make some general observations.
For example, in the 8 B UDP header, only the 2 B checksum
field and 2 B packet length field will vary. Furthermore, in the
generation of IP packets sent by a particular UDP connection,
a 20 B header is added at the front of each packet. 14 B of this
header will be the same for all IP packets, and the IP length,
the unique identifier, and the checksum fields (6 B in total)
will probably be different for each packet. In addition, the
header might contain a variable number of options. However,

most IP packets carry no options, and if they do, all packets
transmitted through the same connection will likely carry the
same options. Thus, most of the fields in the headers will
be identical for all packets sent during a connection, with the
exception of the checksum field and the packet length, so it
will probably be preferable to only pregenerate a header tem-
plate at stream initialization time instead of retrieving all this
information from disk. The checksum for the header tem-
plate could also be precalculated during stream initialization,
minimizing the checksum operation in the function without
storing the entire packet including header. If we precalcu-
late the header template checksum, the template can, after
performing the checksum operation (due to using the pseudo
header in this operation), also include most of the IP proto-
col header fields, and the IP protocol processing will thereby
also be minimized.

In addition to the checksum procedure in version 1,
our second version of the NLF mechanism generates a
header template at stream initialization time, precalculates
the header checksum, and store both the checksum and a
pointer to the template in the inpcb structure [26] for this
connection, i.e., in the Internet protocol control block. This
means that the checksum procedure is further reduced, i.e,
only adding the (two) packet length fields, the header check-
sum, and the payload checksum. The on-line checksum
procedure, called in QuickCksumUdpIpHdr, is executed
only over the white fields in Figure 2, i.e., corresponding 0.38
% (1 KB packets), 0.19 % (2 KB packets), 0.10 % (4 KB
packets), and 0.05 % (8 KB packets) of UDP data. Addi-
tionally, the header template is copied into the header field in
the mbuf, i.e., we do not fill in each field separately from the
control block.

2.2.3 Version 3

We expected version 2 to consume a minimal amount of CPU
cycles when supporting a traditional UDP service. However,
our performance measurements (described next in Section 3)
show that the operation of copying the template into the mbuf
consumes more cycles compared to filling in the header fields
at transmission time. Therefore, we combined version 1 and
2 into yet another protocol, version 3. This version uses the
checksum facilities from version 1 and 2, but instead of us-
ing the header template, we fill in header fields during the
transmission operation.

3 Performance Evaluation

We have performed the tests using a Dell Precision Work-
Station 620 with a PentiumIII 933 MHz processor running
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Figure 3. Average processing overhead.

operation size maximum minimum average average standard Total‡ 99% 95%
(cycles) (µs†) deviation confidence interval confidence interval

Traditional UDP 1 KB 72616 3202 3544.59 3.80 1765.95 777976456 [3279 - 4477] [3306 - 3786]
2 KB 68547 3218 6464.07 6.93 1852.11 709379968 [6054 - 7199] [6096 - 6839]
4 KB 70521 9246 12304.25 13.19 2217.50 675146716 [11746 - 26924] [11816 - 12700]
8 KB 75372 8906 24108.69 25.84 3057.94 661445954 [23168 - 49848] [23286 - 24373]

UDP with NLF, version 1 1 KB 59021 421 544.10 0.58 785.60 119421191 [497 - 1067] [497 - 670]
2 KB 47088 437 565.09 0.61 483.71 62013914 [506 - 930] [506 - 784]
4 KB 33373 426 556.97 0.60 275.88 30561611 [487 - 972] [493 - 832]
8 KB 21644 442 598.05 0.64 226.90 16408082 [513 - 885] [519 - 812]

UDP with NLF, version 2 1 KB 73605 304 515.98 0.55 735.65 113248822 [382 - 891] [383 - 692]
2 KB 52675 387 528.19 0.57 422.53 57964935 [396 - 806] [408 - 716]
4 KB 34353 369 522.58 0.56 282.76 28674532 [383 - 927] [389 - 774]
8 KB 32400 313 537.13 0.58 378.74 14736589 [383 - 852] [395 - 723]

