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ABSTRACT
Real multimedia datasets that contain more than just images or text
are rare. Even more so are open multimedia datasets in medicine.
Often, clinically related datasets only consist of image or videos. In
this paper, we present a dataset that is novel in two ways. Firstly, it
is a multi-modal dataset containing different data sources such as
videos, biological analysis data, and participant data. Secondly, it is
the first dataset of that kind in the field of human reproduction. It
consists of anonymized data from 85 different participants. We hope
this dataset paper will inspire people to apply their knowledge in
this important field, generate shareable results in the domain, and
ultimately improve human infertility investigation and treatment.

CCS CONCEPTS
• Applied computing → Health informatics; • Computing
methodologies→ Visual inspection; Neural networks; Classifica-
tion and regression trees;

KEYWORDS
Male fertility, Semen analysis, Spermatozoa, Machine Learning,
Artificial Intelligence, Videos, Images, Dataset
ACM Reference format:
Trine B. Haugen, Steven A. Hicks, Jorunn M. Andersen, Oliwia Witczak,
Hugo L. Hammer, Rune Borgli, Pål Halvorsen, and Michael Riegler. 2019.
VISEM: A Multimodal Video Dataset of Human Spermatozoa. In Proceedings
of 10th ACM Multimedia Systems Conference, Amherst, MA, USA, June 18–21,
2019 (MMSys ’19), 6 pages.
https://doi.org/10.1145/3304109.3325814

1 INTRODUCTION
In the field of multimedia research, a trend towards medical ap-
plications can be observed. This fact is underlined by a "Brave
New Topic" proposal of multimedia in medicine [26], multiple med-
ical multimedia tutorials [25, 27], and several emerging medical
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Figure 1: Example frame of a video in the dataset showing a
typical semen sample. The bright dots are the sperm heads,
and the black lines are the tails.

related workshops and special sessions in multimedia related con-
ferences1,2. However, multi-modal clinical datasets are still rare, as
most datasets focus on images with little to no associated attributes.
In this paper, we present a dataset containing more than just images
and videos, but also clinical attributes which may be combined to
learn hidden relationships between the different modalities [3].

In the domain of medical multimedia, we are currently looking
at the area of human reproduction by analyzing microscopic images
of sperm as shown in Figure 1. During the last few decades, fertility
rates in many industrialized countries have on average fallen far
below 2.1, which is considered to be the threshold to sustain a
population level [22]. In Norway, fecundity has decreased from 1.98
in 2009 to 1.62 in 2017 [21]. This decline can partly be explained
by socioeconomic factors, but it is also due to biologic matters.
One in six couples will encounter infertility [4], with 40 percent
being accounted to both male and female infertility factors. 10-15

1http://www.multimediaeval.org/mediaeval2018/medico/
2 https://mmhealth.uni-oldenburg.de
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percent of the cases go unexplained, based on the current methods
for evaluating fecundity.

Several studies have indicated that sperm count has declined
globally during the last decades [6, 18]. Furthermore, geographical
differences in semen quality have been observed. Among conscripts
(participants in a study) from the Nordic and Baltic countries, the
poorest semen quality was seen in Denmark and Norway [17]. Se-
men quality is associated with fertility, but the results are inconsis-
tent with regards to which parameter is the best predictor [5, 15, 30].
Furthermore, the function of the spermatozoon (amature andmotile
male gamete) is not necessarily reflected by the traditional semen
parameters.

Semen analysis is often performed early in the investigation of
involuntary childlessness. The clinical value of the semen analysis
is, however, debated. The results are not easily interpreted and must
be related to the participant history and other examinations. The
World Health Organization (WHO) has developed guidelines for
examination of human semen, first published in 1980 and updated
four times, with the last edition published in 2010 [23]. Still, the
assessments are based on a methodology introduced in the 1950s.
Standardization is important to achieve accurate and reproducible
results and to obtain evidence-based reference values for semen
characteristics. However, assessments often vary between different
laboratories, mainly because they are based on subjective evalua-
tions. The standard semen analysis recommended byWHO includes
evaluation of sperm concentration, total sperm count, sperm motil-
ity, sperm morphology, and sperm vitality. In some cases, additional
examinations are performed, like testing for antibody coating of
spermatozoa and assessment of leukocytes in semen.

