OpenSea - Open Search Based Classification Tool

Konstantin Pogorelov

University of Oslo, Norway

Mathias Lux

Klagenfurt University, Austria

Zeno Albisser

Simula Research Laboratory, Norway Simula Research Laboratory, Norway
University of Oslo, Norway

Dag Johansen
UiT-The Arctic University of Norway

Olga Ostroukhova
Research Institute of Multiprocessor
Computation Systems n.a.
AV.XKalyaev, Russia

Pal Halvorsen
Simula Metropolitan Center for
Digital Engineering, Norway
University of Oslo, Norway

Michael Riegler
Simula Metropolitan Center for
Digital Engineering, Norway
University of Oslo, Norway

ABSTRACT

This paper presents an open-source classification tool for image
and video frame classification. The classification takes a search-
based approach and relies on global and local image features. It has
been shown to work with images as well as videos, and is able to
perform the classification of video frames in real-time so that the
output can be used while the video is recorded, playing, or streamed.
OpenSea has been proven to perform comparable to state-of-the-art
methods such as deep learning, at the same time performing much
faster in terms of processing speed, and can be therefore seen as
an easy to get and hard to beat baseline. We present a detailed
description of the software, its installation and use. As a use case,
we demonstrate the classification of polyps in colonoscopy videos
based on a publicly available dataset. We conduct leave-one-out-
cross-validation to show the potential of the software in terms of
classification time and accuracy.

CCS CONCEPTS

+ Information systems — Information retrieval; - Comput-
ing methodologies — Parallel algorithms; Search method-
ologies; Computer vision problems; Machine learning;

KEYWORDS

Image, video, indexing, information retrieval, global features, ma-
chine learning, classification

ACM Reference format:
Konstantin Pogorelov, Zeno Albisser, Olga Ostroukhova, Mathias Lux, Dag
Johansen, P4l Halvorsen, and Michael Riegler. 2018. OpenSea - Open Search

Contact author’s address: Konstantin Pogorelov, Simula Research Laboratory, Oslo,
Norway, email: konstantin@simula.no .

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MMSys’18, June 12-15, 2018, Amsterdam, Netherlands

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5192-8/18/06...$0.00

https://doi.org/10.1145/3204949.3208128

363

Based Classification Tool. In Proceedings of 9th ACM Multimedia Systems
Conference, Amsterdam, Netherlands, June 12-15, 2018 (MMSys’18), 6 pages.
https://doi.org/10.1145/3204949.3208128

1 INTRODUCTION

In the last years, multimedia data has become increasingly popular
and important. More recently, big data is now a buzzword in the
community related to the massive amount of multimedia data that
becomes available because every user can create their own con-
tent and share it. However, also in other fields like medicine, the
use of multimedia data, especially videos and images, has gained
importance. This leads to a need for software and methods that
make possible to search, categorize and classify this data efficiently
based on content and not just based on metadata. Without such
methods, the data available cannot be used efficiently. An example
that leads to a lot of video data generation in the medical field is
the use of camera pills (wireless video capsules), which traverse a
patient’s gastrointestinal (GI) tract. For a single patient, a camera
pill collects between 4 and 12 hours of video material. Since medical
experts are already overloaded, they do not have time to watch all
the videos when the use of camera pills increases. Furthermore,
batch processing of a huge amount of data costs resources and
time, which are not always available. For cancer patients, it can be
life-saving if their data is processed faster.