UDP with NLF, version 3 1 KB 60316 329 460.83 0.49 717.20 101144342 [380 - 965] [381 - 607]
2 KB 41473 297 433.41 0.46 376.04 47562868 [382 - 831] [382 - 653]
4 KB 22347 293 460.96 0.49 174.36 25293128 [381 - 787] [382 - 656]
8 KB 40485 358 471.30 0.51 388.26 12930708 [381 - 793] [382 - 674]

in cksum 1 KB 91828 2813 3103.73 3.33 1621.14 681217011 [2877 - 3581] [2899 - 3314]
2 KB 70387 2822 6010.18 6.44 1856.29 659568933 [5647 - 6498] [5689 - 6253]
4 KB 64954 8894 11899.73 12.75 2124.04 652949837 [11351 - 25414] [11422 - 12160]
8 KB 94041 8550 23674.59 25.37 3191.14 649536035 [22733 - 50358] [22858 - 23908]

in QuickCksum 1 KB 52229 106 130.55 0.14 705.17 28653746 [111 - 243] [113 - 195]
2 KB 46747 116 136.77 0.15 395.91 15009174 [121 - 257] [122 - 245]
4 KB 33788 107 138.66 0.15 341.33 7608332 [110 - 402] [110 - 243]
8 KB 16329 107 151.12 0.16 73.00 4146244 [110 - 264] [110 - 243]

in QuickCksumUdpIpHdr 1 KB 44880 66 84.25 0.09 134.18 18491626 [74 - 165] [74 - 97]
2 KB 46503 63 81.77 0.09 605.96 8973920 [66 - 149] [66 - 133]
4 KB 35232 64 82.48 0.09 287.80 4525627 [66 - 158] [66 - 148]
8 KB 16623 64 86.72 0.09 61.74 2379290 [66 - 158] [66 - 158]

†Calculated using the cycle count and the 933 MHz clock frequency of the used CPU. ‡This column shows the total amount of cycles used for the whole 225 MB stream.

Table 1. Cycles per packet spent in the UDP protocol and on checksum operations.

NetBSD 1.5ALPHA2. To measure time (cycles) in the ker-
nel, we have implemented a software probe using the Intel
RDTSC instruction reading the processor cycle count and the
CPUID instruction forcing every preceding instruction in the
code to complete before allowing the program to continue.
The overhead of executing this software probe is subtracted
from the measured results. Finally, to see the total speed up
in the amount of effective time used in the operating sys-
tem kernel, i.e., the time the process really uses the CPU, we
have measured the process’ used kernel time. For these mea-
surements we used getrusage which returns information

about the resources utilized by the current process.
For each version of the protocol, we tested packet sizes of

1 KB, 2 KB, 4, KB, and 8 KB. We transmitted a 225 MB file,
and we measured the time (in amount of cycles) to process
each packet through the whole UDP protocol and the time to
perform the checksum procedure. The per packet results is
shown in detail in Table 1 and summarized in Figure 3. As
we can see, our versions of the UDP protocol are faster than
the traditional protocol. As the difference between version 1
and the traditional protocol shows, it is the checksum calcu-
lation over the application level data that is most time con-



suming in the traditional protocol, i.e., the processing costs
vary according to packet size using the traditional UDP pro-
tocol and checksum. As we only compute the checksum over
the packet headers in version 1, the overhead of processing
the packet through the UDP protocol is approximately con-
stant. The checksum procedure consumes about 140 cycles
per packet. Precalculating the header checksum in version
2 further reduce the checksum operation by approximately
55 cycles, i.e., to about 85 cycles, compared to version 1.
However, we also found that block-copying the 28 B header
template takes more time compared to filling in each field in
the header one-by-one1, because the whole protocol perfor-
mance gain is less than the checksum gain. We therefore im-
plemented version 3 where we use the template header check-
sum, but we fill in the header fields at transmission time.

The overhead of the NLF approach is approximately con-
stant whereas the traditional protocol overhead varies with
the packet length. On average, the time to execute the check-
sum procedure is reduced by 97.29 % (1 KB packets), 98.65
% (2 KB packets), 99.31 % (4 KB packets), and 99.64 % (8
KB packets) when using NLF version 3 which is our fastest
modified UDP protocol2. When comparing these experi-
ments with the measurement of the whole UDP protocol, we
observe that the results are almost identical. This is because
the checksum operation is really the time consuming opera-
tion that is almost removed in NLF. However, please note that
the experiments are run separately to minimize the impact of
the probe, i.e., the peeks in checksum experiments might not
correspond to the peeks in the respective experiment measur-
ing the whole UDP protocol.