During the 1980s, the introduction of personal computers and im-
proved digitalization of imagesmade it possible to develop computer-
aided sperm analysis (CASA). The first commercial CASA instru-
ment appeared in 1985. The hope was that CASA would contribute
to a more rapid and objective assessment of the spermatozoa, but
due to the nature of semen samples, it has been difficult to obtain
accurate and reproducible results. Thus, CASA has not been rec-
ommended for clinical use. However, during the last years, the
technology has improved and may work well with prepared semen
samples, i.e., spermatozoa isolated from seminal plasma and sus-
pended in a medium. An advantage with CASA is that the sperm
kinematic may be recorded, not only the categories progressive
motile, non-progressive motile, and immotile spermatozoa. It is still
not well elucidated what clinical value the motility pattern provides,
but the improvement of methods makes it possible to obtain more
reliable data. Imaging of sperm movements may, however, provide
information that is not captured by the CASA systems either. By
using machine learning (ML) methods for visual recognition, such
patterns may be revealed.

There may be other characteristics of the spermatozoa that pro-
vide information of relevance to fertility. These may be molecular
markers or constituents of the spermatozoa. The membrane of the
spermatozoon is especially rich in long unsaturated fatty acids,
and in a previous study, we have shown that the sperm fatty acid
composition is associated with semen quality [3]. Furthermore, we
found that being overweight is negatively related to semen quality,
and also that the fatty acid profile of the sperm of obese men may be

unfavorable. It is expected that data collected during the study pe-
riod has a potential for automatic analysis, but also for novel ways
to interact and search within the data. Possible research questions
range from tracking sperms in real-time to automatically assess the
quality of semen-based on videos. In addition, the video data could
be combined with other data collected from the participants.

Sperm-related data faces the same problems as other clinical
datasets. First of all, it is often difficult to share data due to legal re-
quirements. Secondly, the knowledge about what the data contains
and which are interesting medical research questions are often hard
to find for researchers not familiar with the field. Finally, datasets
are often also small compared to what would be effective for a
proper analysis and evaluation of the results. We try to tackle the
above-mentioned challenges by providing a clinical dataset in an
open and explained way to experts not familiar with the medical
field. The goal is to encourage these researchers to explore a new
and exciting medical domain and contribute to the society with
their research. In addition, we encourage comparable and open re-
search also in the medical field where data access is usually difficult
and often restricted to a limited number of researchers. The main
contributions of this paper therefore are:

(1) Presentation of and making available a novel, multi-modal,
open dataset, from a large number of participants, contain-
ing videos, semen characteristics, and demographic data,
all anonymized.

(2) A baseline evaluation of the two most obvious research
questions within the dataset and suggestions for additional
future research questions.

To the best of our knowledge, the dataset contains more samples
and far more attributes per participant than any sperm dataset
openly available today. The dataset opens up for a wide range of
new and interesting analyses, and a proper and fair comparison
between different methods, both from a medical and a multimedia
perspective. In the following, the process of collecting the data
and the data itself are described. Moreover, a baseline evaluation
is presented, including suggestions for future research directions
using the present dataset.

2 DATA COLLECTION
The presented data was originally collected for studies on how
overweight and obesity relate to the male reproductive function [3,
4]. Participants in the study were males aged 18 years or older and
were recruited between 2008 and 2013 from the normal population
through advertisements in newspapers and weight loss programs,
and patients from obesity and fertility clinics. Further details on
the recruitment have been described previously by Andersen et
al. [2]. The study was approved by the Regional Committee for
Medical and Health Research Ethics, South East, Norway, and all
participants provided written informed consent. The project was
closed in December of 2017, and all data was anonymized.

Participants in the study provided semen samples, and standard
semen analysis was performed according to WHO recommenda-
tion [23], including assessment of sperm motility, sperm concentra-
tion and total sperm count, ejaculate volume, sperm morphology,
and sperm vitality. For video recording for sperm motility, a sam-
ple was placed on a heated microscope stage (37°C) and examined
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under a 400× magnification using an Olympus CX31 microscope.
Videos were captured by amicroscopemounted camera (specifically
a UEye UI-2210C made by IDS Imaging Development Systems in
Germany) and saved as an AVI file. Motility analysis was performed
based on the videos. Fatty acids from spermatozoa and serum phos-
pholipids were extracted from the samples and analyzed by gas
chromatography as described in [3]. Sex hormones were measured
in blood samples as described in [2]. Additionally, AMH was mea-
sured in seminal plasma. For the association studies, multiple linear
regression and partial correlation were used for statistical analyses,
with SPSS Statistics 20 as the analysis tool.

2.1 Medical background
In some studies, sperm motility has been shown to be associated
with fertility [16, 20], whereas the predictive value has been shown
to be limited in other studies [5, 30]. The sperm motility is assessed
by microscoping of a fresh, liquefied semen sample. Spermatozoa
in the various motility categories are counted; progressive, non-
progressive, and immotile. Progressive motility is defined as sper-
matozoa moving linearly or in a large circle, regardless of speed,
non-progressive motility as all other patterns of motility with an
absence of progression, and immotility as no movement. 200 sper-
matozoa in each of the two replicates are counted, and the average
percentage is calculated.