Therefore, we present an open-source system that provides a
fast and easy way of classifying videos or images. It allows to
easily create search-based classifiers that use global content features
describing the image or frame as a whole. The OpenSea software
contains a pipeline that allows the extraction of global features,
creates indexes that are used as models for the classifier, classifies
images and videos, and outputs the results in a format that can
easily be used in a lot of various scenarios and applications by
different users. Apart from that, OpenSea can also beat state-of-
the-art methods such as convolutional neural networks (CNNs) in
some use cases which makes it an easy to get and relatively hard
to beat baseline for evaluation of approaches [6-8, 14]. It is also
much faster compared to deep learning approaches [9]. Therefore,
we believe that our tool is very useful for:

MMSys’18, June 12-15, 2018, Amsterdam, Netherlands

e Researchers who are not very familiar with classification,
indexing or global features, but who want to use such

methods.
o Researchers that develop state-of-the-art methods like deep

learning architectures and want to benchmark their method

with an easy to get and hard to beat baseline.
o Content managers and experts like medical doctors who

want to use classification to learn from their data or un-
derstand their data better without going into technical
details.

In addition, it can be useful for researchers who:

o Need a fast and reliable classification method that is easy

to modify.
o Need just parts of the system like extraction of features,

classification, etc.
e Want to evaluate their own classification methods based on

comparison with our tool as an alternative to for example

random baseline, etc.
e Work with big data and classification and segmentation

problems.

In the remainder of the paper, we present the tool and how it
can be used. We then present it in a medical use case to show its
practical applicability.

2 THE SYSTEM

The tool that we have built consists of two separate parts, an Indexer
and a Classifier, both parts are written in Java. To be able to extract
image features from the content, we use the well known libraries
OpenCV!, Apache Lucene? and LIRE?. The Indexer can be used to
create an index of images contained in a directory. The Classifier
is able to read and process videos and images, and it uses feature
similarities to perform a binary classification of frames in video or
images in an index. The classification is done by identifying the
most similar images in ground-truth indexes, which are provided
as command line arguments.

2.1 Indexing and Training

The classifier uses indexes containing image descriptors of posi-
tive and negative examples as a model. Therefore, the classifier
is trained by simply dividing negative and positive examples into
the respective indexes. The Indexer accepts a list of directories as
input in the command line. Each of the provided directories is then
searched for image files, and an index of all the images contained
in a directory is created. The index of all the images contained in
a single directory is stored in a subdirectory called index in the
form of Lucene-based indexes. The index can store multiple LIRE-
feature-values per image, and the list of feature-values to store is
provided in the command line. The supported features are all the
features supported by LIRE [4] library. It is also built in a way that
it can easily be extended in the case that one of the used libraries
provides new features.

The usage of Lucene-based indexes has several advantages. These
indexes are easy to compute and do not require a lot of storage
space. Further, the indexes are optimized for search operations and
Uhttp://opencv.org/ [last visited, Feb. 10, 2018]

Zhttp://lucene.apache.org/ [last visited, Feb. 10, 2018]
3http://Www.lire—project.net/ [last visited, Feb. 10, 2018]

364

Pogorelov et. al.

can therefore be accessed efficiently. To increase the efficiency and
the processing speed of our Indexer further, we have parallelized
the indexing process. We create multiple threads that read image
files from disk and calculate global image features concurrently.
The results are then combined in a single index. The threads share
the same list of files, but as the number of threads is fixed and
known to each thread, we can split each video frame or image file
statically. Every thread starts reading with an offset into one file
and continues reading at offsets depending on its own thread ID.
This allows us to implement reading without explicit locking of
the input file list. Moreover, assuming that all images are of the
same size, the workload is spread evenly across all threads. The
actual number of threads used depends on the available processors
reported by the Java Virtual Machine (JVM).

2.2 Classification of Video and Images

The classification of each video frame or image is based on the anal-
ysis of search results for a given query picture. The classification
algorithm is a modified K-Nearest-Neighbor algorithm (k-NN). K-
NN is a non-parametric algorithm, which means that the algorithm
uses the rank of the values rather then the parameters of each frame.
The frame classification is based on its k nearest neighbors by a
majority decision. The classification algorithm used in the system
differs in some points from the original k-NN algorithm. The first
difference is that the algorithm is based on a ranked list of search
results, which can be generated in real-time or pre-indexed for each
query frame of the video. The second is that weighted values are
used for generating a decision antithetical to the non-parametric
behavior of the k-NN. The weights are based on the search result’s
ranked list. This part is designed in a way that it can easily be re-
placed with other different methods (for example visual page rank,
etc.).

