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ABSTRACT
�e keypoint detector and descriptor Scalable Invariant Feature
Transform (SIFT) [8] is famous for its ability to extract and describe
keypoints in 2D images of natural scenes. It is used in ranging
from object recognition to 3D reconstruction. However, SIFT is
considered compute-heavy. �is has led to the development of
many keypoint extraction and description methods that sacri�ce
the wide applicability of SIFT for higher speed. We present our
CUDA implementation named PopSi� that does not sacri�ce any
detail of the SIFT algorithm, achieves a keypoint extraction and
description performance that is as accurate as the best existing
implementations, and runs at least 100x faster on a high-end con-
sumer GPU than existing CPU implementations on a desktop CPU.
Without any algorithmic trade-o�s and short-cuts that sacri�ce
quality for speed, we extract at >25 fps from 1080p images with
upscaling to 3840x2160 pixels on a high-end consumer GPU.
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gion detections; Image processing; •Computer systems organi-
zation→ Single instruction, multiple data;
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1 INTRODUCTION
Image matching aims at establishing correspondences between
similar objects appearing in di�erent images. It is one of the fun-
damental steps in many applications such as image recognition,
three-dimensional reconstruction, image registration and object
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tracking. Among image matching methods, the ones relying on
keypoints are widely used. �ey consist of two main parts: key-
point detection and descriptor extraction. �e �rst part comprises the
detection of keypoints, also called local region or interest point, and
the selection of a region surrounding each of them. A descriptor
associated with a selected region is then extracted and used later
on to �nd keypoint correspondences across a collection of images
representing same objects.

One of the most used methods for keypoint detection and de-
scriptor extraction, if not the most used, is SIFT [8]. �e method
combines a Di�erence of Gaussian (DoG)-based keypoint detector
that is invariant to rotation, translation and scale1 with a descriptor
based on the gradient orientation distribution in the region.

In the context of our POPART and LADIO projects, we aim at real-
time natural feature-based camera tracking from 3D reconstructed
environments. To achieve this, keypoint-based image matching
algorithm are essential in both reconstruction and tracking, as they
provide, based on raw input images, keypoint correspondences
used both in Structure-from-Motion (SfM) and image-based camera
localization pipelines. Keypoint detection and descriptor extraction
remain among the most time consuming steps of the SfM pipeline.
�e required accuracy of the tracking demands the use of an HD
(1080p) live video stream.

�ere are already some GPU implementations of SIFT. Si�GPU
[13] is close to reaching the speed goal, but we could not build
on it due to our need for a more �exible license. CudaSi� [3, 4]
is capable of keypoint detection and description in real-time, but
it does not actually behave like SIFT, as shown in Section 5. We
therefore need a new open source SIFT implementatins that is both
fast enough for real-time applications and implements the SIFT
algorithm faithfully.

�is paper describes our open source implementation of SIFT
as proposed by Lowe [8] on CUDA following the descriptor nor-
malization proposed by Arandjelovic and Zisserman [1]. Our im-
plementation is called PopSi�. PopSi� as submi�ed to MMSys’18
can be found at https://github.com/acmmmsys/2018-PopSi�2.
To illustrate its performance compared to a very good CPU imple-
mentation, Table 1 shows computing times of VLFeat on an i5-4590
and PopSi� on a GTX 1080 for 3 individual frames of resolution
1920x1080.

2 THE SIFT ALGORITHM
�e SIFT algorithm follows several steps that are illustrated in
Figure 1. �ey perform the following sequence:

1A mathematical proof is given in [6].
2New developments can be found at h�ps://github.com/alicevision/popsi�.
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VLFeat PopSi�
runtime descriptors runtime descriptors

maine 7.195 sec 44666 0.043 sec 44930
cap 7.232 sec 44966 0.043 sec 45179
boston 6.060 sec 30262 0.037 sec 30473

Table 1: VLFeat on an i5-4590 at 3.3Ghz vs PopSi� on a
GTX 1080. �e time spans keypoint detection and descrip-
tor extraction (and CPU-GPU transfers for PopSi�) but no
image decoding or disk operations. Figures had resolution
1920x1080, upscaled to 3840x2160, using the default param-
eters of VLFeat.