The evaluation of sperm morphology is controversial, but al-
though the WHO 2010 manual recommends the use of strict crite-
ria [23], different methodologies may have prevented a consensus
across laboratories. To assess the morphology, fixed and stained
semen is prepared and examined with brightfield optics at 400× to
1000× magnification with oil immersion. Approximately 200 sper-
matozoa per replicate are assessed for the percentage of normal and
abnormal forms as well as the various defects; head, tail, midpiece,
and the presence of cytoplasmic droplets. Reference ranges for the
semen variables have been established based on fertile men, who
are defined as men whose partner conceived within 12 months
after stopping the use of contraception [10]. A one-sided reference
interval has been considered to be more appropriate for semen pa-
rameters since high values are unlikely to be detrimental to fertility.
The methodological approach with ML is intended to gain more
information from a semen sample than obtained by the standard
WHO analysis and a CASA system.

2.2 Related work
Open datasets in sperm analysis are rare and usually also very
limited in terms of size (number of images, videos, etc.) and partici-
pant diversity (number of different participants included) Another
problem is usually that participants are recruited from the clinics
meaning they are not representative for the general population.
This makes it hard to evaluate algorithms properly, but also to com-
pare different methods. Currently, only two small image datasets
exist. The first dataset, called Human Sperm Head Morphology
dataset (HuSHeM) [29], contains images of semen samples from
15 participants. In total, 725 images were taken during the study,
but only 216 are openly available. The images have a resolution of
131×131 pixels and are classified into four different classes (normal,
tapered, pyriform, and amorphous). For each of the images, a bi-
nary mask of the sperm in the image is provided. The second image

dataset is the SCIAN-MorphoSpermGS dataset [7]. It contains a
total of 20 images of sperm samples. In addition to images, it also
contains binary maps of the spermatozoa shown in the images.
The maps are separated into three categories depicting segments
of parts of the sperms (acrosome masks, head masks, and nucleus
masks). In addition to these two datasets, Gil et al. [14] present a
dataset containing semen analysis of 100 volunteers. The dataset
contains only features from the analysis, and no images or videos
are provided.

In terms of methods used to analyze sperms, several related
works can be found. All related works use datasets not made public
beside of the three small datasets presented above. Morphological
classification of sperm can either be applied to living and moving
sperms [13] or based on images of fixed and stained sperms. For the
second category, a set of image features is selected which is used to
train statistical or ML classifiers. The features can either be selected
manually based on quantities like sperm head length, width and
area [8, 24, 28], or automatically. Within automatic feature selection,
Yi et al. [32] used a discrete Fourier transform and a dyadic wavelet
transformation to characterize sperm head boundaries. Li et al. [19]
extracts image features using principal component analysis and
classifies using k-nearest neighbors. This approach outperformed
selecting features based on scale-invariant feature transform or
classifying based on a back propagating neural network. Shaker et
al. [29] used squared patches extracted from sperm head images
train a dictionary learning model.

In summary, current analyses of semen quality show potentials
to develop improved tools for fertility investigation and sperm se-
lection in particular. However, with more information, the potential
can be even higher. New datasets containing information beyond
images and videos only are therefore required.

3 DATASET DETAILS
VISEM contains data from 85 male participants aged 18 years or
older. For each of the participants, parameters from a standard se-
men analysis, a video of live spermatozoa, sperm fatty acid profile,
the fatty acid composition of phospholipids of serum, demographic
data and WHO analysis data are available. For some participants,
two video files were made since there was a drift in the first sam-
ple recorded. This makes it difficult for the laboratory personnel
to assess the motility. We decided to only include one video per
participant due to dataset size concerns. The dataset contains over
35 gigabytes of videos, with each video lasting between two to
seven minutes. The resolution of the videos is 640 × 480, and the
frame-rate is 50 frames per second.

The dataset contains in total six CSV-files (five for data and
one for the video to participant ID mapping), a description file, and
a video folder and can be accessed via https://datasets.simula.no/
visem orhttps://github.com/simula/mmsys2019-VISEM. Each
of the video files is named with an ID, the date of video capture and
a small optional description. Then, the end of the filename contains
the code of the person who assessed the video using the WHO
standard. In Figure 1, a sample frame from one of the videos is
shown. In this specific sample, which is defined as a normal sample,
a lot of spermatozoa can be seen. The distance from the microscope
to the sample is fixed. Furthermore, the camera is kept in a fixed
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position. This could also make it possible for example to estimate
size differences or even try to perform a 3D reconstruction.