As mentioned before, the classification tool is implemented as
a search for similar images in indexes that are generated off-line
or on-the-fly, based on single or multiple image features. For every
image in the input index or video, it searches the provided classifier
indexes and finds the images with the most similar image features,
whereas similarity is determined based on the low level features and
their associated distance (in this case Tanimoto distance). Based on
the class of the similar images retrieved from the index, the input
image is classified. The result for every single image feature, as
well as the result of late fusion for all the selected image features
is displayed on-screen. Late fusion means that each feature has
an own classification step that is combined with other classifiers’
output for the final result. When classifying previously indexed
images, an HTML page is created with a visual representation of all
the classified images. When classifying a video sequence, the results
are stored to a file in JSON format instead. The classification tool
also determines the performance of the classification and calculates
several evaluation scores such as precision, recall, weighted f1-score,
etc.. For this to work, the input data must be labeled correctly before
it is classified. This can either be done by prefixing the filenames
of the files in the test index with 'p’ or 'n’ for positive and negative
samples, respectively, or by supplying separate test indexes with
the command line options for the input data.

OpenSea - Open Search Based Classification Tool

3 INSTALLATION AND LICENSE

OpenSea is licensed under the terms of the GNU General Public
License (GPL) version 3, as published by the Free Software Foun-
dation. OpenSea depends on LIRE, which is licensed under GPL
version 2, and OpenCV, which is licensed under a BSD license.

We have tested our software on Linux, Mac OS X and Windows.
For simplicity, we provide installation instructions for Ubuntu Linux.
All the required files from stable LIRE version 0.9.5 and Apache
Lucene distribution are already included into the OpenSea distribu-
tion. The following installation and build instructions were tested
with Ubuntu 16.04:

e Download and install the Java SE Development Kit 8 from

http://www.oracle.com.
e Make sure to have the directory containing the java com-

piler in your PATH environment variable.
o Install OpenCV-Java and Apache ant:

sudo apt-get install libopencv2.4-java ant
o Clone the OpenSea repository:

git clone \

https://github.com/acmmmsys/2018-OpenSea
e Build OpenSea using ant as command line arguments.

ant dist
Once building finished, you should find the two files clas-

sifierjar and indexer.jar in the subdirectory dist.
e To make sure the OpenCV-Java native libraries are found

at runtime, it is further necessary to add the path to Ii-
bopencv_java249.so to LD_LIBRARY PATH.
export LD_LIBRARY_PATH=/usr/lib/jni

If another versions of LIRE is required, the following additional
steps are required:
e Download Lire from http://www.lire-project.net/.
e Unzip Lire to a directory of your choice. We will refer to

this location as Lire directory.
e Make sure your LIRE directory contains the file lire jar.
o Build OpenSea using ant, passing your Lire directory and

the corresponding OpenCV-Java directory as command line

arguments. The OpenCV-Java directory is where your java

bindings for OpenCV were installed (used by both LIRE

and OpenSea). It must contain the file opencv-249 jar, or

any later version.

ant -Dlire=/home/me/Lire \
-Dopencv=/usr/share/OpenCV/java dist

Once building finished, you should find the two files clas-

sifierjar and indexer.jar in the subdirectory dist.

4 USAGE INSTRUCTIONS AND EXAMPLE

To show how to use OpenSea, we provide the usage instructions
and a few command line examples.

4.1 Indexing
The indexer can be started as follows:

java \
-jar [/path/to/jar/file/Jindexer.
[-f feature]
/dir/with/images
[/dir/with/more/images]

jar

365

MMSys’18, June 12-15, 2018, Amsterdam, Netherlands

Indexer support multiple features set by -f command line argument

as well as multiple directories with images or frames extracted from

video.