Upscaling. Upscale the input image by a factor of 2 in both X and
Y dimension. Generally, implementations of SIFT do also allow the
user to skip this step to sacri�ce accuracy for speed.
Creating a Gaussian pyramid. SIFT a�empts scale-free match-
ing by emulating a freely scale pyramid of resolutions. �is pyramid
is emulated by computing groups of same-resolution images that
are increasingly blurry, each group called an octave, and the same-
resolution images of an octave are referred to as levels. �e �rst
octave has the resolution of the scaled input image, every subse-
quent group halves the resolution. Downscaling is performed from
the third-last level of an octave. SIFT uses 2D Gaussian blurring
with a blur factor that is traditionally called σ . �e next lower
resolution octave is computed by �rst downscaling the image by a
factor of 2 whose resulting accumulated blur factor is 2σ .
Computing the DoG. �e DoG is computed to approximate to
the scale-normalized Laplacian-of-Gaussian as studied by Linde-
berg [7].
Detecting keypoints. Every pixel in the DoG layers that is an
extremum (absolute minimum or maximum) in its neighbourhood
in the same, previous and next level (26 neighbouring pixels) initi-
ates a keypoint search close to it in scale-space (X, Y and blur level
direction). �e potential keypoint location is found at the location
of the maximum or minimum of a quadratic function through the
extremum in 3D space. �e candidate is accepted as a keypoint
when it passes a contrast and “edgeness” test.
Computing the keypoint orientations. Each keypoint may be
described by one or more SIFT Descriptors. For each descriptor, the
feature point has an associated dominant orientation indicating a
2D direction of the strongest luminance change within at least a
30◦ arc from the feature point. �e dominant orientation of a SIFT
feature vector is a �oating point value that exists at least once for
each accepted extremum.
Extracting descriptors. To compute the SIFT descriptor for each
dominant orientation of a keypoint, 16 vectors of 8 �oats are com-
puted. Each group of 8 represents a gradient histogram in one of 16
square regions arranged around the keypoint. �e symmetrical grid
of 16 squares is oriented according to the keypoint’s dominant ori-
entation and scaled according to the Z-coordinate. A detail that is
rarely represented in SIFT illustrations is that these square regions
overlap (the red square in Figure 1(d) shows the actual coverage).
Normalizing descriptors. Descriptor vectors are normalized to
unit length to ensure invariance to luminance changes. �e classical
norm is an L2 norm with preprocessing for thresholding. RootSIFT
normalization proposed in [1] has shown to improve signi�cantly
the matching performance.
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Gaussian blur

Downscale

(a) Pyramid creation

Extremum localizationDifference of Gaussian

Extremum refinement

(b) Di�erence of Gaussian and extrema localization
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Figure 1: �e stages of SIFT.
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3 POPSIFT IMPLEMENTATION
PopSi� follows strictly the steps prescribed by Lowe [8]. It is meant
to be used as a drop-in replacement for VLFeat [12], and imple-
ments a non-blocking data�ow that uses an input queue and double
bu�ered transfer to the GPU, while still allowing calling programs
to interact with PopSi� as if they were using blocking calls. To
achieve this, we make use of futures from the C++11 standard li-
brary. �e SIFT extraction in the background uses two threads. �e
�rst one moves queued jobs from the open-ended �rst queue into a
double bu�er of CUDA-allocated host memory. CUDA-allocated
host memory is pinned, page-aligned memory that is suitable for
DMA onto the GPU, and the two stages are used to minimize the
amount of pinned memory. �e second thread starts all required
CUDA kernels until the SIFT features are extracted. Since the num-
ber of SIFT features is varying considerably even for images of
the same resolution, the returning host bu�er is allocated dynami-
cally, using page-aligned memory. For the download operation, it is
pinned to allow DMA, unpinned, and stored in the promise, thereby
potentially unblocking the future in case the calling program has
already called get().
Image upload and upscale. A�er transferring an input image to
the GPU, we access it through a CUDA texture using hardware-
supported normalized access and interpolating access. Conse-
quently, we are not restricted to original-size or double-size input
images, but can choose arbitrary scale factors.
Gaussian blurring and DoG computation. PopSi� exploits the
separability property of the Gaussian �lter. Filters are loaded into
CUDA constant memory. Multiplication operations are the bo�le-
neck in the Gaussian �lter computation, and PopSi� uses symmetry
and, optionally, interpolation to reduce memory access and multipli-
cations. Still, wider �lters require more time, and PopSi� supports
several �lter width computation. �e default width is d4σ e + 1,
which considers all Gaussian terms above 10−8. Alternatives are
(d16σ + 2e/4)|1 and �xed 15. For a default σ = 1.6 and default �lter
width, the full dual-sided �lter widths for incremental blurring
range from 11 for blur level 1 to 27 for level 5. For downscaling,
PopSi� defaults to the prescribed downscaling of the third-to-last
level of an octave, but it is also possible to downscale the �rst level
of every octave directly from the upscaled input image. To increase
parallelism, it is also possible to downscale to all levels of an octave
directly from the scaled input image. However, this means larger σ
values, which leads to default �lter widths ranging from 15 to 43.
�e DoG layers require a simple pixel-wise subtraction.
Keypoint detection. �e number of CUDA threads used by Pop-
Si� is straightforward, one thread checks a single pixel. �ey are
arranged in groups of 32x4, where 32 achieve the optimal load
operation of 128 contiguous bytes and 4 groups of 32 compensate
for load latency. Extremum computation is performed by �lling a
bitmask that evaluates to true if the pixel is either an absolute min-
imum or maximum. �ese bit operations avoid all code branches
and allow groups of 32 threads to execute in lockstep. Testing for
presence of an extremum is a single boolean operation.