The relationship between the processing of the whole pro-
tocol and the checksum is shown in Figure 3C. This figure
presents the total time used in the UDP protocol to trans-
mit the 225 MB file and the amount of this time used for
the checksum operation. The checksum overhead is, as also
shown above, reduced using NLF, but the rest of the UDP
protocol processing (displayed in the lightly-shaded area in
the figure) is the same regardless of whether we use NLF
(version 1 and 3) or traditional UDP, i.e., when using NLF
version 2 it takes more time to block-copy the template.

Data touching operations like checksum calculation are
addressed as one of the major time consuming operations in
the end-systems [13]. For example, in a performance mea-
surement described in [12], the processing overhead of data
touching operations of the UDP/IP protocol stack is 60 % of
the total software processing time. Thus, by minimizing the
checksum overhead, we expect a processing speed-up of a
factor two (already using the zero-copy data path). The mea-
sured effective CPU time, including stream initialization, is
shown in Figure 4. In average we have a processing reduc-

1We also tested the performance of the copy procedure by implementing
a hand-optimized assembly routine. However, the performance gain is min-
imal, i.e., the measurements show an average reduction of only 1 - 2 cycles
per header template copy operation using the hand-optimized routine which
indicate that the native copy operation is highly optimized.

2Since we must add time for initializing the checksum procedure, defer
carries, and cast the value to an u int16 t, this performance gain is as
expected compared to the reduction in number of operations as outlined in
Section 2.2.2.
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tion of 53.10 % (1 KB packets), 54.65 % (2 KB packets),
60.90 % (4 KB packets), and 62.33 % (8 KB packets), i.e.,
the experienced speed-up factor is above two.

We also measured the throughput using NLF, but com-
bined with our zero-copy data path, we process data faster
through the system than our Gbps network card can handle.
Packets are dropped in the driver queue (using UDP). Nev-
ertheless, assuming that the storage system and the network
card are not bottlenecks, the consumed CPU time per stream
indicate a throughput of about 3.65 Gbps using 8 KB packets,
i.e., we can at least transmit data much faster than one Gbps.

4 Related Work

Even though the communication protocols’ packet pro-
cessing are not the main bottleneck in the I/O data path, im-
provements have been done to optimize the execution of the
protocol stack. For example, ILP [6] reduces the costs related
to the strict layering where data is touched in various lay-
ers and therefore data is moved between the CPU and mem-
ory many times. However, in our scenario, we have no data
touching operations except transport level checksum calcu-
lation, which is also removed. In the next subsections, we
therefore look at some related mechanisms that reduce the
communication protocol processing overhead.

4.1 Header Templates

Clark et al. [5] have designed a better performance IP
layer that uses the same observations made in Section 2.2.2
and creates a template of the header with the constant fields
completed. Thus, transmitting a TCP packet on a partic-
ular connection involves calling the IP protocol with the
template and the packet length. The template will then be
block-copied into the space for the IP header where the non-
constant fields are filled in. The idea of pregenerating header
templates has also been used with TCP. Saltzer et al. [21]
designed the TCP protocol to support remote Telnet login
where the entire state including unsent data on the output
side is stored as preformatted output packets. The Peregrine



remote procedure call (RPC) system [11] also uses pregen-
erated header templates over the RPC, IP, and ethernet head-
ers. This reduces the cost of sending a packet to a few lines
of code. However, as our measurements show, the block-
copy operation is expensive, and the performance gain may
be minimal (and may be even worse) using only header tem-
plates. The performance gain is depending on the amount of
pre-executed operations, i.e., header templates comprising all
the protocol headers in the protocol stack may be efficient as
there are less updates in the IP header compared to the UDP
header, and the ethernet header may not change at all for the
period of the bind time [11].