Usage example:

java \
-jar indexer.jar -f JCD -f FCTH \
/home/user/dataset/train/pos \
/home/user/dataset/train/neg \
/home/user/dataset/test

This creates the two indexes containing the global image features
Joint Composite Descriptor (JCD) and Fuzzy Color and Texture His-
togram (FCTH) of the images in the /home/user/dataset/train/pos,
/home/user/dataset/train/neg /home/user/dataset/test directories and
stores the indexes in /home/user/dataset/train/pos/index, /home/user/-
dataset/train/neg/index and /home/user/dataset/test/index directories
respectively. If the index target directories contain any previously
extracted features they will be replaced.

4.2 Classification
The classifier can be started as follows:

java \

[-Djava.library.path=/path/to/opencv/for/

javal

jar [/path/to/jar/file/]classifier.jar
-f featurel
¢ /dir/with/training/index]
p /dir/with/training/positive/index]
n /dir/with/training/negative/index]
i /dir/with/test/index]
P /dir/with/test/positive/index]
N /dir/with/test/negative/index]
v /path/to/video/file]

L
[-
[-
[-
[-
[-
[-
[-
Classifier support multiple features set by -f command line argu-
ment. Training and test datasets are expected to be supplied in the
indexes previously extracted by Indexed. Indexes can be either joint
or separated sets of positive and negative samples. For the joined
sets file names must start with ’p’ for positive sample and with 'n’
for negative samples, with corresponding -c¢ and -i command line
arguments for training and test sets respectively. For the separated
sets positive and negative samples must be provided in the separate
indexes, with corresponding pairs -p, -n and -P, -N of command
line arguments for training and test sets respectively. Classifying
of video frames is implemented via -v command line arguments
which is mutually exclusive with test set arguments.
Usage example:
java \
-Djava.library.path=/usr/lib/jni \
-jar classifier.jar \
-f JCD -f FCTH -f Tamura \
-p /home/user/dataset/train/pos/index \
-n /home/user/dataset/train/neg/index \
-i /home/user/dataset/test/index

This example shows how to classify images from the index /home-
/user/dataset/test/index using the image features JCD and FCTH, by
finding the most similar images among the positive samples from
/home/user/dataset/train/pos/index and the negative samples from

MMSys’18, June 12-15, 2018, Amsterdam, Netherlands

/home/user/dataset/train/neg/index. For the calculation of the evalu-
ation metrics, it is required that the images indexed in /home/user/-
dataset/test/index have names starting with 'p’ or 'n’ for positive or
negative samples, respectively. This generates visual classification
output in HTML format. Example of generated HTML is depicted
in figure 1.

java \
-Djava.library.path=/usr/1lib/jni \
-jar classifier.jar \
-f JCD \
-p /home/user/dataset/train/pos/index \

-n
-P
-N
-f

/home/user/dataset/train/neg/index \
/home/user/dataset/test/pos/index \
/home/user/dataset/test/neg/index \
JCD

The second example uses samples from the positive index /home-
/user/dataset/test/pos/index and negative samples from the negative
index /home/user/dataset/test/neg/index, which are classified using
the image feature CD. The previously known classification is only
used for evaluating the results of the classifier.

java \
-Djava.library.path=/usr/lib/jni \
-jar classifier.jar \
-f JCD \
-p /home/user/dataset/train/pos/index \
-n /home/user/dataset/train/neg/index \
-v /home/user/dataset/testvideo.avi

In our last example, a video file is supplied as input to the classifier.
All video frames of this input video /home/user/dataset/testvideo.avi
are classified by searching the most similar images among the
positive samples from /home/user/dataset/train/pos/index and the
negative samples from /home/user/dataset/train/neg/index using the
global image feature JCD. In addition to the on-screen output (see
figure 2 for an example), a JSON file is generated, which contains a
list of all the positive frames and a list of all the negative ones.