To implement subpixelic re�nement of the keypoint position in
three dimensions (X position, Y position and blur level), PopSi� uses
a closed-form solution instead of Gaussian eliminiation. �e speci�c
re�nement test di�ers between SIFT implementations. PopSi�

defaults to an own variant, but implements also OpenCV and VLFeat
variants. Importantly, OpenCV and PopSi� variants can move in
the third dimension (between blur levels), whereas VLFeat cannot
do this.
Dominant orientation computation. PopSi� uses the fast CUDA
intrinsics shfl*(), popc() and ballot() in dominant orien-
tation computation. �is requires the use of 2n threads, but no
more than the maximum warp size of 32. �is prevents the use of
one thread for each of the prescribed 36 histogram bins (each rep-
resenting 10◦) for collecting an orientation histogram of gradiants
around the extremum, but pays o� by reducing memory latency.
For best speed, we use 16 threads per keypoint. To compute sec-
ondary dominant orientations e�ectively, we implemented a very
speci�c 32-cell bitonic sort.
Descriptor extraction. PopSi� implements several approaches for
sampling images and create SIFT descriptors. In the ”loop” approach,
512 threads cooperate in 16 groups of 32, where each group of 32
compute 8 values of a descriptor, representing histogram for one
of 16 rotated squares surrounding a keypoint. �ey de�ne a box
aligned with the image that contains their assigned square entirely,
and scan every pixel in the box. Weighted gradient information is
computed for those pixels that are also inside the square and added
to the 8-bin histogram that makes up the descriptor.

In the ”grid” approach, interpolating textures are used to sample
each of the 16 squares following a 16x16 grid pa�erns that is aligned
to a domiment orientation of the keypoint. 256 threads cooperate
for each keypoint orientation, in groups of 16 for every 16x16 grid.
Weighted gradients are computed and inserted in the histogram.

�e third approach (called ”notile”) makes use of the overlap
between the squares. Whereas outer regions of corner squares
contribute only to this square’s histogram, pixels closer to the
center may actually contribute to the histograms of 4 squares. �is
approach uses 32 threads per keypoint to sample a 64x64 grid of the
entire area covered by the 16 squares, and computes the gradient
for each sample, and subsequent weight and add it to the one, two
or four relevant histograms.

�e �nal step requires normalization of the descriptors. PopSi�
implements L2 and RootSIFT normalization [1]. �e resulting de-
scriptors can optionally be scaled by any power of 2 in the same
step, simplifying conversion to byte descriptors instead of �oat
descriptors before transfer to the CPU. Typical multipliers are 28

and 29.

4 COMPILING AND USING POPSIFT
PopSi� is developed and tested on Ubuntu 16.04 and MacOS X.
�ird parties report having built and used it on Windows. It has
three mandatory dependencies, CUDA 7.0+ as GPU programming
framework, CMake 3.4+ for the build system and Boost 1.53.0+ for
simple support functions.