Further, VISEM contains five CSV-files for each of the other data
provided, a CSV-file with the IDs linked to each their video, and
a text file containing descriptions of some of the columns of the
CSV-files. One row in each CSV-file represents a participant. The
provided CSV-files are:

• semen_analysis_data: The results of standard semen anal-
ysis.

• fatty_acids_spermatozoa: The levels of several fatty acids
in the spermatozoa of the participants.

• fatty_acids_serum: The serum levels of the fatty acids of
the phospholipids (measured from the blood of the partici-
pant).

• sex_hormones: The serum levels of sex hormones mea-
sured in blood of the participants.

• participant_related_data: General information about the
participants such as age, abstinence time and Body Mass
Index (BMI).

• videos: Overview of which video-file belongs to what par-
ticipant.

The dataset can be used for research without any restrictions.
Commercial use needs to be approved by the authors.

4 APPLICATIONS OF THE DATASET
We hope that this dataset may help researchers develop new meth-
ods for automatically detecting and predicting different aspects of
human fertility. For example, predicting the motility and morphol-
ogy of sperms would go a long way in reducing a doctor’s workload.
Motility and morphology are key attributes for determining the
quality of a given sperm sample. Motility tells us something about
the individual movement of each sperm, while morphology tells us
something about the shape and form of the sperm cells. Another
potential use-case is tracking individual sperms in real-time us-
ing the presented videos or perform semen quality analysis using
the included fatty acid data. Furthermore, using the data collected
from the WHO analysis, semen quality could be presented as a
classification task. Some possible research questions which could
be interesting to address using this dataset are (but not limited to):

• Is it possible to perform real-time tracking of spermatozoa
in the videos. This could be very helpful for medical per-
sonnel to keep track of spermatozoa during the analysis.

• Is it possible to predict motility or morphology attributes
from the videos only? This could save medical personnel a
lot of time used to perform a manual analysis.

• Can a combination of different data sources improve the
performance of prediction or tracking? This could be in-
teresting in the sense of improving the performance in
general but also to find new connections within the differ-
ent modalities.

• How are different data sources related to semen quality?
For example, are certain fatty acids related to semen quality
and how? This could be very helpful to improve current
knowledge and treatment but also to find completely new
medical evidence.

In addition to these possible research questions, the dataset will
hopefully inspire researchers to approach even more possible ap-
plications and research directions. Possible directions could be for
example be in the fields of segmentation, video analysis, informa-
tion retrieval, ML, object detection, computer vision, data fusion,
and medical multimedia systems. Another important aspect is that
the VISEM dataset also allows an easy and fair comparison between
different methods. This is often a challenge in health-related data
since the data is often restricted due to legal issues. Therefore, being
one of the first open medical multi-modal datasets available to the
multimedia community, we encourage researchers to explore the
dataset with their methods and skills.

5 SUGGESTED METRICS
As pointed out in Section 4, the presented dataset contains several
different research directions and questions to answer. First, the
dataset may be used for typical regression tasks, such as predicting
the motility and morphology of sperms for a given sample. Second,
the dataset can be used for classification tasks using the data gath-
ered through CASA analysis. Given this wide range of use-cases,
it is hard to suggest good metrics for the dataset. Nevertheless,
we recommend to at least use the most basic measures for each
category. For classification, we suggest precision, recall (also called
sensitivity in a medical context), accuracy, specificity, Matthews
correlation coefficient, and F1 score. Metrics typically seen as most
important in a medical context are sensitivity and specificity. If the
data is used to perform predictions, e.g., one wants to predict the
percentage of living sperms in a given sample based on a video,
measures such as mean squared error (MSE) or mean absolute error
(MAE) are advised. Additionally, we suggest using leave-one-out
cross-validation to obtain more robust and generalized results. In
any case, as one can see, the chosen metrics for this dataset strongly
depend on the use-case and should be chosen accordingly.

6 BASELINE PERFORMANCE
In order to provide a baseline for future users of the dataset, we
performed two different experiments. In both, the goal is to pre-
dict the quality of sperm samples in terms of motility and mor-
phology. Motility is represented by the attributes percentage of
progressive sperms (straight forward progression), percentage of
non-progressive sperms (not forward progression/slow progres-
sion), and percentage of immobile sperms (no progression at all).