To process videos in real-time, we have also parallelized the
classifier. Again, the number of threads created depends on the
number of processors reported by the JVM. Each thread holds a
separate instance of the classifier indexes, but all threads share the
same queue for the input data to be classified. Therefore, every
image or video frame is only loaded once, it is then processed by a
single thread, and the result is written to a shared data structure.
This allows for all threads to operate independently, with only two
critical sections, i.e., one for dequeuing the next input image and
one for writing to the shared result data structure. When processing
a video as input data, an additional thread is created for reading the
video from a file and filling the input frame queue. The Classifier
tool further provides different options for weighting the count or
distance score of similarity results. The different weighting methods
can be chosen by adding the flag —m followed by the rank method
that should be applied to the command. As default mode, no weight
is set and the classifier uses only the count per class. At the mo-
ment, we support 3 additional weighting methods: (i) weighted by
rank position, i.e., the weight is computing from the position in
the returned ranked list, (ii) weighted by distance, which uses the
Tanimoto distance from the search as weight and (iii) weighted by
average distance, which uses the average distance of all returned

366

Pogorelov et. al.

Classification Results - Mozilla Firefox

Classification Results P+
C' @ file;///home/user/opensea/results-1519988238.html

£+ Most Visited @ Getting Started ™ Inbox (3) - konstantin.

— =

Figure 1: Example of a generates visual classification output
in HTML format. Images with green borders correspond to
true positive and true negative samples. Images with red bor-
ders correspond to false positive and false negative samples.

Figure 2: Example of a classifier on-screen output. The out-
put contains classification results for each used feature and
features’ late fusion, as well as the corresponding perfor-
mance metrics.

documents in the ranked list instead of the number of documents
to calculate the weight. Moreover, various different combinations
of global image features can be evaluated separately or combined
in late fusion. This makes the tool ideal for experimenting with
different approaches and finding an optimal set of features to use
for a specific use case.

OpenSea - Open Search Based Classification Tool

4.3 Metrics

In our performance evaluation, several specific metrics are imple-
mented and can be calculated for the test data T. All metrics are
calculated based on true positives (tp), false positives (fp), true
negatives (tn), false negatives (fn) values per class ¢ € T. The most
important metrics are precision, recall, F1 score and Weighted F1
score. A common and often used metric to calculate the quality
of a classifier that considers both measures, precision and recall,
is the F1 score. It is the harmonic mean (mean value of a number
of values) of precision and recall. One problem with the standard
F1 score is that a low value is not always an indicator of a badly
performing classifier or retrieval system if the classes in the test
dataset are not normally distributed [13]. To solve this problem, the
weighted F1 score (WF1) can be used. This score takes both, the
negative and the positive class results, into account and calculates
a more accurate and robust measure. WF1 score is known to be
more reliable to evaluate the performance of a classifier or retrieval
system than the standard F1 score. Apart from F1 and WF1, the
tool also provides true negative rate, false positive rate, accuracy
and the Matthews correlation coefficient [5].

All of these metrics are suitable for showing the performance
of binary (two classes) and multi-class classifiers (more than two
classes) and should be a valuable set of instruments for users of the
tool to evaluate their classifiers.

5 USE CASE

To show how the system works, we performed two experiments
using two different pairs of training and test sets. For the first
experiment, we used the ASU-Mayo Clinic polyp database [2]. It
is at the moment one of the largest publicly available dataset of
colonoscopy videos. The dataset comes with a ground truth that
indicates if a frame of a video contains a polyp in the colon or not.
The dataset consist of 20 videos. 10 videos do not contain polyps at
all, and 10 of them contain polyps in the whole video or parts of it.

First, we split the dataset into test and training sets. The test
set contained two separate videos that are not used in the training
dataset. To measure the performance, we used the well known
metrics precision and recall. All the tests were conducted without
a weighting method (default mode). In this first test, we achieved
a precision of 0.903, a recall of 0.919. For these results, we used
a fusion of the features JCD and OpponentHistogram, which we
found to perform best in small tests before [15]. The number of
visual neighbors (size of the rank list returned by the search part of
the classifier) was 71. The majority class baseline (all negative) is
0, 683 for precision, 0, 683 for recall.