LibDevIL is an optional dependency of the demo application
popsift-demo. It adds the ability to load images that are not in
PGM or PPM format, as well as recursively reading entire directo-
ries. However, libDevIL looses so much precision due to its internal
intermediate representation that it is clearly observable in repeata-
bility tests, and it is therefore mainly useful for speed demonstra-
tions.
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To compile PopSi�, clone the git repositoryhttps://github.com/
acmmmsys/2018-PopSi�3. Set up the local build system using
CMake. Before compiling, it is a good idea to check the CMake vari-
ables named PopSift ∗, for example using ccmake. Compile speed
can be increased considerably by restricting the CUDA Compute
Capability list in PopSift CUDA CC LIST to the relevant platform,
and by disabling PopSift USE GRID FILTER if the grid �lter func-
tionality is not required.

�e main output of the compilation process is the library lib-
popsift.a, which is meant for linking by other programs.

A demo program called popsift-demo is provided, whose multi-
tude of parameters allows switching between the alternative imple-
mentation options described in Section 3. Default values of these
parameters target precision over speed. �e only mandatory param-
eter of popsift-demo is the choice of an image or of a directory
containing images, indicated by -i.

Library, headers and demo program as well as CMake con�gura-
tion �les can be installed using make install and removed using
make uninstall.

PopSi� is available under the Mozilla Public License Version 2.0.
An executable for Ubuntu 16.04 that is statically linked to CUDA

and Boost and does not use libDevIL can be found at h�ps://github.
com/alicevision/popsi�/releases/tag/os 01 2018.

5 COMPARISONWITH CUDASIFT
�e fastest code that claims to be an implementation of SIFT is Cu-
daSi�, and it does outperform PopSi�. However, CudaSi� does not
actually behave like a faithful SIFT implementation in terms of key-
point detection. It implements an approximation of the Laplacian-
of-Gaussian for all levels directly from the input image, which
should work well, but it uses narrow �lters with the argument that
locality dominates in keypoints detection. In our understanding,
this implies that the lower levels of an octave cannot be faithful esti-
mates of a downscaled image, since distant pixels are not considered.
It behaves very di�erently from the other SIFT implementations in
this test, as shown in Figure 2, and is apparently not feasible as a
drop-in replacement for a CPU-based SIFT implementation.

6 OTHER COMPARISONS
We compared PopSi� with three other open-source SIFT implemen-
tations (VLFeat, OpenCV and Si�GPU) using datasets that were
published for the evaluation of keypoint extraction and matching
(VGG [9], Hannover [5] and CVLAB [11]). Since none of these
datasets contains images at 1080p resolution, we have additionally
downloaded 12 images from Flickr with 1920x1080 resolution.

6.1 �alitative performance
To compare quality with the other implementations, we used the
repeatability evaluation using true correspondances based on region
overlap as de�ned in [10] and the corresponding publicly available
code [9].

PopSi� performs very similar or slightly be�er than VLFeat and
performs be�er than Si�GPU and OpenCV. A subset of our results
can be seen in Figure 4.

3Or more recent versions at h�ps://github.com/alicevision/popsi�

2 3 4 5 6
0

20

40

60

80

100

blur (increasing)

re
pe

at
ab

ilit
y 

%

 

 

2 3 4 5 6
0

200

400

600

800

1000

blur (increasing)

#c
or

re
sp

on
de

nc
es

 

 

2 3 4 5 6
0

20

40

60

80

100

blur (increasing)

m
at

ch
in

g 
sc

or
e 

%

 

 

2 3 4 5 6
0

200

400

600

800

blur (increasing)

#c
or

re
ct

 m
at

ch
es

 

 

VLFeat
Celebrandil

VLFeat
Celebrandil

VLFeat
Celebrandil

VLFeat
Celebrandil

CudaSift

CudaSift

CudaSift

CudaSift

(a) Example of CudaSi� performing
better than VLFeat

1 2 3 4
0

20

40

60

80

100

scale change

re
pe

at
ab

ilit
y 

%

 

 

1 2 3 4
0

100

200

300

400

500

600

scale change

#c
or

re
sp

on
de

nc
es

 

 

1 2 3 4
0

20

40

60

80

100

scale change

m
at

ch
in

g 
sc

or
e 

%

 

 

1 2 3 4
0

100

200

300

400

500

scale change

#c
or

re
ct

 m
at

ch
es

 

 

VLFeat
Celebrandil

VLFeat
Celebrandil

VLFeat
Celebrandil

VLFeat
Celebrandil

CudaSift

CudaSift

CudaSift

CudaSift

(b) Example of CudaSi� performing
worse than VLFeat

Figure 2: Illustration of the deviation of CudaSi� from a by-
the-book SIFT implementation on (a,c) Bikes and (b,d) Bark.
Evaluation according to [10].