4.2 Precalculating Checksums

Checksum calculations are known to be a time consuming
operation. In [13], the overhead of checksum computations
is removed by turning off checksums when it is redundant
with the cyclic redundancy check (CRC) computed by most
network adapters. However, removing the checksum is an
unfortunate solution, because this may increase the proba-
bility of receiving damaged packets. Even though the link
level CRC should catch more errors compared to the trans-
port level checksum, corrupted packets are frequently not de-
tected by the CRC [24]. This is due to transmission errors in
the end-systems or in the intermediate nodes due to hardware
failures or software bugs. Furthermore, some systems allow
previously calculated checksums to be cached in memory. In
[14], a similar approach to NLF is presented where video
is preformatted and stored in the form of network packets.
Precomputing and storing the headers is also proposed, and
when the packets are scheduled to be transmitted, the destina-
tion address and port number are filled in, and the checksum
is modified. However, the authors only describe an expected
performance gain in the number of concurrent streams, be-
cause the number of instructions is greatly reduced. Further-
more, as the whole packet is stored as one unit, all streams
must use one predefined packet size. In contrast, by storing
the packet data in a separate meta-data file, our design en-
ables several packet sizes without storing the data elements
more than once. Moreover, the IO-Lite unified I/O buffering
and caching system [17] is optimized to cache the computed
checksum of a buffer aggregate, and if the same data is to
be transmitted again, the cached checksum can be reused. In
[20], caching of prebuilt transport level packets, in both end-
system and network nodes, is used for load balancing and to
reduce resource usage. This checksum caching is only effi-
cient if the data is accessed and transmitted frequently and
not paged out. For example, in the case of HDTV data deliv-
ery, most data will be paged out due to high data rates, and
this type of caching will give no performance gain. However,
caching in network nodes to enable other data distribution
schemes, is an issue of future work.

4.3 On- Board Processing

Another approach to reduce communication system over-
head is to use special hardware on the network adapters.

Some early approaches include afterburner [7] and medusa
[2] which remove data copying and perform checksum op-
erations during programmed I/O data transfers to on-board
memory. In the last few years, off-the-shelf network adapters
come with on-board memory and CPUs, e.g., the 3Com Gi-
gabit EtherLink card [1] based on the Tigon chip. These
cards come with on-board firmware that may calculate the
checksum(s) on the network adapter. Furthermore, there are
several proposed solutions of how to move the whole proto-
col processing on-board the network adapter, e.g., [3, 8, 22],
where performance issues like copying, checksumming, con-
text switching, policing offloading, etc. are addressed. These
new network adapters may therefore make the NLF mech-
anism unnecessary in some cases, but yet this hardware is
not available for all platforms, and they have limited CPU
power and amount of memory. Nevertheless, such hardware
is very useful. It can replace NLF, but also be used together
with NLF. Since the amount of CPU cycles are limited, there
might be resource shortage if several streams perform check-
sum operations, encryption, and forward error correction.
Doing NLF checksumming offline will therefore also save
CPU cycles on the network adapter.

5 Conclusions

As advances in processor technology continue to outpace
improvements in memory bandwidth and as networks sup-
port larger packets, proportionally less time is going to be
spent on protocol processing and related operating system
overhead. The I/O data path is the major component of com-
munication costs and will remain so in the foreseeable fu-
ture. Transferring data through the communication protocols
also add costs, and using our zero-copy data path, the trans-
port protocol processing is the most time consuming opera-
tion. In the INSTANCE project, we have designed and im-
plemented three mechanisms removing potential bottlenecks
like copy operations, redundant functionality, and communi-
cation protocol processing overhead in the operating system
on the server side. This paper has especially concentrated on
the NLF mechanism which almost eliminates the overhead
imposed by the transport protocol.

Our results show that the server workload is significantly
reduced using the INSTANCE mechanisms. The operation
consuming most CPU cycles using our zero-copy data path,
i.e., transport protocol processing, is minimized using NLF.
The protocol overhead is reduced to about 450 cycles per
packet regardless of packet size. The checksum processing
overhead is of about 85 cycles, i.e., this corresponds to a re-
duction of about 97.29 % (1 KB packets), 98.65 % (2 KB
packets), 99.31 % (4 KB packets), and 99.64 % (8 KB pack-
ets) when using NLF version 3 compared to the native UDP
protocol processing. When combining NLF with the zero-
copy data path, we are able to transmit data faster than the
Gbps network card is able to handle. If we assume that the
storage system and the network card are not bottlenecks, i.e.,
only the operating system processing is a bottleneck, the used
CPU time indicate that we should be able to transmit data at a



rate of 3.65 Gbps in a scenario using 8 KB packets and NLF
version 3.

The performance experiments show that it takes more time
to block-copy the template into the mbuf than filling in each
field one-by-one. However, on different architectures, this
might be different, but such tests are considered future work.
Furthermore, as our observations show in Section 2.2.2, the
IP and ethernet header will also have several identical fields
during the lifetime of a connection. In the future, we will
therefore also investigate the performance gain of including
the IP and ethernet protocol processing into the NLF mech-
anism. Whether the NLF ideas will be ported to on-board
processing is yet uncertain.
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