To evaluate the robustness of the classifier, and to check if the
good results were not just overfitting, we decided to perform a leave-
one-out-cross-validation (LOOC) with all 20 videos of the dataset.
In LOOC, all videos of the dataset are used to train the model expect
for one that is used as the test example. This is repeated, so that
all the sample videos are excluded once. To be able to recreate
the experiments and test the software, we added the indexes to
the official repository. We used the same features and number of
visual neighbours as in the test before. For LOOC, the average
precision is 0, 895, the average recall is 0.903. In comparison to the
LOOC for the majority class baseline (all negative) which reaches a

367

MMSys’18, June 12-15, 2018, Amsterdam, Netherlands

Table 1: A performance comparison of deep-learning and global
features based GI findings detection approaches [9]

Global-features-based EIR Deep-EIR
polyps / 30 features abnormalities / neural network
98.50% 87.20%

Detection Type
Recall (Sensitivity)

Precision 93.88% 87.20%
Specificity 72.49% 97.40%
Accuracy 87.70% 97.50%

FPS 300 30

precision of 0.636, recall of 0.636. It is important to point out that
we choose the class with the highest number for the majority vote
baseline against the common practice to decide for the positive one.
This makes it harder to outperform the baseline, but it also shows
the real performance of the classifier. The results shows that our
system performs well in cross validation and that it is robust and
not overfitted for the dataset. We also want to point out that the
classification time is very low. For a single frame, the time is around
30 milliseconds. To be able to do it in real time for videos with 30
frames per second, 33, 3 milliseconds is the deadline. In the best
case, if we use a single feature, we can even get a classification time
of around 10 milliseconds. The parallelization is not yet optimized,
and we have some ideas that can make the system even faster, but
this is out of scope for this paper.

For the second experiment, we use combinations of four differ-
ent, publicly available datasets, namely CVC-356 [2], CVC-612 [1],
Kvasir [8] and parts of Nerthus [7]. The CVC-356 and CVC-612
datasets consist of 356 and 612 video frames, respectively. Each
frame that contains a polyp comes with pixel-wise annotations in
the CVC-356 and CVC-612 datasets. They both are used for training
only in our polyp detection experiments. The fames from those
datasets were renamed adding 'n’ or ’p’ prefix to reflect actual polyp
presence in frames according to the existing pixel-wise annotations.
For the testing we used Kvasir and Nerthus. For the Kvasir dataset,
we included all classes except for the dyed classes (in a real world
scenario something dyed is already detected by the doctor) leading
to a dataset containing 1,000 frames with polyps, 5,000 without. We
also added the 1,350 of class three frames with normal mucosa from
the Nerthus dataset.

For this experiment we performed training and polyp detection
using the described sets with two different detection approaches: the
proposed OpenSea system and a deep-learning based abnormality
detection approach [9]. The comparison of performance and data
processing speed is depicted in table 1. As one can see, the OpenSea
(global-features-based EIR) approach can perform as good in terms
of detection performance as deep-learning based, but OpenSea
system perform ten times faster in terms of processing speed. This
results showing a promising nature of global features and their
ability to perform fast and efficiently even across the different
datasets.

The problem of polyp detection in GI videos is one of the most
important problems in modern medical endoscopic imaging analy-
sis [6]. Our efforts in this field includes not only development of
the new lesion recognition methods [9], but also include a creation
of open and publicly available datasets. We are working intensively
on extending our own datasets which contain another diseases and
findings [7, 8]. The proposed OpenSea system can easily be extend
to different diseases by simply using a separate classifier for each

MMSys’18, June 12-15, 2018, Amsterdam, Netherlands

category which will make it easy to run in parallel and more accu-
rate (since it is late fusion and late fusion has been proved as being
more accurate [3]). The preliminary results of such a multi-class
classification can be found in [10].