Morphology is defined by percentage of normal sperms (normal-
ity of the sperms), percentage of sperms with head failures (head
defect), percentage of sperms with midpiece failures (midpiece de-
fect), percentage of sperms with tail failures (tail defect), percentage
of sperms with cytoplasmic droplet (cytoplasmic droplet is a de-
fect), and the teratozoospermia index (defined as the number of
abnormalities present per abnormal spermatozoon).

For experiment one, we used the videos as an input to predict the
attributes for motility and morphology. For experiment two, we use
the sex hormones and participant-related data as input. For both
experiments, we perform three-fold cross-validation and report the
MAE. The methods for the two experiments are explained in the
following.
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6.1 Experiment 1: Videos only
For the experiments using videos only to make predictions, we
based our approach on deep learning algorithms, specifically deep
convolutional neural networks (CNNs). Due to the computational
complexity of using 3D CNNs, we limited ourselves to performing
single frame prediction by extracting frames from the included
videos and passing them through a 2D CNN to perform regression.
For our implementation, we used Keras [9] with TensorFlow [1] as
a back-end. The model used for prediction is based on an Inception
V3 architecture [31], where we used the implementation included in
Keras and trained it from scratch. We experimented using transfer
learning from the ImageNet [11] weights included in Keras, but
quickly found that it neither improved performance or time to
convergence. Additionally, we performed the same experiments
using other popular CNN architectures such as DenseNet and VGG,
but have opted to only include the network which gave us the
best results. As previously mentioned, the models trained for each
experiment is done using three-fold cross-validation, where we
extracted 250 frames, at evenly dispersed intervals, from each video
(21,250 frames total) and used 14,250 for training and 7,000 for
validation. All networks were trained using Nadam [12] as the
optimizer and using MAE to calculate loss.

6.2 Experiment 2: Sex hormones and
participant related data

For the experiments using sex hormones and participant-related
data, we use three simple and well-known methods. As a baseline,
we use a ZeroR regression (also called pseudo regression). The
cross-validation coefficient for these methods is defined with Q2=0.
Attributes predicted will be equal to the average calculated over
the whole training set. The second method we are using is linear
regression. The final method is Random Forest for regression which
is an additive model using a sequence of base models to perform
the final prediction. For each method, we trained one model per
attribute.

6.3 Baseline results
Since we are only interested in the motility and morphology of
sperm as a whole, and the mean absolute error is additive, we only
report the overall error calculated by summing up the individual
errors. Table 1 shows the prediction performance for both motility
and morphology prediction of all proposed methods.

Starting with methods for predicting sperm motility, we see
that all techniques outperform the ZeroR baseline, with the deep
CNN approach achieving an overall best score of 31.6157 (a 7.0740
difference from the baseline). This indicates a good performance
and shows that we are able to predict the motility and mobility
of sperms based on single video frames alone. It is important to
point out that even if the results are promising they are not appli-
cable in a clinical setting with further improvement. Furthermore,
looking at the methods using only sex hormones and participant
data for prediction (early fusion with linear regression and random
forest), we see that these methods too beat the baseline by quite
a large margin (2.8324 for random forests and 1.4805 for linear
regression). For predicting the sperm morphology, we see that two

Table 1: Prediction performance in terms of Mean Absolute
Error.

Method Predicted Mean Absolute Error
Inception V3 Motility 31.6157
Linear regression Motility 37.2092
Random Forest regression Motility 35.8573
Baseline (ZeroR) Motility 38.6897
Inception V3 Morphology 21.5697
Linear regression Morphology 23.0028
Random Forest regression Morphology 21.0614
Baseline (ZeroR) Morphology 21.9202

of the three proposed methods are able to outperform the base-
line, with random forest regression having the best performance
at 0.8588 lower MAE than the baseline. The linear regression was
not able to beat the baseline at 23.0028. Although the difference in
error between methods is lower than that for motility, it is still an
improvement and shows that these techniques work better than
simply predicting the average. Nevertheless, this may indicate that
sperm morphology is harder to predict based on just sex hormones
and participant-related data, or static video frames alone. For all
performed experiments, the optical flow between frames was not
taken into account, which would most likely lead to further improve
the results described.

7 CONCLUSION
Reproducibility and comparability of results are seen as the basis
of good research. In this paper, we presented a dataset in a domain
that usually comes with the challenge of data sharing. We presented
a multi-modal dataset in the field of human reproduction collected
from 85 participants. The dataset contains videos, analysis data,
and participant-related data. In addition, we provide a baseline
analysis and possible research questions that can be addressed with
the dataset. We hope that the dataset will be useful for researchers
in the field of human reproduction but also that it will encourage
scientists not familiar with the topic to try their approaches and
help to improve the outcome.
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