6.2 Time performance
�e implementation decisions that we documented in Section 3
have in general enabled us to achieve our goal of processing 1080p
frames and extracting descriptors in real-time. We measure only
the time from the calling application’s handover of the loaded lumi-
nance image to the PopSi� until the bu�er containing the extracted
descriptors can be read by the application. �e time includes all
transfers between CPU and GPU as well as bu�er allocation. �e
�rst image in a sequence does always have additional 20 msec de-
lay for CUDA memory allocation. It is therefore recommended to
create the PopSi� object once and queue frames. Typically, in spite
of non-blocking operation, PopSi� processes images faster than the
host can load compressed images from disk.

Figure 3 illustrates the processing time for 3 sets of di�erently
sized images (1536x1024, 1920x1080 and 2560x1920 pixels). �e
speci�c datapoints are marked by boxes. Although the construction
of the Gaussian pyramid is typically the most time-consuming step,
it is constant for a given image size. �e dominant dynamic part is
the descriptor extraction step. It is possible, as Figure 3(b) shows,
that an extremely feature-rich image requires so much processing
time in the descriptor extraction step that the real-time goal cannot
be achieved.

However, good camera pose estimation and other applications
that would bene�t from real-time operation do generally work well
when on the order of 2000 features are extracted from all images.
In our example images, this goal could mostly be achieved without
the image upscaling step.

To reduce the number of keypoints to a managable number,
PopSi� implements also an optional grid �ltering method that sorts
keypoints by their scale within the cells of a regular grid that is
overlaid the image. Only up to a desired number of keypoints is then
handed over to descriptor extraction, uniformly distributed over
the grid cells. �is optional step makes use of CUDA �rust. It is
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(c) Resolution 2560x1920 (pyramids in Holidays dataset)

Figure 3: Speed of PopSi�. Red colors for default mode
with upscaling, green without upscaling. �e darker tones
show the speed without the �nal descriptor extraction step.
Dataset images are sorted by increasing number of extracted
features.

expensive and not recommended unless more than 1000 descriptor
extractions can be avoided by performing it.

�e pyramids subset of the Holiday dataset (Figure 3(c)) is an ex-
ceptional example. Besides the high resolution, these photographs
are very feature-poor, and partly taken at night and with consid-
erable blur. As a consequence, the number of keypoints is very
small, not even reaching the desirable 2000-descriptor mark at an
upscaled resolution of 5120x4840. �e required computing time is
therefore dominated by the constant elements, construction of the
pyramid, computation of the DoG and keypoint search. For images

this large, we are so far just reaching 25 fps. For a feature-rich
image of this resolution, we would not achieve real-time speeds yet
(but neither can other implementations).

7 CONCLUSION
�e goal of writing an implementation of SIFT that is faithful to the
original paper [8] on modern GPU hardware has been achieved with
PopSi�. We have demonstrated the performance of PopSi� both
in terms of keypoint detection and extraction results. It competes
with the best known open source implementations. In terms of
speed, it ful�ls the promise of real-time feature extraction from
1080p frames on an NVidia GTX 1080 card in all but the most
exceptionally feature-rich cases. In most scenarios, in particular
those that are relevant for real-time applications, it overperforms
with considerable computing time to spare. Speci�cally for our
own use case, it extracts up to 10000 descriptors from non-upscaled
1080p videos at 100 fps or be�er.

Publication of PopSi� does not mean that our work is done. We
implemented PopSi� by the book because only the well-studied,
repeatedly implemented original algorithm allows us to verify with
high con�dence the correctness and quality of our implementation.
In the future, we will add fast matching methods to PopSi� (so far,
only brute force is available), and extend PopSi� with variations
of SIFT that are known to increase its qualitative performance. We
have been asked by project partners to add Upright SIFT [2], and
we are looking at other advanced variants.
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Figure 4: �alitative performance: (a) Repeatability rate, (b) number of correspondances, (c) matching rate and (d) number of
correct matches evaluated on excerpt from VGG and Hannover datasets. Higher values are better.
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