It is important to point out that with our method the adjustment
of precision and recall is very easy. We can easily increase the recall
by using more visual neighbors. This makes it very interesting for
the medical use case, because we can get a recall of 1 so that doctors
can be sure that we do not miss a true positive example, while still
saving them working time because the high precision allows to
remove a considerable number of fames.

Possible ways to use the output of the classification tool are
presented in the following papers. Here, we use it in a system
that allows computer-aided diagnosis. It helps medical experts to
find polyps in colonoscopies and also to save medical personnel’s
working time because they do not have to analyze the whole video.
OpenSea has been also used for a system called EIR. This system is
built to automatically detect different disease during colonoscopies
and capsular endoscopies. The more detailed description of the
system can be found in [9, 11, 15]. Different demos of this system
have been presented in [12, 16].

Comparing to another existing classification-related software
(e.g. Weka*, a collection of machine learning algorithms for data
mining tasks), OpenSea provides not only classification capabilities,
but integrates them with feature extraction process. This integration
and the simplified data annotation mechanism make the OpenSea
tool easy-to-use for all user categories including non-expert users
and professionals.

6 CONCLUSION

We presented an easy to use open-source software named OpenSea
for image and video classification and showed that the performance
regarding processing time and detection accuracy is promising.
By making the tool open-source, we hope that we can help other
researchers to compare their systems and develop better methods
by being able to use it as an easy to get but hard to beat baseline.
Moreover, due to the easy way to train the classifier, we hope that
also non-experts can use it, especially in the medical use case that
we presented. For the future project development, we plan to inte-
grate OpenSea with the latest version of LIRE, speed-up the features
extraction process [11], add more features and metrics, integrate
custom weights and extend the report generation capabilities.

REFERENCES

[1] Jorge Bernal, F Javier Sanchez, Gloria Fernandez-Esparrach, Debora Gil, Cristina
Rodriguez, and Fernando Vilarifio. 2015. WM-DOVA maps for accurate polyp
highlighting in colonoscopy: Validation vs. saliency maps from physicians. Com-
puterized Medical Imaging and Graphics 43 (2015), 99-111.

[2] Jorge Bernal, Nima Tajbakhsh, Javier Sanchez, Bogdan] Matuszewski, Hao Chen,

Lequan Yu, Quentin Angermann, Olivier Romain, Bjorn Rustad, Ilangko Balas-

ingham, Konstantin Pogorelov, Sungbin Choi, Quentin Debard, Lena Maier-Hein,

Stefanie Speidel, Danail Stoyanov, Patrick Brandao, Henry Cérdova, Cristina

Sanchez-Montes, Suryakanth R. Gurudu, Gloria Fernandez-Esparrach, Xavier

Dray, Jianming Liang, and Aymeric Histace. 2017. Comparative Validation of

Polyp Detection Methods in Video Colonoscopy: Results from the MICCAI 2015

Endoscopic Vision Challenge. IEEE Transactions on Medical Imaging (2017), 1-19.

Hugo Jair Escalante, Carlos A Hérnadez, Luis Enrique Sucar, and Manuel Montes.

2008. Late fusion of heterogeneous methods for multimedia image retrieval. In

Proc. of ACM ICMR. 172-179.

4https://WWW.cs.waikato.ac.nz/ml/weka/ [last visited, Feb. 10, 2018]

368

[12]

[13]

[14

[15

[16

Pogorelov et. al.

M. Lux and O. Marques. 2013. Visual Information Retrieval Using Java and LIRE.
Vol. 25. Morgan & Claypool.

Brian W Matthews. 1975. Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein
Structure 405, 2 (1975), 442-451.

Konstantin Pogorelov, Sigrun Losadal Eskeland, Thomas de Lange, Carsten
Griwodz, Kristin Ranheim Randel, Hakon Kvale Stensland, Duc-Tien Dang-
Nguyen, Concetto Spampinato, Dag Johansen, Michael Riegler, and Pal Halvorsen.
2017. In Proc. of MMSys. 112-123.

Konstantin Pogorelov, Kristin Ranheim Randel, Thomas de Lange, Sigrun Losada
Eskeland, Carsten Griwodz, Dag Johansen, Concetto Spampinato, Mario
Taschwer, Mathias Lux, Peter Thelin Schmidt, Michael Riegler, and Pal Halvorsen.
2017. Nerthus: A Bowel Preparation Quality Video Dataset. In Proc. of MMSYS.
170-174.

Konstantin Pogorelov, Kristin Ranheim Randel, Carsten Griwodz, Sigrun Losada
Eskeland, Thomas de Lange, Dag Johansen, Concetto Spampinato, Duc-Tien
Dang-Nguyen, Mathias Lux, Peter Thelin Schmidt, Michael Riegler, and Pal
Halvorsen. 2017. Kvasir: A Multi-Class Image Dataset for Computer Aided
Gastrointestinal Disease Detection. In Proc. of MMSys. 164-169.

Konstantin Pogorelov, Michael Riegler, Sigrun Losada Eskeland, Thomas de
Lange, Dag Johansen, Carsten Griwodz, Peter Thelin Schmidt, and Pal Halvorsen.
2017. Efficient disease detection in gastrointestinal videos - global features versus
neural networks. Multimedia Tools and Applications 76, 21 (2017), 22493-22525.
Konstantin Pogorelov, Michael Riegler, Pal Halvorsen, Carsten Griwodz, Thomas
de Lange, Kristin Randel, Sigrun Eskeland, Dang Nguyen, Duc Tien, Olga Os-
troukhova, and others. 2017. A comparison of deep learning with global features
for gastrointestinal disease detection. In Proc. of CEUR Workshop.

Konstantin Pogorelov, Michael Riegler, Pal Halvorsen, Peter Thelin Schmidt,
Carsten Griwodz, Dag Johansen, Sigrun L. Eskeland, and Thomas de Lange. 2016.
GPU-accelerated Real-time Gastrointestinal Diseases Detection. In Proc. of CBMS.
185-190.

Konstantin Pogorelov, Michael Riegler, Jonas Markussen, Mathias Lux,
Hakon Kvale Stensland, Thomas Lange, Carsten Griwodz, Pal Halvorsen, Dag
Johansen, Peter T Schmidt, and Sigrun L. Eskeland. 2016. Efficient Processing of
Videos in a Multi Auditory Environment Using Device Lending of GPUs. In Proc.
of MMSys. 36.

DMW Powers. 2011. Evaluation: From precision, recall and f-measure to roc., in-
formedness, markedness & correlation. Journal of Machine Learning Technologies
2,1(2011), 37-63.

Michael Riegler, Mathias Lux, Carsten Griwodz, Concetto Spampinato, Thomas
de Lange, Sigrun L Eskeland, Konstantin Pogorelov, Wallapak Tavanapong, Pe-
ter T Schmidt, Cathal Gurrin, and others. 2016. Multimedia and Medicine:
Teammates for Better Disease Detection and Survival. In Proc. of ACM MM.
968-977.

Michael Riegler, Konstantin Pogorelov, Pal Halvorsen, Thomas de Lange, Carsten
Griwodz, Peter Thelin Schmidt, Sigrun L. Eskeland, and Dag Johansen. 2016. EIR -
Efficient Computer Aided Diagnosis Framework for Gastrointestinal Endoscopies.
In Proc. of CBMI 1-6.

Michael Riegler, Konstantin Pogorelov, Jonas Markussen, Mathias Lux,
Hékon Kvale Stensland, Thomas de Lange, Carsten Griwodz, Pal Halvorsen,
Dag Johansen, Peter T Schmidt, and Sigrun L. Eskeland. 2016. Computer Aided
Disease Detection System for Gastrointestinal Examinations. In Proc. of MMSys.
29.

